Sample records for over-expressing p2y6 receptor

  1. Hetero-oligomerization of the P2Y11 receptor with the P2Y1 receptor controls the internalization and ligand selectivity of the P2Y11 receptor.

    PubMed

    Ecke, Denise; Hanck, Theodor; Tulapurkar, Mohan E; Schäfer, Rainer; Kassack, Matthias; Stricker, Rolf; Reiser, Georg

    2008-01-01

    Nucleotides signal through purinergic receptors such as the P2 receptors, which are subdivided into the ionotropic P2X receptors and the metabotropic P2Y receptors. The diversity of functions within the purinergic receptor family is required for the tissue-specificity of nucleotide signalling. In the present study, hetero-oligomerization between two metabotropic P2Y receptor subtypes is established. These receptors, P2Y1 and P2Y11, were found to associate together when co-expressed in HEK293 cells. This association was detected by co-pull-down, immunoprecipitation and FRET (fluorescence resonance energy transfer) experiments. We found a striking functional consequence of the interaction between the P2Y11 receptor and the P2Y1 receptor where this interaction promotes agonist-induced internalization of the P2Y11 receptor. This is remarkable because the P2Y11 receptor by itself is not able to undergo endocytosis. Co-internalization of these receptors was also seen in 1321N1 astrocytoma cells co-expressing both P2Y11 and P2Y1 receptors, upon stimulation with ATP or the P2Y1 receptor-specific agonist 2-MeS-ADP. 1321N1 astrocytoma cells do not express endogenous P2Y receptors. Moreover, in HEK293 cells, the P2Y11 receptor was found to functionally associate with endogenous P2Y1 receptors. Treatment of HEK293 cells with siRNA (small interfering RNA) directed against the P2Y1 receptor diminished the agonist-induced endocytosis of the heterologously expressed GFP-P2Y11 receptor. Pharmacological characteristics of the P2Y11 receptor expressed in HEK293 cells were determined by recording Ca2+ responses after nucleotide stimulation. This analysis revealed a ligand specificity which was different from the agonist profile established in cells expressing the P2Y11 receptor as the only metabotropic nucleotide receptor. Thus the hetero-oligomerization of the P2Y1 and P2Y11 receptors allows novel functions of the P2Y11 receptor in response to extracellular nucleotides.

  2. P2Y6 Receptor Activation Promotes Inflammation and Tissue Remodeling in Pulmonary Fibrosis

    PubMed Central

    Müller, Tobias; Fay, Susanne; Vieira, Rodolfo Paula; Karmouty-Quintana, Harry; Cicko, Sanja; Ayata, Cemil Korcan; Zissel, Gernot; Goldmann, Torsten; Lungarella, Giuseppe; Ferrari, Davide; Di Virgilio, Francesco; Robaye, Bernard; Boeynaems, Jean-Marie; Lazarowski, Eduardo R.; Blackburn, Michael R.; Idzko, Marco

    2017-01-01

    Idiopathic pulmonary fibrosis (IPF) is a disease with a poor prognosis and very few available treatment options. The involvement of the purinergic receptor subtypes P2Y2 and P2X7 in fibrotic lung disease has been demonstrated recently. In this study, we investigated the role of P2Y6 receptors in the pathogenesis of IPF in humans and in the animal model of bleomycin-induced lung injury. P2Y6R expression was upregulated in lung structural cells but not in bronchoalveolar lavage (BAL) cells derived from IPF patients as well as in animals following bleomycin administration. Furthermore, BAL fluid levels of the P2Y6R agonist uridine-5′-diphosphate were elevated in animals with bleomycin-induced pulmonary fibrosis. Inflammation and fibrosis following bleomycin administration were reduced in P2Y6R-deficient compared to wild-type animals confirming the pathophysiological relevance of P2Y6R subtypes for fibrotic lung diseases. Experiments with bone marrow chimeras revealed the importance of P2Y6R expression on lung structural cells for pulmonary inflammation and fibrosis. Similar effects were obtained when animals were treated with the P2Y6R antagonist MRS2578. In vitro studies demonstrated that proliferation and secretion of the pro-inflammatory/pro-fibrotic cytokine IL-6 by lung fibroblasts are P2Y6R-mediated processes. In summary, our results clearly demonstrate the involvement of P2Y6R subtypes in the pathogenesis of pulmonary fibrosis. Thus, blocking pulmonary P2Y6 receptors might be a new target for the treatment of IPF. PMID:28878780

  3. P2Y receptors and atherosclerosis in apolipoprotein E-deficient mice

    PubMed Central

    Guns, Pieter-Jan DF; Hendrickx, Jan; Van Assche, Tim; Fransen, Paul; Bult, Hidde

    2010-01-01

    Background and purpose: P2Y nucleotide receptors are involved in the regulation of vascular tone, smooth muscle cell (SMC) proliferation and inflammatory responses. The present study investigated whether they are involved in atherosclerosis. Experimental approach: mRNA of P2Y receptors was quantified (RT-PCR) in atherosclerotic and plaque-free aorta segments of apolipoprotein E-deficient (apoE–/–) mice. Macrophage activation was assessed in J774 macrophages, and effects of non-selective purinoceptor antagonists on atherosclerosis were evaluated in cholesterol-fed apoE–/– mice. Key results: P2Y6 receptor mRNA was consistently elevated in segments with atherosclerosis, whereas P2Y2 receptor expression remained unchanged. Expression of P2Y1 or P2Y4 receptor mRNA was low or undetectable, and not influenced by atherosclerosis. P2Y6 mRNA expression was higher in cultured J774 macrophages than in cultured aortic SMCs. Furthermore, immunohistochemical staining of plaques demonstrated P2Y6-positive macrophages, but few SMCs, suggesting that macrophage recruitment accounted for the increase in P2Y6 receptor mRNA during atherosclerosis. In contrast to ATP, the P2Y6-selective agonist UDP increased mRNA expression and activity of inducible nitric oxide synthase and interleukin-6 in J774 macrophages; this effect was blocked by suramin (100–300 µM) or pyridoxal-phosphate-6-azophenyl-2′-4′-disulphonic acid (PPADS, 10–30 µM). Finally, 4-week treatment of cholesterol-fed apoE–/– mice with suramin or PPADS (50 and 25 mg·kg−1·day−1 respectively) reduced plaque size, without changing plaque composition (relative SMC and macrophage content) or cell replication. Conclusions and implications: These results suggest involvement of nucleotide receptors, particularly P2Y6 receptors, during atherosclerosis, and warrant further research with selective purinoceptor antagonists or P2Y6 receptor-deficient mice. PMID:20050854

  4. Pharmacological profiles of cloned mammalian P2Y-receptor subtypes.

    PubMed

    von Kügelgen, Ivar

    2006-06-01

    Membrane-bound P2-receptors mediate the actions of extracellular nucleotides in cell-to-cell signalling. P2X-receptors are ligand-gated ion channels, whereas P2Y-receptors belong to the superfamily of G-protein-coupled receptors (GPCRs). So far, the P2Y family is composed out of 8 human subtypes that have been cloned and functionally defined; species orthologues have been found in many vertebrates. P2Y1-, P2Y2-, P2Y4-, P2Y6-, and P2Y11-receptors all couple to stimulation of phospholipase C. The P2Y11-receptor mediates in addition a stimulation of adenylate cyclase. In contrast, activation of the P2Y12-, P2Y13-, and P2Y14-receptors causes an inhibition of adenylate cyclase activity. The expression of P2Y1-receptors is widespread. The receptor is involved in blood platelet aggregation, vasodilatation and neuromodulation. It is activated by ADP and ADP analogues including 2-methylthio-ADP (2-MeSADP). 2'-Deoxy-N6-methyladenosine-3',5'-bisphosphate (MRS2179) and 2-chloro-N6-methyl-(N)-methanocarba-2'-deoxyadenosine 3',5'-bisphosphate (MRS2279) are potent and selective antagonists. P2Y2 transcripts are abundantly distributed. One important example for its functional role is the control of chloride ion fluxes in airway epithelia. The P2Y2-receptor is activated by UTP and ATP and blocked by suramin. The P2Y2-agonist diquafosol is used for the treatment of the dry eye disease. P2Y4-receptors are expressed in the placenta and in epithelia. The human P2Y4-receptor has a strong preference for UTP as agonist, whereas the rat P2Y4-receptor is activated about equally by UTP and ATP. The P2Y4-receptor is not blocked by suramin. The P2Y6-receptor has a widespread distribution including heart, blood vessels, and brain. The receptor prefers UDP as agonist and is selectively blocked by 1,2-di-(4-isothiocyanatophenyl)ethane (MRS2567). The P2Y11-receptor may play a role in the differentiation of immunocytes. The human P2Y11-receptor is activated by ATP as naturally occurring agonist and

  5. P2Y6 receptor mediates colonic NaCl secretion via differential activation of cAMP-mediated transport

    PubMed Central

    Köttgen, Michael; Löffler, Thomas; Jacobi, Christoph; Nitschke, Roland; Pavenstädt, Hermann; Schreiber, Rainer; Frische, Sebastian; Nielsen, Søren; Leipziger, Jens

    2003-01-01

    Extracellular nucleotides are important regulators of epithelial ion transport. Here we investigated nucleotide-mediated effects on colonic NaCl secretion and the signal transduction mechanisms involved. Basolateral UDP induced a sustained activation of Cl– secretion, which was completely inhibited by 293B, a specific inhibitor of cAMP-stimulated basolateral KCNQ1/KCNE3 K+ channels. We therefore speculated that a basolateral P2Y6 receptor could increase cAMP. Indeed UDP elevated cAMP in isolated crypts. We identified an epithelial P2Y6 receptor using crypt [Ca2+]i measurements, RT-PCR, and immunohistochemistry. To investigate whether the rat P2Y6elevates cAMP, we coexpressed the P2Y1 or P2Y6 receptor together with the cAMP-regulated cystic fibrosis transmembrane conductance regulator (CFTR) Cl– channel in Xenopus oocytes. A two-electrode voltage clamp was used to monitor nucleotide-induced Cl– currents. In oocytes expressing the P2Y1 receptor, ATP transiently activated the endogenous Ca2+-activated Cl– current, but not CFTR. In contrast, in oocytes expressing the P2Y6receptor, UDP transiently activated the Ca2+-activated Cl– current and subsequently CFTR. CFTR Cl– currents were identified by their halide conductance sequence. In summary we find a basolateral P2Y6 receptor in colonic epithelial cells stimulating sustained NaCl secretion by way of a synergistic increase of [Ca2+]i and cAMP. In support of these data P2Y6 receptor stimulation differentially activates CFTR in Xenopus oocytes. PMID:12569163

  6. Developmentally regulated expression of ectonucleotidases NTPDase5 and NTPDase6 and UDP-responsive P2Y receptors in the rat cochlea.

    PubMed

    O'Keeffe, Mary G; Thorne, Peter R; Housley, Gary D; Robson, Simon C; Vlajkovic, Srdjan M

    2010-04-01

    Ectonucleoside triphosphate diphosphohydrolases (E-NTPDases) regulate complex extracellular P2 receptor signalling pathways in mammalian tissues by hydrolysing extracellular nucleotides to the respective nucleosides. All enzymes from this family (NTPDase1-8) are expressed in the adult rat cochlea. This study reports the changes in expression of NTPDase5 and NTPDase6 in the developing rat cochlea. These two intracellular members of the E-NTPDase family can be released in a soluble form and show preference for nucleoside 5'-diphosphates, such as UDP and GDP. Here, we demonstrate differential spatial and temporal patterns for NTPDase5 and NTPDase6 expression during cochlear development, which are indicative of both cytosolic and extracellular action via pyrimidines. NTPDase5 is noted during the early postnatal period in developing sensory hair cells and supporting Deiters' cells of the organ of Corti, and primary auditory neurons located in the spiral ganglion. In contrast, NTPDase6 is confined to the embryonic and early postnatal hair cell bundles. NTPDase6 immunolocalisation in the developing cochlea underpins its putative role in hair cell bundle development, probably via cytosolic action, whilst NTPDase5 may have a broader extracellular role in the development of sensory and neural tissues in the rat cochlea. Both NTPDase5 and NTPDase6 colocalize with UDP-preferring P2Y(4), P2Y(6) and P2Y(14) receptors during cochlear development, but this strong association was lost in the adult cochlea. Spatiotemporal topographic expression of NTPDase5 and NTPDase6 and P2Y receptors in adult and developing cochlear tissues provide strong support for the role of pyrimidinergic signalling in cochlear development.

  7. P2X and P2Y receptors as possible targets of therapeutic manipulations in CNS illnesses.

    PubMed

    Köles, Laszlo; Furst, Susanna; Illes, Peter

    2005-03-01

    Adenine and/or uridine nucleotide-sensitive receptors are classified into two types belonging to the ligand-gated ionotropic family (P2X) and the metabotropic, G-protein-coupled family (P2Y). In humans, seven different P2X receptors (P2X(1-7)) and eight different P2Y receptors (P2Y(1), P2Y(2), P2Y(4), P2Y(6), P2Y(11-14)) have been detected hitherto. All P2 receptors are expressed in the CNS, with the preferential expression of the P2X(2), P2X(4), P2X(6) and P2Y(1) receptors in neurons. In addition to the neurotransmitter and modulator functions, neurite outgrowth, proliferation of glial cells and the expression of transmitter receptors at target cells have also been suggested to be regulated by extracellular nucleotides in the nervous system. In spite of the expanding knowledge in the purinergic research field, the present therapeutic utilization of P2 receptor ligands is mostly related to peripheral diseases such as thromboembolic disorders and cystic fibrosis. In this review we provide some evidence that P2 receptors play an important role in the regulation of CNS functions related to hippocampal activity, the mesolimbic dopaminergic system and the nociceptive system. The role of purinergic receptors located on astrocytes/microglia and implications of these receptors for neurodegenerative/neuroinflammatory disorders, CNS injury and epilepsy will be highlighted as well. (c) 2005 Prous Science. All rights reserved.

  8. Identification of 6H1 as a P2Y purinoceptor: P2Y5.

    PubMed

    Webb, T E; Kaplan, M G; Barnard, E A

    1996-02-06

    We have determined the identity of the orphan G-protein coupled receptor cDNA, 6H1, present in activated chicken T cells, as a subtype of P2Y purinoceptor. This identification is based on first on the degree of sequence identity shared with recently cloned members of the P2Y receptor family and second on the pharmacological profile. Upon transient expression in COS-7 cells the 6H1 receptor bound the radiolabel [35S]dATP alpha S specifically and with high affinity (Kd, 10 nM). This specific binding could be competitively displaced by a range of ligands active at P2 purinoceptors, with ATP being the most active (K (i)), 116 nM). Such competition studies have established the following rank order of activity: ATP ADP 2-methylthioATP alpha, beta-methylene ATP, UTP, thus confirming 6H1 as a member of the growing family of P2Y purinoceptors. As the fifth receptor of this type to be identified we suggest that it be named P2Y5.

  9. Expression and function of the metabotropic purinergic P2Y receptor family in experimental seizure models and patients with drug-refractory epilepsy.

    PubMed

    Alves, Mariana; Gomez-Villafuertes, Rosa; Delanty, Norman; Farrell, Michael A; O'Brien, Donncha F; Miras-Portugal, Maria Teresa; Hernandez, Miguel Diaz; Henshall, David C; Engel, Tobias

    2017-09-01

    ATP is released into the extracellular space during pathologic processes including increased neuronal firing. Once released, ATP acts on P2 receptors including ionotropic P2X and metabotropic P2Y receptors, resulting in changes to glial function and neuronal network excitability. Evidence suggests an involvement of P2Y receptors in the pathogenesis of epilepsy, but there has been no systematic effort to characterize the expression and function of the P2Y receptor family during seizures and in experimental and human epilepsy. Status epilepticus was induced using either intra-amygdala kainic acid or pilocarpine to characterize the acute- and long-term changes in hippocampal P2Y expression. P2Y expression was also investigated in brain tissue from patients with temporal lobe epilepsy. Finally, we analyzed the effects of two specific P2Y agonists, ADP and UTP, on seizure severity and seizure-induced cell death. Both intra-amygdala kainic acid and pilocarpine-induced status epilepticus increased the transcription of the uracil-sensitive P2Y receptors P2ry 2 , P2ry 4 , and P2ry 6 and decreased the transcription of the adenine-sensitive P2Y receptors P2ry 1 , P2ry 12 , P2ry 13 . Protein levels of P2Y 1 , P2Y 2 , P2Y 4 , and P2Y 6 were increased after status epilepticus, whereas P2Y 12 expression was decreased. In the chronic phase, P2ry 1 , P2ry 2 , and P2ry 6 transcription and P2Y 1 , P2Y 2 , and P2Y 12 protein levels were increased with no changes for the other P2Y receptors. In hippocampal samples from patients with temporal lobe epilepsy, P2Y 1 and P2Y 2 protein expression was increased, whereas P2Y 13 levels were lower. Demonstrating a functional contribution of P2Y receptors to seizures, central injection of ADP exacerbated seizure severity, whereas treatment with UTP decreased seizure severity during status epilepticus in mice. The present study is the first to establish the specific hippocampal expression profile and function of the P2Y receptor family after

  10. Functional expression of purinergic P2 receptors and transient receptor potential channels by the human urothelium

    PubMed Central

    Shabir, Saqib; Cross, William; Kirkwood, Lisa A.; Pearson, Joanna F.; Appleby, Peter A.; Walker, Dawn; Eardley, Ian

    2013-01-01

    In addition to its role as a physical barrier, the urothelium is considered to play an active role in mechanosensation. A key mechanism is the release of transient mediators that activate purinergic P2 receptors and transient receptor potential (TRP) channels to effect changes in intracellular Ca2+. Despite the implied importance of these receptors and channels in urothelial tissue homeostasis and dysfunctional bladder disease, little is known about their functional expression by the human urothelium. To evaluate the expression and function of P2X and P2Y receptors and TRP channels, the human ureter and bladder were used to separate urothelial and stromal tissues for RNA isolation and cell culture. RT-PCR using stringently designed primer sets was used to establish which P2 and TRP species were expressed at the transcript level, and selective agonists/antagonists were used to confirm functional expression by monitoring changes in intracellular Ca2+ and in a scratch repair assay. The results confirmed the functional expression of P2Y4 receptors and excluded nonexpressed receptors/channels (P2X1, P2X3, P2X6, P2Y6, P2Y11, TRPV5, and TRPM8), while a dearth of specific agonists confounded the functional validation of expressed P2X2, P2X4, P2Y1, P2Y2, TRPV2, TRPV3, TRPV6 and TRPM7 receptors/channels. Although a conventional response was elicited in control stromal-derived cells, the urothelial cell response to well-characterized TRPV1 and TRPV4 agonists/antagonists revealed unexpected anomalies. In addition, agonists that invoked an increase in intracellular Ca2+ promoted urothelial scratch repair, presumably through the release of ATP. The study raises important questions about the ligand selectivity of receptor/channel targets expressed by the urothelium. These pathways are important in urothelial tissue homeostasis, and this opens the possibility of selective drug targeting. PMID:23720349

  11. Activation of P2Y6 receptors increases the voiding frequency in anaesthetized rats by releasing ATP from the bladder urothelium.

    PubMed

    Carneiro, Inês; Timóteo, M Alexandrina; Silva, Isabel; Vieira, Cátia; Baldaia, Catarina; Ferreirinha, Fátima; Silva-Ramos, Miguel; Correia-de-Sá, Paulo

    2014-07-01

    Despite the abundant expression of the UDP-sensitive P2Y6 receptor in urothelial cells and sub-urothelial myofibroblasts its role in the control of bladder function is not well understood. We compared the effects of UDP and of the selective P2Y6 receptor agonist, PSB0474, on bladder urodynamics in anaesthetized rats; the voided fluid was tested for ATP bioluminescence. The isolated urinary bladder was used for in vitro myographic recordings and [(3) H]-ACh overflow experiments. Instillation of UDP or PSB0474 into the bladder increased the voiding frequency (VF) without affecting the amplitude (A) and the duration (Δt) of bladder contractions; an effect blocked by the P2Y6 receptor antagonist, MRS2578. Effects mediated by urothelial P2Y6 receptors required extrinsic neuronal circuitry as they were not detected in the isolated bladder. UDP-induced bladder hyperactvity was also prevented by blocking P2X3 and P2Y1 receptors, respectively, with A317491 and MRS2179 applied i.v.. UDP decreased [(3) H]-ACh release from stimulated bladder strips with urothelium, but not in its absence. Inhibitory effects of UDP were converted into facilitation by the P2Y1 receptor antagonist, MRS2179. The P2Y6 receptor agonist increased threefold ATP levels in the voided fluid. Activation of P2Y6 receptors increased the voiding frequency indirectly by releasing ATP from the urothelium and activation of P2X3 receptors on sub-urothelial nerve afferents. Bladder hyperactivity may be partly reversed following ATP hydrolysis to ADP by E-NTPDases, thereby decreasing ACh release from cholinergic nerves expressing P2Y1 receptors. © 2014 The British Pharmacological Society.

  12. Activation of P2Y6 receptors increases the voiding frequency in anaesthetized rats by releasing ATP from the bladder urothelium

    PubMed Central

    Carneiro, Inês; Timóteo, M Alexandrina; Silva, Isabel; Vieira, Cátia; Baldaia, Catarina; Ferreirinha, Fátima; Silva-Ramos, Miguel; Correia-de-Sá, Paulo

    2014-01-01

    BACKGROUND AND PURPOSE Despite the abundant expression of the UDP-sensitive P2Y6 receptor in urothelial cells and sub-urothelial myofibroblasts its role in the control of bladder function is not well understood. EXPERIMENTAL APPROACH We compared the effects of UDP and of the selective P2Y6 receptor agonist, PSB0474, on bladder urodynamics in anaesthetized rats; the voided fluid was tested for ATP bioluminescence. The isolated urinary bladder was used for in vitro myographic recordings and [3H]-ACh overflow experiments. KEY RESULTS Instillation of UDP or PSB0474 into the bladder increased the voiding frequency (VF) without affecting the amplitude (A) and the duration (Δt) of bladder contractions; an effect blocked by the P2Y6 receptor antagonist, MRS2578. Effects mediated by urothelial P2Y6 receptors required extrinsic neuronal circuitry as they were not detected in the isolated bladder. UDP-induced bladder hyperactvity was also prevented by blocking P2X3 and P2Y1 receptors, respectively, with A317491 and MRS2179 applied i.v.. UDP decreased [3H]-ACh release from stimulated bladder strips with urothelium, but not in its absence. Inhibitory effects of UDP were converted into facilitation by the P2Y1 receptor antagonist, MRS2179. The P2Y6 receptor agonist increased threefold ATP levels in the voided fluid. CONCLUSIONS AND IMPLICATIONS Activation of P2Y6 receptors increased the voiding frequency indirectly by releasing ATP from the urothelium and activation of P2X3 receptors on sub-urothelial nerve afferents. Bladder hyperactivity may be partly reversed following ATP hydrolysis to ADP by E-NTPDases, thereby decreasing ACh release from cholinergic nerves expressing P2Y1 receptors. PMID:24697602

  13. Platelets Express Activated P2Y12 Receptor in Patients With Diabetes Mellitus.

    PubMed

    Hu, Liang; Chang, Lin; Zhang, Yan; Zhai, Lili; Zhang, Shenghui; Qi, Zhiyong; Yan, Hongmei; Yan, Yan; Luo, Xinping; Zhang, Si; Wang, Yiping; Kunapuli, Satya P; Ye, Hongying; Ding, Zhongren

    2017-08-29

    Platelets from patients with diabetes mellitus are hyperactive. Hyperactivated platelets may contribute to cardiovascular complications and inadequate responses to antiplatelet agents in the setting of diabetes mellitus. However, the underlying mechanism of hyperactivated platelets is not completely understood. We measured P2Y 12 expression on platelets from patients with type 2 diabetes mellitus and on platelets from rats with diabetes mellitus. We also assayed platelet P2Y 12 activation by measuring cAMP and VASP phosphorylation. The antiplatelet and antithrombotic effects of AR-C78511 and cangrelor were compared in rats. Finally, we explored the role of the nuclear factor-κB pathway in regulating P2Y 12 receptor expression in megakaryocytes. Platelet P2Y 12 levels are 4-fold higher in patients with type 2 diabetes mellitus compared with healthy subjects. P2Y 12 expression correlates with ADP-induced platelet aggregation (r=0.89, P <0.01). P2Y 12 in platelets from patients with diabetes mellitus is constitutively activated. Although both AR-C78511, a potent P2Y 12 inverse agonist, and cangrelor have similar antiplatelet efficacy on platelets from healthy subjects, AR-C78511 exhibits more powerful antiplatelet effects on diabetic platelets than cangrelor (aggregation ratio 36±3% versus 49±5%, respectively, P <0.05). Using a FeCl 3 -injury mesenteric arteriole thrombosis model in rats and an arteriovenous shunt thrombosis model in rats, we found that the inverse agonist AR-C78511 has greater antithrombotic effects on GK rats with diabetes mellitus than cangrelor (thrombus weight 4.9±0.3 mg versus 8.3±0.4 mg, respectively, P <0.01). We also found that a pathway involving high glucose-reactive oxygen species-nuclear factor-κB increases platelet P2Y 12 receptor expression in diabetes mellitus. Platelet P2Y 12 receptor expression is significantly increased and the receptor is constitutively activated in patients with type 2 diabetes mellitus, which contributes to

  14. ARF6-dependent regulation of P2Y receptor traffic and function in human platelets.

    PubMed

    Kanamarlapudi, Venkateswarlu; Owens, Sian E; Saha, Keya; Pope, Robert J; Mundell, Stuart J

    2012-01-01

    Adenosine diphosphate (ADP) is a critical regulator of platelet activation, mediating its actions through two G protein-coupled receptors, the P2Y(1) and P2Y(12) purinoceptors. Recently, we demonstrated that P2Y(1) and P2Y(12) purinoceptor activities are rapidly and reversibly modulated in human platelets, revealing that the underlying mechanism requires receptor internalization and subsequent trafficking as an essential part of this process. In this study we investigated the role of the small GTP-binding protein ADP ribosylation factor 6 (ARF6) in the internalization and function of P2Y(1) and P2Y(12) purinoceptors in human platelets. ARF6 has been implicated in the internalization of a number of GPCRs, although its precise molecular mechanism in this process remains unclear. In this study we show that activation of either P2Y(1) or P2Y(12) purinoceptors can stimulate ARF6 activity. Further blockade of ARF6 function either in cell lines or human platelets blocks P2Y purinoceptor internalization. This blockade of receptor internalization attenuates receptor resensitization. Furthermore, we demonstrate that Nm23-H1, a nucleoside diphosphate (NDP) kinase regulated by ARF6 which facilitates dynamin-dependent fission of coated vesicles during endocytosis, is also required for P2Y purinoceptor internalization. These data describe a novel function of ARF6 in the internalization of P2Y purinoceptors and demonstrate the integral importance of this small GTPase upon platelet ADP receptor function.

  15. Distribution of NTPDase5 and NTPDase6 and the regulation of P2Y receptor signalling in the rat cochlea

    PubMed Central

    O’Keeffe, Mary G.; Thorne, Peter R.; Housley, Gary D.; Robson, Simon C.

    2010-01-01

    Membrane-bound ectonucleoside triphosphate diphosphohydrolases (E-NTPDases) in the inner ear regulate complex extracellular purinergic type-2 (P2) receptor signalling pathways through hydrolysis of extracellular nucleoside 5′-triphosphates and diphosphates. This study investigated the distribution of NTPDase5 and NTPDase6, two intracellular members of the E-NTPDase family, and linked this to regulation of P2 receptor signalling in the adult rat cochlea. These extracellular ectonucleotidases preferentially hydrolyse nucleoside 5′-diphosphates such as UDP and GDP. Expression of both enzymes at mRNA and protein level was detected in cochlear tissues and there was in vivo release of soluble NTPDase5 and 6 into cochlear fluids. Strong NTPDase5 immunostaining was found in the spiral ganglion neurones and supporting Deiters’ cells of the organ of Corti, while NTPDase6 was confined to the inner hair cells. Upregulation of NTPDase5 after exposure to loud sound indicates a dynamic role for NTPDase5 in cochlear response to stress, whereas NTPDase6 may have more limited extracellular roles. Noise-induced upregulation of co-localised UDP-preferring P2Y6 receptors in the spiral ganglion neurons further supports the involvement of NTPDase5 in regulation of P2Y receptor signalling. Noise stress also induced P2Y14 (UDP- and UDP-glucose preferring) receptor expression in the root processes of the outer sulcus cells, but this was not associated with localization of the E-NTPDases. PMID:20806016

  16. Autocrine Regulation of UVA-Induced IL-6 Production via Release of ATP and Activation of P2Y Receptors

    PubMed Central

    Kawano, Ayumi; Kadomatsu, Remi; Ono, Miyu; Kojima, Shuji; Tsukimoto, Mitsutoshi; Sakamoto, Hikaru

    2015-01-01

    Extracellular nucleotides, such as ATP, are released from cells in response to various stimuli and act as intercellular signaling molecules through activation of P2 receptors. Exposure to the ultraviolet radiation A (UVA) component of sunlight causes molecular and cellular damage, and in this study, we investigated the involvement of extracellular nucleotides and P2 receptors in the UVA-induced cellular response. Human keratinocyte-derived HaCaT cells were irradiated with a single dose of UVA (2.5 J/cm2), and ATP release and interleukin (IL)-6 production were measured. ATP was released from cells in response to UVA irradiation, and the release was blocked by pretreatment with inhibitors of gap junction hemichannels or P2X7 receptor antagonist. IL-6 production was increased after UVA irradiation, and this increase was inhibited by ecto-nucleotidase or by antagonists of P2Y11 or P2Y13 receptor. These results suggest that UVA-induced IL-6 production is mediated by release of ATP through hemichannels and P2X7 receptor, followed by activation of P2Y11 and P2Y13 receptors. Interestingly, P2Y11 and P2Y13 were associated with the same pattern of IL-6 production, though they trigger different intracellular signaling cascades: Ca2+-dependent and PI3K-dependent, respectively. Thus, IL-6 production in response to UVA-induced ATP release involves at least two distinct pathways, mediated by activation of P2Y11 and P2Y13 receptors. PMID:26030257

  17. G protein-coupled estrogen receptor inhibits the P2Y receptor-mediated Ca(2+) signaling pathway in human airway epithelia.

    PubMed

    Hao, Yuan; Chow, Alison W; Yip, Wallace C; Li, Chi H; Wan, Tai F; Tong, Benjamin C; Cheung, King H; Chan, Wood Y; Chen, Yangchao; Cheng, Christopher H; Ko, Wing H

    2016-08-01

    P2Y receptor activation causes the release of inflammatory cytokines in the bronchial epithelium, whereas G protein-coupled estrogen receptor (GPER), a novel estrogen (E2) receptor, may play an anti-inflammatory role in this process. We investigated the cellular mechanisms underlying the inhibitory effect of GPER activation on the P2Y receptor-mediated Ca(2+) signaling pathway and cytokine production in airway epithelia. Expression of GPER in primary human bronchial epithelial (HBE) or 16HBE14o- cells was confirmed on both the mRNA and protein levels. Stimulation of HBE or 16HBE14o- cells with E2 or G1, a specific agonist of GPER, attenuated the nucleotide-evoked increases in [Ca(2+)]i, whereas this effect was reversed by G15, a GPER-specific antagonist. G1 inhibited the secretion of two proinflammatory cytokines, interleukin (IL)-6 and IL-8, in cells stimulated by adenosine 5'-(γ-thio)triphosphate (ATPγS). G1 stimulated a real-time increase in cAMP levels in 16HBE14o- cells, which could be inhibited by adenylyl cyclase inhibitors. The inhibitory effects of E2 or G1 on P2Y receptor-induced increases in Ca(2+) were reversed by treating the cells with a protein kinase A (PKA) inhibitor. These results demonstrated that the inhibitory effects of G1 or E2 on P2Y receptor-mediated Ca(2+) mobilization and cytokine secretion were due to GPER-mediated activation of a cAMP-dependent PKA pathway. This study has reported, for the first time, the expression and function of GPER as an anti-inflammatory component in human bronchial epithelia, which may mediate through its opposing effects on the pro-inflammatory pathway activated by the P2Y receptors in inflamed airway epithelia.

  18. The metabotropic P2Y4 receptor participates in the commitment to differentiation and cell death of human neuroblastoma SH-SY5Y cells.

    PubMed

    Cavaliere, Fabio; Nestola, Valeria; Amadio, Susanna; D'Ambrosi, Nadia; Angelini, Daniela F; Sancesario, Giuseppe; Bernardi, Giorgio; Volonté, Cinzia

    2005-02-01

    Extracellular nucleotides exert a variety of biological actions through different subtypes of P2 receptors. Here we characterized in the human neuroblastoma SH-SY5Y cells the simultaneous presence of various P2 receptors, belonging to the P2X ionotropic and P2Y metabotropic families. Western blot analysis detected the P2X1,2,4,5,6,7 and P2Y1,2,4,6, but not the P2X3 and P2Y12 receptors. We then investigated which biological effects were mediated by the P2Y4 subtype and its physiological pyrimidine agonist UTP. We found that neuronal differentiation of the SH-SY5Y cells with dibutiryl-cAMP increased the expression of the P2Y4 protein and that UTP itself was able to positively interfere with neuritogenesis. Moreover, transient transfection and activation of P2Y4 also facilitated neuritogenesis in SH-SY5Y cells, as detected by morphological phase contrast analysis and confocal examination of neurofilament proteins NFL. This was concurrent with increased transcription of immediate-early genes linked to differentiation such as cdk-5 and NeuroD6, and activity of AP-1 transcription family members such as c-fos, fos-B, and jun-D. Nevertheless, a prolonged activation of the P2Y4 receptor by UTP also induced cell death, both in naive, differentiated, and P2Y4-transfected SH-SY5Y cells, as measured by direct count of intact nuclei and cytofluorimetric analysis of damaged DNA. Taken together, our data indicate that the high expression and activation of the P2Y4 receptor participates in the neuronal differentiation and commitment to death of SH-SY5Y cells.

  19. Subtype specific internalization of P2Y1 and P2Y2 receptors induced by novel adenosine 5′-O-(1-boranotriphosphate) derivatives

    PubMed Central

    Tulapurkar, M E; Laubinger, W; Nahum, V; Fischer, B; Reiser, G

    2004-01-01

    P2Y-nucleotide receptors represent important targets for drug development. The lack of stable and receptor specific agonists, however, has prevented successful therapeutic applications. A novel series of P-boronated ATP derivatives (ATP-α-B) were synthesized by substitution of a nonbridging O at Pα with a BH3 group. This introduces a chiral center, thus resulting in diastereoisomers. In addition, at C2 of the adenine ring a further substitution was made (Cl- or methylthio-). The pairs of diastereoisomers were denoted here as A and B isomers. Here, we tested the receptor subtype specificity of these analogs on HEK 293 cells stably expressing rat P2Y1 and rat P2Y2 receptors, respectively, both attached to the fluorescent marker protein GFP (rP2Y1-GFP, rP2Y2-GFP). We investigated agonist-induced receptor endocytosis, [Ca2+]i rise and arachidonic acid (AA) release. Agonist-induced endocytosis of rP2Y1-GFP was more pronounced for the A isomers than the corresponding B counterparts for all ATP-α-B analogs. Both 2-MeS-substituted diastereoisomers induced a greater degree of agonist-induced receptor endocytosis as compared to the 2-Cl-substituted derivatives. Endocytosis results are in accordance with the potency to induce Ca2+ release by these compounds in HEK 293 cells stably transfected with rP2Y1. In case of rP2Y2-GFP, the borano-nucleotides were very weak agonists in comparison to UTP and ATP in terms of Ca2+ release, AA release and in inducing receptor endocytosis. The different ATP-α-B derivatives and also the diastereoisomers were equally ineffective. Thus, the new agonists may be considered as potent and highly specific agonist drug candidates for P2Y1 receptors. The difference in activity of the ATP analogs at P2Y receptors could be used as a tool to investigate structural differences between P2Y receptor subtypes. PMID:15197109

  20. Identification of endogenous surrogate ligands for human P2Y receptors through an in silico search.

    PubMed

    Hiramoto, Takeshi; Nonaka, Yosuke; Inoue, Kazuko; Yamamoto, Takefumi; Omatsu-Kanbe, Mariko; Matsuura, Hiroshi; Gohda, Keigo; Fujita, Norihisa

    2004-05-01

    G protein-coupled receptors (GPCRs) are distributed widely throughout the human body, and nearly 50% of current medicines act on a GPCR. GPCRs are considered to consist of seven transmembrane alpha-helices that form an alpha-helical bundle in which agonists and antagonists bind. A 3D structure of the target GPCR is indispensable for designing novel medicines acting on a GPCR. We have previously constructed the 3D structure of human P2Y(1) (hP2Y(1)) receptor, a GPCR, by homology modeling with the 3D structure of bovine rhodopsin as a template. In the present study, we have employed an in silico screening for compounds that could bind to the hP2Y(1)-receptor model using AutoDock 3.0. We selected 21 of the 30 top-ranked compounds, and by measuring intracellular Ca(2+) concentration, we identified 12 compounds that activated or blocked the hP2Y(1) receptor stably expressed in recombinant CHO cells. 5-Phosphoribosyl-1-pyrophosphate (PRPP) was found to activate the hP2Y(1) receptor with a low ED(50) value of 15 nM. The Ca(2+) assays showed it had no significant effect on P2Y(2), P2Y(6), or P2X(2) receptors, but acted as a weak agonist on the P2Y(12) receptor. This is the first study to rationally identify surrogate ligands for the P2Y-receptor family.

  1. The P2Y(1) and P2Y(12) receptors mediate autoinhibition of transmitter release in sympathetic innervated tissues.

    PubMed

    Quintas, Clara; Fraga, Sónia; Gonçalves, Jorge; Queiroz, Glória

    2009-12-01

    In the sympathetic nervous system, ATP is a co-transmitter and modulator of transmitter release, inhibiting noradrenaline release by acting on P2Y autoreceptors, but in peripheral tissues the subtypes involved have only scarcely been identified. We investigated the identity of the noradrenaline release-inhibiting P2Y subtypes in the epididymal portion of vas deferens and tail artery of the rat. The subtypes operating as autoreceptors, the signalling mechanism and cross-talk with alpha(2)-autoreceptors, was also investigated in the epididymal portion. In both tissues, the nucleotides 2-methylthioATP, 2-methylthioADP, ADP and ATP inhibited noradrenaline release up to 68%, with the following order of potency: 2-methylthioADP=2-methylthioATP>ADP=ATP in the epididymal portion and 2-methylthioADP=2-methylthioATP=ADP>ATP in the tail artery. The selective P2Y(1) antagonist 2'-deoxy-N(6)-methyladenosine 3',5'-bisphosphate (30microM) and the P2Y(12) antagonist 2,2-dimethyl-propionic acid 3-(2-chloro-6-methylaminopurin-9-yl)-2-(2,2-dimethyl-propionyloxymethyl)-propyl ester (30microM) increased noradrenaline release per se by 25+/-8% and 18+/-3%, respectively, in the epididymal portion but not in tail artery. Both antagonists attenuated the effect of nucleotides in the epididymal portion whereas in tail artery only the P2Y(1) antagonist was effective. The agonist of P2Y(1) and P2Y(12) receptors, 2-methylthioADP, caused an inhibition of noradrenaline release that was not prevented by inhibition of phospholipase C or protein kinase C but was abolished by pertussis toxin. 2-methylthioADP and the adenosine A(1) receptor agonist N(6)-cyclopentyladenosine were less potent at inhibiting noradrenaline release under marked influence of alpha(2)-autoinhibition. In both tissues, nucleotides modulate noradrenaline release by activation of inhibitory P2Y(1) receptors but in the epididymal portion P2Y(12) receptors also participate. P2Y(1) and P2Y(12) receptors are coupled to G

  2. Functional expression of purinergic P2 receptors and transient receptor potential channels by the human urothelium.

    PubMed

    Shabir, Saqib; Cross, William; Kirkwood, Lisa A; Pearson, Joanna F; Appleby, Peter A; Walker, Dawn; Eardley, Ian; Southgate, Jennifer

    2013-08-01

    In addition to its role as a physical barrier, the urothelium is considered to play an active role in mechanosensation. A key mechanism is the release of transient mediators that activate purinergic P2 receptors and transient receptor potential (TRP) channels to effect changes in intracellular Ca²⁺. Despite the implied importance of these receptors and channels in urothelial tissue homeostasis and dysfunctional bladder disease, little is known about their functional expression by the human urothelium. To evaluate the expression and function of P2X and P2Y receptors and TRP channels, the human ureter and bladder were used to separate urothelial and stromal tissues for RNA isolation and cell culture. RT-PCR using stringently designed primer sets was used to establish which P2 and TRP species were expressed at the transcript level, and selective agonists/antagonists were used to confirm functional expression by monitoring changes in intracellular Ca²⁺ and in a scratch repair assay. The results confirmed the functional expression of P2Y₄ receptors and excluded nonexpressed receptors/channels (P2X₁, P2X₃, P2X₆, P2Y₆, P2Y₁₁, TRPV5, and TRPM8), while a dearth of specific agonists confounded the functional validation of expressed P2X₂, P2X₄, P2Y₁, P2Y₂, TRPV2, TRPV3, TRPV6 and TRPM7 receptors/channels. Although a conventional response was elicited in control stromal-derived cells, the urothelial cell response to well-characterized TRPV1 and TRPV4 agonists/antagonists revealed unexpected anomalies. In addition, agonists that invoked an increase in intracellular Ca²⁺ promoted urothelial scratch repair, presumably through the release of ATP. The study raises important questions about the ligand selectivity of receptor/channel targets expressed by the urothelium. These pathways are important in urothelial tissue homeostasis, and this opens the possibility of selective drug targeting.

  3. The purinergic receptor subtype P2Y2 mediates chemotaxis of neutrophils and fibroblasts in fibrotic lung disease

    PubMed Central

    Karmouty-Quintana, Harry; Cicko, Sanja; Ayata, Korcan; Zissel, Gernot; Goldmann, Torsten; Lungarella, Giuseppe; Ferrari, Davide; Di Virgilio, Francesco; Robaye, Bernard; Boeynaems, Jean-Marie; Blackburn, Michael R.; Idzko, Marco

    2017-01-01

    Idiopathic pulmonary fibrosis (IPF) is a devastating disease with few available treatment options. Recently, the involvement of purinergic receptor subtypes in the pathogenesis of different lung diseases has been demonstrated. Here we investigated the role of the purinergic receptor subtype P2Y2 in the context of fibrotic lung diseases. The concentration of different nucleotides was measured in the broncho-alveolar lavage (BAL) fluid derived from IPF patients and animals with bleomycin-induced pulmonary fibrosis. In addition expression of P2Y2 receptors by different cell types was determined. To investigate the functional relevance of P2Y2 receptors for the pathogenesis of the disease the bleomycin model of pulmonary fibrosis was used. Finally, experiments were performed in pursuit of the involved mechanisms. Compared to healthy individuals or vehicle treated animals, extracellular nucleotide levels in the BAL fluid were increased in patients with IPF and in mice after bleomycin administration, paralleled by a functional up-regulation of P2Y2R expression. Both bleomycin-induced inflammation and fibrosis were reduced in P2Y2R-deficient compared to wild type animals. Mechanistic studies demonstrated that recruitment of neutrophils into the lungs, proliferation and migration of lung fibroblasts as well as IL6 production are key P2Y2R mediated processes. Our results clearly demonstrate the involvement of P2Y2R subtypes in the pathogenesis of fibrotic lung diseases in humans and mice and hence support the development of selective P2Y2R antagonists for the treatment of IPF. PMID:28415591

  4. Functionalized Congeners of P2Y1 Receptor Antagonists:

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    de Castro, Sonia; Maruoka, Hiroshi; Hong, Kunlun

    2010-01-01

    The P2Y{sub 1} receptor is a prothrombotic G protein-coupled receptor (GPCR) activated by ADP. Preference for the North (N) ring conformation of the ribose moiety of adenine nucleotide 3',5'-bisphosphate antagonists of the P2Y{sub 1} receptor was established by using a ring-constrained methanocarba (a bicyclo[3.1.0]hexane) ring as a ribose substitute. A series of covalently linkable N{sup 6}-methyl-(N)-methanocarba-2'-deoxyadenosine-3',5'-bisphosphates containing extended 2-alkynyl chains was designed, and binding affinity at the human (h) P2Y{sub 1} receptor determined. The chain of these functionalized congeners contained hydrophilic moieties, a reactive substituent, or biotin, linked via an amide. Variation of the chain length and position of anmore » intermediate amide group revealed high affinity of carboxylic congener 8 (K{sub i} 23 nM) and extended amine congener 15 (K{sub i} 132 nM), both having a 2-(1-pentynoyl) group. A biotin conjugate 18 containing an extended {epsilon}-aminocaproyl spacer chain exhibited higher affinity than a shorter biotinylated analogue. Alternatively, click coupling of terminal alkynes of homologous 2-dialkynyl nucleotide derivatives to alkyl azido groups produced triazole derivatives that bound to the P2Y{sub 1} receptor following deprotection of the bisphosphate groups. The preservation of receptor affinity of the functionalized congeners was consistent with new P2Y{sub 1} receptor modeling and ligand docking. Attempted P2Y{sub 1} antagonist conjugation to PAMAM dendrimer carriers by amide formation or palladium-catalyzed reaction between an alkyne on the dendrimer and a 2-iodopurine-derivatized nucleotide was unsuccessful. A dialkynyl intermediate containing the chain length favored in receptor binding was conjugated to an azide-derivatized dendrimer, and the conjugate inhibited ADP-promoted human platelet aggregation. This is the first example of attaching a strategically functionalized P2Y receptor antagonist to a PAMAM

  5. Modeling Interactions among Individual P2 Receptors to Explain Complex Response Patterns over a Wide Range of ATP Concentrations

    PubMed Central

    Xing, Shu; Grol, Matthew W.; Grutter, Peter H.; Dixon, S. Jeffrey; Komarova, Svetlana V.

    2016-01-01

    Extracellular ATP acts on the P2X family of ligand-gated ion channels and several members of the P2Y family of G protein-coupled receptors to mediate intercellular communication among many cell types including bone-forming osteoblasts. It is known that multiple P2 receptors are expressed on osteoblasts (P2X2,5,6,7 and P2Y1,2,4,6). In the current study, we investigated complex interactions within the P2 receptor network using mathematical modeling. To characterize individual P2 receptors, we extracted data from published studies of overexpressed human and rodent (rat and mouse) receptors and fit their dependencies on ATP concentration using the Hill equation. Next, we examined responses induced by an ensemble of endogenously expressed P2 receptors. Murine osteoblastic cells (MC3T3-E1 cells) were loaded with fluo-4 and stimulated with varying concentrations of extracellular ATP. Elevations in the concentration of cytosolic free calcium ([Ca2+]i) were monitored by confocal microscopy. Dependence of the calcium response on ATP concentration exhibited a complex pattern that was not explained by the simple addition of individual receptor responses. Fitting the experimental data with a combination of Hill equations from individual receptors revealed that P2Y1 and P2X7 mediated the rise in [Ca2+]i at very low and high ATP concentrations, respectively. Interestingly, to describe responses at intermediate ATP concentrations, we had to assume that a receptor with a K1∕2 in that range (e.g. P2Y4 or P2X5) exerts an inhibitory effect. This study provides new insights into the interactions among individual P2 receptors in producing an ensemble response to extracellular ATP. PMID:27468270

  6. P2Y2 Receptor and EGFR Cooperate to Promote Prostate Cancer Cell Invasion via ERK1/2 Pathway.

    PubMed

    Li, Wei-Hua; Qiu, Ying; Zhang, Hong-Quan; Tian, Xin-Xia; Fang, Wei-Gang

    2015-01-01

    As one member of G protein-coupled P2Y receptors, P2Y2 receptor can be equally activated by extracellular ATP and UTP. Our previous studies have proved that activation of P2Y2 receptor by extracellular ATP could promote prostate cancer cell invasion and metastasis in vitro and in vivo via regulating the expressions of some epithelial-mesenchymal transition/invasion-related genes (including IL-8, E-cadherin, Snail and Claudin-1), and the most significant change in expression of IL-8 was observed after P2Y2 receptor activation. However, the signaling pathway downstream of P2Y2 receptor and the role of IL-8 in P2Y2-mediated prostate cancer cell invasion remain unclear. Here, we found that extracellular ATP/UTP induced activation of EGFR and ERK1/2. After knockdown of P2Y2 receptor, the ATP -stimulated phosphorylation of EGFR and ERK1/2 was significantly suppressed. Further experiments showed that inactivation of EGFR and ERK1/2 attenuated ATP-induced invasion and migration, and suppressed ATP-mediated IL-8 production. In addition, knockdown of IL-8 inhibited ATP-mediated invasion and migration of prostate cancer cells. These findings suggest that P2Y2 receptor and EGFR cooperate to upregulate IL-8 production via ERK1/2 pathway, thereby promoting prostate cancer cell invasion and migration. Thus blocking of the P2Y2-EGFR-ERK1/2 pathway may provide effective therapeutic interventions for prostate cancer.

  7. Pharmacological characterization of nucleotide P2Y receptors on endothelial cells of the mouse aorta

    PubMed Central

    Guns, Pieter-Jan D F; Korda, András; Crauwels, Herta M; Van Assche, Tim; Robaye, Bernard; Boeynaems, Jean-Marie; Bult, Hidde

    2005-01-01

    Nucleotides regulate various effects including vascular tone. This study was aimed to characterize P2Y receptors on endothelial cells of the aorta of C57BL6 mice. Five adjacent segments (width 2 mm) of the thoracic aorta were mounted in organ baths to measure isometric force development. Nucleotides evoked complete (adenosine 5′ triphosphate (ATP), uridine 5′ triphosphate (UTP), uridine 5′ diphosphate (UDP); >90%) or partial (adenosine 5′ diphosphate (ADP)) relaxation of phenylephrine precontracted thoracic aortic rings of C57BL6 mice. Relaxation was abolished by removal of the endothelium and was strongly suppressed (>90%) by inhibitors of nitric oxide synthesis. The rank order of potency was: UDP∼UTP∼ADP>adenosine 5′-[γ-thio] triphosphate (ATPγS)>ATP, with respective pD2 values of 6.31, 6.24, 6.22, 5.82 and 5.40. These results are compatible with the presence of P2Y1 (ADP>ATP), P2Y2 or P2Y4 (ATP and UTP) and P2Y6 (UDP) receptors. P2Y4 receptors were not involved, since P2Y4-deficient mice displayed unaltered responses to ATP and UTP. The purinergic receptor antagonist suramin exerted surmountable antagonism for all agonists. Its apparent pKb for ATP (4.53±0.07) was compatible with literature, but the pKb for UTP (5.19±0.03) was significantly higher. This discrepancy suggests that UTP activates supplementary non-P2Y2 receptor subtype(s). Further, pyridoxal-phosphate-6-azophenyl-2′-4′-disulphonic acid (PPADS) showed surmountable (UTP, UDP), nonsurmountable (ADP) or no antagonism (ATP). Finally, 2′-deoxy-N6-methyladenosine3′,5′-bisphosphate (MRS2179) inhibited ADP-evoked relaxation only. Taken together, these results point to the presence of functional P2Y1 (ADP), P2Y2 (ATP, UTP) and P2Y6 (UDP) receptors on murine aorta endothelial cells. The identity of the receptor(s) mediating the action of UTP is not fully clear and other P2Y subtypes might be involved in UTP-evoked vasodilatation. PMID:15997227

  8. Role of the metabotropic P2Y(4) receptor during hypoglycemia: cross talk with the ionotropic NMDAR1 receptor.

    PubMed

    Cavaliere, Fabio; Amadio, Susanna; Angelini, Daniela F; Sancesario, Giuseppe; Bernardi, Giorgio; Volonté, Cinzia

    2004-10-15

    It is well established that both extracellular ATP and glutamate exert a critical role during metabolic impairment, that several P2 receptor subunits are directly involved in this action and that a strong relationship exists between glutamatergic and purinergic signals. Therefore, here we studied the molecular behavior of the purinergic metabotropic P2Y(4) and the glutamatergic ionotropic NMDAR1 receptors during hypoglycemic cell death. We find that these proteins are oppositely modulated during glucose starvation (P2Y(4) is induced, whereas NMDAR1 is inhibited) and that both P2 and NMDA antagonists can restore basal protein expression levels. Moreover, double immunofluorescence experiments with confocal laser microscopy reveal co-localization at the membrane level between the P2Y(4) and NMDAR1 receptors, in both homologous (cerebellar granule neurons) and heterologous (Hek-293) cellular systems. This is furthermore confirmed by co-immunoprecipitation experiments. Finally, when we express the P2Y(4) receptor in the heterologous SH-SY5Y neuronal cell line, hypoglycemia then causes severe cell death and simultaneous downregulation of the NMDAR1 protein. In summary, our work establishes a potential molecular interplay between P2Y(4) and NMDAR1 receptors during glucose deprivation and the causative role of the P2Y(4) during cell death.

  9. A Novel Mechanism of γ-Irradiation-Induced IL-6 Production Mediated by P2Y11 Receptor in Epidermal Keratinocytes.

    PubMed

    Ohsaki, Airi; Miyano, Yuki; Tanaka, Rei; Tanuma, Sei-Ichi; Kojima, Shuji; Tsukimoto, Mitsutoshi

    2018-06-01

    Skin inflammation is caused by excessive production of cytokines and chemokines in response to an external stimulus, such as radiation, but the mechanisms involved are not completely understood. Here, we report a novel mechanism of γ-irradiation-induced interleukin-6 (IL-6) production mediated by P2Y11 receptors in epidermal cells. After irradiation of HaCaT cells derived from human epidermal keratinocytes with 5 Gy of γ-rays ( 137 Cs: 0.78 Gy/min), IL-6 production was unchanged at 24 h after γ-irradiation, but was increased at 48 h. IL-6 mRNA was increased at 30 h, and IL-6 production was increased at 33 h after irradiation. The production of IL-6 was sustained at least for 4 d after irradiation. P2Y11 receptor antagonist NF157 inhibited IL-6 production in irradiated cells. Treatment with ATP, a ligand of P2Y11 receptor caused IL-6 production within 24 h. ATP-induced IL-6 production was also suppressed by NF157. Extracellular ATP level was increased after irradiation. The p38 mitogen-activated protein kinase (MAPK) and nuclear factor-kappaB (NF-κB) signaling was involved in the production of IL-6 at the downstream of P2Y11 receptor activation. In addition, the cell cycle was arrested at the G2/M phase, and DNA repair foci were not disappeared at 48 h after γ-irradiation. The protein level of histone methylation enzyme G9a, which inhibits IL-6 production, was decreased after γ-irradiation. In conclusion, we suggest that γ-irradiation induces sustained IL-6 production in HaCaT cells from 33 h after irradiation, which is mediated through P2Y11 receptor-p38 MAPK-NF-κB signaling pathway and G9a degradation. This is a novel mechanism of cytokine production in γ-irradiated cells.

  10. Agonists and antagonists for P2 receptors

    PubMed Central

    Jacobson, Kenneth A.; Costanzi, Stefano; Joshi, Bhalchandra V.; Besada, Pedro; Shin, Dae Hong; Ko, Hyojin; Ivanov, Andrei A.; Mamedova, Liaman

    2015-01-01

    Recent work has identified nucleotide agonists selective for P2Y1, P2Y2 and P2Y6 receptors and nucleotide antagonists selective for P2Y1, P2Y12 and P2X1 receptors. Selective non-nucleotide antagonists have been reported for P2Y1, P2Y2, P2Y6, P2Y12, P2Y13, P2X2/3/P2X3 and P2X7 receptors. For example, the dinucleotide INS 37217 (Up4dC) potently activates the P2Y2 receptor, and the non-nucleotide antagonist A-317491 is selective for P2X2/3/P2X3 receptors. Nucleotide analogues in which the ribose moiety is substituted by a variety of novel ring systems, including conformation-ally locked moieties, have been synthesized as ligands for P2Y receptors. The focus on conformational factors of the ribose-like moiety allows the inclusion of general modifications that lead to enhanced potency and selectivity. At P2Y1,2,4,11 receptors, there is a preference for the North conformation as indicated with (N)-methanocarba analogues. The P2Y1 antagonist MRS2500 inhibited ADP-induced human platelet aggregation with an IC50 of 0.95 nM. MRS2365, an (N)-methanocarba analogue of 2-MeSADP, displayed potency (EC50) of 0.4 nM at the P2Y1 receptor, with >10 000-fold selectivity in comparison to P2Y12 and P2Y13 receptors. At P2Y6 receptors there is a dramatic preference for the South conformation. Three-dimensional structures of P2Y receptors have been deduced from structure activity relationships (SAR), mutagenesis and modelling studies. Detailed three-dimensional structures of P2X receptors have not yet been proposed. PMID:16805423

  11. Pathophysiological consequences of receptor mistraffic: Tales from the platelet P2Y12 receptor.

    PubMed

    Cunningham, Margaret R; Aungraheeta, Riyaad; Mundell, Stuart J

    2017-07-05

    Genetic variations in G protein-coupled receptor (GPCR) genes can disrupt receptor function in a wide variety of human genetic diseases, including platelet bleeding disorders. Platelets are critical for haemostasis with inappropriate platelet activation leading to the development of arterial thrombosis, which can result in heart attack and stroke whilst decreased platelet activity is associated with an increased risk of bleeding. GPCRs expressed on the surface of platelets play key roles in regulating platelet activity and therefore function. Receptors include purinergic receptors (P2Y 1 and P2Y 12 ), proteinase-activated receptor (PAR1 and PAR4) and thromboxane receptors (TPα), among others. Pharmacological blockade of these receptors forms a powerful therapeutic tool in the treatment and prevention of arterial thrombosis. With the advance of genomic technologies, there has been a substantial increase in the identification of naturally occurring rare and common GPCR variants. These variants include single-nucleotide polymorphisms (SNPs) and insertion or deletions that have the potential to alter GPCR expression or function. A number of defects in platelet GPCRs that disrupt receptor function have now been characterized in patients with mild bleeding disorders. This review will focus on rare, function-disrupting variants of platelet GPCRs with particular emphasis upon mutations in the P2Y 12 receptor gene that affect receptor traffic to modulate platelet function. Further this review will outline how the identification and characterization of function-disrupting GPCR mutations provides an essential link in translating our detailed understanding of receptor traffic and function in cell line studies into relevant human biological systems. Copyright © 2017. Published by Elsevier B.V.

  12. Molecular mechanisms of platelet P2Y(12) receptor regulation.

    PubMed

    Cunningham, Margaret R; Nisar, Shaista P; Mundell, Stuart J

    2013-02-01

    Platelets are critical for haemostasis, however inappropriate activation can lead to the development of arterial thrombosis, which can result in heart attack and stroke. ADP is a key platelet agonist that exerts its actions via stimulation of two surface GPCRs (G-protein-coupled receptors), P2Y(1) and P2Y(12). Similar to most GPCRs, P2Y receptor activity is tightly regulated by a number of complex mechanisms including receptor desensitization, internalization and recycling. In the present article, we review the molecular mechanisms that underlie P2Y(1) and P2Y(12) receptor regulation, with particular emphasis on the structural motifs within the P2Y(12) receptor, which are required to maintain regulatory protein interaction. The implications of these findings for platelet responsiveness are also discussed.

  13. Empowering human cardiac progenitor cells by P2Y14 nucleotide receptor overexpression.

    PubMed

    Khalafalla, Farid G; Kayani, Waqas; Kassab, Arwa; Ilves, Kelli; Monsanto, Megan M; Alvarez, Roberto; Chavarria, Monica; Norman, Benjamin; Dembitsky, Walter P; Sussman, Mark A

    2017-12-01

    Autologous cardiac progenitor cell (CPC) therapy is a promising approach for treatment of heart failure (HF). There is an unmet need to identify inherent deficits in aged/diseased human CPCs (hCPCs) derived from HF patients in the attempts to augment their regenerative capacity prior to use in the clinical setting. Here we report significant functional correlations between phenotypic properties of hCPCs isolated from cardiac biopsies of HF patients, clinical parameters of patients and expression of the P2Y 14 purinergic receptor (P2Y 14 R), a crucial detector for extracellular UDP-sugars released during injury/stress. P2Y 14 R is downregulated in hCPCs derived from HF patients with lower ejection fraction or diagnosed with diabetes. Augmenting P2Y 14 R expression levels in aged/diseased hCPCs antagonizes senescence and improves functional responses. This study introduces purinergic signalling modulation as a potential strategy to rejuvenate and improve phenotypic characteristics of aged/functionally compromised hCPCs prior to transplantation in HF patients. Autologous cardiac progenitor cell therapy is a promising alternative approach to current inefficient therapies for heart failure (HF). However, ex vivo expansion and pharmacological/genetic modification of human cardiac progenitor cells (hCPCs) are necessary interventions to rejuvenate aged/diseased cells and improve their regenerative capacities. This study was designed to assess the potential of improving hCPC functional capacity by targeting the P2Y 14 purinergic receptor (P2Y 14 R), which has been previously reported to induce regenerative and anti-senescence responses in a variety of experimental models. c-Kit + hCPCs were isolated from cardiac biopsies of multiple HF patients undergoing left ventricular assist device implantation surgery. Significant correlations existed between the expression of P2Y 14 R in hCPCs and clinical parameters of HF patients. P2Y 14 R was downregulated in hCPCs derived from

  14. Activation of P2Y6 Receptors Facilitates Nonneuronal Adenosine Triphosphate and Acetylcholine Release from Urothelium with the Lamina Propria of Men with Bladder Outlet Obstruction.

    PubMed

    Silva, Isabel; Ferreirinha, Fátima; Magalhães-Cardoso, Maria Teresa; Silva-Ramos, Miguel; Correia-de-Sá, Paulo

    2015-10-01

    Deregulation of purinergic bladder signaling may contribute to persistent detrusor overactivity in patients with bladder outlet obstruction. Activation of uridine diphosphate sensitive P2Y6 receptors increases voiding frequency in rats indirectly by releasing adenosine triphosphate from the urothelium. To our knowledge this mechanism has never been tested in the human bladder. We examined the role of the uridine diphosphate sensitive P2Y6 receptor on tetrodotoxin insensitive nonneuronal adenosine triphosphate and [(3)H]acetylcholine release from the human urothelium with the lamina propria of control organ donors and patients with benign prostatic hyperplasia. The adenosine triphosphate-to-[(3)H]acetylcholine ratio was fivefold higher in mucosal urothelium/lamina propria strips from benign prostatic hyperplasia patients than control men. The selective P2Y6 receptor agonist PSB0474 (100 nM) augmented by a similar amount adenosine triphosphate and [(3)H]acetylcholine release from mucosal urothelium/lamina propria strips from both groups of individuals. The facilitatory effect of PSB0474 was prevented by MRS2578 (50 nM) and by carbenoxolone (10 μM), which block P2Y6 receptor and pannexin-1 hemichannels, respectively. Blockade of P2X3 (and/or P2X2/3) receptors with A317491 (100 nM) also attenuated release facilitation by PSB0474 in control men but not in patients with benign prostatic hyperplasia. Immunolocalization studies showed that P2Y6, P2X2 and P2X3 receptors were present in choline acetyltransferase positive urothelial cells. In contrast to P2Y6 staining, choline acetyltransferase, P2X2 and P2X3 immunoreactivity decreased in the urothelium of benign prostatic hyperplasia patients. Activation of P2Y6 receptor amplifies mucosal adenosine triphosphate release underlying bladder overactivity in patients with benign prostatic hyperplasia. Therefore, we propose selective P2Y6 receptor blockade as a novel therapeutic strategy to control persistent storage symptoms in

  15. Adenine Nucleotide Analogues Locked in a Northern Methanocarba Conformation: Enhanced Stability and Potency as P2Y1 Receptor Agonists

    PubMed Central

    Ravi, R. Gnana; Kim, Hak Sung; Servos, Jörg; Zimmermann, Herbert; Lee, Kyeong; Maddileti, Savitri; Boyer, José L.; Harden, T. Kendall; Jacobson, Kenneth A.

    2016-01-01

    Preference for the Northern (N) ring conformation of the ribose moiety of nucleotide 5′-triphosphate agonists at P2Y1, P2Y2, P2Y4, and P2Y11 receptors, but not P2Y6 receptors, was established using a ring-constrained methanocarba (a 3.1.0-bicyclohexane) ring as a ribose substitute (Kim et al. J. Med. Chem. 2002, 45, 208–218.). We have now combined the ring-constrained (N)-methanocarba modification of adenine nucleotides with other functionalities known to enhance potency at P2 receptors. The potency of the newly synthesized analogues was determined in the stimulation of phospholipase C through activation of turkey erythrocyte P2Y1 or human P2Y1 and P2Y2 receptors stably expressed in astrocytoma cells. An (N)-methanocarba-2-methylthio-ADP analogue displayed an EC50 at the hP2Y1 receptor of 0.40 nM and was 55-fold more potent than the corresponding triphosphate and 16-fold more potent than the riboside 5′-diphosphate. 2-Cl–(N)-methanocarba-ATP and its N6-Me analogue were also highly selective, full agonists at P2Y1 receptors. The (N)-methanocarba-2-methylthio and 2-chloromonophosphate analogues were full agonists exhibiting micromolar potency at P2Y1 receptors, while the corresponding ribosides were inactive. Although β,γ-methylene-ATP was inactive at P2Y receptors, β,γ-methylene-(N)-methanocarba-ATP was a potent hP2Y1 receptor agonist with an EC50 of 160 nM and was selective versus hP2Y2 and hP2Y4 receptors. The rates of hydrolysis of Northern (N) and Southern (S) methanocarba analogues of AMP by rat 5′-ectonucleotidase were negligible. The rates of hydrolysis of the corresponding triphosphates by recombinant rat NTPDase1 and 2 were studied. Both isomers were hydrolyzed by NTPDase 1 at about half the rate of ATP hydrolysis. The (N) isomer was hardly hydrolyzed by NTPDase 2, while the (S) isomer was hydrolyzed at one-third of the rate of ATP hydrolysis. This suggests that new, more stable and selective nucleotide agonists may be designed on the basis of

  16. The Metabotropic Purinergic P2Y Receptor Family as Novel Drug Target in Epilepsy.

    PubMed

    Alves, Mariana; Beamer, Edward; Engel, Tobias

    2018-01-01

    Epilepsy encompasses a heterogeneous group of neurological syndromes which are characterized by recurrent seizures affecting over 60 million people worldwide. Current anti-epileptic drugs (AEDs) are mainly designed to target ion channels and/or GABA or glutamate receptors. Despite recent advances in drug development, however, pharmacoresistance in epilepsy remains as high as 30%, suggesting the need for the development of new AEDs with a non-classical mechanism of action. Neuroinflammation is increasingly recognized as one of the key players in seizure generation and in the maintenance of the epileptic phenotype. Consequently, targeting signaling molecules involved in inflammatory processes may represent new avenues to improve treatment in epilepsy. Nucleotides such as adenosine-5'-triphosphate (ATP) and uridine-5'-triphosphate (UTP) are released in the brain into the extracellular space during pathological conditions such as increased neuronal firing or cell death. Once released, these nucleotides bind to and activate specific purinergic receptors termed P2 receptors where they mediate the release of gliotransmitters and drive neuronal hyperexcitation and neuroinflammatory processes. This includes the fast acting ionotropic P2X channels and slower-acting G-protein-coupled P2Y receptors. While the expression and function of P2X receptors has been well-established in experimental models of epilepsy, emerging evidence is now also suggesting a prominent role for the P2Y receptor subfamily in seizure generation and the maintenance of epilepsy. In this review we discuss data supporting a role for the P2Y receptor family in epilepsy and the most recent finding demonstrating their involvement during seizure-induced pathology and in epilepsy.

  17. Long-Term Over-Expression of Neuropeptide Y in Hypothalamic Paraventricular Nucleus Contributes to Adipose Tissue Insulin Resistance Partly via the Y5 Receptor

    PubMed Central

    Long, Min; Zhou, Jiyin; Li, Dandan; Zheng, Lu; Xu, Zihui; Zhou, Shiwen

    2015-01-01

    Intracerebroventricular injection and overexpression of Neuropeptide Y (NPY) in the paraventricular nucleus (PVN) has been shown to induce obesity and glucose metabolism disorder in rodents; however, the underlying mechanisms are still unclear. The aim of this study was to investigate the mechanism contributing to glucose metabolic disturbance induced by NPY. Recombinant lentiviral NPY vectors were injected into the PVN of rats fed a high fat (HFD) or low-fat diet. 8 weeks later, in vivo intravenous glucose tolerance tests and euglycemic-hyperinsulinemic clamp revealed that insulin resistance of adipose tissue were induced by NPY overexpression with or without HFD. NPY increased food intake, but did not change blood glucose, glycated hemoglobin A1c (HbA1c) or lipid levels. However, NPY decreased the expression of pGSK3β, PI3K p85 and pAKTSer473 in adipose tissue of rats. In vitro, 3T3-L1 adipocytes were treated with NPY, NPY Y1 and Y5 receptor antagonists. Glucose consumption and 2-deoxy-D-[3H] glucose uptake were partly inhibited by NPY, while a decrease in PI3K-AKT pathway signaling and a decreased expression of pGSK3α and pGSK3β were observed. Nevertheless, a Y5 receptor antagonist (L-152,804) reversed the effects of NPY on glucose uptake and consumption. These data suggest that long-term over-expression of NPY in PVN contributes to the establishment of adipose tissue insulin resistance, at least partly via the Y5 Receptor. PMID:25993471

  18. Hypoxia attenuates purinergic P2X receptor-induced inflammatory gene expression in brainstem microglia

    PubMed Central

    Smith, Stephanie MC; Mitchell, Gordon S; Friedle, Scott A; Sibigtroth, Christine M; Vinit, Stéphane; Watters, Jyoti J

    2013-01-01

    Hypoxia and increased extracellular nucleotides are frequently coincident in the brainstem. Extracellular nucleotides are potent modulators of microglial inflammatory gene expression via P2X purinergic receptor activation. Although hypoxia is also known to modulate inflammatory gene expression, little is known about how hypoxia or P2X receptor activation alone affects inflammatory molecule production in brainstem microglia, nor how hypoxia and P2X receptor signaling interact when they occur together. In the study reported here, we investigated the ability of a brief episode of hypoxia (2 hours) in the presence and absence of the nonselective P2X receptor agonist 2′(3′)-O-(4-benzoylbenzoyl)adenosine-5′-triphosphate (BzATP) to promote inflammatory gene expression in brainstem microglia in adult rats. We evaluated inducible nitric oxide synthase (iNOS), tumor necrosis factor alpha (TNFα), and interleukin (IL)-6 messenger RNA levels in immunomagnetically isolated brainstem microglia. While iNOS and IL-6 gene expression increased with hypoxia and BzATP alone, TNFα expression was unaffected. Surprisingly, BzATP-induced inflammatory effects were lost after hypoxia, suggesting that hypoxia impairs proinflammatory P2X-receptor signaling. We also evaluated the expression of key P2X receptors activated by BzATP, namely P2X1, P2X4, and P2X7. While hypoxia did not alter their expression, BzATP upregulated P2X4 and P2X7 mRNAs; these effects were ablated in hypoxia. Although both P2X4 and P2X7 receptor expression correlated with increased microglial iNOS and IL-6 levels in microglia from normoxic rats, in hypoxia, P2X7 only correlated with IL-6, and P2X4 correlated only with iNOS. In addition, correlations between P2X7 and P2X4 were lost following hypoxia, suggesting that P2X4 and P2X7 receptor signaling differs in normoxia and hypoxia. Together, these data suggest that hypoxia suppresses P2X receptor-induced inflammatory gene expression, indicating a potentially

  19. P2Y2 receptor activation inhibits the expression of the sodium-chloride cotransporter NCC in distal convoluted tubule cells.

    PubMed

    Gailly, P; Szutkowska, M; Olinger, E; Debaix, H; Seghers, F; Janas, S; Vallon, V; Devuyst, O

    2014-11-01

    Luminal nucleotide stimulation is known to reduce Na(+) transport in the distal nephron. Previous studies suggest that this mechanism may involve the thiazide-sensitive Na(+)-Cl(-) cotransporter (NCC), which plays an essential role in NaCl reabsorption in the cells lining the distal convoluted tubule (DCT). Here we show that stimulation of mouse DCT (mDCT) cells with ATP or UTP promoted Ca(2+) transients and decreased the expression of NCC at both mRNA and protein levels. Specific siRNA-mediated silencing of P2Y2 receptors almost completely abolished ATP/UTP-induced Ca(2+) transients and significantly reduced ATP/UTP-induced decrease of NCC expression. To test whether local variations in the intracellular Ca(2+) concentration ([Ca(2+)]i) may control NCC transcription, we overexpressed the Ca(2+)-binding protein parvalbumin selectively in the cytosol or in the nucleus of mDCT cells. The decrease in NCC mRNA upon nucleotide stimulation was abolished in cells overexpressing cytosolic PV but not in cells overexpressing either a nuclear-targeted PV or a mutated PV unable to bind Ca(2+). Using a firefly luciferase reporter gene strategy, we observed that the activity of NCC promoter region from -1 to -2,200 bp was not regulated by changes in [Ca(2+)]i. In contrast, high cytosolic calcium level induced instability of NCC mRNA. We conclude that in mDCT cells: (1) P2Y2 receptor is essential for the intracellular Ca(2+) signaling induced by ATP/UTP stimulation; (2) P2Y2-mediated increase of cytoplasmic Ca(2+) concentration down-regulates the expression of NCC; (3) the decrease of NCC expression occurs, at least in part, via destabilization of its mRNA.

  20. Botulinum toxin decreases hyperalgesia and inhibits P2X3 receptor over-expression in sensory neurons induced by ventral root transection in rats.

    PubMed

    Xiao, Lizu; Cheng, Jianguo; Dai, Juanli; Zhang, Deren

    2011-09-01

    We aim to determine the effects of Botulinum toxin type A (BTX-A) on neuropathic pain behavior and the expression of P2X(3) receptor in dorsal root ganglion (DRG) in rats with neuropathic pain induced by L5 ventral root transection (L5 VRT). Neuropathic pain was induced by L5 VRT in male Sprague-Dawley rats. Either saline or BTX-A was administered to the plantar surface. Behavioral tests were conducted preoperatively and at predefined postoperative days. The expression of P2X(3) receptors in DRG neurons was detected by immunoreactivity at postoperative days 3, 7, 14, and 21. The number of positive P2X(3) neurons in the ipsilateral L5 DRG increased significantly after L5 VRT (P<0.001). This increase persisted for at least 3 weeks after the operation. No significant changes in P2X(3) expression were detected in the contralateral L5, or in the L4 DRGs bilaterally. Subcutaneous administration of BTX-A, performed on the left hindpaw at days 4, 8, or 16 post VRT surgery, significantly reduced mechanical allodynia bilaterally and inhibited P2X(3) over-expression induced by L5 VRT. L5 VRT led to over-expression of P2X(3) receptors in the L5 DRG and bilateral mechanical allodynia in rats. Subcutaneous injection of BTX-A significantly reversed the neuropathic pain behavior and the over-expression of P2X(3) receptor in nociceptive neurons. These data not only show over-expression of purinergic receptors in the VRT model of neuropathic pain but also reveal a novel mechanism of botulinum toxin action on nociceptive neurons. Wiley Periodicals, Inc.

  1. P2Y2 Nucleotide Receptor Prompts Human Cardiac Progenitor Cell Activation by Modulating Hippo Signaling.

    PubMed

    Khalafalla, Farid G; Greene, Steven; Khan, Hashim; Ilves, Kelli; Monsanto, Megan M; Alvarez, Roberto; Chavarria, Monica; Nguyen, Jonathan; Norman, Benjamin; Dembitsky, Walter P; Sussman, Mark A

    2017-11-10

    Autologous stem cell therapy using human c-Kit + cardiac progenitor cells (hCPCs) is a promising therapeutic approach for treatment of heart failure (HF). However, hCPCs derived from aged patients with HF with genetic predispositions and comorbidities of chronic diseases exhibit poor proliferative and migratory capabilities, which impair overall reparative potential for injured myocardium. Therefore, empowering functionally compromised hCPCs with proregenerative molecules ex vivo is crucial for improving the therapeutic outcome in patients with HF. To improve hCPC proliferation and migration responses that are critical for regeneration by targeting proregenerative P2Y 2 nucleotide receptor (P2Y 2 R) activated by extracellular ATP and UTP molecules released following injury/stress. c-Kit + hCPCs were isolated from cardiac tissue of patients with HF undergoing left ventricular assist device implantation surgery. Correlations between P2 nucleotide receptor expression and hCPC growth kinetics revealed downregulation of select P2 receptors, including P2Y 2 R, in slow-growing hCPCs compared with fast growers. hCPC proliferation and migration significantly improved by overexpressing or stimulating P2Y 2 R. Mechanistically, P2Y 2 R-induced proliferation and migration were dependent on activation of YAP (yes-associated protein)-the downstream effector of Hippo signaling pathway. Proliferation and migration of functionally impaired hCPCs are enhanced by P2Y 2 R-mediated YAP activation, revealing a novel link between extracellular nucleotides released during injury/stress and Hippo signaling-a central regulator of cardiac regeneration. Functional correlations exist between hCPC phenotypic properties and P2 purinergic receptor expression. Lack of P2Y 2 R and other crucial purinergic stress detectors could compromise hCPC responsiveness to presence of extracellular stress signals. These findings set the stage for subsequent studies to assess purinergic signaling modulation as a

  2. Regulation of P2Y1 receptor traffic by sorting Nexin 1 is retromer independent.

    PubMed

    Nisar, Shaista; Kelly, Eamonn; Cullen, Pete J; Mundell, Stuart J

    2010-04-01

    The activity and traffic of G-protein coupled receptors (GPCRs) is tightly controlled. Recent work from our laboratory has shown that P2Y(1) and P2Y(12) responsiveness is rapidly and reversibly modulated in human platelets and that the underlying mechanism requires receptor trafficking as an essential part of this process. However, little is known about the molecular mechanisms underlying P2Y receptor traffic. Sorting nexin 1 (SNX1) has been shown to regulate the endosomal sorting of cell surface receptors either to lysosomes where they are downregulated or back to the cell surface. These functions may in part be due to interactions of SNX1 with the mammalian retromer complex. In this study, we investigated the role of SNX1 in P2Y receptor trafficking. We show that P2Y(1) receptors recycle via a slow recycling pathway that is regulated by SNX1, whereas P2Y(12) receptors return to the cell surface via a rapid route that is SNX1 independent. SNX1 inhibition caused a dramatic increase in the rate of P2Y(1) receptor recycling, whereas inhibition of Vps26 and Vps35 known to be present in retromer had no effect, indicating that SNX1 regulation of P2Y(1) receptor recycling is retromer independent. In addition, inhibition of SNX4, 6 and 17 proteins did not affect P2Y(1) receptor recycling. SNX1 has also been implicated in GPCR degradation; however, we provide evidence that P2Y receptor degradation is SNX1 independent. These data describe a novel function of SNX1 in the regulation of P2Y(1) receptor recycling and suggest that SNX1 plays multiple roles in endocytic trafficking of GPCRs.

  3. DA-6034-induced mucin secretion via Ca2+-dependent pathways through P2Y receptor stimulation.

    PubMed

    Lee, Hun; Kim, Eung Kweon; Kim, Ji Yeon; Yang, Yu-Mi; Shin, Dong Min; Kang, Kyung Koo; Kim, Tae-im

    2014-09-11

    We evaluated whether DA-6034 is involved in mucin secretion via P2Y receptor activation and/or intracellular Ca2+ concentration ([Ca2+]i) change. Also, we investigated the effect of P2Y receptor inhibitors or Ca2+ chelators on the DA-6034-induced mucin secretion and [Ca2+]i increases. Effects of DA-6034 on mucin expression in primary, cultured, conjunctival epithelial cells was studied using RT-PCR, Western blot analysis, and periodic acid-schiff (PAS) staining. To evaluate thin film layer thickness generated by mucin and fluid secretion, cells were incubated in DA-6034 with/without P2Y antagonists or extracellular/intracellular Ca2+ chelators, and were imaged with confocal microscope using Texas Red-dextran dye. In addition, DA-6034-induced Ca2+-dependent Cl- channels opening was evaluated using perforated patch clamp. Fluo-4/AM was used to measure changes in [Ca2+]i induced by DA-6034 in Ca2+-free or Ca2+-containing buffered condition, as well as P2Y antagonists. DA-6034 induced the expression of mucin genes, production of mucin protein, and increase of number of mucin-secreting cells. P2Y antagonists inhibited DA-6034-induced mucin and fluid secretion, which was also affected by extracellular/intracellular Ca2+ chelators. DA-6034 stimulated Cl- channel opening and [Ca2+]i elevation. Further, [Ca2+]i increases induced by DA-6034 were lacking in either P2Y antagonists or Ca2+-free buffered condition, and diminished when endoplasmic reticulum Ca2+ was depleted by cyclopiazonic acid in Ca2+-free buffered condition. This study demonstrated that DA-6034 has a potential to induce mucin secretion via Ca2+-dependent pathways through P2Y receptors in multilayer, cultured, human conjunctival epithelial cells. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

  4. Silencing of P2Y2 receptor delays Ap4A-corneal re-epithelialization process

    PubMed Central

    Crooke, Almudena; Mediero, Aránzazu; Guzmán-Aránguez, Ana

    2009-01-01

    Purpose There are no selective antagonists for the metabotropic nucleotide P2Y2 receptor subtype. This implies that it is not possible to demonstrate the importance of such a receptor in the relevant process of corneal wound healing. Therefore, we have cloned and designed a small interference RNA (siRNA) against the rabbit P2Y2 receptor (P2Y2-R) mRNA, which clearly demonstrates the importance of this receptor in the process of wound healing triggered by nucleotides and dinucleotides both in vitro and in vivo. Methods Rabbit P2Y2-R cDNA was cloned using a combination of degenerate reverse transcription polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends (RACE). To test the efficacy of synthesized siRNAs targeting P2Y2-R, immunocytochemistry, immunohistochemistry, and quantitative RT-PCR (qRT–PCR) assays were performed. Migration assays were performed both in vitro and in vivo by wounding the epithelium with a pipette tip and n-heptanol, respectively. These wounds were performed 72 h after siRNA transfection either in the presence or the absence of the P2Y2 agonist, 100 μM Ap4A (diadenosine tetraphosphate). Results The cloned receptor presents 93% homology compared to the human gene. Two siRNAs were designed and synthesized against a rabbit P2Y2-R sequence. After transfection (in vitro assays) or topical instillation (in vivo assays), we demonstrated P2Y2-R siRNA efficient transfection/delivery and its efficient gene silencing. Clear reduction of P2Y2-R expression was observed at both the mRNA and protein levels in corneas treated with siRNA. In vitro and in vivo migration analysis showed that the silencing process has concomitantly reduced the ability of corneal cells to close the wounds in the presence of the Ap4A. In addition, both synthesized siRNAs exert a delay effect on the Ap4A-induced migration rate in vitro. These results suggest the absence of non-specific (off-target) effects by our siRNA. Conclusions The application of P2Y2-R si

  5. Silencing of P2Y2 receptor delays Ap4A-corneal re-epithelialization process.

    PubMed

    Crooke, Almudena; Mediero, Aránzazu; Guzmán-Aránguez, Ana; Pintor, Jesús

    2009-06-11

    There are no selective antagonists for the metabotropic nucleotide P2Y(2) receptor subtype. This implies that it is not possible to demonstrate the importance of such a receptor in the relevant process of corneal wound healing. Therefore, we have cloned and designed a small interference RNA (siRNA) against the rabbit P2Y(2) receptor (P2Y(2)-R) mRNA, which clearly demonstrates the importance of this receptor in the process of wound healing triggered by nucleotides and dinucleotides both in vitro and in vivo. Rabbit P2Y(2)-R cDNA was cloned using a combination of degenerate reverse transcription polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends (RACE). To test the efficacy of synthesized siRNAs targeting P2Y(2)-R, immunocytochemistry, immunohistochemistry, and quantitative RT-PCR (qRT-PCR) assays were performed. Migration assays were performed both in vitro and in vivo by wounding the epithelium with a pipette tip and n-heptanol, respectively. These wounds were performed 72 h after siRNA transfection either in the presence or the absence of the P2Y(2) agonist, 100 muM Ap(4)A (diadenosine tetraphosphate). The cloned receptor presents 93% homology compared to the human gene. Two siRNAs were designed and synthesized against a rabbit P2Y(2)-R sequence. After transfection (in vitro assays) or topical instillation (in vivo assays), we demonstrated P2Y(2)-R siRNA efficient transfection/delivery and its efficient gene silencing. Clear reduction of P2Y(2)-R expression was observed at both the mRNA and protein levels in corneas treated with siRNA. In vitro and in vivo migration analysis showed that the silencing process has concomitantly reduced the ability of corneal cells to close the wounds in the presence of the Ap(4)A. In addition, both synthesized siRNAs exert a delay effect on the Ap(4)A-induced migration rate in vitro. These results suggest the absence of non-specific (off-target) effects by our siRNA. The application of P2Y(2)-R siRNA has

  6. Purinergic P2Y12 Receptor Activation in Eosinophils and the Schistosomal Host Response.

    PubMed

    Muniz, Valdirene S; Baptista-Dos-Reis, Renata; Benjamim, Claudia F; Mata-Santos, Hilton A; Pyrrho, Alexandre S; Strauch, Marcelo A; Melo, Paulo A; Vicentino, Amanda R R; Silva-Paiva, Juliana; Bandeira-Melo, Christianne; Weller, Peter F; Figueiredo, Rodrigo T; Neves, Josiane S

    2015-01-01

    Identifying new target molecules through which eosinophils secrete their stored proteins may reveal new therapeutic approaches for the control of eosinophilic disorders such as host immune responses to parasites. We have recently reported the expression of the purinergic P2Y12 receptor (P2Y12R) in human eosinophils; however, its functional role in this cell type and its involvement in eosinophilic inflammation remain unknown. Here, we investigated functional roles of P2Y12R in isolated human eosinophils and in a murine model of eosinophilic inflammation induced by Schistosoma mansoni (S. mansoni) infection. We found that adenosine 5'-diphosphate (ADP) induced human eosinophils to secrete eosinophil peroxidase (EPO) in a P2Y12R dependent manner. However, ADP did not interfere with human eosinophil apoptosis or chemotaxis in vitro. In vivo, C57Bl/6 mice were infected with cercariae of the Belo Horizonte strain of S. mansoni. Analyses performed 55 days post infection revealed that P2Y12R blockade reduced the granulomatous hepatic area and the eosinophilic infiltrate, collagen deposition and IL-13/IL-4 production in the liver without affecting the parasite oviposition. As found for humans, murine eosinophils also express the P2Y12R. P2Y12R inhibition increased blood eosinophilia, whereas it decreased the bone marrow eosinophil count. Our results suggest that P2Y12R has an important role in eosinophil EPO secretion and in establishing the inflammatory response in the course of a S. mansoni infection.

