Science.gov

Sample records for ovarian small cell

  1. Small cell ovarian carcinoma: genomic stability and responsiveness to therapeutics

    PubMed Central

    2013-01-01

    Background The biology of small cell ovarian carcinoma of the hypercalcemic type (SCCOHT), which is a rare and aggressive form of ovarian cancer, is poorly understood. Tumourigenicity, in vitro growth characteristics, genetic and genomic anomalies, and sensitivity to standard and novel chemotherapeutic treatments were investigated in the unique SCCOHT cell line, BIN-67, to provide further insight in the biology of this rare type of ovarian cancer. Method The tumourigenic potential of BIN-67 cells was determined and the tumours formed in a xenograft model was compared to human SCCOHT. DNA sequencing, spectral karyotyping and high density SNP array analysis was performed. The sensitivity of the BIN-67 cells to standard chemotherapeutic agents and to vesicular stomatitis virus (VSV) and the JX-594 vaccinia virus was tested. Results BIN-67 cells were capable of forming spheroids in hanging drop cultures. When xenografted into immunodeficient mice, BIN-67 cells developed into tumours that reflected the hypercalcemia and histology of human SCCOHT, notably intense expression of WT-1 and vimentin, and lack of expression of inhibin. Somatic mutations in TP53 and the most common activating mutations in KRAS and BRAF were not found in BIN-67 cells by DNA sequencing. Spectral karyotyping revealed a largely normal diploid karyotype (in greater than 95% of cells) with a visibly shorter chromosome 20 contig. High density SNP array analysis also revealed few genomic anomalies in BIN-67 cells, which included loss of heterozygosity of an estimated 16.7 Mb interval on chromosome 20. SNP array analyses of four SCCOHT samples also indicated a low frequency of genomic anomalies in the majority of cases. Although resistant to platinum chemotherapeutic drugs, BIN-67 cell viability in vitro was reduced by >75% after infection with oncolytic viruses. Conclusions These results show that SCCOHT differs from high-grade serous carcinomas by exhibiting few chromosomal anomalies and lacking TP53

  2. Novel population of small tumour-initiating stem cells in the ovaries of women with borderline ovarian cancer

    PubMed Central

    Virant-Klun, Irma; Stimpfel, Martin

    2016-01-01

    Small stem cells with diameters of up to 5 μm previously isolated from adult human ovaries indicated pluripotency and germinal lineage, especially primordial germ cells, and developed into primitive oocyte-like cells in vitro. Here, we show that a comparable population of small stem cells can be found in the ovarian tissue of women with borderline ovarian cancer, which, in contrast to small stem cells in “healthy” ovaries, formed spontaneous tumour-like structures and expressed some markers related to pluripotency and germinal lineage. The gene expression profile of these small putative cancer stem cells differed from similar cells sorted from “healthy” ovaries by 132 upregulated and 97 downregulated genes, including some important forkhead box and homeobox genes related to transcription regulation, developmental processes, embryogenesis, and ovarian cancer. These putative cancer stem cells are suggested to be a novel population of ovarian tumour-initiating cells in humans. PMID:27703207

  3. c-Met inhibitors attenuate tumor growth of small cell hypercalcemic ovarian carcinoma (SCCOHT) populations.

    PubMed

    Otte, Anna; Rauprich, Finn; von der Ohe, Juliane; Yang, Yuanyuan; Kommoss, Friedrich; Feuerhake, Friedrich; Hillemanns, Peter; Hass, Ralf

    2015-10-13

    A cellular model (SCCOHT-1) of the aggressive small cell hypercalcemic ovarian carcinoma demonstrated constitutive chemokine and growth factor production including HGF. A simultaneous presence of c-Met in 41% SCCOHT-1 cells suggested an autocrine growth mechanism. Expression of c-Met was also observed at low levels in the corresponding BIN-67 cell line (6.5%) and at high levels in ovarian adenocarcinoma cells (NIH:OVCAR-3 (84.4%) and SK-OV-3 (99.3%)). Immunohistochemistry of c-Met expression in SCCOHT tumors revealed a heterogeneous distribution between undetectable levels and 80%. Further characterization of SCCOHT-1 and BIN-67 cells by cell surface markers including CD90 and EpCAM demonstrated similar patterns with differences to the ovarian adenocarcinoma cells. HGF stimulation of SCCOHT-1 cells was associated with c-Met phosphorylation at Tyr1349 and downstream Thr202/Tyr204 phosphorylation of p44/42 MAP kinase. This HGF-induced signaling cascade was abolished by the c-Met inhibitor foretinib. Cell cycle analysis after foretinib treatment demonstrated enhanced G2 accumulation and increasing apoptosis within 72 h. Moreover, the IC50 of foretinib revealed 12.4 nM in SCCOHT-1 cells compared to 411 nM and 481 nM in NIH:OVCAR-3 and SK-OV-3 cells, respectively, suggesting potential therapeutic effects. Indeed, SCCOHT-1 and BIN-67 tumor xenografts in NODscid mice exhibited an approximately 10-fold and 5-fold reduced tumor size following systemic application of foretinib, respectively. Furthermore, foretinib-treated tumors revealed a significantly reduced vascularization and little if any c-Met-mediated signal transduction. Similar findings of reduced proliferative capacity and declined tumor size were observed after siRNA-mediated c-Met knock-down in SCCOHT-1 cells demonstrating that in vivo inhibition of these pathways contributed to an attenuation of SCCOHT tumor growth.

  4. Erlotinib in Treating Patients With Advanced Non-Small Cell Lung Cancer, Ovarian Cancer, or Squamous Cell Carcinoma of the Head and Neck

    ClinicalTrials.gov

    2013-01-08

    Recurrent Non-small Cell Lung Cancer; Recurrent Ovarian Epithelial Cancer; Recurrent Squamous Cell Carcinoma of the Hypopharynx; Recurrent Squamous Cell Carcinoma of the Larynx; Recurrent Squamous Cell Carcinoma of the Lip and Oral Cavity; Recurrent Squamous Cell Carcinoma of the Nasopharynx; Recurrent Squamous Cell Carcinoma of the Oropharynx; Stage III Squamous Cell Carcinoma of the Hypopharynx; Stage III Squamous Cell Carcinoma of the Larynx; Stage III Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage III Squamous Cell Carcinoma of the Nasopharynx; Stage III Squamous Cell Carcinoma of the Oropharynx; Stage IIIA Non-small Cell Lung Cancer; Stage IIIA Ovarian Epithelial Cancer; Stage IIIB Non-small Cell Lung Cancer; Stage IIIB Ovarian Epithelial Cancer; Stage IIIC Ovarian Epithelial Cancer; Stage IV Non-small Cell Lung Cancer; Stage IV Ovarian Epithelial Cancer; Stage IV Squamous Cell Carcinoma of the Hypopharynx; Stage IV Squamous Cell Carcinoma of the Nasopharynx; Stage IVA Squamous Cell Carcinoma of the Larynx; Stage IVA Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IVA Squamous Cell Carcinoma of the Oropharynx; Stage IVB Squamous Cell Carcinoma of the Larynx; Stage IVB Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IVB Squamous Cell Carcinoma of the Oropharynx; Stage IVC Squamous Cell Carcinoma of the Larynx; Stage IVC Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IVC Squamous Cell Carcinoma of the Oropharynx

  5. Cytogenetic damage in lymphocytes of patients undergoing therapy for small cell lung cancer and ovarian carcinoma

    SciTech Connect

    Padjas, Anna; Lesisz, Dominika; Lankoff, Anna; Banasik, Anna; Lisowska, Halina; Bakalarz, Robert; Gozdz, Stanislaw; Wojcik, Andrzej . E-mail: awojcik@pu.kielce.pl

    2005-12-01

    The level of cytogenetic damage in peripheral blood lymphocytes of patients undergoing chemotherapy has been analyzed incisively 20 years ago. The results showed that the highest level of cytogenetic damage was observed at the end of therapy. In recent years, the doses of anticancer drugs were intensified thanks to the discovery of colony stimulating factors. Therefore, it was interesting to analyze the kinetics of micronuclei formation in lymphocytes of patients undergoing modern chemotherapy. The frequencies of micronuclei were measured in lymphocytes of 6 patients with small cell lung cancer treated with a combination of cisplatin and etoposide and 7 patients with ovarian carcinoma treated with a combination of taxol and cisplatin. 3 patients with lung cancer received radiotherapy in addition to chemotherapy. Micronuclei were analyzed in lymphocytes collected before the start of therapy and 1 day before each following cycle of chemotherapy. The micronucleus frequencies were compared with the kinetics of leukocyte counts. The micronucleus frequencies showed an interindividual variability. On average, the frequencies of micronuclei increased during the first half of therapy and declined thereafter, reaching, in some patients with ovarian carcinoma, values below the pre-treatment level. Leukocyte counts decreased strongly at the beginning of therapy with an upward trend at the end. We suggest that the decline of micronuclei was due to repopulation of lymphocytes and acquired drug resistance.

  6. Small molecule inhibitor of c-Met (PHA665752) suppresses the growth of ovarian cancer cells and reverses cisplatin resistance.

    PubMed

    Li, Enze; Hu, Zheng; Sun, Yi; Zhou, Qi; Yang, Bin; Zhang, Zhiguo; Cao, Wenwu

    2016-06-01

    c-Met as a tyrosine-kinase receptor plays a major role in tumorigenesis, invasion, and metastatic spread of human tumors, including ovarian cancer. Expressing high levels of c-Met proteins is often associated with resistance to chemotherapy and an adverse prognosis. In this study, we have determined the effect of PHA665752, a small molecule inhibitor of c-Met proteins, with and without cisplatin and the role of c-Met in several ovarian cancer cell lines having high c-Met expression. The methyl thiazolyl tetrazolium (MTT) assay was used to detect cell proliferation, and apoptosis was evaluated by flow cytometry. Western blotting was carried out to determine protein expression levels. Gene silencing was used to detect the influence of c-Met gene silence on the resistance to cisplatin. Compared to more sensitive ovarian cancer cell lines SKOV3 and 3AO, we found that the expression of c-Met was significantly increased in SKOV3(DDP), OVCAR3, and OV-90 ovarian cancer cell lines, which were resistant to cisplatin. Our data indicated that cisplatin sustained activated phosphor-Met in SKOV3(DDP), OVCAR3, and OV-90 cell lines. We also observed a significant transient activation of c-Met phosphorylation in SKOV3 and 3AO cells. Treatment with PHA665752 inhibited c-Met expression inhibited cell growth, induced apoptosis, and enhanced cisplatin-induced proliferation inhibition and apoptosis in c-Met over-expressed cell lines. In addition, blocking c-Met expression with small interfering RNA (siRNA) overcame the resistance of cancer cells to cisplatin. Thus, blocking c-Met expression presents a promising therapeutic approach for ovarian cancer.

  7. Mouse Ovarian Very Small Embryonic-Like Stem Cells Resist Chemotherapy and Retain Ability to Initiate Oocyte-Specific Differentiation

    PubMed Central

    Sriraman, Kalpana; Anand, Sandhya; Bhutda, Smita

    2015-01-01

    This study was undertaken to investigate stem cells in adult mouse ovary, the effect of chemotherapy on them and their potential to differentiate into germ cells. Very small embryonic-like stem cells (VSELs) that were SCA-1+/Lin−/CD45−, positive for nuclear octamer-binding transforming factor 4 (OCT-4), Nanog, and cell surface stage-specific embryonic antigen 1, were identified in adult mouse ovary. Chemotherapy resulted in complete loss of follicular reserve and cytoplasmic OCT-4 positive progenitors (ovarian germ stem cells) but VSELs survived. In ovarian surface epithelial (OSE) cell cultures from chemoablated ovary, proliferating germ cell clusters and mouse vasa homolog/growth differentiation factor 9-positive oocyte-like structure were observed by day 6, probably arising as a result of differentiation of the surviving VSELs. Follicle-stimulating hormone (FSH) exerted a direct stimulatory action on the OSE and induced stem cells proliferation and differentiation into premeiotic germ cell clusters during intact chemoablated ovaries culture. The FSH analog pregnant mare serum gonadotropin treatment to chemoablated mice increased the percentage of surviving VSELs in ovary. The results of this study provide evidence for the presence of potential VSELs in mouse ovaries and show that they survive chemotherapy, are modulated by FSH, and retain the ability to undergo oocyte-specific differentiation. These results show relevance to women who undergo premature ovarian failure because of oncotherapy. PMID:25779995

  8. Cyclophosphamide or Denileukin Diftitox Followed By Expanding a Patient's Own T Cells in the Laboratory in Treating Patients With HER-2/Neu Overexpressing Metastatic Breast Cancer, Ovarian Cancer, or Non-Small Cell Lung Cancer Previously Treated With HER-2/Neu Vaccine

    ClinicalTrials.gov

    2014-11-07

    HER2-positive Breast Cancer; Recurrent Breast Cancer; Recurrent Non-small Cell Lung Cancer; Recurrent Ovarian Epithelial Cancer; Recurrent Ovarian Germ Cell Tumor; Stage IV Breast Cancer; Stage IV Non-small Cell Lung Cancer; Stage IV Ovarian Epithelial Cancer; Stage IV Ovarian Germ Cell Tumor

  9. High-Throughput Platform for Patient-Derived, Small Cell Number, Three-Dimensional Ovarian Cancer Spheroids

    DTIC Science & Technology

    2014-09-01

    Spheroids remained 80% viable in response to 50µM cisplatin , whereas 2D monolayer cultures were only 30% viable, suggesting multicellular ovarian cancer...ovarian CSC treated with standard chemotherapy and novel drugs. We screened the drug-dose response of OvCa spheroids with doxil, cisplatin and...cancer therapy drugs (doxil, gemcitabine, cisplatin ) from days3-7 after seeding cells into the HDs and quantified the cell viability (on day7) using

  10. Combination Chemotherapy and Peripheral Stem Cell Transplantation in Treating Patients With Stage III Ovarian Cancer

    ClinicalTrials.gov

    2016-03-17

    Malignant Ovarian Mixed Epithelial Tumor; Ovarian Clear Cell Cystadenocarcinoma; Ovarian Endometrioid Adenocarcinoma; Ovarian Mucinous Cystadenocarcinoma; Ovarian Serous Cystadenocarcinoma; Primary Peritoneal Carcinoma; Stage III Ovarian Cancer; Undifferentiated Ovarian Carcinoma

  11. MV-NIS Infected Mesenchymal Stem Cells in Treating Patients With Recurrent Ovarian Cancer

    ClinicalTrials.gov

    2017-03-14

    Malignant Ovarian Brenner Tumor; Ovarian Clear Cell Adenocarcinoma; Ovarian Endometrioid Adenocarcinoma; Ovarian Mucinous Adenocarcinoma; Ovarian Seromucinous Carcinoma; Ovarian Serous Adenocarcinoma; Ovarian Transitional Cell Carcinoma; Recurrent Ovarian Carcinoma; Recurrent Primary Peritoneal Carcinoma; Undifferentiated Ovarian Carcinoma

  12. Monoclonal Antibody Therapy in Treating Patients With Ovarian Epithelial Cancer, Melanoma, Acute Myeloid Leukemia, Myelodysplastic Syndrome, or Non-Small Cell Lung Cancer

    ClinicalTrials.gov

    2013-01-09

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Atypical Chronic Myeloid Leukemia, BCR-ABL1 Negative; Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Myeloid Leukemia; Recurrent Melanoma; Recurrent Non-small Cell Lung Cancer; Recurrent Ovarian Epithelial Cancer; Stage IV Melanoma; Stage IV Non-small Cell Lung Cancer

  13. Establishment and characterization of a human ovarian small cell carcinoma, hypercalcemic type, cell line (OS-1) secreting PTH, PthrP and ACTH--special reference to the susceptibility of anti-cancer drugs.

    PubMed

    Ohi, Satoshi; Niimi, Shigeki; Okada, Naoya; Yamada, Kyosuke; Tachibana, Toshiaki; Hashimoto, Hisashi; Nakajima, Masako; Yasuda, Mitsuru; Tanaka, Tadao; Sato, Kahei; Ishikawa, Hiroshi

    2004-12-01

    We successfully established a novel cell line (OS-1) derived from human ovarian small cell carcinoma, hypercalcemic type secreted PTH, PTH-rP and ACTH. The OS-1 cell line was established from metastatic focus of uterus. A patient was 25-year-old Japanese woman. The first she received left ovariectomy on April 2002. The histopathological diagnosis was ovarian small cell carcinoma, pT2c, Nx, Mx. Then on June 2003, metastatic focus of uterus was ectomied. A part of the recurrent tumor of uterus was cut into small pieces with razor blades, and dissociated with 0.1% trypsin-0.02% EDTA/ PBS(-) solution at room temperature. The single cells and small cell clusters were seeded into 60mm dishes and cultured in growth medium (GM: DMEM/F12 supplemented with 20% fetal bovine serum and 0.1% non-essential amino acids solution) at 37 degrees C, 4.7% CO2 in humidified air. Medium was exchanged twice a week. The OS-1 cells grew as floating cultures in the dishes. Radioimmunoassay of the conditioned media was revealed that the cultures secreted large amount of PTH, PTHrP and ACTH simultaneously. Susceptibilities of anti-cancer drugs to the OS-1 cells were examined using oxygen electrode meter (Daikin), and the results suggested VLB and TXL were effective, and CDDP, CPT-11, VP-16, VCR, CPA, MMC and CBDCA were not effective. In our knowledge, it is the first report that the cell line secreting PTH, PTHrP and ACTH was successfully established from ovarian small cell carcinoma, hypercalcemic type. We expect that OS-1 cell line contribute to study on the mechanism of ectopic hormone secretion and susceptibility of anti cancer drugs to the small cell carcinoma.

  14. Impact of the putative cancer stem cell markers and growth factor receptor expression on the sensitivity of ovarian cancer cells to treatment with various forms of small molecule tyrosine kinase inhibitors and cytotoxic drugs

    PubMed Central

    Puvanenthiran, Soozana; Essapen, Sharadah; Seddon, Alan M.; Modjtahedi, Helmout

    2016-01-01

    Increased expression and activation of human epidermal growth factor receptor (EGFR) and HER-2 have been reported in numerous cancers. The aim of this study was to determine the sensitivity of a large panel of human ovarian cancer cell lines (OCCLs) to treatment with various forms of small molecule tyrosine kinase inhibitors (TKIs) and cytotoxic drugs. The aim was to see if there was any association between the protein expression of various biomarkers including three putative ovarian cancer stem cell (CSC) markers (CD24, CD44, CD117/c-Kit), P-glycoprotein (P-gp), and HER family members and response to treatment with these agents. The sensitivity of 10 ovarian tumour cell lines to the treatment with various forms of HER TKIs (gefitinib, erlotinib, lapatinib, sapitinib, afatinib, canertinib, neratinib), as well as other TKIs (dasatinib, imatinib, NVP-AEW541, crizotinib) and cytotoxic agents (paclitaxel, cisplatin and doxorubicin), as single agents or in combination, was determined by SRB assay. The effect on these agents on the cell cycle distribution, and downstream signaling molecules and tumour migration were determined using flow cytometry, western blotting, and the IncuCyte Clear View cell migration assay respectively. Of the HER inhibitors, the irreversible pan-TKIs (canertinib, neratinib and afatinib) were the most effective TKIs for inhibiting the growth of all ovarian cancer cells, and for blocking the phosphorylation of EGFR, HER-2, AKT and MAPK in SKOV3 cells. Interestingly, while the majority of cancer cells were highly sensitive to treatment with dasatinib, they were relatively resistant to treatment with imatinib (i.e., IC50 >10 μM). Of the cytotoxic agents, paclitaxel was the most effective for inhibiting the growth of OCCLs, and of various combinations of these drugs, only treatment with a combination of NVP-AEW541 and paclitaxel produced a synergistic or additive anti-proliferative effect in all three cell lines examined (i.e., SKOV3, Caov3, ES2

  15. Transcriptomes of bovine ovarian follicular and luteal cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    RNA expression analysis was performed on four somatic ovarian cell types using a gene array panel: the granulosa cells (GCs) and theca cells (TCs) of the dominant follicle and the large luteal cells (LLCs) and small luteal cells (SLCs) of the corpus luteum. The normalized linear microarray data was ...

  16. The DNA damage mark pH2AX differentiates the cytotoxic effects of small molecule HDAC inhibitors in ovarian cancer cells.

    PubMed

    Wilson, Andrew J; Holson, Edward; Wagner, Florence; Zhang, Yan-Ling; Fass, Daniel M; Haggarty, Stephen J; Bhaskara, Srividya; Hiebert, Scott W; Schreiber, Stuart L; Khabele, Dineo

    2011-09-15

    High grade epithelial ovarian cancers are relatively sensitive to DNA damaging platinum-based chemotherapy, suggesting that the dependencies of ovarian tumors on DNA damage response pathways can be harnessed for therapeutic purposes. Our goal was to determine if the DNA damage mark gamma-H2AX phosphorylation (pH2AX) could be used to identify suitable cytotoxic histone deacetylase inhibitors (HDACi) for ovarian cancer treatment. Nineteen chemically diverse HDACi compounds were tested in 7 ovarian cancer cell lines. Fluorescent, biochemical and cell-based assays were performed to assess DNA damage by induction of pH2AX and to measure cell viability and apoptosis. The relationships between pH2AX and the cellular effects of cell viability and apoptosis were calculated. Selected HDACi were tested in combination with cisplatin and other DNA damaging agents to determine if the HDACi improved upon the effects of the DNA damaging agents. The HDACi compounds induced differing levels of pH2AX expression. High levels of pH2AX in HDACi-treated ovarian cancer cells were tightly associated with decreased cell viability and increased apoptosis. Consequently, a ketone-based HDACi was chosen and found to enhance the effects of cisplatin, even in ovarian cancer cells with extreme resistance to DNA damaging drugs. In conclusion, a fluorescent-based assay for pH2AX can be used to determine cellular responses to HDACi in vitro and may be a useful tool to identify potentially more effective HDACi for the treatment of ovarian cancer. In addition, these results lend support to the inclusion of ketone-derived HDACi compounds for future development.

  17. Metabolic Regulation of Ovarian Cancer Cell Death

    DTIC Science & Technology

    2012-07-01

    Following treatment with chemotherapeutic agents, responsive ovarian cancer cells undergo apoptotic cell death . Several groups have shown that the...apoptotic protease, caspase 2 (C2), is an essential activator of cell death in ovarian cancer cells treated with cisplatin and we have found, by knock

  18. Identification of Small Molecule Inhibitors of microRNA Involved in Chemoresistance and Cancer Stem Cells for Ovarian Cancer Intervention

    DTIC Science & Technology

    2013-09-01

    tongue cancer and its putative role as a tumor suppressor microRNA . AACR 102 Annual Meeting, 2011. 2. Richards EJ, Coppola M, Guo JP, Kong W, Cheng...JQ. microRNA -641 activates MAPK by targeting NF1 and cooperates with its host gene AKT2 in human cancer . AACR Special Conference “Noncoding RNAs and...Schildkraut JM, Goode EL, Sellers TA. MicroRNA binding site polymorphisms influence ovarian cancer risk in the collaborative oncological gene- environment

  19. Functional EpoR Pathway Utilization Is Not Detected in Primary Tumor Cells Isolated from Human Breast, Non-Small Cell Lung, Colorectal, and Ovarian Tumor Tissues

    PubMed Central

    Patterson, Scott D.; Rossi, John M.; Paweletz, Katherine L.; Fitzpatrick, V. Dan; Begley, C. Glenn; Busse, Leigh; Elliott, Steve; McCaffery, Ian

    2015-01-01

    Several clinical trials in oncology have reported increased mortality or disease progression associated with erythropoiesis-stimulating agents. One hypothesis proposes that erythropoiesis-stimulating agents directly stimulate tumor proliferation and/or survival through cell-surface receptors. To test this hypothesis and examine if human tumors utilize the erythropoietin receptor pathway, the response of tumor cells to human recombinant erythropoietin was investigated in disaggregated tumor cells obtained from 186 patients with colorectal, breast, lung, ovarian, head and neck, and other tumors. A cocktail of well characterized tumor growth factors (EGF, HGF, and IGF-1) were analyzed in parallel as a positive control to determine whether freshly-isolated tumor cells were able to respond to growth factor activation ex vivo. Exposing tumor cells to the growth factor cocktail resulted in stimulation of survival and proliferation pathways as measured by an increase in phosphorylation of the downstream signaling proteins AKT and ERK. In contrast, no activation by human recombinant erythropoietin was observed in isolated tumor cells. Though tumor samples exhibited a broad range of cell-surface expression of EGFR, c-Met, and IGF-1R, no cell-surface erythropoietin receptor was detected in tumor cells from the 186 tumors examined (by flow cytometry or Western blot). Erythropoiesis-stimulating agents did not act directly upon isolated tumor cells to stimulate pathways known to promote proliferation or survival of human tumor cells isolated from primary and metastatic tumor tissues. PMID:25807104

  20. Same Chemotherapy Regimen Leads to Different Myelotoxicity in Different Malignancies: A Comparison of Chemotherapy-Associated Myelotoxicity in Patients With Advanced Ovarian and Non-Small-Cell Lung Cancer.

    PubMed

    Tas, Faruk; Yildiz, Ibrahim; Kilic, Leyla; Ciftci, Rumeysa; Keskin, Serkan; Sen, Fatma

    2016-01-01

    Carboplatin-paclitaxel chemotherapy combination is the standard first-line treatment of advanced ovarian cancer and is the most commonly used treatment combination shown to be effective in advanced non-small-cell lung cancer (NSCLC). The most important dose-limiting side effect is hematologic toxicity. In this study, the severity of treatment-related myelotoxicity is compared in patients with advanced ovarian and lung cancers who received same schedule of carboplatin-paclitaxel. The study was prospectively performed from February 2009 to July 2011 and involved 103 patients with stages Ic-IV ovarian (n = 51) and advanced NSCLC (n = 52) who were administered a maximum of 6 cycles of carboplatin-paclitaxel as a first-line treatment. Full blood counts were measured before treatment, before each chemotherapy cycle during therapy, and at the first and sixth month after therapy. The median ages were 59 years (range, 35-77 years) for patients with NSCLC and 56 years (range, 38-75 years) for patients with ovarian cancer. The frequencies of anemia were 17% and 28.6% before the initiation of chemotherapy, 39.2% and 68.0% at the third cycle of treatment, and 44.2% and 45.2% at the sixth cycle of treatment in patients with NSCLC and ovarian cancer, respectively. Initial leukopenia rates were 3.4% and 0%; at the third cycle 46.0% and 41.2%; and at the sixth cycle 41.9% and 48.8% in patients with NSCLC and ovarian cancer, respectively. At the third cycle, 2.5% of the patients with NSCLC and 10.4% of the patients with ovarian cancer had thrombocytopenia, and at the sixth cycle, 23.3% of the patients with NSCLC and 25% of the patients with ovarian cancer had thrombocytopenia. Hemoglobin, leukocyte, and platelet values at the third cycle were significantly lower than those at admission in both cancer groups. Declines in hemoglobin levels in patients with NSCLC and in platelets in patients with ovarian cancer at the sixth cycle were statistically significant compared with the third

  1. The effect of the immune system on ovarian function and features of ovarian germline stem cells.

    PubMed

    Ye, Haifeng; Li, Xiaoyan; Zheng, Tuochen; Liang, Xia; Li, Jia; Huang, Jian; Pan, Zezheng; Zheng, Yuehui

    2016-01-01

    In addition to its role in maintaining organism homeostasis, the immune system also plays a crucial role in the modulation of ovarian function, as it regulates ovarian development, follicular maturation, ovulation and the formation of the corpus luteum. Ovarian germline stem cells are pluripotent stem cells derived from the ovarian cortex that can differentiate into ovarian germ cells and primary granulosa cells. Recent work has demonstrated that the proliferation and differentiation of ovarian germline stem cells is regulated in part by immune cells and their secreted factors. This paper reviews the role of the immune system in the regulation of ovarian function, the relationship between immune components and ovarian germline stem cells and current research efforts in this field.

  2. Identification of Small Molecule Inhibitors of microRNA Involved in Chemoresistance and Cancer Stem Cells for Ovarian Cancer Intervention

    DTIC Science & Technology

    2012-03-01

    d #2 0 miR-214 Fig. 6. miR-214 binds to compounds #2 and #17 in vitro. The indicated com pounds, which contain amino group (5), were immobilized ...Tang, H. (2011) Plexin-B1 is a target of miR-214 in cervical cancer and promotes the growth and invasion ofHeLa cells. Int. J. Biochem. Cell Biol. 43

  3. Hedgehog signaling pathway in small bovine ovarian follicles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The hedgehog signaling pathway is involved in the regulation of cell proliferation, differentiation, and turnover in a variety of mammalian embryonic and adult tissues including bovine ovarian granulosa and theca cells. Binding of hedgehog to the patch receptor derepresses smoothened resulting in t...

  4. Epigenetic targeting of ovarian cancer stem cells.

    PubMed

    Wang, Yinu; Cardenas, Horacio; Fang, Fang; Condello, Salvatore; Taverna, Pietro; Segar, Matthew; Liu, Yunlong; Nephew, Kenneth P; Matei, Daniela

    2014-09-01

    Emerging results indicate that cancer stem-like cells contribute to chemoresistance and poor clinical outcomes in many cancers, including ovarian cancer. As epigenetic regulators play a major role in the control of normal stem cell differentiation, epigenetics may offer a useful arena to develop strategies to target cancer stem-like cells. Epigenetic aberrations, especially DNA methylation, silence tumor-suppressor and differentiation-associated genes that regulate the survival of ovarian cancer stem-like cells (OCSC). In this study, we tested the hypothesis that DNA-hypomethylating agents may be able to reset OCSC toward a differentiated phenotype by evaluating the effects of the new DNA methytransferase inhibitor SGI-110 on OCSC phenotype, as defined by expression of the cancer stem-like marker aldehyde dehydrogenase (ALDH). We demonstrated that ALDH(+) ovarian cancer cells possess multiple stem cell characteristics, were highly chemoresistant, and were enriched in xenografts residual after platinum therapy. Low-dose SGI-110 reduced the stem-like properties of ALDH(+) cells, including their tumor-initiating capacity, resensitized these OCSCs to platinum, and induced reexpression of differentiation-associated genes. Maintenance treatment with SGI-110 after carboplatin inhibited OCSC growth, causing global tumor hypomethylation and decreased tumor progression. Our work offers preclinical evidence that epigenome-targeting strategies have the potential to delay tumor progression by reprogramming residual cancer stem-like cells. Furthermore, the results suggest that SGI-110 might be administered in combination with platinum to prevent the development of recurrent and chemoresistant ovarian cancer.

  5. Epigenetic Targeting of Ovarian Cancer Stem Cells

    PubMed Central

    Wang, Yinu; Cardenas, Horacio; Fang, Fang; Condello, Salvatore; Taverna, Pietro; Segar, Matthew; Liu, Yunlong; Nephew, Kenneth P.; Matei, Daniela

    2014-01-01

    Emerging results indicate that cancer stem-like cells contribute to chemoresistance and poor clinical outcomes in many cancers, including ovarian cancer (OC). As epigenetic regulators play a major role in the control of normal stem cell differentiation, epigenetics may offer a useful arena to develop strategies to target cancer stem-like cells. Epigenetic aberrations, especially DNA methylation, silence tumor suppressor and differentiation-associated genes that regulate the survival of ovarian cancer stem-like cell (OCSC). In this study, we tested the hypothesis that DNA hypomethylating agents may be able to reset OCSC towards a differentiated phenotype, by evaluating the effects of the new DNA methytransferase inhibitor SGI-110 on OCSC phenotype, as defined by expression of the cancer stem-like marker aldehyde dehydrogenase (ALDH). We demonstrated that ALDH+ OC cells possess multiple stem cell characteristics, were highly chemoresistant, and were enriched in xenografts residual after platinum therapy. Low dose SGI-110 reduced the stem-like properties of ALDH+ cells, including their tumor initiating capacity, resensitized these OCSCs to platinum, and induced re-expression of differentiation-associated genes. Maintenance treatment with SGI-110 after carboplatin inhibited OCSC growth, causing global tumor hypomethylation and decreased tumor progression. Our work offers preclinical evidence that epigenome-targeting strategies have the potential to delay tumor progression by re-programming residual cancer stem-like cells. Further, the results suggest that SGI-110 might be administered in combination with platinum to prevent the development of recurrent and chemoresistant ovarian cancer. PMID:25035395

  6. ELF5 in epithelial ovarian carcinoma tissues and biological behavior in ovarian carcinoma cells.

    PubMed

    Yan, Hongchao; Qiu, Linglin; Xie, Xiaolei; Yang, He; Liu, Yongli; Lin, Xiaoman; Huang, Hongxiang

    2017-03-01

    The expression of E74-like factor 5 (ELF5) in epithelial ovarian carcinoma tissues and its effects on biological behavior in ovarian carcinoma cells were assessed in search for a new approach for gene treatment of epithelial ovarian carcinoma. RT-PCR technology was applied to detect the expression of ELF5 mRNA in epithelial ovarian carcinoma (n=49), borderline ovarian epithelial tumor (n=19), benign ovarian epithelial tumor (n=31) and normal ovarian tissues (n=40). Then, we transfected recombinant plasmid pcDNA3.1‑ELF5+EGFP into human ovarian carcinoma SKOV3 cells (recombinant plasmid group) in vitro and screened out stably transfected cells to conduct multiplication culture. Western blot analysis was performed to detect the expression of ELF5 protein in the different groups. Flow cytometry was employed to detect cell apoptosis and cycles. ELF5 mRNA in epithelial ovarian carcinoma and borderline ovarian epithelial tumor tissues were significantly lower (P<0.05) than those in benign ovarian epithelial tumor and normal ovarian tissues. ELF5 protein expression in the cells of recombinant plasmid group was significantly higher compared with empty plasmid and blank control groups. The capacity of cell reproductive recombinant plasmid group at each time point decreased (P<0.05). Flow cytometry detection showed that 67.03% of cells in recombinant plasmid group was blocked in G0/G1 phase (P<0.05), compared with empty plasmid group (37.17%) and blank control group (38.24%). Apoptotic rate of recombinant plasmid group was significantly lower (31.4±1.9%; P<0.05), compared with that of empty plasmid group (9.1±2.2%) and blank control group (8.7±1.5%), and the differences were statistically significant. In conclusion, ELF5 interfered with cell cycle of human ovarian carcinoma SKOV3 cells and promoted apoptosis of human ovarian carcinoma SKOV3 cells inhibiting their growth and invasive capacity; and thus providing a new approach to gene treatment of ovarian carcinoma.

  7. ELF5 in epithelial ovarian carcinoma tissues and biological behavior in ovarian carcinoma cells

    PubMed Central

    Yan, Hongchao; Qiu, Linglin; Xie, Xiaolei; Yang, He; Liu, Yongli; Lin, Xiaoman; Huang, Hongxiang

    2017-01-01

    The expression of E74-like factor 5 (ELF5) in epithelial ovarian carcinoma tissues and its effects on biological behavior in ovarian carcinoma cells were assessed in search for a new approach for gene treatment of epithelial ovarian carcinoma. RT-PCR technology was applied to detect the expression of ELF5 mRNA in epithelial ovarian carcinoma (n=49), borderline ovarian epithelial tumor (n=19), benign ovarian epithelial tumor (n=31) and normal ovarian tissues (n=40). Then, we transfected recombinant plasmid pcDNA3.1-ELF5+EGFP into human ovarian carcinoma SKOV3 cells (recombinant plasmid group) in vitro and screened out stably transfected cells to conduct multiplication culture. Western blot analysis was performed to detect the expression of ELF5 protein in the different groups. Flow cytometry was employed to detect cell apoptosis and cycles. ELF5 mRNA in epithelial ovarian carcinoma and borderline ovarian epithelial tumor tissues were significantly lower (P<0.05) than those in benign ovarian epithelial tumor and normal ovarian tissues. ELF5 protein expression in the cells of recombinant plasmid group was significantly higher compared with empty plasmid and blank control groups. The capacity of cell reproductive recombinant plasmid group at each time point decreased (P<0.05). Flow cytometry detection showed that 67.03% of cells in recombinant plasmid group was blocked in G0/G1 phase (P<0.05), compared with empty plasmid group (37.17%) and blank control group (38.24%). Apoptotic rate of recombinant plasmid group was significantly lower (31.4±1.9%; P<0.05), compared with that of empty plasmid group (9.1±2.2%) and blank control group (8.7±1.5%), and the differences were statistically significant. In conclusion, ELF5 interfered with cell cycle of human ovarian carcinoma SKOV3 cells and promoted apoptosis of human ovarian carcinoma SKOV3 cells inhibiting their growth and invasive capacity; and thus providing a new approach to gene treatment of ovarian carcinoma. PMID

  8. Metabolic Regulation of Ovarian Cancer Cell Death

    DTIC Science & Technology

    2013-07-01

    2013 4 . TITLE AND SUBTITLE 5a. CONTRACT NUMBER Metabolic Regulation of Ovarian Cancer cell death 5b. GRANT NUMBER W81XWH-10-1...Introduction 3 2. Keywords 3 3. Overall Project Summary 3-6 4 . Key Research Accomplishments 6-7 5. Conclusion 7 6. Publications, Abstracts, and...synthase inhibitors Fig. 4 ). We were slightly delayed in submitting this work for publication as the first author had to finish his PhD thesis and

  9. Ovarian tumor-initiating cells display a flexible metabolism

    PubMed Central

    Anderson, Angela S.; Roberts, Paul C.; Frisard, Madlyn I.; Hulver, Matthew W.; Schmelz, Eva M.

    2014-01-01

    An altered metabolism during ovarian cancer progression allows for increased macromolecular synthesis and unrestrained growth. However, the metabolic phenotype of cancer stem or tumor-initiating cells, small tumor cell populations that are able to recapitulate the original tumor, has not been well characterized. In the present study, we compared the metabolic phenotype of the stem cell enriched cell variant, MOSE-LFFLv (TIC), derived from mouse ovarian surface epithelial (MOSE) cells, to their parental (MOSE-L) and benign precursor (MOSE-E) cells. TICs exhibit a decrease in glucose and fatty acid oxidation with a concomitant increase in lactate secretion. In contrast to MOSE-L cells, TICs can increase their rate of glycolysis to overcome the inhibition of ATP synthase by oligomycin and can increase their oxygen consumption rate to maintain proton motive force when uncoupled, similar to the benign MOSE-E cells. TICs have an increased survival rate under limiting conditions as well as an increased survival rate when treated with AICAR, but exhibit a higher sensitivity to metformin than MOSE-E and MOSE-L cells. Together, our data show that TICs have a distinct metabolic profile that may render them flexible to adapt to the specific conditions of their microenvironment. By better understanding their metabolic phenotype and external environmental conditions that support their survival, treatment interventions can be designed to extend current therapy regimens to eradicate TICs. PMID:25172556

  10. Differential Cytotoxic Potential of Silver Nanoparticles in Human Ovarian Cancer Cells and Ovarian Cancer Stem Cells

    PubMed Central

    Choi, Yun-Jung; Park, Jung-Hyun; Han, Jae Woong; Kim, Eunsu; Jae-Wook, Oh; Lee, Seung Yoon; Kim, Jin-Hoi; Gurunathan, Sangiliyandi

    2016-01-01

    The cancer stem cell (CSC) hypothesis postulates that cancer cells are composed of hierarchically-organized subpopulations of cells with distinct phenotypes and tumorigenic capacities. As a result, CSCs have been suggested as a source of disease recurrence. Recently, silver nanoparticles (AgNPs) have been used as antimicrobial, disinfectant, and antitumor agents. However, there is no study reporting the effects of AgNPs on ovarian cancer stem cells (OvCSCs). In this study, we investigated the cytotoxic effects of AgNPs and their mechanism of causing cell death in A2780 (human ovarian cancer cells) and OvCSCs derived from A2780. In order to examine these effects, OvCSCs were isolated and characterized using positive CSC markers including aldehyde dehydrogenase (ALDH) and CD133 by fluorescence-activated cell sorting (FACS). The anticancer properties of the AgNPs were evaluated by assessing cell viability, leakage of lactate dehydrogenase (LDH), reactive oxygen species (ROS), and mitochondrial membrane potential (mt-MP). The inhibitory effect of AgNPs on the growth of ovarian cancer cells and OvCSCs was evaluated using a clonogenic assay. Following 1–2 weeks of incubation with the AgNPs, the numbers of A2780 (bulk cells) and ALDH+/CD133+ colonies were significantly reduced. The expression of apoptotic and anti-apoptotic genes was measured by real-time quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). Our observations showed that treatment with AgNPs resulted in severe cytotoxicity in both ovarian cancer cells and OvCSCs. In particular, AgNPs showed significant cytotoxic potential in ALDH+/CD133+ subpopulations of cells compared with other subpopulation of cells and also human ovarian cancer cells (bulk cells). These findings suggest that AgNPs can be utilized in the development of novel nanotherapeutic molecules for the treatment of ovarian cancers by specific targeting of the ALDH+/CD133+ subpopulation of cells. PMID:27973444

  11. Ovarian tumor-initiating cells display a flexible metabolism

    SciTech Connect

    Anderson, Angela S.; Roberts, Paul C.; Frisard, Madlyn I.; Hulver, Matthew W.; Schmelz, Eva M.

    2014-10-15

    An altered metabolism during ovarian cancer progression allows for increased macromolecular synthesis and unrestrained growth. However, the metabolic phenotype of cancer stem or tumor-initiating cells, small tumor cell populations that are able to recapitulate the original tumor, has not been well characterized. In the present study, we compared the metabolic phenotype of the stem cell enriched cell variant, MOSE-L{sub FFLv} (TIC), derived from mouse ovarian surface epithelial (MOSE) cells, to their parental (MOSE-L) and benign precursor (MOSE-E) cells. TICs exhibit a decrease in glucose and fatty acid oxidation with a concomitant increase in lactate secretion. In contrast to MOSE-L cells, TICs can increase their rate of glycolysis to overcome the inhibition of ATP synthase by oligomycin and can increase their oxygen consumption rate to maintain proton motive force when uncoupled, similar to the benign MOSE-E cells. TICs have an increased survival rate under limiting conditions as well as an increased survival rate when treated with AICAR, but exhibit a higher sensitivity to metformin than MOSE-E and MOSE-L cells. Together, our data show that TICs have a distinct metabolic profile that may render them flexible to adapt to the specific conditions of their microenvironment. By better understanding their metabolic phenotype and external environmental conditions that support their survival, treatment interventions can be designed to extend current therapy regimens to eradicate TICs. - Highlights: • Ovarian cancer TICs exhibit a decreased glucose and fatty acid oxidation. • TICs are more glycolytic and have highly active mitochondria. • TICs are more resistant to AICAR but not metformin. • A flexible metabolism allows TICs to adapt to their microenvironment. • This flexibility requires development of specific drugs targeting TIC-specific changes to prevent recurrent TIC outgrowth.

  12. Small RNAs and the competing endogenous RNA network in high grade serous ovarian cancer tumor spread

    PubMed Central

    Bachmayr-Heyda, Anna; Auer, Katharina; Sukhbaatar, Nyamdelger; Aust, Stefanie; Deycmar, Simon; Reiner, Agnes T.; Polterauer, Stephan; Dekan, Sabine; Pils, Dietmar

    2016-01-01

    High grade serous ovarian cancer (HGSOC) is among the most deadly malignancies in women, frequently involving peritoneal tumor spread. Understanding molecular mechanisms of peritoneal metastasis is essential to develop urgently needed targeted therapies. We described two peritoneal tumor spread types in HGSOC apparent during surgery: miliary (numerous millet-sized implants) and non-miliary (few big, bulky implants). The former one is defined by a more epithelial-like tumor cell characteristic with less immune cell reactivity and with significant worse prognosis, even if corrected for typical clinicopathologic factors. 23 HGSOC patients were enrolled in this study. Isolated tumor cells from fresh tumor tissues of ovarian and peritoneal origin and from ascites were used for ribosomal RNA depleted RNA and small RNA sequencing. RT-qPCR was used to validate results and an independent cohort of 32 patients to validate the impact on survival. Large and small RNA sequencing data were integrated and a new gene-miRNA set analysis method was developed. Thousands of new small RNAs (miRNAs and piwi-interacting RNAs) were predicted and a 13 small RNA signature was developed to predict spread type from formalin-fixed paraffin-embedded tissues. Furthermore, integrative analyses of RNA sequencing and small RNA sequencing data revealed a global upregulation of the competing endogenous RNA network in tumor tissues of non-miliary compared to miliary spread, i.e. higher expression of circular RNAs and long non-coding RNAs compared to coding RNAs but unchanged abundance of small RNAs. This global deregulated expression pattern could be co-responsible for the spread characteristic, miliary or non-miliary, in ovarian cancer. PMID:27172797

  13. Cell of Origin: Exploring an Alternative Contributor to Ovarian Cancer

    DTIC Science & Technology

    2013-09-01

    Contributor to Ovarian Cancer PRINCIPAL INVESTIGATOR: Bo R. Rueda, Ph.D. CONTRACTING ORGANIZATION: Massachusetts General Hospital...Exploring an Alternative Contributor to Ovarian Cancer 5b. GRANT NUMBER W81XWH-12-1-0192 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d...to that of primary human ovarian cancer . We have also successfully introduced in human oogonial stem cells genetic alterations commonly detected in

  14. Metastatic ovarian papillary cystadenocarcinoma to the small intestine serous surface: report of a case of high-grade histopathologic malignancy.

    PubMed

    Khaki, Fariba; Javanbakht, Javad; Sharifzad, Samieh; Gharagozlou, Mohammad Javad; Khadivar, Farshid; Manesh, Javad Yaghoobi Yeganeh; Hosseini, Seyed Hojjat; Anissian, Ali; Touni, Seyed Rashid; Gilvari, Alireza; Abdi, Fatemeh Soghra

    2014-03-17

    Ovarian cystadenocarcinoma is characterized by marked heterogeneity and may be composed of an admixture of histologic growth patterns, including acinar, papillary and solid. In the present study, a case of isolated small intestine metastasis of ovarian papillary cystadenocarcinoma was reported. A 7-year-old female mixed-breed dog presented with a mass in the left upper quadrant with progressive enlargement of the abdomen, periodic bloody discharge from the vulva and incontinence. The tumor was histologically characterized by the presence of cysts and proliferation of papillae, both lined by single- or multi-layered pleomorphic epithelial cells. Furthermore, the mass was composed by intense cellular and nuclear pleomorphism and numerous mitotic figures. These findings indicate a tumor of high-grade malignancy with infiterative tumor cells resembling the papillary ovarian tumor in the serosal surface of the small intestine along with an intact serosa. Immunohistochemically, tumor was positive for CK7 and negative immunoreactivity for CK20. The histopathologic features coupled with the CK7 immunoreactivity led to a diagnosis of high grade ovarian papillary cystadenocarcinoma. To the best of our knowledge, this is the first case of small intestine serousal surface metastasis from ovarian papillary cystadenocarcinoma.

  15. Metastatic ovarian papillary cystadenocarcinoma to the small intestine serous surface: report of a case of high-grade histopathologic malignancy

    PubMed Central

    2014-01-01

    Ovarian cystadenocarcinoma is characterized by marked heterogeneity and may be composed of an admixture of histologic growth patterns, including acinar, papillary and solid. In the present study, a case of isolated small intestine metastasis of ovarian papillary cystadenocarcinoma was reported. A 7-year-old female mixed-breed dog presented with a mass in the left upper quadrant with progressive enlargement of the abdomen, periodic bloody discharge from the vulva and incontinence. The tumor was histologically characterized by the presence of cysts and proliferation of papillae, both lined by single- or multi-layered pleomorphic epithelial cells. Furthermore, the mass was composed by intense cellular and nuclear pleomorphism and numerous mitotic figures. These findings indicate a tumor of high-grade malignancy with infiterative tumor cells resembling the papillary ovarian tumor in the serosal surface of the small intestine along with an intact serosa. Immunohistochemically, tumor was positive for CK7 and negative immunoreactivity for CK20. The histopathologic features coupled with the CK7 immunoreactivity led to a diagnosis of high grade ovarian papillary cystadenocarcinoma. To the best of our knowledge, this is the first case of small intestine serousal surface metastasis from ovarian papillary cystadenocarcinoma. PMID:24636424

  16. EF5 and Motexafin Lutetium in Detecting Tumor Cells in Patients With Abdominal or Non-Small Cell Lung Cancer

    ClinicalTrials.gov

    2013-01-15

    Advanced Adult Primary Liver Cancer; Carcinoma of the Appendix; Fallopian Tube Cancer; Gastrointestinal Stromal Tumor; Localized Extrahepatic Bile Duct Cancer; Localized Gallbladder Cancer; Localized Gastrointestinal Carcinoid Tumor; Localized Resectable Adult Primary Liver Cancer; Localized Unresectable Adult Primary Liver Cancer; Metastatic Gastrointestinal Carcinoid Tumor; Ovarian Sarcoma; Ovarian Stromal Cancer; Primary Peritoneal Cavity Cancer; Recurrent Adult Primary Liver Cancer; Recurrent Adult Soft Tissue Sarcoma; Recurrent Colon Cancer; Recurrent Extrahepatic Bile Duct Cancer; Recurrent Gallbladder Cancer; Recurrent Gastric Cancer; Recurrent Gastrointestinal Carcinoid Tumor; Recurrent Non-small Cell Lung Cancer; Recurrent Ovarian Epithelial Cancer; Recurrent Ovarian Germ Cell Tumor; Recurrent Pancreatic Cancer; Recurrent Rectal Cancer; Recurrent Small Intestine Cancer; Recurrent Uterine Sarcoma; Regional Gastrointestinal Carcinoid Tumor; Small Intestine Adenocarcinoma; Small Intestine Leiomyosarcoma; Small Intestine Lymphoma; Stage 0 Non-small Cell Lung Cancer; Stage I Adult Soft Tissue Sarcoma; Stage I Colon Cancer; Stage I Gastric Cancer; Stage I Non-small Cell Lung Cancer; Stage I Ovarian Epithelial Cancer; Stage I Ovarian Germ Cell Tumor; Stage I Pancreatic Cancer; Stage I Rectal Cancer; Stage I Uterine Sarcoma; Stage II Adult Soft Tissue Sarcoma; Stage II Colon Cancer; Stage II Gastric Cancer; Stage II Non-small Cell Lung Cancer; Stage II Ovarian Epithelial Cancer; Stage II Ovarian Germ Cell Tumor; Stage II Pancreatic Cancer; Stage II Rectal Cancer; Stage II Uterine Sarcoma; Stage III Adult Soft Tissue Sarcoma; Stage III Colon Cancer; Stage III Gastric Cancer; Stage III Ovarian Epithelial Cancer; Stage III Ovarian Germ Cell Tumor; Stage III Pancreatic Cancer; Stage III Rectal Cancer; Stage III Uterine Sarcoma; Stage IIIA Non-small Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer; Stage IV Adult Soft Tissue Sarcoma; Stage IV Colon Cancer; Stage

  17. Mixed lineage kinase 3 is required for matrix metalloproteinase expression and invasion in ovarian cancer cells

    SciTech Connect

    Zhan, Yu; Abi Saab, Widian F.; Modi, Nidhi; Stewart, Amanda M.; Liu, Jinsong; Chadee, Deborah N.

    2012-08-15

    Mixed lineage kinase 3 (MLK3) is a mitogen-activated protein kinase kinase kinase (MAP3K) that activates MAPK signaling pathways and regulates cellular responses such as proliferation, migration and apoptosis. Here we report high levels of total and phospho-MLK3 in ovarian cancer cell lines in comparison to immortalized nontumorigenic ovarian epithelial cell lines. Using small interfering RNA (siRNA)-mediated gene silencing, we determined that MLK3 is required for the invasion of SKOV3 and HEY1B ovarian cancer cells. Furthermore, mlk3 silencing substantially reduced matrix metalloproteinase (MMP)-1, -2, -9 and -12 gene expression and MMP-2 and -9 activities in SKOV3 and HEY1B ovarian cancer cells. MMP-1, -2, -9 and-12 expression, and MLK3-induced activation of MMP-2 and MMP-9 requires both extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) activities. In addition, inhibition of activator protein-1 (AP-1) reduced MMP-1, MMP-9 and MMP-12 gene expression. Collectively, these findings establish MLK3 as an important regulator of MMP expression and invasion in ovarian cancer cells. -- Highlights: Black-Right-Pointing-Pointer Ovarian cancer cell lines have high levels of total and phosphorylated MLK3. Black-Right-Pointing-Pointer MLK3 is required for MMP expression and activity in ovarian cancer cells. Black-Right-Pointing-Pointer MLK3 is required for invasion of SKOV3 and HEY1B ovarian cancer cells. Black-Right-Pointing-Pointer MLK3-dependent regulation of MMP-2 and MMP-9 activities requires ERK and JNK.

  18. Inhibitory Effect of Baicalin and Baicalein on Ovarian Cancer Cells

    PubMed Central

    Chen, Jianchu; Li, Zhaoliang; Chen, Allen Y.; Ye, Xingqian; Luo, Haitao; Rankin, Gary O.; Chen, Yi Charlie

    2013-01-01

    Ovarian cancer is one of the primary causes of death for women all through the Western world. Baicalin and baicalein are naturally occurring flavonoids that are found in the roots and leaves of some Chinese medicinal plants and are thought to have antioxidant activity and possible anti-angiogenic, anti-cancer, anxiolytic, anti-inflammatory and neuroprotective activities. Two kinds of ovarian cancer (OVCAR-3 and CP-70) cell lines and a normal ovarian cell line (IOSE-364) were selected to be investigated in the inhibitory effect of baicalin and baicalein on cancer cells. Largely, baicalin and baicalein inhibited ovarian cancer cell viability in both ovarian cancer cell lines with LD50 values in the range of 45–55 μM for baicalin and 25–40 μM for baicalein. On the other hand, both compounds had fewer inhibitory effects on normal ovarian cells viability with LD50 values of 177 μM for baicalin and 68 μM for baicalein. Baicalin decreased expression of VEGF (20 μM), cMyc (80 μM), and NFkB (20 μM); baicalein decreased expression of VEGF (10 μM), HIF-1α (20 μM), cMyc (20 μM), and NFkB (40 μM). Therefore baicalein is more effective in inhibiting cancer cell viability and expression of VEGF, HIF-1α, cMyc, and NFκB in both ovarian cancer cell lines. It seems that baicalein inhibited cancer cell viability through the inhibition of cancer promoting genes expression including VEGF, HIF-1α, cMyc, and NFκB. Overall, this study showed that baicalein and baicalin significantly inhibited the viability of ovarian cancer cells, while generally exerting less of an effect on normal cells. They have potential for chemoprevention and treatment of ovarian cancers. PMID:23502466

  19. Ovarian interstitial cell tumor in a South American sea lion (Otaria flavescens).

    PubMed

    Biancani, Barbara; Lacave, Geraldine; Magi, Gian Enrico; Rossi, Giacomo

    2010-07-01

    A case of an ovarian tumor is reported in an 8-yr-old South American sea lion (Otaria flavescens) kept in a marine park in Malta (35.57 degrees N, 14.25 degrees E). The neoplasm was a solid mass of dense sheets and nests of round to polyhedral, irregularly shaped cells with abundant, finely vacuolated cytoplasm. The nuclei were uniformly small and round to oval. The supporting stroma contained thecal cells. The tumor cells were positive for positive inhibin and vimentin and focally positive for cytokeratin by immunohistochemistry. The neoplasm was diagnosed as an ovarian sex cord-stromal tumor, specifically an interstitial cell tumor.

  20. Cell of Origin: Exploring an Alternative Contributor to Ovarian Cancer

    DTIC Science & Technology

    2014-09-01

    Our studies to date have determined that human oogonial stem cells , while far less stable than their murine counterparts, can be successfully expanded...DNA signature of the oogonial stem cell -derived tumors to that of primary human ovarian cancer. We have also successfully introduced in human...oogonial stem cells genetic alterations commonly detected in ovarian cancer. We are now generating tumors from these altered oogonial stem cells and will

  1. Role of Receptor Sialylation in the Ovarian Tumor Cell Phenotype

    DTIC Science & Technology

    2014-08-01

    transit through the peritoneal cavity. Additionally, ST6Gal-I appears to contribute to metastatic targeting of omentum and resistance to cisplatin ...protection of tumor cells against cisplatin - mediated cell death (Task 3). Progress: We have by far made the most progress on Aim 3 and research...ovarian cancer resistance to cisplatin -mediated cell death, as well as death receptor signaling by ovarian cancer cells within the peritoneal cavity

  2. Lung cancer - small cell

    MedlinePlus

    Cancer - lung - small cell; Small cell lung cancer; SCLC ... About 15% of all lung cancer cases are SCLC. Small cell lung cancer is slightly more common in men than women. Almost all cases of SCLC are ...

  3. Ovarian Tumor Cells Studied Aboard the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    2001-01-01

    In August 2001, principal investigator Jeanne Becker sent human ovarian tumor cells to the International Space Station (ISS) aboard the STS-105 mission. The tumor cells were cultured in microgravity for a 14 day growth period and were analyzed for changes in the rate of cell growth and synthesis of associated proteins. In addition, they were evaluated for the expression of several proteins that are the products of oncogenes, which cause the transformation of normal cells into cancer cells. This photo, which was taken by astronaut Frank Culbertson who conducted the experiment for Dr. Becker, shows two cell culture bags containing LN1 ovarian carcinoma cell cultures.

  4. Innovative T Cell-Targeted Therapy for Ovarian Cancer

    DTIC Science & Technology

    2012-10-01

    TERMS ROR1, γδ T cells, adoptive T cell therapy, ovarian cancer, chimeric antigen receptor (CAR) 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF...to recognize EBV and ovarian CA cells • Generate EBV -specific T cells LCL (Mos. 1-2) • Refine c-Met-specific CAR and propagate c-Met-specific T...cells on K562-derived artificial antigen presenting cells (Mos. 1-2) • Generate EBV and c-Met-bi-specific T cells (Mos. 2-6) • Functional analysis

  5. [Magnetic resonance imaging (MRI) in the diagnosis of recurrences of ovarian cancer in the small pelvis].

    PubMed

    Bulanova, I M; Bulanova, T V; Burenchev, D V

    2005-01-01

    The paper provides the results of small pelvic magnetic resonance tomography (MRI) in 62 patients with ovarian cancer after primary special treatment. Out of them 50 patients were found to have recurrences and metastases of the underlying disease, 12 patients had clinical remission. The study yielded MR signs and MR semiotics of recurrences of ovarian cancer in the small pelvis. The capacities of MRI with low and high intensities of a magnetic field were comparatively studied in the diagnosis of recurrences and metastases of ovarian cancer.

  6. Loss of E-cadherin disrupts ovarian epithelial inclusion cyst formation and collective cell movement in ovarian cancer cells

    PubMed Central

    Choi, Pui-Wah; Yang, Junzheng; Ng, Shu-Kay; Feltmate, Colleen; Muto, Michael G.; Hasselblatt, Kathleen; Lafferty-Whyte, Kyle; JeBailey, Lellean; MacConaill, Laura; Welch, William R.; Fong, Wing-Ping; Berkowitz, Ross S.; Ng, Shu-Wing

    2016-01-01

    Increased inclusion cyst formation in the ovary is associated with ovarian cancer development. We employed in vitro three-dimensional (3D) organotypic models formed by normal human ovarian surface epithelial (OSE) cells and ovarian cancer cells to study the morphologies of normal and cancerous ovarian cortical inclusion cysts and the molecular changes during their transitions into stromal microenvironment. When compared with normal cysts that expressed tenascin, the cancerous cysts expressed high levels of laminin V and demonstrated polarized structures in Matrigel; and the cancer cells migrated collectively when the cyst structures were positioned in a stromal-like collagen I matrix. The molecular markers identified in the in vitro 3D models were verified in clinical samples. Network analysis of gene expression of the 3D structures indicates concurrent downregulation of transforming growth factor beta pathway genes and high levels of E-cadherin and microRNA200 (miR200) expression in the cancerous cysts and the migrating cancer cells. Transient silencing of E-cadherin expression in ovarian cancer cells disrupted cyst structures and inhibited collective cell migration. Taken together, our studies employing 3D models have shown that E-cadherin is crucial for ovarian inclusion cyst formation and collective cancer cell migration. PMID:26684027

  7. 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) inhibits human ovarian cancer cell proliferation

    PubMed Central

    Li, Yan; Wang, Kai; Jiang, Yi-Zhou; Chang, Xin-Wen; Dai, Cai-Feng

    2017-01-01

    Purpose The aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor, mediates a broad spectrum of biological processes, including ovarian growth and ovulation. Recently, we found that an endogenous AhR ligand (ITE) can inhibit ovarian cancer proliferation and migration via the AhR. Here, we tested whether 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, an exogenous AhR ligand) may exert similar anti-ovarian cancer activities using human ovarian cancer and non-cancerous human ovarian surface epithelial cells. Methods Two human ovarian cancer cell lines (SKOV-3 and OVCAR-3) and one human ovarian surface epithelial cell line (IOSE-385) were used. Cell proliferation and migration activities were determined using crystal violet and FluoroBlok insert system assays, respectively. AhR protein expression was assessed by Western blotting. Expression of cytochrome P450, family 1, member A1 (CYP1A1) and member B1 (CYP1B1) mRNA was assessed by qPCR. Small interfering RNAs (siRNAs) were used to knock down AhR expression. Results We found that TCDD dose-dependently suppressed OVCAR-3 cell proliferation, with a maximum effect (~70 % reduction) at 100 nM. However, TCDD did not affect SKOV-3 and IOSE-385 cell proliferation and migration. The estimated IC50 of TCDD for inhibiting OVCAR-3 cell proliferation was 4.6 nM. At 10 nM, TCDD time-dependently decreased AhR protein levels, while it significantly increased CYP1A1 and CYP1B1 mRNA levels in SKOV-3, OVCAR-3 and IOSE-385 cells, indicating activation of AhR signaling. siRNA-mediated AhR knockdown readily blocked TCDD-mediated suppression of OVCAR-3 cell proliferation. Conclusion Our data indicate that TCDD can suppress human ovarian cancer cell proliferation via the AhR signaling pathway and that TCDD exhibits an anti-proliferative activity in at least a subset of human ovarian cancer cells. PMID:25404385

  8. Noscapine sensitizes chemoresistant ovarian cancer cells to cisplatin through inhibition of HIF-1α.

    PubMed

    Su, Wenjing; Huang, Lei; Ao, Qilin; Zhang, Qinghua; Tian, Xun; Fang, Yong; Lu, Yunping

    2011-06-01

    Hypoxia-inducible factor 1 alpha (HIF-1α) is closely related with chemoresistance of solid tumors. The purpose of this study was to investigate the ability of noscapine to inhibit HIF-1α and sensitize ovarian cancer cells to cisplatin (DDP) under hypoxic conditions. Herein, we report that noscapine sensitized cobalt-induced chemoresistant ovarian cancer cells to DDP-induced apoptosis and inhibition of cell proliferation. Noscapine also promoted proteasome-mediated degradation of cobalt-stabilized HIF-1α protein, with subsequent inhibition of HIF-1 transcriptional activity. These data establish noscapine as a small molecule inhibitor of HIF-1α and provide an evidence for its combination with DDP in combating ovarian cancer chemoresistance.

  9. Targeting Aldehyde Dehydrogenase Cancer Stem Cells in Ovarian Cancer

    PubMed Central

    Landen, Charles N.; Goodman, Blake; Katre, Ashwini A.; Steg, Adam D.; Nick, Alpa M.; Stone, Rebecca L.; Miller, Lance D.; Mejia, Pablo Vivas; Jennings, Nicolas B.; Gershenson, David M.; Bast, Robert C.; Coleman, Robert L.; Lopez-Berestein, Gabriel; Sood, Anil K.

    2010-01-01

    Aldehyde dehydrogenase-1A1 (ALDH1A1) expression characterizes a subpopulation of cells with tumor initiating or cancer stem cell properties in several malignancies. Our goal was to characterize the phenotype of ALDH1A1-positive ovarian cancer cells and examine the biological effects of ALDH1A1 gene silencing. In our analysis of multiple ovarian cancer cell lines, we found that ALDH1A1 expression and activity was significantly higher in taxane and platinum-resistant cell lines. In patient samples, 72.9% of ovarian cancers had ALDH1A1 expression, in whom the percent of ALDH1A1-positive cells correlated negatively with progression-free survival (6.05 v 13.81 months, p<0.035). Subpopulations of A2780cp20 cells with ALDH1A1 activity were isolated for orthotopic tumor initiating studies, where tumorigenicity was approximately 50-fold higher with ALDH1A1-positive cells. Interestingly, tumors derived from ALDH1A1-positive cells gave rise to both ALDH1A1-positive and ALDH1A1-negative populations, but ALDH1A1-negative cells could not generate ALDH1A1-positive cells. In an in vivo orthotopic mouse model of ovarian cancer, ALDH1A1 silencing using nanoliposomal siRNA sensitized both taxane- and platinum-resistant cell lines to chemotherapy, significantly reducing tumor growth in mice compared to chemotherapy alone (a 74–90% reduction, p<0.015). These data demonstrate that the ALDH1A1 subpopulation is associated with chemoresistance and outcome in ovarian cancer patients, and targeting ALDH1A1 sensitizes resistant cells to chemotherapy. ALDH1A1-positive cells have enhanced, but not absolute, tumorigenicity, but do have differentiation capacity lacking in ALDH1A1-negative cells. This enzyme may be important for identification and targeting of chemoresistant cell populations in ovarian cancer. PMID:20889728

  10. Blood Cell Mitochondrial DNA Content and Premature Ovarian Aging

    PubMed Central

    Cacciatore, Chiara; Busnelli, Marta; Rossetti, Raffaella; Bonetti, Silvia; Paffoni, Alessio; Mari, Daniela; Ragni, Guido; Persani, Luca; Arosio, M.; Beck-Peccoz, P.; Biondi, M.; Bione, S.; Bruni, V.; Brigante, C.; Cannavo`, S.; Cavallo, L.; Cisternino, M.; Colombo, I.; Corbetta, S.; Crosignani, P.G.; D'Avanzo, M.G.; Dalpra, L.; Danesino, C.; Di Battista, E.; Di Prospero, F.; Donti, E.; Einaudi, S.; Falorni, A.; Foresta, C.; Fusi, F.; Garofalo, N.; Giotti, I.; Lanzi, R.; Larizza, D.; Locatelli, N.; Loli, P.; Madaschi, S.; Maghnie, M.; Maiore, S.; Mantero, F.; Marozzi, A.; Marzotti, S.; Migone, N.; Nappi, R.; Palli, D.; Patricelli, M.G.; Pisani, C.; Prontera, P.; Petraglia, F.; Radetti, G.; Renieri, A.; Ricca, I.; Ripamonti, A.; Rossetti, R.; Russo, G.; Russo, S.; Tonacchera, M.; Toniolo, D.; Torricelli, F.; Vegetti, W.; Villa, N.; Vineis, P.; Wasniewsk, M.; Zuffardi, O.

    2012-01-01

    Primary ovarian insufficiency (POI) is a critical fertility defect characterized by an anticipated and silent impairment of the follicular reserve, but its pathogenesis is largely unexplained. The frequent maternal inheritance of POI together with a remarkable dependence of ovarian folliculogenesis upon mitochondrial biogenesis and bioenergetics suggested the possible involvement of a generalized mitochondrial defect. Here, we verified the existence of a significant correlation between blood and ovarian mitochondrial DNA (mtDNA) content in a group of women undergoing ovarian hyperstimulation (OH), and then aimed to verify whether mtDNA content was significantly altered in the blood cells of POI women. We recruited 101 women with an impaired ovarian reserve: 59 women with premature ovarian failure (POF) and 42 poor responders (PR) to OH. A Taqman copy number assay revealed a significant mtDNA depletion (P<0.001) in both POF and PR women in comparison with 43 women of similar age and intact ovarian reserve, or 53 very old women with a previous physiological menopause. No pathogenic variations in the mitochondrial DNA polymerase γ (POLG) gene were detected in 57 POF or PR women with low blood mtDNA content. In conclusion, blood cell mtDNA depletion is a frequent finding among women with premature ovarian aging, suggesting that a still undetermined but generalized mitochondrial defect may frequently predispose to POI which could then be considered a form of anticipated aging in which the ovarian defect may represent the first manifestation. The determination of mtDNA content in blood may become an useful tool for the POI risk prediction. PMID:22879975

  11. Blood cell mitochondrial DNA content and premature ovarian aging.

    PubMed

    Bonomi, Marco; Somigliana, Edgardo; Cacciatore, Chiara; Busnelli, Marta; Rossetti, Raffaella; Bonetti, Silvia; Paffoni, Alessio; Mari, Daniela; Ragni, Guido; Persani, Luca

    2012-01-01

    Primary ovarian insufficiency (POI) is a critical fertility defect characterized by an anticipated and silent impairment of the follicular reserve, but its pathogenesis is largely unexplained. The frequent maternal inheritance of POI together with a remarkable dependence of ovarian folliculogenesis upon mitochondrial biogenesis and bioenergetics suggested the possible involvement of a generalized mitochondrial defect. Here, we verified the existence of a significant correlation between blood and ovarian mitochondrial DNA (mtDNA) content in a group of women undergoing ovarian hyperstimulation (OH), and then aimed to verify whether mtDNA content was significantly altered in the blood cells of POI women. We recruited 101 women with an impaired ovarian reserve: 59 women with premature ovarian failure (POF) and 42 poor responders (PR) to OH. A Taqman copy number assay revealed a significant mtDNA depletion (P<0.001) in both POF and PR women in comparison with 43 women of similar age and intact ovarian reserve, or 53 very old women with a previous physiological menopause. No pathogenic variations in the mitochondrial DNA polymerase γ (POLG) gene were detected in 57 POF or PR women with low blood mtDNA content. In conclusion, blood cell mtDNA depletion is a frequent finding among women with premature ovarian aging, suggesting that a still undetermined but generalized mitochondrial defect may frequently predispose to POI which could then be considered a form of anticipated aging in which the ovarian defect may represent the first manifestation. The determination of mtDNA content in blood may become an useful tool for the POI risk prediction.

  12. Molecular Profiling of Clear Cell Ovarian Cancers

    PubMed Central

    Friedlander, Michael L.; Russell, Kenneth; Millis, Sherri; Gatalica, Zoran; Bender, Ryan; Voss, Andreas

    2016-01-01

    Background Advanced stage/recurrent clear cell ovarian cancers (CCOCs) are characterized by a low response to chemotherapy and a poor prognosis. There is growing interest in investigating novel/molecular targeted therapies in patients with CCOC in histotype-specific trials. However, CCOCs are not a uniform entity and comprise a number of molecular subtypes and it is unlikely that a single approach to treatment will be appropriate for all patients. The aim of this study was to analyze the results of a multiplatform profiling panel in CCOCs to identify potential therapeutic targets. Patients and Methods Tumor profiling was performed on 521 CCOCs. They were grouped into pure (n = 422) and mixed (n = 99) CCOC for analysis. Testing included a combination of DNA sequencing (including next-generation sequencing) using a 46-gene panel, immunohistochemistry, fluorescent or chromogenic in situ hybridization, and RNA fragment analysis. Results The most common findings were in the PIK3CA/Akt/mTOR pathway, with 61% of all CCOCs showing a molecular alteration in one of these pathway components. Next-generation sequencing revealed PIK3CA mutations in 50% of pure CCOCs. Significant differences were observed between pure and mixed CCOCs with respect to hormone receptor expression (9% vs 34.7% for ER, 13.45 vs 26.4% for PR), cMET (24.1% vs 11.6%), PD-1 tumor infiltrating lymphocytes (48.1% vs 100%), expression of PD-L1 (7.4% vs 25%), and TOPO1 (41% vs 27.1%) on immunohistochemistry, whereas next-generation sequencing revealed significant differences in mutation frequency in PIK3CA (50% vs 18.5%), TP53 (18.1% vs 57.7%), KRAS (12.4% vs 3.7%), and cMET (1.9% vs 11.1%). Conclusions This large study confirms that the PIK3CA/Akt/mTOR pathway is commonly altered in CCOCs, and highlights the significant differences between pure and mixed CCOCs. Clear cell ovarian cancers are molecularly heterogeneous and there are a number of potential therapeutic targets which could be tested in clinical

  13. Pure Primary Ovarian Squamous Cell Carcinoma Perforating the Rectum

    PubMed Central

    Okada, Aiko; Haraguchi, Naotsugu; Tomimatsu, Takuji; Kimura, Tadashi

    2017-01-01

    Rectal perforation is uncommon in ovarian cancer, even in advanced stages. Pure primary ovarian squamous cell carcinoma is a very rare subtype of ovarian cancer and has not been reported to cause rectal perforation. A 50-year-old woman presented with rectal bleeding. Rectosigmoidoscopy suggested perforation of a pelvic tumor into the rectum. Abdominopelvic magnetic resonance imaging revealed a 9 cm heterogeneous mass in the pouch of Douglas. We performed complete cytoreduction, including an en-bloc resection of the tumor and rectosigmoid colon. Histopathology showed squamous cell carcinoma of the left ovary penetrating the rectal wall. A common symptom of rectal bleeding was caused by a very rare entity of ovarian cancer penetrating the rectal wall, but thorough evaluation led to its accurate diagnosis and appropriate treatment. PMID:28316851

  14. Reliable in vitro studies require appropriate ovarian cancer cell lines

    PubMed Central

    2014-01-01

    Ovarian cancer is the fifth most common cause of cancer death in women and the leading cause of death from gynaecological malignancies. Of the 75% women diagnosed with locally advanced or disseminated disease, only 30% will survive five years following treatment. This poor prognosis is due to the following reasons: limited understanding of the tumor origin, unclear initiating events and early developmental stages of ovarian cancer, lack of reliable ovarian cancer-specific biomarkers, and drug resistance in advanced cases. In the past, in vitro studies using cell line models have been an invaluable tool for basic, discovery-driven cancer research. However, numerous issues including misidentification and cross-contamination of cell lines have hindered research efforts. In this study we examined all ovarian cancer cell lines available from cell banks. Hereby, we identified inconsistencies in the reporting, difficulties in the identification of cell origin or clinical data of the donor patients, restricted ethnic and histological type representation, and a lack of tubal and peritoneal cancer cell lines. We recommend that all cell lines should be distributed via official cell banks only with strict guidelines regarding the minimal available information required to improve the quality of ovarian cancer research in future. PMID:24936210

  15. Role of Receptor Sialylation in the Ovarian Tumor Cell Phenotype

    DTIC Science & Technology

    2012-06-01

    blocks apoptosis induced by the mammalian lectin, galectin - 3 , which our studies show is expressed in human ovarian tumor tissues and in ascitic fluid...omental cultures. • Optimized immunoblotting protocol for galectin - 3 in ascites • Determination that sialylation of Fas and TNFR1 blocks apoptotic...REPORT DATE 2. REPORT TYPE Annual report 3 . DATES COVERED 4. TITLE AND SUBTITLE Role of receptor sialylation in the ovarian tumor cell

  16. Gene expression profiling of bovine ovarian follicular and luteal cells provides insight into cellular identities and functions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    After ovulation, somatic cells of the ovarian follicle (theca and granulosa cells) become the small and large luteal cells of the corpus luteum. Aside from known cell type-specific receptors and steroidogenic enzymes, little is known about the differences in the gene expression profiles of these fou...

  17. A comparison of ovarian follicular and luteal cell gene expression profiles provides insight into cellular identities and functions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    After ovulation, somatic cells of the ovarian follicle (theca and granulosa cells) become the small and large luteal cells of the corpus luteum. Aside from known cell type-specific receptors and steroidogenic enzymes, little is known about the differences in the gene expression profiles of these fou...

  18. Cell stiffness is a biomarker of the metastatic potential of ovarian cancer cells

    NASA Astrophysics Data System (ADS)

    Xu, Wenwei; Mezencev, Roman; Kim, Byungkyu; Wang, Lijuan; McDonald, John; Sulchek, Todd; Sulchek Team; McDonald Team

    2013-03-01

    The metastatic potential of cells is an important parameter in the design of optimal strategies for the personalized treatment of cancer. Using atomic force microscopy (AFM), we show that ovarian cancer cells are generally softer and display lower intrinsic variability in cell stiffness than non-malignant ovarian epithelial cells. A detailed study of highly invasive ovarian cancer cells (HEY A8) and their less invasive parental cells (HEY), demonstrates that deformability can serve as an accurate biomarker of metastatic potential. Comparative gene expression profiling indicate that the reduced stiffness of highly metastatic HEY A8 cells is associated with actin cytoskeleton remodeling, microscopic examination of actin fiber structure in these cell lines is consistent with this prediction. Our results indicate that cell stiffness not only distinguishes ovarian cancer cells from non-malignant cells, but may also be a useful biomarker to evaluate the relative metastatic potential of ovarian and perhaps other types of cancer cells.

  19. Nesfatin-1 inhibits ovarian epithelial carcinoma cell proliferation in vitro

    SciTech Connect

    Xu, Yang; Pang, Xiaoyan; Dong, Mei; Wen, Fang Zhang, Yi

    2013-11-01

    Highlights: •Nesfatin-1 inhibits the proliferation and growth of HO-8910 cells by G1 phase arrest. •Nesfatin-1 enhances HO-8910 cell apoptosis. •Nesfatin-1 inhibits HO-8910 cell proliferation via mTOR and RhoA/ROCK signaling pathway. •The first report of nesfatin-1-mediated proliferation in ovarian epithelial carcinoma. -- Abstract: Nesfatin-1, an 82-amino-acid peptide derived from a 396-amino-acid precursor protein nucleobindin 2 (NUCB2), was originally identified in hypothalamic nuclei involved in the regulation of food intake. It was recently reported that nesfatin-1 is a novel depot specific adipokine preferentially produced by subcutaneous tissue, with obesity- and food deprivation-regulated expression. Although a relation between ovarian cancer mortality and obesity has been previously established, a role of nesfatin-1 in ovarian epithelial carcinoma remains unknown. The aim of the present study is to examine the effect of nesfatin-1 on ovary carcinoma cells proliferation. We found that nesfatin-1 inhibits the proliferation and growth of HO-8910 cells by G1 phase arrest, this inhibition could be abolished by nesfatin-1 neutralizing antibody. Nesfatin-1 enhances HO-8910 cell apoptosis, activation of mammalian target of rapamycin (mTOR) and RhoA/ROCK signaling pathway block the effects of nesfatin-1-induced apoptosis, therefore reverses the inhibition of HO-8910 cell proliferation by nesfatin-1. In conclusion, the present study demonstrated that nesfatin-1 can inhibit the proliferation in human ovarian epithelial carcinoma cell line HO-8910 cells through inducing apoptosis via mTOR and RhoA/ROCK signaling pathway. This study provides a novel regulatory signaling pathway of nesfatin-1-regulated ovarian epithelial carcinoma growth and may contribute to ovarian cancer prevention and therapy, especially in obese patients.