  7. Arrestin Scaffolds NHERF1 to the P2Y12 Receptor to Regulate Receptor Internalization*

    PubMed Central

    Nisar, Shaista P.; Cunningham, Margaret; Saxena, Kunal; Pope, Robert J.; Kelly, Eamonn; Mundell, Stuart J.

    2012-01-01

    We have recently shown in a patient with mild bleeding that the PDZ-binding motif of the platelet G protein-coupled P2Y12 receptor (P2Y12R) is required for effective receptor traffic in human platelets. In this study we show for the first time that the PDZ motif-binding protein NHERF1 exerts a major role in potentiating G protein-coupled receptor (GPCR) internalization. NHERF1 interacts with the C-tail of the P2Y12R and unlike many other GPCRs, NHERF1 interaction is required for effective P2Y12R internalization. In vitro and prior to agonist stimulation P2Y12R/NHERF1 interaction requires the intact PDZ binding motif of this receptor. Interestingly on receptor stimulation NHERF1 no longer interacts directly with the receptor but instead binds to the receptor via the endocytic scaffolding protein arrestin. These findings suggest a novel model by which arrestin can serve as an adaptor to promote NHERF1 interaction with a GPCR to facilitate effective NHERF1-dependent receptor internalization. PMID:22610101

  8. Arrestin scaffolds NHERF1 to the P2Y12 receptor to regulate receptor internalization.

    PubMed

    Nisar, Shaista P; Cunningham, Margaret; Saxena, Kunal; Pope, Robert J; Kelly, Eamonn; Mundell, Stuart J

    2012-07-13

    We have recently shown in a patient with mild bleeding that the PDZ-binding motif of the platelet G protein-coupled P2Y(12) receptor (P2Y(12)R) is required for effective receptor traffic in human platelets. In this study we show for the first time that the PDZ motif-binding protein NHERF1 exerts a major role in potentiating G protein-coupled receptor (GPCR) internalization. NHERF1 interacts with the C-tail of the P2Y(12)R and unlike many other GPCRs, NHERF1 interaction is required for effective P2Y(12)R internalization. In vitro and prior to agonist stimulation P2Y(12)R/NHERF1 interaction requires the intact PDZ binding motif of this receptor. Interestingly on receptor stimulation NHERF1 no longer interacts directly with the receptor but instead binds to the receptor via the endocytic scaffolding protein arrestin. These findings suggest a novel model by which arrestin can serve as an adaptor to promote NHERF1 interaction with a GPCR to facilitate effective NHERF1-dependent receptor internalization.

  9. P2 receptor-stimulation influences axonal outgrowth in the developing hippocampus in vitro.

    PubMed

    Heine, C; Heimrich, B; Vogt, J; Wegner, A; Illes, P; Franke, Heike

    2006-01-01

    Extracellular ATP might act as a trophic factor on growing axons during development of the CNS via P2 receptors. In the present study the postnatal presence of selected P2 receptor subtypes was analyzed and their putative trophic capacity in entorhino-hippocampal slice co-cultures of mouse brain was tested. The effect of the P2 receptor ligands 2-methylthioadenosine-5'-triphosphate (P2X/Y receptor agonist) and pyridoxalphosphate-6-azophenyl-2',4'-disulphonic acid (P2X/Y receptor antagonist) on axonal growth and fiber density of biocytin-labeled hippocampal projections was compared both with untreated cultures and with cultures treated with artificial cerebrospinal fluid. After 10 days in vitro, double immunofluorescence labeling revealed the expression of P2X(1), P2X(2), P2X(4) as well as P2Y(1) and P2Y(2) receptors in the examined regions of entorhinal fiber termination. Further, quantitative analysis of identified biocytin-traced entorhinal fibers showed a significant increase in fiber density in the dentate gyrus after incubation of the slices with the P2 receptor agonist 2-methylthioadenosine-5'-triphosphate. This neurite outgrowth promoting effect was completely abolished by the P2 receptor antagonist pyridoxalphosphate-6-azophenyl-2',4'-disulphonic acid. Our in vitro data indicate that ATP via its P2X and P2Y receptors can shape hippocampal connectivity during development.

  10. A comparative analysis of the activity of ligands acting at P2X and P2Y receptor subtypes in models of neuropathic, acute and inflammatory pain.

    PubMed

    Andó, R D; Méhész, B; Gyires, K; Illes, P; Sperlágh, B

    2010-03-01

    This study was undertaken to compare the analgesic activity of antagonists acting at P2X1, P2X7, and P2Y12 receptors and agonists acting at P2Y1, P2Y2, P2Y4, and P2Y6 receptors in neuropathic, acute, and inflammatory pain. The effect of the wide spectrum P2 receptor antagonist PPADS, the selective P2X7 receptor antagonist Brilliant Blue G (BBG), the P2X1 receptor antagonist (4,4',4'',4-[carbonylbis(imino-5,1,3-benzenetriyl-bis(carbonylimino))]tetrakis-1,3-benzenedisulfonic acid, octasodium salt (NF449) and (8,8'-[carbonylbis(imino-3,1-phenylenecarbonylimino)]bis-1,3,5-naphthalene-trisulphonic acid, hexasodium salt (NF023), the P2Y12 receptor antagonist (2,2-dimethyl-propionic acid 3-(2-chloro-6-methylaminopurin-9-yl)-2-(2,2-dimethyl-propionyloxymethyl)-propylester (MRS2395), the selective P2Y1 receptor agonist ([[(1R,2R,3S,4R,5S)-4-[6-amino-2-(methylthio)-9H-purin-9-yl]-2,3-dihydroxybicyclo[3.1.0]hex-1-yl]methyl] diphosphoric acid mono ester trisodium salt (MRS2365), the P2Y2/P2Y4 agonist uridine-5'-triphosphate (UTP), and the P2Y4/P2Y6 agonist uridine-5'-diphosphate (UDP) were examined on mechanical allodynia in the Seltzer model of neuropathic pain, on acute thermal nociception, and on the inflammatory pain and oedema induced by complete Freund's adjuvant (CFA). MRS2365, MRS2395 and UTP, but not the other compounds, significantly alleviated mechanical allodynia in the neuropathic pain model, with the following rank order of minimal effective dose (mED) values: MRS2365 > MRS2395 > UTP. All compounds had a dose-dependent analgesic action in acute pain except BBG, which elicited hyperalgesia at a single dose. The rank order of mED values in acute pain was the following: MRS2365 > MRS2395 > NF449 > NF023 > UDP = UTP > PPADS. MRS2365 and MRS2395 had a profound, while BBG had a mild effect on inflammatory pain, with a following rank order of mED values: MRS2395 > MRS2365 > BBG. None of the tested compounds had significant action on oedema evoked by intraplantar

  11. Agonist and antagonist effects of diadenosine tetraphosphate, a platelet dense granule constituent, on platelet P2Y1, P2Y12 and P2X1 receptors.

    PubMed

    Chang, Hung; Yanachkov, Ivan B; Michelson, Alan D; Li, YouFu; Barnard, M R; Wright, George E; Frelinger, Andrew L

    2010-02-01

    Diadenosine 5',5'''-P(1),P(4)- tetraphosphate (Ap(4)A) is stored in platelet dense granules, but its effects on platelet function are not well understood. We examined the effects of Ap(4)A on platelet purinergic receptors P2Y(1), P2Y(12) and P2X(1). Flow cytometry was used to measure the effects of Ap(4)A in the presence or absence of ADP on: a) P2Y(12)-mediated decrease in intraplatelet phosphorylated vasodilator stimulated phosphoprotein (VASP), b) P2Y(1)-mediated increase in platelet cytosolic Ca(2+), and c) P2X(1)-mediated intraplatelet entry of extracellular Ca(2+). ADP-stimulated platelet shape change (P2Y(1)-mediated) and aggregation (P2Y(1)- and P2Y(12)-mediated) were measured optically. Ap(4)A inhibited 3 microM ADP-induced: a) platelet aggregation (IC(50) 9.8+/-2.8 microM), b) P2Y(1)-mediated shape change, c) P2Y(1)-mediated increase in platelet cytosolic Ca(2+) (IC(50) 40.8+/-12.3 microM), and d) P2Y(12)-mediated decrease in VASP phosphorylation (IC(50)>250 microM). In the absence of added ADP, Ap(4)A had agonist effects on platelet P2X(1) and P2Y(12), but not P2Y(1), receptors. Ap(4)A, a constituent of platelet dense granules, is a) an antagonist of platelet P2Y(1) and P2Y(12) receptors, where it inhibits the effects of ADP, and b) an agonist of platelet P2X(1) and P2Y(12) receptors. Copyright 2009 Elsevier Ltd. All rights reserved.

  12. Agonist and Antagonist Effects of Diadenosine Tetraphosphate, a Platelet Dense Granule Constituent, on Platelet P2Y1, P2Y12 and P2X1 Receptors

    PubMed Central

    Chang, Hung; Yanachkov, Ivan B.; Michelson, Alan D.; Li, YouFu; Barnard, M.R.; Wright, George E.; Frelinger, Andrew L.

    2010-01-01

    Introduction Diadenosine 5',5"'-P1,P4-tetraphosphate (Ap4A) is stored in platelet dense granules, but its effects on platelet function are not well understood. Methods and Results We examined the effects of Ap4A on platelet purinergic receptors P2Y1, P2Y12 and P2X1. Flow cytometry was used to measure the effects of Ap4A in the presence or absence of ADP on: a) P2Y12-mediated decrease in intraplatelet phosphorylated vasodilator stimulated phosphoprotein (VASP), b) P2Y1-mediated increase in platelet cytosolic Ca2+, and c) P2X1-mediated intraplatelet entry of extracellular Ca2+. ADP-stimulated platelet shape change (P2Y1-mediated) and aggregation (P2Y1- and P2Y12-mediated) were measured optically. Ap4A inhibited 3 µM ADP-induced: a) platelet aggregation (IC50 9.8 ± 2.8 µM), b) P2Y1-mediated shape change, c) P2Y1-mediated increase in platelet cytosolic Ca2+ (IC50 40.8 ± 12.3 µM), and d) P2Y12-mediated decrease in VASP phosphorylation (IC50 >250 µM). In the absence of added ADP, Ap4A had agonist effects on platelet P2X1 and P2Y12, but not P2Y1, receptors. Conclusion Ap4A, a constituent of platelet dense granules, is a) an antagonist of platelet P2Y1 and P2Y12 receptors, where it inhibits the effects of ADP, and b) an agonist of platelet P2X1 and P2Y12 receptors. PMID:19945153

  13. P2X and P2Y Receptors Mediate Contraction Induced by Electrical Field Stimulation in Feline Esophageal Smooth Muscle.

    PubMed

    Cho, Young Rae; Jang, Hyeon Soon; Kim, Won; Park, Sun Young; Sohn, Uy Dong

    2010-10-01

    It is well-known that electrical field stimulation (EFS)-induced contraction is mediated by a cholinergic mechanism and other neurotransmitters. NO, ATP, calcitonin gene-related peptide (CGRP), and substance P are released by EFS. To investigate the purinergic mechanism involved in the EFS-induced contraction, purinegic receptors antagonists were used. Suramine, a non-selective P2 receptor antagonist, reduced the contraction induced by EFS. NF023 (10(-7)~10(-4) M), a selective P2X antagonist, inhibited the contraction evoked by EFS. Reactive blue (10(-6)~10(-4) M), selective P2Y antagonist, also blocked the contraction in a dose-dependent manner. In addition, P2X agonist α,β-methylene 5'-adenosine triphosphate (αβMeATP, 10(-7)~10(-5) M) potentiated EFS-induced contraction in a dose-dependent manner. P2Y agonist adenosine 5'-[β-thio]diphosphate trilithium salt (ADPβS, 10(-7)~10(-5) M) also potentiated EFS-induced contractions in a dose-dependent manner. Ecto-ATPase activator apyrase (5 and 10 U/ml) reduced EFS-induced contractions. Inversely, 6-N,N-diethyl-D-β,γ-dibromomethylene 5'-triphosphate triammonium (ARL 67156, 10(-4) M) increased EFS-induced contraction. These data suggest that endogenous ATP plays a role in EFS-induced contractions which are mediated through both P2X-receptors and P2Y-receptors stimulation in cat esophageal smooth muscle.

  14. Protease-activated receptor-4 and purinergic receptor P2Y12 dimerize, co-internalize, and activate Akt signaling via endosomal recruitment of β-arrestin.

    PubMed

    Smith, Thomas H; Li, Julia G; Dores, Michael R; Trejo, JoAnn

    2017-08-18

    Vascular inflammation and thrombosis require the concerted actions of several different agonists, many of which act on G protein-coupled receptors (GPCRs). GPCR dimerization is a well-established phenomenon that can alter protomer function. In platelets and other cell types, protease-activated receptor-4 (PAR4) has been shown to dimerize with the purinergic receptor P2Y12 to coordinate β-arrestin-mediated Akt signaling, an important mediator of integrin activation. However, the mechanism by which the PAR4-P2Y12 dimer controls β-arrestin-dependent Akt signaling is not known. We now report that PAR4 and P2Y12 heterodimer internalization is required for β-arrestin recruitment to endosomes and Akt signaling. Using bioluminescence resonance energy transfer, immunofluorescence microscopy, and co-immunoprecipitation in cells expressing receptors exogenously and endogenously, we demonstrate that PAR4 and P2Y12 specifically interact and form dimers expressed at the cell surface. We also found that activation of PAR4 but not of P2Y12 drives internalization of the PAR4-P2Y12 heterodimer. Remarkably, activated PAR4 internalization was required for recruitment of β-arrestin to endocytic vesicles, which was dependent on co-expression of P2Y12. Interestingly, stimulation of the PAR4-P2Y12 heterodimer promotes β-arrestin and Akt co-localization to intracellular vesicles. Moreover, activated PAR4-P2Y12 internalization is required for sustained Akt activation. Thus, internalization of the PAR4-P2Y12 heterodimer is necessary for β-arrestin recruitment to endosomes and Akt signaling and lays the foundation for examining whether blockade of PAR4 internalization reduces integrin and platelet activation. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. P2Y nucleotide receptors: promise of therapeutic applications.

    PubMed

    Jacobson, Kenneth A; Boeynaems, Jean-Marie

    2010-07-01

    Extracellular nucleotides, such as ATP and UTP, have distinct signaling roles through a class of G-protein-coupled receptors, termed P2Y. The receptor ligands are typically charged molecules of low bioavailability and stability in vivo. Recent progress in the development of selective agonists and antagonists for P2Y receptors and study of knockout mice have led to new drug concepts based on these receptors. The rapidly accelerating progress in this field has already resulted in drug candidates for cystic fibrosis, dry eye disease and thrombosis. On the horizon are novel treatments for cardiovascular diseases, inflammatory diseases and neurodegeneration. Published by Elsevier Ltd.

  16. Diadenosine polyphosphates as antagonists of the endogenous P2Y1 receptor in rat brain capillary endothelial cells of the B7 and B10 clones

    PubMed Central

    Vigne, Paul; Breittmayer, Jean Philippe; Frelin, Christian

    2000-01-01

    Diadenosine polyphosphates (ApnAs, n=2–7) are considered as stress mediators in the cardiovascular system. They act both via identified P2 purinoceptors and via yet to be characterized receptors. This study analyses the actions of ApnAs in clones of rat brain capillary endothelial cells that express P2Y1 receptors (B10 cells) or both P2Y1 and P2Y2 receptors (B7 cells).B10 cells responded to Ap3A with rises in intracellular Ca2+ concentration ([Ca2+]i). This response was prevented by adenosine-3′-phosphate-5′-phosphate, an antagonist of P2Y1 receptors. It was largely suppressed by a treatment with apyrase VII or with creatine phosphokinase/creatine phosphate to degrade contaminating ADP.ApnAs inhibited ADP induced increases in [Ca2+]i mediated by P2Y1 receptors by shifting ADP concentration-response curves to larger concentrations. Apparent Ki values were estimated to be 6 μM for Ap4A, 10 μM for Ap5A and 47 μM for Ap6A. Ap2A and Ap3A were much less active.ApnAs were neither agonists nor antagonists of the endogenous P2Y2 receptor in B7 cells.ApnAs are neither agonists nor antagonists of the Gi-coupled, ADP receptor in B10 cells.The results suggest that most actions of ApnAs in B7 and B10 cells can be accounted for by endogenous P2Y1 receptors. Ap4A, Ap5A and Ap6A are specific antagonists of endogenous Ca2+-coupled P2Y1 receptors. PMID:10742308

  17. A comparative analysis of the activity of ligands acting at P2X and P2Y receptor subtypes in models of neuropathic, acute and inflammatory pain

    PubMed Central

    Andó, RD; Méhész, B; Gyires, K; Illes, P; Sperlágh, B

    2010-01-01

    Background and purpose: This study was undertaken to compare the analgesic activity of antagonists acting at P2X1, P2X7, and P2Y12 receptors and agonists acting at P2Y1, P2Y2, P2Y4, and P2Y6 receptors in neuropathic, acute, and inflammatory pain. Experimental approach: The effect of the wide spectrum P2 receptor antagonist PPADS, the selective P2X7 receptor antagonist Brilliant Blue G (BBG), the P2X1 receptor antagonist (4,4′,4″,4-[carbonylbis(imino-5,1,3-benzenetriyl-bis(carbonylimino))]tetrakis-1,3-benzenedisulfonic acid, octasodium salt (NF449) and (8,8′-[carbonylbis(imino-3,1-phenylenecarbonylimino)]bis-1,3,5-naphthalene-trisulphonic acid, hexasodium salt (NF023), the P2Y12 receptor antagonist (2,2-dimethyl-propionic acid 3-(2-chloro-6-methylaminopurin-9-yl)-2-(2,2-dimethyl-propionyloxymethyl)-propylester (MRS2395), the selective P2Y1 receptor agonist ([[(1R,2R,3S,4R,5S)-4-[6-amino-2-(methylthio)-9H-purin-9-yl]-2,3-dihydroxybicyclo[3.1.0]hex-1-yl]methyl] diphosphoric acid mono ester trisodium salt (MRS2365), the P2Y2/P2Y4 agonist uridine-5′-triphosphate (UTP), and the P2Y4/P2Y6 agonist uridine-5′-diphosphate (UDP) were examined on mechanical allodynia in the Seltzer model of neuropathic pain, on acute thermal nociception, and on the inflammatory pain and oedema induced by complete Freund's adjuvant (CFA). Key results: MRS2365, MRS2395 and UTP, but not the other compounds, significantly alleviated mechanical allodynia in the neuropathic pain model, with the following rank order of minimal effective dose (mED) values: MRS2365 > MRS2395 > UTP. All compounds had a dose-dependent analgesic action in acute pain except BBG, which elicited hyperalgesia at a single dose. The rank order of mED values in acute pain was the following: MRS2365 > MRS2395 > NF449 > NF023 > UDP = UTP > PPADS. MRS2365 and MRS2395 had a profound, while BBG had a mild effect on inflammatory pain, with a following rank order of mED values: MRS2395 > MRS2365 > BBG. None of the tested

  18. Nanoparticle-Encapsulated Curcumin Inhibits Diabetic Neuropathic Pain Involving the P2Y12 Receptor in the Dorsal Root Ganglia

    PubMed Central

    Jia, Tianyu; Rao, Jingan; Zou, Lifang; Zhao, Shanhong; Yi, Zhihua; Wu, Bing; Li, Lin; Yuan, Huilong; Shi, Liran; Zhang, Chunping; Gao, Yun; Liu, Shuangmei; Xu, Hong; Liu, Hui; Liang, Shangdong; Li, Guilin

    2018-01-01

    Diabetic peripheral neuropathy results in diabetic neuropathic pain (DNP). Satellite glial cells (SGCs) enwrap the neuronal soma in the dorsal root ganglia (DRG). The purinergic 2 (P2) Y12 receptor is expressed on SGCs in the DRG. SGC activation plays an important role in the pathogenesis of DNP. Curcumin has anti-inflammatory and antioxidant properties. Because curcumin has poor metabolic stability in vivo and low bioavailability, nanoparticle-encapsulated curcumin was used to improve its targeting and bioavailability. In the present study, our aim was to investigate the effects of nanoparticle-encapsulated curcumin on DNP mediated by the P2Y12 receptor on SGCs in the rat DRG. Diabetic peripheral neuropathy increased the expression levels of the P2Y12 receptor on SGCs in the DRG and enhanced mechanical and thermal hyperalgesia in rats with diabetes mellitus (DM). Up-regulation of the P2Y12 receptor in SGCs in the DRG increased the production of pro-inflammatory cytokines. Up-regulation of interleukin-1β (IL-1β) and connexin43 (Cx43) resulted in mechanical and thermal hyperalgesia in rats with DM. The nanoparticle-encapsulated curcumin decreased up-regulated IL-1β and Cx43 expression and reduced levels of phosphorylated-Akt (p-Akt) in the DRG of rats with DM. The up-regulation of P2Y12 on SGCs and the up-regulation of the IL-1β and Cx43 in the DRG indicated the activation of SGCs in the DRG. The nano-curcumin treatment inhibited the activation of SGCs accompanied by its anti-inflammatory effect to decrease the up-regulated CGRP expression in the DRG neurons. Therefore, the nanoparticle-encapsulated curcumin treatment decreased the up-regulation of the P2Y12 receptor on SGCs in the DRG and decreased mechanical and thermal hyperalgesia in rats with DM. PMID:29422835

  19. Multiple P2Y receptor subtypes in the apical membranes of polarized epithelial cells

    PubMed Central

    McAlroy, H L; Ahmed, S; Day, S M; Baines, D L; Wong, H Y; Yip, C Y; Ko, W H; Wilson, S M; Collett, A

    2000-01-01

    Apical ATP, ATP, UTP and UDP evoked transient increases in short circuit current (ISC, a direct measure of transepithelial ion transport) in confluent Caco-2 cells grown on permeable supports. These responses were mediated by a population of at least three pharmacologically distinct receptors. Experiments using cells grown on glass coverslips showed that ATP and UTP consistently increased intracellular free calcium ([Ca2+]i) whilst sensitivity to UDP was variable. Cross desensitization experiments suggested that the responses to UTP and ATP were mediated by a common receptor population. Messenger RNA transcripts corresponding to the P2Y2, P2Y4 and P2Y6 receptors genes were detected in cells grown on Transwell membranes by the reverse transcriptase–polymerase chain reaction. Identical results were obtained for cells grown on glass. Experiments in which ISC and [Ca2+]i were monitored simultaneously in cells on Transwell membranes, confirmed that apical ATP and UTP increased both parameters and showed that the UDP-evoked increase in ISC was accompanied by a [Ca2+]i-signal. Ionomycin consistently increased [Ca2+]i in such polarized cells but caused no discernible change in ISC. However, subsequent application of apical ATP or UTP evoked a small rise in ISC but no rise in [Ca2+]i. UDP evoked no such response. As well as evoking increases in [Ca2+]i, the ATP/UTP-sensitive receptors present in Caco-2 cells thus allow direct control over ion channels in the apical membrane. The UDP-sensitive receptors, however, appear to simply evoke a rise in [Ca2+]i. PMID:11139443

  20. Microglia P2Y₆ receptors mediate nitric oxide release and astrocyte apoptosis.

    PubMed

    Quintas, Clara; Pinho, Diana; Pereira, Clara; Saraiva, Lucília; Gonçalves, Jorge; Queiroz, Glória

    2014-09-03

    During cerebral inflammation uracil nucleotides leak to the extracellular medium and activate glial pyrimidine receptors contributing to the development of a reactive phenotype. Chronically activated microglia acquire an anti-inflammatory phenotype that favors neuronal differentiation, but the impact of these microglia on astrogliosis is unknown. We investigated the contribution of pyrimidine receptors to microglia-astrocyte signaling in a chronic model of inflammation and its impact on astrogliosis. Co-cultures of astrocytes and microglia were chronically treated with lipopolysaccharide (LPS) and incubated with uracil nucleotides for 48 h. The effect of nucleotides was evaluated in methyl-[3H]-thymidine incorporation. Western blot and immunofluorescence was performed to detect the expression of P2Y6 receptors and the inducible form of nitric oxide synthase (iNOS). Nitric oxide (NO) release was quantified through Griess reaction. Cell death was also investigated by the LDH assay and by the TUNEL assay or Hoechst 33258 staining. UTP, UDP (0.001 to 1 mM) or PSB 0474 (0.01 to 10 μM) inhibited cell proliferation up to 43 ± 2% (n = 10, P <0.05), an effect prevented by the selective P2Y6 receptor antagonist MRS 2578 (1 μM). UTP was rapidly metabolized into UDP, which had a longer half-life. The inhibitory effect of UDP (1 mM) was abolished by phospholipase C (PLC), protein kinase C (PKC) and nitric oxide synthase (NOS) inhibitors. Both UDP (1 mM) and PSB 0474 (10 μM) increased NO release up to 199 ± 20% (n = 4, P <0.05), an effect dependent on P2Y6 receptors-PLC-PKC pathway activation, indicating that this pathway mediates NO release. Western blot and immunocytochemistry analysis indicated that P2Y6 receptors were expressed in the cultures being mainly localized in microglia. Moreover, the expression of iNOS was mainly observed in microglia and was upregulated by UDP (1 mM) or PSB 0474 (10 μM). UDP-mediated NO release induced apoptosis in astrocytes

  1. Transcription factor FOXO1 promotes cell migration toward exogenous ATP via controlling P2Y1 receptor expression in lymphatic endothelial cells.

    PubMed

    Niimi, Kenta; Ueda, Mizuha; Fukumoto, Moe; Kohara, Misaki; Sawano, Toshinori; Tsuchihashi, Ryo; Shibata, Satoshi; Inagaki, Shinobu; Furuyama, Tatsuo

    2017-08-05

    Sprouting migration of lymphatic endothelial cell (LEC) is a pivotal step in lymphangiogenic process. However, its molecular mechanism remains unclear including effective migratory attractants. Meanwhile, forkhead transcription factor FOXO1 highly expresses in LEC nuclei, but its significance in LEC migratory activity has not been researched. In this study, we investigated function of FOXO1 transcription factor associated with LEC migration toward exogenous ATP which has recently gathered attentions as a cell migratory attractant. The transwell membrane assay indicated that LECs migrated toward exogenous ATP, which was impaired by FOXO1 knockdown. RT-PCR analysis showed that P2Y1, a purinergic receptor, expression was markedly reduced by FOXO1 knockdown in LECs. Moreover, P2Y1 blockage impaired LEC migration toward exogenous ATP. Western blot analysis revealed that Akt phosphorylation contributed to FOXO1-dependent LEC migration toward exogenous ATP and its blockage affected LEC migratory activity. Furthermore, luciferase reporter assay and ChIP assay suggested that FOXO1 directly bound to a conserved binding site in P2RY1 promoter and regulated its activity. These results indicated that FOXO1 serves a pivotal role in LEC migration toward exogenous ATP via direct transcriptional regulation of P2Y1 receptor. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Functional distribution of Ca2+-coupled P2 purinergic receptors among adrenergic and noradrenergic bovine adrenal chromaffin cells.

    PubMed

    Tomé, Angelo R; Castro, Enrique; Santos, Rosa M; Rosário, Luís M

    2007-06-14

    Adrenal chromaffin cells mediate acute responses to stress through the release of epinephrine. Chromaffin cell function is regulated by several receptors, present both in adrenergic (AD) and noradrenergic (NA) cells. Extracellular ATP exerts excitatory and inhibitory actions on chromaffin cells via ionotropic (P2X) and metabotropic (P2Y) receptors. We have taken advantage of the actions of the purinergic agonists ATP and UTP on cytosolic free Ca2+ concentration ([Ca2+]i) to determine whether P2X and P2Y receptors might be asymmetrically distributed among AD and NA chromaffin cells. The [Ca2+]i and the [Na+]i were recorded from immunolabeled bovine chromaffin cells by single-cell fluorescence imaging. Among the ATP-sensitive cells ~40% did not yield [Ca2+]i responses to ATP in the absence of extracellular Ca2+ (Ca2+o), indicating that they expressed P2X receptors and did not express Ca2+- mobilizing P2Y receptors; the remainder expressed Ca2+-mobilizing P2Y receptors. Relative to AD-cells approximately twice as many NA-cells expressed P2X receptors while not expressing Ca2+- mobilizing P2Y receptors, as indicated by the proportion of cells lacking [Ca2+]i responses and exhibiting [Na+]i responses to ATP in the absence and presence of Ca2+o, respectively. The density of P2X receptors in NA-cells appeared to be 30-50% larger, as suggested by comparing the average size of the [Na+]i and [Ca2+]i responses to ATP. Conversely, approximately twice as many AD-cells expressed Ca2+-mobilizing P2Y receptors, and they appeared to exhibit a higher (~20%) receptor density. UTP raised the [Ca2+]i in a fraction of the cells and did not raise the [Na+]i in any of the cells tested, confirming its specificity as a P2Y agonist. The cell density of UTP-sensitive P2Y receptors did not appear to vary among AD- and NA-cells. Although neither of the major purinoceptor types can be ascribed to a particular cell phenotype, P2X and Ca2+-mobilizing P2Y receptors are preferentially located to

  3. P2Y12 receptor upregulation in satellite glial cells is involved in neuropathic pain induced by HIV glycoprotein 120 and 2',3'-dideoxycytidine.

    PubMed

    Yi, Zhihua; Xie, Lihui; Zhou, Congfa; Yuan, Huilong; Ouyang, Shuai; Fang, Zhi; Zhao, Shanhong; Jia, Tianyu; Zou, Lifang; Wang, Shouyu; Xue, Yun; Wu, Bing; Gao, Yun; Li, Guilin; Liu, Shuangmei; Xu, Hong; Xu, Changshui; Zhang, Chunping; Liang, Shangdong

    2018-03-01

    The direct neurotoxicity of HIV and neurotoxicity of combination antiretroviral therapy medications both contribute to the development of neuropathic pain. Activation of satellite glial cells (SGCs) in the dorsal root ganglia (DRG) plays a crucial role in mechanical and thermal hyperalgesia. The P2Y 12 receptor expressed in SGCs of the DRG is involved in pain transmission. In this study, we explored the role of the P2Y 12 receptor in neuropathic pain induced by HIV envelope glycoprotein 120 (gp120) combined with ddC (2',3'-dideoxycytidine). A rat model of gp120+ddC-induced neuropathic pain was used. Peripheral nerve exposure to HIV-gp120+ddC increased mechanical and thermal hyperalgesia in gp120+ddC-treated model rats. The gp120+ddC treatment increased expression of P2Y 12 receptor mRNA and protein in DRG SGCs. In primary cultured DRG SGCs treated with gp120+ddC, the levels of [Ca 2+ ] i activated by the P2Y 12 receptor agonist 2-(Methylthio) adenosine 5'-diphosphate trisodium salt (2-MeSADP) were significantly increased. P2Y 12 receptor shRNA treatment inhibited 2-MeSADP-induced [Ca 2+ ] i in primary cultured DRG SGCs treated with gp120+ddC. Intrathecal treatment with a shRNA against P2Y 12 receptor in DRG SGCs reduced the release of pro-inflammatory cytokines, decreased phosphorylation of p38 MAPK in the DRG of gp120+ddC-treated rats. Thus, downregulating the P2Y 12 receptor relieved mechanical and thermal hyperalgesia in gp120+ddC-treated rats.

  4. ATP6AP2 over-expression causes morphological alterations in the hippocampus and in hippocampus-related behaviour.

    PubMed

    Bracke, A; Schäfer, S; von Bohlen Und Halbach, V; Klempin, F; Bente, K; Bracke, K; Staar, D; van den Brandt, J; Harzsch, S; Bader, M; Wenzel, U O; Peters, J; von Bohlen Und Halbach, O

    2018-02-23

    The (pro)renin receptor [(P)RR], also known as ATP6AP2 [ATPase 6 accessory protein 2], is highly expressed in the brain. ATP6AP2 plays a role in early brain development, adult hippocampal neurogenesis and in cognitive functions. Lack of ATP6AP2 has deleterious effects, and mutations of ATP6AP2 in humans are associated with, e.g. X-linked intellectual disability. However, little is known about the effects of over-expression of ATP6AP2 in the adult brain. We hypothesized that mice over-expressing ATP6AP2 in the brain might exhibit altered neuroanatomical features and behavioural responses. To this end, we investigated heterozygous transgenic female mice and confirmed increased levels of ATP6AP2 in the brain. Our data show that over-expression of ATP6AP2 does not affect adult hippocampal neurogenesis, exercise-induced cell proliferation, or dendritic spine densities in the hippocampus. Only a reduced ventricular volume on the gross morphological level was found. However, ATP6AP2 over-expressing mice displayed altered exploratory behaviour with respect to the hole-board and novel object recognition tests. Moreover, primary adult hippocampal neural stem cells over-expressing ATP6AP2 exhibit a faster cell cycle progression and increased cell proliferation. Together, in contrast to the known deleterious effects of ATP6AP2 depletion, a moderate over-expression results in moderate behavioural changes and affects cell proliferation rate in vitro.

  5. Synthesis, characterization, and in vitro evaluation of the selective P2Y2 receptor antagonist AR-C118925.

    PubMed

    Rafehi, Muhammad; Burbiel, Joachim C; Attah, Isaac Y; Abdelrahman, Aliaa; Müller, Christa E

    2017-03-01

    The G q protein-coupled, ATP- and UTP-activated P2Y 2 receptor is a potential drug target for a range of different disorders, including tumor metastasis, inflammation, atherosclerosis, kidney disorders, and osteoporosis, but pharmacological studies are impeded by the limited availability of suitable antagonists. One of the most potent and selective antagonists is the thiouracil derivative AR-C118925. However, this compound was until recently not commercially available and little is known about its properties. We therefore developed an improved procedure for the synthesis of AR-C118925 and two derivatives to allow up-scaling and assessed their potency in calcium mobilization assays on the human and rat P2Y 2 receptors recombinantly expressed in 1321N1 astrocytoma cells. The compound was further evaluated for inhibition of P2Y 2 receptor-induced β-arrestin translocation. AR-C118925 behaved as a competitive antagonist with pA 2 values of 37.2 nM (calcium assay) and 51.3 nM (β-arrestin assay). Selectivity was assessed vs. related receptors including P2X, P2Y, and adenosine receptor subtypes, as well as ectonucleotidases. AR-C118925 showed at least 50-fold selectivity against the other investigated targets, except for the P2X1 and P2X3 receptors which were blocked by AR-C118925 at concentrations of about 1 μM. AR-C118925 is soluble in buffer at pH 7.4 (124 μM) and was found to be metabolically highly stable in human and mouse liver microsomes. In Caco2 cell experiments, the compound displayed moderate permeability indicating that it may show limited peroral bioavailability. AR-C118925 appears to be a useful pharmacological tool for in vitro and in vivo studies.

  6. K(Ca)3.1 channels facilitate K+ secretion or Na+ absorption depending on apical or basolateral P2Y receptor stimulation.

    PubMed

    Palmer, Melissa L; Peitzman, Elizabeth R; Maniak, Peter J; Sieck, Gary C; Prakash, Y S; O'Grady, Scott M

    2011-07-15

    Human mammary epithelial (HME) cells express several P2Y receptor subtypes located in both apical and basolateral membranes. Apical UTP or ATP-γ-S stimulation of monolayers mounted in Ussing chambers evoked a rapid, but transient decrease in short circuit current (I(sc)), consistent with activation of an apical K+ conductance. In contrast, basolateral P2Y receptor stimulation activated basolateral K+ channels and increased transepithelial Na+ absorption. Chelating intracellular Ca2+ using the membrane-permeable compound BAPTA-AM, abolished the effects of purinoceptor activation on I(sc). Apical pretreatment with charybdotoxin also blocked the I(sc) decrease by >90% and similar magnitudes of inhibition were observed with clotrimazole and TRAM-34. In contrast, iberiotoxin and apamin did not block the effects of apical P2Y receptor stimulation. Silencing the expression of K(Ca)3.1 produced ∼70% inhibition of mRNA expression and a similar reduction in the effects of apical purinoceptor agonists on I(sc). In addition, silencing P2Y2 receptors reduced the level of P2Y2 mRNA by 75% and blocked the effects of ATP-γ-S by 65%. These results suggest that P2Y2 receptors mediate the effects of purinoceptor agonists on K+ secretion by regulating the activity of K(Ca)3.1 channels expressed in the apical membrane of HME cells. The results also indicate that release of ATP or UTP across the apical or basolateral membrane elicits qualitatively different effects on ion transport that may ultimately determine the [Na+]/[K+] composition of fluid within the mammary ductal network.

  7. Molecular Recognition at Purine and Pyrimidine Nucleotide (P2) Receptors

    PubMed Central

    Jacobson, Kenneth A.; Constanzi, Stefano; Ohno, Michihiro; Joshi, Bhalchandra V.; Besada, Pedro; Xu, Bin; Tchilibon, Susanna

    2015-01-01

    In comparison to other classes of cell surface receptors, the medicinal chemistry at P2X (ligand-gated ion channels) and P2Y (G protein-coupled) nucleotide receptors has been relatively slow to develop. Recent effort to design selective agonists and antagonists based on a combination of library screening, empirical modification of known ligands, and rational design have led to the introduction of potent antagonists of the P2X1 (derivatives of pyridoxal phosphates and suramin), P2X3 (A-317491), P2X7 (derivatives of the isoquinoline KN-62), P2Y1 (nucleotide analogues MRS 2179 and MRS 2279), P2Y2 (thiouracil derivatives such as AR-C126313), and P2Y12 (nucleotide/nucleoside analogues AR-C69931X and AZD6140) receptors. A variety of native agonist ligands (ATP, ADP, UTP, UDP, and UDP-glucose) are currently the subject of structural modification efforts to improve selectivity. MRS2365 is a selective agonist for P2Y1 receptors. The dinucleotide INS 37217 potently activates the P2Y2 receptor. UTP-γ-S and UDP-β-S are selective agonists for P2Y2/P2Y4 and P2Y6 receptors, respectively. The current knowledge of the structures of P2X and P2Y receptors, is derived mainly from mutagenesis studies. Site-directed mutagenesis has shown that ligand recognition in the human P2Y1 receptor involves individual residues of both the TMs (3, 5, 6, and 7), as well as EL 2 and 3. The binding of the negatively-charged phosphate moiety is dependent on positively charged lysine and arginine residues near the exofacial side of TMs 3 and 7. PMID:15078212

  8. P2X and P2Y nucleotide receptors as targets in cardiovascular disease.

    PubMed

    Kennedy, Charles; Chootip, Krongkarn; Mitchell, Callum; Syed, Nawazish-i-Husain; Tengah, Asrin

    2013-03-01

    Endogenous nucleotides have widespread actions in the cardiovascular system, but it is only recently that the P2X and P2Y receptor subtypes, at which they act, have been identified and subtype-selective agonists and antagonists developed. These advances have greatly increased our understanding of the physiological and pathophysiological functions of P2X and P2Y receptors, but investigation of the clinical usefulness of selective ligands is at an early stage. Nonetheless, the evidence considered in this review demonstrates clearly that various cardiovascular disorders, including vasospasm, hypertension, congestive heart failure and cardiac damage during ischemic episodes, may be viable targets. With further development of novel, selective agonists and antagonists, our understanding will continue to improve and further therapeutic applications are likely to be discovered.

  9. Medicinal chemistry of adenosine, P2Y and P2X receptors.

    PubMed

    Jacobson, Kenneth A; Müller, Christa E

    2016-05-01

    Pharmacological tool compounds are now available to define action at the adenosine (ARs), P2Y and P2X receptors. We present a selection of the most commonly used agents to study purines in the nervous system. Some of these compounds, including A1 and A3 AR agonists, P2Y1R and P2Y12R antagonists, and P2X3, P2X4 and P2X7 antagonists, are potentially of clinical use in treatment of disorders of the nervous system, such as chronic pain, neurodegeneration and brain injury. Agonists of the A2AAR and P2Y2R are already used clinically, P2Y12R antagonists are widely used antithrombotics and an antagonist of the A2AAR is approved in Japan for treating Parkinson's disease. The selectivity defined for some of the previously introduced compounds has been revised with updated pharmacological characterization, for example, various AR agonists and antagonists were deemed A1AR or A3AR selective based on human data, but species differences indicated a reduction in selectivity ratios in other species. Also, many of the P2R ligands still lack bioavailability due to charged groups or hydrolytic (either enzymatic or chemical) instability. X-ray crystallographic structures of AR and P2YRs have shifted the mode of ligand discovery to structure-based approaches rather than previous empirical approaches. The X-ray structures can be utilized either for in silico screening of chemically diverse libraries for the discovery of novel ligands or for enhancement of the properties of known ligands by chemical modification. Although X-ray structures of the zebrafish P2X4R have been reported, there is scant structural information about ligand recognition in these trimeric ion channels. In summary, there are definitive, selective agonists and antagonists for all of the ARs and some of the P2YRs; while the pharmacochemistry of P2XRs is still in nascent stages. The therapeutic potential of selectively modulating these receptors is continuing to gain interest in such fields as cancer, inflammation, pain

  10. Important roles of P2Y receptors in the inflammation and cancer of digestive system.

    PubMed

    Wan, Han-Xing; Hu, Jian-Hong; Xie, Rei; Yang, Shi-Ming; Dong, Hui

    2016-05-10

    Purinergic signaling is important for many biological processes in humans. Purinoceptors P2Y are widely distributed in human digestive system and different subtypes of P2Y receptors mediate different physiological functions from metabolism, proliferation, differentiation to apoptosis etc. The P2Y receptors are essential in many gastrointestinal functions and also involve in the occurrence of some digestive diseases. Since different subtypes of P2Y receptors are present on the same cell of digestive organs, varying subtypes of P2Y receptors may have opposite or synergetic functions on the same cell. Recently, growing lines of evidence strongly suggest the involvement of P2Y receptors in the pathogenesis of several digestive diseases. In this review, we will focus on their important roles in the development of digestive inflammation and cancer. We anticipate that as the special subtypes of P2Y receptors are studied in depth, specific modulators for them will have good potentials to become promising new drugs to treat human digestive diseases in the near future.

  11. P2Y1 receptor antagonists mitigate oxygen and glucose deprivation‑induced astrocyte injury.

    PubMed

    Guo, Hui; Liu, Zhong-Qiang; Zhou, Hui; Wang, Zhi-Ling; Tao, Yu-Hong; Tong, Yu

    2018-01-01

    The aim of the present study was to elucidate the effects of blocking the calcium signaling pathway of astrocytes (ASs) on oxygen and glucose deprivation (OGD)‑induced AS injury. The association between the changes in the concentrations of AS‑derived transmitter ATP and glutamic acid, and the changes in calcium signaling under the challenge of OGD were investigated. The cortical ASs of Sprague Dawley rats were cultured to establish the OGD models of ASs. The extracellular concentrations of ATP and glutamic acid in the normal group and the OGD group were detected, and the intracellular concentration of calcium ions (Ca2+) was detected. The effects of 2'‑deoxy‑N6‑methyl adenosine 3', 5'‑diphosphate diammonium salt (MRS2179), a P2Y1 receptor antagonist, on the release of calcium and glutamic acid of ASs under the condition of OGD were observed. The OGD challenge induced the release of glutamic acid and ATP by ASs in a time‑dependent manner, whereas elevation in the concentration of glutamic acid lagged behind that of the ATP and Ca2+. The concentration of Ca2+ inside ASs peaked 16 h after OGD, following which the concentration of Ca2+ was decreased. The effects of elevated release of glutamic acid by ASs when challenged by OGD may be blocked by MRS2179, a P2Y1 receptor antagonist. Furthermore, MRS2179 may significantly mitigate OGD‑induced AS injury and increase cell survival. The ASs of rats cultured in vitro expressed P2Y1 receptors, which may inhibit excessive elevation in the concentration of intracellular Ca2+. Avoidance of intracellular calcium overload and the excessive release of glutamic acid may be an important reason why MRS2179 mitigates OGD‑induced AS injury.

  12. A novel mutation in the P2Y12 receptor and a function-reducing polymorphism in protease-activated receptor 1 in a patient with chronic bleeding.

    PubMed

    Patel, Y M; Lordkipanidzé, M; Lowe, G C; Nisar, S P; Garner, K; Stockley, J; Daly, M E; Mitchell, M; Watson, S P; Austin, S K; Mundell, S J

    2014-05-01

    The study of patients with bleeding problems is a powerful approach in determining the function and regulation of important proteins in human platelets. We have identified a patient with a chronic bleeding disorder expressing a homozygous P2RY(12) mutation, predicting an arginine to cysteine (R122C) substitution in the G-protein-coupled P2Y(12) receptor. This mutation is found within the DRY motif, which is a highly conserved region in G-protein-coupled receptors (GPCRs) that is speculated to play a critical role in regulating receptor conformational states. To determine the functional consequences of the R122C substitution for P2Y(12) function. We performed a detailed phenotypic analysis of an index case and affected family members. An analysis of the variant R122C P2Y(12) stably expressed in cells was also performed. ADP-stimulated platelet aggregation was reduced as a result of a significant impairment of P2Y(12) activity in the patient and family members. Cell surface R122C P2Y(12) expression was reduced both in cell lines and in platelets; in cell lines, this was as a consequence of agonist-independent internalization followed by subsequent receptor trafficking to lysosomes. Strikingly, members of this family also showed reduced thrombin-induced platelet activation, owing to an intronic polymorphism in the F2R gene, which encodes protease-activated receptor 1 (PAR-1), that has been shown to be associated with reduced PAR-1 receptor activity. Our study is the first to demonstrate a patient with deficits in two stimulatory GPCR pathways that regulate platelet activity, further indicating that bleeding disorders constitute a complex trait. © 2014 International Society on Thrombosis and Haemostasis.

  13. P2Y receptor-mediated transient relaxation of rat longitudinal ileum preparations involves phospholipase C activation, intracellular Ca(2+) release and SK channel activation.

    PubMed

    Mader, Felix; Krause, Ludwig; Tokay, Tursonjan; Hakenberg, Oliver W; Köhling, Rüdiger; Kirschstein, Timo

    2016-05-01

    Purinergic signaling plays a major role in the enteric nervous system, where it governs gut motility through a number of P2X and P2Y receptors. The aim of this study was to investigate the P2Y receptor-mediated motility in rat longitudinal ileum preparations. Ileum smooth muscle strips were prepared from rats, and fixed in an organ bath. Isometric contraction and relaxation responses of the muscle strips were measured with force transducers. Drugs were applied by adding of stock solutions to the organ bath to yield the individual final concentrations. Application of the non-hydrolyzable P2 receptor agonists α,β-Me-ATP or 2-Me-S-ADP (10, 100 μmol/L) dose-dependently elicited a transient relaxation response followed by a sustained contraction. The relaxation response was largely blocked by SK channel blockers apamin (500 nmol/L) and UCL1684 (10 μmol/L), PLC inhibitor U73122 (100 μmol/L), IP3 receptor blocker 2-APB (100 μmol/L) or sarcoendoplasmic Ca(2+) ATPase inhibitor thapsigargin (1 μmol/L), but not affected by atropine, NO synthase blocker L-NAME or tetrodotoxin. Furthermore, α,β-Me-ATP-induced relaxation was suppressed by P2Y1 receptor antagonist MRS2179 (50 μmol/L) or P2Y13 receptor antagonist MRS2211 (100 μmol/L), and was abolished by co-application of the two antagonists, whereas 2-Me-S-ADP-induced relaxation was abolished by P2Y6 receptor antagonist MRS2578 (50 μmol/L). In addition, P2Y1 receptor antagonist MRS2500 (1 μmol/L) not only abolished α,β-Me-ATP-induced relaxation, but also suppressed 2-Me-S-ADP-induced relaxation. P2Y receptor agonist-induced transient relaxation of rat ileum smooth muscle strips is mediated predominantly by P2Y1 receptor, but also by P2Y6 and P2Y13 receptors, and involves PLC, IP3, Ca(2+) release and SK channel activation, but is independent of acetylcholine and NO release.

  14. P2Y5 is a Gαi, Gα12/13 G protein-coupled receptor activated by lysophosphatidic acid that reduces intestinal cell adhesion

    PubMed Central

    Lee, Mike; Choi, Sungwon; Halldén, Gunnel; Yo, Sek Jin; Schichnes, Denise

    2009-01-01

    P2Y5 is a G protein-coupled receptor that binds and is activated by lysophosphatidic acid (LPA). We determined that P2Y5 transcript is expressed along the intestinal mucosa and investigated the intracellular pathways induced by P2Y5 activation, which could contribute to LPA effects on intestinal cell adhesion. P2Y5 heterologously expressed in CHO and small intestinal hBRIE 380i cells was activated by LPA resulting in an increase in intracellular calcium ([Ca2+]i) when the cells concurrently expressed GαΔ6qi5myr. P2Y5 activation also increased the phosphorylation of ERK1/2 that was sensitive to pertussis toxin. Together these indicate that P2Y5 activation by LPA induces an increase in [Ca2+]i and ERK1/2 phosphorylation through Gαi. We discovered that P2Y5 was activated by farnesyl pyrophosphate (FPP) without a detectable change in [Ca2+]i. The activation of P2Y5 by LPA or FPP induced the activity of a serum response element (SRE)-linked luciferase reporter that was inhibited by the RGS domain of p115RhoGEF, C3 exotoxin, and Y-27632, suggesting the involvement of Gα12/13, Rho GTPase, and ROCK, respectively. However, only LPA-mediated induction of SRE reporter activity was sensitive to inhibitors targeting p38 MAPK, PI3K, PLC, and PKC. In addition, only LPA transactivated the epidermal growth factor receptor, leading to an induction of ERK1/2 phosphorylation. These observations correlate with our subsequent finding that P2Y5 activation by LPA, and not FPP, reduced intestinal cell adhesion. This study elucidates a mechanism whereby LPA can act as a luminal and/or serosal cue to alter mucosal integrity. PMID:19679818

  15. Biochemical mechanisms of imidacloprid resistance in Nilaparvata lugens: over-expression of cytochrome P450 CYP6AY1.

    PubMed

    Ding, Zhiping; Wen, Yucong; Yang, Baojun; Zhang, Yixi; Liu, Shuhua; Liu, Zewen; Han, Zhaojun

    2013-11-01

    Imidacloprid is a key insecticide extensively used for control of Nilaparvata lugens, and its resistance had been reported both in the laboratory selected strains and field populations. A target site mutation Y151S in two nicotinic acetylcholine receptor subunits and enhanced oxidative detoxification have been identified in the laboratory resistant strain, contributing importantly to imidacloprid resistance in N. lugens. To date, however, imidacloprid resistance in field population is primarily attributable to enhanced oxidative detoxification by over-expressed P450 monooxygenases. A resistant strain (Res), originally collected from a field population and continuously selected in laboratory with imidacloprid for more than 40 generations, had 180.8-fold resistance to imidacloprid, compared to a susceptible strain (Sus). Expression of different putative P450 genes at mRNA levels was detected and compared between Res and Sus strains, and six genes were found expressed significantly higher in Res strain than in Sus strain. CYP6AY1 was found to be the most different expressed P450 gene and its mRNA level in Res strain was 17.9 times of that in Sus strain. By expressing in E. coli cells, CYP6AY1 was found to metabolize imidacloprid efficiently with initial velocity calculated of 0.851 ± 0.073 pmol/min/pmol P450. When CYP6AY1 mRNA levels in Res strain was reduced by RNA interference, imidacloprid susceptibility was recovered. In four field populations with different resistance levels, high levels of CYP6AY1 transcript were also found. In vitro and in vivo studies provided evidences that the over-expression of CYP6AY1 was one of the key factors contributing to imidacloprid resistance in the laboratory selected strain Res, which might also be the important mechanism for imidacloprid resistance in field populations, when the target site mutation was not prevalent at present. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. High throughput functional assays for P2X receptors.

    PubMed

    Namovic, Marian T; Jarvis, Michael F; Donnelly-Roberts, Diana

    2012-06-01

    Adenosine triphosphate (ATP) activates two receptor superfamilies, metabotropic P2Y and ionotropic P2X receptors. The P2X receptors are nonselective cation channels that are widely expressed on excitable cells including neurons, glia, and smooth muscle cells. The protocols in this unit are useful for evaluating ligands that interact with P2X receptors on native cells or that are cloned and expressed in recombinant heterologous cell systems. Calcium imaging methods are described for the pharmacological characterization of fast or slowly desensitizing P2X receptors. While these methods are readily applicable to a wide variety of ligand-gated ion channels, the protocols provided herein detail how they can be used to measure activation of homomeric P2X3 (fast desensitizing) and heteromeric P2X2/3 (slowly desensitizing) receptors. Appropriate agonists and/or calcium dyes can be substituted to assess activity at other P2X receptor subtypes. An additional protocol is provided for measuring P2X7 receptor-mediated pore formation in THP-1, a native human acute monocytic leukemia cell line that can be used to study homomeric P2X7 (non-desensitizing) receptors that are expressed on macrophages and microglial cells. © 2012 by John Wiley & Sons, Inc.

  17. Adenosine triphosphate induces P2Y2 activation and interleukin-8 release in human esophageal epithelial cells.

    PubMed

    Wu, Liping; Oshima, Tadayuki; Fukui, Hirokazu; Watari, Jiro; Miwa, Hiroto

    2017-07-01

    Immune-mediated mucosal inflammation characterized by the release of interleukin (IL)-8 is associated with gastroesophageal reflux disease. ATP released by human esophageal epithelial cells (HEECs) mediates the release of cytokines through P2 nucleotide receptors that are present on various cells, including HEECs. This study characterized and identified human esophageal epithelial P2 receptors that are responsible for ATP-mediated release of IL-8 by using a human esophageal stratified squamous epithelial model. Primary HEECs were cultured with the use of an air-liquid interface (ALI) system. The ATP analogue adenosine 5'-O-3-thiotriphosphate (ATP-γ-S) was added to the basolateral compartment, and IL-8 release was measured. Involvement of the P2Y2 receptor was assessed with the use of selective and non-selective receptor antagonists and a P2Y2 receptor agonist. Expression of the P2Y2 receptor was assessed using western blotting and immunohistochemistry. Adenosine triphosphate-γ-S induced IL-8 release through the P2Y2 receptor. A P2Y2 receptor antagonist but not a P2X3 receptor antagonist or a P2Y1 receptor antagonist blocked ATP-γ-S-mediated IL-8 release. Conversely, a P2Y2 receptor agonist induced IL-8 release. Western blotting and immunohistochemistry of the P2Y2 receptor showed strong expression of the P2Y2 receptor on ALI-cultured HEECs and in human esophagus. Inhibition of extracellular signal-regulated kinase but not of protein kinase C blocked the ATP-mediated release of IL-8. ATP-γ-S induced phosphorylation of extracellular signal-regulated kinase, and a P2Y2 receptor antagonist blocked this phosphorylation. Interleukin-8 release after purinergic stimulation in ALI-cultured HEECs is mediated through P2Y2 receptor activation. ATP-induced IL-8 release maybe involved in the pathogenesis of refractory gastroesophageal reflux disease. © 2016 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd.

  18. Neuropharmacology of purinergic receptors in human submucous plexus: Involvement of P2X₁, P2X₂, P2X₃ channels, P2Y and A₃ metabotropic receptors in neurotransmission.

    PubMed

    Liñán-Rico, A; Wunderlich, J E; Enneking, J T; Tso, D R; Grants, I; Williams, K C; Otey, A; Michel, K; Schemann, M; Needleman, B; Harzman, A; Christofi, F L

    2015-08-01

    The role of purinergic signaling in human ENS is not well understood. We sought to further characterize the neuropharmacology of purinergic receptors in human ENS and test the hypothesis that endogenous purines are critical regulators of neurotransmission. LSCM-Fluo-4/(Ca(2+))-imaging of postsynaptic Ca(2+) transients (PSCaTs) was used as a reporter of synaptic transmission evoked by fiber tract electrical stimulation in human SMP surgical preparations. Pharmacological analysis of purinergic signaling was done in 1,556 neurons (identified by HuC/D-immunoreactivity) in 235 ganglia from 107 patients; P2XR-immunoreactivity was evaluated in 19 patients. Real-time MSORT (Di-8-ANEPPS) imaging tested effects of adenosine on fast excitatory synaptic potentials (fEPSPs). Synaptic transmission is sensitive to pharmacological manipulations that alter accumulation of extracellular purines: Apyrase blocks PSCaTs in a majority of neurons. An ecto-NTPDase-inhibitor 6-N,N-diethyl-D-β,γ-dibromomethyleneATP or adenosine deaminase augments PSCaTs. Blockade of reuptake/deamination of eADO inhibits PSCaTs. Adenosine inhibits fEPSPs and PSCaTs (IC50 = 25 µM), sensitive to MRS1220-antagonism (A3AR). A P2Y agonist ADPβS inhibits PSCaTs (IC50 = 111 nM) in neurons without stimulatory ADPbS responses (EC50 = 960 nM). ATP or a P2X1,2,2/3 (α,β-MeATP) agonist evokes fast, slow, biphasic Ca(2+) transients or Ca(2+) oscillations (ATP,EC50 = 400 mM). PSCaTs are sensitive to P2X1 antagonist NF279. Low (20 nM) or high (5 µM) concentrations of P2X antagonist TNP-ATP block PSCaTs in different neurons; proportions of neurons with P2XR-immunoreactivity follow the order P2X2 > P2X1 > P2X3; P2X1 + P2X2 and P2X3 + P2X2 are co-localized. RT-PCR identified mRNA-transcripts for P2X1-7, P2Y1,2,12-14R. Purines are critical regulators of neurotransmission in human ENS. Purinergic signaling involves P2X1, P2X2, P2X3 channels, P2X1 + P2X2 co-localization and inhibitory P2Y or A3 receptors. These are

  19. Inhibition of G protein-coupled P2Y2 receptor induced analgesia in a rat model of trigeminal neuropathic pain.

    PubMed

    Li, Na; Lu, Zhan-ying; Yu, Li-hua; Burnstock, Geoffrey; Deng, Xiao-ming; Ma, Bei

    2014-03-18

    ATP and P2X receptors play important roles in the modulation of trigeminal neuropathic pain, while the role of G protein-coupled P2Y₂ receptors and the underlying mechanisms are less clear. The threshold and frequency of action potentials, fast inactivating transient K+ channels (IA) are important regulators of membrane excitability in sensory neurons because of its vital role in the control of the spike onset. In this study, pain behavior tests, QT-RT-PCR, immunohistochemical staining, and patch-clamp recording, were used to investigate the role of P2Y₂ receptors in pain behaviour. In control rats: 1) UTP, an agonist of P2Y₂/P2Y₄ receptors, caused a significant decrease in the mean threshold intensities for evoking action potentials and a striking increase in the mean number of spikes evoked by TG neurons. 2) UTP significantly inhibited IA and the expression of Kv1.4, Kv3.4 and Kv4.2 subunits in TG neurons, which could be reversed by the P2 receptor antagonist suramin and the ERK antagonist U0126. In ION-CCI (chronic constriction injury of infraorbital nerve) rats: 1) mRNA levels of Kv1.4, Kv3.4 and Kv4.2 subunits were significantly decreased, while the protein level of phosphorylated ERK was significantly increased. 2) When blocking P2Y₂ receptors by suramin or injection of P2Y2R antisense oligodeoxynucleotides both led to a time- and dose-dependent reverse of allodynia in ION-CCI rats. 3) Injection of P2Y₂ receptor antisense oligodeoxynucleotides induced a pronounced decrease in phosphorylated ERK expression and a significant increase in Kv1.4, Kv3.4 and Kv4.2 subunit expression in trigeminal ganglia. Our data suggest that inhibition of P2Y₂ receptors leads to down-regulation of ERK-mediated phosphorylation and increase of the expression of I(A)-related Kv channels in trigeminal ganglion neurons, which might contribute to the clinical treatment of trigeminal neuropathic pain.

  20. Extracellular UDP enhances P2X-mediated bladder smooth muscle contractility via P2Y6 activation of the phospholipase C/inositol trisphosphate pathway

    PubMed Central

    Yu, Weiqun; Sun, Xiaofeng; Robson, Simon C.; Hill, Warren G.

    2013-01-01

    Bladder dysfunction characterized by abnormal bladder smooth muscle (BSM) contractions is pivotal to the disease process in overactive bladder, urge incontinence, and spinal cord injury. Purinergic signaling comprises one key pathway in modulating BSM contractility, but molecular mechanisms remain unclear. Here we demonstrate, using myography, that activation of P2Y6 by either UDP or a specific agonist (MRS 2693) induced a sustained increase in BSM tone (up to 2 mN) in a concentration-dependent manner. Notably, activation of P2Y6 enhanced ATP-mediated BSM contractile force by up to 45%, indicating synergistic interactions between P2X and P2Y signaling. P2Y6-activated responses were abolished by phospholipase C (PLC) and inositol trisphosphate (IP3) receptor antagonists U73122 and xestospongin C, demonstrating involvement of the PLC/IP3 signal pathway. Mice null for Entpd1, an ectonucleotidase on BSM, demonstrated increased force generation on P2Y6 activation (150%). Thus, in vivo perturbations to purinergic signaling resulted in altered P2Y6 activity and bladder contractility. We conclude that UDP, acting on P2Y6, regulates BSM tone and in doing so selectively maximizes P2X1-mediated contraction forces. This novel neurotransmitter pathway may play an important role in urinary voiding disorders characterized by abnormal bladder motility.—Yu, W., Sun, X., Robson, S. C., Hill, W. G. Extracellular UDP enhances P2X-mediated bladder smooth muscle contractility via P2Y6 activation of the phospholipase C/inositol trisphosphate pathway. PMID:23362118

  1. Off-target effect of the Epac agonist 8-pCPT-2'-O-Me-cAMP on P2Y12 receptors in blood platelets.

    PubMed

    Herfindal, Lars; Nygaard, Gyrid; Kopperud, Reidun; Krakstad, Camilla; Døskeland, Stein Ove; Selheim, Frode

    2013-08-09

    The primary target of the cAMP analogue 8-pCPT-2'-O-Me-cAMP is exchange protein directly activated by cAMP (Epac). Here we tested potential off-target effects of the Epac activator on blood platelet activation signalling. We found that the Epac analogue 8-pCPT-2'-O-Me-cAMP inhibits agonist-induced-GPCR-stimulated, but not collagen-stimulated, P-selectin surface expression on Epac1 deficient platelets. In human platelets, 8-pCPT-2'-O-Me-cAMP inhibited P-selectin expression elicited by the PKC activator PMA. This effect was abolished in the presence of the extracellular ADP scavenger system CP/CPK. In silico modelling of 8-pCPT-2'O-Me-cAMP binding into the purinergic platelet receptor P2Y12 revealed that the analogue docks similar to the P2Y12 antagonist 2MeSAMP. The 8-pCPT-2'-O-Me-cAMP analogue per se, did not provoke Rap 1 (Rap 1-GTP) activation or phosphorylation on the vasodilator-stimulated phosphoprotein (VASP) at Ser-157. In addition, the protein kinase A (PKA) antagonists Rp-cAMPS and Rp-8-Br-cAMPS failed to block the inhibitory effect of 8-pCPT-2'-O-Me-cAMP on thrombin- and TRAP-induced Rap 1 activation, thus suggesting that PKA is not involved. We conclude that the 8-pCPT-2'-O-Me-cAMP analogue is able to inhibit agonist-induced-GPCR-stimulated P-selectin independent from Epac1; the off-target effect of the analogue appears to be mediated by antagonistic P2Y12 receptor binding. This has implications when using cAMP analogues on specialised system involving such receptors. We found, however that the Epac agonist 8-Br-2'-O-Me-cAMP did not affect platelet activation at similar concentrations. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Constitutive neuropeptide Y Y4 receptor expression in human colonic adenocarcinoma cell lines

    PubMed Central

    Cox, Helen M; Tough, Iain R; Zandvliet, Dorothea W J; Holliday, Nicholas D

    2001-01-01

    Three human adenocarcinoma cell lines, Colony-24 (Col-24), Col-6 and Col-1 have been studied as confluent epithelial layers able to transport ions vectorially in response to basolateral vasoactive intestinal polypeptide (VIP) and pancreatic polypeptides (PP). Different species PP stimulated responses in Col-24 with Y4-like pharmacology. Bovine (b)PP, human (h)PP and porcine (p)PP were equipotent (EC50 values 3.0 – 5.0 nM) while rat (r)PP, avian (a)PP and [Leu31, Pro34]PYY (Pro34PYY) were significantly less potent. PYY was inactive. The PP pharmacology in Col-1 was comparable with Col-24. However, Col-6 cells were different; pPP had an EC50 intermediate (22.0 nM) between that of bPP (3.0 nM) and hPP (173.2 nM), with aPP and rPP being at least a further fold less potent. Deamidation of Tyr36 in bPP (by O-methylation or hydroxylation) or removal of the residue resulted in significant loss of activity in Col-24. GR231118 (1 μM) had no PP-like effects. In Col-24 and Col-1, GR231118 significantly attenuated bPP (30 nM) or hPP (100 nM) responses, but it did not alter bPP responses in Col-6. BIBP3226 and GR231118 both inhibited Y1-mediated responses which were only present in Col-6. RT – PCR analysis confirmed the presence of hY4 receptor mRNA in Col-24 and Col-1 epithelia but a barely visible hY4 product was observed in Col-6 and we suggest that an atypical Y4 receptor is expressed in this cell line. PMID:11156595

  3. Increased hypothalamic 5-HT2A receptor gene expression and effects of pharmacologic 5-HT2A receptor inactivation in obese A{sup y} mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nonogaki, Katsunori; Nozue, Kana; Oka, Yoshitomo

    2006-12-29

    Serotonin (5-hydroxytryptamine; 5-HT) 2A receptors contribute to the effects of 5-HT on platelet aggregation and vascular smooth muscle cell proliferation, and are reportedly involved in decreases in plasma levels of adiponectin, an adipokine, in diabetic subjects. Here, we report that systemic administration of sarpogrelate, a 5-HT2A receptor antagonist, suppressed appetite and increased hypothalamic pro-opiomelanocortin and cocaine- and amphetamine-regulated transcript, corticotropin releasing hormone, 5-HT2C, and 5-HT1B receptor gene expression. A{sup y} mice, which have ectopic expression of the agouti protein, significantly increased hypothalamic 5-HT2A receptor gene expression in association with obesity compared with wild-type mice matched for age. Systemic administration ofmore » sarpogrelate suppressed overfeeding, body weight gain, and hyperglycemia in obese A{sup y} mice, whereas it did not increase plasma adiponectin levels. These results suggest that obesity increases hypothalamic 5-HT2A receptor gene expression, and pharmacologic inactivation of 5-HT2A receptors inhibits overfeeding and obesity in A{sup y} mice, but did not increase plasma adiponectin levels.« less

  4. Modeling ligand recognition at the P2Y12 receptor in light of X-ray structural information

    NASA Astrophysics Data System (ADS)

    Paoletta, Silvia; Sabbadin, Davide; von Kügelgen, Ivar; Hinz, Sonja; Katritch, Vsevolod; Hoffmann, Kristina; Abdelrahman, Aliaa; Straßburger, Jens; Baqi, Younis; Zhao, Qiang; Stevens, Raymond C.; Moro, Stefano; Müller, Christa E.; Jacobson, Kenneth A.

    2015-08-01

    The G protein-coupled P2Y12 receptor (P2Y12R) is an important antithrombotic target and of great interest for pharmaceutical discovery. Its recently solved, highly divergent crystallographic structures in complex either with nucleotides (full or partial agonist) or with a nonnucleotide antagonist raise the question of which structure is more useful to understand ligand recognition. Therefore, we performed extensive molecular modeling studies based on these structures and mutagenesis, to predict the binding modes of major classes of P2Y12R ligands previously reported. Various nucleotide derivatives docked readily to the agonist-bound P2Y12R, but uncharged nucleotide-like antagonist ticagrelor required a hybrid receptor resembling the agonist-bound P2Y12R except for the top portion of TM6. Supervised molecular dynamics (SuMD) of ticagrelor binding indicated interactions with the extracellular regions of P2Y12R, defining possible meta-binding sites. Ureas, sulfonylureas, sulfonamides, anthraquinones and glutamic acid piperazines docked readily to the antagonist-bound P2Y12R. Docking dinucleotides at both agonist- and antagonist-bound structures suggested interactions with two P2Y12R pockets. Thus, our structure-based approach consistently rationalized the main structure-activity relationships within each ligand class, giving useful information for designing improved ligands.

  5. Pathophysiological roles of P2 receptors in glial cells.

    PubMed

    Abbracchio, Maria P; Verderio, Claudia

    2006-01-01

    Extracellular nucleotides act through specific receptors on target cells: the seven ionotropic P2X and the eight G protein-coupled P2Y receptors. All these receptors are expressed by brain astroglia and microglia. In astrocytes, P2 receptors have been implicated in short-term calcium-dependent cell-cell communication. Upon mechanical stimulation or activation by other transmitters, astrocytes release ATP and respond to ATP with a propagating wave of intracellular calcium increases, allowing a homotypic astrocyte-astrocyte communication, as well as an heterotypic signalling which also involves neurons, oligodendrocytes and microglia. Astrocytic P2 receptors also mediate reactive astrogliosis, a reaction contributing to neuronal death in neurodegenerative diseases. Signalling leading to inflammatory astrogliosis involves induction of cyclo-oxygenase 2 through stimulation of ERK1,2 and of the transcriptional factors AP-1 and NF-kappaB. Microglia also express several P2 receptors linked to intracellular calcium increases. P2 receptor subtypes are differentially regulated by typical proinflammatory signals for these cells (e.g. lipopolysaccharide), suggesting specific roles in brain immune responses. Globally, these findings highlight the roles of P2 receptors in glial cell pathophysiology suggesting a contribution to neurodegenerative diseases characterized by excessive gliosis and neuro-inflammation. They also open up the possibility of modulating brain damage by ligands selectively targeting the specific P2 receptor subtypes involved in the gliotic response.

  6. Competitive antagonism of recombinant P2X(2/3) receptors by 2', 3'-O-(2,4,6-trinitrophenyl) adenosine 5'-triphosphate (TNP-ATP).

    PubMed

    Burgard, E C; Niforatos, W; van Biesen, T; Lynch, K J; Kage, K L; Touma, E; Kowaluk, E A; Jarvis, M F

    2000-12-01

    TNP-ATP has become widely recognized as a potent and selective P2X receptor antagonist, and is currently being used to discriminate between subtypes of P2X receptors in a variety of tissues. We have investigated the ability of TNP-ATP to inhibit alpha,beta-methylene ATP (alpha,beta-meATP)-evoked responses in 1321N1 human astrocytoma cells expressing recombinant rat or human P2X(2/3) receptors. Pharmacological responses were measured using electrophysiological and calcium imaging techniques. TNP-ATP was a potent inhibitor of P2X(2/3) receptors, blocking both rat and human receptors with IC(50) values of 3 to 6 nM. In competition studies, 10 to 1000 microM alpha,beta-meATP was able to overcome TNP-ATP inhibition. Schild analysis revealed that TNP-ATP was a competitive antagonist with pA(2) values of -8.7 and -8.2. Inhibition of P2X(2/3) receptors by TNP-ATP was rapid in onset, reversible, and did not display use dependence. Although the onset kinetics of inhibition were concentration-dependent, the TNP-ATP off-kinetics were concentration-independent and relatively slow. Full recovery from TNP-ATP inhibition did not occur until >/=5 s after removal of the antagonist. Because of the slow off-kinetics of TNP-ATP, full competition with alpha,beta-meATP for receptor occupancy could be seen only after both ligands had reached a steady-state condition. It is proposed that the slowly desensitizing P2X(2/3) receptor allowed this competitive interaction to be observed over time, whereas the rapid desensitization of other P2X receptors (P2X(3)) may mask the detection of competitive inhibition by TNP-ATP.

  7. Differential endosomal sorting of a novel P2Y12 purinoreceptor mutant.

    PubMed

    Cunningham, Margaret R; Nisar, Shaista P; Cooke, Alexandra E; Emery, Elizabeth D; Mundell, Stuart J

    2013-05-01

    P2Y12 receptor internalization and recycling play an essential role in ADP-induced platelet activation. Recently, we identified a patient with a mild bleeding disorder carrying a heterozygous mutation of P2Y12 (P341A) whose P2Y12 receptor recycling was significantly compromised. Using human cell line models, we identified key proteins regulating wild-type (WT) P2Y12 recycling and investigated P2Y12 -P341A receptor traffic. Treatment with ADP resulted in delayed Rab5-dependent internalization of P341A when compared with WT P2Y12 . While WT P2Y12 rapidly recycled back to the membrane via Rab4 and Rab11 recycling pathways, limited P341A recycling was observed, which relied upon Rab11 activity. Although minimal receptor degradation was evident, P341A was localized in Rab7-positive endosomes with considerable agonist-dependent accumulation in the trans-Golgi network (TGN). Rab7 activity is known to facilitate recruitment of retromer complex proteins to endosomes to transport cargo to the TGN. Here, we identified that P341A colocalized with Vps26; depletion of which blocked limited recycling and promoted receptor degradation. This study has identified key points of divergence in the endocytic traffic of P341A versus WT-P2Y12 . Given that these pathways are retained in human platelets, this research helps define the molecular mechanisms regulating P2Y12 receptor traffic and explain the compromised receptor function in the platelets of the P2Y12 -P341A-expressing patient. © 2013 John Wiley & Sons A/S.

  8. The platelet P2Y(12) receptor under normal and pathological conditions. Assessment with the radiolabeled selective antagonist [(3)H]PSB-0413.

    PubMed

    Ohlmann, Philippe; Lecchi, Anna; El-Tayeb, Ali; Müller, Christa E; Cattaneo, Marco; Gachet, Christian

    2013-03-01

    Various radioligands have been used to characterize and quantify the platelet P2Y(12) receptor, which share several weaknesses: (a) they are metabolically unstable and substrates for ectoenzymes, (b) they are agonists, and (c) they do not discriminate between P2Y(1) and P2Y(12). We used the [(3)H]PSB-0413 selective P2Y(12) receptor antagonist radioligand to reevaluate the number of P2Y(12) receptors in intact platelets and in membrane preparations. Studies in humans showed that: (1) [(3)H]PSB-0413 bound to 425 ± 50 sites/platelet (K (D) = 3.3 ± 0.6 nM), (2) 0.5 ± 0.2 pmol [(3)H]PSB-0413 bound to 1 mg protein of platelet membranes (K (D) = 6.5 ± 3.6 nM), and (3) competition studies confirmed the known features of P2Y(12), with the expected rank order of potency: AR-C69931MX > 2MeSADP ≫ ADPβS > ADP, while the P2Y(1) ligand MRS2179 and the P2X(1) ligand α,β-Met-ATP did not displace [(3)H]PSB-0413 binding. Patients with severe P2Y(12) deficiency displayed virtually no binding of [(3)H]PSB-0413 to intact platelets, while a patient with a dysfunctional P2Y(12) receptor had normal binding. Studies in mice showed that: (1) [(3)H]PSB-0413 bound to 634 ± 87 sites/platelet (K (D) = 14 ± 4.5 nM) and (2) 0.7 pmol ± 0.3 [(3)H]PSB-0413 bound to 1 mg protein of platelet membranes (K (D) = 9.1 ± 5.3 nM). Clopidogrel and other thiol reagents like pCMBS or DTT abolished the binding both to intact platelets and membrane preparations. Therefore, [(3)H]PSB-0413 is an accurate and selective tool for radioligand binding studies aimed at quantifying P2Y(12) receptors, to identify patients with P2Y(12) deficiencies or quantify the effect of P2Y(12) targeting drugs.

  9. P2Y12 expression and function in alternatively activated human microglia

    PubMed Central

    Ase, Ariel R.; Kinsara, Angham; Rao, Vijayaraghava T.S.; Michell-Robinson, Mackenzie; Leong, Soo Yuen; Butovsky, Oleg; Ludwin, Samuel K.; Séguéla, Philippe; Bar-Or, Amit; Antel, Jack P.

    2015-01-01

    Objective: To investigate and measure the functional significance of altered P2Y12 expression in the context of human microglia activation. Methods: We performed in vitro and in situ experiments to measure how P2Y12 expression can influence disease-relevant functional properties of classically activated (M1) and alternatively activated (M2) human microglia in the inflamed brain. Results: We demonstrated that compared to resting and classically activated (M1) human microglia, P2Y12 expression is increased under alternatively activated (M2) conditions. In response to ADP, the endogenous ligand of P2Y12, M2 microglia have increased ligand-mediated calcium responses, which are blocked by selective P2Y12 antagonism. P2Y12 antagonism was also shown to decrease migratory and inflammatory responses in human microglia upon exposure to nucleotides that are released during CNS injury; no effects were observed in human monocytes or macrophages. In situ experiments confirm that P2Y12 is selectively expressed on human microglia and elevated under neuropathologic conditions that promote Th2 responses, such as parasitic CNS infection. Conclusion: These findings provide insight into the roles of M2 microglia in the context of neuroinflammation and suggest a mechanism to selectively target a functionally unique population of myeloid cells in the CNS. PMID:25821842

  10. P2Y12 shRNA treatment decreases SGC activation to relieve diabetic neuropathic pain in type 2 diabetes mellitus rats.

    PubMed

    Wang, Shouyu; Wang, Zilin; Li, Lin; Zou, Lifang; Gong, Yingxin; Jia, Tianyu; Zhao, Shanhong; Yuan, Huilong; Shi, Liran; Liu, Shuangmei; Wu, Bing; Yi, Zhihua; Liu, Hui; Gao, Yun; Li, Guilin; Deussing, Jan M; Li, Man; Zhang, Chunping; Liang, Shangdong

    2018-06-26

    Diabetic neuropathic pain is a common complication of type 2 diabetes mellitus (DM). Activation of satellite glial cells (SGCs) in the dorsal root ganglia (DRG) plays a crucial role in neuropathic pain through the release of proinflammatory cytokines. The P2Y12 receptor is expressed in SGCs of the DRG. In this study, our aim was to investigate the role of the P2Y12 receptor on the pathological changes in diabetic neuropathic pain. The present study showed that diabetic neuropathic pain increased mechanical and thermal hyperalgesia in type 2 DM model rats. The results showed that the expression levels of P2Y12 messenger RNA (mRNA) and protein in DRG SGCs were increased in DM model rats compared with control rats. Glial fibrillary acidic protein (GFAP) and interleukin-1β (IL-1β) expression levels in the DRG were increased in DM rats. Upregulation of GFAP is a marker of SGC activation. Targeting the P2Y12 receptor by short hairpin RNA (shRNA) decreased the upregulated expression of P2Y12 mRNA and protein, coexpression of P2Y12 and GFAP, the expression of GFAP, IL-1β, and tumor necrosis factor-receptor 1 in the DRG of DM rats, and relieved mechanical and thermal hyperalgesia in DM rats. After treatment with the P2Y12 receptor shRNA, the enhancing integrated OPTICAL density (IOD) ratios of p-P38 MAPK to P38 mitogen activated protein kinase (MAPK) in the DM rats treated with P2Y12 shRNA were significantly lower than that in the untreated DM rats. Therefore, P2Y12 shRNA treatment decreased SGC activation to relieve mechanical and thermal hyperalgesia in DM rats. © 2018 Wiley Periodicals, Inc.

  11. Endogenous neuropeptide Y depresses the afferent signaling of gastric acid challenge to the mouse brainstem via neuropeptide Y type Y2 and Y4 receptors.

    PubMed

    Wultsch, T; Painsipp, E; Thoeringer, C K; Herzog, H; Sperk, G; Holzer, P

    2005-01-01

    Vagal afferents signal gastric acid challenge to the nucleus tractus solitarii of the rat brainstem. This study investigated whether nucleus tractus solitarii neurons in the mouse also respond to gastric acid challenge and whether this chemonociceptive input is modified by neuropeptide Y acting via neuropeptide Y receptors of type Y2 or Y4. The gastric mucosa of female mice was exposed to different concentrations of HCl or saline, excitation of neurons in the nucleus tractus solitarii visualized by c-Fos immunohistochemistry, gastric emptying deduced from the gastric volume recovery, and gastric lesion formation evaluated by planimetry. Relative to saline, intragastric HCl (0.15-0.35 M) increased the number of c-Fos-expressing cells in the nucleus tractus solitarii in a concentration-dependent manner, inhibited gastric emptying but failed to cause significant hemorrhagic injury in the stomach. Mice in which the Y2 or Y4 receptor gene had been deleted responded to gastric acid challenge with a significantly higher expression of c-Fos in the nucleus tractus solitarii, the increases amounting to 39 and 31%, respectively. The HCl-induced inhibition of gastric emptying was not altered by deletion of the Y2 or Y4 receptor gene. BIIE0246 ((S)-N2-[[1-[2-[4-[(R,S)-5,11-dihydro-6(6H)-oxodibenz[b,e] azepin-11-yl]-1-piperazinyl]-2-oxoethyl]cyclopentyl] acetyl]-N-[2-[1,2-dihydro-3,5 (4H)-dioxo-1,2-diphenyl-3H-1,2,4-triazol-4-yl]ethyl]-argininamide; 0.03 mmol/kg s.c.), a Y2 receptor antagonist which does not cross the blood-brain barrier, did not modify the c-Fos response to gastric acid challenge. The Y2 receptor agonist peptide YY-(3-36) (0.1 mg/kg intraperitoneally) likewise failed to alter the gastric HCl-evoked expression of c-Fos in the nucleus tractus solitarii. BIIE0246, however, prevented the effect of peptide YY-(3-36) to inhibit gastric acid secretion as deduced from measurement of intragastric pH. The current data indicate that gastric challenge with acid

  12. Identification of Determinants Required for Agonistic and Inverse Agonistic Ligand Properties at the ADP Receptor P2Y12

    PubMed Central

    Schmidt, Philipp; Ritscher, Lars; Dong, Elizabeth N.; Hermsdorf, Thomas; Cöster, Maxi; Wittkopf, Doreen; Meiler, Jens

    2013-01-01

    The ADP receptor P2Y12 belongs to the superfamily of G protein–coupled receptors (GPCRs), and its activation triggers platelet aggregation. Therefore, potent antagonists, such as clopidogrel, are of high clinical relevance in prophylaxis and treatment of thromboembolic events. P2Y12 displays an elevated basal activity in vitro, and as such, inverse agonists may be therapeutically beneficial compared with antagonists. Only a few inverse agonists of P2Y12 have been described. To expand this limited chemical space and improve understanding of structural determinants of inverse agonist-receptor interaction, this study screened a purine compound library for lead structures using wild-type (WT) human P2Y12 and 28 constitutively active mutants. Results showed that ATP and ATP derivatives are agonists at P2Y12. The potency at P2Y12 was 2-(methylthio)-ADP > 2-(methylthio)-ATP > ADP > ATP. Determinants required for agonistic ligand activity were identified. Molecular docking studies revealed a binding pocket for the ATP derivatives that is bordered by transmembrane helices 3, 5, 6, and 7 in human P2Y12, with Y105, E188, R256, Y259, and K280 playing a particularly important role in ligand interaction. N-Methyl-anthraniloyl modification at the 3′-OH of the 2′-deoxyribose leads to ligands (mant-deoxy-ATP [dATP], mant-deoxy-ADP) with inverse agonist activity. Inverse agonist activity of mant-dATP was found at the WT human P2Y12 and half of the constitutive active P2Y12 mutants. This study showed that, in addition to ADP and ATP, other ATP derivatives are not only ligands of P2Y12 but also agonists. Modification of the ribose within ATP can result in inverse activity of ATP-derived ligands. PMID:23093496

  13. Purinergic P2Y receptors in airway epithelia: from ion transport to immune functions.

    PubMed

    Hao, Yuan; Ko, Wing-hung

    2014-02-25

    The regulated transport of salt and water is essential to the integrated function of many organ systems, including the respiratory, reproductive, and digestive tracts. Airway epithelial fluid secretion is a passive process that is driven by osmotic forces, which are generated by ion transport. The main determinant of a luminally-directed osmotic gradient is the mucosal transport of chloride ions (Cl(-)) into the lumen. As with many epithelial cells, a number of classic signal transduction cascades are involved in the regulation of ion transport. There are two well-known intracellular signaling systems: an increase in intracellular Ca(2+) concentration ([Ca(2+)]i) and an increase in the rate of synthesis of cyclic nucleotides, such as cyclic adenosine monophosphate (cAMP). Therefore, Cl(-) secretion is primarily activated via the opening of apical Ca(2+)- or cAMP-dependent Cl(-) channels at the apical membrane. The opening of basolateral Ca(2+)- or cAMP-activated K(+) channels, which hyperpolarizes the cell to maintain the driving force for Cl(-) exit through apical Cl(-) channels that are constitutively open, is also important in regulating transepithelial ion transport. P2Y receptors are expressed in the apical and/or basolateral membranes of virtually all polarized epithelia to control the transport of fluid and electrolytes. Human airway epithelial cells express multiple nucleotide receptors. Extracellular nucleotides, such as UTP and ATP, are calcium-mobilizing secretagogues. They are released into the extracellular space from airway epithelial cells and act on the same cell in an autocrine fashion to stimulate transepithelial ion transport. In addition, recent data support the role of P2Y receptors in releasing inflammatory cytokines in the bronchial epithelium and other immune cells.