  20. Resveratrol-induced autophagocytosis in ovarian cancer cells.

    PubMed

    Opipari, Anthony W; Tan, Lijun; Boitano, Anthony E; Sorenson, Dorothy R; Aurora, Anjili; Liu, J Rebecca

    2004-01-15

    Resveratrol (3,5,4-trihydroxystilbene), a natural phytoalexin present in grapes, nuts, and red wine, has antineoplastic activities. Several molecular mechanisms have been described to underlie its effects on cells in vitro and in vivo. In the present study, the response of ovarian cancer cells to resveratrol is explored. Resveratrol inhibited growth and induced death in a panel of five human ovarian carcinoma cell lines. The response was associated with mitochondrial release of cytochrome c, formation of the apoptosome complex, and caspase activation. Surprisingly, even with these molecular features of apoptosis, analysis of resveratrol-treated cells by light and electron microscopy revealed morphology and ultrastructural changes indicative of autophagocytic, rather than apoptotic, death. This suggests that resveratrol can induce cell death through two distinct pathways. Consistent with resveratrol's ability to kill cells via nonapoptotic processes, cells transfected to express high levels of the antiapoptotic proteins Bcl-x(L) and Bcl-2 are equally sensitive as control cells to resveratrol. Together, these findings show that resveratrol induces cell death in ovarian cancer cells through a mechanism distinct from apoptosis, therefore suggesting that it may provide leverage to treat ovarian cancer that is chemoresistant on the basis of ineffective apoptosis.

  1. Transitional cell bladder carcinoma with presentation mimicking ovarian carcinoma.

    PubMed

    Erickson, D R; Dabbs, D J; Olt, G J

    1996-05-01

    In the case described here, the patient's initial presentation suggested ovarian carcinoma. She had recurrent ascites, a pelvic mass, elevated CA-125, and extensive peritoneal carcinomatosis with transitional cell histology. The presence of hematuria prompted a cystoscopy, which revealed the true site of origin to be the urinary bladder rather than ovaries. This presentation is extremely rare for bladder cancer. Since transitional cell tumors from the bladder have a much worse prognosis than those of ovarian origin, it is important to identify the primary site correctly. Therefore, cystoscopy is essential for patients with hematuria, and should be considered in cases of apparent primary peritoneal carcinoma with transitional cell histology.

  2. Small-Molecule RA-9 Inhibits Proteasome-Associated DUBs and Ovarian Cancer in Vitro and in Vivo Via Exacerbating Unfolded Protein Responses

    PubMed Central

    Coughlin, Kathleen; Anchoori, Ravi; Iizuka, Yoshie; Meints, Joyce; MacNeill, Lauren; Vogel, Rachel Isaksson; Orlowski, Robert Z.; Lee, Michael K.; Roden, Richard BS; Bazzaro, Martina

    2014-01-01

    Purpose Ovarian cancer is the deadliest of the gynecological malignancies. Carcinogenic progression is accompanied by up-regulation of ubiquitin-dependent protein degradation machinery as a mechanism to compensate with elevated endogenous proteotoxic stress. Recent studies support the notion that deubiquitinating enzymes (DUBs) are essential factors in proteolytic degradation and that their aberrant activity is linked to cancer progression and chemoresistance. Thus, DUBs are an attractive therapeutic target for ovarian cancer. Experimental Design The potency and selectivity of RA-9 inhibitor for proteasome-associated DUBs was determined in ovarian cancer cell lines and primary cells. The anticancer activity of RA-9 and its mechanism of action was evaluated in multiple cancer cell lines in vitro and in vivo in immunodeficient mice bearing an intra-peritoneal ES-2 xenograft model of human ovarian cancer. Results Here we report the characterization of RA-9 as a small-molecule inhibitor of proteasome-associated DUBs. Treatment with RA-9 selectively induces onset of apoptosis, in ovarian cancer cell lines and primary cultures derived from donors. Loss of cell viability following RA-9 exposure is associated with an Unfolded Protein Response (UPR) as mechanism to compensate for unsustainable levels of proteotoxic stress. In vivo treatment with RA-9 retards tumor growth, increases overall survival and was well tolerated by the host. Conclusions Our preclinical studies support further evaluation of RA-9 as an ovarian cancer therapeutic. PMID:24727327

  3. Ovarian monocyte progenitor cells: phenotypic and functional characterization.

    PubMed

    Pascual, Cherry J; Sanberg, Paul R; Chamizo, Wilfredo; Haraguchi, Soichi; Lerner, Danika; Baldwin, Margi; El-Badri, Nagwa S

    2005-04-01

    Leukocytes of the macrophage lineage are abundant in the ovarian tissues and have an important function in both follicular development and regression of postovulatory follicles. In this study, we tested the hypothesis that continuous production of macrophages in the ovarian stroma is maintained by a resident population of progenitors. We established a long-term culture of ovarian follicular stromal cells from BALB/c and green fluorescent protein-transgenic (GFP-TG) C57BL/6 mice. Nonadherent cells were collected and tested for hematopoietic function in vitro and in vivo. Histological and ultrastructural analyses revealed a homogenous population of monocyte-like rounded cells. Nonadherent cells continued to proliferate in culture for several months without senescence. When plated at very low density in methylcellulose, these cells formed colonies consisting of monocyte-like cells. Ovarian monocyte-like cells reacted with CD45, CD11b, CD11c, and Ly6-Gr-1 cell surface markers. A distinct CD45low population within these cells reacted with CD117 (C-kit) surface marker, suggestive of a primitive hematopoietic progenitor. Fifty thousand nonadherent cells failed to provide radioprotection to lethally irradiated mice and thus were not considered to be equivalent to pluripotent hematopoietic stem cells. Ovarian nonadherent stromal cells were positive for alkaline phosphatase but lacked embryonic cell antigens stage-specific embryonic antigen (SSEA-1) and Oct-4. We conclude that in the ovaries, a higher requirement for macrophages is provided by a resident stromal population of progenitors whose progeny is restricted to the production of cells of the monocyte-macrophage lineage.

  4. PFTK1 regulates cell proliferation, migration and invasion in epithelial ovarian cancer.

    PubMed

    Zhang, Weiwei; Liu, Rong; Tang, Chunhui; Xi, Qinghua; Lu, Shumin; Chen, Wenjuan; Zhu, Lianxin; Cheng, Jialin; Chen, Yannan; Wang, Wei; Zhong, Jianxin; Deng, Yan

    2016-04-01

    PFTK1, also named Cyclin-Dependent Kinase 14 (CDK14), is a member of the cell division cycle 2 (CDC2)-related protein kinase family. It is a serine/threonine-protein kinase involved in the regulation of cell cycle progression and cell proliferation. In this study, we investigated the role of PFTK1 in epithelial ovarian cancer (EOC) development. The expression of PFTK1 was detected by Western blot and immunohistochemistry staining, both of which demonstrated that PFTK1 was overexpressed in EOC tissues and cells. Statistical analysis showed the expression of PFTK1 was associated with multiple clinicopathological factors, including tumor grade, FIGO stage, lymph node metastatis, Ki-67 expression and predicted a poor prognosis of EOC patients. With in vitro studies we found that PFTK1 expression was decreased in serum-starved ovarian cancer cells, and progressively increased after serum-re-feeding. Knocking PFTK1 down by small interfering RNA (siRNA) significantly inhibited ovarian cancer cell proliferation, migration and invasion. Taken together, our study suggested that PFTK1 played an important role in ovarian cancer development.

  5. Targeting Cell Surface Proteins in Molecular Photoacoustic Imaging to Detect Ovarian Cancer Early

    DTIC Science & Technology

    2012-07-01

    10-1-0422 TITLE: Targeting Cell Surface Proteins in Molecular Photoacoustic Imaging to Detect Ovarian Cancer Early PRINCIPAL...molecular imaging 7 cdrescher@fhcrc.org Targeting Cell Surface Proteins in Molecular Photoacoustic Imaging to Detect Ovarian Cancer Early Page 3...Targeting Cell Surface Proteins in Molecular Photoacoustic Imaging to Detect Ovarian Cancer Early Charles W Drescher, MD, Principle Investigator

  6. The marine-derived fungal metabolite, terrein, inhibits cell proliferation and induces cell cycle arrest in human ovarian cancer cells.

    PubMed

    Chen, Yi-Fei; Wang, Shu-Ying; Shen, Hong; Yao, Xiao-Fen; Zhang, Feng-Li; Lai, Dongmei

    2014-12-01

    The difficulties faced in the effective treatment of ovarian cancer are multifactorial, but are mainly associated with relapse and drug resistance. Cancer stem-like cells have been reported to be an important contributor to these hindering factors. In this study, we aimed to investigate the anticancer activities of a bioactive fungal metabolite, namely terrein, against the human epithelial ovarian cancer cell line, SKOV3, primary human ovarian cancer cells and ovarian cancer stem-like cells. Terrein was separated and purified from the fermentation metabolites of the marine sponge-derived fungus, Aspergillus terreus strain PF26. Its anticancer activities against ovarian cancer cells were investigated by cell proliferation assay, cell migration assay, cell apoptosis and cell cycle assays. The ovarian cancer stem-like cells were enriched and cultured in a serum-free in vitro suspension system. Terrein inhibited the proliferation of the ovarian cancer cells by inducing G2/M phase cell cycle arrest. The underlying mechanisms involved the suppression of the expression of LIN28, an important marker gene of stemness in ovarian cancer stem cells. Of note, our study also demonstrated the ability of terrein to inhibit the proliferation of ovarian cancer stem-like cells, in which the expression of LIN28 was also downregulated. Our findings reveal that terrein (produced by fermention) may prove to be a promising drug candidate for the treatment of ovarian cancer by inhibiting the proliferation of cancer stem-like cells.

  7. Cells of Origin of Epithelial Ovarian Cancers

    DTIC Science & Technology

    2015-09-01

    lethal malignancy of the female reproductive system, largely due to the fact that most EOCs are diagnosed only after the cancer has metastasized into the...Epithelial ovarian cancer (EOC) is the most lethal malignancy of the female reproductive system, largely due to the fact that most EOCs are diagnosed only

  8. Ovarian Germline Stem Cells: An Unlimited Source of Oocytes?

    PubMed Central

    Hanna, Carol; Hennebold, Jon

    2014-01-01

    While there has been progress in directing the development of embryonic stem cells and induced pluripotent stem cells toward a germ cell state, their ability to serve as a source of functional oocytes in a clinically relevant model or situation has yet to be established. Recent studies suggest the adult mammalian ovary is not endowed with a finite number of oocytes, but instead possesses stem cells that contribute to their renewal. The ability to isolate and promote the growth and development of such ovarian germline stem cells (GSCs) would provide a novel means to treat infertility in women. While such ovarian GSCs are well-characterized in non-mammalian model organisms, the findings that support the existence of adult ovarian GSCs in mammals have been met with considerable evidence that disputes their existence. Thus, this review details the lessons provided by model organisms that successfully utilize ovarian GSCs to allow for a continual and high level of female germ cell production throughout their life, with a specific focus on the cellular mechanisms involved in GSC self-renewal and oocyte development. Such an overview of the role oogonial stem cells play in maintaining fertility in non-mammalian species serves as a backdrop for the data generated to-date that supports or disputes the existence of GSCs in mammals as well as the future of this area of research in terms of its potential for any application in reproductive medicine. PMID:24382341

  9. Overexpression of GAB2 in ovarian cancer cells promotes tumor growth and angiogenesis by upregulating chemokine expression

    PubMed Central

    Duckworth, C; Zhang, L; Carroll, S L; Ethier, S P; Cheung, H W

    2016-01-01

    We previously found that the scaffold adapter GRB2-associated binding protein 2 (GAB2) is amplified and overexpressed in a subset of primary high-grade serous ovarian cancers and cell lines. Ovarian cancer cells overexpressing GAB2 are dependent on GAB2 for activation of the phosphatidylinositol 3-kinase (PI3K) pathway and are sensitive to PI3K inhibition. In this study, we show an important role of GAB2 overexpression in promoting tumor angiogenesis by upregulating expression of multiple chemokines. Specifically, we found that suppression of GAB2 by inducible small hairpin RNA in ovarian cancer cells inhibited tumor cell proliferation, angiogenesis and peritoneal tumor growth in immunodeficient mice. Overexpression of GAB2 upregulated the secretion of several chemokines from ovarian cancer cells, including CXCL1, CXCL2 and CXCL8. The secreted chemokines not only signal through endothelial CXCR2 receptor in a paracrine manner to promote endothelial tube formation, but also act as autocrine growth factors for GAB2-induced transformation of fallopian tube secretory epithelial cells and clonogenic growth of ovarian cancer cells overexpressing GAB2. Pharmacological inhibition of inhibitor of nuclear factor kappa-B kinase subunit β (IKKβ), but not PI3K, mechanistic target of rapamycin (mTOR) or mitogen-activated protein kinase (MEK), could effectively suppress GAB2-induced chemokine expression. Inhibition of IKKβ augmented the efficacy of PI3K/mTOR inhibition in suppressing clonogenic growth of ovarian cancer cells with GAB2 overexpression. Taken together, these findings suggest that overexpression of GAB2 in ovarian cancer cells promotes tumor growth and angiogenesis by upregulating expression of CXCL1, CXCL2 and CXCL8 that is IKKβ-dependent. Co-targeting IKKβ and PI3K pathways downstream of GAB2 might be a promising therapeutic strategy for ovarian cancer that overexpresses GAB2. PMID:26657155

  10. Selective killing of ovarian cancer cells through induction of apoptosis by nonequilibrium atmospheric pressure plasma

    SciTech Connect

    Iseki, Sachiko; Tanaka, Hiromasa; Kondo, Hiroki; Hori, Masaru; Nakamura, Kae; Hayashi, Moemi; Kajiyama, Hiroaki; Kikkawa, Fumitaka; Kano, Hiroyuki

    2012-03-12

    Two independent ovarian cancer cell lines and fibroblast controls were treated with nonequilibrium atmospheric pressure plasma (NEAPP). Most ovarian cancer cells were detached from the culture dish by continuous plasma treatment to a single spot on the dish. Next, the plasma source was applied over the whole dish using a robot arm. In vitro cell proliferation assays showed that plasma treatments significantly decreased proliferation rates of ovarian cancer cells compared to fibroblast cells. Flow cytometry and western blot analysis showed that plasma treatment of ovarian cancer cells induced apoptosis. NEAPP could be a promising tool for therapy for ovarian cancers.

  11. SDF-1/CXCR7 axis enhances ovarian cancer cell invasion by MMP-9 expression through p38 MAPK pathway.

    PubMed

    Yu, Yuecheng; Li, Hongmei; Xue, Baoyao; Jiang, Xia; Huang, Kan; Ge, Junli; Zhang, Hongju; Chen, Biliang

    2014-08-01

    Ovarian cancer is an aggressive gynecological malignancy with high metastatic potential. Recently, the CXC receptor (CXCR7) has been identified as a new receptor for stromal-derived factor-1 (SDF-1), and exerts important roles in cancer development. However, its effect on ovarian cancer and the underlying mechanism remain unknown. In this study, we detected abundant CXCR7 expression in ovarian cancer tissues and cells. Moreover, SDF-1 induced dramatically upregulation of CXCR7 mRNA and protein levels, indicating that the SDF-1/CXCR7 axis existed in ovarian cancer. Further analysis confirmed that SDF-1 enhanced cell adhesion and subsequent invasion, which were significantly attenuated when pretreated with CXCR7 small interference RNA (siRNA), indicating the critical function of SDF-1/CXCR7 in cell invasion. Further mechanistic analysis indicated that SDF-1/CXCR7 enhanced cell invasion by matrix metalloproteinase (MMP)-9, as pretreatment with MMP-9 siRNA significantly abrogated a number of invading cells. Additionally, SDF-1/CXCR7 induced phosphorylation of the p38 MAPK pathway, which was accounted for MMP-9 expression as preconditioning with the p38 MAPK inhibitor SB203580 obviously decreased MMP-9 expression. Together, our data implied that SDF-1/CXCR7 enhanced ovarian cancer cell invasion by MMP-9 expression through the p38 MAPK pathway. Thus, these findings confirmed the critical role of SDF-1/CXCR7 during the pathological processes of ovarian cancer and supported its potential targets for further development of antiovarian cancer therapy.

  12. Aurora kinase A mediates epithelial ovarian cancer cell migration and adhesion.

    PubMed

    Do, T-V; Xiao, F; Bickel, L E; Klein-Szanto, A J; Pathak, H B; Hua, X; Howe, C; O'Brien, S W; Maglaty, M; Ecsedy, J A; Litwin, S; Golemis, E A; Schilder, R J; Godwin, A K; Connolly, D C

    2014-01-30

    Aurora kinase A (AURKA) localizes to centrosomes and mitotic spindles where it mediates mitotic progression and chromosomal stability. Overexpression of AURKA is common in cancer, resulting in acquisition of alternate non-mitotic functions. In the current study, we identified a novel role for AURKA in regulating ovarian cancer cell dissemination and evaluated the efficacy of an AURKA-selective small molecule inhibitor, alisertib (MLN8237), as a single agent and combined with paclitaxel using an orthotopic xenograft model of epithelial ovarian cancer (EOC). Ovarian carcinoma cell lines were used to evaluate the effects of AURKA inhibition and overexpression on migration and adhesion. Pharmacological or RNA interference-mediated inhibition of AURKA significantly reduced ovarian carcinoma cell migration and adhesion and the activation-associated phosphorylation of the cytoskeletal regulatory protein SRC at tyrosine 416 (pSRC(Y416)). Conversely, enforced expression of AURKA resulted in increased migration, adhesion and activation of SRC in cultured cells. In vivo tumor growth and dissemination were inhibited by alisertib treatment as a single agent. Moreover, combination of alisertib with paclitaxel, an agent commonly used in treatment of EOC, resulted in more potent inhibition of tumor growth and dissemination compared with either drug alone. Taken together, these findings support a role for AURKA in EOC dissemination by regulating migration and adhesion. They also point to the potential utility of combining AURKA inhibitors with taxanes as a therapeutic strategy for the treatment of EOC patients.

  13. Dynamics associated with spontaneous differentiation of ovarian stem cells in vitro

    PubMed Central

    2014-01-01

    Background Recent studies suggest that ovarian germ line stem cells replenish oocyte-pool in adult stage, and challenge the central doctrine of ‘fixed germ cell pool’ in mammalian reproductive biology. Two distinct populations of spherical stem cells with high nucleo-cytoplasmic ratio have been recently identified in the adult mammalian ovary surface epithelium (OSE) including nuclear OCT-4A positive very small embryonic-like (VSELs) and cytoplasmic OCT-4 expressing ovarian germ stem cells (OGSCs). Three weeks culture of scraped OSE cells results in spontaneous differentiation of the stem cells into oocyte-like, parthenote-like, embryoid body-like structures and also embryonic stem cell-like colonies whereas epithelial cells attach and transform into a bed of mesenchymal cells. Present study was undertaken, to further characterize ovarian stem cells and to comprehend better the process of spontaneous differentiation of ovarian stem cells into oocyte-like structures in vitro. Methods Ovarian stem cells were enriched by immunomagnetic sorting using SSEA-4 as a cell surface marker and were further characterized. Stem cells and clusters of OGSCs (reminiscent of germ cell nests in fetal ovaries), were characterized by immuno-localization for stem and germ cell specific markers and spontaneous differentiation in OSE cultures was studied by live cell imaging. Results Differential expression of markers specific for pluripotent VSELs (nuclear OCT-4A, SSEA-4, CD133), OGSCs (cytoplasmic OCT-4) primordial germ cells (FRAGILIS, STELLA, VASA) and germ cells (DAZL, GDF-9, SCP-3) were studied. Within one week of culture, stem cells became bigger in size, developed abundant cytoplasm, differentiated into germ cells, revealed presence of Balbiani body-like structure (mitochondrial cloud) and exhibited characteristic cytoplasmic streaming. Conclusions Presence of germ cell nests, Balbiani body-like structures and cytoplasmic streaming extensively described during fetal ovary

  14. Effect of doxorubicin-induced ovarian toxicity on mouse ovarian granulosa cells.

    PubMed

    Zhang, Ting; He, Wan Hong; Feng, Ling Lin; Huang, Hao Guang

    2017-02-17

    The objective of this study was to identify the effect of doxorubicin-induced ovarian toxicity on mouse ovarian granulosa cells. After granulosa cells were treated with doxorubicin at the final concentrations of 0, 0.4, 0.8, and 1.6 μg/ml for 24 h, cell apoptosis was detected by DAPI staining or caspase-3/7 fluorescence probe; ROS was determined by 2', 7'-dichlorodihydrofluorescin diacetate fluorescence probe; mitochondrial membrane potential was detected by rhodamine-123 fluorescence probe; and mRNA expression levels of Bax, Bcl-2, p53, FSHR, StAR, P450scc and P450arom were analyzed by RT-PCR. Results indicated that doxorubicin could induce apoptosis of granulosa cells (p < 0.01); increase ROS generation (p < 0.05 or p < 0.01); decrease mitochondrial membrane potential (p < 0.05); increase mRNA expression levels of Bax, Bcl-2, and p53 (p < 0.001); enhance mRNA expression level of StAR (p < 0.01 or p < 0.001); and inhibit mRNA expression level of P450scc in granulosa cells (p < 0.05 or p < 0.001). The mRNA expression levels of FSHR and P450arom were not influenced by doxorubicin. We suggest that the ovarian toxicity of doxorubicin was associated with apoptosis of granulosa cells, ROS accumulation, and decline of mitochondrial membrane potential in granulosa cells. In addition, cell apoptosis was regulated by Bax, Bcl-2, and p53, and hormone generation could be influenced by StAR and P450scc.

  15. Polyglutamate Paclitaxel and Carboplatin in Treating Patients With Ovarian Epithelial, Peritoneal, or Fallopian Tube Cancer

    ClinicalTrials.gov

    2015-05-07

    Fallopian Tube Carcinoma; Malignant Ovarian Mixed Epithelial Tumor; Ovarian Brenner Tumor; Ovarian Clear Cell Cystadenocarcinoma; Ovarian Endometrioid Adenocarcinoma; Ovarian Mucinous Cystadenocarcinoma; Ovarian Serous Cystadenocarcinoma; Primary Peritoneal Carcinoma; Stage III Ovarian Cancer; Stage IV Ovarian Cancer; Undifferentiated Ovarian Carcinoma

  16. Electrical Monitoring Cytotoxic Effect of Cigarette Smoke Condensate on Transendothelial Invasion of Ovarian Cancer Cells

    NASA Astrophysics Data System (ADS)

    Opp, Daniel; Lo, Chun-Min

    2007-03-01

    We investigated the effects of cigarette smoke condensate (CSC) on barrier function and cellular migration of human umbilical vein endothelial cells (HUVEC), and on the invasive activities of ovarian carcinoma cells through HUVEC monolayers as well. Central to this work was the use of electric cell-substrate impedance sensing (ECIS), a cell-based biosensor that monitors motility and other morphology changes of cells adherent on small gold electrodes. Upon addition of different concentrations of CSC, the junctional resistance and the wound healing rate of the HUVEC layers decrease as CSC concentration increases from 0.01 to 0.25 mg/ml, whereas the average cell-substrate separation increases with CSC concentration. Following the addition of OVCA429 ovarian cancer cells to HUVEC layers with the presence of different CSC concentrations, dose-dependent changes of the transcellular resistance drop were observed. Our results suggest that CSC is detrimental to normal endothelial cell function in maintaining vascular integrity. In addition, the chemicals present in CSC may increase transendothelial invasion of ovarian cancer cells.

  17. CD24 and Nanog identify stem cells signature of ovarian epithelium and cysts that may develop to ovarian cancer.

    PubMed

    Schreiber, Letizia; Raanan, Calanit; Amsterdam, Abraham

    2014-03-01

    Ovarian cancer is the most lethal gynecological cancer. There is a general debate whether ovarian cancer is an intrinsic or an imported disease. We investigated whether in normal morphological appearance and in early stages of ovarian tumorgenesis typical cancer cell markers such as CD24 and Nanog are expressed. In 25% of normal appearing ovaries of post-menopausal women there was co-localization of CD24 and Nanog in the walls of the ovarian cysts, leaving the epithelial cells on the surface of these ovaries free of Nanog or CD24 expression. In benign ovarian tumors 37% of specimens were positive to CD24 and Nanog labeling while 26% of them were localized in the cyst walls. In contrast, in serous borderline tumors 79% specimens were labeled with CD24, 42% of them were localized in cysts and in 32% of them showed co-localization with CD24 and Nanog was evident: the rest were labeled in the ovarian epithelial cells. In serous ovarian carcinomas 81% specimens were labeled with CD24 antibodies. In 45% of them co-localization with Nanog was evident in the bulk of the cancerous tissue. In mucinous carcinomas no labeling with CD24 or Nanog was evident. In view of the synergistic effect of CD24 and Nanog expressed in malignant cancer development in other systems, it is suggested that such an analysis can be valuable for early detection of ovarian cancer. Moreover, the abundance of these markers in cysts in the development of ovarian cancer may suggest that they present an intrinsic source of the development of the highly malignant disease. Finally, since CD24 is exposed on the surface of the cancer cells, it may be highly beneficial to target these cells with antibodies to CD24 conjugated to cytotoxic drugs for more efficient treatment of this malignant disease.

  18. Tetraploid cells from cytokinesis failure induce aneuploidy and spontaneous transformation of mouse ovarian surface epithelial cells.

    PubMed

    Lv, Lei; Zhang, Tianwei; Yi, Qiyi; Huang, Yun; Wang, Zheng; Hou, Heli; Zhang, Huan; Zheng, Wei; Hao, Qiaomei; Guo, Zongyou; Cooke, Howard J; Shi, Qinghua

    2012-08-01

    Most ovarian cancers originate from the ovarian surface epithelium and are characterized by aneuploid karyotypes. Aneuploidy, a consequence of chromosome instability, is an early event during the development of ovarian cancers. However, how aneuploid cells are evolved from normal diploid cells in ovarian cancers remains unknown. In the present study, cytogenetic analyses of a mouse syngeneic ovarian cancer model revealed that diploid mouse ovarian surface epithelial cells (MOSECs) experienced an intermediate tetraploid cell stage, before evolving to aneuploid (mainly near-tetraploid) cells. Using long-term live-cell imaging followed by fluorescence in situ hybridization (FISH), we demonstrated that tetraploid cells originally arose from cytokinesis failure of bipolar mitosis in diploid cells, and gave rise to aneuploid cells through chromosome mis-segregation during both bipolar and multipolar mitoses. Injection of the late passage aneuploid MOSECs resulted in tumor formation in C57BL/6 mice. Therefore, we reveal a pathway for the evolution of diploid to aneuploid MOSECs and elucidate a mechanism for the development of near-tetraploid ovarian cancer cells.

  19. RNAi and overexpression of genes in ovarian somatic cells.

    PubMed

    Saito, Kuniaki

    2014-01-01

    Emerging evidence indicates that PIWI proteins, in collaboration with PIWI-interacting RNAs (piRNAs), play a critical role in retrotransposon silencing in Drosophila gonadal somatic and germ-line cells. The recent establishment of female germ-line stem cells/ovarian somatic sheet and its derivative cell line, ovarian somatic cells (OSCs), allows researchers to study the molecular functions of several protein factors involved in the primary piRNA pathway in Drosophila. Although transgene expression is difficult to achieve in gonad-derived cell lines, transfection of both expression vectors and knockdown reagents is highly effective in OSCs. Here, I focus on techniques that knockdown or overexpress genes of interest in OSCs.

  20. S1P differentially regulates migration of human ovarian cancer and human ovarian surface epithelial cells

    PubMed Central

    Wang, Dongmei; Zhao, Zhenwen; Caperell-Grant, Andrea; Yang, Gong; Mok, Samuel C.; Liu, Jinsong; Bigsby, Robert M.; Xu, Yan

    2009-01-01

    Epithelial ovarian cancer (EOC) arises from the epithelial layer covering the surface of ovaries and intra-peritoneal metastasis is commonly observed at diagnosis. Sphingosine-1-phosphate (S1P), a bioactive lipid signaling molecule, is potentially involved in EOC tumorigenesis. We have found that S1P is elevated in human EOC ascites. We show that physiologically relevant concentrations of S1P stimulate migration and invasion of EOC cells, but inhibit migration of human ovarian surface epithelial (HOSE) cells. In addition, S1P inhibits lysophosphatidic acid (LPA)-induced cell migration in HOSE, but not in EOC cells. We have provided the first line of evidence that the expression levels of S1P receptor subtypes are not the only determinants for how cells respond to S1P. Even though S1P1 is expressed and functional in HOSE cells, the inhibitory effect mediated by S1P2 is dominant in those cells. The cellular pre-existing stress fibers are also important determinants for the migratory response to S1P. Differential S1P-induced morphology changes are noted in EOC and HOSE cells. Pre-existing stress fibers in HOSE cells are further enhanced by S1P treatment, resulting in the negative migratory response to S1P. By contrast, EOC cells lost stress fibers and S1P treatment induces filopodium-like structures at cell edges, which correlates with increased cell motility. In addition, inhibition of the protein kinase C pathway is likely to be involved in the inhibitory effect of S1P on LPA-induced cell migration in HOSE cells. These findings are important for the development of new therapeutics targeting S1P and LPA in EOC. PMID:18645009

  1. Small bowel obstruction and perforation attributed to tubo-ovarian abscess following 'D’ and 'C’

    PubMed Central

    2013-01-01

    We report the case of a young woman who was admitted because of small bowel obstruction and localized peritonitis following a dilatation and curettage ('D’ and 'C’) of uterus in abortion. As infection, like tubo-ovarian abscess may complicate any abortion, it seems wise to ensure that it does not exist prior to performing a 'D’ and 'C’. PMID:24107403

  2. CD44v6 promotes β-catenin and TGF-β expression, inducing aggression in ovarian cancer cells.

    PubMed

    Wang, Jing; Xiao, Ling; Luo, Chen-Hui; Zhou, Hui; Zeng, Liang; Zhong, Jingmin; Tang, Yan; Zhao, Xue-Heng; Zhao, Min; Zhang, Yi

    2015-05-01

    A high expression of CD44v6 has been reported in numerous malignant cancers, including stomach, prostate, lung and colon. However, the pathological role and the regulatory mechanisms of CD44v6 have yet to be elucidated. In the present study, the expression levels of CD44v6 were shown to be significantly higher in ovarian cancer tissues, as compared with adjacent normal tissues. Furthermore, the upregulated expression levels of CD44v6 were correlated with disease recurrence and poor survival in patients. The expression of CD44v6 was knocked down in the CAOV3 ovarian cell line, by transfection of a specific small hairpin RNA. The present study showed a correlation between the aggression, viability, invasion and migration of the ovarian cancer cells, with the expression of CD44v6. In addition, the expression of CD44v6 was positively correlated with the expression levels of β‑catenin and tumor growth factor‑β, which indicates that the effects of CD44v6 on ovarian cancer cell aggression may be mediated by these two signaling pathways. In conclusion, the present study provides a novel insight into the association between CD44v6 expression and ovarian cancer. CD44v6 may provide a novel target for the prognosis and treatment of ovarian cancer.

  3. Glucocorticoid regulation of SLIT/ROBO tumour suppressor genes in the ovarian surface epithelium and ovarian cancer cells.

    PubMed

    Dickinson, Rachel E; Fegan, K Scott; Ren, Xia; Hillier, Stephen G; Duncan, W Colin

    2011-01-01

    The three SLIT ligands and their four ROBO receptors have fundamental roles in mammalian development by promoting apoptosis and repulsing aberrant cell migration. SLITs and ROBOs have emerged as candidate tumour suppressor genes whose expression is inhibited in a variety of epithelial tumours. We demonstrated that their expression could be negatively regulated by cortisol in normal ovarian luteal cells. We hypothesised that after ovulation the locally produced cortisol would inhibit SLIT/ROBO expression in the ovarian surface epithelium (OSE) to facilitate its repair and that this regulatory pathway was still present, and could be manipulated, in ovarian epithelial cancer cells. Here we examined the expression and regulation of the SLIT/ROBO pathway in OSE, ovarian cancer epithelial cells and ovarian tumour cell lines. Basal SLIT2, SLIT3, ROBO1, ROBO2 and ROBO4 expression was lower in primary cultures of ovarian cancer epithelial cells when compared to normal OSE (P<0.05) and in poorly differentiated SKOV-3 cells compared to the more differentiated PEO-14 cells (P<0.05). Cortisol reduced the expression of certain SLITs and ROBOs in normal OSE and PEO-14 cells (P<0.05). Furthermore blocking SLIT/ROBO activity reduced apoptosis in both PEO-14 and SKOV-3 tumour cells (P<0.05). Interestingly SLIT/ROBO expression could be increased by reducing the expression of the glucocorticoid receptor using siRNA (P<0.05). Overall our findings indicate that in the post-ovulatory phase one role of cortisol may be to temporarily inhibit SLIT/ROBO expression to facilitate regeneration of the OSE. Therefore this pathway may be a target to develop strategies to manipulate the SLIT/ROBO system in ovarian cancer.

  4. Gemcitabine Hydrochloride With or Without WEE1 Inhibitor MK-1775 in Treating Patients With Recurrent Ovarian, Primary Peritoneal, or Fallopian Tube Cancer

    ClinicalTrials.gov

    2017-01-31

    Ovarian Brenner Tumor; Ovarian Carcinosarcoma; Ovarian Clear Cell Cystadenocarcinoma; Ovarian Endometrioid Adenocarcinoma; Ovarian Mucinous Cystadenocarcinoma; Ovarian Seromucinous Carcinoma; Ovarian Serous Cystadenocarcinoma; Ovarian Serous Surface Papillary Adenocarcinoma; Recurrent Fallopian Tube Carcinoma; Recurrent Ovarian Carcinoma; Recurrent Primary Peritoneal Carcinoma; Undifferentiated Ovarian Carcinoma

  5. Targeting epithelial-mesenchymal transition and cancer stem cells for chemoresistant ovarian cancer

    PubMed Central

    Deng, Junli; Wang, Li; Chen, Hongmin; Hao, Jingli; Ni, Jie; Chang, Lei; Duan, Wei; Graham, Peter; Li, Yong

    2016-01-01

    Chemoresistance is the main challenge for the recurrent ovarian cancer therapy and responsible for treatment failure and unfavorable clinical outcome. Understanding mechanisms of chemoresistance in ovarian cancer would help to predict disease progression, develop new therapies and personalize systemic therapy. In the last decade, accumulating evidence demonstrates that epithelial-mesenchymal transition and cancer stem cells play important roles in ovarian cancer chemoresistance and metastasis. Treatment of epithelial-mesenchymal transition and cancer stem cells holds promise for improving current ovarian cancer therapies and prolonging the survival of recurrent ovarian cancer patients in the future. In this review, we focus on the role of epithelial-mesenchymal transition and cancer stem cells in ovarian cancer chemoresistance and explore the therapeutic implications for developing epithelial-mesenchymal transition and cancer stem cells associated therapies for future ovarian cancer treatment. PMID:27304054

  6. Epigenetics changes caused by the fusion of human embryonic stem cell and ovarian cancer cells

    PubMed Central

    He, Ke; Qu, Hu; Xu, Li-Nan; Gao, Jun; Cheng, Fu-Yi; Xiang, Peng; Zhou, Can-Quan

    2016-01-01

    To observe the effect of gene expression and tumorigenicity in hybrid cells of human embryonic stem cells (hESCs) and ovarian cancer cells in vitro and in vivo using a mouse model, and to determine its feasibility in reprogramming tumour cells growth and apoptosis, for a potential exploration of the role of hESCs and tumour cells fusion in the management of ovarian cancer. Stable transgenic hESCs (H1) and ovarian cancer cell line OVCAR-3 were established before fusion, and cell fusion system was established to analyse the related indicators. PTEN expression in HO-H1 cells was higher than those in the parental stem cells and lower than those in parental tumour cells; the growth of OV-H1 (RFP+GFP) hybrid cells with double fluorescence expressions were obviously slower than that of human embryonic stem cells and OVCAR-3 ovarian cancer cells. The apoptosis signal of the OV-H1 hybrid cells was significantly higher than that of the hESCs and OVCAR-3 ovarian cancer cells. In vivo results showed that compared with 7 days, 28 days and 35 days after inoculation of OV-H1 hybrid cells; also, apoptotic cell detection indicated that much stronger apoptotic signal was found in OV-H1 hybrid cells inoculated mouse. The hESCs can inhibit the growth of OVCAR-3 cells in vitro by suppressing p53 and PTEN expression to suppress the growth of tumour that may be achieved by inducing apoptosis of OVCAR-3 cells. The change of epigenetics after fusion of ovarian cancer cells and hESCs may become a novel direction for treatment of ovarian cancer. PMID:27377320

  7. TRPM7 is required for ovarian cancer cell growth, migration and invasion

    SciTech Connect

    Wang, Jing; Liao, Qian-jin; Zhang, Yi; Zhou, Hui; Luo, Chen-hui; Tang, Jie; Wang, Ying; Tang, Yan; Zhao, Min; Zhao, Xue-heng; Zhang, Qiong-yu; Xiao, Ling

    2014-11-28

    Highlights: • Silence of TRPM7 in ovarian cancer cells inhibits cell proliferation, migration and invasion. • Silence of TRPM7 decreases phosphorylation levels of Akt, Src and p38 in ovarian cancer cells. • Silence of TRPM7 increases expression of filamentous actin and number of focal adhesions in ovarian cancer cells. - Abstract: Our previous study demonstrated that the melastatin-related transient receptor potential channel 7 (TRPM7) was highly expressed in ovarian carcinomas and its overexpression was significantly associated with poor prognosis in ovarian cancer patients. However, the function of TRPM7 in ovarian cancer is mostly unknown. In this study, we examined the roles of TRPM7 in ovarian cancer cell proliferation, migration and invasion. We found that short hairpin RNA interference-mediated silence of TRPM7 significantly inhibited cell proliferation, colony formation, migration and invasion in multiple ovarian cancer cell lines. Mechanistic investigation revealed that silence of TRPM7 decreased phosphorylation levels of Akt, Src and p38 and increased filamentous actin and focal adhesion number in ovarian cancer cells. Thus, our results suggest that TRPM7 is required for proliferation, migration and invasion of ovarian cancer cells through regulating multiple signaling transduction pathways and the formation of focal adhesions.

  8. Differential diagnosis of ovarian tumors based primarily on their patterns and cell types.

    PubMed

    Young, R H; Scully, R E

    2001-08-01

    The differential diagnosis of ovarian tumors is reviewed based on their patterns and cell types. This approach, which differs from the standard textbook discussion of each neoplasm as an entity, has practical value as differential diagnosis depends largely on the pattern or patterns and cell type or types of tumors. Awareness of the broad range of lesions that may exhibit particular patterns or contain one or more cell types is crucial in formulating a differential diagnosis. The following patterns are considered: moderate-to-large-glandular and hollow-tubular; solid tubular and pseudotubular; cords and ribbons; insular; trabecular; slit-like and reticular spaces; microglandular and microfollicular; macrofollicular and pseudomacrofollicular; papillary; diffuse; fibromatous-thecomatous; and biphasic and pseudobiphasic. The following cell types are considered: small round cells; spindle cells; mucinous cells, comprising columnar, goblet cell and signet ring cell subtypes; clear cells; hobnail cells; oxyphil cells; and transitional cells. The morphologic diversity of ovarian tumors poses many challenges; knowledge of the occurrence and frequency of these patterns and cell types in various tumors and tumor-like lesions is of paramount diagnostic importance. A specific diagnosis can usually be made by evaluating routinely stained slides, but much less often, special staining, immunohistochemical staining or, very rarely, ultrastructural examination is also required. Finally, clinical data, operative findings, and gross features of the lesions may provide important, and at times decisive diagnostic clues.

  9. Closed Small Cell Clouds

    Atmospheric Science Data Center

    2013-04-19

    ... (right)   The structure of tightly packed "closed cells" in a layer of marine stratocumulus over the southeastern Pacific Ocean ... into interesting structures such as those shown here. These cells are notably small, with diameters ranging from 10-15 kilometers, instead ...

  10. Cell Therapy for Chemically Induced Ovarian Failure in Mice

    PubMed Central

    Terraciano, Paula; Durli, Isabel; Baggio, Melchiani; Kuhl, Cristiana Palma; Laurino, Claudia; Passos, Eduardo; Paz, Ana Helena; Cirne-Lima, Elizabeth

    2014-01-01

    Cell therapy has been linked to an unexplained return of ovarian function and fertility in some cancer survivors. Studies modeling this in mice have shown that cells transplantation generates donor-derived oocytes in chemotherapy-treated recipients. This study was conducted to further clarify the impact of cell transplantation from different sources on female reproductive function after chemotherapy using a preclinical mouse model. Methods. Female mice were administered 7.5 mg/kg cisplatin followed by cell transplantation (one week later) using GFP+ female cell donors. For cell tracking, adipose derived stem cell GFP+ (ADSC), female germline stem cell GFP+/MVH+ (FGSC), or ovary cell suspension GFP+ mice were transplanted into cisplatin-treated wild-type recipients. After 7 or 14 days animals were killed and histological analysis, IHQ for GFP cells, and ELISA for estradiol were performed. Results. Histological examinations showed that ADSC, ovary cell suspension, and FGSC transplant increase the number of follicles with apparent normal structure in the cells recipient group euthanized on day 7. Cell tracking showed GFP+ samples 7 days after transplant. Conclusion. These data suggest that intraovarian injection of ADSCs and FGSC into mice with chemotherapy-induced ovarian failure diminished the damage caused by cisplatin. PMID:25548574

  11. Studies on the ovarian motility of small laboratory rodents.

    PubMed

    Gimeno, M F; Gimeno, A L

    1975-01-01

    Guinea pig ovaries were isolated and immersed in Krebs-Ringer bicarbonate solution, gassed with carbogen and added with glucose as the substrate. The experiments were carried out at 37 degrees C and the preparations were subjected to a basal tension of 500 mg. The spontaneous motility (contractile tension and frequency) of guinea pig ovaries obtained in late proestrus was significantly greater than that of the estrus or early proestrus. The influence of oxytocin on ovarian motility was significantly more marked in late proestrus than in estrus or early proestrus. Both the spontaneous and induced mortility of guinea pig ovaries are augmented in the immediate prevoulatory moment. In isolated rat ovaries, the isometric contractile tension and the frequency of contractions increased as the estral cycle progressed. During late proestrus, left ovaries had a contractile activity of greater intensity and frequency than the right ones, whereas during early proestrus the magnitudes were comparable. Oxytocin elicited greater responses in left than right ovaries of the late proestrus, the effect becoming similar in estrus and early proestrus. Rat ovaries obtained immediately before ovulation are specifically sensitized to the influence of oxytocin and not to other smooth muscle stimulants.

  12. Erlotinib Plus Carboplatin and Paclitaxel in Ovarian Carcinoma

    ClinicalTrials.gov

    2015-10-29

    Brenner Tumor; Fallopian Tube Cancer; Ovarian Clear Cell Cystadenocarcinoma; Ovarian Endometrioid Adenocarcinoma; Ovarian Mucinous Cystadenocarcinoma; Ovarian Serous Cystadenocarcinoma; Ovarian Undifferentiated Adenocarcinoma; Stage III Ovarian Epithelial Cancer; Stage IV Ovarian Epithelial Cancer

  13. Denileukin Diftitox Used in Treating Patients With Advanced Refractory Ovarian Cancer, Primary Peritoneal Carcinoma, or Epithelial Fallopian Tube Cancer

    ClinicalTrials.gov

    2016-05-02

    Fallopian Tube Cancer; Ovarian Clear Cell Cystadenocarcinoma; Ovarian Endometrioid Adenocarcinoma; Ovarian Mixed Epithelial Carcinoma; Ovarian Mucinous Cystadenocarcinoma; Ovarian Serous Cystadenocarcinoma; Ovarian Undifferentiated Adenocarcinoma; Peritoneal Cavity Cancer; Recurrent Ovarian Epithelial Cancer; Stage III Ovarian Epithelial Cancer; Stage IV Ovarian Epithelial Cancer

  14. MicroRNA-595 sensitizes ovarian cancer cells to cisplatin by targeting ABCB1

    PubMed Central

    Tian, Songyu; Zhang, Mingyue; Chen, Xiuwei; Liu, Yunduo; Lou, Ge

    2016-01-01

    Ovarian cancer is among the leading cause of cancer-related deaths in females. In this study, we demonstrated that miR-595 expression was downregulated in the ovarian cancer tissues and cell lines. miR-595 expression was lower in the lymph node metastases tissues than in the primary ovarian cancer tissues and normal tissues. Furthermore, miR-595 overexpression suppressed the ovarian cancer cell proliferation, colony formation and invasion and promoted the sensitivity of ovarian cancer cell to cisplatin. We identified ABCB1 as a direct target gene of miR-595 in the ovarian cancer cell. ABCB1 expression was upregulated in the ovarian cancer tissues and cell lines. Morevoer, the expression level of ABCB1 was inversely correlated with miR-595 in the ovarian cancer tissues. In addition, overexpression of ABCB1 decreased the miR-595-overexpressing HO8910PM and SKOV-3 cell sensitivity to cisplatin. Ectopic expression of ABCB1 promoted the miR-595-overexpressing HO8910PM and SKOV-3 cell proliferation, colony formation and invasion. These data suggested that miR-595 acted a tumor suppressor role in ovarian cancer development and increased the sensitivity of ovarian cancer to cisplatin. PMID:27893429

  15. Cell Cycle Target-based Therapy for Ovarian Cancer

    DTIC Science & Technology

    2008-09-01

    induces apoptosis in quiescent ovarian cancer cells. Strong inducers of apoptosis included flufenamic acid, flurbiprofen, celebrex and finasteride ...Thus, a whole panel of NSAIDs including Aspirin, Ibuprofen, Exisulind, Acetaminophen, Naproxen, NS-398, Celecoxib, Diclofenac, Finasteride ...Naproxen, 200µM NS-398, 50µM Celecoxib, 200µM Diclofenac, 50µM Finasteride , 200µM Flufenamic acid, 40µM Meloxican, 50µM Ebselen, 20nM Flurbiprofen or

  16. Interference of Ca²⁺ with the proliferation of SCCOHT-1 and ovarian adenocarcinoma cells.

    PubMed

    Otte, Anna; Rauprich, Finn; von der Ohe, Juliane; Hillemanns, Peter; Hass, Ralf

    2014-09-01

    A recently established cellular model for the rare small cell carcinoma of the ovary hypercalcemic type (SCCOHT-1) was characterized in comparison to ovarian adenocarcinoma cells (NIH:OVCAR-3 and SK-OV-3). The different cancer populations exhibited a common sensitivity in acidic pH milieu and a continuous proliferation in alkaline medium of pH 8.0-9.0. In the presence of elevated Ca2+ concentrations, the ovarian cancer cells demonstrated a progressively reduced proliferation within 72 h in contrast to other tumor types such as breast cancer cells. This significant growth inhibition was calcium-specific since the proliferation was unaffected after culture of the ovarian cancer cells in the presence of similar concentrations of other cations. The Ca2+ effects on the ovarian cancer cells were associated with marked differences in the activation of intracellular signaling pathways including enhanced phosphorylation of the p42/44 MAP kinase (Thr202/Tyr204). Further analysis of the signaling pathway revealed a significantly enhanced Ca2+-dependent and p42/44 MAP kinase activation-mediated prostaglandin E2 (PGE2) production in SK-OV-3 and SCCOHT-1 and to a lesser extent in NIH:OVCAR-3 cells. Vice versa, exogenous PGE2 did not affect the proliferative capacity of the ovarian cancer cells and inhibition of the Ca2+-mediated MAP kinase activation did not abolish the Ca2+-mediated cytotoxicity. Collectively, these data suggest that multiple pathways are activated by exogenous Ca2+ in the different ovarian cancer cells, including a specific MAP kinase signaling cascade with subsequent PGE2 production and a parallel pathway for the induction of cell death.

  17. miR-940 Upregulation Suppresses Cell Proliferation and Induces Apoptosis by Targeting PKC-δ in Ovarian Cancer OVCAR3 Cells.

    PubMed

    Wang, Fang; Wang, Zhihong; Gu, Xiaoli; Cui, Jinquan

    2017-01-02

    Ovarian cancer remains as one of the most threatening malignancies for females in the world. This study investigated the pivotal role of miR-940 in the progression of ovarian cancer and to reveal the possible molecular mechanism of its action. Ovarian cancer OVCAR3 cells were transfected with the miR-940 vector, miR-940 inhibitor, and/or small interfering RNA (siRNA) targeting PKC-δ (si-PKC-δ), respectively. After transfection, cell viability and cell apoptosis were analyzed, as well as cell proliferation and apoptosis-related protein expression. Compared to the control, miR-940 upregulation suppressed cell viability but induced cell apoptosis. miR-940 upregulation increased the expression of p27, Hes1, survivin, and caspase 3, but decreased the expression of PKC-δ. In addition, elevated cell viability induced by the miR-940 inhibitor was significantly decreased by knockdown of PKC-δ, and reduced cell apoptosis induced by the miR-940 inhibitor was increased by knockdown of PKC-δ. Taken together, the results of our study suggest that upregulation of miR-940 may function as a suppressor in the progression of ovarian cancer by inhibiting cell proliferation and inducing apoptosis by targeting PKC-δ. This study may provide a basis for the possible application of miR-940 in illustrating the molecular pathogenic mechanism of ovarian cancer.

  18. Endonucleases induced TRAIL-insensitive apoptosis in ovarian carcinoma cells

    SciTech Connect

    Geel, Tessa M.; Meiss, Gregor; Gun, Bernardina T. van der; Kroesen, Bart Jan; Leij, Lou F. de; Zaremba, Mindaugas; Silanskas, Arunas; Kokkinidis, Michael; Ruiters, Marcel H.; McLaughlin, Pamela M.; Rots, Marianne G.

    2009-09-10

    TRAIL induced apoptosis of tumor cells is currently entering phase II clinical settings, despite the fact that not all tumor types are sensitive to TRAIL. TRAIL resistance in ovarian carcinomas can be caused by a blockade upstream of the caspase 3 signaling cascade. We explored the ability of restriction endonucleases to directly digest DNA in vivo, thereby circumventing the caspase cascade. For this purpose, we delivered enzymatically active endonucleases via the cationic amphiphilic lipid SAINT-18{sup Registered-Sign }:DOPE to both TRAIL-sensitive and insensitive ovarian carcinoma cells (OVCAR and SKOV-3, respectively). Functional nuclear localization after delivery of various endonucleases (BfiI, PvuII and NucA) was indicated by confocal microscopy and genomic cleavage analysis. For PvuII, analysis of mitochondrial damage demonstrated extensive apoptosis both in SKOV-3 and OVCAR. This study clearly demonstrates that cellular delivery of restriction endonucleases holds promise to serve as a novel therapeutic tool for the treatment of resistant ovarian carcinomas.

  19. Targeted imaging of ovarian cancer cells using viral nanoparticles doped with indocyanine green

    NASA Astrophysics Data System (ADS)

    Guerrero, Yadir; Bahmani, Baharak; Jung, Bonsu; Vullev, Valentine; Kundra, Vikas; Anvari, Bahman

    2013-03-01

    Our group has constructed a new type of viral nanoparticles (VNPs) from genome-depleted plant infecting brome mosaic virus (BMV) that encapsulates the FDA-approved near infrared (NIR) indocyanine green (ICG)[1]. We refer to these VNPs as optical viral ghosts (OVGs) since the constructs lack the genomic content of wild-type BMV. One of our areas of interest is the application of OVGs for real-time intraoperative NIR fluorescence imaging of small peritoneal ovarian tumor nodules. We target human epidermal growth factor receptor-2 (HER-2) expression in ovarian cancer as a biomarker associated with ovarian cancer, since its over-expression is linked to the disease's progression to death. We functionalize the OVGs with anti-HER-2 monoclonal antibodies using reductive amination methods. We used fluorescence imaging to visualize the SKOV-3 cells (high HER-2 expression) after incubation with free ICG, OVGs, and functionalized OVGs. Our results suggest the possibility of using anti-HER2 conjugated OVGs in conjunction with cytoreductive surgery to detect small tumor nodules (<5cm) which currently are not excised during surgery.

  20. Biological characteristics of side population cells in a self-established human ovarian cancer cell line

    PubMed Central

    WEI, ZHENTONG; LV, SHUANG; WANG, YISHU; SUN, MEIYU; CHI, GUANGFAN; GUO, JUN; SONG, PEIYE; FU, XIAOYU; ZHANG, SONGLING; LI, YULIN

    2016-01-01

    The aim of the present study was to establish an ovarian cancer (OC) cell line from ascites of an ovarian serous cystadenocarcinoma patient and investigate the biological characteristics of its side population (SP) cells. The OC cell line was established by isolating, purifying and subculturing primary cells from ascites of an ovarian serous cystadenocarcinoma patient (stage IIIc; grade 3). SP and non-SP (NSP) cells were isolated by fluorescence-activated cell sorting and cultured in serum-free medium and soft agar to compare the tumorsphere and colony formation capacities. Furthermore, SP and NSP cell tumorigenesis was examined by subcutaneous and intraperitoneal injection of the cells to non-obese diabetic/severe combined immune deficiency (NOD/SCID) mice. Drug resistance to cisplatin was examined by cell counting kit-8. The OC cell line was successfully established from ascites of an ovarian serous cystadenocarcinoma patient, which exhibited properties similar to primary tumors subsequent to >50 passages and >2 years of culture. The SP cell ratio was 0.38% in the OC cell line, and a similar SP cell ratio (0.39%) was observed when sorted SP cells were cultured for 3 weeks. Compared with NSP cells, SP cells exhibited increased abilities in differentiation and tumorsphere and colony formation, in addition to the formation of xenografted tumors and ascites and metastasis of the tumors in NOD/SCID mice, even at low cell numbers (3.0×103 cells). The xenografted tumors demonstrated histological features similar to primary tumors and expressed the ovarian serous cystadenocarcinoma marker CA125. In addition, SP cells demonstrated a significantly stronger drug resistance to cisplatin compared with NSP and unsorted cells, while treatment with verapamil, an inhibitor of ATP-binding cassette transporters, potently abrogated SP cell drug resistance. In conclusion, the present study verified SP cells from an established OC cell line and characterized the cells with self

  1. Role of ovarian theca and granulosa cell interaction in hormone productionand cell growth during the bovine follicular maturation process.

    PubMed

    Yada, H; Hosokawa, K; Tajima, K; Hasegawa, Y; Kotsuji, F

    1999-12-01

    We have investigated the possible role of theca and granulosa cell interaction in the control of the hormone-producing activity and growth of granulosa and theca cells during bovine ovarian follicular development, using a coculture system in which granulosa and theca cells were grown on opposite sides of a collagen membrane. When follicular cells were isolated from small follicles (3-5 mm), theca cells reduced estradiol, progesterone, and inhibin production by granulosa cells to 14 +/- 5%, 64 +/- 6%, and 27 +/- 4%, respectively, of the production by granulosa cells cultured alone. On the other hand, when the cells were isolated from large follicles (15-18 mm), theca cells increased these levels to 253 +/- 34%, 156 +/- 24%, and 287 +/- 45%, respectively. Theca cells did not affect the growth of granulosa cells. Androstenedione production by theca cells was augmented by granulosa cells to 861 +/- 190% (in small follicles) and 1298 +/- 414% (in large follicles), respectively. The growth of theca cells was also augmented by granulosa cells (small follicle, 210 +/- 43%, and large follicle, 194 +/- 24%, respectively). These results indicate that theca cells secrete factor(s) inhibiting the differentiation of immature while promoting that of matured granulosa cells; they also suggest that granulosa cells secrete factor(s) promoting both the differentiation and growth of theca cells throughout the follicular maturation process.

  2. Adipose-derived mesenchymal stem cells promote cell proliferation and invasion of epithelial ovarian cancer

    SciTech Connect

    Chu, Yijing; Tang, Huijuan; Guo, Yan; Guo, Jing; Huang, Bangxing; Fang, Fang; Cai, Jing Wang, Zehua

    2015-09-10

    Adipose-derived mesenchymal stem cell (ADSC) is an important component of tumor microenvironment. However, whether ADSCs have a hand in ovarian cancer progression remains unclear. In this study, we investigated the impact of human ADSCs derived from the omentum of normal donors on human epithelial ovarian cancer (EOC) cells in vitro and in vivo. Direct and indirect co-culture models including ADSCs and human EOC cell lines were established and the effects of ADSCs on EOC cell proliferation were evaluated by EdU incorporation and flow cytometry. Transwell migration assays and detection of MMPs were performed to assess the invasion activity of EOC cells in vitro. Mouse models were established by intraperitoneal injection of EOC cells with or without concomitant ADSCs to investigate the role of ADSCs in tumor progression in vivo. We found that ADSCs significantly promoted proliferation and invasion of EOC cells in both direct and indirect co-culture assays. In addition, after co-culture with ADSCs, EOC cells secreted higher levels of matrix metalloproteinases (MMPs), and inhibition of MMP2 and MMP9 partially relieved the tumor-promoting effects of ADSCs in vitro. In mouse xenograft models, we confirmed that ADSCs promoted EOC growth and metastasis and elevated the expression of MMP2 and MMP9. Our findings indicate that omental ADSCs play a promotive role during ovarian cancer progression. - Highlights: • Omental adipose derived stem cells enhanced growth and invasion properties of ovarian cancer cells. • Adipose derived stem cells promoted the growth and metastasis of ovarian cancer in mice models. • Adipose derived stem cells promoted MMPs expression and secretion of ovarian cancer cells. • Elevated MMPs mediated the tumor promoting effects of ADSCs.

  3. A rare ovarian tumor, leydig stromal cell tumor, presenting with virilization: a case report

    PubMed Central

    Aminimoghaddam, Soheila; Hashemi, Forough

    2012-01-01

    Leydig stromal cell tumor is a rare ovarian tumor that belongs to the group of sex-cord stromal tumors. They produce testosterone leading to hyperandrogenism. We present a 41yr old woman with symptoms of virilization and a mass of right adenex via ultra Sonography, and a rise of total and free serum testosterone. An ovarian source of androgen was suspected and a surgery performed. A diagnosis of leydig-stromal cell tumor was confirmed. Our report is a reminder that although idiopathic hirsutism and other benign androgen excess disorder like Polycystic Ovarian Syndrome (PCOs) are common, ovarian mass should be considered in differential diagnosis. PMID:23482693

  4. Ovarian Cancer and Reproductive System Biology: A Harvard Stem Cell Institution Consortium

    DTIC Science & Technology

    2010-12-01

    10-1-0020 TITLE: Ovarian Cancer and Reproductive System Biology : A Harvard Stem Cell Institution Consortium PRINCIPAL INVESTIGATOR: Dr...From - To) 1 4. TITLE AND SUBTITLE Ovarian Cancer and Reproductive System Biology : A Harvard 5a. CONTRACT NUMBER W81XWH-10-1-0020 Stem Cell

  5. Immune physiology and oogenesis in fetal and adult humans, ovarian infertility, and totipotency of adult ovarian stem cells.

    PubMed

    Bukovsky, Antonin; Caudle, Michael R; Virant-Klun, Irma; Gupta, Satish K; Dominguez, Roberto; Svetlikova, Marta; Xu, Fei

    2009-03-01

    It is still widely believed that while oocytes in invertebrates and lower vertebrates are periodically renewed throughout life, oocytes in humans and higher vertebrates are formed only during the fetal/perinatal period. However, this dogma is questioned, and clashes with Darwinian evolutionary theory. Studies of oogenesis and follicular renewal from ovarian stem cells (OSCs) in adult human ovaries, and of the role of third-party bone marrow-derived cells (monocyte-derived tissue macrophages and T lymphocytes) could help provide a better understanding of the causes of ovarian infertility, its prevention, and potential treatment. We have reported differentiation of distinct cell types from OSC and the production of new eggs in cultures derived from premenopausal and postmenopausal human ovaries. OSCs are also capable of producing neural/neuronal cells in vitro after sequential stimulation with sex steroid combinations. Hence, OSC represent a unique type of totipotent adult stem cells, which could be utilized for autologous treatment of premature ovarian failure and also for autologous stem cell therapy of neurodegenerative diseases without use of allogeneic embryonic stem cells or somatic cell nuclear transfer. The in vivo application of sex steroid combinations may augment the proliferation of existing neural stem cells and their differentiation into mature neuronal cells (systemic regenerative therapy). Such treatment may also stimulate the transdifferentiation of autologous neural stem cell precursors into neural stem cells useful for topical or systemic regenerative treatment.

  6. Hyperosmotic stress induces cisplatin sensitivity in ovarian cancer cells by stimulating aquaporin-5 expression

    PubMed Central

    CHEN, XUEJUN; ZHOU, CHUNXIA; YAN, CHUNXIAO; MA, JIONG; ZHENG, WEI

    2015-01-01

    Aquaporins (AQPs) are important mediators of water permeability and are closely associated with tumor cell proliferation, migration, angiogenesis and chemoresistance. Moreover, the chemosensitivity of tumor cells to cisplatin (CDDP) is potentially affected by osmotic pressure. The present study was undertaken to determine whether hyperosmosis regulates ovarian cancer cell sensitivity to CDDP in vitro and to explore whether this is associated with AQP expression. The hyperosmotic stress was induced by D-sorbitol. 3AO ovarian cancer cells were treated with different concentrations of hypertonic medium and/or CDDP for various times, followed by measuring the inhibition rate of cell proliferation using an MTT assay. In addition, AQP expression in response to osmotic pressure and/or CDDP was measured by reverse transcription-quantitative polymerase chain reaction and western blotting. Cell proliferation in response to hypertonic stress was also measured when AQP5 was knocked down by small interfering (si)RNA. 3AO cell proliferation was inhibited by hyperosmotic stress, while the expression of AQP5, but not that of AQP1, AQP3 or AQP9, was increased in a dose- and time-dependent manner in hypertonic sorbitol-containing medium. When AQP5 was silenced by siRNA, cells were susceptible to hypertonic stress. MTT analyses showed that the inhibition of cell proliferation by a low dose of CDDP increased significantly with exposure to a hyperosmotic stimulus, and this effect was reduced when a high dose of CDDP was used. AQP5 expression was induced by a low dose of CDDP, but was reduced by a high dose of CDDP. However, hyperosmosis enhanced AQP5 mRNA expression at every dose of CDDP tested, compared with isotonic medium. With prolonged treatment time, AQP5 expression was reduced by CDDP in hypertonic and isotonic culture medium. Thus, the effects of hyperosmosis on cell sensitivity to CDDP were associated with AQP5 expression. These results suggest that AQP5 expression in ovarian

  7. Temsirolimus and Bevacizumab in Treating Patients With Advanced Endometrial, Ovarian, Liver, Carcinoid, or Islet Cell Cancer

    ClinicalTrials.gov

    2017-03-17

    Adult Hepatocellular Carcinoma; Advanced Adult Hepatocellular Carcinoma; Endometrial Serous Adenocarcinoma; Localized Non-Resectable Adult Liver Carcinoma; Lung Carcinoid Tumor; Malignant Pancreatic Gastrinoma; Malignant Pancreatic Glucagonoma; Malignant Pancreatic Insulinoma; Malignant Pancreatic Somatostatinoma; Metastatic Digestive System Neuroendocrine Tumor G1; Ovarian Carcinosarcoma; Ovarian Endometrioid Adenocarcinoma; Ovarian Seromucinous Carcinoma; Ovarian Serous Surface Papillary Adenocarcinoma; Pancreatic Alpha Cell Adenoma; Pancreatic Beta Cell Adenoma; Pancreatic Delta Cell Adenoma; Pancreatic G-Cell Adenoma; Pancreatic Polypeptide Tumor; Recurrent Adult Liver Carcinoma; Recurrent Digestive System Neuroendocrine Tumor G1; Recurrent Fallopian Tube Carcinoma; Recurrent Ovarian Carcinoma; Recurrent Pancreatic Neuroendocrine Carcinoma; Recurrent Primary Peritoneal Carcinoma; Recurrent Uterine Corpus Carcinoma; Regional Digestive System Neuroendocrine Tumor G1; Stage IIIA Fallopian Tube Cancer; Stage IIIA Ovarian Cancer; Stage IIIA Primary Peritoneal Cancer; Stage IIIA Uterine Corpus Cancer; Stage IIIB Fallopian Tube Cancer; Stage IIIB Ovarian Cancer; Stage IIIB Primary Peritoneal Cancer; Stage IIIB Uterine Corpus Cancer; Stage IIIC Fallopian Tube Cancer; Stage IIIC Ovarian Cancer; Stage IIIC Primary Peritoneal Cancer; Stage IIIC Uterine Corpus Cancer; Stage IV Fallopian Tube Cancer; Stage IV Ovarian Cancer; Stage IV Primary Peritoneal Cancer; Stage IVA Uterine Corpus Cancer; Stage IVB Uterine Corpus Cancer; Uterine Carcinosarcoma

  8. Pegylated Liposomal Doxorubicin Hydrochloride, Carboplatin, Veliparib, and Bevacizumab in Treating Patients With Recurrent Ovarian Cancer, Primary Peritoneal Cancer, or Fallopian Tube Cancer

    ClinicalTrials.gov

    2017-01-31

    Ovarian Clear Cell Cystadenocarcinoma; Ovarian Endometrioid Adenocarcinoma; Ovarian Seromucinous Carcinoma; Ovarian Serous Cystadenocarcinoma; Recurrent Fallopian Tube Carcinoma; Recurrent Ovarian Carcinoma; Recurrent Primary Peritoneal Carcinoma; Undifferentiated Ovarian Carcinoma

  9. Identification of a potential ovarian cancer stem cell gene expression profile from advanced stage papillary serous ovarian cancer.

    PubMed

    Vathipadiekal, Vinod; Saxena, Deepa; Mok, Samuel C; Hauschka, Peter V; Ozbun, Laurent; Birrer, Michael J

    2012-01-01

    Identification of gene expression profiles of cancer stem cells may have significant implications in the understanding of tumor biology and for the design of novel treatments targeted toward these cells. Here we report a potential ovarian cancer stem cell gene expression profile from isolated side population of fresh ascites obtained from women with high-grade advanced stage papillary serous ovarian adenocarcinoma. Affymetrix U133 Plus 2.0 microarrays were used to interrogate the differentially expressed genes between side population (SP) and main population (MP), and the results were analyzed by paired T-test using BRB-ArrayTools. We identified 138 up-regulated and 302 down-regulated genes that were differentially expressed between all 10 SP/MP pairs. Microarray data was validated using qRT-PCR and17/19 (89.5%) genes showed robust correlations between microarray and qRT-PCR expression data. The Pathway Studio analysis identified several genes involved in cell survival, differentiation, proliferation, and apoptosis which are unique to SP cells and a mechanism for the activation of Notch signaling is identified. To validate these findings, we have identified and isolated SP cells enriched for cancer stem cells from human ovarian cancer cell lines. The SP populations were having a higher colony forming efficiency in comparison to its MP counterpart and also capable of sustained expansion and differentiation in to SP and MP phenotypes. 50,000 SP cells produced tumor in nude mice whereas the same number of MP cells failed to give any tumor at 8 weeks after injection. The SP cells demonstrated a dose dependent sensitivity to specific γ-secretase inhibitors implicating the role of Notch signaling pathway in SP cell survival. Further the generated SP gene list was found to be enriched in recurrent ovarian cancer tumors.

  10. Ovarian cancers overexpress the antimicrobial protein hCAP-18 and its derivative LL-37 increases ovarian cancer cell proliferation and invasion.

    PubMed

    Coffelt, Seth B; Waterman, Ruth S; Florez, Luisa; Höner zu Bentrup, Kerstin; Zwezdaryk, Kevin J; Tomchuck, Suzanne L; LaMarca, Heather L; Danka, Elizabeth S; Morris, Cindy A; Scandurro, Aline B

    2008-03-01

    The role of the pro-inflammatory peptide, LL-37, and its pro-form, human cationic antimicrobial protein 18 (hCAP-18), in cancer development and progression is poorly understood. In damaged and inflamed tissue, LL-37 functions as a chemoattractant, mitogen and pro-angiogenic factor suggesting that the peptide may potentiate tumor progression. The aim of this study was to characterize the distribution of hCAP-18/LL-37 in normal and cancerous ovarian tissue and to examine the effects of LL-37 on ovarian cancer cells. Expression of hCAP-18/LL-37 was localized to immune and granulosa cells of normal ovarian tissue. By contrast, ovarian tumors displayed significantly higher levels of hCAP-18/LL-37 where expression was observed in tumor and stromal cells. Protein expression was statistically compared to the degree of immune cell infiltration and microvessel density in epithelial-derived ovarian tumors and a significant correlation was observed for both. It was demonstrated that ovarian tumor tissue lysates and ovarian cancer cell lines express hCAP-18/LL-37. Treatment of ovarian cancer cell lines with recombinant LL-37 stimulated proliferation, chemotaxis, invasion and matrix metalloproteinase expression. These data demonstrate for the first time that hCAP-18/LL-37 is significantly overexpressed in ovarian tumors and suggest LL-37 may contribute to ovarian tumorigenesis through direct stimulation of tumor cells, initiation of angiogenesis and recruitment of immune cells. These data provide further evidence of the existing relationship between pro-inflammatory molecules and ovarian cancer progression.

  11. Estrogen inhibits cell cycle progression and retinoblastoma phosphorylation in rhesus ovarian surface epithelial cell culture

    SciTech Connect

    Wright, Jay W.; Stouffer, Richard L.; Rodland, Karin D.

    2003-10-31

    Estrogen promotes the growth of some ovarian cancer cells at nanomolar concentrations, but has been shown to inhibit growth of normal ovarian surface epithelial (OSE) cells at micromolar concentrations (1μg/ml). OSE cells express the estrogen receptor (ER)-α, and are the source of 90% of various cancers. The potential sensitivity of OSE cells to estrogen stresses the importance of understanding the estrogen-dependent mechanisms at play in OSE proliferation and transformation, as well as in anticancer treatment. We investigated the effects of estradiol on cell proliferation in vitro, and demonstrate an intracellular locus of action of estradiol in cultured rhesus ovarian surface epithelial (RhOSE) cells. We show that ovarian and breast cells are growth-inhibited by micromolar concentration of estradiol and that this inhibition correlates with estrogen receptor expression. We further show that normal rhesus OSE cells do not activate ERK or Akt in response to estradiol nor does estradiol block the ability of serum to stimulate ERK or induce cyclin D expression. Contrarily, estradiol inhibits serum-dependent retinoblastoma protein (Rb) phosphorylation and blocks DNA synthesis. This inhibition does not formally arrest cells and is reversible within hours of estrogen withdrawal. Our data are consistent with growth inhibition by activation of Rb and indicate that sensitivity to hormone therapy in anticancer treatment can be modulated by cell cycle regulators downstream of the estrogen receptor.

  12. A6 in Treating Patients With Persistent or Recurrent Ovarian Epithelial Cancer, Fallopian Tube Cancer, or Primary Peritoneal Cancer

    ClinicalTrials.gov

    2015-02-27

    Fallopian Tube Carcinoma; Malignant Ovarian Mixed Epithelial Tumor; Ovarian Brenner Tumor; Ovarian Clear Cell Cystadenocarcinoma; Ovarian Endometrioid Adenocarcinoma; Ovarian Mucinous Cystadenocarcinoma; Ovarian Serous Cystadenocarcinoma; Primary Peritoneal Carcinoma; Recurrent Ovarian Carcinoma; Undifferentiated Ovarian Carcinoma

  13. Regulation of rat ovarian cell growth and steroid secretion

    PubMed Central

    Johnson, CC; Dawson, WE; Turner, JT; Wyche, JH

    1980-01-01

    A cultured rat ovarian cell line (31 A-F(2)) was used to study the effect of growth factors (epidermal growth factor [EGF] and fibroblast growth factor [FGF]), a survival factor (ovarian growth factor [OGF]), a hormone (insulin), and an iron-binding protein (transferring) on cell proliferation and steroid production under defined culture conditions. EGF and insulin were shown to be mitogenic (half-maximal response at 0.12 nM and 0.11 muM, respectively) for 31A-F(2) cells incubated in serum-free medium. EGF induced up to three doublings in the cell population, whereas insulin induced an average of one cell population doubling. FGF, OGF, and transferrin were found not to have any prominent effect on cell division when incubated individually with 31A-F(2) cells in serum-free medium. However, a combination of EGF, OGF, insulin, and transferrin stimulated cell division to the same approximate extent as cells incubated in the presence of 5 percent fetal calf serum. EGF or insulin did not significantly affect total cell cholesterol levels (relative to cells incubated in serum-free medium) when incubated individually with 31A-F(2) cells. However, cell cholesterol levels were increased by the addition of OGF (250 percent), FGF (370 percent), or a combination of insulin and EGF (320 percent). Progesterone secretion from 31A-F(2) cells was enhanced by EGF (25 percent), FGF (80 percent), and insulin (115 percent). However, the addition of a mitogenic mixture of EGF, OGF, insulin, and transferrin suppressed progesterone secretion 150 percent) below that of control cultures. These studies have permitted us to determine that EGF and insulin are mitogenic factors that are required for the growth of 31A-F(2) cells and that OGF and transferrin are positive cofactors that enhance growth. Also, additional data suggest that cholesterol and progesterone production in 31A-F(2) cells can be regulated by peptide growth factors and the hormone insulin. PMID:6995465

  14. The comparison of glycosphingolipids isolated from an epithelial ovarian cancer cell line and a nontumorigenic epithelial ovarian cell line using MALDI-MS and MALDI-MS/MS.

    PubMed

    Rajanayake, Krishani K; Taylor, William R; Isailovic, Dragan

    2016-08-05

    Glycosphingolipids (GSLs) are important biomolecules, which are linked to many diseases such as GSL storage disorders and cancer. Consequently, the expression of GSLs may be altered in ovarian cancer cell lines in comparison to apparently healthy cell lines. Here, differential expressions of GSLs in an epithelial ovarian cancer cell line SKOV3 and a nontumorigenic epithelial ovarian cell line T29 were studied using matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS) and MALDI-MS/MS. The isolation of GSLs from SKOV3 and T29 cell lines was carried out using Folch partition. GSLs were successfully detected by MALDI-MS, and structurally assigned by a comparison of their MALDI-MS/MS fragmentation patterns with MS/MS data found in SimLipid database. Additionally, LIPID MAPS was used to assign GSL ion masses in MALDI-MS spectra. Seventeen neutral GSLs were identified in Folch partition lower (chloroform/methanol) phases originating from both cell lines, while five globo series neutral GSLs were identified only in the Folch partition lower phase of SKOV3 cell line. Several different sialylated GSLs were detected in Folch partition upper (water/methanol) phases of SKOV3 and T29 cell lines. Overall, this study demonstrates the alteration and increased glycosylation of GSLs in an epithelial ovarian cancer cell line in comparison to a nontumorigenic epithelial ovarian cell line.

  15. Identification of novel therapeutic targets in microdissected clear cell ovarian cancers.

    PubMed

    Stany, Michael P; Vathipadiekal, Vinod; Ozbun, Laurent; Stone, Rebecca L; Mok, Samuel C; Xue, Hui; Kagami, Takashi; Wang, Yuwei; McAlpine, Jessica N; Bowtell, David; Gout, Peter W; Miller, Dianne M; Gilks, C Blake; Huntsman, David G; Ellard, Susan L; Wang, Yu-Zhuo; Vivas-Mejia, Pablo; Lopez-Berestein, Gabriel; Sood, Anil K; Birrer, Michael J

    2011-01-01

    Clear cell ovarian cancer is an epithelial ovarian cancer histotype that is less responsive to chemotherapy and carries poorer prognosis than serous and endometrioid histotypes. Despite this, patients with these tumors are treated in a similar fashion as all other ovarian cancers. Previous genomic analysis has suggested that clear cell cancers represent a unique tumor subtype. Here we generated the first whole genomic expression profiling using epithelial component of clear cell ovarian cancers and normal ovarian surface specimens isolated by laser capture microdissection. All the arrays were analyzed using BRB ArrayTools and PathwayStudio software to identify the signaling pathways. Identified pathways validated using serous, clear cell cancer cell lines and RNAi technology. In vivo validations carried out using an orthotopic mouse model and liposomal encapsulated siRNA. Patient-derived clear cell and serous ovarian tumors were grafted under the renal capsule of NOD-SCID mice to evaluate the therapeutic potential of the identified pathway. We identified major activated pathways in clear cells involving in hypoxic cell growth, angiogenesis, and glucose metabolism not seen in other histotypes. Knockdown of key genes in these pathways sensitized clear cell ovarian cancer cell lines to hypoxia/glucose deprivation. In vivo experiments using patient derived tumors demonstrate that clear cell tumors are exquisitely sensitive to antiangiogenesis therapy (i.e. sunitinib) compared with serous tumors. We generated a histotype specific, gene signature associated with clear cell ovarian cancer which identifies important activated pathways critical for their clinicopathologic characteristics. These results provide a rational basis for a radically different treatment for ovarian clear cell patients.

  16. Rad6 upregulation promotes stem cell-like characteristics and platinum resistance in ovarian cancer

    PubMed Central

    Somasagara, Ranganatha R.; Tripathi, Kaushlendra; Spencer, Sebastian M.; Clark, David W.; Barnett, Reagan; Bachaboina, Lavanya; Scalici, Jennifer; Rocconi, Rodney P.; Piazza, Gary A.; Palle, Komaraiah

    2015-01-01

    Ovarian cancer is the fifth most deadly cancer in women in the United States and despite advances in surgical and chemotherapeutic treatments survival rates have not significantly improved in decades. The poor prognosis for ovarian cancer patients is largely due to the extremely high (80%) recurrence rate of ovarian cancer and because the recurrent tumors are often resistant to the widely utilized platinum-based chemotherapeutic drugs. In this study, expression of Rad6, an E2 ubiquitin-conjugating enzyme, was found to strongly correlate with ovarian cancer progression. Furthermore, in ovarian cancer cells Rad6 was found to stabilize β-catenin promoting stem cell-related characteristics, including expression of stem cell markers and anchorage-independent growth. Cancer stem cells can promote chemoresistance, tumor recurrence and metastasis, all of which are limiting factors in treating ovarian cancer. Thus it is significant that Rad6 overexpression led to increased resistance to the chemotherapeutic drug carboplatin and correlated with tumor cell invasion. These findings show the importance of Rad6 in ovarian cancer and emphasize the need for further studies of Rad6 as a potential target for the treatment of ovarian cancer. PMID:26679603

  17. The influence of ciprofloxacin on hamster ovarian cancer cell line CHO AA8.

    PubMed

    Kloskowski, Tomasz; Olkowska, Joanna; Nazlica, Aybars; Drewa, Tomasz

    2010-01-01

    Abstract: Ciprofloxacin is a chinolone antibiotic, which is used mainly in the treatment of urinary tract infections but also in pulmonary tract, prostate gland, bone and bone marrow infection. Ciprofloxacin is also known for its anticancer in vitro properties. In this study hamster ovarian cancer line CHO AA8 was used for evaluation of cytotoxic properties of ciprofloxacin against neoplastic cells. For this purpose we used different concentrations of ciprofloxacin range from 10 to 1000 microg/mL. Cell viability was counted using trypan blue assay. Ciprofloxacin induced morphological changes and decreased viability in a concentration and time dependent manner within CHO AA8 cells. In low concentrations cytotoxic effect of ciprofloxacin is weak only after 24 h incubation. In the highest concentration of ciprofloxacin, after 24, 48 and 72 h incubation only a very small number of living cells (not exceeding 1%) was observed. No living cells were observed after 96 h of incubation times and ciprofloxacin concentrations of 800 and 1000 micrpg/mL. These promising results deserved future studies on chinolones and ovarian cancer.

  18. NAC-1, a potential stem cell pluripotency factor, contributes to paclitaxel resistance in ovarian cancer through inactivating Gadd45 pathway.

    PubMed

    Jinawath, N; Vasoontara, C; Yap, K-L; Thiaville, M M; Nakayama, K; Wang, T-L; Shih, I-M

    2009-05-07

    Nucleus accumbens-1 (Nac1 or NAC-1) belongs to the BTB/POZ (Pox virus and Zinc finger/Bric-a-brac Tramtrack Broad complex) transcription factor family and is a novel protein that potentially participates in self-renewal and pluripotency in embryonic stem cells. In human cancer, NAC-1 is upregulated in several types of neoplasms, but particularly in recurrent chemoresistant ovarian carcinomas, suggesting a biological role for NAC-1 in the development of drug resistance in ovarian cancer. We have assessed this possibility and shown a correlation between NAC-1 expression and ex vivo paclitaxel resistance in ovarian serous carcinoma tissues and cell lines. We found that expression of Gadd45-gamma-interacting protein 1 (Gadd45gip1), a downstream target negatively regulated by NAC-1, was reduced in paclitaxel-resistant cells. Ectopic expression of NAC-1 or knockdown of Gadd45gip1 conferred paclitaxel resistance, whereas NAC-1 knockdown or ectopic expression of Gadd45gip1 increased paclitaxel sensitivity. Furthermore, silencing NAC-1 expression or disrupting NAC-1 homodimerization by a dominant negative NAC-1 protein that contained only the BTB/POZ domain induced the expression of Gadd45gamma, which interacted with Gadd45gip1. Reducing Gadd45gamma expression by small hairpin RNAs partially enhanced paclitaxel resistance. Thus, this study provides new evidence that NAC-1 upregulation and homodimerization contribute to tumor recurrence by equipping ovarian cancer cells with the paclitaxel-resistant phenotype through negative regulation of the Gadd45 pathway.

  19. Cellular and molecular processes in ovarian cancer metastasis. A Review in the Theme: Cell and Molecular Processes in Cancer Metastasis.

    PubMed

    Yeung, Tsz-Lun; Leung, Cecilia S; Yip, Kay-Pong; Au Yeung, Chi Lam; Wong, Stephen T C; Mok, Samuel C

    2015-10-01

    Ovarian cancer is the most lethal gynecological malignancy. It is usually diagnosed at a late stage, with a 5-yr survival rate of <30%. The majority of ovarian cancer cases are diagnosed after tumors have widely spread within the peritoneal cavity, limiting the effectiveness of debulking surgery and chemotherapy. Owing to a substantially lower survival rate at late stages of disease than at earlier stages, the major cause of ovarian cancer deaths is believed to be therapy-resistant metastasis. Although metastasis plays a crucial role in promoting ovarian tumor progression and decreasing patient survival rates, the underlying mechanisms of ovarian cancer spread have yet to be thoroughly explored. For many years, researchers have believed that ovarian cancer metastasizes via a passive mechanism by which ovarian cancer cells are shed from the primary tumor and carried by the physiological movement of peritoneal fluid to the peritoneum and omentum. However, the recent discovery of hematogenous metastasis of ovarian cancer to the omentum via circulating tumor cells instigated rethinking of the mode of ovarian cancer metastasis and the importance of the "seed-and-soil" hypothesis for ovarian cancer metastasis. In this review we discuss the possible mechanisms by which ovarian cancer cells metastasize from the primary tumor to the omentum, the cross-talk signaling events between ovarian cancer cells and various stromal cells that play crucial roles in ovarian cancer metastasis, and the possible clinical implications of these findings in the management of this deadly, highly metastatic disease.

  20. Conditioned media from human ovarian cancer endothelial progenitor cells induces ovarian cancer cell migration by activating epithelial-to-mesenchymal transition.

    PubMed

    Teng, L; Peng, S; Guo, H; Liang, H; Xu, Z; Su, Y; Gao, L

    2015-11-01

    Bone marrow-derived endothelial progenitor cells (EPCs) migrate to and engraft at ovarian cancer sites. Understanding the interactions between ovarian cancer cells and EPCs is fundamental for determining whether to harness EPC-tumor interactions for delivery of therapeutic agents or target them for intervention. Ovarian cancer cell lines (SKOV-3 and OVCAR-3) were cultured alone or in EPC-conditioned media (EPC-CM). Migration of ovarian cancer cells was detected by transwell chamber. N-cadherin and E-cadherin expression were analyzed by real-time reverse transcription PCR and western blot. EPC-CM can increase transforming growth factor-beta (TGF-β) secretion in SKOV-3 and OVCAR-3 cells. EPC-CM induced loss of ovarian cancer cell-cell junctions, downregulation of E-cadherin, upregulation of N-cadherin and acquisition of a fibroblastic phenotype, consistent with an epithelial-to-mesenchymal transition (EMT). The specific TGF-β inhibitor SB431542 abolished the SKOV-3 and OVCAR-3 ovarian cancer cell migration induced by EPC-CM. In SKOV-3 and OVCAR-3 cells, EPC-CM downregulated E-cadherin and concurrently upregulated N-cadherin. EPC-CM upregulated the expression of transcriptional repressors of E-cadherin, Snail and Twist. Treatment with SB431542 abolished the effects of EPC-CM on the relative expression levels of cadherin, Snail and Twist. This study demonstrates that TGF-β has a role in EPC-CM-induced ovarian cancer migration by activating EMT.

  1. Integrative proteomic profiling of ovarian cancer cell lines reveals precursor cell associated proteins and functional status

    PubMed Central

    Coscia, F.; Watters, K. M.; Curtis, M.; Eckert, M. A.; Chiang, C. Y.; Tyanova, S.; Montag, A.; Lastra, R. R.; Lengyel, E.; Mann, M.

    2016-01-01

    A cell line representative of human high-grade serous ovarian cancer (HGSOC) should not only resemble its tumour of origin at the molecular level, but also demonstrate functional utility in pre-clinical investigations. Here, we report the integrated proteomic analysis of 26 ovarian cancer cell lines, HGSOC tumours, immortalized ovarian surface epithelial cells and fallopian tube epithelial cells via a single-run mass spectrometric workflow. The in-depth quantification of >10,000 proteins results in three distinct cell line categories: epithelial (group I), clear cell (group II) and mesenchymal (group III). We identify a 67-protein cell line signature, which separates our entire proteomic data set, as well as a confirmatory publicly available CPTAC/TCGA tumour proteome data set, into a predominantly epithelial and mesenchymal HGSOC tumour cluster. This proteomics-based epithelial/mesenchymal stratification of cell lines and human tumours indicates a possible origin of HGSOC either from the fallopian tube or from the ovarian surface epithelium. PMID:27561551

  2. ShRNA-mediated silencing of the RFC3 gene suppress ovarian tumor cells proliferation

    PubMed Central

    Shen, Huimin; Xu, Juan; Zhao, Shanshan; Shi, Haijuan; Yao, Shuzhong; Jiang, Nan

    2015-01-01

    Ovarian carcinoma is one of the most common and lethal malignancies in the world. Replication factor C (RFC) plays an important role in DNA replication, DNA damage repair, and checkpoint control during cell cycle progression in all eukaryotes. Our previous study found that one unit of RFC complex, RFC3, is over-expressed in ovarian tumor tissues. However, its role in the development of ovarian carcinoma remains unclear. Western blot and real-time RT-PCR analysis were used to measure the expression of RFC3 in ovarian cancer cells. Lentivirus-mediated RFC3-specific shRNA was used to knock down RFC3 expression in ovarian cancer cells. Furthermore, the effect of RFC3 on tumor cellular proliferation and growth were examined, respectively. The expression level of RFC3 was remarkably up-regulated in ovarian cancer OVCAR-3 cells. With MTS and cell growth assays, the viability and proliferation of RFC3 knocking-down OVCAR-3 cell line were shown to be effectively restrained. Down-regulation of RFC3 expression arrested the cell cycle of OVCAR-3 cell in the S-phase and induced apoptosis. This study suggests that RFC3 may play an important role in the the process of ovarian carcinoma, and that it may be a potential biological treatment target in the future. PMID:26464638

  3. Targeting Stromal-Cancer Cell Crosstalk Networks in Ovarian Cancer Treatment

    PubMed Central

    Yeung, Tsz-Lun; Leung, Cecilia S.; Li, Fuhai; Wong, Stephen T. C.; Mok, Samuel C.

    2016-01-01

    Ovarian cancer is a histologically, clinically, and molecularly diverse disease with a five-year survival rate of less than 30%. It has been estimated that approximately 21,980 new cases of epithelial ovarian cancer will be diagnosed and 14,270 deaths will occur in the United States in 2015, making it the most lethal gynecologic malignancy. Ovarian tumor tissue is composed of cancer cells and a collection of different stromal cells. There is increasing evidence that demonstrates that stromal involvement is important in ovarian cancer pathogenesis. Therefore, stroma-specific signaling pathways, stroma-derived factors, and genetic changes in the tumor stroma present unique opportunities for improving the diagnosis and treatment of ovarian cancer. Cancer-associated fibroblasts (CAFs) are one of the major components of the tumor stroma that have demonstrated supportive roles in tumor progression. In this review, we highlight various types of signaling crosstalk between ovarian cancer cells and stromal cells, particularly with CAFs. In addition to evaluating the importance of signaling crosstalk in ovarian cancer progression, we discuss approaches that can be used to target tumor-promoting signaling crosstalk and how these approaches can be translated into potential ovarian cancer treatment. PMID:26751490

  4. MicroRNA-181b promotes ovarian cancer cell growth and invasion by targeting LATS2

    SciTech Connect

    Xia, Ying; Gao, Yan

    2014-05-09

    Highlights: • miR-181b is upregulated in human ovarian cancer tissues. • miR-181b promotes ovarian cancer cell proliferation and invasion. • LATS2 is a direct target of miR-181b. • LATS2 is involved in miR-181b-induced ovarian cancer cell growth and invasion. - Abstract: MicroRNAs (miRNAs) are strongly implicated in tumorigenesis and metastasis. In this study, we showed significant upregulation of miR-181b in ovarian cancer tissues, compared with the normal ovarian counterparts. Forced expression of miR-181b led to remarkably enhanced proliferation and invasion of ovarian cancer cells while its knockdown induced significant suppression of these cellular events. The tumor suppressor gene, LATS2 (large tumor suppressor 2), was further identified as a novel direct target of miR-181b. Specifically, miR-181b bound directly to the 3′-untranslated region (UTR) of LATS2 and suppressed its expression. Restoration of LATS2 expression partially reversed the oncogenic effects of miR-181b. Our results indicate that miR-181b promotes proliferation and invasion by targeting LATS2 in ovarian cancer cells. These findings support the utility of miR-181b as a potential diagnostic and therapeutic target for ovarian cancer.

  5. Sprouty4 mediates amphiregulin-induced down-regulation of E-cadherin and cell invasion in human ovarian cancer cells.

    PubMed

    So, Wai-Kin; Cheng, Jung-Chien; Liu, Yingtao; Xu, Congjian; Zhao, Jianfang; Chang, Vincent T W; Leung, Peter C K

    2016-07-01

    Sprouty (SPRY) proteins are well-characterized factors that inhibit receptor tyrosine kinase (RTK)-mediated activation of cellular signaling pathways. The down-regulation of SPRY4 expression has been reported in human ovarian cancer. However, the specific roles and mechanisms by which SPRY4 affects ovarian cancer progression are completely unknown. Amphiregulin (AREG) binds exclusively to the epidermal growth factor receptor (EGFR) and has been considered to be a dominant autocrine/paracrine EGFR ligand in ovarian cancer. In the present study, we first examined the effects of AREG on SPRY4 expression and the possible underlying molecular mechanisms involved in this process in two human ovarian cancer cell lines. Our results demonstrated that treatment with AREG up-regulated SPRY4 expression by activating the ERK1/2 signaling pathway. In addition, we showed that small interfering RNA (siRNA)-mediated knockdown of SPRY4 attenuated the AREG-induced down-regulation of E-cadherin by inhibiting the expression of SNAIL but not SLUG. In contrast, overexpression of SPRY4 enhanced AREG-induced down-regulation of E-cadherin by increasing the expression of SNAIL. Moreover, SPRY4 knockdown attenuated AREG-induced cell migration and invasion. Overexpression of SPRY4 enhanced AREG-induced cell invasion. This study reveals that SPRY4 is involved in EGFR-mediated human ovarian cancer progression.

  6. Juglone exerts antitumor effect in ovarian cancer cells

    PubMed Central

    Fang, Fang; Qin, Yingxin; Qi, Ling; Fang, Qing; Zhao, Liangzhong; Chen, Shuang; Li, Qiang; Zhang, Duo; Wang, Liguo

    2015-01-01

    Objective(s): Juglone is isolated from many species of the Juglandaceae family and used as an anti-viral, anti-bacterial, and anti-tumor therapeutic. Here, we evaluated juglone-induced antitumor effect in ovarian cancer SKOV3 cells. Materials and Methods: MTT assay was performed to examine juglone anti-proliferative effect. Cell cycle and apoptosis were studied using flow cytometry in juglone-treated SKOV3 cells. To investigate molecular mechanism of cell cycle and apoptosis, protein expression levels were measured by Western blot analysis of cyclin D1, Bcl-2, Bax, cytochrome c, caspase-9 and caspase-3. To investigate the motility of juglone-treated SKOV3 cell, Matrigel invasion assay was employed to characterize cell invasion. Also, matrix metalloproteinase-2 (MMP-2) expression levels were detected by western blot. Results: Juglone significantly inhibited SKOV3 cell proliferation as shown by G0/G1 phase arrest, and this effect was mediated by inactivation of cyclin D1 protein (P<0.05). Juglone induced apoptosis in SKOV3 cell which was accompanied by caspase-9 and caspase-3 activation (P<0.05). Juglone decreased Bcl-2 levels and increased Bax and cytochrome c (Cyt c) levels (P<0.05). Juglone sufficiently inhibited invasion while evidently decreased MMP-2 expression (P<0.05). Conclusion: The results suggest that juglone could probably induce apoptosis through mitochondrial pathway and restrained cell invasiveness by decreasing MMP expression. PMID:26221477

  7. Ovarian Stem Cells-the Pros and Cons.

    PubMed

    Evron, Ayelet; Blumenfeld, Zeev

    2013-03-20

    The potential for postnatal de novo oogenesis in mammals and in humans has become very controversial in the fields of reproductive science and biology. Historically, it has been thought that females of most mammalian species lose the ability to produce oocytes at birth. A contemporary understanding of stem cell biology together with novel experimental methods has challenged the model of a prenatal fixed ovarian primordial follicle pool that declines with age. Researchers have suggested replenishment of post-natal oocytes by germ-line stem cells (GSCs). According to this theory, GSCs produce oocytes and primordial follicles throughout the lifetime of the adult female. This review describes recent approaches supporting the revolutionary idea of de novo oogenesis in mammals and humans of reproductive-age and provides counter arguments from opponents of this novel and innovative concept.

  8. Silver nanoparticles disrupt regulation of steroidogenesis in fish ovarian cells.

    PubMed

    Degger, Natalie; Tse, Anna C K; Wu, Rudolf S S

    2015-12-01

    Despite the influx of silver nanoparticles (nAg) into the marine environment, their effects on fish reproduction remain completely unexplored. Using ovarian primary cells from marine medaka (Oryzias melastigma), in vitro studies were carried out to evaluate the effects of two differently coated nAg particles (Oleic Acid, (OA) nAg and Polyvinylpyrrolidone, (PVP) nAg) on fish ovarian tissues, using AgNO3 as a positive control. Cytotoxicity was evaluated by MTT assay and expression of key genes regulating steroidogenesis (StAR, CYP 19a, CYP 11a, 3βHSD and 20βHSD) were determined by Q-RT-PCR. EC50 values for PVP nAg, OA nAg and AgNO3 were 7.25μgL(-1), 924.4μgL(-1), and 42.0μgL(-1) respectively, showing that toxicity of silver was greatly enhanced in the PVP coated nano-form. Down regulation of CYP 19a was observed in both nAg and AgNO3 treatments, while down regulation of 3βHSD was only found in the OA nAg and AgNO3 treatments. For the first time, our results demonstrated that nAg can affect specific genes regulating steroidogenesis, implicating nAg as a potential endocrine disruptor.

  9. LED-activated pheophorbide a in ovarian cancer cells: Cytotoxicity and apoptosis induction

    NASA Astrophysics Data System (ADS)

    Liu, L.; Xu, C. S.; Xia, X. S.; Leung, A. W. N.

    2011-02-01

    Pheophorbide a (Pa) from Chinese herbal medicine Scutellaria Barbata and Silkworm excreta has been proved to be potential photosensitizer. The present study investigated the cytotoxicity of ovarian cancer cells induced by LED-activated Pa using light microscopy with the SRB staining. We further investigated the apoptosis of the cells 6 h after LED-activated Pa using of the flow cytometer with PI staining and nuclear staining. The results showed that LED-activated Pa remarkably caused cell death of ovarian cancer cells. The condensation of chromatin, nuclear fragmentations, and 12.3% of cells containing subdiploid levels of DNA were found in the ovarian cancer cells after the treatment of LED-activated Pa. These data demonstrated that LED-activated Pa could cause significant cytotoxicity and apoptosis of ovarian cancer cells.

  10. Activated protein C upregulates ovarian cancer cell migration and promotes unclottability of the cancer cell microenvironment

    PubMed Central

    ALTHAWADI, HAMDA; ALFARSI, HALEMA; BESBES, SAMAHER; MIRSHAHI, SHAHSOLTAN; DUCROS, ELODIE; RAFII, ARASH; POCARD, MARC; THERWATH, AMU; SORIA, JEANNETTE; MIRSHAHI, MASSOUD

    2015-01-01

    The objective of this study was to evaluate the role of activated protein C (aPC), known to be a physiological anticoagulant, in ovarian cancer cell activation as well as in loss of clotting of cancer ascitic fluid. The effect of aPC on an ovarian cancer cell line (OVCAR-3) was tested in regards to i) cell migration and adhesion with the use of adhesion and wound healing assays as well as a droplet test; ii) protein phosphorylation, evaluated by cyto-ELISA; iii) cell cycle modification assessed by flow cytometric DNA quantification; and iv) anticoagulant activity evaluated by the prolongation of partial thromboplastin time (aPTT) of normal plasma in the presence or absence of aPC-treated ovarian cancer cells. In addition, the soluble endothelial protein C receptor (sEPCR) was quantified by ELISA in ascitic fluid of patients with ovarian cancer. Our results showed that in the OVCAR-3 aPC-induced cells i) an increase in cell migration was noted, which was inhibited when anti-endothelial protein C receptor (EPCR) was added to the culture medium and which may act via MEK-ERK and Rho-GTPase pathways; ii) an increase in threonine, and to a lesser extent tyrosine phosphorylation; iii) cell cycle activation (G1 to S/G2); and iv) a 2-3-fold prolongation of aPTT of normal plasma. In the peritoneal fluid, the sEPCR concentration was 71±23 ng/ml. In conclusion, free aPC binds to membrane EPCR in ovarian cancer cells and induces cell migration via MEK-ERK and Rho-GTPase pathways. This binding could also explain the loss of clotting of peritoneal fluids. PMID:26082331

  11. Regulation of semaphorin 4D expression and cell proliferation of ovarian cancer by ERalpha and ERbeta

    PubMed Central

    Liu, Y.; Hou, Y.; Ma, L.; Sun, C.; Pan, J.; Yang, Y.; Zhou, H.; Zhang, J.

    2017-01-01

    Ovarian cancer is one of the most common malignancies in women. Semaphorin 4D (sema 4D) is involved in the progress of multiple cancers. In the presence of estrogen-like ligands, estrogen receptors (ERα and ERβ) participate in the progress of breast and ovarian cancers by transcriptional regulation. The aim of the study was to investigate the role of sema 4D and elucidate the regulatory pattern of ERα and ERβ on sema 4D expression in ovarian cancers. Sema 4D levels were up-regulated in ovarian cancer SKOV-3 cells. Patients with malignant ovarian cancers had significantly higher sema 4D levels than controls, suggesting an oncogene role of sema 4D in ovarian cancer. ERα expressions were up-regulated in SKOV-3 cells compared with normal ovarian IOSE80 epithelial cells. Conversely, down-regulation of ERβ was observed in SKOV-3 cells. Forced over-expression of ERα and ERβ in SKOV-3 cells was manipulated to establish ERα+ and ERβ+ SKOV-3 cell lines. Incubation of ERα+ SKOV-3 cells with ERs agonist 17β-estradiol (E2) significantly enhanced sema 4D expression and rate of cell proliferation. Incubated with E2, ERβ+ SKOV-3 cells showed lower sema 4D expression and cell proliferation. Blocking ERα and ERβ activities with ICI182-780 inhibitor, sema 4D expressions and cell proliferation of ERα+ and ERβ+ SKOV-3 cells were recovered to control levels. Taken together, the data showed that sema 4D expression was positively correlated with the progress of ovarian cancer. ERα positively regulated sema 4D expression and accelerated cell proliferation. ERβ negatively regulated sema 4D expression and inhibited cell multiplication. PMID:28225892

  12. DDX4 (DEAD box polypeptide 4) colocalizes with cancer stem cell marker CD133 in ovarian cancers

    SciTech Connect

    Kim, Ki Hyung; Kang, Yun-Jeong; Jo, Jin-Ok; Ock, Mee Sun; Moon, Soo Hyun; Suh, Dong Soo; Yoon, Man Soo; Park, Eun-Sil; Jeong, Namkung; Eo, Wan-Kyu; Kim, Heung Yeol; Cha, Hee-Jae

    2014-05-02

    Highlights: • Germ cell marker DDX4 was significantly increased in ovarian cancer. • Ovarian cancer stem cell marker CD133 was significantly increased in ovarian cancer. • DDX4 and CD133 were mostly colocalized in various types of ovarian cancer tissues. • CD133 positive ovarian cancer cells also express DDX4 whereas CD133-negative cells did not possess DDX4. • Germ cell marker DDX4 has the potential of ovarian cancer stem cell marker. - Abstract: DDX4 (DEAD box polypeptide 4), characterized by the conserved motif Asp-Glu-Ala-Asp (DEAD), is an RNA helicase which is implicated in various cellular processes involving the alteration of RNA secondary structure, such as translation initiation, nuclear and mitochondrial splicing, and ribosome and spliceosome assembly. DDX4 is known to be a germ cell-specific protein and is used as a sorting marker of germline stem cells for the production of oocytes. A recent report about DDX4 in ovarian cancer showed that DDX4 is overexpressed in epithelial ovarian cancer and disrupts a DNA damage-induced G2 checkpoint. We investigated the relationship between DDX4 and ovarian cancer stem cells by analyzing the expression patterns of DDX4 and the cancer stem cell marker CD133 in ovarian cancers via tissue microarray. Both DDX4 and CD133 were significantly increased in ovarian cancer compared to benign tumors, and showed similar patterns of expression. In addition, DDX4 and CD133 were mostly colocalized in various types of ovarian cancer tissues. Furthermore, almost all CD133 positive ovarian cancer cells also express DDX4 whereas CD133-negative cells did not possess DDX4, suggesting a strong possibility that DDX4 plays an important role in cancer stem cells, and/or can be used as an ovarian cancer stem cell marker.

  13. Piperlongumine Induces Apoptosis and Synergizes with Cisplatin or Paclitaxel in Human Ovarian Cancer Cells

    PubMed Central

    Chen, Xiu-Xiu; Wang, Huan; Jiang, Qi-Wei; Pan, Shi-Shi; Qiu, Jian-Ge; Mei, Xiao-Long; Xue, You-Qiu; Qin, Wu-Ming; Zheng, Fei-Yun; Yan, Xiao-Jian

    2014-01-01

    Piperlongumine (PL), a natural alkaloid from Piper longum L., possesses the highly selective and effective anticancer property. However, the effect of PL on ovarian cancer cells is still unknown. In this study, we firstly demonstrate that PL selectively inhibited cell growth of human ovarian cancer cells. Furthermore, PL notably induced cell apoptosis, G2/M phase arrest, and accumulation of the intracellular reactive oxidative species (ROS) in a dose- and time-dependent manner. Pretreatment with antioxidant N-acety-L-cysteine could totally reverse the PL-induced ROS accumulation and cell apoptosis. In addition, low dose of PL/cisplatin or paclitaxel combination therapies had a synergistic antigrowth effect on human ovarian cancer cells. Collectively, our study provides new therapeutic potential of PL on human ovarian cancer. PMID:24895529

  14. Long Noncoding RNA MIR4697HG Promotes Cell Growth and Metastasis in Human Ovarian Cancer

    PubMed Central

    Zhang, Li-qian; Yang, Su-qing; Wang, Ying; Fang, Qiao; Chen, Xian-jun; Lu, Hong-sheng

    2017-01-01

    Ovarian cancer is one of the three most common gynecological malignant tumors worldwide. The prognosis of patients suffering from this malignancy remains poor because of limited therapeutic strategies. Herein, we investigated the role of a long noncoding RNA named MIR4697 host gene (MIR4697HG) in the cell growth and metastasis of ovarian cancer. Results showed that the transcriptional level of MIR4697HG in cancerous tissues increased twofold compared with that in adjacent noncancerous tissues. MIR4697HG was differentially expressed in ovarian cancer cell lines, with the highest levels in OVCAR3 and SKOV3 cells. MIR4697HG knockdown by specific shRNA significantly inhibited cell proliferation and colony formation in both OVCAR3 and SKOC3 cells. Consistently, in a xenograft model of ovarian cancer, MIR4697HG depletion also significantly restricted tumor volumes and weights. Furthermore, MIR4697HG knockdown inhibited cell migration and invasion capacities. Invasion ability was inhibited by 58% in SKOV3 cells and 40% in OVCAR3 cells, and migration ability was inhibited by 73% in SKOV3 cells and 62% in OVCAR3 cells after MIR4697HG knockdown. MIR4697HG knockdown also caused a decrease in matrix metalloprotease-9, phosphorylated ERK, and phosphorylated AKT. These data suggested that MIR4697HG promoted ovarian cancer growth and metastasis. The aggressive role of MIR4697HG in ovarian cancer may be related to the ERK and AKT signaling pathways. PMID:28168162

  15. 8-bromo-7-methoxychrysin induces apoptosis by regulating Akt/FOXO3a pathway in cisplatin-sensitive and resistant ovarian cancer cells

    PubMed Central

    DING, QING; CHEN, YI; ZHANG, QING; GUO, YANLING; HUANG, ZHI; DAI, LIQING; CAO, SUDAN

    2015-01-01

    8-bromo-7-methoxychrysin (BrMC), a novel chrysin analog, was reported to have anti-cancer activities. The aim of the present study was to investigate the molecular mechanism of 8-bromo-7-methoxychrysin (BrMC)-induced apoptosis via the Akt/forkhead box O3a (FOXO3a) pathway in cisplatin (DDP)-sensitive and -resistant ovarian cancer cells. The human ovarian cancer cell lines A2780 and A2780/DDP were cultured in vitro. Various molecular techniques were used to assess the expression of FOXO3a and B cell lymphoma 2 (Bcl-2)-interacting mediator of cell death (Bim) in cisplatin-sensitive and -resistant ovarian cancer cells. Different concentrations of BrMC induced apoptosis in cisplatin-sensitive and -resistant ovarian cancer cells. BrMC-induced apoptotic cell death occurred mainly by the activation of Akt, which was accompanied by the overexpression of transcription factor FOXO3a, with a concomitant increase in the expression levels of Bim. Silencing Bim expression by using small interfering RNA, attenuated the induction of apoptosis by BrMC treatment. The results indicated that BrMC-induced apoptosis in cisplatin-sensitive and -resistant ovarian cancer cells may occur via the regulation of Akt/FOXO3a, leading to Bim transcription. PMID:26151347

  16. Upregulated microRNA-224 promotes ovarian cancer cell proliferation by targeting KLLN.

    PubMed

    Hu, Ke; Liang, Meng

    2017-02-01

    Human epithelial ovarian cancer is a complex disease, with low 5-yr survival rate largely due to the terminal stage at diagnosis in most patients. MicroRNAs play critical roles during epithelial ovarian cancer progression in vivo and have also been shown to regulate characteristic of ovarian cancer cell line in vitro. Alterative microRNA-224 (microRNA-224) expression affects human epithelial ovarian cancer cell survival, apoptosis, and metastasis. However, people know little about the effects of microRNA-224 on epithelial ovarian cancer cell proliferation. In the current study, we found that the microRNA-224 expression level of human syngeneic epithelial ovarian cancer cells HO8910 (low metastatic ability) was lower than that of HO8910PM (high metastatic ability). Furthermore, microRNA-224 was confirmed to target KLLN in HO8910 and HO8910PM. The known KLLN downstream target cyclin A was regulated by microRNA-224 in HO8910 and HO8910PM. In addition, overexpression of microRNA-224 enhanced the proliferation abilities of HO8910 and knockdown of microRNA-224 suppressed the proliferation abilities of HO8910PM by KLLN-cyclin A pathway. Our results provide new data about microRNAs and their targets involved in proliferation of epithelial ovarian cancer cells by modulating the downstream signaling.

  17. The apoptotic mechanisms of MT-6, a mitotic arrest inducer, in human ovarian cancer cells.

    PubMed

    Chen, Mei-Chuan; Kuo, Yi-Chiu; Hsu, Chia-Ming; Chen, Yi-Lin; Shen, Chien-Chang; Teng, Che-Ming; Pan, Shiow-Lin

    2017-04-07

    Patients with ovarian cancer are typically diagnosed at an advanced stage, resulting in poor prognosis since there are currently no effective early-detection screening tests for women at average-risk for ovarian cancer. Here, we investigated the effects of MT-6, a derivative of moscatilin, in ovarian cancer cells. Our investigation showed that MT-6 inhibited the proliferation and viability of ovarian cancer cells with submicromolar IC50 values. MT-6-treated SKOV3 cells showed significant cell cycle arrest at G2/M phase, followed by an increase in the proportion of cells in a sub-G1 phase. In addition, MT-6 induced a concentration-dependent increase in mitotic markers, mitotic kinases, cell cycle regulators of G2/M transition, and apoptosis-related markers in ovarian cancer cells. MT-6 treatment also induced mitochondrial membrane potential loss, JNK activation, and DR5 expression. Cotreatment of cells with the JNK inhibitor SP600125 considerably attenuated MT-6-induced apoptosis, mitochondria membrane potential loss, DR5 upregulation, and suppression of cell viability. MT-6 also inhibited tumor growth in an SKOV3 xenograft model without significant body weight loss. Together, our findings suggest that MT-6 is a potent anticancer agent with tumor-suppressive activity in vitro and in vivo that could be further investigated for ovarian cancer therapy in the future.

  18. The apoptotic mechanisms of MT-6, a mitotic arrest inducer, in human ovarian cancer cells

    PubMed Central

    Chen, Mei-Chuan; Kuo, Yi-Chiu; Hsu, Chia-Ming; Chen, Yi-Lin; Shen, Chien-Chang; Teng, Che-Ming; Pan, Shiow-Lin

    2017-01-01

    Patients with ovarian cancer are typically diagnosed at an advanced stage, resulting in poor prognosis since there are currently no effective early-detection screening tests for women at average-risk for ovarian cancer. Here, we investigated the effects of MT-6, a derivative of moscatilin, in ovarian cancer cells. Our investigation showed that MT-6 inhibited the proliferation and viability of ovarian cancer cells with submicromolar IC50 values. MT-6–treated SKOV3 cells showed significant cell cycle arrest at G2/M phase, followed by an increase in the proportion of cells in a sub-G1 phase. In addition, MT-6 induced a concentration-dependent increase in mitotic markers, mitotic kinases, cell cycle regulators of G2/M transition, and apoptosis-related markers in ovarian cancer cells. MT-6 treatment also induced mitochondrial membrane potential loss, JNK activation, and DR5 expression. Cotreatment of cells with the JNK inhibitor SP600125 considerably attenuated MT-6–induced apoptosis, mitochondria membrane potential loss, DR5 upregulation, and suppression of cell viability. MT-6 also inhibited tumor growth in an SKOV3 xenograft model without significant body weight loss. Together, our findings suggest that MT-6 is a potent anticancer agent with tumor-suppressive activity in vitro and in vivo that could be further investigated for ovarian cancer therapy in the future. PMID:28387244

  19. Identification of a distinct population of CD133(+)CXCR4(+) cancer stem cells in ovarian cancer.

    PubMed

    Cioffi, Michele; D'Alterio, Crescenzo; Camerlingo, Rosalba; Tirino, Virginia; Consales, Claudia; Riccio, Anna; Ieranò, Caterina; Cecere, Sabrina Chiara; Losito, Nunzia Simona; Greggi, Stefano; Pignata, Sandro; Pirozzi, Giuseppe; Scala, Stefania

    2015-05-28

    CD133 and CXCR4 were evaluated in the NCI-60 cell lines to identify cancer stem cell rich populations. Screening revealed that, ovarian OVCAR-3, -4 and -5 and colon cancer HT-29, HCT-116 and SW620 over expressed both proteins. We aimed to isolate cells with stem cell features sorting the cells expressing CXCR4(+)CD133(+) within ovarian cancer cell lines. The sorted population CD133(+)CXCR4(+) demonstrated the highest efficiency in sphere formation in OVCAR-3, OVCAR-4 and OVCAR-5 cells. Moreover OCT4, SOX2, KLF4 and NANOG were highly expressed in CD133(+)CXCR4(+) sorted OVCAR-5 cells. Most strikingly CXCR4(+)CD133(+) sorted OVCAR-5 and -4 cells formed the highest number of tumors when inoculated in nude mice compared to CD133(-)CXCR4(-), CD133(+)CXCR4(-), CD133(-)CXCR4(+) cells. CXCR4(+)CD133(+) OVCAR-5 cells were resistant to cisplatin, overexpressed the ABCG2 surface drug transporter and migrated toward the CXCR4 ligand, CXCL12. Moreover, when human ovarian cancer cells were isolated from 37 primary ovarian cancer, an extremely variable level of CXCR4 and CD133 expression was detected. Thus, in human ovarian cancer cells CXCR4 and CD133 expression identified a discrete population with stem cell properties that regulated tumor development and chemo resistance. This cell population represents a potential therapeutic target.

  20. DOXIL when combined with Withaferin A (WFA) targets ALDH1 positive cancer stem cells in ovarian cancer.

    PubMed

    Kakar, Sham S; Worth, Christopher A; Wang, Zhenglong; Carter, Kelsey; Ratajczak, Mariusz; Gunjal, Pranesh

    Ovarian cancer is a highly aggressive and deadly disease. Currently, the treatment for ovarian cancer entails cytoreductive surgery followed by chemotherapy, mainly cisplatin or carboplatin combined with paclitaxel. Although this regimen is initially effective in a high percentage of cases, unfortunately, after few months of initial treatment, tumor relapse occurs due to platinum-resistance. DOXIL (liposomal preparation of doxorubicin) is a choice of drug for recurrent ovarian cancer. However, its response rate is very low and is accompanied by myocardial toxicity. Resistance to chemotherapy and recurrence of cancer is primarily attributed to the presence of cancer stem cells (CSCs), a small population of cells present in cancer. Effect of DOXIL and withaferin A (WFA), both alone and in combination, was investigated on cell proliferation of ovarian cancer cell line A2780 and tumor growth in SCID mice bearing i.p. ovarian tumors. ALDH1 cells were isolated from A2780 using cell sorter, and effect of DOXIL and WFA both alone and in combination on tumorigenic function of ALDH1 was studied using spheroids formation assays in vitro. Western blots were performed to examine the expression of ALDH1 and Notch 1 genes. In our studies, we showed, for the first time, that DOXIL when combined with withaferin A (WFA) elicits synergistic effect on inhibition of cell proliferation of ovarian cancer cells and inhibits the expression of ALDH1 protein, a marker for ALDH1 positive cancer stem cells (CSCs), and Notch1, a signaling pathway gene required for self-renewal of CSCs. Inhibition of expression of both ALDH1 and Notch1 genes by WFA was found to be dose dependent, whereas DOXIL (200 nM) was found to be ineffective. SCID mice, bearing i.p. ovarian tumors, were treated with a small dose of DOXIL (2 mg/kg) in combination with a sub-optimal dose of WFA (2 mg/kg) which resulted in a highly significant (60% to 70%) reduction in tumor growth, and complete inhibition of metastasis

  1. Overcoming cisplatin resistance of ovarian cancer cells by targeting HIF-1-regulated cancer metabolism.

    PubMed

    Ai, Zhihong; Lu, Yang; Qiu, Songbo; Fan, Zhen

    2016-04-01

    Cisplatin is currently one of the most effective chemotherapeutic drugs used for treating ovarian cancer; however, resistance to cisplatin is common. In this study, we explored an experimental strategy for overcoming cisplatin resistance of human ovarian cancer from the new perspective of cancer cell metabolism. By using two pairs of genetically matched cisplatin-sensitive and cisplatin-resistant ovarian cancer cell lines, we tested the hypothesis that downregulating hypoxia-inducible factor-1 (HIF-1), which regulates metabolic enzymes involved in glycolysis, is a promising strategy for overcoming cisplatin resistance of human ovarian cancer cells. We found that cisplatin downregulated the level of the regulatable α subunit of HIF-1, HIF-1α, in cisplatin-sensitive ovarian cancer cells through enhancing HIF-1α degradation but did not downregulate HIF-1α in their cisplatin-resistant counterparts. Overexpression of a degradation-resistant HIF-1α (HIF-1α ΔODD) reduced cisplatin-induced apoptosis in cisplatin-sensitive cells, whereas genetic knockdown of HIF-1α or pharmacological promotion of HIF-1α degradation enhanced response to cisplatin in both cisplatin-sensitive and cisplatin-resistant ovarian cancer cells. We further demonstrated that knockdown of HIF-1α improved the response of cisplatin-resistant ovarian cancer cells to cisplatin by redirecting the aerobic glycolysis in the resistant cancer cells toward mitochondrial oxidative phosphorylation, leading to cell death through overproduction of reactive oxygen species. Our findings suggest that the HIF-1α-regulated cancer metabolism pathway could be a novel target for overcoming cisplatin resistance in ovarian cancer.

  2. Berberine sensitizes ovarian cancer cells to cisplatin through miR-21/PDCD4 axis.

    PubMed

    Liu, Shiguo; Fang, Yue; Shen, Huiling; Xu, Wenlin; Li, Hao

    2013-09-01

    Recent studies have shown that microRNA-21 (miR-21) contributes to tumor resistance to chemotherapy. Interestingly, we have found that berberine could inhibit miR-21 expression in several cancer cell lines. In this study, we investigated whether berberine could modulate the sensitivity of ovarian cancer cells to cisplatin and explored the mechanism. The cisplatin-resistant SKOV3 cells that were incubated with berberine combined with cisplatin had a significantly lower survival than the cisplatin alone group and enhanced cisplatin-induced apoptosis. Berberine could inhibit miR-21 expression and function in ovarian cancer, as shown by an enhancement of its target PDCD4, an important tumor suppressor in ovarian cancer. The results suggested that berberine could modulate the sensitivity of cisplatin via regulating miR-21/PDCD4 axis in the ovarian cancer cells.

  3. Iron alters cell survival in a mitochondria-dependent pathway in ovarian cancer cells.

    PubMed

    Bauckman, Kyle; Haller, Edward; Taran, Nicholas; Rockfield, Stephanie; Ruiz-Rivera, Abigail; Nanjundan, Meera

    2015-03-01

    The role of iron in the development of cancer remains unclear. We previously reported that iron reduces cell survival in a Ras/mitogen-activated protein kinase (MAPK)-dependent manner in ovarian cells; however, the underlying downstream pathway leading to reduced survival was unclear. Although levels of intracellular iron, ferritin/CD71 protein and reactive oxygen species did not correlate with iron-induced cell survival changes, we identified mitochondrial damage (via TEM) and reduced expression of outer mitochondrial membrane proteins (translocase of outer membrane: TOM20 and TOM70) in cell lines sensitive to iron. Interestingly, Ru360 (an inhibitor of the mitochondrial calcium uniporter) reversed mitochondrial changes and restored cell survival in HEY ovarian carcinoma cells treated with iron. Further, cells treated with Ru360 and iron also had reduced autophagic punctae with increased lysosomal numbers, implying cross-talk between these compartments. Mitochondrial changes were dependent on activation of the Ras/MAPK pathway since treatment with a MAPK inhibitor restored expression of TOM20/TOM70 proteins. Although glutathione antioxidant levels were reduced in HEY treated with iron, extracellular glutamate levels were unaltered. Strikingly, oxalomalate (inhibitor of aconitase, involved in glutamate production) reversed iron-induced responses in a similar manner to Ru360. Collectively, our results implicate iron in modulating cell survival in a mitochondria-dependent manner in ovarian cancer cells.

  4. Dietary compounds galangin and myricetin suppress ovarian cancer cell angiogenesis

    PubMed Central

    Huang, Haizhi; Chen, Allen Y.; Rojanasakul, Yon; Ye, Xingqian; Rankin, Gary O.; Chen, Yi Charlie

    2015-01-01

    Galangin and myricetin are flavonoids isolated from vegetables and fruits which exhibit anti-proliferative activity in human cancer cells. In this study, their anti-angiogenic effects were investigated with in vitro (HUVEC) and in vivo (CAM) models, which showed that galangin and myricetin inhibited angiogenesis induced by OVCAR-3 cells. The molecular mechanisms through which galangin and myricetin suppress angiogenesis were also studied. It was observed that galangin and myricetin inhibited secretion of the key angiogenesis mediator vascular endothelial growth factor (VEGF) and decreased levels of p-Akt, p-70S6K and hypoxia-inducible factor-1α (HIF-1α) proteins in A2780/CP70 and OVCAR-3 cells. Transient transfection experiments showed that galangin and myricetin inhibited secretion of VEGF by the Akt/p70S6K/ HIF-1α pathway. Moreover, a novel pathway, p21/HIF-1α/VEGF, was found to be involved in the inhibitory effect of myricetin on angiogenesis in OVCAR-3 cells. These data suggest that galangin and myricetin might serve as potential anti-angiogenic agents in the prevention of ovarian cancers dependent on new blood vessel networks. PMID:26113875

  5. Dietary compounds galangin and myricetin suppress ovarian cancer cell angiogenesis.

    PubMed

    Huang, Haizhi; Chen, Allen Y; Rojanasakul, Yon; Ye, Xingqian; Rankin, Gary O; Chen, Yi Charlie

    2015-05-01

    Galangin and myricetin are flavonoids isolated from vegetables and fruits which exhibit anti-proliferative activity in human cancer cells. In this study, their anti-angiogenic effects were investigated with in vitro (HUVEC) and in vivo (CAM) models, which showed that galangin and myricetin inhibited angiogenesis induced by OVCAR-3 cells. The molecular mechanisms through which galangin and myricetin suppress angiogenesis were also studied. It was observed that galangin and myricetin inhibited secretion of the key angiogenesis mediator vascular endothelial growth factor (VEGF) and decreased levels of p-Akt, p-70S6K and hypoxia-inducible factor-1α (HIF-1α) proteins in A2780/CP70 and OVCAR-3 cells. Transient transfection experiments showed that galangin and myricetin inhibited secretion of VEGF by the Akt/p70S6K/ HIF-1α pathway. Moreover, a novel pathway, p21/HIF-1α/VEGF, was found to be involved in the inhibitory effect of myricetin on angiogenesis in OVCAR-3 cells. These data suggest that galangin and myricetin might serve as potential anti-angiogenic agents in the prevention of ovarian cancers dependent on new blood vessel networks.

  6. Glutaminase inhibitor compound 968 inhibits cell proliferation and sensitizes paclitaxel in ovarian cancer

    PubMed Central

    Yuan, Lingqin; Sheng, Xiugui; Clark, Leslie H; Zhang, Lu; Guo, Hui; Jones, Hannah M; Willson, Adam K; Gehrig, Paola A; Zhou, Chunxiao; Bae-Jump, Victoria L

    2016-01-01

    Objective: Our overall goal was to investigate the anti-tumor activity of the glutaminase 1 (GLS1) Inhibitor compound 968 in ovarian cancer cells. The human ovarian cancer cell lines, HEY, SKOV3 and IGROV-1 were used. Cell proliferation was assessed by MTT assay after treatment with compound 968. Cell cycle progression and Annexin V expression were evaluated using Cellometer. Western blotting was performed to determine changes in GLS1, cellular stress and cell cycle checkpoints. Reactive oxygen species (ROS) and glutamate dehydrogenase (GDH) activity were assessed by ELISA assay. Compound 968 significantly inhibited cell proliferation and the expression of GLS1 in a dose-dependent manner in all three ovarian cancer cell lines. Compound 968 induced G1 phase cell cycle arrest and apoptosis. Treatment with compound 968 increased ROS levels and induced the protein expression of calnexin, binding immunoglobulin protein (BiP) and protein kinase RNA-like endoplasmic reticulum kinase (PERK). Deprivation of glutamine increased the sensitivity of cells to paclitaxel, and compound 968 sensitized cells to the anti-proliferative effects of paclitaxel. Compound 968 inhibited cell growth in ovarian cancer cells through induction of G1 phase cell cycle arrest, apoptosis and cellular stress, suggesting that targeting GLS1 provide a novel therapeutic strategy for ovarian cancer. PMID:27830010

  7. Elesclomol Sodium and Paclitaxel in Treating Patients With Recurrent or Persistent Ovarian Epithelial Cancer, Fallopian Tube Cancer, or Primary Peritoneal Cancer

    ClinicalTrials.gov

    2014-12-23

    Malignant Ovarian Mixed Epithelial Tumor; Ovarian Brenner Tumor; Ovarian Clear Cell Cystadenocarcinoma; Ovarian Endometrioid Adenocarcinoma; Ovarian Mucinous Cystadenocarcinoma; Ovarian Serous Cystadenocarcinoma; Recurrent Fallopian Tube Carcinoma; Recurrent Ovarian Carcinoma; Recurrent Primary Peritoneal Carcinoma; Undifferentiated Ovarian Carcinoma

  8. Paclitaxel, Cisplatin, and Topotecan With or Without Filgrastim in Treating Patients With Newly Diagnosed Stage III or Stage IV Epithelial Ovarian Cancer

    ClinicalTrials.gov

    2013-01-23

    Brenner Tumor; Ovarian Clear Cell Cystadenocarcinoma; Ovarian Endometrioid Adenocarcinoma; Ovarian Mixed Epithelial Carcinoma; Ovarian Mucinous Cystadenocarcinoma; Ovarian Serous Cystadenocarcinoma; Ovarian Undifferentiated Adenocarcinoma; Stage III Ovarian Epithelial Cancer; Stage IV Ovarian Epithelial Cancer

  9. TLR8 Agonist VTX-2337 and Pegylated Liposomal Doxorubicin Hydrochloride or Paclitaxel in Treating Patients With Recurrent or Persistent Ovarian Epithelial, Fallopian Tube, or Peritoneal Cavity Cancer

    ClinicalTrials.gov

    2014-12-23

    Malignant Ovarian Mixed Epithelial Tumor; Ovarian Brenner Tumor; Ovarian Clear Cell Cystadenocarcinoma; Ovarian Endometrioid Adenocarcinoma; Ovarian Mucinous Cystadenocarcinoma; Ovarian Serous Cystadenocarcinoma; Recurrent Fallopian Tube Carcinoma; Recurrent Ovarian Carcinoma; Recurrent Primary Peritoneal Carcinoma; Undifferentiated Ovarian Carcinoma

  10. Palliative Care in Improving Quality of Life and Symptoms in Patients With Stage III-IV Pancreatic or Ovarian Cancer

    ClinicalTrials.gov

    2014-12-18

    Recurrent Ovarian Epithelial Cancer; Recurrent Ovarian Germ Cell Tumor; Recurrent Pancreatic Cancer; Stage III Pancreatic Cancer; Stage IIIA Ovarian Epithelial Cancer; Stage IIIA Ovarian Germ Cell Tumor; Stage IIIB Ovarian Epithelial Cancer; Stage IIIB Ovarian Germ Cell Tumor; Stage IIIC Ovarian Epithelial Cancer; Stage IIIC Ovarian Germ Cell Tumor; Stage IV Ovarian Epithelial Cancer; Stage IV Ovarian Germ Cell Tumor; Stage IV Pancreatic Cancer

  11. Targeted chimera delivery to ovarian cancer cells by heterogeneous gold magnetic nanoparticle

    NASA Astrophysics Data System (ADS)

    Chen, Yao; Xu, Mengjiao; Guo, Yi; Tu, Keyao; Wu, Weimin; Wang, Jianjun; Tong, Xiaowen; Wu, Wenjuan; Qi, Lifeng; Shi, Donglu

    2017-01-01

    Efficient delivery of small interfering RNAs (siRNAs) to the targeted cells has remained a significant challenge in clinical applications. In the present study, we developed a novel aptamer-siRNA chimera delivery system mediated by cationic Au-Fe3O4 nanoparticles (NPs). The chimera constructed by VEGF RNA aptamer and Notch3 siRNA was bonded with heterogeneous Au-Fe3O4 nanoparticles by electrostatic interaction. The obtained complex exhibited much higher silencing efficiency against Notch3 gene compared with chimera alone and lipofectamine-siRNA complex, and improved the antitumor effects of the loaded chimera. Moreover, the efficient delivery of the chimera by Au-Fe3O4 NPs could reverse multi-drug resistance (MDR) of ovarian cancer cells against the chemotherapeutic drug cisplatin, indicating its potential capability for future targeted cancer therapy while overcoming MDR.

  12. Endometrial polypoid adenomyomatosis in a bitch with ovarian granulosa cell tumour and pyometra.

    PubMed

    Zanghì, A; Catone, G; Marino, G; Quartuccio, M; Nicòtina, P A

    2007-01-01

    Endometrial polypoid adenomyomatosis in an 8-year-old German shepherd bitch is described. The lesion was associated with ovarian granulosa cell tumour and pyometra; grossly, it consisted of sessile or pedunculated processes with both epithelial and non-epithelial components, in which smooth muscle cells were predominant. The endometrium was diffusely atrophic and showed multifocal squamous metaplasia. The findings are discussed as possible consequences of the functioning ovarian tumour and pyometra, but an involvement of growth factors is also proposed.

  13. Unusual liver locations of growing teratoma syndrome in ovarian malignant germ cell tumors.

    PubMed

    Lorusso, Domenica; Malaguti, Paola; Trivellizzi, Ilaria Nausica; Scambia, Giovanni

    2011-01-01

    ► Growing teratoma syndrome (GTS) with unusual liver locations are described after fertility preserving surgery and chemotherapy treatment for mixed malignant ovarian germ cell tumors (MGCT). ► It's a rare syndrome of mixed malignant ovarian germ cell tumors and in both cases enlarged and growing liver masses appeared during cisplatin-etoposide-bleomicin (BEP) chemotherapy. ► Radiological exams (CT scan and MRI) were suggestive for secondary metastasis and serum markers became negative during chemotherapy.

  14. Cutaneous metastasis of ovarian carcinoma with shadow cells mimicking a primary pilomatrical neoplasm.

    PubMed

    Lalich, Daniel; Tawfik, Ossama; Chapman, Julia; Fraga, Garth

    2010-07-01

    Shadow cells are characteristic of pilomatricoma, although they have been described in other cutaneous and visceral neoplasms, particularly endometrioid adenocarcinomas of the female genital tract. We describe a metastasis of an ovarian endometrioid adenocarcinoma with shadow cells to the skin that was initially misinterpreted as a pilomatricoma. We compare the histology of the ovarian neoplasm to 21 pilomatricomas. This is the first reported case of a cutaneous metastasis of a visceral neoplasm mimicking a primary pilomatrical neoplasm.

  15. Interleukin-6 from Ovarian Mesenchymal Stem Cells Promotes Proliferation, Sphere and Colony Formation and Tumorigenesis of an Ovarian Cancer Cell Line SKOV3

    PubMed Central

    Ding, Dah-Ching; Liu, Hwan-Wun; Chu, Tang-Yuan

    2016-01-01

    The origin of the majority of epithelial ovarian cancers (EOC) is regarded as extraovarian, with the ovary being the secondary site. The aim of this study was to explore the possible role of ovarian mesenchymal stem cells (OvMSCs) and secreted IL-6 in the development of EOC. OvMSCs were derived from normal ovarian stroma. Cell surface markers and differentiation capability were determined. The effects of IL-6 and conditioned medium of OvMSCs on the malignant phenotype of SKOV3 ovarian cancer cells were tested, and the status of STAT3 and ERK phosphorylation was investigated. OvMSCs had similar surface marker profiles as bone marrow mesenchymal stem cells, i.e., CD44 (+), CD90 (+) and CD45 (-), and was readily inducible to osteogenic, adipogenic and chondrogenic differentiation. OvMSCs secreted an extremely high level (>2500 pg/ml) of IL-6. Treatment of SKOV3 cells with conditioned media from OvMSCs increased cell proliferation, tumor sphere formation and anchorage independent growth, and resulted in activation of STAT3 but not ERK. Coinjection of OvMSCs with SKOV3 cell enhanced tumorigenesis in NOD-SCID mice. All of these behaviors were blocked by IL-6 receptor blocking antibody administered in vitro or in vivo. The OvMSCs alone injected into mice had no tumor growth after 3 months. By secreting high levels of IL-6, OvMSCs enhance the proliferation, sphere and colony formation and tumorigenesis of SKOV3 cells. PMID:27698921

  16. Proteomic analysis of temporally stimulated ovarian cancer cells for biomarker discovery.

    PubMed

    Marzinke, Mark A; Choi, Caitlin H; Chen, Li; Shih, Ie-Ming; Chan, Daniel W; Zhang, Hui

    2013-02-01

    While ovarian cancer remains the most lethal gynecological malignancy in the United States, there are no biomarkers available that are able to predict therapeutic responses to ovarian malignancies. One major hurdle in the identification of useful biomarkers has been the ability to obtain enough ovarian cancer cells from primary tissues diagnosed in the early stages of serous carcinomas, the most deadly subtype of ovarian tumor. In order to detect ovarian cancer in a state of hyperproliferation, we analyzed the implications of molecular signaling cascades in the ovarian cancer cell line OVCAR3 in a temporal manner, using a mass-spectrometry-based proteomics approach. OVCAR3 cells were treated with EGF(1), and the time course of cell progression was monitored based on Akt phosphorylation and growth dynamics. EGF-stimulated Akt phosphorylation was detected at 12 h post-treatment, but an effect on proliferation was not observed until 48 h post-exposure. Growth-stimulated cellular lysates were analyzed for protein profiles between treatment groups and across time points using iTRAQ labeling and mass spectrometry. The protein response to EGF treatment was identified via iTRAQ analysis in EGF-stimulated lysates relative to vehicle-treated specimens across the treatment time course. Validation studies were performed on one of the differentially regulated proteins, lysosomal-associated membrane protein 1 (LAMP-1), in human tissue lysates and ovarian tumor tissue sections. Further, tissue microarray analysis was performed to demarcate LAMP-1 expression across different stages of epithelial ovarian cancers. These data support the use of this approach for the efficient identification of tissue-based markers in tumor development related to specific signaling pathways. LAMP-1 is a promising biomarker for studies of the progression of EGF-stimulated ovarian cancers and might be useful in predicting treatment responses involving tyrosine kinase inhibitors or EGF receptor

  17. Induced Pluripotent Stem Cell-Derived Natural Killer Cells for Treatment of Ovarian Cancer.

    PubMed

    Hermanson, David L; Bendzick, Laura; Pribyl, Lee; McCullar, Valarie; Vogel, Rachel Isaksson; Miller, Jeff S; Geller, Melissa A; Kaufman, Dan S

    2016-01-01

    Natural killer (NK) cells can provide effective immunotherapy for ovarian cancer. Here, we evaluated the ability of NK cells isolated from peripheral blood (PB) and NK cells derived from induced pluripotent stem cell (iPSC) to mediate killing of ovarian cancer cells in a mouse xenograft model. A mouse xenograft model was used to evaluate the intraperitoneal delivery of three different NK cell populations: iPSC-derived NK cells, PB-NK cells that had been activated and expanded in long-term culture, and overnight activated PB-NK cells that were isolated through CD3/CD19 depletion of PB B and T cells. Bioluminescent imaging was used to monitor tumor burden of luciferase expressing tumor lines. Tumors were allowed to establish prior to administering NK cells via intraperitoneal injection. These studies demonstrate a single dose of any of the three NK cell populations significantly reduced tumor burden. When mice were given three doses of either iPSC-NK cells or expanded PB-NK cells, the median survival improved from 73 days in mice untreated to 98 and 97 days for treated mice, respectively. From these studies, we conclude iPSC-derived NK cells mediate antiovarian cancer killing at least as well as PB-NK cells, making these cells a viable resource for immunotherapy for ovarian cancer. Due to their ability to be easily differentiated into NK cells and their long-term expansion potential, iPSCs can be used to produce large numbers of well-defined NK cells that can be banked and used to treat a large number of patients including treatment with multiple doses if necessary.

  18. [Reconsidering the roles of female germ cells in ovarian development and folliculogenesis].

    PubMed

    Guigon, Céline J; Cohen-Tannoudji, Michel

    2011-01-01

    The production of fertilizable ova is the consequence of multiple events that start as soon as ovarian development and culminate at the time of ovulation. Throughout their development, germ cells are associated with companion somatic cells, which ensure germ cell survival, growth and maturation. Data obtained in vitro and in vivo on several animal models of germ cell depletion have led to uncover the many roles of germ cells on both ovarian development and folliculogenesis. During ovarian development, germ cells become progressively enclosed within epithelial structures called "ovigerous cords" constituted by pregranulosa cells, lined by a basement membrane. At the end of ovarian development, ovigerous cords fragment into primordial follicles, which are epithelial units constituted by an oocyte surrounded by a single layer of granulosa cells. Germ cells are necessary for the fragmentation of ovigerous cords into follicles, since in their absence, no follicle will form. Germ cells also ensure the differentiation of the ovarian somatic lineage, and they may inhibit the testis-differentiating pathway by preventing the conversion of pregranulosa cells into Sertoli cells, their counterpart in the testis. Regularly, primordial follicles are recruited into the growing follicle pool and initiate their growth. They develop through primary, preantral, antral and preovulatory stages before being ovulated. Interestingly, the action of the oocyte on companion somatic cells tightly depends on the follicular stage. In primordial follicles, the oocyte prevents the transdifferentiation of granulosa cells into cells resembling Sertoli cells. By contrast, as soon as the follicle enters growth, the oocyte regulates the functional differentiation of granulosa cells and at the latest stages, it prevents their premature maturation into luteal cells. Overall, these data demonstrate that the female germ cell act on companion somatic cells to regulate ovarian development and

  19. miR-132 targeting E2F5 suppresses cell proliferation, invasion, migration in ovarian cancer cells

    PubMed Central

    Tian, Hang; Hou, Lei; Xiong, Yu-Mei; Huang, Jun-Xiang; Zhang, Wen-Hua; Pan, Yong-Ying; Song, Xing-Rong

    2016-01-01

    Accumulating evidence showed that microRNA-132 (miR-132) are involved in development and progression of several types of cancers, however, the function and underlying molecular mechanism of miR-132 in ovarian cancer remains unclear. In this study we investigated the biological roles and molecular mechanism of miR-132 in ovarian cancer. Here, we found that that the expression levels of miR-132 were dramatically decreased in ovarian cancer cell lines and clinical ovarian cancer tissue samples. Then, we found that introduction of miR-132 significantly suppressed the proliferation, colony formation, migration and invasion of ovarian cancer cells. Mechanism investigation revealed that miR-132 inhibited the expression of transcription factor E2F5 by specifically targeting its mRNA 3’UTR. Moreover, the expression level of E2F5 was significantly increased in ovarian cancer tissues than in the adjacent normal tissues, and its expression was inversely correlated with miR-132 expression in clinical ovarian cancer tissues. Additionally, silencing E2F5 was able to inhibit the proliferation, colony formation, migration and invasion of ovarian cancer cells, parallel to the effect of miR-132 overexpression on the ovarian cancer cells. Meanwhile, overexpression of E2F5 reversed the inhibition effect mediated by miR-132 overexpression. These results indicate that miR-132 suppresses the cell proliferation, invasion, migration in ovarian cancer cells by targeting E2F5. PMID:27186275

  20. Knockdown of eIF4E suppresses cell proliferation, invasion and enhances cisplatin cytotoxicity in human ovarian cancer cells.

    PubMed

    Wan, Jing; Shi, Fang; Xu, Zhanzhan; Zhao, Min

    2015-12-01

    Eukaryotic initiation factor 4E (eIF4E) plays an important role in cap-dependent translation. The overexpression of eIF4E gene has been found in a variety of human malignancies. In this study, we attempted to identify the potential effects of eIF4E and explore the possibility of eIF4E as a therapeutic target for the treatment of human ovarian cancer. First the activation of eIF4E protein was detected with m7-GTP cap binding assays in ovarian cancer and control cells. Next, the eIF4E-shRNA expression plasmids were used to specifically inhibit eIF4E activity in ovarian cancer cells line A2780 and C200. The effects of knockdown eIF4E gene on cell proliferation, migration and invasion were investigated in vitro. Moreover, the changes of cell cycle and apoptosis of ovarian cancer cells were detected by flow cytometry. Finally, we investigated the effect of knockdown of eIF4E on the chemosensitivity of ovarian cancer cells to cisplatin in vitro. Our results show there is elevated activation of eIF4E in ovarian cancer cells compared with normal human ovarian epithelial cell line. The results of BrdU incorporation and FCM assay indicate that knockdown of eIF4E efficiently suppressed cell growth and induce cell cycle arrest in G1 phase and subsequent apoptosis in ovarian cancer cells. From Transwell assay analysis, knockdown eIF4E significantly decrease cellular migration and invasion of ovarian cancer cells. We also confirmed that knockdown eIF4E could synergistically enhance the cytotoxicity effects of cisplatin to cancer cells and sensitized cisplatin-resistant C200 cells in vitro. This study demonstrates that the activation of eIF4E gene is an essential component of the malignant phenotype in ovarian cancer, and aberration of eIF4E expression is associated with proliferation, migration, invasion and chemosensitivity to cisplatin in ovarian cancer cells. Knockdown eIF4E gene can be used as a potential therapeutic target for the treatment of human ovarian cancer.

  1. TARGETING THE MITOCHONDRIA ACTIVATES TWO INDEPENDENT CELL DEATH PATHWAYS IN THE OVARIAN CANCER STEM CELLS

    PubMed Central

    Alvero, Ayesha B.; Montagna, Michele K.; Holmberg, Jennie C.; Craveiro, Vinicius; Brown, David; Mor, Gil

    2013-01-01

    Cancer stem cells are responsible for tumor initiation and chemo-resistance. In ovarian cancer, the CD44+/MyD88+ ovarian cancer stem cells (OCSCs) are also able to repair the tumor and serve as tumor vascular progenitors. Targeting these cells is therefore necessary to improve treatment outcome and patient survival. The previous demonstration that the OCSCs are resistant to apoptotic cell death induced by conventional chemotherapy agents suggests that other forms of targeted therapy should be explored. We show in this study that targeting mitochondrial bioenergetics is a potent stimulus to induce caspase-independent cell death in a panel of OCSCs. Treatment of these cells with the novel isoflavone derivative, NV-128, significantly depressed mitochondrial function exhibited by decrease in ATP, Cox-I, and Cox-IV levels, and increase in mitochondrial superoxide and hydrogen peroxide. This promotes a state of “cellular starvation” that activates two independent pathways: 1) AMPKα1 pathway leading to mTOR inhibition; and 2) mitochondrial MEK/ERK pathway leading to loss of mitochondrial membrane potential. The demonstration that a compound can specifically target the mitochondria to induce cell death in this otherwise chemo-resistant cell population opens a new venue for treating ovarian cancer patients. PMID:21677151

  2. The effect of celecoxib on tumor growth in ovarian cancer cells and a genetically engineered mouse model of serous ovarian cancer

    PubMed Central

    Suri, Anuj; Sheng, Xiugui; Schuler, Kevin M.; Zhong, Yan; Han, Xiaoyun; Jones, Hannah M.; Gehrig, Paola A.; Zhou, Chunxiao; Bae-Jump, Victoria L.

    2016-01-01

    Our objective was to evaluate the effect of the COX-2 inhibitor, celecoxib, on (1) proliferation and apoptosis in human ovarian cancer cell lines and primary cultures of ovarian cancer cells, and (2) inhibition of tumor growth in a genetically engineered mouse model of serous ovarian cancer under obese and non-obese conditions. Celecoxib inhibited cell proliferation in three ovarian cancer cell lines and five primary cultures of human ovarian cancer after 72 hours of exposure. Treatment with celecoxib resulted in G1 cell cycle arrest, induction of apoptosis, inhibition of cellular adhesion and invasion and reduction of expression of hTERT mRNA and COX-2 protein in all of the ovarian cancer cell lines. In the KpB mice fed a high fat diet (obese) and treated with celecoxib, tumor weight decreased by 66% when compared with control animals. Among KpB mice fed a low fat diet (non-obese), tumor weight decreased by 46% after treatment with celecoxib. In the ovarian tumors from obese and non-obese KpB mice, treatment with celecoxib as compared to control resulted in decreased proliferation, increased apoptosis and reduced COX-2 and MMP9 protein expression, as assessed by immunohistochemistry. Celecoxib strongly decreased the serum level of VEGF and blood vessel density in the tumors from the KpB ovarian cancer mouse model under obese and non-obese conditions. This work suggests that celecoxib may be a novel chemotherapeutic agent for ovarian cancer prevention and treatment and be potentially beneficial in both obese and non-obese women. PMID:27074576

  3. Potential new strategies for the treatment of ovarian infertility and degenerative diseases with autologous ovarian stem cells.

    PubMed

    Bukovsky, Antonin; Copas, Pleas; Virant-Klun, Irma

    2006-04-01

    The 50-year-old and currently prevailing view that all oocytes in adult human ovaries persist from the fetal period of life is controversial as it clashes with Darwinian evolutionary theory. Studies of oogenesis and follicular renewal in adult human ovaries, and of the role of hormonal signals and third-party cells (tissue macrophages and T cells), could all be helpful in providing better understanding of the causes of ovarian infertility, its prevention and potential therapy. In addition, the authors recently reported differentiation of distinct cell types and the production of new eggs in cultures derived from premenopausal and postmenopausal human ovaries. It is possible that fertilisation of such eggs will open up new opportunities for providing genetically related children to infertile women for whom conventional in vitro fertilisation has failed. As ovarian stem cells appear to represent a new type of totipotent adult stem cell, they could also be utilised for autologous stem cell therapy of degenerative diseases, without any involvement of allogeneic embryonic stem cells and somatic cell nuclear transfer.

  4. Investigating Molecular Profiles of Ovarian Cancer: An Update on Cancer Stem Cells

    PubMed Central

    Tomao, Federica; Papa, Anselmo; Strudel, Martina; Rossi, Luigi; Lo Russo, Giuseppe; Benedetti Panici, Pierluigi; Ciabatta, Francesca Romana; Tomao, Silverio

    2014-01-01

    Currently we are more and more improving our knowledge about the characteristics and the role of cancer stem cells in human cancer. Particularly we have realized that self-renewing ovarian cancer stem cells (CSCs) or ovarian cancer-initiating cells, and mesenchymal stem cells (SCs) too, are probably implicated in the etiopathogenesis of epithelial ovarian cancer (EOC). There is clear evidence that these cells are also involved in its intra- and extra-peritoneal diffusion and in the occurrence of chemo-resistance. In assessing the molecular characteristics of ovarian CSCs, we have to take note that these cellular populations are rare and the absence of specific cell surface markers represents a challenge to isolate and identify pure SC populations. In our review, we focused our attention on the molecular characteristics of epithelial ovarian CSCs and on the methods to detect them starting from their biological features. The study of ovarian CSCs is taking on an increasingly important strategic role, mostly for the potential therapeutic application in the next future. PMID:24723972

  5. Plexin-B1 silencing inhibits ovarian cancer cell migration and invasion

    PubMed Central

    2010-01-01

    Background Elevated Plexin-B1 expression has been found in diverse human cancers and in non-neoplastic tissues, and it mediates diverse biological and pathological activities. However, whether or not Plexin-B1 expression is involved in human ovarian tumors remains unclear. In the present study, Plexin-B1 expression was explored in benign and malignant human ovarian tumor tissues. In addition, the impact of Plexin-B1 expression on ovarian cancer cell proliferation, migration and invasion were investigated in vitro. Methods Plexin-B1 expression was analyzed in normal and benign ovarian tissues and serous ovarian tumors (both borderline and malignant) by immunohistochemical staining, as well as in four human ovarian cancer cell lines (A2780, C13*, SKOV3, and OV2008) by RT-PCR and western blot analyses. Furthermore, endogenous Plexin-B1 expression was suppressed by Plexin-B1 siRNA in SKOV3 cells, which overexpress Plexin-B1. Protein levels of Plexin-B1, AKT and AKTSer473 were examined by western blot analysis. Cell proliferation, migration and invasion were measured with MTT, wound healing and boyden chamber assays, respectively, and the cytoskeleton was monitored via F-actin staining. Results Expression levels of Plexin-B1 protein were significantly higher in serous ovarian carcinomas than in normal ovaries or benign ovarian neoplasms, and in the former, Plexin-B1 expression was positively correlated with lymphatic metastasis, and the membrane and cytoplasm of cancer cells stained positively. SKOV3 cells displayed the highest Plexin-B1 expression at both the mRNA and protein levels among the four tested human ovarian cancer cell lines and was selected as a cell model for further in vitro experiments. Plexin-B1 siRNA significantly suppressed phosphorylation of AKT at Ser473 in SKOV3 cells, but it did not alter total AKT expression. In addition, silencing of Plexin-B1 in SKOV3 cells inhibited cell migration and invasion and reorganized the cytoskeleton, whereas cell

  6. Failure of Elevating Calcium Induces Oxidative Stress Tolerance and Imparts Cisplatin Resistance in Ovarian Cancer Cells

    PubMed Central

    Ma, Liwei; Wang, Hongjun; Wang, Chunyan; Su, Jing; Xie, Qi; Xu, Lu; Yu, Yang; Liu, Shibing; Li, Songyan; Xu, Ye; Li, Zhixin

    2016-01-01

    Cisplatin is a commonly used chemotherapeutic drug, used for the treatment of malignant ovarian cancer, but acquired resistance limits its application. There is therefore an overwhelming need to understand the mechanism of cisplatin resistance in ovarian cancer, that is, ovarian cancer cells are insensitive to cisplatin treatment. Here, we show that failure of elevating calcium and oxidative stress tolerance play key roles in cisplatin resistance in ovarian cancer cell lines. Cisplatin induces an increase in oxidative stress and alters intracellular Ca2+ concentration, including cytosolic and mitochondrial Ca2+ in cisplatin-sensitive SKOV3 cells, but not in cisplatin-resistant SKOV3/DDP cells. Cisplatin induces mitochondrial damage and triggers the mitochondrial apoptotic pathway in cisplatin-sensitive SKOV3 cells, but rarely in cisplatin-resistant SKOV3/DDP cells. Inhibition of calcium signaling attenuates cisplatin-induced oxidative stress and intracellular Ca2+ overload in cisplatin-sensitive SKOV3 cells. Moreover, in vivo xenograft models of nude mouse, cisplatin significantly reduced the growth rates of tumors originating from SKOV3 cells, but not that of SKOV3/DDP cells. Collectively, our data indicate that failure of calcium up-regulation mediates cisplatin resistance by alleviating oxidative stress in ovarian cancer cells. Our results highlight potential therapeutic strategies to improve cisplatin resistance. PMID:27330840

  7. Ovarian carcinoma cells synthesize both chondroitin sulfate and heparan sulfate cell surface proteoglycans that mediate cell adhesion to interstitial matrix.

    PubMed

    Kokenyesi, R

    Metastatic ovarian carcinoma metastasizes by intra-peritoneal, non-hematogenous dissemination. The adhesion of the ovarian carcinoma cells to extracellular matrix components, such as types I and III collagen and cellular fibronectin, is essential for intra-peritoneal dissemination. The purpose of this study was to determine whether cell surface proteoglycans (a class of matrix receptors) are produced by ovarian carcinoma cells, and whether these proteoglycans have a role in the adhesion of ovarian carcinoma cells to types I and III collagen and fibronectin. Proteoglycans were metabolically labeled for biochemical studies. Both phosphatidylinositol-anchored and integral membrane-type cell surface proteoglycans were found to be present on the SK-OV-3 and NIH:OVCAR-3 cell lines. Three proteoglycan populations of differing hydrodynamic size were detected in both SK-OV-3 and NIH:OVCAR-3 cells. Digestions with heparitinase and chondroitinase ABC showed that cell surface proteoglycans of SK-OV-3 cells had higher proportion of chondroitin sulfate proteoglycans (75:25 of chondroitin sulfate:heparan sulfate ratio), while NIH:OVCAR-3 cells had higher proportion of heparan sulfate proteoglycans (10:90 of chondroitin sulfate:heparan sulfate ratio). RT-PCR indicated the synthesis of a unique assortment of syndecans, glypicans, and CD44 by the two cell lines. In adhesion assays performed on matrix-coated titer plates both cell lines adhered to types I and III collagen and cellular fibronectin, and cell adhesion was inhibited by preincubation of the matrix with heparin, heparan sulfate, chondroitin sulfate, dermatan sulfate, or chondroitin glycosaminoglycans. Treatment of the cells with heparitinase, chondroitinase ABC, or methylumbelliferyl xyloside also interfered with adhesion confirming the role of both heparan sulfate and chondroitin sulfate cell surface proteoglycans as matrix receptors on ovarian carcinoma cells.

  8. SENP1 desensitizes hypoxic ovarian cancer cells to cisplatin by up-regulating HIF-1α

    PubMed Central

    Ao, Qilin; Su, Wenjing; Guo, Shuang; Cai, Lei; Huang, Lei

    2015-01-01

    Hypoxia-inducible factor 1 alpha (HIF-1α) is closely related to chemoresistance of ovarian cancers. Although it is reported that HIF-1α can be regulated by Sentrin/SUMO-specific protease 1 (SENP1), the effects of SENP1 on HIF-1α is still controversial. In this study, we identified that SENP1 positively regulated the expression of HIF-1α by deSUMOylation and weakened the sensitivity of hypoxic ovarian cancer cells to cisplatin. These results indicate that SENP1 is a positive regulator of HIF-1α and plays a negative role in ovarian cancer chemotherapy. PMID:26548925

  9. Ovarian Cancer Cell Line Panel (OCCP): Clinical Importance of In Vitro Morphological Subtypes

    PubMed Central

    Beaufort, Corine M.; Helmijr, Jean C. A.; Piskorz, Anna M.; Hoogstraat, Marlous; Ruigrok-Ritstier, Kirsten; Besselink, Nicolle; Murtaza, Muhammed; van IJcken, Wilfred F. J.; Heine, Anouk A. J.; Smid, Marcel; Koudijs, Marco J.; Brenton, James D.; Berns, Els M. J. J.; Helleman, Jozien

    2014-01-01

    Epithelial ovarian cancer is a highly heterogeneous disease and remains the most lethal gynaecological malignancy in the Western world. Therapeutic approaches need to account for inter-patient and intra-tumoural heterogeneity and detailed characterization of in vitro models representing the different histological and molecular ovarian cancer subtypes is critical to enable reliable preclinical testing. There are approximately 100 publicly available ovarian cancer cell lines but their cellular and molecular characteristics are largely undescribed. We have characterized 39 ovarian cancer cell lines under uniform conditions for growth characteristics, mRNA/microRNA expression, exon sequencing, drug response for clinically-relevant therapeutics and collated all available information on the original clinical features and site of origin. We tested for statistical associations between the cellular and molecular features of the lines and clinical features. Of the 39 ovarian cancer cell lines, 14 were assigned as high-grade serous, four serous-type, one low-grade serous and 20 non-serous type. Three morphological subtypes: Epithelial (n = 21), Round (n = 7) and Spindle (n = 12) were identified that showed distinct biological and molecular characteristics, including overexpression of cell movement and migration-associated genes in the Spindle subtype. Comparison with the original clinical data showed association of the spindle-like tumours with metastasis, advanced stage, suboptimal debulking and poor prognosis. In addition, the expression profiles of Spindle, Round and Epithelial morphologies clustered with the previously described C1-stromal, C5-mesenchymal and C4 ovarian subtype expression profiles respectively. Comprehensive profiling of 39 ovarian cancer cell lines under controlled, uniform conditions demonstrates clinically relevant cellular and genomic characteristics. This data provides a rational basis for selecting models to develop specific treatment

  10. S100B Mediates Stemness of Ovarian Cancer Stem-Like Cells Through Inhibiting p53.

    PubMed

    Yang, Tao; Cheng, Jianan; Yang, Yang; Qi, Wei; Zhao, Yuetao; Long, Haixia; Xie, Rongkai; Zhu, Bo

    2017-02-01

    S100B is one of the members of the S100 protein family and is involved in the progression of a variety of cancers. Ovarian cancer is driven by cancer stem-like cells (CSLCs) that are involved in tumorigenesis, metastasis, chemo-resistance and relapse. We then hypothesized that S100B might exert pro-tumor effects by regulating ovarian CSLCs stemness, a key characteristic of CSLCs. First, we observed the high expression of S100B in ovarian cancer specimens when compared to that in normal ovary. The S100B upregulation associated with more advanced tumor stages, poorer differentiation and poorer survival. In addition, elevated S100B expression correlated with increased expression of stem cell markers including CD133, Nanog and Oct4. Then, we found that S100B was preferentially expressed in CD133(+) ovarian CSLCs derived from both ovarian cancer cell lines and primary tumors of patients. More importantly, we revealed that S100B knockdown suppressed the in vitro self-renewal and in vivo tumorigenicity of ovarian CSLCs and decreased their expression of stem cell markers. S100B ectopic expression endowed non-CSLCs with stemness, which has been demonstrated with both in vitro and in vivo experiments. Mechanically, we demonstrated that the underlying mechanism of S100B-mediated effects on CSLCs stemness was not dependent on its binding with a receptor for advanced glycation end products (RAGE), but might be through intracellular regulation, through the inhibition of p53 expression and phosphorylation. In conclusion, our results elucidate the importance of S100B in maintenance of ovarian CSLCs stemness, which might provide a promising therapeutic target for ovarian cancer. Stem Cells 2017;35:325-336.