  14. Neuropharmacology of Purinergic Receptors in Human Submucous Plexus: Involvement of P2X1, P2X2, P2X3 Channels, P2Y and A3 Metabotropic Receptors in Neurotransmission

    PubMed Central

    Liñán-Rico, A.; Wunderlich, JE.; Enneking, JT.; Tso, DR.; Grants, I.; Williams, KC.; Otey, A.; Michel, K.; Schemann, M.; Needleman, B.; Harzman, A.; Christofi, FL.

    2015-01-01

    Rationale The role of purinergic signaling in the human ENS is not well understood. We sought to further characterize the neuropharmacology of purinergic receptors in human ENS and test the hypothesis that endogenous purines are critical regulators of neurotransmission. Experimental Approach LSCM-Fluo-4-(Ca2+)-imaging of postsynaptic Ca2+ transients (PSCaTs) was used as a reporter of neural activity. Synaptic transmission was evoked by fiber tract electrical stimulation in human SMP surgical preparations. Pharmacological analysis of purinergic signaling was done in 1,556 neurons from 234 separate ganglia 107 patients; immunochemical labeling for P2XRs of neurons in ganglia from 19 patients. Real-time MSORT (Di-8-ANEPPS) imaging was used to test effects of adenosine on fast excitatory synaptic potentials (fEPSPs). Results Synaptic transmission is sensitive to pharmacological manipulations that alter accumulation of extracellular purines. Apyrase blocks PSCaTs in a majority of neurons. An ecto-NTPDase-inhibitor 6-N,N-diethyl-D-β,γ-dibromomethyleneATP or adenosine deaminase augments PSCaTs. Blockade of reuptake/deamination of eADO inhibits PSCaTs. Adenosine inhibits fEPSPs and PSCaTs (IC50=25μM), sensitive to MRS1220-antagonism (A3AR). A P2Y agonist ADPβS inhibits PSCaTs (IC50=111nM) in neurons without stimulatory ADPβS responses (EC50=960nM). ATP or a P2X1,2,2/3 (α,β-MeATP) agonist evokes fast, slow, biphasic Ca2+ transients or Ca2+ oscillations (EC50=400μM). PSCaTs are sensitive to P2X1 antagonist NF279. Low (20nM) or high (5μM) concentrations of P2X antagonist TNP-ATP block PSCaTs in different neurons; proportions of neurons with P2XR-ir follow the order P2X2>P2X1≫P2X3; P2X1+ P2X2 and P2X3+P2X2 are co-localized. RT-PCR identified mRNA-transcripts for P2X1-7,P2Y1,2,12-14R. Responsive neurons were also identified by HuC/D-ir. Conclusions Purines are critical regulators of neurotransmission in the human enteric nervous system. Purinergic signaling involves

  15. Endothelium-dependent relaxation evoked by ATP and UTP in the aorta of P2Y2-deficient mice

    PubMed Central

    Guns, Pieter-Jan D F; Van Assche, Tim; Fransen, Paul; Robaye, Bernard; Boeynaems, Jean-Marie; Bult, Hidde

    2006-01-01

    Based on pharmacological criteria, we previously suggested that in the mouse aorta, endothelium-dependent relaxation by nucleotides is mediated by P2Y1 (adenosine diphosphate (ADP)), P2Y2 (adenosine triphosphate (ATP)) and P2Y6 (uridine diphosphate (UDP)) receptors. For UTP, it was unclear whether P2Y2, P2Y6 or yet another subtype was involved. Therefore, in view of the lack of selective purinergic agonists and antagonists, we used P2Y2-deficient mice to clarify the action of UTP. Thoracic aorta segments (width 2 mm) of P2Y2-deficient and wild-type (WT) mice were mounted in organ baths to measure isometric force development and intracellular calcium signalling. Relaxations evoked by ADP, UDP and acetylcholine were identical in knockout and WT mice, indicating that the receptors for these agonists function normally. P2Y2-deficient mice showed impaired ATP- and adenosine 5′[γ-thio] triphosphate (ATPγS)-evoked relaxation, suggesting that in WT mice, ATP and ATPγS activate predominantly the P2Y2 subtype. The ATP/ATPγS-evoked relaxation and calcium signals in the knockout mice were partially rescued by P2Y1, as they were sensitive to 2′-deoxy-N6-methyladenosine 3′,5′-bisphosphate (MRS2179), a P2Y1-selective antagonist. In contrast to ATP, the UTP-evoked relaxation was not different between knockout and WT mice. Moreover, the action of UTP was not sensitive to MRS2179. Therefore, the action of UTP is probably mediated mainly by a P2Y6(like) receptor subtype. In conclusion, we demonstrated that ATP-evoked relaxation of the murine aorta is mainly mediated by P2Y2. But this P2Y2 receptor has apparently no major role in UTP-evoked relaxation. The vasodilator effect of UTP is probably mediated mainly by a P2Y6(like) receptor. PMID:16415908

  16. Reciprocal regulation of platelet responses to P2Y and thromboxane receptor activation.

    PubMed

    Barton, J F; Hardy, A R; Poole, A W; Mundell, S J

    2008-03-01

    Thromboxane A(2) and ADP are two major platelet agonists that stimulate two sets of G protein-coupled receptors to activate platelets. Although aggregation responses to ADP and thromboxane desensitize, there are no reports currently addressing whether activation by one agonist may heterologously desensitize responses to the other. To demonstrate whether responses to ADP or U46619 may be modulated by prior treatment of platelets with the alternate agonist, revealing a level of cross-desensitization between receptor systems. Here we show that pretreatment of platelets with either agonist substantially desensitizes aggregation responses to the other agonist. Calcium responses to thromboxane receptor activation are desensitized by preactivation of P2Y(1) but not P2Y(12) receptors. This heterologous desensitization is mediated by a protein kinase C (PKC)-independent mechanism. Reciprocally, calcium responses to ADP are desensitized by pretreatment of platelets with the thromboxane analogue, U46619, and P2Y(12)-mediated inhibition of adenylate cyclase is also desensitized by pretreatment with U46619. In this direction, desensitization is comprised of two components, a true heterologous component that is PKC-independent, and a homologous component that is mediated through stimulated release of dense granule ADP. This study reveals cross-desensitization between ADP and thromboxane receptor signaling in human platelets. Cross-desensitization is mediated by protein kinases, involving PKC-dependent and independent pathways, and indicates that alterations in the activation state of one receptor may have effects upon the sensitivity of the other receptor system.

  17. Short communication: expression of peptide YY, proglucagon, neuropeptide Y receptor Y2, and glucagon-like peptide-1 receptor in bovine peripheral tissues.

    PubMed

    Pezeshki, A; Muench, G P; Chelikani, P K

    2012-09-01

    The role of distal gut signals in control of feed intake and metabolism in cattle has received scant attention. Peptide YY (PYY) and glucagon-like peptide-1, which are secreted from enteroendocrine cells of the distal gut in monogastrics have several functions, including regulation of energy balance. However, little is known of the tissue expression of these peptides and their receptors in cattle. The aim of the current study was to characterize the tissue distribution of PYY, neuropeptide Y receptor Y2 (Y2), proglucagon (GCG), and glucagon-like peptide-1 receptor (GLP1R) in various peripheral tissues of cattle. Four male 7-wk-old dairy calves were euthanized and 16 peripheral tissues were collected. Conventional PCR and quantitative real-time PCR were performed to confirm tissue expression and quantify the transcript abundance in various tissues. The results of conventional PCR revealed that mRNA for both PYY and Y2 was detectable in the rumen, abomasum, duodenum, jejunum, ileum, and colon but not in other tissues. Quantitative real-time PCR data demonstrated that PYY mRNA was 2- to 3-fold greater in the pancreas, kidney, and heart relative to the liver. By conventional PCR, GCG mRNA was detected in the abomasum, duodenum, jejunum, ileum, and colon and GLP1R mRNA was expressed in all gut segments, pancreas, spleen, and kidney. Quantitative real-time PCR data demonstrated that, relative to transcript abundance in the liver, GCG mRNA was 4- to 40-fold higher from abomasum to colon, and GLP1R mRNA was 50- to 300-fold higher from the rumen to colon, 14-fold greater in the pancreas, 18-fold higher in the spleen, and 166-fold greater in the kidney. The tissue distribution of PYY, GCG, and their receptors observed in the current study is, in general, consistent with expression patterns in monogastrics. The predominant expression of PYY, Y2, and GCG in the gut, and the presence of GLP1R in multiple peripheral tissues suggest a role for PYY in controlling gut functions and

  18. Synergistic effects of adenosine A1 and P2Y receptor stimulation on calcium mobilization and PKC translocation in DDT1 MF-2 cells.

    PubMed

    Fredholm, Bertil B; Assender, Jean W; Irenius, Eva; Kodama, Noriko; Saito, Naoaki

    2003-06-01

    1. The effect of adenosine analogues and of nucleotides, alone or in combination, on intracellular calcium, accumulation of inositol (1,4,5) trisphosphate (InsP3), and on activation of protein kinase C (PKC) was studied in DDT1 MF2 cells derived from a Syrian hamster myosarcoma. These cells were found to express mRNA for A1 and some as yet unidentified P2Y receptor(s). 2. Activation of either receptor type stimulated the production of InsP3 and raised intracellular calcium in DDT1 MF2 cells. Similarly, the A1 selective agonist N6-cyclopentyladenosine (CPA) increased PKC-dependent phosphorylation of the substrate MBP(4-14) and induced a PKC translocation to the plasma membrane as determined using [3H]-phorbol dibutyrate (PDBu) binding in DDT1 MF-2 cells. However, neither adenosine nor CPA induced a significant translocation of transiently transfected gamma-PKC-GFP from the cytosol to the cell membrane. In contrast to adenosine analogues, ATP and UTP also caused a rapid but transient translocation of gamma-PKC-GFP and activation of PKC. 3. Doses of the A1 agonist CPA and of ATP or UTP per se caused barely detectable increases in intracellular Ca2+ but when combined, they caused an almost maximal stimulation. Similarly, adenosine (0.6 microM) and UTP (or ATP, 2.5 microM), which per se caused no detectable translocation of either gamma- or epsilon-PKC-GFP, caused when combined a very clear-cut translocation of both PKC subforms, albeit with different time courses. These results show that simultaneous activation of P2Y and adenosine A1 receptors synergistically increases Ca2+ transients and translocation of PKC in DDT1 MF-2 cells. Since adenosine is rapidly formed by breakdown of extracellular ATP, such interactions may be biologically important.

  19. In search of selective P2 receptor ligands: interaction of dihydropyridine derivatives at recombinant rat P2X(2) receptors.

    PubMed

    Jacobson, K A; Kim, Y C; King, B F

    2000-07-03

    1,4-Dihydropyridines are regarded as privileged structures for drug design, i.e. they tend to bind to a wide variety of receptor sites. We have shown that upon appropriate manipulation of the substituent groups on a 1,4-dihydropyridine template, high affinity and selectivity for the A(3) subtype of adenosine receptors ('P1 receptors') may be attained. In the present study we have begun to extend this approach to P2 receptors which are activated by ATP and other nucleotides. Nicardipine, a representative dihydropyridine, used otherwise as an L-type calcium channel blocker, was shown to be an antagonist at recombinant rat P2X(2) (IC(50)=25 microM) and P2X(4) (IC(50) approximately 220 microM) receptors expressed in Xenopus oocytes. Thus, this class of compounds represents a suitable lead for enhancement of affinity through chemical synthesis. In an attempt to modify the 1,4-dihydropyridine structure with a predicted P2 receptor recognition moiety, we have replaced one of the ester groups with a negatively charged phosphonate group. Several 4-phenyl-5-phosphonato-1,4-dihydropyridine derivatives, MRS 2154 (2, 6-dimethyl), MRS 2155 (6-methyl-2-phenyl), and MRS 2156 (2-methyl-6-phenyl), were synthesized through three component condensation reactions. These derivatives were not pure antagonists of the effects of ATP at P2X(2) receptors, rather were either inactive (MRS 2156) or potentiated the effects of ATP in a concentration-dependent manner (MRS 2154 in the 0.3-10 microM range and MRS 2155 at >1 microM). Antagonism of the effects of ATP at P2X(2) receptor superimposed on the potentiation was also observed at >10 microM (MRS 2154) or 0.3-1 microM (MRS 2155). Thus, while a conventional dihydropyridine, nicardipine, was found to antagonize rat P2X(2) receptors ninefold more potently than P2X(4) receptors, the effects of novel, anionic 5-phosphonate analogues at the receptor were more complex.

  20. P2 receptor stimulation induces amyloid precursor protein production and secretion in rat cortical astrocytes.

    PubMed

    Tran, Minh D

    2011-04-04

    Amyloid precursor protein (APP) is ubiquitously expressed in a variety of tissues but is predominantly expressed in the brain. The expression of APP has been well studied in neurons but little is known about its presence in astrocytes. The study presented here shows that purinergic signaling is involved in the production and secretion of APP in primary cultures of rat cortical astrocytes. Extracellular ATP caused an increase in APP production and release in a time- and concentration-dependent manner and was inhibited by antagonists of P2 receptors. Further agonist and antagonist studies revealed involvement of P2Y2 and P2Y4 receptors in nucleotide-stimulated production and release of APP. In addition, signaling studies with various protein kinase inhibitors demonstrated that blockade of mitogen-activated protein kinases, but not Akt, inhibited nucleotide-stimulated APP expression and release. These results indicate that APP production and secretion can be regulated by activation of P2Y2/4 receptors coupled to protein kinase signaling pathways and suggest that astrocytes can be a potential source of APP. Published by Elsevier Ireland Ltd.

  1. Effect of transient receptor potential vanilloid 6 gene silencing on the expression of calcium transport genes in chicken osteoblasts.

    PubMed

    Zhang, Jie; Deng, Yifeng; Ma, Huijie; Hou, Jiafa; Zhou, ZhenLei

    2015-03-01

    Ca2+ plays a major role in the regulation of signal transduction. Transient receptor potential vanilloid 6 is a Ca2+-selective channel that serves as an important rate-limiting step in the facilitation of Ca2+ entry into cells, but little is known about the regulation of transient receptor potential vanilloid 6 in chickens. In this study, we evaluated the effects of transient receptor potential vanilloid 6 gene interference on the expression of calbindin-D28K, Na+/Ca2+ exchangers, and plasma membrane Ca2+ ATPase 1b to investigate the mechanism underlying the regulation of transient receptor potential vanilloid 6. Three hairpin siRNA expression vectors targeting transient receptor potential vanilloid 6 (pSIREN- transient receptor potential vanilloid 6) and a negative control (pSIREN-control) were constructed and transfected into chicken osteoblasts. The mRNA and protein expression levels were evaluated by quantitative reverse transcription polymerase chain reaction and Western blot, respectively. The mRNA expression levels of transient receptor potential vanilloid 6 and calbindin-D28K were reduced by 45.7% (P<0.01) and 27.9% (P<0.01), respectively, 48 h after transfection with one of the three constructs (pSIREN- transient receptor potential vanilloid 6-3) compared with the level obtained in the untreated group. There was no significant difference in the mRNA expression levels of Na+/Ca2+ exchangers and plasma membrane Ca2+ ATPase 1b. The protein expression levels of transient receptor potential vanilloid 6 and calbindin-D28K were reduced by 40.2% (P<0.01) and 29.8% (P<0.01), respectively, 48 h after transfection with pSIREN-transient receptor potential vanilloid 6-3 compared with the level obtained in the untreated group. In conclusion, the vector-based transient receptor potential vanilloid 6-shRNA can efficiently suppress the mRNA and protein expression of transient receptor potential vanilloid 6 in chicken osteoblasts, and transient receptor potential vanilloid

  2. ATP excites mouse vomeronasal sensory neurons through activation of P2X receptors.

    PubMed

    Vick, J S; Delay, R J

    2012-09-18

    Purinergic signaling through activation of P2X and P2Y receptors is critically important in the chemical senses. In the mouse main olfactory epithelium (MOE), adenosine 5'-triphosphate (ATP) elicits an increase in intracellular calcium ([Ca(2+)](I)) and reduces the responsiveness of olfactory sensory neurons to odorants through activation of P2X and P2Y receptors. We investigated the role of purinergic signaling in vomeronasal sensory neuron (VSN)s from the mouse vomeronasal organ (VNO), an olfactory organ distinct from the MOE that responds to many conspecific chemical cues. Using a combination of calcium imaging and patch-clamp electrophysiology with isolated VSNs, we demonstrated that ATP elicits an increase in [Ca(2+)](I) and an inward current with similar EC(50)s. Neither adenosine nor the P2Y receptor ligands adenosine 5'-diphosphate, uridine 5'-triphosphate, and uridine-5'-disphosphate could mimic either effect of ATP. Moreover, the increase in [Ca(2+)](I) required the presence of extracellular calcium and the inward current elicited by ATP was partially blocked by the P2X receptor antagonists pyridoxal-phosphate-6-azophenyl-2',4'-disulfonate and 2',3'-O-(2,4,6-trinitrophenyl) adenosine 5'-triphosphate. Consistent with the activation of P2X receptors, we detected gene expression of the P2X1 and 3 receptors in the VNO by Reverse transcription polymerase chain reaction (RT-PCR). When co-delivered with dilute urine, a natural stimulus, ATP significantly increased the inward current above that elicited by dilute urine or ATP alone. Mechanical stimulation of the VNO induced the release of ATP, detected by luciferin-luciferase luminometry, and this release of ATP was completely abolished in the presence of the connexin/pannexin hemichannel blocker, carbenoxolone. We conclude that the release of ATP could occur during the activity of the vasomotor pump that facilitates the movement of chemicals into the VNO for detection by VSNs. This mechanism could lead to a

  3. Immunohistochemical co-expression status of cytokeratin 5/6, androgen receptor, and p53 as prognostic factors of adjuvant chemotherapy for triple negative breast cancer.

    PubMed

    Maeda, Tetsuyo; Nakanishi, Yoko; Hirotani, Yukari; Fuchinoue, Fumi; Enomoto, Katsuhisa; Sakurai, Kenichi; Amano, Sadao; Nemoto, Norimichi

    2016-03-01

    Triple negative breast cancer (TNBC) is immunohistochemically characterised by the lack of expression of the estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor type 2 (HER2). TNBC is known for its poor prognosis and high recurrence probability. There is no effective targeted treatment for TNBC, but only adjuvant chemotherapies. There are two TNBC subtypes, basal-like and non-basal-like, which are defined based on positive cytokeratin (CK) 5/6 and/or epidermal growth factor receptor (EGFR) expression. In particular, CK5/6 expression is reported to correlate with TNBC recurrence. TNBC lacks ER-α expression, but some TNBCs are known to express the androgen receptor (AR). Moreover, although p53 accumulation is detected in various malignant tumors, its influence on adjuvant chemotherapy for patients with TNBC remains unclear. The aim of this study was to assess the combined immunohistochemical expression of CK 5/6, AR, and p53 as a potential prognostic marker of adjuvant chemotherapy for patients with TNBC. The expression of CK5/6, AR, and p53 in formalin-fixed and paraffin-embedded (FFPE) surgical sections from 52 patients with TNBC was analysed by immunohistochemistry (IHC) and the co-expression patterns in individual cells were investigated by immunofluorescent (IF) staining. Low AR expression was correlated with high clinical stage (P < 0.05) and low nuclear grade (P < 0.05). The expression of CK5/6 and p53 did not correlate with clinicopathological features. Patients who needed adjuvant chemotherapy presented the worst prognosis. In particular, when the IHC expression pattern was CK5/6 (-), AR (-), and p53 (+), the disease free survival (DFS) and overall survival (OS) were the worst. On the other hand, patients with AR (+) and p53 (-) TNBC presented a good prognosis. The analysis of the co-expression status of these three markers showed that no cells presented both AR and CK5/6 expression. Furthermore, TP53 m

  4. Nucleotides induce chemotaxis and actin polymerization in immature but not mature human dendritic cells via activation of pertussis toxin-sensitive P2y receptors.

    PubMed

    Idzko, Marco; Dichmann, Stefan; Ferrari, Davide; Di Virgilio, Francesco; la Sala, Andrea; Girolomoni, Giampiero; Panther, Elisabeth; Norgauer, Johannes

    2002-08-01

    Dendritic cells (DCs) are considered the principal initiators of immune response because of their ability to migrate into peripheral tissues and lymphoid organs, process antigens, and activate naive T cells. There is evidence that extracellular nucleotides regulate certain functions of DCs via G-protein-coupled P2Y receptors (P2YR) and ion-channel-gated P2X receptors (P2XR). Here we investigated the chemotactic activity and analyzed the migration-associated intracellular signaling events such as actin reorganization and Ca(++) transients induced by common P2R agonists such as adenosine 5'-triphosphate (ATP) and 2-methylthioadenosine triphosphate, the P2YR agonists UTP and adenosine 5'-diphosphate (ADP), or the P2XR agonists alphabeta-methylenadenosine-5'-triphosphate and 2',3'-(4-benzoyl)benzoyl-ATP. The common P2R agonists and the selective P2YR agonists turned out to be potent chemotactic stimuli for immature DCs, but not for mature DCs. In contrast, P2XR agonists had only marginal chemotactic activity in both DC types. Chemotaxis was paralleled by a rise in the intracellular Ca(++) concentration and by actin polymerization. Studies with pertussis toxin implicated that intracellular signaling events such as actin polymerization, mobilization of intracellular Ca(++), and migration induced by nucleotides was mediated via G(i/o) protein-coupled P2YR. Moreover, functional studies revealed selective down-regulation of this G(i/o) protein-coupled chemotactic P2YR responsiveness during maturation, although immature and mature DCs expressed similar amounts of mRNA for the P2R subtypes (P2Y(2)R, P2Y(4)R, P2Y(5)R, P2Y(7)R, P2Y(11)R and P2X(1)R, P2X(4)R, P2X(7)R), and no major differences in respect to the mRNA expression of these receptors could be observed by semiquantitative reverse transcription and polymerase chain reaction (RT-PCR). In summary, our data describe a differential chemotactic response of immature and mature DCs to nucleotides, and lend further support to

  5. Lidocaine preferentially inhibits the function of purinergic P2X7 receptors expressed in Xenopus oocytes.

    PubMed

    Okura, Dan; Horishita, Takafumi; Ueno, Susumu; Yanagihara, Nobuyuki; Sudo, Yuka; Uezono, Yasuhito; Minami, Tomoko; Kawasaki, Takashi; Sata, Takeyoshi

    2015-03-01

    Lidocaine has been widely used to relieve acute pain and chronic refractory pain effectively by both systemic and local administration. Numerous studies reported that lidocaine affects several pain signaling pathways as well as voltage-gated sodium channels, suggesting the existence of multiple mechanisms underlying pain relief by lidocaine. Some extracellular adenosine triphosphate (ATP) receptor subunits are thought to play a role in chronic pain mechanisms, but there have been few studies on the effects of lidocaine on ATP receptors. We studied the effects of lidocaine on purinergic P2X3, P2X4, and P2X7 receptors to explore the mechanisms underlying pain-relieving effects of lidocaine. We investigated the effects of lidocaine on ATP-induced currents in ATP receptor subunits, P2X3, P2X4, and P2X7 expressed in Xenopus oocytes, by using whole-cell, two-electrode, voltage-clamp techniques. Lidocaine inhibited ATP-induced currents in P2X7, but not in P2X3 or P2X4 subunits, in a concentration-dependent manner. The half maximal inhibitory concentration for lidocaine inhibition was 282 ± 45 μmol/L. By contrast, mepivacaine, ropivacaine, and bupivacaine exerted only limited effects on the P2X7 receptor. Lidocaine inhibited the ATP concentration-response curve for the P2X7 receptor via noncompetitive inhibition. Intracellular and extracellular N-(2,6-dimethylphenylcarbamoylmethyl) triethylammonium bromide (QX-314) and benzocaine suppressed ATP-induced currents in the P2X7 receptor in a concentration-dependent manner. In addition, repetitive ATP treatments at 5-minute intervals in the continuous presence of lidocaine revealed that lidocaine inhibition was use-dependent. Finally, the selective P2X7 receptor antagonists Brilliant Blue G and AZ11645373 did not affect the inhibitory actions of lidocaine on the P2X7 receptor. Lidocaine selectively inhibited the function of the P2X7 receptor expressed in Xenopus oocytes. This effect may be caused by acting on sites in the ion

  6. Molecular recognition at adenine nucleotide (P2) receptors in platelets.

    PubMed

    Jacobson, Kenneth A; Mamedova, Liaman; Joshi, Bhalchandra V; Besada, Pedro; Costanzi, Stefano

    2005-04-01

    Transmembrane signaling through P2Y receptors for extracellular nucleotides controls a diverse array of cellular processes, including thrombosis. Selective agonists and antagonists of the two P2Y receptors present on the platelet surface-the G (q)-coupled P2Y (1) subtype and the G (i)-coupled P2Y (12) subtype-are now known. High-affinity antagonists of each have been developed from nucleotide structures. The (N)-methanocarba bisphosphate derivatives MRS2279 and MRS2500 are potent and selective P2Y (1) receptor antagonists. The carbocyclic nucleoside AZD6140 is an uncharged, orally active P2Y (12) receptor antagonist of nM affinity. Another nucleotide receptor on the platelet surface, the P2X (1) receptor, the activation of which may also be proaggregatory, especially under conditions of high shear stress, has high-affinity ligands, although high selectivity has not yet been achieved. Although alpha,beta-methylene-adenosine triphosphate (ATP) is the classic agonist for the P2X (1) receptor, where it causes rapid desensitization, the agonist BzATP is among the most potent in activating this subtype. The aromatic sulfonates NF279 and NF449 are potent antagonists of the P2X (1) receptor. The structures of the two platelet P2Y receptors have been modeled, based on a rhodopsin template, to explain the basis for nucleotide recognition within the putative transmembrane binding sites. The P2Y (1) receptor model, especially, has been exploited in the design and optimization of antagonists targeted to interact selectively with that subtype.

  7. Molecular recognition of modified adenine nucleotides by the P2Y(1)-receptor. 1. A synthetic, biochemical, and NMR approach.

    PubMed

    Halbfinger, E; Major, D T; Ritzmann, M; Ubl, J; Reiser, G; Boyer, J L; Harden, K T; Fischer, B

    1999-12-30

    The remarkably high potencies of 2-thioether-adenine nucleotides regarding the activation of the P2Y(1)-receptor (P2Y(1)-R) in turkey erythrocyte membranes represent some of the largest substitution-promoted increases in potencies over that of a natural receptor ligand. This paper describes the investigation regarding the origin of the high potency of these P2Y(1)-R ligands over that of ATP. For this study, an integrated approach was employed combining the synthesis of new ATP analogues, their biochemical evaluation, and their SAR analysis involving NMR experiments and theoretical calculations. These experiments and calculations were performed to elucidate the conformation and to evaluate the electronic nature of the investigated P2Y(1)-R ligands. ATP analogues synthesized included derivatives where C2 or C8 positions were substituted with electron-donating groups such as ethers, thioethers, or amines. The compounds were tested for their potency to induce P2Y(1)-R-mediated activation of phospholipase C in turkey erythrocytes and Ca(2+) response in rat astrocytes. 8-Substituted ATP and AMP derivatives had little or no effect on phospholipase C or on calcium levels, whereas the corresponding 2-substituted ATP analogues potently increased the levels of inositol phosphates and ¿Ca(2+)(i). AMP analogues were ineffective except for 2-butylthio-AMP which induced a small Ca(2+) response. P2Y(1)-R activity of these compounds was demonstrated by testing these ligands also on NG108-15 neuroblastoma x glioma hybrid cells. NMR data together with theoretical calculations imply that steric, rather than electronic, effects play a major role in ligand binding to the P2Y(1)-R. Hydrophobic interactions and H-bonds of the C2 substituent appear to be important determinants of a P2Y(1)-R ligand affinity.

  8. [Impact of novel P2Y12 receptor inhibitors on platelet reactivity in acute coronary syndrome patients undergoing percutaneous coronary intervention].

    PubMed

    Chong Tou, T J; Liu, P M; Wang, J F; Sio Cham, Z C; O U, Y F; Lei Sio, Z W; Lei Put, P Z; Lei Sok, S M; Zhou, S X; Wu, W

    2016-02-01

    To investigate the impact of novel P2Y(12) receptor inhibitors including prasugrel or ticagrelor on platelet reactivity in patients with acute coronary syndrome (ACS) receiving percutaneous coronary intervention (PCI), and provide clinical data for novel oral P2Y(12) receptor inhibitors use among Chinese patients. Between October 2011 to February 2014, 174 consecutive patients (135 males; (67.8±11.8) years old) with ACS undergoing PCI in Kiang Wu Hospital, Macau were prospectively enrolled in this study. Oral aspirin and one P2Y(12) receptor inhibitor were administered for 5 days or above after PCI, patients were divided into clopidogrel, prasugrel and ticagrelor groups in accordance with the agent administered. Platelet reactivity of the patients was detected by VerifyNow P2Y(12) reaction unit (PRU); and the high on-treatment platelet reactivity (HPR) and non-HPR were defined as PRU≥208 and PRU<208 respectively. Patients with HPR during clopidogrel therapy were switched either to prasugrel or ticagrelor, or continued the same treatment; and then the platelet reactivity was monitored again. There were 113 clopidogrel cases (64.9%), 20 prasugrel cases (11.5%) and 41 ticagrelor cases (23.6%). Fifty-seven cases (32.8%) were defined as HPR post P2Y(12) receptor inhibitor use, in which 55 cases (55/113, 48.7%) were treated with clopidogrel. The degree of inhibition of platelet reactivity was significantly different in patients on clopidogrel, prasugrel and ticagrelor therapy, percent inhibition assayed by the VerifyNow P2Y(12) system was 28.2%±23.5%, 61.4%±26.7% and 81.3%±19.8% respectively (P<0.05). Different degree of platelet reactivity was achieved by the 3 P2Y(12) receptor inhibitors at multiple time points. The among-group differences in platelet reactivity became apparent at the early treatment stage (P<0.05). Platelet aggregation decreased significantly in patients switched from clopidogrel to prasugrel or ticagrelor (P<0.05). Novel oral P2Y(12) receptor

  9. Spatio-temporal propagation of Ca2+ signals by cyclic ADP-ribose in 3T3 cells stimulated via purinergic P2Y receptors

    PubMed Central

    Bruzzone, Santina; Kunerth, Svenja; Zocchi, Elena; De Flora, Antonio; Guse, Andreas H.

    2003-01-01

    The role of cyclic ADP-ribose in the amplification of subcellular and global Ca2+ signaling upon stimulation of P2Y purinergic receptors was studied in 3T3 fibroblasts. Either (1) 3T3 fibroblasts (CD38− cells), (2) 3T3 fibroblasts preloaded by incubation with extracellular cyclic ADP-ribose (cADPR), (3) 3T3 fibroblasts microinjected with ryanodine, or (4) 3T3 fibroblasts transfected to express the ADP-ribosyl cyclase CD38 (CD38+ cells) were used. Both preincubation with cADPR and CD38 expression resulted in comparable intracellular amounts of cyclic ADP-ribose (42.3 ± 5.2 and 50.5 ± 8.0 pmol/mg protein). P2Y receptor stimulation of CD38− cells yielded a small increase of intracellular Ca2+ concentration and a much higher Ca2+ signal in CD38-transfected cells, in cADPR-preloaded cells, or in cells microinjected with ryanodine. Confocal Ca2+ imaging revealed that stimulation of ryanodine receptors by cADPR or ryanodine amplified localized pacemaker Ca2+ signals with properties resembling Ca2+ quarks and triggered the propagation of such localized signals from the plasma membrane toward the internal environment, thereby initiating a global Ca2+ wave. PMID:14623867

  10. Functional characterization of P2Y1 versus P2X receptors in RBA-2 astrocytes: elucidate the roles of ATP release and protein kinase C.

    PubMed

    Weng, Ju-Yun; Hsu, Tsan-Ting; Sun, Synthia H

    2008-05-15

    A physiological concentration of extracellular ATP stimulated biphasic Ca(2+) signal, and the Ca(2+) transient was decreased and the Ca(2+) sustain was eliminated immediately after removal of ATP and Ca(2+) in RBA-2 astrocytes. Reintroduction of Ca(2+) induced Ca(2+) sustain. Stimulation of P2Y(1) receptors with 2-methylthioadenosine 5'-diphosphate (2MeSADP) also induced a biphasic Ca(2+) signaling and the Ca(2+) sustains were eliminated using Ca(2+)-free buffer. The 2MeSADP-mediated biphasic Ca(2+) signals were inhibited by phospholipase C (PLC) inhibitor U73122, and completely blocked by P2Y(1) selective antagonist MRS2179 and protein kinase C (PKC) activator phorbol 12-myristate 13-acetate (PMA) whereas enhanced by PKC inhibitors GF109203X and Go6979. Inhibition of capacitative Ca(2+) entry (CCE) decreased the Ca(2+)-induced Ca(2+) entry; nevertheless, ATP further enhanced the Ca(2+)-induced Ca(2+) entry in the intracellular Ca(2+) store-emptied and CCE-inhibited cells indicating that ATP stimulated Ca(2+) entry via CCE and ionotropic P2X receptors. Furthermore, the 2MeSADP-induced Ca(2+) sustain was eliminated by apyrase but potentiated by P2X(4) allosteric effector ivermectin (IVM). The agonist ADPbetaS stimulated a lesser P2Y(1)-mediated Ca(2+) signal and caused a two-fold increase in ATP release but that were not affected by IVM whereas inhibited by PMA, PLC inhibitor ET-18-OCH(3) and phospholipase D (PLD) inhibitor D609, and enhanced by removal of intra- or extracellular Ca(2+). Taken together, the P2Y(1)-mediated Ca(2+) sustain was at least in part via P2X receptors activated by the P2Y(1)-induced ATP release, and PKC played a pivotal role in desensitization of P2Y(1) receptors in RBA-2 astrocytes. Copyright 2007 Wiley-Liss, Inc.

  11. Characterization of a novel function-blocking antibody targeted against the platelet P2Y1 receptor.

    PubMed

    Karim, Zubair A; Vemana, Hari Priya; Alshbool, Fatima Z; Lin, Olivia A; Alshehri, Abdullah M; Javaherizadeh, Payam; Paez Espinosa, Enma V; Khasawneh, Fadi T

    2015-03-01

    Platelet hyperactivity is associated with vascular disease and contributes to the genesis of thrombotic disorders. ADP plays an important role in platelet activation and activates platelets through 2 G-protein-coupled receptors, the Gq-coupled P2Y1 receptor (P2Y1R), and the Gi-coupled P2Y12 receptor. Although the involvement of the P2Y1R in thrombogenesis is well established, there are no antagonists that are currently available for clinical use. Our goal is to determine whether a novel antibody targeting the ligand-binding domain, ie, second extracellular loop (EL2) of the P2Y1R (EL2Ab) could inhibit platelet function and protect against thrombogenesis. Our results revealed that the EL2Ab does indeed inhibit ADP-induced platelet aggregation, in a dose-dependent manner. Furthermore, EL2Ab was found to inhibit integrin GPIIb-IIIa activation, dense and α granule secretion, and phosphatidylserine exposure. These inhibitory effects translated into protection against thrombus formation, as evident by a prolonged time for occlusion in a FeCl3-induced thrombosis model, but this was accompanied by a prolonged tail bleeding time. We also observed a dose-dependent displacement of the radiolabeled P2Y1R antagonist [(3)H]MRS2500 from its ligand-binding site by EL2Ab. Collectively, our findings demonstrate that EL2Ab binds to and exhibits P2Y1R-dependent function-blocking activity in the context of platelets. These results add further evidence for a role of the P2Y1R in thrombosis and validate the concept that targeting it is a relevant alternative or complement to current antiplatelet strategies. © 2015 American Heart Association, Inc.

  12. International Union of Pharmacology LVIII: Update on the P2Y G Protein-Coupled Nucleotide Receptors: From Molecular Mechanisms and Pathophysiology to Therapy

    PubMed Central

    ABBRACCHIO, MARIA P.; BURNSTOCK, GEOFFREY; BOEYNAEMS, JEAN-MARIE; BARNARD, ERIC A.; BOYER, JOSÉ L.; KENNEDY, CHARLES; KNIGHT, GILLIAN E.; FUMAGALLI, MARTA; GACHET, CHRISTIAN; JACOBSON, KENNETH A.; WEISMAN, GARY A.

    2012-01-01

    There have been many advances in our knowledge about different aspects of P2Y receptor signaling since the last review published by our International Union of Pharmacology subcommittee. More receptor subtypes have been cloned and characterized and most orphan receptors deorphanized, so that it is now possible to provide a basis for a future subdivision of P2Y receptor subtypes. More is known about the functional elements of the P2Y receptor molecules and the signaling pathways involved, including interactions with ion channels. There have been substantial developments in the design of selective agonists and antagonists to some of the P2Y receptor subtypes. There are new findings about the mechanisms underlying nucleotide release and ectoenzymatic nucleotide breakdown. Interactions between P2Y receptors and receptors to other signaling molecules have been explored as well as P2Y-mediated control of gene transcription. The distribution and roles of P2Y receptor subtypes in many different cell types are better understood and P2Y receptor-related compounds are being explored for therapeutic purposes. These and other advances are discussed in the present review. PMID:16968944

  13. Mechanical stress-induced interleukin-1beta expression through adenosine triphosphate/P2X7 receptor activation in human periodontal ligament cells.

    PubMed

    Kanjanamekanant, K; Luckprom, P; Pavasant, P

    2013-04-01

    Mechanical stress is an important factor in maintaining homeostasis of the periodontium. Interleukin-1beta (IL-1β) and adenosine triphosphate (ATP) are considered potent inflammatory mediators. In macrophages, ATP-activated P2X7 receptor is involved in IL-1β processing and release. Our previous works demonstrated mechanical stress-induced expression of osteopontin and RANKL through the ATP/P2Y1 receptor in human periodontal ligament (HPDL) cells. This study was designed to examine the effect of mechanical stress on IL-1β expression in HPDL cells, as well as the mechanism and involvement of ATP and the P2 purinergic receptor. Cultured HPDL cells were treated with continuous compressive loading. IL-1β expression was analyzed at both mRNA and protein levels, using RT-PCR and ELISA, respectively. Cell viability was examined using the MTT assay. ATP was also used to stimulate HPDL cells. Inhibitors, antagonists and the small interfering RNA (siRNA) technique were used to investigate the role of ATP and the specific P2 subtypes responsible for IL-1β induction along with the intracellular mechanism. Mechanical stress could up-regulate IL-1β expression through the release of ATP in HPDL cells. ATP alone was also capable of increasing IL-1β expression. The induction of IL-1β was markedly inhibited by inhibitors and by siRNA targeting the P2X7 receptor. ATP-stimulated IL-1β expression was also diminished by intracellular calcium inhibitors. Our work clearly indicates the capability of HPDL cells to respond directly to mechanical stimulation. The results signified the important roles of ATP/P2 purinergic receptors, as well as intracellular calcium signaling, in mechanical stress-induced inflammation via up-regulation of the proinflammatory cytokine, IL-1β, in HPDL cells. © 2012 John Wiley & Sons A/S.

  14. Functional Properties of Five Dictyostelium discoideum P2X Receptors*

    PubMed Central

    Baines, Abigail; Parkinson, Katie; Sim, Joan A.; Bragg, Laricia; Thompson, Christopher R. L.; North, R. Alan

    2013-01-01

    The Dictyostelium discoideum genome encodes five proteins that share weak sequence similarity with vertebrate P2X receptors. Unlike vertebrate P2X receptors, these proteins are not expressed on the surface of cells, but populate the tubules and bladders of the contractile vacuole. In this study, we expressed humanized cDNAs of P2XA, P2XB, P2XC, P2XD, and P2XE in human embryonic kidney cells and altered the ionic and proton environment in an attempt to reflect the situation in amoeba. Recording of whole-cell membrane currents showed that four receptors operated as ATP-gated channels (P2XA, P2XB, P2XD, and P2XE). At P2XA receptors, ATP was the only effective agonist of 17 structurally related putative ligands that were tested. Extracellular sodium, compared with potassium, strongly inhibited ATP responses in P2XB, P2XD, and P2XE receptors. Increasing the proton concentration (pH 6.2) accelerated desensitization at P2XA receptors and decreased currents at P2XD receptors, but increased the currents at P2XB and P2XE receptors. Dictyostelium lacking P2XA receptors showed impaired regulatory volume decrease in hypotonic solution. This phenotype was readily rescued by overexpression of P2XA and P2XD receptors, partially rescued by P2XB and P2XE receptors, and not rescued by P2XC receptors. The failure of the nonfunctional receptor P2XC to restore the regulatory volume decrease highlights the importance of ATP activation of P2X receptors for a normal response to hypo-osmotic shock, and the weak rescue by P2XB and P2XE receptors indicates that there is limited functional redundancy among Dictyostelium P2X receptors. PMID:23740252

  15. Functional properties of five Dictyostelium discoideum P2X receptors.

    PubMed

    Baines, Abigail; Parkinson, Katie; Sim, Joan A; Bragg, Laricia; Thompson, Christopher R L; North, R Alan

    2013-07-19

    The Dictyostelium discoideum genome encodes five proteins that share weak sequence similarity with vertebrate P2X receptors. Unlike vertebrate P2X receptors, these proteins are not expressed on the surface of cells, but populate the tubules and bladders of the contractile vacuole. In this study, we expressed humanized cDNAs of P2XA, P2XB, P2XC, P2XD, and P2XE in human embryonic kidney cells and altered the ionic and proton environment in an attempt to reflect the situation in amoeba. Recording of whole-cell membrane currents showed that four receptors operated as ATP-gated channels (P2XA, P2XB, P2XD, and P2XE). At P2XA receptors, ATP was the only effective agonist of 17 structurally related putative ligands that were tested. Extracellular sodium, compared with potassium, strongly inhibited ATP responses in P2XB, P2XD, and P2XE receptors. Increasing the proton concentration (pH 6.2) accelerated desensitization at P2XA receptors and decreased currents at P2XD receptors, but increased the currents at P2XB and P2XE receptors. Dictyostelium lacking P2XA receptors showed impaired regulatory volume decrease in hypotonic solution. This phenotype was readily rescued by overexpression of P2XA and P2XD receptors, partially rescued by P2XB and P2XE receptors, and not rescued by P2XC receptors. The failure of the nonfunctional receptor P2XC to restore the regulatory volume decrease highlights the importance of ATP activation of P2X receptors for a normal response to hypo-osmotic shock, and the weak rescue by P2XB and P2XE receptors indicates that there is limited functional redundancy among Dictyostelium P2X receptors.

  16. Effects of Baicalin on Diabetic Cardiac Autonomic Neuropathy Mediated by the P2Y12 Receptor in Rat Stellate Ganglia.

    PubMed

    Sheng, Xuan; Wang, Jiayue; Guo, Jingjing; Xu, Yurong; Jiang, Huaide; Zheng, Chaoran; Xu, Zixi; Zhang, Yuanruohan; Che, Hongyu; Liang, Shangdong; Zhu, Gaochun; Li, Guilin

    2018-01-01

    Chronic diabetic hyperglycemia can damage various of organ systems and cause serious complications. Although diabetic cardiac autonomic neuropathy (DCAN) is the primary cause of death in diabetic patients, its pathogenesis remains to be fully elucidated. Baicalin is a flavonoid extracted from Scutellaria baicalensis root and has antibacterial, diuretic, anti-inflammatory, anti- metamorphotic, and antispasmodic effects. Our study explored the effects of baicalin on enhancing sympathoexcitatory response induced by DCAN via the P2Y12 receptor. A type 2 diabetes mellitus rat model was induced by a combination of diet and streptozotocin. Serum epinephrine was measured by enzyme-linked immunosorbent assay. Blood pressure and heart rate were measured using the indirect tail-cuff method. Heart rate variability was analyzed using the frequency-domain of electrocardiogram recordings. The expression levels of P2Y12, interleukin-1beta (IL-1β), tumor necrosis factor alpha (TNF-α), and connexin 43 (Cx43) were determined by quantitative real-time reverse transcription-polymerase chain reaction and western blotting. The interaction between baicalin and P2Y12 determined using by molecular docking. Baicalin alleviated elevated blood pressure and heart rate, improved heart rate variability, and decreased the elevated expression levels of P2Y12, IL-1β, TNF-α, and Cx43 in the stellate ganglia of diabetic rats. Baicalin also reduced the elevated concentration of serum epinephrine and the phosphorylation of p38 mitogen-activated protein kinase in diabetic rats. Baicalin decreases sympathetic activity by inhibiting the P2Y12 receptor in stellate ganglia satellite glial cells to maintain the balance between sympathetic and parasympathetic nerves and relieves DCAN in the rat. © 2018 The Author(s). Published by S. Karger AG, Basel.

  17. Pilocarpine-Induced Status Epilepticus Increases the Sensitivity of P2X7 and P2Y1 Receptors to Nucleotides at Neural Progenitor Cells of the Juvenile Rodent Hippocampus.

    PubMed

    Rozmer, Katalin; Gao, Po; Araújo, Michelle G L; Khan, Muhammad Tahir; Liu, Juan; Rong, Weifang; Tang, Yong; Franke, Heike; Krügel, Ute; Fernandes, Maria José S; Illes, Peter

    2017-07-01

    Patch-clamp recordings indicated the presence of P2X7 receptors at neural progenitor cells (NPCs) in the subgranular zone of the dentate gyrus in hippocampal brain slices prepared from transgenic nestin reporter mice. The activation of these receptors caused inward current near the resting membrane potential of the NPCs, while P2Y1 receptor activation initiated outward current near the reversal potential of the P2X7 receptor current. Both receptors were identified by biophysical/pharmacological methods. When the brain slices were prepared from mice which underwent a pilocarpine-induced status epilepticus or when brain slices were incubated in pilocarpine-containing external medium, the sensitivity of P2X7 and P2Y1 receptors was invariably increased. Confocal microscopy confirmed the localization of P2X7 and P2Y1 receptor-immunopositivity at nestin-positive NPCs. A one-time status epilepticus in rats caused after a latency of about 5 days recurrent epileptic fits. The blockade of central P2X7 receptors increased the number of seizures and their severity. It is hypothesized that P2Y1 receptors after a status epilepticus may increase the ATP-induced proliferation/ectopic migration of NPCs; the P2X7 receptor-mediated necrosis/apoptosis might counteract these effects, which would otherwise lead to a chronic manifestation of recurrent epileptic fits. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  18. Correlation of HER-2 over-expression with clinico-pathological parameters in Tunisian breast carcinoma.

    PubMed

    Ayadi, Lobna; Khabir, Abdelmajid; Amouri, Habib; Karray, Sondes; Dammak, Abdallah; Guermazi, Mohamed; Boudawara, Tahya

    2008-10-22

    Breast carcinoma is a disease with a tremendous heterogeneity in its clinical behavior. Newer prognostic factors and predictors of response to therapy are needed. The aim of this study was to evaluate the expression of HER-2, estrogen receptor (ER) and progesterone receptors (PR) in breast carcinoma and to compare it with other prognostic parameters such as histological type and grade, tumor size, patients' age, and lymph node metastases. This is a retrospective study conducted in the department of pathology at Sfax University Hospital. Confirmed 155 Cases of breast carcinoma were reviewed in the period between January 2000 and December 2004. We used immunohistochemistry to evaluate the expression of HER-2, ER, and PR receptor and Chi-square and Fisher exact test to correlate immunohistochemical findings with prognostic parameters for breast carcinoma such as patients' age, tumor size, histological type, histological grade and lymph node status. The mean age of patients was 51.5 years, ranging from 22 to 89 years. 80 (51.6%) of the patients were below 50 years. The percentage of expression of HER-2, ER and PR was 26, 59.4, and 52.3%, respectively. HER-2 was over-expressed (3+) in 18.1% of the cases, was inversely related to ER expression (p = 0.00) and to PR expression (p = 0.048). This over-expression was also associated with a high tumor grade with marginal significance (p = 0.072). A negative correlation was noted between ER and PR expression and SBR grade (p = 0.000) and ER and age (p = 0.002). HER-2 over-expression was observed in 18.1% of Tunisian breast carcinoma affecting female patients. This group presents apparently an aggressive form of breast carcinoma with high histological grade and negative ER.

  19. Correlation of HER-2 over-expression with clinico-pathological parameters in Tunisian breast carcinoma

    PubMed Central

    Ayadi, Lobna; Khabir, Abdelmajid; Amouri, Habib; Karray, Sondes; Dammak, Abdallah; Guermazi, Mohamed; Boudawara, Tahya

    2008-01-01

    Background Breast carcinoma is a disease with a tremendous heterogeneity in its clinical behavior. Newer prognostic factors and predictors of response to therapy are needed. The aim of this study was to evaluate the expression of HER-2, estrogen receptor (ER) and progesterone receptors (PR) in breast carcinoma and to compare it with other prognostic parameters such as histological type and grade, tumor size, patients' age, and lymph node metastases. Patients and methods This is a retrospective study conducted in the department of pathology at Sfax University Hospital. Confirmed 155 Cases of breast carcinoma were reviewed in the period between January 2000 and December 2004. We used immunohistochemistry to evaluate the expression of HER-2, ER, and PR receptor and Chi-square and Fisher exact test to correlate immunohistochemical findings with prognostic parameters for breast carcinoma such as patients' age, tumor size, histological type, histological grade and lymph node status. Results The mean age of patients was 51.5 years, ranging from 22 to 89 years. 80 (51.6%) of the patients were below 50 years. The percentage of expression of HER-2, ER and PR was 26, 59.4, and 52.3%, respectively. HER-2 was over-expressed (3+) in 18.1% of the cases, was inversely related to ER expression (p = 0.00) and to PR expression (p = 0.048). This over-expression was also associated with a high tumor grade with marginal significance (p = 0.072). A negative correlation was noted between ER and PR expression and SBR grade (p = 0.000) and ER and age (p = 0.002). Conclusion HER-2 over-expression was observed in 18.1% of Tunisian breast carcinoma affecting female patients. This group presents apparently an aggressive form of breast carcinoma with high histological grade and negative ER. PMID:18945339

  20. Clopidogrel and ticlopidine: P2Y12 adenosine diphosphate-receptor antagonists for the prevention of atherothrombosis.

    PubMed

    Savi, Pierre; Herbert, Jean-Marc

    2005-04-01

    Ticlopidine and clopidogrel belong to the same chemical family of thienopyridine adenosine diphosphate (ADP)-receptor antagonists. They have shown their efficacy as platelet antiaggregant and antithrombotic agents in many animal models, both ex vivo and in vivo. Although ticlopidine was discovered more than 30 years ago, it was only recently that the mechanism of action of ADP-receptor antagonists was characterized in detail. Ticlopidine and clopidogrel both behave in vivo as specific antagonists of P2Y (12), one of the ADP receptors on platelets. Metabolic steps that involve cytochrome P450-dependent pathways are required to generate the active metabolite responsible for this in vivo activity. The active moiety is a reactive thiol derivative that targets P2Y (12) on platelets. The interaction is irreversible, accounting for the observation that platelets are definitely antiaggregated, even if no active metabolite is detectable in plasma. The interaction is specific for P2Y (12); other purinoceptors such as P2Y (1) and P2Y (13) are spared. This results in inhibition of the binding of the P2Y (12) agonist 2-methylthio-ADP and the ADP-induced downregulation of adenylyl cyclase. Platelet aggregation is affected not only when triggered by ADP but also by aggregation inducers when used at concentrations requiring released ADP as an amplifier. The efficacy and safety of clopidogrel has been established in several large, randomized, controlled trials. The clopidogrel versus aspirin in patients at risk of ischaemic events (CAPRIE) trial demonstrated the superiority of clopidogrel over acetylsalicylic acid (ASA) in patients at risk of ischemic events, including ischemic stroke, myocardial infarction (MI), and peripheral arterial disease. The clopidogrel in unstable angina to prevent recurrent ischemic events (CURE) trial showed a sustained, incremental benefit when clopidogrel was added to standard therapy (including ASA) in patients with unstable angina and non-Q-wave MI

  1. An intact PDZ motif is essential for correct P2Y12 purinoceptor traffic in human platelets.

    PubMed

    Nisar, Shaista; Daly, Martina E; Federici, Augusto B; Artoni, Andrea; Mumford, Andrew D; Watson, Stephen P; Mundell, Stuart J

    2011-11-17

    The platelet P2Y(12) purinoceptor (P2Y(12)R), which plays a crucial role in hemostasis, undergoes internalization and subsequent recycling to maintain receptor responsiveness, processes that are essential for normal platelet function. Here, we observe that P2Y(12)R function is compromised after deletion or mutation of the 4 amino acids at the extreme C-terminus of this receptor (ETPM), a putative postsynaptic density 95/disc large/zonula occludens-1 (PDZ)-binding motif. In cell line models, removal of this sequence or mutation of one of its core residues (P341A), attenuates receptor internalization and receptor recycling back to the membrane, thereby blocking receptor resensitization. The physiologic significance of these findings in the regulation of platelet function is shown by identification of a patient with a heterozygous mutation in the PDZ binding sequence of their P2Y(12)R (P341A) that is associated with reduced expression of the P2Y(12)R on the cell surface. Importantly, platelets from this subject showed significantly compromised P2Y(12)R recycling, emphasizing the importance of the extreme C-terminus of this receptor to ensure correct receptor traffic.

  2. An intact PDZ motif is essential for correct P2Y12 purinoceptor traffic in human platelets

    PubMed Central

    Nisar, Shaista; Daly, Martina E.; Federici, Augusto B.; Artoni, Andrea; Mumford, Andrew D.; Watson, Stephen P.

    2011-01-01

    The platelet P2Y12 purinoceptor (P2Y12R), which plays a crucial role in hemostasis, undergoes internalization and subsequent recycling to maintain receptor responsiveness, processes that are essential for normal platelet function. Here, we observe that P2Y12R function is compromised after deletion or mutation of the 4 amino acids at the extreme C-terminus of this receptor (ETPM), a putative postsynaptic density 95/disc large/zonula occludens-1 (PDZ)–binding motif. In cell line models, removal of this sequence or mutation of one of its core residues (P341A), attenuates receptor internalization and receptor recycling back to the membrane, thereby blocking receptor resensitization. The physiologic significance of these findings in the regulation of platelet function is shown by identification of a patient with a heterozygous mutation in the PDZ binding sequence of their P2Y12R (P341A) that is associated with reduced expression of the P2Y12R on the cell surface. Importantly, platelets from this subject showed significantly compromised P2Y12R recycling, emphasizing the importance of the extreme C-terminus of this receptor to ensure correct receptor traffic. PMID:21937696

  3. Substance P Receptor Antagonist Suppresses Inflammatory Cytokine Expression in Human Disc Cells.

    PubMed

    Kepler, Christopher K; Markova, Dessislava Z; Koerner, John D; Mendelis, Joseph; Chen, Chiu-Ming; Vaccaro, Alexander R; Risbud, Makarand V; Albert, Todd J; Anderson, D Greg

    2015-08-15

    Laboratory study. To evaluate whether blockade of the Substance P (SP) NK1R attenuates its proinflammatory effect on human intervertebral disc cells (IVD), and to evaluate the signaling pathways associated with SP. SP and its receptors are expressed in human IVD cells, and cause upregulation of inflammatory mediators; however, the effects of blocking these receptors have not been studied in human IVD cells. Human annulus fibrosus (AF) and nucleus pulposus (NP) cells were expanded in monolayer, and then suspended in alginate beads. The alginate beads were treated with culture medium first containing a high affinity NK1R antagonist (L-760735) at different concentrations, and then with medium containing both NK1R antagonist and SP at 2 concentrations. Ribonucleic acid was isolated and transcribed into cDNA. Quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) was performed to evaluate expression of interleukin (IL)-1β, IL-6, and IL-8. Western blot analysis was performed to examine levels of the phosphorylated p38 mitogen-activated protein kinase (MAPK), extracellular signal regulated kinase 1/2 (ERK1/2) and nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB p65). The cells were pretreated with specific inhibitors of p38 (SB203580), ERK1/2 (PD98059), and p65 (SM7368) and then stimulated with SP. We detected expression of NK1R, neurokinin receptor 2 (NK2R), and neurokinin receptor 3 (NK3R) in AF and NP cells. Treatment of disc cells with the NK1R antagonist was able to suppress expression of IL-1β, IL-6, and IL-8 in a dose-dependent manner. SP stimulation increased phosphorylation of p38-MAPK and ERK1/2, but not of NFκB p65. This indicates that p38-MAPK and ERK1/2 control SP-induced cytokine expression independently from NF-kB p65. Inhibition of p38 and ERK1/2 activation reduced SP-induced IL-6 production in human disc cells. NK1R is responsible for the proinflammatory effect of SP on IVD cells and this effect can be blocked by

  4. P2 receptor subtypes in the cardiovascular system.

    PubMed Central

    Kunapuli, S P; Daniel, J L

    1998-01-01

    Extracellular nucleotides have been implicated in a number of physiological functions. Nucleotides act on cell-surface receptors known as P2 receptors, of which several subtypes have been cloned. Both ATP and ADP are stored in platelets and are released upon platelet activation. Furthermore, nucleotides are also released from damaged or broken cells. Thus during vascular injury nucleotides play an important role in haemostasis through activation of platelets, modulation of vascular tone, recruitment of neutrophils and monocytes to the site of injury, and facilitation of adhesion of leucocytes to the endothelium. Nucleotides also moderate these functions by generating nitric oxide and prostaglandin I2 through activation of endothelial cells, and by activating different receptor subtypes on vascular smooth muscle cells. In the heart, P2 receptors regulate contractility through modulation of L-type Ca2+ channels, although the molecular mechanisms involved are still under investigation. Classical pharmacological studies have identified several P2 receptor subtypes in the cardiovascular system. Molecular pharmacological studies have clarified the nature of some of these receptors, but have complicated the picture with others. In platelets, the classical P2T receptor has now been resolved into three P2 receptor subtypes: the P2Y1, P2X1 and P2TAC receptors (the last of these, which is coupled to the inhibition of adenylate cyclase, is yet to be cloned). In peripheral blood leucocytes, endothelial cells, vascular smooth muscle cells and cardiomyocytes, the effects of classical P2X, P2Y and P2U receptors have been found to be mediated by more than one P2 receptor subtype. However, the exact functions of these multiple receptor subtypes remain to be understood, as P2-receptor-selective agonists and antagonists are still under development. PMID:9841859

  5. Prostaglandin E2 mediates growth arrest in NFS-60 cells by down-regulating interleukin-6 receptor expression.

    PubMed

    de Silva, Kumudika I; Daud, Asif N; Deng, JiangPing; Jones, Stephen B; Gamelli, Richard L; Shankar, Ravi

    2003-02-15

    Interleukin-6 (IL-6), a potent myeloid mitogen, and the immunosuppressive prostanoid prostaglandin E2 (PGE2) are elevated following thermal injury and sepsis. We have previously demonstrated that bone marrow myeloid commitment shifts toward monocytopoiesis and away from granulocytopoiesis during thermal injury and sepsis and that PGE2 plays a central role in this alteration. Here we investigated whether PGE2 can modulate IL-6-stimulated growth in the promyelocytic cell line, NFS-60, by down-regulating IL-6 receptor (IL-6r) expression. Exposure of NFS-60 cells to PGE2 suppressed IL-6-stimulated proliferation as well as IL-6r expression. Receptor down-regulation is functionally significant since IL-6-induced signal transduction through activators of transcription (STAT)-3 is also decreased. Down-regulation of IL-6r correlated with the ability of PGE2 to arrest cells in the G0/G1 phase of the cell cycle. PGE2 appears to signal through EP2 receptors. Butaprost (EP2 agonist) but not sulprostone (EP3 agonist) inhibited IL-6-stimulated proliferation. In addition, an EP2 antagonist (AH6809) alleviated the anti-proliferative effects of PGE2. NFS-60 cells express predominantly EP2 and EP4 receptors. While PGE2 down-regulated both the IL-6r protein and mRNA expression, it had no influence on EP2 or EP4 mRNA expression. The present study demonstrates that PGE2 is a potent down-regulator of IL-6r expression and thus may provide a mechanistic explanation for the granulocytopenia seen in thermal injury and sepsis.

  6. Functional expression of ionotropic purinergic receptors on mouse taste bud cells.

    PubMed

    Hayato, Ryotaro; Ohtubo, Yoshitaka; Yoshii, Kiyonori

    2007-10-15

    Neurotransmitter receptors on taste bud cells (TBCs) and taste nerve fibres are likely to contribute to taste transduction by mediating the interaction among TBCs and that between TBCs and taste nerve fibres. We investigated the functional expression of P2 receptor subtypes on TBCs of mouse fungiform papillae. Electrophysiological studies showed that 100 microm ATP applied to their basolateral membranes either depolarized or hyperpolarized a few cells per taste bud. Ca(2+) imaging showed that similarly applied 1 mum ATP, 30 microm BzATP (a P2X(7) agonist), or 1 microm 2MeSATP (a P2Y(1) and P2Y(11) agonist) increased intracellular Ca(2+) concentration, but 100 microm UTP (a P2Y(2) and P2Y(4) agonist) and alpha,beta-meATP (a P2X agonist except for P2X(2), P2X(4) and P2X(7)) did not. RT-PCR suggested the expression of P2X(2), P2X(4), P2X(7), P2Y(1), P2Y(13) and P2Y(14) among the seven P2X subtypes and seven P2Y subtypes examined. Immunohistostaining confirmed the expression of P2X(2). The exposure of the basolateral membranes to 3 mm ATP for 30 min caused the uptake of Lucifer Yellow CH in a few TBCs per taste bud. This was antagonized by 100 microm PPADS (a non-selective P2 blocker) and 1 microm KN-62 (a P2X(7) blocker). These results showed for the first time the functional expression of P2X(2) and P2X(7) on TBCs. The roles of P2 receptor subtypes in the taste transduction, and the renewal of TBCs, are discussed.

  7. The H(2)-receptor antagonist ranitidine interferes with clopidogrel-mediated P2Y(12) inhibition in platelets.

    PubMed

    Schäfer, Andreas; Flierl, Ulrike; Pförtsch, Stephanie; Seydelmann, Nora; Micka, Jan; Bauersachs, Johann

    2010-10-01

    Use of proton-pump inhibitors (PPIs) is common in patients on dual antiplatelet therapy (DAT). Recent warnings about potential interactions of PPIs with clopidogrel metabolism leading to impaired DAT efficacy has prompted the recommendation of substituting PPIs with H(2)-receptor antagonists such as ranitidine. We investigated whether ranitidine interacts with P2Y(12) inhibition on the platelet level. Blood was collected from 15 patients with stable coronary artery disease, who had undergone elective coronary intervention. Clopidogrel responsiveness was assessed 24h after the administration of a 600mg loading dose using the P2Y(12) specific platelet-reactivity-index (PRI) and light-transmittance aggregometry in the presence and absence of a pharmacologically relevant concentration of the H(2)-receptor antagonist ranitidine (400ng/ml). Adding ranitidine enhanced P2Y(12)-mediated platelet reactivity to ADP assessed by the PRI (mean PRI+/-SEM: before ranitidine 28+/-5%; after ranitidine 37+/-5%, p=0.0025). Similarly, prostaglandin E1 (PGE(1))-mediated inhibition of ADP-induced aggregation was abrogated in the presence of ranitidine (Agg(max)+/-SEM: before PGE(1) 41+/-2%; after PGE(1) 29+/-2%, p<0.01 vs. before PGE(1); after PGE(1)+ranitidine 42+/-2%, p<0.01 vs. after PGE(1)). Exposition of platelets with ranitidine significantly enhanced their responsiveness to ADP and contributed to impaired P2Y(12) inhibition suggesting that ranitidine interacts with clopidogrel efficacy through adenylyl cyclase inhibition on the platelet level. Copyright 2010 Elsevier Ltd. All rights reserved.

  8. P2 receptor signaling in neurons and glial cells of the central nervous system.

    PubMed

    Köles, Laszlo; Leichsenring, Anna; Rubini, Patrizia; Illes, Peter

    2011-01-01

    Purine and pyrimidine nucleotides are extracellular signaling molecules in the central nervous system (CNS) leaving the intracellular space of various CNS cell types via nonexocytotic mechanisms. In addition, ATP is a neuro-and gliotransmitter released by exocytosis from neurons and neuroglia. These nucleotides activate P2 receptors of the P2X (ligand-gated cationic channels) and P2Y (G protein-coupled receptors) types. In mammalians, seven P2X and eight P2Y receptor subunits occur; three P2X subtypes form homomeric or heteromeric P2X receptors. P2Y subtypes may also hetero-oligomerize with each other as well as with other G protein-coupled receptors. P2X receptors are able to physically associate with various types of ligand-gated ion channels and thereby to interact with them. The P2 receptor homomers or heteromers exhibit specific sensitivities against pharmacological ligands and have preferential functional roles. They may be situated at both presynaptic (nerve terminals) and postsynaptic (somatodendritic) sites of neurons, where they modulate either transmitter release or the postsynaptic sensitivity to neurotransmitters. P2 receptors exist at neuroglia (e.g., astrocytes, oligodendrocytes) and microglia in the CNS. The neuroglial P2 receptors subserve the neuron-glia cross talk especially via their end-feets projecting to neighboring synapses. In addition, glial networks are able to communicate through coordinated oscillations of their intracellular Ca(2+) over considerable distances. P2 receptors are involved in the physiological regulation of CNS functions as well as in its pathophysiological dysregulation. Normal (motivation, reward, embryonic and postnatal development, neuroregeneration) and abnormal regulatory mechanisms (pain, neuroinflammation, neurodegeneration, epilepsy) are important examples for the significance of P2 receptor-mediated/modulated processes. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Regulated expression of the rat recombinant P2X(3) receptor in stably transfected CHO-K1 tTA cells.

    PubMed

    Lachnit, W G; Oglesby, I B; Gever, J R; Gever, M; Huang, C; Li, X C; Jin, H; McGivern, J G; Ford, A P

    2000-07-03

    In this report, the regulatable expression by tetracycline of the rat recombinant P2X(3) receptor in stably transfected Chinese hamster ovary (CHO-K1) expressing the tetracycline-controlled transactivator (tTA) is described. cDNA encoding the rat P2X(3)-receptor was subcloned into pTRE (a tetracycline-repressible expression vector) which was used to transfect stably CHO-K1 tTA cells. Using whole cell patch clamp techniques, 100 microM ATP evoked inward currents of 2.9+/-1.6 nA in transfected cells grown in the absence of tetracycline (tet-). The P2X(3) receptor protein was detectable by immunoblot as early as 24 h and protein expression levels continued to increase as much as 192 h following activation of tTA by the removal of the antibiotic. Saturation binding isotherms using [35S]ATP gamma S yielded a pK(d) of 8.2+/-0.1 and a B(max) of 31.9+/-3.5 pmol/mg protein in tet- cell membranes and a pK(d) of 8.1+/-0.1 and a B(max) of 5.8+/-0.8 pmol/mg protein in tet+ cell membranes. The agonist ligands 2MeSATP and alpha beta MeATP displaced the binding of [35S]ATP gamma S in tet- cell membranes with very high affinity, yielding pIC(50) values of 9.4+/-0.2 and 7.5+/-0. 2, respectively. In tet+ cell membrane, displacement of [35S]ATP gamma S by 2MeSATP and alpha beta MeATP was of much lower affinity (pIC(50) values of 7.8 and 6.2, respectively). ATP, ADP and UTP showed similar displacement of [35S]ATP gamma S binding in tet- and tet+ cell membranes. In other experiments, cytosolic Ca(2+) was monitored using the fluorescent indicator, fluo-3. Increases in cytosolic Ca(2+) were elicited by 100 nM alpha beta MeATP in tet- cells while no increases in cytosolic Ca(2+) were detected below 100 microM alpha beta MeATP in either tet+ cells or untransfected cells. These calcium responses to alpha beta MeATP had a pEC(50) of 6.7 and were transient, returning to baseline within 120 s. Suramin produced concentration-dependent, parallel, dextral shifts of E/[A] curves to alpha beta Me

  10. An Rgd Sequence in the P2y2 Receptor Interacts with αVβ3 Integrins and Is Required for Go-Mediated Signal Transduction

    PubMed Central

    Erb, Laurie; Liu, Jun; Ockerhausen, Jonathan; Kong, Qiongman; Garrad, Richard C.; Griffin, Korey; Neal, Chris; Krugh, Brent; Santiago-Pérez, Laura I.; González, Fernando A.; Gresham, Hattie D.; Turner, John T.; Weisman, Gary A.

    2001-01-01

    The P2Y2 nucleotide receptor (P2Y2R) contains the integrin-binding domain arginine-glycine-aspartic acid (RGD) in its first extracellular loop, raising the possibility that this G protein–coupled receptor interacts directly with an integrin. Binding of a peptide corresponding to the first extracellular loop of the P2Y2R to K562 erythroleukemia cells was inhibited by antibodies against αVβ3/β5 integrins and the integrin-associated thrombospondin receptor, CD47. Immunofluorescence of cells transfected with epitope-tagged P2Y2Rs indicated that αV integrins colocalized 10-fold better with the wild-type P2Y2R than with a mutant P2Y2R in which the RGD sequence was replaced with RGE. Compared with the wild-type P2Y2R, the RGE mutant required 1,000-fold higher agonist concentrations to phosphorylate focal adhesion kinase, activate extracellular signal–regulated kinases, and initiate the PLC-dependent mobilization of intracellular Ca2+. Furthermore, an anti-αV integrin antibody partially inhibited these signaling events mediated by the wild-type P2Y2R. Pertussis toxin, an inhibitor of Gi/o proteins, partially inhibited Ca2+ mobilization mediated by the wild-type P2Y2R, but not by the RGE mutant, suggesting that the RGD sequence is required for P2Y2R-mediated activation of Go, but not Gq. Since CD47 has been shown to associate directly with Gi/o family proteins, these results suggest that interactions between P2Y2Rs, integrins, and CD47 may be important for coupling the P2Y2R to Go. PMID:11331301

  11. Selective over-expression of fibroblast growth factor receptors 1 and 4 in clinical prostate cancer.

    PubMed

    Sahadevan, K; Darby, S; Leung, H Y; Mathers, M E; Robson, C N; Gnanapragasam, V J

    2007-09-01

    Fibroblast growth factor receptors (FGFRs) mediate the tumourigenic effects of FGFs in prostate cancer. These receptors are therefore potential therapeutic targets in the development of inhibitors to this pathway. To identify the most relevant targets, we simultaneously investigated FGFR1-4 expression using a prostate cancer tissue microarray (TMA) and in laser capture microdissected (LCM) prostate epithelial cells. In malignant prostates (n = 138) we observed significant FGFR1 and FGFR4 protein over-expression in comparison with benign prostates (n = 58; p < 0.0001). FGFR1 was expressed at high levels in the majority of tumours (69% of grade 3 or less, 74% of grade 4 and 70% of grade 5), while FGFR4 was strongly expressed in 83% of grade 5 cancers but in only 25% of grade 1-3 cancers (p < 0.0001). At the transcript level we observed a similar pattern, with FGFR1 and FGFR4 mRNA over-expressed in malignant epithelial cells compared to benign cells (p < 0.0005 and p < 0.05, respectively). While total FGFR2 was increased in some cancers, there was no association between expression and tumour grade or stage. Transcript analysis, however, revealed a switch in the predominant isoform expressed from FGFR2IIIb to FGFR2IIIc among malignant epithelial cells. In contrast, protein and transcript expression of FGFR3 was very similar between benign and cancer biopsies. The functional effect of targeting FGFR4 in prostate cancer cells has not previously been investigated. In in vitro experiments, suppression of FGFR4 by RNA interference effectively blocked prostate cancer cell proliferation (p < 0.0001) and invasion (p < 0.001) in response to exogenous stimulation. This effect was evident regardless of whether the cells expressed the FGFR4 Arg388 or Gly388 allele. In parallel experiments, FGFR3 suppression had no discernible effect on cancer cell behaviour. These results suggest evidence of selective over-expression of FGFR1 and FGFR4 in clinical prostate cancer and support the

  12. Dopamine D2 receptor over-expression alters behavior and physiology in Drd2-EGFP mice

    PubMed Central

    Kramer, Paul F.; Christensen, Christine H.; Hazelwood, Lisa A.; Dobi, Alice; Bock, Roland; Sibley, David R.; Mateo, Yolanda; Alvarez, Veronica A.

    2011-01-01

    BAC transgenic mice expressing the fluorescent reporter protein EGFP under the control of the D1 and D2 dopamine receptor promoters (Drd1-EGFP and Drd2-EGFP) have been widely used to study striatal function and have contributed to our understanding of the physiological and pathological function of the basal ganglia. These tools were produced and promptly made available to address questions in a cell-specific manner that has transformed the way we frame hypotheses in neuroscience. However, these mice have not been fully characterized until now. We found that Drd2-EGFP mice display a ~40% increase in membrane expression of the dopamine D2 receptor (D2R) and a two-fold increase in D2R mRNA levels in the striatum when compared to wild-type and Drd1-EGFP mice D2R over-expression was accompanied by behavioral hypersensitivity to D2R-like agonists, as well as enhanced electrophysiological responses to D2R activation in midbrain dopaminergic neurons. DA transients evoked by stimulation in the nucleus accumbens showed slower clearance in Drd2-EGFP mice and cocaine actions on DA clearance were impaired in these mice. Thus, it was not surprising to find that Drd2-EGFP mice were hyperactive when exposed to a novel environment and locomotion was suppressed by acute cocaine administration. All together, this study demonstrates that Drd2-EGFP mice over-express D2R and have altered dopaminergic signaling that fundamentally differentiates them from wild-type and Drd1-EGFP mice. PMID:21209197

  13. Structure and ligand-binding site characteristics of the human P2Y11 nucleotide receptor deduced from computational modelling and mutational analysis

    PubMed Central

    Zylberg, Jacques; Ecke, Denise; Fischer, Bilha; Reiser, Georg

    2007-01-01

    The P2Y11-R (P2Y11 receptor) is a less explored drug target. We computed an hP2Y11-R (human P2Y11) homology model with two templates, bovine-rhodopsin (2.6 Å resolution; 1 Å=0.1 nm) and a hP2Y1–ATP complex model. The hP2Y11-R model was refined using molecular dynamics calculations and validated by virtual screening methods, with an enrichment factor of 5. Furthermore, mutational analyses of Arg106, Glu186, Arg268, Arg307 and Ala313 confirmed the adequacy of our hP2Y11-R model and the computed ligand recognition mode. The E186A and R268A mutants reduced the potency of ATP by one and three orders of magnitude respectively. The R106A and R307A mutants were functionally inactive. We propose that residues Arg106, Arg268, Arg307 and Glu186 are involved in ionic interactions with the phosphate moiety of ATP. Arg307 is possibly also H-bonded to N6 of ATP via the backbone carbonyl. Activity of ATP at the F109I mutant revealed that the proposed π-stacking of Phe109 with the adenine ring is a minor interaction. The mutation A313N, which is part of a hydrophobic pocket in the vicinity of the ATP C-2 position, partially explains the high activity of 2-MeS-ATP at P2Y1-R as compared with the negligible activity at the P2Y11-R. Inactivity of ATP at the Y261A mutant implies that Tyr261 acts as a molecular switch, as in other G-protein-coupled receptors. Moreover, analysis of cAMP responses seen with the mutants showed that the efficacy of coupling of the P2Y11-R with Gs is more variable than coupling with Gq. Our model also indicates that Ser206 forms an H-bond with Pγ (the γ-phosphate of the triphosphate chain of ATP) and Met310 interacts with the adenine moiety. PMID:17338680

  14. GPR17: molecular modeling and dynamics studies of the 3-D structure and purinergic ligand binding features in comparison with P2Y receptors.

    PubMed

    Parravicini, Chiara; Ranghino, Graziella; Abbracchio, Maria P; Fantucci, Piercarlo

    2008-06-04

    GPR17 is a G-protein-coupled receptor located at intermediate phylogenetic position between two distinct receptor families: the P2Y and CysLT receptors for extracellular nucleotides and cysteinyl-LTs, respectively. We previously showed that GPR17 can indeed respond to both classes of endogenous ligands and to synthetic compounds active at the above receptor families, thus representing the first fully characterized non-peptide "hybrid" GPCR. In a rat brain focal ischemia model, the selective in vivo knock down of GPR17 by anti-sense technology or P2Y/CysLT antagonists reduced progression of ischemic damage, thus highlighting GPR17 as a novel therapeutic target for stroke. Elucidation of the structure of GPR17 and of ligand binding mechanisms are the necessary steps to obtain selective and potent drugs for this new potential target. On this basis, a 3-D molecular model of GPR17 embedded in a solvated phospholipid bilayer and refined by molecular dynamics simulations has been the first aim of this study. To explore the binding mode of the "purinergic" component of the receptor, the endogenous agonist UDP and two P2Y receptor antagonists demonstrated to be active on GPR17 (MRS2179 and cangrelor) were then modeled on the receptor. Molecular dynamics simulations suggest that GPR17 nucleotide binding pocket is similar to that described for the other P2Y receptors, although only one of the three basic residues that have been typically involved in ligand recognition is conserved (Arg255). The binding pocket is enclosed between the helical bundle and covered at the top by EL2. Driving interactions are H-bonds and salt bridges between the 6.55 and 6.52 residues and the phosphate moieties of the ligands. An "accessory" binding site in a region formed by the EL2, EL3 and the Nt was also found. Nucleotide binding to GPR17 occurs on the same receptor regions identified for already known P2Y receptors. Agonist/antagonist binding mode are similar, but not identical. An accessory

  15. Contribution of P2X4 receptors to ethanol intake in male C57BL/6 mice

    PubMed Central

    Wyatt, Letisha R.; Finn, Deborah A.; Khoja, Sheraz; Yardley, Megan M; Asatryan, Liana; Alkana, Ronald L.; Davies, Daryl L.

    2014-01-01

    P2X receptors (P2XRs) are a family of cation-permeable ligand-gated ion channels activated by synaptically released extracellular ATP. The P2X4 subtype is abundantly expressed in the CNS and is sensitive to low intoxicating ethanol concentrations. Genetic meta-analyses identified the p2rx4 gene as a candidate gene for innate alcohol intake and/or preference. The current study used mice lacking the p2rx4 gene (knockout, KO) and wildtype (WT) C57BL/6 controls to test the hypothesis that P2X4Rs contribute to ethanol intake. The early acquisition and early maintenance phases of ethanol intake were measured with three different drinking procedures. Further, we tested the effects of ivermectin (IVM), a drug previously shown to reduce ethanol’s effects on P2X4Rs and to reduce ethanol intake and preference, for its ability to differentially alter stable ethanol intake in KO and WT mice. Depending on the procedure and the concentration of the ethanol solution, ethanol intake was transiently increased in P2X4R KO versus WT mice during the acquisition of 24-hr and limited access ethanol intake. IVM significantly reduced ethanol intake in P2X4R KO and WT mice, but the degree of reduction was 50% less in the P2X4R KO mice. Western blot analysis identified significant changes in -γ aminobutyric acidA receptor (GABAAR) α1 subunit expression in brain regions associated with the regulation of ethanol behaviors in P2X4R KO mice. These findings add to evidence that P2X4Rs contribute to ethanol intake and indicate that there is a complex interaction between P2X4Rs, ethanol, and other neurotransmitter receptor systems. PMID:24671605

  16. P2Y12 Receptor Localizes in the Renal Collecting Duct and Its Blockade Augments Arginine Vasopressin Action and Alleviates Nephrogenic Diabetes Insipidus.

    PubMed

    Zhang, Yue; Peti-Peterdi, Janos; Müller, Christa E; Carlson, Noel G; Baqi, Younis; Strasburg, David L; Heiney, Kristina M; Villanueva, Karie; Kohan, Donald E; Kishore, Bellamkonda K

    2015-12-01

    P2Y12 receptor (P2Y12-R) signaling is mediated through Gi, ultimately reducing cellular cAMP levels. Because cAMP is a central modulator of arginine vasopressin (AVP)-induced water transport in the renal collecting duct (CD), we hypothesized that if expressed in the CD, P2Y12-R may play a role in renal handling of water in health and in nephrogenic diabetes insipidus. We found P2Y12-R mRNA expression in rat kidney, and immunolocalized its protein and aquaporin-2 (AQP2) in CD principal cells. Administration of clopidogrel bisulfate, an irreversible inhibitor of P2Y12-R, significantly increased urine concentration and AQP2 protein in the kidneys of Sprague-Dawley rats. Notably, clopidogrel did not alter urine concentration in Brattleboro rats that lack AVP. Clopidogrel administration also significantly ameliorated lithium-induced polyuria, improved urine concentrating ability and AQP2 protein abundance, and reversed the lithium-induced increase in free-water excretion, without decreasing blood or kidney tissue lithium levels. Clopidogrel administration also augmented the lithium-induced increase in urinary AVP excretion and suppressed the lithium-induced increase in urinary nitrates/nitrites (nitric oxide production) and 8-isoprostane (oxidative stress). Furthermore, selective blockade of P2Y12-R by the reversible antagonist PSB-0739 in primary cultures of rat inner medullary CD cells potentiated the expression of AQP2 and AQP3 mRNA, and cAMP production induced by dDAVP (desmopressin). In conclusion, pharmacologic blockade of renal P2Y12-R increases urinary concentrating ability by augmenting the effect of AVP on the kidney and ameliorates lithium-induced NDI by potentiating the action of AVP on the CD. This strategy may offer a novel and effective therapy for lithium-induced NDI. Copyright © 2015 by the American Society of Nephrology.

  17. Rationally designed chimeric peptide of met-enkephalin and FMRFa-[D-Ala2,p-Cl-Phe4]YFa induce multiple opioid receptors mediated antinociception and up-regulate their expression.