  11. Impedance Analysis of Ovarian Cancer Cells upon Challenge with C-terminal Clostridium Perfringens Enterotoxin

    NASA Astrophysics Data System (ADS)

    Gordon, Geoffrey; Lo, Chun-Min

    2007-03-01

    Both in vitro and animal studies in breast, prostate, and ovarian cancers have shown that clostridium perfringens enterotoxin (CPE), which binds to CLDN4, may have an important therapeutic benefit, as it is rapidly cytotoxic in tissues overexpressing CLDN4. This study sought to evaluate the ability of C-terminal clostridium perfringens enterotoxin (C-CPE), a CLDN4-targetting molecule, to disrupt tight junction barrier function. Electric cell-substrate impedance sensing (ECIS) was used to measure both junctional resistance and average cell-substrate separation of ovarian cancer cell lines after exposure to C-CPE. A total of 14 ovarian cancer cell lines were used, and included cell lines derived from serous, mucinous, and clear cells. Our results showed that junctional resistance increases as CLDN4 expression increases. In addition, C-CPE is non-cytotoxic in ovarian cancer cells expressing CLDN4. However, exposure to C-CPE results in a significant (p<0.05) dose- and CLDN4-dependent decrease in junctional resistance and an increase in cell-substrate separation. Treatment of ovarian cancer cell lines with C-CPE disrupts tight junction barrier function.

  12. Differential effects of rapalogues, dual kinase inhibitors on human ovarian carcinoma cells in vitro.

    PubMed

    Rogers-Broadway, Karly-Rai; Chudasama, Dimple; Pados, George; Tsolakidis, Dimitris; Goumenou, Anastasia; Hall, Marcia; Karteris, Emmanouil

    2016-07-01

    Ovarian cancer is the second most common gynaecological malignancy and was diagnosed in over 7,000 women in 2011 in the UK. There are currently no reliable biomarkers available for use in a regular screening assay for ovarian cancer and due to characteristic late presentation (78% in stages III and IV) ovarian cancer has a low survival rate (35% after 10 years). The mTOR pathway is a central regulator of growth, proliferation, apoptosis and angiogenesis; providing balance between available resources such as amino acids and growth factors, and stresses such as hypoxia, to control cellular behaviour accordingly. Emerging data links mTOR with the aetiopathogenesis of ovarian cancer. We hypothesised that mTOR inhibitors could play a therapeutic role in ovarian cancer treatment. In this study we began by validating the expression of four main mTOR pathway components, mTOR, DEPTOR, rictor and raptor, at gene and protein level in in vitro models of endometrioid (MDAH‑2774) and clear cell (SKOV3) ovarian cancer using qPCR and ImageStream technology. Using a wound healing assay we show that inhibition of the mTOR pathway using rapamycin, rapalogues, resveratrol and NVP BEZ-235 induces a cytostatic and not cytotoxic response up to 18 h in these cell lines. We extended these findings up to 72 h with a proliferation assay and show that the effects of inhibition of the mTOR pathway are primarily mediated by the dephosphorylation of p70S6 kinase. We show that mTOR inhibition does not involve alteration of mTOR pathway components or induce caspase 9 cleavage. Preclinical studies including ovarian tissue of ovarian cancer patients, unaffected controls and patients with unrelated gynaecological conditions show that DEPTOR is reliably upregulated in ovarian cancer.

  13. Characterization of cell surface antigens reactive with autologous antibodies from human ovarian neoplasms

    SciTech Connect

    Kutteh, W.H.

    1986-03-01

    Autologous antibodies eluted from membrane fragments of ovarian epithelial neoplasms have been prepared from cyst and ascites fluids. The predominant membrane-bound immunoglobulin, IgG, was present in a range of 18 to 4275 ng of membrane-bound IgG/ml fluid. The autologous antibodies were strongly reactive with human ovarian neoplastic cell lines and fresh ovarian tumor tissue but not with normal human ovaries, other non-ovarian normal or neoplastic tissue or non-ovarian human cell lines. Human ovarian serous cystadenocarcinoma cell lined number2774 was surface labeled with /sup 125/Iodine using lactoperoxidose. Cells were washed and solubilized with Triton X-100. Membrane antigens were prepared and precipitated with autologous antibodies. Precipitates were washed, electrophoresed on 7.5% polyacrylamide gels and analyzed for radioactivity. Three major bands of activity (molecular weights: 180,000; 160,000 and 120,000) were precipitated with autologous antibodies from two patients with serous cystadenocarcinoma and two patients with papillary adenocarcinoma, but not with normal serum or autologous antibodies from a plural effusion of a patient with colon disease.

  14. Ovarian Cysts

    MedlinePlus

    ... information Endometriosis fact sheet Ovarian cancer fact sheet Polycystic ovary syndrome fact sheet The javascript used in this widget ... ovaries make many small cysts. This is called polycystic ovary syndrome (PCOS). PCOS can cause problems with the ovaries ...

  15. Ovarian proteomic study reveals the possible molecular mechanism for hyperprolificacy of Small Tail Han sheep

    PubMed Central

    Miao, Xiangyang; Luo, Qingmiao; Zhao, Huijing; Qin, Xiaoyu

    2016-01-01

    Small Tail Han sheep is a widely bred farm animal in China which has attracted lots of attention due to their high prolificacy and year-round estrus. However, the molecular mechanism of its fecundity remains unrevealed. The FecB gene polymorphism has been found to be associated with the ovulation rate and litter size of sheep. In the present study, we constructed an iTRAQ-based quantitative proteomics analysis to compare the ovarian proteomes of FecB+FecB+ genotype Small Tail Han sheep ewes (Han ++), FecBBFecBB Han ewes (Han BB) and Dorset ewes (Dorset). Hundreds of differentially expressed proteins between each two groups were identified; GO and KEGG pathway analysis indicated that the expressions of those proteins involved in ribosome assembly, protein translation and mTOR pathway between Dorset and both Han groups were highly different. Between Han ++ and Han BB groups, higher level of protein expressions were related to mitochondrial oxidation functions such as oxidoreductase activity, cytochrome-c oxidase activity and electron carrier activity. This was identified in Han BB group, which may contribute to the elevated ovulation rate of Han BB ewes. In conclusion, our work provided a prospective understanding of the molecular mechanism for high prolificacy of Small Tail Han sheep. PMID:27271055

  16. Hilus cell heterotopia accompanying bilateral ovarian serous cystadenomas: a case report and review of the literature

    PubMed Central

    He, Hong-Lin; Lee, Ying-En; Chang, Chi-Chang

    2014-01-01

    Hilus cell heterotopia is the presence of normal hilus cells in an abnormal site. It is rare and there are only a few case reports or case series. It has been reported in the fimbrial stroma of the fallopian tube, paratubal cyst wall and beneath ovarian capsule. Most cases are more than 40 years of age, and some of them are associated with other underlying pelvic pathology. Hilus cells are ovarian counterpart of testicular Leydig cells, carrying similar morphological and immunohistochemical findings. In this report, we described a patient having bilateral serous cystadenomas with an incidental finding of hilus cells in the fallopian tube. PMID:24696744

  17. PPARγ inhibits ovarian cancer cells proliferation through upregulation of miR-125b

    SciTech Connect

    Luo, Shuang; Wang, Jidong; Ma, Ying; Yao, Zhenwei; Pan, Hongjuan

    2015-06-26

    miR-125b has essential roles in coordinating tumor proliferation, angiogenesis, invasiveness, metastasis and chemotherapy recurrence. In ovarian cancer miR-125b has been shown to be downregulated and acts as a tumor suppressor by targeting proto-oncogene BCL3. PPARγ, a multiple functional transcription factor, has been reported to have anti-tumor effects through inhibition of proliferation and induction of differentiation and apoptosis by targeting the tumor related genes. However, it is unclear whether miR-125b is regulated by PPARγ in ovarian cancer. In this study, we demonstrated that the miR-125b downregulated in ovarian cancer tissues and cell lines. Ligands-activated PPARγ suppressed proliferation of ovarian cancer cells and this PPARγ-induced growth inhibition is mediated by the upregulation of miR-125b. PPARγ promoted the expression of miR-125b by directly binding to the responsive element in miR-125b gene promoter region. Thus, our results suggest that PPARγ can induce growth suppression of ovarian cancer by upregulating miR-125b which inhibition of proto-oncogene BCL3. These findings will extend our understanding of the function of PPARγ in tumorigenesis and miR-125b may be a therapeutic intervention of ovarian cancer. - Highlights: • miR-125b is down-regulated in ovarian cancer tissues and cells. • PPARγ upregulates miR-125b and downregulates its target gene BCL3 expression. • Silence of miR-125b attenuates PPARγ-mediated growth suppression of ovarian cancer cells. • PPARγ promotes the transcription of miR-125b via binding to PPARE in miR-125b gene promoter region.

  18. Protein tyrosine phosphatase PTPN3 promotes drug resistance and stem cell-like characteristics in ovarian cancer

    PubMed Central

    Li, Shuqin; Cao, Jian; Zhang, Wei; Zhang, Fan; Ni, Guantai; Luo, Qian; Wang, Man; Tao, Xiang; Xia, Hongping

    2016-01-01

    The current standard treatment for ovarian cancer is aggressive surgery followed by platinum-based combination chemotherapy. Recurrence and chemotherapeutic drug resistance are the two main factors that account for the high mortality of most ovarian cancers. Liposomal doxorubicin is primarily used for the treatment of ovarian cancer when the disease has progressed after platinum-based chemotherapy. However, relatively little is known about the genomic changes that contribute to both cisplatin and doxorubicin resistance in high-grade serous ovarian cancer (HGSC) under the selective pressure of chemotherapy. Here, we found that protein tyrosine phosphatase PTPN3 gene expression was substantially increased in both cisplatin and doxorubicin-resistant ovarian cancer cells. Silencing of PTPN3 restored sensitivity to cisplatin and doxorubicin in resistant ovarian cancer cells. Down-regulation of PTPN3 also inhibited cell cycle progression, migration, stemness in vitro and the tumorigenicity of resistant ovarian cancer cells in vivo. Meanwhile, the expression of PTPN3 was found to be regulated by miR-199 in resistant ovarian cancer cells. These findings suggest that PTPN3 promotes tumorigenicity, stemness and drug resistance in ovarian cancer, and thus is a potential therapeutic target for the treatment of ovarian cancer. PMID:27833130

  19. FOXP1 functions as an oncogene in promoting cancer stem cell-like characteristics in ovarian cancer cells.

    PubMed

    Choi, Eun Jung; Seo, Eun Jin; Kim, Dae Kyoung; Lee, Su In; Kwon, Yang Woo; Jang, Il Ho; Kim, Ki-Hyung; Suh, Dong-Soo; Kim, Jae Ho

    2016-01-19

    Ovarian cancer has the highest mortality rate of all gynecological cancers with a high recurrence rate. It is important to understand the nature of recurring cancer cells to terminally eliminate ovarian cancer. The winged helix transcription factor Forkhead box P1 (FOXP1) has been reported to function as either oncogene or tumor-suppressor in various cancers. In the current study, we show that FOXP1 promotes cancer stem cell-like characteristics in ovarian cancer cells. Knockdown of FOXP1 expression in A2780 or SKOV3 ovarian cancer cells decreased spheroid formation, expression of stemness-related genes and epithelial to mesenchymal transition-related genes, cell migration, and resistance to Paclitaxel or Cisplatin treatment, whereas overexpression of FOXP1 in A2780 or SKOV3 ovarian cancer cells increased spheroid formation, expression of stemness-related genes and epithelial to mesenchymal transition-related genes, cell migration, and resistance to Paclitaxel or Cisplatin treatment. In addition, overexpression of FOXP1 increased promoter activity of ABCG2, OCT4, NANOG, and SOX2, among which the increases in ABCG2, OCT4, and SOX2 promoter activity were dependent on the presence of FOXP1-binding site. In xenotransplantation of A2780 ovarian cancer cells into nude mice, knockdown of FOXP1 expression significantly decreased tumor size. These results strongly suggest FOXP1 functions as an oncogene by promoting cancer stem cell-like characteristics in ovarian cancer cells. Targeting FOXP1 may provide a novel therapeutic opportunity for developing a relapse-free treatment for ovarian cancer patients.

  20. Anti-cancer effect of bee venom toxin and melittin in ovarian cancer cells through induction of death receptors and inhibition of JAK2/STAT3 pathway

    SciTech Connect

    Jo, Miran; Park, Mi Hee; Kollipara, Pushpa Saranya; An, Byeong Jun; Song, Ho Sueb; Han, Sang Bae; Kim, Jang Heub; Song, Min Jong; Hong, Jin Tae

    2012-01-01

    We investigated whether bee venom and melittin, a major component of bee venom, inhibit cell growth through enhancement of death receptor expressions in the human ovarian cancer cells, SKOV3 and PA-1. Bee venom (1–5 μg/ml) and melittin (0.5–2 μg/ml) inhibited the growth of SKOV3 and PA-1 ovarian cancer cells by the induction of apoptotic cell death in a dose dependent manner. Consistent with apoptotic cell death, expression of death receptor (DR) 3 and DR6 was increased in both cancer cells, but expression of DR4 was increased only in PA-1 cells. Expression of DR downstream pro-apoptotic proteins including caspase-3, 8, and Bax was concomitantly increased, but the phosphorylation of JAK2 and STAT3 and the expression of Bcl-2 were inhibited by treatment with bee venom and melittin in SKOV3 and PA-1 cells. Expression of cleaved caspase-3 was increased in SKOV3, but cleaved caspase-8 was increased in PA-1 cells. Moreover, deletion of DR3, DR4, and DR6 by small interfering RNA significantly reversed bee venom and melittin-induced cell growth inhibitory effect as well as down regulation of STAT3 by bee venom and melittin in SKOV3 and PA-1 ovarian cancer cell. These results suggest that bee venom and melittin induce apoptotic cell death in ovarian cancer cells through enhancement of DR3, DR4, and DR6 expression and inhibition of STAT3 pathway. -- Highlights: ► Some studies have showed that bee venom and/or melittin have anti-cancer effects. ► We found that bee venom and melittin inhibited cell growth in ovarian cancer cells. ► Bee venom and melittin induce apoptosis in SKOV3 and PA-1.

  1. Amphiregulin induces human ovarian cancer cell invasion by down-regulating E-cadherin expression.

    PubMed

    So, Wai-Kin; Fan, Qianlan; Lau, Man-Tat; Qiu, Xin; Cheng, Jung-Chien; Leung, Peter C K

    2014-11-03

    Aberrant epidermal growth factor receptor (EGFR) activation is associated with ovarian cancer progression. In this study, we report that the EGFR ligand amphiregulin (AREG) stimulates cell invasion and down-regulates E-cadherin expression in two human ovarian cancer cell lines, SKOV3 and OVCAR5. In addition, AREG increases the expression of transcriptional repressors of E-cadherin including SNAIL, SLUG and ZEB1. siRNA targeting SNAIL or SLUG abolishes AREG-induced cell invasion. Moreover, ERK1/2 and AKT pathways are involved in AREG-induced E-cadherin down-regulation and cell invasion. Finally, we show that three EGFR ligands, AREG, epidermal growth factor (EGF) and transforming growth factor-α (TGF-α), exhibit comparable effects in down-regulating E-cadherin and promoting cell invasion. This study demonstrates that AREG induces ovarian cancer cell invasion by down-regulating E-cadherin expression.

  2. Lipid Desaturation Is a Metabolic Marker and Therapeutic Target of Ovarian Cancer Stem Cells.

    PubMed

    Li, Junjie; Condello, Salvatore; Thomes-Pepin, Jessica; Ma, Xiaoxiao; Xia, Yu; Hurley, Thomas D; Matei, Daniela; Cheng, Ji-Xin

    2017-03-02

    Lack of sensitive single-cell analysis tools has limited the characterization of metabolic activity in cancer stem cells. By hyperspectral-stimulated Raman scattering imaging of single living cells and mass spectrometry analysis of extracted lipids, we report here significantly increased levels of unsaturated lipids in ovarian cancer stem cells (CSCs) as compared to non-CSCs. Higher lipid unsaturation levels were also detected in CSC-enriched spheroids compared to monolayer cultures of ovarian cancer cell lines or primary cells. Inhibition of lipid desaturases effectively eliminated CSCs, suppressed sphere formation in vitro, and blocked tumor initiation capacity in vivo. Mechanistically, we demonstrate that nuclear factor κB (NF-κB) directly regulates the expression levels of lipid desaturases, and inhibition of desaturases blocks NF-κB signaling. Collectively, our findings reveal that increased lipid unsaturation is a metabolic marker for ovarian CSCs and a target for CSC-specific therapy.

  3. Targeting miR-21-3p inhibits proliferation and invasion of ovarian cancer cells.

    PubMed

    Báez-Vega, Perla M; Echevarría Vargas, Ileabett M; Valiyeva, Fatma; Encarnación-Rosado, Joel; Roman, Adriana; Flores, Josean; Marcos-Martínez, María J; Vivas-Mejía, Pablo E

    2016-06-14

    MicroRNA-21 is overexpressed in most cancers and has been implicated in tumorigenesis. Accumulating evidence supports a central role for the miR-21 guide strand (miR-21-5p) in ovarian cancer initiation, progression, and chemoresistance. However, there is limited information regarding the biological role of the miR-21 passenger strand (miR-21-3p) in ovarian cancer cells. The aim of this study was to investigate the role of miR-21-3p and its target genes in cisplatin-resistant ovarian cancer cells. Expression profiling of miR-21-5p and miR-21-3p was performed in a panel of cancer cells by qPCR. Colony formation and invasion assays were carried out on ovarian and prostate cancer cells transfected with miR-21-5p and miR-21-3p inhibitors. Dual luciferase reporter assays were used to identify the miR-21-3p target genes in ovarian cancer cells. Our results show that miR-21-5p had higher expression levels compared to miR-21-3p on a panel of cancer cells. Moreover, inhibition of miR-21-5p or miR-21-3p resulted in a significant decrease in ovarian and prostate cancer cell proliferation and invasion. Luciferase reporter assays identify RNA Binding Protein with Multiple Splicing (RBPMS), Regulator of Chromosome Condensation and POZ Domain Containing Protein 1 (RCBTB1), and Zinc Finger protein 608 (ZNF608) as miR-21-3p target genes. SiRNA-induced RBPMS silencing reduced the sensitivity of ovarian cancer cells to cisplatin treatment. Immunohistochemical analyses of serous ovarian cancer patient samples suggest a significant decrease of RBMPS levels when compared to normal ovarian epithelium. Taken together, the data generated in this study suggests a functional role for miR-21-3p in ovarian cancer and other solid tumors.

  4. Targeting miR-21-3p inhibits proliferation and invasion of ovarian cancer cells

    PubMed Central

    Báez-Vega, Perla M.; Vargas, Ileabett M. Echevarría; Valiyeva, Fatma; Encarnación-Rosado, Joel; Roman, Adriana; Flores, Josean; Marcos-Martínez, María J.; Vivas-Mejía, Pablo E.

    2016-01-01

    MicroRNA-21 is overexpressed in most cancers and has been implicated in tumorigenesis. Accumulating evidence supports a central role for the miR-21 guide strand (miR-21-5p) in ovarian cancer initiation, progression, and chemoresistance. However, there is limited information regarding the biological role of the miR-21 passenger strand (miR-21-3p) in ovarian cancer cells. The aim of this study was to investigate the role of miR-21-3p and its target genes in cisplatin-resistant ovarian cancer cells. Expression profiling of miR-21-5p and miR-21-3p was performed in a panel of cancer cells by qPCR. Colony formation and invasion assays were carried out on ovarian and prostate cancer cells transfected with miR-21-5p and miR-21-3p inhibitors. Dual luciferase reporter assays were used to identify the miR-21-3p target genes in ovarian cancer cells. Our results show that miR-21-5p had higher expression levels compared to miR-21-3p on a panel of cancer cells. Moreover, inhibition of miR-21-5p or miR-21-3p resulted in a significant decrease in ovarian and prostate cancer cell proliferation and invasion. Luciferase reporter assays identify RNA Binding Protein with Multiple Splicing (RBPMS), Regulator of Chromosome Condensation and POZ Domain Containing Protein 1 (RCBTB1), and Zinc Finger protein 608 (ZNF608) as miR-21-3p target genes. SiRNA-induced RBPMS silencing reduced the sensitivity of ovarian cancer cells to cisplatin treatment. Immunohistochemical analyses of serous ovarian cancer patient samples suggest a significant decrease of RBMPS levels when compared to normal ovarian epithelium. Taken together, the data generated in this study suggests a functional role for miR-21-3p in ovarian cancer and other solid tumors. PMID:27166999

  5. GALNT6 expression enhances aggressive phenotypes of ovarian cancer cells by regulating EGFR activity.

    PubMed

    Lin, Tzu-Chi; Chen, Syue-Ting; Huang, Min-Chuan; Huang, John; Hsu, Chia-Lang; Juan, Hsueh-Fen; Lin, Ho-Hsiung; Chen, Chi-Hau

    2017-03-28

    Ovarian cancer is the most lethal of the gynecologic malignancies. N-acetylgalactosaminyltransferase 6 (GALNT6), an enzyme that mediates the initial step of mucin type-O glycosylation, has been reported to regulate mammary carcinogenesis. However, the expression and role of GALNT6 in ovarian cancer are still unclear. Here we showed that high GALNT6 expression correlates with increased recurrence, lymph node metastasis, and chemoresistance in ovarian endometrioid and clear cell carcinomas; and higher GALNT6 levels are significantly associated with poorer patient survivals. GALNT6 knockdown with two independent siRNAs significantly suppressed viability, migration, and invasion of ovarian cancer cells. Using phospho-RTK array and Western blot analyses, we identified EGFR as a critical target of GALNT6. GALNT6 knockdown decreased phosphorylation of EGFR, whereas GALNT6 overexpression increased the phosphorylation. Lectin pull-down assays with Vicia villosa agglutinin (VVA) indicated that GALNT6 was able to modify O-glycans on EGFR. Moreover, the GALNT6-enhanced invasive behavior was significantly reversed by erlotinib, an EGFR inhibitor. Our results suggest that GALNT6 expression is associated with poor prognosis of ovarian cancer and enhances the aggressive behavior of ovarian cancer cells by regulating EGFR activity.

  6. Identification of inhibitors of ovarian cancer stem-like cells by high-throughput screening

    PubMed Central

    2012-01-01

    Background Ovarian cancer stem cells are characterized by self-renewal capacity, ability to differentiate into distinct lineages, as well as higher invasiveness and resistance to many anticancer agents. Since they may be responsible for the recurrence of ovarian cancer after initial response to chemotherapy, development of new therapies targeting this special cellular subpopulation embedded within bulk ovarian cancers is warranted. Methods A high-throughput screening (HTS) campaign was performed with 825 compounds from the Mechanistic Set chemical library [Developmental Therapeutics Program (DTP)/National Cancer Institute (NCI)] against ovarian cancer stem-like cells (CSC) using a resazurin-based cell cytotoxicity assay. Identified sets of active compounds were projected onto self-organizing maps to identify their putative cellular response groups. Results From 793 screening compounds with evaluable data, 158 were found to have significant inhibitory effects on ovarian CSC. Computational analysis indicates that the majority of these compounds are associated with mitotic cellular responses. Conclusions Our HTS has uncovered a number of candidate compounds that may, after further testing, prove effective in targeting both ovarian CSC and their more differentiated progeny. PMID:23078816

  7. Platelet adhesion and degranulation induce pro-survival and pro-angiogenic signalling in ovarian cancer cells.

    PubMed

    Egan, Karl; Crowley, Darragh; Smyth, Paul; O'Toole, Sharon; Spillane, Cathy; Martin, Cara; Gallagher, Michael; Canney, Aoife; Norris, Lucy; Conlon, Niamh; McEvoy, Lynda; Ffrench, Brendan; Stordal, Britta; Keegan, Helen; Finn, Stephen; McEneaney, Victoria; Laios, Alex; Ducrée, Jens; Dunne, Eimear; Smith, Leila; Berndt, Michael; Sheils, Orla; Kenny, Dermot; O'Leary, John

    2011-01-01

    Thrombosis is common in ovarian cancer. However, the interaction of platelets with ovarian cancer cells has not been critically examined. To address this, we investigated platelet interactions in a range of ovarian cancer cell lines with different metastatic potentials [HIO-80, 59M, SK-OV-3, A2780, A2780cis]. Platelets adhered to ovarian cancer cells with the most significant adhesion to the 59M cell line. Ovarian cancer cells induced platelet activation [P-selectin expression] in a dose dependent manner, with the most significant activation seen in response to the 59M cell line. The platelet antagonists [cangrelor, MRS2179, and apyrase] inhibited 59M cell induced activation suggesting a P2Y12 and P2Y1 receptor mediated mechanism of platelet activation dependent on the release of ADP by 59M cells. A2780 and 59M cells potentiated PAR-1, PAR-4, and TxA2 receptor mediated platelet activation, but had no effect on ADP, epinephrine, or collagen induced activation. Analysis of gene expression changes in ovarian cancer cells following treatment with washed platelets or platelet releasate showed a subtle but valid upregulation of anti-apoptotic, anti-autophagy pro-angiogenic, pro-cell cycle and metabolic genes. Thus, ovarian cancer cells with different metastatic potential adhere and activate platelets differentially while both platelets and platelet releasate mediate pro-survival and pro-angiogenic signals in ovarian cancer cells.

  8. MUC16 provides immune protection by inhibiting synapse formation between NK and ovarian tumor cells

    PubMed Central

    2010-01-01

    Background Cancer cells utilize a variety of mechanisms to evade immune detection and attack. Effective immune detection largely relies on the formation of an immune synapse which requires close contact between immune cells and their targets. Here, we show that MUC16, a heavily glycosylated 3-5 million Da mucin expressed on the surface of ovarian tumor cells, inhibits the formation of immune synapses between NK cells and ovarian tumor targets. Our results indicate that MUC16-mediated inhibition of immune synapse formation is an effective mechanism employed by ovarian tumors to evade immune recognition. Results Expression of low levels of MUC16 strongly correlated with an increased number of conjugates and activating immune synapses between ovarian tumor cells and primary naïve NK cells. MUC16-knockdown ovarian tumor cells were more susceptible to lysis by primary NK cells than MUC16 expressing controls. This increased lysis was not due to differences in the expression levels of the ligands for the activating receptors DNAM-1 and NKG2D. The NK cell leukemia cell line (NKL), which does not express KIRs but are positive for DNAM-1 and NKG2D, also conjugated and lysed MUC16-knockdown cells more efficiently than MUC16 expressing controls. Tumor cells that survived the NKL challenge expressed higher levels of MUC16 indicating selective lysis of MUC16low targets. The higher csMUC16 levels on the NKL resistant tumor cells correlated with more protection from lysis as compared to target cells that were never exposed to the effectors. Conclusion MUC16, a carrier of the tumor marker CA125, has previously been shown to facilitate ovarian tumor metastasis and inhibits NK cell mediated lysis of tumor targets. Our data now demonstrates that MUC16 expressing ovarian cancer cells are protected from recognition by NK cells. The immune protection provided by MUC16 may lead to selective survival of ovarian cancer cells that are more efficient in metastasizing within the peritoneal

  9. miR-494 inhibits ovarian cancer cell proliferation and promotes apoptosis by targeting FGFR2

    PubMed Central

    ZHAO, XIAOJUAN; ZHOU, YUN; CHEN, YU; YU, FENG

    2016-01-01

    MicroRNAs (miRs) have been reported to be key regulators in numerous types of cancer. The aim of the present study was to investigate the role of miR-494 in ovarian cancer. Expression of miR-494 was analyzed in ovarian cancer tissues and cell lines by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). miR-494 mimic or negative control was transiently transfected into A2780 and SKOV3 cell lines. A cell counting kit-8 assay was performed to assess the effects of miR-494 on cell proliferation, and flow cytometry was used to evaluate the apoptotic rate. The target gene of miR-494 was detected by luciferase assay. Expression of fibroblast growth factor receptor 2 (FGFR2) was identified using RT-qPCR and western blotting. In the present study, decreased expression of miR-494 was observed in ovarian cancer samples and cell lines. Overexpression of miR-494 inhibited ovarian cancer cell proliferation by inducing apoptosis. Additional investigation indicated that FGFR2 was a direct target of miR-494. Taken together, the results of the present study suggested that miR-494 suppressed ovarian cancer cell proliferation by inducing apoptosis via targeting FGFR2. PMID:27313773

  10. The fucosylated CD147 enhances the autophagy in epithelial ovarian cancer cells

    PubMed Central

    Hu, Zhenhua; Cai, Mingbo; Deng, Lu; Zhu, Liancheng; Gao, Jian; Tan, Mingzi; Liu, Juanjuan; Lin, Bei

    2016-01-01

    Autophagy is modulated by multiple factors including CD147, but little is know about the effects and mechanism by which the modification of CD147 by Lewis y antigen regulates autophagy of ovarian cancer cell. Here, we reported that Lewis y antigen can promote basic autophagy activity and restrain autophagic cell death in ovarian cancer cells. Furthermore, human whole genome expression profile microarrays and massage pathway analysis revealed that during early stages of autophagy in ovarian cancer cells with highly expressing Lewis y antigen, PI3K/Akt-mTOR activity was reduced, in contrast, the PI3K/Akt-mTOR signaling pathway was activated as the length of amino acid deprivation increased, which inhibited eIF4G2 expression, further decreased the transcription of autophagy-related genes, suppressed autophagic cell death. we also elaborated that co-regulates protein degradation in cells via the ubiquitin-proteasome system and the autophagy-lysosome pathway. These findings suggested that the modification of CD147 by Lewis y antigen enhanced the survival ability by promoting basic autophagy activity and restraining autophagic cell death in ovarian cancer, thus playing an important role in ovarian cancer malignant progression. PMID:27863372

  11. PTEN overexpression improves cisplatin-resistance of human ovarian cancer cells through upregulating KRT10 expression

    SciTech Connect

    Wu, Huijuan; Wang, Ke; Liu, Wenxin; Hao, Quan

    2014-02-07

    Highlights: • Overexpression of PTEN enhanced the sensitivity of C13K cells to cisplatin. • KRT10 is a downstream molecule of PTEN involved in the resistance-reversing effect. • Overexpression of KRT10 enhanced the chemosensitivity of C13K cells to cisplatin. - Abstract: Multi-drug resistance (MDR) is a common cause of the failure of chemotherapy in ovarian cancer. PTEN, a tumor suppressor gene, has been demonstrated to be able to reverse cisplatin-resistance in ovarian cancer cell line C13K. However, the downstream molecules of PTEN involved in the resistance-reversing effect have not been completely clarified. Therefore, we screened the downstream molecules of PTEN and studied their interactions in C13K ovarian cancer cells using a 3D culture model. Firstly, we constructed an ovarian cancer cell line stably expressing PTEN, C13K/PTEN. MTT assay showed that overexpression of PTEN enhanced the sensitivity of C13K cells to cisplatin, but not to paclitaxel. Then we examined the differently expressed proteins that interacted with PTEN in C13K/PTEN cells with or without cisplatin treatment by co-immunoprecipitation. KRT10 was identified as a differently expressed protein in cisplatin-treated C13K/PTEN cells. Further study confirmed that cisplatin could induce upregulation of KRT10 mRNA and protein in C13K/PTEN cells and there was a directly interaction between KRT10 and PTEN. Forced expression of KRT10 in C13K cells also enhanced cisplatin-induced proliferation inhibition and apoptosis of C13K cells. In addition, KRT10 siRNA blocked cisplatin-induced proliferation inhibition of C13K/PTEN cells. In conclusion, our data demonstrate that KRT10 is a downstream molecule of PTEN which improves cisplatin-resistance of ovarian cancer and forced KRT10 overexpression may also act as a therapeutic method for overcoming MDR in ovarian cancer.

  12. Cell-type-specific enrichment of risk-associated regulatory elements at ovarian cancer susceptibility loci

    PubMed Central

    Coetzee, Simon G.; Shen, Howard C.; Hazelett, Dennis J.; Lawrenson, Kate; Kuchenbaecker, Karoline; Tyrer, Jonathan; Rhie, Suhn K.; Levanon, Keren; Karst, Alison; Drapkin, Ronny; Ramus, Susan J.; Couch, Fergus J.; Offit, Kenneth; Chenevix-Trench, Georgia; Monteiro, Alvaro N.A.; Antoniou, Antonis; Freedman, Matthew; Coetzee, Gerhard A.; Pharoah, Paul D.P.; Noushmehr, Houtan; Gayther, Simon A.

    2015-01-01

    Understanding the regulatory landscape of the human genome is a central question in complex trait genetics. Most single-nucleotide polymorphisms (SNPs) associated with cancer risk lie in non-protein-coding regions, implicating regulatory DNA elements as functional targets of susceptibility variants. Here, we describe genome-wide annotation of regions of open chromatin and histone modification in fallopian tube and ovarian surface epithelial cells (FTSECs, OSECs), the debated cellular origins of high-grade serous ovarian cancers (HGSOCs) and in endometriosis epithelial cells (EECs), the likely precursor of clear cell ovarian carcinomas (CCOCs). The regulatory architecture of these cell types was compared with normal human mammary epithelial cells and LNCaP prostate cancer cells. We observed similar positional patterns of global enhancer signatures across the three different ovarian cancer precursor cell types, and evidence of tissue-specific regulatory signatures compared to non-gynecological cell types. We found significant enrichment for risk-associated SNPs intersecting regulatory biofeatures at 17 known HGSOC susceptibility loci in FTSECs (P = 3.8 × 10−30), OSECs (P = 2.4 × 10−23) and HMECs (P = 6.7 × 10−15) but not for EECs (P = 0.45) or LNCaP cells (P = 0.88). Hierarchical clustering of risk SNPs conditioned on the six different cell types indicates FTSECs and OSECs are highly related (96% of samples using multi-scale bootstrapping) suggesting both cell types may be precursors of HGSOC. These data represent the first description of regulatory catalogues of normal precursor cells for different ovarian cancer subtypes, and provide unique insights into the tissue specific regulatory variation with respect to the likely functional targets of germline genetic susceptibility variants for ovarian cancer. PMID:25804953

  13. Autotaxin Regulates Maintenance of Ovarian Cancer Stem Cells through Lysophosphatidic Acid-Mediated Autocrine Mechanism.

    PubMed

    Seo, Eun Jin; Kwon, Yang Woo; Jang, Il Ho; Kim, Dae Kyoung; Lee, Soo In; Choi, Eun Jung; Kim, Ki-Hyung; Suh, Dong-Soo; Lee, Jeong Hee; Choi, Kyung Un; Lee, Jae Won; Mok, Hyuck Jun; Kim, Kwang Pyo; Matsumoto, Hirotaka; Aoki, Junken; Kim, Jae Ho

    2016-03-01

    Ovarian cancer shows high mortality due to development of resistance to chemotherapy and relapse. Cancer stem cells (CSCs) have been suggested to be a major contributor in developing drug resistance and relapse in ovarian cancer. In this study, we isolated CSCs through sphere culture of A2780, SKOV3, OVCAR3 epithelial ovarian cancer cells and primary ovarian cancer cells from patients. We identified heat-stable factors secreted from ovarian CSCs stimulated migration and proliferation of CSCs. Mass spectrometry and ELISA analysis revealed that lysophosphatidic acid (LPA) was significantly elevated in CSC culture media compared with non-CSC culture media. Treatment of CSCs with LPA resulted in augmented CSC characteristics such as sphere-forming ability, resistance to anticancer drugs, tumorigenic potential in xenograft transplantation, and high expression of CSC-associated genes, including OCT4, SOX2, and aldehyde dehydrogenase 1. Treatment of CSCs with LPA receptor 1-specific inhibitors or silencing of LPA receptor 1 expression abrogated the LPA-stimulated CSC properties. Autotaxin, an LPA-producing enzyme, is highly secreted from ovarian CSCs, and pharmacological inhibition or knockdown of autotaxin markedly attenuated the LPA-producing, tumorigenic, and drug resistance potentials of CSCs. Clinicopathological analysis showed a significant survival disadvantage of patients with positive staining of autotaxin. In addition, we further identified that AKT1 activity was upregulated in ovarian CSCs through an LPA-dependent mechanism and silencing of AKT1 expression led to suppression of CSC characteristics. These results suggest that autotaxin-LPA-LPA receptor 1-AKT1 signaling axis is critical for maintaining CSC characteristics through an autocrine loop and provide a novel therapeutic target for ovarian CSCs.

  14. MicroRNA-873 mediates multidrug resistance in ovarian cancer cells by targeting ABCB1.

    PubMed

    Wu, Di-di; Li, Xue-Song; Meng, Xiao-Na; Yan, Jing; Zong, Zhi-Hong

    2016-08-01

    Ovarian cancer is commonly treated with cisplatin and paclitaxel combination chemotherapy; however, ovarian cancer cells often develop resistance to these drugs. Increasingly, microRNAs (miRNAs) including miR-873 have been implicated in drug resistance in many cancers, but the role of miR-873 in ovarian cancer remains unknown. MTT cell viability assays revealed that the sensitivities of ovarian cancer lines to cisplatin and paclitaxel increased following transfection with miR-873 (P < 0.05). After predicting the miR-873 binding region in the 3'-untranslated region of ABCB1, dual-luciferase reporter assay confirmed this prediction. RT-PCR and Western blotting revealed that MDR1 expression was significantly downregulated after transfection with miR-873 and upregulated after transfection with anti-miR-873 at both mRNA and protein levels compared to negative controls (P < 0.05). Experiments in a mouse xenograft model confirmed that intratumoral administration of miR-873 could enhance the efficacy of cisplatin in inhibiting tumor growth in ovarian cancer in vivo (P < 0.05). ABCB1 overexpression reduced sensitivities of ovarian cancer lines OVCAR3 and A2780 to cisplatin and paclitaxel, which can be reversed by miR-873 mimic transfection (P < 0.05). In summary, we demonstrated that overexpression of miR-873 increased the sensitivity of ovarian cancer cells to cisplatin and paclitaxel by targeting MDR1 expression. Our findings suggest that combination therapies with chemotherapy agents and miR-873 may suppress drug resistance in ovarian cancer.

  15. Used protocols for isolation and propagation of ovarian stem cells, different cells with different traits.

    PubMed

    Yazdekhasti, Hossein; Rajabi, Zahra; Parvari, Soraya; Abbasi, Mehdi

    2016-10-20

    Although existence of ovarian stem cells (OSCs) in mammalian postnatal ovary is still under controversy, however, it has been almost accepted that OSCs are contributing actively to folliculogenesis and neo-oogenesis. Recently, various methods with different efficacies have been employed for OSCs isolation from ovarian tissue, which these methods could be chosen depends on aim of isolation and accessible equipments and materials in lab. Although isolated OSCs from different methods have various traits and characterizations, which might become from their different nature and origin, however these stem cells are promising source for woman infertility treatment or source of energy for women with a history of repeat IVF failure in near future. This review has brought together and summarized currently used protocols for isolation and propagation of OSCs in vitro.

  16. Ovarian steroid cell tumor, not otherwise specified: A case report and literature review

    PubMed Central

    Qian, Lili; Shen, Zhen; Zhang, Xuefen; Wu, Dabao; Zhou, Ying

    2016-01-01

    Steroid cell tumors (SCT), not otherwise specified (NOS) are particularly rare ovarian sex cord-stromal tumors, which comprise <0.1% of all ovarian tumors. These tumors are uncommon in patients' prior to puberty without any typical syndromes involving hirsutism, virilization and hypertension. We here in present the case of a 5-year-old female patient who presented with sudden abdominal pain, repeated vomiting and a pelvic mass. Our patient underwent urgent exploratory laparotomy and right salpingo-oophorectomy and the histopathological examination revealed an ovarian SCT-NOS. The patient has been followed up for 5 years since the surgery, without evidence of disease recurrence. The purpose of this study was to discuss the available information on the presentation, diagnosis and recommended treatment of ovarian SCT-NOS; and describes the immunohistochemical characteristics of these tumors. PMID:28105366

  17. Seminal plasma regulates ovarian progesterone production, leukocyte recruitment and follicular cell responses in the pig.

    PubMed

    O'Leary, S; Jasper, M J; Robertson, S A; Armstrong, D T

    2006-07-01

    Seminal plasma (SP) acts to influence the uterine endometrium after mating, activating synthesis of embryotrophic cytokines and inflammatory changes that condition the tract for embryo implantation and establishing pregnancy. The objective of this study was to investigate in pigs whether the ovary might also be responsive to SP exposure. Prepubertal gilts were synchronised with exogenous gonadotrophins and received transcervical treatment with pooled boar SP or PBS; then the ovarian tissue was recovered at 34 h (preovulation) and on days 5 and 9 after treatment. The ovarian response was assessed by measuring ovulation rate, number and size of corpora lutea, ovarian leukocyte populations, progesterone production in vivo, as well as responses of retrieved granulosa cells cultured in vitro. In SP-treated gilts, leukocyte recruitment into the ovarian tissues was increased fourfold at 34 h, with macrophages comprising the most abundant cell lineage. There was no effect of SP on the number of oocytes ovulated; however, the weight of corpora lutea was increased in SP-treated gilts. SP also induced an increase in plasma progesterone content seen from day 5 to at least day 9 after treatment. In addition, granulosa cells and thecal tissue retrieved from preovulatory follicles of SP-treated gilts were more responsive in vitro to growth factor- and gonadotrophin-stimulated cell proliferation and progesterone synthesis. These results suggest that uterine exposure to SP influences immune cell trafficking in the ovary and enhances steroidogenesis in early pregnancy. The effects of SP on ovarian function potentially contribute to reproductive success in the pig.

  18. The side population of ovarian cancer cells defines a heterogeneous compartment exhibiting stem cell characteristics.

    PubMed

    Boesch, Maximilian; Zeimet, Alain G; Reimer, Daniel; Schmidt, Stefan; Gastl, Guenther; Parson, Walther; Spoeck, Franziska; Hatina, Jiri; Wolf, Dominik; Sopper, Sieghart

    2014-08-30

    Cancer stem cells (CSC) are believed to be involved in tumor evasion of classical antitumor therapies and have thus become an attractive target for further improvement of anticancer strategies. However, the existence and identity of CSC are still a matter of controversy. In a systematic screen of 13 ovarian cancer cell lines we show that cells with stem cell properties are reliably detectable as a minor population, characterized by ABC transporter expression resulting in the side population (SP) phenotype. In different cell lines, either ABCG2 or ABCB1 was found to be responsible for this effect. Purified SP cells featured virtually all characteristics of bona fide CSC, including clonogenicity, asymmetric division and high tumorigenicity in vivo. Using in-depth phenotyping by multicolor flow cytometry, we found that among the investigated ovarian cancer cell lines the SP compartment exhibits tremendous heterogeneity and is composed of multiple phenotypically distinct subpopulations. Thus, our study confirms previous results showing that CSC are contained within the SP. However, the exact identity of the CSC is still disguised by the high complexity of the CSC-containing compartment. Further functional studies are needed to determine whether a single cellular subset can unambiguously be defined as CSC or whether multiple stem cell-like cells with different properties coexist. Moreover, the observed heterogeneity may reflect a high level of plasticity and likely influences tumor progression, escape from immune-surveillance and development of resistance to anticancer therapies and should therefore be considered in the development of new treatment strategies.

  19. The side population of ovarian cancer cells defines a heterogeneous compartment exhibiting stem cell characteristics

    PubMed Central

    Boesch, Maximilian; Zeimet, Alain G.; Reimer, Daniel; Schmidt, Stefan; Gastl, Guenther; Parson, Walther; Spoeck, Franziska; Hatina, Jiri

    2014-01-01

    Cancer stem cells (CSC) are believed to be involved in tumor evasion of classical antitumor therapies and have thus become an attractive target for further improvement of anticancer strategies. However, the existence and identity of CSC are still a matter of controversy. In a systematic screen of 13 ovarian cancer cell lines we show that cells with stem cell properties are reliably detectable as a minor population, characterized by ABC transporter expression resulting in the side population (SP) phenotype. In different cell lines, either ABCG2 or ABCB1 was found to be responsible for this effect. Purified SP cells featured virtually all characteristics of bona fide CSC, including clonogenicity, asymmetric division and high tumorigenicity in vivo. Using in-depth phenotyping by multicolor flow cytometry, we found that among the investigated ovarian cancer cell lines the SP compartment exhibits tremendous heterogeneity and is composed of multiple phenotypically distinct subpopulations. Thus, our study confirms previous results showing that CSC are contained within the SP. However, the exact identity of the CSC is still disguised by the high complexity of the CSC-containing compartment. Further functional studies are needed to determine whether a single cellular subset can unambiguously be defined as CSC or whether multiple stem cell-like cells with different properties coexist. Moreover, the observed heterogeneity may reflect a high level of plasticity and likely influences tumor progression, escape from immune-surveillance and development of resistance to anticancer therapies and should therefore be considered in the development of new treatment strategies. PMID:25216521

  20. Ovarian cancer stem cells express ROR1, which can be targeted for anti-cancer-stem-cell therapy.

    PubMed

    Zhang, Suping; Cui, Bing; Lai, Hsien; Liu, Grace; Ghia, Emanuela M; Widhopf, George F; Zhang, Zhuhong; Wu, Christina C N; Chen, Liguang; Wu, Rongrong; Schwab, Richard; Carson, Dennis A; Kipps, Thomas J

    2014-12-02

    Although initially responsive to chemotherapy, many patients with ovarian cancer subsequently develop relapsed and potentially fatal metastatic disease, which is thought to develop from cancer stem cells (CSCs) that are relatively resistant to conventional therapy. Here, we show that CSCs express a type I receptor tyrosine kinase-like orphan receptor (ROR1), which is expressed during embryogenesis and by many different cancers, but not normal postpartum tissues. Ovarian cancers with high levels of ROR1 had stem cell-like gene-expression signatures. Furthermore, patients with ovarian cancers with high levels of ROR1 had higher rates of relapse and a shorter median survival than patients with ovarian cancers that expressed low-to-negligible amounts of ROR1. We found that ROR1-positive (ROR1(+)) cells isolated from primary tumor-derived xenografts (PDXs) also expressed aldehyde dehydrogenase 1 (ALDH1) and had a greater capacity to form spheroids and to engraft immune-deficient mice than did ROR1-negative (ROR1(Neg)) ovarian cancer cells isolated from the same tumor population. Treatment with UC-961, an anti-ROR1 mAb, or shRNA silencing of ROR1 inhibited expression of the polycomb ring-finger oncogene, Bmi-1, and other genes associated with the epithelial-mesenchymal transition. Moreover, shRNA silencing of ROR1, depletion of ROR1(+) cells, or treatment with UC-961 impaired the capacity of ovarian cancer cells to form spheroids or tumor xenografts. More importantly, treatment with anti-ROR1 affected the capacity of the xenograft to reseed a virgin mouse, indicating that targeting ROR1 may affect CSC self-renewal. Collectively, these studies indicate that ovarian CSCs express ROR1, which contributes to their capacity to form tumors, making ROR1 a potential target for the therapy of patients with ovarian cancer.

  1. Germline cells in ovarian surface epithelium of mammalians: a promising notion

    PubMed Central

    2012-01-01

    It is a long held doctrine in reproductive biology that women are born with a finite number of oocytes and there is no oogenesis during the postnatal period. However, recent evidence challenges this by showing the presence of germ line stem cells in the human ovarian surface epithelium (OSE), which can serve as a source of germ cells, and differentiate into oocyte like structures. Postnatal renewal of oocytes may have enormous therapeutic potential especially in women facing the risk of premature ovarian failure idiopathically or iatrogenically after exposure to gonadotoxic chemotherapy and radiation for cancer therapy. This article reviews current knowledge on germ line stem cells in human OSE. PMID:23245287

  2. Guidance of Signaling Activations by Cadherins and Integrins in Epithelial Ovarian Cancer Cells

    PubMed Central

    Roggiani, Francesca; Mezzanzanica, Delia; Rea, Katia; Tomassetti, Antonella

    2016-01-01

    Epithelial ovarian cancer (EOC) is the deadliest tumor among gynecological cancer in the industrialized countries. The EOC incidence and mortality have remained unchanged over the last 30 years, despite the progress in diagnosis and treatment. In order to develop novel and more effective therapeutic approaches, the molecular mechanisms involved in EOC progression have been thoroughly investigated in the last few decades. At the late stage, peritoneal metastases originate from the attachment of small clusters of cancer cells that shed from the primary site and carried by the ascites adhere to the abdominal peritoneum or omentum. This behavior suggests that cell–cell or cell–matrix adhesion mechanisms regulate EOC growth and dissemination. Complex downstream signalings, which might be influenced by functional cross-talk between adhesion molecules and co-expressed and activated signaling proteins, can affect the proliferation/survival and the migration/invasion of EOC cells. This review aimed to define the impact of the mechanisms of cell–cell, through cadherins, and cell–extracellular matrix adhesion, through integrins, on the signaling cascades induced by membrane receptors and cytoplasmic proteins known to have a role in the proliferation, migration and invasion of EOC cells. Finally, some novel approaches using peptidomimetic ligands to cadherin and integrins are summarized. PMID:27563880

  3. GEP oncogene promotes cell proliferation through YAP activation in ovarian cancer.

    PubMed

    Yagi, H; Asanoma, K; Ohgami, T; Ichinoe, A; Sonoda, K; Kato, K

    2016-08-25

    G-protein-coupled receptors (GPCRs) and their ligands function in the progression of human malignancies. Gα12 and Gα13, encoded by GNA12 and GNA13, respectively, are referred to as the GEP oncogene and are implicated in tumor progression. However, the molecular mechanisms by which Gα12/13 activation promotes cancer progression are not fully elucidated. Here, we demonstrate elevated expression of Gα12/13 in human ovarian cancer tissues. Gα12/13 activation did not promote cellular migration in the ovarian cancer cell lines examined. Rather, Gα12/13 activation promoted cell growth. We used a synthetic biology approach using chimeric G proteins and GPCRs activated solely by artificial ligands to selectively trigger signaling pathways downstream of specific G proteins. We found that Gα12/13 promotes proliferation of ovarian cancer cells by activating the transcriptional coactivator YAP, a critical component of the Hippo signaling pathway. Furthermore, we reveal that inhibition of YAP by short hairpin RNA or a specific inhibitor prevented the growth of ovarian cancer cells. Therefore, YAP may be a suitable therapeutic target in ovarian cancer.

  4. Establishment of an orthotopic transplantation tumor model in nude mice using a drug-resistant human ovarian cancer cell line with a high expression of c-Kit.

    PubMed

    Yi, Cunjian; Zhang, Lei; Li, Li; Liu, Xiangqiong; Ling, Shengrong; Zhang, Fayun; Liang, Wei

    2014-12-01

    The resistance of ovarian cancer to platinum-based chemotherapy is a critical issue in the clinical setting. The present study aimed to establish animal models to replicate this clinical condition, as well as to investigate the resistance mechanisms of ovarian cancer. A cisplatin (DDP)-resistant human ovarian cancer cell line, SKOV3/DDP, was screened, validated and injected subcutaneously into the neck of female nude mice. Following tumor establishment, the tumor was collected and cut into small sections, which were subsequently implanted into the ovaries of other nude mice. The growth of the orthotopic tumors was observed and the tumor-bearing mice were sacrificed and dissected. The orthotopic and metastatic tumor tissues were collected, sectioned, stained with hematoxylin and eosin and analyzed. In the present study, 16 nude mice underwent orthotopic transplantation surgery and a tumor model was successfully established in 14/16 of the mice, with an in situ tumor formation rate of 87.5%. Following euthanasia, a laparotomy demonstrated the tumor formation at the site of transplantation, as well as varying degrees of metastasis to additional organs and tissues. Therefore, the present study successfully established an orthotopic tumor transplantation model in nude mice using a c-Kit-positive DDP-resistant human ovarian cancer cell line. This model may represent a useful tool for investigating the resistance mechanism of ovarian cancer, as well as evaluating the efficacy of therapeutic strategies.

  5. ARID1A gene silencing reduces the sensitivity of ovarian clear cell carcinoma to cisplatin

    PubMed Central

    Lyu, Changshuai; Zhang, Yinglan; Zhou, Xingnan; Lang, Jinghe

    2016-01-01

    In ovarian clear cell carcinoma (OCCC), the mutation rate of the AT-rich interaction domain 1A (ARID1A) gene is 46–57%. However, the effects of ARID1A gene silencing by small interfering RNA (siRNA) on the sensitivity of OCCC to cisplatin have not been investigated. Thus, this study aimed to elucidate the association between ARID1A gene silencing and drug resistance in OCCC. Three pairs of ARID1A gene siRNA fragments (siRNA-1, siRNA-2 and siRNA-3) were designed and transiently transfected into ES2 OCCC cells using RNAi Max reagent. Western blotting results demonstrated that the transfection reduced ARID1A protein expression levels, with the siRNA-3 group having the lowest levels. The IC50 value, determined using a Cell Counting kit-8 assay, was significantly increased by siRNA-3 transfection compared with that in blank control and negative control groups. The cell survival rate following treatment with 50 µM cisplatin for 48 h was significantly increased in the siRNA-3 group compared with the blank control and negative control groups. Flow cytometric analysis revealed that the apoptosis rate for cisplatin-treated cells was significantly lower in cells with siRNA-3 transfection than in those without, and the apoptosis rate in siRNA-3-transfected cells was lower than that in the negative control group. Western blot analysis showed that the expression level of AKT in cisplatin-treated cells was significantly decreased compared with that in the negative control group, and the AKT expression level in cisplatin-treated cells was significantly higher with siRNA-3 transfection than without. Therefore, the results demonstrated that ARID1A siRNA efficiently decreased ARID1A expression, which reduced cisplatin chemosensitivity and cell apoptosis in ES2 OCCC cells via the regulation of AKT expression. PMID:28105136

  6. Magnetic Resonance Imaging Characteristics of Ovarian Clear Cell Carcinoma

    PubMed Central

    Wang, Wei; Ding, Jianhui; Zhu, Xiaoli; Li, Yuan; Gu, Yajia; Peng, Weijun

    2015-01-01

    Purpose To probe the magnetic resonance imaging (MRI) features of ovarian clear cell carcinoma (OCCC). Methods This study retrospectively collected MRI data for 21 pathology-confirmed OCCCs from 19 female patients. The MRI findings were analyzed to determine the tumor size, shape/edge, shape and number of protrusions within the cyst, cystic or necrotic components, signal intensity (SI) and enhancement features. Results The age of the 19 patients ranged from 28 to 63 years (mean age: 53 years). Unilateral tumors were found in 17 patients (17/19, 89%); the average size of all tumors was 10.8 cm. The tumors on MRI were classified into two categories: (a) “cystic adnexal mass with solid protrusions” in 12 (57%) and (b) “solid adnexal mass with cystic areas or necrosis” in 9 (43%). For group a, high to very high SI was observed for most tumors (10/12, 83%) on T1-weighted images (T1WIs), and very high SI was observed on T2-weighted images (T2WIs) for all 12 tumors. Most solid protrusions were irregular and few in number and exhibited heterogeneous intermediate SI on T1WIs and T2WIs and prolonged enhanced SI in the contrast study. All 9 OCCCs in group b were predominantly solid masses with unequally sized necrotic or cystic areas in which some cysts were located at the periphery of the tumor (4/9, 44%). The solid components in all 9 tumors showed iso- or slightly high SI on T1WIs, heterogeneous iso-high SI on T2WIs and heterogeneous prolonged enhancement. According to FIGO classification, 14 tumors (14/19, 74%) were stages I-II, and 5 (5/19, 26%) were stages III-IV. Conclusions On MRI, OCCCs present as large unilateral multilocular or unilocular cystic masses with irregular intermediate SI solid protrusions or predominantly solid masses with cysts or necrosis at an early FIGO stage. PMID:26161555

  7. MiR-145 is downregulated in human ovarian cancer and modulates cell growth and invasion by targeting p70S6K1 and MUC1

    SciTech Connect

    Wu, Huijuan; Xiao, ZhengHua; Wang, Ke; Liu, Wenxin; Hao, Quan

    2013-11-29

    Highlights: •MiR-145 is downregulated in human ovarian cancer. •MiR-145 targets p70S6K1 and MUC1. •p70S6K1 and MUC1 are involved in miR-145 mediated tumor cell growth and cell invasion, respectively. -- Abstract: MicroRNAs (miRNAs) are a family of small non-coding RNA molecules that regulate gene expression at post-transcriptional levels. Previous studies have shown that miR-145 is downregulated in human ovarian cancer; however, the roles of miR-145 in ovarian cancer growth and invasion have not been fully demonstrated. In the present study, Northern blot and qRT-PCR analysis indicate that miR-145 is downregulated in ovarian cancer tissues and cell lines, as well as in serum samples of ovarian cancer, compared to healthy ovarian tissues, cell lines and serum samples. Functional studies suggest that miR-145 overexpression leads to the inhibition of colony formation, cell proliferation, cell growth viability and invasion, and the induction of cell apoptosis. In accordance with the effect of miR-145 on cell growth, miR-145 suppresses tumor growth in vivo. MiR-145 is found to negatively regulate P70S6K1 and MUC1 protein levels by directly targeting their 3′UTRs. Importantly, the overexpression of p70S6K1 and MUC1 can restore the cell colony formation and invasion abilities that are reduced by miR-145, respectively. MiR-145 expression is increased after 5-aza-CdR treatment, and 5-aza-CdR treatment results in the same phenotype as the effect of miR-145 overexpression. Our study suggests that miR-145 modulates ovarian cancer growth and invasion by suppressing p70S6K1 and MUC1, functioning as a tumor suppressor. Moreover, our data imply that miR-145 has potential as a miRNA-based therapeutic target for ovarian cancer.

  8. Epithelialization of mouse ovarian tumor cells originating in the fallopian tube stroma

    PubMed Central

    Hua, Yuanyuan; Choi, Pui-Wah; Trachtenberg, Alexander J.; Ng, Allen C.; Kuo, Winston P.; Ng, Shu-Kay; Dinulescu, Daniela M.; Matzuk, Martin M.; Berkowitz, Ross S.; Ng, Shu-Wing

    2016-01-01

    Epithelial ovarian carcinoma accounts for 90% of all ovarian cancer and is the most deadly gynecologic malignancy. Recent studies have suggested that fallopian tube fimbriae can be the origin of cells for high-grade serous subtype of epithelial ovarian carcinoma (HGSOC). A mouse HGSOC model with conditional Dicer-Pten double knockout (Dicer-Pten DKO) developed primary tumors, intriguingly, from the fallopian tube stroma. We examined the growth and epithelial phenotypes of the Dicer-Pten DKO mouse tumor cells contributable by each gene knockout. Unlike human ovarian epithelial cancer cells that expressed full-length E-cadherin, the Dicer-Pten DKO stromal tumor cells expressed cleaved E-cadherin fragments and metalloproteinase 2, a mixture of epithelial and mesenchymal markers. Although the Dicer-Pten DKO tumor cells lost the expression of mature microRNAs as expected, they showed high levels of tRNA fragment expression and enhanced AKT activation due to the loss of PTEN function. Introduction of a Dicer1-expressing construct into the DKO mouse tumor cells significantly reduced DNA synthesis and the cell growth rate, with concurrent diminished adhesion and ZO1 epithelial staining. Hence, it is likely that the loss of Dicer promoted mesenchymal-epithelial transition in fallopian tube stromal cells, and in conjunction with Pten loss, further promoted cell proliferation and epithelial-like tumorigenesis. PMID:27602775

  9. Apoptotic effects of salinomycin on human ovarian cancer cell line (OVCAR-3).

    PubMed

    Kaplan, Fuat; Teksen, Fulya

    2016-03-01

    In this study, we studied the apoptotic and cytotoxic effects of salinomycin on human ovarian cancer cell line (OVCAR-3) as salinomycin is known as a selectively cancer stem cell killer agent. We used immortal human ovarian epithelial cell line (IHOEC) as control group. Ovarian cancer cells and ovarian epithelial cells were treated by different concentrations of salinomycin such as 0.1, 1, and 40 μM and incubated for 24, 48, and 72 h. Dimethylthiazol (MTT) cell viability assay was performed to determine cell viability and toxicity. On the other hand, the expression levels of some of the apoptosis-related genes, namely anti-apoptotic Bcl-2, apoptotic Bax, and Caspase-3 were determined by quantitative real-time polymerase chain reaction (qRT-PCR). Additionally, Caspase-3 protein level was also determined. As a result, we concluded that incubation of human OVCAR-3 by 0.1 μM concentration of salinomycin for 24 h killed 40 % of the cancer cells by activating apoptosis but had no effect on normal cells. The apoptotic Bax gene expression was upregulated but anti-apoptotic Bcl-2 gene expression was downregulated. Active Caspase-3 protein level was increased significantly (p < 0.05).

  10. Induction of ATM/ATR pathway combined with Vγ2Vδ2 T cells enhances cytotoxicity of ovarian cancer cells.

    PubMed

    Lu, Jingwei; Das, Manjusri; Kanji, Suman; Aggarwal, Reeva; Joseph, Matthew; Ray, Alo; Shapiro, Charles L; Pompili, Vincent J; Das, Hiranmoy

    2014-07-01

    Many ovarian cancer cells express stress-related molecule MICA/B on their surface that is recognized by Vγ2Vδ2 T cells through their NKG2D receptor, which is transmitted to downstream stress-signaling pathway. However, it is yet to be established how Vγ2Vδ2 T cell-mediated recognition of MICA/B signal is transmitted to downstream stress-related molecules. Identifying targeted molecules would be critical to develop a better therapy for ovarian cancer cells. It is well established that ATM/ATR signal transduction pathways, which is modulated by DNA damage, replication stress, and oxidative stress play central role in stress signaling pathway regulating cell cycle checkpoint and apoptosis. We investigated whether ATM/ATR and its down stream molecules affect Vγ2Vδ2 T cell-mediated cytotoxicity. Herein, we show that ATM/ATR pathway is modulated in ovarian cancer cells in the presence of Vγ2Vδ2 T cells. Furthermore, downregulation of ATM pathway resulted downregulation of MICA, and reduced Vγ2Vδ2 T cell-mediated cytotoxicity. Alternately, stimulating ATM pathway enhanced expression of MICA, and sensitized ovarian cancer cells for cytotoxic lysis by Vγ2Vδ2 T cells. We further show that combining currently approved chemotherapeutic drugs, which induced ATM signal transduction, along with Vγ2Vδ2 T cells enhanced cytotoxicity of resistant ovarian cancer cells. These findings indicate that ATM/ATR pathway plays an important role in tumor recognition, and drugs promoting ATM signaling pathway might be considered as a combination therapy together with Vγ2Vδ2 T cells for effectively treating resistant ovarian cancer cells.

  11. Gene transfer in ovarian cancer cells: a comparison between retroviral and lentiviral vectors.

    PubMed

    Indraccolo, Stefano; Habeler, Walter; Tisato, Veronica; Stievano, Laura; Piovan, Erich; Tosello, Valeria; Esposito, Giovanni; Wagner, Ralf; Uberla, Klaus; Chieco-Bianchi, Luigi; Amadori, Alberto

    2002-11-01

    Local gene therapy could be a therapeutic option for ovarian carcinoma, a life-threatening malignancy, because of disease containment within the peritoneal cavity in most patients. Lentiviral vectors, which are potentially capable of stable transgene expression, may be useful to vehicle therapeutic molecules requiring long-term production in these tumors. To investigate this concept, we used lentiviral vectors to deliver the enhanced green fluorescent protein (EGFP) gene to ovarian cancer cells. Their efficiency of gene transfer was compared with that of a retroviral vector carrying the same envelope. In vitro, both vectors infected ovarian cancer cells with comparable efficiency under standard culture conditions; however, the lentiviral vector was much more efficient in transducing growth-arrested cells when compared with the retroviral vector. Gene transfer was fully neutralized by an anti-VSV-G antibody, and in vitro stability was similar. In vivo, the lentiviral vector delivered the transgene 10-fold more efficiently to ovarian cancer cells growing i.p. in SCID mice, as evaluated by real-time PCR analysis of the tumors. Confocal microscopy analysis of tumor sections showed a dramatic difference at the level of transgene expression, because abundant EGFP(+) cells were detected only in mice receiving the lentiviral vector. Quantitative analysis by flow cytometry confirmed this and indicated 0.05 and 5.6% EGFP(+) tumor cells after administration of the retroviral and lentiviral vector, respectively. Injection of ex vivo transduced tumor cells, sorted for EGFP expression, indicated that the lentiviral vector was considerably more resistant to in vivo silencing in comparison with the retroviral vector. Finally, multiple administrations of a murine IFN-alpha(1)-lentiviral vector to ovarian carcinoma-bearing mice significantly prolonged the animals' survival, indicating the therapeutic efficacy of this approach. These findings indicate that lentiviral vectors deserve

  12. Expression of Siglec-11 by human and chimpanzee ovarian stromal cells, with uniquely human ligands: implications for human ovarian physiology and pathology.

    PubMed

    Wang, Xiaoxia; Chow, Renee; Deng, Liwen; Anderson, Dan; Weidner, Noel; Godwin, Andrew K; Bewtra, Chanda; Zlotnik, Albert; Bui, Jack; Varki, Ajit; Varki, Nissi

    2011-08-01

    Siglecs (Sialic acid-binding Immunoglobulin Superfamily Lectins) are cell surface signaling receptors of the I-type lectin group that recognize sialic acid-bearing glycans. CD33-related-Siglecs are a subset with expression primarily in cells of hematopoietic origin and functional relevance to immune reactions. Earlier we reported a human-specific gene conversion event that markedly changed the coding region for the extracellular domain of Siglec-11, associated with human-specific expression in microglia (Hayakawa T, Angata T, Lewis AL, Mikkelsen TS, Varki NM, Varki A. 2005. A human-specific gene in microglia. Science. 309:1693). Analyzing human gene microarrays to define new patterns of expression, we observed high levels of SIGLEC11 transcript in the ovary and adrenal cortex. Thus, we examined human and chimpanzee tissues using a well-characterized anti-Siglec-11 mouse monoclonal antibody. Although adrenal expression was variable and confined to infiltrating macrophages in capillaries, ovarian expression of Siglec-11 in both humans and chimpanzees was on fibroblasts, the first example of Siglec expression on mesenchyme-derived stromal cells. Cytokines from such ovarian stromal fibroblasts play important roles in follicle development and ovulation. Stable transfection of SIGLEC11 into a primary human ovarian stromal fibroblast cell line altered the secretion of growth-regulated oncogene α, interleukin (IL)-10, IL-7, transforming growth factor β1 and tumor necrosis factor-α, cytokines involved in ovarian physiology. Probing for Siglec-11 ligands revealed distinct and strong mast cell expression in human ovaries, contrasting to diffuse stromal ligands in chimpanzee ovaries. Interestingly, there was a trend of increased Siglec-11 expression in post-menopausal ovaries compared with pre-menopausal ones. Siglec-11 expression was also found on human ovarian stromal tumors and in polycystic ovarian syndrome, a human-specific disease. These results indicate potential

  13. Expression of Siglec-11 by human and chimpanzee ovarian stromal cells, with uniquely human ligands: implications for human ovarian physiology and pathology

    PubMed Central

    Wang, Xiaoxia; Chow, Renee; Deng, Liwen; Anderson, Dan; Weidner, Noel; Godwin, Andrew K; Bewtra, Chanda; Zlotnik, Albert; Bui, Jack; Varki, Ajit; Varki, Nissi

    2011-01-01

    Siglecs (Sialic acid-binding Immunoglobulin Superfamily Lectins) are cell surface signaling receptors of the I-type lectin group that recognize sialic acid-bearing glycans. CD33-related-Siglecs are a subset with expression primarily in cells of hematopoietic origin and functional relevance to immune reactions. Earlier we reported a human-specific gene conversion event that markedly changed the coding region for the extracellular domain of Siglec-11, associated with human-specific expression in microglia (Hayakawa T, Angata T, Lewis AL, Mikkelsen TS, Varki NM, Varki A. 2005. A human-specific gene in microglia. Science. 309:1693). Analyzing human gene microarrays to define new patterns of expression, we observed high levels of SIGLEC11 transcript in the ovary and adrenal cortex. Thus, we examined human and chimpanzee tissues using a well-characterized anti-Siglec-11 mouse monoclonal antibody. Although adrenal expression was variable and confined to infiltrating macrophages in capillaries, ovarian expression of Siglec-11 in both humans and chimpanzees was on fibroblasts, the first example of Siglec expression on mesenchyme-derived stromal cells. Cytokines from such ovarian stromal fibroblasts play important roles in follicle development and ovulation. Stable transfection of SIGLEC11 into a primary human ovarian stromal fibroblast cell line altered the secretion of growth-regulated oncogene α, interleukin (IL)-10, IL-7, transforming growth factor β1 and tumor necrosis factor-α, cytokines involved in ovarian physiology. Probing for Siglec-11 ligands revealed distinct and strong mast cell expression in human ovaries, contrasting to diffuse stromal ligands in chimpanzee ovaries. Interestingly, there was a trend of increased Siglec-11 expression in post-menopausal ovaries compared with pre-menopausal ones. Siglec-11 expression was also found on human ovarian stromal tumors and in polycystic ovarian syndrome, a human-specific disease. These results indicate potential

  14. Overexpression of miRNA-221 promotes cell proliferation by targeting the apoptotic protease activating factor-1 and indicates a poor prognosis in ovarian cancer

    PubMed Central

    Li, Jie; Li, Qiang; Huang, He; Li, Yinguang; Li, Li; Hou, Wenhui; You, Zeshan

    2017-01-01

    MicroRNAs are a class of small non-coding, endogenous RNAs involved in cancer development and progression. MicroRNA-221 (mir-221) has been reported to have both an oncogenic and tumor-suppressive role in human tumors, but the role of miR-221 in ovarian cancer is poorly understood. In the present study, the expression levels of miR-221 and the apoptosis protease activating factor 1 (APAF1) protein in 63 samples of ovarian cancer tissues and the cell lines, IOSE25, A2780, OVCAR3, SKOV3 and 3AO were detected by quantitative reverse-transcription polymerase chain reaction (qRT-PCR) and western blot analysis, respectively. Cell proliferation was measured using Cell Counting kit-8 (CCK-8); cell migration and invasion were detected using a Transwell assay; cell apoptosis was evaluated by flow cytometry and Hoechst staining, and a luciferase assay was performed to verify a putative target site of miR-221 in the 3′-UTR of APAF1 mRNA. Expression of miR-221 was upregulated in ovarian cancer tissues. Patients with increased miR-221 expression levels had a reduced disease-free survival (P=0.0014) and overall survival (P=0.0058) compared with those with low miR-221 expression. Transfection of SKOV3 and A2780 cell lines with miR-221 inhibitor induced APAF1 protein expression, suppressed cell proliferation and migration and promoted tumor cell apoptosis. In conclusion, the APAF1 gene was confirmed as a direct target of miR-221 and overexpression of APAF1 suppressed ovarian cancer cell proliferation and induced cell apoptosis in vitro. These findings indicate that miR-221-APAF1 should be studied further as a potential new diagnostic or prognostic biomarker for ovarian cancer. PMID:28350128

  15. Synergistic cytotoxic action of cisplatin and withaferin A on ovarian cancer cell lines

    PubMed Central

    Kakar, Sham S.; Jala, Venkatakrishna R.; Fong, Miranda Y.

    2012-01-01

    Cisplatin derivatives are used as the mainline treatment of ovarian cancer, despite their severe side effects and development of resistance. We developed a novel combination therapy by combining cisplatin with withaferin A. Treatment of ovarian cancer cell lines with combination therapy acted synergistically to induce cell death, thus required a lower dose of cisplatin to achieve the same therapeutic effect. WFA and cisplatin combination induced cell death through the generation of reactive oxygen species (ROS) for WFA, while DNA damage for cisplatin, suggesting that cisplatin binds directly to DNA to form adducts while WFA indirectly damages DNA through ROS generation. Our results for the first time suggest that combining low dose of cisplatin with suboptimal dose of WFA can serve as a potential combination therapy for the treatment of ovarian cancer with the potential to minimize/eliminate the side effects associated with high doses of cisplatin. PMID:22713472

  16. Proteasome Inhibitor YSY01A Enhances Cisplatin Cytotoxicity in Cisplatin-Resistant Human Ovarian Cancer Cells

    PubMed Central

    Huang, Wei; Zhou, Quan; Yuan, Xia; Ge, Ze-mei; Ran, Fu-xiang; Yang, Hua-yu; Qiang, Guang-liang; Li, Run-tao; Cui, Jing-rong

    2016-01-01

    Cisplatin is one of the most common drugs used for treatment of solid tumors such as ovarian cancer. Unfortunately, the development of resistance against this cytotoxic agent limits its clinical use. Here we report that YSY01A, a novel proteasome inhibitor, is capable of suppressing survival of cisplatin-resistant ovarian cancer cells by inducing apoptosis. And YSY01A treatment enhances the cytotoxicity of cisplatin in drug-resistant ovarian cancer cells. Specifically, YSY01A abrogates regulatory proteins important for cell proliferation and anti-apoptosis including NF-κB p65 and STAT3, resulting in down-regulation of Bcl-2. A dramatic increase in cisplatin uptake was also observed by inductively coupled plasma-mass spectrometry following exposure to YSY01A. Taken together, YSY01A serves as a potential candidate for further development as anticancer therapeutics targeting the proteasome. PMID:27326257

  17. ABCF2, an Nrf2 target gene, contributes to cisplatin resistance in ovarian cancer cells.

    PubMed

    Bao, Lingjie; Wu, Jianfa; Dodson, Matthew; Rojo de la Vega, Elisa Montserrat; Ning, Yan; Zhang, Zhenbo; Yao, Ming; Zhang, Donna D; Xu, Congjian; Yi, Xiaofang

    2017-01-23

    Previously, we have demonstrated that NRF2 plays a key role in mediating cisplatin resistance in ovarian cancer. To further explore the mechanism underlying NRF2-dependent cisplatin resistance, we stably overexpressed or knocked down NRF2 in parental and cisplatin-resistant human ovarian cancer cells, respectively. These two pairs of stable cell lines were then subjected to microarray analysis, where we identified 18 putative NRF2 target genes. Among these genes, ABCF2, a cytosolic member of the ABC superfamily of transporters, has previously been reported to contribute to chemoresistance in clear cell ovarian cancer. A detailed analysis on ABCF2 revealed a functional antioxidant response element (ARE) in its promoter region, establishing ABCF2 as an NRF2 target gene. Next, we investigated the contribution of ABCF2 in NRF2-mediated cisplatin resistance using our stable ovarian cancer cell lines. The NRF2-overexpressing cell line, containing high levels of ABCF2, was more resistant to cisplatin-induced apoptosis compared to its control cell line; whereas the NRF2 knockdown cell line with low levels of ABCF2, was more sensitive to cisplatin treatment than its control cell line. Furthermore, transient overexpression of ABCF2 in the parental cells decreased apoptosis and increased cell viability following cisplatin treatment. Conversely, knockdown of ABCF2 using specific siRNA notably increased apoptosis and decreased cell viability in cisplatin-resistant cells treated with cisplatin. This data indicates that the novel NRF2 target gene, ABCF2, plays a critical role in cisplatin resistance in ovarian cancer, and that targeting ABCF2 may be a new strategy to improve chemotherapeutic efficiency. This article is protected by copyright. All rights reserved.

  18. Diabetic concentrations of metformin inhibit platelet-mediated ovarian cancer cell progression.

    PubMed

    Erices, Rafaela; Cubillos, Sofía; Aravena, Raúl; Santoro, Felice; Marquez, Monica; Orellana, Renan; Ramírez, Carolina; González, Pamela; Fuenzalida, Patricia; Bravo, María Loreto; Oliva, Bárbara; Kato, Sumie; Ibañez, Carolina; Brañes, Jorge; Bravo, Erasmo; Alonso, Catalina; García, Karen; Arab, Clemente; Torres, Vicente A; Godoy, Alejandro S; Pereira, Jaime; Bustos, Galdo; Cardenas, Julio Cesar; Cuello, Mauricio A; Owen, Gareth I

    2017-02-15

    Clinical studies have suggested a survival benefit in ovarian cancer patients with type 2 diabetes mellitus taking metformin, however the mechanism by which diabetic concentrations of metformin could deliver this effect is still poorly understood. Platelets not only represent an important reservoir of growth factors and angiogenic regulators, they are also known to participate in the tumor microenvironment implicated in tumor growth and dissemination. Herein, we investigated if diabetic concentrations of metformin could impinge upon the previously reported observation that platelet induces an increase in the tube forming capacity of endothelial cells (angiogenesis) and upon ovarian cancer cell aggressiveness. We demonstrate that metformin inhibits the increase in angiogenesis brought about by platelets in a mechanism that did not alter endothelial cell migration. In ovarian cancer cell lines and primary cultured cancer cells isolated from the ascitic fluid of ovarian cancer patients, we assessed the effect of combinations of platelets and metformin upon angiogenesis, migration, invasion and cancer sphere formation. The enhancement of each of these parameters by platelets was abrogated by the present of metformin in the vast majority of cancer cell cultures tested. Neither metformin nor platelets altered proliferation; however, metformin inhibited the increase in phosphorylation of focal adhesion kinase induced by platelets. We present the first evidence suggesting that concentrations of metformin present in diabetic patients may reduce the actions of platelets upon both endothelial cells and cancer cell survival and dissemination.

  19. Proliferating cell nuclear antigen (PCNA) immunostaining--a prognostic factor in ovarian cancer?

    PubMed Central

    Thomas, H.; Nasim, M. M.; Sarraf, C. E.; Alison, M. R.; Love, S.; Lambert, H. E.; Price, P.