    PubMed

    Vats, Ishwar Dutt; Chaudhary, Snehlata; Sharma, Ahuti; Nath, Mahendra; Pasha, Santosh

    2010-07-25

    The physiological role of NPFF/FMRFa family of peptides appears to be complex and exact mechanism of action of these peptides is not yet completely understood. In same line of scrutiny, another analog of YGGFMKKKFMRFamide (YFa), a chimeric peptide of met-enkephalin and FMRFamide, was rationally designed and synthesized which contain D-alanine and p-Cl-phenylalanine residues at 2nd and 4th positions, respectively i.e., Y-(D-Ala)-G-(p-Cl-Phe)-MKKKFMRFamide ([D-Ala(2), p-Cl-Phe(4)]YFa) in order to achieve improved bioavailability and blood brain barrier penetration. Therefore, present study investigates the possible antinociceptive effect of [D-Ala(2), p-Cl-Phe(4)]YFa on intra-peritoneal (i.p.) administration using tail-flick test in rats followed by its opioid receptor(s) specificity using mu, delta and kappa receptor antagonists. Further, its antinociceptive effect was examined during 6 days of chronic i.p. treatment and assessed effect of this treatment on differential expression of opioid receptors. [D-Ala(2), p-Cl-Phe(4)]YFa in comparison to parent peptide YFa, induce significantly higher dose dependent antinociception in rats which was mediated by all three opioid receptors (mu, delta and kappa). Importantly, it induced comparable antinociception in rats throughout the chronic i.p. treatment and significantly up-regulated the overall expression (mRNA and protein) of mu, delta and kappa opioid receptors. Therefore, pharmacological and molecular behavior of [D-Ala(2), p-Cl-Phe(4)]YFa demonstrate that incorporation of D-alanine and p-Cl-phenylalanine residues at appropriate positions in chimeric peptide leads to altered opioid receptor selectivity and enhanced antinociceptive potency, relative to parent peptide. (c) 2010 Elsevier B.V. All rights reserved.

  18. Emodin Inhibits ATP-Induced Proliferation and Migration by Suppressing P2Y Receptors in Human Lung Adenocarcinoma Cells.

    PubMed

    Wang, Xia; Li, Long; Guan, Ruijuan; Zhu, Danian; Song, Nana; Shen, Linlin

    2017-01-01

    Extracellular ATP performs multiple important functions via activation of P2 receptors on the cell surface. P2Y receptors play critical roles in ATP evoked response in human lung adenocarcinoma cells (A549 cells). Emodin is an anthraquinone derivative originally isolated from Chinese rhubarb, possesses anticancer properties. In this study we examined the inhibiting effects of emodin on proliferation, migration and epithelial-mesenchymal transition (EMT) by suppressing P2Y receptors-dependent Ca2+ increase and nuclear factor-κB (NF-KB) signaling in A549 cells. A549 cells were pretreated with emodin before stimulation with ATP for the indicated time. Then, intracellular Ca2+ concentration ([Ca2+]i) was measured by Fluo-8/AM staining. Cell proliferation and cell cycle progression were tested by CCK8 assay and flow cytometry In addition, wound healing and western blot were performed to determine cell migration and related protein levels (Bcl-2, Bax, claudin-1, NF-κB). Emodin blunted ATP/UTP-induced increase of [Ca2+]i and cell proliferation concentration-dependently Meanwhile, it decreased ATP-induced cells accumulation in the S phase. Furthermore, emodin altered protein abundance of Bcl-2, Bax and claudin-1 and attenuated EMT caused by ATP. Such ATP-induced cellular reactions were also inhibited by a nonselective P2Y receptors antagonist, suramin, in a similar way to emodin. Besides, emodin could inhibit activation of NF-κB, thus suppressed ATP-induced proliferation, migration and EMT. Our results demonstrated that emodin inhibits ATP-induced proliferation, migration, EMT by suppressing P2Y receptors-mediated [Ca2+]i increase and NF-κB signaling in A549 cells. © 2017 The Author(s). Published by S. Karger AG, Basel.

  19. Gastric cancer: the role of insulin-like growth factor 2 (IGF 2) and its receptors (IGF 1R and M6-P/IGF 2R).

    PubMed

    Pavelić, Kresimir; Kolak, Toni; Kapitanović, Sanja; Radosević, Senka; Spaventi, Sime; Kruslin, Bozo; Pavelić, Jasminka

    2003-11-01

    Insulin-like growth factor 2 (IGF 2) appears to be involved in the progression of many tumours. It binds to at least two different types of receptor: IGF type 1 (IGF 1R) and mannose 6-phosphate/IGF type 2 (M6-P/IGF 2R). Ligand binding to IGF 1R provokes mitogenic and anti-apoptotic effects. M6-P/IGF 2R has a tumour suppressor function--it mediates IGF 2 degradation. Mutation of M6-P/IGF 2R causes both diminished growth suppression and augmented growth stimulation. The aim of this study was to investigate the role of IGF 2 and its receptors (IGF 1R and IGF 2R) in human gastric cancer. The expression of IGF 2 and its receptors was measured in order to analyse the possible correlation between the activity of these genes and cell proliferation in two different gastric tumour types: diffuse and intestinal. The effect of IGF 1 receptor blockage on cell proliferation and anchorage-independent cell growth was also examined. Increased expression of IGF 2 and IGF 1R genes (at the mRNA and protein level) was found in gastric cancer when compared with non-tumour tissue. Furthermore, there was a significant difference between IGF 2 expression in the more aggressive diffuse type and that in the intestinal type of gastric cancer. Moreover, the IGF 2 peptide level in the culture media obtained from the diffuse type of cancer cells was significantly higher when compared with the intestinal type. The level of IGF 2 peptide in the conditioned media strongly correlated with [3H]thymidine incorporation and cell proliferation. On the contrary, IGF 2R mRNA expression was much higher in the intestinal type of cancer than in the diffuse type. In addition, IGF 2R protein expression was substantially lower with progression of the diffuse cancer type to a higher stage. The alphaIR3 monoclonal antibody strongly inhibited [3H]thymidine incorporation and decreased the number of colonies in soft agar of cells overexpressing IGF 2. These findings suggest that members of the IGF family are involved

  20. Differential expression of the P2X7 receptor in ovarian surface epithelium during the oestrous cycle in the mouse.

    PubMed

    Vázquez-Cuevas, F G; Cruz-Rico, A; Garay, E; García-Carrancá, A; Pérez-Montiel, D; Juárez, B; Arellano, R O

    2013-01-01

    Purinergic signalling has been proposed as an intraovarian regulatory mechanism. Of the receptors responsible for purinergic transmission, the P2X7 receptor is an ATP-gated cationic channel that displays a broad spectrum of cellular functions ranging from apoptosis to cell proliferation and tumourigenesis. In the present study, we investigated the functional expression of P2X7 receptors in ovarian surface epithelium (OSE). P2X7 protein was detected in the OSE layer of the mouse, both in situ and in primary cultures. In cultures, 2'(3')-O-(4-Benzoylbenzoyl)adenosine-5'-triphosphate (BzATP) activation of P2X7 receptors increased [Ca(2+)]i and induced apoptosis. The functionality of the P2X7 receptor was investigated in situ by intrabursal injection of BzATP on each day of the oestrous cycle and evaluation of apoptosis 24h using the terminal deoxyribonucleotidyl transferase-mediated dUTP-fluorescein nick end-labelling (TUNEL) assay. Maximum effects of BzATP were observed during pro-oestrus, with the effects being blocked by A438079, a specific P2X7 receptor antagonist. Immunofluorescence staining for P2X7 protein revealed more robust expression during pro-oestrus and in OSE regions behind the antral follicles, strongly supporting the notion that the differences in apoptosis can be explained by increased receptor expression, which is regulated during the oestrous cycle. Finally, P2X7 receptor expression was detected in the OSE layer of human ovaries, with receptor expression maintained in human ovaries diagnosed with cancer, as well as in the human ovarian carcinoma SKOV3 cell line.

  1. Expression of CB2 cannabinoid receptor in Pichia pastoris.

    PubMed

    Feng, Wenke; Cai, Jian; Pierce, William M; Song, Zhao-Hui

    2002-12-01

    To facilitate purification and structural characterization, the CB2 cannabinoid receptor is expressed in methylotrophic yeast Pichia pastoris. The expression plasmids were constructed in which the CB2 gene is under the control of the highly inducible promoter of P. pastoris alcohol oxidase 1 gene. A c-myc epitope and a hexahistidine tag were introduced at the C-terminal of the CB2 to permit easy detection and purification. In membrane preparations of CB2 gene transformed yeast cells, Western blot analysis detected the expression of CB2 proteins. Radioligand binding assays demonstrated that the CB2 receptors expressed in P. pastoris have a pharmacological profile similar to that of the receptors expressed in mammalian systems. Furthermore, the epitope-tagged receptor was purified by metal chelating chromatography and the purified CB2 preparations were subjected to digestion by trypsin. MALDI/TOF mass spectrometry analysis of the peptides extracted from tryptic digestions detected 14 peptide fragments derived from the CB2 receptor. ESI mass spectrometry was used to sequence one of these peptide fragments, thus, further confirming the identity of the purified receptor. In conclusion, these data demonstrated for the first time that epitope-tagged, functional CB2 cannabinoid receptor can be expressed in P. pastoris for purification.

  2. Reconstructed Serine 288 in the Left Flipper Region of the Rat P2X7 Receptor Stabilizes Nonsensitized States.

    PubMed

    Ishchenko, Yevheniia; Novosolova, Nataliia; Khafizov, Kamil; Bart, Geneviève; Timonina, Arina; Fayuk, Dmitriy; Skorinkin, Andrei; Giniatullin, Rashid

    2017-07-05

    Serine 275, a conserved residue of the left flipper region of ATP-gated P2X3 receptors, plays a key role in both agonist binding and receptor desensitization. It is conserved in most of the P2X receptors except P2X7 and P2X6. By combining experimental patch-clamp and modeling approaches, we explored the role of the corresponding residue in the rat P2X7 receptor (rP2X7) by replacing the phenylalanine at position 288 with serine and characterizing the membrane currents generated by either the wild-type (WT) or the mutated rP2X7 receptor. F288S, an rP2X7 mutation, slowed the deactivation subsequent to 2 and 20 s applications of 1 mM ATP. F288S also prevented sensitization (a progressive current growth) observed with the WT in response to a 20 s application of 1 mM ATP. Increasing the ATP concentration to 5 mM promoted sensitization also in the mutated rP2X7 receptor, accelerating the deactivation rate to typical WT values. YO-PRO1 uptake in cells expressing either the WT or the F288S P2X7 receptor was consistent with recorded membrane current data. Interestingly, in the human P2X7 (hP2X7) receptor, substitution Y288S did not change the deactivation rate, while the Y288F mutant generated a "rat-like" phenotype with a fast deactivation rate. Our combined experimental, kinetic, and molecular modeling data suggest that the rat F288S novel phenotype is due to a slower rate of ATP binding and/or unbinding and stabilization of nonsensitized receptor states.

  3. Placental expression of D6 decoy receptor in preeclampsia

    PubMed Central

    Cho, Geum Joon; Lee, Eun Sung; Jin, Hye Mi; Lee, Ji Hye; Kim, Yeun Sun; Seol, Hyun-Joo; Hong, Soon-Cheol; Kim, Hai-Joong

    2015-01-01

    Objective The purpose of this study was to investigate the expression of the D6 decoy receptor that can bind chemokines and target them for degradation, resulting in inhibition of inflammation in placentas from preeclamptic and normal pregnancies. Methods The current study was carried out in 35 pregnant women (23 patients with preeclampsia and 12 healthy, normotensive pregnant women) during the third trimester of pregnancy. The expressions of D6 decoy receptor in the placenta were determined with real time reverse transcriptase polymerase chain reaction and western blotting. Results The mRNA and protein of D6 decoy receptor were detected in all of placentas from preeclamptic and normal pregnancies. Placental D6 decoy receptor mRNA expression was significantly lower in patients with preeclampsia than in patients with normal pregnancies. Western blot analyses revealed decreased protein expression in cases of preeclampsia. Conclusion The expression of the D6 decoy receptor in preeclamptic placentas was significantly lower than in normal placentas. Further studies are needed to clarify the underlying mechanisms that link decreased expression of placental D6 decoy receptor and preeclampsia. PMID:26430656

  4. NF546 [4,4'-(carbonylbis(imino-3,1-phenylene-carbonylimino-3,1-(4-methyl-phenylene)-carbonylimino))-bis(1,3-xylene-alpha,alpha'-diphosphonic acid) tetrasodium salt] is a non-nucleotide P2Y11 agonist and stimulates release of interleukin-8 from human monocyte-derived dendritic cells.

    PubMed

    Meis, Sabine; Hamacher, Alexandra; Hongwiset, Darunee; Marzian, Claudia; Wiese, Michael; Eckstein, Niels; Royer, Hans-Dieter; Communi, Didier; Boeynaems, Jean-Marie; Hausmann, Ralf; Schmalzing, Günther; Kassack, Matthias U

    2010-01-01

    The G protein-coupled P2Y(11) receptor is involved in immune system modulation. In-depth physiological evaluation is hampered, however, by a lack of selective and potent ligands. By screening a library of sulfonic and phosphonic acid derivatives at P2Y(11) receptors recombinantly expressed in human 1321N1 astrocytoma cells (calcium and cAMP assays), the selective non-nucleotide P2Y(11) agonist NF546 [4,4'-(carbonylbis(imino-3,1-phenylene-carbonylimino-3,1-(4-methyl-phenylene)carbonylimino))-bis(1,3-xylene-alpha,alpha'-diphosphonic acid) tetrasodium salt] was identified. NF546 had a pEC(50) of 6.27 and is relatively selective for P2Y(11) over P2Y(1), P2Y(2), P2Y(4), P2Y(6), P2Y(12), P2X(1), P2X(2), and P2X(2)-X(3). Adenosine-5'-O-(3-thio)triphosphate (ATPgammaS), a nonhydrolyzable analog of the physiological P2Y(11) agonist ATP, and NF546 use a common binding site as suggested by molecular modeling studies and their competitive behavior toward the nanomolar potency antagonist NF340 [4,4'-(carbonylbis(imino-3,1-(4-methyl-phenylene)carbonylimino))bis(naphthalene-2,6-disulfonic acid) tetrasodium salt] in Schild analysis. The pA(2) of NF340 was 8.02 against ATPgammaS and 8.04 against NF546 (calcium assays). NF546 was further tested for P2Y(11)-mediated effects in monocyte-derived dendritic cells. Similarly to ATPgammaS, NF546 led to thrombospondin-1 secretion and inhibition of lipopolysaccharide-stimulated interleukin-12 release, whereas NF340 inhibited these effects. Further, for the first time, it was shown that ATPgammaS or NF546 stimulation promotes interleukin 8 (IL-8) release from dendritic cells, which could be inhibited by NF340. In conclusion, we have described the first selective, non-nucleotide agonist NF546 for P2Y(11) receptors in both recombinant and physiological expression systems and could show a P2Y(11)-stimulated IL-8 release, further supporting the immunomodulatory role of P2Y(11) receptors.

  5. SPBP Is a Sulforaphane Induced Transcriptional Coactivator of NRF2 Regulating Expression of the Autophagy Receptor p62/SQSTM1

    PubMed Central

    Darvekar, Sagar Ramesh; Elvenes, Julianne; Brenne, Hanne Britt; Johansen, Terje; Sjøttem, Eva

    2014-01-01

    Organisms exposed to oxidative stress respond by orchestrating a stress response to prevent further damage. Intracellular levels of antioxidant agents increase, and damaged components are removed by autophagy induction. The KEAP1-NRF2 signaling pathway is the main pathway responsible for cell defense against oxidative stress and for maintaining the cellular redox balance at physiological levels. Sulforaphane, an isothiocyanate derived from cruciferous vegetables, is a potent inducer of KEAP1-NRF2 signaling and antioxidant response element driven gene expression. In this study, we show that sulforaphane enhances the expression of the transcriptional coregulator SPBP. The expression curve peaks 6–8 hours post stimulation, and parallels the sulforaphane-induced expression of NRF2 and the autophagy receptor protein p62/SQSTM1. Reporter gene assays show that SPBP stimulates the expression of p62/SQSTM1 via ARE elements in the promoter region, and siRNA mediated knock down of SPBP significantly decreases the expression of p62/SQSTM1 and the formation of p62/SQSTM1 bodies in HeLa cells. Furthermore, SPBP siRNA reduces the sulforaphane induced expression of NRF2, and the expression of the autophagy marker protein LC3B. Both these proteins contain ARE-like elements in their promoter regions. Over-expressed SPBP and NRF2 acts synergistically on the p62/SQSTM1 promoter and colocalize in nuclear speckles in HeLa cells. Collectively, these results suggest that SPBP is a coactivator of NRF2, and hence may be important for securing enhanced and sustained expression of NRF2 induced genes such as proteins involved in selective autophagy. PMID:24416372

  6. Inverse agonism at the P2Y12 receptor and ENT1 transporter blockade contribute to platelet inhibition by ticagrelor.

    PubMed

    Aungraheeta, Riyaad; Conibear, Alexandra; Butler, Mark; Kelly, Eamonn; Nylander, Sven; Mumford, Andrew; Mundell, Stuart J

    2016-12-08

    Ticagrelor is a potent antagonist of the P2Y 12 receptor (P2Y 12 R) and consequently an inhibitor of platelet activity effective in the treatment of atherothrombosis. Here, we sought to further characterize its molecular mechanism of action. Initial studies showed that ticagrelor promoted a greater inhibition of adenosine 5'-diphosphate (ADP)-induced Ca 2+ release in washed platelets vs other P2Y 12 R antagonists. This additional effect of ticagrelor beyond P2Y 12 R antagonism was in part as a consequence of ticagrelor inhibiting the equilibrative nucleoside transporter 1 (ENT1) on platelets, leading to accumulation of extracellular adenosine and activation of G s -coupled adenosine A 2A receptors. This contributed to an increase in basal cyclic adenosine monophosphate (cAMP) and vasodilator-stimulated phosphoprotein phosphorylation (VASP-P). In addition, ticagrelor increased platelet cAMP and VASP-P in the absence of ADP in an adenosine receptor-independent manner. We hypothesized that this increase originated from a direct effect on basal agonist-independent P2Y 12 R signaling, and this was validated in 1321N1 cells stably transfected with human P2Y 12 R. In these cells, ticagrelor blocked the constitutive agonist-independent activity of the P2Y 12 R, limiting basal G i -coupled signaling and thereby increasing cAMP levels. These data suggest that ticagrelor has the pharmacological profile of an inverse agonist. Based on our results showing insurmountable inhibition of ADP-induced Ca 2+ release and forskolin-induced cAMP, the mode of antagonism of ticagrelor also appears noncompetitive, at least functionally. In summary, our studies describe 2 novel modes of action of ticagrelor, inhibition of platelet ENT1 and inverse agonism at the P2Y 12 R that contribute to its effective inhibition of platelet activation. © 2016 by The American Society of Hematology.

  7. Molecular structure of P2X receptors.

    PubMed

    Egan, Terrance M; Cox, Jane A; Voigt, Mark M

    2004-01-01

    P2X receptors are ligand-gated ion channels that transduce many of the physiological effects of extracellular ATP. There has been a dramatic increase in awareness of these receptors over the past 5 or so years, in great part due to their molecular cloning and characterization. The availability of cDNA clones for the various subunits has led to rapid progress in identifying their tissue-specific expression, resulting in new ideas concerning the functional roles these receptors might play in physiological and pathophysiological processes. In addition, molecular approaches have yielded much information regarding the structure and function of the receptor proteins themselves. In this review we seek to review recent findings concerning the molecular determinants of receptor-channel function, with particular focus on ligand binding and gating, ion selectivity, and subunit assembly.

  8. Modified diadenosine tetraphosphates with dual specificity for P2Y1 and P2Y12 are potent antagonists of ADP-induced platelet activation

    PubMed Central

    CHANG, H.; YANACHKOV, I. B.; DIX, E. J.; LI, Y. F.; BARNARD, M. R.; WRIGHT, G. E.; MICHELSON, A. D.; FRELINGER, A. L.

    2017-01-01

    Summary Background Diadenosine 5′,5‴-P1,P4-tetraphosphate (Ap4A), a natural compound stored in platelet dense granules, inhibits ADP-induced platelet aggregation. Ap4A inhibits the platelet ADP receptors P2Y1 and P2Y12, is a partial agonist of P2Y12, and is a full agonist of the platelet ATP-gated ion channel P2X1. Modification of the Ap4A tetraphosphate backbone enhances inhibition of ADP-induced platelet aggregation. However, the effects of these Ap4A analogs on human platelet P2Y1, P2Y12 and P2X1 are unclear. Objective To determine the agonist and antagonist activities of diadenosine tetraphosphate analogs towards P2Y1, P2Y12, and P2X1. Methods We synthesized the following Ap4A analogs: P1,P4-dithiotetraphosphate; P2,P3-chloromethylenetetraphosphate; P1-thio-P2,P3-chloromethylenetetraphosphate; and P1,P4-dithio-P2,P3-chloromethylenetetraphosphate. We then measured the effects of these analogs on: (i) ADP-induced platelet aggregation; (ii) P2Y1-mediated changes in cytosolic Ca2+; (iii) P2Y12-mediated changes in vasodilator-stimulated phosphoprotein phosphorylation; and (iv) P2X1-mediated entry of extracellular Ca2+. Results Ap4A analogs with modifications in the phosphate backbone inhibited both P2Y1 and P2Y12, and showed no agonist activity towards these receptors. The dithio modification increased inhibition of P2Y1, P2Y12, and platelet aggregation, whereas the chloromethylene modification increased inhibition of P2Y12 and platelet aggregation, but decreased P2Y1 inhibition. Combining the dithio and chloromethylene modifications increased P2Y1 and P2Y12 inhibition. As compared with Ap4A, each modification decreased agonist activity towards P2X1, and the dual modification completely eliminated P2X1 agonist activity. Conclusions As compared with Ap4A, tetraphosphate backbone analogs of Ap4A have diminished activity towards P2X1 but inhibit both P2Y1 and P2Y12 and, with greater potency, inhibit ADP-induced platelet aggregation. Thus, diadenosine tetraphosphate

  9. Gene-by-environment effect of house dust mite on purinergic receptor P2Y12 (P2RY12) and lung function in children with asthma.

    PubMed

    Bunyavanich, S; Boyce, J A; Raby, B A; Weiss, S T

    2012-02-01

    Distinct receptors likely exist for leukotriene (LT)E(4), a potent mediator of airway inflammation. Purinergic receptor P2Y12 is needed for LTE(4)-induced airways inflammation, and P2Y12 antagonism attenuates house dust mite-induced pulmonary eosinophilia in mice. Although experimental data support a role for P2Y12 in airway inflammation, its role in human asthma has never been studied. To test for association between variants in the P2Y12 gene (P2RY12) and lung function in human subjects with asthma, and to examine for gene-by-environment interaction with house dust mite exposure. Nineteen single nucleotide polymorphisms (SNPs) in P2RY12 were genotyped in 422 children with asthma and their parents (n = 1266). Using family based methods, we tested for associations between these SNPs and five lung function measures. We performed haplotype association analyses and tested for gene-by-environment interactions using house dust mite exposure. We used the false discovery rate to account for multiple comparisons. Five SNPs in P2RY12 were associated with multiple lung function measures (P-values 0.006–0.025). Haplotypes in P2RY12 were also associated with lung function (P-values 0.0055–0.046). House dust mite exposure modulated associations between P2RY12 and lung function, with minor allele homozygotes exposed to house dust mite demonstrating worse lung function than those unexposed (significant interaction P-values 0.0028–0.040). The P2RY12 variants were associated with lung function in a large family-based asthma cohort. House dust mite exposure caused significant gene-by-environment effects. Our findings add the first human evidence to experimental data supporting a role for P2Y12 in lung function. P2Y12 could represent a novel target for asthma treatment.

  10. Neuropeptide Y2 Receptor (NPY2R) Expression in Saliva Predicts Feeding Immaturity in the Premature Neonate

    PubMed Central

    Maron, Jill L.; Johnson, Kirby L.; Dietz, Jessica A.; Chen, Minghua L.; Bianchi, Diana W.

    2012-01-01

    Background The current practice in newborn medicine is to subjectively assess when a premature infant is ready to feed by mouth. When the assessment is inaccurate, the resulting feeding morbidities may be significant, resulting in long-term health consequences and millions of health care dollars annually. We hypothesized that the developmental maturation of hypothalamic regulation of feeding behavior is a predictor of successful oral feeding in the premature infant. To test this hypothesis, we analyzed the gene expression of neuropeptide Y2 receptor (NPY2R), a known hypothalamic regulator of feeding behavior, in neonatal saliva to determine its role as a biomarker in predicting oral feeding success in the neonate. Methodology/Principal Findings Salivary samples (n = 116), were prospectively collected from 63 preterm and 13 term neonates (post-conceptual age (PCA) 26 4/7 to 41 4/7 weeks) from five predefined feeding stages. Expression of NPY2R in neonatal saliva was determined by multiplex RT-qPCR amplification. Expression results were retrospectively correlated with feeding status at time of sample collection. Statistical analysis revealed that expression of NPY2R had a 95% positive predictive value for feeding immaturity. NPY2R expression statistically significantly decreased with advancing PCA (Wilcoxon test p value<0.01), and was associated with feeding status (chi square p value  =  0.013). Conclusions/Significance Developmental maturation of hypothalamic regulation of feeding behavior is an essential component of oral feeding success in the newborn. NPY2R expression in neonatal saliva is predictive of an immature feeding pattern. It is a clinically relevant biomarker that may be monitored in saliva to improve clinical care and reduce significant feeding-associated morbidities that affect the premature neonate. PMID:22629465

  11. Subunit arrangement in P2X receptors.

    PubMed

    Jiang, Lin-Hua; Kim, Miran; Spelta, Valeria; Bo, Xuenong; Surprenant, Annmarie; North, R Alan

    2003-10-01

    ATP-gated ionotropic receptors (P2X receptors) are distributed widely in the nervous system. For example, a hetero-oligomeric receptor containing both P2X2 and P2X3 subunits is involved in primary afferent sensation. Each subunit has two membrane-spanning domains. We have used disulfide bond formation between engineered cysteines to demonstrate close proximity between the outer ends of the first transmembrane domain of one subunit and the second transmembrane domain of another. After expression in HEK 293 cells of such modified P2X2 or P2X4 subunits, the disulfide bond formation is evident because an ATP-evoked channel opening requires previous reduction with dithiothreitol. In the hetero-oligomeric P2X2/3 receptor the coexpression of doubly substituted subunits with wild-type partners allows us to deduce that the hetero-oligomeric channel contains adjacent P2X3 subunits but does not contain adjacent P2X2 subunits. The results suggest a "head-to-tail" subunit arrangement in the quaternary structure of P2X receptors and show that a trimeric P2X2/3 receptor would have the composition P2X2(P2X3)2.

  12. In vitro and in vivo characterization of JNJ-31020028 (N-(4-{4-[2-(diethylamino)-2-oxo-1-phenylethyl]piperazin-1-yl}-3-fluorophenyl)-2-pyridin-3-ylbenzamide), a selective brain penetrant small molecule antagonist of the neuropeptide Y Y(2) receptor.

    PubMed

    Shoblock, James R; Welty, Natalie; Nepomuceno, Diane; Lord, Brian; Aluisio, Leah; Fraser, Ian; Motley, S Timothy; Sutton, Steve W; Morton, Kirsten; Galici, Ruggero; Atack, John R; Dvorak, Lisa; Swanson, Devin M; Carruthers, Nicholas I; Dvorak, Curt; Lovenberg, Timothy W; Bonaventure, Pascal

    2010-02-01

    The lack of potent, selective, brain penetrant Y(2) receptor antagonists has hampered in vivo functional studies of this receptor. Here, we report the in vitro and in vivo characterization of JNJ-31020028 (N-(4-{4-[2-(diethylamino)-2-oxo-1-phenylethyl]piperazin-1-yl}-3-fluorophenyl)-2-pyridin-3-ylbenzamide), a novel Y(2) receptor antagonist. The affinity of JNJ-31020028 was determined by inhibition of the PYY binding to human Y(2) receptors in KAN-Ts cells and rat Y(2) receptors in rat hippocampus. The functional activity was determined by inhibition of PYY-stimulated calcium responses in KAN-Ts cells expressing a chimeric G protein Gqi5 and in the rat vas deferens (a prototypical Y(2) bioassay). Ex vivo receptor occupancy was revealed by receptor autoradiography. JNJ-31020028 was tested in vivo with microdialysis, in anxiety models, and on corticosterone release. JNJ-31020028 bound with high affinity (pIC(50) = 8.07 +/- 0.05, human, and pIC(50) = 8.22 +/- 0.06, rat) and was >100-fold selective versus human Y(1), Y(4), and Y(5) receptors. JNJ-31020028 was demonstrated to be an antagonist (pK(B) = 8.04 +/- 0.13) in functional assays. JNJ-31020028 occupied Y(2) receptor binding sites (approximately 90% at 10 mg/kg) after subcutaneous administration in rats. JNJ-31020028 increased norepinephrine release in the hypothalamus, consistent with the colocalization of norepinephrine and neuropeptide Y. In a variety of anxiety models, JNJ-31020028 was found to be ineffective, although it did block stress-induced elevations in plasma corticosterone, without altering basal levels, and normalized food intake in stressed animals without affecting basal food intake. These results suggest that Y(2) receptors may not be critical for acute behaviors in rodents but may serve modulatory roles that can only be elucidated under specific situational conditions.

  13. P2X7 receptor expression levels determine lethal effects of a purine based danger signal in T lymphocytes.

    PubMed

    Aswad, Fred; Dennert, Gunther

    2006-09-01

    Contact of T lymphocytes with nicotinamide adenine dinucleotide (NAD) or ATP causes cell death that requires expression of purinergic receptor P2X(7) (P2X(7)R). T cell subsets differ in their responses to NAD and ATP, which awaits a mechanistic explanation. Here, we show that sensitivity to ATP correlates with P2X(7)R expression levels in CD4 cells, CD8 cells and CD4(+)CD25(+) cells from both C57BL/6 and BALB/c mice. But P2X(7)R ligands do not only induce cell death but also shedding of CD62L. It is shown here that in CD62L(high) T cells, CD62L shedding correlates with low expression of P2X(7)Rs and lower cell death, whereas in CD62L(low) cells P2X(7)R expression and death are higher. The possibility is therefore investigated that P2X(7)Rs induce T cell activation. Experiments show that spontaneous T cell proliferation is somewhat higher in cells expressing P2X(7)Rs, but this effect we suggest is caused by P2X(7)R expression on accessory cells.

  14. Purine ionotropic (P2X) receptors.

    PubMed

    Köles, L; Fürst, S; Illes, P

    2007-01-01

    Purinergic signaling is involved in the proper functioning of virtually all organs of the body. Although in some cases purines have a major influence on physiological functions (e.g. thrombocyte aggregation), more often they are just background modulators contributing to fine tuning of biological events. However, under pathological conditions, when a huge amount of adenosine 5'-triphosphate (ATP) can reach the extracellular space, their significance is increasing. ATP and its various degradation products activate membrane receptors divided into two main classes: the metabotropic P2Y and the ionotropic P2X family. This latter group, the purine ionotropic receptor, is the object of this review. After providing a description about the distribution and functional properties of P2X receptors in the body, their pharmacology will be summarized. In the second part of this review, the role of purines in those organ systems and body functions will be highlighted, where the (patho)physiological role of P2X receptors has been suggested or is even well established. Besides the regulation of organ systems, for instance in the cardiovascular, respiratory, genitourinary or gastrointestinal system, some special issues will also be discussed, such as the role of P2X receptors in pain, tumors, central nervous system (CNS) injury and embryonic development. Several examples will indicate that purine ionotropic receptors might serve as attractive targets for pharmacological interventions in various diseases, and that selective ligands for these receptors will probably constitute important future therapeutic tools in humans.

  15. HER2 over-expressing high grade endometrial cancer expresses high levels of p95HER2 variant.

    PubMed

    Growdon, Whitfield B; Groeneweg, Jolijn; Byron, Virginia; DiGloria, Celeste; Borger, Darrell R; Tambouret, Rosemary; Foster, Rosemary; Chenna, Ahmed; Sperinde, Jeff; Winslow, John; Rueda, Bo R

    2015-04-01

    Subsets of high grade endometrial cancer (EnCa) over-express HER2 (ERBB2), yet clinical trials have failed to demonstrate any anti-tumor activity utilizing trastuzumab, an approved platform for HER2 positive breast cancer (BrCa). A truncated p95HER2 variant lacking the trastuzumab binding site may confer resistance. The objective of this investigation was to characterize the expression of the p95HER2 truncated variant in EnCa. With institutional approval, 86 high grade EnCa tumors were identified with tumor specimens from surgeries performed between 2000 and 2011. Clinical data were collected and all specimens underwent tumor genotyping, HER2 immunohistochemistry (IHC, HercepTest®), HER2 fluorescent in situ hybridization (FISH), along with total HER2 (H2T) and p95HER2 assessment with VeraTag® testing. Regression models were used to compare a cohort of 86 breast tumors selected for equivalent HER2 protein expression. We identified 44 high grade endometrioid and 42 uterine serous carcinomas (USC). IHC identified high HER2 expression (2+ or 3+) in 59% of the tumors. HER2 gene amplification was observed in 16 tumors (12 USC, 4 endometrioid). Both HER2 gene amplification and protein expression correlated with H2T values. High p95HER2 expression above 2.8RF/mm2 was observed in 53% (n=54) with significant correlation with H2T levels. When matched to a cohort of 107 breast tumors based on HercepTest HER2 expression, high grade EnCa presented with higher p95 levels (p<0.001). These data demonstrate that compared to BrCa, high grade EnCa expresses higher levels of p95HER2 possibly providing rationale for the trastuzumab resistance observed in EnCa. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Receptor homodimerization plays a critical role in a novel dominant negative P2RY12 variant identified in a family with severe bleeding.

    PubMed

    Mundell, S J; Rabbolini, D; Gabrielli, S; Chen, Q; Aungraheeta, R; Hutchinson, J L; Kilo, T; Mackay, J; Ward, C M; Stevenson, W; Morel-Kopp, M-C

    2018-01-01

    Essentials Three dominant variants for the autosomal recessive bleeding disorder type-8 have been described. To date, there has been no phenotype/genotype correlation explaining their dominant transmission. Proline plays an important role in P2Y12R ligand binding and signaling defects. P2Y12R homodimer formation is critical for the receptor function and signaling. Background Although inherited platelet disorders are still underdiagnosed worldwide, advances in molecular techniques are improving disease diagnosis and patient management. Objective To identify and characterize the mechanism underlying the bleeding phenotype in a Caucasian family with an autosomal dominant P2RY12 variant. Methods Full blood counts, platelet aggregometry, flow cytometry and western blotting were performed before next-generation sequencing (NGS). Detailed molecular analysis of the identified variant of the P2Y12 receptor (P2Y12R) was subsequently performed in mammalian cells overexpressing receptor constructs. Results All three referred individuals had markedly impaired ADP-induced platelet aggregation with primary wave only, despite normal total and surface P2Y12R expression. By NGS, a single P2RY12:c.G794C substitution (p.R265P) was identified in all affected individuals, and this was confirmed by Sanger sequencing. Mammalian cell experiments with the R265P-P2Y12R variant showed normal receptor surface expression versus wild-type (WT) P2Y12R. Agonist-stimulated R265P-P2Y12R function (both signaling and surface receptor loss) was reduced versus WT P2Y12R. Critically, R265P-P2Y12R acted in a dominant negative manner, with agonist-stimulated WT P2Y12R activity being reduced by variant coexpression, suggesting dramatic loss of WT homodimers. Importantly, platelet P2RY12 cDNA cloning and sequencing in two affected individuals also revealed three-fold mutant mRNA overexpression, decreasing even further the likelihood of WT homodimer formation. R265 located within extracellular loop 3 (EL3) is

  17. Pharmacological characterization of P2X7 receptors in rat peritoneal cells.

    PubMed

    Chen, Y-W; Donnelly-Roberts, D L; Namovic, M T; Gintant, G A; Cox, B F; Jarvis, M F; Harris, R R

    2005-03-01

    P2X(7) receptor activation by ATP results in the release of IL-1beta and IL-18. Prolonged stimulation can lead to pore formation and cell death. In this study we pharmacologically characterized P2X(7) receptors on rat peritoneal cells (RPC) and on 1321N1 cells transfected with rat P2X(7) receptor (1321rP2X(7)-11). RPC were isolated from rats by lavage. P2X(7) agonist induced pore formation in RPC was measured by EtBr uptake. P2X(7)-stimulated pore formation and Ca(++) influx in 1321rP2X(7)-11 cells were measured by a fluorometric imaging plate reader. The effects of pyridoxal phosphate-6-azo phenyl -2'-4'-disulfonic acid (PPADS) on pore formation and Ca(++) influx were examined in both RPC and 1321rP2X(7)-11. P2X(7)-mediated IL-1beta release in RPC and the effect of PPADS were determined. RPC express functional P2X(7) receptors that were activated by ATP analogs with a rank order of potency of 2'- 3'-O-(4-Benzoylbenzoyl) adenosine 5'-triphosphate (BzATP) > ATP > alpha,beta-methylene ATP. Activation of P2X(7) receptors by BzATP was inhibited by PPADS. Similar results were also obtained in 1321rP2X(7)-11 cells. Activation of P2X(7) receptors on RPC resulted in IL-1 beta secretion, which was inhibited by PPADS. RPC express functional P2X(7) receptors that form pores and mediate the release of IL-1beta.

  18. Modulation of K+ currents in Xenopus spinal neurons by p2y receptors: a role for ATP and ADP in motor pattern generation

    PubMed Central

    Brown, Paul; Dale, Nicholas

    2002-01-01

    We have investigated the pharmacological properties and targets of p2y purinoceptors in Xenopus embryo spinal neurons. ATP reversibly inhibited the voltage-gated K+ currents by 10 ± 3 %. UTP and the analogues α,β-methylene-ATP and 2-methylthio-ATP also inhibited K+ currents. This agonist profile is similar to that reported for a p2y receptor cloned from Xenopus embryos. Voltage-gated K+ currents could be inhibited by ADP (9 ± 0.8 %) suggesting that a further p2y1-like receptor is also present in the embryo spinal cord. Unexpectedly we found that α,β-methylene-ADP, often used to block the ecto-5′-nucleotidase, also inhibited voltage-gated K+ currents (7 ± 2.3 %). This inhibition was occluded by ADP, suggesting that α,β-methylene-ADP is an agonist at p2y1 receptors. We have directly studied the properties of the ecto-5′-nucleotidase in Xenopus embryo spinal cord. Although ADP inhibited this enzyme, α,β-methylene-ADP had no action. Caution therefore needs to be used when interpreting the actions of α,β-methylene-ADP as it has previously unreported agonist activity at P2 receptors. Xenopus spinal neurons possess fast and slow voltage-gated K+ currents. By using catechol to selectively block the fast current, we completely occluded the actions of ATP and ADP. Furthermore, the purines appeared to block only the fast relaxation component of the tail currents. We therefore conclude that the p2y receptors target only the fast component of the delayed rectifier. As ATP breakdown to ADP is rapid and ADP may accumulate at higher levels than ATP, the contribution of ADP acting through p2y1-like receptors may be an important additional mechanism for the control of spinal motor pattern generation. PMID:11986373

  19. Structural and Molecular Modeling Features of P2X Receptors

    PubMed Central

    Alves, Luiz Anastacio; da Silva, João Herminio Martins; Ferreira, Dinarte Neto Moreira; Fidalgo-Neto, Antonio Augusto; Teixeira, Pedro Celso Nogueira; de Souza, Cristina Alves Magalhães; Caffarena, Ernesto Raúl; de Freitas, Mônica Santos

    2014-01-01

    Currently, adenosine 5′-triphosphate (ATP) is recognized as the extracellular messenger that acts through P2 receptors. P2 receptors are divided into two subtypes: P2Y metabotropic receptors and P2X ionotropic receptors, both of which are found in virtually all mammalian cell types studied. Due to the difficulty in studying membrane protein structures by X-ray crystallography or NMR techniques, there is little information about these structures available in the literature. Two structures of the P2X4 receptor in truncated form have been solved by crystallography. Molecular modeling has proven to be an excellent tool for studying ionotropic receptors. Recently, modeling studies carried out on P2X receptors have advanced our knowledge of the P2X receptor structure-function relationships. This review presents a brief history of ion channel structural studies and shows how modeling approaches can be used to address relevant questions about P2X receptors. PMID:24637936

  20. Decavanadate, a P2X receptor antagonist, and its use to study ligand interactions with P2X7 receptors.

    PubMed

    Michel, Anton D; Xing, Mengle; Thompson, Kyla M; Jones, Clare A; Humphrey, Patrick P A

    2006-03-18

    In this study we have studied decavanadate effects at P2X receptors. Decavanadate competitively blocked 2'- and 3'-O-(4benzoylbenzoyl) ATP (BzATP) stimulated ethidium accumulation in HEK293 cells expressing human recombinant P2X7 receptors (pK(B) 7.5). The effects of decavanadate were rapid (minutes) in both onset and offset and contrasted with the much slower kinetics of pyridoxal 5-phosphate (P5P), Coomassie brilliant blue (CBB) and 1-[N,O-bis(5-isoquinolinesulfonyl)-N-methyl-L-tyrosyl]-4-phenylpiperazine (KN62). Decavanadate competitively blocked the slowly reversible, or irreversible, blockade of the P2X7 receptor produced by P5P and oxidised ATP suggesting competition for a common binding site. However, the interaction between decavanadate and KN62 was non-competitive. Decavanadate also blocked P2X2 and P2X4 receptors but with slightly lower potency. These data demonstrate that decavanadate is the first reversible and competitive antagonist of the P2X7 receptor and is a useful tool for studying the mechanism of interaction of ligands with the P2X7 receptor.

  1. Decreased VIP and VPAC2 receptor expression in the biological clock of the R6/2 Huntington's disease mouse.

    PubMed

    Fahrenkrug, Jan; Popovic, Natalija; Georg, Birgitte; Brundin, Patrik; Hannibal, Jens

    2007-01-01

    Huntington's disease (HD) is a fatal genetic neurodegenerative disorder caused by a CAG triplet repeat expansion in the gene encoding the protein huntingtin. The most studied model of HD, the R6/2 transgenic mouse, replicates many features of the disease. In addition to motor, cognitive, and endocrine dysfunctions, these mice exhibit a progressive disruption of circadian rhythms. This is accompanied by an altered expression of the circadian clock genes in the suprachiasmatic nucleus/nuclei (SCN), the principal circadian pacemaker in the brain. The neuropeptide vasoactive intestinal polypeptide (VIP) and its receptor VPAC2 are highly expressed in the SCN, and VIPergic signaling plays an essential role in maintenance of ongoing circadian rhythmicity. We found a marked reduction in both VIP mRNA and VPAC2 receptor mRNA, quantified by RT-PCR, as well as a decrease in VIP immunostaining in the SCN of R6/2 mice. These changes were coupled to a disruption of circadian rhythm. We observed no loss of neurons in the SCN and therefore suggest that the changes in VIP and VPAC2 receptor are due to their decreased expression. In conclusion, we propose that impaired VIPergic signaling is an additional candidate mechanism for disruption of circadian rhythms in R6/2 mice.

  2. P2X7 receptor and klotho expressions in diabetic nephropathy progression.

    PubMed

    Rodrigues, A M; Serralha, R S; Farias, C; Punaro, G R; Fernandes, M J S; Higa, Elisa Mieko Suemitsu

    2018-06-01

    Diabetes mellitus is characterized by increased levels of reactive oxygen species (ROS), leading to high levels of adenosine triphosphate (ATP) and the activation of purinergic receptors (P2X 7 ), which results in cell death. Klotho was recently described as a modulator of oxidative stress and as having anti-apoptotic properties, among others. However, the roles of P2X 7 and klotho in the progression of diabetic nephropathy are still unclear. In this context, the aim of the present study was to characterize P2X 7 and klotho in several stages of diabetes in rats. Diabetes was induced in Wistar rats by streptozotocin, while the control group rats received the drug vehicle. From the 1st to 8th weeks after the diabetes induction, the animals were placed in metabolic cages on the 1st day of each week for 24 h to analyze metabolic parameters and for the urine collection. Then, blood samples and the kidneys were collected for biochemical analysis, including Western blotting and qPCR for P2X 7 and klotho. Diabetic rats presented a progressive loss of renal function, with reduced nitric oxide and increased lipid peroxidation. The P2X 7 and klotho expressions were similar up to the 4th week; then, P2X 7 expression increased in diabetes mellitus (DM), but klotho expression presented an opposite behavior, until the 8th week. Our data show an inverse correlation between P2X 7 and klotho expressions through the development of DM, which suggests that the management of these molecules could be useful for controlling the progression of this disease and diabetic nephropathy.

  3. Synthesis and preliminary evaluation of [3H]PSB-0413, a selective antagonist radioligand for platelet P2Y12 receptors.

    PubMed

    El-Tayeb, Ali; Griessmeier, Kerstin J; Müller, Christa E

    2005-12-15

    The selective antagonist radioligand [(3)H]2-propylthioadenosine-5'-adenylic acid (1,1-dichloro-1-phosphonomethyl-1-phosphonyl) anhydride ([(3)H]PSB-0413) was prepared by catalytic hydrogenation of its propargyl precursor with a high specific radioactivity of 74Ci/mmol. In preliminary saturation binding studies, [(3)H]PSB-0413 showed high affinity for platelet P2Y(12) receptors with a K(D) value of 4.57nM. Human platelets had a high density of P2Y(12) receptors exhibiting a B(max) value of 7.66pmol/mg of protein.

  4. Bromocriptine modulates the expression of PTHrP receptor, Indian hedgehog, and Runx2 proteins in the growth plate of lactating rats.

    PubMed

    Wongdee, Kannikar; Thonapan, Natchayaporn; Saengamnart, Wasana; Krishnamra, Nateetip; Charoenphandhu, Narattaphol

    2013-09-01

    In lactating rats, the endochondral bone growth is markedly enhanced, leading to the lengthening of long bone. This lactation-induced bone elongation could be abolished by a dopaminergic D2 receptor agonist bromocriptine, but how bromocriptine altered the expression of major chondroregulatory proteins in the growth plate cartilage was elusive. Here, we performed a quantitative immunohistochemical analysis to determine the expression of various peptides and transcription factors known to control the growth plate chondrocyte proliferation and differentiation [i.e., parathyroid hormone-related protein (PTHrP), PTHrP receptor, Indian hedgehog (Ihh), and runt-related transcription factor 2 (Runx2)], in bromocriptine-treated lactating rats. The results showed that bromocriptine markedly increased Ihh expression in hypertrophic chondrocytes during early and mid-lactation, while the expression of PTHrP receptor, but not its ligand PTHrP, was upregulated in the proliferative and hypertrophic zones during mid and late lactation. In contrast, the expression of Runx2, an important transcription factor for chondrocyte differentiation, was suppressed in the hypertrophic chondrocytes of bromocriptine-treated rats. In conclusion, bromocriptine increased Ihh and PTHrP receptor expressions and decreased Runx2 expression, which might, in turn, enhance chondrocyte proliferation and delay chondrocyte hypertrophy, thereby slowing down endochondral bone growth. This finding could explain how bromocriptine compromised the lactation-induced bone elongation.

  5. Cytochrome P450 2D6 enzyme neuroprotects against 1-methyl-4-phenylpyridinium toxicity in SH-SY5Y neuronal cells

    PubMed Central

    Mann, Amandeep; Tyndale, Rachel F.

    2016-01-01

    Cytochrome P450 (CYP) 2D6 is an enzyme that is expressed in liver and brain. It can inactivate neurotoxins such as 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, 1,2,3,4-tetrahydroisoquinoline and β-carbolines. Genetically slow CYP2D6 metabolizers are at higher risk for developing Parkinson’s disease, a risk that increases with exposure to pesticides. The goal of this study was to investigate the neuroprotective role of CYP2D6 in an in-vitro neurotoxicity model. SH-SY5Y human neuroblastoma cells express CYP2D6 as determined by western blotting, immunocytochemistry and enzymatic activity. CYP2D6 metabolized 3-[2-(N,N-diethyl-N-methylammonium)ethyl]-7-methoxy-4-methylcoumarin and the CYP2D6-specific inhibitor quinidine (1 μM) blocked 96 ± 1% of this metabolism, indicating that CYP2D6 is functional in this cell line. Treatment of cells with CYP2D6 inhibitors (quinidine, propanolol, metoprolol or timolol) at varying concentrations significantly increased the neurotoxicity caused by 1-methyl-4-phenylpyridinium (MPP+) at 10 and 25 μM by between 9 ± 1 and 22 ± 5% (P < 0.01). We found that CYP3A is also expressed in SH-SY5Y cells and inhibiting CYP3A with ketoconazole significantly increased the cell death caused by 10 and 25 μM of MPP+ by between 8 ± 1 and 30 ± 3% (P < 0.001). Inhibiting both CYP2D6 and CYP3A showed an additive effect on MPP+ neurotoxicity. These data further support a possible role for CYP2D6 in neuroprotection from Parkinson’s disease-causing neurotoxins, especially in the human brain where expression of CYP2D6 is high in some regions (e.g. substantia nigra). PMID:20345925

  6. Pharmacological characterization of recombinant human and rat P2X receptor subtypes.

    PubMed

    Bianchi, B R; Lynch, K J; Touma, E; Niforatos, W; Burgard, E C; Alexander, K M; Park, H S; Yu, H; Metzger, R; Kowaluk, E; Jarvis, M F; van Biesen, T

    1999-07-02

    ATP functions as a fast neurotransmitter through the specific activation of a family of ligand-gated ion channels termed P2X receptors. In this report, six distinct recombinant P2X receptor subtypes were pharmacologically characterized in a heterologous expression system devoid of endogenous P2 receptor activity. cDNAs encoding four human P2X receptor subtypes (hP2X1, hP2X3, hP2X4, and hP2X7), and two rat P2X receptor subtypes (rP2X2 and rP2X3), were stably expressed in 1321N1 human astrocytoma cells. Furthermore, the rP2X2 and rP2X3 receptor subtypes were co-expressed in these same cells to form heteromultimeric receptors. Pharmacological profiles were determined for each receptor subtype, based on the activity of putative P2 ligands to stimulate Ca2+ influx. The observed potency and kinetics of each response was receptor subtype-specific and correlated with their respective electrophysiological properties. Each receptor subtype exhibited a distinct pharmacological profile, based on its respective sensitivity to nucleotide analogs, diadenosine polyphosphates and putative P2 receptor antagonists. Alphabeta-methylene ATP (alphabeta-meATP), a putative P2X receptor-selective agonist, was found to exhibit potent agonist activity only at the hP2X1, hP2X3 and rP2X3 receptor subtypes. Benzoylbenzoic ATP (BzATP, 2' and 3' mixed isomers), which has been reported to act as a P2X7 receptor-selective agonist, was least active at the rat and human P2X7 receptors, but was a potent (nM) agonist at hP2X1, rP2X3 and hP2X3 receptors. These data comprise a systematic examination of the functional pharmacology of P2X receptor activation.

  7. Electrophysiological characterization of recombinant and native P2X receptors.

    PubMed

    Niforatos, Wende; Jarvis, Michael F

    2004-10-01

    ATP acts as a fast neurotransmitter by activating a family of ligand-gated ion channels, the P2X receptors. Functional homomeric P2X(3) and heteromeric P2X(2/3) receptors are highly localized on primary sensory afferent neurons that transmit nociceptive sensory information. Activation of these P2X(3)-containing channels may provide a specific mechanism whereby ATP, released via synaptic transmission or by cellular injury, elicits pain. The experimental procedures described in this unit are useful for the electorphysiological characterization of P2X receptors. In addition, these protocols provide methods for the evaluation of ligands that interact with P2X receptors that are either natively expressed on excitable cells or cloned and expressed in heterologous cell systems. These methods are derived from standard electrophysiological principles and procedures that are applicable to a wide variety of ligand-gated ion channels. Specific attention is given here to the reliable electrophysiological measurement of both quickly (P2X(3)) and more slowly (P2X(2) and P2X(2/3)) desensitizing receptors.

  8. P2X receptor ligands and pain.

    PubMed

    Shieh, Char-Chang; Jarvis, Michael F; Lee, Chih-Hung; Perner, Richard J

    2006-08-01

    P2X receptors belong to a superfamily of ligand-gated ion channels that conduct the influx of Ca(2+), Na(+) and K(+) cations following activation by extracellular nucleotides such as ATP. Molecular cloning studies have identified seven subunits, namely P2X(1-7), that share approximately 40 - 50% identity in amino acid sequences within the subfamily. Using gene-silencing, pharmacological and electrophysiological approaches, recent studies have revealed roles for P2X(2), P2X(3), P2X(4) and P2X(7) receptors in nociceptive signalling. Homomeric P2X(3) and heteromeric P2X(2/3) receptors are highly localised in the peripheral sensory afferent neurons that conduct nociceptive sensory information to the spinal chord and brain. The discovery of A-317491, a selective and potent non-nucleotide P2X(3) antagonist, provided a pharmacological tool to determine the site and mode of action of P2X(3)-containing receptors in different pain behaviours, including neuropathic, inflammatory and visceral pain. Other P2X receptors (P2X(4) and P2X(7)) that are predominantly expressed in microglia, macrophages and cells of immune origin can trigger the release of cytokines, such as IL-1-beta and TNF-alpha. Genetic disruption of P2X(4) and P2X(7) signalling has been demonstrated to reduce inflammatory and neuropathic pain, suggesting that these two receptors might serve as integrators of neuroinflammation and pain. This article provides an overview of recent scientific literature and patents focusing on P2X(3), P2X(4) and P2X(7) receptors, and the identification of small molecule ligands for the potential treatment of neuropathic and inflammatory pain.

  9. Peroxisome proliferator-activated receptor-β/δ inhibits human neuroblastoma cell tumorigenesis by inducing p53- and SOX2-mediated cell differentiation.

    PubMed

    Yao, Pei-Li; Chen, Liping; Dobrzański, Tomasz P; Zhu, Bokai; Kang, Boo-Hyon; Müller, Rolf; Gonzalez, Frank J; Peters, Jeffrey M

    2017-05-01

    Neuroblastoma is a common childhood cancer typically treated by inducing differentiation with retinoic acid (RA). Peroxisome proliferator-activated receptor-β/δ, (PPARβ/δ) is known to promote terminal differentiation of many cell types. In the present study, PPARβ/δ was over-expressed in three human neuroblastoma cell lines, NGP, SK-N-BE(2), and IMR-32, that exhibit high, medium, and low sensitivity, respectively, to retinoic acid-induced differentiation to determine if PPARβ/δ and retinoic acid receptors (RARs) could be jointly targeted to increase the efficacy of treatment. All-trans-RA (atRA) decreased expression of SRY (sex determining region Y)-box 2 (SOX2), a stem cell regulator and marker of de-differentiation, in NGP and SK-N-BE(2) cells with inactive or mutant tumor suppressor p53, respectively. However, atRA did not suppress SOX2 expression in IMR-32 cells carrying wild-type p53. Over-expression and/or ligand activation of PPARβ/δ reduced the average volume and weight of ectopic tumor xenografts from NGP, SK-N-BE(2), or IMR-32 cells compared to controls. Compared with that found with atRA, PPARβ/δ suppressed SOX2 expression in NGP and SK-N-BE(2) cells and ectopic xenografts, and was also effective in suppressing SOX2 expression in IMR-32 cells that exhibit higher p53 expression compared to the former cell lines. Combined, these observations demonstrate that activating or over-expressing PPARβ/δ induces cell differentiation through p53- and SOX2-dependent signaling pathways in neuroblastoma cells and tumors. This suggests that combinatorial activation of both RARα and PPARβ/δ may be suitable as an alternative therapeutic approach for RA-resistant neuroblastoma patients. Published [2016]. This article is a U.S. Government work and is in the public domain in the USA.

  10. P2Y(2)R activation by nucleotides released from oxLDL-treated endothelial cells (ECs) mediates the interaction between ECs and immune cells through RAGE expression and reactive oxygen species production.

    PubMed

    Eun, So Young; Park, Sang Won; Lee, Jae Heun; Chang, Ki Churl; Kim, Hye Jung

    2014-04-01

    Lipoprotein oxidation, inflammation, and immune responses involving the vascular endothelium and immune cells contribute to the pathogenesis of atherosclerosis. In an atherosclerotic animal model, P2Y2 receptor (P2Y2R) upregulation and stimulation were previously shown to induce intimal hyperplasia and increased intimal monocyte infiltration. Thus, we investigated the role of P2Y2R in oxidized low-density lipoprotein (oxLDL)-mediated oxidative stress and the subsequent interaction between endothelial cells (ECs) and immune cells. The treatment of human ECs with oxLDL caused the rapid release of ATP (maximum after 5 min). ECs treated with oxLDL or the P2Y2R agonists ATP/UTP for 1h exhibited significant reactive oxygen species (ROS) production, but this effect was not observed in P2Y2R siRNA-transfected ECs. In addition, oxLDL and ATP/UTP both induced RAGE expression, which was P2Y2R dependent. Oxidized LDL- and ATP/UTP-mediated ROS production was diminished in RAGE siRNA-transfected ECs, suggesting that RAGE is an important mediator in P2Y2R-mediated ROS production. Treatment with oxLDL for 24h induced P2Y2R expression in the human monocyte cell line THP-1 and increased THP-1 cell migration toward ECs. The addition of apyrase, an enzyme that hydrolyzes nucleotides, or diphenyleneiodonium (DPI), a well-known inhibitor of NADPH oxidase, significantly inhibited the increase in cell migration caused by oxLDL. P2Y2R siRNA-transfected THP-1 cells did not migrate in response to oxLDL or ATP/UTP treatment, indicating a critical role for P2Y2R and nucleotide release in oxLDL-induced monocyte migration. Last, oxLDL and ATP/UTP effectively increased ICAM-1 and VCAM-1 expression and the subsequent binding of THP-1 cells to ECs, which was inhibited by pretreatment with DPI or by siRNA against P2Y2R or RAGE, suggesting that P2Y2R is an important mediator in oxLDL-mediated monocyte adhesion to ECs through the regulation of ROS-dependent adhesion molecule expression in ECs. Taken

  11. Short-Term Hyperprolactinemia Reduces the Expression of Purinergic P2X7 Receptors during Allergic Inflammatory Response of the Lungs.

    PubMed

    Ochoa-Amaya, Julieta E; Queiroz-Hazarbassanov, Nicolle; Namazu, Lilian B; Calefi, Atilio S; Tobaruela, Carla N; Margatho, Rafael; Palermo-Neto, João; Ligeiro de Oliveira, Ana P; Felicio, Luciano F

    2018-06-06

    We have previously shown that domperidone-induced short-term hyperprolactinemia reduces the lung's allergic inflammatory response in an ovalbumin antigenic challenge model. Since purinergic receptor P2X7R activity leads to proinflammatory cytokine release and is possibly related to the pathogenesis of allergic respiratory conditions, the present study was designed to investigate a possible involvement of purinergic and prolactin receptors in this phenomenon. To induce hyperprolactinemia, domperidone was injected intraperitoneally in rats at a dose of 5.1 mg × kg-1 per day for 5 days. P2X7 expression was evaluated by lung immunohistochemistry while prolactin receptor expression in bronchoalveolar lavage leukocytes was analyzed through flow cytometry. Previous reports demonstrated that rats subjected to short-term hyperprolactinemia exhibited a decrease in leukocyte counts in bronchoalveolar lavage, especially granulocytes. Here, it is revealed that hyperprolactinemia promotes an increased expression of prolactin receptors in granulocytes. Also, increased expression of purinergic P2X7R observed in allergic animals was significantly reduced by hyperprolactinemia. Both purinergic and prolactin receptor expression changes occur during the anti-asthmatic effect of hyperprolactinemia. © 2018 S. Karger AG, Basel.

  12. SAR216471, an alternative to the use of currently available P2Y₁₂ receptor inhibitors?

    PubMed

    Delesque-Touchard, N; Pflieger, A M; Bonnet-Lignon, S; Millet, L; Salel, V; Boldron, C; Lassalle, G; Herbert, J M; Savi, P; Bono, F

    2014-09-01

    P2Y12 antagonism is a key therapeutic strategy in the management and prevention of arterial thrombosis. The objective of this study was to characterize the pharmacodynamic (PD) and pharmacokinetic (PK) properties of SAR216471, a novel P2Y12 receptor antagonist. SAR216471 blocks the binding of 2MeSADP to P2Y12 receptors in vitro (IC50=17 nM). This inhibition was shown to be reversible. It potently antagonized ADP-induced platelet aggregation in human and rat platelet-rich plasma (IC50=108 and 62 nM, respectively). It also inhibited platelet aggregation when blood was exposed to collagen or thromboxane A2. Its high selectivity was demonstrated against a large panel of receptors, enzymes, and ion channels. Despite its moderate bioavailability in rats, oral administration of SAR216471 resulted in a fast, potent, and sustained inhibition of platelet aggregation where the extent and duration of platelet inhibition were directly proportional to its circulating plasma levels. Pre-clinical study of SAR216471 in a rat shunt thrombosis model demonstrated a dose-dependent antithrombotic activity after oral administration (ED50=6.7 mg/kg). By comparison, ED50 values for clopidogrel, prasugrel and ticagrelor were 6.3, 0.35 and 2.6 mg/kg, respectively. Finally, the anti-hemostatic effect of SAR216471 and its competitors was investigated in a rat tail bleeding model, revealing a favorable safety profile of SAR216471. Together, these findings have established a reliable antiplatelet profile of SAR216471, and support its potential use in clinical practice as an alternative to currently available P2Y12 receptor antagonists. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Selectivity and activity of adenine dinucleotides at recombinant P2X2 and P2Y1 purinoceptors.

    PubMed Central

    Pintor, J.; King, B. F.; Miras-Portugal, M. T.; Burnstock, G.

    1996-01-01

    1. Adenine dinucleotides (Ap3A, x = 2-6) are naturally-occurring polyphosphated nucleotidic substances which are found in the CNS and are known to be released in a calcium-dependent manner from storage vesicles in brain synaptosomes. The selectivity and activity of adenine dinucleotides for neuronally-derived recombinant P2 purinoceptors were studied using P2X2 and P2Y1 subtypes expressed in Xenopus oocytes. 2. For the P2Y1 subtype derived from chick brain, Ap3A was equipotent and as active as ATP (EC50 values: 375 +/- 86 nM and 334 +/- 25 nM, respectively). Ap4A was a weak partial agonist and other dinucleotides were inactive as agonists. None of the inactive dinucleotides were antagonists nor modulated the activity of Ap3A and ATP. 3. For the P2X2 subtype derived from rat PC12 cells, Ap4A was as active as ATP but less potent (EC50 values: 15.2 +/- 1 microM and 3.7 +/- 0.7 microM, respectively). Other adenosine dinucleotides were inactive as either agonists or antagonists. 4. Ap5A (1-100 nM) potentiated ATP-responses at the P2X2 subtype, showing an EC50 of 2.95 +/- 0.7 nM for this modulatory effect. Ap5A (10 nM) shifted the concentration-response curves for ATP to the left by one-half log10 unit but did not alter the Hill co-efficient for ATP (nH = 2.1 +/- 0.1). Ap5A (10 nM) failed to potentiate Ap4A-responses but did enhance the efficacy of the P2 purinoceptor antagonist, suramin, by 12 fold at the P2X2 subtype. 5. In conclusion, the results show that ionotropic (P2X2) and metabotropic (P2Y1) ATP receptors which occur in the CNS are activated selectively by naturally-occurring adenine dinucleotides which are known to be released with nucleotides from storage vesicles. The observed potentiation of P2X2-responses by Ap5A, where co-released with ATP by brain synaptosomes, may have a functional bearing in purinergic signalling in the CNS. PMID:8922753

  14. Purinergic receptors P2RX4 and P2RX7 in familial multiple sclerosis

    PubMed Central

    Sadovnick, A Dessa; Gu, Ben J; Traboulsee, Anthony L; Bernales, Cecily Q; Encarnacion, Mary; Yee, Irene M; Criscuoli, Maria G; Huang, Xin; Ou, Amber; Milligan, Carol J; Petrou, Steven; Wiley, James S; Vilariño-Güell, Carles

    2017-01-01

    Genetic variants in the purinergic receptors P2RX4 and P2RX7 have been shown to affect susceptibility to multiple sclerosis (MS). In this study we set out to evaluate whether rare coding variants of major effect could also be identified in these purinergic receptors. Sequencing analysis of P2RX4 and P2RX7 in 193 MS patients and 100 controls led to the identification of a rare three variant haplotype (P2RX7 rs140915863:C>T (p.T205M), P2RX7 rs201921967:A>G (p.N361S) and P2RX4 rs765866317:G>A (p.G135S)) segregating with disease in a multi-incident family with six family members diagnosed with MS (LOD=3.07). Functional analysis of this haplotype in HEK293 cells revealed impaired P2X7 surface expression (p<0.01), resulting in over 95% inhibition of ATP-induced pore function (p<0.001) and a marked reduction in phagocytic ability (p<0.05). In addition, transfected cells showed 40% increased peak ATP-induced inward current (p<0.01), and a greater Ca2+ response to the P2X4 135S variant compared to wild type (p<0.0001). Our study nominates rare genetic variants in P2RX4 and P2RX7 as major genetic contributors to disease, further supporting a role for these purinergic receptors in MS and suggesting the disruption of transmembrane cation channels leading to impairment of phagocytosis as the pathological mechanisms of disease. PMID:28326637

  15. P2X7 ionotropic receptor is functionally expressed in rabbit articular chondrocytes and mediates extracellular ATP cytotoxicity.

    PubMed

    Tanigawa, Hitoshi; Toyoda, Futoshi; Kumagai, Kosuke; Okumura, Noriaki; Maeda, Tsutomu; Matsuura, Hiroshi; Imai, Shinji

    2018-05-29

    Extracellular ATP regulates various cellular functions by engaging multiple subtypes of P2 purinergic receptors. In many cell types, the ionotropic P2X7 receptor mediates pathological events such as inflammation and cell death. However, the importance of this receptor in chondrocytes remains largely unexplored. Here, we report the functional identification of P2X7 receptor in articular chondrocytes and investigate the involvement of P2X7 receptors in ATP-induced cytotoxicity. Chondrocytes were isolated from rabbit articular cartilage, and P2X7 receptor currents were examined using the whole-cell patch-clamp technique. ATP-induced cytotoxicity was evaluated by measuring caspase-3/7 activity, lactate dehydrogenase (LDH) leakage, and prostagrandin E 2 (PGE 2 ) release using microscopic and fluorimetric/colorimetric evaluation. Extracellular ATP readily evoked a cationic current without obvious desensitization. This ATP-activated current was dose related, but required millimolar concentrations. A more potent P2X7 receptor agonist, BzATP, also activated this current but at 100-fold lower concentrations. ATP-induced currents were largely abolished by selective P2X7 antagonists, suggesting a predominant role for the P2X7 receptor. RT-PCR confirmed the presence of P2X7 in chondrocytes. Heterologous expression of a rabbit P2X7 clone successfully reproduced the ATP-induced current. Exposure of chondrocytes to ATP increased caspase-3/7 activities, an effect that was totally abrogated by P2X7 receptor antagonists. Extracellular ATP also enhanced LDH release, which was partially attenuated by the P2X7 inhibitor. The P2X7 receptor-mediated elevation in apoptotic caspase signaling was accompanied by increased PGE 2 release and was attenuated by inhibition of either phospholipase A 2 or cyclooxygenase-2. This study provides direct evidence for the presence of functional P2X7 receptors in articular chondrocytes. Our results suggest that the P2X7 receptor is a potential therapeutic

  16. ATP activates P2x receptors and requires extracellular Ca(++) participation to modify outer hair cell nonlinear capacitance.

    PubMed

    Yu, Ning; Zhao, Hong-Bo

    2008-11-01

    Intracochlear ATP is an important mediator in regulating hearing function. ATP can activate ionotropic purinergic (P2x) and metabotropic purinergic (P2y) receptors to influence cell functions. In this paper, we report that ATP can activate P2x receptors directly to modify outer hair cell (OHC) electromotility, which is an active cochlear amplifier determining hearing sensitivity and frequency selectivity in mammals. We found that ATP, but not UTP, a P2y receptor agonist, reduced the OHC electromotility-associated nonlinear capacitance (NLC) and shifted its voltage dependence to the right (depolarizing) direction. Blockage of the activation of P2x receptors by pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid (PPADS), suramin, and 4,4'-diisothiocyanato-stilbene-2,2'-disulfonic acid (DIDS) could block the ATP effect. This modification also required extracellular Ca(++) participation. Removal of extracellular Ca(++) abolished the ATP effect. However, chelation of intracellular Ca(++) concentration by a fast calcium-chelating reagent 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA, 10 mM) did not affect the effect of ATP on NLC. The effect is also independent of K(+) ions. Substitution of Cs(+) for intracellular or extracellular K(+) did not affect the ATP effect. Our findings indicate that ATP activates P2x receptors instead of P2y receptors to modify OHC electromotility. Extracellular Ca(++) is required for this modification.

  17. P2X Receptors as Drug Targets

    PubMed Central

    Jarvis, Michael F.

    2013-01-01

    The study of P2X receptors has long been handicapped by a poverty of small-molecule tools that serve as selective agonists and antagonists. There has been progress, particularly in the past 10 years, as cell-based high-throughput screening methods were applied, together with large chemical libraries. This has delivered some drug-like molecules in several chemical classes that selectively target P2X1, P2X3, or P2X7 receptors. Some of these are, or have been, in clinical trials for rheumatoid arthritis, pain, and cough. Current preclinical research programs are studying P2X receptor involvement in pain, inflammation, osteoporosis, multiple sclerosis, spinal cord injury, and bladder dysfunction. The determination of the atomic structure of P2X receptors in closed and open (ATP-bound) states by X-ray crystallography is now allowing new approaches by molecular modeling. This is supported by a large body of previous work using mutagenesis and functional expression, and is now being supplemented by molecular dynamic simulations and in silico ligand docking. These approaches should lead to P2X receptors soon taking their place alongside other ion channel proteins as therapeutically important drug targets. PMID:23253448

  18. Transmission to interneurons is via slow excitatory synaptic potentials mediated by P2Y(1) receptors during descending inhibition in guinea-pig ileum.

    PubMed

    Thornton, Peter D J; Gwynne, Rachel M; McMillan, Darren J; Bornstein, Joel C

    2013-01-01

    The nature of synaptic transmission at functionally distinct synapses in intestinal reflex pathways has not been fully identified. In this study, we investigated whether transmission between interneurons in the descending inhibitory pathway is mediated by a purine acting at P2Y receptors to produce slow excitatory synaptic potentials (EPSPs). Myenteric neurons from guinea-pig ileum in vitro were impaled with intracellular microelectrodes. Responses to distension 15 mm oral to the recording site, in a separately perfused stimulation chamber and to electrical stimulation of local nerve trunks were recorded. A subset of neurons, previously identified as nitric oxide synthase immunoreactive descending interneurons, responded to both stimuli with slow EPSPs that were reversibly abolished by a high concentration of PPADS (30 μM, P2 receptor antagonist). When added to the central chamber of a three chambered organ bath, PPADS concentration-dependently depressed transmission through that chamber of descending inhibitory reflexes, measured as inhibitory junction potentials in the circular muscle of the anal chamber. Reflexes evoked by distension in the central chamber were unaffected. A similar depression of transmission was seen when the specific P2Y(1) receptor antagonist MRS 2179 (10 μM) was in the central chamber. Blocking either nicotinic receptors (hexamethonium 200 μM) or 5-HT(3) receptors (granisetron 1 μM) together with P2 receptors had no greater effect than blocking P2 receptors alone. Slow EPSPs mediated by P2Y(1) receptors, play a primary role in transmission between descending interneurons of the inhibitory reflexes in the guinea-pig ileum. This is the first demonstration for a primary role of excitatory metabotropic receptors in physiological transmission at a functionally identified synapse.

  19. Identification of Human P2X1 Receptor-interacting Proteins Reveals a Role of the Cytoskeleton in Receptor Regulation*

    PubMed Central

    Lalo, Ulyana; Roberts, Jonathan A.; Evans, Richard J.

    2011-01-01

    P2X1 receptors are ATP-gated ion channels expressed by smooth muscle and blood cells. Carboxyl-terminally His-FLAG-tagged human P2X1 receptors were stably expressed in HEK293 cells and co-purified with cytoskeletal proteins including actin. Disruption of the actin cytoskeleton with cytochalasin D inhibited P2X1 receptor currents with no effect on the time course of the response or surface expression of the receptor. Stabilization of the cytoskeleton with jasplakinolide had no effect on P2X1 receptor currents but decreased receptor mobility. P2X2 receptor currents were unaffected by cytochalasin, and P2X1/2 receptor chimeras were used to identify the molecular basis of actin sensitivity. These studies showed that the intracellular amino terminus accounts for the inhibitory effects of cytoskeletal disruption similar to that shown for lipid raft/cholesterol sensitivity. Stabilization of the cytoskeleton with jasplakinolide abolished the inhibitory effects of cholesterol depletion on P2X1 receptor currents, suggesting that lipid rafts may regulate the receptor through stabilization of the cytoskeleton. These studies show that the cytoskeleton plays an important role in P2X1 receptor regulation. PMID:21757694

  20. Submucosal neurons and enteric glial cells expressing the P2X7 receptor in rat experimental colitis.

    PubMed

    da Silva, Marcos Vinícius; Marosti, Aline Rosa; Mendes, Cristina Eusébio; Palombit, Kelly; Castelucci, Patricia

    2017-06-01

    The aim of this study was to evaluate the effect of ulcerative colitis on the submucosal neurons and glial cells of the submucosal ganglia of rats. 2,4,6-Trinitrobenzene sulfonic acid (TNBS; colitis group) was administered in the colon to induce ulcerative colitis, and distal colons were collected after 24h. The colitis rats were compared with those in the sham and control groups. Double labelling of the P2X7 receptor with calbindin (marker for intrinsic primary afferent neurons, IPANs, submucosal plexus), calretinin (marker for secretory and vasodilator neurons of the submucosal plexus), HuC/D and S100β was performed in the submucosal plexus. The density (neurons per area) of submucosal neurons positive for the P2X7 receptor, calbindin, calretinin and HuC/D decreased by 21%, 34%, 8.2% and 28%, respectively, in the treated group. In addition, the density of enteric glial cells in the submucosal plexus decreased by 33%. The profile areas of calbindin-immunoreactive neurons decreased by 25%. Histological analysis revealed increased lamina propria and decreased collagen in the colitis group. This study demonstrated that ulcerative colitis affected secretory and vasodilatory neurons, IPANs and enteric glia of the submucosal plexus expressing the P2X7 receptor. Copyright © 2017 Elsevier GmbH. All rights reserved.

  1. Cloning, phylogeny, and regional expression of a Y5 receptor mRNA in the brain of the sea lamprey (Petromyzon marinus).

    PubMed

    Pérez-Fernández, Juan; Megías, Manuel; Pombal, Manuel A

    2014-04-01

    The NPY receptors known as Y receptors are classified into three subfamilies, Y1, Y2, and Y5, and are involved in different physiological functions. The Y5 receptor is the only member of the Y5 subfamily, and it is present in all vertebrate groups, except for teleosts. Both molecular and pharmacological studies show that Y5 receptor is highly conserved during vertebrate evolution. Furthermore, this receptor is widely expressed in the mammalian brain, including the hypothalamus, where it is thought to take part in feeding and homeostasis regulation. Lampreys belong to the agnathan lineage, and they are thought to have branched out between the two whole-genome duplications that occurred in vertebrates. Therefore, they are in a key position for studies on the evolution of gene families in vertebrates. Here we report the cloning, phylogeny, and brain expression pattern of the sea lamprey Y5 receptor. In phylogenetic studies, the lamprey Y5 receptor clusters in a basal position, together with Y5 receptors of other vertebrates. The mRNA of this receptor is broadly expressed in the lamprey brain, being especially abundant in hypothalamic areas. Its expression pattern is roughly similar to that reported for other vertebrates and parallels the expression pattern of the Y1 receptor subtype previously described by our group, as it occurs in mammals. Altogether, these results confirm that a Y5 receptor is present in lampreys, thus being highly conserved during the evolution of vertebrates, and suggest that it is involved in many brain functions, the only known exception being teleosts. Copyright © 2013 Wiley Periodicals, Inc.

  2. P2X receptors, sensory neurons and pain.

    PubMed

    Bele, Tanja; Fabbretti, Elsa

    2015-01-01

    Pain represents a very large social and clinical problem since the current treatment provides insufficient pain relief. Plasticity of pain receptors together with sensitisation of sensory neurons, and the role of soluble mediators released from non-neuronal cells render difficult to understand the spatial and temporal scale of pain development, neuronal responses and disease progression. In pathological conditions, ATP is one of the most powerful mediators that activates P2X receptors that behave as sensitive ATP-detectors, such as neuronal P2X3 receptor subtypes and P2X4 and P2X7 receptors expressed on non-neuronal cells. Dissecting the molecular mechanisms occurring in sensory neurons and in accessory cells allows to design appropriate tissue- and cell- targeted approaches to treat chronic pain.

  3. Functional ligand-gated purinergic receptors (P2X) in rat vestibular ganglion neurons.

    PubMed

    Ito, Ken; Chihara, Yasuhiro; Iwasaki, Shinichi; Komuta, Yukari; Sugasawa, Masashi; Sahara, Yoshinori

    2010-08-01

    The expression of purinergic receptors (P2X) on rat vestibular ganglion neurons (VGNs) was examined using whole-cell patch-clamp recordings. An application of adenosine 5'-triphosphate (ATP; 100microM) evoked inward currents in VGNs at a holding potential of -60mV. The decay time constant of the ATP-evoked currents was 2-4s, which is in between the values for rapidly desensitizing subgroups (P2X1 and P2X3) and slowly desensitizing subgroups (P2X2, P2X4, etc.), suggesting the heterogeneous expression of P2X receptors. A dose-response experiment showed an EC(50) of 11.0microM and a Hill's coefficient of 0.82. Suramin (100microM) reversibly inhibited the ATP-evoked inward currents. Alpha, beta-methylene ATP (100microM), a P2X-specific agonist, also evoked inward currents but less extensively than ATP. An application of adenosine 5'-dihosphate (ADP; 100microM) evoked similar, but much smaller, currents. The current-voltage relationship of the ATP-evoked conductance showed pronounced inward rectification with a reversal potential more positive than 0mV, suggesting non-selective cation conductance. However, the channel was not permeable to a large cation (N-methyl-d-glucamine) and acidification (pH 6.3) had little effect on the ATP-evoked conductance. RT-PCR confirmed the expression of five subtypes (P2X2-P2X6) in VGNs. The physiological role of P2X receptors includes the modulation of excitability at the synapses between hair cells and dendrites and/or trophic support (or also neuromodulation) from supporting cells surrounding the VGNs. Copyright 2010 Elsevier B.V. All rights reserved.

  4. Effect of P2X7 Receptor Knockout on AQP-5 Expression of Type I Alveolar Epithelial Cells

    PubMed Central

    Ebeling, Georg; Bläsche, Robert; Hofmann, Falk; Augstein, Antje; Kasper, Michael; Barth, Kathrin

    2014-01-01

    P2X7 receptors, ATP-gated cation channels, are specifically expressed in alveolar epithelial cells. The pathophysiological function of this lung cell type, except a recently reported putative involvement in surfactant secretion, is unknown. In addition, P2X7 receptor-deficient mice show reduced inflammation and lung fibrosis after exposure with bleomycin. To elucidate the role of the P2X7 receptor in alveolar epithelial type I cells we characterized the pulmonary phenotype of P2X7 receptor knockout mice by using immunohistochemistry, western blot analysis and real-time RT PCR. No pathomorphological signs of fibrosis were found. Results revealed, however, a remarkable loss of aquaporin-5 protein and mRNA in young knockout animals. Additional in vitro experiments with bleomycin treated precision cut lung slices showed a greater sensitivity of the P2X7 receptor knockout mice in terms of aquaporin-5 reduction as wild type animals. Finally, P2X7 receptor function was examined by using the alveolar epithelial cell lines E10 and MLE-12 for stimulation experiments with bleomycin. The in vitro activation of P2X7 receptor was connected with an increase of aquaporin-5, whereas the inhibition of the receptor with oxidized ATP resulted in down regulation of aquaporin-5. The early loss of aquaporin-5 which can be found in different pulmonary fibrosis models does not implicate a specific pathogenetic role during fibrogenesis. PMID:24941004

  5. Human gingival fibroblasts express functional chemokine receptor CXCR6.

    PubMed

    Hosokawa, Y; Hosokawa, I; Ozaki, K; Nakae, H; Matsuo, T

    2009-06-01

    We have reported that CXCL16, a recently discovered transmembrane chemokine, is expressed in human gingival fibroblasts (HGF). However, it is not known whether HGF express CXCR6, the receptor for CXCL16, or CXCL16 affects HGF biology. We have shown that HGF expressed CXCR6 by reverse transcription-polymerase chain reaction and flow cytometric analysis. Moreover, we elucidated that tumour necrosis factor (TNF)-alpha and cytosine-guanine dinucleotide (CpG) DNA (Toll-like receptor-9 ligand) treatment enhanced CXCR6 expression by HGF. Interleukin (IL)-4, IL-13 and CpG DNA up-regulated CXCR6 expression by TNF-alpha-stimulated HGF. On the other hand, IL-1beta and interferon-gamma inhibited CXCR6 expression on TNF-alpha-treated HGF. CXCL16 treatment induced HGF proliferation and phosphorylation of extracellular regulated kinase (ERK) and protein kinase B (AKT) in HGF. In conclusion, HGF expressed CXCR6 functionally, because CXCL16 induced HGF proliferation and ERK and AKT phosphorylation in HGF. These results indicate that CXCL16 may play an important role in the pathogenesis and remodelling in periodontally diseased tissues.

  6. Platelet P2Y12 receptors are involved in the haemostatic effect of notoginsenoside Ft1, a saponin isolated from Panax notoginseng

    PubMed Central

    Gao, B; Huang, L; Liu, H; Wu, H; Zhang, E; Yang, L; Wu, X; Wang, Z

    2014-01-01

    BACKGROUND AND PURPOSE Saponins isolated from Panax notoginseng (Burk.) F.H. Chen have been shown to relieve thrombogenesis and facilitate haemostasis. However, it is not known which saponin accounts for this haemostatic effect. Hence, in the present study we aimed to identify which saponins contribute to its haemostatic activity and to elucidate the possible underlying mechanisms. EXPERIMENTAL APPROACH Platelet aggregation was analysed using a platelet aggregometer. Prothrombin time, activated partial thromboplastin time and thrombin time were measured using a blood coagulation analyser, which was further corroborated with bleeding time and thrombotic assays. The interaction of notoginsenoside Ft1 with the platelet P2Y12 receptor was determined by molecular docking analysis, cytosolic Ca2+ and cAMP measurements, and phosphorylation of PI3K and Akt assays. KEY RESULTS Among the saponins examined, Ft1 was the most potent procoagulant and induced dose-dependent platelet aggregation. Ft1 reduced plasma coagulation indexes, decreased tail bleeding time and increased thrombogenesis. Moreover, it potentiated ADP-induced platelet aggregation and increased cytosolic Ca2+ accumulation, effects that were attenuated by clopidogrel. Molecular docking analysis suggested that Ft1 binds to platelet P2Y12 receptors. The increase in intracellular Ca2+ evoked by Ft1 in HEK293 cells overexpressing P2Y12 receptors could be blocked by ticagrelor. Ft1 also affected the production of cAMP and increased phosphorylation of PI3K and Akt downstream of P2Y12 signalling pathways. CONCLUSION AND IMPLICATIONS Ft1 enhanced platelet aggregation by activating a signalling network mediated through P2Y12 receptors. These novel findings may contribute to the effective utilization of this compound in the therapy of haematological disorders. PMID:24117220

  7. P2X7 receptor promotes intestinal inflammation in chemically induced colitis and triggers death of mucosal regulatory T cells.

    PubMed

    Figliuolo, Vanessa R; Savio, Luiz Eduardo Baggio; Safya, Hanaa; Nanini, Hayandra; Bernardazzi, Cláudio; Abalo, Alessandra; de Souza, Heitor S P; Kanellopoulos, Jean; Bobé, Pierre; Coutinho, Cláudia M L M; Coutinho-Silva, Robson

    2017-06-01

    P2X7 receptor activation contributes to inflammation development in different pathologies. We previously reported that the P2X7 receptor is over-expressed in the gut mucosa of patients with inflammatory bowel disease, and that P2X7 inhibition protects against chemically induced colitis. Here, we investigated in detail the role of the P2X7 receptor in inflammatory bowel disease development, by treating P2X7 knockout (KO) and WT mice with two different (and established) colitis inductors. P2X7 KO mice were protected against gut inflammation induced by 2,4,6-trinitrobenzenesulfonic acid or oxazolone, with no weight loss or gut histological alterations after treatment. P2X7 receptor knockout induced regulatory T cell accumulation in the colon, as evaluated by qRT-PCR for FoxP3 expression and immunostaining for CD90/CD45RB low . Flow cytometry analysis of mesenteric lymph node cells showed that P2X7 activation (by ATP) triggered regulatory T cell death. In addition, such cells from P2X7 KO mice expressed more CD103, suggesting increased migration of regulatory T cells to the colon (relative to the WT). Our results show that the P2X7 has a key role during inflammation development in inflammatory bowel disease, by triggering the death and retention in the mesenteric lymph nodes of regulatory T cells that would otherwise promote immune system tolerance in the gut. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Exercise sensitizes skeletal muscle to extracellular ATP for IL-6 expression in mice.

    PubMed

    Fernández-Verdejo, R; Casas, M; Galgani, J E; Jaimovich, E; Buvinic, S

    2014-04-01

    Active skeletal muscle synthesizes and releases interleukin-6 (IL-6), which plays important roles in the organism's adaptation to exercise. Autocrine/paracrine ATP signaling has been shown to modulate IL-6 expression. The aim of this study was to determine whether a period of physical activity modifies the ATP-induced IL-6 expression. BalbC mice were either subject to 5 weeks voluntary wheel running (VA) or kept sedentary (SED). Flexor digitorum brevis muscles were dissected, stimulated with different ATP concentrations (0-100 μM) and IL-6 mRNA levels were measured using qPCR. ATP evoked a concentration-dependent rise in IL-6 mRNA in both SED and VA mice. VA mice however, had significantly higher ATP sensitivity (pD2 pharmacological values: VA=5.58±0.02 vs. SED=4.95±0.04, p<0.05). Interestingly, in VA mice we observed a positive correlation between the level of physical activity and the IL-6 mRNA increase following fiber stimulation with 10 μM ATP. In addition, there were lower P2Y2- and higher P2Y14-receptor mRNA levels in skeletal muscles of VA compared to SED mice, showing plasticity of nucleotide receptors with exercise. These results suggest that exercise increases skeletal muscle ATP sensitivity, a response dependent on the level of physical activity performed. This could have an important role in the mechanisms controlling skeletal muscle adaptation to exercise and training. © Georg Thieme Verlag KG Stuttgart · New York.

  9. The role of P2X3 receptors in bilateral masseter muscle allodynia in rats

    PubMed Central

    Tariba Knežević, Petra; Vukman, Robert; Antonić, Robert; Kovač, Zoran; Uhač, Ivone; Simonić-Kocijan, Sunčana

    2016-01-01

    Aim To determine the relationship between bilateral allodynia induced by masseter muscle inflammation and P2X3 receptor expression changes in trigeminal ganglia (TRG) and the influence of intramasseteric P2X3 antagonist administration on bilateral masseter allodynia. Methods To induce bilateral allodynia, rats received a unilateral injection of complete Freund’s adjuvant (CFA) into the masseter muscle. Bilateral head withdrawal threshold (HWT) was measured 4 days later. Behavioral measurements were followed by bilateral masseter muscle and TRG dissection. Masseter tissue was evaluated histopathologically and TRG tissue was analyzed for P2X3 receptor mRNA expression by using quantitative real-time polymerase chain reaction (PCR) analysis. To assess the P2X3 receptor involvement in nocifensive behavior, two doses (6 and 60 μg/50 μL) of selective P2X3 antagonist A-317491 were administrated into the inflamed masseter muscle 4 days after the CFA injection. Bilateral HWT was measured at 15-, 30-, 60-, and 120-minute time points after A-317491 administration. Results HWT was bilaterally reduced after the CFA injection (P < 0.001). Intramasseteric inflammation was confirmed ipsilaterally to the CFA injection. Quantitative real-time PCR analysis demonstrated enhanced P2X3 expression in TRG ipsilaterally to CFA administration (P < 0.01). In comparison with controls, the dose of 6 μg of A-317491 significantly increased bilateral HWT at 15-, 30-, and 60-minute time points after the A-317491 administration (P < 0.001), whereas the dose of 60 μg of A-317491 was efficient at all time points ipsilaterally (P = 0.004) and at 15-, 30-, and 60-minute time points contralaterally (P < 0.001). Conclusion Unilateral masseter inflammation can induce bilateral allodynia in rats. The study provided evidence that P2X3 receptors can functionally influence masseter muscle allodynia and suggested that P2X3 receptors expressed in TRG neurons are involved in masseter

  10. Reduced GABAA Receptor α6 Expression in The Trigeminal Ganglion Enhanced Myofascial Nociceptive Response

    PubMed Central

    Kramer, P. R.; Bellinger, L. L.

    2013-01-01

    Activation of the GABAA receptor results in inhibition of neuronal activity. One subunit of this multi-subunit receptor termed alpha 6 (Gabrα6) contributed to inflammatory temporomandibular joint (TMJ) nociception but TMJ disorders often include myofascial pain. To address Gabrα6 role in myofascial pain we hypothesized that Gabrα6 has an inhibitory role in myofascial nociceptive responses similar to inflammatory TMJ arthritis. To test this hypothesis a, myofascial nociceptive response was induced by placing a ligature bilaterally on the tendon attachment of the anterior superficial part of a male rat's masseter muscle. Four days after ligature placement Gabrα6 expression was reduced by infusing the trigeminal ganglia (TG) with small interfering RNA (siRNA) having homology to either the Gabrα6 gene (Gabra6 siRNA) or no known gene (control siRNA). After siRNA infusion nociceptive behavioral responses were measured, i.e., feeding behavior and head withdrawal after pressing upon the region above the ligature with von Frey filaments. Neuronal activity in the TG and trigeminal nucleus caudalis and upper cervical region (Vc–C1) was measured by quantitating the amount of phosphorylated extracellular signalregulated kinase (p-ERK). Total Gabrα6 and GABAA receptor contents in the TG and Vc–C1 were determined. Gabrα6 siRNA infusion reduced Gabrα6 and GABAA receptor expression and significantly increased the nociceptive response in both nociceptive assays. Gabra6 siRNA infusion also significantly increased TG p-ERK expression of the ligated rats. From these results we conclude GABAA receptors consisting of the Gabrα6 subunit inhibit TG nociceptive sensory afferents in the trigeminal pathway and have an important role in the regulation of myofascial nociception. PMID:23602886

  11. Monkey Adrenal Chromaffin Cells Express α6β4* Nicotinic Acetylcholine Receptors

    PubMed Central

    Scadden, Mick´l; Carmona-Hidalgo, Beatriz; McIntosh, J. Michael; Albillos, Almudena

    2014-01-01

    Nicotinic acetylcholine receptors (nAChRs) that contain α6 and β4 subunits have been demonstrated functionally in human adrenal chromaffin cells, rat dorsal root ganglion neurons, and on noradrenergic terminals in the hippocampus of adolescent mice. In human adrenal chromaffin cells, α6β4* nAChRs (the asterisk denotes the possible presence of additional subunits) are the predominant subtype whereas in rodents, the predominant nAChR is the α3β4* subtype. Here we present molecular and pharmacological evidence that chromaffin cells from monkey (Macaca mulatta) also express α6β4* receptors. PCR was used to show the presence of transcripts for α6 and β4 subunits and pharmacological characterization was performed using patch-clamp electrophysiology in combination with α-conotoxins that target the α6β4* subtype. Acetylcholine-evoked currents were sensitive to inhibition by BuIA[T5A,P6O] and MII[H9A,L15A]; α-conotoxins that inhibit α6-containing nAChRs. Two additional agonists were used to probe for the expression of α7 and β2-containing nAChRs. Cells with currents evoked by acetylcholine were relatively unresponsive to the α7-selctive agonist choline but responded to the agonist 5-I-A-85380. These studies provide further insights into the properties of natively expressed α6β4* nAChRs. PMID:24727685

  12. Genetic deletion of the P2Y2 receptor offers significant resistance to development of lithium-induced polyuria accompanied by alterations in PGE2 signaling.

    PubMed

    Zhang, Yue; Pop, Ioana L; Carlson, Noel G; Kishore, Bellamkonda K

    2012-01-01

    Lithium (Li)-induced polyuria is due to resistance of the medullary collecting duct (mCD) to the action of arginine vasopressin (AVP), apparently mediated by increased production of PGE(2). We previously reported that the P2Y(2) receptor (P2Y(2)-R) antagonizes the action of AVP on the mCD and may play a role in Li-induced polyuria by enhancing the production of PGE(2) in mCD. Hence, we hypothesized that genetic deletion of P2Y(2)-R should ameliorate Li-induced polyuria. Wild-type (WT) or P2Y(2)-R knockout (KO) mice were fed normal or Li-added diets for 14 days and euthanized. Li-induced polyuria, and decreases in urine osmolality and AQP2 protein abundance in the renal medulla, were significantly less compared with WT mice despite the lack of differences in Li intake or terminal serum or inner medullary tissue Li levels. Li-induced increased urinary excretion of PGE(2) was not affected in KO mice. However, prostanoid EP(3) receptor (EP3-R) protein abundance in the renal medulla of KO mice was markedly lower vs. WT mice, irrespective of the dietary regimen. The protein abundances of other EP-Rs were not altered across the groups irrespective of the dietary regimen. Ex vivo stimulation of mCD with PGE(2) generated significantly more cAMP in Li-fed KO mice (130%) vs. Li-fed WT mice (100%). Taken together, these data suggest 1) genetic deletion of P2Y(2)-R offers significant resistance to the development of Li-induced polyuria; and 2) this resistance is apparently due to altered PGE(2) signaling mediated by a marked decrease in EP3-R protein abundance in the medulla, thus attenuating the EP3-mediated decrease in cAMP levels in mCD.

  13. Neuropeptide Y-Y2 receptor knockout mice: influence of genetic background on anxiety-related behaviors.

    PubMed

    Zambello, E; Zanetti, L; Hédou, G F; Angelici, O; Arban, R; Tasan, R O; Sperk, G; Caberlotto, L

    2011-03-10

    Neuropeptide Y (NPY) has been extensively studied in relation to anxiety and depression but of the seven NPY receptors known to date, it is not yet clear which one is mainly involved in mediating its effects in emotional behavior. Mice lacking the NPY-Y2 receptors were previously shown to be less anxious due to their improved ability to cope with stressful situations. In the present study, the behavioral phenotype including the response to challenges was analyzed in NPY-Y2 knockout (KO) mice backcrossed in to congenic C57BL/6 background. In the elevated plus-maze (EPM) and the forced swim test (FST), the anxiolytic-like or antidepressant-like phenotype of the NPY-Y2 KO mice could not be confirmed, although this study differs from the previous one only with regard to the genetic background of the mice. In addition, no differences in response to acute stress or to the antidepressant desipramine in the FST were detected between wild type (WT) and NPY-Y2 KO animals. These results suggest that the genetic background of the animals appears to have a strong influence on the behavioral phenotype of NPY-Y2 KO mice. Additionally, to further characterize the animals by their biochemical response to a challenge, the neurochemical changes induced by the anxiogenic compound yohimbine were measured in the medial prefrontal cortex (mPFC) of NPY-Y2 KO and compared to WT mice. Dopamine (DA) levels were significantly increased by yohimbine in the WT but unaffected in the KO mice, suggesting that NPY-Y2 receptor exerts a direct control over both the tonic and phasic release of DA and that, although the anxiety-like behavior of these NPY-Y2 KO mice is unaltered, there are clear modifications of DA dynamics. However, yohimbine led to a significant increase in noradrenaline (NA) concentration and a slight reduction in serotonin concentration that were identical for both phenotypes. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

  14. Over-expression of angiotensin II type 2 receptor gene induces cell death in lung adenocarcinoma cells.

    PubMed

    Pickel, Lara; Matsuzuka, Takaya; Doi, Chiyo; Ayuzawa, Rie; Maurya, Dharmendra Kumar; Xie, Sheng-Xue; Berkland, Cory; Tamura, Masaaki

    2010-02-01

    The endogenous angiotensin II (Ang II) type 2 receptor (AT 2) has been shown to mediate apoptosis in cardiovascular tissues. Thus, the aim of this study was to explore the anti-cancer effect of AT 2 over-expression on lung adenocarcinoma cells in vitro using adenoviral (Ad), FuGENE, and nanoparticle vectors. All three gene transfection methods efficiently transfected AT 2 cDNA into lung cancer cells but caused minimal gene transfection in normal lung epithelial cells. Ad-AT 2 significantly attenuated multiple human lung cancer cell growth (A549 and H358) as compared to the control viral vector, Ad-LacZ, when cell viability was examined by direct cell count. Examination of annexin V by flow cytometry revealed the activation of the apoptotic pathway via AT 2 over-expression. Western Blot analysis confirmed the activation of caspase-3. Similarly, poly (lactide-co-glycolic acid) (PLGA) biodegradable nanoparticles encapsulated AT 2 plasmid DNA were shown to be effectively taken up into the lung cancer cell. Nanoparticle-based AT 2 gene transfection markedly increased AT 2 expression and resultant cell death in A549 cells. These results indicate that AT 2 over-expression effectively attenuates growth of lung adenocarcinoma cells through intrinsic apoptosis. Our results also suggest that PLGA nanoparticles can be used as an efficient gene delivery vector for lung adenocarcinoma targeted therapy.

  15. Immunohistochemical expression of interleukin-2 receptor and interleukin-6 in patients with prostate cancer and benign prostatic hyperplasia: association with asymptomatic inflammatory prostatitis NIH category IV.

    PubMed

    Engelhardt, Paul Friedrich; Seklehner, Stephan; Brustmann, Hermann; Lusuardi, Lukas; Riedl, Claus R

    2015-04-01

    This study prospectively investigated the immunohistochemical expression of interleukin-2 receptor (IL-2R) and interleukin-6 (IL-6) in patients with prostate cancer and benign prostatic hyperplasia (BPH), and a possible association of these conditions with asymptomatic inflammatory prostatitis National Institutes of Health (NIH) category IV. The study included 139 consecutive patients who underwent transurethral resection of the prostate and transvesical enucleation of the prostate (n = 82) or radical prostatectomy (n = 57). To characterize inflammatory changes the criteria proposed by Irani et al. [J Urol 1997;157:1301-3] were used. IL-2R and IL-6 expression was studied by a standard immunohistochemical method. Results were correlated with tumour, node, metastasis stage, Gleason scores, total prostate-specific antigen, International Prostate Symptom Score and body mass index. IL-2R and IL-6 expression was significantly higher in neoplastic prostate cancer tissue than in normal tissue of prostate cancer patients (p < 0.001 and p < 0.04, respectively). Prostate cancer patients with prostatitis showed significantly higher IL-2R expression than those without inflammation (p < 0.03). In patients with BPH, expression of IL-2R as well as IL-6 was higher in patients with prostatitis than in those without (p < 0.01 and p < 0.02, respectively). IL-2R and IL-6 expression was significantly higher in prostate cancer tissue than in normal tissue. Patients with asymptomatic inflammatory prostatitis NIH category IV showed significantly greater activity.

  16. P2X3 and P2X2/3 Receptors Play a Crucial Role in Articular Hyperalgesia Development Through Inflammatory Mechanisms in the Knee Joint Experimental Synovitis.

    PubMed

    Teixeira, Juliana Maia; Bobinski, Franciane; Parada, Carlos Amílcar; Sluka, Kathleen A; Tambeli, Cláudia Herrera

    2017-10-01

    Osteoarthritis (OA) is a degenerative and progressive disease characterized by cartilage breakdown and by synovial membrane inflammation, which results in disability, joint swelling, and pain. The purinergic P2X3 and P2X2/3 receptors contribute to development of inflammatory hyperalgesia, participate in arthritis processes in the knee joint, and are expressed in chondrocytes and nociceptive afferent fibers innervating the knee joint. In this study, we hypothesized that P2X3 and P2X2/3 receptors activation by endogenous ATP (adenosine 5'-triphosphate) induces articular hyperalgesia in the knee joint of male and female rats through an indirect sensitization of primary afferent nociceptors dependent on the previous release of pro-inflammatory cytokines and/or on neutrophil migration. We found that the blockade of articular P2X3 and P2X2/3 receptors significantly attenuated carrageenan-induced hyperalgesia in the knee joint of male and estrus female rats in a similar manner. The carrageenan-induced knee joint inflammation increased the expression of P2X3 receptors in chondrocytes of articular cartilage. Further, the blockade of articular P2X3 and P2X2/3 receptors significantly reduced the increased concentration of TNF-α, IL-6, and CINC-1 and the neutrophil migration induced by carrageenan. These findings indicate that P2X3 and P2X2/3 receptors activation by endogenous ATP is essential to hyperalgesia development in the knee joint through an indirect sensitization of primary afferent nociceptors dependent on the previous release of pro-inflammatory cytokines and/or on neutrophil migration.

  17. Application of HC-AFW1 Hepatocarcinoma Cells for Mechanistic Studies: Regulation of Cytochrome P450 2B6 Expression by Dimethyl Sulfoxide and Early Growth Response 1.

    PubMed

    Petzuch, Barbara; Groll, Nicola; Schwarz, Michael; Braeuning, Albert

    2015-11-01

    Various exogenous compounds, for example, the drugs bupropione and propofol, but also various cytostatics, are metabolized in the liver by the enzyme cytochrome P450 (P450) CYP2B6. Transcription from the CYP2B6 gene is regulated mainly via the transcription factors constitutive androstane receptor (CAR) and pregnane-X-receptor (PXR). Most hepatic cell lines express no or only low levels of CYP2B6 because of loss of these two regulators. Dimethyl sulfoxide (DMSO) is frequently used in liver cell cultivation and is thought to affect the expression of various P450 isoforms by inducing or preserving cellular differentiation. We studied the effects of up to 1.5% of DMSO as cell culture medium supplement on P450 expression in hepatocarcinoma cells from line HC-AFW1. DMSO did not induce differentiation of the HC-AFW1 cell line, as demonstrated by unaltered levels of selected mRNA markers important for hepatocyte differentiation, and also by the lack of a DMSO effect on a broader spectrum of P450s. By contrast, CYP2B6 mRNA was strongly induced by DMSO. This process was independent of CAR or PXR activation. Interestingly, elevated transcription of CYP2B6 was accompanied by a simultaneous induction of early growth response 1 (EGR1), a transcription factor known to influence the expression of CYP2B6. Expression of wild-type EGR1 or of a truncated, dominant-negative EGR1 mutant was able to mimic or attenuate the DMSO effect, respectively. These findings demonstrate that EGR1 is involved in the regulation of CYP2B6 by DMSO in HC-AFW1 cells. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  18. Purinoceptor modulation of noradrenaline release in rat tail artery: tonic modulation mediated by inhibitory P2Y- and facilitatory A2A-purinoceptors.

    PubMed Central

    Gonçalves, J.; Queiroz, G.

    1996-01-01

    1. The effects of analogues of adenosine and ATP on noradrenaline release elicited by electrical stimulation (5 Hz, 2700 pulses) were studied in superfused preparations of rat tail artery. The effects of purinoceptor antagonists, of adenosine deaminase and of adenosine uptake blockade were also examined. Noradrenaline was measured by h.p.l.c. electrochemical detection. 2. The A1-adenosine receptor agonist, N6-cyclopentyladenosine (CPA; 0.1-100 nM) reduced, whereas the A2A-receptor agonist 2-p-(2-carboxyethyl)phenethylamino-5'-N-ethylcarboxamidoadenosine (CGS 21680; 3-30 nM) increased evoked noradrenaline overflow. These effects were antagonized by the A1-adenosine receptor antagonist, 8-cyclopentyl-1,3-dipropylxanthine (DPCPX; 20 nM) and the A2-adenosine receptor antagonist, 3,7-dimethyl-1-propargylxanthine (DMPX; 100 nM), respectively. The P2Y-purinoceptor agonist, 2-methylthio-ATP (1-100 microM) reduced noradrenaline overflow, an effect prevented by the P2-purinoceptor antagonist, cibacron blue 3GA (100 microM) and suramin (100 microM). 3. Adenosine deaminase (2 u ml-1), DMPX (100 nM) and inhibition of adenosine uptake with S-(p-nitrobenzyl)-6-thioinosine (NBTI; 50 nM) decreased evoked noradrenaline overflow. DPCPX alone did not change noradrenaline overflow but prevented the inhibition caused by NBTI. The P2Y-purinoceptor antagonist, cibacron blue 3GA (100 microM) increased evoked noradrenaline overflow as did suramin, a non-selective P2-antagonist. 4. It is concluded that, in rat tail artery, inhibitory (A1 and P2Y) and facilitatory (A2A) purinoceptors are present and modulate noradrenaline release evoked by electrical stimulation. Endogenous purines tonically modulate noradrenaline release through activation of inhibitory P2Y and facilitatory A2A purinoceptors, whereas a tonic activation of inhibitory A1 purinoceptors seems to be prevented by adenosine uptake. PMID:8825357

  19. Characterization of P2Y receptors mediating ATP induced relaxation in guinea pig airway smooth muscle: involvement of prostaglandins and K+ channels.

    PubMed

    Montaño, Luis M; Cruz-Valderrama, José E; Figueroa, Alejandra; Flores-Soto, Edgar; García-Hernández, Luz M; Carbajal, Verónica; Segura, Patricia; Méndez, Carmen; Díaz, Verónica; Barajas-López, Carlos

    2011-10-01

    In airway smooth muscle (ASM), adenosine 5'-triphosphate (ATP) induces a relaxation associated with prostaglandin production. We explored the role of K(+) currents (I (K)) in this relaxation. ATP relaxed the ASM, and this effect was abolished by indomethacin. Removal of airway epithelium slightly diminished the ATP-induced relaxation at lower concentration without modifying the responses to ATP at higher concentrations. ATPγS and UTP induced a concentration-dependent relaxation similar to ATP; α,β-methylene-ATP was inactive from 1 to 100 μM. Suramin or reactive blue 2 (RB2), P2Y receptor antagonists, did not modify the relaxation, but their combination significantly reduced this effect of ATP. The relaxation was also inhibited by N-ethylmaleimide (NEM; which uncouples G proteins). In myocytes, the ATP-induced I (K) increment was not modified by suramin or RB2 but the combination of both drugs abolished it. This increment in the I (K) was also completely nullified by NEM and SQ 22,536. 4-Amynopyridine or iberiotoxin diminished the ATP-induced I (K) increment, and the combination of both substances diminished ATP-induced relaxation. The presence of P2Y(2) and P2Y(4) receptors in smooth muscle was corroborated by Western blot and confocal images. In conclusion, ATP: (1) produces relaxation by inducing the production of bronchodilator prostaglandins in airway smooth muscle, most likely by acting on P2Y(4) and P2Y(2) receptors; (2) induces I (K) increment through activation of the delayed rectifier K(+) channels and the high-conductance Ca(2+)-dependent K(+) channels, therefore both channels are implicated in the ATP-induced relaxation; and (3) this I (K) increment is mediated by prostaglandin production which in turns increase cAMP signaling pathway.

  20. Cell-specific expression of neuropeptide Y Y1 receptor immunoreactivity in the rat basolateral amygdala.

    PubMed

    Rostkowski, Amanda B; Teppen, Tara L; Peterson, Daniel A; Urban, Janice H

    2009-11-10

    Activation of neuropeptide Y (NPY) Y1 receptors (Y1r) in the rat basolateral nuclear complex of the amygdala (BLA) produces anxiolysis and interferes with the generation of conditioned fear. NPY is important in regulating the output of the BLA, yet the cell types involved in mediating this response are currently unknown. The current studies employed multiple label immunocytochemistry to determine the distribution of Y1r-immunoreactivity (-ir) in glutamatergic pyramidal and GABAergic cell populations in the BLA using scanning laser confocal stereology. Pyramidal neurons were identified by expression of calcium-calmodulin dependent kinase II (CaMKII-ir) and functionally distinct interneuron subpopulations were distinguished by peptide (cholecystokinin, somatostatin) or calcium-binding protein (parvalbumin, calretinin) content. Throughout the BLA, Y1r-ir was predominately on soma with negligible fiber staining. The high degree of coexpression of Y1r-ir (99.9%) in CaMKII-ir cells suggests that these receptors colocalize on pyramidal cells and that NPY could influence BLA output by directly regulating the activity of these projection neurons. Additionally, Y1r-ir was also colocalized with the interneuronal markers studied. Parvalbumin-ir interneurons, which participate in feedforward inhibition of BLA pyramidal cells, represented the largest number of Y1r expressing interneurons in the BLA ( approximately 4% of the total neuronal population). The anatomical localization of NPY receptors on different cell populations within the BLA provides a testable circuit whereby NPY could modulate the activity of the BLA via actions on both projection cells and interneuronal cell populations.

  1. Binding of Y-P30 to Syndecan 2/3 Regulates the Nuclear Localization of CASK

    PubMed Central

    Landgraf, Peter; Mikhaylova, Marina; Macharadze, Tamar; Borutzki, Corinna; Zenclussen, Ana-Claudia; Wahle, Petra; Kreutz, Michael R.

    2014-01-01

    The survival promoting peptide Y-P30 has documented neuroprotective effects as well as cell survival and neurite outgrowth promoting activity in vitro and in vivo. Previous work has shown that multimerization of the peptide with pleiotrophin (PTN) and subsequent binding to syndecan (SDC) -2 and -3 is involved in its neuritogenic effects. In this study we show that Y-P30 application regulates the nuclear localization of the SDC binding partner Calcium/calmodulin-dependent serine kinase (CASK) in neuronal primary cultures during development. In early development at day in vitro (DIV) 8 when mainly SDC-3 is expressed supplementation of the culture medium with Y-P30 reduces nuclear CASK levels whereas it has the opposite effect at DIV 18 when SDC-2 is the dominant isoform. In the nucleus CASK regulates gene expression via its association with the T-box transcription factor T-brain-1 (Tbr-1) and we indeed found that gene expression of downstream targets of this complex, like the GluN2B NMDA-receptor, exhibits a corresponding down- or up-regulation at the mRNA level. The differential effect of Y-P30 on the nuclear localization of CASK correlates with its ability to induce shedding of the ectodomain of SDC-2 but not -3. shRNA knockdown of SDC-2 at DIV 18 and SDC-3 at DIV 8 completely abolished the effect of Y-P30 supplementation on nuclear CASK levels. During early development a protein knockdown of SDC-3 also attenuated the effect of Y-P30 on axon outgrowth. Taken together these data suggest that Y-P30 can control the nuclear localization of CASK in a SDC-dependent manner. PMID:24498267

  2. ROS Production via P2Y1-PKC-NOX2 Is Triggered by Extracellular ATP after Electrical Stimulation of Skeletal Muscle Cells.

    PubMed

    Díaz-Vegas, Alexis; Campos, Cristian A; Contreras-Ferrat, Ariel; Casas, Mariana; Buvinic, Sonja; Jaimovich, Enrique; Espinosa, Alejandra

    2015-01-01

    During exercise, skeletal muscle produces reactive oxygen species (ROS) via NADPH oxidase (NOX2) while inducing cellular adaptations associated with contractile activity. The signals involved in this mechanism are still a matter of study. ATP is released from skeletal muscle during electrical stimulation and can autocrinely signal through purinergic receptors; we searched for an influence of this signal in ROS production. The aim of this work was to characterize ROS production induced by electrical stimulation and extracellular ATP. ROS production was measured using two alternative probes; chloromethyl-2,7- dichlorodihydrofluorescein diacetate or electroporation to express the hydrogen peroxide-sensitive protein Hyper. Electrical stimulation (ES) triggered a transient ROS increase in muscle fibers which was mimicked by extracellular ATP and was prevented by both carbenoxolone and suramin; antagonists of pannexin channel and purinergic receptors respectively. In addition, transient ROS increase was prevented by apyrase, an ecto-nucleotidase. MRS2365, a P2Y1 receptor agonist, induced a large signal while UTPyS (P2Y2 agonist) elicited a much smaller signal, similar to the one seen when using ATP plus MRS2179, an antagonist of P2Y1. Protein kinase C (PKC) inhibitors also blocked ES-induced ROS production. Our results indicate that physiological levels of electrical stimulation induce ROS production in skeletal muscle cells through release of extracellular ATP and activation of P2Y1 receptors. Use of selective NOX2 and PKC inhibitors suggests that ROS production induced by ES or extracellular ATP is mediated by NOX2 activated by PKC.

  3. ROS Production via P2Y1-PKC-NOX2 Is Triggered by Extracellular ATP after Electrical Stimulation of Skeletal Muscle Cells

    PubMed Central

    Díaz-Vegas, Alexis; Campos, Cristian A.; Contreras-Ferrat, Ariel; Casas, Mariana; Buvinic, Sonja; Jaimovich, Enrique; Espinosa, Alejandra

    2015-01-01

    During exercise, skeletal muscle produces reactive oxygen species (ROS) via NADPH oxidase (NOX2) while inducing cellular adaptations associated with contractile activity. The signals involved in this mechanism are still a matter of study. ATP is released from skeletal muscle during electrical stimulation and can autocrinely signal through purinergic receptors; we searched for an influence of this signal in ROS production. The aim of this work was to characterize ROS production induced by electrical stimulation and extracellular ATP. ROS production was measured using two alternative probes; chloromethyl-2,7- dichlorodihydrofluorescein diacetate or electroporation to express the hydrogen peroxide-sensitive protein Hyper. Electrical stimulation (ES) triggered a transient ROS increase in muscle fibers which was mimicked by extracellular ATP and was prevented by both carbenoxolone and suramin; antagonists of pannexin channel and purinergic receptors respectively. In addition, transient ROS increase was prevented by apyrase, an ecto-nucleotidase. MRS2365, a P2Y1 receptor agonist, induced a large signal while UTPyS (P2Y2 agonist) elicited a much smaller signal, similar to the one seen when using ATP plus MRS2179, an antagonist of P2Y1. Protein kinase C (PKC) inhibitors also blocked ES-induced ROS production. Our results indicate that physiological levels of electrical stimulation induce ROS production in skeletal muscle cells through release of extracellular ATP and activation of P2Y1 receptors. Use of selective NOX2 and PKC inhibitors suggests that ROS production induced by ES or extracellular ATP is mediated by NOX2 activated by PKC. PMID:26053483

  4. Inflammation enhances Y1 receptor signaling, neuropeptide Y-mediated inhibition of hyperalgesia, and substance P release from primary afferent neurons

    PubMed Central

    Taylor, Bradley K.; Fu, Weisi; Kuphal, Karen E.; Stiller, Carl-Olav; Winter, Michelle K.; Chen, Wenling; Corder, Gregory F.; Urban, Janice H.; McCarson, Kenneth E.; Marvizon, Juan Carlos

    2014-01-01

    Neuropeptide Y (NPY) is present in the superficial laminae of the dorsal horn and inhibits spinal nociceptive processing, but the mechanisms underlying its anti-hyperalgesic actions are unclear. We hypothesized that NPY acts at neuropeptide Y1 receptors in dorsal horn to decrease nociception by inhibiting substance P (SP) release, and that these effects are enhanced by inflammation. To evaluate SP release, we used microdialysis and neurokinin 1 receptor (NK1R) internalization in rat. NPY decreased capsaicin-evoked SP-like immunoreactivity in microdialysate of the dorsal horn. NPY also decreased non-noxious stimulus (paw brush)-evoked NK1R internalization (as well as mechanical hyperalgesia and mechanical and cold allodynia) after intraplantar injection of carrageenan. Similarly, in rat spinal cord slices with dorsal root attached, [Leu31, Pro34]-NPY inhibited dorsal root stimulus-evoked NK1R internalization. In rat dorsal root ganglion neurons, Y1 receptors colocalized extensively with calcitonin gene-related peptide (CGRP). In dorsal horn neurons, Y1 receptors were extensively expressed and this may have masked detection of terminal co-localization with CGRP or SP. To determine whether the pain inhibitory actions of Y1 receptors are enhanced by inflammation, we administered [Leu31, Pro34]-NPY after intraplantar injection of complete Freund's adjuvant (CFA) in rat. We found that [Leu31, Pro34]-NPY reduced paw clamp-induced NK1R internalization in CFA rats but not uninjured controls. To determine the contribution of increased Y1 receptor-G protein coupling, we measured [35S]GTPγS binding simulated by [Leu31, Pro34]-NPY in mouse dorsal horn. CFA inflammation increased the affinity of Y1 receptor G-protein coupling. We conclude that Y1 receptors contribute to the anti-hyperalgesic effects of NPY by mediating inhibition of SP release, and that Y1 receptor signaling in the dorsal horn is enhanced during inflammatory nociception. PMID:24184981

  5. Blockade of human P2X7 receptor function with a monoclonal antibody.

    PubMed

    Buell, G; Chessell, I P; Michel, A D; Collo, G; Salazzo, M; Herren, S; Gretener, D; Grahames, C; Kaur, R; Kosco-Vilbois, M H; Humphrey, P P

    1998-11-15

    A monoclonal antibody (MoAb) specific for the human P2X7 receptor was generated in mice. As assessed by flow cytometry, the MoAb labeled human blood-derived macrophage cells natively expressing P2X7 receptors and cells transfected with human P2X7 but not other P2X receptor types. The MoAb was used to immunoprecipitate the human P2X7 receptor protein, and in immunohistochemical studies on human lymphoid tissue, P2X7 receptor labeling was observed within discrete areas of the marginal zone of human tonsil sections. The antibody also acted as a selective antagonist of human P2X7 receptors in several functional studies. Thus, whole cell currents, elicited by the brief application of 2',3'-(4-benzoyl)-benzoyl-ATP in cells expressing human P2X7, were reduced in amplitude by the presence of the MoAb. Furthermore, preincubation of human monocytic THP-1 cells with the MoAb antagonized the ability of P2X7 agonists to induce the release of interleukin-1beta.

  6. Progestin treatment does not affect expression of cytokines, steroid receptors, oxytocin receptor, and cyclooxygenase 2 in fetal membranes and endometrium from pony mares at parturition.

    PubMed

    Palm, F; Walter, I; Nowotny, N; Budik, S; Helmreich, M; Aurich, C

    2013-01-01

    In most mammalian species, progestins have a major function in maintaining pregnancy. In humans, the physiologic initiation of parturition bears similarities with inflammatory processes and anti-inflammatory effects of progestins have been suggested to postpone birth until term. To examine if comparable effects exist in the horse, mares were treated with the synthetic progestin altrenogest from day 280 of gestation until parturition (N = 5) or were left untreated as controls (N = 7). Tissue from the amnion (AMN), allantochorion (AC), and endometrium (EM) was collected at foaling and mRNA expression of interleukin (IL)-6 and -8, cyclooxygenase 2 (COX2), estrogen receptor (ER) α, progesterone receptor, and oxytocin receptor (OTR) was analyzed. Leukocytes, steroid receptors, COX2, and OTR were also investigated by histology and immunohistochemistry. Expression of mRNA for IL-6 was higher in AMN and EM versus AC (P < 0.01). Expression of IL-8 was higher in AMN than AC and EM (P < 0.001). Steroid receptors and OTR were highly expressed in EM but not in AMN and AC (P < 0.001). Expression of COX2 was most pronounced in AC whereas IL expression was not upregulated in AC. No differences in mRNA expression existed between altrenogest-treated and control animals. Endometrial polymorphonuclear leukocytes were increased in altrenogest-treated mares. Epithelial cells of all tissues, except AC chorionic villi stained progesterone receptor-positive. Staining for ER was more pronounced in the amnion facing epithelium of the AC in altrenogest-treated versus control animals (P < 0.01). In conclusion, COX2 is highly expressed in the AC. The fetal membranes thus might play a role in the onset of labor in the horse. Altrenogest did not affect gene expression in the AMN, AC, and EM but had localized effects on inflammatory cells and ER expression. No anti-inflammatory effects of altrenogest in healthy, late pregnant pony mares could be detected. Copyright © 2013 Elsevier Inc. All

  7. Identification of P2X3 and P2X7 Purinergic Receptors Activated by ATP in Rat Lacrimal Gland

    PubMed Central

    Vrouvlianis, Joanna; Scott, Rachel; Dartt, Darlene A.

    2011-01-01

    Purpose. To identify the type of purinergic receptors activated by adenosine triphosphate (ATP) in rat lacrimal gland and to determine their role in protein secretion. Methods. Purinergic receptors were identified by RT-PCR, Western blot analysis, and immunofluorescence techniques. Acini from rat lacrimal gland were isolated by collagenase digestion. Acini were incubated with the fluorescence indicator fura-2 tetra-acetoxylmethyl ester, and intracellular [Ca2+] ([Ca2+]i) was determined. Protein secretion was measured by fluorescence assay. Results. The authors previously showed that P2X7 receptors were functional in the lacrimal gland. In this study, they show that P2X1–4, and P2X6receptors were identified in the lacrimal gland by RT-PCR, Western blot, and immunofluorescence analyses. P2X5 receptors were not detected. ATP increased [Ca2+]i and protein secretion in a concentration-dependent manner. Removal of extracellular Ca2+ significantly reduced the ATP-stimulated increase in [Ca2+]i. Repeated applications of ATP caused desensitization of the [Ca2+]i response. Incubation with the P2X1 receptor inhibitor NF023 did not alter ATP-stimulated [Ca2+]i. Incubation with zinc, which potentiates P2X2 and P2X4 receptor responses, or lowering the pH to 6.8, which potentiates P2X2 receptor responses, did not alter the ATP-stimulated [Ca2+]i. P2X3 receptor inhibitors A-317491 and TNP-ATP significantly decreased ATP-stimulated [Ca2+]i and protein secretion, whereas the P2X3 receptor agonist α,β methylene ATP significantly increased them. The P2X7 receptor inhibitor A438079 had no effect on ATP-stimulated [Ca2+]i at 10−6 M but did have an effect at 10−4 M. Conclusions. Purinergic receptors P2X1–4 and P2X6 are present in the lacrimal gland. ATP uses P2X3 and P2X7 receptors to stimulate an increase in [Ca2+]i and protein secretion. PMID:21421865

  8. Novel cytochrome P450 genes, CYP6EB1 and CYP6EC1, are over-expressed in acrinathrin-resistant Frankliniella occidentalis (Thysanoptera: Thripidae).

    PubMed

    Cifuentes, D; Chynoweth, R; Guillén, J; De la Rúa, P; Bielza, P

    2012-06-01

    Control of Frankliniella occidentalis (Pergande) is a serious problem for agriculture all over the world because of the limited range of insecticides that are available. Insecticide resistance in F. occidentalis has been reported for all major insecticide groups. Our previous studies showed that cytochrome P450-mediated detoxification is a major mechanism responsible for insecticide resistance in this pest. Degenerate polymerase chain reaction was used to identify P450 genes that might be involved in acrinathrin resistance, in a laboratory population of F. occidentalis. Associated sequences were classified as belonging to the CYP4 and CYP6 families. Real-time quantitative polymerase chain reaction analyses revealed that two genes, CYP6EB1 and CYP6EC1, were over-expressed in adults and L2 larvae of the resistant population, when compared with the susceptible population, suggesting their possible involvement in resistance to acrinathrin.

  9. Subtype-specific regulation of P2X3 and P2X2/3 receptors by phosphoinositides in peripheral nociceptors

    PubMed Central

    Mo, Gary; Bernier, Louis-Philippe; Zhao, Qi; Chabot-Doré, Anne-Julie; Ase, Ariel R; Logothetis, Diomedes; Cao, Chang-Qing; Séguéla, Philippe

    2009-01-01

    Background P2X3 and P2X2/3 purinergic receptor-channels, expressed in primary sensory neurons that mediate nociception, have been implicated in neuropathic and inflammatory pain responses. The phospholipids phosphatidylinositol 4,5-bisphosphate (PIP2) and phosphatidylinositol 3,4,5-trisphosphate (PIP3) are involved in functional modulation of several types of ion channels. We report here evidence that these phospholipids are able to modulate the function of homomeric P2X3 and heteromeric P2X2/3 purinoceptors expressed in dorsal root ganglion (DRG) nociceptors and in heterologous expression systems. Results In dissociated rat DRG neurons, incubation with the PI3K/PI4K inhibitor wortmannin at 35 μM induced a dramatic decrease in the amplitude of ATP- or α,β-meATP-evoked P2X3 currents, while incubation with 100 nM wortmannin (selective PI3K inhibition) produced no significant effect. Intracellular application of PIP2 was able to fully reverse the inhibition of P2X3 currents induced by wortmannin. In Xenopus oocytes and in HEK293 cells expressing recombinant P2X3, 35 μM wortmannin incubation induced a significant decrease in the rate of receptor recovery. Native and recombinant P2X2/3 receptor-mediated currents were inhibited by incubation with wortmannin both at 35 μM and 100 nM. The decrease of P2X2/3 current amplitude induced by wortmannin could be partially reversed by application of PIP2 or PIP3, indicating a sensitivity to both phosphoinositides in DRG neurons and Xenopus oocytes. Using a lipid binding assay, we demonstrate that the C-terminus of the P2X2 subunit binds directly to PIP2, PIP3 and other phosphoinositides. In contrast, no direct binding was detected between the C-terminus of P2X3 subunit and phosphoinositides. Conclusion Our findings indicate a functional regulation of homomeric P2X3 and heteromeric P2X2/3 ATP receptors by phosphoinositides in the plasma membrane of DRG nociceptors, based on subtype-specific mechanisms of direct and indirect

  10. P2X receptors in the cardiovascular system and their potential as therapeutic targets in disease.

    PubMed

    Ralevic, Vera

    2015-01-01

    This review considers the expression and roles of P2X receptors in the cardiovascular system in health and disease and their potential as therapeutic targets. P2X receptors are ligand gated ion channels which are activated by the endogenous ligand ATP. They are formed from the assembly of three P2X subunit proteins from the complement of seven (P2X1-7), which can associate to form homomeric or heteromeric P2X receptors. The P2X1 receptor is widely expressed in the cardiovascular system, being located in the heart, in the smooth muscle of the majority of blood vessels and in platelets. P2X1 receptors expressed in blood vessels can be activated by ATP coreleased with noradrenaline as a sympathetic neurotransmitter, leading to smooth muscle depolarisation and contraction. There is evidence that the purinergic component of sympathetic neurotransmission is increased in hypertension, identifying P2X1 receptors as a possible therapeutic target in this disorder. P2X3 and P2X2/3 receptors are expressed on cardiac sympathetic neurones and may, through positive feedback of neuronal ATP at this prejunctional site, amplify sympathetic neurotransmission. Activation of P2X receptors expressed in the heart increases cardiac myocyte contractility, and an important role of the P2X4 receptor in this has been identified. Deletion of P2X4 receptors in the heart depresses contractile performance in models of heart failure, while overexpression of P2X4 receptors has been shown to be cardioprotective, thus P2X4 receptors may be therapeutic targets in the treatment of heart disease. P2X receptors have been identified on endothelial cells. Although immunoreactivity for all P2X1-7 receptor proteins has been shown on the endothelium, relatively little is known about their function, with the exception of the endothelial P2X4 receptor, which has been shown to mediate endothelium-dependent vasodilatation to ATP released during shear stress. The potential of P2X receptors as therapeutic targets

  11. Purinergic receptor ligands stimulate pro-opiomelanocortin gene expression in AtT-20 pituitary corticotroph cells.

    PubMed

    Zhao, L-F; Iwasaki, Y; Oki, Y; Tsugita, M; Taguchi, T; Nishiyama, M; Takao, T; Kambayashi, M; Hashimoto, K

    2006-04-01

    Although recent studies have suggested that purinergic receptors are expressed in the anterior pituitary gland, their involvement in the regulation of pituitary hormone gene expression is not completely understood. In the present study, we examined the expression of purinergic receptors and the effects of purinergic receptor ligands on pro-opiomelanocortin (POMC) gene expression, in AtT20 mouse corticotroph cells. We identified the expression of most of the purinergic receptor subtypes (A1, A2, P2X1, 3-7, P2Y1, 2, 4) mRNAs, analysed by the reverse transcriptase-polymerase chain reaction. We also found that adenosine and ATP, two representative and endogenous agonists of A1-3 and P2X/P2Y receptors, respectively, stimulated the 5'-promoter activity of the POMC gene in a dose- and time-related manner. When these ligands were simultaneously used with corticotrophin-releasing hormone (CRH), effects that were more than additive were observed, suggesting an enhancing role of these compounds in CRH-mediated adrenocorticotrophic hormone (ACTH) synthesis. These ligands also stimulated the expression of transcription factors involved in the regulation of the POMC gene, but did not enhance ACTH secretion. Finally, the positive effect of adenosine as well as CRH was completely inhibited by the protein kinase A inhibitor H89, whereas that of ATP was not influenced, indicating that different intracellular signalling pathways mediate these effects. Altogether, our results suggest a stimulatory role for these purinergic receptor ligands in the regulation of POMC gene expression in corticotroph cells. Because adenosine and ATP are known to be produced within the pituitary gland, it is possible they may be acting in an autocrine/paracrine fashion.

  12. Over-expression of C/EBP-{alpha} induces apoptosis in cultured rat hepatic stellate cells depending on p53 and peroxisome proliferator-activated receptor-{gamma}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Xueqing; Huang Guangcun; Mei Shuang

    2009-03-06

    Hepatic stellate cells (HSCs) play a key role in the pathogenesis of hepatic fibrosis. In our previous studies, CCAAT enhancer binding protein-{alpha} (C/EBP-{alpha}) has been shown to be involved in the activation of HSCs and to have a repression effect on hepatic fibrosis in vivo. However, the mechanisms are largely unknown. In this study, we show that the infection of adenovirus vector expressing C/EBP-{alpha} gene (Ad-C/EBP-{alpha}) could induce HSCs apoptosis in a dose- and time-dependent manner by Annexin V/PI staining, caspase-3 activation assay, and flow cytometry. Also, over-expression of C/EBP-{alpha} resulted in the up-regulation of peroxisome proliferator-activated receptor-{gamma} (PPAR-{gamma}) andmore » P53, while P53 expression was regulated by PPAR-{gamma}. In addition, Fas, FasL, DR4, DR5, and TRAIL were studied. The results indicated that the death receptor pathway was mainly involved and regulated by PPAR-{gamma} and p53 in the process of apoptosis triggered by C/EBP-{alpha} in HSCs.« less

  13. Rapid constitutive and ligand-activated endocytic trafficking of P2X receptor.

    PubMed

    Vacca, Fabrizio; Giustizieri, Michela; Ciotti, Maria Teresa; Mercuri, Nicola Biagio; Volonté, Cinzia

    2009-05-01

    P2X receptors mediate a variety of physiological actions, including smooth muscle contraction, neuro-endocrine secretion and synaptic transmission. Among P2X receptors, the P2X(3) subtype is expressed in sensory neurons of dorsal root- and trigeminal-ganglia, where it performs a well-recognized role in sensory and pain transmission. Recent evidence indicates that the strength of P2X(3)-mediated responses is modulated in vivo by altering the number of receptors at the plasma membrane. In the present study, we investigate the trafficking properties of P2X(3) receptor in transfected HEK293 cells and in primary cultures of dorsal root ganglion neurons, finding that P2X(3) receptor undergoes rapid constitutive and cholesterol-dependent endocytosis. We also show that endocytosis is accompanied by preferential targeting of the receptor to late endosomes/lysosomes, with subsequent degradation. Furthermore, we observe that at steady state the receptor localizes predominantly in lamp1-positive intracellular structures, with a minor fraction present at the plasma membrane. Finally, the level of functional receptor expressed on the cell surface is rapidly up-regulated in response to agonist stimulation, which also augments receptor endocytosis. The findings presented in this work underscore a very dynamic trafficking behavior of P2X(3) receptor and disclose a possible mechanism for the rapid modulation of ATP-mediated responses potentially relevant during physiological and pathological conditions.

  14. Differential S1P Receptor Profiles on M1- and M2-Polarized Macrophages Affect Macrophage Cytokine Production and Migration.

    PubMed

    Müller, Jan; von Bernstorff, Wolfram; Heidecke, Claus-Dieter; Schulze, Tobias

    2017-01-01

    Introduction . Macrophages are key players in complex biological processes. In response to environmental signals, macrophages undergo polarization towards a proinflammatory (M1) or anti-inflammatory (M2) phenotype. Sphingosine 1-phosphate (S1P) is a bioactive lysophospholipid that acts via 5 G-protein coupled receptors (S1P 1-5 ) in order to influence a broad spectrum of biological processes. This study assesses S1P receptor expression on macrophages before and after M1 and M2 polarization and performs a comparative analysis of S1P signalling in the two activational states of macrophages. Methods . Bone marrow derived macrophages (BMDM) from C57 BL/6 mice were cultured under either M1- or M2-polarizing conditions. S1P-receptor expression was determined by quantitative RT-PCR. Influence of S1P on macrophage activation, migration, phagocytosis, and cytokine secretion was assessed in vitro. Results . All 5 S1P receptor subclasses were expressed in macrophages. Culture under both M1- and M2-polarizing conditions led to significant downregulation of S1P 1 . In contrast, M1-polarized macrophages significantly downregulated S1P 4 . The expression of the remaining three S1P receptors did not change. S1P increased expression of iNOS under M2-polarizing conditions. Furthermore, S1P induced chemotaxis in M1 macrophages and changed cytokine production in M2 macrophages. Phagocytosis was not affected by S1P-signalling. Discussion . The expression of different specific S1P receptor profiles may provide a possibility to selectively influence M1- or M2-polarized macrophages.

  15. P2X receptors as targets for the treatment of status epilepticus

    PubMed Central

    Henshall, David C.; Diaz-Hernandez, Miguel; Miras-Portugal, M. Teresa; Engel, Tobias

    2013-01-01

    Prolonged seizures are amongst the most common neurological emergencies. Status epilepticus is a state of continuous seizures that is life-threatening and prompt termination of status epilepticus is critical to protect the brain from permanent damage. Frontline treatment comprises parenteral administration of anticonvulsants such as lorazepam that facilitate γ-amino butyric acid (GABA) transmission. Because status epilepticus can become refractory to anticonvulsants in a significant proportion of patients, drugs which act on different neurotransmitter systems may represent potential adjunctive treatments. P2X receptors are a class of ligand-gated ion channel activated by ATP that contributes to neuro- and glio-transmission. P2X receptors are expressed by both neurons and glia in various brain regions, including the hippocampus. Electrophysiology, pharmacology and genetic studies suggest certain P2X receptors are activated during pathologic brain activity. Expression of several members of the family including P2X2, P2X4, and P2X7 receptors has been reported to be altered in the hippocampus following status epilepticus. Recent studies have shown that ligands of the P2X7 receptor can have potent effects on seizure severity during status epilepticus and mice lacking this receptor display altered seizures in response to chemoconvulsants. Antagonists of the P2X7 receptor also modulate neuronal death, microglial responses and neuroinflammatory signaling. Recent work also found altered neuronal injury and inflammation after status epilepticus in mice lacking the P2X4 receptor. In summary, members of the P2X receptor family may serve important roles in the pathophysiology of status epilepticus and represent novel targets for seizure control and neuroprotection. PMID:24324404

  16. P2X receptors as targets for the treatment of status epilepticus.

    PubMed

    Henshall, David C; Diaz-Hernandez, Miguel; Miras-Portugal, M Teresa; Engel, Tobias

    2013-11-26

    Prolonged seizures are amongst the most common neurological emergencies. Status epilepticus is a state of continuous seizures that is life-threatening and prompt termination of status epilepticus is critical to protect the brain from permanent damage. Frontline treatment comprises parenteral administration of anticonvulsants such as lorazepam that facilitate γ-amino butyric acid (GABA) transmission. Because status epilepticus can become refractory to anticonvulsants in a significant proportion of patients, drugs which act on different neurotransmitter systems may represent potential adjunctive treatments. P2X receptors are a class of ligand-gated ion channel activated by ATP that contributes to neuro- and glio-transmission. P2X receptors are expressed by both neurons and glia in various brain regions, including the hippocampus. Electrophysiology, pharmacology and genetic studies suggest certain P2X receptors are activated during pathologic brain activity. Expression of several members of the family including P2X2, P2X4, and P2X7 receptors has been reported to be altered in the hippocampus following status epilepticus. Recent studies have shown that ligands of the P2X7 receptor can have potent effects on seizure severity during status epilepticus and mice lacking this receptor display altered seizures in response to chemoconvulsants. Antagonists of the P2X7 receptor also modulate neuronal death, microglial responses and neuroinflammatory signaling. Recent work also found altered neuronal injury and inflammation after status epilepticus in mice lacking the P2X4 receptor. In summary, members of the P2X receptor family may serve important roles in the pathophysiology of status epilepticus and represent novel targets for seizure control and neuroprotection.

  17. Allosteric modulation of ATP-gated P2X receptor channels

    PubMed Central

    Coddou, Claudio; Stojilkovic, Stanko S.; Huidobro-Toro, J. Pablo

    2013-01-01

    Seven mammalian purinergic receptor subunits, denoted P2X1 to P2X7, and several spliced forms of these subunits have been cloned. When heterologously expressed, these cDNAs encode ATP-gated non-selective cation channels organized as trimers. All activated receptors produce cell depolarization and promote Ca2+ influx through their pores and indirectly by activating voltage-gated calcium channels. However, the biophysical and pharmacological properties of these receptors differ considerably, and the majority of these subunits are also capable of forming heterotrimers with other members of the P2X receptor family, which confers further different properties. These channels have three ATP binding domains, presumably located between neighboring subunits, and occupancy of at least two binding sites is needed for their activation. In addition to the orthosteric binding sites for ATP, these receptors have additional allosteric sites that modulate the agonist action at receptors, including sites for trace metals, protons, neurosteroids, reactive oxygen species and phosphoinositides. The allosteric regulation of P2X receptors is frequently receptor-specific and could be a useful tool to identify P2X members in native tissues and their roles in signaling. The focus of this review is on common and receptor-specific allosteric modulation of P2X receptors and the molecular base accounting for allosteric binding sites. PMID:21639805

  18. Production of interleukin-2 (IL-2) and expression of IL-2 receptor in patients with IgA nephropathy.

    PubMed

    Lee, T W; Kim, M J

    1992-01-01

    IL-2 production has been measured in several disease including type I diabetes mellitus, systemic lupus erythematosus, acquired immunodeficiency syndrome and active pulmonary sarcoidosis and its pathogenetic role was suggested. In IgA nephropathy, altered T cell subsets were reported to be associated with increased synthesis of IgA. The altered IL-2 production and the expression of IL-2 receptor might be involved in the pathogenesis of IgA nephropathy. To investigate the role of T cell mediated immunity in the pathogenesis of IgA nephropathy, the immune parameters such as T cell subsets, NK cell activity, interleukin-2 (IL-2) production and IL-2 receptor expression on peripheral blood mononuclear cells (PBMC) were measured before and/or after phytohemagglutinin (PHA) stimulation in 15 patients with IgA nephropathy. Age and sex matched 15 healthy controls and the correlations between the IL-2 production and immune parameters were evaluated. The mean percentages of T helper/inducer cells (CD4), T suppressor/cytotoxic cells (CD8) and the CD4/CD8 ratio of the patients were not different from those of controls and the proportions of CD8 CD11b cell in the patients (21.0 +/- 3.6%) were significantly lower than those in controls (30.5 +/- 5.3%) (p < 0.005). The production of IL-2 by fresh PBMC of both patients and controls was in undetectable ranges. The production of IL-2 by PHA stimulated PBMC of patients was significantly higher than that of controls (140.03 +/- 43.2 U/ml vs 106.5 +/- 42.1 U/ml, p < 0.05). The proportions of lymphocytes expressing the IL-2 receptor (CD25) before the stimulation with PHA in patients were 1.22 +/- 1.00 percent and were not different from those in controls (1.12 +/- 0.78 percent). The correlations between the production of IL-2 and the concentrations of serum IgA, the degrees of histologic alterations and the proportions of CD8 and CD8CD11b cells were not significant. There was a weak tendency of a positive correlation (p < 0.1) between

  19. Clopidogrel (Plavix), a P2Y12 receptor antagonist, inhibits bone cell function in vitro and decreases trabecular bone in vivo.

    PubMed

    Syberg, Susanne; Brandao-Burch, Andrea; Patel, Jessal J; Hajjawi, Mark; Arnett, Timothy R; Schwarz, Peter; Jorgensen, Niklas R; Orriss, Isabel R

    2012-11-01

    Clopidogrel (Plavix), a selective P2Y(12) receptor antagonist, is widely prescribed to reduce the risk of heart attack and stroke and acts via the inhibition of platelet aggregation. Accumulating evidence now suggests that extracellular nucleotides, signaling through P2 receptors, play a significant role in bone, modulating both osteoblast and osteoclast function. In this study, we investigated the effects of clopidogrel treatment on (1) bone cell formation, differentiation, and activity in vitro; and (2) trabecular and cortical bone parameters in vivo. P2Y(12) receptor expression by osteoblasts and osteoclasts was confirmed using qPCR and Western blotting. Clopidogrel at 10 µM and 25 µM inhibited mineralized bone nodule formation by 50% and >85%, respectively. Clopidogrel slowed osteoblast proliferation with dose-dependent decreases in cell number (25% to 40%) evident in differentiating osteoblasts (day 7). A single dose of 10 to 25 µM clopidogrel to mature osteoblasts also reduced cell viability. At 14 days, ≥10 µM clopidogrel decreased alkaline phosphatase (ALP) activity by ≤70% and collagen formation by 40%, while increasing adipocyte formation. In osteoclasts, ≥1 µM clopidogrel inhibited formation, viability and resorptive activity. Twenty-week-old mice (n = 10-12) were ovariectomized or sham treated and dosed orally with clopidogrel (1 mg/kg) or vehicle (NaCl) daily for 4 weeks. Dual-energy X-ray absorptiometry (DXA) analysis showed clopidogrel-treated animals had decreases of 2% and 4% in whole-body and femoral bone mineral density (BMD), respectively. Detailed analysis of trabecular and cortical bone using micro-computed tomography (microCT) showed decreased trabecular bone volume in the tibia (24%) and femur (18%) of clopidogrel-treated mice. Trabecular number was reduced 20%, while trabecular separation was increased up to 15%. Trabecular thickness and cortical bone parameters were unaffected. Combined, these findings indicate that long

  20. Endosulfan induces CYP2B6 and CYP3A4 by activating the pregnane X receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casabar, Richard C.T.; Das, Parikshit C.; DeKrey, Gregory K.

    Endosulfan is an organochlorine pesticide commonly used in agriculture. Endosulfan has affects on vertebrate xenobiotic metabolism pathways that may be mediated, in part, by its ability to activate the pregnane X receptor (PXR) and/or the constitutive androstane receptor (CAR) which can elevate expression of cytochrome P450 (CYP) enzymes. This study examined the dose-dependency and receptor specificity of CYP induction in vitro and in vivo. The HepG2 cell line was transiently transfected with CYP2B6- and CYP3A4-luciferase promoter reporter plasmids along with human PXR (hPXR) or hCAR expression vectors. In the presence of hPXR, endosulfan-alpha exposure caused significant induction of CYP2B6 (16-fold)more » and CYP3A4 (11-fold) promoter activities over control at 10 {mu}M. The metabolite endosulfan sulfate also induced CYP2B6 (12-fold) and CYP3A4 (6-fold) promoter activities over control at 10 {mu}M. In the presence of hCAR-3, endosulfan-alpha induced CYP2B6 (2-fold) promoter activity at 10 {mu}M, but not at lower concentrations. These data indicate that endosulfan-alpha significantly activates hPXR strongly and hCAR weakly. Using western blot analysis of human hepatocytes, the lowest concentrations at which CYP2B6 and CYP3A4 protein levels were found to be significantly elevated by endosulfan-alpha were 1.0 {mu}M and 10 {mu}M, respectively. In mPXR-null/hPXR-transgenic mice, endosulfan-alpha exposure (2.5 mg/kg/day) caused a significant reduction of tribromoethanol-induced sleep times by approximately 50%, whereas no significant change in sleep times was observed in PXR-null mice. These data support the role of endosulfan-alpha as a strong activator of PXR and inducer of CYP2B6 and CYP3A4, which may impact metabolism of CYP2B6 or CYP3A4 substrates.« less

  1. Endosulfan induces CYP2B6 and CYP3A4 by activating the pregnane X receptor.

    PubMed

    Casabar, Richard C T; Das, Parikshit C; Dekrey, Gregory K; Gardiner, Catherine S; Cao, Yan; Rose, Randy L; Wallace, Andrew D

    2010-06-15

    Endosulfan is an organochlorine pesticide commonly used in agriculture. Endosulfan has affects on vertebrate xenobiotic metabolism pathways that may be mediated, in part, by its ability to activate the pregnane X receptor (PXR) and/or the constitutive androstane receptor (CAR) which can elevate expression of cytochrome P450 (CYP) enzymes. This study examined the dose-dependency and receptor specificity of CYP induction in vitro and in vivo. The HepG2 cell line was transiently transfected with CYP2B6- and CYP3A4-luciferase promoter reporter plasmids along with human PXR (hPXR) or hCAR expression vectors. In the presence of hPXR, endosulfan-alpha exposure caused significant induction of CYP2B6 (16-fold) and CYP3A4 (11-fold) promoter activities over control at 10 microM. The metabolite endosulfan sulfate also induced CYP2B6 (12-fold) and CYP3A4 (6-fold) promoter activities over control at 10 microM. In the presence of hCAR-3, endosulfan-alpha induced CYP2B6 (2-fold) promoter activity at 10 microM, but not at lower concentrations. These data indicate that endosulfan-alpha significantly activates hPXR strongly and hCAR weakly. Using western blot analysis of human hepatocytes, the lowest concentrations at which CYP2B6 and CYP3A4 protein levels were found to be significantly elevated by endosulfan-alpha were 1.0 microM and 10 microM, respectively. In mPXR-null/hPXR-transgenic mice, endosulfan-alpha exposure (2.5mg/kg/day) caused a significant reduction of tribromoethanol-induced sleep times by approximately 50%, whereas no significant change in sleep times was observed in PXR-null mice. These data support the role of endosulfan-alpha as a strong activator of PXR and inducer of CYP2B6 and CYP3A4, which may impact metabolism of CYP2B6 or CYP3A4 substrates. Copyright 2010 Elsevier Inc. All rights reserved.

  2. The mannose 6-phosphate-binding sites of M6P/IGF2R determine its capacity to suppress matrix invasion by squamous cell carcinoma cells

    PubMed Central

    Probst, Olivia C.; Karayel, Evren; Schida, Nicole; Nimmerfall, Elisabeth; Hehenberger, Elisabeth; Puxbaum, Verena; Mach, Lukas

    2013-01-01

    The M6P (mannose 6-phosphate)/IGF2R (insulin-like growth factor II receptor) interacts with a variety of factors that impinge on tumour invasion and metastasis. It has been shown that expression of wild-type M6P/IGF2R reduces the tumorigenic and invasive properties of receptor-deficient SCC-VII squamous cell carcinoma cells. We have now used mutant forms of M6P/IGF2R to assess the relevance of the different ligand-binding sites of the receptor for its biological activities in this cellular system. The results of the present study demonstrate that M6P/IGF2R does not require a functional binding site for insulin-like growth factor II for inhibition of anchorage-independent growth and matrix invasion by SCC-VII cells. In contrast, the simultaneous mutation of both M6P-binding sites is sufficient to impair all cellular functions of the receptor tested. These findings highlight that the interaction between M6P/IGF2R and M6P-modified ligands is not only important for intracellular accumulation of lysosomal enzymes and formation of dense lysosomes, but is also crucial for the ability of the receptor to suppress SCC-VII growth and invasion. The present study also shows that some of the biological activities of M6P/IGF2R in SCC-VII cells strongly depend on a functional M6P-binding site within domain 3, thus providing further evidence for the non-redundant cellular functions of the individual carbohydrate-binding domains of the receptor. PMID:23347038

  3. Time-course of 5-HT(6) receptor mRNA expression during memory consolidation and amnesia.

    PubMed

    Huerta-Rivas, A; Pérez-García, G; González-Espinosa, C; Meneses, A

    2010-01-01

    Growing evidence indicates that antagonists of the 5-hydroxytryptamine (serotonin) receptor(6) (5-HT(6)) improve memory and reverse amnesia although the mechanisms involved are poorly understood. Hence, in this paper RT-PCR was used to evaluate changes in mRNA expression of 5-HT(6) receptor in trained and untrained rats treated with the 5-HT(6) receptor antagonist SB-399885 and amnesic drugs scopolamine or dizocilpine. Changes in mRNA expression of 5-HT(6) receptor were investigated at different times in prefrontal cortex, hippocampus and striatum. Data indicated that memory in the Pavlovian/instrumental autoshaping task was a progressive process associated to reduced mRNA expression of 5-HT(6) receptor in the three structures examined. SB-399885 improved long-term memory at 48h, while the muscarinic receptor antagonist scopolamine or the non-competitive NMDA receptor antagonist dizocilpine impaired it at 24h. Autoshaping training and treatment with SB-399885 increased 5-HT(6) receptor mRNA expression in (maximum increase) prefrontal cortex and striatum, 24 or 48h. The scopolamine-induced amnesia suppressed 5-HT(6) receptor mRNA expression while the dizocilpine-induced amnesia did not modify 5-HT(6) receptor mRNA expression. SB-399885 and scopolamine or dizocilpine were able to reestablish memory and 5-HT(6) receptor mRNA expression. These data confirmed previous memory evidence and of more interest is the observation that training, SB-399885 and amnesic drugs modulated 5-HT(6) receptor mRNA expression in prefrontal cortex, hippocampus and striatum. Further investigation in different memory tasks, times and amnesia models together with more complex control groups might provide further clues. Copyright 2009 Elsevier Inc. All rights reserved.

  4. Prognostic value of purinergic P2X7 receptor expression in patients with hepatocellular carcinoma after curative resection.

    PubMed

    Liu, Haiou; Liu, Weisi; Liu, Zheng; Liu, Yidong; Zhang, Weijuan; Xu, Le; Xu, Jiejie

    2015-07-01

    The family of type 2 purinergic (P2) receptors, especially P2X7, is responsible for the direct tumor-killing functions of extracellular adenosine triphosphate (ATP), but the precise role of P2X7 in the progression of hepatocellular carcinoma (HCC) remains elusive. This study aims to evaluate prognostic value of P2X7 expression in HCC patients after surgical resection. Expression of P2X7 was assessed by immunohistochemistry in tissue microarrays containing paired tumor and peritumoral liver tissues from 273 patients with HCC who had undergone hepatectomy between 2006 and 2007. Prognostic value of P2X7 expression and clinical outcomes were evaluated. Peritumoral P2X7 expression was significantly higher than intratumoral P2X7 expression. No significant prognostic difference was observed for overall survival for intratumoral P2X7 density, whereas peritumoral P2X7 density indicates unfavorable overall survival in training set and BCLC stage 0-A subset. Besides, peritumoral P2X7 density, which correlated with tumor size, venous invasion, and BCLC stage, was identified as an independent poor prognosticator for overall survival and recurrence-free survival. The association was further validated in validation set. Peritumoral P2X7 is a potential unfavorable prognosticator for overall survival and recurrence free survival in HCC patients after surgical resection. Further external validation and functional analysis should be pursued to evaluate its potential prognostic value and therapeutic significance for HCC patients.

  5. P2X purinergic receptor ligands: recently patented compounds.

    PubMed

    Gunosewoyo, Hendra; Kassiou, Michael

    2010-05-01

    P2X channels are ionotropic purinergic receptors that are currently under scrutiny as attractive targets for novel therapeutics in areas including chronic inflammation, pain and depression. Their wide expression in the CNS, recent advances in the biochemical and pharmacological properties as well as increasing numbers of patents published in this research domain demand a review in this field. The patent literature covering novel drug-like antagonists for each P2X receptor subtype (P2X1R to P2X7R) up to December 2009 is described in this review article together with their recent highlights in pharmacology. Readers will gain an up-to-date overview of patents covering drug-like antagonists for seven P2X receptor subtypes within the last 4 years. P2X7R antagonists and other P2X inhibitors will probably be on the market for combating rheumatoid arthritis and other diseases. Some P2X7R antagonists are already in Phase I and II clinical trials.

  6. Pharmacological similarities between native brain and heterologously expressed α4β2 nicotinic receptors

    PubMed Central

    Shafaee, Navid; Houng, McCann; Truong, Anthony; Viseshakul, Nareerat; Figl, Antonio; Sandhu, Sumandeep; Forsayeth, John R; Dwoskin, Linda P; Crooks, Peter A; Cohen, Bruce N

    1999-01-01

    We studied the pharmacological properties of native rat brain and heterologously expressed rat α4β2 nicotinic receptors immunoprecipitated onto a fixed substrate with the anti-α4 antibody mAb 299.Immunodepletion with the anti-β2 antibody mAb 270 showed that 89% of the mAb-299-precipitated rat brain receptors contained β2.The association and dissociation rate constants for 30 pM ±[3H]-epibatidine binding to α4β2 receptors expressed in oocytes were 0.02±0.01 and 0.03±0.01 min−1 (±standard error, degrees of freedom=7–8) at 20–23°C.The Hill coefficients for ±[3H]epibatidine binding to the native brain, α4β2 receptors expressed in oocytes, and α4β2 receptors expressed in CV-1 cells (using recombinant adenovirus) were 0.69–0.70 suggesting a heterogeneous receptor population. Fits of the ±[3H]-epibatidine concentration-binding data to a two-site model gave KD s of 8–30 and 560–1,200 pM. The high-affinity sites comprised 73–74% of the native brain and oocyte α4β2 receptor population, 85% of the CV-1 α4β2 receptor population.The expression of rat α4β2 receptors in CV-1 cells using vaccinia viral infection-transfection resulted in a more homogeneous receptor population (Hill coefficient of 1.0±0.2). Fits of the ±[3H]-epibatidine binding data to a single-site model gave a KD of 40±3 pM.DHβE (IC50=260–470 nM) and the novel nicotine analogue NDNI (IC50=7–10 μM) inhibited 30 pM±[3H]-epibatidine binding to the native brain and heterologously expressed α4β2 receptors equally well.The results show that α4β2-containing nicotinic receptors in the rat brain and heterologously expressed rat α4β2 receptors have similar affinities for ±[3H]-epibatidine, DHβE, and NDNI. PMID:10578144

  7. Nandrolone decreases mu opioid receptor expression in SH-SY5Y human neuroblastoma cells.

    PubMed

    Guarino, Goffredo; Spampinato, Santi

    2008-07-16

    Nandrolone and other anabolic androgenic steroids alter the expression and function of neurotransmitter systems and contribute to drug dependence. Nandrolone treatment (10-10 M) caused a time-dependent and concentration-dependent downregulation of mu opioid receptor (MOPr) transcripts in SH-SY5Y human neuroblastoma cells. This effect was prevented by the androgen receptor antagonist hydroxyflutamide. Receptor binding assays confirmed a decrease in MOPr of approximately 40% in nandrolone-treated cells. Treatment with actinomycin D (10 (-5)M), a transcription inhibitor, revealed that nandrolone might regulate MOPr mRNA stability. In SH-SY5Y cells transfected with a human MOPr luciferase promoter/reporter construct, nandrolone did not alter the rate of gene transcription. These results suggest that nandrolone may regulate MOPr expression through posttranscriptional mechanisms requiring the androgen receptor.

  8. Substance P receptor binding sites are expressed by glia in vivo after neuronal injury

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mantyh, P.W.; Johnson, D.J.; Boehmer, C.G.

    1989-07-01

    In vitro studies have demonstrated that glia can express functional receptors for a variety of neurotransmitters. To determine whether similar neurotransmitter receptors are also expressed by glia in vivo, the authors examined the glial scar in the transected optic nerve of the albino rabbit by quantitative receptor autoradiography. Receptor binding sites for radiolabeled calcitonin gene-related peptide, cholecystokinin, galanin, glutamate, somatostatin, substance P, and vasoactive intestinal peptide were examined. Specific receptor binding sites for each of these neurotransmitters were identified in the rabbit forebrain but were not detected in the normal optic nerve or tract. In the transected optic nerve andmore » tract, only receptor binding sites for substance P were expressed at detectable levels. The density of substance P receptor binding sites observed in this glial scar is among the highest observed in the rabbit forebrain. Ligand displacement and saturation experiments indicate that the substance P receptor binding site expressed by the glial scar has pharmacological characteristics similar to those of substance P receptors in the rabbit striatum, rat brain, and rat and canine gut. The present study demonstrates that glial cells in vivo express high concentrations of substance P receptor binding sites after transection of retinal ganglion cell axons. Because substance P has been shown to regulate inflammatory and immune responses in peripheral tissues, substance P may also, by analogy, be involved in regulating the glial response to injury in the central nervous system.« less

  9. Hypothyroidism Affects D2 Receptor-mediated Breathing without altering D2 Receptor Expression

    PubMed Central

    Schlenker, Evelyn H.; Rio, Rodrigo Del; Schultz, Harold D.

    2015-01-01

    Bromocriptine depressed ventilation in air and D2 receptor expression in the nucleus tractus solitaries (NTS) in male hypothyroid hamsters. Here we postulated that in age- matched hypothyroid female hamsters, the pattern of D2 receptor modulation of breathing and D2 receptor expression would differ from those reported in hypothyroid males. In females hypothyroidism did not affect D2 receptor protein levels in the NTS, carotid bodies or striatum. Bromocriptine, but not carmoxirole (a peripheral D2 receptor agonist), increased oxygen consumption and body temperature in awake air-exposed hypothyroid female hamsters and stimulated their ventilation before and following exposure to hypoxia. Carmoxirole depressed frequency of breathing in euthyroid hamsters prior to, during and following hypoxia exposures and stimulated it in the hypothyroid hamsters following hypoxia. Although hypothyroidism did not affect expression of D2 receptors, it influenced central D2 modulation of breathing in a disparate manner relative to euthyroid hamsters. PMID:24434437

  10. Hypothyroidism affects D2 receptor-mediated breathing without altering D2 receptor expression.

    PubMed

    Schlenker, Evelyn H; Del Rio, Rodrigo; Schultz, Harold D

    2014-03-01

    Bromocriptine depressed ventilation in air and D2 receptor expression in the nucleus tractus solitaries (NTS) in male hypothyroid hamsters. Here we postulated that in age-matched hypothyroid female hamsters, the pattern of D2 receptor modulation of breathing and D2 receptor expression would differ from those reported in hypothyroid males. In females hypothyroidism did not affect D2 receptor protein levels in the NTS, carotid bodies or striatum. Bromocriptine, but not carmoxirole (a peripheral D2 receptor agonist), increased oxygen consumption and body temperature in awake air-exposed hypothyroid female hamsters and stimulated their ventilation before and following exposure to hypoxia. Carmoxirole depressed frequency of breathing in euthyroid hamsters prior to, during and following hypoxia exposures and stimulated it in the hypothyroid hamsters following hypoxia. Although hypothyroidism did not affect expression of D2 receptors, it influenced central D2 modulation of breathing in a disparate manner relative to euthyroid hamsters. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. An analysis of microvessel density, androgen receptor, p53 and HER-2/neu expression and Gleason score in prostate cancer . preliminary results and therapeutic implications.

    PubMed

    Mydlo, J H; Kral, J G; Volpe, M; Axotis, C; Macchia, R J; Pertschuk, L P

    1998-01-01

    To investigate relationships between microvessel density (MVD), androgen receptors (AR), mutant p53 and HER-2/neu expression and Gleason score (GS) to further understand the tumor biology of prostate cancer (CAP). Slides of CAP from patients who underwent radical prostatectomy or channel transurethral resection of the prostate (TURP) were tested for androgen receptors by immunocytochemical assay and MVD was analyzed by staining with antibodies to the endothelial cell membrane molecule PECAM-1/CD-31. The p53 monoclonal antibody D07 and HER-2 9G6 mouse monoclonal antibody were used to assess p53 and HER-2/neu expression, respectively. The results were correlated with GS and clinical stage by multivariate analysis. We found a fourfold greater expression of MVD in prostate cancer specimens compared to neighboring normal prostate tissue. We observed a greater concentration of MVD in the higher Gleason scores (r = 0.40, p = 0. 06), and a correlation of Gleason score with mutant p53 expression (r = 0.57, p <0.05). We did not observe any associations between AR or HER-2/neu to Gleason score. More than half of the patients with specimens with 50% or greater expression of mutant p53 were in stage D2 (T4NxM1b) at the time of biopsy. We observed a correlation between mutant p53 and GS, and a greater concentration of MVD in the higher GS. Since the neovascularity of prostate tumors can be attenuated by radiation and hormones, while mutant p53 may confer resistance to such treatment, it appears that p53 expression may also play an important role in addition to angiogenesis in the virulence of prostate cancer. These data may aid in allocating patients to different treatment modalities.

  12. Structure and function of the amygdaloid NPY system: NPY Y2 receptors regulate excitatory and inhibitory synaptic transmission in the centromedial amygdala.

    PubMed

    Wood, J; Verma, D; Lach, G; Bonaventure, P; Herzog, H; Sperk, G; Tasan, R O

    2016-09-01

    The amygdala is essential for generating emotional-affective behaviors. It consists of several nuclei with highly selective, elaborate functions. In particular, the central extended amygdala, consisting of the central amygdala (CEA) and the bed nucleus of the stria terminalis (BNST) is an essential component actively controlling efferent connections to downstream effectors like hypothalamus and brain stem. Both, CEA and BNST contain high amounts of different neuropeptides that significantly contribute to synaptic transmission. Among these, neuropeptide Y (NPY) has emerged as an important anxiolytic and fear-reducing neuromodulator. Here, we characterized the expression, connectivity and electrophysiological function of NPY and Y2 receptors within the CEA. We identified several NPY-expressing neuronal populations, including somatostatin- and calretinin-expressing neurons. Furthermore, in the main intercalated nucleus, NPY is expressed primarily in dopamine D1 receptor-expressing neurons but also in interspersed somatostatin-expressing neurons. Interestingly, NPY neurons did not co-localize with the Y2 receptor. Retrograde tract tracing experiments revealed that NPY neurons reciprocally connect the CEA and BNST. Functionally, the Y2 receptor agonist PYY3-36, reduced both, inhibitory as well as excitatory synaptic transmission in the centromedial amygdala (CEm). However, we also provide evidence that lack of NPY or Y2 receptors results in increased GABA release specifically at inhibitory synapses in the CEm. Taken together, our findings suggest that NPY expressed by distinct populations of neurons can modulate afferent and efferent projections of the CEA via presynaptic Y2 receptors located at inhibitory and excitatory synapses.

  13. Potential Involvement of P2 Receptors in the Pathological Processes of Hyperthyroidism: A Pilot Study.

    PubMed

    Hong, Wu; Li, Guodong; Nie, Yijun; Zou, Lifang; Zhang, Xi; Liu, Shuangmei; Li, Guilin; Xu, Hong; Zhang, Chun-Ping; Liang, Shangdong

    2016-05-01

    Symptoms of hyperthyroidism manifest mainly as changes in the nervous and metabolic systems. Whether P2X receptors (ionotropic ATP purinergic receptors, including P2X3 receptor and P2X7 receptor) are involved in the alterations of these disorders still remains unclear. Thus, this study aimed to assess the association of hyperthyroidism with the expression of P2X3 and P2X7 receptors and the concentrations of ATP in blood leukocytes and catecholamine. Twelve healthy subjects and twelve patients diagnosed with hyperthyroidism were recruited. Serum free triiodothyronine (FT3), free thyroxine (FT4) and thyroid stimulating hormone (TSH) levels had been detected by chemiluminescence method. Meanwhile, the catecholamine levels (including adrenaline, noradrenaline, and dopamine) in plasma, ATP level and P2X receptors (including P2X3 receptor and P2X7 receptor) in peripheral blood had been detected by high performance liquid chromatography, bioluminescence method, and reverse transcription polymerase chain reaction, respectively. Levels of epinephrine and norepinephrine were significantly higher in the hyperthyroidism group compared with the control group. The concentration of ATP in the hyperthyroidism group was significantly higher than its in the control group. The expression of P2X3 mRNA and P2X7 mRNA in hyperthyroidism group were significantly increased compared with those in control group. In a conclusion, there is a relationship between the elevated expression of P2X3 receptor and P2X7 receptor in peripheral blood leukocytes and high serum epinephrine and norepinephrine levels in hyperthyroidism patients. © 2016 by the Association of Clinical Scientists, Inc.

  14. Monitoring platelet inhibition after clopidogrel with the VerifyNow-P2Y12(R) rapid analyzer: the VERIfy Thrombosis risk ASsessment (VERITAS) study.

    PubMed

    Malinin, Alex; Pokov, Alex; Spergling, Malcolm; Defranco, Anthony; Schwartz, Kenneth; Schwartz, Dianne; Mahmud, Ehtisham; Atar, Dan; Serebruany, Victor

    2007-01-01

    Clopidogrel inhibits platelet P2Y12 ADP receptors, while ADP, as an inductor of aggregation, stimulates both P2Y12 and P2Y1 platelet receptors. Despite a clinical loading dose routine with clopidogrel, some patients still experience coronary stent thrombosis suggesting persistent platelet activation. The VerifyNow-P2Y12 is a rapid assay that test platelet activity over 3 min and uses of the combination of ADP and prostaglandin E1 (PGE1) to directly measure the effects of clopidogrel on the P2Y12 receptor. ADP is used to maximally activate the platelets by binding to the P2Y1 and P2Y12 platelet receptors, while PGE1 is used to suppress the ADP-induced P2Y1-mediated increase in intracellular calcium levels. The VERIfy Thrombosis risk ASsessment (VERITAS) was a prospective study designed to measure platelet response to clopidogrel therapy in subjects with multiple risk factors or history of vascular disease using this novel point-of-care assay. 166 participants were enrolled in 4 participating sites. Data from 147 participants were analyzed after exclusion of 19 patients due to protocol violations. Platelets were assessed twice at baseline (before clopidogrel) and at 24 h post-loading 450 mg (110 participants) or 7 days after chronic clopidogrel treatment (75 mg/day) (37 patients). All participants received aspirin 81-325 mg for at least 2 days before the study enrollment. Results from the VerifyNow-P2Y12 assay are reported in P2Y12 reaction units (PRU). Clopidogrel therapy resulted in a mean 64.0+/-25.3% PRU reduction. No participant reached PRU inhibition below 10% of baseline. Distribution of PRU values for the VerifyNow-P2Y12 assay shows a separation from baseline to post-clopidogrel assay values with some overlap due to high inter-individual variations in response. VerifyNow-P2Y12 is a reliable, fast and sensitive device suitable for monitoring of platelet inhibition during clopidogrel therapy.

  15. Estrogen receptorβ2 regulates interlukin-12 receptorβ2 expression via p38 mitogen-activated protein kinase signaling and inhibits non-small-cell lung cancer proliferation and invasion.

    PubMed

    Liu, Zhao-Guo; Jiao, Xing-Yuan; Chen, Zhen-Guang; Feng, Ke; Luo, Hong-He

    2015-07-01

    Lung cancer is one of the most common types of cancer and is the leading cause of cancer-related mortality worldwide. Estrogens are known to be involved in the development and progression of non-small-cell lung cancer (NSCLC). These effects are initially mediated through binding of estrogen to estrogen receptors (ERs), in particular ERβ2. Our preliminary studies demonstrated that ERβ2 and interleukin-12 receptorβ2 (IL-12Rβ2) expression are correlated in NSCLC. The present study investigated the expression of these proteins in NSCLC cells and how changes in their expression affected cell proliferation and invasion. In addition, it aimed to explore whether p38 mitogen-activated protein kinase (p38MAPK) is involved in the regulation of IL-12Rβ2 expression by ERβ2. An immunocytochemical array was used to observe the distribution of ERβ2 and IL-12Rβ2. Co-immuoprecipitation was employed to observe the interaction between p38MAPK and IL-12Rβ2, by varying the expression of ERβ2 and p38MAPK. Western-blot analysis and reverse transcription-polymerase chain reaction assays were used to investigate the mechanism underlying ERβ2 regulation of IL-12Rβ2 expression. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, scratch wound healing and Transwell assays were used to investigate the impact of ERβ2 on proliferative, invasive and migratory abilities of NSCLC cells. ERβ2 was predominantly found in the cytoplasm and nucleus, whilst IL-12Rβ2 was largely confined to the cytoplasm, although a degree of expression was observed in the nucleus. Compared with normal bronchial epithelial cells, IL-12Rβ2 and ERβ2 were overexpressed in the NSCLC cell groups. Coimmuoprecipitation demonstrated an interaction between p38MAPK and IL-12Rβ2. ERβ2 appeared to upregulate IL-12Rβ2 expression and inhibition of p38MAPK attenuated this effect. ERβ2 and IL-12Rβ2 expression inhibited the proliferation, metastasis and invasion of NSCLC cell lines, but knockout of IL-12Rβ2

  16. Expression of Angiotensin II Types 1 and 2 Receptors in Endometriotic Lesions.

    PubMed

    Nakao, Takehiro; Chishima, Fumihisa; Sugitani, Masahiko; Tsujimura, Ryusuke; Hayashi, Chuyu; Yamamoto, Tatsuo

    2017-01-01

    The aim of this study was to evaluate the gene and protein expression of angiotensin type (AT) 1, AT2 receptors in endometriotic lesions and its relation to prostaglandin (PG) synthases. Endometriosis samples were obtained from 32 patients with endometriotic cysts. Endometrial tissues were obtained during operations for benign gynecological conditions. The expression of the AT1 and AT2 receptor mRNA and that of PG-endoperoxide synthase 2 and microsomal PGE2 synthase-1 (mPGES-1) was examined by quantitative RT-PCR. Immunohistochemical staining was performed for these receptors. AT1 and AT2 receptor proteins were mostly located in endometrial glandular epithelium and some stromal cells. Immunoreactivity of the receptor proteins was observed in both the eutopic endometrium and endometriotic lesions. The AT1/AT2 ratio in endometriotic cysts (median 7.29, range 1.88-187.60) was significantly increased compared with that in the eutopic endometrium in the proliferative-phase in controls (median 1.01, range 0.37-2.09, p < 0.001). There was a relationship between the AT1 mRNA expression and that of mPGES-1 mRNA in the endometriotic cysts (r = 0.394089, p < 0.05). There was a significant relationship between the mRNA expression of the AT2 receptor and that of mPGES-1 in eutopic endometrium of non-endometriotic control (r = 0.610714, p < 0.05). Renin-angiotensin system may play an important role in the pathophysiology of endometriosis. © 2016 S. Karger AG, Basel.