    1995-01-01

    The measurement of tumour cell proliferation is becoming increasingly recognised in defining prognostic groups. Proliferating cell nuclear antigen (PCNA) immunolocalisation can be used as an index of cell proliferation and may define the extent of departure from normal growth control. The monoclonal antibody PC10 stains PCNA in archival paraffin-embedded tissue. This study investigates its potential as a prognostic marker in early and advanced ovarian cancer. A three-stage immunoperoxidase technique was developed to detect the monoclonal antibody PC10. Archival paraffin-embedded tissue from 19 stage I ovarian tumours (13 malignant and six borderline) and 79 advanced (stage IIb-IV) ovarian tumours (patients entered into the Third North-West Thames Ovarian Cancer Trial) was immunostained with PC10. PC10 immunostaining was performed successfully in 91.8% of cases. The PC10 labelling index (PC10 LI) ranged from 1.5% to 88% with a mean value of 47.4%. Stage I borderline tumours had significantly lower PCNA labelling indexes than stage I malignant tumours (P < 0.048). In advanced disease there was an inverse correlation between PC10 and overall survival, and in those patients who underwent good debulking surgery (37 patients with disease < 2 cm diameter) a low PC10 value (< 36.5%) correlated with improved survival (log-rank trend test for survival, chi 2 = 5.75, P = 0.017). PCNA immunostaining defines a good prognostic subgroup in adequately debulked patients with ovarian cancer. Images Figure 1 PMID:7841053

  20. IL-10 immunomodulation of myeloid cells regulates a murine model of ovarian cancer.

    PubMed

    Hart, Kevin M; Byrne, Katelyn T; Molloy, Michael J; Usherwood, Edward M; Berwin, Brent

    2011-01-01

    Elevated levels of IL-10 in the microenvironment of human ovarian cancer and murine models of ovarian cancer are well established and correlate with poor clinical prognosis. However, amongst a myriad of immunosuppressive factors, the actual contribution of IL-10 to the ovarian tumor microenvironment, the mechanisms by which it acts, and its possible functional redundancy are unknown. We previously demonstrated that elimination of the myeloid-derived suppressor cell (MDSC) compartment within the ovarian tumor ascites inhibited tumor progression and, intriguingly, significantly decreased local IL-10 levels. Here we identify a novel pathway in which the tumor-infiltrating MDSC are the predominant producers of IL-10 and, importantly, require it to develop their immunosuppressive function in vivo. Importantly, we demonstrate that the role of IL-10 is critical, and not redundant with other immunosuppressive molecules, to in vivo tumor progression: blockade of the IL-10 signaling network results in alleviation of MDSC-mediated immunosuppression, altered T cell phenotype and activity, and improved survival. These studies define IL-10 as a fundamental modulator of both MDSC and T cells within the ovarian tumor microenvironment. Importantly, IL-10 signaling is shown to be necessary to the development and maintenance of a permissive tumor microenvironment and represents a viable target for anti-tumor strategies.

  1. The Wedelolactone Derivative Inhibits Estrogen Receptor-Mediated Breast, Endometrial, and Ovarian Cancer Cells Growth

    PubMed Central

    Xu, Defeng; Lin, Tzu-Hua; Cheng, Max A.; Chen, Lu-Min; Chang, Chawnshang; Yeh, Shuyuan

    2014-01-01

    Estrogen and estrogen receptor (ER)-mediated signaling pathways play important roles in the etiology and progression of human breast, endometrial, and ovarian cancers. Attenuating ER activities by natural products and their derivatives is a relatively practical strategy to control and reduce breast, endometrial, and ovarian cancer risk. Here, we found 3-butoxy-1,8,9-trihydroxy-6H-benzofuro[3,2-c]benzopyran-6-one (BTB), a new derivative of wedelolactone, could effectively inhibit the 17-estradiol (E2)-induced ER transactivation and suppress the growth of breast cancer as well as endometrial and ovarian cancer cells. Our results indicate that 2.5 μM BTB effectively suppresses ER-positive, but not ER-negative, breast, endometrial, and ovarian cancer cells. Furthermore, our data indicate that BTB can modulate ER transactivation and suppress the expression of E2-mediated ER target genes (Cyclin D1, E2F1, and TERT) in the ER-positive MCF-7, Ishikawa, and SKOV-3 cells. Importantly, this BTB mediated inhibition of ER activity is selective since BTB does not suppress the activities of other nuclear receptors, including glucocorticoid receptor and progesterone receptor, suggesting that BTB functions as a selective ER signaling inhibitor with the potential to treat breast, endometrial, and ovarian cancers. PMID:25221777

  2. CDDO-Me reveals USP7 as a novel target in ovarian cancer cells

    PubMed Central

    Cai, Haiyan; Tang, Caixia; Wu, Yunzhao; Wang, Yingying; Jin, Jin; Xiao, Weilie; Wang, Tongdan; Ma, Chunmin; Xu, Hanzhang; Zhang, Jinfu; Gao, Fenghou; Wu, Ying-Li

    2016-01-01

    Deubiquitinating enzyme USP7 has been involved in the pathogenesis and progression of several cancers. Targeting USP7 is becoming an attractive strategy for cancer therapy. In this study, we identified synthetic triterpenoid C-28 methyl ester of 2-cyano-3, 12-dioxoolen-1, 9-dien-28-oic acid (CDDO-Me) as a novel inhibitor of USP7 but not of other cysteine proteases such as cathepsin B and cathepsin D. CDDO-Me inhibits USP7 activity via a mechanism that is independent of the presence of α, β-unsaturated ketones. Molecular docking studies showed that CDDO-Me fits well in the ubiquitin carboxyl terminus-binding pocket on USP7. Given that CDDO-Me is known to be effective against ovarian cancer cells, we speculated that CDDO-Me may target USP7 in ovarian cancer cells. We demonstrated that ovarian cancer cells have higher USP7 expression than their normal counterparts. Knockdown of USP7 inhibits the proliferation of ovarian cancer cells both in vitro and in vivo. Using the cellular thermal shift assay and the drug affinity responsive target stability assay, we further demonstrated that CDDO-Me directly binds to USP7 in cells, which leads to the decrease of its substrates such as MDM2, MDMX and UHRF1. CDDO-Me suppresses ovarian cancer tumor growth in an xenograft model. In conclusion, we demonstrate that USP7 is a novel target of ovarian cancer cells; targeting USP7 may contribute to the anti-cancer effect of CDDO-Me. The development of novel USP7 selective compounds based on the CDDO-Me-scaffold warrants further investigation. PMID:27780924

  3. Activated T-cell Therapy, Low-Dose Aldesleukin, and Sargramostim in Treating Patients With Ovarian, Fallopian Tube, or Primary Peritoneal Cancer That is Stage III-IV, Refractory, or Recurrent

    ClinicalTrials.gov

    2016-02-15

    Malignant Ovarian Clear Cell Tumor; Malignant Ovarian Serous Tumor; Recurrent Fallopian Tube Carcinoma; Recurrent Ovarian Carcinoma; Recurrent Primary Peritoneal Carcinoma; Stage IIIA Fallopian Tube Cancer; Stage IIIA Ovarian Cancer; Stage IIIA Primary Peritoneal Cancer; Stage IIIB Fallopian Tube Cancer; Stage IIIB Ovarian Cancer; Stage IIIB Primary Peritoneal Cancer; Stage IIIC Fallopian Tube Cancer; Stage IIIC Ovarian Cancer; Stage IIIC Primary Peritoneal Cancer; Stage IV Fallopian Tube Cancer; Stage IV Ovarian Cancer; Stage IV Primary Peritoneal Cancer

  4. Autophagy and protein kinase RNA-like endoplasmic reticulum kinase (PERK)/eukaryotic initiation factor 2 alpha kinase (eIF2α) pathway protect ovarian cancer cells from metformin-induced apoptosis.

    PubMed

    Moon, Hee-Sun; Kim, Boyun; Gwak, HyeRan; Suh, Dong Hoon; Song, Yong Sang

    2016-04-01

    Metformin, an oral biguanide for the treatment of type II diabetes, has been shown to have anticancer effects in ovarian cancer. Energy starvation induced by metformin causes endoplasmic reticulum stress-mediated unfolded protein response (UPR) and autophagy. UPR and autophagy act as a survival or death mechanism in cells. In this study, we observed that metformin-induced apoptosis was relieved by autophagy and the PERK/eIF2α pathway in ovarian cancer cells, but not in peripheral blood mononuclear cells (PBMC) or 'normal' ovarian surface epithelial cells (OSE). Increased PARP cleavage and increased LC3B-II with ATG5-ATG12 complex suggested the induction of apoptosis and autophagy, respectively, in metformin-treated ovarian cancer cells. Accumulation of acidic vacuoles in the cytoplasm and downregulation of p62 further supported late-stage autophagy. Interestingly, metformin induced interdependent activation between autophagy and the UPR, especially the PERK/eIF2α pathway. Inhibition of autophagy-induced PERK inhibition, and vice versa, were demonstrated using small molecular inhibitors (PERK inhibitor I, GSK2606414; autophagy inhibitor, 3-MA, and BafA1). Moreover, autophagy and PERK activation protected ovarian cancer cells against metformin-induced apoptosis. Metformin treatment in the presence of inhibitors of PERK and autophagy, however, had no cytotoxic effects on OSE or PBMC. In conclusion, these results suggest that inhibition of autophagy and PERK can enhance the selective anticancer effects of metformin on ovarian cancer cells. © 2015 Wiley Periodicals, Inc.

  5. Irisin immunostaining characteristics of breast and ovarian cancer cells.

    PubMed

    Kuloglu, T; Celik, O; Aydin, S; Hanifi Ozercan, I; Acet, M; Aydin, Y; Artas, G; Turk, A; Yardim, M; Ozan, G; Hanifi Yalcin, M; Kocaman, N

    2016-07-31

    To determine expression pattern of irisin in tissues obtained from human ovarian cancer, breast cancer, and cervix cancer. Tissue samples obtained from subjects with breast cancer, ovarian cancer cervix cancer, simple endometrial hyperplasia, complex atypical endometrial hyperplasia. At least five sections from each subject were immunohistochemically stained with irisin antibody, and H-score method was used to evaluate irisin intensity. Tissues obtained from healthy breast tissues, proliferative phase endometrium adenomyosis and benign ovarian tumors were accepted as control. Irisin activity was not detected in control breast tissues significantly increased irisin staining was detected in invasive lobular, intraductal papillary, invasive ductal, invasive papillary, and mucinous carcinomas compared to control tissues. Also, significantly increased irisin immunoreactivity was detected in both ovarian endometriosis and mucinous carcinomas compared to benign tumors. However irisin staining was not observed at the papillary carcinoma of the ovary while sections obtained from simple and complex atypical endometrial hyperplasia, and cervix carcinoma demonstrated irisin immunoreactivity. Increased irisin immunoreactivity in tissues obtained from breast, ovary, cervix carcinomas, and endometrial hyperplasia suggest critical role of this peptide during carcinogenesis.

  6. KRAS Genomic Status Predicts the Sensitivity of Ovarian Cancer Cells to Decitabine | Office of Cancer Genomics

    Cancer.gov

    Decitabine, a cancer therapeutic that inhibits DNA methylation, produces variable antitumor response rates in patients with solid tumors that might be leveraged clinically with identification of a predictive biomarker. In this study, we profiled the response of human ovarian, melanoma, and breast cancer cells treated with decitabine, finding that RAS/MEK/ERK pathway activation and DNMT1 expression correlated with cytotoxic activity. Further, we showed that KRAS genomic status predicted decitabine sensitivity in low-grade and high-grade serous ovarian cancer cells.

  7. miR-222 is upregulated in epithelial ovarian cancer and promotes cell proliferation by downregulating P27(kip1.)

    PubMed

    Sun, Chaoyang; Li, Na; Zhou, Bo; Yang, Zongyuan; Ding, Dong; Weng, Danhui; Meng, Li; Wang, Shixuan; Zhou, Jianfeng; Ma, Ding; Chen, Gang

    2013-08-01

    Epithelial ovarian cancer (EOC) is the leading cause of female reproductive system cancer mortality in females. The majority of cases of ovarian carcinomas are not identified until a late stage. Identifying the molecular changes that occur during the development and progression of ovarian cancer is an urgent requirement. MicroRNAs (miRNAs) have been identified as gene expression regulators that induce mRNA degradation or translation blockade through pairing to the 3' untranslated region (3-'UTR) of the target mRNAs. In the present study, miR-222 was observed to be frequently upregulated in ovarian cancer. miR-222 upregulation induced an enhancement of ovarian cancer cell proliferation potential, possibly by downregulating its target, P27(Kip1). A bioinformatic analysis showed that the 3'-UTR of the P27(Kip1) mRNA contained a highly-conserved putative miR-222 binding site. Luciferase reporter assays demonstrated that P27(Kip1) was a direct target of miR-222. Consistently, there was an inverse correlation between the P27(Kip1) and miR-222 expression levels in the ovarian cancer cell lines and tissues. Overall, the present results suggest that miR-222 upregulation in human ovarian cancer may promote ovarian cancer cell proliferation during ovarian carcinogenesis.

  8. Mutant p53 promotes ovarian cancer cell adhesion to mesothelial cells via integrin β4 and Akt signals.

    PubMed

    Lee, Jong-Gyu; Ahn, Ji-Hye; Jin Kim, Tae; Ho Lee, Jae; Choi, Jung-Hye

    2015-07-30

    Missense mutations in the TP53 gene resulting in the accumulation of mutant proteins are extremely common in advanced ovarian cancer, which is characterised by peritoneal metastasis. Attachment of cancer cells to the peritoneal mesothelium is regarded as an initial, key step for the metastatic spread of ovarian cancer. In the present study, we investigated the possible role of a p53 mutant in the mesothelial adhesion of ovarian cancer cells. We found that OVCAR-3 cells with the R248 TP53 mutation (p53(R248)) were more adhesive to mesothelial Met5A cells than were A2780 cells expressing wild-type p53. In addition, ectopic expression of p53(R248) in p53-null SKOV-3 cells significantly increased adhesion to Met5A cells. Knockdown of mutant p53 significantly compromised p53(R248)-induced cell adhesion to Met5A cells. Microarray analysis revealed that several adhesion-related genes, including integrin β4, were markedly up-regulated, and certain signalling pathways, including PI3K/Akt, were activated in p53(R248) transfectants of SKOV-3 cells. Inhibition of integrin β4 and Akt signalling using blocking antibody and the inhibitor LY294002, respectively, significantly attenuated p53(R248)-mediated ovarian cancer-mesothelial adhesion. These data suggest that the p53(R248) mutant endows ovarian cancer cells with increased adhesiveness and that integrin β4 and Akt signalling are associated with the mutation-enhanced ovarian cancer-mesothelial cell adhesion.

  9. Proteome profiling of human epithelial ovarian cancer cell line TOV-112D.

    PubMed

    Gagné, Jean-Philippe; Gagné, Pierre; Hunter, Joanna M; Bonicalzi, Marie-Eve; Lemay, Jean-François; Kelly, Isabelle; Le Page, Cécile; Provencher, Diane; Mes-Masson, Anne-Marie; Droit, Amaud; Bourgais, David; Poirier, Guy G

    2005-07-01

    A proteome profiling of the epithelial ovarian cancer cell line TOV-112D was initiated as a protein expression reference in the study of ovarian cancer. Two complementary proteomic approaches were used in order to maximise protein identification: two-dimensional gel electrophoresis (2DE) protein separation coupled to matrix assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS) and one-dimensional gel electrophoresis (1DE) coupled to liquid-chromatography tandem mass spectrometry (LC MS/MS). One hundred and seventy-two proteins have been identified among 288 spots selected on two-dimensional gels and a total of 579 proteins were identified with the 1DE LC MS/MS approach. This proteome profiling covers a wide range of protein expression and identifies several proteins known for their oncogenic properties. Bioinformatics tools were used to mine databases in order to determine whether the identified proteins have previously been implicated in pathways associated with carcinogenesis or cell proliferation. Indeed, several of the proteins have been reported to be specific ovarian cancer markers while others are common to many tumorigenic tissues or proliferating cells. The diversity of proteins found and their association with known oncogenic pathways validate this proteomic approach. The proteome 2D map of the TOV-112D cell line will provide a valuable resource in studies on differential protein expression of human ovarian carcinomas while the 1DE LC MS/MS approach gives a picture of the actual protein profile of the TOV-112D cell line. This work represents one of the most complete ovarian protein expression analysis reports to date and the first comparative study of gene expression profiling and proteomic patterns in ovarian cancer.

  10. Acetyl-L-Carnitine Hydrochloride in Preventing Peripheral Neuropathy in Patients With Recurrent Ovarian Epithelial Cancer, Primary Peritoneal Cavity Cancer, or Fallopian Tube Cancer Undergoing Chemotherapy

    ClinicalTrials.gov

    2014-12-29

    Fatigue; Malignant Ovarian Mixed Epithelial Tumor; Neuropathy; Neurotoxicity Syndrome; Ovarian Brenner Tumor; Ovarian Clear Cell Cystadenocarcinoma; Ovarian Endometrioid Adenocarcinoma; Ovarian Mucinous Cystadenocarcinoma; Ovarian Serous Cystadenocarcinoma; Pain; Recurrent Fallopian Tube Carcinoma; Recurrent Ovarian Carcinoma; Recurrent Primary Peritoneal Carcinoma

  11. Belinostat and Carboplatin in Treating Patients With Recurrent or Persistent Ovarian Epithelial Cancer, Fallopian Tube Cancer, or Primary Peritoneal Cancer That Did Not Respond to Carboplatin or Cisplatin

    ClinicalTrials.gov

    2014-06-18

    Brenner Tumor; Fallopian Tube Cancer; Ovarian Clear Cell Cystadenocarcinoma; Ovarian Endometrioid Adenocarcinoma; Ovarian Mixed Epithelial Carcinoma; Ovarian Mucinous Cystadenocarcinoma; Ovarian Serous Cystadenocarcinoma; Ovarian Undifferentiated Adenocarcinoma; Primary Peritoneal Cavity Cancer; Recurrent Ovarian Epithelial Cancer

  12. Re-implantation of cryopreserved ovarian cortex resulting in restoration of ovarian function, natural conception and successful pregnancy after haematopoietic stem cell transplantation for Wilms tumour.

    PubMed

    Dunlop, C E; Brady, B M; McLaughlin, M; Telfer, E E; White, J; Cowie, F; Zahra, S; Wallace, W H B; Anderson, R A

    2016-12-01

    With the improvement of long-term cancer survival rates, growing numbers of female survivors are suffering from treatment-related premature ovarian insufficiency (POI). Although pre-treatment embryo and oocyte storage are effective fertility preservation strategies, they are not possible for pre-pubertal girls or women who cannot delay treatment. In these cases, the only available treatment option is ovarian cortex cryopreservation and subsequent re-implantation. A 32-year-old woman had ovarian cortex cryopreserved 10 years previously before commencing high-dose chemotherapy and undergoing a haematopoietic stem cell transplant for recurrent adult Wilms tumour, which resulted in POI. She underwent laparoscopic orthotopic transplantation of cryopreserved ovarian cortex to the original site of biopsy on the left ovary. She ovulated at 15 and 29 weeks post-re-implantation with AMH detectable, then rising, from 21 weeks, and conceived naturally following the second ovulation. The pregnancy was uncomplicated and a healthy male infant was born by elective Caesarean section at 36(+4) weeks gestation. This is the first report of ovarian cortex re-implantation in the UK. Despite the patient receiving low-risk chemotherapy prior to cryopreservation and the prolonged tissue storage duration, the re-implantation resulted in rapid restoration of ovarian function and natural conception with successful pregnancy.

  13. The novel, small molecule DNA methylation inhibitor SGI-110 as an ovarian cancer chemosensitizer

    PubMed Central

    Fang, Fang; Munck, Joanne; Tang, Jessica; Taverna, Pietro; Wang, Yinu; Miller, David F.B.; Pilrose, Jay; Choy, Gavin; Azab, Mohammad; Pawelczak, Katherine S.; VanderVere-Carozza, Pamela; Wagner, Michael; Lyons, John; Matei, Daniela; Turchi, John J.; Nephew, Kenneth P.

    2014-01-01

    Purpose To investigate SGI-110 as a “chemosensitizer” in ovarian cancer (OC) and to assess its effects on tumor suppressor genes (TSG) and chemo-responsiveness associated genes silenced by DNA methylation in OC. Experimental Design Several OC cell lines were used for in vitro and in vivo platinum resensitization studies. Changes in DNA methylation and expression levels of TSG and other cancer-related genes in response to SGI-110 were measured by pyrosequencing and RT-PCR. Results We demonstrate in vitro that SGI-110 resensitized a range of platinum-resistant OC cells to cisplatin (CDDP) and induced significant demethylation and reexpression of TSG, differentiation-associated genes and putative drivers of OC cisplatin resistance. In vivo, SGI-110 alone or in combination with CDDP was well tolerated and induced anti-tumor effects in OC xenografts. Pyrosequencing analyses confirmed that SGI-110 caused both global (LINE1) and gene specific hypomethylation in vivo, including TSGs (RASSF1A), proposed drivers of OC cisplatin resistance (MLH1 and ZIC1), differentiation-associated genes (HOXA10 and HOXA11), and transcription factors (STAT5B). Furthermore, DNA damage induced by CDDP in OC cells was increased by SGI-110, as measured by ICP-mass spectrometry analysis of DNA adduct formation and repair of cisplatin-induced DNA damage. Conclusions These results strongly support further investigation of hypomethylating strategies in platinum-resistant OC. Specifically, SGI-110 in combination with conventional and/or targeted therapeutics warrants further development in this setting. PMID:25316809

  14. Dichloroacetate and metformin synergistically suppress the growth of ovarian cancer cells

    PubMed Central

    Ni, Zhenhong; Zhang, Yan; Zeng, Yijun; Yan, Xiaohuan; Huang, Yan; He, Jintao; Lyu, Xilin; Wu, Yaran; Wang, Yuting; Zheng, Yingru; He, Fengtian

    2016-01-01

    Both dichloroacetate (DCA) and metformin (Met) have shown promising antitumor efficacy by regulating cancer cell metabolism. However, the DCA-mediated protective autophagy and Met-induced lactate accumulation limit their tumor-killing potential respectively. So overcoming the corresponding shortages will improve their therapeutic effects. In the present study, we found that DCA and Met synergistically inhibited the growth and enhanced the apoptosis of ovarian cancer cells. Interestingly, we for the first time revealed that Met sensitized DCA via dramatically attenuating DCA-induced Mcl-1 protein and protective autophagy, while DCA sensitized Met through markedly alleviating Met-induced excessive lactate accumulation and glucose consumption. The in vivo experiments in nude mice also showed that DCA and Met synergistically suppressed the growth of xenograft ovarian tumors. These results may pave a way for developing novel strategies for the treatment of ovarian cancer based on the combined use of DCA and Met. PMID:27449090

  15. MicroRNA-181b promotes ovarian cancer cell growth and invasion by targeting LATS2.

    PubMed

    Xia, Ying; Gao, Yan

    2014-05-09

    MicroRNAs (miRNAs) are strongly implicated in tumorigenesis and metastasis. In this study, we showed significant upregulation of miR-181b in ovarian cancer tissues, compared with the normal ovarian counterparts. Forced expression of miR-181b led to remarkably enhanced proliferation and invasion of ovarian cancer cells while its knockdown induced significant suppression of these cellular events. The tumor suppressor gene, LATS2 (large tumor suppressor 2), was further identified as a novel direct target of miR-181b. Specifically, miR-181b bound directly to the 3'-untranslated region (UTR) of LATS2 and suppressed its expression. Restoration of LATS2 expression partially reversed the oncogenic effects of miR-181b. Our results indicate that miR-181b promotes proliferation and invasion by targeting LATS2 in ovarian cancer cells. These findings support the utility of miR-181b as a potential diagnostic and therapeutic target for ovarian cancer.

  16. Markers of stem cells in human ovarian granulosa cells: is there a clinical significance in ART?

    PubMed Central

    2012-01-01

    Background The purpose of the study was to determine the incidence of gene expression of Oct-4 and DAZL, which are typical markers for stem cells, in human granulosa cells during ovarian stimulation in women with normal FSH levels undergoing IVF or ICSI and to discover any clinical significance of such expression in ART. Methods Twenty one women underwent ovulation induction for IVF or ICSI and ET with standard GnRH analogue-recombinant FSH protocol. Infertility causes were male and tubal factor. Cumulus–mature oocyte complexes were denuded separately and granulosa cells were analyzed for each patient separately using quantitative reverse-transcription–polymerase chain reaction analysis for Oct-4 and DAZL gene expression with G6PD gene as internal standard. Results G6PD and Oct-4 mRNA was detected in the granulosa cells in 47.6% (10/21). The median of Oct-4 mRNA/G6PD mRNA was 1.75 with intra-quarteral range from 0.10 to 98.21. The OCT-4 mRNA expression was statistically significantly correlated with the number of oocytes retrieved; when the Oct-4 mRNA expression was higher, then more than six oocytes were retrieved (p=0.037, Wilcoxon rank-sum). No detection of DAZL mRNA was found in granulosa cells. There was no additional statistically significant correlation between the levels of Oct-4 expression and FSH basal levels or estradiol peak levels or dosage of FSH for ovulation induction. No association was found between the presence or absence of Oct-4 mRNA expression in granulosa cells and ovarian response to gonadotropin stimulation. Also, no influence on pregnancy was observed between the presence or absence of Oct-4 mRNA expression in granulosa cells or to its expression levels accordingly. Conclusions Expression of OCT-4 mRNA, which is a typical stem cell marker and absence of expression of DAZL mRNA, which is a typical germ cell marker, suggest that a subpopulation of luteinized granulosa cells in healthy ovarian follicles (47.6%) consists of stem cells

  17. Pinin interacts with C-terminal binding proteins for RNA alternative splicing and epithelial cell identity of human ovarian cancer cells

    PubMed Central

    Zhang, Yanli; Kwok, Jamie Sui-Lam; Choi, Pui-Wah; Liu, Minghua; Yang, Junzheng; Singh, Margit; Ng, Shu-Kay; Welch, William R.; Muto, Michael G.; Tsui, Stephen KW; Sugrue, Stephen P.; Berkowitz, Ross S.; Ng, Shu-Wing

    2016-01-01

    Unlike many other human solid tumors, ovarian tumors express many epithelial markers at a high level for cell growth and local invasion. The phosphoprotein Pinin plays a key role in epithelial cell identity. We showed that clinical ovarian tumors and ovarian cancer cell lines express a high level of Pinin when compared with normal ovarian tissues and immortalized normal ovarian surface epithelial cell lines. Pinin co-localized and physically interacted with transcriptional corepressor C-terminal binding proteins, CtBP1 and CtBP2, in the nuclei of cancer cells. Knockdown of Pinin in ovarian cancer cells resulted in specific reduction of CtBP1 protein expression, cell adhesion, anchorage-independent growth, and increased drug sensitivity. Whole transcriptomic comparison of next-generation RNA sequencing data between control ovarian cancer cell lines and cancer cell lines with respective knockdown of Pinin, CtBP1, and CtBP2 expression also showed reduced expression of CtBP1 mRNA in the Pinin knockdown cell lines. The Pinin knockdown cell lines shared significant overlap of differentially expressed genes and RNA splicing aberrations with CtBP1 knockdown and in a lesser degree with CtBP2 knockdown cancer cells. Hence, Pinin and CtBP are oncotargets that closely interact with each other to regulate transcription and pre-mRNA alternative splicing and promote cell adhesion and other epithelial characteristics of ovarian cancer cells. PMID:26871283

  18. Ovarian cancer stem cell like side populations are enriched following chemotherapy and overexpress EZH2

    PubMed Central

    Rizzo, Siân; Hersey, Jenny M.; Mellor, Paul; Dai, Wei; Santos-Silva, Alessandra; Liber, Daniel; Luk, Louisa; Titley, Ian; Carden, Craig P; Box, Garry; Hudson, David L.; Kaye, Stanley B.; Brown, Robert

    2010-01-01

    Platinum-based chemotherapy, with cytoreductive surgery, is the cornerstone of treatment of advanced ovarian cancer, however acquired drug resistance is a major clinical obstacle. It has been proposed that subpopulations of tumour cells with stem-cell like properties, such as so-called side populations (SP) which over-express ABC drug-transporters, can sustain the growth of drug resistant tumour cells, leading to tumour recurrence following chemotherapy. The histone methyltransferase EZH2 is a key component of the Polycomb Repressive Complex 2 (PRC2) required for maintenance of a stem cell state and overexpression has been implicated in drug resistance and shorter survival of ovarian cancer patients. We observe higher percentage SP in ascites from patients that have relapsed following chemotherapy compared to chemonaive patients, consistent with selection for this subpopulation during platinum-based chemotherapy. Furthermore, ABCB1 (P-glycoprotein) and EZH2 are consistently over-expressed in SP compared to non-SP from patients’ tumour cells. SiRNA knockdown of EZH2 leads to loss of SP in ovarian tumour models, reduced anchorage-independent growth and reduced tumour growth in vivo. Together these data support a key role for EZH2 in the maintenance of a drug-resistant tumour-sustaining subpopulation of cells in ovarian cancers undergoing chemotherapy. As such, EZH2 is an important target for anticancer drug development. PMID:21216927

  19. The Therapeutic Potential of Umbilical Cord Mesenchymal Stem Cells in Mice Premature Ovarian Failure

    PubMed Central

    Wang, Shufang; Yu, Ling; Sun, Min; Mu, Sha; Wang, Changyong; Wang, Deqing; Yao, Yuanqing

    2013-01-01

    Mesenchymal stem cells, which are poorly immunogenic and have potent immunosuppressive activities, have emerged as promising cellular therapeutics for the treatment of several diseases. Mesenchymal-like cells derived from Wharton's Jelly, called umbilical cord matrix stem cells (UCMSCs), reportedly secrete a variety of cytokines and growth factors, acting as trophic suppliers. Here, we used UCMSCs to treat premature ovarian failure (POF). Ovarian function was evaluated by ovulation and the number of follicles. Apoptosis of the granulosa cells (GC) was analyzed by TUNEL staining. We found that after transplantation of the UCMSCs, apoptosis of cumulus cells in the ovarian damage model was reduced and the function of the ovary had been recovered. The sex hormone level was significantly elevated in mice treated with UCMSCs. The number of follicles in the treated group was higher than in the control group. Our results demonstrate that UCMSCs can effectively restore ovary functionality and reduce apoptosis of granulosa cells. We compared the RNA expression of the UCMSCs treated group with the POF model and wild-type control group and found that the UCMSC group is most similar to the wild-type group. Our experiments provide new information regarding the treatment of ovarian function failure. PMID:23998127

  20. MiR-572 prompted cell proliferation of human ovarian cancer cells by suppressing PPP2R2C expression.

    PubMed

    Wu, Ai-Hua; Huang, Yu-ling; Zhang, Lan-Zhen; Tian, Geng; Liao, Qiong-Zhi; Chen, Shi-Ling

    2016-02-01

    Ovarian cancer (OC) remains one of the most common types of malignant cancer, and the molecular mechanism underlying its proliferation is still largely unclear. It is reported that microRNAs acted as important regulators of cell proliferation by regulating its targeted gene. In this study, our result showed that miR-572 was markedly upregulated in OC cell lines and clinical tissues. Results of both gain-of-function and loss-of-function experiments revealed that upregulation of miR-572 expression dramatically promoted OC cell proliferation, whereas decreased miR-572 expression significantly reduced cell proliferation. Bioinformatics analysis and luciferase reporter assays further revealed PPP2R2C, a putative tumor suppressor as a potential target of miR-572. Moreover, silencing of PPP2R2C using small interfering RNA (siRNA) counteracted the proliferation arrest by miR-572-in in OC cells. In sum, our data provide that miR-572 promoted cell proliferation in OC by targeting PPP2R2C and might serve as a therapeutic target of OC.

  1. Functional redundancy of the Notch pathway in ovarian cancer cell lines.

    PubMed

    Silva, Fernanda; Félix, Ana; Serpa, Jacinta

    2016-10-01

    Epithelial ovarian cancer is the most lethal gynecologic malignancy, despite advances in treatment. The most common histological type, high-grade ovarian serous carcinoma (OSC) is usually diagnosed at an advanced stage, and although these types of tumors frequently respond to surgery and platinum-based chemotherapy, they usually recur. Ovarian clear cell carcinoma (OCCC) is an unusual histological type, which is known to be intrinsically chemoresistant and is associated with poor prognosis in advanced stages. In recent years, genetic alterations and epigenetic modulation of signaling pathways have been reported in OSC and OCCC, including the overexpression of Notch pathway elements and histone deacetylases. Histone deacetylase inhibitors (HDACis), including vorinostat (suberoylanilide hydroxamic acid), alter the transcription of genes involved in cell growth, survival and apoptosis, and have become an attractive therapeutic approach. However, no previous work has addressed the effect of HDACis, and in particular vorinostat, on Notch signaling in ovarian cancer. Therefore, the present study aimed to investigate the modulation of the Notch pathway by vorinostat in ovarian cancer. Using immunofluorescence and quantitative polymerase chain reaction, the present results revealed that vorinostat activated the Notch pathway in OCCC and OSC cell lines, through different Notch ligands. In OCCC, the activation of the Notch pathway appeared to occur through Delta-like (Dll) ligands 1, 2 and 3, whereas in OSC Dll1 and Jagged 1 and 2 ligands were involved. The activation of the Notch pathway by vorinostat, in OCCC and OSC cell lines, culminated in the increased expression of the same downstream transcription factors, hairy enhancer of split (Hes) 1 and 5, and Hes-related proteins 1 and 2. In conclusion, vorinostat modulates the expression of several downstream targets of the Notch pathway and independent Notch receptors and ligands that are expressed in OSC and OCCC. This

  2. A novel somatic MAPK1 mutation in primary ovarian mixed germ cell tumors.

    PubMed

    Zou, Yang; Deng, Wei; Wang, Feng; Yu, Xiao-Hong; Liu, Fa-Ying; Yang, Bi-Cheng; Huang, Mei-Zhen; Guo, Jiu-Bai; Xie, Qiu-Hua; He, Ming; Huang, Ou-Ping

    2016-02-01

    A recent exome-sequencing study revealed prevalent mitogen-activated protein kinase 1 (MAPK1) p.E322K mutation in cervical carcinoma. It remains largely unknown whether ovarian carcinomas also harbor MAPK1 mutations. As paralogous gene mutations co‑occur frequently in human malignancies, we analyzed here a total of 263 ovarian carcinomas for the presence of MAPK1 and paralogous MAPK3 mutations by DNA sequencing. A previously unreported MAPK1 p.D321N somatic mutation was identified in 2 out of 18 (11.1%) ovarian mixed germ cell tumors, while no other MAPK1 or MAPK3 mutation was detected in our samples. Of note, OCC‑115, the MAPK1‑mutated sample with bilateral cancerous ovaries affected, harbored MAPK1 mutation in the right ovary while retained the left ovary intact, implicating that the genetic alterations underlying ovarian mixed germ cell tumor may be different, even in patients with similar genetic backgrounds and tumor microenvironments. The results of evolutionary conservation and protein structure modeling analysis implicated that MAPK1 p.D321N mutation may be pathogenic. Additionally, mutations in protein phosphatase 2 regulatory subunit α (PPP2R1A), ring finger protein 43 (RNF43), DNA directed polymerase ε (POLE1), ribonuclease type III (DICER1), CCCTC‑binding factor (CTCF), ribosomal protein L22 (RPL22), DNA methyltransferase 3α (DNMT3A), transformation/transcription domain‑associated protein (TRRAP), isocitrate dehydrogenase (IDH)1 and IDH2 were not detected in ovarian mixed germ cell tumors, implicating these genetic alterations may be not associated with MAPK1 mutation in the development of this malignancy. The present study identified a previously unreported MAPK1 mutation in ovarian mixed germ cell tumors for the first time, and this mutation may be actively involved in the tumorigenesis of this disease.

  3. Differential regulation of two forms of gonadotropin-releasing hormone messenger ribonucleic acid by gonadotropins in human immortalized ovarian surface epithelium and ovarian cancer cells.

    PubMed

    Choi, Jung-Hye; Choi, Kyung-Chul; Auersperg, Nelly; Leung, Peter C K

    2006-06-01

    Although gonadotropin-releasing hormone (GnRH) has been shown to play a role as an autocrine/ paracrine regulator of cell growth in ovarian surface epithelium and ovarian cancer, the factors which regulate the expression of GnRH and its receptor in these cells are not well characterized. In the present study, we employed real-time PCR to determine the potential regulatory effect of gonadotropins on the expression levels of GnRH I (the mammalian GnRH), GnRH II (a second form of GnRH) and their common receptor (GnRHR) in immortalized ovarian surface epithelial (IOSE-80 and IOSE-80PC) cells and ovarian cancer cell lines (A2780, BG-1, CaOV-3, OVCAR-3 and SKOV-3). The cells were treated with increasing concentrations (100 and 1000 ng/ml) of recombinant follicle-stimulating hormone (FSH) or luteinizing hormone (LH) for 24 h. Treatment with FSH or LH reduced GnRH II mRNA levels in both IOSE cell lines and in three out of five ovarian cancer cell lines (A2780, BG-1 and OVCAR-3). A significant decrease in GnRHR mRNA levels was observed in IOSE and ovarian cancer cells, except CaOV-3 cells, following treatment with FSH or LH. In contrast, treatment with either FSH or LH had no effect on GnRH I mRNA levels in these cells, suggesting that gonadotropins regulate the two forms of GnRH and its receptor differentially. In separate experiments, the effect of gonadotropins on the anti-proliferative action of GnRH I and GnRH II agonists in IOSE-80, OVCAR-3 and SKOV-3 cells was investigated. The cells were pretreated with FSH or LH (100 ng/ml) for 24 h after which they were treated with either GnRH I or GnRH II (100 ng/ml) for 2 days, and cell growth was assessed by the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide] assay. Pretreatment of the cells with FSH or LH significantly reversed the growth inhibitory effect of GnRH I and GnRH II agonists in these cell types. These results provide the first demonstration of a potential interaction between gonadotropins and the

  4. Kaempferol nanoparticles achieve strong and selective inhibition of ovarian cancer cell viability.

    PubMed

    Luo, Haitao; Jiang, Bingbing; Li, Bingyun; Li, Zhaoliang; Jiang, Bing-Hua; Chen, Yi Charlie

    2012-01-01

    Ovarian cancer is one of the leading causes of cancer death for women throughout the Western world. Kaempferol, a natural flavonoid, has shown promise in the chemoprevention of ovarian cancer. A common concern about using dietary supplements for chemoprevention is their bioavailability. Nanoparticles have shown promise in increasing the bioavailability of some chemicals. Here we developed five different types of nanoparticles incorporating kaempferol and tested their efficacy in the inhibition of viability of cancerous and normal ovarian cells. We found that positively charged nanoparticle formulations did not lead to a significant reduction in cancer cell viability, whereas nonionic polymeric nanoparticles resulted in enhanced reduction of cancer cell viability. Among the nonionic polymeric nanoparticles, poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) nanoparticles incorporating kaempferol led to significant reduction in cell viability of both cancerous and normal cells. Poly(DL-lactic acid-co-glycolic acid) (PLGA) nanoparticles incorporating kaempferol resulted in enhanced reduction of cancer cell viability together with no significant reduction in cell viability of normal cells compared with kaempferol alone. Therefore, both PEO-PPO-PEO and PLGA nanoparticle formulations were effective in reducing cancer cell viability, while PLGA nanoparticles incorporating kaempferol had selective toxicity against cancer cells and normal cells. A PLGA nanoparticle formulation could be advantageous in the prevention and treatment of ovarian cancers. On the other hand, PEO-PPO-PEO nanoparticles incorporating kaempferol were more effective inhibitors of cancer cells, but they also significantly reduced the viability of normal cells. PEO-PPO-PEO nanoparticles incorporating kaempferol may be suitable as a cancer-targeting strategy, which could limit the effects of the nanoparticles on normal cells while retaining their potency against cancer cells. We

  5. Quantity and clinical relevance of circulating endothelial progenitor cells in human ovarian cancer

    PubMed Central

    2010-01-01

    Background Circulating bone marrow-derived endothelial progenitor cells (EPCs) have been reported to participate in tumor angiogenesis and growth; however, the role of circulating EPCs in tumor progression is controversial. The role of circulating EPCs in ovarian cancer progression and angiogenesis has not yet been investigated. Methods The number of circulating EPCs in the peripheral blood in 25 healthy volunteers and 42 patients with ovarian cancer was determined by flow cytometry. EPCs were defined by co-expression of CD34 and vascular endothelial growth factor receptor 2 (VEGFR2). In addition, we determined CD34 and VEGFR2 mRNA levels by real-time reverse transcription-polymerase chain reaction. Plasma levels of vascular endothelial growth factor (VEGF) and matrix metalloproteinase-9 (MMP-9) were determined by enzyme-linked immunosorbent assay. Results Circulating levels of EPCs were significantly increased in ovarian cancer patients, correlating with tumor stage and residual tumor size. Higher levels of EPCs were detected in patients with stage III and IV ovarian cancer than in patients with stage I and II disease. After excision of the tumor, EPCs levels rapidly declined. Residual tumor size greater than 2 cm was associated with significantly higher levels of EPCs. In addition, high circulating EPCs correlated with poor overall survival. Pretreatment CD34 mRNA levels were not significantly increased in ovarian cancer patients compared with healthy controls; however, VEGFR2 expression was increased, and plasma levels of VEGF and MMP-9 were also elevated. Conclusions Our results demonstrate the clinical relevance of circulating EPCs in ovarian cancer. EPCs may be a potential biomarker to monitor ovarian cancer progression and angiogenesis and treatment response. PMID:20334653

  6. Tumour-suppressor microRNAs regulate ovarian cancer cell physical properties and invasive behaviour

    PubMed Central

    Pan, Yinghong; Nyberg, Kendra; Marra, Marco A.; Lim, Emilia L.; Jones, Steven J. M.; Maar, Dianna; Gibb, Ewan A.; Gunaratne, Preethi H.; Robertson, A. Gordon; Rowat, Amy C.

    2016-01-01

    The activities of pathways that regulate malignant transformation can be influenced by microRNAs (miRs). Recently, we showed that increased expression of five tumour-suppressor miRs, miR-508-3p, miR-508-5p, miR-509-3p, miR-509-5p and miR-130b-3p, correlate with improved clinical outcomes in human ovarian cancer patients, and that miR-509-3p attenuates invasion of ovarian cancer cell lines. Here, we investigate the mechanism underlying this reduced invasive potential by assessing the impact of these five miRs on the physical properties of cells. Human ovarian cancer cells (HEYA8, OVCAR8) that are transfected with miR mimics representing these five miRs exhibit decreased invasion through collagen matrices, increased cell size and reduced deformability as measured by microfiltration and microfluidic assays. To understand the molecular basis of altered invasion and deformability induced by these miRs, we use predicted and validated mRNA targets that encode structural and signalling proteins that regulate cell mechanical properties. Combined with analysis of gene transcripts by real-time PCR and image analysis of F-actin in single cells, our results suggest that these tumour-suppressor miRs may alter cell physical properties by regulating the actin cytoskeleton. Our findings provide biophysical insights into how tumour-suppressor miRs can regulate the invasive behaviour of ovarian cancer cells, and identify potential therapeutic targets that may be implicated in ovarian cancer progression. PMID:27906134

  7. Regulation of Injury-Induced Ovarian Regeneration by Activation of Oogonial Stem Cells.

    PubMed

    Erler, Piril; Sweeney, Alexandra; Monaghan, James R

    2017-01-01

    Some animals have the ability to generate large numbers of oocytes throughout life. This raises the question whether persistent adult germline stem cell populations drive continuous oogenesis and whether they are capable of mounting a regenerative response after injury. Here we demonstrate the presence of adult oogonial stem cells (OSCs) in the adult axolotl salamander ovary and show that ovarian injury induces OSC activation and functional regeneration of the ovaries to reproductive capability. Cells that have morphological similarities to germ cells were identified in the developing and adult ovaries via histological analysis. Genes involved in germ cell maintenance including Vasa, Oct4, Sox2, Nanog, Bmp15, Piwil1, Piwil2, Dazl, and Lhx8 were expressed in the presumptive OSCs. Colocalization of Vasa protein with H3 mitotic marker showed that both oogonial and spermatogonial adult stem cells were mitotically active. Providing evidence of stemness and viability of adult OSCs, enhanced green fluorescent protein (EGFP) adult OSCs grafted into white juvenile host gonads gave rise to EGFP OSCs, and oocytes. Last, the axolotl ovaries completely regenerated after partial ovariectomy injury. During regeneration, OSC activation resulted in rapid differentiation into new oocytes, which was demonstrated by Vasa(+) /BrdU(+) coexpression. Furthermore, follicle cell proliferation promoted follicle maturation during ovarian regeneration. Overall, these results show that adult oogenesis occurs via proliferation of endogenous OSCs in a tetrapod and mediates ovarian regeneration. This study lays the foundations to elucidate mechanisms of ovarian regeneration that will assist regenerative medicine in treating premature ovarian failure and reduced fertility. Stem Cells 2017;35:236-247.

  8. Tunneling nanotube formation is stimulated by hypoxia in ovarian cancer cells

    PubMed Central

    Vogel, Rachel I.; Thayanithy, Venugopal; Wong, Phillip; Teoh, Deanna; Geller, Melissa A.; Steer, Clifford J.; Subramanian, Subbaya; Lou, Emil

    2016-01-01

    In this study, we demonstrated that hypoxic conditions stimulated an increase in tunneling nanotube (TNT) formation in chemoresistant ovarian cancer cells (SKOV3, C200). We found that suppressing the mTOR pathway using either everolimus or metformin led to suppression of TNT formation in vitro, verifying TNTs as a potential target for cancer-directed therapy. Additionally, TNT formation was detected in co-cultures including between platinum-resistant SKOV3 cells, between SKOV3 cells and platinum-chemosensitive A2780 cells, and between SKOV3 cells cultured with benign ovarian epithelial (IOSE) cells; these findings indicate that TNTs are novel conduits for malignant cell interactions and tumor cell interactions with other cells in the microenvironment. When chemoresistant C200 and parent chemosensitive A2780 cells were co-cultured, chemoresistant cells displayed a higher likelihood of TNT formation to each other than to chemosensitive malignant or benign epithelial cells. Hypoxia-induced TNT formation represents a potential mechanism for intercellular communication in ovarian cancer and other forms of invasive refractory cancers. PMID:27223082

  9. Inhibitory Effects of the Four Main Theaflavin Derivatives Found in Black Tea on Ovarian Cancer Cells

    PubMed Central

    GAO, YING; RANKIN, GARY O.; TU, YOUYING; CHEN, YI CHARLIE

    2016-01-01

    Background Some polyphenols induce apoptosis and inhibit angiogenesis. Consumption of black tea, rich in polyphenols, has been found to reduce ovarian cancer risk. Theaflavin (TF1), theaflavin-3-gallate (TF2a), theaflavin-3′-gallate (TF2b) and theaflavin-3, 3′-digallate (TF3) are four main theaflavin derivatives found in black tea. Materials and Methods Cell proliferation assay, Hoechst 33342 staining assay, Caspase-Glo Assay, western blot, human umbilical vein endothelial cell tube formation assay and vascular endothelial growth factor (VEGF) enzyme-linked immunosorbent assay were performed. Results All four theaflavin derivatives reduced viability of ovarian cancer cells at lower concentrations than with normal ovarian cells. TF1 mainly mediated apoptosis via the intrinsic pathway, while the others via the intrinsic and extrinsic pathways. TF1 inhibited tube formation via reducing VEGF secretion in a hypoxia-inducible factor 1α-independent manner, while the others in a HIF1α-dependent way. Conclusion All four theaflavin derivatives inhibited ovarian cancer cells. Some of the effects and mechanisms of TF1 are different from those of the other three theaflavin derivatives. PMID:26851019

  10. Targeting the ROR1 and ROR2 receptors in epithelial ovarian cancer inhibits cell migration and invasion

    PubMed Central

    Henry, Claire; Llamosas, Estelle; Knipprath-Mészáros, Alexandra; Schoetzau, Andreas; Obermann, Ellen; Fuenfschilling, Maya; Caduff, Rosemarie; Fink, Daniel; Hacker, Neville; Ward, Robyn; Heinzelmann-Schwarz, Viola; Ford, Caroline

    2015-01-01

    AIM In recent years, the Wnt signalling pathway has been implicated in epithelial ovarian cancer and its members have potential as diagnostic, prognostic and therapeutic targets. Here we investigated the role of two Wnt receptor tyrosine kinases (RTKs), ROR1 and ROR2, and their putative ligand, Wnt5a, in ovarian cancer. METHODS Immunohistochemistry for ROR2 was performed in a large patient cohort, including benign controls, borderline tumours and epithelial ovarian cancer. In addition, siRNA was used to silence ROR1, ROR2 and Wnt5a individually, and together, in two ovarian cancer cell lines, and the effects on cell proliferation, adhesion, migration and invasion were measured. RESULTS ROR2 expression is significantly increased in ovarian cancer patients compared to patients with benign disease. In vitro assays showed that silencing either receptor inhibits ovarian cancer cell migration and invasion, and concurrently silencing both receptors has an even stronger inhibitory effect on proliferation, migration and invasion. CONCLUSIONS ROR2 expression is increased in epithelial ovarian cancer, and silencing ROR2 and its sister receptor ROR1 has a strong inhibitory effect on the ability of ovarian cancer cells to proliferate, migrate and invade through an extracellular matrix. PMID:26515598

  11. Metformin: Direct Inhibition of Rat Ovarian Theca-Interstitial Cell Proliferation

    PubMed Central

    Will, Matthew A.; Palaniappan, Murugesan; Peegel, Helle; Kayampilly, Pradeep; Menon, K.M.J.

    2012-01-01

    Study Objective To determine if metformin has direct effects on ovarian theca-interstitial cell proliferation through activation of AMP-activated protein kinase (AMPK). Design In vitro experimental study. Setting Academic medical center laboratory. Animal(s) Immature Sprague-Dawley female rats Interventions Ovarian theca-interstitial (T-I) cells were isolated, purified and cultured in the absence (control) or presence of insulin (1mcg/mL) with or without metformin or other activators/inhibitors of AMPK (AICAR, Compound C). Main outcome measure(s) Proliferation was assessed by determination of expression levels of proteins involved in cell cycle progression, cyclin D3 and cyclin-dependent kinase 4 (CDK4) with Western blot analysis, and determination of DNA synthesis with bromodeoxyuridine (BrdU) incorporation assay. Activation of AMPK, Erk1/2 and S6K1 was determined by Western blot analysis with the use of antibodies specific for the phosphorylated (activated) forms. Results Metformin inhibited insulin-induced ovarian T-I cell proliferation and upregulation of cell cycle regulatory proteins, cyclin D3 and CDK4. Metformin independently activated AMPK in a dose-dependent manner. Treatment with metformin inhibited insulin-induced activation of Erk1/2 and S6K1. This effect was reversed with the addition of compound C, a known AMPK inhibitor. Conclusions Metformin directly inhibits proliferation of ovarian theca-interstitial cells via an AMPK-dependent mechanism. Present findings further validate potential benefits of metformin in the treatment of conditions associated with hyperinsulinemia and excessive growth of ovarian T-I cells (such as PCOS). PMID:22608319

  12. Management of bilateral malignant ovarian germ cell tumors: Experience of a single institute

    PubMed Central

    Zhao, Ting; Liu, Yan; Jiang, Hongyuan; Zhang, Hao; Lu, Yuan

    2016-01-01

    Bilateral malignant ovarian germ cell tumors (MOGCTs) are rare. Determination of the optimal treatment modalities is crucial, as these malignancies mainly affect girls and young women who may wish to preserve their fertility. In order to review the prevalence, clinical characteristics, treatment and outcome of bilateral MOGCTs, we performed a retrospective review of patients who were diagnosed with bilateral MOGCTs and underwent primary surgery at the Obstetrics and Gynecology Hospital of Fudan University (Shanghai, China) between January, 2001 and December, 2014. Of the 130 patients investigated, 8 were diagnosed with bilateral disease, most of whom were International Federation of Gynecology and Obstetrics stage I. There was no significant difference in overall and disease-free survival between patients with unilateral and those with bilateral disease. Cases with dysgerminoma, dysgerminoma coexisting with gonadoblastoma, yolk sac tumor and ovarian primary choriocarcinoma were included in this study. Fertility was spared in 2 patients (1 with dysgerminoma and 1 with ovarian primary choriocarcinoma). The patient with ovarian choriocarcinoma experienced relapse and was finally salvaged by radical surgery and adjuvant chemotherapy. According to our results and the published data, patients affected by bilateral MOGCTs have a satisfactory prognosis. The treatment modalities largely depend on the histological type of the tumor. Fertility-sparing surgery may be safe for patients affected by dysgerminoma, but should be considered with caution in patients with ovarian primary choriocarcinoma. PMID:27446585

  13. Recurrent ovarian Sertoli–Leydig cell tumor in a child with Peutz–Jeghers syndrome

    PubMed Central

    Bellfield, Edward J.; Alemzadeh, Ramin

    2016-01-01

    We present a female child with Peutz–Jeghers syndrome (PJS) with a recurrent ovarian Sertoli–Leydig cell tumor (SLCT). SLCTs are relatively rare sex cord neoplasms that can occur in PJS. The patient was an African-American female who first presented at the age of 3 years with precocious puberty, and then at the age of 17 years with abdominal pain and irregular menses. In each case, she had resection of the mass, which included oophorectomy. To our knowledge, this is the first reported case in a child with PJS to have a recurrent ovarian SLCT. PMID:28101370

  14. Human lymphatic endothelial cells contribute to epithelial ovarian carcinoma metastasis by promoting lymphangiogenesis and tumour cell invasion

    PubMed Central

    XIE, YIHONG; ZHONG, YANPING; GAO, TING; ZHANG, XINYING; LI, LI; RUAN, HEYUN; LI, DANRONG

    2016-01-01

    The microenvironment of a tumour is an important factor in ovarian cancer metastasis. The present study aimed to simulate the in vivo microenvironment of an ovarian carcinoma using a co-culture system consisting of human lymphatic endothelial cells (HLECs) and human ovarian carcinoma cells with directional high lymphatic metastasis (SKOV3-PM4s) in order to investigate the role of both cell types in ovarian carcinoma metastasis. The SKOV3-PM4s cultured in the HLEC-conditioned medium exhibited increased numbers of pseudopodia and mitotic figures, proliferated at a faster rate and exhibited enhanced invasion and migratory abilities. Furthermore, the HLECs cultured in SKOV3-PM4-conditioned medium exhibited significant morphological alterations and vacuolisation of the cytoplasm, as well as increased invasion, migratory and tube forming abilities. In addition, spontaneous fusion of the SKOV3-PM4s and HLECs was observed in the co-culture system using laser confocal microscopy. The gelatin zymography assay demonstrated that matrix metalloproteinase-2, which was downregulated in the SKOV3-PM4s, was upregulated in the co-culture system. The results of the present study suggested that the invasion ability of the SKOV3-PM4s was increased in the in vitro co-culture system of SKOV3-PM4 and HLECs. Therefore, alterations in the cell microenvironment may represent a novel strategy for ovarian cancer therapy. PMID:27168777

  15. The Wnt gatekeeper SFRP4 modulates EMT, cell migration and downstream Wnt signalling in serous ovarian cancer cells.

    PubMed

    Ford, Caroline E; Jary, Eve; Ma, Sean Si Qian; Nixdorf, Sheri; Heinzelmann-Schwarz, Viola A; Ward, Robyn L

    2013-01-01

    Aberrant Wnt signalling is implicated in numerous human cancers, and understanding the effects of modulation of pathway members may lead to the development of novel therapeutics. Expression of secreted frizzled related protein 4 (SFRP4), an extracellular modulator of the Wnt signalling pathway, is progressively lost in more aggressive ovarian cancer phenotypes. Here we show that recombinant SFRP4 (rSFRP4) treatment of a serous ovarian cancer cell line results in inhibition of β-catenin dependent Wnt signalling as measured by TOP/FOP Wnt reporter assay and decreased transcription of Wnt target genes, Axin2, CyclinD1 and Myc. In addition, rSFRP4 treatment significantly increased the ability of ovarian cancer cells to adhere to collagen and fibronectin, and decreased their ability to migrate across an inflicted wound. We conclude that these changes in cell behaviour may be mediated via mesenchymal to epithelial transition (MET), as rSFRP4 treatment also resulted in increased expression of the epithelial marker E-cadherin, and reduced expression of Vimentin and Twist. Combined, these results indicate that modulation of a single upstream gatekeeper of Wnt signalling can have effects on downstream Wnt signalling and ovarian cancer cell behaviour, as mediated through epithelial to mesenchymal plasticity (EMP). This raises the possibility that SFRP4 may be used both diagnostically and therapeutically in epithelial ovarian cancer.

  16. Preparation and characterization of luteinising-hormone releasing hormone nanoliposomal microbubbles specifically targeting ovarian cancer cells in vitro.

    PubMed

    Zhang, Jinyi; Liu, Sisun; Zhu, Yuanfang; Zhang, Liping; Li, Wenjuan; Wang, Fen; Huang, Shuying

    2014-07-01

    The aim of the present study was to prepare luteinizing-hormone releasing hormone (LHRH) nanoliposomal microbubbles specifically targeting ovarian cancer cells. The lyophilization/sonication method was used to prepare non-targeting nanoliposomal microbubbles (N-N-Mbs). Using the biotin-avidin bridge method, conjugated LHRH antibodies to N-N-Mbs generated LHRH nanoliposomal microbubbles (LHRH-N-Mbs) specifically targeting ovarian cancer cells. The morphology and physicochemical properties of the microbubbles was detected using an optical microscope and zeta detector. The binding affinity between the secondary antibody and LHRH-N-Mbs or N-N-Mbs was determined by flow cytometry. The binding of LHRH-N-Mb to human ovarian cancer cells (OVCAR-3) was detected by light microscopy. The rounded and uniformly distributed N-N-Mbs and LHRH-N-Mbs were successfully generated. The particle size ranged from 295-468 nm with a mean of 360 nm for N-N-Mbs or 369-618 nm with a mean of 508 nm for LHRH-N-Mbs. There was a significant difference in size between the two groups (P<0.05), although the surface potential of the two microbubbles remained the same (-14.6 mV). Following being kept at room temperature for 14 days, no significant difference in the physicochemical properties of the LHRH-N-Mbs was detected compared with that of freshly prepared microbubbles. The secondary antibody binding rate of LHRH-N-Mbs and N-N-Mbs was 75.6 and 0.83%, respectively. Furthermore, the formation of a rosette-like structure surrounding OVCAR-3 cells was observed after the cells were incubated with LHRH-N-Mbs, whereas pre-incubation with LHRH antibody blocked this rosette formation. In conclusion, LHRH-N-Mbs specifically targeting ovarian cancer cells were successfully prepared through biotin-avidin mediation and the lyophilization/sonication method. The key feature of LHRH-N-Mbs is their small size, stability and high efficiency in targeting human OVCAR-3 cells in vitro.

  17. Microchip ELISA coupled with cell phone to detect ovarian cancer HE4 biomarker in urine.

    PubMed

    Wang, ShuQi; Akbas, Ragip; Demirci, Utkan

    2015-01-01

    Ovarian cancer is a leading cause of death from gynecologic cancers in the USA, and early diagnosis can potentially increase 5-year survival rate. Detection of biomarkers derived from hyperplasia of epithelial tissue by enzyme-linked immunosorbent assay (ELISA) proves to be a practical way of early diagnosis of ovarian cancer. However, ELISA is commonly performed in a laboratory setting, and it cannot be used in a clinical setting for on-site consultation. We have shown a microchip ELISA that detects HE4, an ovarian cancer biomarker, from urine using a cell phone integrated with a mobile application for imaging and data analysis. In microchip ELISA, HE4 from urine was first absorbed on the surface; the primary and secondary antibodies were subsequently anchored on the surface via immuno-reaction; and addition of substrate led to color development because of enzymatic labeling. The microchip after color development was imaged using a cell phone, and the color intensity was analyzed by an integrated mobile application. By comparing with an ELISA standard curve, the concentration of HE4 was reported on the cell phone screen. The presented microchip ELISA coupled with a cell phone is portable as opposed to traditional ELISA, and this method can facilitate the detection of ovarian cancer at the point-of-care (POC).

  18. Targeting of Wnt/β-Catenin by Anthelmintic Drug Pyrvinium Enhances Sensitivity of Ovarian Cancer Cells to Chemotherapy

    PubMed Central

    Zhang, Chongyuan; Zhang, Zhenge; Zhang, Shuirong; Wang, Wenrong; Hu, Ping

    2017-01-01

    Background Aberrant activation of Wnt/β-catenin has been shown to promote ovarian cancer proliferation and chemoresistance. Pyrvinium, an FDA-approved anthelmintic drug, has been identified as a potent Wnt inhibitor. Pyrvinium may sensitize ovarian cancer cells to chemotherapy. Material/Methods The effect of pyrvinium alone and its combination with paclitaxel in ovarian cancer was investigated using an in vitro culture system and in vivo xenograft models. The mechanisms of its action were also analyzed, focusing on the Wnt/β-catenin pathway. Results Pyrvinium inhibited growth and induced apoptosis of paclitaxel- and cisplatin-resistant epithelial ovarian cancer cell lines A2278/PTX and SK-OV-3. Its combination with paclitaxel was synergistic in targeting ovarian cancer cells in vitro. In 3 independent ovarian xenograft mouse models, pyrvinium alone inhibited tumor growth. More importantly, we observed significant inhibition of tumor growth throughout the treatment when using pyrvinium and paclitaxel combined. Mechanistically, pyrvinium increased the Wnt-negative regulator axin and decreased the β-catenin levels in ovarian cancer cells. In addition, pyrvinium suppressed Wnt/β-catenin-mediated transcription, as shown by the decreased mRNA levels of MYC, cyclin D, and BCL-9. In contrast, the inhibitory effects of pyrvinium were reversed by β-catenin stabilization or overexpression, demonstrating that pyrvinium acted on ovarian cancer cells via targeting the Wnt/β-catenin signaling pathway. Conclusions We demonstrated that the anthelmintic drug pyrvinium targets ovarian cancer cells through suppressing Wnt/β-catenin signaling. Our work highlights the therapeutic value of inhibiting Wnt/β-catenin in ovarian cancer. PMID:28090074

  19. Increased intracellular Ca(2+) decreases cisplatin resistance by regulating iNOS expression in human ovarian cancer cells.

    PubMed

    Yu, Yang; Xie, Qi; Liu, Weimin; Guo, Yuting; Xu, Na; Xu, Lu; Liu, Shibing; Li, Songyan; Xu, Ye; Sun, Liankun

    2017-02-01

    Previous studies have reported that intracellular Ca(2+) signals and inducible nitric oxide synthase (iNOS) are involved in cell apoptosis. However, the role of iNOS in cisplatin resistance in ovarian cancer remains unclear. Here, we demonstrate that SKOV3/DDP ovarian cancer cells were more resistant to cisplatin than were SKOV3 ovarian cancer cells. The expression of intracellular Ca(2+) and iNOS was more strongly induced by cisplatin in SKOV3 cells than in SKOV3/DDP cells. TAT-conjugated IP3R-derived peptide (TAT-IDP(S)) increased cisplatin-induced iNOS expression and apoptosis in SKOV3/DDP cells. 2-Aminoethoxydiphenyl borate (2-APB) decreased cisplatin-induced iNOS expression and apoptosis in SKOV3 cells. Thus, iNOS induction may be a valuable strategy for improving the anti-tumor efficacy of cisplatin in ovarian cancer.

  20. Cancer stem cell marker CD90 inhibits ovarian cancer formation via β3 integrin

    PubMed Central

    Chen, Wei-Ching; Hsu, Hui-Ping; Li, Chung-Yen; Yang, Ya-Ju; Hung, Yu-Hsuan; Cho, Chien-Yu; Wang, Chih-Yang; Weng, Tzu-Yang; Lai, Ming-Derg

    2016-01-01

    Cancer stem cell (CSC) markers have been identified for CSC isolation and proposed as therapeutic targets in various types of cancers. CD90, one of the characterized markers in liver and gastric cancer, is shown to promote cancer formation. However, the underexpression level of CD90 in ovarian cancer cells and the evidence supporting the cellular mechanism have not been investigated. In the present study, we found that the DNA copy number of CD90 is correlated with mRNA expression in ovarian cancer tissue and the ovarian cancer patients with higher CD90 have good prognosis compared to the patients with lower CD90. Although the expression of CD90 in human ovarian cancer SKOV3 cells enhances the cell proliferation by MTT and anchorage-dependent growth assay, CD90 inhibits the anchorage-independent growth ability in vitro and tumor formation in vivo. CD90 overexpression suppresses the sphere-forming ability and ALDH activity and enhances the cell apoptosis, indicating that CD90 may reduce the cell growth by the properties of CSC and anoikis. Furthermore, CD90 reduces the expression of other CSC markers, including CD133 and CD24. The inhibition of CD133 is attenuated by the mutant CD90, which is replaced with RLE domain into RLD domain. Importantly, the CD90-regulated inhibition of CD133 expression, anchorage-independent growth and signal transduction of mTOR and AMPK are restored by the β3 integrin shRNA. Our results provide evidence that CD90 mediates the antitumor formation by interacting with β3 integrin, which provides new insight that can potentially be applied in the development of therapeutic strategies in ovarian cancer. PMID:27633757

  1. Salinomycin reduces stemness and induces apoptosis on human ovarian cancer stem cell

    PubMed Central

    Lee, Hyun-Gyo; Shin, So-Jin; Cha, Soon-Do

    2017-01-01

    Objective Cancer stem cells (CSCs) represent a subpopulation of undifferentiated tumorigenic cells thought to be responsible for tumor initiation, maintenance, drug resistance, and metastasis. The role of CSCs in drug resistance and relapse of cancers could significantly affect outcomes of ovarian cancer patient. Therefore, therapies that target CSCs could be a promising approach for ovarian cancer treatment. The antibiotic salinomycin has recently been shown to deplete CSCs. In this study, we evaluated the effect of salinomycin on ovarian cancer stem cells (OCSCs), both alone and in combination with paclitaxel (PTX). Methods The CD44+CD117+CSCs were obtained from the ascitic fluid of patients with epithelial ovarian cancer by using an immune magnetic-activated cell sorting system. OCSCs were treated with PTX and salinomycin either singly or in combination. Cell viability and apoptosis assays were performed and spheroid-forming ability was measured. The expression of sex determining region Y-box 2 (SOX2) and octamer-binding transcription factor 3/4 (OCT3/4) mRNA was determined using reverse transcription polymerase chain reaction, and protein expression was observed using western blot analysis. Results Treatment with salinomycin alone reduced the stemness marker expression and spheroid-forming ability of OCSCs. Treatment with PTX alone did not decrease the viability of OCSCs. Treatment with a combination of salinomycin decreased the viability of OCSCs and promoted cell apoptosis. The enhancement of combination treatment was achieved through the apoptosis as determined by annexin V/propidium iodide (PI) staining, caspase-3 activity, and DNA fragmentation assay. Conclusion Based on our findings, combining salinomycin with other anti-cancer therapeutic agents holds promise as an ovarian cancer treatment approach that can target OCSCs. PMID:27894167

  2. Expression of Stem Cell Markers in Preinvasive Tubal Lesions of Ovarian Carcinoma

    PubMed Central

    Chene, G.; Ouellet, V.; Rahimi, K.; Barres, V.; Meunier, L.; De Ladurantaye, M.; Provencher, D.; Mes-Masson, A. M.

    2015-01-01

    In order to better understand the ovarian serous carcinogenic process with tubal origin, we investigated the expression of stem cell markers in premalignant tubal lesions (serous tubal intraepithelial carcinoma or STIC). We found an increased stem cell marker density in the normal fallopian tube followed by a high CD117 and a low ALDH and CD44 expression in STICs raising the question of the role of the stem cell markers in the serous carcinogenic process. PMID:26504831

  3. Changes in Brain Function in Patients With Stage I, Stage II, Stage III, or Stage IV Ovarian, Primary Peritoneal, or Fallopian Tube Cancer Who Are Receiving Chemotherapy

    ClinicalTrials.gov

    2016-10-26

    Cognitive Side Effects of Cancer Therapy; Malignant Ovarian Epithelial Tumor; Ovarian Brenner Tumor; Ovarian Carcinosarcoma; Ovarian Choriocarcinoma; Ovarian Clear Cell Cystadenocarcinoma; Ovarian Dysgerminoma; Ovarian Embryonal Carcinoma; Ovarian Endometrioid Adenocarcinoma; Ovarian Mixed Germ Cell Tumor; Ovarian Mucinous Cystadenocarcinoma; Ovarian Polyembryoma; Ovarian Sarcoma; Ovarian Seromucinous Carcinoma; Ovarian Serous Cystadenocarcinoma; Ovarian Teratoma; Ovarian Yolk Sac Tumor; Stage I Ovarian Cancer; Stage IA Fallopian Tube Cancer; Stage IA Ovarian Cancer; Stage IA Ovarian Germ Cell Tumor; Stage IB Fallopian Tube Cancer; Stage IB Ovarian Cancer; Stage IB Ovarian Germ Cell Tumor; Stage IC Fallopian Tube Cancer; Stage IC Ovarian Cancer; Stage IC Ovarian Germ Cell Tumor; Stage II Ovarian Cancer; Stage IIA Fallopian Tube Cancer; Stage IIA Ovarian Cancer; Stage IIA Ovarian Germ Cell Tumor; Stage IIB Fallopian Tube Cancer; Stage IIB Ovarian Cancer; Stage IIB Ovarian Germ Cell Tumor; Stage IIC Fallopian Tube Cancer; Stage IIC Ovarian Cancer; Stage IIC Ovarian Germ Cell Tumor; Stage IIIA Fallopian Tube Cancer; Stage IIIA Ovarian Cancer; Stage IIIA Ovarian Germ Cell Tumor; Stage IIIA Primary Peritoneal Cancer; Stage IIIB Fallopian Tube Cancer; Stage IIIB Ovarian Cancer; Stage IIIB Ovarian Germ Cell Tumor; Stage IIIB Primary Peritoneal Cancer; Stage IIIC Fallopian Tube Cancer; Stage IIIC Ovarian Cancer; Stage IIIC Ovarian Germ Cell Tumor; Stage IIIC Primary Peritoneal Cancer; Stage IV Fallopian Tube Cancer; Stage IV Ovarian Cancer; Stage IV Ovarian Germ Cell Tumor; Stage IV Primary Peritoneal Cancer; Undifferentiated Ovarian Carcinoma

  4. The MOC31PE immunotoxin reduces cell migration and induces gene expression and cell death in ovarian cancer cells

    PubMed Central

    2014-01-01

    Background The standard treatment of ovarian cancer with chemotherapy often leads to drug resistance and relapse of the disease, and the need for development of novel therapy alternatives is obvious. The MOC31PE immunotoxin binds to the cell surface antigen EpCAM, which is expressed by the majority of epithelial cancers including ovarian carcinomas, and we studied the cytotoxic effects of MOC31PE in ovarian cancer cells. Methods Investigation of the effects of MOC31PE treatment on protein synthesis, cell viability, proliferation and gene expression of the ovarian cancer cell lines B76 and HOC7. Results MOC31PE treatment for 24 h caused a dose-dependent reduction of protein synthesis with ID50 values of less than 10 ng/ml, followed by reduced cell viability. In a gene expression array monitoring the expression of 84 key genes in cancer pathways, 13 of the genes were differentially expressed by MOC31PE treatment in comparison to untreated cells. By combining MOC31PE and the immune suppressor cyclosporin A (CsA) the MOC31PE effect on protein synthesis inhibition and cell viability increased tenfold. Cell migration was also reduced, both in the individual MOC31PE and CsA treatment, but even more when combining MOC31PE and CsA. In tumor metastasis PCR arrays, 23 of 84 genes were differentially expressed comparing CsA versus MOC31PE + CsA treatment. Increased expression of the tumor suppressor KISS1 and the nuclear receptor NR4A3 was observed, and the differential candidate gene expression was confirmed in complementary qPCR analyses. For NR4A3 this was not accompanied by increased protein expression. However, a subcellular fractionation assay revealed increased mitochondrial NR4A3 in MOC31PE treated cells, suggesting a role for this protein in MOC31PE-induced apoptotic cell death. Conclusion The present study demonstrates that MOC31PE may become a new targeted therapy for ovarian cancer and that the MOC31PE anti-cancer effect is potentiated by CsA. PMID:24528603

  5. Silymarin induces cell cycle arrest and apoptosis in ovarian cancer cells.

    PubMed

    Fan, Li; Ma, Yalin; Liu, Ying; Zheng, Dongping; Huang, Guangrong

    2014-11-15

    The polyphenolic flavonoid silymarin that is the milk thistle extract has been found to possess an anti-cancer effect against various human epithelial cancers. In this study, to explore the regulative effect of silymarin on human ovarian cancer line A2780s and PA-1 cells, 3-[4, 5-dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide assay and flow cytometry were respectively used to determine the inhibitory effect of silymarin on the both cell lines, and to measure their cell cycle progression. Apoptosis induction and mitochondrial membrane potential damage were separately detected by terminal deoxynucleotidyl transferase-mediated 2'-deoxyuridine 5'-triphosphate nick end labeling assay and 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolylcarbocyanine iodide staining. Additionally, western blotting was applied to determine cytochrome C release and expression levels of p53, p21, p27, p16, CDK2, Bax, Bcl-2, procaspase-9, procaspase-3, cleaved caspase-9 and caspase-3 proteins. The activity of caspase-9 and caspase-3 was measured using Caspase-Glo-9 and Caspase-Glo-3 assay. The results indicated that silymarin effectively suppressed cell growth in a dose- and time-dependent manner, and arrested cell cycle progression at G1/S phase in A2780s and PA-1 cells via up-regulation of p53, p21, and p27 protein expression, and down-regulation of CDK2 protein expression. Additionally, silymarin treatment for 24h at 50 and 100µg/ml resulted in a reduction of mitochondrial membrane potential and cytochrome C release, and significantly induced apoptosis in A2780s and PA-1 cells by increasing Bax and decreasing Bcl-2 protein expression, and activation of caspase-9 and caspase-3. Therefore, silymarin is a possible potential candidate for the prevention and treatment of ovarian cancer.

  6. Dielectrophoretic differentiation of mouse ovarian surface epithelial cells, macrophages, and fibroblasts using contactless dielectrophoresis

    PubMed Central

    Salmanzadeh, Alireza; Kittur, Harsha; Sano, Michael B.; C. Roberts, Paul; Schmelz, Eva M.; Davalos, Rafael V.

    2012-01-01

    Ovarian cancer is the leading cause of death from gynecological malignancies in women. The primary challenge is the detection of the cancer at an early stage, since this drastically increases the survival rate. In this study we investigated the dielectrophoretic responses of progressive stages of mouse ovarian surface epithelial (MOSE) cells, as well as mouse fibroblast and macrophage cell lines, utilizing contactless dielectrophoresis (cDEP). cDEP is a relatively new cell manipulation technique that has addressed some of the challenges of conventional dielectrophoretic methods. To evaluate our microfluidic device performance, we computationally studied the effects of altering various geometrical parameters, such as the size and arrangement of insulating structures, on dielectrophoretic and drag forces. We found that the trapping voltage of MOSE cells increases as the cells progress from a non-tumorigenic, benign cell to a tumorigenic, malignant phenotype. Additionally, all MOSE cells display unique behavior compared to fibroblasts and macrophages, representing normal and inflammatory cells found in the peritoneal fluid. Based on these findings, we predict that cDEP can be utilized for isolation of ovarian cancer cells from peritoneal fluid as an early cancer detection tool. PMID:22536308

  7. Lysophosphatidic Acid Up-Regulates Hexokinase II and Glycolysis to Promote Proliferation of Ovarian Cancer Cells.

    PubMed

    Mukherjee, Abir; Ma, Yibao; Yuan, Fang; Gong, Yongling; Fang, Zhenyu; Mohamed, Esraa M; Berrios, Erika; Shao, Huanjie; Fang, Xianjun

    2015-09-01

    Lysophosphatidic acid (LPA), a blood-borne lipid mediator, is present in elevated concentrations in ascites of ovarian cancer patients and other malignant effusions. LPA is a potent mitogen in cancer cells. The mechanism linking LPA signal to cancer cell proliferation is not well understood. Little is known about whether LPA affects glucose metabolism to accommodate rapid proliferation of cancer cells. Here we describe that in ovarian cancer cells, LPA enhances glycolytic rate and lactate efflux. A real time PCR-based miniarray showed that hexokinase II (HK2) was the most dramatically induced glycolytic gene to promote glycolysis in LPA-treated cells. Analysis of the human HK2 gene promoter identified the sterol regulatory element-binding protein as the primary mediator of LPA-induced HK2 transcription. The effects of LPA on HK2 and glycolysis rely on LPA2, an LPA receptor subtype overexpressed in ovarian cancer and many other malignancies. We further examined the general role of growth factor-induced glycolysis in cell proliferation. Like LPA, epidermal growth factor (EGF) elicited robust glycolytic and proliferative responses in ovarian cancer cells. Insulin-like growth factor 1 (IGF-1) and insulin, however, potently stimulated cell proliferation but only modestly induced glycolysis. Consistent with their differential effects on glycolysis, LPA and EGF-dependent cell proliferation was highly sensitive to glycolytic inhibition while the growth-promoting effect of IGF-1 or insulin was more resistant. These results indicate that LPA- and EGF-induced cell proliferation selectively involves up-regulation of HK2 and glycolytic metabolism. The work is the first to implicate LPA signaling in promotion of glucose metabolism in cancer cells.

  8. Highly and moderately aggressive mouse ovarian cancer cell lines exhibit differential gene expression

    PubMed Central

    Zhang, Wensheng; Kale, Shubha P.; McFerrin, Harris; Davenport, Ian; Wang, Guangdi; Skripnikova, Elena; Li, Xiao-Lin; Bowen, Nathan J.; McDaniels, Leticia B; Meng, Yuan-Xiang; Polk, Paula; Liu, Yong-Yu; Zhang, Qian-Jin

    2017-01-01

    Patients with advanced epithelial ovarian cancer often experience disease recurrence after standard therapies, a critical factor in determining their five-year survival rate. Recent reports indicated that long-term or short-term survival is associated with varied gene expression of cancer cells. Thus, identification of novel prognostic biomarkers should be considered. Since the mouse genome is similar to the human genome, we explored potential prognostic biomarkers using two groups of mouse ovarian cancer cell lines (group 1: IG-10, IG-10pw, and IG-10pw/agar; group 2: IG-10 clones 2, 3, and 11) which display highly and moderately aggressive phenotypes in vivo. Mice injected with these cell lines have different survival time and rates, capacities of tumor, and ascites formations, reflecting different prognostic potentials. Using an Affymetrix Mouse Genome 430 2.0 Array, a total of 181 genes were differentially expressed (P<0.01) by at least twofold between two groups of the cell lines. Of the 181 genes, 109 and 72 genes were overexpressed in highly and moderately aggressive cell lines, respectively. Analysis of the 109 and 72 genes using Ingenuity Pathway Analysis (IPA) tool revealed two cancer-related gene networks. One was associated with the highly aggressive cell lines and affiliated with MYC gene, and another was associated with the moderately aggressive cell lines and affiliated with the androgen receptor (AR). Finally, the gene enrichment analysis indicated that the overexpressed 89 genes (out of 109 genes) in highly aggressive cell lines had a function annotation in the David database. The cancer-relevant significant gene ontology (GO) terms included Cell cycle, DNA metabolic process, and Programmed cell death. None of the genes from a set of the 72 genes overexpressed in the moderately aggressive cell lines had a function annotation in the David database. Our results suggested that the overexpressed MYC and 109 gene set represented highly aggressive ovarian

  9. Selective cytotoxicity of indirect nonequilibrium atmospheric pressure plasma against ovarian clear-cell carcinoma.

    PubMed

    Utsumi, Fumi; Kajiyama, Hiroaki; Nakamura, Kae; Tanaka, Hiromasa; Hori, Masaru; Kikkawa, Fumitaka

    2014-01-01

    Ovarian clear cell carcinoma (CCC) is a histological type of epithelial ovarian cancer that is less responsive to chemotherapy and associated with a poorer prognosis than serous and endometrioid carcinoma. Non-thermal atmospheric pressure plasma which produces reactive species has recently led to an explosion of research in plasma medicine. Plasma treatment can be applied to cancer treatment to induce apoptosis and tumor growth arrest. Furthermore, recent studies have shown that a medium exposed to plasma also has an anti-proliferative effect against cancer in the absence of direct exposure to plasma. In this study, we confirmed whether this indirect plasma has an anti-tumor effect against CCC, and investigated whether this efficacy is selective for cancer cells. Non-thermal atmospheric pressure plasma induced apoptosis in CCC cells, while human peritoneal mesothelial cells remained viable. Non-thermal atmospheric pressure plasma exhibits selective cytotoxicity against CCC cells which are resistant to chemotherapy.