  17. Molecular dissection of purinergic P2X receptor channels.

    PubMed

    Stojilkovic, Stanko S; Tomic, Melanija; He, Mu-Lan; Yan, Zonghe; Koshimizu, Taka-Aki; Zemkova, Hana

    2005-06-01

    The P2X receptors (P2XRs) are a family of ATP-gated channels expressed in the plasma membrane of numerous excitable and nonexcitable cells and play important roles in control of cellular functions, such as neurotransmission, hormone secretion, transcriptional regulation, and protein synthesis. P2XRs are homomeric or heteromeric proteins, formed by assembly of at least three of seven subunits named P2X(1)-P2X(7). All subunits possess intracellular N- and C-termini, two transmembrane domains, and a relatively large extracellular ligand-binding loop. ATP binds to still an unidentified extracellular domain, leading to a sequence of conformational transitions between closed, open, and desensitized states. Removal of extracellular ATP leads to deactivation and resensitization of receptors. Activated P2XRs generate inward currents caused by Na(+) and Ca(2+) influx through the pore of channels, and thus mediate membrane depolarization and facilitation of voltage-gated calcium entry in excitable cells. No crystal structures are available for P2XRs and these receptors have no obvious similarity to other ion channels or ATP binding proteins, which limits the progress in understanding the relationship between molecular structure and conformational transitions of receptor in the presence of agonist and after its washout. We summarize here the alternative approaches in studies on molecular properties of P2XRs, including heteromerization, chimerization, mutagenesis, and biochemical studies.

  18. TREM2 p.H157Y Variant and the Risk of Alzheimer's Disease: A Meta-Analysis Involving 14,510 Subjects.

    PubMed

    Jiang, Teng; Hou, Jian-Kang; Gao, Qing; Yu, Jin-Tai; Zhou, Jun-Shan; Zhao, Hong-Dong; Zhang, Ying-Dong

    2016-01-01

    We recently revealed that p.H157Y (rs2234255), a rare coding variant of triggering receptor expressed on myeloid cells 2 gene (TREM2), was associated with Alzheimer's disease (AD) susceptibility in Han Chinese. Contrastingly, although p.H157Y was previously identified in both AD cases and controls by several sequencing studies, no association of this variant with disease susceptibility was reported. To gain a credible conclusion on the association between p.H157Y and AD risk, a meta-analysis involving 7,102 cases and 7,408 controls was conducted. Our results indicated that p.H157Y was associated with an increased risk of AD (OR=3.65, 95% CI: 1.61-8.28; P=0.002), further establishing TREM2 as an important susceptibility gene for this disease.

  19. Chronic ethanol exposure combined with high fat diet up-regulates P2X7 receptors that parallels neuroinflammation and neuronal loss in C57BL/6J mice

    PubMed Central

    Asatryan, Liana; Khoja, Sheraz; Rodgers, Kathleen E; Alkana, Ronald L; Tsukamoto, Hidekatsu; Davies, Daryl L.

    2015-01-01

    The present investigation tested the role of ATP-activated P2X7 receptors (P2X7Rs) in alcohol-induced brain damage using a model that combines intragastric (iG) ethanol feeding and high fat diet in C57BL/6J mice (Hybrid). The Hybrid paradigm caused increased levels of pro-inflammatory markers, changes in microglia and astrocytes, reduced levels of neuronal marker NeuN and increased P2X7R expression in ethanol-sensitive brain regions. Observed changes in P2X7R and NeuN expression were more pronounced in Hybrid paradigm with inclusion of additional weekly binges. In addition, high fat diet during Hybrid exposure aggravated the increase in P2X7R expression and activation of glial cells. PMID:26198936

  20. Identification of ectodomain regions contributing to gating, deactivation, and resensitization of purinergic P2X receptors.

    PubMed

    Zemkova, Hana; He, Mu-Lan; Koshimizu, Taka-aki; Stojilkovic, Stanko S

    2004-08-04

    The P2X receptors (P2XRs) are a family of ligand-gated channels activated by extracellular ATP through a sequence of conformational transitions between closed, open, and desensitized states. In this study, we examined the dependence of the activity of P2XRs on ectodomain structure and agonist potency. Experiments were done in human embryonic kidney 293 cells expressing rat P2X2aR, P2X2bR, and P2X3R, and chimeras having the V60-R180 or V60-F301 ectodomain sequences of P2X3R instead of the I66-H192 or I66-Y310 sequences of P2X2aR and P2X2bR. Chimeric P2X2a/V60-F301X3R and P2X2b/V60-F301X3R inherited the P2X3R ligand-selective profile, whereas the potency of agonists for P2X2a/V60-R180X3R was in between those observed at parental receptors. Furthermore, P2X2a/V60-F301X3R and P2X2a/V60-R180X3R desensitized in a P2X2aR-specific manner, and P2X2b/V60-F301X3R desensitized with rates comparable with those of P2X2bR. In striking contrast to parental receptors, the rates of decay in P2X2a/V60-F301X3R and P2X2b/V60-F301X3R currents after agonist withdrawal were 15- to 200-fold slower. For these chimeras, the decays in currents were not dependent on duration of stimuli and reflected both continuous desensitization and deactivation of receptors. Also, participation of deactivation in closure of channels inversely correlated with potency of agonists to activate receptors. The delay in deactivation was practically abolished in P2X2a/V60-R180X3R-expressing cells. However, the recovery from desensitization of P2X2a/V60-F301X3R and P2X2a/V60-R180X3R was similar and substantially delayed compared with that of parental receptors. These results indicate that both ectodomain halves participate in gating, but that the C and N halves influence the stability of open and desensitized conformation states, respectively, which in turn reflects on rates of receptor deactivation and resensitization.

  1. Uncoupling of the ITIM receptor G6b-B from the tyrosine phosphatases Shp1 and Shp2 disrupts platelet homeostasis in mice.

    PubMed

    Geer, Mitchell J; van Geffen, Johanna P; Gopalasingam, Piraveen; Vögtle, Timo; Smith, Christopher W; Heising, Silke; Kuijpers, Marijke J E; Tullemans, Bibian M E; Jarvis, Gavin E; Eble, Johannes A; Jeeves, Mark; Overduin, Michael; Heemskerk, Johan W M; Mazharian, Alexandra; Senis, Yotis A

    2018-06-11

    The immunoreceptor tyrosine-based inhibitory motif (ITIM)-containing receptor G6b-B has emerged as a key regulator of platelet homeostasis. However, it remains unclear how it mediates its effects. Tyrosine phosphorylation of the ITIM and immunoreceptor tyrosine-based switch motif (ITSM) within the cytoplasmic tail of G6b-B provides a docking site for SH2 domain-containing protein-tyrosine phosphatases Shp1 and Shp2, which are also critical regulators of platelet production and function. In this study, we investigate the physiological consequences of uncoupling G6b-B from Shp1 and Shp2. To address this, we generated a transgenic mouse model expressing a mutant form of G6b-B in which tyrosine (Y) residues 212 and 238 within the ITIM and ITSM were mutated to phenylalanine (F), respectively. Mice homozygous for the mutation (G6b-B diY/F) were macrothrombocytopenic, due to a reduction in platelet production, had large clusters of megakaryocytes and myelofibrosis at sites of hematopoiesis, similar to that observed in G6b knockout (G6b KO) mice. Platelets from G6b-B diY/F mice were hypo-responsive to collagen, due to a significant reduction in expression of the immunoreceptor tyrosine-based activation motif (ITAM)-containing collagen receptor complex GPVI-FcR γ-chain, and thrombin, that could be partially rescued by co-stimulating the platelets with ADP. In contrast, platelets from G6b-B diY/F, G6b KO and megakaryocyte-specific Shp2 KO mice were hyper-responsive to antibody-mediated cross-linking of the hemi-ITAM-containing podoplanin receptor CLEC-2, suggesting that G6b-B inhibits CLEC-2-mediated platelet activation through Shp2. Findings from this study demonstrate that G6b-B must engage with Shp1 and Shp2 in order to mediate its regulatory effects on platelet homeostasis. Copyright © 2018 American Society of Hematology.

  2. Characterization of SB-271046: A potent, selective and orally active 5-HT6 receptor antagonist

    PubMed Central

    Routledge, Carol; Bromidge, Steven M; Moss, Stephen F; Price, Gary W; Hirst, Warren; Newman, Helen; Riley, Graham; Gager, Tracey; Stean, Tania; Upton, Neil; Clarke, Stephen E; Brown, Anthony M; Middlemiss, Derek N

    2000-01-01

    SB-271046, potently displaced [3H]-LSD and [125I]-SB-258585 from human 5-HT6 receptors recombinantly expressed in HeLa cells in vitro (pKi 8.92 and 9.09 respectively). SB-271046 also displaced [125I]-SB-258585 from human caudate putamen and rat and pig striatum membranes (pKi 8.81, 9.02 and 8.55 respectively). SB-271046 was over 200 fold selective for the 5-HT6 receptor vs 55 other receptors, binding sites and ion channels. In functional studies on human 5-HT6 receptors SB-271046 competitively antagonized 5-HT-induced stimulation of adenylyl cyclase activity with a pA2 of 8.71. SB-271046 produced an increase in seizure threshold over a wide-dose range in the rat maximal electroshock seizure threshold (MEST) test, with a minimum effective dose of ⩽0.1 mg kg−1 p.o. and maximum effect at 4 h post-dose. The level of anticonvulsant activity achieved correlated well with the blood concentrations of SB-271046 (EC50 of 0.16 μM) and brain concentrations of 0.01–0.04 μM at Cmax. These data, together with the observed anticonvulsant activity of other selective 5-HT6 receptor antagonists, SB-258510 (10 mg kg−1, 26 h pre-test) and Ro 04-6790 (1–30 mg kg−1, 1 h pre-test), in the rat MEST test, suggest that the anticonvulsant properties of SB-271046 are likely to be mediated by 5-HT6 receptors. Overall, these studies demonstrate that SB-271046 is a potent and selective 5-HT6 receptor antagonist and is orally active in the rat MEST test. SB-271046 represents a valuable tool for evaluating the in vivo central function of 5-HT6 receptors. PMID:10928964

  3. Ca(2+)-stores mobilization by diadenosine tetraphosphate, Ap4A, through a putative P2Y purinoceptor in adrenal chromaffin cells.

    PubMed Central

    Castro, E.; Pintor, J.; Miras-Portugal, M. T.

    1992-01-01

    1. Diadenosine tetraphosphate (Ap4A) evoked a concentration-dependent increase in cytosolic [Ca2+] in resting chromaffin cells. The EC50 value for this action was 28.2 +/- 6.6 microM. This effect was also produced by diadenosine pentaphosphate (Ap5A) with an EC50 of 50 +/- 7 microM. 2. In contrast with this effect, pretreatment with Ap4A or Ap5A induced a 30% reduction in Ca2+ entry following 10 microM dimethylphenylpiperazinium. 3. The elevation in cytosolic [Ca2+] induced by Ap4A was persistent in approximately 100 nM external [Ca2+] and was sensitive to depletion of internal Ca2+ stores by a bradykinin prepulse or whole cell depletion in Ca2+. 4. The effect of Ap4A was mimicked and desensitized by the agonist adenosine 5'-O-(2-thiodiphosphate), and blocked by the P2Y-receptor antagonist, cibachrome blue. The P2X-receptor agonist alpha,beta-methylene adenosine 5'-triphosphate was inactive both by itself or in combination with Ap4A. This is compatible with a P2Y-purinoceptor-mediated action. PMID:1393282

  4. Ca(2+)-stores mobilization by diadenosine tetraphosphate, Ap4A, through a putative P2Y purinoceptor in adrenal chromaffin cells.

    PubMed

    Castro, E; Pintor, J; Miras-Portugal, M T

    1992-08-01

    1. Diadenosine tetraphosphate (Ap4A) evoked a concentration-dependent increase in cytosolic [Ca2+] in resting chromaffin cells. The EC50 value for this action was 28.2 +/- 6.6 microM. This effect was also produced by diadenosine pentaphosphate (Ap5A) with an EC50 of 50 +/- 7 microM. 2. In contrast with this effect, pretreatment with Ap4A or Ap5A induced a 30% reduction in Ca2+ entry following 10 microM dimethylphenylpiperazinium. 3. The elevation in cytosolic [Ca2+] induced by Ap4A was persistent in approximately 100 nM external [Ca2+] and was sensitive to depletion of internal Ca2+ stores by a bradykinin prepulse or whole cell depletion in Ca2+. 4. The effect of Ap4A was mimicked and desensitized by the agonist adenosine 5'-O-(2-thiodiphosphate), and blocked by the P2Y-receptor antagonist, cibachrome blue. The P2X-receptor agonist alpha,beta-methylene adenosine 5'-triphosphate was inactive both by itself or in combination with Ap4A. This is compatible with a P2Y-purinoceptor-mediated action.

  5. Impaired P2X1 Receptor-Mediated Adhesion in Eosinophils from Asthmatic Patients.

    PubMed

    Wright, Adam; Mahaut-Smith, Martyn; Symon, Fiona; Sylvius, Nicolas; Ran, Shaun; Bafadhel, Mona; Muessel, Michelle; Bradding, Peter; Wardlaw, Andrew; Vial, Catherine

    2016-06-15

    Eosinophils play an important role in the pathogenesis of asthma and can be activated by extracellular nucleotides released following cell damage or inflammation. For example, increased ATP concentrations were reported in bronchoalveolar lavage fluids of asthmatic patients. Although eosinophils are known to express several subtypes of P2 receptors for extracellular nucleotides, their function and contribution to asthma remain unclear. In this article, we show that transcripts for P2X1, P2X4, and P2X5 receptors were expressed in healthy and asthmatic eosinophils. The P2X receptor agonist α,β-methylene ATP (α,β-meATP; 10 μM) evoked rapidly activating and desensitizing inward currents (peak 18 ± 3 pA/pF at -60 mV) in healthy eosinophils, typical of P2X1 homomeric receptors, which were abolished by the selective P2X1 antagonist NF449 (1 μM) (3 ± 2 pA/pF). α,β-meATP-evoked currents were smaller in eosinophils from asthmatic patients (8 ± 2 versus 27 ± 5 pA/pF for healthy) but were enhanced following treatment with a high concentration of the nucleotidase apyrase (17 ± 5 pA/pF for 10 IU/ml and 11 ± 3 pA/pF for 0.32 IU/ml), indicating that the channels are partially desensitized by extracellular nucleotides. α,β-meATP (10 μM) increased the expression of CD11b activated form in eosinophils from healthy, but not asthmatic, donors (143 ± 21% and 108 ± 11% of control response, respectively). Furthermore, α,β-meATP increased healthy (18 ± 2% compared with control 10 ± 1%) but not asthmatic (13 ± 1% versus 10 ± 0% for control) eosinophil adhesion. Healthy human eosinophils express functional P2X1 receptors whose activation leads to eosinophil αMβ2 integrin-dependent adhesion. P2X1 responses are constitutively reduced in asthmatic compared with healthy eosinophils, probably as the result of an increase in extracellular nucleotide concentration. Copyright © 2016 by The American Association of Immunologists, Inc.

  6. Transcriptional Regulation of CYP2D6 Expression

    PubMed Central

    Pan, Xian; Ning, Miaoran

    2017-01-01

    CYP2D6-mediated drug metabolism exhibits large interindividual variability. Although genetic variations in the CYP2D6 gene are well known contributors to the variability, the sources of CYP2D6 variability in individuals of the same genotype remain unexplained. Accumulating data indicate that transcriptional regulation of CYP2D6 may account for part of CYP2D6 variability. Yet, our understanding of factors governing transcriptional regulation of CYP2D6 is limited. Recently, mechanistic studies of increased CYP2D6-mediated drug metabolism in pregnancy revealed two transcription factors, small heterodimer partner (SHP) and Krüppel-like factor 9, as a transcriptional repressor and an activator, respectively, of CYP2D6. Chemicals that increase SHP expression (e.g., retinoids and activators of farnesoid X receptor) were shown to downregulate CYP2D6 expression in the humanized mice as well as in human hepatocytes. This review summarizes the series of studies on the transcriptional regulation of CYP2D6 expression, potentially providing a basis to better understand the large interindividual variability in CYP2D6-mediated drug metabolism. PMID:27698228

  7. Protease-Activated Receptor 4 Variant p.Tyr157Cys Reduces Platelet Functional Responses and Alters Receptor Trafficking.

    PubMed

    Norman, Jane E; Cunningham, Margaret R; Jones, Matthew L; Walker, Mary E; Westbury, Sarah K; Sessions, Richard B; Mundell, Stuart J; Mumford, Andrew D

    2016-05-01

    Protease-activated receptor 4 (PAR4) is a key regulator of platelet reactivity and is encoded by F2RL3, which has abundant rare missense variants. We aimed to provide proof of principle that rare F2LR3 variants potentially affect platelet reactivity and responsiveness to PAR1 antagonist drugs and to explore underlying molecular mechanisms. We identified 6 rare F2RL3 missense variants in 236 cardiac patients, of which the variant causing a tyrosine 157 to cysteine substitution (Y157C) was predicted computationally to have the greatest effect on PAR4 structure. Y157C platelets from 3 cases showed reduced responses to PAR4-activating peptide and to α-thrombin compared with controls, but no reduction in responses to PAR1-activating peptide. Pretreatment with the PAR1 antagonist vorapaxar caused lower residual α-thrombin responses in Y157C platelets than in controls, indicating greater platelet inhibition. HEK293 cells transfected with a PAR4 Y157C expression construct had reduced PAR4 functional responses, unchanged total PAR4 expression but reduced surface expression. PAR4 Y157C was partially retained in the endoplasmic reticulum and displayed an expression pattern consistent with defective N-glycosylation. Mutagenesis of Y322, which is the putative hydrogen bond partner of Y157, also reduced PAR4 surface expression in HEK293 cells. Reduced PAR4 responses associated with Y157C result from aberrant anterograde surface receptor trafficking, in part, because of disrupted intramolecular hydrogen bonding. Characterization of PAR4 Y157C establishes that rare F2RL3 variants have the potential to markedly alter platelet PAR4 reactivity particularly after exposure to therapeutic PAR1 antagonists. © 2016 American Heart Association, Inc.

  8. Inhibitory Effect of Flavonolignans on the P2Y12 Pathway in Blood Platelets.

    PubMed

    Bijak, Michal; Szelenberger, Rafal; Dziedzic, Angela; Saluk-Bijak, Joanna

    2018-02-10

    Adenosine diphosphate (ADP) is the major platelet agonist, which is important in the shape changes, stability, and growth of the thrombus. Platelet activation by ADP is associated with the G protein-coupled receptors P2Y1 and P2Y12. The pharmacologic blockade of the P2Y12 receptor significantly reduces the risk of peripheral artery disease, myocardial infarction, ischemic stroke, and vascular death. Recent studies demonstrated the inhibition of ADP-induced blood platelet activation by three major compounds of the flavonolignans group: silybin, silychristin, and silydianin. For this reason, the aim of the current work was to verify the effects of silybin, silychristin, and silydianin on ADP-induced physiological platelets responses, as well as mechanisms of P2Y12-dependent intracellular signal transduction. We evaluated the effect of tested flavonolignans on ADP-induced blood platelets' aggregation in platelet-rich plasma (PRP) (using light transmission aggregometry), adhesion to fibrinogen (using the static method), and the secretion of PF-4 (using the ELISA method). Additionally, using the double labeled flow cytometry method, we estimated platelet vasodilator-stimulated phosphoprotein (VASP) phosphorylation. We demonstrated a dose-dependent reduction of blood platelets' ability to perform ADP-induced aggregation, adhere to fibrinogen, and secrete PF-4 in samples treated with flavonolignans. Additionally, we observed that all of the tested flavonolignans were able to increase VASP phosphorylation in blood platelets samples, which is correlated with P2Y12 receptor inhibition. All of these analyses show that silychristin and silybin have the strongest inhibitory effect on blood platelet activation by ADP, while silydianin also inhibits the ADP pathway, but to a lesser extent. The results obtained in this study clearly demonstrate that silybin, silychristin, and silydianin have inhibitory properties against the P2Y12 receptor and block ADP-induced blood platelet

  9. Glucocorticoid-dependent induction of interleukin-6 receptor expression in human hepatocytes facilitates interleukin-6 stimulation of amino acid transport.

    PubMed

    Fischer, C P; Bode, B P; Takahashi, K; Tanabe, K K; Souba, W W

    1996-05-01

    The authors studied the effects of interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-alpha) on glutamine and alanine transport in isolated human hepatocytes. They also evaluated the role of dexamethasone in modulating this response and its effects on the expression of the plasma membrane high-affinity IL-6 receptor. Animal studies indicate that cytokines are important mediators of the increased hepatic amino acid uptake that occurs during cancer and sepsis, but studies in human tissues are lacking. The control of transport by cytokines and cytokine receptor expression in the liver may provide a mechanism by which hepatocytes can modulate amino acid availability during catabolic disease states. Human hepatocytes were isolated from wedge biopsy specimens and plated in 24-well trays. Interleukin-6 and TNF-alpha, in combination with the synthetic glucocorticoid dexamethasone, were added to hepatocytes in culture, and the transport of radiolabeled glutamine and alanine was measured. Fluorescent-activated cell sorter (FACS) analysis was used to study the effects of dexamethasone on IL-6 receptor number in the well-differentiated human hepatoma HepG2. Both IL-6 and TNF-alpha exerted a small stimulatory effect on alanine and glutamine transport. Dexamethasone alone did not alter transport rates, but pretreatment of cells augmented the effects of both cytokines on carrier-mediated amino acid uptake. Dexamethasone pretreatment and a combination of IL-6 and TNF-alpha resulted in a greater than twofold increase in transport activity. Fluorescent-activated cell sorter analysis demonstrated that dexamethasone induced a threefold increase in the expression of high-affinity IL-6 receptors. Interleukin-6 and TNF-alpha work coordinately with glucocorticoids to stimulate amino acid uptake in human hepatocytes. Dexamethasone exerts a permissive effect on cytokine-mediated increases in transport by increasing IL-6 receptor expression on the cell surface. It is likely that this

  10. Tumor necrosis factor receptor-associated factor 6 (TRAF6) participates in anti-lipopolysaccharide factors (ALFs) gene expression in mud crab.

    PubMed

    Sun, Wan-Wei; Zhang, Xin-Xu; Wan, Wei-Song; Wang, Shu-Qi; Wen, Xiao-Bo; Zheng, Huai-Ping; Zhang, Yue-Ling; Li, Sheng-Kang

    2017-02-01

    Tumor necrosis factor receptor-associated factor 6 (TRAF6) is a key cytoplasm signal adaptor that mediates signals activated by tumor necrosis factor receptor (TNFR) superfamily and the Interleukin-1 receptor/Toll-like receptor (IL-1/TLR) superfamily. The full-length 2492 bp TRAF6 (Sp-TRAF6) from Scylla paramamosain contains 1800 bp of open reading frame (ORF) encoding 598 amino acids, including an N-terminal RING-type zinc finger, two TRAF-type zinc fingers and a conserved C-terminal meprin and TRAF homology (MATH) domain. Multiple alignment analysis shows that the putative amino acid sequence of Sp-TRAf6 has highest identity of 88% with Pt-TRAF6 from Portunus trituberculatus, while the similarity of Sp-TRAF6 with other crustacean sequences was 54-55%. RT-PCR analysis indicated that Sp-TRAF6 transcripts were predominantly expressed in the hepatopancreas and stomach, whereas it was barely detected in the heart and hemocytes in our study. Moreover, Sp-TRAF6 transcripts were significantly up-regulated after Vibrio parahemolyticus and LPS challenges. RNA interference assay was carried out used by siRNA to investigate the genes expression patterns regulated by Sp-TRAF6. The qRT-PCR results showed that silencing Sp-TRAF6 gene could inhibit SpALF1, SpALF2, SpALF5 and SpALF6 expression in hemocytes, while inhibit SpALF1, SpALF3, SpALF4, SpALF5 and SpALF6 expression in hepatopancreas. Taken together, the acute-phase response to immune challenges and the inhibition of SpALFs gene expression indicate that Sp-TRAF6 plays an important role in host defense against pathogen invasions via regulation of ALF gene expression in S. paramamosain. Copyright © 2016. Published by Elsevier Ltd.

  11. Detection of platelet sensitivity to inhibitors of COX-1, P2Y1, and P2Y12 using a whole blood microfluidic flow assay

    PubMed Central

    Li, Ruizhi; Diamond, Scott L.

    2014-01-01

    BACKGROUND Microfluidic devices recreate the hemodynamic conditions of thrombosis. METHODS Whole blood inhibited with PPACK was treated ex vivo with inhibitors and perfused over collagen for 300 s (wall shear rate = 200 s−1) using a microfluidic flow assay. Platelet accumulation was measured in the presence of COX-1 inhibitor (aspirin, ASA), P2Y1 inhibitor (MRS 2179), P2Y12 inhibitor (2MeSAMP) or combined P2Y1 and P2Y12 inhibitors. RESULTS High dose ASA (500 μM), 2MeSAMP (100 μM), MRS 2179 (10 μM),or combined 2MeSAMP and MRS 2179 decreased total platelet accumulation by 27.5%, 75.6%, 77.7%, and 87.9% (p < 0.01), respectively. ASA reduced secondary aggregation rate between 150 and 300 s without effect on primary deposition rate on collagen from 60 to 150 s. In contrast, 2MeSAMP and MRS 2179 acted earlier and reduced primary deposition to collagen between 60 and 105 s and secondary aggregation between 105 and 300 s. RCOX and RP2Y (defined as a ratio of secondary aggregation rate to primary deposition rate) demonstrated 9 of 10 subjects had RCOX < 1 or RP2Y < 1 following ASA or 2MeSAMP addition, while 6 of 10 subjects had RP2Y < 1 following MRS 2179 addition. Combined MRS 2179 and 2MeSAMP inhibited primary platelet deposition rate and platelet secondary aggregation beyond that of each individual inhibitor. Receiver-Operator Characteristic area under the curve (AUC) indicated the robustness of RCOX and RP2Y to detect inhibition of secondary platelet aggregation by ASA, 2MeSAMP, and MRS 2179 (AUC of 0.874 0.966, and 0.889, respectively). CONCLUSIONS Microfluidic devices can detect platelet sensitivity to antiplatelet agents. The R-value can serve as a self-normalized metric of platelet function for a single blood sample. PMID:24365044

  12. [Expression of Chemokine receptor CXCR6 and its significance in breast cancer cell lines].

    PubMed

    Cheng, Hao; Chen, Nian-yong

    2014-05-01

    To detect the expression of Chemokine receptor CXCR6 in invasive breast cancer cell lines and normal mammary epithelial cell line, and assess the relationship between CXCR6 expression and malignant behavior of breast cancer cells. Expression level of CXCR6 in different invasive breast cancer cell lines (SK-BR-3, MCF-7, MDA-MB-231) and normal mammary epithelial cell line (MCF-10A)was detected by real time reverse transcription-polymerase chain reaction (real time-PCR) and Western blot. Lentivirus was employed to interfere CXCR6 expression in MDA-MB-231. MTT assay and transwell chamber were used to study proliferative and invasive ability of those cells respectively. Vascular enothelial growth factor (VEGF) expression was detected to study the role of CXCR6 in angiogenesis. At both mRNA level and protein level, normal mammary epithelial cell line MCF-10A showed the weakest CXCR6 expression. The breast cancer cell lines expressed CXCR6 in different levels, the expression level of CXCR6 in highly invasive cell line MDA-MB-231 was significantly higher than that in two low-invasive cell lines SK-BR-3 and MCF-7 (P < 0.05). Silencing CXCR6 gene by Lentivirus-mediated RNA interference in MDA-MB-231 inhibited its proliferation ability, invasion ability and angiogenesis ability in vitro (P < 0.05). Different invasive breast cancer cell lines express CXCR6 at different levels, positively correlated with its invasive ability.

  13. Pharmacological characterization of the human histamine H2 receptor stably expressed in Chinese hamster ovary cells.

    PubMed Central

    Leurs, R.; Smit, M. J.; Menge, W. M.; Timmerman, H.

    1994-01-01

    1. The gene for the human histamine H2 receptor was stably expressed in Chinese hamster ovary (CHO) cells and characterized by [125I]-iodoaminopotentidine binding studies. In addition, the coupling of the expressed receptor protein to a variety of signal transduction pathways was investigated. 2. After cotransfection of CHO cells with pCMVhumH2 and pUT626, a phleomycine-resistant clonal cell line (CHOhumH2) was isolated that expressed 565 +/- 35 fmol kg-1 protein binding sites with high affinity (0.21 +/- 0.02 nM) for the H2 antagonist, [125I]-iodoaminopotentidine. 3. Displacement studies with a variety of H2 antagonists indicated that the encoded protein was indistinguishable from the H2 receptor identified in human brain membranes and guinea-pig right atrium. The Ki-values observed in the various preparations correlated very well (r2 = 0.996-0.920). 4. Displacement studies with histamine showed that a limited fraction (32 +/- 6%) of the binding sites showed a high affinity for histamine (2 +/- 1.2 microM); the shallow displacement curves were reflected by a Hill-coefficient significantly different from unity (nH = 0.58 +/- 0.09). The addition of 100 microM Gpp(NH)p resulted in a steepening of the displacement curve (nH = 0.79 +/- 0.02) and a loss of high affinity sites for histamine. 5. Displacement studies with other agonists indicated that the recently developed specific H2 agonists, amthamine and amselamine, showed an approximately 4-5 fold higher affinity for the human H2 receptor than histamine. 6. Stimulation of CHOhumH2 cells with histamine resulted in a rapid rise of the intracellular cyclic AMP levels. After 10 min an approximately 10 fold increase in cyclic AMP could be measured.(ABSTRACT TRUNCATED AT 250 WORDS) Images Figure 4 PMID:7921611

  14. Rapid resensitization of purinergic receptor function in human platelets.

    PubMed

    Mundell, S J; Barton, J F; Mayo-Martin, M B; Hardy, A R; Poole, A W

    2008-08-01

    Adenosine diphosphate (ADP) is a critical regulator of platelet activation, mediating its actions through two G protein-coupled receptors (GPCRs), the P2Y(1) and P2Y(12) purinergic receptors. Recently, we demonstrated that both receptors desensitize and internalize in human platelets by differential kinase-dependent mechanisms. To demonstrate whether responses to P2Y(1) and P2Y(12) purinergic receptors resensitize in human platelets and determine the role of receptor traffic in this process. These studies were undertaken either in human platelets or in cells stably expressing epitope-tagged P2Y(1) and P2Y(12) purinergic receptor constructs. In this study we show for the first time that responses to both of these receptors can rapidly resensitize following agonist-dependent desensitization in human platelets. Further, we show that in human platelets or in 1321N1 cells stably expressing receptor constructs, the disruption of receptor internalization, dephosphorylation or subsequent receptor recycling is sufficient to block resensitization of purinergic receptor responses. We also show that, in platelets, internalization of both these receptors is dependent upon dynamin, and that this process is required for resensitization of responses. This study is therefore the first to show that both P2Y(1) and P2Y(12) receptor activities are rapidly and reversibly modulated in human platelets, and it reveals that the underlying mechanism requires receptor trafficking as an essential part of this process.

  15. Angiotensin II AT2 receptor decreases AT1 receptor expression and function via nitric oxide/cGMP/Sp1 in renal proximal tubule cells from Wistar–Kyoto rats

    PubMed Central

    Yang, Jian; Chen, Caiyu; Ren, Hongmei; Han, Yu; He, Duofen; Zhou, Lin; Hopfer, Ulrich; Jose, Pedro A.; Zeng, Chunyu

    2013-01-01

    Background The renin–angiotensin (Ang) system controls blood pressure, in part, by regulating renal tubular sodium transport. In the kidney, activation of the angiotensin II type 1 (AT1) receptor increases renal sodium reabsorption, whereas the angiotensin II type 2 (AT2) receptor produces the opposite effect. We hypothesized that the AT2 receptor regulates AT1 receptor expression and function in the kidney. Methods and results In immortalized renal proximal tubule (RPT) cells from Wistar–Kyoto rats, CGP42112, an AT2 receptor agonist, decreased AT1 receptor mRNA and protein expression (P < 0.05), as assessed by reverse transcriptase-polymerase chain reaction and immunoblotting. The inhibitory effect of the AT2 receptor on AT1 receptor expression was blocked by the AT2 receptor antagonist, PD123319 (10−6 mol/l), the nitric oxide synthase inhibitor Nw-nitro-l-arginine methyl ester (10−4 mol/l), or the nitric oxide-dependent soluble guanylate cyclase inhibitor 1H-[1,2,4] oxadiazolo-[4,3-a] quinoxalin-1-one (10−5 mol/l), indicating that both nitric oxide and cyclic guanosine monophosphate (cGMP) were involved in the signaling pathway. Furthermore, CGP42112 decreased Sp1 serine phosphorylation and reduced the binding of Sp1 to AT1 receptor DNA. Stimulation with Ang II (10−11 mol/l per 30 min) enhanced Na+-K+-ATPase activity in RPT cells, which was prevented by pretreatment with CGP42112 (10−7 mol/l per 24 h) (P < 0.05). The above-mentioned results were confirmed in RPT cells from AT2 receptor knockout mice; AT1 receptor expression and Ang II-stimulated Na+-K+-ATPase activity were greater in these cells than in RPT cells from wild-type mice (P < 0.05). AT1/AT2 receptors co-localized and co-immunoprecipitated in RPT cells; short-term CGP42112 (10−7 mol/l per 30 min) treatment increased AT1/AT2 receptor co-immunoprecipitation (P < 0.05). Conclusions These results indicate that the renal AT2 receptor, via nitric oxide/cGMP/Sp1 pathway, regulates AT1 receptor

  16. Knocking out P2X receptors reduces transmitter secretion in taste buds.

    PubMed

    Huang, Yijen A; Stone, Leslie M; Pereira, Elizabeth; Yang, Ruibiao; Kinnamon, John C; Dvoryanchikov, Gennady; Chaudhari, Nirupa; Finger, Thomas E; Kinnamon, Sue C; Roper, Stephen D

    2011-09-21

    In response to gustatory stimulation, taste bud cells release a transmitter, ATP, that activates P2X2 and P2X3 receptors on gustatory afferent fibers. Taste behavior and gustatory neural responses are largely abolished in mice lacking P2X2 and P2X3 receptors [P2X2 and P2X3 double knock-out (DKO) mice]. The assumption has been that eliminating P2X2 and P2X3 receptors only removes postsynaptic targets but that transmitter secretion in mice is normal. Using functional imaging, ATP biosensor cells, and a cell-free assay for ATP, we tested this assumption. Surprisingly, although gustatory stimulation mobilizes Ca(2+) in taste Receptor (Type II) cells from DKO mice, as from wild-type (WT) mice, taste cells from DKO mice fail to release ATP when stimulated with tastants. ATP release could be elicited by depolarizing DKO Receptor cells with KCl, suggesting that ATP-release machinery remains functional in DKO taste buds. To explore the difference in ATP release across genotypes, we used reverse transcriptase (RT)-PCR, immunostaining, and histochemistry for key proteins underlying ATP secretion and degradation: Pannexin1, TRPM5, and NTPDase2 (ecto-ATPase) are indistinguishable between WT and DKO mice. The ultrastructure of contacts between taste cells and nerve fibers is also normal in the DKO mice. Finally, quantitative RT-PCR show that P2X4 and P2X7, potential modulators of ATP secretion, are similarly expressed in taste buds in WT and DKO taste buds. Importantly, we find that P2X2 is expressed in WT taste buds and appears to function as an autocrine, positive feedback signal to amplify taste-evoked ATP secretion.

  17. Knocking out P2X receptors reduces transmitter secretion in taste buds

    PubMed Central

    Huang, Yijen A.; Stone, Leslie M.; Pereira, Elizabeth; Yang, Ruibiao; Kinnamon, John C.; Dvoryanchikov, Gennady; Chaudhari, Nirupa; Finger, Thomas E.; Kinnamon, Sue C.; Roper, Stephen D.

    2011-01-01

    In response to gustatory stimulation, taste bud cells release a transmitter, ATP, that activates P2X2 and P2X3 receptors on gustatory afferent fibers. Taste behavior and gustatory neural responses are largely abolished in mice lacking P2X2 and P2X3 receptors (P2X2 and P2X3 double knockout, or “DKO” mice). The assumption has been that eliminating P2X2 and P2X3 receptors only removes postsynaptic targets but that transmitter secretion in mice is normal. Using functional imaging, ATP biosensor cells, and a cell-free assay for ATP, we tested this assumption. Surprisingly, although gustatory stimulation mobilizes Ca2+ in taste Receptor (Type II) cells from DKO mice, as from wild type (WT) mice, taste cells from DKO mice fail to release ATP when stimulated with tastants. ATP release could be elicited by depolarizing DKO Receptor cells with KCl, suggesting that ATP-release machinery remains functional in DKO taste buds. To explore the difference in ATP release across genotypes, we employed reverse transcriptase (RT)-PCR, immunostaining, and histochemistry for key proteins underlying ATP secretion and degradation: Pannexin1, TRPM5, and NTPDase2 (ecto-ATPase) are indistinguishable between WT and DKO mice. The ultrastructure of contacts between taste cells and nerve fibers is also normal in the DKO mice. Finally, quantitative RT-PCR show that P2X4 and P2X7, potential modulators of ATP secretion, are similarly expressed in taste buds in WT and DKO taste buds. Importantly, we find that P2X2 is expressed in WT taste buds and appears to function as an autocrine, positive feedback signal to amplify taste-evoked ATP secretion. PMID:21940456

  18. Leptin-induced IL-6 production is mediated by leptin receptor, insulin receptor substrate-1, phosphatidylinositol 3-kinase, Akt, NF-kappaB, and p300 pathway in microglia.

    PubMed

    Tang, Chih-Hsin; Lu, Da-Yuu; Yang, Rong-Sen; Tsai, Huei-Yann; Kao, Ming-Ching; Fu, Wen-Mei; Chen, Yuh-Fung

    2007-07-15

    Leptin, the adipocyte-secreted hormone that centrally regulates weight control, is known to function as an immunomodulatory regulator. We investigated the signaling pathway involved in IL-6 production caused by leptin in microglia. Microglia expressed the long (OBRl) and short (OBRs) isoforms of the leptin receptor. Leptin caused concentration- and time-dependent increases in IL-6 production. Leptin-mediated IL-6 production was attenuated by OBRl receptor antisense oligonucleotide, PI3K inhibitor (Ly294002 and wortmannin), Akt inhibitor (1L-6-hydroxymethyl-chiro-inositol-2-((R)-2-O-methyl-3-O-octadecylcarbonate)), NF-kappaB inhibitor (pyrrolidine dithiocarbamate), IkappaB protease inhibitor (L-1-tosylamido-2-phenylenylethyl chloromethyl ketone), IkappaBalpha phosphorylation inhibitor (Bay 117082), or NF-kappaB inhibitor peptide. Transfection with insulin receptor substrate (IRS)-1 small-interference RNA or the dominant-negative mutant of p85 and Akt also inhibited the potentiating action of leptin. Stimulation of microglia with leptin activated IkappaB kinase alpha/IkappaB kinase beta, IkappaBalpha phosphorylation, IkappaBalpha degradation, p65 phosphorylation at Ser(276), p65 and p50 translocation from the cytosol to the nucleus, and kappaB-luciferase activity. Leptin-mediated an increase of IkappaB kinase alpha/IkappaB kinase beta activity, kappaB-luciferase activity, and p65 and p50 binding to the NF-kappaB element was inhibited by wortmannin, Akt inhibitor, and IRS-1 small-interference RNA. The binding of p65 and p50 to the NF-kappaB elements, as well as the recruitment of p300 and the enhancement of histone H3 and H4 acetylation on the IL-6 promoter was enhanced by leptin. Our results suggest that leptin increased IL-6 production in microglia via the leptin receptor/IRS-1/PI3K/Akt/NF-kappaB and p300 signaling pathway.

  19. Ligand binding to the human MT2 melatonin receptor: The role of residues in transmembrane domains 3, 6, and 7

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mazna, Petr; Berka, Karel; Jelinkova, Irena

    To better understand the mechanism of interactions between G-protein-coupled melatonin receptors and their ligands, our previously reported homology model of human MT2 receptor with docked 2-iodomelatonin was further refined and used to select residues within TM3, TM6, and TM7 potentially important for receptor-ligand interactions. Selected residues were mutated and radioligand-binding assay was used to test the binding affinities of hMT2 receptors transiently expressed in HEK293 cells. Our data demonstrate that residues N268 and A275 in TM6 as well as residues V291 and L295 in TM7 are essential for 2-iodomelatonin binding to the hMT2 receptor, while TM3 residues M120, G121, V124,more » and I125 may participate in binding of other receptor agonists and/or antagonists. Presented data also hint at possible specific interaction between the side-chain of Y188 in second extracellular loop and N-acetyl group of 2-iodomelatonin.« less

  20. [Effect of fentanyl on expression of mu-receptor and beta-arrestin 2 in periaqueductal gray of rats tolerant to morphine].

    PubMed

    Liu, Ruo-shan; Sun, Li; Liu, Xiao-yan; Li, Xuan-ying; Xu, Lei

    2009-05-19

    To investigate the effect of fentanyl upon the expression of mu-receptor and beta-arrestin 2 in peri-aqueductal gray of morphine-tolerant rats. Forty male SD rats weighing (230 +/- 20) g were randomly divided into 5 groups of eight animals each: group NS, group M, group MF1, group MF2 and group MF3. Rats in group NS received only subcutaneous normal saline 1 ml/kg twice a day for 9 consecutive days; group M received subcutaneous morphine 10 mg/kg followed by NS 1 ml/kg twice a day for 9 consecutive days; In groups MF1, MF2 and MF3, morphine 10 mg x kg(-1) was injected subcutaneously followed by fentanyl 3, 6, 12 microg/kg respectively. All animals were sacrificed at Day 9 after measurement of pain threshold. Periaqueductal gray was removed for determination of the expression of mRNA (RT-PCR) and protein (Western-blot) of mu-receptor and beta-arrestin 2. Compared with group NS, TFL of group M was significantly elevated after the first morphine injection (P < 0.01). But TFL of group M returned to the baseline value after chronic morphine treatment. Compared with group M, TFL increased in groups MF2 and MF3 at Days 7 and 9 (P < 0.05 or 0.01). However, TFL of group MF1 was negative (P > 0.05). The expression of mu-receptor mRNA and protein was significantly lower in group M than in group NS (P < 0.01). Compared with group M, the expressions of mu-receptor mRNA and protein were significantly elevated in group MF2 and MF3 (P < 0.05 or 0.01) but there was no significant change in group MF1 (P > 0.05). The expression of beta-arrestin 2 mRNA and protein significantly decreased in group M as compared with group NS (P < 0.01). Compared with group M, the expressions of beta-arrestin 2 mRNA and protein were significantly elevated in group MF2 and MF3 (P < 0.05 or 0.01), but there was no significant change in group MF1 (P > 0.05). Fentanyl at 6 and 12 microg/kg can partly inhibit morphine tolerance through an increased expression of mu-receptor and beta-arrestin 2 in

  1. The P2X7 Receptor in Inflammatory Diseases: Angel or Demon?

    PubMed Central

    Savio, Luiz E. B.; de Andrade Mello, Paola; da Silva, Cleide Gonçalves; Coutinho-Silva, Robson

    2018-01-01

    Under physiological conditions, adenosine triphosphate (ATP) is present at low levels in the extracellular milieu, being massively released by stressed or dying cells. Once outside the cells, ATP and related nucleotides/nucleoside generated by ectonucleotidases mediate a high evolutionary conserved signaling system: the purinergic signaling, which is involved in a variety of pathological conditions, including inflammatory diseases. Extracellular ATP has been considered an endogenous adjuvant that can initiate inflammation by acting as a danger signal through the activation of purinergic type 2 receptors—P2 receptors (P2Y G-protein coupled receptors and P2X ligand-gated ion channels). Among the P2 receptors, the P2X7 receptor is the most extensively studied from an immunological perspective, being involved in both innate and adaptive immune responses. P2X7 receptor activation induces large-scale ATP release via its intrinsic ability to form a membrane pore or in association with pannexin hemichannels, boosting purinergic signaling. ATP acting via P2X7 receptor is the second signal to the inflammasome activation, inducing both maturation and release of pro-inflammatory cytokines, such as IL-1β and IL-18, and the production of reactive nitrogen and oxygen species. Furthermore, the P2X7 receptor is involved in caspases activation, as well as in apoptosis induction. During adaptive immune response, P2X7 receptor modulates the balance between the generation of T helper type 17 (Th17) and T regulatory (Treg) lymphocytes. Therefore, this receptor is involved in several inflammatory pathological conditions. In infectious diseases and cancer, P2X7 receptor can have different and contrasting effects, being an angel or a demon depending on its level of activation, cell studied, type of pathogen, and severity of infection. In neuroinflammatory and neurodegenerative diseases, P2X7 upregulation and function appears to contribute to disease progression. In this review, we

  2. P2 receptors in cardiovascular regulation and disease

    PubMed Central

    Erlinge, David

    2007-01-01

    The role of ATP as an extracellular signalling molecule is now well established and evidence is accumulating that ATP and other nucleotides (ADP, UTP and UDP) play important roles in cardiovascular physiology and pathophysiology, acting via P2X (ion channel) and P2Y (G protein-coupled) receptors. In this article we consider the dual role of ATP in regulation of vascular tone, released as a cotransmitter from sympathetic nerves or released in the vascular lumen in response to changes in blood flow and hypoxia. Further, purinergic long-term trophic and inflammatory signalling is described in cell proliferation, differentiation, migration and death in angiogenesis, vascular remodelling, restenosis and atherosclerosis. The effects on haemostasis and cardiac regulation is reviewed. The involvement of ATP in vascular diseases such as thrombosis, hypertension and diabetes will also be discussed, as well as various heart conditions. The purinergic system may be of similar importance as the sympathetic and renin-angiotensin-aldosterone systems in cardiovascular regulation and pathophysiology. The extracellular nucleotides and their cardiovascular P2 receptors are now entering the phase of clinical development. PMID:18368530

  3. Localization of P2X receptor subtypes 2, 3 and 7 in human urinary bladder.

    PubMed

    Svennersten, Karl; Hallén-Grufman, Katarina; de Verdier, Petra J; Wiklund, N Peter; Poljakovic, Mirjana

    2015-08-08

    Voiding dysfunctions are a common problem that has a severe negative impact on the quality of life. Today there is a need for new drug targets for these conditions. The role of ATP receptors in bladder physiology has been studied for some time, primarily in animal models. The aim of this work is to investigate the localization of the ATP receptors P2X2, P2X3 and P2X7 and their colocalization with vimentin and actin in the human urinary bladder. Immunohistochemical analysis was conducted on full-thickness bladder tissues from fundus and trigonum collected from 15 patients undergoing open radical cystectomy due to chronic cystitis, bladder cancer or locally advanced prostate cancer. Colocalization analyses were performed between the three different P2X subtypes and the structural proteins vimentin and actin. Specimens were examined using epifluorescence microscopy and correlation coefficients were calculated for each costaining as well as the mean distance from the laminin positive basal side of the urothelium to the vimentin positive cells located in the suburothelium. P2X2 was expressed in vimentin positive cells located in the suburothelium. Less distinct labelling of P2X2 was also observed in actin positive smooth muscle cells and in the urothelium. P2X3 was expressed in vimentin positive cells surrounding the smooth muscle, and in vimentin positive cells located in the suburothelium. Weaker P2X3 labelling was seen in the urothelium. P2X7 was expressed in the smooth muscle cells and the urothelium. In the suburothelium, cells double positive for P2X2 and vimentin where located closer to the urothelium while cells double positive for P2X3 and vimentin where located further from the urothelium. The results from this study demonstrate that there is a significant difference in the expression of the purinergic P2X2, P2X3 and P2X7 receptors in the different histological layers of the human urinary bladder.

  4. Dependence of purinergic P2X receptor activity on ectodomain structure.

    PubMed

    He, Mu-Lan; Zemkova, Hana; Stojilkovic, Stanko S

    2003-03-21

    Purinergic receptors (P2XRs) activate and desensitize in response to the binding of extracellular nucleotides in a receptor- and ligand-specific manner, but the structural bases of their ligand preferences and channel kinetics have been incompletely characterized. Here we tested the hypothesis that affinity of agonists for binding domain accounts for a ligand-specific desensitization pattern. We generated chimeras using receptors with variable sensitivity to ATP in order: P2X(4)R > P2X(2a)R = P2X(2b)R P2X(7)R. Chimeras having the ectodomain Ile(66)-Tyr(310) sequence of P2X(2)R and Val(61)-Phe(313) sequence of P2X(7)R in the backbone of P2X(4)R were expressed but were non-functioning channels. P2X(2a) + X(4)R and P2X(2b) + X(4)R chimeras having the Val(66)-Tyr(315) ectodomain sequence of P2X(4)R in the backbones of P2X(2a)R and P2X(2b)R were functional and exhibited increased sensitivity to ligands as compared with both parental receptors. These chimeras also desensitized faster than parental receptors and in a ligand-nonspecific manner. However, like parental P2X(2b)R and P2X(2a)R, chimeric P2X(2b) + X(4)R desensitized more rapidly than P2X(2a) + X(4)R, and the rate of desensitization of P2X(2a)+X(4)R increased by substituting its Arg(371)-Pro(376) intracellular C-terminal sequence with the Glu(376)-Gly(381) sequence of P2X(4)R. These results indicate the relevance of interaction between the ectodomain and flanking regions around the transmembrane domains on ligand potency and receptor activation. Furthermore, the ligand potency positively correlates with the rate of receptor desensitization but does not affect the C-terminal-specific pattern of desensitization.

  5. Investigating the binding mechanism of novel 6-aminonicotinate-based antagonists with P2Y12 by 3D-QSAR, docking and molecular dynamics simulations.

    PubMed

    Zhou, Shengfu; Fang, Danqing; Tan, Shepei; Lin, Weicong; Wu, Wenjuan; Zheng, Kangcheng

    2017-10-01

    P2Y 12 receptor is an attractive target for the anti-platelet therapies, treating various thrombotic diseases. In this work, a total of 107 6-aminonicotinate-based compounds as potent P2Y 12 antagonists were studies by a molecular modeling study combining three-dimensional quantitative structure-activity relationship (3D-QSAR), molecular docking and molecular dynamics (MD) simulations to explore the decisive binding conformations of these antagonists with P2Y 12 and the structural features for the activity. The optimum CoMFA and CoMSIA models identified satisfactory robustness and good predictive ability, with R 2  = .983, q 2  = .805, [Formula: see text] = .881 for CoMFA model, and R 2  = .935, q 2  = .762, [Formula: see text] = .690 for CoMSIA model, respectively. The probable binding modes of compounds and key amino acid residues were revealed by molecular docking. MD simulations and MM/GBSA free energy calculations were further performed to validate the rationality of docking results and to compare the binding modes of several compound pairs with different activities, and the key residues (Val102, Tyr105, Tyr109, His187, Val190, Asn191, Phe252, His253, Arg256, Tyr259, Thr260, Val279, and Lys280) for the higher activity were pointed out. The binding energy decomposition indicated that the hydrophobic and hydrogen bond interactions play important roles for the binding of compounds to P2Y 12 . We hope these results could be helpful in design of potent and selective P2Y 12 antagonists.

  6. P2X7 Receptor as a Therapeutic Target.

    PubMed

    De Marchi, Elena; Orioli, Elisa; Dal Ben, Diego; Adinolfi, Elena

    2016-01-01

    P2X7 receptor is an ATP-gated cation channel that upon agonist interaction leads to cellular influx of Na(+) and Ca(2+) and efflux of K(+). P2X7 is expressed by a wide variety of cells and its activation mediates a large number of biological processes like inflammation, neuromodulation, cell death or cell proliferation and it has been associated to related pathological conditions including infectious, inflammatory, autoimmune, neurological, and musculoskeletal disorders and, in the last years, to cancer. This chapter describes structural features of P2X7, chemical properties of its agonist, antagonist, and allosteric modulators and summarizes recent advances on P2X7 receptor as therapeutic target in the aforementioned diseases. We also give an overview on recent literature suggesting that P2X7 single-nucleotide polymorphisms could be exploited as diagnostic biomarkers for the development of tailored therapies. © 2016 Elsevier Inc. All rights reserved.

  7. Autoradiography of P2x ATP receptors in the rat brain.

    PubMed Central

    Balcar, V. J.; Li, Y.; Killinger, S.; Bennett, M. R.

    1995-01-01

    1. Binding of a P2x receptor specific radioligand, [3H]-alpha,beta-methylene adenosine triphosphate ([3H]-alpha,beta-MeATP) to sections of rat brain was reversible and association/dissociation parameters indicated that it consisted of two saturable components. Non-specific binding was very low (< 7% at 10 nM ligand concentration). 2. The binding was completely inhibited by suramin (IC50 approximately 14-26 microM) but none of the ligands specific for P2y receptors such as 2-methylthio-adenosine triphosphate (2-methyl-S-ATP) and 2-chloro-adenosine triphosphate (2-C1-ATP) nor 2-methylthio-adenosine diphosphate (2-methyl-S-ADP) a ligand for the P2 receptor on blood platelets ('P2T' type) produced strong inhibitions except for P1,P4-di(adenosine-5')tetraphosphate (Ap4A). 3. Inhibitors of Na+,K(+)-dependent adenosine triphosphatase (ATPase) ouabain, P1-ligand adenosine and an inhibitor of transport of, respectively, adenosine and cyclic nucleotides, dilazep, had no effect. 4. The highest density of P2x binding sites was found to be in the cerebellar cortex but the binding sites were present in all major brain regions, especially in areas known to receive strong excitatory innervation. Images Figure 2 PMID:7670731

  8. A Promising Therapeutic Target for Metabolic Diseases: Neuropeptide Y Receptors in Humans.

    PubMed

    Yi, Min; Li, Hekai; Wu, Zhiye; Yan, Jianyun; Liu, Qicai; Ou, Caiwen; Chen, Minsheng

    2018-01-01

    Human neuropeptide Y (hNPY) is one of the most widely expressed neurotransmitters in the human central and peripheral nervous systems. It consists of 36 highly conserved amino acid residues, and was first isolated from the porcine hypothalamus in 1982. While it is the most recently discovered member of the pancreatic polypeptide family (which includes neuropeptide Y, gut-derived hormone peptide YY, and pancreatic polypeptide), NPY is the most abundant peptide found in the mammalian brain. In order to exert particular functions, NPY needs to bind to the NPY receptor to activate specific signaling pathways. NPY receptors belong to the class A or rhodopsin-like G-protein coupled receptor (GPCR) family and signal via cell-surface receptors. By binding to GPCRs, NPY plays a crucial role in various biological processes, including cortical excitability, stress response, food intake, circadian rhythms, and cardiovascular function. Abnormal regulation of NPY is involved in the development of a wide range of diseases, including obesity, hypertension, atherosclerosis, epilepsy, metabolic disorders, and many cancers. Thus far, five receptors have been cloned from mammals (Y1, Y2, Y4, Y5, and y6), but only four of these (hY1, hY2, hY4, and hY5) are functional in humans. In this review, we summarize the structural characteristics of human NPY receptors and their role in metabolic diseases. © 2018 The Author(s). Published by S. Karger AG, Basel.

  9. Adenylyl cyclase 6 enhances NKCC2 expression and mediates vasopressin-induced phosphorylation of NKCC2 and NCC.

    PubMed

    Rieg, Timo; Tang, Tong; Uchida, Shinichi; Hammond, H Kirk; Fenton, Robert A; Vallon, Volker

    2013-01-01

    Arginine vasopressin (AVP) affects kidney function via vasopressin V2 receptors that are linked to activation of adenylyl cyclase (AC) and an increase in cyclic adenosine monophosphate formation. AVP/cyclic adenosine monophosphate enhance the phosphorylation of the Na-K-2Cl cotransporter (NKCC2) at serine residue 126 (pS126 NKCC2) and of the Na-Cl cotransporter (NCC) at threonine 58 (pT58 NCC). The isoform(s) of AC involved in these responses, however, were unknown. Phosphorylation of S126 NKCC2 and T58 NCC, induced by the V2 receptor agonist (1-desamino-8-D-arginine vasopressin) in wild-type mice, is lacking in knockout mice for AC isoform 6 (AC6). With regard to NKCC2 phosphorylation, the stimulatory effect of 1-desamino-8-D-AVP and the defect in AC6(-/-) mice seem to be restricted to the medullary portion of the thick ascending limb. AC6 is also a stimulator of total renal NKCC2 protein abundance in medullary and cortical thick ascending limb. Consequently, mice lacking AC6 have lower NKCC2 expression and a mild Bartter syndrome-like phenotype, including lower plasma concentrations of K+ and H+ and compensatory upregulation of NCC. Increased AC6-independent phosphorylation of NKCC2 at S126 might help to stabilize NKCC2 activity in the absence of AC6. Renal AC6 determines total NKCC2 expression and mediates vasopressin-induced NKCC2/NCC phosphorylation. These regulatory mechanisms, which are defective in AC knockout mice, are likely responsible for the observed mild Bartter syndrome. Copyright © 2013 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  10. Role of peripheral sigma-1 receptors in ischaemic pain: Potential interactions with ASIC and P2X receptors.

    PubMed

    Kwon, S G; Roh, D H; Yoon, S Y; Choi, S R; Choi, H S; Moon, J Y; Kang, S Y; Kim, H W; Han, H J; Beitz, A J; Oh, S B; Lee, J H

    2016-04-01

    The role of peripheral sigma-1 receptors (Sig-1Rs) in normal nociception and in pathologically induced pain conditions has not been thoroughly investigated. Since there is mounting evidence that Sig-1Rs modulate ischaemia-induced pathological conditions, we investigated the role of Sig-1Rs in ischaemia-induced mechanical allodynia (MA) and addressed their possible interaction with acid-sensing ion channels (ASICs) and P2X receptors at the ischaemic site. We used a rodent model of hindlimb thrombus-induced ischaemic pain (TIIP) to investigate their role. Western blot was performed to observe changes in Sig-1R expression in peripheral nervous tissues. MA was measured after intraplantar (i.pl.) injections of antagonists for the Sig-1, ASIC and P2X receptors in TIIP rats or agonists of each receptor in naïve rats. Sig-1R expression significantly increased in skin, sciatic nerve and dorsal root ganglia at 3 days post-TIIP surgery. I.pl. injections of the Sig-1R antagonist, BD-1047 on post-operative days 0-3 significantly attenuated the development of MA during the induction phase, but had no effect on MA when given during the maintenance phase (days 3-6 post-surgery). BD-1047 synergistically increased amiloride (an ASICs blocker)- and TNP-ATP (a P2X antagonist)-induced analgesic effects in TIIP rats. In naïve rats, i.pl. injection of Sig-1R agonist PRE-084 alone did not produce MA; but it did induce MA when co-administered with either an acidic pH solution or a sub-effective dose of αβmeATP. Peripheral Sig-1Rs contribute to the induction of ischaemia-induced MA via facilitation of ASICs and P2X receptors. Thus, peripheral Sig-1Rs represent a novel therapeutic target for the treatment of ischaemic pain. © 2015 European Pain Federation - EFIC®

  11. Ionotropic P2X ATP Receptor Channels Mediate Purinergic Signaling in Mouse Odontoblasts

    PubMed Central

    Shiozaki, Yuta; Sato, Masaki; Kimura, Maki; Sato, Toru; Tazaki, Masakazu; Shibukawa, Yoshiyuki

    2017-01-01

    ATP modulates various functions in the dental pulp cells, such as intercellular communication and neurotransmission between odontoblasts and neurons, proliferation of dental pulp cells, and odontoblast differentiation. However, functional expression patterns and their biophysical properties of ionotropic ATP (P2X) receptors (P2X1–P2X7) in odontoblasts were still unclear. We examined these properties of P2X receptors in mouse odontoblasts by patch-clamp recordings. K+-ATP, nonselective P2X receptor agonist, induced inward currents in odontoblasts in a concentration-dependent manner. K+-ATP-induced currents were inhibited by P2X4 and P2X7 selective inhibitors (5-BDBD and KN62, respectively), while P2X1 and P2X3 inhibitors had no effects. P2X7 selective agonist (BzATP) induced inward currents dose-dependently. We could not observe P2X1, 2/3, 3 selective agonist (αβ-MeATP) induced currents. Amplitudes of K+-ATP-induced current were increased in solution without extracellular Ca2+, but decreased in Na+-free extracellular solution. In the absence of both of extracellular Na+ and Ca2+, K+-ATP-induced currents were completely abolished. K+-ATP-induced Na+ currents were inhibited by P2X7 inhibitor, while the Ca2+ currents were sensitive to P2X4 inhibitor. These results indicated that odontoblasts functionally expressed P2X4 and P2X7 receptors, which might play an important role in detecting extracellular ATP following local dental pulp injury. PMID:28163685

  12. Ionotropic P2X ATP Receptor Channels Mediate Purinergic Signaling in Mouse Odontoblasts.

    PubMed

    Shiozaki, Yuta; Sato, Masaki; Kimura, Maki; Sato, Toru; Tazaki, Masakazu; Shibukawa, Yoshiyuki

    2017-01-01

    ATP modulates various functions in the dental pulp cells, such as intercellular communication and neurotransmission between odontoblasts and neurons, proliferation of dental pulp cells, and odontoblast differentiation. However, functional expression patterns and their biophysical properties of ionotropic ATP (P2X) receptors (P2X 1 -P2X 7 ) in odontoblasts were still unclear. We examined these properties of P2X receptors in mouse odontoblasts by patch-clamp recordings. K + -ATP, nonselective P2X receptor agonist, induced inward currents in odontoblasts in a concentration-dependent manner. K + -ATP-induced currents were inhibited by P2X 4 and P2X 7 selective inhibitors (5-BDBD and KN62, respectively), while P2X 1 and P2X 3 inhibitors had no effects. P2X 7 selective agonist (BzATP) induced inward currents dose-dependently. We could not observe P2X 1, 2/3, 3 selective agonist (αβ-MeATP) induced currents. Amplitudes of K + -ATP-induced current were increased in solution without extracellular Ca 2+ , but decreased in Na + -free extracellular solution. In the absence of both of extracellular Na + and Ca 2+ , K + -ATP-induced currents were completely abolished. K + -ATP-induced Na + currents were inhibited by P2X 7 inhibitor, while the Ca 2+ currents were sensitive to P2X 4 inhibitor. These results indicated that odontoblasts functionally expressed P2X 4 and P2X 7 receptors, which might play an important role in detecting extracellular ATP following local dental pulp injury.

  13. Structure of FcRY, an avian immunoglobulin receptor related to mammalian mannose receptors, and its complex with IgY

    PubMed Central

    He, Yongning; Bjorkman, Pamela J.

    2011-01-01

    Fc receptors transport maternal antibodies across epithelial cell barriers to passively immunize newborns. FcRY, the functional counterpart of mammalian FcRn (a major histocompatibility complex homolog), transfers IgY across the avian yolk sac, and represents a new class of Fc receptor related to the mammalian mannose receptor family. FcRY and FcRn bind immunoglobulins at pH ≤6.5, but not pH ≥7, allowing receptor–ligand association inside intracellular vesicles and release at the pH of blood. We obtained structures of monomeric and dimeric FcRY and an FcRY–IgY complex and explored FcRY's pH-dependent binding mechanism using electron cryomicroscopy (cryoEM) and small-angle X-ray scattering. The cryoEM structure of FcRY at pH 6 revealed a compact double-ring “head,” in which the N-terminal cysteine-rich and fibronectin II domains were folded back to contact C-type lectin-like domains 1–6, and a “tail” comprising C-type lectin-like domains 7–8. Conformational changes at pH 8 created a more elongated structure that cannot bind IgY. CryoEM reconstruction of FcRY dimers at pH 6 and small-angle X-ray scattering analysis at both pH values confirmed both structures. The cryoEM structure of the FcRY–IgY revealed symmetric binding of two FcRY heads to the dimeric FcY, each head contacting the CH4 domain of one FcY chain. FcRY shares structural properties with mannose receptor family members, including a head and tail domain organization, multimerization that may regulate ligand binding, and pH-dependent conformational changes. Our results facilitate understanding of immune recognition by the structurally related mannose receptor family and comparison of diverse methods of Ig transport across evolution. PMID:21746914

  14. Effect of lappaconitine on neuropathic pain mediated by P2X3 receptor in rat dorsal root ganglion.

    PubMed

    Ou, Shan; Zhao, Yan-Dong; Xiao, Zhi; Wen, Hui-Zhong; Cui, Jian; Ruan, Huai-Zhen

    2011-04-01

    ATP facilitates initiation and transmission of the neuropathic pain at the dorsal root ganglion (DRG) level via the P2X receptors, especially the subtype P2X(3). Lappaconitine (LA) is an active principle isolated from Chinese herbal medicine and possesses analgesic effect. The aim of this study was to investigate the effect of LA on chronic constriction injury (CCI)-induced neuropathic pain mediated by P2X(3) receptor in the DRG neurons. In the presence of CCI and/or LA, the mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL) were measured and P2X(3) receptor expression in the DRG neurons was evaluated by immunohistochemistry and Western blotting. Following intrathecal administration of P2X(3) receptor oligonucleotide, the effect of LA on pain thresholds was assessed. Furthermore, the effect of LA on the P2X(3) receptor agonists ATP- and α,β-meATP-induced inward currents (I(ATP) and I(α,β-meATP)) in the acutely dissociated rat DRG neurons was investigated by whole cell patch-clamp. The results included: (1) There showed reduction of pain thresholds, enhancement of I(ATP) and I(α,β-meATP) and up-regulation of P2X(3) receptor expression in rat DRG neurons when neuropathic pain occurred. (2) In the presence of LA, the decreased pain thresholds, the up-regulated P2X(3) receptor expression and the enhanced I(ATP) and I(α,β-meATP) were reversible in the CCI rats. (3) The down-regulated P2X(3) receptor expression with pretreatment of P2X(3) receptor antisense oligonucleotide significantly attenuated the analgesic effect of LA. These results indicate that the analgesic effect of LA involves decrease of expression and sensitization of the P2X(3) receptors of the rat DRG neurons following CCI. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Cloning and functional analysis of P2X1b, a new variant in rat optic nerve that regulates the P2X1 receptor in a use-dependent manner.

    PubMed

    Rangel-Yescas, Gisela E; Vazquez-Cuevas, Francisco G; Garay, Edith; Arellano, Rogelio O

    2012-01-01

    P2X receptors are trimeric, ATP-gated cation channels. In mammals seven P2X subtypes have been reported (P2X1-P2X7), as well as several variants generated by alternative splicing. Variants confer to the homomeric or heteromeric channels distinct functional and/or pharmacological properties. Molecular biology, biochemical, and functional analysis by electrophysiological methods were used to identify and study a new variant of the P2X1 receptor named P2X1b. This new variant, identified in rat optic nerve, was also expressed in other tissues. P2X1b receptors lack amino acids 182 to 208 of native P2X1, a region that includes residues that are highly conserved among distinct P2X receptors. When expressed in Xenopus oocytes, P2X1b was not functional as a homomer; however, when co-expressed with P2X1, it downregulated the electrical response generated by ATP compared with that of oocytes expressing P2X1 alone, and it seemed to form heteromeric channels with a modestly enhanced ATP potency. A decrease in responses to ATP in oocytes co-expressing different ratios of P2X1b to P2X1 was completely eliminated by overnight pretreatment with apyrase. Thus, it is suggested that P2X1b regulates, through a use-dependent mechanism, the availability, in the plasma membrane, of receptor channels that can be operated by ATP.

  16. IL-6 Overexpression in ERG-Positive Prostate Cancer Is Mediated by Prostaglandin Receptor EP2.

    PubMed

    Merz, Constanze; von Mässenhausen, Anne; Queisser, Angela; Vogel, Wenzel; Andrén, Ove; Kirfel, Jutta; Duensing, Stefan; Perner, Sven; Nowak, Michael

    2016-04-01

    Prostate cancer is the most diagnosed cancer in men and multiple risk factors and genetic alterations have been described. The TMPRSS2-ERG fusion event and the overexpression of the transcription factor ERG are present in approximately 50% of all prostate cancer patients, however, the clinical outcome is still controversial. Prostate tumors produce various soluble factors, including the pleiotropic cytokine IL-6, regulating cellular processes such as proliferation and metastatic segregation. Here, we used prostatectomy samples in a tissue microarray format and analyzed the co-expression and the clinicopathologic data of ERG and IL-6 using immunohistochemical double staining and correlated the read-out with clinicopathologic data. Expression of ERG and IL-6 correlated strongly in prostate tissue samples. Forced expression of ERG in prostate tumor cell lines resulted in significantly increased secretion of IL-6, whereas the down-regulation of ERG decreased IL-6 secretion. By dissecting the underlying mechanism in prostate tumor cell lines we show the ERG-mediated up-regulation of the prostanoid receptors EP2 and EP3. The prostanoid receptor EP2 was overexpressed in human prostate cancer tissue. Furthermore, the proliferation rate and IL-6 secretion in DU145 cells was reduced after treatment with EP2-receptor antagonist. Collectively, our study shows that the expression of ERG in prostate cancer is linked to the expression of IL-6 mediated by the prostanoid receptor EP2. Copyright © 2016 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  17. Modulation of neurological deficits and expression of glutamate receptors during experimental autoimmune encephalomyelitis after treatment with selected antagonists of glutamate receptors.

    PubMed

    Sulkowski, Grzegorz; Dąbrowska-Bouta, Beata; Strużyńska, Lidia

    2013-01-01

    The aim of our investigation was to characterize the role of group I mGluRs and NMDA receptors in pathomechanisms of experimental autoimmune encephalomyelitis (EAE), the rodent model of MS. We tested the effects of LY 367385 (S-2-methyl-4-carboxyphenylglycine, a competitive antagonist of mGluR1), MPEP (2-methyl-6-(phenylethynyl)-pyridine, an antagonist of mGluR5), and the uncompetitive NMDA receptor antagonists amantadine and memantine on modulation of neurological deficits observed in rats with EAE. The neurological symptoms of EAE started at 10-11 days post-injection (d.p.i.) and peaked after 12-13 d.p.i. The protein levels of mGluRs and NMDA did not increase in early phases of EAE (4 d.p.i.), but starting from 8 d.p.i. to 25 d.p.i., we observed a significant elevation of mGluR1 and mGluR5 protein expression by about 20% and NMDA protein expression by about 10% over the control at 25 d.p.i. The changes in protein levels were accompanied by changes in mRNA expression of group I mGluRs and NMDARs. During the late disease phase (20-25 d.p.i.), the mRNA expression levels reached 300% of control values. In contrast, treatment with individual receptor antagonists resulted in a reduction of mRNA levels relative to untreated animals.

  18. Postnatal Expression of V2 Vasopressin Receptor Splice Variants in the Rat Cerebellum

    PubMed Central

    Vargas, Karina J.; Sarmiento, José M.; Ehrenfeld, Pamela; Añazco, Carolina C.; Villanueva, Carolina I.; Carmona, Pamela L.; Brenet, Marianne; Navarro, Javier; Müller-Esterl, Werner; Figueroa, Carlos D.; González, Carlos B.

    2010-01-01

    The V2 vasopressin receptor gene contains an alternative splice site in exon-3, which leads to the generation of two splice variants (V2a and V2b) first identified in the kidney. The open reading frame of the alternatively spliced V2b transcripten codes a truncated receptor, showing the same amino acid sequence as the canonical V2a receptor up to the 6th transmembrane segment, but displaying a distinct sequence to the corresponding 7th transmembrane segment and C-terminal domain relative to the V2a receptor. Here, we demonstrate the postnatal expression of V2a and V2b variants in the rat cerebellum. Most importantly, we showed by in situ hybridization and immunocytochemistry that both V2 splice variants were preferentially expressed in Purkinje cells, from early to late postnatal development. In addition, both variants were transiently expressed in the neuroblastic external granule cells and Bergmann fibers. These results indicate that the cellular distributions of both splice variants are developmentally regulated, and suggest that the transient expression of the V2 receptor is involved in the mechanisms of cerebellar cytodifferentiation by AVP. Finally, transfected CHO-K1 .expressing similar amounts of both V2 splice variants, as that found in the cerebellum, showed a significant reduction in the surface expression of V2a receptors, suggesting that the differential expression of the V2 splice variants regulate the vasopressin signaling in the cerebellum. PMID:19281786

  19. PLC-mediated PI(4,5)P2 hydrolysis regulates activation and inactivation of TRPC6/7 channels

    PubMed Central

    Itsuki, Kyohei; Imai, Yuko; Hase, Hideharu; Okamura, Yasushi; Inoue, Ryuji

    2014-01-01

    Transient receptor potential classical (or canonical) (TRPC)3, TRPC6, and TRPC7 are a subfamily of TRPC channels activated by diacylglycerol (DAG) produced through the hydrolysis of phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) by phospholipase C (PLC). PI(4,5)P2 depletion by a heterologously expressed phosphatase inhibits TRPC3, TRPC6, and TRPC7 activity independently of DAG; however, the physiological role of PI(4,5)P2 reduction on channel activity remains unclear. We used Förster resonance energy transfer (FRET) to measure PI(4,5)P2 or DAG dynamics concurrently with TRPC6 or TRPC7 currents after agonist stimulation of receptors that couple to Gq and thereby activate PLC. Measurements made at different levels of receptor activation revealed a correlation between the kinetics of PI(4,5)P2 reduction and those of receptor-operated TRPC6 and TRPC7 current activation and inactivation. In contrast, DAG production correlated with channel activation but not inactivation; moreover, the time course of channel inactivation was unchanged in protein kinase C–insensitive mutants. These results suggest that inactivation of receptor-operated TRPC currents is primarily mediated by the dissociation of PI(4,5)P2. We determined the functional dissociation constant of PI(4,5)P2 to TRPC channels using FRET of the PLCδ Pleckstrin homology domain (PHd), which binds PI(4,5)P2, and used this constant to fit our experimental data to a model in which channel gating is controlled by PI(4,5)P2 and DAG. This model predicted similar FRET dynamics of the PHd to measured FRET in either human embryonic kidney cells or smooth muscle cells, whereas a model lacking PI(4,5)P2 regulation failed to reproduce the experimental data, confirming the inhibitory role of PI(4,5)P2 depletion on TRPC currents. Our model also explains various PLC-dependent characteristics of channel activity, including limitation of maximum open probability, shortening of the peak time, and the bell-shaped response of

  20. Effect of hypobaric hypoxia on the P2X receptors of pyramidal cells in the immature rat hippocampus CA1 sub-field.

    PubMed

    Zhao, Yan-Dong; Cheng, Sai-Yu; Ou, Shan; Xiao, Zhi; He, Wen-Juan; Jian-Cui; Ruan, Huai-Zhen

    2012-01-01

    This study was designed to evaluate the effect of hypobaric hypoxia (HH) on the function and expression of P2X receptors in rat hippocampus CA1 pyramidal cells. The functional changes of P2X receptors were investigated through the cell HH model and the expressional alterations of P2X receptors were observed through the animal HH model. P2X receptors mediated currents were recorded from the freshly dissociated CA1 pyramidal cells of 7-day-old SD rats by whole cell patch clamp recording. The expression and distribution of P2X receptors were observed through immunohistochemistry and western blot at HH 3-day and 7-day. In acute HH conditions, the amplitudes of ATP evoked peak currents were decreased compared to control. The immunohistochemistry and western blot results reflected there was no change in P2X receptors expression after 3 days HH injury, while P2X receptors expression was up-regulated in response to 7 days HH injury. These findings supported the possibility that the function of P2X receptors was sensitive to HH damage and long-term function decrease should result in the expression increase of P2X receptors.

  1. Roles of purinergic P2X7 receptor in glioma and microglia in brain tumors.

    PubMed

    McLarnon, James G

    2017-08-28

    This review considers evidence suggesting that activation of the ionotropic purinergic receptor P2X 7 (P2X 7 R) is a contributing factor in the growth of brain tumors. Importantly, expression of P2X 7 R may be upregulated in both glioma cells and in immune responding microglial cells with possible differential effects on tumor progression. The recruitment of immune cells into tumor regions may not only be involved in supporting an immunosuppressive environment aiding tumor growth but activated microglia could secrete inflammatory factors promoting neoangiogenesis in expanding tumors. The subtype P2X 7 R exhibits a number of unique properties including activation of the receptor in pathological conditions associated with developing brain tumors. In particular, the tumor microenvironment includes elevated levels of ATP required for activation of P2X 7 R and the sustained tumor and immune cell P2X 7 R-mediated responses which in total contribute to overall tumor growth and viability. Studies on cultured rat and human glioma show marked increases in expression of P2X 7 R and enhanced cell mobility relative to control. Glioma cell animal models demonstrate enhanced expression of P2X 7 R in both glioma and microglia with antagonism of receptor showing differential effects on tumor growth. Overall, P2X 7 R activation is associated with a complexity of modulatory actions on tumor growth in part due to ubiquitous expression of the receptor in glioma and immune responsive cells. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  2. Purinergic regulation of cholangiocyte secretion: identification of a novel role for P2X receptors.

    PubMed

    Doctor, R Brian; Matzakos, Thomas; McWilliams, Ryan; Johnson, Sylene; Feranchak, Andrew P; Fitz, J Gregory

    2005-04-01

    The P2X family of ligand-gated cation channels is comprised of seven distinct isoforms activated by binding of extracellular purines. Although originally identified in neurons, there is increasing evidence for expression of P2X receptors in epithelia as well. Because ATP is released by both hepatocytes and cholangiocytes, these studies were performed to evaluate whether P2X receptors are present in cholangiocytes and contribute to local regulation of biliary secretion and bile formation. RT-PCR of cDNA from cultured normal rat cholangiocytes detected transcripts for P2X receptors 2, 3, 4, and 6; products from P2X3 and P2X4 were robust and always detectable. In cholangiocyte lysates, P2X4 protein was readily detected, and immunohistochemical staining of intact rat liver revealed P2X4 protein concentrated in intrahepatic bile ducts. To assess the functional significance of P2X4, isolated Mz-ChA-1 cells were exposed to the P2X4-preferring agonist 2',3'-O-(4-benzoyl-benzoyl)-ATP (BzATP), which activated inward currents of -18.2 + 3.0 pA/pF. In cholangiocyte monolayers, BzATP but not P2X3 agonists elicited robust Cl(-) secretory responses (short-circuit current) when applied to either the apical (DeltaI(sc) 22.1 +/- 3.3 microA) or basolateral (18.5 +/- 1.6 microA) chamber, with half-maximal stimulation at approximately 10 microM and approximately 1 microM, respectively. The response to BzATP was unaffected by suramin (not significant) and was inhibited by Cu(2+) (P < 0.01). These studies provide molecular and biochemical evidence for the presence of P2X receptors in cholangiocytes. Functional studies indicate that P2X4 is likely the primary isoform involved, representing a novel and functionally important component of the purinergic signaling complex modulating biliary secretion.

  3. Effect of raclopride on dopamine D2 receptor mRNA expression in rat brain.

    PubMed

    Kopp, J; Lindefors, N; Brené, S; Hall, H; Persson, H; Sedvall, G

    1992-01-01

    Prolonged treatment with dopamine D2 receptor antagonists is known to elevate the density of dopamine D2 receptor binding sites in caudate-putamen and nucleus accumbens in rat and human brain. In this study we used the dopamine D2 receptor antagonist raclopride (3 mumol/kg, s.c.) to determine if a single injection or daily administration of this drug for up to 18 days changed the expression of dopamine D2 receptor mRNA in rat caudate-putamen and accumbens as measured by in situ hybridization. A single injection of raclopride did not significantly change the numerical density of dopamine D2 receptor mRNA-expressing neurons in any of the regions examined. A daily administration of raclopride for 18 days resulted in a 31% increase in the number of cells expressing detectable amounts of dopamine D2 receptor mRNA in dorsolateral caudate-putamen and in a 20% increase in the area of silver grains over individual hybridization-positive neurons in this brain region measured on emulsion-dipped slides. The region-specific increase in the D2 receptor mRNA level in dorsolateral caudate-putamen was confirmed by measurement of the hybridization signal on X-ray film autoradiograms. The levels of D2 receptor mRNA remained unchanged in medial caudate-putamen and accumbens after 18 days' treatment. The region-selective increase in dopamine D2 receptor mRNA expression in dorsolateral caudate-putamen indicates a differential regulation of dopamine D2 receptor mRNA expression in a subpopulation of caudate-putamen neurons by this neuroleptic. We suggest that the increase in dopamine D2 receptor density in caudate-putamen known to follow prolonged dopamine D2 receptor blockade to some extent is regulated at the level of gene expression.

  4. [Effect of Electroacupuncture at "Neiguan" (PC 6) and "Tianshu" (ST 25) for Colonic Motility and D 2 Receptor in Irritable Bowel Syndrome Rats].

    PubMed

    Wang, Shan; Guo, Meng-Wei; Gao, Yu-Shan; Ren, Xiao-Xuan; Lan, Ying; Ji, Mao-Xian; Wu, Yan-Ying; Li, Kai-Ge; Tan, Li-Hua; Sui, Ming-He

    2018-01-25

    To observe and compare the effects of electroacupuncture (EA) at "Tianshu" (ST 25) and "Neiguan" (PC 6) for colonic motility and the expression of colon dopamine D 2 in irritable bowel syndrome (IBS) rats, and to explore the specificity of different meridians and different acupoints. Forty Wistar newborn rats were randomly divided into blank, model, Tianshu and Neiguan groups. Separation of mother and child and acetic acid coloclyster combined with colorectal distension were used to establish IBS model in the model, Tianshu and Neiguan groups. At the age of 9 weeks, EA at bilateral ST 25 and PC 6 were applied in the corresponding groups 5 times, once every other day. After the intervention, the Bristol fecal score, the latent period of abdominal retraction reflex and the number of contraction waves were recorded. The expression of dopamine D 2 receptor was detected by immunohistochemistry. Compared with the blank group, the Bristol fecal score of the model group was higher ( P <0.01), the 1 st contraction wave latent period was shorter ( P <0.01), the number of contraction waves in 90 s increased ( P <0.01), the immunoreactive expression of D 2 receptor in colon decreased ( P <0.01). Compared with the model group, the Bristol fecal scores of the Tianshu and Neiguan groups decreased ( P <0.01), the 1 st contraction wave latent periods were longer ( P <0.01), the numbers of contraction waves in 90 s decreased ( P <0.01), the positive expressions of D 2 receptor in colon increased ( P <0.01, P <0.05). Compared with the Tianshu group, the immunoreactive expression of D 2 receptor in the Neiguan group decreased ( P <0.01). EA at ST 25 and PC 6 can improve the symptoms of colonic motility in IBS rats. The effect of EA at ST 25 is better, which indicates that different meridians and different acupoints play specific effects.

  5. A2BR adenosine receptor modulates sweet taste in circumvallate taste buds.

    PubMed

    Kataoka, Shinji; Baquero, Arian; Yang, Dan; Shultz, Nicole; Vandenbeuch, Aurelie; Ravid, Katya; Kinnamon, Sue C; Finger, Thomas E

    2012-01-01

    In response to taste stimulation, taste buds release ATP, which activates ionotropic ATP receptors (P2X2/P2X3) on taste nerves as well as metabotropic (P2Y) purinergic receptors on taste bud cells. The action of the extracellular ATP is terminated by ectonucleotidases, ultimately generating adenosine, which itself can activate one or more G-protein coupled adenosine receptors: A1, A2A, A2B, and A3. Here we investigated the expression of adenosine receptors in mouse taste buds at both the nucleotide and protein expression levels. Of the adenosine receptors, only A2B receptor (A2BR) is expressed specifically in taste epithelia. Further, A2BR is expressed abundantly only in a subset of taste bud cells of posterior (circumvallate, foliate), but not anterior (fungiform, palate) taste fields in mice. Analysis of double-labeled tissue indicates that A2BR occurs on Type II taste bud cells that also express Gα14, which is present only in sweet-sensitive taste cells of the foliate and circumvallate papillae. Glossopharyngeal nerve recordings from A2BR knockout mice show significantly reduced responses to both sucrose and synthetic sweeteners, but normal responses to tastants representing other qualities. Thus, our study identified a novel regulator of sweet taste, the A2BR, which functions to potentiate sweet responses in posterior lingual taste fields.