  10. Proteomics Analysis of Ovarian Cancer Cell Lines and Tissues Reveals Drug Resistance-associated Proteins

    PubMed Central

    CRUZ*, ISA N.; COLEY*, HELEN M.; KRAMER, HOLGER B.; MADHURI, THUMULURU KAVITAH; SAFUWAN, NUR A.M.; ANGELINO, ANA RITA; YANG, MIN

    2016-01-01

    Background: Carboplatin and paclitaxel form the cornerstone of chemotherapy for epithelial ovarian cancer, however, drug resistance to these agents continues to present challenges. Despite extensive research, the mechanisms underlying this resistance remain unclear. Materials and Methods: A 2D-gel proteomics method was used to analyze protein expression levels of three human ovarian cancer cell lines and five biopsy samples. Representative proteins identified were validated via western immunoblotting. Ingenuity pathway analysis revealed metabolomic pathway changes. Results: A total of 189 proteins were identified with restricted criteria. Combined treatment targeting the proteasome-ubiquitin pathway resulted in re-sensitisation of drug-resistant cells. In addition, examination of five surgical biopsies of ovarian tissues revealed α-enolase (ENOA), elongation factor Tu, mitochondrial (EFTU), glyceraldehyde-3-phosphate dehydrogenase (G3P), stress-70 protein, mitochondrial (GRP75), apolipoprotein A-1 (APOA1), peroxiredoxin (PRDX2) and annexin A (ANXA) as candidate biomarkers of drug-resistant disease. Conclusion: Proteomics combined with pathway analysis provided information for an effective combined treatment approach overcoming drug resistance. Analysis of cell lines and tissues revealed potential prognostic biomarkers for ovarian cancer. *These Authors contributed equally to this study. PMID:28031236

  11. Metformin Hydrochloride, Carboplatin, and Paclitaxel in Treating Patients With Recurrent Ovarian, Fallopian Tube, or Primary Peritoneal Cancer

    ClinicalTrials.gov

    2017-01-24

    Ovarian Papillary Serous Carcinoma; Ovarian Serous Cystadenocarcinoma; Recurrent Fallopian Tube Cancer; Recurrent Ovarian Epithelial Cancer; Recurrent Ovarian Germ Cell Tumor; Recurrent Primary Peritoneal Cavity Cancer

  12. Resveratrol inhibits IL-6-induced ovarian cancer cell migration through epigenetic up-regulation of autophagy.

    PubMed

    Ferraresi, Alessandra; Phadngam, Suratchanee; Morani, Federica; Galetto, Alessandra; Alabiso, Oscar; Chiorino, Giovanna; Isidoro, Ciro

    2017-03-01

    Interleukin-6 (IL-6), a pro-inflammatory cytokine released by cancer-associated fibroblasts, has been linked to the invasive and metastatic behavior of ovarian cancer cells. Resveratrol is a naturally occurring polyphenol with the potential to inhibit cancer cell migration. Here we show that Resveratrol and IL-6 affect in an opposite manner the expression of RNA messengers and of microRNAs involved in cell locomotion and extracellular matrix remodeling associated with the invasive properties of ovarian cancer cells. Among the several potential candidates responsible for the anti-invasive effect promoted by Resveratrol, here we focused our attention on ARH-I (DIRAS3), that encodes a Ras homolog GTPase of 26-kDa. This protein is known to inhibit cell motility, and it has been shown to regulate autophagy by interacting with BECLIN 1. IL-6 down-regulated the expression of ARH-I and inhibited the formation of LC3-positive autophagic vacuoles, while promoting cell migration. On opposite, Resveratrol could counteract the IL-6 induction of cell migration in ovarian cancer cells through induction of autophagy in the cells at the migration front, which was paralleled by up-regulation of ARH-I and down-regulation of STAT3 expression. Spautin 1-mediated disruption of BECLIN 1-dependent autophagy abrogated the effects of Resveratrol, while promoting cell migration. The present data indicate that Resveratrol elicits its anti-tumor effect through epigenetic mechanisms and support its inclusion in the chemotherapy regimen for highly aggressive ovarian cancers. © 2016 Wiley Periodicals, Inc.

  13. Lung cancer - non-small cell

    MedlinePlus

    Cancer - lung - non-small cell; Non-small cell lung cancer; NSCLC; Adenocarcinoma - lung; Squamous cell carcinoma - lung ... Smoking causes most cases (around 90%) of lung cancer. The risk depends on the number of cigarettes ...

  14. Solasodine Induces Apoptosis, Affects Autophagy, and Attenuates Metastasis in Ovarian Cancer Cells.

    PubMed

    Xu, Xiao-Huang; Zhang, Le-Le; Wu, Guo-Sheng; Chen, Xin; Li, Ting; Chen, Xiuping; Wang, Yi-Tao; Lu, Jin-Jian

    2017-02-01

    Solasodine, a steroidal alkaloid isolated from solanaceous species, exhibits anticancer activities on several cell lines. This study aimed to explore the antitumor potential of solasodine on ovarian cancer cells. The MTT assay, lactate dehydrogenase release assay, Hoechst 33342 staining, 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethyl-imidacarbocyanine staining assay, and Annexin V/PI assay were conducted to investigate the antiproliferation and apoptosis-inducing effects of solasodine. Monodansylcadaverine staining was performed to label the acidic puncta on ovarian cancer HEY cells. A wound healing assay and Transwell assay were carried out to determine whether solasodine elicits an antimetastatic effect on HEY cells. A gelatin zymography assay was applied to detect the enzymatic activities of matrix metalloproteinases. Western blot was employed to examine relevant protein expression. Results revealed that solasodine inhibited cell viabilities in a time- and dose-dependent manner, triggered apoptotic body formation, reduced cell mitochondrial membrane potential, and interfered with autolysosome degradation in ovarian cancer cells. Solasodine also suppressed the migration and invasion of HEY cells by downregulating matrix metalloproteinase expression and activities. This study could be used as a basis for further studies on the molecular mechanisms of the antiproliferation, apoptosis-inducing, autophagy-modifying, and antimetastatic activities of solasodine.

  15. Unique proteome signature of post-chemotherapy ovarian cancer ascites-derived tumor cells

    PubMed Central

    Ahmed, Nuzhat; Greening, David; Samardzija, Chantel; Escalona, Ruth M.; Chen, Maoshan; Findlay, Jock K.; Kannourakis, George

    2016-01-01

    Eighty % of ovarian cancer patients diagnosed at an advanced-stage have complete remission after initial surgery and chemotherapy. However, most patients die within <5 years due to episodes of recurrences resulting from the growth of residual chemoresistant cells. In an effort to identify mechanisms associated with chemoresistance and recurrence, we compared the expression of proteins in ascites-derived tumor cells isolated from advanced-stage ovarian cancer patients obtained at diagnosis (chemonaive, CN) and after chemotherapy treatments (chemoresistant/at recurrence, CR) by using in-depth, high-resolution label-free quantitative proteomic profiling. A total of 2,999 proteins were identified. Using a stringent selection criterion to define only significantly differentially expressed proteins, we report identification of 353 proteins. There were significant differences in proteins encoding for immune surveillance, DNA repair mechanisms, cytoskeleton rearrangement, cell-cell adhesion, cell cycle pathways, cellular transport, and proteins involved with glycine/proline/arginine synthesis in tumor cells isolated from CR relative to CN patients. Pathway analyses revealed enrichment of metabolic pathways, DNA repair mechanisms and energy metabolism pathways in CR tumor cells. In conclusion, this is the first proteomics study to comprehensively analyze ascites-derived tumor cells from CN and CR ovarian cancer patients. PMID:27470985

  16. Demethoxycurcumin inhibited human epithelia ovarian cancer cells' growth via up-regulating miR-551a.

    PubMed

    Du, Zhenhua; Sha, Xianqun

    2017-03-01

    Curcumin is a natural agent that has ability to dampen tumor cells' growth. However, the natural form of curcumin is prone to degrade and unstable in vitro. Here, we demonstrated that demethoxycurcumin (a curcumin-related demethoxy compound) could inhibit cell proliferation and induce apoptosis of ovarian cancer cells. Moreover, IRS2/PI3K/Akt axis was inactivated in cells treated with demethoxycurcumin. Quantitative real-time reverse transcription polymerase chain reaction demonstrated that miR-551a was down-regulated in ovarian cancer tissues and ovarian cancer cell lines. Over-expression of miR-551a inhibited cell proliferation and induced apoptosis of ovarian cancer cells, whereas down-regulation of miR-551a exerted the opposite function. Luciferase assays confirmed that there was a binding site of miR-551a in IRS2, and we found that miR-551a exerted tumor-suppressive function by targeting IRS2 in ovarian cancer cells. Remarkably, miR-551a was up-regulated in the cells treated with demethoxycurcumin, and demethoxycurcumin suppressed IRS2 by restoration of miR-551a. In conclusion, demethoxycurcumin hindered ovarian cancer cells' malignant progress via up-regulating miR-551a.

  17. Histological and genotoxic evaluation of gold nanoparticles in ovarian cells of zebrafish ( Danio rerio)

    NASA Astrophysics Data System (ADS)

    Dayal, Navami; Thakur, Mansee; Patil, Poonam; Singh, Dipty; Vanage, Geeta; Joshi, D. S.

    2016-10-01

    Gold nanoparticles (AuNPs) have attracted a lot of attention due to their usage in consumer- and therapy-based biomedical applications. These particles are frequently the medium-sized particles within the range of 10-50 nm. A number of scientific reports have addressed the cytotoxic potential of these NPs. However, their genotoxic potential with respect to reproductive aspects remains unclear. For assessment of safety and risks associated with AuNPs to female reproductive system, adult female zebrafish (Danio rerio) were exposed in vivo to 20 μg/g/day of AuNPs of two different sizes. AuNPs of 15 nm (type I) and 47 nm (type II) in diameters were administered orally to female zebrafish for a period of 28 days (chronic). The ability of these AuNPs to gain access to female reproductive organs was confirmed by their accumulation pattern through inductive coupled plasma mass spectroscopy. Gonads were assessed for changes in ovarian morphology at histopathological level followed by the confirmation of bioaccumulation of AuNPs using transmission electron microscopy. Using comet assay, strand breaks in DNA of ovarian cells were investigated. Chronic exposure to type I and II AuNPs showed distinctive patterns of bioaccumulation in ovaries. Interestingly, accumulated NPs resulted in gross cellular alterations in different cell types of ovarian tissue. Comet assay analysis revealed extensive number of strand breaks in ovarian cells from the NP exposed fishes. In conclusion, AuNPs ranging between 10 and 50 nm are capable of gaining access to ovaries of zebrafish and potential enough to cause strand breaks in ovarian cells. The findings of the present study highlight the adverse effects of these NPs to female reproductive system. It opens up further avenues for research on effects of these NPs on F1 generation descending from the exposed fishes.

  18. Anticancer activity of NOB1-targeted shRNA combination with TRAIL in epithelial ovarian cancer cells.

    PubMed

    Lin, Yang; Xu, Tianmin; Teng, Hong; Cui, Manhua

    2015-01-01

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) based strategy is a promising targeted therapeutic approach for the treatment of ovarian cancer. However, the effectiveness of the treatment remains limited due to the inherent or acquired resistance of tumor cells to TRAIL. Our previously study demonstrated that downregulation of NOB1 (NIN1/RPN12 binding protein 1 homolog) expression by a lentiviral short hairpin RNA (shRNA) delivery system (Lv/sh-NOB1) suppressed ovarian cancer growth. Here, Lv/sh-NOB1 and TRAIL were combined and tested the effects of this combination on ovarian cancer cells to identify more effective therapeutics against ovarian cancer by several in vitro experiments. Tumor growth ability in SKVO3 xenograft nude mice was also determined to define this combination treatment effect in tumorigenesis in vivo. In vitro assay showed that Lv/sh-NOB1 in combination with TRAIL treatment in ovarian cancer cell synergistically suppressed the proliferation and colony formation, as well as induced cell apoptosis and increased the activity of caspase-3, -8 and -9. In vivo assay showed that Lv/sh-NOB1 combination with TRAIL synergistically suppressed tumor growth of nude mice model. Importantly, we found that downregulation of NOB1 could upregulate DR5 expression and active MAPK pathway, which might contribute to increase sensitivity TRAIL to ovarian cancer cells. These findings suggested that Lv/sh-NOB1 combination with TRAIL treatment may be a potential treatment approach for ovarian cancer.

  19. Hypoxia-NOTCH1-SOX2 signaling is important for maintaining cancer stem cells in ovarian cancer

    PubMed Central

    Jang, Il Ho; Choi, Eun Jung; Shin, Sang Hun; Lee, Su In; Kwon, Sang-Mo; Kim, Ki-Hyung; Suh, Dong-Soo; Kim, Jae Ho

    2016-01-01

    Hypoxia and NOTCH signaling have been reported to be associated with the self-renewal and drug resistance of cancer stem cells (CSCs). However, the molecular mechanisms by which hypoxia and NOTCH signaling stimulate the self-renewal and drug resistance of ovarian CSCs are poorly understood. In the present study, we identified SOX2 as a key transcription factor for CSC-like characteristics in the downstream of hypoxia-induced NOTCH signaling in epithelial ovarian cancer cells. Hypoxic treatment or overexpression of intracellular domain of NOTCH1 (NICD1) in ovarian cancer cells increased sphere formation, drug resistance, and expression of CSC-associated genes such as SOX2, ALDH, and ABC transporters. Hypoxic treatment increased the expression of NICD1, and hypoxic treatment or NICD1 overexpression increased SOX2 promoter activity, which was inhibited by deletion of HIF-1 or CSL binding sites. Furthermore, DAPT treatment decreased the effect of hypoxic treatment, and SOX2 knockdown decreased the effect of hypoxic treatment and NICD overexpression on sphere formation and drug resistance in established ovarian cancer cell lines and primary ovarian cancer cells. These results suggest that hypoxia-NOTCH1-SOX2 signaling axis is important for activation of ovarian CSCs, which may provide a novel opportunity for developing therapeutics to eradicate CSCs in ovarian cancer patients. PMID:27489349

  20. Intraperitoneal Bortezomib and Carboplatin in Treating Patients With Persistent or Recurrent Ovarian Epithelial Cancer, Fallopian Tube Cancer, or Primary Peritoneal Cancer

    ClinicalTrials.gov

    2017-01-31

    Fallopian Tube Clear Cell Adenocarcinoma; Fallopian Tube Endometrioid Adenocarcinoma; Fallopian Tube Mucinous Adenocarcinoma; Fallopian Tube Serous Adenocarcinoma; Fallopian Tube Transitional Cell Carcinoma; Ovarian Brenner Tumor; Ovarian Clear Cell Adenocarcinoma; Ovarian Clear Cell Cystadenocarcinoma; Ovarian Endometrioid Adenocarcinoma; Ovarian Mucinous Adenocarcinoma; Ovarian Mucinous Cystadenocarcinoma; Ovarian Seromucinous Carcinoma; Ovarian Serous Adenocarcinoma; Ovarian Serous Cystadenocarcinoma; Ovarian Transitional Cell Carcinoma; Recurrent Fallopian Tube Carcinoma; Recurrent Ovarian Carcinoma; Recurrent Primary Peritoneal Carcinoma; Undifferentiated Fallopian Tube Carcinoma; Undifferentiated Ovarian Carcinoma

  1. Systemic mastocytosis in a patient with ovarian germ cell carcinoma and mast cell leukemia

    SciTech Connect

    Sun, G.; Hajianpour, M.J.; Hajianpour, A.K.

    1994-09-01

    We report a 12-year-old female with a history of mixed germ cell carcinoma of the right ovary who developed a generalized skin rash after oophorectomy and chemotherapy. She also presented with periodic episodes of flushing, anemia, tachycardia, shortness of breath, high fever, hepatosplenomegaly, nausea, abdominal cramping with diarrhea, and a papuloerythematous skin rash. There was no evidence of secondary carcinoma. Skin biopsy revealed nonspecific inflammatory cells with negative staining for mast cells. Peripheral blood smear showed an increased number of mast cells, thrombocytopenia and normal white cells count. Bone marrow showed hypercellularity with 38% of the nucleated cells being mast cells. Bone marrow chromosome analysis revealed hyperdiploidy in 30% of the cells: 58-64,XX, +1, +2, +5, +6, +7, +8, +14, +16, +18, +19, +19, +20, +21, +22. She expired two months after the occurrence of systemic mastocytosis. Systemic mastocytosis has been reported in association with hematopoietic disorders and with germ cell tumors. The association between mediastinal germ cell tumors and hematological malignancies has also been observed. To our knowledge, combination of most cell leukemia, systemic mastocytosis, and ovarian germ cell carcinoma has not been observed. It is know that mutations at the locus of either proto-oncogene c-kit receptor or its ligand, mast/stem cell factor (SCF) may impair the development of three stem cell populations: hematopoietic stem cells, germ cells and melanoblasts. There have been also extensive investigations on the expression and modulation of the SCF/c-kit interaction in various malignancies. Further molecular studies in patients with germ cell tumor/hematopoietic malignancy syndrome are required to delineate underlying mechanisms.

  2. The effect of salinomycin on ovarian cancer stem-like cells

    PubMed Central

    Chung, Hyewon; Kim, Yu-Hwan; Kwon, Myoung; Shin, So-Jin; Kwon, Sang-Hoon; Cha, Soon-Do

    2016-01-01

    Objective The identification of cancer stem-like cells is a recent development in ovarian cancer. Compared to other cancer cells, cancer stem-like cells present more chemo-resistance and more aggressive characteristics. They play an important role in the recurrence and drug resistance of cancer. Therefore, the target therapy of cancer stem-like cell may become a promising and effective approach for ovarian cancer treatment. It may also help to provide novel diagnostic and therapeutic strategies. Methods The OVCAR3 cell line was cultured under serum-free conditions to produce floating spheres. The CD44+CD117+ cell line was isolated from the human ovarian cancer cell line OVCAR3 by using immune magnetic-activated cell sorting system. The expression of stemness genes such as OCT3/4, NANOG and SOX2 mRNA were determined by reverse transcription polymerase chain reaction. OVCAR3 parental and OVCAR3 CD44+CD117+ cells were grown in different doses of paclitaxel and salinomycin to evaluate the effect of salinomycin. And growth inhibition of OVCAR3 CD44+CD117+ cells by paclitaxel combined with salinomycin was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. Results Tumor spheroids generated from the OVCAR3 cell line are shown to have highly enriched CD44 and CD117 expression. Treatment with a combination of paclitaxel and salinomycin demonstrated growth inhibition of OVCAR3 CD44+CD117+ cells. Conclusion The present study is a detailed investigation on the expression of CD44 and CD117 in cancer stem cells and evaluates their specific tumorigenic characteristics in ovarian cancer. This study also demonstrates significant growth inhibition of cancer stem-like cells by paclitaxel combined with salinomycin. Identification of these cancer stem-like cell markers and growth inhibition effect of salinomycin may be the next step to the development of novel target therapy in ovarian cancer. PMID:27462592

  3. A quantitative proteomics-based signature of platinum sensitivity in ovarian cancer cell lines

    PubMed Central

    Fan, Gaofeng; Wrzeszczynski, Kazimierz O.; Fu, Cexiong; Pappin, Darryl J.; Lucito, Robert; Tonks, Nicholas K.; Su, Gang

    2014-01-01

    Although DNA encodes the molecular instructions that underlie control of cell function, it is the proteins that are primarily responsible for implementing those instructions. Therefore, quantitative analyses of the proteome would be expected to yield insights into important candidates for the detection and treatment of disease. We present an iTRAQ (Isobaric Tagging for Relative and Absolute Quantification)-based proteomic analysis of 10 ovarian cancer cell lines and 2 normal ovarian surface epithelial cell lines. We profiled the abundance of 2659 cellular proteins, of which 1273 were common to all 12 cell lines. Of the 1273, 75 proteins exhibited elevated expression, and 164 proteins had diminished expression in the cancerous cells compared to the normal cell lines. The iTRAQ expression profiles allowed us to segregate cell lines based upon sensitivity and resistance to carboplatin. Importantly, we observed no substantial correlation between protein abundance and RNA expression or epigenetic, DNA methylation data. Furthermore, we could not discriminate between sensitivity and resistance to carboplatin on the basis of RNA expression and DNA methylation data alone. This study illustrates the importance of proteomics-based discovery for defining the basis for the carboplatin response in ovarian cancer and highlights candidate proteins, particularly involved in cellular redox regulation, homologous recombination and DNA damage repair, that otherwise could not have been predicted from whole genome and expression data sources alone. PMID:25406946

  4. Sub-Thz Vibrational Spectroscopy for Analysis of Ovarian Cancer Cells

    NASA Astrophysics Data System (ADS)

    Ferrance, Jerome P.; Sizov, Igor; Jazaeri, Amir; Moyer, Aaron; Gelmont, Boris; Globus, Tatiana

    2016-06-01

    Sub-THz vibrational spectroscopy utilizes wavelengths in the submillimeter-wave range ( 1.5-30 wn), beyond those traditionally used for chemical and biomolecular analysis. This low energy radiation excites low-frequency internal molecular motions (vibrations) involving hydrogen bonds and other weak connections within these molecules. The ability of sub-THz spectroscopy to identify and quantify biological molecules is based on detection of signature resonance absorbance at specific frequencies between 0.05 and 1 THz, for each molecule. The long wavelengths of this radiation, mean that it can even pass through entire cells, detecting the combinations of proteins and nucleic acids that exist within the cell. This research introduces a novel sub-THz resonance spectroscopy instrument with spectral resolution sufficient to identify individual resonance absorption peaks, for the analysis of ovarian cancer cells. In vitro cell cultures of SK-OV-3 and ES-2 cells, two human ovarian cancer subtypes, were characterized and compared with a normal non-transformed human fallopian tube epithelial cell line (FT131). A dramatic difference was observed between the THz absorption spectra of the cancer and normal cell sample materials with much higher absorption intensity and a very strong absorption peak at a frequency of 13 wn dominating the cancer sample spectra. Comparison of experimental spectra with molecular dynamic simulated spectroscopic signatures suggests that the high intensity spectral peak could originate from overexpressed mi-RNA molecules specific for ovarian cancer. Ovarian cancer cells are utilized as a proof of concept, but the sub-THz spectroscopy method is very general and could also be applied to other types of cancer.

  5. Anti-Tumor Effects of Atractylenolide-I on Human Ovarian Cancer Cells

    PubMed Central

    Long, Fangyi; Wang, Ting; Jia, Ping; Wang, Huafei; Qing, Yi; Xiong, Tingting; He, Mengjie; Wang, Xiaoli

    2017-01-01

    Background The aim of this study was to investigate the effects of Atractylenolide-I (AT-I), a naturally occurring sesquiterpene lactone isolated from Atractylodes macrocephala Koidz, on human ovarian cancer cells. Material/Methods The viability and anchorage-independent growth of ovarian cancer cells were evaluated using MTT and colony formation assay, respectively. Cell cycle and apoptosis were detected with flow cytometry analysis. The level of cyclin B1 and CDK1 was measured using qPCR and ELISA analysis. The expression of Bax, cleaved caspase-9, cleaved caspase-3, cytochrome c, AIF, and Bcl-2, and phosphorylation level of PI3K, AKT, and mTOR were determined with Western blot analysis. Results AT-I decreased the cell viability and suppressed anchorage-independent growth of A2780 cells. Cell cycle was arrested in G2/M phase transition by AT-I treatment, which was related to decreased expression of cyclin B1 and CDK1 in a dose-dependent manner. In addition, the treatment induced apoptosis, as shown by up-regulation of Bax, cleaved caspase-9, cleaved caspase-3, and cytosolic release of cytochrome c and AIF, and down-regulation of Bcl-2, in a dose-dependent manner. Then, the effects of AT-I on PI3K/Akt/mTOR pathways were examined to further investigate the underlying anti-cancer mechanism of AT-I, and the results showed that treatment with AT-I significantly decreased the phosphorylation level of PI3K, Akt, and mTOR. Conclusions This study demonstrated that AT-I induced cell cycle arrest and apoptosis through inhibition of PI3K/Akt/mTOR pathway in ovarian cancer cells. These results suggest that AT-I might be a potential therapeutic agent in the treatment of ovarian cancer. PMID:28141785

  6. Growth inhibitory effects of sodium phenylacetate (NSC 3039) on ovarian carcinoma cells in vitro.

    PubMed

    Ferrandina, G; Melichar, B; Loercher, A; Verschraegen, C F; Kudelka, A P; Edwards, C L; Scambia, G; Kavanagh, J J; Abbruzzese, J L; Freedman, R S

    1997-10-01

    The aim of this study was to determine the antiproliferative activity of sodium phenylacetate (NaPa) against ovarian carcinoma cell lines. NaPa induced a dose-dependent inhibition (IC50 from 12 mM to >20 mM) of all ovarian carcinoma cell lines, although the sensitivity of individual lines to NaPa varied. Both cisplatin-sensitive and -resistant cell lines responded to NaPa, and growth-inhibitory activity was also detected against cells freshly isolated from malignant ascites of previously treated patients. The growth inhibitory effects that were produced by NaPa were time dependent, showing a maximum effect at 72 h, and were not associated with cytotoxic action. Growth inhibitory effects of NaPa were also reversible. After 48- and 72-h exposures to NaPa, a reduction in the percentage of cells in the S-phase was detected, with a concomitant recruitment of cells in the G0-G1 phase. Treatment with NaPa after different exposure times did not significantly increase the proportion of cells undergoing apoptosis. NaPa also produced a significant reduction in the percentage of cyclin-D1- and p21/ras-positive cells and in the percentage of cells positive for bcl-2, whereas the percentages of bax/p21-positive cells increased. NaPa produced minimal, if any, alterations of expression of HLA class I and transforming growth factor beta1 antigens. In contrast, the percentage of transforming growth factor beta2-positive cells decreased after exposure to NaPa. The combination of NaPa with cisplatin resulted in an additive inhibitory effect. Our results show, for the first time, that NaPa inhibits the growth of ovarian carcinoma cell lines and the cells from malignant ascites of chemotherapy-treated patients with ovarian carcinoma. The growth-inhibitory properties of NaPa suggest that this molecule could represent a prototype of a new class of compounds with possible therapeutic potential in patients with ovarian carcinoma.

  7. Ghrelin attenuates the growth of HO-8910 ovarian cancer cells through the ERK pathway

    PubMed Central

    Bai, R.X.; Wang, W.P.; Zhao, P.W.; Li, C.B.

    2016-01-01

    Ovarian cancer is one of the most common causes of death from gynecologic tumors and is an important public health issue. Ghrelin is a recently discovered bioactive peptide that acts as a natural endogenous ligand of the growth hormone secretagogue receptor (GHSR). Several studies have identified the protective effects of ghrelin on the mammalian reproductive system. However, little research has been done on the effects of ghrelin on ovarian cancer cells, and the underlying mechanisms of these effects. We sought to understand the potential involvement of mitogen-activated protein kinases (MAPKs) in ghrelin-mediated inhibition of growth of the ovarian line HO-8910. We applied different concentrations of ghrelin and an inhibitor of the ghrelin receptor (D-Lys3-GHRP-6) to HO-8910 cells and observed the growth rate of cells and changes in phosphorylation of the MAPKs ERK1/2, JNK and p38. We discovered that ghrelin-induced apoptosis of HO-8910 cells was though phosphorylated ERK1/2, and that this phosphorylation (as well as p90rsk phosphorylation) was mediated by the GHSR. The ERK1/2 pathway is known to play an essential part in the ghrelin-mediated apoptosis of HO-8910 cells. Hence, our study suggests that ghrelin inhibits the growth of HO-8910 cells primarily through the GHSR/ERK pathway. PMID:26840702

  8. Polyphenols bearing cinnamaldehyde scaffold showing cell growth inhibitory effects on the cisplatin-resistant A2780/Cis ovarian cancer cells.

    PubMed

    Shin, Soon Young; Jung, Hyeryoung; Ahn, Seunghyun; Hwang, Doseok; Yoon, Hyuk; Hyun, Jiye; Yong, Yeonjoong; Cho, Hi Jae; Koh, Dongsoo; Lee, Young Han; Lim, Yoongho

    2014-03-15

    Ovarian carcinoma remains the most lethal among gynecological cancers. Chemoresistance is a clinical problem that severely limits treatment success. To identify potent anticancer agents against the cisplatin-resistant human ovarian cancer cell line A2780/Cis, 26 polyphenols bearing a cinnamaldehyde scaffold were synthesized. Structural differences in their inhibitory effect on clonogenicity of A2780/Cis cells were elucidated using comparative molecular field analysis and comparative molecular similarity indices analysis. Structural conditions required for increased inhibitory activity can be derived based on the analysis of their contour maps. The two most active compounds (16 and 19) were selected and further characterized their biological activities. We found that compounds 16 and 19 trigger cell cycle arrest at the G2/M phase and apoptotic cell death in cisplatin-resistant A2780/Cis human ovarian cancer cells. The molecular mechanism of compound 16 was elucidated using in vitro aurora A kinase assay, and the binding mode between the compound 16 and aurora A kinase was interpreted using in silico docking experiments. The findings obtained here may help us develop novel plant-derived polyphenols used for potent chemotherapeutic agents. In conclusion, compounds 16 and 19 could be used as promising lead compounds for the development of novel anticancer therapies in the treatment of cisplatin-resistant ovarian cancers.

  9. Retinoic Acid Regulates Calcium Signaling to Promote Mouse Ovarian Granulosa Cell Proliferation.

    PubMed

    Demczuk, Michael; Huang, Huiya; White, Carl; Kipp, Jingjing L

    2016-09-01

    Normal development of ovarian follicles is critical for female reproduction and endocrine function. We have identified retinoic acid (RA) and the RA-degrading enzyme CYP26B1 as regulators of ovarian follicle development and showed that RA and a CYP26 inhibitor stimulated ovarian granulosa cell proliferation. The mechanism underpinning RA-dependent proliferation, however, is not known. The current study was designed to examine the role of intracellular calcium (Ca(2+)) signaling in mediating the effects of RA on primary mouse granulosa cell proliferation. In single-cell Ca(2+) imaging experiments, treatment of cultured granulosa cells with RA increased the steady-state Ca(2+) content of the endoplasmic reticulum (ER) stores. This correlated with increased store-operated Ca(2+) entry (SOCE) and enhanced inositol 1,4,5-trisphosphate receptor (IP3R)-dependent Ca(2+) release. In proliferation assays, RA treatment or Cyp26b1 knockdown stimulated proliferation, whereas Cyp26b1 overexpression inhibited proliferation. When RA was given together with 2-aminoethoxydiphenylborane (2-APB), a blocker of IP3R-dependent ER Ca(2+) release and SOCE, with xestospongin C, a selective IP3R- receptor antagonist, or with 3,5-bis (trifluoromethyl)pyrazole (BTP-2), a specific SOCE blocker, the stimulatory effect of RA on cell proliferation was abolished. Further investigation showed that treatment with 2-APB or BTP-2 inhibited RA induction of RA response element (RARE) activation in granulosa cells, confirming an important role for Ca(2+) signaling in mediating RA actions. Overall, these data support a model in which RA regulates ovarian follicle development by stimulating granulosa cell proliferation and that this stimulatory effect is at least in part driven by the modulation of Ca(2+) signaling.

  10. Nuclear TBLR1 as an ER corepressor promotes cell proliferation, migration and invasion in breast and ovarian cancer.

    PubMed

    Wu, Xinyu; Zhan, Yang; Li, Xin; Wei, Jianjun; Santiago, Larion; Daniels, Garrett; Deng, Fangming; Zhong, Xuelin; Chiriboga, Luis; Basch, Ross; Xiong, Sheng; Dong, Yan; Zhang, Xinmin; Lee, Peng

    2016-01-01

    Estrogen receptors (ER) play important roles in the development and progression of breast and ovarian cancers. ERs mediate transcriptional regulation through interaction with cofactors and binding to response elements within the regulatory elements of target genes. Here, we examined the expression and function of TBLR1/TBL1XR1, a core component of NCoR (nuclear receptor corepressor) and SMRT (silencing mediator of retinoic acid and thyroid receptor) corepressor complexes, in breast and ovarian cancers. We found that although TBLR1 is present in both the nucleus and cytoplasm of normal and neoplastic breast and ovarian cells, it is expressed at significantly higher levels in the nucleus of malignant breast and ovarian cells compared to benign cells. TBLR1 functions as an ER corepressor to inhibit ER-mediated transcriptional activation in both breast and ovarian cell lines, but it has no effect on androgen receptor (AR) mediated transcriptional activation in these cells. Furthermore, ectopic expression of nuclear TBLR1 in breast and ovarian cancer cells stimulates cell proliferation. The increased cell proliferation by nuclear TBLR1 is through both ER-independent and ER-dependent mechanisms as evidenced by increased growth in hormone-free medium and estrogen medium, as well as reduced growth with ER knockdown by siRNA. Nuclear TBLR1 overexpression also increased migration and invasion in both breast and ovarian cancer cells. Determining the functional relationship between TBLR1 and ER may provide insights to develop novel treatment strategies and improve response to hormonal therapy in breast and ovarian cancers.

  11. Cytotoxic Effects of Strawberry, Korean Raspberry, and Mulberry Extracts on Human Ovarian Cancer A2780 Cells

    PubMed Central

    Lee, Dahae; Kang, Ki Sung; Lee, Sanghyun; Cho, Eun Ju; Kim, Hyun Young

    2016-01-01

    Reactive oxygen species are tumorigenic by their ability to increase cell proliferation, survival, and cellular migration. The purpose of the present study was to compare the antioxidant activity and cytotoxic effects of 3 berry extracts (strawberry, Korean raspberry, and mulberry) in A2780 human ovarian carcinoma cells. Except for raspberry, the ethyl acetate or methylene chloride fractions of berries containing phenolic compounds exerted dose dependent free radical scavenging activities. In the raspberry fractions, the hexane fraction also exhibited potent antioxidant activity. The cytotoxic effects of berries extracts in A2780 human ovarian carcinoma cells were measured using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Surprisingly, co-treatment with n-butanol (BuOH) fractions of berries showed stronger cytotoxic effects compared to the other fractions. These findings suggest that potent anticancer molecules are found in the BuOH fractions of berries that have stronger cytotoxic activity than antioxidants. PMID:28078263

  12. Quantification of activity by alpha-camera imaging and small-scale dosimetry within ovarian carcinoma micrometastases treated with targeted alpha therapy.

    PubMed

    Chouin, N; Lindegren, S; Jensen, H; Albertsson, P; Bäck, T

    2012-12-01

    Targeted alpha therapy (TAT) a promising treatment for small, residual, and micrometastatic diseases has questionable efficacy against malignant lesions larger than the α-particle range, and likely requires favorable intratumoral activity distribution. Here, we characterized and quantified the activity distribution of an alpha-particle emitter radiolabelled antibody within >100-µm micrometastases in a murine ovarian carcinoma model. Nude mice bearing ovarian micrometastases were injected intra-peritoneally with 211At-MX35 (total injected activity 6 MBq, specific activity 650 MBq/mg). Animals were sacrificed at several time points, and peritoneal samples were excised and prepared for alpha-camera imaging. Spatial and temporal activity distributions within micrometastases were derived and used for small-scale dosimetry. We observed two activity distribution patterns: uniform distribution and high stable uptake (>100% IA/g at all time points) in micrometastases with no visible stromal compartment, and radial distribution (high activity on the edge and poor uptake in the core) in tumor cell lobules surrounded by fibroblasts. Activity distributions over time were characterized by a peak (140% IA/g at 4 h) in the outer tumor layer and a sharp drop beyond a depth of 50 µm. Small-scale dosimetry was performed on a multi-cellular micrometastasis model, using time-integrated activities derived from the experimental data. With injected activity of 400 kBq, tumors exhibiting uniform activity distribution received <25 Gy (EUD=13 Gy), whereas tumors presenting radial activity distribution received mean absorbed doses of <8 Gy (EUD=5 Gy). These results provide new insight into important aspects of TAT, and may explain why micrometastases >100 µm might not be effectively treated by the examined regimen.

  13. COX2 and PGE2 mediate EGF-induced E-cadherin-independent human ovarian cancer cell invasion.

    PubMed

    Qiu, Xin; Cheng, Jung-Chien; Chang, Hsun-Ming; Leung, Peter C K

    2014-08-01

    Elevated expression of cyclooxygenase 2 (COX2 (PTGS2)) has been reported to occur in human ovarian cancer and to be associated with poor prognosis. We have previously demonstrated that COX2-derived prostaglandin E2 (PGE2) promotes human ovarian cancer cell invasion. We had also demonstrated that epidermal growth factor (EGF) induces human ovarian cancer cell invasion by downregulating the expression of E-cadherin through various signaling pathways. However, it remains unclear whether COX2 and PGE2 are involved in the EGF-induced downregulation of E-cadherin expression and cell invasion in human ovarian cancer cells. In this study, we showed that EGF treatment induces COX2 expression and PGE2 production in SKOV3 and OVCAR5 human ovarian cancer cell lines. Interestingly, COX2 is not required for the EGF-induced downregulation of E-cadherin expression. In addition, EGF treatment activates the phosphatidylinositol-3-kinase (PI3K)/Akt and cAMP response element-binding protein (CREB) signaling pathways, while only the PI3K/Akt pathway is involved in EGF-induced COX2 expression. Moreover, we also showed that EGF-induced cell invasion is attenuated by treatment with a selective COX2 inhibitor, NS-398, as well as PGE2 siRNA. This study demonstrates an important role for COX2 and its derivative, PGE2, in the mediation of the effects of EGF on human ovarian cancer cell invasion.

  14. Anti-ovarian tumor response of donor peripheral blood mononuclear cells is due to infiltrating cytotoxic NK cells

    PubMed Central

    Pandey, Veethika; Oyer, Jeremiah L.; Igarashi, Robert Y.; Gitto, Sarah B.; Copik, Alicja J.; Altomare, Deborah A.

    2016-01-01

    Treatment of ovarian cancer, a leading cause of gynecological malignancy, has good initial efficacy with surgery and platinum/taxane-based chemotherapy, but poor long-term survival in patients. Inferior long-term prognosis is attributed to intraperitoneal spreading, relapse and ineffective alternate therapies. Adoptive cell therapy is promising for tumor remission, although logistical concerns impede widespread implementation. In this study, healthy PBMCs were used to examine the immune response in a mouse model with human ovarian cancer, where natural killer (NK) cells were found to be the effector cells that elicited an anti-tumor response. Presence of tumor was found to stimulate NK cell expansion in mice treated intraperitoneally with PBMC+Interleukin-2 (IL-2), as compared to no expansion in non-tumor-bearing mice given the same treatment. PBMC+IL-2 treated mice exhibiting NK cell expansion had complete tumor remission. To validate NK cell mediated anti-tumor response, the intratumoral presence of NK cells and their cytotoxicity was confirmed by immunohistochemistry and granzyme activity of NK cells recovered from the tumor. Collectively, this study highlights the significance of NK cell-cytotoxic response to tumor, which may be attributed to interacting immune cell types in the PBMC population, as opposed to clinically used isolated NK cells showing lack of anti-tumor efficacy in ovarian cancer patients. PMID:26802025

  15. Anti-ovarian tumor response of donor peripheral blood mononuclear cells is due to infiltrating cytotoxic NK cells.

    PubMed

    Pandey, Veethika; Oyer, Jeremiah L; Igarashi, Robert Y; Gitto, Sarah B; Copik, Alicja J; Altomare, Deborah A

    2016-02-09

    Treatment of ovarian cancer, a leading cause of gynecological malignancy, has good initial efficacy with surgery and platinum/taxane-based chemotherapy, but poor long-term survival in patients. Inferior long-term prognosis is attributed to intraperitoneal spreading, relapse and ineffective alternate therapies. Adoptive cell therapy is promising for tumor remission, although logistical concerns impede widespread implementation. In this study, healthy PBMCs were used to examine the immune response in a mouse model with human ovarian cancer, where natural killer (NK) cells were found to be the effector cells that elicited an anti-tumor response. Presence of tumor was found to stimulate NK cell expansion in mice treated intraperitoneally with PBMC+Interleukin-2 (IL-2), as compared to no expansion in non-tumor-bearing mice given the same treatment. PBMC+IL-2 treated mice exhibiting NK cell expansion had complete tumor remission. To validate NK cell mediated anti-tumor response, the intratumoral presence of NK cells and their cytotoxicity was confirmed by immunohistochemistry and granzyme activity of NK cells recovered from the tumor. Collectively, this study highlights the significance of NK cell-cytotoxic response to tumor, which may be attributed to interacting immune cell types in the PBMC population, as opposed to clinically used isolated NK cells showing lack of anti-tumor efficacy in ovarian cancer patients.

  16. Epigenetic regulation of RGS2 (Regulator of G-protein signaling 2) in chemoresistant ovarian cancer cells.

    PubMed

    Cacan, Ercan

    2017-01-19

    Regulator of G-protein signaling 2 (RGS2) is a GTPase-activating protein functioning as an inhibitor of G-protein coupled receptors (GPCRs). RGS2 dysregulation was implicated in solid tumour development and RGS2 downregulation has been reported in prostate and ovarian cancer progression. However, the molecular mechanism by which RGS2 expression is suppressed in ovarian cancer remains unknown. The expression and epigenetic regulation of RGS2 in chemosensitive and chemoresistant ovarian cancer cells were determined by qRT-PCR and chromatin immunoprecipitation assays, respectively. In the present study, the molecular mechanisms contributing to the loss of RGS2 expression were determined in ovarian cancer. The data indicated that suppression of RGS2 gene in chemoresistant ovarian cancer cells, in part, due to accumulation of histone deacetylases (HDACs) and DNA methyltransferase I (DNMT1) at the promoter region of RGS2. Inhibition of HDACs or DNMTs significantly increases RGS2 expression. These results suggest that epigenetic changes in histone modifications and DNA methylation may contribute to the loss of RGS2 expression in chemoresistant ovarian cancer cells. The results further suggest that class I HDACs and DNMT1 contribute to the suppression of RGS2 during acquired chemoresistance and support growing evidence that inhibition of HDACs/DNMTs represents novel therapeutic approaches to overcome ovarian cancer chemoresistance.

  17. Evaluation of nitric oxide donors impact on cisplatin resistance in various ovarian cancer cell lines.

    PubMed

    Kielbik, Michal; Szulc-Kielbik, Izabela; Nowak, Marek; Sulowska, Zofia; Klink, Magdalena

    2016-10-01

    Ovarian cancer chemoresistance, both intrinsic and acquired, is the main obstacle in improving the outcome of anticancer therapies. Therefore the development of new treatment strategies, including the use of new compounds that can support the standard therapeutics is required. Among many candidates, nitric oxide (NO) donors, agents with multivalent targeted activities in cancer cells, are worth considering. The aim of this study was evaluation of SPER/NO and DETA/NO ability to enhance cisplatin cytotoxicity against different ovarian cancer cell lines. Obtained data indicate that NO donors action varies between different cancer cell lines and is strongest in low aggressive and cisplatin sensitive cells. While statistically significant, the enhancement of cisplatin cytotoxicity by NO donors is of low magnitude. The rise in the percentage of late apoptotic/necrotic ovarian cancer cells may suggest that NO donors enhancement action might be based on the cellular ATP depletion. Nevertheless, no significant impact of the NO donors, cisplatin or their combination on the expressions of ABCB1, BIRC5 and PTEN genes has been found. Although our data puts the therapeutical potential of NO donors to aid cisplatin action in question it may also point out at the further approach to utilize these compounds in therapies.

  18. Thecal cell sensitivity to luteinizing hormone and insulin in polycystic ovarian syndrome.

    PubMed

    Cadagan, David; Khan, Raheela; Amer, Saad

    2016-03-01

    This study examined whether a defect of steroid synthesis in ovarian theca cells may lead to the development of PCOS, through contributions to excess androgen secretion. Polycystic ovarian syndrome (PCOS) is one of the leading causes of infertility worldwide affecting around 1 in 10 of women of a reproductive age. One of the fundamental abnormalities in this syndrome is the presence of hormonal irregularities, including hyperandrogenemia, hyperinsulinemia and hypersecretion of luteinizing hormone (LH). Studies suggest that insulin treatment increases progesterone and androstenedione secretion in PCOS theca cells when compared to insulin treated normal theca cells. Furthermore the augmented effects of LH and insulin have been seen to increase ovarian androgen synthesis in non-PCOS theca cultures whilst also increasing the expression of steroidogenic enzymes specific to the PI3-K pathway. Our examination of primary thecal cultures showed an increase in both the expression of the steroidogenic enzyme CYP17 and androgen secretion in PCOS theca cells under basal conditions, when compared to non-PCOS cells. This was increased significantly under treatments of LH and insulin combined. Our results support the previous reported hypothesis that a dysfunction may exist within the PI3-K pathway. Specifically, that sensitivity exists to physiological symptoms including hyperinsulinemia and hyper secretion of LH found in PCOS through co-stimulation. The impact of these findings may allow the development of a therapeutic target in PCOS.

  19. Virilizing ovarian tumor of cell tumor type not otherwise specified: a case report.

    PubMed

    Faraj, G; Di Gregorio, S; Misiunas, A; Faure, E N; Villabrile, P; Stringa, I; Petroff, N; Bur, G

    1998-10-01

    Whereas ovarian tumors with overt endocrine manifestations account for less than 5% of all ovarian neoplasms, the incidence of virilizing type tumors in postmenopausal women is even lower since the average age of occurrence is 43 years. Steroid cell tumors not otherwise specified (NOS) are even more rare. We report the case of a 56-year-old woman (age of onset of menopause 43 years) who consulted our service due to a hyperandrogenic syndrome: deepening of the voice, temporal balding, hirsutism and cliteromegaly. Laboratory findings indicated hyperandrogenism in male range. The dexamethasone suppression test did not modify basal values, indicating that adrenal origin was unlikely. Transvaginal ultrasound disclosed multiple microcysts in the left ovary. Abdominal tomography was normal. Suspecting an ovarian tumor, bilateral oophorectomy was performed and a pediculate, 3 cm in diameter, was encountered in the left ovary. Histopathological studies determined it to be a virilizing ovarian tumor NOS. Postoperative recovery was fast; normal hormonal values were reached together with visible clinical improvement. This case is reported because this type of tumor is very infrequent in postmenopausal women, and because in this case it was the functional hormonal test that allowed tumor localization.

  20. Ovarian tissue cryopreservation in girls undergoing haematopoietic stem cell transplant: experience of a single centre.

    PubMed

    Biasin, E; Salvagno, F; Berger, M; Nesi, F; Quarello, P; Vassallo, E; Evangelista, F; Marchino, G L; Revelli, A; Benedetto, C; Fagioli, F

    2015-09-01

    Fertility after childhood haemopoietic stem cell transplant (HSCT) is a major concern. Conditioning regimens before HSCT present a high risk (>80%) of ovarian failure. Since 2000, we have proposed cryopreservation of ovarian tissue to female patients undergoing HSCT at our centre, to preserve future fertility. After clinical and haematological evaluation, the patients underwent ovarian tissue collection by laparoscopy. The tissue was analysed by histologic examination to detect any tumour contamination and then frozen following the slow freezing procedure and cryopreserved in liquid nitrogen. From August 2000 to September 2013, 47 patients planned to receive HSCT, underwent ovarian tissue cryopreservation. The median age at diagnosis was 11.1 years and at the time of procedure it was 13 years, respectively. Twenty-four patients were not pubertal at the time of storage, whereas 23 patients had already experienced menarche. The median time between laparoscopy and HSCT was 25 days. Twenty-six out of 28 evaluable patients (93%) developed hypergonadotropic hypogonadism at a median time of 23.3 months after HSCT. One patient required autologous orthotopic transplantation that resulted in one live birth. Results show a very high rate of iatrogenic hypergonadotropic hypogonadism, highlighting the need for fertility preservation in these patients.

  1. Targeting of follicle stimulating hormone peptide-conjugated dendrimers to ovarian cancer cells

    NASA Astrophysics Data System (ADS)

    Modi, Dimple A.; Sunoqrot, Suhair; Bugno, Jason; Lantvit, Daniel D.; Hong, Seungpyo; Burdette, Joanna E.

    2014-02-01

    Ovarian cancer is the most lethal gynecological malignancy. Current treatment modalities include a combination of surgery and chemotherapy, which often lead to loss of fertility in premenopausal women and a myriad of systemic side effects. To address these issues, we have designed poly(amidoamine) (PAMAM) dendrimers to selectively target the follicle stimulating hormone receptor (FSHR), which is overexpressed by tumorigenic ovarian cancer cells but not by immature primordial follicles and other non-tumorigenic cells. Fluorescein-labeled generation 5 (G5) PAMAM dendrimers were conjugated with the binding peptide domain of FSH (FSH33) that has a high affinity to FSHR. The targeted dendrimers exhibited high receptor selectivity to FSHR-expressing OVCAR-3 cells, resulting in significant uptake and downregulation of an anti-apoptotic protein survivin, while showing minimal interactions with SKOV-3 cells that do not express FSHR. The selectivity of the FSH33-targeted dendrimers was further validated in 3D organ cultures of normal mouse ovaries. Immunostaining of the conjugates revealed their selective binding and uptake by ovarian surface epithelium (OSE) cells that express FSHR, while sparing the immature primordial follicles. In addition, an in vivo study monitoring tissue accumulation following a single intraperitoneal (i.p.) injection of the conjugates showed significantly higher accumulation of FSH33-targeted dendrimers in the ovary and oviduct compared to the non-targeted conjugates. These proof-of-concept findings highlight the potential of these FSH33-targeted dendrimers to serve as a delivery platform for anti-ovarian cancer drugs, while reducing their systemic side effects by preventing nonspecific uptake by the primordial follicles.Ovarian cancer is the most lethal gynecological malignancy. Current treatment modalities include a combination of surgery and chemotherapy, which often lead to loss of fertility in premenopausal women and a myriad of systemic side

  2. Overexpression of LASP-1 mediates migration and proliferation of human ovarian cancer cells and influences zyxin localisation

    PubMed Central

    Grunewald, T G P; Kammerer, U; Winkler, C; Schindler, D; Sickmann, A; Honig, A; Butt, E

    2007-01-01

    LIM and SH3 protein 1 (LASP-1), initially identified from human breast cancer, is a specific focal adhesion protein involved in cell proliferation and migration. In the present work, we analysed the effect of LASP-1 on biology and function of human ovarian cancer cell line SKOV-3 using small interfering RNA technique (siRNA).Transfection with LASP-1-specific siRNA resulted in a reduced protein level of LASP-1 in SKOV-3 cells. The siRNA-treated cells were arrested in G2/M phase of the cell cycle and proliferation of the tumour cells was suppressed by 60–90% corresponding to around 70% of the cells being transfected successfully as seen by immunofluorescence. Moreover, transfected tumour cells showed a 40% reduced migration. LASP-1 silencing is accompanied by a reduced binding of the LASP-1-binding partner zyxin to focal contacts without changes in actin stress fibre and microtubule organisation or focal adhesion morphology as observed by immunofluorescence. In contrast, silencing of zyxin is not influencing cell migration and had neither influence on LASP-1 expression nor actin cytoskeleton and focal contact morphology suggesting that LASP-1 is necessary and sufficient for recruiting zyxin to focal contacts.The data provide evidence for an essential role of LASP-1 in tumour cell growth and migration, possibly through influencing zyxin localization. PMID:17211471

  3. Chaetoglobosin K induces apoptosis and G2 cell cycle arrest through p53-dependent pathway in cisplatin-resistant ovarian cancer cells.

    PubMed

    Li, Bo; Gao, Ying; Rankin, Gary O; Rojanasakul, Yon; Cutler, Stephen J; Tu, Youying; Chen, Yi Charlie

    2015-01-28

    Adverse side effects and acquired resistance to conventional platinum based chemotherapy have become major impediments in ovarian cancer treatment, and drive the development of more selective anticancer drugs. Chaetoglobosin K (ChK) was shown to have a more potent growth inhibitory effect than cisplatin on two cisplatin-resistant ovarian cancer cell lines, OVCAR-3 and A2780/CP70, and was less cytotoxic to a normal ovarian cell line, IOSE-364, than to the cancer cell lines. Hoechst 33342 staining and Flow cytometry analysis indicated that ChK induced preferential apoptosis and G2 cell cycle arrest in both ovarian cancer cells with respect to the normal ovarian cells. ChK induced apoptosis through a p53-dependent caspase-8 activation extrinsic pathway, and caused G2 cell cycle arrest via cyclin B1 by increasing p53 expression and p38 phosphorylation in OVCAR-3 and A2780/CP70 cells. DR5 and p21 might play an important role in determining the sensitivity of normal and malignant ovarian cells to ChK. Based on these results, ChK would be a potential compound for treating platinum-resistant ovarian cancer.

  4. Effect of histone deacetylase inhibitors on cell apoptosis and expression of the tumor suppressor genes RUNX3 and ARHI in ovarian tumors.

    PubMed

    Zhang, Lan; Liu, Peishu; Li, Hua; Xue, Fuying

    2013-05-01

    The aim of this study was to investigate the expression of Runt box 3 (RUNX3) and aplasia Ras homolog member I (ARHI) in ovarian tumors, and the effects of histone deacetylase inhibitors (HDACIs) on the expression of these genes and the growth of ovarian cancer cells. The mRNA expression of the RUNX3 and ARHI genes in normal ovaries and ovarian tumors was determined using reverse transcription polymerase chain reaction (RT-PCR). The effects of HDACIs on RUNX3 and ARHI expression in four ovarian cancer cell lines (SKOV3, A2780, COC1 and OC3) were determined using RT-PCR and the MTT assay. The expression of RUNX3 and ARHI in normal ovarian cells was 86 and 100%, respectively. Although the two genes were downregulated in ovarian tumors, the extent of downregulation differed. The expression of RUNX3 and ARHI was correlated with the degree of tumor malignancy (P<0.05). ARHI was expressed in all four ovarian cancer cell lines, whereas RUNX3 was expressed only in the OC3 cell line. Treatment with HDACIs upregulated the expression of ARHI and RUNX3 in the SKOV3 cell line only. In A2780 cells, HDACIs upregulated ARHI expression only in the presence of trichostatin A (TSA) plus cisplatin. HDACIs induced significant apoptosis in ovarian cancer cells, which was inversely correlated with the concentration and duration of treatment (P<0.05). In conclusion, RUNX3 and ARHI were shown to be expressed in normal ovarian cells; however, their expression was downregulated or lost in ovarian tumor cells. The combined detection of ARHI and RUNX3 expression may offer improved prediction and monitoring of ovarian malignancies. HDACIs were revealed to inhibit the growth of ovarian tumor cells and may constitute a novel therapeutic option for ovarian tumors.

  5. Egr-1 mediates epidermal growth factor-induced downregulation of E-cadherin expression via Slug in human ovarian cancer cells.

    PubMed

    Cheng, J-C; Chang, H-M; Leung, P C K

    2013-02-21

    Loss of the cell adhesion protein E-cadherin increases the invasive capability of ovarian cancer cells. We have previously shown that epidermal growth factor (EGF) downregulates E-cadherin and induces ovarian cancer cell invasion through the H(2)O(2)/p38 MAPK-mediated upregulation of the E-cadherin transcriptional repressor Snail. However, the molecular mechanisms underlying the EGF-induced downregulation of E-cadherin are not fully understood. In the current study, we demonstrated that treatment of two ovarian cancer cell lines, SKOV3 and OVCAR5, with EGF induced the expression of the transcription factor Egr-1, and this induction was abolished by small interfering RNA (siRNA)-mediated depletion of the EGF receptor. EGF-induced Egr-1 expression required the activation of the ERK1/2 and PI3K/Akt signaling pathways and was unrelated to EGF-induced H(2)O(2) production and activation of the p38 MAPK pathway. Moreover, depletion of Egr-1 with siRNA abolished the EGF-induced downregulation of E-cadherin and increased cell invasion. Interestingly, siRNA depletion of Egr-1 attenuated the EGF-induced expression of Slug, but not that of Snail. Moreover, chromatin immunoprecipitation (ChIP) analysis showed that Slug is a target gene of Egr-1. These results provide evidence that Egr-1 is a mediator that is involved in the EGF-induced downregulation of E-cadherin and increased cell invasion. Our results also demonstrate that EGF activates two independent signaling pathways, which are the H(2)O(2)/p38 MAPK-mediated upregulation of Snail expression and the Egr-1-mediated upregulation of Slug expression. These two signaling pathways contribute to the EGF-induced downregulation of E-cadherin, which subsequently increases the invasive capability of ovarian cancer cells.

  6. Autocrine interleukin-23 promotes self-renewal of CD133+ ovarian cancer stem-like cells

    PubMed Central

    Lin, Kailong; Yin, Pin; Jiang, Lupin; Liang, Zhiqing; Zhu, Bo

    2016-01-01

    Cancer stem cells (CSCs) are a group of cells which possess the ability of self-renewing and unlimited proliferation. And these CSCs are thought to be the cause of metastasis, recurrence and resistance. Recent study has found that pro-inflammatory cytokine and chemotactic factor mediate the self-renewing and differentiation of most of CSCs. Thus we speculate that ovarian cancer stem cells (OCSCs) can also maintain the ability of self-renewing and differentiation by releasing inflammatory factor. This report we discuss the biological characteristics and the specific molecular mechanism mediated by interleukin-23 (IL-23) and its receptor on the self-renewing of OCSCs. We found that OCSCs had high expression of IL-23 and IL-23R. IL-23 could promote the self-renewal ability of OCSCs and played a very important role to maintain the stable expression of stem cell markers in vitro. Moreover, we verified that IL-23 could maintain the potential tumorigenic of OCSCs in vivo and mediate the self-renewal ability and the formation of tumor in OCSCs by activating the signal pathways of STAT3 and NF-κB. In addition, human low differentiation tissues showed overexpression of IL-23. And IL-23 positively correlated to the expression level of CD133, Nanog and Oct4. In conclusion, Our discoveries demonstrate that autocrine IL-23 contribute to ovarian cancer malignancy through promoting the self-renewal of CD133+ ovarian cancer stem-like cells, and this suggests that IL-23 and its signaling pathway might serve as therapeutic targets for the treatment of ovarian cancer. PMID:27738346

  7. Effect of c-Met Inhibitor on HGF-induced Ovarian Carcinoma Cell Migration

    NASA Astrophysics Data System (ADS)

    Lo, Chun-Min; Lo, Jun-Chih; Yip, Kay-Pong

    2010-03-01

    The dysregulation of hepatocyte growth factor (HGF) and its receptor, c-Met, in cell migration contributes to tumor invasion and metastasis in numerous cancers including ovarian cancer. Specific inhibitors against HGF/c-Met signaling like SU11274, therefore, may have important therapeutic potential for the treatment of cancers. Here, we applied electric cell-substrate impedance sensing (ECIS) and traction force microscopy to evaluate the effect of SU11274 on HGF-treated SKOV-3 ovarian cancer cells. Our results showed that, compared with control cells, HGF-treated cell monolayer displayed lower junctional resistance between cells, larger cell-substrate separation, and higher cell micromotion. In addition, individual HGF-treated SKOV-3 cells demonstrated weaker traction forces on the collagen-coated polyacrylamide substrate than did control cells. These changes lead to faster directional movement of HGF-treated cells, as demonstrated with wound healing assay. Treatment of SKOV-3 cells with SU11274 indicated significant inhibition of HGF stimulation on all assays tested.

  8. Apoptotic and genomic effects of corilagin on SKOV3 ovarian cancer cell line

    PubMed Central

    Attar, Rukset; Cincin, Zeynep Birsu; Bireller, Elif Sinem; Cakmakoglu, Bedia

    2017-01-01

    Corilagin is a member of the tannin family and has been isolated from traditional Chinese medicinal plants, such as Phyllanthus spp. Corilagin has anti-inflammatory, antioxidative, antiatherogenic, and antihypertensive effects in various experimental models. In this research, we aimed to investigate for the first time whether corilagin had apoptotic and genomic effects in ovarian cancer treatment in the same study. The potential apoptotic of corilagin was investigated using a WST1 cell proliferation test, caspase 3, and mitochondrial membrane potential JC1 assays in a time- and dose-dependent manner. Genomic changes in expression levels against corilagin treatment were measured using an Illumina human HT-12V4 BeadChip microarray. Bioinformatic data analyses were performed using GenomeStudio and Ingenuity Pathway Analysis software. The data of our study demonstrated that there were statistically significant time- and dose-dependent increases in caspase 3 enzymatic activity and loss of mitochondrial membrane potential in line with decreases in cancer cell proliferation. According to gene-ontology analysis, we found that adherens junctions, antigen processing and presentation, and the phosphatidylinositol signaling system were the most statistically significant networks in response to corilagin treatment on SKOV3 cells, in a time- and dose-dependent manner. The apoptotic and genome-wide effects of corilagin on ovarian cancer cells were examined in detail for the first time in the literature. The results of our study suggest that corilagin might have the potential to be used as a new treatment option for epithelial ovarian cancer.

  9. Tetramethoxychalcone, a Chalcone Derivative, Suppresses Proliferation, Blocks Cell Cycle Progression, and Induces Apoptosis of Human Ovarian Cancer Cells

    PubMed Central

    Liu, Yang; Zhang, Meiqin; Yang, Gong

    2014-01-01

    In the present study, we investigated the in vitro antitumor functions of a synthetic chalcone derivative 4,3′,4′,5′- tetramethoxychalcone (TMOC) in ovarian cancer cells. We found that TMOC inhibited the proliferation and colony formation of cisplatin sensitive cell line A2780 and resistant cell line A2780/CDDP, as well as ovarian cancer cell line SKOV3 in a time- and dose-dependent manner. Treatment of A2780 cells with TMOC resulted in G0/G1 cell cycle arrest through the down-regulation of cyclin D1 and CDK4, and the up-regulation of p16, p21 and p27 proteins. We demonstrated that TMOC might induce cell apoptosis through suppressing Bcl-2 and Bcl-xL, but enhancing the expression of Bax and the cleavage of PARP-1. Treatment of TMOC also reduced the invasion and migration of A2780 cells. Finally, we found that TMOC inhibited the constitutive activation of STAT3 signaling pathway and induced the expression of the tumor suppressor PTEN regardless of the p53 status in cell lines. These data suggest that TMOC may be developed as a potential chemotherapeutic agent to effectively treat certain cancers including ovarian cancer. PMID:25180593

  10. Proteomic dataset for altered glycoprotein expression upon GALNT3 knockdown in ovarian cancer cells.

    PubMed

    Sheta, Razan; Roux-Dalvai, Florence; Woo, Christina M; Fournier, Frédéric; Bourassa, Sylvie; Bertozzi, Carolyn R; Droit, Arnaud; Bachvarov, Dimcho

    2016-09-01

    This article contains raw and processed data related to research published in "Role of the polypeptide N-acetylgalactosaminyltransferase 3 in ovarian cancer progression: possible implications in abnormal mucin O-glycosylation" [1]. The data presented here was obtained with the application of a bioorthogonal chemical reporter strategy analyzing differential glycoprotein expression following the knock-down (KD) of the GALNT3 gene in the epithelial ovarian cancer (EOC) cell line A2780s. LC-MS/MS mass spectrometry analysis was then performed and the processed data related to the identified glycoproteins show that several hundred proteins are differentially expressed between control and GALNT3 KD A2780s cells. The obtained data also uncover numerous novel glycoproteins; some of which could represent new potential EOC biomarkers and/or therapeutic targets.

  11. Characteristics of human amniotic fluid mesenchymal stem cells and their tropism to human ovarian cancer.

    PubMed

    Li, Liru; Wang, Dejun; Zhou, Jun; Cheng, Yan; Liang, Tian; Zhang, Guangmei

    2015-01-01

    The mesenchymal stem cells (MSCs) derived from amniotic fluid (AF) have become an attractive stem cells source for cell-based therapy because they can be harvested at low cost and avoid ethical disputes. In human research, stem cells derived from AF gradually became a hot research direction for disease treatment, specifically for their plasticity, their reduced immunogenicity and their tumor tropism regardless of the tumor size, location and source. Our work aimed to obtain and characterize human amniotic fluid mesenchymal stem cells (AFMSCs) and detect their ovarian cancer tropsim in nude mice model. Ten milliliters of twenty independent amniotic fluid samples were collected from 16-20 week pregnant women who underwent amniocentesis for fetal genetic determination in routine prenatal diagnosis in the first affiliated hospital of Harbin medical university. We successfully isolated the AFMSCs from thirteen of twenty amniotic fluid samples. AFMSCs presented a fibroblastic-like morphology during the culture. Flow cytometry analyses showed that the cells were positive for specific stem cell markers CD73,CD90, CD105, CD166 and HLA-ABC (MHC class I), but negative for CD 45,CD40, CD34, CD14 and HLA-DR (MHC class II). RT-PCR results showed that the AFMSCs expressed stem cell marker OCT4. AFMSCs could differentiate into bone cells, fat cells and chondrocytes under certain conditions. AFMSCs had the high motility to migrate to ovarian cancer site but didn't have the tumorigenicity. This study enhances the possibility of AFMSCs as drug carrier in human cell-based therapy. Meanwhile, the research emphasis in the future can also put in targeting therapy of ovarian cancer.

  12. Effect of the WWOX gene on the regulation of the cell cycle and apoptosis in human ovarian cancer stem cells.

    PubMed

    Yan, Hongchao; Tong, Jianye; Lin, Xiaoman; Han, Qiuyu; Huang, Hongxiang

    2015-08-01

    In order to examine new ideas for gene therapy in ovarian cancer, the specific mechanism underlying the effects of the WW domain containing oxidoreductase (WWOX) gene on cell cycle regulation and apoptosis in human ovarian cancer stem cells was investigated. Ovarian cancer stem cells were transfected with a eukaryotic expression vector carrying the WWOX gene in vitro (recombinant plasmid) and cells transfected with the empty plasmid (empty plasmid) or untransfected cells were used as controls. Stably transfected cells were screened and amplified in culture and the WWOX protein was detected by western blot analysis in the three groups of cells. Western blot analysis was performed to detect the expression of cell cycle regulatory proteins cyclin E, cyclin-dependent kinase (CDK) 2, cyclin D1, CDK4 and apoptosis-related protein Wnt-5α and c-Jun N-terminal kinase (JNK), while polymerase chain reaction (PCR) was used to detect alterations in the mRNA expression levels of caspase-3. The results demonstrated that the WWOX protein was stably expressed in cells of the recombinant plasmid group, but was not detected in cells of the empty plasmid group and the control group. Cell proliferation at each time point decreased significantly in the recombinant plasmid group compared with the empty plasmid group and the control group. Flow cytometric analysis demonstrated that the proportion of cells in the G0/G1 phase in the recombinant plasmid group was significantly higher than that of cells in the empty plasmid group and the control group. The rate of apoptosis in the recombinant plasmid group was significantly higher than that of cells in the empty plasmid group and the control group. Western blot analysis demonstrated that the expression levels of cyclin E, CDK2, cyclin D1 and CDK4 in the recombinant plasmid group were significantly lower than those in the empty plasmid group and the control group; however, the expression levels of Wnt-5α and JNK were significantly higher

  13. Effect of targeted silencing of IL-8 on in vitro migration and invasion of SKOV3 ovarian cancer cells

    PubMed Central

    Li, Yanyu; Liu, Ling; Yin, Zeyuan; Xu, Hui; Li, Shuang; Tao, Wei; Cheng, Hui; Du, Lei; Zhou, Xueyuan; Zhang, Bei

    2017-01-01

    The aim of the study was to determine whether interleukin-8 (IL-8) affects human SKOV3 ovarian cancer cell migration and invasion by targeting silencing of IL-8 expression. Silencing small-interfering RNA (siRNA) targeting IL-8 gene was constructed to infect SKOV3 cells by lentiviral vector. The expression of IL-8 and p-nuclear factor (NF)-κB protein was detected by western blot analysis. The wound scratch and Transwell tests were used to assay the cell migration and invasiveness of SKOV3 cells infected with lentiviral vector targeting IL-8 gene siRNA. The levels of IL-8 protein expressed by SKOV3 cells infected by lentiviral vector targeting IL-8 gene siRNA decreased by 72.3%. IL-8 (50 ng/ml) increased the ability of SKOV3 cells to suppress cell migration (p<0.01). Cisplatin and silencing of IL-8 achieved the ability to inhibit SKOV3 cell invasion (p<0.01), and 100 ng/ml concentration of IL-8 enhanced the ability of SKOV3 invasion (p<0.01). Silencing of IL-8 to a certain extent reduced the expression of p-NF-κB proteins, but it was not statistically significant. In conclusion, silencing of IL-8 may inhibit the migration and invasion of SKOV3 cells, which may be independent of the p-NF-κB protein. PMID:28356930

  14. Fuling Granule, a Traditional Chinese Medicine Compound, Suppresses Cell Proliferation and TGFβ-Induced EMT in Ovarian Cancer

    PubMed Central

    Ruan, Shanming; Liu, Wenhong; Wang, Libin; Xiong, Yang; Shen, Minhe

    2016-01-01

    The compound fuling granule (CFG) is a traditional Chinese drug which has been used to treat ovarian cancer in China for over twenty years. Nevertheless, the underlying molecular mechanism of its anti-cancer effect remains unclear. In this study, microarray data analysis was performed to search differentially expressed genes in CFG-treated ovarian cancer cells. Several cell cycle and epithelial-mesenchymal transition (EMT) related genes were identified. The microarray analyses also revealed that CFG potentially regulates EMT in ovarian cancer. We also found that, functionally, CFG significantly suppresses ovarian cancer cell proliferation by cell cycle arrest, apoptosis and senescence and the AKT/GSK-3β pathway is possibly involved. Additionally, the invasion and migration ability of ovarian cancer induced by TGFβ is significantly suppressed by CFG. In conclusion, our results demonstrated that CFG suppresses ovarian cancer cell proliferation as well as TGFβ1-induced EMT in vitro. Finally, we discovered that CFG suppresses tumor growth and distant metastasis in vivo. Overall, these findings provide helpful clues to design novel clinical treatments against cancer. PMID:28036353

  15. Neutrophil Granulocytes in Ovarian Cancer - Induction of Epithelial-To-Mesenchymal-Transition and Tumor Cell Migration

    PubMed Central

    Mayer, Christine; Darb-Esfahani, Silvia; Meyer, Anne-Sophie; Hübner, Katrin; Rom, Joachim; Sohn, Christof; Braicu, Ioana; Sehouli, Jalid; Hänsch, G. Maria; Gaida, Matthias M.

    2016-01-01

    Background: Ovarian cancer (OvCa) is a highly aggressive malignoma with a tumor-promoting microenvironment. Infiltration of polymorphonuclear neutrophils (PMN) is frequently seen, raising the question of their impact on tumor development. In that context, effects of PMN on human ovarian cancer cells were assessed. Methods: Human epithelial ovarian cancer cells were incubated with human PMN, lysate of PMN, or neutrophil elastase. Morphological alterations were observed by time-lapse video-microscopy, and the underlying molecular mechanism was analyzed by flow cytometry and Western blotting. Functional alternations were assessed by an in vitro wound healing assay. In parallel, a large cohort of n=334 primary OvCa tissue samples of various histological subtypes was histologically evaluated. Results: Co-cultivation of cancer cells with either PMN or PMN lysate causes a change of the polygonal epithelial phenotype of the cells towards a spindle shaped morphology, causing a cribriform cell growth. The PMN-induced alteration could be attributed to elastase, a major protease of PMN. Elastase-induced shape change was most likely due to the degradation of membranous E-cadherin, which results in loss of cell contacts and polarity. Moreover, in response to elastase, epithelial cytokeratins were downmodulated, in parallel with a nuclear translocation of β-catenin. These PMN-elastase induced alterations of cells are compatible with an epithelial-to-mesenchymal transition (EMT) of the cancer cells. Following EMT, the cells displayed a more migratory phenotype. In human biopsies, neutrophil infiltration was seen in 72% of the cases. PMN infiltrates were detected preferentially in areas with low E-cadherin expression. Conclusion: PMN in the microenvironment of OvCa can alter tumor cells towards a mesenchymal and migratory phenotype. PMID:27053953

  16. Physiological characterization of human ovarian cancer cells in a rat model of intraperitoneal antineoplastic therapy.

    PubMed

    Flessner, Michael F; Choi, Jaehwa; He, Zhi; Credit, Kimberly

    2004-10-01

    Destruction of cancer cells by therapies directed against new molecular targets requires their effective delivery to the tumor. To study diffusion and convection of intraperitoneal (ip) therapy to ip tumors, we established a new athymic rat (RNU) model with ovarian tumor cells (SKOV3 and OVCAR3) implanted in the abdominal wall. The model simulates metastatic tumor and facilitates the measurement of physiological parameters that govern transport forces. CD31 immunohistochemistry revealed unique patterns of angiogenesis, with a tissue-averaged vascular volume of approximately 0.01 ml/g for each tumor. The extracellular volume (SKOV3: 0.54 +/- 0.11 ml/g, n=5; OVCAR3: 0.61 +/- 0.03, n=5) was over twice that of the adjacent normal muscle (0.22 +/- 0.06 ml/g, n=5). Intravenous-injected antibody tumor clearance was two to three times that of muscle. Interstitial pressures were higher than normal tissue with a median of 10-15 mmHg. Quantitative autoradiography of frozen tissue slices from rats exposed to ip solutions containing [14C]mannitol or 125I-immunoglobulin G (trastuzumab) was performed to determine transport of small and large molecules. With ip pressure of 0-6 mmHg, both mannitol and immunoglobulin G displayed steep concentration profiles close to the tumor surface with limited penetration deeper within the tumor tissue; antibody penetration was significantly affected by ip pressure. These results demonstrated effects of molecular size, ip pressure, the limited but highly permeable tumor vasculature, and the expanded interstitium on drug penetration from the peritoneal cavity. In conclusion, we have characterized physical and chemical parameters that determine transport of therapeutic agents in our unique tumor-bearing rat model.

  17. Transcriptional network in ovarian cancer cell line SKOV3 treated with Pinellia pedatisecta Schott extract.

    PubMed

    Zhou, Li; Xu, Teng; Zhang, Ying; Zhu, Mei; Zhu, Wen; Wang, Ziqiang; Gu, Hangzhi; Wang, Hanchu; Li, Peizhen; Ying, Jun; Yang, Lei; Ren, Ping; Li, Jinsong; Xu, Zuyuan; Ni, Liyan; Bao, Qiyu; Chen, Jindong

    2016-07-01

    Ovarian cancer is the most lethal disease among the malignant tumors of female reproductive organs. Few successful therapeutic options exist for patients with ovarian cancer. The common therapeutic methods are surgical operation, chemotherapy, radiotherapy, and combination of these treatments. In recent years, studies have indicated that Pinellia pedatisecta Schott (PPS), a traditional Chinese medicine, could inhibit tumor growth. In this study, we demonstrated that PPS extract could induce apoptosis in SKOV3 cells in a dose- and time-dependent manner. We further conducted transcriptome sequencing on PPS extract-treated SKOV3 cells along with controls, and identified 1,754 transcripts whose expression differs at least 3-fold over the controls. These differentially expressed transcripts include the apoptosis-related genes such as the caspase family members, and were significantly enriched in steroid biosynthesis in the KEGG pathway database compared with the transcriptome background. Most of the differentially expressed transcripts from this pathway were upregulated in PPS extract-treated cell line, indicating that PPS extract-induced apoptosis was accompanied by increased steroid biosynthesis (e.g. zymosterol). These results suggest that PPS extract could be a new cytostatic therapeutic agent for ovarian cancer.

  18. Ovarian surface epithelium at the junction area contains a cancer-prone stem cell niche.

    PubMed

    Flesken-Nikitin, Andrea; Hwang, Chang-Il; Cheng, Chieh-Yang; Michurina, Tatyana V; Enikolopov, Grigori; Nikitin, Alexander Yu

    2013-03-14

    Epithelial ovarian cancer (EOC) is the fifth leading cause of cancer deaths among women in the United States, but its pathogenesis is poorly understood. Some epithelial cancers are known to occur in transitional zones between two types of epithelium, whereas others have been shown to originate in epithelial tissue stem cells. The stem cell niche of the ovarian surface epithelium (OSE), which is ruptured and regenerates during ovulation, has not yet been defined unequivocally. Here we identify the hilum region of the mouse ovary, the transitional (or junction) area between the OSE, mesothelium and tubal (oviductal) epithelium, as a previously unrecognized stem cell niche of the OSE. We find that cells of the hilum OSE are cycling slowly and express stem and/or progenitor cell markers ALDH1, LGR5, LEF1, CD133 and CK6B. These cells display long-term stem cell properties ex vivo and in vivo, as shown by our serial sphere generation and long-term lineage-tracing assays. Importantly, the hilum cells show increased transformation potential after inactivation of tumour suppressor genes Trp53 and Rb1, whose pathways are altered frequently in the most aggressive and common type of human EOC, high-grade serous adenocarcinoma. Our study supports experimentally the idea that susceptibility of transitional zones to malignant transformation may be explained by the presence of stem cell niches in those areas. Identification of a stem cell niche for the OSE may have important implications for understanding EOC pathogenesis.

  19. Galectin-3 induces ovarian cancer cell survival and chemoresistance via TLR4 signaling activation.

    PubMed

    Cai, Guoqing; Ma, Xiangdong; Chen, Biliang; Huang, Yanhong; Liu, Shujuan; Yang, Hong; Zou, Wei

    2016-09-01

    Paclitaxel resistance becomes common in patients with aggressive ovarian cancer and results in recurrence after conventional therapy. Galectin-3 is a multifunctional lectin associated with cell migration, cell proliferation, cell adhesion, and cell-cell interaction in tumor cells. Whether circulating galectin-3 is involved in paclitaxel resistance in ovarian cancer remains unknown. The current study investigated the effect of galectin-3 on toll-like receptor 4 (TLR4) signaling and thus paclitaxel resistance. With blood and cancer tissue samples obtained from 102 patients, we identified associations between serum galectin-3 level or TLR4 expression and paclitaxel resistance phenotype. In vitro, treatment with exogenous galectin-3 restored cell survival and migration of SKOV-3 and ES-2 cells was decreased by galectin-3 silencing and paclitaxel treatment. Furthermore, exogenous galectin-3 boosted expression of TLR4, MyD88, and p-p65, as well as interleukin (IL)-6, IL-8, and vascular endothelial growth factor (VEGF) release induced by paclitaxel. Moreover, galectin-3 inhibited the interaction between TLR4 and caveolin-1 (Cav-1) in SKOV-3 and ES-2 cells. In addition, overexpression of Cav-1 dampened the expression of MyD88 and p-p65 stimulated by galectin-3 and enhanced apoptosis in SKOV-3 cells under paclitaxel exposure. In summary, our study elucidated that exogenous galectin-3 might induce paclitaxel resistance through TLR4 signaling activation by inhibiting TLR4-Cav-1 interaction, revealing a novel insight into paclitaxel resistance induction.

  20. Extracellular Vesicles Present in Human Ovarian Tumor Microenvironments Induce a Phosphatidylserine-Dependent Arrest in the T-cell Signaling Cascade.

    PubMed

    Kelleher, Raymond J; Balu-Iyer, Sathy; Loyall, Jenni; Sacca, Anthony J; Shenoy, Gautam N; Peng, Peng; Iyer, Vandana; Fathallah, Anas M; Berenson, Charles S; Wallace, Paul K; Tario, Joseph; Odunsi, Kunle; Bankert, Richard B

    2015-11-01

    The identification of immunosuppressive factors within human tumor microenvironments, and the ability to block these factors, would be expected to enhance patients' antitumor immune responses. We previously established that an unidentified factor, or factors, present in ovarian tumor ascites fluids reversibly inhibited the activation of T cells by arresting the T-cell signaling cascade. Ultracentrifugation of the tumor ascites fluid has now revealed a pellet that contains small extracellular vesicles (EV) with an average diameter of 80 nm. The T-cell arrest was determined to be causally linked to phosphatidylserine (PS) that is present on the outer leaflet of the vesicle bilayer, as a depletion of PS-expressing EV or a blockade of PS with anti-PS antibody significantly inhibits the vesicle-induced signaling arrest. The inhibitory EV were also isolated from solid tumor tissues. The presence of immunosuppressive vesicles in the microenvironments of ovarian tumors and our ability to block their inhibition of T-cell function represent a potential therapeutic target for patients with ovarian cancer.

  1. Cancer stem cells, epithelial-mesenchymal transition, and drug resistance in high-grade ovarian serous carcinoma.

    PubMed

    Chen, Xiaoxiang; Zhang, Jing; Zhang, Zhihong; Li, Hongxia; Cheng, Wenjun; Liu, Jinsong

    2013-11-01

    Although epithelial ovarian cancer cells are eliminated by debulking surgery and chemotherapy during initial treatment, it is believed that only a subset of cancer cells, that is, cancer stem cells, may be an important source of tumor recurrence and drug resistance. This review highlights our current understanding of high-grade serous carcinoma, ovarian cancer stem cells, common methods for enrichment of ovarian cancer stem cells, mechanisms involved in drug resistance, and potential strategies for overcoming drug resistance, with associated potential controversies and pitfalls. We also review the potential relationship between epithelial-to-mesenchymal transition and cancer stem cells and how we can induce cancer cells to differentiate into benign stromal fibroblasts in response to certain chemotherapy drugs.

  2. Chemotherapy induces adaptive drug resistance and metastatic potentials via phenotypic CXCR4-expressing cell state transition in ovarian cancer

    PubMed Central

    Lee, Hyun Hee; Bellat, Vanessa

    2017-01-01

    Ovarian cancer (OVC) patients who receive chemotherapy often acquire drug resistance within one year. This can lead to tumor reoccurrence and metastasis, the major causes of mortality. We report a transient increase of a small distinctive CXCR4High/CD24Low cancer stem cell population (CXCR4High) in A2780 and SKOV-3 OVC cell lines in response to cisplatin, doxorubicin, and paclitaxel, treatments. The withdrawal of the drug challenges reversed this cell-state transition. CXCR4High exhibits dormancy in drug resistance and mesenchymal-like invasion, migration, colonization, and tumor formation properties. The removal of this cell population from a doxorubicin-resistant A2780 lineage (A2780/ADR) recovered the sensitivity to drug treatments. A cytotoxic peptide (CXCR4-KLA) that can selectively target cell-surface CXCR4 receptor was further synthesized to investigate the therapeutic merits of targeting CXCR4High. This peptide was more potent than the conventional CXCR4 antagonists (AMD3100 and CTCE-9908) in eradicating the cancer stem cells. When used together with cytotoxic agents such as doxorubicin and cisplatin, the combined drug-peptide regimens exhibited a synergistic cell-killing effect on A2780, A2780/ADR, and SKOV-3. Our data suggested that chemotherapy could establish drug-resistant and tumor-initiating properties of OVC via reversible CXCR4 cell state transition. Therapeutic strategies designed to eradicate rather than antagonize CXCR4High might offer a far-reaching potential as supportive chemotherapy. PMID:28196146

  3. Human endometrial mesenchymal stem cells exhibit intrinsic anti-tumor properties on human epithelial ovarian cancer cells

    PubMed Central

    Bu, Shixia; Wang, Qian; Zhang, Qiuwan; Sun, Junyan; He, Biwei; Xiang, Charlie; Liu, Zhiwei; Lai, Dongmei

    2016-01-01

    Epithelial ovarian cancer (EOC) is the most lethal tumor of all gynecologic tumors. There is no curative therapy for EOC thus far. The tumor-homing ability of adult mesenchymal stem cells (MSCs) provide the promising potential to use them as vehicles to transport therapeutic agents to the site of tumor. Meanwhile, studies have showed the intrinsic anti-tumor properties of MSCs against various kinds of cancer, including epithelial ovarian cancer. Human endometrial mesenchymal stem cells (EnSCs) derived from menstrual blood are a novel source for adult MSCs and exert restorative function in some diseases. Whether EnSCs endow innate anti-tumor properties on EOC cells has never been reported. By using tumor-bearing animal model and ex vivo experiments, we found that EnSCs attenuated tumor growth by inducing cell cycle arrest, promoting apoptosis, disturbing mitochondria membrane potential and decreasing pro-angiogenic ability in EOC cells in vitro and/or in vivo. Furthermore, EnSCs decreased AKT phosphorylation and promoted nuclear translocation of Forkhead box O-3a (FoxO3a) in EOC cells. Collectively, our findings elucidated the potential intrinsic anti-tumor properties of EnSCs on EOC cells in vivo and in vitro. This research provides a potential strategy for EnSC-based anti-cancer therapy against epithelial ovarian cancer. PMID:27845405

  4. EGEN-001 and Pegylated Liposomal Doxorubicin Hydrochloride in Treating Patients With Recurrent or Persistent Ovarian Epithelial Cancer, Fallopian Tube Cancer, or Primary Peritoneal Cancer

    ClinicalTrials.gov

    2014-08-11

    Ovarian Clear Cell Cystadenocarcinoma; Ovarian Endometrioid Adenocarcinoma; Ovarian Mixed Epithelial Carcinoma; Ovarian Serous Cystadenocarcinoma; Ovarian Undifferentiated Adenocarcinoma; Recurrent Fallopian Tube Cancer; Recurrent Ovarian Epithelial Cancer; Recurrent Primary Peritoneal Cavity Cancer

  5. Evaluation of the efficacy of paclitaxel with curcumin combination in ovarian cancer cells

    PubMed Central

    Liu, Zeng; Zhu, Yuan-Yuan; Li, Zhao-Yuan; Ning, Si-Qing

    2016-01-01

    The aim of the present study was to evaluate the efficacy of paclitaxel combined with curcumin (CUR) against drug resistance in ovarian cancer cells. PLGA-phospholipid-PEG nanoparticles were prepared using the nano precipitation method. The size and morphology of the nanoparticles were determined using a transmission electron microscope and particle size analyzer. The encapsulation efficiency of nanoparticles was determined using the ultrafiltration centrifugation method. The dialysis method was used to study the release of PLGA-phospholipid-PEG nanoparticles. ADM was used to induce the A2780 cell line (human ovarian cancer cell line) to establish the model of the multidrug-resistant (MDR) cell line, and the protein activity of P-glycoprotein (P-gp) in the A2780 cell line and A2780/ADM resistant cell line was determined using western blot analysis. The results showed that, the prepared nanoparticles were uniform in size, with a size of approximately 100 nm, and round in shape. Additionally, the nanoparticles had a more gentle and slow release than the free drug release. The results of the protein trace printing experiment showed that the P-gp content of the drug-resistant cell line was significantly reduced by the CUR nanoparticles. In conclusion, PLGA-phospholipid nanoparticles containing taxol and CUR have improved solubility and stability together with a slow release effect. In addition, CUR was able to overcome the MDR of tumor cells by elevating the paclitaxel concentration in the tumor cells to improve the antitumor activity of this combination. PMID:27895754

  6. Autophagic flux promotes cisplatin resistance in human ovarian carcinoma cells through ATP-mediated lysosomal function.

    PubMed

    Ma, Liwei; Xu, Ye; Su, Jing; Yu, Huimei; Kang, Jinsong; Li, Hongyan; Li, Xiaoning; Xie, Qi; Yu, Chunyan; Sun, Liankun; Li, Yang

    2015-11-01

    Lysosomes are involved in promoting resistance of cancer cells to chemotherapeutic agents. However, the mechanisms underlying lysosomal influence of cisplatin resistance in ovarian cancer remain incompletely understood. We report that, compared with cisplatin-sensitive SKOV3 cells, autophagy increases in cisplatin-resistant SKOV3/DDP cells treated with cisplatin. Inhibition of early-stage autophagy enhanced cisplatin-mediated cytotoxicity in SKOV3/DDP cells, but autophagy inhibition at a later stage by disturbing autophagosome-lysosome fusion is more effective. Notably, SKOV3/DDP cells contained more lysosomes than cisplatin-sensitive SKOV3 cells. Abundant lysosomes and lysosomal cathepsin D activity were required for continued autolysosomal degradation and maintenance of autophagic flux in SKOV3/DDP cells. Furthermore, SKOV3/DDP cells contain abundant lysosomal ATP required for lysosomal function, and inhibition of lysosomal ATP accumulation impaired lysosomal function and blocked autophagic flux. Therefore, our findings suggest that lysosomes at least partially contribute to cisplatin resistance in ovarian cancer cells through their role in cisplatin-induced autophagic processes, and provide insight into the mechanism of cisplatin resistance in tumors.

  7. Pharmacokinetic approach to in vitro testing of ovarian cancer cell sensitivity.

    PubMed

    Morasca, L; Balconi, G; Erba, E; D'Incalci, M; Ottolenghi, L; Salmona, A; Garattini, S

    1980-01-01

    Cell populations obtained from ovarian cancer specimens were seeded in primary culture and morphologically identified as cancer cells. Methotrexate, cytosine arabinoside, 5-fluorouracil, antinomycin D, melphalan, and adriamycin were added to the culture medium at different concentrations and for various periods of time. The results are discussed in relation to the pharmacokinetic availability of drugs in the plasma compartment of patients treated by different therapuetic regimens. Totally inactive drugs can be identified by comparing plasma levels with active concentrations while for drugs active in vitro at concentrations in the range of pharmacokinetic levels, the percentage of responders among patients might be explained by the intrinsic variability of cancer cells.

  8. MV-NIS or Investigator's Choice Chemotherapy in Treating Patients With Ovarian, Fallopian, or Peritoneal Cancer

    ClinicalTrials.gov

    2016-06-24

    Fallopian Tube Transitional Cell Carcinoma; Malignant Ovarian Clear Cell Tumor; Malignant Ovarian Endometrioid Tumor; Malignant Ovarian Serous Tumor; Ovarian Seromucinous Carcinoma; Ovarian Transitional Cell Carcinoma; Primary Peritoneal Serous Adenocarcinoma; Recurrent Fallopian Tube Carcinoma; Recurrent Ovarian Carcinoma; Recurrent Primary Peritoneal Carcinoma; Undifferentiated Fallopian Tube Carcinoma; Undifferentiated Ovarian Carcinoma

  9. Estrogen regulates Snail and Slug in the down-regulation of E-cadherin and induces metastatic potential of ovarian cancer cells through estrogen receptor alpha.

    PubMed

    Park, Se-Hyung; Cheung, Lydia W T; Wong, Alice S T; Leung, Peter C K

    2008-09-01

    Tumorigenesis is a multistep process involving dysregulated cell growth and metastasis. Considerable evidence implicates a mitogenic action of estrogen in early ovarian carcinogenesis. In contrast, its influence in the metastatic cascade of ovarian tumor cells remains obscure. In the present study, we showed that 17beta-estradiol (E2) increased the metastatic potential of human epithelial ovarian cancer cell lines. E2 treatment led to clear morphological changes characteristic of epithelial-mesenchymal transition (EMT) and an enhanced cell migratory propensity. These morphological and functional alterations were associated with changes in the abundance of EMT-related genes. Upon E2 stimulation, expression and promoter activity of the epithelial marker E-cadherin were strikingly suppressed, whereas EMT-associated transcription factors, Snail and Slug, were significantly up-regulated. This up-regulation was attributed to the increase in gene transcription activated by E2. Depletion of endogenous Snail or Slug using small interfering RNA (siRNA) attenuated E2-mediated decrease in E-cadherin. In addition, E2-induced cell migration was also neutralized by the siRNAs, suggesting that both transcription factors are indispensable for the prometastatic actions of E2. More importantly, by using selective estrogen receptor (ER) agonists, forced expression, and siRNA approaches, we identified that E2 triggered the metastatic behaviors exclusively through an ERalpha-dependent pathway. We also showed that ERbeta had an opposing action on ERalpha because the presence of ERbeta completely inhibited the EMT and down-regulation of E-cadherin induced by ERalpha. Collectively, this study provides a compelling argument that estrogen can potentiate tumor progression by EMT induction and highlights the crucial role of ERalpha in ovarian tumorigenesis.

  10. MEK1-independent activation of MAPK and MEK1-dependent activation of p70 S6 kinase by stem cell factor (SCF) in ovarian cancer cells

    SciTech Connect

    Liu, Lian; Zhang, Xin; Du, Chao; Zhang, Xiaoning; Hou, Nan; Zhao, Di; Sun, Jianzhi; Li, Li; Wang, Xiuwen; Ma, Chunhong

    2009-05-01

    We discovered a stem cell factor (SCF)-triggered, MEK1-independent, and PI3K-dependent MAPK activation pathway in the Kit-expressing ovarian cancer cell line HEY. When we knocked down MEK1 with RNA interference (RNAi) to study the function of MEK1 on the proliferation and survival of ovarian cancer cells, we found that impaired cell growth still occurred after MEK1 expression had been suppressed, although MAPK activation remained intact. This suggests that there is MEK1-independent activation of MAPK in the SCF-induced ovarian cancer cell growth process, and that MEK1 still plays a crucial role in maintaining the malignant properties of ovarian cancer cells even when it fails to activate MAPK as expected.

  11. STROBE-compliant integrin through focal adhesion involve in cancer stem cell and multidrug resistance of ovarian cancer

    PubMed Central

    Wei, Luwei; Yin, Fuqiang; Zhang, Wei; Li, Li

    2017-01-01

    Abstract Cancer stem cells (CSCs) are considered to be the root of carcinoma relapse and drug resistance in ovarian cancer. Hunting for the potential CSC genes and explain their functions would be a feasible strategy to meet the challenge of the drug resistance in ovarian cancer. In this study, we performed bioinformatic approaches such as biochip data extraction and pathway enrichment analyses to elucidate the mechanism of the CSC genes in regulation of drug resistance. Potential key genes, integrins, were identified to be related to CSC in addition to their associations with drug resistance and prognosis in ovarian cancer. A total of 36 ovarian CSC genes involved in regulation of drug resistance were summarized, and potential drug resistance-related CSC genes were identified based on 3 independent microarrays retrieved from the Gene Expression Omnibus (GEO) Profiles. Pathway enrichment of CSC genes associated with drug resistance in ovarian cancer indicated that focal adhesion signaling might play important roles in CSC genes-mediated drug resistance. Integrins are members of the adhesion molecules family, and integrin subunit alpha 1, integrin subunit alpha 5, and integrin subunit alpha 6 (ITGA6) were identified as central CSC genes and their expression in side population cells, cisplatin-resistant SKOV3 (SKOV3/DDP2) cells, and cisplatin-resistant A2780 (A2780/DDP) cells were dysregulated as measured by real-time quantitative polymerase chain reaction. The high expression of ITGA6 in 287 ovarian cancer patients of TCGA cohort was significantly associated with poorer progression-free survival. This study provide the basis for further understanding of CSC genes in regulation of drug resistance in ovarian cancer, and integrins could be a potential biomarker for prognosis of ovarian cancer. PMID:28328815

  12. Inhibition of Ovarian Cancer Chemoresistance and Metastasis with Antagonists of Hyaluronan-CD44-CD147 Interactions

    DTIC Science & Technology

    2015-09-01

    CD147 interactions in cancer stem cell properties, especially drug resistance, to improvement of therapy for malignant ovarian carcinoma. In this grant...we have shown that: a) drug -resistant human ovarian carcinoma cell lines contain CD133-positive/ CD147-positive/ CD44-positive cancer stem-like...small hyaluronan oligosaccharides sensitize drug -resistant human ovarian carcinoma cells to various chemotherapeutic agents in culture and in vivo; c

  13. Symptomatic Ovarian Steroid Cell Tumor not Otherwise Specified in a Post-Menopausal Woman

    PubMed Central

    Sood, Neha; Desai, Kaniksha; Chindris, Ana-Maria; Lewis, Jason; Dinh, Tri A.

    2016-01-01

    Steroid cell tumor not otherwise specified (NOS) is a rare subtype of sex cord stromal tumor of the ovary and contributes less than 0.1% of all ovarian neoplasms. The majority of tumors occur in pre-menopausal women (mean age: 43 years), in which 56-77% of patients present with virilization due to excess testosterone. An 80-year-old woman with worsening alopecia and excessive growth of coarse hair on abdomen and genital area was found to have elevated serum testosterone level (462 ng/mL). Radiologic studies were consistent with bilateral adrenal adenomas. Bilateral adrenal venous sampling ruled out the adrenal gland as origin of hormone secretion. A diagnostic and therapeutic bilateral salpingo-oophorectomy confirmed steroid cell tumor NOS of the left ovary. Post-operatively, the patient had complete resolution of her symptoms and normalization of testosterone level. Our case emphasizes the importance of a clinical suspicion for an occult testosterone secreting ovarian tumor in a symptomatic patient without obvious ovarian mass on imaging. PMID:27441075

  14. Human cord blood mononuclear cell transplantation for the treatment of premature ovarian failure in nude mice

    PubMed Central

    Dang, Jianhong; Jin, Zhijun; Liu, Xiaojun; Hu, Dian; Wang, Zhifeng

    2015-01-01

    Objective: This study explored the potential of human cord blood mononuclear cell (HCMNC) transplantation as a treatment for premature ovarian failure (POF) in a nude mouse model. Methods: Female nude mice were randomly divided into three groups; a normal control group (n = 35), a POF group (POF plus vehicle, n = 35) and a POF plus cell transplantation group (HCMNCs were implanted into the ovaries, n = 35). HCMNCs were isolated by Ficoll density gradient centrifugation and labeled with BrdU. Four weeks after transplantation, the nude mice were sacrificed to determine serum levels of E2, FSH and LH as indicators of ovarian function, and the ovaries were examined both histologically and immunochemically. Results: The transplanted HCMNCs survived in the transplantation group and were detected by BrdU. In the transplantation group, serum levels of E2 significantly increased while serum levels of FSH and LH significantly decreased compared to the POF control group. Additionally, the transplantation group had a recovery in follicle number. Conclusion: HCMNCs can be successfully transplanted into the ovaries of nude mice and can improve ovarian function in POF. PMID:26064319

  15. TWIST and ovarian cancer stem cells: implications for chemoresistance and metastasis

    PubMed Central

    Nuti, Sudhakar V.; Mor, Gil; Li, Peiyao; Yin, Gang

    2014-01-01

    The transcription factor TWIST1 is a highly evolutionally conserved basic Helix-Loop-Helix (bHLH) transcription factor that functions as a master regulator of gastrulation and mesodermal development. Although TWIST1 was initially associated with embryo development, an increasing number of studies have shown TWIST1 role in the regulation of tissue homeostasis, primarily as a regulator of inflammation. More recently, TWIST1 has been found to be involved in the process of tumor metastasis through the regulation of Epithelial Mesenchymal Transition (EMT). The objective of this review is to examine the normal functions of TWIST1 and its role in tumor development, with a particular focus on ovarian cancer. We discuss the potential role of TWIST1 in the context of ovarian cancer stem cells and its influence in the process of tumor formation. PMID:25238494

  16. ST6Gal-I expression in ovarian cancer cells promotes an invasive phenotype by altering integrin glycosylation and function

    PubMed Central

    Christie, Daniel R; Shaikh, Faheem M; Lucas, John A; Lucas, John A; Bellis, Susan L

    2008-01-01

    Background Ovarian adenocarcinoma is not generally discovered in patients until there has been widespread intraperitoneal dissemination, which is why ovarian cancer is the deadliest gynecologic malignancy. Though incompletely understood, the mechanism of peritoneal metastasis relies on primary tumor cells being able to detach themselves from the tumor, escape normal apoptotic pathways while free floating, and adhere to, and eventually invade through, the peritoneal surface. Our laboratory has previously shown that the Golgi glycosyltransferase, ST6Gal-I, mediates the hypersialylation of β1 integrins in colon adenocarcinoma, which leads to a more metastatic tumor cell phenotype. Interestingly, ST6Gal-I mRNA is known to be upregulated in metastatic ovarian cancer, therefore the goal of the present study was to determine whether ST6Gal-I confers a similarly aggressive phenotype to ovarian tumor cells. Methods Three ovarian carcinoma cell lines were screened for ST6Gal-I expression, and two of these, PA-1 and SKOV3, were found to produce ST6Gal-I protein. The third cell line, OV4, lacked endogenous ST6Gal-I. In order to understand the effects of ST6Gal-I on cell behavior, OV4 cells were stably-transduced with ST6Gal-I using a lentiviral vector, and integrin-mediated responses were compared in parental and ST6Gal-I-expressing cells. Results Forced expression of ST6Gal-I in OV4 cells, resulting in sialylation of β1 integrins, induced greater cell adhesion to, and migration toward, collagen I. Similarly, ST6Gal-I expressing cells were more invasive through Matrigel. Conclusion ST6Gal-I mediated sialylation of β1 integrins in ovarian cancer cells may contribute to peritoneal metastasis by altering tumor cell adhesion and migration through extracellular matrix. PMID:19014651

  17. A High-Throughput Screening Model of the Tumor Microenvironment for Ovarian Cancer Cell Growth.

    PubMed

    Lal-Nag, Madhu; McGee, Lauren; Guha, Rajarshi; Lengyel, Ernst; Kenny, Hilary A; Ferrer, Marc

    2017-01-01

    The tumor microenvironment plays an important role in the processes of tumor growth, metastasis, and drug resistance. We have used a multilayered 3D primary cell culture model that reproduces the human ovarian cancer metastatic microenvironment to study the effect of the microenvironment on the pharmacological responses of different classes of drugs on cancer cell proliferation. A collection of oncology drugs was screened to identify compounds that inhibited the proliferation of ovarian cancer cells growing as monolayers or forming spheroids, on plastic and on a 3D microenvironment culture model of the omentum metastatic site, and also cells already in preformed spheroids. Target-based analysis of the pharmacological responses revealed that several classes of targets were more efficacious in cancer cells growing in the absence of the metastatic microenvironment, and other target classes were less efficacious in cancer cells in preformed spheres compared to forming spheroid cultures. These findings show that both the cellular context of the tumor microenvironment and cell adhesion mode have an essential role in cancer cell drug resistance. Therefore, it is important to perform screens for new drugs using model systems that more faithfully recapitulate the tissue composition at the site of tumor growth and metastasis.

  18. CAP1 is overexpressed in human epithelial ovarian cancer and promotes cell proliferation.

    PubMed

    Hua, Minhui; Yan, Sujuan; Deng, Yan; Xi, Qinghua; Liu, Rong; Yang, Shuyun; Liu, Jian; Tang, Chunhui; Wang, Yingying; Zhong, Jianxin

    2015-04-01

    Adenylate cyclase-associated protein 1 (CAP1) regulates both actin filaments and the Ras/cAMP pathway in yeast, and has been found play a role in cell motility and in the development of certain types of cancer. In the present study, we investigated CAP1 gene expression in human epithelial ovarian cancer (EOC). Western blot analysis and immunohistochemistry were performed using EOC tissue samples and the results revealed that CAP1 expression increased with the increasing grade of EOC. In the normal ovarian tissue samples however, CAP1 expression was barely detected. Using Pearson's χ2 test, it was demonstrated that CAP1 expression was associated with the histological grade and Ki-67 expression. Kaplan-Meier analysis revealed that a higher CAP1 expression in patients with EOC was associated with a poorer prognosis. In in vitro experiments using HO-8910 EOC cells, the expression of CAP1 was knocked down using siRNA. The proliferation of the HO-8910 cells was then determined by cell cycle analysis and cell proliferation assay using the cell counting kit-8 and flow cytometry. The results revealed that the loss of CAP1 expression inhibited cell cycle progression. These findings suggest that a high expression of CAP1 is involved in the pathogenesis of EOC, and that the downregulation of CAP1 in tumor cells may be a therapeutic target for the treatment of patients with EOC.

  19. Vitamin D regulates steroidogenesis and insulin-like growth factor binding protein-1 (IGFBP-1) production in human ovarian cells.

    PubMed

    Parikh, G; Varadinova, M; Suwandhi, P; Araki, T; Rosenwaks, Z; Poretsky, L; Seto-Young, D

    2010-09-01

    Vitamin D Receptor (VDR) is expressed in both animal and human ovarian tissue, however, the role of vitamin D in human ovarian steroidogenesis is unknown. Cultured human ovarian cells were incubated in tissue culture medium supplemented with appropriate substrates, with or without 50 pM-150 pM or 50 nM-150 nM of 1,25-(OH)2D3, and in the presence or absence of insulin. Progesterone, testosterone, estrone, estradiol, and IGFBP-1 concentrations in conditioned tissue culture medium were measured. Vitamin D receptor was present in human ovarian cells. 1,25-(OH)2D3 stimulated progesterone production by 13% (p<0.001), estradiol production by 9% (p<0.02), and estrone production by 21% (p<0.002). Insulin and 1,25-(OH)2D3 acted synergistically to increase estradiol production by 60% (p<0.005). 1,25-(OH)2D3 alone stimulated IGFBP-1 production by 24% (p<0.001), however, in the presence of insulin, 1,25-(OH)2D3 enhanced insulin-induced inhibition of IGFBP-1 production by 13% (p<0.009). Vitamin D stimulates ovarian steroidogenesis and IGFBP-1 production in human ovarian cells likely acting via vitamin D receptor. Insulin and vitamin D synergistically stimulate estradiol production. Vitamin D also enhances inhibitory effect of insulin on IGFBP-1 production.

  20. Quantitative and functional alterations of plasmacytoid dendritic cells contribute to immune tolerance in ovarian cancer.

    PubMed

    Labidi-Galy, Sana Intidhar; Sisirak, Vanja; Meeus, Pierre; Gobert, Michael; Treilleux, Isabelle; Bajard, Agathe; Combes, Jean-Damien; Faget, Julien; Mithieux, François; Cassignol, Alexandre; Tredan, Olivier; Durand, Isabelle; Ménétrier-Caux, Christine; Caux, Christophe; Blay, Jean-Yves; Ray-Coquard, Isabelle; Bendriss-Vermare, Nathalie

    2011-08-15

    In ovarian cancer, the immune system fails to eradicate established tumors partly due to the induction of immune tolerance within tumor microenvironment. In this study, we investigated the contribution of plasmacytoid dendritic cells (pDC) in the establishment of immune tolerance in a cohort of 44 ovarian cancer patients. In the tumor and malignant ascites, CD4(+)CD123(+)BDCA2(+) pDC were the most abundant dendritic cell subset; however, they were profoundly depleted in peripheral blood. The presence of pDC in primary ovarian cancer, but not ascites, was an independent prognostic factor associated with early relapse. Following chemotherapy, we observed a partial restoration of blood pDC levels in patients in complete remission. These findings show preferential recruitment of pDC into tumors where they express a partially mature phenotype that may reflect an in situ activation. Importantly, compared with pDC found in ascites or blood, tumor-associated pDC (TApDC) produced less IFN-α, TNF-α, IL-6, macrophage inflammatory protein-1β, and RANTES in response to toll-like receptor stimulation, and alterations in pDC functions were mainly mediated through tumor-derived TNF-α and TGF-β. Unlike ascites-derived pDC, TApDC induced IL-10 production from allogeneic naive CD4(+) T lymphocytes, suggesting the existence of a paracrine immunosuppressive loop. Taken together, our findings indicate that both local and systemic dysfunction of pDC play a critical role in the progression of ovarian cancer via induction of immune tolerance.

  1. Cytogenetic aberrations in primary cell cultures of the ovarian surface epithelium.

    PubMed

    Chuaire-Noack, Lilian; Rondón-Lagos, Sandra; Ramírez-Corredor, Amparo; Ibáñez-Pinilla, Milcíades; Ramírez-Clavijo, Sandra

    2010-12-01

    Our objective was to determine the presence of chromosomal abnormalities in primary cultures of ovarian surface epithelial cells in women of different ages with no history of cancer. Throughout conventional cytogenetic techniques, we analyzed chromosome spreads of cultured ovarian epithelial cells from 10 donors who were 50 or more years old (B) and 16 controls between 20 and 49 years old (A), belonging to the mestizo population in Bogota DC, Colombia. Of the 26 cultures that were analyzed in passage 1, 61.5% had an abnormal chromosome complement (62.5% in A, and 60% in B). Abnormalities included polyploidies, endoduplications and monosomies. Deletions in chromosomes 3 and 11 were found in just one metaphase. None of the samples showed weaknesses or breakpoints. After transforming and applying the exact student's t-test for variance heterogeneity, we found significant differences in the frequency of metaphases, that were higher in A than in B (p=0.05), and in the frequency of polyploidies, which were higher in B than in A (p=0.044). Through the application of the Mann-Whitney test, we determined that the frequency of endoduplications was higher in A than in B (p=0.126), without reaching significant differences. There were no significant differences in the frequency of monosomies. The level of significance was set at p < or = 0.05. Taking into account that polyploidization is a marker of chromosomal instability and that the risk of cancer arising from the ovarian surface epithelium augments substantially after menopause, the increase in the frequency of age-associated polyploidies could be used as a predictor of ovarian cancer in women from an ethnically homogeneous population as the mestizo one in Bogota DC.

  2. New Blocking Antibodies Impede Adhesion, Migration and Survival of Ovarian Cancer Cells, Highlighting MFGE8 as a Potential Therapeutic Target of Human Ovarian Carcinoma

    PubMed Central

    Tibaldi, Lorenzo; Notebaert, Sofie; Dewulf, Melissa; Ngo, Thu Hoa; Zuany-Amorim, Claudia; Amzallag, Nathalie; Bernard-Pierrot, Isabelle; Sastre-Garau, Xavier; Théry, Clotilde

    2013-01-01

    Milk Fat Globule – EGF – factor VIII (MFGE8), also called lactadherin, is a secreted protein, which binds extracellularly to phosphatidylserine and to αvβ3 and αvβ5 integrins. On human and mouse cells expressing these integrins, such as endothelial cells, phagocytes and some tumors, MFGE8/lactadherin has been shown to promote survival, epithelial to mesenchymal transition and phagocytosis. A protumoral function of MFGE8 has consequently been documented for a few types of human cancers, including melanoma, a subtype of breast cancers, and bladder carcinoma. Inhibiting the functions of MFGE8 could thus represent a new type of therapy for human cancers. Here, we show by immunohistochemistry on a collection of human ovarian cancers that MFGE8 is overexpressed in 45% of these tumors, and we confirm that it is specifically overexpressed in the triple-negative subtype of human breast cancers. We have established new in vitro assays to measure the effect of MFGE8 on survival, adhesion and migration of human ovarian and triple-negative breast cancer cell lines. Using these assays, we could identify new MFGE8-specific monoclonal antibodies, which efficiently blocked these three tumor-promoting effects of MFGE8. Our results suggest future use of MFGE8-blocking antibodies as new anti-cancer therapeutics in subgroups of ovarian carcinoma, and triple-negative breast carcinoma patients. PMID:23977342

  3. Small Cell Carcinoma of the Ovary (Hypercalcemic Type): Malignant Rhabdoid Tumor

    PubMed Central

    Kascak, Peter; Zamecnik, Michal; Bystricky, Branislav

    2016-01-01

    We present a rare case of malignant rhabdoid tumor (ovarian small cell carcinoma of hypercalcemic type) in a 24-year-old female with fulminant course. Clinically, hypercalcemia was not found at the time of primary diagnosis. However, it appeared later during the course of tumor progression. Histologically, the tumor showed classical features of small cell carcinoma of hypercalcemic type. Therapy included radical surgery with adjuvant chemotherapy. Despite this intensive therapy, the disease recurred and the patient died 10 months after the diagnosis. We discuss the diagnosis and therapy of this tumor, as well as its recent classification as malignant rhabdoid tumor. PMID:27462229

  4. Effects of graphene quantum dots on linear and nonlinear optical behavior of malignant ovarian cells

    NASA Astrophysics Data System (ADS)

    Mohajer, Salman; Ara, Mohammad Hossein Majles; Serahatjoo, Leila

    2016-07-01

    We investigate linear and nonlinear optical properties of standard human ovarian cancer cells (cell line: A2780cp) in vitro. Cells were treated by graphene quantum dots (GQDs) with two special concentrations. Nontoxicity of GQDs was examined in standard biological viability tests. Cancerous cells were fixed on a glass slide; then, interaction of light with biofilms was studied in linear and nonlinear regimes. Absorption spectra of untreated biofilms and biofilms with two different concentrations of GQDs was studied by UV-visible spectrophotometer. Optical behavior of biofilms in a linear regime of intensity (with low-intensity laser exposure) was reported using a simple optical setup. After that, we compared the attenuation of light in biofilm of cancerous cells with and without GQDs. Nonlinear behavior of these biofilms was investigated by a Z-scan setup using a continued wave He-Ne laser. Results showed that GQDs decreased the extinction coefficient and changed the sign and exact value of the nonlinear refractive index of malignant ovarian cells noticeably. The nonlinear refractive index of studied cells with no GQDs treatment was in the order of 10-8 (cm2/w) with a positive sign. This quantity changed to the same order of magnitude with a negative sign after GQDs treatment. Thus, GQDs can be used for cancer diagnosis under laser irradiation.

  5. Epithelial ovarian cancer stem cells: underlying complexity of a simple paradigm.

    PubMed

    Garson, Kenneth; Vanderhyden, Barbara C

    2015-02-01

    The lack of significant progress in the treatment of epithelial ovarian cancer (EOC) underscores the need to gain a better understanding of the processes that lead to chemoresistance and recurrence. The cancer stem cell (CSC) hypothesis offers an attractive explanation of how a subpopulation of cells within a patient's tumour might remain refractory to treatment and subsequently form the basis of recurrent chemoresistant disease. This review examines the literature defining somatic stem cells of the ovary and fallopian tube, two tissues that give rise to EOC. In addition, considerable research has been reviewed, that has identified subpopulations of EOC cells, based on marker expression (CD133, CD44, CD117, CD24, epithelial cell adhesion molecule, LY6A, ALDH1 and side population (SP)), which are enriched for tumour initiating cells (TICs). While many studies identified either CD133 or CD44 as markers useful for enriching for TICs, there is little consensus. This suggests that EOC cells may have a phenotypic plasticity that may preclude the identification of universal markers defining a CSC. The assay that forms the basis of quantifying TICs is the xenograft assay. Considerable controversy surrounds the xenograft assay and it is essential that some of the potential limitations be examined in this review. Highlighting such limitations or weaknesses is required to properly evaluate data and broaden our interpretation of potential mechanisms that might be contributing to the pathogenesis of ovarian cancer.

  6. Anti-proliferative effect of LXR agonist T0901317 in ovarian carcinoma cells

    PubMed Central

    2010-01-01

    Background Ovarian cancer is the most common cause of cancer related death from gynecologic tumors in the United States. The insidious nature of the disease precludes early diagnosis, therefore surgical debulking and chemotherapy are considered as standard treatment modalities for advanced stages. We investigated the effect of the LXR agonist, T0901317, on ovarian cancer cell proliferation and apoptosis as a potential therapeutic agent. Results T0901317 treatment resulted in a significant (P <0.001) inhibition of cell proliferation in a time- and dose-dependent manner in CaOV3, SKOV3 and A2780 cells. Western blot analysis demonstrated an induction of p21 and p27 with a concominant reduction in phospho-RB protein levels. Cell cycle analysis demonstrated a significant (P <0.001) arrest in the G1 cell cycle phase. Significant induction of Caspase-3 and BAX gene expression occurred with treatment. Induction of apoptosis was confirmed by significant (P < 0.001) elevation of caspase activity on FACS analysis, caspase-glo assay, BAX protein induction and decreased caspase 3 precursor protein expression on Western blot analysis. LXR α/β knockdown experiments did not reverse the anti-proliferative and cytotoxic effects of T0901317. Conclusions The LXR agonist, T0901317, significantly suppresses cell proliferation and induces programmed cell death in a dose- and time-dependent manner. Our results indicate that T0901317 induces its anti-proliferative and cytotoxic effects via an LXR-independent mechanism. PMID:20504359

  7. L1 Cell Adhesion Molecule-Specific Chimeric Antigen Receptor-Redirected Human T Cells Exhibit Specific and Efficient Antitumor Activity against Human Ovarian Cancer in Mice

    PubMed Central

    Hong, Hao; Brown, Christine E.; Ostberg, Julie R.; Priceman, Saul J.; Chang, Wen-Chung; Weng, Lihong; Lin, Paul; Wakabayashi, Mark T.; Jensen, Michael C.; Forman, Stephen J.

    2016-01-01

    New therapeutic modalities are needed for ovarian cancer, the most lethal gynecologic malignancy. Recent clinical trials have demonstrated the impressive therapeutic potential of adoptive therapy using chimeric antigen receptor (CAR)-redirected T cells to target hematological cancers, and emerging studies suggest a similar impact may be achieved for solid cancers. We sought determine whether genetically-modified T cells targeting the CE7-epitope of L1-CAM, a cell adhesion molecule aberrantly expressed in several cancers, have promise as an immunotherapy for ovarian cancer, first demonstrating that L1-CAM was highly over-expressed on a panel of ovarian cancer cell lines, primary ovarian tumor tissue specimens, and ascites-derived primary cancer cells. Human central memory derived T cells (TCM) were then genetically modified to express an anti-L1-CAM CAR (CE7R), which directed effector function upon tumor antigen stimulation as assessed by in vitro cytokine secretion and cytotoxicity assays. We also found that CE7R+ T cells were able to target primary ovarian cancer cells. Intraperitoneal (i.p.) administration of CE7R+ TCM induced a significant regression of i.p. established SK-OV-3 xenograft tumors in mice, inhibited ascites formation, and conferred a significant survival advantage compared with control-treated animals. Taken together, these studies indicate that adoptive transfer of L1-CAM-specific CE7R+ T cells may offer a novel and effective immunotherapy strategy for advanced ovarian cancer. PMID:26761817

  8. L1 Cell Adhesion Molecule-Specific Chimeric Antigen Receptor-Redirected Human T Cells Exhibit Specific and Efficient Antitumor Activity against Human Ovarian Cancer in Mice.

    PubMed

    Hong, Hao; Brown, Christine E; Ostberg, Julie R; Priceman, Saul J; Chang, Wen-Chung; Weng, Lihong; Lin, Paul; Wakabayashi, Mark T; Jensen, Michael C; Forman, Stephen J

    2016-01-01

    New therapeutic modalities are needed for ovarian cancer, the most lethal gynecologic malignancy. Recent clinical trials have demonstrated the impressive therapeutic potential of adoptive therapy using chimeric antigen receptor (CAR)-redirected T cells to target hematological cancers, and emerging studies suggest a similar impact may be achieved for solid cancers. We sought determine whether genetically-modified T cells targeting the CE7-epitope of L1-CAM, a cell adhesion molecule aberrantly expressed in several cancers, have promise as an immunotherapy for ovarian cancer, first demonstrating that L1-CAM was highly over-expressed on a panel of ovarian cancer cell lines, primary ovarian tumor tissue specimens, and ascites-derived primary cancer cells. Human central memory derived T cells (TCM) were then genetically modified to express an anti-L1-CAM CAR (CE7R), which directed effector function upon tumor antigen stimulation as assessed by in vitro cytokine secretion and cytotoxicity assays. We also found that CE7R+ T cells were able to target primary ovarian cancer cells. Intraperitoneal (i.p.) administration of CE7R+ TCM induced a significant regression of i.p. established SK-OV-3 xenograft tumors in mice, inhibited ascites formation, and conferred a significant survival advantage compared with control-treated animals. Taken together, these studies indicate that adoptive transfer of L1-CAM-specific CE7R+ T cells may offer a novel and effective immunotherapy strategy for advanced ovarian cancer.

  9. LL-37 Recruits Immunosuppressive Regulatory T Cells to Ovarian Tumors

    DTIC Science & Technology

    2009-11-01

    pro-angiogenic factors, such as MMP-2, IL-6, and VEGF—could increase endothelial cell tubule formation in vitro. Serum-starved human umbilical vein...treated MSC was added to human umbilical vein endothelial cells (HUVECs) then seeded onto Matrigel. Fluorescently labeled cells were monitored were for...tested whether conditioned medium from LL-37-treated MSCs could increase endothelial cell tubule formation in vitro. Serum-starved human umbilical vein

  10. Stromal–Epithelial Crosstalk Provides a Suitable Microenvironment for the Progression of Ovarian Cancer Cells in Vitro

    PubMed Central

    Fu, Shilong; Dong, Lihua; Sun, Wei; Xu, Yi; Gao, Li; Miao, Yi

    2013-01-01

    The tumor microenvironment plays an important role in the progression of cancer. This study focused on carcinoma-associated fibroblasts (CAFs) and stromal–epithelial interaction between CAFs and epithelial ovarian carcinoma (EOC) cells. We isolated and established primary cultures of CAFs and co-cultured CAFs and EOC cells in vitro. The co-culture conditioned medium (CC-CM) was harvested and its influence on EOC cells was examined. Cytokine, chemokine, and growth factor levels were screened using a biotin label-based human antibody array system. We found that the stromal–epithelial crosstalk provided a suitable microenvironment for the progression of ovarian cancer cells in vitro. PMID:24147897

  11. Human carcinoma-associated mesenchymal stem cells promote ovarian cancer chemotherapy resistance via a BMP4/HH signaling loop.

    PubMed

    Coffman, Lan G; Choi, Yun-Jung; McLean, Karen; Allen, Benjamin L; di Magliano, Marina Pasca; Buckanovich, Ronald J

    2016-02-09

    The tumor microenvironment is critical to cancer growth and therapy resistance. We previously characterized human ovarian carcinoma-associated mesenchymal stem cells (CA-MSCs). CA-MSCs are multi-potent cells that can differentiate into tumor microenvironment components including fibroblasts, myofibroblasts and adipocytes. We previously reported CA-MSCs, compared to normal MSCs, express high levels of BMP proteins and promote tumor growth by increasing numbers of cancer stem-like cells (CSCs). We demonstrate here that ovarian tumor cell-secreted Hedgehog (HH) induces CA-MSC BMP4 expression. CA-MSC-derived BMP4 reciprocally increases ovarian tumor cell HH expression indicating a positive feedback loop. Interruption of this loop with a HH pathway inhibitor or BMP4 blocking antibody decreases CA-MSC-derived BMP4 and tumor-derived HH preventing enrichment of CSCs and reversing chemotherapy resistance. The impact of HH inhibition was only seen in CA-MSC-containing tumors, indicating the importance of a humanized stroma. These results are reciprocal to findings in pancreatic and bladder cancer, suggesting HH signaling effects are tumor tissue specific warranting careful investigation in each tumor type. Collectively, we define a critical positive feedback loop between CA-MSC-derived BMP4 and ovarian tumor cell-secreted HH and present evidence for the further investigation of HH as a clinical target in ovarian cancer.

  12. Innovative T Cell-Targeted Therapy for Ovarian Cancer

    DTIC Science & Technology

    2014-10-01

    infected cells using γδ T cells. Drug Discov Today 2014; 19: 787-93. doi: 10.1016/j.drudis.2014.03.021. PubMed PMID: 24681060. 52...surveillance follow- ing viral infection and expressed on tumor cells as it is involved in the cellular stress response (23). MICA is also one of the ligands for...T cells can have specificity for virus as cytomegalovirus (CMV)-reactive Vγ8Vδ1 cells have been isolated from umbilical cord blood from infected

  13. A Phase I Study on Adoptive Immunotherapy Using Gene-Modified T Cells for Ovarian Cancer

    PubMed Central

    Kershaw, Michael H.; Westwood, Jennifer A.; Parker, Linda L.; Wang, Gang; Eshhar, Zelig; Mavroukakis, Sharon A.; White, Donald E.; Wunderlich, John R.; Canevari, Silvana; Rogers-Freezer, Linda; Chen, Clara C.; Yang, James C.; Rosenberg, Steven A.; Hwu, Patrick

    2007-01-01

    Purpose A phase I study was conducted to assess the safety of adoptive immunotherapy using gene-modified autologous T cells for the treatment of metastatic ovarian cancer. Experimental Design T cells with reactivity against the ovarian cancer – associated antigen α-folate receptor (FR) were generated by genetic modification of autologous T cells with a chimeric gene incorporating an anti-FR single-chain antibody linked to the signaling domain of the Fc receptor γ chain. Patients were assigned to one of two cohorts in the study. Eight patients in cohort 1received a dose escalation of T cells in combination with high-dose interleukin-2, and six patients in cohort 2 received dual-specific T cells (reactive with both FR and allogeneic cells) followed by immunization with allogeneic peripheral blood mononuclear cells. Results Five patients in cohort 1 experienced some grade 3 to 4 treatment-related toxicity that was probably due to interleukin-2 administration, which could be managed using standard measures. Patients in cohort 2 experienced relatively mild side effects with grade 1to 2 symptoms. No reduction in tumor burden was seen in any patient. Tracking 111In-labeled adoptively transferred T cells in cohort 1revealed a lack of specific localization of T cells to tumor except in one patient where some signal was detected in a peritoneal deposit. PCR analysis showed that gene-modified T cells were present in the circulation in large numbers for the first 2 days after transfer, but these quickly declined to be barely detectable 1month later in most patients. An inhibitory factor developed in the serum of three of six patients tested over the period of treatment, which significantly reduced the ability of gene-modified T cells to respond against FR+ tumor cells. Conclusions Large numbers of gene-modified tumor-reactive T cells can be safely given to patients, but these cells do not persist in large numbers long term. Future studies need to employ strategies to

  14. Reversing drug resistance of cisplatin by hsp90 inhibitors in human ovarian cancer cells

    PubMed Central

    Zhang, Zhengmao; Xie, Zhen; Sun, Guangyu; Yang, Pingfang; Li, Jia; Yang, Hongfang; Xiao, Shuang; Liu, Yang; Qiu, Hongbing; Qin, Lijun; Zhang, Chao; Zhang, Fenghua; Shan, Baoen

    2015-01-01

    Objective: To investigate the mechanisms for reversing drug resistance of cisplatin (DDP) by Hsp90 inhibitors (geldanamycin (GA), 17-AAG, 17-DMAG) in human ovarian cancer. Methods: Cell proliferation rate in DDP resistant human ovarian cancer cell line SKOV3/DDP and its parent cell line SKOV3 after treatment with Hsp90 inhibitors and/or DDP were tested by MTT assay, and the reversing fold (RF) of DDP by Hsp90 inhibitors was calculated. Cell cycle and cell apoptosis status after treatment were analyzed by flow cytometry. The expression of multiple drug resistance related genes was analyzed by RT-PCR and Western-blot. Results: All three tested Hsp90 inhibitors synergistically inhibited the cell proliferation of SKOV3 with DDP and enhanced the sensitivity of SKOV3/DDP cells to DDP. The RF of DDP by Hsp90 inhibitors were all more than two fold. GA caused cell cycle arrest in G2/M phasein SKOV3 cells. 17-AAG increased cell apoptosis but did not change cell cycle in SKOV3/DDP cells. The mRNA and protein expression levels of various drug resistant related genes including LRP, GST-π, p53, bcl-2, survivin, ERCC1, XRCC1, BRCA1 and BRCA2 were more dramatically altered by Hsp90 inhibitors and DDP in combination compared to Hsp90 inhibitors or DDP treatment alone. Conclusions: Exposure of SKOV3/DDP cells to Hsp90 inhibitors and DDP in combination results in synergistic cytotoxic and pro-apoptotic effects. Hsp90 inhibitors reverse the drug resistance of SKOV3/DDP cells to DDP by modifying the expression of multiple drug resistance related genes. PMID:26221207

  15. Peritoneal and hematogenous metastases of ovarian cancer cells are both controlled by the p90RSK through a self-reinforcing cell autonomous mechanism.

    PubMed

    Torchiaro, Erica; Lorenzato, Annalisa; Olivero, Martina; Valdembri, Donatella; Gagliardi, Paolo Armando; Gai, Marta; Erriquez, Jessica; Serini, Guido; Di Renzo, Maria Flavia

    2016-01-05

    The molecular mechanisms orchestrating peritoneal and hematogenous metastases of ovarian cancer cells are assumed to be distinct. We studied the p90RSK family of serine/threonine kinases that lie downstream the RAS-ERK/MAPK pathway and modulate a variety of cellular processes including cell proliferation, survival, motility and invasiveness. We found the RSK1 and RSK2 isoforms expressed in a number of human ovarian cancer cell lines, where they played redundant roles in sustaining in vitro motility and invasiveness. In vivo, silencing of both RSK1 and RSK2 almost abrogated short-term and long-term metastatic engraftment of ovarian cancer cells in the peritoneum. In addition, RSK1/RSK2 silenced cells failed to colonize the lungs after intravenous injection and to form hematogenous metastasis from subcutaneous xenografts. RSK1/RSK2 suppression resulted in lessened ovarian cancer cell spreading on endogenous fibronectin (FN). Mechanistically, RSK1/RSK2 knockdown diminished FN transcription, α5β1 integrin activation and TGF-β1 translation. Reduced endogenous FN deposition and TGF-β1 secretion depended on the lack of activating phosphorylation of the transcription/translation factor YB-1 by p90RSK. Altogether data show how p90RSK activates a self-reinforcing cell autonomous pro-adhesive circuit necessary for metastatic seeding of ovarian cancer cells. Thus, p90RSK inhibitors might hinder both the hematogenous and the peritoneal metastatic spread of human ovarian cancer.

  16. Mammary serine protease inhibitor and CD138 immunohistochemical expression in ovarian serous and clear cell carcinomas.

    PubMed

    Hasby, Eiman Adel

    2016-04-01

    This study aims to investigate the immunohistochemical expression of mammary serine protease inhibitor (maspin) and CD138 in primary ovarian high-grade serous carcinomas (HGSC) as compared to low-grade serous carcinomas (LGSC) and clear cell carcinomas and investigate if the studied markers have a correlation to International Federation of Gynaecology and Obstetrics (FIGO) stage, Ki67 proliferation index, and to each other. Maspin cellular location varied significantly between studied groups with only nuclear expression seen in 46.7 % of LGSC group, mixed nuclear and cytoplasmic in 13.3, 28.6, and 20 % of LGSC, HGSC, and clear cell carcinoma, respectively, and was only cytoplasmic in 26.7, 71.4, and 80 % of LGSC, HGSC, and clear cell carcinoma, respectively. Mean maspin and CD138 counts were significantly higher in HGSC and clear cell carcinoma compared to LGSC. Both maspin and CD138 scores varied significantly between studied groups and were positively correlated with adverse prognostic factors in studied carcinomas including FIGO stage and Ki67 proliferation index. Besides, both maspin and CD138 had significant correlation to each other. These findings suggest that epithelial cytoplasmic expression of maspin and CD138 may have a significant role in tumorigenesis in ovarian high-grade serous carcinomas and clear cell carcinomas; these markers may regulate tumor cell proliferation, and their significant correlation to each other may suggest that CD138 probably induces maspin expression to protect tumor growth factors from being lysed by proteolytic enzymes.

  17. Developing ovarian cancer stem cell models: laying the pipeline from discovery to clinical intervention.

    PubMed

    Ffrench, Brendan; Gasch, Claudia; O'Leary, John J; Gallagher, Michael F

    2014-12-11

    Despite decades of research, ovarian cancer is still associated with unacceptably high mortality rates, which must be addressed by novel therapeutic approaches. One avenue through which this may be achieved is targeting of tumor-initiating 'Cancer Stem Cells' (CSCs). CSCs are sufficient to generate primary and recurrent disease through extensive rounds of asymmetric division, which maintain the CSC pool while producing the tissues that form the bulk of the tumor. CSCs thrive in the harsh tumor niche, are generally refractory to therapeutic intervention and closely-linked to the Epithelial-Mesenchymal Transition process, which facilitates invasion and metastasis. While it is well-accepted that CSC-targeting must be assessed as a novel therapeutic avenue, few ovarian CSC models have been developed due to perceived and actual difficulties associated with the process of 'CSC Discovery'. In this article we review contemporary approaches to CSC Discovery and argue that this process should start with an understanding of the specific challenges associated with clinical intervention, laying the pipeline backwards towards CSC Discovery. Such an approach would expedite the bridging of the gap between laboratory isolation and clinical targeting of ovarian CSCs.

  18. Models of endometriosis and their utility in studying progression to ovarian clear cell carcinoma.

    PubMed

    King, Claire M; Barbara, Cynthia; Prentice, Andrew; Brenton, James D; Charnock-Jones, D Stephen

    2016-01-01

    Endometriosis is a common benign gynaecological condition affecting at least 10% of women of childbearing age and is characterized by pain--frequently debilitating. Although the exact prevalence is unknown, the economic burden is substantial (∼$50 billion a year in the USA alone) and it is associated with considerable morbidity. The development of endometriosis is inextricably linked to the process of menstruation and thus the models that best recapitulate the human disease are in menstruating non-human primates. However, the use of these animals is ethically challenging and very expensive. A variety of models in laboratory animals have been developed and the most recent are based on generating menstrual-like endometrial tissue that can be transferred to a recipient animal. These models are genetically manipulable and facilitate precise mechanistic studies. In addition, these models can be used to study malignant transformation in epithelial ovarian carcinoma. Epidemiological and molecular evidence indicates that endometriosis is the most plausible precursor of both clear cell and endometrioid ovarian cancer (OCCA and OEA, respectively). While this progression is rare, understanding the underlying mechanisms of transformation may offer new strategies for prevention and therapy. Our ability to pursue this is highly dependent on improved animal models but the current transgenic models, which genetically modify the ovarian surface epithelium and oviduct, are poor models of ectopic endometrial tissue. In this review we describe the various models of endometriosis and discuss how they may be applicable to developing our mechanistic understanding of OCCA and OEA.

  19. Potent organo-osmium compound shifts metabolism in epithelial ovarian cancer cells.

    PubMed

    Hearn, Jessica M; Romero-Canelón, Isolda; Munro, Alison F; Fu, Ying; Pizarro, Ana M; Garnett, Mathew J; McDermott, Ultan; Carragher, Neil O; Sadler, Peter J

    2015-07-21

    The organometallic "half-sandwich" compound [Os(η(6)-p-cymene)(4-(2-pyridylazo)-N,N-dimethylaniline)I]PF6 is 49× more potent than the clinical drug cisplatin in the 809 cancer cell lines that we screened and is a candidate drug for cancer therapy. We investigate the mechanism of action of compound 1 in A2780 epithelial ovarian cancer cells. Whole-transcriptome sequencing identified three missense mutations in the mitochondrial genome of this cell line, coding for ND5, a subunit of complex I (NADH dehydrogenase) in the electron transport chain. ND5 is a proton pump, helping to maintain the coupling gradient in mitochondria. The identified mutations correspond to known protein variants (p.I257V, p.N447S, and p.L517P), not reported previously in epithelial ovarian cancer. Time-series RNA sequencing suggested that osmium-exposed A2780 cells undergo a metabolic shunt from glycolysis to oxidative phosphorylation, where defective machinery, associated with mutations in complex I, could enhance activity. Downstream events, measured by time-series reverse-phase protein microarrays, high-content imaging, and flow cytometry, showed a dramatic increase in mitochondrially produced reactive oxygen species (ROS) and subsequent DNA damage with up-regulation of ATM, p53, and p21 proteins. In contrast to platinum drugs, exposure to this organo-osmium compound does not cause significant apoptosis within a 72-h period, highlighting a different mechanism of action. Superoxide production in ovarian, lung, colon, breast, and prostate cancer cells exposed to three other structurally related organo-Os(II) compounds correlated with their antiproliferative activity. DNA damage caused indirectly, through selective ROS generation, may provide a more targeted approach to cancer therapy and a concept for next-generation metal-based anticancer drugs that combat platinum resistance.

  20. Ovarian cancer stem-like cells differentiate into endothelial cells and participate in tumor angiogenesis through autocrine CCL5 signaling.

    PubMed

    Tang, Shu; Xiang, Tong; Huang, Shuo; Zhou, Jie; Wang, Zhongyu; Xie, Rongkai; Long, Haixia; Zhu, Bo

    2016-06-28

    Cancer stem cells (CSCs) are well known for their self-regeneration and tumorigenesis potential. In addition, the multi-differentiation potential of CSCs has become a popular issue and continues to attract increased research attention. Recent studies demonstrated that CSCs are able to differentiate into functional endothelial cells and participate in tumor angiogenesis. In this study, we found that ovarian cancer stem-like cells (CSLCs) activate the NF-κB and STAT3 signal pathways through autocrine CCL5 signaling and mediate their own differentiation into endothelial cells (ECs). Our data demonstrate that CSLCs differentiate into ECs morphologically and functionally. Anti-CCL5 antibodies and CCL5-shRNA lead to markedly inhibit EC differentiation and the tube formation of CSLCs, both in vitro and in vivo. Recombinant human-CCL5 significantly promotes ovarian CSLCs that differentiate into ECs and form microtube network. The CCL5-mediated EC differentiation of CSLCs depends on binding to receptors, such as CCR1, CCR3, and CCR5. The results demonstrated that CCL5-CCR1/CCR3/CCR5 activates the NF-κB and STAT3 signal pathways, subsequently mediating the differentiation of CSLCs into ECs. Therefore, this study was conducted based on the theory that CSCs improve tumor angiogenesis and provides a novel strategy for anti-angiogenesis in ovarian cancer.

  1. Hydrogen peroxide mediates EGF-induced down-regulation of E-cadherin expression via p38 MAPK and snail in human ovarian cancer cells.

    PubMed

    Cheng, Jung-Chien; Klausen, Christian; Leung, Peter C K

    2010-08-01

    In ovarian cancer, it has been shown that E-cadherin is down-regulated by epidermal growth factor (EGF) receptor (EGFR) activation, and that cells with low E-cadherin expression are particularly invasive. Although it is generally believed that reactive oxygen species play important roles in intracellular signal transduction, the role of reactive oxygen species in EGF-mediated reductions in E-cadherin remains to be elucidated. In this study, we show that EGF treatment down-regulated E-cadherin by up-regulating its transcriptional repressors, Snail and Slug, in human ovarian cancer cells. Using 5-(and-6)-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate acetyl ester staining, we found that intracellular hydrogen peroxide (H(2)O(2)) production was increased in EGF-treated cells and could be inhibited by treatment with an EGFR inhibitor, AG1478, or an H(2)O(2) scavenger, polyethylene glycol (PEG)-catalase. In addition, PEG-catalase diminished EGF-induced p38 MAPK, but not ERK1/2 or c-Jun N-terminal kinase, phosphorylation. PEG-catalase and the p38 MAPK inhibitor SB203580 abolished EGF-induced Snail, but not Slug, expression and E-cadherin down-regulation. Furthermore, the involvement of p38 MAPK in the down-regulation of E-cadherin was confirmed using specific p38alpha MAPK small interfering RNA. Finally, we also show that EGF-induced cell invasion was abolished by treatment with PEG-catalase and SB203580, as well as p38alpha MAPK small interfering RNA, and that forced expression of E-cadherin diminished intrinsic invasiveness as well as EGF-induced cell invasion. This study demonstrates a novel mechanism in which EGF down-regulates E-cadherin expression through production of H(2)O(2), activation of p38 MAPK, and up-regulation of Snail in human ovarian cancer cells.

  2. Human steroidogenic factor-1 (hSF-1) regulates progesterone biosynthesis and growth of ovarian surface epithelial cancer cells.

    PubMed

    Ramayya, M S; Sheng, M; Moroz, K; Hill, S M; Rowan, B G

    2010-03-01

    The majority of cancers derived from ovarian surface epithelial (OSE) cells are lethal. Estrogens promote proliferation of OSE cells, whereas progesterone inhibits proliferation and promotes apoptosis of OSE cells. Human steroidogenic factor-1 (hSF-1) induction of the steroidogenic acute regulatory protein (StAR) gene, and the steroidogenic enzymes CYP11A1 and HSD3B2 is central to progesterone biosynthesis. Whereas hSF-1 and StAR are expressed in human ovarian surface epithelial (HOSE) cells, hSF-1 and StAR protein were not expressed in a panel of malignant ovarian cancer cell lines (SKOV-3, BG-1, and Caov-3), and in human OSE cells immortalized by SV40 large T antigen (IOSE-121). Transient expression of hSF-1 in SKOV-3 cells activated the expression of StAR, p450scc and 3betaHSD-II mRNAs, and induced progesterone biosynthesis. Additionally, hSF-1 suppressed proliferation and promoted apoptosis of SKOV-3 cells and suppressed SKOV-3 cell growth induced by ERalpha and estradiol. These findings suggest that hSF-1 is central to progesterone biosynthesis in OSE cells. Human SF-1 may decrease OSE cancer cell numbers directly by apoptosis, and indirectly by opposing estradiol-induced proliferation. These findings are consistent with the hypothesis, that down-regulation of hSF-1 contributes to progression of ovarian epithelial cancers.

  3. Innovative T Cell-Targeted Therapy for Ovarian Cancer

    DTIC Science & Technology

    2013-10-01

    haploidentical HSCT (15-17). Vδ1 cells were also shown to kill glioblastoma independent of cytomegalovirus ( CMV ) status (34). However, Vδ1 cells have... CMV (36-39). Our results are the first to directly show that Vδ1negVδ2neg cells exhibit anti-tumor activities, and given their propensity to engage...467-78. 2. Vantourout P, Hayday A. Six -of-the-best: unique contributions of gammadelta T cells to immunology. Nat Rev Immunol. 2013;13:88-100. 3

  4. Suppression of SIK1 by miR-141 in human ovarian cancer cell lines and tissues.

    PubMed

    Chen, Jin-Long; Chen, Fang; Zhang, Ting-Ting; Liu, Nai-Fu

    2016-06-01

    Epithelial ovarian cancer (EOC), the sixth most common cancer in women worldwide, is the most commonly fatal gynecologic malignancy in developed countries. One of the main reasons for this is that relatively little was known about the molecular events responsible for the development of this highly aggressive disease. In the present study, we demonstrated that salt‑inducible kinase 1 (SIK1; which is also known as MSK/SIK/SNF1LK) was downregulated in ovarian cancer tissue samples. Using HEY ovarian cancer cells, we noted that SIK1 overexpression inhibited proliferation as well as cancer stem cell-associated traits. Silencing SIK1 promoted the proliferation of the EG ovarian cancer cell line. We performed an analysis of potential microRNAs (miRNAs or miRs) target sites using three commonly used prediction algorithms: miRanda, TargetScan and PicTar. All three algorithms predicted that miR-141 targets the 3'UTR of SIK1. Subsequent experiments not only confirmed this prediction, but also showed that miR-141 was associated with the progression of this disease. Finally, we found that miR-141 promoted proliferation of EG cells, whereas silencing miR-141 restored SIK1 expression and inhibited the proliferation of the HEY cells. Elucidating the molecular mechanism of ovarian cancer not only enables us to further understand the pathogenesis and progression of the disease, but also provides new targets for effective therapies.

  5. Silencing of IQGAP1 by shRNA inhibits the invasion of ovarian carcinoma HO-8910PM cells in vitro

    PubMed Central

    Dong, Pei-Xin; Jia, Nan; Xu, Zhu-Jie; Liu, Ying-Tao; Li, Da-Jin; Feng, You-Ji

    2008-01-01

    Background IQGAP1 is a scaffolding protein and overexpressed in many human tumors, including ovarian cancer. However, the contribution of IQGAP1 to invasive properties of ovarian cancer cells remains unknown. Here, we investigated the effect of IQGAP1-specific short hairpin RNA (shRNA) expressing plasmids on metastatic potential of ovarian cancer HO-8910PM cells. Methods We used RT-PCR and Western blot analysis to characterize expression of IQGAP1 in three human ovarian cancer-derived cell lines SK-OV-3, HO-8910 and HO-8910PM. We then determined whether expression of endogenous IQGAP1 correlated with invasive and migratory ability by using an in vitro Matrigel assay and cell migration assay. We further knocked down IQGAP1 using shRNA expressing plasmids controlled by U1 promoter in HO-8910PM cells and examined the proliferation activity, invasive and migration potential of IQGAP1 shRNA transfectants using MTT assay, in vitro Matrigel-coated invasion assay and migration assay. Results IQGAP1 expression level seemed to be closely associated with the enhanced invasion and migration in ovarian cancer cell lines. Levels of both IQGAP1 mRNA and protein were significantly reduced in HO-8910PM cells transfected with plasmid-based IQGAP1-specific shRNAs. RNAi-mediated knockdown of IQGAP1 expression in HO-8910PM cells resulted in a significant decrease in cell invasion and migration. Conclusion Our findings support the hypothesis that IQGAP1 promotes tumor progression and identify IQGAP1 as a potential therapeutic strategy for ovarian cancer and some other tumors with over-expression of the IQGAP1 gene. PMID:19036171

  6. A correlation between altered O-GlcNAcylation, migration and with changes in E-cadherin levels in ovarian cancer cells

    SciTech Connect

    Jin, Feng-zhen; Yu, Chao; Zhao, De-zhang; Wu, Ming-jun; Yang, Zhu

    2013-06-10

    O-GlcNAcylation is a dynamic and reversible posttranslational modification of nuclear and cytoplasmic proteins. In recent years, the roles of O-GlcNAcylation in several human malignant tumors have been investigated, and O-GlcNAcylation was found to be linked to cellular features relevant to metastasis. In this study, we modeled four diverse ovarian cancer cells and investigated the effects of O-GlcNAcylation on ovarian cancer cell migration. We found that total O-GlcNAcylation level was elevated in HO-8910PM cells compared to OVCAR3 cells. Additionally, through altering the total O-GlcNAcylation level by OGT silencing or OGA inhibition, we found that the migration of OVCAR3 cells was dramatically enhanced by PUGNAc and Thiamet G treatment, and the migration ability of HO-8910PM cells was significantly inhibited by OGT silencing. Furthermore, we also found that the expression of E-cadherin, an O-GlcNAcylated protein in ovarian cancer cells, was reduced by OGA inhibition in OVCAR3 cells and elevated by OGT silencing in HO-8910PM cells. These results indicate that O-GlcNAcylation could enhance ovarian cancer cell migration and decrease the expression of E-cadherin. Our studies also suggest that O-GlcNAcylation might become another potential target for the therapy of ovarian cancer. -- Highlights: • We examine the migration potential of diverse ovarian cancer cells. • We examine the total O-GlcNAcylation level of diverse ovarian cancer cells. • Increasing O-GlcNAcylation level will enhance the migration of ovarian cancer cells. • Reducing O-GlcNAcylation level will inhibit the migration of ovarian cancer cells. • The mechanism explains O-GlcNAcylation enhance ovarian cancer cell migration.

  7. VEGFA activates an epigenetic pathway upregulating ovarian cancer-initiating cells.

    PubMed

    Jang, Kibeom; Kim, Minsoon; Gilbert, Candace A; Simpkins, Fiona; Ince, Tan A; Slingerland, Joyce M

    2017-03-01

    The angiogenic factor, VEGFA, is a therapeutic target in ovarian cancer (OVCA). VEGFA can also stimulate stem-like cells in certain cancers, but mechanisms thereof are poorly understood. Here, we show that VEGFA mediates stem cell actions in primary human OVCA culture and OVCA lines via VEGFR2-dependent Src activation to upregulate Bmi1, tumor spheres, and ALDH1 activity. The VEGFA-mediated increase in spheres was abrogated by Src inhibition or SRC knockdown. VEGFA stimulated sphere formation only in the ALDH1(+) subpopulation and increased OVCA-initiating cells and tumor formation in vivo through Bmi1. In contrast to its action in hemopoietic malignancies, DNA methyl transferase 3A (DNMT3A) appears to play a pro-oncogenic role in ovarian cancer. VEGFA-driven Src increased DNMT3A leading to miR-128-2 methylation and upregulation of Bmi1 to increase stem-like cells. SRC knockdown was rescued by antagomir to miR-128. DNMT3A knockdown prevented VEGFA-driven miR-128-2 loss, and the increase in Bmi1 and tumor spheres. Analysis of over 1,300 primary human OVCAs revealed an aggressive subset in which high VEGFA is associated with miR-128-2 loss. Thus, VEGFA stimulates OVCA stem-like cells through Src-DNMT3A-driven miR-128-2 methylation and Bmi1 upregulation.

  8. (+)-Strebloside-Induced Cytotoxicity in Ovarian Cancer Cells Is Mediated through Cardiac Glycoside Signaling Networks.

    PubMed

    Chen, Wei-Lun; Ren, Yulin; Ren, Jinhong; Erxleben, Christian; Johnson, Michael E; Gentile, Saverio; Kinghorn, A Douglas; Swanson, Steven M; Burdette, Joanna E

    2017-03-24

    (+)-Strebloside, a cardiac glycoside isolated from the stem bark of Streblus asper collected in Vietnam, has shown some potential for further investigation as an antineoplastic agent. A mechanistic study using an in vitro assay and molecular docking analysis indicated that (+)-strebloside binds and inhibits Na(+)/K(+)-ATPase in a similar manner to digitoxin. Inhibition of growth of different high-grade serous ovarian cancer cells including OVCAR3, OVSAHO, Kuramochi, OVCAR4, OVCAR5, and OVCAR8 resulted from treatment with (+)-strebloside. Furthermore, this compound blocked cell cycle progression at the G2 phase and induced PARP cleavage, indicating apoptosis activation in OVCAR3 cells. (+)-Strebloside potently inhibited mutant p53 expression through the induction of ERK pathways and inhibited NF-κB activity in human ovarian cancer cells. However, in spite of its antitumor potential, the overall biological activity of (+)-strebloside must be regarded as being typical of better-known cardiac glycosides such as digoxin and ouabain. Further chemical alteration of cardiac glycosides might help to reduce negative side effects while increasing cancer cell cytotoxicity.

  9. Inhibition of A2780 Human Ovarian Carcinoma Cell Proliferation by a Rubus Component, Sanguiin H-6.

    PubMed

    Lee, Dahae; Ko, Hyeonseok; Kim, Young-Joo; Kim, Su-Nam; Choi, Kyung-Chul; Yamabe, Noriko; Kim, Ki Hyun; Kang, Ki Sung; Kim, Hyun Young; Shibamoto, Takayuki

    2016-02-03

    The effects of a red raspberry component, sanguiin H-6 (SH-6), on the induction of apoptosis and the related signaling pathways in A2780 human ovarian carcinoma cells were investigated. SH-6 caused an antiproliferative effect and a severe morphological change resembling that of apoptotic cell death but no effect on the cancer cell cycle arrest. In addition, SH-6 induced an early apoptotic effect and activation of caspases as well as the cleavage of PARP, which is a hallmark of apoptosis. The early apoptotic percentages of A2780 cells exposed to 20 and 40 μM SH-6 were 35.39 and 41.76, respectively. Also, SH-6 caused the activation of mitogen-activated protein kinases (MAPKs), especially p38, and the increase of truncated p15/BID. These results in the present study suggest that the apoptosis of A2780 human ovarian carcinoma cells by SH-6 is mediated by the MAPK p38 and a caspase-8-dependent BID cleavage pathway.

  10. Small cell carcinoma of the bladder

    PubMed Central

    Calado, Bruno Nagel; Maron, Paulo Eduardo Goulart; Vedovato, Bruno César; Barrese, Tomas Zecchini; Fernandes, Roni de Carvalho; Perez, Marjo Deninson Cardenuto

    2015-01-01

    Small cell carcinoma of the urinary bladder is an extremely aggressive and rare tumor. Even though small cell carcinoma most commonly arises from the lungs there are several reports of small cell carcinoma in extrapulmonary sites. Due to its low frequency there is no well-established management for this disease. We report the case of a 61 year-old man with small cell carcinoma of the bladder who underwent radical cystectomy following neoadjuvant chemotherapy. We also reviewed the literature for the optimal treatment strategy. PMID:25517085

  11. PPAR{gamma} ligands induce growth inhibition and apoptosis through p63 and p73 in human ovarian cancer cells

    SciTech Connect

    Kim, Soyeon; Lee, Jae-Jung; Heo, Dae Seog

    2011-03-18

    Research highlights: {yields} PPAR{gamma} ligands increased the rate of apoptosis and inhibition of proliferation in ovarian cancer cells. {yields} PPAR{gamma} ligands induced p63 and p73 expression, but not p53. {yields} p63 and p73 leads to an increase in p21 expression and apoptosis in ovarian cancer cells with treatment PPAR{gamma} ligands. {yields} These findings suggest that PPAR{gamma} ligands suppressed growth of ovarian cancer cells through upregulation of p63 and p73. -- Abstract: Peroxisome proliferator-activated receptor gamma (PPAR{gamma}) agonists, including thiazolidinediones (TZDs), can induce anti-proliferation, differentiation, and apoptosis in various cancer cell types. This study investigated the mechanism of the anticancer effect of TZDs on human ovarian cancer. Six human ovarian cancer cell lines (NIH:OVCAR3, SKOV3, SNU-251, SNU-8, SNU-840, and 2774) were treated with the TZD, which induced dose-dependent inhibition of cell growth. Additionally, these cell lines exhibited various expression levels of PPAR{gamma} protein as revealed by Western blotting. Flow cytometry showed that the cell cycle was arrested at the G1 phase, as demonstrated by the appearance of a sub-G1 peak. This observation was corroborated by the finding of increased levels of Bax, p21, PARP, and cleaved caspase 3 in TGZ-treated cells. Interestingly, when we determined the effect of p53-induced growth inhibition in these three human ovarian cancer cells, we found that they either lacked p53 or contained a mutant form of p53. Furthermore, TGZ induced the expression of endogenous or exogenous p63 and p73 proteins and p63- or p73-directed short hairpin (si) RNAs inhibited the ability of TGZ to regulate expression of p21 in these cells. Thus, our results suggest that PPAR{gamma} ligands can induce growth suppression of ovarian cancer cells and mediate p63 and p73 expression, leading to enhanced growth inhibition and apoptosis. The tumor suppressive effects of PPAR{gamma} ligands

  12. Secretion of soluble complement inhibitors factor H and factor H-like protein (FHL-1) by ovarian tumour cells.

    PubMed

    Junnikkala, S; Hakulinen, J; Jarva, H; Manuelian, T; Bjørge, L; Bützow, R; Zipfel, P F; Meri, S

    2002-11-04

    We observed that the soluble complement regulators factor H and factor H-like protein were abundantly present in ascites samples as well as in primary tumours of patients with ovarian cancer. RT-PCR and immunoblotting analyses showed that the two complement inhibitors were constitutively produced by the ovarian tumour cell lines SK-OV-3 and Caov-3, but not PA-1 or SW626 cells. The amounts of factor H-like protein secreted were equal to those of factor H. This is exceptional, because e.g. in normal human serum the concentration of factor H-like protein is below 1/10th of that of factor H. In ascites samples the mean level of factor H-like protein (130+/-55 microg ml(-1)) was 5.5-fold higher than in normal human serum (24+/-3 microg ml(-1)). Ovarian tumour cells thus preferentially synthesise factor H-like protein, the alternatively spliced short variant of factor H. The tumour cells were found to bind both (125)I-labelled factor H and recombinant factor H-like protein to their surfaces. Surprisingly, the culture supernatants of all of the ovarian tumour cell lines studied, including those of PA-1 and SW626 that did not produce factor H/factor H-like protein, promoted factor I-mediated cleavage of C3b to inactive iC3b. Subsequently, the PA-1 and SW626 cell lines were found to secrete a soluble form of the membrane cofactor protein (CD46). Thus, our studies reveal two novel complement resistance mechanisms of ovarian tumour cells: (i) production of factor H-like protein and factor H and (ii) secretion of soluble membrane cofactor protein. Secretion of soluble complement inhibitors could protect ovarian tumour cells against humoral immune attack and pose an obstacle for therapy with monoclonal antibodies.

  13. Niche-Dependent Gene Expression Profile of Intratumoral Heterogeneous Ovarian Cancer Stem Cell Populations

    PubMed Central

    Abelson, Sagi; Shamai, Yeela; Berger, Liron; Skorecki, Karl; Tzukerman, Maty

    2013-01-01

    Intratumoral heterogeneity challenges existing paradigms for anti-cancer therapy. We have previously demonstrated that the human embryonic stem cells (hESC)-derived cellular microenvironment in immunocompromised mice, enables functional distinction of heterogeneous tumor cells, including cells which do not grow into a tumor in a conventional direct tumor xenograft platform. We have identified and characterized six cancer cell subpopulations each clonally expanded from a single cell, derived from human ovarian clear cell carcinoma of a single tumor, to demonstrate striking intratumoral phenotypic heterogeneity that is dynamically dependent on the tumor growth microenvironment. These cancer cell subpopulations, characterized as cancer stem cell subpopulations, faithfully recapitulate the full spectrum of histological phenotypic heterogeneity known for human ovarian clear cell carcinoma. Each of the six subpopulations displays a different level of morphologic and tumorigenic differentiation wherein growth in the hESC-derived microenvironment favors growth of CD44+/aldehyde dehydrogenase positive pockets of self-renewing cells that sustain tumor growth through a process of tumorigenic differentiation into CD44-/aldehyde dehydrogenase negative derivatives. Strikingly, these derivative cells display microenvironment-dependent plasticity with the capacity to restore self-renewal markers and CD44 expression. In the current study, we delineate the distinct gene expression and epigenetic profiles of two such subpopulations, representing extremes of phenotypic heterogeneity in terms of niche-dependent self-renewal and tumorigenic differentiation. By combining Gene Set Enrichment, Gene Ontology and Pathway-focused array analyses with methylation status, we propose a suite of robust differences in tumor self-renewal and differentiation pathways that underlie the striking intratumoral phenotypic heterogeneity which characterize this and other solid tumor malignancies. PMID

  14. ABT737 reverses cisplatin resistance by regulating ER-mitochondria Ca2+ signal transduction in human ovarian cancer cells.