  6. A2BR Adenosine Receptor Modulates Sweet Taste in Circumvallate Taste Buds

    PubMed Central

    Yang, Dan; Shultz, Nicole; Vandenbeuch, Aurelie; Ravid, Katya; Kinnamon, Sue C.; Finger, Thomas E.

    2012-01-01

    In response to taste stimulation, taste buds release ATP, which activates ionotropic ATP receptors (P2X2/P2X3) on taste nerves as well as metabotropic (P2Y) purinergic receptors on taste bud cells. The action of the extracellular ATP is terminated by ectonucleotidases, ultimately generating adenosine, which itself can activate one or more G-protein coupled adenosine receptors: A1, A2A, A2B, and A3. Here we investigated the expression of adenosine receptors in mouse taste buds at both the nucleotide and protein expression levels. Of the adenosine receptors, only A2B receptor (A2BR) is expressed specifically in taste epithelia. Further, A2BR is expressed abundantly only in a subset of taste bud cells of posterior (circumvallate, foliate), but not anterior (fungiform, palate) taste fields in mice. Analysis of double-labeled tissue indicates that A2BR occurs on Type II taste bud cells that also express Gα14, which is present only in sweet-sensitive taste cells of the foliate and circumvallate papillae. Glossopharyngeal nerve recordings from A2BR knockout mice show significantly reduced responses to both sucrose and synthetic sweeteners, but normal responses to tastants representing other qualities. Thus, our study identified a novel regulator of sweet taste, the A2BR, which functions to potentiate sweet responses in posterior lingual taste fields. PMID:22253866

  7. Resveratrol-decreased hyperalgesia mediated by the P2X7 receptor in gp120-treated rats.

    PubMed

    Wu, Bing; Ma, Yucheng; Yi, Zhihua; Liu, Shuangmei; Rao, Shenqiang; Zou, Lifang; Wang, Shouyu; Xue, Yun; Jia, Tianyu; Zhao, Shanhong; Shi, Liran; Li, Lin; Yuan, Huilong; Liang, Shangdong

    2017-01-01

    Background Chronic pain is a common symptom in human immunodeficiency virus (HIV)-1 infection/acquired immunodeficiency syndrome patients. The literature shows that the HIV envelope glycoprotein 120 (gp120) can directly cause hyperalgesia by stimulating primary sensory afferent nerves. The P2X 7 receptor in the dorsal root ganglia (DRG) is closely related to neuropathic and inflammatory pain. In this study, we aimed to explore the effect of resveratrol (RES) on gp120-induced neuropathic pain that is mediated by the P2X 7 receptor in the rat DRG. Results Mechanical hyperalgesia in rats treated with gp120 was increased compared with that in the sham group. The P2X 7 expression levels in rats treated with gp120 were higher than those in the sham group. Co-localization of the P2X 7 receptor and glial fibrillary acidic protein (GFAP, a marker of satellite glial cells [SGCs]) in the DRG SGCs of the gp120 group exhibited more intense staining than that of the sham group. RES decreased the mechanical hyperalgesia and P2X 7 expression levels in gp120 treatment rats. Co-localization of the P2X 7 receptor and GFAP in the gp120+ RES group was significantly decreased compared to the gp120 group. RES decreased the IL-1β and TNF-α receptor (R) expression levels and ERK1/2 phosphorylation levels as well as increased IL-10 expression in the DRG of gp120-treated rats. Whole cell clamping demonstrated that RES significantly inhibited adenosine triphosphate-activated currents in HEK293 cells that were transfected with the P2X 7 plasmid. Conclusions RES relieved mechanical hyperalgesia in gp120-treated rats by inhibiting the P2X 7 receptor.

  8. Neuropeptide Y rapidly enhances [Ca2+]i transients and Ca2+ sparks in adult rat ventricular myocytes through Y1 receptor and PLC activation.

    PubMed

    Heredia, María del Puy; Delgado, Carmen; Pereira, Laetitia; Perrier, Romain; Richard, Sylvain; Vassort, Guy; Bénitah, Jean-Pierre; Gómez, Ana María

    2005-01-01

    Neuropeptide Y (NPY) is the most abundant peptide in the mammalian heart, but its cardiac actions are not fully understood. Here we investigate the effect of NPY in intracellular Ca2+ release, using isolated rat cardiac myocytes and confocal microscopy. Cardiac myocytes were field-stimulated at 1 Hz. The evoked [Ca2+]i transient was of higher amplitude and of faster decay in the presence of 100 nM NPY. Cell contraction was also increased by NPY. We analyzed the occurrence of Ca2+ sparks and their characteristics after NPY application. NPY significantly increased Ca2+ sparks frequency in quiescent cells. The Ca2+ spark amplitude was enhanced by NPY but the other characteristics of Ca2+ sparks were not significantly altered. Because cardiac myocytes express both Y1 and Y2 NPY receptors, we repeated the experiments in the presence of the receptor blockers, BIBP3226 and BIIE0246. We found that Y1 NPY receptor blockade completely inhibited NPY effects on [Ca2+]i transient. PTX-sensitive G-proteins and/or phospholypase C (PLC) have been invoked to mediate NPY effects in other cell types. We tested these two hypotheses. In PTX-treated myocytes NPY was still effective, which suggests that the observed NPY actions are not mediated by PTX-sensitive G-proteins. In contrast, the increase in [Ca2+]i transient by NPY was completely inhibited by the PLC inhibitor U73122. In conclusion, we find that NPY has a positive inotropic effect in isolated rat cardiac myocytes, which involves increase in Ca2+ release after activation of Y1 NPY receptor and subsequent stimulation of PLC.

  9. Expression of CXCR-1 and CXCR-2 chemokine receptors on synovial neutrophils in inflammatory arthritides: does persistent or increasing expression of CXCR-2 contribute to the chronic inflammation or erosive changes?

    PubMed

    Pay, Salih; Musabak, Ugur; Simşek, Ismail; Pekel, Aysel; Erdem, Hakan; Dinç, Ayhan; Sengül, Ali

    2006-12-01

    To analyze the CXCR-1 and CXCR-2 chemokine receptor expression on peripheral blood neutrophils (PBN) and synovial fluid neutrophils (SFN) of patients with rheumatoid arthritis (RA) and Behçet's disease (BD) (characterized by erosive and non-erosive arthritis, respectively), and to compare them with those of patients with osteoarthritis (OA). We used flow cytometry to investigate the expression of CXCR-1 and CXCR-2 chemokine receptors on PBN and SFN of fifty-five (22 RA, 22 BD and 11 OA) age and sex-matched patients. In respect to chemokine receptor expression on neutrophils isolated from patients with RA, mean fluorescein intensity (MFI) of CXCR-1 chemokine receptors on PBN from active and inactive RA patients, and SFN from patients with RA were 151 (90-395), 129 (81-539) and 136 (64-220), respectively, and there were not statistically significant difference each other. But MFI of CXCR-2 chemokine receptors on SFN of patients with RA was 18 (10-32), and significantly higher than PBN of active and inactive RA patients (MFI: 10 (6-15) and 12 (7-16), P=0.002 and 0.037, respectively). In respect to chemokine receptor expression on neutrophils isolated from patients with BD, MFI of CXCR-1 chemokine receptors on PBN of active BD patients was 245 (97-844), and higher than PBN of active RA patients and SFN of BD patients (MFI: 151 (90-395) and 134 (61-231), P=0.047 and 0.017, respectively). MFI of CXCR-2 chemokine receptors on PBN of active and inactive BD patients, and SFN of patients BD were 10 (6-14), 10 (2-16), and 12 (8-24), respectively, there were not statistically significant difference each other. MFI of CXCR-1 chemokine receptors on SFN from patients with RA, BD, and OA were 136 (64-220), 134 (61-231), and 114 (60-180), respectively, and there was no difference between the study groups. MFI of CXCR-2 chemokine receptors on SFN of patients with RA was 18 (10-32), and higher than patients with BD and OA (MFI: 12 (8-24) and 11 (9-18), P=0.037 and 0

  10. Endogenous peptide YY and neuropeptide Y inhibit colonic ion transport, contractility and transit differentially via Y1 and Y2 receptors

    PubMed Central

    Tough, IR; Forbes, S; Tolhurst, R; Ellis, M; Herzog, H; Bornstein, JC; Cox, HM

    2011-01-01

    BACKGROUND AND PURPOSE Peptide YY (PYY) and neuropeptide Y (NPY) activate Y receptors, targets under consideration as treatments for diarrhoea and other intestinal disorders. We investigated the gastrointestinal consequences of selective PYY or NPY ablation on mucosal ion transport, smooth muscle activity and transit using wild-type, single and double peptide knockout mice, comparing mucosal responses with those from human colon. EXPERIMENTAL APPROACH Mucosae were pretreated with a Y1 (BIBO3304) or Y2 (BIIE0246) receptor antagonist and changes in short-circuit current recorded. Colonic transit and colonic migrating motor complexes (CMMCs) were assessed in vitro and upper gastrointestinal and colonic transit measured in vivo. KEY RESULTS Y receptor antagonists revealed tonic Y1 and Y2 receptor-mediated antisecretory effects in human and wild-type mouse colon mucosae. In both, Y1 tone was epithelial while Y2 tone was neuronal. Y1 tone was reduced 90% in PYY−/− mucosa but unchanged in NPY−/− tissue. Y2 tone was partially reduced in NPY−/− or PYY−/− mucosae and abolished in tetrodotoxin-pretreated PYY−/− tissue. Y1 and Y2 tone were absent in NPYPYY−/− tissue. Colonic transit was inhibited by Y1 blockade and increased by Y2 antagonism indicating tonic Y1 excitation and Y2 inhibition respectively. Upper GI transit was increased in PYY−/− mice only. Y2 blockade reduced CMMC frequency in isolated mouse colon. CONCLUSIONS AND IMPLICATIONS Endogenous PYY and NPY induced significant mucosal antisecretory tone mediated by Y1 and Y2 receptors, via similar mechanisms in human and mouse colon mucosa. Both peptides contributed to tonic Y2-receptor-mediated inhibition of colonic transit in vitro but only PYY attenuated upper GI transit. PMID:21457230

  11. [NRH2 induces cell apoptosis of cerebral tissues around hematomas after intracerebral hemorrhage through up-regulating proNGF, sortilin and p75NTR expressions].

    PubMed

    Zeng, Zhiqing; Liu, Hong; Jiang, Di

    2015-04-01

    To observe the expressions of neurotrophin receptor homolog 2 (NRH2), nerve growth factor precursor (proNGF), sortilin and neurotrophin receptor p75 (p75NTR) in cerebral tissues around hematomas in the different periods after intracerebral hemorrhage, and explore their relationships to cell apoptosis. The specimens of cerebral tissues around hematomas were collected from the patients undergoing hematoma removal operation after intracerebral hemorrhage. These specimens were divided into four groups, namely ≤ 6 hours, 6-24 hours(including 24 hours), 24-72 hours (including 72 hours) and over 72 hours according to the time from intracerebral hemorrhage to specimen collection. At the same time, 10 brain tissues distant to hemorrhage that dropped in the operative process were collected as a control group. Apoptosis index (AI) was examined in brain cells by terminal deoxynucleotidyl transferase mediated deoxyuridine triphosphate nick end labeling (TUNEL). The expressions of NRH2, proNGF, sortilin and p75NTR mRNAs and proteins in brain tissues were detected through real-time quantitative PCR and Western blotting, respectively. Also, the expressions of Bcl-2 and Bax in brain tissues were analyzed using Western blotting. In vitro cultured astrocytes of rat cortex were transfected by NRH2 siRNA or scramble siRNA. The expressions of proNGF, sortilin and p75NTR proteins were detected using Western blotting. AI was higher in all groups of hemorrhage for 6 hours or longer than that in control and ≤ 6 hours groups, and AI in the group of 24-72 hours after intracerebral hemorrhage was the highest. However, there was no significant difference in AI between ≤ 6 hours group and control group. With the extension of intracerebral hemorrhage time, the expression levels of proNGF and p75NTR mRNAs and proteins were gradually elevated, reached the peak in 24-72 hours, and maintained a higher level after 72 hours, whereas there were no significant differences in the above indicators

  12. Identification and characterization of a novel P2Y 12 variant in a patient diagnosed with type 1 von Willebrand disease in the European MCMDM-1VWD study.

    PubMed

    Daly, Martina E; Dawood, Ban B; Lester, William A; Peake, Ian R; Rodeghiero, Francesco; Goodeve, Anne C; Makris, Michael; Wilde, Jonathan T; Mumford, Andrew D; Watson, Stephen P; Mundell, Stuart J

    2009-04-23

    We investigated whether defects in the P2Y(12) ADP receptor gene (P2RY12) contribute to the bleeding tendency in 92 index cases enrolled in the European MCMDM-1VWD study. A heterozygous mutation, predicting a lysine to glutamate (K174E) substitution in P2Y(12), was identified in one case with mild type 1 von Willebrand disease (VWD) and a VWF defect. Platelets from the index case and relatives carrying the K174E defect changed shape in response to ADP, but showed reduced and reversible aggregation in response to 10 muM ADP, unlike the maximal, sustained aggregation observed in controls. The reduced response was associated with an approximate 50% reduction in binding of [(3)H]2MeS-ADP to P2Y(12), whereas binding to the P2Y(1) receptor was normal. A hemagglutinin-tagged K174E P2Y(12) variant showed surface expression in CHO cells, markedly reduced binding to [(3)H]2MeS-ADP, and minimal ADP-mediated inhibition of forskolin-induced adenylyl cyclase activity. Our results provide further evidence for locus heterogeneity in type 1 VWD.

  13. Water-refined solution structure of the human Grb7-SH2 domain in complex with the erbB2 receptor peptide pY1139.

    PubMed

    Pias, Sally C; Johnson, Dennis L; Smith, David E; Lyons, Barbara A

    2012-08-01

    We report a refinement in implicit water of the previously published solution structure of the Grb7-SH2 domain bound to the erbB2 receptor peptide pY1139. Structure quality measures indicate substantial improvement, with residues in the most favored regions of the Ramachandran plot increasing by 14 % and with WHAT IF statistics (Vriend, G. J. Mol. Graph., 1990, 8(1), 52-56) falling closer to expected values for well-refined structures.

  14. Rilmenidine improves hepatic steatosis through p38-dependent pathway to higher the expression of farnesoid X receptor.

    PubMed

    Yang, Po-Sheng; Wu, Hung-Tsung; Chung, Hsien-Hui; Chen, Chun-Ta; Chi, Chin-Wen; Yeh, Ching-Hua; Cheng, Juei-Tang

    2012-01-01

    The nuclear receptor farnesoid X receptor (FXR) regulates pathways in lipid, glucose, and energy metabolism. Activation of FXR in mice significantly improved high-fat diet-induced hepatic steatosis. It has been reported that activation of imidazoline I-1 receptor by rilmenidine increases the expression of FXR in human hepatoma cell line, Hep G2 cell, to regulate the target genes relating to lipid metabolism; activation of FXR by rilmenidine exerts an antihyperlipidemic action. However, signals for this action of rilmenidine are still unknown. In the present study, hepatic steatosis induced in mice by high-fat diet was improved by rilmenidine after intraperitoneal injection at 1 mg/kg daily for 12 weeks. Also, mediation of I-1 receptors was identified using the specific antagonist efaroxan. Moreover, rilmenidine decreased the oleic acid-induced lipid accumulation in Hep G2 cells. Otherwise, rilmenidine increased the phosphorylation of p38 to increase the expression of FXR. Deletion of calcium ions by BAPTA-AM reversed the rilmenidine-induced p38 phosphorylation. In conclusion, we suggest that rilmenidine activates I-1 receptor to increase intracellular calcium ions that may enhance the phosphorylation of p38 to higher the expression of FXR for improvement of hepatic steatosis in both animals and cells.

  15. Over-expression of Flt3 induces NF-kappaB pathway and increases the expression of IL-6.

    PubMed

    Takahashi, Shinichiro; Harigae, Hideo; Ishii, Keiko Kumura; Inomata, Mitsue; Fujiwara, Tohru; Yokoyama, Hisayuki; Ishizawa, Kenichi; Kameoka, Junichi; Licht, Jonathan D; Sasaki, Takeshi; Kaku, Mitsuo

    2005-08-01

    Activating mutations or over-expression of the Flt3 is prevalent in acute myeloblastic leukemia (AML), associated with activation of Ras/MAP kinase and other signaling pathways. In this study, we addressed the role of Flt3 in the activation of nuclear factor-kappa B (NF-kappaB), which is a target molecule of these kinase pathways. In BaF3 cells stably expressing Flt3, a NF-kappaB-responsive reporter was upregulated and its target gene, IL-6, was increased by the involvement of Flt3-ERK/MAPK-NF-kappaB pathway. Furthermore, we found a modest positive correlation (r=0.35, p=0.096) between Flt3 and IL-6 mRNA expression in 24 AML specimens. These results suggest a role of Flt3 over-expression in NF-kappaB pathway.

  16. Curcumin I mediates neuroprotective effect through attenuation of quinoprotein formation, p-p38 MAPK expression, and caspase-3 activation in 6-hydroxydopamine treated SH-SY5Y cells.

    PubMed

    Meesarapee, Benjawan; Thampithak, Anusorn; Jaisin, Yamaratee; Sanvarinda, Pimtip; Suksamrarn, Apichart; Tuchinda, Patoomratana; Morales, Noppawan Phumala; Sanvarinda, Yupin

    2014-04-01

    6-Hydroxydopamine (6-OHDA) selectively enters dopaminergic neurons and undergoes auto-oxidation resulting in the generation of reactive oxygen species and dopamine quinones, subsequently leading to apoptosis. This mechanism mimics the pathogenesis of Parkinson's disease and has been used to induce experimental Parkinsonism in both in vitro and in vivo systems. In this study, we investigated the effects of curcumin I (diferuloylmethane) purified from Curcuma longa on quinoprotein production, phosphorylation of p38 MAPK (p-p38), and caspase-3 activation in 6-OHDA-treated SH-SY5Y dopaminergic cells. Pretreatment of SH-SY5Y with curcumin I at concentrations of 1, 5, 10, and 20 μM, significantly decreased the formation of quinoprotein and reduced the levels of p-p38 and cleaved caspase-3 in a dose-dependent manner. Moreover, the levels of the dopaminergic neuron marker, phospho-tyrosine hydroxylase (p-TH), were also dose-dependently increased upon treatment with curcumin I. Our results clearly demonstrated that curcumin I protects neurons against oxidative damage, as shown by attenuation of p-p38 expression, caspase-3-activation, and toxic quinoprotein formation, together with the restoration of p-TH levels. This study provides evidence for the therapeutic potential of curcumin I in the chemoprevention of oxidative stress-related neurodegeneration. Copyright © 2013 John Wiley & Sons, Ltd.

  17. Usefulness of the VerifyNow P2Y12 assay to evaluate the antiplatelet effects of ticagrelor and clopidogrel therapies.

    PubMed

    Jeong, Young-Hoon; Bliden, Kevin P; Antonino, Mark J; Park, Ki-Soo; Tantry, Udaya S; Gurbel, Paul A

    2012-07-01

    We analyzed the antiplatelet effects of different P2Y(12) receptor blockers with VerifyNow P2Y12 assay (VN-P2Y12) and light transmittance aggregometry (LTA). The point-of-care VN-P2Y12 has been used to assess the antiplatelet effects in clopidogrel-treated patients but has not been evaluated in detail in patients treated with ticagrelor. Patients were randomly assigned to either ticagrelor [180 mg loading/90 mg twice daily (n = 37)] or clopidogrel [600 mg loading/75 mg daily (n = 39)] on top of aspirin treatment, and platelet reactivity was measured serially during onset, maintenance, and offset phases. High on-treatment platelet reactivity (HPR) was defined as 5 and 20 μM adenosine diphosphate-induced maximal platelet aggregation ≥46% and ≥59%, respectively, and P2Y12 reaction units ≥235. Platelet function measured by VN-P2Y12 correlated well with LTA (.812 ≤ ρ ≤ .823, P < .001). VN-P2Y12 "BASE" values were consistent during administration of both agents. Calculated and reported percent inhibitions by VN-P2Y12 were similar (difference, -0.6%; 95% agreement limits, -22.9% to 21.6%). Platelet inhibition by VN-P2Y12 during clopidogrel and ticagrelor administrations was comparable to platelet inhibition by LTA. HPR determined by LTA and VN-P2Y12 were well matched, and the risk stratification between the two methods showed strong agreement after both therapies (κ > .7). The VerifyNow P2Y12 assay is effective in assessing the antiplatelet effects and in identifying HPR during clopidogrel or ticagrelor therapy. Copyright © 2012 Mosby, Inc. All rights reserved.

  18. Ketamine and ketamine metabolites as novel estrogen receptor ligands: Induction of cytochrome P450 and AMPA glutamate receptor gene expression.

    PubMed

    Ho, Ming-Fen; Correia, Cristina; Ingle, James N; Kaddurah-Daouk, Rima; Wang, Liewei; Kaufmann, Scott H; Weinshilboum, Richard M

    2018-04-03

    Major depressive disorder (MDD) is the most common psychiatric illness worldwide, and it displays a striking sex-dependent difference in incidence, with two thirds of MDD patients being women. Ketamine treatment can produce rapid antidepressant effects in MDD patients, effects that are mediated-at least partially-through glutamatergic neurotransmission. Two active metabolites of ketamine, (2R,6R)-hydroxynorketamine (HNK) and (2S,6S)-HNK, also appear to play a key role in ketamine's rapid antidepressant effects through the activation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) glutamate receptors. In the present study, we demonstrated that estrogen plus ketamine or estrogen plus active ketamine metabolites displayed additive effects on the induction of the expression of AMPA receptor subunits. In parallel, the expression of estrogen receptor alpha (ERα) was also significantly upregulated. Even more striking, radioligand binding assays demonstrated that [ 3 H]-ketamine can directly bind to ERα (K D : 344.5 ± 13 nM). Furthermore, ketamine and its (2R,6R)-HNK and (2S,6S)-HNK metabolites displayed similar affinity for ERα (IC 50 : 2.31 ± 0.1, 3.40 ± 0.2, and 3.53 ± 0.2 µM, respectively) as determined by [ 3 H]-ketamine displacement assays. Finally, induction of AMPA receptors by either estrogens or ketamine and its metabolites was lost when ERα was knocked down or silenced pharmacologically. These results suggest a positive feedback loop by which estrogens can augment the effects of ketamine and its (2R,6R)-HNK and (2S,6S)-HNK metabolites on the ERα-induced transcription of CYP2A6 and CYP2B6, estrogen inducible enzymes that catalyze ketamine's biotransformation to form the two active metabolites. These observations provide novel insight into ketamine's molecular mechanism(s) of action and have potential implications for the treatment of MDD. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. The metabotropic glutamate receptor antagonist 2-methyl-6-(phenylethynyl) pyridine decreases striatal VGlut2 expression in association with an attenuation of L-DOPA-induced dyskinesias.

    PubMed

    Marin, C; Bonastre, M; Aguilar, E; Jiménez, A

    2011-10-01

    The striatal glutamatergic hyperactivity is considered critical in the development of levodopa-induced dyskinesias (LID) in Parkinson's disease (PD). Pharmacological antagonism of the metabotropic glutamate receptors (mGluRs), in particular, the subtype mGluR5, can inhibit the expression of dyskinesia in both rodent and nonhuman primate models of PD. However, the exact mechanisms underlying the mGluR5 antagonism effects are not completely known. The vesicular glutamate transporters (VGluts) are localized in the synaptic vesicles of the striatal glutamatergic axonal terminals. The effects of mGluR5 antagonism modulating VGlut1 and VGlut2, as selective markers for the corticostriatal and thalamostriatal pathways, respectively, are still unknown. We investigated the effects of the mGluR5 antagonist, 2-methyl-6-(phenylethynyl) pyridine (MPEP) on the striatal expression of VGlut1 and VGlut2 in levodopa-treated hemiparkinsonian rats. Male Sprague-Dawley rats received a unilateral 6-hydroxydopamine (6-OHDA) administration in the nigrostriatal pathway. Rats were treated with: (a) levodopa (12 mg/kg/day with benserazide 15 mg/kg, ip) + vehicle; (b) MPEP (1.5 mg/kg/day, ip) + vehicle; (c) levodopa + MPEP, or (d) saline for 10 days. Levodopa treatment induced dyskinesias and did not modify the striatal expression of either VGlut1 or VGlut2. The administration of MPEP significantly attenuated LID and decreased the levels of VGlut2, but not the VGlut1, in the striatum ipsilateral to the lesion (P < 0.05). Our results suggest that the effects of MPEP on LID might be mediated by a modulating effect on VGlut 2 expression. Copyright © 2011 Wiley-Liss, Inc.

  20. Clopidogrel, a P2Y12 Receptor Antagonist, Potentiates the Inflammatory Response in a Rat Model of Peptidoglycan Polysaccharide-Induced Arthritis

    PubMed Central

    Rico, Mario C.; Dela Cadena, Raul A.; Kunapuli, Satya P.

    2011-01-01

    The P2Y12 receptor plays a crucial role in the regulation of platelet activation by several agonists, which is irreversibly antagonized by the active metabolite of clopidogrel, a widely used anti-thrombotic drug. In this study, we investigated whether reduction of platelet reactivity leads to reduced inflammatory responses using a rat model of erosive arthritis. We evaluated the effect of clopidogrel on inflammation in Lewis rats in a peptidoglycan polysaccharide (PG-PS)-induced arthritis model with four groups of rats: 1) untreated, 2) clopidogrel-treated, 3) PG-PS-induced, and 4) PG-PS-induced and clopidogrel-treated. There were significant differences between the PG-PS+clopidogrel group when compared to the PG-PS group including: increased joint diameter and clinical manifestations of inflammation, elevated plasma levels of pro-inflammatory cytokines (IL-1 beta, interferon (IFN) gamma, and IL-6), an elevated neutrophil blood count and an increased circulating platelet count. Plasma levels of IL-10 were significantly lower in the PG-PS+clopidogrel group compared to the PG-PS group. Plasma levels of platelet factor 4 (PF4) were elevated in both the PG-PS and the PG-PS+clopidogrel groups, however PF4 levels showed no difference upon clopidogrel treatment, suggesting that the pro- inflammatory effect of clopidogrel may be due to its action on cells other than platelets. Histology indicated an increase in leukocyte infiltration at the inflammatory area of the joint, increased pannus formation, blood vessel proliferation, subsynovial fibrosis and cartilage erosion upon treatment with clopidogrel in PG-PS-induced arthritis animals. In summary, animals treated with clopidogrel showed a pro-inflammatory effect in the PG-PS-induced arthritis animal model, which might not be mediated by platelets. Elucidation of the mechanism of clopidogrel-induced cell responses is important to understand the role of the P2Y12 receptor in inflammation. PMID:22028806

  1. Comparative Long-Term Effect of Three Anti-P2Y12 Drugs after Percutaneous Angioplasty: An Observational Study Based on Electronic Drug Adherence Monitoring

    PubMed Central

    Forni Ogna, Valentina; Bassi, Isabelle; Menetrey, Isabelle; Muller, Olivier; Tousset, Eric; Fontana, Pierre; Eeckhout, Eric; Eap, Chin B.; Vrijens, Bernard; Burnier, Michel; Wuerzner, Grégoire

    2017-01-01

    Aims: Dual platelet inhibition using anti-P2Y12 drugs and aspirin is the standard of care in patients after percutaneous coronary interventions (PCI). Prasugrel and ticagrelor have been shown to be more potent than clopidogrel with less high on-treatment platelet reactivity. Whether differences in long-term adherence to these drugs can partly explain different antiplatelet efficacy has not been studied so far. The objective was to compare the long-term P2Y12 receptor inhibition and drug adherence to different anti-P2Y12 drugs, and to assess the impact of adherence on the pharmacodynamic effect. Methods: Monocentric, prospective, observational study. Stable outpatients treated with clopidogrel 75 mg once daily, prasugrel 10 mg once daily or ticagrelor 90 mg twice daily after PCI with stent implantation were included. Drug adherence was recorded during 6 months using electronic monitoring. Platelet responsiveness was assessed with the vasodilator-stimulated phosphoprotein platelet reactivity index (VASP-PRI) at inclusion, 3 and 6 months. Results: 120 patients had VASP-PRI and adherence data available. At 6-months, mean VASP-PRI (±SD) was 17.7 ± 11.0% with ticagrelor, 29.2 ± 15.5% with prasugrel and 47.2 ± 17.6% with clopidogrel (ANOVA, P < 0.0001). Median [IQR] taking adherence was 96 [82–100]% with ticagrelor, 100 [97–101]% with prasugrel and 100 [99–101]% with clopidogrel (p = 0.0001). Median [IQR] correct dosing was 88 [73–95]% with ticagrelor, 97 [92.5–98]% with prasugrel and 98 [96–99]% with clopidogrel (p = 0.0001). Anti-P2Y12 drug (p ≤ 0.001) and diabetes (p = 0.014) emerged as predictors of poor antiplatelet response after adjusting for age, BMI, sex, and CYP2C19∗2 carriers status. Conclusion: Drug adherence to anti-P2Y12 drugs assessed with electronic monitoring was very high. However, anti-P2Y12 drugs showed significant differences in antiplatelet activity, with newer anti-P2Y12 drugs ticagrelor and prasugrel exerting a stronger P2Y12

  2. Dehydroepiandrosterone Potentiates Native Ionotropic ATP Receptors Containing the P2X2 Subunit in Rat Sensory Neurones

    PubMed Central

    De Roo, Mathias; Rodeau, Jean-Luc; Schlichter, Rémy

    2003-01-01

    We have studied the modulatory effect of dehydroepiandrosterone (DHEA), the most abundant neurosteroid produced by glial cells and neurones, on membrane currents induced by the activation of ionotropic ATP (P2X) receptors in neonatal rat dorsal root ganglion neurones. ATP (1 μm) induced three types of currents/responses termed F (fast and transient), S (slowly desensitizing) and M (mixed, sum of F- and S-type responses). DHEA (10 nm to 100 μm) concentration-dependently increased the amplitude of plateau-like currents of S- and M-type responses evoked by submaximal (1 μm) but not saturating (100 μm or 1 mM) concentrations of ATP. αβ-Methylene ATP (αβme-ATP, 5 μm) also evoked F-, S- and M-type responses, the plateau phases of which were potentiated by lowering external pH (6.3) and by ivermectin (IVM, 3 μm), indicating the presence heteromeric P2X2-containing receptors and possibly of functional native P2X4/6 receptors. There was a strict correlation between the potentiating effects of low pH and DHEA on αβme-ATP responses but not between that of IVM and DHEA, suggesting that DHEA selectively modulated P2X2-containing receptors. DHEA also potentiated putative homomeric P2X2 receptor responses recorded in the continuous presence of 1 μm 2′-(or 3′)-O-(2,4,6-trinitrophenyl) adenosine 5′-triphosphate (TNP-ATP). Our results constitute the first demonstration of a fast potentiation of P2X receptors by a neurosteroid and suggest that DHEA could be an endogenous modulator of P2X2-containing receptors thereby contributing to the facilitation of the detection and/or the transmission of nociceptive messages, particularly under conditions of inflammatory pain where the P2X receptor signalling pathway appears to be upregulated. PMID:12844512

  3. Decoy Wnt receptor (sLRP6E1E2)-expressing adenovirus induces anti-fibrotic effect via inhibition of Wnt and TGF-β signaling.

    PubMed

    Lee, Won Jai; Lee, Jung-Sun; Ahn, Hyo Min; Na, Youjin; Yang, Chae Eun; Lee, Ju Hee; Hong, JinWoo; Yun, Chae-Ok

    2017-11-08

    Aberrant activation of the canonical Wingless type (Wnt) signaling pathway plays a key role in the development of hypertrophic scars and keloids, and this aberrant activation of Wnt pathway can be a potential target for the development of novel anti-fibrotic agents. In this study, we evaluated the anti-fibrotic potential of a soluble Wnt decoy receptor (sLRP6E1E2)-expressing non-replicating adenovirus (Ad; dE1-k35/sLRP6E1E2) on human dermal fibroblasts (HDFs), keloid fibroblasts (KFs), and keloid tissue explants. Higher Wnt3a and β-catenin expression was observed in the keloid region compared to the adjacent normal tissues. The activity of β-catenin and mRNA expression of type-I and -III collagen were significantly decreased following treatment with dE1-k35/sLRP6E1E2 in HDFs and KFs. The expression of LRP6, β-catenin, phosphorylated glycogen synthase kinase 3 beta, Smad 2/3 complex, and TGF-β1 were decreased in Wnt3a- or TGF-β1-activated HDFs, following administration of dE1-k35/sLRP6E1E2. Moreover, dE1-k35/sLRP6E1E2 markedly inhibited nuclear translocation of both β-catenin and Smad 2/3 complex. The expression levels of type-I and -III collagen, fibronectin, and elastin were also significantly reduced in keloid tissue explants after treatment with dE1-k35/sLRP6E1E2. These results indicate that Wnt decoy receptor-expressing Ad can degrade extracellular matrix in HDFs, KFs, and primary keloid tissue explants, and thus it may be beneficial for treatment of keloids.

  4. Expression and localization of aromatase P450AROM, estrogen receptor-α, and estrogen receptor-β in the developing fetal bovine frontal cortex.

    PubMed

    Peruffo, A; Giacomello, M; Montelli, S; Corain, L; Cozzi, B

    2011-06-01

    The enzyme aromatase (P450(AROM)) converts testosterone (T) into 17-β estradiol (E(2)) and is crucial for the control of development of the central nervous system during ontogenesis. The effects of E(2) in various brain areas are mediated by the estrogen receptor alpha (ER-α) and the estrogen receptor beta (ER-β). During fetal development, steroids are responsible for the sexual differentiation of the hypothalamus. Estrogens are also able to exert effects in other brain areas of the fetus including the frontal cortex, where they act through estrogen receptors (ERs) modulating cognitive function and affective behaviors. In this study we have determined the expression profiles of P450(AROM) and ERs in the fetal bovine frontal cortex by quantitative Real-Time PCR (qRT-PCR) throughout the prenatal development. The data show that the patterns of expression of both ERs are strongly correlated during pregnancy and increase in the last stage of gestation. On the contrary, the expression of P450(AROM) has no correlation with ERs expression and is not developmentally regulated. Moreover, we performed immunochemical studies showing that fetal neurons express P450(AROM) and the ERs. P450(AROM) is localized in the cytoplasm and only seldom present in the fine extensions of the cells; ER-α is detected predominantly in the soma whereas ER-β is only present in the nucleus of a few cells. This study provides new data on the development of the frontal cortex in a long gestation mammal with a large convoluted brain. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Comparison of the functional potencies of ropinirole and other dopamine receptor agonists at human D2(long), D3 and D4.4 receptors expressed in Chinese hamster ovary cells

    PubMed Central

    Coldwell, Martyn C; Boyfield, Izzy; Brown, Tony; Hagan, Jim J; Middlemiss, Derek N

    1999-01-01

    The aim of the present study was to characterize functional responses to ropinirole, its major metabolites in man (SKF-104557 (4-[2-(propylamino)ethyl]-2-(3H) indolone), SKF-97930 (4-carboxy-2-(3H) indolone)) and other dopamine receptor agonists at human dopamine D2(long) (hD2), D3 (hD3) and D4.4 (hD4) receptors separately expressed in Chinese hamster ovary cells using microphysiometry.All the receptor agonists tested (ropinirole, SKF-104557, SKF-97930, bromocriptine, lisuride, pergolide, pramipexole, talipexole, dopamine) increased extracellular acidification rate in Chinese hamster ovary clones expressing the human D2, D3 or D4 receptor. The pEC50s of ropinirole at hD2, hD3 and hD4 receptors were 7.4, 8.4 and 6.8, respectively. Ropinirole is therefore at least 10 fold selective for the human dopamine D3 receptor over the other D2 receptor family members.At the hD2 and hD3 dopamine receptors all the compounds tested were full agonists as compared to quinpirole. Talipexole and the ropinirole metabolite, SKF-104557, were partial agonists at the hD4 receptor.Bromocriptine and lisuride had a slow onset of agonist action which precluded determination of EC50s.The rank order of agonist potencies was dissimilar to the rank order of radioligand binding affinities at each of the dopamine receptor subtypes. Functional selectivities of the dopamine receptor agonists, as measured in the microphysiometer, were less than radioligand binding selectivities.The results show that ropinirole is a full agonist at human D2, D3 and D4 dopamine receptors. SKF-104557 the major human metabolite of ropinirole, had similar radioligand binding affinities to, but lower functional potencies than, the parent compound. PMID:10455328

  6. Opposing Roles of Calcium and Intracellular ATP on Gating of the Purinergic P2X2 Receptor Channel.

    PubMed

    Rokic, Milos B; Castro, Patricio; Leiva-Salcedo, Elias; Tomic, Melanija; Stojilkovic, Stanko S; Coddou, Claudio

    2018-04-11

    P2X2 receptors (P2X2R) exhibit a slow desensitization during the initial ATP application and a progressive, calcium-dependent increase in rates of desensitization during repetitive stimulation. This pattern is observed in whole-cell recordings from cells expressing recombinant and native P2X2R. However, desensitization is not observed in perforated-patched cells and in two-electrode voltage clamped oocytes. Addition of ATP, but not ATPγS or GTP, in the pipette solution also abolishes progressive desensitization, whereas intracellular injection of apyrase facilitates receptor desensitization. Experiments with injection of alkaline phosphatase or addition of staurosporine and ATP in the intracellular solution suggest a role for a phosphorylation-dephosphorylation in receptor desensitization. Mutation of residues that are potential phosphorylation sites identified a critical role of the S363 residue in the intracellular ATP action. These findings indicate that intracellular calcium and ATP have opposing effects on P2X2R gating: calcium allosterically facilitates receptor desensitization and ATP covalently prevents the action of calcium. Single cell measurements further revealed that intracellular calcium stays elevated after washout in P2X2R-expressing cells and the blockade of mitochondrial sodium/calcium exchanger lowers calcium concentrations during washout periods to basal levels, suggesting a role of mitochondria in this process. Therefore, the metabolic state of the cell can influence P2X2R gating.

  7. Increased Retinal Expression of the Pro-Angiogenic Receptor GPR91 via BMP6 in a Mouse Model of Juvenile Hemochromatosis.

    PubMed

    Arjunan, Pachiappan; Gnanaprakasam, Jaya P; Ananth, Sudha; Romej, Michelle A; Rajalakshmi, Veeranan-Karmegam; Prasad, Puttur D; Martin, Pamela M; Gurusamy, Mariappan; Thangaraju, Muthusamy; Bhutia, Yangzom D; Ganapathy, Vadivel

    2016-04-01

    Hemochromatosis, an iron-overload disease, occurs as adult and juvenile types. Mutations in hemojuvelin (HJV), an iron-regulatory protein and a bone morphogenetic protein (BMP) coreceptor, underlie most of the juvenile type. Hjv(-/-) mice accumulate excess iron in retina and exhibit aberrant vascularization and angiomas. A succinate receptor, GPR91, is pro-angiogenic in retina. We hypothesized that Hjv(-/-) retinas have increased BMP signaling and increased GPR91 expression as the basis of angiomas. Expression of GPR91 was examined by qPCR, immunofluorescence, and Western blot in wild-type and Hjv(-/-) mouse retinas and pRPE cells. Influence of excess iron and BMP6 on GPR91 expression was investigated in ARPE-19 cells, and wild-type and Hjv(-/-) pRPE cells. Succinate was used to activate GPR91 and determine the effects of GPR91 signaling on VEGF expression. Signaling of BMP6 was studied by the expression of Smad1/5/8 and pSmad4, and the BMP-target gene Id1. The interaction of pSmad4 with GPR91 promoter was studied by ChIP. Expression of GPR91 was higher in Hjv(-/-) retinas and RPE than in wild-type counterparts. Unexpectedly, BMP signaling was increased, not decreased, in Hjv(-/-) retinas and RPE. Bone morphogenetic protein 6 induced GPR91 in RPE, suggesting that increased BMP signaling in Hjv(-/-) retinas was likely responsible for GPR91 upregulation. Exposure of RPE to excess iron and succinate as well as BMP6 and succinate increased VEGF expression. Bone morphogenetic protein 6 promoted the interaction of pSmad4 with GPR91 promoter in RPE. G-protein-coupled receptor 91 is a BMP6 target and Hjv deletion enhances BMP signaling in retina, thus underscoring a role for excess iron and hemochromatosis in abnormal retinal vascularization.

  8. Expression of PTHrP and PTH/PTHrP receptor 1 in the superior cervical ganglia of rats.

    PubMed

    Filipović, Natalija; Vrdoljak, Marija; Vuica, Ana; Jerić, Milka; Jeličić Kadić, Antonia; Utrobičić, Toni; Mašek, Tomislav; Grković, Ivica

    2014-12-01

    PTHrP and its receptor PTHR1 are found in the CNS and peripheral nervous system. The presence of PTHrP mRNA has been detected in the superior cervical ganglion (SCG), but there are no data on the cellular distribution of PTHrP and PTHR1 in the SCG. Although it is known that ovarian activity and reproductive status influence sympathetic activity, and the PTHrP/PTHR1 system is influenced by estrogens in different tissues, it is not known whether these factors have a similar effect on expression of PTHrP and PTHR1 in the nervous system. Hence, we investigated the presence and distribution of PTHrP and PTHR1 in neurons and glia of the SCG of rats, as well as the influence of ovariectomy on their expression, by using immunohistochemistry. PTHrP and PTHR1 immunoreactivity was observed in cytoplasm as well as in nuclei of almost all neurons in the SCG. In male rats, intensity of PTHrP fluorescence was significantly higher in cytoplasm of NPY-, in comparison to NPY+ neurons (p < 0.05). In female rats, 2 months post-ovariectomy, significantly lower intensity of PTHrP fluorescence in cytoplasm of the SCG neurons was observed in comparison to sham operated animals (p < 0.05). In addition to neurons, PTHrP and PTHR1 immunoreactivity was observed in most of the glia and was not influenced by ovariectomy. Results show the expression of PTHrP and its receptor, PTHR1, in the majority of neurons and glial cells in the SCG of rats. Expression of PTHrP, but not PTHR1 in the cytoplasm of SCG neurons is influenced by ovarian activity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Ionic selectivity of native ATP-activated (P2X) receptor channels in dissociated neurones from rat parasympathetic ganglia

    PubMed Central

    Liu, Dong-Mei; Adams, David J

    2001-01-01

    The relative permeability of the native P2X receptor channel to monovalent and divalent inorganic and organic cations was determined from reversal potential measurements of ATP-evoked currents in parasympathetic neurones dissociated from rat submandibular ganglia using the dialysed whole-cell patch clamp technique. The P2X receptor-channel exhibited weak selectivity among the alkali metals with a selectivity sequence of Na+ > Li+ > Cs+ > Rb+ > K+, and permeability ratios relative to Cs+ (PX/PCs) ranging from 1.11 to 0.86. The selectivity for the divalent alkaline earth cations was also weak with the sequence Ca2+ > Sr2+ > Ba2+ > Mn2+ > Mg2+. ATP-evoked currents were strongly inhibited when the extracellular divalent cation concentration was increased. The calculated permeability ratios of different ammonium cations are higher than those of the alkali metal cations. The permeability sequence obtained for the saturated organic cations is inversely correlated with the size of the cation. The unsaturated organic cations have a higher permeability than that predicted by molecular size. Acidification to pH 6.2 increased the ATP-induced current amplitude twofold, whereas alkalization to 8.2 and 9.2 markedly reduced current amplitude. Cell dialysis with either anti-P2X2 and/or anti-P2X4 but not anti-P2X1 antibodies attenuated the ATP-evoked current amplitude. Taken together, these data are consistent with homomeric and/or heteromeric P2X2 and P2X4 receptor subtypes expressed in rat submandibular neurones. The permeability ratios for the series of monovalent organic cations, with the exception of unsaturated cations, were approximately related to the ionic size. The relative permeabilities of the monovalent inoganic and organic cations tested are similar to those reported previously for cloned rat P2X2 receptors expressed in mammalian cells. PMID:11454961

  10. Secretoneurin, substance P and neuropeptide Y in the oxygen-induced retinopathy in C57Bl/6N mice.

    PubMed

    Schmid, Eduard; Nogalo, Marina; Bechrakis, Nikolaos E; Fischer-Colbrie, Reiner; Tasan, Ramon; Sperk, Günther; Theurl, Markus; Beer, Arno G E; Kirchmair, Rudolf; Herzog, Herbert; Troger, Josef

    2012-10-01

    In this study, we investigated whether the proangiogenic neuropeptides secretoneurin (SN), substance P (SP), and neuropeptide Y (NPY) contribute to the development of abnormal neovascularization in the oxygen-induced retinopathy (OIR) model in mice. By exposing litters of C57Bl/6N mice to 75% oxygen from postnatal day 7 (P7) until postnatal day 11 (P11) and then returning them to normoxic conditions, retinal ischemia and subsequent neovascularization on the retinal surface were induced. Retinae were dissected on P9, P11, P12-P14, P16 and P20, and the concentrations of SN, SP, NPY and VEGF determined by radioimmunoassay or ELISA. The levels of SN and SP increased in controls from P9 until P16 and from P9 until P14, respectively, whereas the levels of NPY were high at P9 and decreased thereafter until P20, suggesting that NPY may participate in the development of the retina. However, dipeptidyl peptidase IV (DPPIV) and the NPY-Y2 receptor were not detectable in the immature retina indicating that NPY is not involved in the physiological vascularization in the retina. Compared to controls, OIR had no effect on the levels of SN, whereas levels of both SP and NPY slightly decreased during hyperoxia. Normalization of the levels of SP, and to a more pronounced extent of NPY, was significantly delayed during relative hypoxia. This clearly indicates that these three neuropeptides are not involved in the pathogenesis of neovascularization in OIR. Moreover, since there were no differences in the expression of two vessel markers in the retina of NPY knockout mice versus controls at P14, NPY is also not involved in the delayed development of the intermediate and deep vascular plexus in the retina in this animal model. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Transcription Factor ZBED6 Mediates IGF2 Gene Expression by Regulating Promoter Activity and DNA Methylation in Myoblasts

    NASA Astrophysics Data System (ADS)

    Huang, Yong-Zhen; Zhang, Liang-Zhi; Lai, Xin-Sheng; Li, Ming-Xun; Sun, Yu-Jia; Li, Cong-Jun; Lan, Xian-Yong; Lei, Chu-Zhao; Zhang, Chun-Lei; Zhao, Xin; Chen, Hong

    2014-04-01

    Zinc finger, BED-type containing 6 (ZBED6) is an important transcription factor in placental mammals, affecting development, cell proliferation and growth. In this study, we found that the expression of the ZBED6 and IGF2 were upregulated during C2C12 differentiation. The IGF2 expression levels were negatively associated with the methylation status in beef cattle (P < 0.05). A luciferase assay for the IGF2 intron 3 and P3 promoter showed that the mutant-type 439 A-SNP-pGL3 in driving reporter gene transcription is significantly higher than that of the wild-type 439 G-SNP-pGL3 construct (P < 0.05). An over-expression assay revealed that ZBED6 regulate IGF2 expression and promote myoblast differentiation. Furthermore, knockdown of ZBED6 led to IGF2 expression change in vitro. Taken together, these results suggest that ZBED6 inhibits IGF2 activity and expression via a G to A transition disrupts the interaction. Thus, we propose that ZBED6 plays a critical role in myogenic differentiation.

  12. The expression of chemokine receptors CCR6, CXCR2 and CXCR4 is not organ-specific for distant metastasis in colorectal cancer: a comparative study.

    PubMed

    Hu, Dongzhi; Du, Changzheng; Xue, Weicheng; Dou, Fangyuan; Yao, Yunfeng; Gu, Jin

    2013-08-01

    The liver and lung are the organs most commonly affected by metastasis in colorectal cancer (CRC), and the interaction of chemokines and chemokine receptors (CKRs) plays an important role in the metastatic process. The aim of this study was to investigate the organ specificity of CKRs in CRC distant metastasis. Surgical specimens of primary tumours from 46 patients with metachronous distant metastases were retrieved retrospectively (20 lung metastases; 26 liver metastases). As a control, the records of 29 patients without distant metastases were randomly retrieved from our database, and their specimens were reassessed. The expression rates of CKRs, including CCR6, CXCR2, and CXCR4, were determined by immunohistochemistry, and were compared among the groups. The expression rates of CCR6 and CXCR2 were both significantly higher in the metastasis group than in the non-metastasis group (P < 0.05), but there was no statistical difference between the lung metastasis and liver metastasis subgroups. The expression of CXCR4 was not significantly different between the metastasis and non-metastasis groups. Multivariable analysis suggested that preoperative serum carcinoembryonic antigen level, CCR6 and CXCR2 were independent factors associated with distant metastasis. The expression of CCR6 and CXCR2 in CRC could predict metachronous distant metastasis, but they have no organ specificity for metastasis. © 2013 John Wiley & Sons Ltd.

  13. The P2X4 purinergic receptor regulates hepatic myofibroblast activation during liver fibrogenesis.

    PubMed

    Le Guilcher, Camille; Garcin, Isabelle; Dellis, Olivier; Cauchois, Florent; Tebbi, Ali; Doignon, Isabelle; Guettier, Catherine; Julien, Boris; Tordjmann, Thierry

    2018-05-23

    Liver fibrosis is characterized by the accumulation of extracellular matrix produced by hepatic myofibroblasts (hMF), the activation of which is critical to the fibrogenic process. Extracellular adenosine triphosphate, released by dying or stressed cells, and its purinergic receptors, constitute a powerful signaling network after injury. Although the P2X4 purinergic receptor (P2X4) is highly expressed in the liver, its functions in hMF had never been investigated during liver fibrogenesis. In vivo, bile duct ligation (BDL) and methionine- and choline-deficient (MCD) diet were performed in WT and P2X4 knock-out (P2X4-KO) mice. In vitro, hMF were isolated from mouse (WT and P2X4-KO) and human liver. P2X4 pharmacological inhibition (in vitro and in vivo) and P2X4 siRNAs (in vitro) were used. Histological, biochemical and cell culture analysis allowed us to study P2X4 expression and its involvement in the regulation of fibrogenic and fibrolytic factors, as well as of hMF activation markers and properties. P2X4 genetic invalidation or pharmacological inhibition protected mice from liver fibrosis and hMF accumulation after BDL or MCD diet. Human and mouse hMF expressed P2X4, mainly in lysosomes. Invalidation of P2X4 in human and mouse hMF blunted their activation marker expression and their fibrogenic properties. We finally showed that P2X4 regulates calcium entry and lysosomal exocytosis in hMF, with impact on ATP release, pro-fibrogenic secretory profile, and on transcription factor activation. P2X4 expression and activation is critical for hMF to sustain their activated and fibrogenic phenotype. Therefore, the inactivation of P2X4 may be of therapeutic interest during liver fibrotic diseases. During chronic injury, the liver often repairs with fibrotic tissue for which there is currently no treatment. We found that a previously unexplored pathway involving the purinergic receptor "P2X4", can modulate fibrotic liver repair, and could be considered for future

  14. Chronic lead exposure enhances the sympathoexcitatory response associated with P2X4 receptor in rat stellate ganglia.

    PubMed

    Zhu, Gaochun; Chen, Zhenying; Dai, Bo; Zheng, Chaoran; Jiang, Huaide; Xu, Yurong; Sheng, Xuan; Guo, Jingjing; Dan, Yu; Liang, Shangdong; Li, Guilin

    2018-06-01

    Chronic lead exposure causes peripheral sympathetic nerve stimulation, including increased blood pressure and heart rate. Purinergic receptors are involved in the sympathoexcitatory response induced by myocardial ischemia injury. However, whether P2X4 receptor participates in sympathoexcitatory response induced by chronic lead exposure and the possible mechanisms are still unknown. The aim of this study was to explore the change of the sympathoexcitatory response induced by chronic lead exposure via the P2X4 receptor in the stellate ganglion (SG). Rats were given lead acetate through drinking water freely at doses of 0 g/L (control group), 0.5 g/L (low lead group), and 2 g/L (high lead group) for 1 year. Our results demonstrated that lead exposure caused autonomic nervous dysfunction, including blood pressure and heart rate increased and heart rate variability (HRV) decreased. Western blotting results indicated that after lead exposure, the protein expression levels in the SG of P2X4 receptor, IL-1β and Cx43 were up-regulated, the phosphorylation of p38 mitogen-activated protein kinase (MAPK) was activated. Real-time PCR results showed that the mRNA expression of P2X4 receptor in the SG was higher in lead exposure group than that in the control group. Double-labeled immunofluorescence results showed that P2X4 receptor was co-expressed with glutamine synthetase (GS), the marker of satellite glial cells (SGCs). These changes were positively correlated with the dose of lead exposure. The up-regulated expression of P2X4 receptor in SGCs of the SG maybe enhance the sympathoexcitatory response induced by chronic lead exposure. © 2018 Wiley Periodicals, Inc.

  15. Targeting Aberrant p70S6K Activation for Estrogen Receptor-Negative Breast Cancer Prevention.

    PubMed

    Wang, Xiao; Yao, Jun; Wang, Jinyang; Zhang, Qingling; Brady, Samuel W; Arun, Banu; Seewaldt, Victoria L; Yu, Dihua

    2017-11-01

    The prevention of estrogen receptor-negative (ER-) breast cancer remains a major challenge in the cancer prevention field, although antiestrogen and aromatase inhibitors have shown adequate efficacy in preventing estrogen receptor-positive (ER + ) breast cancer. Lack of commonly expressed, druggable targets is a major obstacle for meeting this challenge. Previously, we detected the activation of Akt signaling pathway in atypical hyperplasic early-stage lesions of patients. In the current study, we found that Akt and the downstream 70 kDa ribosomal protein S6 kinase (p70S6K) signaling pathway was highly activated in ER - premalignant breast lesions and ER - breast cancer. In addition, p70S6K activation induced transformation of ER - human mammary epithelial cells (hMEC). Therefore, we explored the potential of targeting Akt/p70S6K in the p70S6K activated, ER - hMEC models and mouse mammary tumor models for the prevention of ER - breast cancer. We found that a clinically applicable Akt/p70S6K dual inhibitor, LY2780301, drastically decreased proliferation of hMECs with ErbB2-induced p70S6K activation via Cyclin B1 inhibition and cell-cycle blockade at G 0 -G 1 phase, while it did not significantly reverse the abnormal acinar morphology of these hMECs. In addition, a brief treatment of LY2780301 in MMTV- neu mice that developed atypical hyperplasia (ADH) and mammary intraepithelial neoplasia (MIN) lesions with activated p70S6K was sufficient to suppress S6 phosphorylation and decrease cell proliferation in hyperplasic MECs. In summary, targeting the aberrant Akt/p70S6K activation in ER - hMEC models in vitro and in the MMTV- neu transgenic mouse model in vivo effectively inhibited Akt/S6K signaling and reduced proliferation of hMECs in vitro and ADH/MIN lesions in vivo , indicating its potential in prevention of p70S6K activated ER - breast cancer. Cancer Prev Res; 10(11); 641-50. ©2017 AACR . ©2017 American Association for Cancer Research.

  16. Structural basis of ligand binding modes at the neuropeptide Y Y1 receptor.

    PubMed

    Yang, Zhenlin; Han, Shuo; Keller, Max; Kaiser, Anette; Bender, Brian J; Bosse, Mathias; Burkert, Kerstin; Kögler, Lisa M; Wifling, David; Bernhardt, Guenther; Plank, Nicole; Littmann, Timo; Schmidt, Peter; Yi, Cuiying; Li, Beibei; Ye, Sheng; Zhang, Rongguang; Xu, Bo; Larhammar, Dan; Stevens, Raymond C; Huster, Daniel; Meiler, Jens; Zhao, Qiang; Beck-Sickinger, Annette G; Buschauer, Armin; Wu, Beili

    2018-04-01

    Neuropeptide Y (NPY) receptors belong to the G-protein-coupled receptor superfamily and have important roles in food intake, anxiety and cancer biology 1,2 . The NPY-Y receptor system has emerged as one of the most complex networks with three peptide ligands (NPY, peptide YY and pancreatic polypeptide) binding to four receptors in most mammals, namely the Y 1 , Y 2 , Y 4 and Y 5 receptors, with different affinity and selectivity 3 . NPY is the most powerful stimulant of food intake and this effect is primarily mediated by the Y 1 receptor (Y 1 R) 4 . A number of peptides and small-molecule compounds have been characterized as Y 1 R antagonists and have shown clinical potential in the treatment of obesity 4 , tumour 1 and bone loss 5 . However, their clinical usage has been hampered by low potency and selectivity, poor brain penetration ability or lack of oral bioavailability 6 . Here we report crystal structures of the human Y 1 R bound to the two selective antagonists UR-MK299 and BMS-193885 at 2.7 and 3.0 Å resolution, respectively. The structures combined with mutagenesis studies reveal the binding modes of Y 1 R to several structurally diverse antagonists and the determinants of ligand selectivity. The Y 1 R structure and molecular docking of the endogenous agonist NPY, together with nuclear magnetic resonance, photo-crosslinking and functional studies, provide insights into the binding behaviour of the agonist and for the first time, to our knowledge, determine the interaction of its N terminus with the receptor. These insights into Y 1 R can enable structure-based drug discovery that targets NPY receptors.

  17. Characterization of cannabinoid receptor ligands in tissues natively expressing cannabinoid CB2 receptors

    PubMed Central

    Marini, Pietro; Cascio, Maria-Grazia; King, Angela; Pertwee, Roger G; Ross, Ruth A

    2013-01-01

    Background and Purpose Although cannabinoid CB2 receptor ligands have been widely characterized in recombinant systems in vitro, little pharmacological characterization has been performed in tissues natively expressing CB2 receptors. The aim of this study was to compare the pharmacology of CB2 receptor ligands in tissue natively expressing CB2 receptors (human, rat and mouse spleen) and hCB2-transfected CHO cells. Experimental Approach We tested the ability of well-known cannabinoid CB2 receptor ligands to stimulate or inhibit [35S]GTPγS binding to mouse, rat and human spleen membranes and to hCB2-transfected CHO cell membranes. cAMP assays were also performed in hCB2-CHO cells. Key Results The data presented demonstrate that: (i) CP 55,940, WIN 55,212-2 and JWH 133 behave as CB2 receptor full agonists both in spleen and hCB2-CHO cells, in both [35S]GTPγS and cAMP assays; (ii) JWH 015 behaves as a low-efficacy agonist in spleen as well as in hCB2-CHO cells when tested in the [35S]GTPγS assay, while it displays full agonism when tested in the cAMP assay using hCB2-CHO cells; (iii) (R)-AM 1241 and GW 405833 behave as agonists in the [35S]GTPγS assay using spleen, instead it behaves as a low-efficacy inverse agonist in hCB2-CHO cells; and (iv) SR 144528, AM 630 and JTE 907 behave as CB2 receptor inverse agonists in all the tissues. Conclusion and Implications Our results demonstrate that CB2 receptor ligands can display differential pharmacology when assays are conducted in tissues that natively express CB2 receptors and imply that conclusions from recombinant CB2 receptors should be treated with caution. PMID:23711022

  18. NF-Y loss triggers p53 stabilization and apoptosis in HPV18-positive cells by affecting E6 transcription.

    PubMed

    Benatti, Paolo; Basile, Valentina; Dolfini, Diletta; Belluti, Silvia; Tomei, Margherita; Imbriano, Carol

    2016-07-19

    The expression of the high risk HPV18 E6 and E7 oncogenic proteins induces the transformation of epithelial cells, through the disruption of p53 and Rb function. The binding of cellular transcription factors to cis-regulatory elements in the viral Upstream Regulatory Region (URR) stimulates E6/E7 transcription. Here, we demonstrate that the CCAAT-transcription factor NF-Y binds to a non-canonical motif within the URR and activates viral gene expression. In addition, NF-Y indirectly up-regulates HPV18 transcription through the transactivation of multiple cellular transcription factors. NF-YA depletion inhibits the expression of E6 and E7 genes and re-establishes functional p53. The activation of p53 target genes in turn leads to apoptotic cell death. Finally, we show that NF-YA loss sensitizes HPV18-positive cells toward the DNA damaging agent Doxorubicin, via p53-mediated transcriptional response.

  19. Possible neuroprotective role of P2X2 in the retina of diabetic rats.

    PubMed

    Mancini, Jorge E; Ortiz, Gustavo; Potilinstki, Constanza; Salica, Juan P; Lopez, Emiliano S; Croxatto, J Oscar; Gallo, Juan E

    2018-01-01

    Purinergic receptors are expressed in different tissues including the retina. These receptors are involved in processes like cell growth, proliferation, activation and survival. ATP is the major activator of P2 receptors. In diabetes, there is a constant ATP production and this rise of ATP leads to a persistent activation of purinergic receptors. Antagonists of these receptors are used to evaluate their inhibition effects. Recently, the P2X2 has been reported to have a neuroprotective role. We carried out a study in groups of diabetic and non-diabetic rats (N = 5) treated with intraperitoneal injections of PPADS, at 9 and 24 weeks of diabetes. Control group received only the buffer. Animals were euthanized at 34 weeks of diabetes or at a matching age. Rat retinas were analyzed with immunohistochemistry and western blot using antibodies against GFAP, P2X2, P2Y2 and VEGF-A. Diabetic animals treated with PPADS disclosed a much more extended staining of VEGF-A than diabetics without treatment. A lower protein expression of VEGF-A was found at the retina of diabetic animals without treatment of purinergic antagonists compared to diabetics with the antagonist treatment. Inhibition of P2X2 receptor by PPADS decreases cell death in the diabetic rat retina. Results might be useful for better understanding the pathophysiology of diabetic retinopathy.

  20. The P2Y12 Antagonists, 2-Methylthioadenosine 5′-Monophosphate Triethylammonium Salt and Cangrelor (ARC69931MX), Can Inhibit Human Platelet Aggregation through a Gi-independent Increase in cAMP Levels*

    PubMed Central

    Srinivasan, Subhashini; Mir, Fozia; Huang, Jin-Sheng; Khasawneh, Fadi T.; Lam, Stephen C.-T.; Le Breton, Guy C.

    2009-01-01

    ADP plays an integral role in the process of hemostasis by signaling through two platelet G-protein-coupled receptors, P2Y1 and P2Y12. The recent use of antagonists against these two receptors has contributed a substantial body of data characterizing the ADP signaling pathways in human platelets. Specifically, the results have indicated that although P2Y1 receptors are involved in the initiation of platelet aggregation, P2Y12 receptor activation appears to account for the bulk of the ADP-mediated effects. Based on this consideration, emphasis has been placed on the development of a new class of P2Y12 antagonists (separate from clopidogrel and ticlopidine) as an approach to the treatment of thromboembolic disorders. The present work examined the molecular mechanisms by which two of these widely used adenosine-based P2Y12 antagonists (2-methylthioadenosine 5′-monophosphate triethylammonium salt (2MeSAMP) and ARC69931MX), inhibit human platelet activation. It was found that both of these compounds raise platelet cAMP to levels that substantially inhibit platelet aggregation. Furthermore, the results demonstrated that this elevation of cAMP did not require Gi signaling or functional P2Y12 receptors but was mediated through activation of a separate G protein-coupled pathway, presumably involving Gs. However, additional experiments revealed that neither 2MeSAMP nor ARC69931MX (cangrelor) increased cAMP through activation of A2a, IP, DP, or EP2 receptors, which are known to couple to Gs. Collectively, these findings indicate that 2MeSAMP and ARC69931MX interact with an unidentified platelet G protein-coupled receptor that stimulates cAMP-mediated inhibition of platelet function. This inhibition is in addition to that derived from antagonism of P2Y12 receptors. PMID:19346255

  1. Selective stimulation of catecholamine release from bovine adrenal chromaffin cells by an ionotropic purinergic receptor sensitive to 2-methylthio ATP.

    PubMed

    Tomé, Angelo R; Castro, Enrique; Santos, Rosa M; Rosário, Luís M

    2007-06-20

    2-Methylthioadenosine 5'-triphosphate (2-MeSATP), formerly regarded as a specific P2Y (metabotropic) purinergic receptor agonist, stimulates Ca2+ influx and evokes catecholamine release from adrenal chromaffin cells. These cells express P2Y and P2X (ionotropic) purinoceptors, with the latter providing an important Ca2+ influx pathway. Using single cell calcium imaging techniques, we have determined whether 2-MeSATP might be a specific P2X receptor agonist in bovine chromaffin cells and assessed the relative role of P2X and P2Y receptors on catecholamine secretion from these cells. ATP raised the [Ca2+]i in ~50% of the cells. Removing extracellular Ca2+ suppressed the [Ca2+]i-raising ability of 2-MeSATP, observed in ~40% of the ATP-sensitive cells. This indicates that 2-MeSATP behaves as a specific ionotropic purinoceptor agonist in bovine chromaffin cells. The 2-MeSATP-induced [Ca2+]i-rises were suppressed by PPADS. UTP raised the [Ca2+]i in ~40% of the ATP-sensitive cells, indicating that these expressed Ca2+-mobilizing P2Y receptors. UTP-sensitive receptors may not be the only P2Y receptors present, as suggested by the observation that ~20% of the ATP-sensitive pool did not respond to either 2-MeSATP or UTP. The average sizes of the ATP- and 2-MeSATP-evoked [Ca2+]i responses were identical in UTP-insensitive cells. 2-MeSATP stimulated Ca2+ influx and evoked catecholamine release, whereas UTP elicited Ca2+ release from intracellular stores but did not evoke secretion. 2-MeSATP-induced secretion was strongly inhibited by Cd2+ and suppressed by extracellular Ca2+ or Na+ removal. TTX inhibited 2-MeSATP-evoked secretion by ~20%. 2-MeSATP is a specific P2X purinoceptor agonist and a potent secretagogue in bovine chromaffin cells. Activation of 2-MeSATP-sensitive receptors stimulates Ca2+ influx mainly via voltage-sensitive Ca2+ channels. For the most part, these are activated by the depolarization brought about by Na+ influx across P2X receptor pores.

  2. Early versus delayed invasive strategy for intermediate- and high-risk acute coronary syndromes managed without P2Y12 receptor inhibitor pretreatment: Design and rationale of the EARLY randomized trial.

    PubMed

    Lemesle, Gilles; Laine, Marc; Pankert, Mathieu; Puymirat, Etienne; Cuisset, Thomas; Boueri, Ziad; Maillard, Luc; Armero, Sébastien; Cayla, Guillaume; Bali, Laurent; Motreff, Pascal; Peyre, Jean-Pascal; Paganelli, Franck; Kerbaul, François; Roch, Antoine; Michelet, Pierre; Baumstarck, Karine; Bonello, Laurent

    2018-01-01

    According to recent literature, pretreatment with a P2Y 12 ADP receptor antagonist before coronary angiography appears no longer suitable in non-ST-segment elevation acute coronary syndrome (NSTE-ACS) due to an unfavorable risk-benefit ratio. Optimal delay of the invasive strategy in this specific context is unknown. We hypothesize that without P2Y 12 ADP receptor antagonist pretreatment, a very early invasive strategy may be beneficial. The EARLY trial (Early or Delayed Revascularization for Intermediate- and High-Risk Non-ST-Segment Elevation Acute Coronary Syndromes?) is a prospective, multicenter, randomized, controlled, open-label, 2-parallel-group study that plans to enroll 740 patients. Patients are eligible if the diagnosis of intermediate- or high-risk NSTE-ACS is made and an invasive strategy intended. Patients are randomized in a 1:1 ratio. In the control group, a delayed strategy is adopted, with the coronary angiography taking place between 12 and 72 hours after randomization. In the experimental group, a very early invasive strategy is performed within 2 hours. A loading dose of a P2Y 12 ADP receptor antagonist is given at the time of intervention in both groups. Recruitment began in September 2016 (n = 558 patients as of October 2017). The primary endpoint is the composite of cardiovascular death and recurrent ischemic events at 1 month. The EARLY trial aims to demonstrate the superiority of a very early invasive strategy compared with a delayed strategy in intermediate- and high-risk NSTE-ACS patients managed without P2Y 12 ADP receptor antagonist pretreatment. © 2018 Wiley Periodicals, Inc.

  3. Sphingosine-1-phosphate receptor expression in cardiac fibroblasts is modulated by in vitro culture conditions.

    PubMed

    Landeen, Lee K; Aroonsakool, Nakon; Haga, Jason H; Hu, Betty S; Giles, Wayne R

    2007-06-01

    The bioactive molecule sphingosine-1-phosphate (S1P) binds with high affinity to five recognized receptors (S1P(1-5)) to affect various tissues, including cellular responses of cardiac fibroblasts (CFbs) and myocytes. CFbs are essential components of myocardium, and detailed study of their cell signaling and physiology is required for a number of emerging disciplines. Meaningful studies on CFbs, however, necessitate methods for selective, reproducible cell isolations. Macrophages reside within normal cardiac tissues and often are isolated with CFbs. A protocol was therefore developed that significantly reduces macrophage levels and utilizes more CFb-specific markers (discoidin domain receptor-2) instead of, or in addition to, more commonly used cytoskeletal markers. Our results demonstrate that primary isolated, purified CFbs express predominantly S1P(1-3); however, the relative levels of these receptor subtypes are modulated with time and by culture conditions. In coculture experiments, macrophages altered CFb S1P receptor levels relative to controls. Further investigations using known macrophage-secreted factors showed that S1P and H(2)O(2) had minimal effects on CFb S1P(1-3) expression, whereas transforming growth factor-beta1, TNF-alpha, and PDGF-BB significantly altered all S1P receptor subtypes. Lowering FBS concentrations from 10% to 0.1% increased S1P(2), whereas supplementation with either PDGF-BB or Rho-associated protein kinase inhibitor Y-27632 significantly elevated S1P(3) levels. S1P(2) and S1P(3) receptor levels are known to regulate cell migration. Using cells isolated from either normal or S1P(3)-null mice, we demonstrate that S1P(3) is important and necessary for CFb migration. These results highlight the importance of demonstrating CFb culture purity in functional studies of S1P and also identify conditions that modulate S1P receptor expression in CFbs.

  4. Diagnostic value of progesterone receptor, p16, p53 and pHH3 expression in uterine atypical leiomyoma.

    PubMed

    Liang, Yun; Zhang, Xiaofei; Chen, Xiaoduan; Lü, Weiguo

    2015-01-01

    The differential diagnosis between atypical leiomyoma and leiomyosarcoma may be hard based on morphological criterion at times. It would be helpful to find out biomarkers that can be used to distinguish them. The aim of the study was to investigate the diagnostic value of progesterone receptor (PR), p16, p53 and pHH3 expression in a series of uterine smooth muscle tumors. Immunohistochemical expression of PR, p16, p53 and pHH3 was investigated on 32 atypical leiomyomas, 15 leiomyosarcomas and 15 usual leomyomas. The difference in expression was compared between atypical leiomyoma and other groups. The expression of PR, p16, and pHH3 was found significantly different between atypical leiomyomas and leiomyosarcomas, but lack of significant difference between atypical leiomyomas and usual leiomyomas. There was no significant difference with regard to p53 distribution among these uterine smooth muscle tumors. High p16, pHH3 expression and low PR expression preferred the diagnosis of leiomyosarcoma. The panel of antibodies used in this study is a useful complementary analysis in the assessment of problematic uterine smooth muscle tumors.

  5. Diagnostic value of progesterone receptor, p16, p53 and pHH3 expression in uterine atypical leiomyoma

    PubMed Central

    Liang, Yun; Zhang, Xiaofei; Chen, Xiaoduan; Lü, Weiguo

    2015-01-01

    The differential diagnosis between atypical leiomyoma and leiomyosarcoma may be hard based on morphological criterion at times. It would be helpful to find out biomarkers that can be used to distinguish them. The aim of the study was to investigate the diagnostic value of progesterone receptor (PR), p16, p53 and pHH3 expression in a series of uterine smooth muscle tumors. Immunohistochemical expression of PR, p16, p53 and pHH3 was investigated on 32 atypical leiomyomas, 15 leiomyosarcomas and 15 usual leomyomas. The difference in expression was compared between atypical leiomyoma and other groups. The expression of PR, p16, and pHH3 was found significantly different between atypical leiomyomas and leiomyosarcomas, but lack of significant difference between atypical leiomyomas and usual leiomyomas. There was no significant difference with regard to p53 distribution among these uterine smooth muscle tumors. High p16, pHH3 expression and low PR expression preferred the diagnosis of leiomyosarcoma. The panel of antibodies used in this study is a useful complementary analysis in the assessment of problematic uterine smooth muscle tumors. PMID:26261614

  6. Direct labelling of the human P2X7 receptor and identification of positive and negative cooperativity of binding.

    PubMed

    Michel, A D; Chambers, L J; Clay, W C; Condreay, J P; Walter, D S; Chessell, I P

    2007-05-01

    The P2X(7) receptor exhibits complex pharmacological properties. In this study, binding of a [(3)H]-labelled P2X(7) receptor antagonist to human P2X(7) receptors has been examined to further understand ligand interactions with this receptor. The P2X(7) receptor antagonist, N-[2-({2-[(2-hydroxyethyl)amino]ethyl}amino)-5-quinolinyl]-2-tricyclo[3.3.1.1(3,7)]dec-1-ylacetamide (compound-17), was radiolabelled with tritium and binding studies were performed using membranes prepared from U-2 OS or HEK293 cells expressing human recombinant P2X(7) receptors. Binding of [(3)H]-compound-17 was higher in membranes prepared from cells expressing P2X(7) receptors than from control cells and was inhibited by ATP suggesting labelled sites represented human P2X(7) receptors. Binding was reversible, saturable and modulated by P2X(7) receptor ligands (Brilliant Blue G, KN62, ATP, decavanadate). Furthermore, ATP potency was reduced in the presence of divalent cations or NaCl. Radioligand binding exhibited both positive and negative cooperativity. Positive cooperativity was evident from bell shaped Scatchard plots, reduction in radioligand dissociation rate by unlabelled compound-17 and enhancement of radioligand binding by KN62 and unlabelled compound-17. ATP and decavanadate inhibited binding in a negative cooperative manner as they enhanced radioligand dissociation. These data demonstrate that human P2X(7) receptors can be directly labelled and provide novel insights into receptor function. The positive cooperativity observed suggests that binding of compound-17 to one subunit in the P2X(7) receptor complex enhances subsequent binding to other P2X(7) subunits in the same complex. The negative cooperative effects of ATP suggest that ATP and compound-17 bind at separate, interacting, sites on the P2X(7) receptor.

  7. Clathrin-dependent internalization of the angiotensin II AT₁A receptor links receptor internalization to COX-2 protein expression in rat aortic vascular smooth muscle cells.

    PubMed

    Morinelli, Thomas A; Walker, Linda P; Velez, Juan Carlos Q; Ullian, Michael E

    2015-02-05

    The major effects of Angiotensin II (AngII) in vascular tissue are mediated by AngII AT1A receptor activation. Certain effects initiated by AT1A receptor activation require receptor internalization. In rat aortic vascular smooth muscle cells (RASMC), AngII stimulates cyclooxygenase 2 protein expression. We have previously shown this is mediated by β-arrestin-dependent receptor internalization and NF-κB activation. In this study, a specific inhibitor of clathrin-mediated endocytosis (CME), pitstop-2, was used to test the hypothesis that clathrin-dependent internalization of activated AT1A receptor mediates NF-κB activation and subsequent cyclooxygenase 2 expression. Radioligand binding assays, real time qt-PCR and immunoblotting were used to document the effects of pitstop-2 on AngII binding and signaling in RASMC. Laser scanning confocal microscopy (LSCM) was used to image pitstop-2׳s effects on AT1 receptor/GFP internalization in HEK-293 cells and p65 NF-κB nuclear localization in RASMC. Pitstop-2 significantly inhibited internalization of AT1A receptor (44.7% ± 3.1% Control vs. 13.2% ± 8.3% Pitstop-2; n=3) as determined by radioligand binding studies in RASMC. Studies utilizing AT1A receptor/GFP expressed in HEK 293 cells and LSCM confirmed these findings. Pitstop-2 significantly inhibited AngII-induced p65 NF-κB phosphorylation and nuclear localization, COX-2 message and protein expression in RASMC without altering activation of p42/44 ERK or TNFα signaling. Pitstop-2, a specific inhibitor of clathrin-mediated endocytosis, confirms that internalization of activated AT1A receptor mediates AngII activation of cyclooxygenase 2 expression in RASMC. These data provide support for additional intracellular signaling pathways activated through β-arrestin mediated internalization of G protein-coupled receptors, such as AT1A receptors. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Identification of Insulin Receptor Substrate 1 (IRS-1) and IRS-2 as Signaling Intermediates in the α6β4 Integrin-Dependent Activation of Phosphoinositide 3-OH Kinase and Promotion of Invasion

    PubMed Central

    Shaw, Leslie M.

    2001-01-01

    Expression of the α6β4 integrin increases the invasive potential of carcinoma cells by a mechanism that involves activation of phosphoinositide 3-OH kinase (PI3K). In the present study, we investigated the signaling pathway by which the α6β4 integrin activates PI3K. Neither the α6 nor the β4 cytoplasmic domain contains the consensus binding motif for PI3K, pYMXM, indicating that additional proteins are likely to be involved in the activation of this lipid kinase by the α6β4 integrin. We identified insulin receptor substrate 1 (IRS-1) and IRS-2 as signaling intermediates in the activation of PI3K by the α6β4 integrin. IRS-1 and IRS-2 are cytoplasmic adapter proteins that do not contain intrinsic kinase activity but rather function by recruiting proteins to surface receptors, where they organize signaling complexes. Ligation of the α6β4 receptor promotes tyrosine phosphorylation of IRS-1 and IRS-2 and increases their association with PI3K, as determined by coimmunoprecipitation. Moreover, we identified a tyrosine residue in the cytoplasmic domain of the β4 subunit, Y1494, that is required for α6β4-dependent phosphorylation of IRS-2 and activation of PI3K in response to receptor ligation. Most importantly, Y1494 is essential for the ability of the α6β4 integrin to promote carcinoma invasion. Taken together, these results imply a key role for the IRS proteins in the α6β4-dependent promotion of carcinoma invasion. PMID:11438664

  9. Interleukin-6 and soluble interleukin-6 receptor suppress osteoclastic differentiation by inducing PGE(2) production in chondrocytes.

    PubMed

    Honda, Kazuhiro

    2011-03-01

    This study examined how interleukin-6 (IL-6) and soluble IL-6 receptor (sIL-6r) influence osteoclastic differentiation through the function of chondrocytes. Chondrocytes were cultured with or without IL-6 and/or sIL-6r in the presence or absence of NS398, a specific inhibitor of cyclooxygenase (COX)-2, for up to 28 days. Chondrocytes were also cultured with or without IL-6 and sIL-6r for 28 days, and the conditioned medium from cells cultured without IL-6 and sIL-6r was used to induce differentiation of RAW264.7 cells into osteoclast precursors. Osteoclastic differentiation was assessed by tartrate-resistant acid phosphatase (TRAP) staining. Expression of osteoprotegerin (OPG), receptor activator of NF-κB ligand (RANKL), COX-2, and prostaglandin E(2) (PGE(2)) increased in cells exposed to IL-6 and sIL-6r, whereas expression of macrophage colony-stimulating factor (M-CSF) and bone resorption-related enzymes decreased. NS398 blocked the stimulatory/suppressive effects of IL-6 and sIL-6r on the expression of OPG, RANKL, and M-CSF. Fewer TRAP-positive multinucleated cells were detected after treatment with conditioned medium from IL-6- and sIL-6r-treated chondrocytes than after treatment with conditioned medium from untreated chondrocytes. These results suggest that IL-6 and sIL-6r interfere with osteoclast function through the involvement of chondrocytes. Specifically, they appear to suppress the differentiation of osteoclast precursors into osteoclasts by inducing chondrocytic PGE(2) production, which, in turn, increases OPG secretion and decreases M-CSF secretion by chondrocytes.

  10. Characterization of protoberberine analogs employed as novel human P2X{sub 7} receptor antagonists

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Ga Eun; Lee, Won-Gil; Lee, Song-Yi

    The P2X{sub 7} receptor (P2X{sub 7}R), a member of the ATP-gated ion channel family, is regarded as a promising target for therapy of immune-related diseases including rheumatoid arthritis and chronic pain. A group of novel protoberberine analogs (compounds 3-5), discovered by screening of chemical libraries, was here investigated with respect to their function as P2X{sub 7}R antagonists. Compounds 3-5 non-competitively inhibited BzATP-induced ethidium ion influx into hP2X{sub 7}-expressing HEK293 cells, with IC{sub 50} values of 100-300 nM. This antagonistic action on the channel further confirmed that both BzATP-induced inward currents and Ca{sup 2+} influx were strongly inhibited by compounds 3-5more » in patch-clamp and Ca{sup 2+} influx assays. The antagonists also effectively suppressed downstream signaling of P2X{sub 7} receptors including IL-1{beta} release and phosphorylation of ERK1/2 and p38 proteins in hP2X{sub 7}-expressing HEK293 cells or in differentiated human monocytes (THP-1 cells). Moreover, IL-2 secretion from CD3/CD28-stimulated Jurkat T cell was also dramatically inhibited by the antagonist. These results imply that novel protoberberine analogs may modulate P2X{sub 7} receptor-mediated immune responses by allosteric inhibition of the receptor. - Graphical abstract: Display Omitted« less

  11. Characterization of the Igf-II Binding Site of the IGF-II/MAN-6-P Receptor Extracellular Domain.

    NASA Astrophysics Data System (ADS)

    Garmroudi, Farideh

    1995-01-01

    In mammals, insulin-like growth factor II (IGF -II) and glycoproteins bearing the mannose 6-phosphate (Man -6-P) recognition marker bind with high affinity to the same receptor. The functional consequences of IGF-II binding to the receptor at the cell surface are not clear. In these studies, we sought to broaden our understanding of the functional regions of the receptor regarding its IGF -II binding site. The IGF-II binding/cross-linking domain of the IGF-II/Man-6-P receptor was mapped by sequencing receptor fragments covalently attached to IGF-II. Purified rat placental or bovine liver receptors were affinity-labeled, with ^{125}I-IGF-II and digested with endoproteinase Glu-C. Analysis of digests by gel electrophoresis revealed a major radiolabeled band of 18 kDa, which was purified by gel filtration chromatography followed by reverse-phase HPLC and electroblotting. Sequence analysis revealed that, the peptide S(H)VNSXPMF, located within extracellular repeat 10 and beginning with serine 1488 of the bovine receptor, was the best candidate for the IGF-II cross-linked peptide. These data indicated that residues within repeats 10-11 were important for IGF -II binding. To define the location of the IGF-II binding site further, a nested set of six human receptor cDNA constructs was designed to produce epitope-tagged fusion proteins encompassing the region between repeats 8 and 11 of the human IGF-II/Man-6-P receptor extracellular domain. These truncated receptors were transiently expressed in COS-7 cells, immunoprecipitated and analyzed for their abilities to bind and cross-link to IGF-II. All of the constructs were capable of binding/cross-linking to IGF-II, except for the 9.0-11 construct. Displacement curve analysis indicated that the truncated receptors were approximately equivalent in IGF-II binding affinity, but were of 5- to 10-fold lower affinity than full-length receptors. Sequencing of the 9.0-11 construct indicated the presence of a point mutation

  12. SH2 domains of the p85 alpha subunit of phosphatidylinositol 3-kinase regulate binding to growth factor receptors.

    PubMed Central

    McGlade, C J; Ellis, C; Reedijk, M; Anderson, D; Mbamalu, G; Reith, A D; Panayotou, G; End, P; Bernstein, A; Kazlauskas, A

    1992-01-01

    The binding of cytoplasmic signaling proteins such as phospholipase C-gamma 1 and Ras GTPase-activating protein to autophosphorylated growth factor receptors is directed by their noncatalytic Src homology region 2 (SH2) domains. The p85 alpha regulatory subunit of phosphatidylinositol (PI) 3-kinase, which associates with several receptor protein-tyrosine kinases, also contains two SH2 domains. Both p85 alpha SH2 domains, when expressed individually as fusion proteins in bacteria, bound stably to the activated beta receptor for platelet-derived growth factor (PDGF). Complex formation required PDGF stimulation and was dependent on receptor tyrosine kinase activity. The bacterial p85 alpha SH2 domains recognized activated beta PDGF receptor which had been immobilized on a filter, indicating that SH2 domains contact autophosphorylated receptors directly. Several receptor tyrosine kinases within the PDGF receptor subfamily, including the colony-stimulating factor 1 receptor and the Steel factor receptor (Kit), also associate with PI 3-kinase in vivo. Bacterially expressed SH2 domains derived from the p85 alpha subunit of PI 3-kinase bound in vitro to the activated colony-stimulating factor 1 receptor and to Kit. We infer that the SH2 domains of p85 alpha bind to high-affinity sites on these receptors, whose creation is dependent on receptor autophosphorylation. The SH2 domains of p85 are therefore primarily responsible for the binding of PI 3-kinase to activated growth factor receptors. Images PMID:1372092

  13. Pyrimidinergic Receptor Activation Controls Toxoplasma gondii Infection in Macrophages

    PubMed Central

    Moreira-Souza, Aline Cristina Abreu; Marinho, Ygor; Correa, Gladys; Santoro, Giani França; Coutinho, Claudia Mara Lara Melo; Vommaro, Rossiane Claudia; Coutinho-Silva, Robson

    2015-01-01

    Infection by the protozoan parasite Toxoplasma gondii is highly prevalent worldwide and may have serious clinical manifestations in immunocompromised patients. T. gondii is an obligate intracellular parasite that infects almost any cell type in mammalian hosts, including immune cells. The immune cells express purinergic P2 receptors in their membrane – subdivided into P2Y and P2X subfamilies - whose activation is important for infection control. Here, we examined the effect of treatment with UTP and UDP in mouse peritoneal macrophages infected with T. gondii tachyzoites. Treatment with these nucleotides reduced parasitic load by 90%, but did not increase the levels of the inflammatory mediators NO and ROS, nor did it modulate host cell death by apoptosis or necrosis. On the other hand, UTP and UDP treatments induced early egress of tachyzoites from infected macrophages, in a Ca2+-dependent manner, as shown by scanning electron microscopy analysis, and videomicroscopy. In subsequent infections, prematurely egressed parasites had reduced infectivity, and could neither replicate nor inhibit the fusion of lysosomes to the parasitophorous vacuole. The use of selective agonists and antagonists of the receptor subtypes P2Y2 and P2Y4 and P2Y6 showed that premature parasite egress may be mediated by the activation of these receptor subtypes. Our results suggest that the activity of P2Y host cell receptors controls T. gondii infection in macrophages, highlighting the importance of pyrimidinergic signaling for innate immune system response against infection. Finally the P2Y receptors should be considered as new target for the development of drugs against T. gondii infection. PMID:26192447

  14. Estrogen receptor-beta expression in invasive breast cancer in relation to molecular phenotype: results from the Nurses' Health Study.