    PubMed

    Xie, Qi; Su, Jing; Jiao, Bingxuan; Shen, Luyan; Ma, Liwei; Qu, Xianzhi; Yu, Chunyan; Jiang, Xianrui; Xu, Ye; Sun, Liankun

    2016-12-01

    Bcl-2, which belongs to the Bcl-2 family, is frequently overexpressed in various types of cancer cells and contributes to drug resistance. However, the function of Bcl-2 in cisplatin resistance in human ovarian cancer cells is not fully understood. In this study, we found that the pharmacological inhibitor ABT737 or genetic knockdown of Bcl-2 increased cisplatin cytotoxicity in cisplatin-resistant ovarian cancer cells. Additionally, treatment with ABT737 or Bcl-2 siRNA increased cisplatin-induced free Ca2+ levels in the cytosol and mitochondria, which increased endoplasmic reticulum (ER)-associated and mitochondria-mediated apoptosis. In addition, ABT737 or Bcl-2 siRNA increased the ER-mitochondria contact sites induced by cisplatin in cisplatin-resistant SKOV3/DDP ovarian cancer cells. Consistently with the in vitro results, ABT737 potently synergized with cisplatin in inhibiting the growth of human ovarian cancer xenografts in nude mice. Collectively, these results indicate that pharmacological inhibitors or genetic knockdown of Bcl-2 may be a potential strategy for improving cisplatin treatment of ovarian cancer.

  15. Carboplatin and Paclitaxel With or Without Bevacizumab Compared to Docetaxel, Carboplatin, and Paclitaxel in Treating Patients With Stage II, Stage III, or Stage IV Ovarian Epithelial, Fallopian Tube, or Primary Peritoneal Cavity Carcinoma (Cancer)

    ClinicalTrials.gov

    2013-03-18

    Brenner Tumor; Fallopian Tube Cancer; Ovarian Carcinosarcoma; Ovarian Clear Cell Cystadenocarcinoma; Ovarian Endometrioid Adenocarcinoma; Ovarian Mixed Epithelial Carcinoma; Ovarian Mucinous Cystadenocarcinoma; Ovarian Serous Cystadenocarcinoma; Ovarian Undifferentiated Adenocarcinoma; Primary Peritoneal Cavity Cancer; Stage II Ovarian Epithelial Cancer; Stage III Ovarian Epithelial Cancer; Stage IV Ovarian Epithelial Cancer

  16. Transcriptomal profiling of bovine ovarian granulosa and theca interna cells in primary culture in comparison with their in vivo counterparts

    PubMed Central

    Hatzirodos, Nicholas; Glister, Claire; Hummitzsch, Katja; Irving-Rodgers, Helen F.; Knight, Philip G.; Rodgers, Raymond J.

    2017-01-01

    In vitro culture of ovarian granulosa cells and theca cells has been very important for our understanding of their function and regulation. One of the most eagerly sought attributes of cell culture is the use of chemically-defined conditions. However, even under such in vitro conditions cell behaviour could differ from the in vivo situation because of differences in oxygen tension, nutrients, adhesion matrix and other factors. To examine this further we compared the transcriptomes of both granulosa cells and cells from the theca interna that were cultured in what are arguably the best in vitro conditions for maintaining the ‘follicular’ phenotypes of both tissue types, as displayed by their respective freshly-isolated counterparts. The array data analysed are from recently published data and use the same sizes of bovine follicles (small antral 3–6 mm) and the same Affymetrix arrays. We conducted analysis using Partek, Ingenuity Pathway Analysis and GOEAST. Principal Component Analysis (PCA) and hierarchical clustering clearly separated the in vivo from the in vitro groups for both cells types and transcriptomes were more homogeneous upon culture. In both cell cultures behaviours associated with cell adhesion, migration and interaction with matrix or substrate were more abundant. However, the pathways involved generally differed between the two cell types. With the thecal cultures a gene expression signature of an immune response was more abundant, probably by leukocytes amongst the cells cultured from the theca interna. These results indicate differences between in vivo and in vitro that should be considered when interpreting in vitro data. PMID:28282394

  17. Tumor Stroma Engraftment of Gene-Modified Mesenchymal Stem Cells as Anti-Tumor Therapy against Ovarian Cancer

    PubMed Central

    Dembinski, Jennifer L.; Wilson, Shanna M.; Spaeth, Erika L.; Studeny, Matus; Zompetta, Claudia; Samudio, Ismael; Roby, Katherine; Andreeff, Michael; Marini, Frank C.

    2013-01-01

    Many ovarian cancers originate from ovarian surface epithelium, where they develop from cysts intermixed with stroma. The stromal layer is critical to the progression and survival of the neoplasm and consequently is recruited into the tumor microenvironment. Using both syngenic mouse tumors (ID8-R), and human xenograft (OVCAR3, SKOV3) tumor models, we first confirmed intraperitoneally-circulating MSC could target, preferentially engraft and differentiate into α-SMA+ myofibroblasts, suggesting their role as “reactive stroma” in ovarian carcinoma development and confirming their potential as a targeted delivery vehicle for the intratumoral production of interferon-beta (IFNβ). Then, mice with ovarian carcinomas received weekly IP injections of IFNβ expressing MSC, resulting in complete eradication of tumors in 70% of treated OVCAR3 mice (P = 0.004) and an increased survival of treated SKOV3 mice compared with controls (P = 0.01). Similar tumor growth control was observed using murine IFNβ delivered by murine MSC in ID8-R ovarian carcinoma. As a potential mechanism of tumor killing, MSC produced IFNβ induced caspase-dependent tumor cell apoptosis. Our results demonstrate that ovarian carcinoma engraft MSC to participate in myofibrovascular networks and that IFNβ produced by MSC intratumorally modulates tumor kinetics, resulting in prolonged survival. PMID:23260083

  18. Tumor suppressor KAI1 affects integrin {alpha}v{beta}3-mediated ovarian cancer cell adhesion, motility, and proliferation

    SciTech Connect

    Ruseva, Zlatna; Geiger, Pamina Xenia Charlotte; Hutzler, Peter; Kotzsch, Matthias; Luber, Birgit; Schmitt, Manfred; Gross, Eva; Reuning, Ute

    2009-06-10

    The tetraspanin KAI1 had been described as a metastasis suppressor in many different cancer types, a function for which associations of KAI1 with adhesion and signaling receptors of the integrin superfamily likely play a role. In ovarian cancer, integrin {alpha}v{beta}3 correlates with tumor progression and its elevation in vitro provoked enhanced cell adhesion accompanied by significant increases in cell motility and proliferation in the presence of its major ligand vitronectin. In the present study, we characterized integrin {alpha}v{beta}3-mediated tumor biological effects as a function of cellular KAI1 restoration and proved for the first time that KAI1, besides its already known physical crosstalk with {beta}1-integrins, also colocalizes with integrin {alpha}v{beta}3. Functionally, elevated KAI1 levels drastically increased integrin {alpha}v{beta}3/vitronectin-dependent ovarian cancer cell adhesion. Since an intermediate level of cell adhesive strength is required for optimal cell migration, we next studied ovarian cancer cell motility as a function of KAI1 restoration. By time lapse video microscopy, we found impaired integrin {alpha}v{beta}3/vitronectin-mediated cell migration most probably due to strongly enhanced cellular immobilization onto the adhesion-supporting matrix. Moreover, KAI1 reexpression significantly diminished cell proliferation. These data strongly indicate that KAI1 may suppress ovarian cancer progression by inhibiting integrin {alpha}v{beta}3/vitronectin-provoked tumor cell motility and proliferation as important hallmarks of the oncogenic process.

  19. Regulatory B cells contribute to the impaired antitumor immunity in ovarian cancer patients.

    PubMed

    Wei, Xin; Jin, Yangqiu; Tian, Yinpu; Zhang, Huiyuan; Wu, Jie; Lu, Wei; Lu, Xiaofen

    2016-05-01

    Multiple factors in the tumor microenvironment were found to inhibit antitumor adaptive immune responses, allowing tumor persistence and growth. In this study, ascites from ovarian cancer patients were collected. We observed that a population of interleukin-10(+) B (IL-10(+) B) cells was preferentially enriched in the ascites. This population was associated with naive B cell phenotype or IgM or class-switched memory B cell phenotypes. The frequencies of IL-10(+) B cells were negatively correlated with the frequencies of interferon gamma-producing (IFN-g(+)) CD8(+) T cells and were positively correlated with the frequencies of Foxp3(+) CD4(+) T cells. To examine whether increased IL-10(+) B cells in ascites could directly result in increased suppression of IFN-g production by CD8(+) T cells, we cocultured CD8(+) T cells with autologous blood B cells or ascitic B cells and found that CD8(+) T cells cocultured with ascitic B cells demonstrated significantly suppressed IFN-g production. This suppression was in part mediated by IL-10 as well as low CD80/CD86 expression, since depletion of IL-10 and stimulation of CD28 partially reverted IL-10(+) B cell-mediated suppression. Together, these data demonstrated an additional regulatory mechanism in the tumor microenvironment, which utilizes IL-10(+) B cells.

  20. Glucocorticoids impair oocyte developmental potential by triggering apoptosis of ovarian cells via activating the Fas system

    PubMed Central

    Yuan, Hong-Jie; Han, Xiao; He, Nan; Wang, Guo-Liang; Gong, Shuai; Lin, Juan; Gao, Min; Tan, Jing-He

    2016-01-01

    Previous studies indicate that stress damages oocytes with increased secretion of glucorticoids. However, although injection of female mice with cortisol decreased oocyte competence, exposure of mouse oocytes directly to physiological or stress-induced concentrations of glucorticoids did not affect oocyte maturation and embryo development. This study has explored the mechanisms by which glucocorticoids impair oocyte competence. Female mice were injected with cortisol and the effects of cortisol-injection on oocyte competence, ovarian cell apoptosis and Fas/FasL activation were observed. The results showed that cortisol-injection decreased (a) oocyte developmental potential, (b) the E2/P4 ratio in serum and ovaries, and (c) expression of insulin-like growth factor 1, brain-derived neurotrophic factor and glucocorticoid receptor in mural granulosa cells (MGCs), while increasing levels of (a) cortisol in serum and ovaries, (b) apoptosis in MGCs and cumulus cells (CCs), (c) FasL secretion in ovaries and during oocyte maturation in vitro, and (d) Fas in MGCs, CCs and oocytes. The detrimental effects of cortisol-injection on oocyte competence and apoptosis of MGCs and CCs were significantly relieved when the gld (generalized lymphoproliferative disorder) mice harboring FasL mutations were observed. Together, the results suggested that glucocorticoids impair oocyte competence by triggering apoptosis of ovarian cells via activating the Fas system. PMID:27040909

  1. Glucocorticoids impair oocyte developmental potential by triggering apoptosis of ovarian cells via activating the Fas system.

    PubMed

    Yuan, Hong-Jie; Han, Xiao; He, Nan; Wang, Guo-Liang; Gong, Shuai; Lin, Juan; Gao, Min; Tan, Jing-He

    2016-04-04

    Previous studies indicate that stress damages oocytes with increased secretion of glucorticoids. However, although injection of female mice with cortisol decreased oocyte competence, exposure of mouse oocytes directly to physiological or stress-induced concentrations of glucorticoids did not affect oocyte maturation and embryo development. This study has explored the mechanisms by which glucocorticoids impair oocyte competence. Female mice were injected with cortisol and the effects of cortisol-injection on oocyte competence, ovarian cell apoptosis and Fas/FasL activation were observed. The results showed that cortisol-injection decreased (a) oocyte developmental potential, (b) the E2/P4 ratio in serum and ovaries, and (c) expression of insulin-like growth factor 1, brain-derived neurotrophic factor and glucocorticoid receptor in mural granulosa cells (MGCs), while increasing levels of (a) cortisol in serum and ovaries, (b) apoptosis in MGCs and cumulus cells (CCs), (c) FasL secretion in ovaries and during oocyte maturation in vitro, and (d) Fas in MGCs, CCs and oocytes. The detrimental effects of cortisol-injection on oocyte competence and apoptosis of MGCs and CCs were significantly relieved when the gld (generalized lymphoproliferative disorder) mice harboring FasL mutations were observed. Together, the results suggested that glucocorticoids impair oocyte competence by triggering apoptosis of ovarian cells via activating the Fas system.

  2. Rac1 expression in epithelial ovarian cancer: effect on cell EMT and clinical outcome.

    PubMed

    Leng, Ruobing; Liao, Gang; Wang, Haixia; Kuang, Jun; Tang, Liangdan

    2015-02-01

    Ras-related C3 botulinum toxin substrate 1 (rac1) has been implicated in tumor epithelial-mesenchymal transition (EMT); however, limited information is available regarding the role of rac1 in epithelial ovarian cancer (EOC). This study aimed to evaluate the correlation of rac1 expression with EMT and EOC prognosis. Rac1 protein levels of 150 EOC specimens were evaluated by immunohistochemical staining. Survival analysis was performed to determine the correlation between rac1 expression and survival. Cellular and molecular changes were also examined after rac1 in ovarian cancer cells was silenced in vitro and in vivo. The mechanism of rac1 on EMT was investigated by Western blot analysis. Rac1 was highly expressed in EOC. Rac1 overexpression was closely associated with advanced stage based on International Federation of Gynecology and Obstetrics, poor grade, serum Ca-125, and residual tumor size. Survival analyses demonstrated that patients with high rac1 expression levels were more susceptible to early tumor recurrence with very poor prognosis. This study revealed that rac1 downregulation decreased cell EMT and proliferation capability in vitro and in vivo. Rac1 expression possibly altered cell EMT by interacting with p21-activated kinase 1 and p38 mitogen-activated protein kinase signaling pathways. The present study showed that rac1 overexpression is associated with cell EMT and poor EOC prognosis. Rac1 possibly plays an important role in predicting EOC metastasis.

  3. Di (2-ethylhexyl) phthalate impairs steroidogenesis in ovarian follicular cells of prepuberal mice.

    PubMed

    Lai, Fang-Nong; Liu, Jing-Cai; Li, Lan; Ma, Jun-Yu; Liu, Xue-Lian; Liu, Yu-Ping; Zhang, Xi-Feng; Chen, Hong; De Felici, Massimo; Dyce, Paul W; Shen, Wei

    2017-03-01

    Di (2-ethylhexyl) phthalate (DEHP) is a plasticizer which is widely used in the manufacture of plastics. As a common environmental contaminant and recognized endocrine disrupting chemical, DEHP is able to deregulate the functions of a variety of tissues, including the reproductive system both in males and females. In order to investigate the possible effects of DEHP on the first wave of folliculogenesis, occurring in the mouse ovary postnatally, mice were administered 20 or 40 μg/kg DEHP through intraperitoneal injection at days 5, 10 and 15 post partum (dpp). Following DEHP treatment the gene expression profile of control and exposed ovaries was compared by microarray analyses at 20 dpp. We found that in the exposed ovaries DEHP significantly altered the transcript levels of several immune response and steroidogenesis associated genes. In particular, DEHP significantly decreased the expression of genes essential for androgen synthesis by theca cells including Lhcgr, Cyp17a1, Star and Ldlr. Immunohistochemistry and immune flow cytometry confirmed reduced expression of LHCGR and CYP17A1 proteins in the exposed theca cells. These effects were associated to a significant reduction in ovarian concentrations of progesterone, 17β-estradiol and androstenedione along with a reduction of LH in the serum. Although we did not find a significant reduction of the number of primary, secondary or antral follicles in the DEHP exposed ovaries when compared to controls, we did observe that theca cells showed an altered structure of the nuclear envelope, fewer mitochondria, and mitochondria with a reduced number of cristae. Collectively, these results demonstrate a deleterious effect of DEHP exposure on ovarian steroidogenesis during the first wave of folliculogenesis that could potentially affect the correct establishment of the hypothalamic-pituitary-ovarian axis and the onset of puberty.

  4. Cisplatin and Paclitaxel in Treating Patients With Stage IIB, Stage IIC, Stage III, or Stage IV Ovarian Epithelial Cancer, Fallopian Tube Cancer, or Primary Peritoneal Cavity Cancer

    ClinicalTrials.gov

    2014-12-29

    Chemotherapeutic Agent Toxicity; Endometrial Adenocarcinoma; Fallopian Tube Carcinoma; Gastrointestinal Complication; Malignant Ovarian Mixed Epithelial Tumor; Neurotoxicity Syndrome; Ovarian Brenner Tumor; Ovarian Clear Cell Cystadenocarcinoma; Ovarian Mucinous Cystadenocarcinoma; Ovarian Serous Cystadenocarcinoma; Primary Peritoneal Carcinoma; Stage II Ovarian Cancer; Stage III Ovarian Cancer; Stage IV Ovarian Cancer; Undifferentiated Ovarian Carcinoma

  5. Identification of NDRG1-regulated genes associated with invasive potential in cervical and ovarian cancer cells

    SciTech Connect

    Zhao, Gang; Chen, Jiawei; Deng, Yanqiu; Gao, Feng; Zhu, Jiwei; Feng, Zhenzhong; Lv, Xiuhong; Zhao, Zheng

    2011-04-29

    Highlights: {yields} NDRG1 was knockdown in cervical and ovarian cancer cell lines by shRNA technology. {yields} NDRG1 knockdown resulted in increased cell invasion activities. {yields} Ninety-six common deregulated genes in both cell lines were identified by cDNA microarray. {yields} Eleven common NDRG1-regulated genes might enhance cell invasive activity. {yields} Regulation of invasion by NDRG1 is an indirect and complicated process. -- Abstract: N-myc downstream regulated gene 1 (NDRG1) is an important gene regulating tumor invasion. In this study, shRNA technology was used to suppress NDRG1 expression in CaSki (a cervical cancer cell line) and HO-8910PM (an ovarian cancer cell line). In vitro assays showed that NDRG1 knockdown enhanced tumor cell adhesion, migration and invasion activities without affecting cell proliferation. cDNA microarray analysis revealed 96 deregulated genes with more than 2-fold changes in both cell lines after NDRG1 knockdown. Ten common upregulated genes (LPXN, DDR2, COL6A1, IL6, IL8, FYN, PTP4A3, PAPPA, ETV5 and CYGB) and one common downregulated gene (CLCA2) were considered to enhance tumor cell invasive activity. BisoGenet network analysis indicated that NDRG1 regulated these invasion effector genes/proteins in an indirect manner. Moreover, NDRG1 knockdown also reduced pro-invasion genes expression such as MMP7, TMPRSS4 and CTSK. These results suggest that regulation of invasion and metastasis by NDRG1 is a highly complicated process.

  6. Epithelial-Mesenchymal Transition of Ovarian Cancer Cells Is Sustained by Rac1 through Simultaneous Activation of MEK1/2 and Src Signaling Pathways

    PubMed Central

    Fang, Dongdong; Chen, Huijun; Zhu, Jessica Y; Wang, Wei; Teng, Yong; Ding, Han-Fei; Jing, Qing; Su, Shi-Bing; Huang, Shuang

    2016-01-01

    Epithelial-mesenchymal transition (EMT) is regarded as a crucial contributing factor to cancer progression. Diverse factors have been identified as potent EMT inducers in ovarian cancer. However, molecular mechanism sustaining EMT of ovarian cancer cells remains elusive. Here, we show that the presence of SOS1/EPS8/ABI1 complex is critical for sustained EMT traits of ovarian cancer cells. Consistent with the role of SOS1/EPS8/ABI1 complex as a Rac1-specific guanine nucleotide exchange factor, depleting Rac1 results in the loss of most of mesenchymal traits in mesenchymal-like ovarian cancer cells while expressing constitutively active Rac1 leads to EMT in epithelial-like ovarian cancer cells. With the aid of clinically tested inhibitors targeting various EMT-associated signaling pathways, we show that only combined treatment of MEK1/2 and Src inhibitors can abolish constitutively active Rac1-led EMT and mesenchymal traits displayed by mesenchymal-like ovarian cancer cells. Further experiments also reveal that EMT can be induced in epithelial-like ovarian cancer cells by co-expressing constitutively active MEK1 and Src rather than either alone. As the activities of Erk and Src are higher in ovarian cancer cells with constitutively active Rac1, we conclude that Rac1 sustains ovarian cancer cell EMT through simultaneous activation of MEK1/2 and Src signaling pathways. Importantly, we demonstrate that combined use of MEK1/2 and Src inhibitors effectively suppresses development of intraperitoneal xenografts and prolongs the survival of ovarian cancer-bearing mice. This study suggests that cocktail of MEK1/2 and Src inhibitors represents an effective therapeutic strategy against ovarian cancer progression. PMID:27617576

  7. Desmocollin 3 mediates follicle stimulating hormone-induced ovarian epithelial cancer cell proliferation by activating the EGFR/Akt signaling pathway.

    PubMed

    Yang, Xiao; Wang, Jing; Li, Wen-Ping; Jin, Zhi-Jun; Liu, Xiao-Jun

    2015-01-01

    Follicle-stimulating hormone (FSH) is associated with the pathogenesis of ovarian cancer. We sought to explore whether desmocollin 3 (Dsc3) mediates FSH-induced ovarian epithelial cancer cell proliferation and whether the EGFR/Akt signaling pathway may be involved in this process. Dsc3 positivity in ovarian tissue specimens from 72 patients was assessed by immunohistochemistry. The positive expression rates of Dsc3 were similar in ovarian cancer tissues (24/31:77.4%) and borderline ovarian tumor tissues (18/22:81.8%) (P>0.05), but were significantly higher in these cancerous tissues than in benign ovarian cyst tissues (3/19:15.8%) (P<0.05). Consistently, the expression of Dsc3 in four out of five ovarian cancer cells (HO8910, Skov3ip, Skov and Hey cells, but not ES-2 and in borderline ovarian MCV152 tumor cells was higher than in the immortalized ovarian epithelial cell line, Moody. FSH up-regulated the expression of Dsc3 and EGFR in a dose- and time-dependent manner. Furthermore, a converse relationship between the expression of Dsc3, EFGR and PI3K/Akt signaling was elucidated using RNA interference and PI3K/Akt inhibitor in the absence and presence of FSH. A role for these proteins in FSH-induced cell proliferation was verified, highlighting their interdependence in mediating ovarian cancer cell function. These results suggest that Dsc3 can mediate FSH-induced ovarian cancer cell proliferation by activating the EGFR/Akt signaling pathway.

  8. A Rare Combination of Ovarian and Uterine Leiomyomas with Goblet Cell Carcinoid of the Appendix

    PubMed Central

    Al-Shaikh, Abdulrahman F.; Darwish, Abdulla; Nagaraj, Veena; Alsada, Abeer

    2015-01-01

    We present a case of the rare combination of unilateral ovarian leiomyoma, uterine leiomyoma, and goblet cell carcinoid tumor of the appendix in a premenopausal woman who presented with right iliac pain. Immunohistochemistry study for desmin (muscle marker) and chromogranin and synaptophysin (neuroendocrine markers) confirmed immunophenotyping origin. Interestingly, both tumors showed positive reaction for estrogen receptor. To our knowledge, such a combination has not been reported previously in the literature. In this paper, the pathogenesis and differential diagnosis of both types of tumors are discussed. PMID:25685587

  9. Bisphosphorylated PEA-15 sensitizes ovarian cancer cells to paclitaxel by impairing the microtubule-destabilizing effect of SCLIP.

    PubMed

    Xie, Xuemei; Bartholomeusz, Chandra; Ahmed, Ahmed A; Kazansky, Anna; Diao, Lixia; Baggerly, Keith A; Hortobagyi, Gabriel N; Ueno, Naoto T

    2013-06-01

    Paclitaxel is a standard chemotherapeutic agent for ovarian cancer. PEA-15 (phosphoprotein enriched in astrocytes-15 kDa) regulates cell proliferation, autophagy, apoptosis, and glucose metabolism and also mediates AKT-dependent chemoresistance in breast cancer. The functions of PEA-15 are tightly regulated by its phosphorylation status at Ser104 and Ser116. However, the effect of PEA-15 phosphorylation status on chemosensitivity of cancer cells remains unknown. Here, we tested the hypothesis that PEA-15 phosphorylated at both Ser104 and Ser116 (pPEA-15) sensitizes ovarian cancer cells to paclitaxel. We first found that knockdown of PEA-15 in PEA-15-high expressing HEY and OVTOKO ovarian cancer cells resulted in paclitaxel resistance, whereas re-expression of PEA-15 in these cells led to paclitaxel sensitization. We next found that SKOV3.ip1-DD cells (expressing phosphomimetic PEA-15) were more sensitive to paclitaxel than SKOV3.ip1-AA cells (expressing nonphosphorylatable PEA-15). Compared with SKOV3.ip1-vector and SKOV3.ip1-AA cells, SKOV3.ip1-DD cells displayed reduced cell viability, inhibited anchorage-independent growth, and augmented apoptosis when treated with paclitaxel. Furthermore, HEY and OVTOKO cells displayed enhanced paclitaxel sensitivity when transiently overexpressing phosphomimetic PEA-15 and reduced paclitaxel sensitivity when transiently overexpressing nonphosphorylatable PEA-15. These results indicate that pPEA-15 sensitizes ovarian cancer cells to paclitaxel. cDNA microarray analysis suggested that SCLIP (SCG10-like protein), a microtubule-destabilizing protein, is involved in pPEA-15-mediated chemosensitization. We found that reduced expression and possibly posttranslational modification of SCLIP following paclitaxel treatment impaired the microtubule-destabilizing effect of SCLIP, thereby promoting induction of mitotic arrest and apoptosis by paclitaxel. Our findings highlight the importance of pPEA-15 as a promising target for improving

  10. Dendritic Cell-Based Genetic Immunotherapy for Ovarian Cancer

    DTIC Science & Technology

    2007-12-01

    a gamma-counter. Maximum and spontaneous release of 51 Cr was obtained from the supernatants of the target cells in 1% Nonidet P-40 and in...16: 1045-9. 7. Piazzolla, G., C. Tortorella, G. Fiore, M. Fanelli, A. Pisconti, and S. Antonaci, Interleukin-12 p40 /p70 ratio and in vivo

  11. Nitric oxide is a positive regulator of the Warburg effect in ovarian cancer cells

    PubMed Central

    Caneba, C A; Yang, L; Baddour, J; Curtis, R; Win, J; Hartig, S; Marini, J; Nagrath, D

    2014-01-01

    Ovarian cancer (OVCA) is among the most lethal gynecological cancers leading to high mortality rates among women. Increasing evidence indicate that cancer cells undergo metabolic transformation during tumorigenesis and growth through nutrients and growth factors available in tumor microenvironment. This altered metabolic rewiring further enhances tumor progression. Recent studies have begun to unravel the role of amino acids in the tumor microenvironment on the proliferation of cancer cells. One critically important, yet often overlooked, component to tumor growth is the metabolic reprogramming of nitric oxide (NO) pathways in cancer cells. Multiple lines of evidence support the link between NO and tumor growth in some cancers, including pancreas, breast and ovarian. However, the multifaceted role of NO in the metabolism of OVCA is unclear and direct demonstration of NO's role in modulating OVCA cells' metabolism is lacking. This study aims at indentifying the mechanistic links between NO and OVCA metabolism. We uncover a role of NO in modulating OVCA metabolism: NO positively regulates the Warburg effect, which postulates increased glycolysis along with reduced mitochondrial activity under aerobic conditions in cancer cells. Through both NO synthesis inhibition (using L-arginine deprivation, arginine is a substrate for NO synthase (NOS), which catalyzes NO synthesis; using L-Name, a NOS inhibitor) and NO donor (using DETA-NONOate) analysis, we show that NO not only positively regulates tumor growth but also inhibits mitochondrial respiration in OVCA cells, shifting these cells towards glycolysis to maintain their ATP production. Additionally, NO led to an increase in TCA cycle flux and glutaminolysis, suggesting that NO decreases ROS levels by increasing NADPH and glutathione levels. Our results place NO as a central player in the metabolism of OVCA cells. Understanding the effects of NO on cancer cell metabolism can lead to the development of NO targeting drugs

  12. Downregulation of Connective Tissue Growth Factor by Three-Dimensional Matrix Enhances Ovarian Carcinoma Cell Invasion

    PubMed Central

    Barbolina, Maria V.; Adley, Brian P.; Kelly, David L.; Shepard, Jaclyn; Fought, Angela J.; Scholtens, Denise; Penzes, Peter; Shea, Lonnie D.; Sharon Stack, M

    2010-01-01

    Epithelial ovarian carcinoma (EOC) is a leading cause of death from gynecologic malignancy, due mainly to the prevalence of undetected metastatic disease. The process of cell invasion during intra-peritoneal anchoring of metastatic lesions requires concerted regulation of many processes, including modulation of adhesion to the extracellular matrix and localized invasion. Exploratory cDNA microarray analysis of early response genes (altered after 4 hours of 3-dimensional collagen culture) coupled with confirmatory real-time RT-PCR, multiple three-dimensional cell culture matrices, Western blot, immunostaining, adhesion, migration, and invasion assays were used to identify modulators of adhesion pertinent to EOC progression and metastasis. cDNA microarray analysis indicated a dramatic downregulation of connective tissue growth factor (CTGF) in EOC cells placed in invasion-mimicking conditions (3-dimensional type I collagen). Examination of human EOC specimens revealed that CTGF expression was absent in 46% of the tested samples (n=41), but was present in 100% of normal ovarian epithelium samples (n=7). Reduced CTGF expression occurs in many types of cells and may be a general phenomenon displayed by cells encountering a 3D environment. CTGF levels were inversely correlated with invasion such that downregulation of CTGF increased, while its upregulation reduced, collagen invasion. Cells adhered preferentially to a surface comprised of both collagen I and CTGF relative to either component alone using α6β1 and α3β1 integrins. Together these data suggest that downregulation of CTGF in EOC cells may be important for cell invasion through modulation of cell-matrix adhesion. PMID:19382180

  13. Downregulation of connective tissue growth factor by three-dimensional matrix enhances ovarian carcinoma cell invasion.

    PubMed

    Barbolina, Maria V; Adley, Brian P; Kelly, David L; Shepard, Jaclyn; Fought, Angela J; Scholtens, Denise; Penzes, Peter; Shea, Lonnie D; Stack, M Sharon

    2009-08-15

    Epithelial ovarian carcinoma (EOC) is a leading cause of death from gynecologic malignancies, due mainly to the prevalence of undetected metastatic disease. The process of cell invasion during intraperitoneal anchoring of metastatic lesions requires concerted regulation of many processes, including modulation of adhesion to the extracellular matrix and localized invasion. Exploratory cDNA microarray analysis of early response genes (altered after 4 hr of 3D collagen culture) coupled with confirmatory real-time reverse-transcriptase polymerase chain reaction, multiple 3D cell culture matrices, Western blot, immunostaining, adhesion, migration and invasion assays were used to identify modulators of adhesion pertinent to EOC progression and metastasis. cDNA microarray analysis indicated a dramatic downregulation of connective tissue growth factor (CTGF) in EOC cells placed in invasion- mimicking conditions (3D Type I collagen). Examination of human EOC specimens revealed that CTGF expression was absent in 46% of the tested samples (n = 41), but was present in 100% of normal ovarian epithelium samples (n = 7). Reduced CTGF expression occurs in many types of cells and may be a general phenomenon displayed by cells encountering a 3D environment. CTGF levels were inversely correlated with invasion such that downregulation of CTGF increased, while its upregulation reduced collagen invasion. Cells adhered preferentially to a surface comprised of both collagen I and CTGF relative to either component alone using alpha6beta1 and alpha3beta1 integrins. Together these data suggest that downregulation of CTGF in EOC cells may be important for cell invasion through modulation of cell-matrix adhesion.

  14. The human ovarian cancer cell line CABA I: A peculiar genetic evolution

    PubMed Central

    GIUSTI, ILARIA; CERVELLI, CARLA; D'ASCENZO, SANDRA; DI FRANCESCO, MARIANNA; LIGAS, CLAUDIO; D'ALESSANDRO, ELVIRA; PAPOLA, FRANCO; DOLO, VINCENZA

    2016-01-01

    The objective of this study was to study the human ovarian cancer cell line CABA I by means of short tandem repeats (STR) profiling and cytogenetic analysis in order to prevent future misidentification or cross-contamination and verify its stability during in vitro cultivation. To this end, cells at passages 18 and 38 were analyzed using cytogenetic techniques in order to verify possible chromosomal aberrations and the karyotypic evolution of this cell line; GTG-banding and FISH were also performed. For STR analysis, DNA was extracted using the automated extractor MagNA pure and analyzed by means of PowerPlex 16 HS. STR profiles were analyzed by GeneMapper 3.2.1 software. Whereas comparative cytogenetic analysis of CABA I cells at passage 18 and 38 has demonstrated considerable genetic instability, we found that STR profiles were essentially unaltered in both analyzed passages, suggesting that the STR profile is reliable and could be used for the regular authentication of CABA I over time. It should be emphasized, however, that of the 16 loci generally used in human STR profiles, only 3 were properly detectable in CABA I. The data highlight that the CABA I cell line demonstrates an anomalous STR profile that does not fully adjust the criteria currently used for the identification of human cells; in spite of this, it remains stable during the in vitro maintainance. Moreover, the genetic instability of the CABA I cell line overlaps with those observed in vivo in tumor cells, making it a suitable candidate to analyze, in vitro, the peculiar genetic evolution of ovarian cancer cells. PMID:26934856

  15. Ovarian Cancer

    MedlinePlus

    ... deaths than other female reproductive cancers. The sooner ovarian cancer is found and treated, the better your chance for recovery. But ovarian cancer is hard to detect early. Women with ovarian ...

  16. Extracellular matrix proteins expression profiling in chemoresistant variants of the A2780 ovarian cancer cell line.

    PubMed

    Januchowski, Radosław; Zawierucha, Piotr; Ruciński, Marcin; Nowicki, Michał; Zabel, Maciej

    2014-01-01

    Ovarian cancer is the leading cause of death among gynaecological malignancies. Extracellular matrix (ECM) can affect drug resistance by preventing the penetration of the drug into cancer cells and increased resistance to apoptosis. This study demonstrates alterations in the expression levels of ECM components and related genes in cisplatin-, doxorubicin-, topotecan-, and paclitaxel-resistant variants of the A2780 ovarian cancer cell line. Affymetrix Gene Chip Human Genome Array Strips were used for hybridisations. The genes that had altered expression levels in drug-resistant sublines were selected and filtered by scatter plots. The genes that were up- or downregulated more than fivefold were selected and listed. Among the investigated genes, 28 genes were upregulated, 10 genes were downregulated, and two genes were down- or upregulated depending on the cell line. Between upregulated genes 12 were upregulated very significantly--over 20-fold. These genes included COL1A2, COL12A1, COL21A1, LOX, TGFBI, LAMB1, EFEMP1, GPC3, SDC2, MGP, MMP3, and TIMP3. Four genes were very significantly downregulated: COL11A1, LAMA2, GPC6, and LUM. The expression profiles of investigated genes provide a preliminary insight into the relationship between drug resistance and the expression of ECM components. Identifying correlations between investigated genes and drug resistance will require further analysis.

  17. miR-22 inhibits mouse ovarian granulosa cell apoptosis by targeting SIRT1

    PubMed Central

    Xiong, Fang; Hu, Lingqing; Zhang, Yun; Xiao, Xiao; Xiao, Juxia

    2016-01-01

    ABSTRACT Granulosa cell (GC) apoptosis has been shown to be involved in follicular atresia, which is a degenerative process in ovarian follicles of mammals. However, the mechanism underlying the regulation of follicular atresia, particularly by microRNAs, is not well known. Real-time PCR (RT-PCR) was used to detect the expression level of miR-22 in healthy follicles (HF), early atretic follicles (EAF), and progressively atretic follicles (PAF). Flow cytometry was performed to assess the apoptosis of mouse granulosa cells (mGCs) treated with miR-22 mimics or negative control (NC) mimics. Regulation of the expression of SIRT1 by miR-22 was evaluated using a luciferase reporter assay system. To investigate the roles of SIRT1 in mGC apoptosis, the endogenous SIRT1 gene in mGCs was knocked down using an siRNA specific for SIRT1. miR-22 was increased during follicular atresia and suppressed granulosa cell apoptosis. The results of the luciferase reporter assay indicated that SIRT1 was a target gene of miR-22. In addition, knockdown of SIRT1 attenuated apoptosis in mGCs. miR-22 inhibits mGC apoptosis by downregulating SIRT1 directly in vitro. This study provides important insights into understanding the regulation mechanism of ovarian follicle atresia. PMID:26912776

  18. miR-22 inhibits mouse ovarian granulosa cell apoptosis by targeting SIRT1.

    PubMed

    Xiong, Fang; Hu, Lingqing; Zhang, Yun; Xiao, Xiao; Xiao, Juxia

    2016-02-24

    Granulosa cell (GC) apoptosis has been shown to be involved in follicular atresia, which is a degenerative process in ovarian follicles of mammals. However, the mechanism underlying the regulation of follicular atresia, particularly by microRNAs, is not well known. Real-time PCR (RT-PCR) was used to detect the expression level of miR-22 in healthy follicles (HF), early atretic follicles (EAF), and progressively atretic follicles (PAF). Flow cytometry was performed to assess the apoptosis of mouse granulosa cells (mGCs) treated with miR-22 mimics or negative control (NC) mimics. Regulation of the expression of SIRT1 by miR-22 was evaluated using a luciferase reporter assay system. To investigate the roles of SIRT1 in mGC apoptosis, the endogenous SIRT1 gene in mGCs was knocked down using an siRNA specific for SIRT1. miR-22 was increased during follicular atresia and suppressed granulosa cell apoptosis. The results of the luciferase reporter assay indicated that SIRT1 was a target gene of miR-22. In addition, knockdown of SIRT1 attenuated apoptosis in mGCs. miR-22 inhibits mGC apoptosis by downregulating SIRT1 directly in vitro. This study provides important insights into understanding the regulation mechanism of ovarian follicle atresia.

  19. Prognostic Value of Circulating Tumor Cells in Ovarian Cancer: A Meta-Analysis

    PubMed Central

    Yuan, Xiangliang; Xie, Guohua; Ma, Yanhui; Shen, Lisong

    2015-01-01

    Background The prognostic value of circulating tumor cells (CTCs) in ovarian cancer has been investigated in previous studies, but the results are controversial. Therefore we performed a meta-analysis to systematically review these data and evaluate the value of CTCs in ovarian cancer. Materials and Methods A literary search for relevant studies was performed on Embase, Medline and Web of Science databases. Then pooled hazard ratios (HRs) for survival with 95% confidence intervals (CIs), subgroup analyses, sensitivity analyses, meta-regression analyses and publication bias were conducted. Results This meta-analysis is based on 11 publications and comprises a total of 1129 patients. The prognostic value of the CTC status was significant in overall survival (OS) (HR, 1.61;95% CI,1.22–2.13) and progression-free survival (PFS)/disease-free survival (DFS) (HR, 1.44; 95%CI, 1.18–1.75). Furthermore, subgroup analysis revealed that the value of CTC status in OS was significant in "RT-PCR" subgroup (HR, 2.02; 95% CI, 1.34–3.03), whereas it was not significant in "CellSearch" subgroup (HR, 1.15; 95% CI 0.45–2.92) and "other ICC" subgroup (HR, 1.09; 95% CI 0.62–1.90). The presence of CTC was also associated with an increased CA-125 (OR, 4.07; 95%CI, 1.87–8.85). Conclusion Our study demonstrates that CTC status is associated with OS and PFS/DFS in ovarian cancer. PMID:26098665

  20. Expression and activity analysis of a new fusion protein targeting ovarian cancer cells.

    PubMed

    Su, Manman; Chang, Weiqin; Wang, Dingding; Cui, Manhua; Lin, Yang; Wu, Shuying; Xu, Tianmin

    2015-09-01

    The aim of the present study was to develop a new therapeutic drug to improve the prognosis of ovarian cancer patients. Human urokinase-type plasminogen activator (uPA)17-34-kunitz-type protease inhibitor (KPI) eukaryotic expression vector was constructed and recombinant human uPA17-34-KPI (rhuPA17-34-KPI) in P. pastoris was expressed. In the present study, the DNA sequences that encode uPA 17-34 amino acids were created according to the native amino acids sequence and inserted into the KPI-pPICZαC vector, which was constructed. Then, uPA17‑34-KPI-pPICZαC was transformed into P. pastoris X-33, and rhuPA17-34-KPI was expressed by induction of methanol. The bioactivities of a recombinant fusion protein were detected with trypsin inhibition analysis, and the inhibitory effects on the growth of ovarian cancer cells were identified using the TUNEL assay, in vitro wound‑healing assay and Matrigel model analysis. The results of the DNA sequence analysis of the recombinant vector uPA17-34-KPI‑pPICZα demonstrated that the DNA‑encoding human uPA 17-34 amino acids, 285-288 amino acids of amyloid precursor protein (APP) and 1-57 amino acids of KPI were correctly inserted into the pPICZαC vector. Following induction by methonal, the fusion protein with a molecular weight of 8.8 kDa was observed using SDS-PAGE and western blot analysis. RhuPA17-34-KPI was expressed in P. pastoris with a yield of 50 mg/l in a 50-ml tube. The recombinant fusion protein was able to inhibit the activity of trypsin, inhibit growth and induce apoptosis of SKOV3 cells, and inhibit the invasion and metastasis of ovarian cancer cells. By considering uPA17-34 amino acid specific binding uPAR as the targeted part of fusion protein and utilizing the serine protease inhibitor activity of KPI, it was found that the recombinant fusion protein uPA17-34-KPI inhibited the invasion and metastasis of ovarian tumors, and may therefore be regarded as effective in targeted treatment.

  1. Artonin E Induces Apoptosis via Mitochondrial Dysregulation in SKOV-3 Ovarian Cancer Cells

    PubMed Central

    Karimian, Hamed; Dehghan, Firouzeh; Nordin, Noraziah; Mohd Ali, Hapipah; Mohan, Syam; Mohd Hashim, Najihah

    2016-01-01

    Artonin E is a prenylated flavonoid isolated from the stem bark of Artocarpus elasticus Reinw.(Moraceae). This study aimed to investigate the apoptotic mechanisms induced by artonin E in a metastatic human ovarian cancer cell line SKOV-3 in vitro. MTT assay, clonogenic assay, acridine orange and propidium iodide double staining, cell cycle and annexin V analyses were performed to explore the mode of artonin E-induced cell death at different time points. DNA laddering, activation of caspases-3, -8, and -9, multi-parametric cytotoxicity-3analysis by high-content screening, measurement of reactive oxygen species generation, and Western blot were employed to study the pathways involved in the apoptosis. MTT results showed that artonin E inhibited the growth of SKOV-3 cells, with IC50 values of 6.5±0.5μg/mL after 72 h treatment, and showed less toxicity toward a normal human ovarian cell lineT1074, with IC50 value of 32.5±0.5μg/mL. Results showed that artonin E induced apoptosis and cell cycle arrest at the S phase. This compound also promoted the activation of caspases-3, -8, and -9. Further investigation into the depletion of mitochondrial membrane potential and release of cytochrome c revealed that artonin E treatment induced apoptosis via regulation of the expression of pro-survival and pro-apoptotic Bcl-2 family members. The expression levels of survivin and HSP70 proteins were also down regulated in SKOV-3 cells treated with artonin E. We propose that artonin E induced an antiproliferative effect that led to S phase cell cycle arrest and apoptosis through dysregulation of mitochondrial pathways, particularly the pro- and anti-apoptosis signaling pathways. PMID:27019365

  2. Azidothymidine and cisplatin increase p14ARF expression in OVCAR-3 ovarian cancer cell line

    SciTech Connect

    Vaskivuo, Liisa; Rysae, Jaana; Koivuperae, Johanna; Myllynen, Paeivi; Vaskivuo, Tommi; Chvalova, Katerina; Serpi, Raisa; Savolainen, Eeva-Riitta; Puistola, Ulla; Vaehaekangas, Kirsi . E-mail: kirsi.vahakangas@uku.fi

    2006-10-01

    p14{sup ARF} tumor suppressor protein regulates p53 by interfering with mdm2-p53 interaction. p14{sup ARF} is activated in response to oncogenic stimuli but little is known of the responses of endogenous p14{sup ARF} to different types of cellular stress or DNA damage. Azidothymidine (AZT) is being tested in several clinical trials as an enhancer of anticancer chemotherapy. However, the knowledge of the relationship between AZT and cellular pathways, e.g. p53 pathway, is very limited. In this study, we show that AZT, cisplatin (CDDP) and docetaxel (DTX) all induce unique molecular responses in OVCAR-3 ovarian carcinoma cells carrying a mutated p53, while in A2780, ovarian carcinoma and MCF-7 breast carcinoma cells with wild type p53, all of these drugs cause similar p53 responses. We found that endogenous p14{sup ARF} protein in OVCAR-3 cells is down-regulated by DTX but induced by AZT and a short CDDP pulse treatment. In HT-29 colon carcinoma cells with a mutated p53, all treatments down-regulated p14{sup ARF} protein. Both CDDP and AZT increased the expression of p14ARF mRNA in OVCAR-3 cells. Differences in cell death induced by these drugs did not explain the differences in protein and mRNA expressions. No increase in the level of either c-Myc or H-ras oncoproteins was seen in OVCAR-3 cells after AZT or CDDP-treatment. These results suggest that p14{sup ARF} can respond to DNA damage without oncogene activation in cell lines without functional p53.

  3. Knockdown of ICB-1 gene enhanced estrogen responsiveness of ovarian and breast cancer cells.

    PubMed

    Konwisorz, Anna; Springwald, Anette; Haselberger, Martina; Goerse, Regina; Ortmann, Olaf; Treeck, Oliver

    2010-03-01

    ICB-1 chromosome 1 open reading frame 38 (C1orf38) is a human gene initially described by our group to be involved in differentiation processes of cancer cells. Recently, we have reported ICB-1 as a novel estrogen target gene and identified an estrogen response element in its promoter. In this study, we examined the role of ICB-1 in regulation of proliferation of breast and ovarian cancer cells. We knocked down its expression in estrogen-dependent MCF-7 breast cancer cells and hormone-unresponsive SK-OV-3 ovarian cancer cells by stable transfection with a specific shRNA plasmid followed by G-418 selection. Knockdown of ICB-1 enabled a considerable estrogen response of SK-OV-3 cells in terms of proliferation. This transformation of SK-OV-3 cells into an estrogen-responsive phenotype was accompanied by upregulation of estrogen receptor alpha (ERalpha) expression and a significant decrease of ERbeta expression on the mRNA level. Expression of ERalpha-dependent genes progesterone receptor, pS2, fibulin 1c, and c-fos was elevated in SK-OV-3 cells stably expressing ICB-1 shRNA. In MCF-7 cells, ICB-1 knockdown exerted similar effects on gene expression, supporting a general role of ICB-1 in estrogen responsiveness. Our data suggest that differentiation-associated gene ICB-1 might exert antagonistic actions on cellular estrogen response, which can result in inhibition of estradiol-triggered proliferation. The molecular mechanisms mediating this inhibitory effect of ICB-1 on estrogen signaling are suggested to be limitation of ERalpha transcript levels but sustaining high levels of ERbeta, reducing both activation of ERalpha target genes and cellular proliferation. The identification of ICB-1 as a new player in endocrine-related cancer encourages further studies on the significance of this gene in cancer development and therapy.

  4. Nerve growth factor modulates the tumor cells migration in ovarian cancer through the WNT/β-catenin pathway

    PubMed Central

    Li, Bo; Cai, Shaoxi; Zhao, Yi; He, Qiyi; Yu, Xiaodong; Cheng, Longcong; Zhang, Yingfeng; Hu, Xiancheng; Ke, Ming; Chen, Sijia; Zou, Misha

    2016-01-01

    Nerve growth factor (NGF)/nerve growth factor receptors (NGFRs) axis and canonical WNT/β-catenin pathway have shown to play crucial roles in tumor initiation, progression and prognosis. But little did we know the relationship between them in modulation of tumor progress. In this report, we found that NGF/NGFRs and β-catenin were coexpression in ovarian cancer cell lines, and NGF can decrease the expression level of β-catenin and affect its activities, which may be related to the NGF-induced down-regulation of B-cell CLL/lymphoma 9-like (BCL9L, BCL9-2). Furthermore, NGF can also increase or decrease the downstream target gene expression levels of WNT/β-catenin depending on the cell types. Especially, we created a novel in vitro cell growth model based on a microfluidic device to intuitively observe the effects of NGF/NGFRs on the motility behaviors of ovarian cancer cells. The results showed that the migration area and maximum distance into three dimensional (3D) matrigel were decreased in CAOV3 and OVCAR3 cells, but increased in SKOV3 cells following the stimulation with NGF. In addition, we found that the cell colony area was down-regulated in CAOV3 cells, however, it was augmented in OVCAR3 cells after treatment with NGF. The inhibitors of NGF/NGFRs, such as Ro 08-2750, K252a and LM11A-31,can all block NGF-stimulated changes of gene expression or migratory behavior on ovarian cancer cells. The different results among ovarian cancer cells illustrated the heterogeneity and complexity of ovarian cancer. Collectively, our results suggested for the first time that NGF is functionally linked to β-catenin in the migration of human ovarian cancer cells, which may be a novel therapeutic perspective to prevent the spread of ovarian carcinomas by studying the interaction between NGF/NGFRs and canonical WNT/β-catenin signaling. PMID:27835587

  5. Ovarian Function after Hematopoietic Cell Transplantation: A Descriptive Study Following the Use of GnRH Agonists for Myeloablative Conditioning and Observation Only for Reduced-Intensity Conditioning

    PubMed Central

    Phelan, Rachel; Mann, Elizabeth; Napurski, Char; DeFor, Todd E; Petryk, Anna; Miller, Weston P; Wagner, John E; Verneris, Michael R; Smith, Angela R

    2017-01-01

    Gonadal failure is a health and quality of life concern in hematopoietic cell transplant (HCT) survivors. While ovarian dysfunction is nearly universal following myeloablative (MA) conditioning, risk is unclear after reduced-intensity conditioning (RIC). Gonadotropin-releasing hormone agonists decrease ovarian failure rates following conventional chemotherapy but little is known about its effectiveness with HCT. We investigated the impact of leuprolide on ovarian function after MA conditioning and monitored ovarian function after RIC in this descriptive pilot study. Post-menarchal females <50 years undergoing HCT with adequate baseline ovarian function (FSH level <40 mIU/mL and normal menstruation) were eligible. Prior to MA conditioning, leuprolide was administered. Those undergoing RIC were observed. FSH was measured at various time points. Seventeen women aged 12–45 years were evaluated (7 in the intervention group and 10 observation group). Compared to the historical high rate of ovarian failure after MA conditioning, 3 of 7 evaluable Lupron recipients had ovarian failure at a median of 703 days post-transplant. Ovarian failure occurred in 1 of 10 recipients of RIC at median follow-up of 901 days. In conclusion, leuprolide may protect ovarian function after MA conditioning. Additionally, RIC with cyclophosphamide, fludarabine and low-dose TBI has a low risk of ovarian failure. PMID:27272448

  6. Embryonic stem cell-derived granulosa cells participate in ovarian follicle formation in vitro and in vivo.

    PubMed

    Woods, Dori C; White, Yvonne A R; Niikura, Yuichi; Kiatpongsan, Sorapop; Lee, Ho-Joon; Tilly, Jonathan L

    2013-05-01

    Differentiating embryonic stem cells (ESCs) can form ovarian follicle-like structures in vitro, consisting of an oocyte-like cell surrounded by somatic cells capable of steroidogenesis. Using a dual-fluorescence reporter system in which mouse ESCs express green fluorescent protein (GFP) under the control of a germ cell-specific Pou5f1 gene promoter and red fluorescent protein (Discosoma sp red [DsRed]) driven by the granulosa cell-specific Forkhead box L2 (Foxl2) gene promoter, we first confirmed in vitro formation of follicle-like structures containing GFP-positive cells surrounded by DsRed-positive cells. Isolated DsRed-positive cells specified from ECSs exhibited a gene expression profile consistent with granulosa cells, as revealed by the detection of messenger RNAs (mRNAs) for Foxl2, follistatin (Fst), anti-Müllerian hormone (Amh), and follicle-stimulating hormone receptor (Fshr) as well as by production of both progesterone and estradiol. In addition, treatment of isolated DsRed-expressing cells with follicle-stimulating hormone (FSH) significantly increased estradiol production over basal levels, confirming the presence of functional FSH receptors in these cells. Last, ESC-derived DsRed-positive cells injected into neonatal mouse ovaries became incorporated within the granulosa cell layer of immature follicles. These studies demonstrate that Foxl2-expressing ovarian somatic cells derived in vitro from differentiating ESCs express granulosa cell markers, actively associate with germ cells in vitro, synthesize steroids, respond to FSH, and participate in folliculogenesis in vivo.

  7. Complexity of expression of the intermediate filaments of six new human ovarian carcinoma cell lines: new expression of cytokeratin 20.

    PubMed Central

    Yanagibashi, T.; Gorai, I.; Nakazawa, T.; Miyagi, E.; Hirahara, F.; Kitamura, H.; Minaguchi, H.

    1997-01-01

    Six permanent human ovarian carcinoma cell lines (OVISE, OVTOKO, OVMANA and OVSAYO from clear cell adenocarcinoma, and OVSAHO and OVKATE from serous papillary adenocarcinoma) were established from solid tumours. The cell lines have been in culture for 5-8 years, the passage number varying from 62 to 246. Immunohistochemical analysis has shown that five of the six cell lines express at least six cytokeratin (CK) polypeptides. OVISE and OVSAYO expressed CKs 6, 7, 8, 18, 19 and 15 and/or 16. OVTOKO was positive for CKs 7, 8, 18, 19 and 15 and/or 16. OVSAHO expressed CKs 6, 7, 8, 14, 18, 19 and 15 and/or 16. OVMANA expressed CKs 6, 7, 8, 18, 19, 20 and 15 and/or 16. OVKATE expressed CKs 6, 7, 8, 13, 17, 18, 19, 20 and 15 and/or 16. The expression of CK7, additional expression of vimentin, and clinical and histopathological findings enabled us to confirm that six cell lines had been established from primary ovarian cancers. Two of the six cell lines were positive for CK20, although CK20 was not expressed in the original tumours. The heterotransplanted tumours produced by CK20-positive cells also expressed CK20. This is the first report of ovarian carcinoma cell lines that express CK20 irrespective of their histological type. CK20 has been found in all colon carcinoma cell lines, but only in the mucinous type of ovarian tumours. These new ovarian carcinoma cell lines will therefore provide a relevant experimental system for elucidating the regulatory control mechanisms of intermediate filament expression. Images Figure 1 Figure 2 Figure 3 PMID:9328139

  8. Immature ovarian teratoma with hyponatremia and low serum vasopressin level.

    PubMed

    Sakamoto, Yuki; Takei, Yuji; Saga, Yasushi; Machida, Shizuo; Takahashi, Yoshifumi; Fujiwara, Hiroyuki

    2016-10-01

    Hyponatremia is often caused by the syndrome of inappropriate secretion of antidiuretic hormone (SIADH). Hypersecretion of vasopressin from malignant tumors can be considered a cause of SIADH. Most of these ectopic productions of vasopressin are complications of small cell lung cancer. Cases concomitant with ovarian tumors are very rare, and a specific causative substance from the ovary is often unknown. A 16-year-old woman was diagnosed with an ovarian tumor. She developed hyponatremia that was resistant to medical treatment, but immediately improved after surgical resection of the tumor. Her diagnosis was SIADH caused by an ovarian tumor; however, her serum vasopressin level was normal. It is possible that a vasopressin-like substance causing SIADH was secreted by either nervous system tissue within an immature teratoma or small cell lung cancer. We should be cautious when SIADH is a complication of an ovarian tumor.

  9. Photodynamic action of LED-activated pyropheophorbide-α methyl ester in cisplatin-resistant human ovarian carcinoma cells

    NASA Astrophysics Data System (ADS)

    Tan, Y.; Xu, C. S.; Xia, X. S.; Yu, H. P.; Bai, D. Q.; He, Y.; Leung, A. W. N.

    2009-04-01

    Cisplatin-resistance is a major obstacle for the successful therapy to ovarian cancer, and exploring novel approach to deactivate cisplatin-resistant ovarian cells will improve the clinical outcomes. Our present study showed that there was no dark cytotoxicity of MPPa in the COC1/DDP cells at the dose of 0.25 - 4 μM, and LED-activated MPPa resulted in drug dose- and light-dependent cytotoxicity. Apoptotic rate 6 h after LED-activated MPPa (2 μM) increased to 16.71% under the light energy of 1 J/cm2. Confocal laser scanning microscopy showed that MPPa mainly localized in the intracellular membrane system, namely the endoplasmic reticulum, Golgi apparatus, lysosomes and mitochondria in the COC1/DDP cells. Mitochondrial membrane potential (ΔΨm) was collapsed when COC1/DDP cells were exposed to 2 μM MPPa for 20 h and then 1 J/cm2 irradiation of LED source. These data demonstrated that LED-activated MPPa significantly deactivated cisplatin-resistant ovarian cell line COC1/DDP cells and enhanced apoptosis and decreased ΔΨm, which suggests LED is an efficient light source for PDT and LED-activated MPPa can be developed as new modality for treating cisplatin-resistant ovarian.

  10. TLR4 activates NF-{kappa}B in human ovarian granulosa tumor cells

    SciTech Connect

    Woods, Dori C.; Johnson, A.L.

    2011-06-17

    Highlights: {yields} TLR4 is expressed in human ovarian granulosa tumor cells. {yields} Acting through TLR4, LPS and HSP60 induce a NF{kappa}B signaling cascade in human ovarian granulosa tumor cells. {yields} NF{kappa}B activation or inhibition did not alter chemosensitivity to TRAIL or cisplatin. -- Abstract: Previous studies have demonstrated expression of Toll-like receptors (TLRs) in the surface epithelium of normal ovaries (OSE) and in epithelial ovarian tumors. Most notably, OSE-derived cancers express TLR4, which activates the nuclear factor-kappa B (NF-{kappa}B) signaling cascade as a mediator of inflammatory response. Currently, there is considerable interest in elucidating the role of TLR-mediated signaling in cancers. Nevertheless, the expression of TLRs in granulosa cell tumors (GCTs) of the ovary, and the extent to which GCT expression of TLRs may influence cell-signaling pathways and/or modulate the efficacy of chemotherapeutics, has yet to be determined. In the present study, human GCT lines (COV434 and KGN) were utilized to evaluate expression of functional TLR4. TLR4 is expressed in GCT cell lines and ligation of TLR4 with bacterial lipopolysaccharide (LPS) led to I{kappa}B degradation and activation of NF-{kappa}B. NF-{kappa}B activation was confirmed by nuclear localization of NF-{kappa}B p65 following treatment with LPS and the naturally occurring ligand, HSP60. Notably, immunoneutralization of TLR4 blocked nuclear localization, and inhibition of NF-{kappa}B signaling attenuated LPS-induced TNF{alpha} plus increased doubling time in both cell lines. Contradictory to reports using human OSE cell lines, inhibition of NF-{kappa}B signaling failed to sensitize GCT lines to TRAIL or cisplatin. In summary, findings herein are the first to demonstrate a functional TLR-signaling pathway specifically in GCTs, and indicate that in contrast to OSE-derived cancers, inhibition of NF-{kappa}B does not sensitize GCTs to TRAIL or cisplatin.

  11. Adipocyte microenvironment promotes Bclxl expression and confers chemoresistance in ovarian cancer cells.

    PubMed

    Cardenas, Carlos; Montagna, Michele K; Pitruzzello, Mary; Lima, Eydis; Mor, Gil; Alvero, Ayesha B

    2017-04-01

    Resistance to mitochondria-initiated apoptosis is a hallmark of chemoresistant cancer stem cells including CD44+/MyD88+ epithelial ovarian cancer (EOC) stem cells. This is controlled by members of the Bcl2 family of proteins, which function as rheostats of mitochondrial stability. We observed a differential expression profile of Bcl2 family members comparing the chemoresistant EOC stem cells and the chemosensitive CD44-/MyD88- EOC cells. Chemoresistant EOC stem cells surprisingly express higher levels of the pro-apoptotic members Bak and Bax compared to the chemosensitive EOC cells. In addition, whereas chemosensitive EOC cells preferentially express Bcl2, chemoresistant EOC stem cells preferentially express Bclxl. In the EOC stem cells, 40% knock-down of Bclxl expression was sufficient to induce the full activation of caspases and this can be reversed by concurrent knock-down of Puma. More importantly, we demonstrate that Bclxl expression levels in EOC cells is dynamic and can be regulated by microenvironments that are enriched with the pro-inflammatory cytokine IL-6 such as the cancer stem cell and adipocyte niches. Adipocyte-induced upregulation of Bclxl correlated with acquisition of chemoresistance and thus demonstrates how a specific microenvironment can regulate the expression of apoptotic proteins and confer chemoresistance.

  12. miR-214-mediated downregulation of RNF8 induces chromosomal instability in ovarian cancer cells.

    PubMed

    Wang, Zheng; Yin, Hao; Zhang, Yuanwei; Feng, Yukun; Yan, Zhaofeng; Jiang, Xiaohua; Bukhari, Ihtisham; Iqbal, Furhan; Cooke, Howard J; Shi, Qinghua

    2014-01-01

    Defective DNA damage response (DDR) is frequently associated with carcinogenesis. Abrogation of DDR leads to chromosomal instability, a most common characteristic of tumors. However, the molecular mechanisms underlying regulation of DDR are still elusive. The ubiquitin ligase RNF8 mediates the ubiquitination of γH2AX and recruits 53BP1 and BRCA1 to DNA damage sites which promotes DDR and inhibits chromosomal instability. Though RNF8 is a key player involved in DDR, regulation of its expression is still poorly understood. Here, we show that miR-214 could abrogate DDR by repressing RNF8 expression through direct binding to 3'-untranslated region (3' UTR) of RNF8 mRNA in human ovarian cancer cells. Antagonizing miR-214 by expressing its inhibitors in A2780 cells significantly increased RNF8 expression and thus promoted DNA damage repair. Consistent with the role of miR-214 in regulating RNF8 expression, the impaired DNA repair induced by miR-214 overexpression can be rescued by overexpressing RNF8 mRNA lacking the 3' UTR. Together, our results indicate that down-regulation of RNF8 mediated by miR-214 impedes DNA damage response to induce chromosomal instability in ovarian cancers, which may facilitate the understanding of mechanisms underlying chromosomal instability.

  13. Contributions of the Epidermal Growth Factor Receptor to Acquisition of Platinum Resistance in Ovarian Cancer Cells

    PubMed Central

    Granados, Michaela L.; Hudson, Laurie G.; Samudio-Ruiz, Sabrina L.

    2015-01-01

    Acquisition of platinum resistance following first line platinum/taxane therapy is commonly observed in ovarian cancer patients and prevents clinical effectiveness. There are few options to prevent platinum resistance; however, demethylating agents have been shown to resensitize patients to platinum therapy thereby demonstrating that DNA methylation is a critical contributor to the development of platinum resistance. We previously reported the Epidermal Growth Factor Receptor (EGFR) is a novel regulator of DNA methyltransferase (DNMT) activity and DNA methylation. Others have shown that EGFR activation is linked to cisplatin treatment and platinum resistance. We hypothesized that cisplatin induced activation of the EGFR mediates changes in DNA methylation associated with the development of platinum resistance. To investigate this, we evaluated EGFR signaling and DNMT activity after acute cisplatin exposure. We also developed an in vitro model of platinum resistance to examine the effects of EGFR inhibition on acquisition of cisplatin resistance. Acute cisplatin treatment activates the EGFR and downstream signaling pathways, and induces an EGFR mediated increase in DNMT activity. Cisplatin resistant cells also showed increased DNMT activity and global methylation. EGFR inhibition during repeated cisplatin treatments generated cells that were more sensitive to cisplatin and did not develop increases in DNA methylation or DNMT activity compared to controls. These findings suggest that activation of EGFR during platinum treatment contributes to the development of platinum resistance. Furthermore, EGFR inhibition may be an effective strategy at attenuating the development of platinum resistance thereby enhancing the effectiveness of chemotherapeutic treatment in ovarian cancer. PMID:26351843

  14. Stemness and chemoresistance in epithelial ovarian carcinoma cells under shear stress

    PubMed Central

    Ip, Carman K. M.; Li, Shan-Shan; Tang, Matthew Y. H.; Sy, Samuel K. H.; Ren, Yong; Shum, Ho Cheung; Wong, Alice S. T.

    2016-01-01

    One of greatest challenges to the successful treatment of cancer is drug resistance. An exciting approach is the eradication of cancer stem cells (CSCs). However, little is known about key signals regulating the formation and expansion of CSCs. Moreover, lack of a reliable predictive preclinical model has been a major obstacle to discover new cancer drugs and predict their clinical activity. Here, in ovarian cancer, a highly chemoresistant tumor that is rapidly fatal, we provide the first evidence demonstrating the causal involvement of mechanical stimulus in the CSC phenotype using a customizable microfluidic platform and three-dimensional spheroids, which most closely mimic tumor behavior. We found that ovarian cancer cells significantly acquired the expression of epithelial-to-mesenchymal transition and CSC markers and a remarkable chemoresistance to clinically relevant doses of frontline chemotherapeutic drugs cisplatin and paclitaxel when grown under fluid shear stress, which corroborates with the physiological attainable levels in the malignant ascites, but not under static condition. Furthermore, we uncovered a new link of microRNA-199a-3p, phosphatidylinositol 3-kinase/Akt, and multidrug transporter activation in shear stress-induced CSC enrichment. Our findings shed new light on the significance of hydrodynamics in cancer progression, emphasizing the need of a flow-informed framework in the development of therapeutics. PMID:27245437

  15. Multifunctional polyglycerol-grafted Fe₃O₄@SiO₂ nanoparticles for targeting ovarian cancer cells.

    PubMed

    Wang, Liang; Neoh, Koon Gee; Kang, En-Tang; Shuter, Borys

    2011-03-01

    Ligand-mediated magnetic resonance (MR) contrast agents would be highly desirable for cancer diagnosis. In the present study, nanoparticles of Fe₃O₄ core with fluorescent SiO₂ shell were synthesized and grafted with hyperbranched polyglycerol (HPG-grafted Fe₃O₄@SiO₂ nanoparticles). These nanoparticles have a hydrodynamic diameter of 47.0 ± 4.0 nm, and are very stable in aqueous solution as well as in cell culture medium. Numerous surface hydroxyl groups of these nanoparticles were conjugated with folic acid by a thiol 'click' reaction. The successful covalent attachment of folic acid on the nanoparticles was confirmed by FTIR and XPS analyses. Both MR imaging and fluorescence microscopy show significant preferential uptake of the folic acid-conjugated polyglycerol-grafted Fe₃O₄@SiO₂ (FA-HPG-grafted Fe₃O₄@SiO₂) nanoparticles by human ovarian carcinoma cells (SKOV-3) as compared to macrophages and fibroblasts. Such nanoparticles can potentially be used to provide real-time imaging in ovarian cancer resection.

  16. Adoptive Immunotherapy for Epithelial Ovarian Cancer Using T Cells Simultaneously Targeted to Tumor and Tumor-Associated Macrophages

    DTIC Science & Technology

    2011-07-01

    will be delivered to separate T-cell populations using the SFG retroviral vector and retronectin - coated tissue culture dishes: (i) HOX – targets MUC1 and...cancer. Patient derived T-cells were activated with CSD3+CD28- coated beads and transduced with retroviral expression vectors. A representative example for...cells from ascites and tumor tissue stained from a patient with ovarian cancer. Tumor cells were separated using magnetic beads coated with antibodies

  17. CD20+ T cells have a predominantly Tc1 effector memory phenotype and are expanded in the ascites of patients with ovarian cancer

    PubMed Central

    de Bruyn, Marco; Wiersma, Valerie R; Wouters, Maartje C A; Samplonius, Douwe F; Klip, Harry G; Helfrich, Wijnand; Nijman, Hans W; Eggleton, Paul; Bremer, Edwin

    2015-01-01

    Recently, a small subset of T cells that expresses the B cell marker CD20 has been identified in healthy volunteers and in patients with rheumatoid arthritis and multiple sclerosis. The origin of these CD20-positive T cells as well as their relevance in human disease remains unclear. Here, we identified that after functional B cell/T cell interaction CD20 molecules are transferred to the cell surface of T cells by trogocytosis together with the established trogocytosis marker HLA-DR. Further, the presence of CD20 on isolated CD20+ T cells remained stable for up to 48h of ex vivo culture. These CD20+ T cells almost exclusively produced IFNγ (∼70% vs. ∼20% in the CD20− T cell population) and were predominantly (CD8+) effector memory T cells (∼60–70%). This IFNγ producing and effector memory phenotype was also determined for CD20+ T cells as detected in the peripheral blood and ascitic fluids of ovarian cancer (OC) patients. In the latter, the percentage of CD20+ T cells was further strongly increased (from ∼6% in peripheral blood to 23% in ascitic fluid). Taken together, the data presented here indicate that CD20 is transferred to T cells upon intimate T cell/B cell interaction. Further, CD20+ T cells are of memory and IFNγ producing phenotype and are present in increased amounts in ascitic fluid of OC patients. PMID:26137418

  18. In vivo tumor growth of high-grade serous ovarian cancer cell lines

    PubMed Central

    Mitra, Anirban; Davis, David A.; Tomar, Sunil; Roy, Lynn; Gurler, Hilal; Xie, Jia; Lantvit, Daniel D.; Cardenas, Horacio; Fang, Fang; Liu, Yueying; Loughran, Elizabeth; Yang, Jing; Stack, M. Sharon; Emerson, Robert E; Cowden Dahl, Karen D.; Barbolina, Maria; Nephew, Kenneth P.; Matei, Daniela; Burdette, Joanna E.

    2015-01-01

    Objective Genomic studies of ovarian cancer (OC) cell lines frequently used in research revealed that these cells do not fully represent high-grade serous ovarian cancer (HGSOC), the most common OC histologic type. However, OC lines that appear to genomically resemble HGSOC have not been extensively used and their growth characteristics in murine xenografts are essentially unknown. Methods To better understand growth patterns and characteristics of HGSOC cell lines in vivo, CAOV3, COV362, KURAMOCHI, NIH-OVCAR3, OVCAR4, OVCAR5, OVCAR8, OVSAHO, OVKATE, SNU119, UWB1.289 cells were assessed for tumor formation in nude mice. Cells were injected intraperitoneally (i.p.) or subcutaneously (s.c.) in female athymic nude mice and allowed to grow (maximum of 90 days) and tumor formation was analyzed. All tumors were sectioned and assessed using H&E staining and immunohistochemistry for p53, PAX8 and WT1 expression. Results Six lines (OVCAR3, OVCAR4, OVCAR5, OVCAR8, CAOV3, and OVSAHO) formed i.p xenografts with HGSOC histology. OVKATE and COV362 formed s.c. tumors only. Rapid tumor formation was observed for OVCAR3, OVCAR5 and OVCAR8, but only OVCAR8 reliably formed ascites. Tumors derived from OVCAR3, OVCAR4, and OVKATE displayed papillary features. Of the 11 lines examined, three (Kuramochi, SNU119 and UWB1.289) were non-tumorigenic. Conclusions Our findings help further define which HGSOC cell models reliably generate tumors and/or ascites, critical information for preclinical drug development, validating in vitro findings, imaging and prevention studies by the OC research community. PMID:26050922

  19. Toll-Like Receptors Expression in Follicular Cells of Patients with Poor Ovarian Response

    PubMed Central

    Taghavi, Seyed Abdolvahab; Ashrafi, Mahnaz; Mehdizadeh, Mehdi; Karimian, Leili; Joghataie, Mohammad Taghi; Aflatoonian, Reza

    2014-01-01

    Background Poor ovarian response (POR) to gonadotropin stimulation has led to a significant decline in success rate of fertility treatment. The immune system may play an important role in pathophysiology of POR by dysfunctions of cytokines and the growth factor network, and the presence of ovarian auto-antibodies. The aim of this study is to investigate the expression of toll-like receptors (TLR) 1, 2, 4, 5, 6 and cyclooxygenase (COX) 2 genes in follicular cells and concentration of interleukin (IL)-6, IL-8 and macrophage migration inhibitory factor (MIF), as major parts of innate immunity, in follicular fluid (FF) obtained from POR women in comparison with normal women. Materials and Methods In this case-control study, 20 infertile POR patients and 20 normal women took part in this study and underwent controlled ovarian stimulation. The FF was obtained from the largest follicle (>18 mm). The FF was centrifuged and cellular pellet was then used for evaluation of expression of TLRs and COX2 genes by real-time PCR. FF was used for quantitative analysis for IL-6, IL-8 and MIF by enzyme-linked immunosorbent assay (ELISA). Results TLR1, 2, 4, 5, 6 and COX2 gene expression were significantly higher in POR (p<0.05). Concentration of IL-6, IL-8 and MIF proteins was significantly increased in POR compared with normal women (p<0.05). Conclusion These findings support the hypothesis that the immune system may be involved in pathophysiology of POR through TLRs. PMID:25083184

  20. Clinical Significance of Tissue Factor Pathway Inhibitor 2, a Serum Biomarker Candidate for Ovarian Clear Cell Carcinoma

    PubMed Central

    Arakawa, Noriaki; Kobayashi, Hiroshi; Yonemoto, Naohiro; Masuishi, Yusuke; Ino, Yoko; Shigetomi, Hiroshi; Furukawa, Naoto; Ohtake, Norihisa; Miyagi, Yohei; Hirahara, Fumiki; Hirano, Hisashi; Miyagi, Etsuko

    2016-01-01

    Background There is currently no reliable serum biomarker for ovarian clear cell carcinoma (CCC), a highly lethal histological subtype of epithelial ovarian cancer (EOC). Previously, using a proteome-based approach, we identified tissue factor pathway inhibitor 2 (TFPI2) as a candidate serum biomarker for CCC. In this study, we sought to evaluate the clinical diagnostic performance of TFPI2 in preoperative prediction of CCC. Methods Serum TFPI2 levels were measured in serum samples from a retrospective training set consisting of patients with benign and borderline ovarian tumors, EOC subtypes, and uterine diseases. Via receiver operating characteristic (ROC) analyses, we compared the diagnostic performance of TFPI2 with that of CA125 in discrimination of patients with ovarian CCC from other patient groups. The observed diagnostic performances were examined in a prospective validation set. Results The 268-patient training set included 29 patients with ovarian CCC. Unlike CA125, which was also elevated in patients with endometriosis and several EOC subtypes, serum TFPI2 levels were specifically elevated only in ovarian CCC patients, consistent with the mRNA expression pattern in tumor tissues. The area under the ROC curve (AUC) of serum TFPI2 was obviously higher than that of CA125 for discrimination of CCC from other ovarian diseases (AUC = 0.891 versus 0.595). Applying a cut-off value of 280 pg/mL, TFPI2 could distinguish early-stage (FIGO I and II) CCC from endometriosis with 72.2% sensitivity, 93.3% specificity, and 88.8% accuracy. Similar results were confirmed in an independent 156-patient prospective validation set. Conclusions TFPI2 is a useful serum biomarker for preoperative clinical diagnosis of CCC. PMID:27798689

  1. Monoclonal antibodies to an epithelial ovarian adenocarcinoma: distinctive reactivity with xenografts of the original tumor and a cultured cell line.

    PubMed

    Baumal, R; Law, J; Buick, R N; Kahn, H; Yeger, H; Sheldon, K; Colgan, T; Marks, A

    1986-08-01

    Four monoclonal antibodies (mAb) (8C, 10B, M2A, and M2D) were produced against the human epithelial ovarian adenocarcinoma cell line, HEY. The affinity constants of binding of the mAb to cultured HEY cells were 8 X 10(8) M-1 (M2D) and 10(9) M-1 (8C and 10B). mAb 8C reacted with a major glycoprotein of Mr 90,000 on the surface of HEY cells. The four mAb differed from previously reported mAb to epithelial ovarian adenocarcinomas on the basis of their reactivity with cultured ovarian adenocarcinoma cell lines using a cell-binding radioimmunoassay, and their staining of cryostat sections of various human normal and tumor tissues using an immunoperoxidase reaction. All four mAb reacted with s.c. tumors derived by injecting cultured HEY cells into thymectomized CBA/CJ mice. However, only two of the four mAb (8C and 10B) also reacted with s.c. tumors of the original HEY xenograft from which the cultured cell line was derived. In addition, mAb 8C and 10B reacted by immunoperoxidase staining with 2 and 4 different cases, respectively, of 11 epithelial ovarian adenocarcinomas examined. Cultured HEY cells were adapted to grow i.p. in BALB/c-nu/nu mice and the i.p. tumors retained their reactivity with the monoclonal antibodies. These tumor-bearing mice offer a useful model system for studying the potential of mAb, especially 8C and 10B, for the diagnosis and treatment of patients with peritoneal extension of epithelial ovarian adenocarcinomas.

  2. Detection of polyol accumulation in a new ovarian carcinoma cell line, CABA I: a1H NMR study

    PubMed Central

    Ferretti, A; D'Ascenzo, S; Knijn, A; Iorio, E; Dolo, V; Pavan, A; Podo, F

    2002-01-01

    Ovarian carcinomas represent a major form of gynaecological malignancies, whose treatment consists mainly of surgery and chemotherapy. Besides the difficulty of prognosis, therapy of ovarian carcinomas has reached scarce improvement, as a consequence of lack of efficacy and development of drug-resistance. The need of different biochemical and functional parameters has grown, in order to obtain a larger view on processes of biological and clinical significance. In this paper we report novel metabolic features detected in a series of different human ovary carcinoma lines, by 1H NMR spectroscopy of intact cells and their extracts. Most importantly, a new ovarian adenocarcinoma line CABA I, showed strong signals in the spectral region between 3.5 and 4.0 p.p.m., assigned for the first time to the polyol sorbitol (39±11 nmol/106 cells). 13C NMR analyses of these cells incubated with [1-13C]-D-glucose demonstrated labelled-sorbitol formation. The other ovarian carcinoma cell lines (OVCAR-3, IGROV 1, SK-OV-3 and OVCA432), showed, in the same spectral region, intense resonances from other metabolites: glutathione (up to 30 nmol/106 cells) and myo-inositol (up to 50 nmol/106 cells). Biochemical and biological functions are suggested for these c