    PubMed

    Marotti, Jonathan D; Collins, Laura C; Hu, Rong; Tamimi, Rulla M

    2010-02-01

    The expression of estrogen receptor-alpha (ER-alpha) and related genes has emerged as one of the major determinants of molecular classification of invasive breast cancers. Expression of a second ER, estrogen receptor-beta (ER-beta), has not been previously evaluated in a large population-based study. Therefore, we examined ER-beta expression in a large population of women with breast cancer to assess its relationship to molecular categories of invasive breast cancer. We constructed tissue microarrays from paraffin blocks of 3093 breast cancers that developed in women enrolled in the Nurses' Health Study. Tissue microarray sections were immunostained for ER-alpha, progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2), cytokeratin 5/6, epidermal growth factor receptor (EGFR) and with a monoclonal antibody to ER-beta. Cancers were categorized as luminal A (ER-alpha+ and/or PR+ and HER2-); luminal B (ER-alpha+ and/or PR+ and HER2+); HER2 (ER-alpha- and PR- and HER2+); and basal-like (ER-alpha-, PR-, HER2- and EGFR or cytokeratin 5/6+). The relationship between expression of ER-beta and molecular class of invasive breast cancer was analyzed. Overall, 68% of breast carcinomas were ER-beta+. Expression of ER-beta was significantly associated with expression of ER-alpha (P<0.0001) and PR (P<0.0001), and was inversely related to expression of HER2 (P=0.004), CK5/6 (P=0.02) and EGFR (P=0.006). Among 2170 invasive cancers with complete immunophenotypic data, 73% were luminal A, 5% luminal B, 6 % HER2 and 11% basal-like. ER-beta expression was significantly related to molecular category (P<0.0001) and was more common in luminal A (72% of cases) and B (68% of cases) than in HER2 or basal-like types. However, despite their being defined by the absence of ER-alpha expression, 55% of HER2-type and 60% of basal-like cancers showed expression of ER-beta. The role of ER-beta in the development and progression of breast cancers defined by lack of expression of ER

  15. Androgen receptor expression in breast cancer in relation to molecular phenotype: results from the Nurses' Health Study.

    PubMed

    Collins, Laura C; Cole, Kimberly S; Marotti, Jonathan D; Hu, Rong; Schnitt, Stuart J; Tamimi, Rulla M

    2011-07-01

    Previous studies have demonstrated that androgen receptor is expressed in many breast cancers, but its expression in relation to the various breast cancer subtypes as defined by molecular profiling has not been studied in detail. We constructed tissue microarrays from 3093 breast cancers that developed in women enrolled in the Nurses' Health Study. Tissue microarray sections were immunostained for estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2), cytokeratin 5/6, epidermal growth factor receptor (EGFR) and androgen receptor (ER). Immunostain results were used to categorize each cancer as luminal A or B, HER2 and basal like. The relationships between androgen receptor expression and molecular subtype were analyzed. Overall, 77% of the invasive breast carcinomas were androgen receptor positive. Among 2171 invasive cancers, 64% were luminal A, 15% luminal B, 6% HER2 and 11% basal like. The frequency of androgen receptor expression varied significantly across the molecular phenotypes (P<0.0001). In particular, androgen receptor expression was commonly observed in luminal A (91%) and B (68%) cancers, but was less frequently seen in HER2 cancers (59%). Despite being defined by the absence of ER and PR expression and being considered hormonally unresponsive, 32% of basal-like cancers expressed androgen receptor. Among 246 cases of ductal carcinoma in situ, 86% were androgen receptor positive, but the frequency of androgen receptor expression differed significantly across the molecular phenotypes (P=0.001), and high nuclear grade lesions were less likely to be androgen receptor positive compared with lower-grade lesions. Androgen receptor expression is most commonly seen in luminal A and B invasive breast cancers. However, expression of androgen receptor is also seen in approximately one-third of basal-like cancers, providing further evidence that basal-like cancers represent a heterogeneous group. Our findings raise the

  16. PDGF-beta receptor expression and ventilatory acclimatization to hypoxia in the rat.

    PubMed

    Alea, O A; Czapla, M A; Lasky, J A; Simakajornboon, N; Gozal, E; Gozal, D

    2000-11-01

    Activation of platelet-derived growth factor-beta (PDGF-beta) receptors in the nucleus of the solitary tract (nTS) modulates the late phase of the acute hypoxic ventilatory response (HVR) in the rat. We hypothesized that temporal changes in PDGF-beta receptor expression could underlie the ventilatory acclimatization to hypoxia (VAH). Normoxic ventilation was examined in adult Sprague-Dawley rats chronically exposed to 10% O(2), and at 0, 1, 2, 7, and 14 days, Northern and Western blots of the dorsocaudal brain stem were performed for assessment of PDGF-beta receptor expression. Although no significant changes in PDGF-beta receptor mRNA occurred over time, marked attenuation of PDGF-beta receptor protein became apparent after day 7 of hypoxic exposure. Such changes were significantly correlated with concomitant increases in normoxic ventilation, i.e., with VAH (r: -0.56, P < 0.005). In addition, long-term administration of PDGF-BB in the nTS via osmotic pumps loaded with either PDGF-BB (n = 8) or vehicle (Veh; n = 8) showed that although no significant changes in the magnitude of acute HVR occurred in Veh over time, the typical attenuation of HVR by PDGF-BB decreased over time. Furthermore, PDGF-BB microinjections did not attenuate HVR in acclimatized rats at 7 and 14 days of hypoxia (n = 10). We conclude that decreased expression of PDGF-beta receptors in the dorsocaudal brain stem correlates with the magnitude of VAH. We speculate that the decreased expression of PDGF-beta receptors is mediated via internalization and degradation of the receptor rather than by transcriptional regulation.

  17. Principles and properties of ion flow in P2X receptors

    PubMed Central

    Samways, Damien S. K.; Li, Zhiyuan; Egan, Terrance M.

    2014-01-01

    P2X receptors are a family of trimeric ion channels that are gated by extracellular adenosine 5′-triphosphate (ATP). These receptors have long been a subject of intense research interest by virtue of their vital role in mediating the rapid and direct effects of extracellular ATP on membrane potential and cytosolic Ca2+ concentration, which in turn underpin the ability of ATP to regulate a diverse range of clinically significant physiological functions, including those associated with the cardiovascular, sensory, and immune systems. An important aspect of an ion channel's function is, of course, the means by which it transports ions across the biological membrane. A concerted effort by investigators over the last two decades has culminated in significant advances in our understanding of how P2X receptors conduct the inward flux of Na+ and Ca2+ in response to binding by ATP. However, this work has relied heavily on results from current recordings of P2X receptors altered by site-directed mutagenesis. In the absence of a 3-dimensional channel structure, this prior work provided only a vague and indirect appreciation of the relationship between structure, ion selectivity and flux. The recent publication of the crystal structures for both the closed and open channel conformations of the zebrafish P2X4 receptor has thus proved a significant boon, and has provided an important opportunity to overview the amassed functional data in the context of a working 3-dimensional model of a P2X receptor. In this paper, we will attempt to reconcile the existing functional data regarding ion permeation through P2X receptors with the available crystal structure data, highlighting areas of concordance and discordance as appropriate. PMID:24550775

  18. Postnatal Development of CB1 Receptor Expression in Rodent Somatosensory Cortex

    PubMed Central

    Deshmukh, Suvarna; Onozuka, Kaori; Bender, Kevin J.; Bender, Vanessa A.; Lutz, Beat; Mackie, Ken; Feldman, Daniel E.

    2007-01-01

    Endocannabinoids are powerful modulators of synaptic transmission that act on presynaptic cannabinoid receptors. Cannabinoid receptor type 1 (CB1) is the dominant receptor in the CNS, and is present in many brain regions, including sensory cortex. To investigate the potential role of CB1 receptors in cortical development, we examined the developmental expression of CB1 in rodent primary somatosensory (barrel) cortex, using immunohistochemistry with a CB1-specific antibody. We found that before postnatal day (P) 6, CB1 receptor staining was present exclusively in the cortical white matter, and that CB1 staining appeared in the grey matter between P6 and P20 in a specific laminar pattern. CB1 staining was confined to axons, and was most prominent in cortical layers 2/3, 5a, and 6. CB1 null (−/−) mice showed altered anatomical barrel maps in layer 4, with enlarged inter-barrel septa, but normal barrel size. These results indicate that CB1 receptors are present in early postnatal development and influence development of sensory maps. PMID:17210229

  19. Modulation of Central Synapses by Astrocyte-Released ATP and Postsynaptic P2X Receptors

    PubMed Central

    Pankratov, Yuriy

    2017-01-01

    Communication between neuronal and glial cells is important for neural plasticity. P2X receptors are ATP-gated cation channels widely expressed in the brain where they mediate action of extracellular ATP released by neurons and/or glia. Recent data show that postsynaptic P2X receptors underlie slow neuromodulatory actions rather than fast synaptic transmission at brain synapses. Here, we review these findings with a particular focus on the release of ATP by astrocytes and the diversity of postsynaptic P2X-mediated modulation of synaptic strength and plasticity in the CNS. PMID:28845311

  20. Medicinal chemistry of P2X receptors: allosteric modulators.

    PubMed

    Müller, Christa E

    2015-01-01

    P2X receptors are trimeric ligand-gated ion channels whose potential as novel drug targets for a number of diseases has been recognized. They are mainly involved in inflammatory processes, including neuroinflammation, and pain sensation. The orthosteric binding site is lined by basic amino acid residues that bind the negatively charged agonist ATP. Therefore it is not easy to develop orthosteric ligands that possess drug-like properties for such a highly polar binding site. However, ligand-gated ion channels offer multiple additional binding sites for allosteric ligands, positive or negative allosteric modulators enhancing or blocking receptor function. So far, the P2X3 (and P2X2/3), as well as the P2X7 receptor subtype have been the main focus of drug development efforts. A number of potent and selective allosteric antagonists have been developed to block these receptors. We start to see the development of novel allosteric ligands also for the other P2X receptor subtypes, P2X1, P2X2 and especially P2X4. The times when only poor, non-selective, non-drug-like tools for studying P2X receptor function were available have been overcome. The first clinical studies with allosteric P2X3 and P2X7 antagonists suggest that P2X therapeutics may soon become a reality.

  1. Insulin receptor isoforms A and B as well as insulin receptor substrates-1 and -2 are differentially expressed in prostate cancer.

    PubMed

    Heni, Martin; Hennenlotter, Jörg; Scharpf, Marcus; Lutz, Stefan Z; Schwentner, Christian; Todenhöfer, Tilman; Schilling, David; Kühs, Ursula; Gerber, Valentina; Machicao, Fausto; Staiger, Harald; Häring, Hans-Ulrich; Stenzl, Arnulf

    2012-01-01

    In different cancers types, insulin receptor isoform composition or insulin receptor substrate (IRS) isoforms are different to healthy tissue. This may be a molecular link to increased cancer risk in diabetes and obesity. Since this is yet unclear for prostate cancer, we investigated IR isoform composition and IRS balance in prostate cancer compared to benign and tumor adjacent benign prostate tissue and brought this into relation to cell proliferation. We studied 23 benign prostate samples from radical cystectomy or benign prostatic hyperplasia surgery, 30 samples from benign tissue directly adjacent to prostate cancer foci and 35 cancer samples from different patients. RNA expression levels for insulin receptor isoforms A and B, IRS-1, IRS-2, and IGF-1 receptor were assessed by quantitative real-time RT-PCR. In addition, RNA- and protein expression of the cell cycle regulator p27(Kip1) was quantified by real-time RT-PCR and immunohistochemistry. Insulin receptor isoform A to B ratio was significantly higher in cancer as well as in tumor adjacent benign prostate tissue compared to purely benign prostates (p<0.05). IRS-1 to IRS-2 ratios were lower in malignant than in benign prostatic tissue (p<0.05). These altered ratios both in cancer and adjacent tissue were significantly associated with reduced p27(Kip1) content (p<0.02). Interestingly, IGF-1 receptor levels were significantly lower in patients with type 2 diabetes (p = 0.0019). We found significant differences in the insulin signaling cascade between benign prostate tissue and prostate cancer. Histological benign tissue adjacent to cancer showed expression patterns similar to the malignancies. Our findings suggest a role of the insulin signaling pathway in prostate cancer and surrounding tissue and can hence be relevant for both novel diagnostic and therapeutic approaches in this malignancy.

  2. Expression of the pituitary stem/progenitor marker GFRα2 in human pituitary adenomas and normal pituitary

    PubMed Central

    Mathioudakis, Nestoras; Sundaresh, Ram; Larsen, Alexandra; Ruff, William; Schiller, Jennifer; Cázares, Hugo Guerrero; Burger, Peter; Salvatori, Roberto; Quiñones-Hinojosa, Alfredo

    2014-01-01

    Purpose Recent studies suggest that adult pituitary stem cells may play a role in pituitary tumorigenesis. We sought to explore whether the Glial cell-line derived neurotrophic factor receptor alpha 2 (GFRα2), a recently described pituitary stem/progenitor marker, might be differentially expressed in pituitary adenomas versus normal pituitary. Methods The expression of GFRα2 and other members of the GFR receptor family (GFRα1, α3, α4) were analyzed using RT-PCR, western blot, and immunohistochemistry in 39 pituitary adenomas, 14 normal pituitary glands obtained at autopsy, and cDNA from 3 normal pituitaries obtained commercially. Results GFRα2 mRNA was ~2.6 fold under-expressed in functioning adenomas (P <0.01) and ~3.5 fold over-expressed in non-functioning adenomas (NFAs) (P <0.05) compared to normal pituitary. Among NFAs, GFRα2 was significantly over-expressed (~5-fold) in the gonadotropinoma subtype only (P<0.05). GFRα2 protein expression appeared to be higher in most NFAs, although there was heterogeneity in protein expression in this group. GFRα2 protein expression appeared consistently lower in functioning adenomas by IHC and western blot. In normal pituitary, GFRα2 was localized in Rathke’s remnant, the putative pituitary stem cell niche, and in corticotropes. Conclusion Our results suggest that the pituitary stem cell marker GFRα2 is under-expressed in functioning adenomas and over-expressed in NFAs, specifically gonadotropinomas. Further studies are required to elucidate whether over-expression of GFRα2 in gonadotropinomas might play a role in pituitary tumorigenesis. PMID:24402129

  3. Attenuation of myocardial fibrosis with curcumin is mediated by modulating expression of angiotensin II AT1/AT2 receptors and ACE2 in rats

    PubMed Central

    Pang, Xue-Fen; Zhang, Li-Hui; Bai, Feng; Wang, Ning-Ping; Garner, Ron E; McKallip, Robert J; Zhao, Zhi-Qing

    2015-01-01

    Curcumin is known to improve cardiac function by balancing degradation and synthesis of collagens after myocardial infarction. This study tested the hypothesis that inhibition of myocardial fibrosis by curcumin is associated with modulating expression of angiotensin II (Ang II) receptors and angiotensin-converting enzyme 2 (ACE2). Male Sprague Dawley rats were subjected to Ang II infusion (500 ng/kg/min) using osmotic minipumps for 2 and 4 weeks, respectively, and curcumin (150 mg/kg/day) was fed by gastric gavage during Ang II infusion. Compared to the animals with Ang II infusion, curcumin significantly decreased the mean arterial blood pressure during the course of the observation. The protein level of the Ang II type 1 (AT1) receptor was reduced, and the Ang II type 2 (AT2) receptor was up-regulated, evidenced by an increased ratio of the AT2 receptor over the AT1 receptor in the curcumin group (1.2±0.02%) vs in the Ang II group (0.7±0.03%, P<0.05). These changes were coincident with less locally expressed AT1 receptor and enhanced AT2 receptor in the intracardiac vessels and intermyocardium. Along with these modulations, curcumin significantly decreased the populations of macrophages and alpha smooth muscle actin-expressing myofibroblasts, which were accompanied by reduced expression of transforming growth factor beta 1 and phosphorylated-Smad2/3. Collagen I synthesis was inhibited, and tissue fibrosis was attenuated, as demonstrated by less extensive collagen-rich fibrosis. Furthermore, curcumin increased protein level of ACE2 and enhanced its expression in the intermyocardium relative to the Ang II group. These results suggest that curcumin could be considered as an add-on therapeutic agent in the treatment of fibrosis-derived heart failure patient who is intolerant of ACE inhibitor therapy. PMID:26648693

  4. Human pDCs display sex-specific differences in type I interferon subtypes and interferon α/β receptor expression.

    PubMed

    Ziegler, Susanne M; Beisel, Claudia; Sutter, Kathrin; Griesbeck, Morgane; Hildebrandt, Heike; Hagen, Sven H; Dittmer, Ulf; Altfeld, Marcus

    2017-02-01

    The outcomes of many diseases differ between women and men, with women experiencing a higher incidence and more severe pathogenesis of autoimmune and some infectious diseases. It has been suggested that this is partially due to activation of plasmacytoid dendritic cells (pDCs), the main producers of interferon (IFN)-α, in response to toll-like receptor (TLR)7 stimulation. We investigated the induction of type I IFN (IFN-I) subtypes upon TLR7 stimulation on isolated pDCs. Our data revealed a sex-specific differential expression of IFN-Is, with pDCs from females showing a significantly higher mRNA expression of all 13 IFN-α subtypes. In addition, pDCs from females had higher levels of IFN-β mRNA after stimulation, indicating that sex differences in IFN-I production by pDCs were mediated by a signaling event upstream of the first loop of IFN-I mRNA transcription. Furthermore, the surface expression levels of the common IFN-α/β receptor subunit 2 were significantly higher on pDCs from females in comparison to males. These data indicate that higher IFN-α production is already established at the mRNA level and propose a contribution of higher IFN-α/β receptor 2 expression on pDCs to the immunological differences in IFN-I production observed between females and males. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Anti-allodynic effect of intrathecal processed Aconitum jaluense is associated with the inhibition of microglial activation and P2X7 receptor expression in spinal cord.

    PubMed

    Yang, Jihoon; Park, Keun Suk; Yoon, Jae Joon; Bae, Hong-Beom; Yoon, Myung Ha; Choi, Jeong Il

    2016-07-13

    For their analgesic and anti-arthritic effects, Aconitum species have been used in folk medicine in some East Asian countries. Although their analgesic effect is attributed to its action on voltage-dependent sodium channels, they also suppress purinergic receptor expression in dorsal root ganglion neurons in rats with neuropathic pain. In vitro study also demonstrated that the Aconitum suppresses ATP-induced P2X7 receptor (P2X7R)-mediated inflammatory responses in microglial cell lines. Herein, we examined the effect of intrathecal administration of thermally processed Aconitum jaluense (PA) on pain behavior, P2X7R expression and microglial activation in a rat spinal nerve ligation (SNL) model. Mechanical allodynia induced by L5 SNL in Sprague-Dawley rats was measured using the von Frey test to evaluate the effect of intrathecal injection of PA. Changes in the expression of P2X7R in the spinal cord were examined using RT-PCR and Western blot analysis. In addition, the effect of intrathecal PA on microglial activation was evaluated by immunofluorescence. Intrathecal PA attenuated mechanical allodynia in a dose-dependent manner showing both acute and chronic effects with 65 % of the maximal possible effect. The expression and production of spinal P2X7R was increased five days after SNL, but daily intrathecal PA injection significantly inhibited the increase to the level of naïve animals. Immunofluorescence of the spinal cord revealed a significant increase in P2X7R expression and activation of microglia in the dorsal horn, which was inhibited by intrathecal PA treatment. P2X7R co-localized with microglia marker, but not neurons. Intrathecal PA exerts anti-allodynic effects in neuropathic pain, possibly by suppressing P2X7R production and expression as well as reducing microglial activation in the spinal cord.

  6. Involvement of neuropeptide Y Y1 receptors in the regulation of neuroendocrine corticotropin-releasing hormone neuronal activity.

    PubMed

    Dimitrov, Eugene L; DeJoseph, M Regina; Brownfield, Mark S; Urban, Janice H

    2007-08-01

    The neuroendocrine parvocellular CRH neurons in the paraventricular nucleus (PVN) of the hypothalamus are the main integrators of neural inputs that initiate hypothalamic-pituitary-adrenal (HPA) axis activation. Neuropeptide Y (NPY) expression is prominent within the PVN, and previous reports indicated that NPY stimulates CRH mRNA levels. The purpose of these studies was to examine the participation of NPY receptors in HPA axis activation and determine whether neuroendocrine CRH neurons express NPY receptor immunoreactivity. Infusion of 0.5 nmol NPY into the third ventricle increased plasma corticosterone levels in conscious rats, with the peak of hormone levels occurring 30 min after injection. This increase was prevented by pretreatment with the Y1 receptor antagonist BIBP3226. Immunohistochemistry showed that CRH-immunoreactive neurons coexpressed Y1 receptor immunoreactivity (Y1r-ir) in the PVN, and a majority of these neurons (88.8%) were neuroendocrine as determined by ip injections of FluoroGold. Bilateral infusion of the Y1/Y5 agonist, [leu(31)pro(34)]NPY (110 pmol), into the PVN increased c-Fos and phosphorylated cAMP response element-binding protein expression and elevated plasma corticosterone levels. Increased expression of c-Fos and phosphorylated cAMP response element-binding protein was observed in populations of CRH/Y1r-ir cells. The current findings present a comprehensive study of NPY Y1 receptor distribution and activation with respect to CRH neurons in the PVN. The expression of NPY Y1r-ir by neuroendocrine CRH cells suggests that alterations in NPY release and subsequent activation of NPY Y1 receptors plays an important role in the regulation of the HPA.

  7. Increased Retinal Expression of the Pro-Angiogenic Receptor GPR91 via BMP6 in a Mouse Model of Juvenile Hemochromatosis

    PubMed Central

    Arjunan, Pachiappan; Gnanaprakasam, Jaya P.; Ananth, Sudha; Romej, Michelle A.; Rajalakshmi, Veeranan-Karmegam; Prasad, Puttur D.; Martin, Pamela M.; Gurusamy, Mariappan; Thangaraju, Muthusamy; Bhutia, Yangzom D.; Ganapathy, Vadivel

    2016-01-01

    Purpose Hemochromatosis, an iron-overload disease, occurs as adult and juvenile types. Mutations in hemojuvelin (HJV), an iron-regulatory protein and a bone morphogenetic protein (BMP) coreceptor, underlie most of the juvenile type. Hjv−/− mice accumulate excess iron in retina and exhibit aberrant vascularization and angiomas. A succinate receptor, GPR91, is pro-angiogenic in retina. We hypothesized that Hjv−/− retinas have increased BMP signaling and increased GPR91 expression as the basis of angiomas. Methods Expression of GPR91 was examined by qPCR, immunofluorescence, and Western blot in wild-type and Hjv−/− mouse retinas and pRPE cells. Influence of excess iron and BMP6 on GPR91 expression was investigated in ARPE-19 cells, and wild-type and Hjv−/− pRPE cells. Succinate was used to activate GPR91 and determine the effects of GPR91 signaling on VEGF expression. Signaling of BMP6 was studied by the expression of Smad1/5/8 and pSmad4, and the BMP-target gene Id1. The interaction of pSmad4 with GPR91 promoter was studied by ChIP. Results Expression of GPR91 was higher in Hjv−/− retinas and RPE than in wild-type counterparts. Unexpectedly, BMP signaling was increased, not decreased, in Hjv−/− retinas and RPE. Bone morphogenetic protein 6 induced GPR91 in RPE, suggesting that increased BMP signaling in Hjv−/− retinas was likely responsible for GPR91 upregulation. Exposure of RPE to excess iron and succinate as well as BMP6 and succinate increased VEGF expression. Bone morphogenetic protein 6 promoted the interaction of pSmad4 with GPR91 promoter in RPE. Conclusions G-protein-coupled receptor 91 is a BMP6 target and Hjv deletion enhances BMP signaling in retina, thus underscoring a role for excess iron and hemochromatosis in abnormal retinal vascularization. PMID:27046124

  8. Induction of antiproliferative connective tissue growth factor expression in Wilms' tumor cells by sphingosine-1-phosphate receptor 2.

    PubMed

    Li, Mei-Hong; Sanchez, Teresa; Pappalardo, Anna; Lynch, Kevin R; Hla, Timothy; Ferrer, Fernando

    2008-10-01

    Connective tissue growth factor (CTGF), a member of the CCN family of secreted matricellular proteins, regulates fibrosis, angiogenesis, cell proliferation, apoptosis, tumor growth, and metastasis. However, the role of CTGF and its regulation mechanism in Wilms' tumor remains largely unknown. We found that the bioactive lipid sphingosine-1-phosphate (S1P) induced CTGF expression in a concentration- and time-dependent manner in a Wilms' tumor cell line (WiT49), whereas FTY720-phosphate, an S1P analogue that binds all S1P receptors except S1P2, did not. Further, the specific S1P2 antagonist JTE-013 completely inhibited S1P-induced CTGF expression, whereas the S1P1 antagonist VPC44116 did not, indicating that this effect was mediated by S1P2. This was confirmed by adenoviral transduction of S1P2 in WiT49 cells, which showed that overexpression of S1P2 increased the expression of CTGF. Induction of CTGF by S1P was sensitive to ROCK inhibitor Y-27632 and c-Jun NH2-terminal kinase inhibitor SP600125, suggesting the requirement of RhoA/ROCK and c-Jun NH2-terminal kinase pathways for S1P-induced CTGF expression. Interestingly, the expression levels of CTGF were decreased in 8 of 10 Wilms' tumor tissues compared with matched normal tissues by quantitative real-time PCR and Western blot analysis. In vitro, human recombinant CTGF significantly inhibited the proliferation of WiT49 cells. In addition, overexpression of CTGF resulted in significant inhibition of WiT49 cell growth. Taken together, these data suggest that CTGF protein induced by S1P2 might act as a growth inhibitor in Wilms' tumor.

  9. The immunohistochemical expression and potential prognostic value of HDAC6 and AR in invasive breast cancer.

    PubMed

    Li, Congying; Cao, Lu; Xu, Cong; Liu, Fang; Xiang, Guomin; Liu, Xiaozhen; Jiao, Jiao; Niu, Yun

    2018-05-01

    Previous studies have investigated the role of histone deacetylase 6 (HDAC6) in the regulation of androgen receptor (AR) in prostate cancer; however, the role of HDAC6 has not yet been clearly identified in breast cancer. The aim of this study was to examine the expression of HDAC6 and AR, determine the correlation between HDAC6 and AR, and assess the prognostic value of HDAC6 and AR in breast cancer. A total of 228 cases of invasive breast cancer were randomly selected. The expression of HDAC6 and AR was analyzed by immunohistochemistry. χ 2 Tests were performed to determine the association between conventional clinicopathological factors and HDAC6, AR, and HDAC6/AR co-expression. Spearman correlation methods were performed to determine the correlation between HDAC6 and AR, and Kaplan-Meier analyses were performed to determine the prognostic impact of HDAC6, AR and HDAC6/AR co-expression; 58.8% (134/228) patients exhibited high expression of HDAC6. High HDAC6 expression was significantly associated with high histologic grade (G3) (P<.001) and p53 overexpression (P=.002). HDAC6 and AR expression levels were significantly associated (r=0.382, P<.01). In estrogen receptor (ER)-negative samples, high expression of HDAC6 was more common in the AR+ groups (P<.001) and correlated with high histologic grade (G3) (P=.009), as well as higher HER2 (P=.006) and p53 levels (P=.012). Higher expression of AR and HDAC6 and HDAC6/AR co-expression had a worse clinical prognosis. The expression levels of HDAC6 and AR are correlated in breast cancer; moreover, HDAC6 and AR have prognostic value in predicting the overall survival (OS) of ER-negative breast cancer patients. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. P2X7 receptors in body temperature, locomotor activity, and brain mRNA and lncRNA responses to sleep deprivation.

    PubMed

    Davis, Christopher J; Taishi, Ping; Honn, Kimberly A; Koberstein, John N; Krueger, James M

    2016-12-01

    The ionotropic purine type 2X7 receptor (P2X7R) is a nonspecific cation channel implicated in sleep regulation and brain cytokine release. Many endogenous rhythms covary with sleep, including locomotor activity and core body temperature. Furthermore, brain-hypothalamic cytokines and purines play a role in the regulation of these physiological parameters as well as sleep. We hypothesized that these parameters are also affected by the absence of the P2X7 receptor. Herein, we determine spontaneous expression of body temperature and locomotor activity in wild-type (WT) and P2X7R knockout (KO) mice and how they are affected by sleep deprivation (SD). We also compare hypothalamic, hippocampal, and cortical cytokine- and purine-related receptor and enzyme mRNA expressions before and after SD in WT and P2X7RKO mice. Next, in a hypothesis-generating survey of hypothalamic long noncoding (lnc) RNAs, we compare lncRNA expression levels between strains and after SD. During baseline conditions, P2X7RKO mice had attenuated temperature rhythms compared with WT mice, although locomotor activity patterns were similar in both strains. After 6 h of SD, body temperature and locomotion were enhanced to a greater extent in P2X7RKO mice than in WT mice during the initial 2-3 h after SD. Baseline mRNA levels of cortical TNF-α and P2X4R were higher in the KO mice than WT mice. In response to SD, the KO mice failed to increase hypothalamic adenosine deaminase and P2X4R mRNAs. Further, hypothalamic lncRNA expressions varied by strain, and with SD. Current data are consistent with a role for the P2X7R in thermoregulation and lncRNA involvement in purinergic signaling. Copyright © 2016 the American Physiological Society.

  11. P2X7 receptors in body temperature, locomotor activity, and brain mRNA and lncRNA responses to sleep deprivation

    PubMed Central

    Taishi, Ping; Honn, Kimberly A.; Koberstein, John N.; Krueger, James M.

    2016-01-01

    The ionotropic purine type 2X7 receptor (P2X7R) is a nonspecific cation channel implicated in sleep regulation and brain cytokine release. Many endogenous rhythms covary with sleep, including locomotor activity and core body temperature. Furthermore, brain-hypothalamic cytokines and purines play a role in the regulation of these physiological parameters as well as sleep. We hypothesized that these parameters are also affected by the absence of the P2X7 receptor. Herein, we determine spontaneous expression of body temperature and locomotor activity in wild-type (WT) and P2X7R knockout (KO) mice and how they are affected by sleep deprivation (SD). We also compare hypothalamic, hippocampal, and cortical cytokine- and purine-related receptor and enzyme mRNA expressions before and after SD in WT and P2X7RKO mice. Next, in a hypothesis-generating survey of hypothalamic long noncoding (lnc) RNAs, we compare lncRNA expression levels between strains and after SD. During baseline conditions, P2X7RKO mice had attenuated temperature rhythms compared with WT mice, although locomotor activity patterns were similar in both strains. After 6 h of SD, body temperature and locomotion were enhanced to a greater extent in P2X7RKO mice than in WT mice during the initial 2-3 h after SD. Baseline mRNA levels of cortical TNF-α and P2X4R were higher in the KO mice than WT mice. In response to SD, the KO mice failed to increase hypothalamic adenosine deaminase and P2X4R mRNAs. Further, hypothalamic lncRNA expressions varied by strain, and with SD. Current data are consistent with a role for the P2X7R in thermoregulation and lncRNA involvement in purinergic signaling. PMID:27707719

  12. Heterologous expression of Helicoverpa armigera cytochrome P450 CYP6B7 in Pichia pastoris and interactions of CYP6B7 with insecticides.

    PubMed

    Zhao, Chunqing; Song, Genmiao; Duan, Hongxia; Tang, Tao; Wang, Chen; Qiu, Lihong

    2017-09-01

    Previous studies indicated that constitutive over-expression of cytochrome P450 CYP6B7 was involved in fenvalerate resistance in Helicoverpa armigera. In this study, the CYP6B7 gene from H. armigera (namely HaCYP6B7), was heterologously expressed in Pichia pastoris GS115. A vector pPICZA-HaCYP6B7 was constructed and transformed into P. pastoris GS115, the transformant of pPICZA-HaCYP6B7-GS115 was then cultured and induced by 1% (v/v) methanol and the heterologous expression of HaCYP6B7 protein in P. pastoris was confirmed by SDS-PAGE and western blot. Microsomes containing the expressed HaCYP6B7 showed activities against model substrate p-nitroanisole and 7-ethoxycoumarin, with p-nitroanisole O-demethylation (PNOD) and 7-ethoxycoumarin O-deethylation (ECOD) activities of 15.66- and 4.75-fold of the control, respectively. Moreover, it showed degradation activities against the insecticides bifenthrin, fenvalerate and chlorpyrifos, with clearance activities of 6.88-, 1.49- and 2.27-fold of the control, respectively. The interactions of HaCYP6B7 with insecticides were further confirmed by molecular docking in silico with binding scores of 5.450, 5.295 and 2.197 between putative HaCYP6B7 protein and bifenthrin, fenvalerate and chlorpyrifos, respectively. The results of present study provided more direct and important evidence on the role of HaCYP6B7 conferring pyrethroid resistance in H. armigera. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  13. Direct labelling of the human P2X7 receptor and identification of positive and negative cooperativity of binding

    PubMed Central

    Michel, A D; Chambers, L J; Clay, W C; Condreay, J P; Walter, D S; Chessell, I P

    2007-01-01

    Background and Purpose: The P2X7 receptor exhibits complex pharmacological properties. In this study, binding of a [3H]-labelled P2X7 receptor antagonist to human P2X7 receptors has been examined to further understand ligand interactions with this receptor. Experimental Approach: The P2X7 receptor antagonist, N-[2-({2-[(2-hydroxyethyl)amino]ethyl}amino)-5-quinolinyl]-2-tricyclo[3.3.1.13,7]dec-1-ylacetamide (compound-17), was radiolabelled with tritium and binding studies were performed using membranes prepared from U-2 OS or HEK293 cells expressing human recombinant P2X7 receptors. Key Results: Binding of [3H]-compound-17 was higher in membranes prepared from cells expressing P2X7 receptors than from control cells and was inhibited by ATP suggesting labelled sites represented human P2X7 receptors. Binding was reversible, saturable and modulated by P2X7 receptor ligands (Brilliant Blue G, KN62, ATP, decavanadate). Furthermore, ATP potency was reduced in the presence of divalent cations or NaCl. Radioligand binding exhibited both positive and negative cooperativity. Positive cooperativity was evident from bell shaped Scatchard plots, reduction in radioligand dissociation rate by unlabelled compound-17 and enhancement of radioligand binding by KN62 and unlabelled compound-17. ATP and decavanadate inhibited binding in a negative cooperative manner as they enhanced radioligand dissociation. Conclusions: These data demonstrate that human P2X7 receptors can be directly labelled and provide novel insights into receptor function. The positive cooperativity observed suggests that binding of compound-17 to one subunit in the P2X7 receptor complex enhances subsequent binding to other P2X7 subunits in the same complex. The negative cooperative effects of ATP suggest that ATP and compound-17 bind at separate, interacting, sites on the P2X7 receptor. PMID:17339830

  14. Effects of oxymatrine on sympathoexcitatory reflex induced by myocardial ischemic signaling mediated by P2X₃ receptors in rat SCG and DRG.

    PubMed

    Li, Guilin; Liu, Shuangmei; Yang, Yang; Xie, Jinyan; Liu, Jun; Kong, Fanjun; Tu, Guihua; Wu, Raoping; Li, Guodong; Liang, Shangdong

    2011-04-05

    Sympathoexcitatory reflex is characterized by an increase in blood pressure and sympathetic nerve activity. P2X₃ receptors in SCG neurons are involved in increasing sympathoexcitatory reflex after myocardial ischemic (MI) injury. The present study is aimed to explore the effects of oxymatrine (Oxy) on the transmission of myocardial ischemic signaling mediated by P2X₃ receptors in rat superior cervical ganglia (SCG) and cervical dorsal root ganglia (DRG) in the sympathoexcitatory reflex after myocardial ischemic injury. In this study, the expression levels of P2X₃ immunoreactivity, mRNA and protein were analyzed in SCG and DRG neurons by immunohistochemistry, in situ hybridization and Western blotting. The results show that the myocardial ischemic injury induces the increase of the systolic blood pressure and heart rate and upregulates the expression of P2X₃ receptors in SCG and DRG neurons. Upregulated expression of P2X₃ receptors in SCG and DRG neurons subsequently leads to the aggravated sympathoexcitatory reflex. Oxymatrine reduces the systolic blood pressure and heart rate in myocardial ischemic rats. After myocardial ischemic rats are treated with oxymatrine, the expression levels of P2X₃ immunoreactivity, mRNA and protein are lower than those in myocardial ischemic rats. Oxymatrine may decrease the expression of P2X₃ receptor and depress the aggravated sympathoexcitatory reflex induced by the nociceptive transmission of myocardial ischemic injury via P2X₃ receptors of rat SCG and DRG neurons. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Adolescent social defeat increases adult amphetamine conditioned place preference and alters D2 dopamine receptor expression

    PubMed Central

    Burke, Andrew R.; Watt, Michael J.; Forster, Gina L.

    2011-01-01

    Components of the brain’s dopaminergic system, such as dopamine receptors, undergo final maturation in adolescence. Exposure to social stress during human adolescence contributes to substance abuse behaviors. We utilized a rat model of adolescent social stress to investigate the neural mechanisms underlying this correlation. Rats exposed to repeated social defeat in adolescence (P35–P39) exhibited increased conditioned place preference (CPP) for amphetamine (1 mg/kg) in adulthood (P70). In contrast, rats experiencing foot-shock during the same developmental period exhibited amphetamine CPP levels similar to non-stressed controls. Our previous experiments suggested adolescent defeat alters dopamine activity in the mesocorticolimbic system. Furthermore, dopamine receptors have been implicated in the expression of amphetamine CPP. Therefore, we hypothesized that alteration to dopamine receptor expression in the mesocorticolimbic system may be associated with to heightened amphetamine CPP of adult rats exposed to adolescence defeat. We measured D1 and D2 dopamine receptor protein content in the medial prefrontal cortex, nucleus accumbens (NAc) and dorsal striatum following either adolescent social defeat or foot-shock stress and then adult amphetamine CPP. In controls, amphetamine CPP training reduced D2 receptor protein content in the NAc core. However, this down-regulation of NAc core D2 receptors was blocked by exposure to social defeat but not foot-shock stress in adolescence. These results suggest social defeat stress in adolescence alters the manner in which later amphetamine exposure down-regulates D2 receptors. Furthermore, persistent alterations to adult D2 receptor expression and amphetamine responses may depend on the type of stress experienced in adolescence. PMID:21933700

  16. Sequential expression of cyclooxygenase-2, glutamate receptor-2, and platelet activating factor receptor in rat hippocampal neurons after fluid percussion injury

    PubMed Central

    Li, Zhiqiang; Shu, Qingming; Li, Lingzhi; Ge, Maolin; Zhang, Yongliang

    2014-01-01

    Traumatic brain injury causes gene expression changes in different brain regions. Occurrence and development of traumatic brain injury are closely related, involving expression of three factors, namely cyclooxygenase-2, glutamate receptor-2, and platelet activating factor receptor. However, little is known about the correlation of these three factors and brain neuronal injury. In this study, primary cultured rat hippocampal neurons were subjected to fluid percussion injury according to Scott's method, with some modifications. RT-PCR and semi-quantitative immunocytochemical staining was used to measure the expression levels of cyclooxygenase-2, glutamate receptor-2, and platelet activating factor receptor. Our results found that cyclooxygenase-2 expression were firstly increased post-injury, and then decreased. Both mRNA and protein expression levels reached peaks at 8 and 12 hours post-injury, respectively. Similar sequential changes in glutamate receptor 2 were observed, with highest levels mRNA and protein expression at 8 and 12 hours post-injury respectively. On the contrary, the expressions of platelet activating factor receptor were firstly decreased post-injury, and then increased. Both mRNA and protein expression levels reached the lowest levels at 8 and 12 hours post-injury, respectively. Totally, our findings suggest that these three factors are involved in occurrence and development of hippocampal neuronal injury. PMID:25206921

  17. Glucocorticoid receptor contributes to the altered expression of hepatic cytochrome P450 upon cigarette smoking.

    PubMed

    Li, Xue; Yan, Zhongfang; Wu, Qi; Sun, Xin; Li, Fan; Zhang, Subei; Li, Kuan; Li, Li; Wu, Junping; Xu, Long; Feng, Jing; Ning, Wen; Liu, Zhixue; Chen, Huaiyong

    2016-12-01

    Cigarette smoking has been shown to cause pathological alterations in the liver. However, how hepatic metabolism is altered during cigarette smoking‑induced inflammation remains to be fully elucidated. In the present study, a rat model of smoking was established to examine the effects of cigarette smoking on inflammation, autophagy activity, and the expression of nuclear receptor and CYP in the liver. Elevated expression of interleukin 1β and activation of autophagy in the liver were observed upon smoking exposure in rats. Cigarette smoking induced a significant reduction in the mRNA expression levels of cytochromes, including cytochrome P450 (Cyp)1A2, Cyp2D4 and Cyp3A2. Accordingly, a decrease was also observed in glucocorticoid receptor (GR), a regulator of the expression of Cyp. Activation of the GR signal in human hepatic LO2 cells did not affect autophagic genes, however, it led to the upregulation of hCYP1A2, hCYP2C19 and hCYP3A4, and the downregulation of hCYP2C9. The GR antagonist, RU486, eliminated this effect, suggesting the importance of GR in liver metabolism upon cigarette smoking.

  18. 2,3,7,8-tetrachlorodibenzo-p-dioxin decrease expression of aryl hydrocarbon receptor in peripheral lymphocyte of β-thalassemia major patients.

    PubMed

    Ghatrehsamani, Mahdi; Soleimani, Masoud; Esfahani, Behjat Al-Sadat Moayedi; Hakemi, Mazdak Ganjalikhani; Shirzad, Hedayatollah; Eskandari, Nahid; Adib, Minoo

    2015-01-01

    β-thalassemia major is a hereditary disease with inefficient erythropoiesis. Level of inflammatory cytokine is elevated in these patients. In this study, we investigate the effect of aryl hydrocarbon receptor (AhR) ligand, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), on the expression of inflammatory mediators in β-thalassemia major patient's lymphocytes. Peripheral blood mononuclear cells of patients and healthy participants was isolated and cultured in favor of lymphocytes increment. Based on the treatment, we divided the cell into four groups. The orders of group's treatments were no treatment, tumor necrosis factor-α (TNF-α) treatment, TNF-α and TCDD treatment, TCDD treatment in Group 1-4, respectively. After cell culture, we extracted the cells RNA and converted them to cDNA. Real-time polymerase chain reaction was performed to assessment relative expression of caspase-1, NLRP3, and AhR. We compared all patient groups with equal healthy (control) groups. Results showed that expression of caspase-1 in patients (Groups 1 and 2) was significantly lower than healthy individuals (P < 0.05). Although, no significant difference was found (Groups 1, 2, and control) in AhR gene expression (P > 0.05). Expression of AhR in other groups of patients (3 and 4) was significantly lower than control groups (P < 0.05). Expression of caspase-1 in Group 4 was significantly larger than the control group (P < 0.001). We show here that chronic inflammation decrease caspase-1 expression and exposure of human lymphocytes to TCDD promote caspase-1 expression. Furthermore, activation of AhR with TCDD decreases AhR expression in lymphocytes of β-thalassemia major disease.

  19. Characterization of dopamine D1 and D2 receptor-expressing neurons in the mouse hippocampus.

    PubMed

    Gangarossa, Giuseppe; Longueville, Sophie; De Bundel, Dimitri; Perroy, Julie; Hervé, Denis; Girault, Jean-Antoine; Valjent, Emmanuel

    2012-12-01

    The hippocampal formation is part of an anatomical system critically involved in learning and memory. Increasing evidence suggests that dopamine plays an important role in learning and memory as well as in several forms of synaptic plasticity. However, the precise identification of neuronal populations expressing D1 or D2 dopamine receptors within the hippocampus is still lacking. To clarify this issue, we used BAC transgenic mice expressing enhanced green fluorescent protein (EGFP) under the control of the promoter of dopamine D1 or D2 receptors. In Drd1a-EGFP mice, sparse GFP-expressing neurons were detected among glutamatergic projecting neurons of the granular layer of the dentate gyrus and GABAergic interneurons located in the hilus. A dense immunofluorescence was observed in the outer and medial part of the molecular layer of the dentate gyrus as well as in the inner part of the molecular layer of CA1 corresponding to the terminals of pyramidal neurons of the entorhinal cortex defining the perforant and the temporo-ammonic pathway respectively. Finally, scattered D1 receptor-expressing neurons were also identified as GABAergic interneurons in the CA3/CA1 fields of the hippocampus. In Drd2-EGFP transgenic mice, GFP was exclusively detected in the glutamatergic mossy cells located in the polymorphic layer of the dentate gyrus. This pattern was confirmed in Drd2-Cre mice crossed with NLS-LacZ-Tau(mGFP) :LoxP and RCE:LoxP reporter lines. Our results demonstrate that D1 and D2 receptor-expressing neurons are strictly segregated in the mouse hippocampus. By clarifying the identity of D1 and D2 receptor-expressing neurons in the hippocampus, this study establishes a basis for future investigations aiming at elucidating their roles in the hippocampal network. Copyright © 2012 Wiley Periodicals, Inc.

  20. Increased Expression of Interleukin-6 Family Members and Receptors in Urinary Bladder with Cyclophosphamide-Induced Bladder Inflammation in Female Rats

    PubMed Central

    Girard, Beatrice M.; Cheppudira, Bopaiah P.; Malley, Susan E.; Schutz, Kristin C.; May, Victor; Vizzard, Margaret A.

    2011-01-01

    Recent studies suggest that janus-activated kinases–signal transducer and activator of transcription signaling pathways contribute to increased voiding frequency and referred pain of cyclophosphamide (CYP)-induced cystitis in rats. Potential upstream chemical mediator(s) that may be activated by CYP-induced cystitis to stimulate JAK/STAT signaling are not known in detail. In these studies, members of the interleukin (IL)-6 family of cytokines including, leukemia inhibitory factor (LIF), IL-6, and ciliary neurotrophic factor (CNTF) and associated receptors, IL-6 receptor (R) α, LIFR, and gp130 were examined in the urinary bladder in control and CYP-treated rats. Cytokine and receptor transcript and protein expression and distribution were determined in urinary bladder after CYP-induced cystitis using quantitative, real-time polymerase chain reaction (Q-PCR), western blotting, and immunohistochemistry. Acute (4 h; 150 mg/kg; i.p.), intermediate (48 h; 150 mg/kg; i.p.), or chronic (75 mg/kg; i.p., once every 3 days for 10 days) cystitis was induced in adult, female Wistar rats with CYP treatment. Q-PCR analyses revealed significant (p ≤ 0.01) CYP duration- and tissue- (e.g., urothelium, detrusor) dependent increases in LIF, IL-6, IL-6Rα, LIFR, and gp130 mRNA expression. Western blotting demonstrated significant (p ≤ 0.01) increases in IL-6, LIF, and gp130 protein expression in whole urinary bladder with CYP treatment. CYP-induced cystitis significantly (p ≤ 0.01) increased LIF-immunoreactivity (IR) in urothelium, detrusor, and suburothelial plexus whereas increased gp130-IR was only observed in urothelium and detrusor. These studies suggest that IL-6 and LIF may be potential upstream chemical mediators that activate JAK/STAT signaling in urinary bladder pathways. PMID:21373362

  1. Homologous upregulation of sst2 somatostatin receptor expression in the rat arcuate nucleus in vivo.

    PubMed

    Tannenbaum, G S; Turner, J; Guo, F; Videau, C; Epelbaum, J; Beaudet, A

    2001-07-01

    In vitro studies using various cell systems have provided conflicting results regarding homologous regulation of somatostatin (SRIH) receptors, and information on whether SRIH regulates the expression of its own receptors in vivo is lacking. In the present study we examined, by in situ hybridization, the effects of pretreatment with the sst2-preferring SRIH analog, octreotide, in vivo, on mRNA levels of two SRIH receptor subtypes, sst1 and sst2, in rat brain and pituitary. (125)I-[DTrp(8)]-SRIH binding was also measured in these regions. Three hours after the iv injection of 50 microg octreotide to conscious adult male rats, there was a 46% increase (p < 0.01) in the labeling density of sst2 mRNA-expressing cells in the hypothalamic arcuate nucleus compared to normal saline-pretreated controls, but not in any of the other brain regions examined. Computer-assisted image analysis revealed that 3 h exposure to octreotide significantly (p < 0.01) augmented both the number and labeling density of sst2 mRNA-expressing cells in the arcuate nucleus, compared to those in saline-treated controls. By contrast, within the anterior pituitary gland, in vivo exposure to octreotide did not affect the expression of sst2 mRNA. No changes in sst1 mRNA-expressing cells were observed after octreotide treatment in any of the regions measured, indicating that the observed effects were homologous, i.e. specific of the receptor subtype stimulated. Octreotide pretreatment was also without effect on the density of (125)I-[DTrp(8)]-SRIH binding in either the arcuate nucleus or pituitary. These results demonstrate, for the first time, that SRIH preexposure in vivo upregulates the expression of a subtype of its own receptors, sst2, within the central nervous system. They further suggest that pretreatment with SRIH in vivo does not cause sst2 receptor desensitization in arcuate nucleus and pituitary. Such homologous regulatory mechanisms may play an important role in the neuroendocrine control

  2. The overexpressed human 46-kDa mannose 6-phosphate receptor mediates endocytosis and sorting of. beta. -glucuronidase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watanabe, H.; Grubb, J.H.; Sly, W.S.

    1990-10-01

    The authors studied the function of the human small (46-kDa) mannose 6-phosphate receptor (SMPR) in transfected mouse L cells that do not express the larger insulin-like growth factor II/mannose 6-phosphate receptor. Cells overexpressing human SMPR were studied for enzyme binding to cell surface receptors, for binding to intracellular receptors in permeabilized cells, and for receptor-mediated endocytosis of recombinant human {beta}-glucuronidase. Specific binding to human SMPR in permeabilized cells showed a pH optimum between pH 6.0 and pH 6.5. Binding was significant in the present of EDTA but was enhanced by added divalent cations. Up to 2.3{percent} of the total functionalmore » receptor could be detected on the cell surface by enzyme binding. They present experiments showing that at very high levels of overexpression, and at pH 6.5, human SMPR mediated the endocytosis of {beta}-glucuronidase. At pH 7.5, the rate of endocytosis was only 14{percent} the rate seen at pH 6.5. Cells overexpressing human SMPR also showed reduced secretion of newly synthesized {beta}-glucuronidase when compared to cells transfected with vector only, suggesting that overexpressed human SMPR can participate in sorting of newly synthesized {beta}-glucuronidase and partially correct the sorting defect in mouse L cells that do not express the insulin-like growth factor II/mannose 6-phosphate receptor.« less

  3. Agonists and antagonists acting at P2X receptors: selectivity profiles and functional implications.

    PubMed

    Lambrecht, G

    2000-11-01

    P2X receptors are nucleotide-gated cation channels composed of homomeric or heteromeric assemblies of three subunits. In the past 7 years, an extended series (P2X1-7) of P2X subunits has been cloned from vertebrate tissues. In this rapidly expanding field, one of the main current challenges is to relate the cloned P2X receptor subtypes to the diverse physiological responses mediated by the native P2X receptors. However, the paucity of useful ligands, especially subtype-selective agonists and antagonists as well as radioligands, acts as a considerable impediment to progress. Most of the ligands available are highly limited in terms of their kinetics of action, receptor-affinity, subtype-selectivity and P2X receptor-specificity. Their suspected ability to be a substrate for ecto-nucleotidases or to inhibit these enzymes also complicates their use. A number of new antagonists at P2X receptors have recently been described which to some degree are more potent and more selective than earlier antagonists like suramin or pyridoxal-5'-phosphate-6-azophenyl 2',4'-disulfonate (PPADS). This work moves us closer to the ideal goal of classifying the recombinant and native P2X receptor subtypes on the basis of antagonist profiles. This review begins with a brief account of the current status of P2X receptors. It then focuses on the pharmacological properties of a series of key P2 receptor agonists and antagonists and will finish with the discussion of some related therapeutic possibilities.

  4. MEN16132, a novel potent and selective nonpeptide antagonist for the human bradykinin B2 receptor. In vitro pharmacology and molecular characterization.

    PubMed

    Cucchi, Paola; Meini, Stefania; Bressan, Alessandro; Catalani, Claudio; Bellucci, Francesca; Santicioli, Paolo; Lecci, Alessandro; Faiella, Angela; Rotondaro, Luigi; Giuliani, Sandro; Giolitti, Alessandro; Quartara, Laura; Maggi, Carlo Alberto

    2005-12-28

    The pharmacological characterization of the novel nonpeptide antagonist for the B2 receptor, namely MEN16132 (4-(S)-Amino-5-(4-{4-[2,4-dichloro-3-(2,4-dimethyl-8-quinolyloxymethyl)phenylsulfonamido]-tetrahydro-2H-4-pyranylcarbonyl}piperazino)-5-oxopentyl](trimethyl)ammonium chloride hydrochloride) is presented. The affinity of MEN16132 for the bradykinin B2 receptor has been investigated by means of competition studies at [3H]bradykinin binding to membranes prepared from Chinese Hamster Ovary (CHO) cells expressing the human bradykinin B2 receptor (pKi 10.5), human lung fibroblasts (pKi 10.5), guinea pig airways (pKi 10.0), guinea pig ileum longitudinal smooth muscle (pKi 10.2), or guinea pig cultured colonic myocytes (pKi 10.3). In all assays MEN16132 was as potent as the peptide antagonist Icatibant, and from 3- to 100-fold more potent than the reference nonpeptide antagonists FR173657 or LF16-0687. The selectivity for the bradykinin B2 receptor was checked at the human bradykinin B1 receptor (pKi<5), and at a panel of 26 different receptors and channels. The antagonist potency was measured in functional assays, i.e., in blocking the bradykinin induced inositolphosphates (IP) accumulation at the human (CHO: pKB 10.3) and guinea pig (colonic myocytes: pKB 10.3) B2 receptor, or in antagonizing the bradykinin induced contractile responses in human (detrusor smooth muscle: pKB 9.9) and guinea pig (ileum longitudinal smooth muscle: pKB 10.1) tissues. In both functional assay types MEN16132 exerted a different antagonist pattern, i.e., surmountable at the human and insurmountable at the guinea pig bradykinin B2 receptors. Moreover, the receptor determinants important for the high affinity interaction of MEN16132 with the human bradykinin B2 receptor were investigated by means of radioligand binding studies performed at 24 point-mutated receptors. The results obtained revealed that residues in transmembrane segment 2 (W86A), 3 (I110A), 6 (W256A), and 7 (Y295A, Y295F but

  5. A1 adenosine receptor attenuates intracerebral hemorrhage-induced secondary brain injury in rats by activating the P38-MAPKAP2-Hsp27 pathway.

    PubMed

    Zhai, Weiwei; Chen, Dongdong; Shen, Haitao; Chen, Zhouqing; Li, Haiying; Yu, Zhengquan; Chen, Gang

    2016-06-14

    This study was designed to determine the role of the A1 adenosine receptors in intracerebral hemorrhage (ICH)-induced secondary brain injury and the underlying mechanisms. A collagenase-induced ICH model was established in Sprague-Dawley rats, and cultured primary rat cortical neurons were exposed to oxyhemoglobin at a concentration of 10 μM to mimic ICH in vitro. The A1 adenosine receptor agonist N(6)-cyclohexyladenosine and antagonist 8-phenyl-1,3-dipropylxanthine were used to study the role of A1 adenosine receptor in ICH-induced secondary brain injury, and antagonists of P38 and Hsp27 were used to study the underlying mechanisms of A1 adenosine receptor actions. The protein level of A1 adenosine receptor was significantly increased by ICH, while there was no significant change in protein levels of the other 3 adenosine receptors. In addition, the A1 adenosine receptor expression could be increased by N(6)-cyclohexyladenosine and decreased by 8-phenyl-1,3-dipropylxanthine under ICH conditions. Activation of the A1 adenosine receptor attenuated neuronal apoptosis in the subcortex, which was associated with increased phosphorylation of P38, MAPK, MAPKAP2, and Hsp27. Inhibition of the A1 adenosine receptor resulted in opposite effects. Finally, the neuroprotective effect of the A1 adenosine receptor agonist N(6)-cyclohexyladenosine was inhibited by antagonists of P38 and Hsp27. This study demonstrates that activation of the A1 adenosine receptor by N(6)-cyclohexyladenosine could prevent ICH-induced secondary brain injury via the P38-MAPKAP2-Hsp27 pathway.

  6. Resistin increases the expression of NOD2 in mouse monocytes.

    PubMed

    Ren, Yi; Wan, Taomei; Zuo, Zhicai; Cui, Hengmin; Peng, Xi; Fang, Jing; Deng, Junliang; Hu, Yanchun; Yu, Shuming; Shen, Liuhong; Ma, Xiaoping; Wang, Ya; Ren, Zhihua

    2017-05-01

    Previous studies have indicated that resistin, a type of adipokine, contributes to the development of insulin resistance and type 2 diabetes mellitus, and mediates inflammatory reactions. However, a specific receptor for resistin has not yet been identified. In this study, the relationship between resistin and nucleotide-binding oligomerization domain-like receptors, as well as resistin signal transduction, was examined through transfection, quantitative polymerase chain reaction, western blot analysis and ELISA. The mRNA expression of nucleotide-binding oligomerization domain-containing protein 2 (NOD2), a key immune receptor related to insulin resistance, was significantly increased by resistin treatment at concentrations of 100, 150 and 200 ng/ml (P<0.05, P<0.01 and P<0.01, respectively). The mRNA expression of downstream signaling molecules in the NOD2 signaling pathway, receptor-interacting serine/threonine-protein kinase 2 (RIP2; P<0.01 at 6, 12 and 24 h) and inhibitor of NF-κB kinase subunit beta (P<0.01 at 3, 6, 12 and 24 h) were significantly increased by resistin treatment compared with the control. The mRNA expression of key proinflammatory cytokines, tumor necrosis factor α, IL (interleukin)-6 and IL-1β, were also significantly increased by resistin treatment compared with the control (P<0.01). NOD2 knockdown by small interfering RNA (siRNA) significantly decreased the expression of NOD2 and RIP2 (P<0.01), and there was no significant increase in the levels of cytokines, as compared with treatment with control siRNA. These findings indicate that the inflammatory reaction induced by resistin involves the NOD2-nuclear factor (NF)-κB signaling pathway. The inhibition of NF-κB significantly decreased the secretion of key inflammatory cytokines (P<0.01), suggesting that NF-κB signaling mechanisms are essential to the resistin-induced inflammatory response.

  7. Association between AT1 and AT2 angiotensin II receptor expression with cell proliferation and angiogenesis in operable breast cancer.

    PubMed

    Arrieta, Oscar; Villarreal-Garza, Cynthia; Vizcaíno, Gloria; Pineda, Benjamín; Hernández-Pedro, Norma; Guevara-Salazar, Patricia; Wegman-Ostrosky, Talia; Villanueva-Rodríguez, Geraldine; Gamboa-Domínguez, Armando

    2015-07-01

    Angiotensin II (ANGII) has been associated with vascular proliferation in tumor and non-tumor models through its receptors AT1 and AT2. Our objective was to determine AT1 and AT2 receptor expression in operable breast cancer and its association with tumor grade, vascular density, and cellular proliferation. Seventy-seven surgically malignant breast tumors with no distant metastasis were included, and 7 benign lesions were used as controls. AT1 and AT2 receptor expression was determined by RT-PCR and immunohistochemistry (IHC) in 68 out of the 77 malignant lesions and in the 7 benign lesions. AT1 and AT2 receptor expression was detected in 35.3 and 25 % of cases, in both RT-PCR and IHC. Tumors that express AT1 showed an increase in T3 stage (92.3 vs. 7.7 % p < 0.001), mitotic index (4 ± 1 vs 2 ± 1, p = 0.05), vascular density (15 ± 3 vs 8 ± 5, p = 0.05), and cellular proliferation (85 ± 18 vs 55 ± 10, p = 0.01) versus AT1-negative lesions. Non-differences between clinical-pathologic variables and AT2 expression were found. AT1 receptor expression was associated to enhance angiogenesis and cellular proliferation rate, but no relationship with AT2 was found. ANGII and its peptides might play a role in the development and pathophysiology of breast cancer, and this could be valuable in the in the development of targeted therapies.

  8. Arf6 negatively controls the rapid recycling of the β2 adrenergic receptor.

    PubMed

    Macia, Eric; Partisani, Mariagrazia; Paleotti, Olivia; Luton, Frederic; Franco, Michel

    2012-09-01

    β2-adrenergic receptor2AR), a member of the GPCR (G-protein coupled receptor) family, is internalized in a ligand- and β-arrestin-dependent manner into early endosomes, and subsequently recycled back to the plasma membrane. Here, we report that β-arrestin promotes the activation of the small G protein Arf6, which regulates the recycling and degradation of β2AR. We demonstrate in vitro that the C-terminal region of β-arrestin1 interacts directly and simultaneously with Arf6GDP and its specific exchange factor EFA6, to promote Arf6 activation. Similarly, the ligand-mediated activation of β2AR leads to the formation of Arf6GTP in vivo in a β-arrestin-dependent manner. Expression of either EFA6 or an activated Arf6 mutant caused accumulation of β2AR in the degradation pathway. This phenotype could be rescued by the expression of an activated mutant of Rab4, suggesting that Arf6 acts upstream of Rab4. We propose a model in which Arf6 plays an essential role in β2AR desensitization. The ligand-mediated stimulation of β2AR relocates β-arrestin to the plasma membrane, and triggers the activation of Arf6 by EFA6. The activation of Arf6 leads to accumulation of β2AR in the degradation pathway, and negatively controls Rab4-dependent fast recycling to prevent the re-sensitization of β2AR.

  9. Functional properties of internalization-deficient P2X4 receptors reveal a novel mechanism of ligand-gated channel facilitation by ivermectin.

    PubMed

    Toulmé, Estelle; Soto, Florentina; Garret, Maurice; Boué-Grabot, Eric

    2006-02-01

    Although P2X receptors within the central nervous system mediate excitatory ATP synaptic transmission, the identity of central ATP-gated channels has not yet been elucidated. P2X(4), the most widely expressed subunit in the brain, was previously shown to undergo clathrin-dependent constitutive internalization by direct interaction between activator protein (AP)2 adaptors and a tyrosine-based sorting signal specifically present in the cytosolic C-terminal tail of mammalian P2X(4) sequences. In this study, we first used internalization-deficient P2X(4) receptor mutants to show that suppression of the endocytosis motif significantly increased the apparent sensitivity to ATP and the ionic permeability of P2X(4) channels. These unique properties, observed at low channel density, suggest that interactions with AP2 complexes may modulate the function of P2X(4) receptors. In addition, ivermectin, an allosteric modulator of several receptor channels, including mammalian P2X(4), did not potentiate the maximal current of internalization-deficient rat or human P2X(4) receptors. We demonstrated that binding of ivermectin onto wild-type P2X(4) channels increased the fraction of plasma membrane P2X(4) receptors, whereas surface expression of internalization-deficient P2X(4) receptors remained unchanged. Disruption of the clathrin-mediated endocytosis with the dominant-negative mutants Eps15 or AP-50 abolished the ivermectin potentiation of wild-type P2X(4) channel currents. Likewise, ivermectin increased the membrane fraction of nicotinic alpha7 acetylcholine (nalpha7ACh) receptors and the potentiation of acetylcholine current by ivermectin was suppressed when the same dominant-negative mutants were expressed. These data showed that potentiation by ivermectin of both P2X(4) and nalpha7ACh receptors was primarily caused by an increase in the number of cell surface receptors resulting from a mechanism dependent on clathrin/AP2-mediated endocytosis.

  10. Expression of Bmi-1, P16, and CD44v6 in Uterine Cervical Carcinoma and Its Clinical Significance

    PubMed Central

    Weng, Mei-ying; Li, Lin; Feng, Shu-ying; Hong, Shun-jia

    2012-01-01

    Objective Bmi-1, a putative proto-oncogene, is a core member of the polycomb gene family, which is expressed in many human tumors. The p16 protein negatively regulated cell proliferation, whereas CD44v6 is associated with proliferation as an important protein. Additionally, CD44v6 is an important nuclear antigen closely correlated to tumor metastasis. The present study aims to investigate the expression and significance of Bmi-1, p16, and CD44v6 in uterine cervical carcinoma (UCC). Methods A total of 62 UCC, 30 cervical neoplasic, and 20 normal cervical mucosal tissues were used in the current study. The expression of Bmi-1, p16, and CD44v6 in these tissues was determined using immunohistochemical assay. The relationships among the expression of these indices, the clinicopathologic features of UCC, and the survival rate of UCC patients were also discussed. The correlation between Bmi-1 protein expression and p16 or CD44v6 protein in UCC was analyzed. Results The expression of Bmi-1, p16, and CD44v6 was significantly high in cervical carcinoma compared with that in the cervical neoplasia and normal colorectal mucosa (P<0.05). The over-expression of Bmi-1 protein in UCC was apparently related to the distant metastasis (P<0.01) and the tumor, nodes and metastasis-classification, i.e. the TNM staging, World Health Organization (P<0.05). Nevertheless, the positive expression of p16 protein in UCC was not significantly associated with the clinicopathologic features (P>0.05). The Kaplan–Meier survival analysis showed that the over-expression of Bmi-1 significantly decreased the survival rate of UCC patients (P<0.05). A strong correlation indicated that there was statistical significance between the expression of Bmi-1 and CD44V6 proteins in UCC (r=0.419, P=0.001). Conclusions The over-expression of Bmi-1 and CD44v6 protein closely correlate to the tumorigenesis, metastasis, and prognosis of UCC. Bmi-1 and CD44v6 may be used to predict the prognosis of cervical carcinoma

  11. Expression of Bmi-1, P16, and CD44v6 in Uterine Cervical Carcinoma and Its Clinical Significance.

    PubMed

    Weng, Mei-Ying; Li, Lin; Feng, Shu-Ying; Hong, Shun-Jia

    2012-03-01

    Bmi-1, a putative proto-oncogene, is a core member of the polycomb gene family, which is expressed in many human tumors. The p16 protein negatively regulated cell proliferation, whereas CD44v6 is associated with proliferation as an important protein. Additionally, CD44v6 is an important nuclear antigen closely correlated to tumor metastasis. The present study aims to investigate the expression and significance of Bmi-1, p16, and CD44v6 in uterine cervical carcinoma (UCC). A total of 62 UCC, 30 cervical neoplasic, and 20 normal cervical mucosal tissues were used in the current study. The expression of Bmi-1, p16, and CD44v6 in these tissues was determined using immunohistochemical assay. The relationships among the expression of these indices, the clinicopathologic features of UCC, and the survival rate of UCC patients were also discussed. The correlation between Bmi-1 protein expression and p16 or CD44v6 protein in UCC was analyzed. The expression of Bmi-1, p16, and CD44v6 was significantly high in cervical carcinoma compared with that in the cervical neoplasia and normal colorectal mucosa (P<0.05). The over-expression of Bmi-1 protein in UCC was apparently related to the distant metastasis (P<0.01) and the tumor, nodes and metastasis-classification, i.e. the TNM staging, World Health Organization (P<0.05). Nevertheless, the positive expression of p16 protein in UCC was not significantly associated with the clinicopathologic features (P>0.05). The Kaplan-Meier survival analysis showed that the over-expression of Bmi-1 significantly decreased the survival rate of UCC patients (P<0.05). A strong correlation indicated that there was statistical significance between the expression of Bmi-1 and CD44V6 proteins in UCC (r=0.419, P=0.001). The over-expression of Bmi-1 and CD44v6 protein closely correlate to the tumorigenesis, metastasis, and prognosis of UCC. Bmi-1 and CD44v6 may be used to predict the prognosis of cervical carcinoma. Bmi-1 may indirectly regulate the

  12. Protective effects of naringin against gp120-induced injury mediated by P2X7 receptors in BV2 microglial cells.

    PubMed

    Chen, Q; Hu, J; Qin, S S; Liu, C L; Wu, H; Wang, J R; Lu, X M; Wang, J; Chen, G Q; Liu, Y; Liu, B Y; Xu, C S; Liang, S D

    2016-05-13

    This study was aimed at exploring the effects of P2X7 receptors on gp120-induced injury and naringin's protective effects against gp120-induced injury in BV2 microglia. BV2 microglia injury model was established by gp120 treatment and MTS assay was used to verify whether naringin has a cell-protective effect against gp120-induced injury. Changes in P2X7 receptor expression were assayed using RT-PCR, qPCR, and western blot. Results showed that the ODs of the Ctrl, gp120, gp120+naringin, and gp120+BBG groups were 0.91 ± 0.10, 0.71 ± 0.09, 0.83 ± 0.10, and 0.83 ± 0.10, respectively. Compared to the control group, the gp120 group showed a significantly decreased cell survival rate. Cell survival rates of the gp120+naringin group increased significantly compared to those of the gp120 group, while no difference was observed when compared to the gp120+BBG group. The relative P2X7 mRNA expression levels in the Ctrl, gp120, gp120+naringin, and gp120+BBG groups were 0.73 ± 0.06, 1.05 ± 0.06, 0.78 ± 0.05, and 0.81 ± 0.04, respectively. The corresponding P2X7 protein expression levels were 0.46 ± 0.04, 0.79 ± 0.04, 0.38 ± 0.07, and 0.42 ± 0.06. P2X7 mRNA and protein expression in the gp120 group increased significantly compared to those in the control group, and declined in the gp120+naringin group compared to those in the gp120 group. Therefore, P2X7 receptors might be involved in gp120-induced injury in BV2 microglia, and naringin might play a protective role by inhibiting the up-regulated expression of P2X7 receptors.

  13. Protease-activated receptor-2 (PAR(2)) in human periodontitis.

    PubMed

    Holzhausen, M; Cortelli, J R; da Silva, V Araújo; Franco, G C Nobre; Cortelli, S Cavalca; Vergnolle, N

    2010-09-01

    No evidence for the role of protease-activated receptor-2 (PAR(2)) in human periodontal disease has been demonstrated so far. Thus, we sought to investigate the expression of PAR(2) mRNA in chronic periodontitis, and to examine whether its expression is related to the presence of PAR(2) potential activators. Microbiological and gingival crevicular fluid samples were collected from individuals with chronic periodontitis and control individuals, and the presence of neutrophil serine proteinase 3 (P3) and Porphyromonas gingivalis was evaluated. PAR(2) mRNA expression was higher (p < 0.001) in those with chronic periodontitis compared with control individuals, and it was statistically decreased (p = 0.0006) after periodontal treatment. Furthermore, those with chronic periodontitis presented higher (p < 0.05) levels of IL-1alpha, IL-6, IL-8, and TNF-alpha, total proteolytic activity, P. gingivalis prevalence, and P3mRNA expression compared with control individuals. We conclude that PAR(2) mRNA expression and its potential activators are elevated in human chronic periodontitis, therefore suggesting that PAR(2) may play a role in periodontal inflammation.

  14. SSR240612 [(2R)-2-[((3R)-3-(1,3-benzodioxol-5-yl)-3-[[(6-methoxy-2-naphthyl)sulfonyl]amino]propanoyl)amino]-3-(4-[[2R,6S)-2,6-dimethylpiperidinyl]methyl]phenyl)-N-isopropyl-N-methylpropanamide hydrochloride], a new nonpeptide antagonist of the bradykinin B1 receptor: biochemical and pharmacological characterization.

    PubMed

    Gougat, Jean; Ferrari, Bernard; Sarran, Lionel; Planchenault, Claudine; Poncelet, Martine; Maruani, Jeanne; Alonso, Richard; Cudennec, Annie; Croci, Tiziano; Guagnini, Fabio; Urban-Szabo, Katalin; Martinolle, Jean-Pierre; Soubrié, Philippe; Finance, Olivier; Le Fur, Gérard

    2004-05-01

    The biochemical and pharmacological properties of a novel non-peptide antagonist of the bradykinin (BK) B(1) receptor, SSR240612 [(2R)-2-[((3R)-3-(1,3-benzodioxol-5-yl)-3-[[(6-methoxy-2-naphthyl)sulfonyl]amino]propanoyl)amino]-3-(4-[[2R,6S)-2,6-dimethylpiperidinyl]methyl]phenyl)-N-isopropyl-N-methylpropanamide hydrochloride] were evaluated. SSR240612 inhibited the binding of [(3)H]Lys(0)-des-Arg(9)-BK to the B(1) receptor in human fibroblast MRC5 and to recombinant human B(1) receptor expressed in human embryonic kidney cells with inhibition constants (K(i)) of 0.48 and 0.73 nM, respectively. The compound selectivity for B(1) versus B(2) receptors was in the range of 500- to 1000-fold. SSR240612 inhibited Lys(0)-desAr(9)-BK (10 nM)-induced inositol monophosphate formation in human fibroblast MRC5, with an IC(50) of 1.9 nM. It also antagonized des-Arg(9)-BK-induced contractions of isolated rabbit aorta and mesenteric plexus of rat ileum with a pA(2) of 8.9 and 9.4, respectively. Antagonistic properties of SSR240612 were also demonstrated in vivo. SSR240612 inhibited des-Arg(9)-BK-induced paw edema in mice (3 and 10 mg/kg p.o. and 0.3 and 1 mg/kg i.p.). Moreover, SSR240612 reduced capsaicin-induced ear edema in mice (0.3, 3 and 30 mg/kg p.o.) and tissue destruction and neutrophil accumulation in the rat intestine following splanchnic artery occlusion/reperfusion (0.3 mg/kg i.v.). The compound also inhibited thermal hyperalgesia induced by UV irradiation (1 and 3 mg/kg p.o.) and the late phase of nociceptive response to formalin in rats (10 and 30 mg/kg p.o.). Finally, SSR240612 (20 and 30 mg/kg p.o.) prevented neuropathic thermal pain induced by sciatic nerve constriction in the rat. In conclusion, SSR240612 is a new, potent, and orally active specific non-peptide bradykinin B(1) receptor antagonist.

  15. Role of Exonic Variation in Chemokine Receptor Genes on AIDS: CCRL2 F167Y Association with Pneumocystis Pneumonia

    PubMed Central

    An, Ping; Li, Rongling; Wang, Ji Ming; Yoshimura, Teizo; Takahashi, Munehisa; Samudralal, Ram; O'Brien, Stephen J.; Phair, John; Goedert, James J.; Kirk, Gregory D.; Troyer, Jennifer L.; Sezgin, Efe; Buchbinder, Susan P.; Donfield, Sharyne; Nelson, George W.; Winkler, Cheryl A.

    2011-01-01

    Chromosome 3p21–22 harbors two clusters of chemokine receptor genes, several of which serve as major or minor coreceptors of HIV-1. Although the genetic association of CCR5 and CCR2 variants with HIV-1 pathogenesis is well known, the role of variation in other nearby chemokine receptor genes remain unresolved. We genotyped exonic single nucleotide polymorphisms (SNPs) in chemokine receptor genes: CCR3, CCRL2, and CXCR6 (at 3p21) and CCR8 and CX3CR1 (at 3p22), the majority of which were non-synonymous. The individual SNPs were tested for their effects on disease progression and outcomes in five treatment-naïve HIV-1/AIDS natural history cohorts. In addition to the known CCR5 and CCR2 associations, significant associations were identified for CCR3, CCR8, and CCRL2 on progression to AIDS. A multivariate survival analysis pointed to a previously undetected association of a non-conservative amino acid change F167Y in CCRL2 with AIDS progression: 167F is associated with accelerated progression to AIDS (RH = 1.90, P = 0.002, corrected). Further analysis indicated that CCRL2-167F was specifically associated with more rapid development of pneumocystis pneumonia (PCP) (RH = 2.84, 95% CI 1.28–6.31) among four major AIDS–defining conditions. Considering the newly defined role of CCRL2 in lung dendritic cell trafficking, this atypical chemokine receptor may affect PCP through immune regulation and inducing inflammation. PMID:22046140

  16. Peripheral-specific y2 receptor knockdown protects mice from high-fat diet-induced obesity.

    PubMed

    Shi, Yan-Chuan; Lin, Shu; Castillo, Lesley; Aljanova, Aygul; Enriquez, Ronaldo F; Nguyen, Amy D; Baldock, Paul A; Zhang, Lei; Bijker, Martijn S; Macia, Laurence; Yulyaningsih, Ernie; Zhang, Hui; Lau, Jackie; Sainsbury, Amanda; Herzog, Herbert

    2011-11-01

    Y2 receptors, particularly those in the brain, have been implicated in neuropeptide Y (NPY)-mediated effects on energy homeostasis and bone mass. Recent evidence also indicates a role for Y2 receptors in peripheral tissues in this process by promoting adipose tissue accretion; however their effects on energy balance remain unclear. Here, we show that adult-onset conditional knockdown of Y2 receptors predominantly in peripheral tissues results in protection against diet-induced obesity accompanied by significantly reduced weight gain, marked reduction in adiposity and improvements in glucose tolerance without any adverse effect on lean mass or bone. These changes occur in association with significant increases in energy expenditure, respiratory exchange ratio, and physical activity and despite concurrent hyperphagia. On a chow diet, knockdown of peripheral Y2 receptors results in increased respiratory exchange ratio and physical activity with no effect on lean or bone mass, but decreases energy expenditure without effecting body weight or food intake. These results suggest that peripheral Y2 receptor signaling is critical in the regulation of oxidative fuel selection and physical activity and protects against the diet-induced obesity. The lack of effects on bone mass seen in this model further indicates that bone mass is primarily controlled by non-peripheral Y2 receptors. This study provides evidence that novel drugs that target peripheral rather than central Y2 receptors could provide benefits for the treatment of obesity and glucose intolerance without adverse effects on lean and bone mass, with the additional benefit of avoiding side effects often associated with pharmaceuticals that act on the central nervous system.

  17. Cysteinyl Leukotriene 1 Receptor Expression Associated With Bronchial Inflammation in Severe Exacerbations of COPD

    PubMed Central

    Zhu, Jie; Bandi, Venkata; Qiu, Shengyang; Figueroa, David J.; Evans, Jilly F.; Barnes, Neil; Guntupalli, Kay K.

    2012-01-01

    Background: Cysteinyl leukotriene 1 (CysLT1) receptor expression is known to be increased in the airway mucosa of patients with asthma, especially during exacerbations; however, nothing is known of its expression in COPD. Methods: We applied immunohistochemistry and in situ hybridization to endobronchial biopsies to determine inflammatory cell CysLT1 receptor protein and mRNA expression in the following: (1) 15 nonsmoker control subjects (NSC), (2) 16 smokers with moderate to severe COPD in its stable phase (S-COPD), and (3) 15 smokers with COPD hospitalized for a severe exacerbation (SE-COPD). Results: The total number of bronchial mucosal inflammatory cells (CD45+) and those expressing CysLT1 receptor protein were significantly greater in SE-COPD (CysLT1 receptor protein: median [range] = 139 [31-634]) as compared with S-COPD (32 [6-114]) or NSC (16 [4-66]) (P < .001 for both). CysLT1 receptor gene expression showed similar differences. A greater proportion of CD451 cells expressed CysLT1 receptor protein in SE-COPD (median [range] = 22% [8-81]) compared with S-COPD (10% [4-32]) (P < .03) or NSC (7% [1-19]) (P < .002). In SE-COPD, the relative frequencies of CysLT1 receptor-expressing cells were as follows: tryptase1 mast cells > CD681 monocytes/macrophage > neutrophils > CD201 B lymphocytes = EG21 eosinophils. Moreover, there were positive correlations between the numbers of cells expressing CysLT1 receptor protein and the numbers of CD451 cells (r = 0.78; P < .003) and tryptase1 mast cells (r = 0.62; P < .02). Conclusions: Bronchial mucosal CysLT1 receptor-positive inflammatory cells are present in the bronchial mucosa in COPD in greatest number in those experiencing a severe exacerbation. PMID:22871757

  18. A novel activity for substance P: stimulation of peroxisome proliferator-activated receptor-γ protein expression in human monocytes and macrophages

    PubMed Central

    Amoruso, A; Bardelli, C; Gunella, G; Ribichini, F; Brunelleschi, S

    2008-01-01

    Background and purpose: Substance P (SP) and peroxisome proliferator-activated receptor-γ (PPAR-γ) play important roles in different inflammatory conditions and are both expressed in human monocytes and macrophages. However, it is not known whether or not they interact. This study was undertaken to evaluate the effects of SP on PPAR-γ protein expression in monocytes and macrophages (MDMs: monocyte-derived macrophages) from healthy smokers and non-smokers. Experimental approach: PPAR-γ protein was detected by western blot and quantified by calculating the ratio between PPAR-γ and β-actin protein expression. Constitutive tachykinin NK1 receptor expression in monocytes and MDMs from healthy smokers and non-smokers was evaluated by western blot. Cytokine release was evaluated by ELISA. Key results: In the concentration range 10−10–10−6 M, SP stimulated PPAR-γ protein expression in monocytes and MDMs, being more effective in cells from healthy smokers. Moreover, in these cells there was a constitutively increased expression of NK1 receptors. SP-induced expression of the PPAR-γ protein was receptor-mediated, as it was reproduced by the NK1 selective agonist [Sar9Met(O2)11]SP and reversed by the competitive NK1 antagonist GR71251. SP-induced maximal effects were similar to those evoked by 15-deoxy-Δ12,14-prostaglandin J2; an endogenous PPAR-γ agonist, and were significantly reduced by a PPAR-γ antagonist. NK1 and PPAR-γ agonists exerted opposite effects on TNF-α release from monocytes and MDMs. Conclusions and implications: Enhancement of PPAR-γ protein expression represents a novel activity for SP, which could contribute to a range of chronic inflammatory disorders. PMID:18278062

  19. Aspirin inhibits surface glycoprotein IIb/IIIa, P-selectin, CD63, and CD107a receptor expression on human platelets.

    PubMed

    McKenzie, Marcus E; Malinin, Alex I; Bell, Christopher R; Dzhanashvili, Alex; Horowitz, Eric D; Oshrine, Benjamin R; Atar, Dan; Serebruany, Victor L

    2003-04-01

    Platelet inhibition after aspirin therapy reduces the risk for the development of acute coronary syndromes. However, the mechanism by which aspirin affect platelets other than by prostaglandin blockade is unclear. We sought to determine the in vitro effects of aspirin on the surface expression of nine platelet receptors using whole blood flow cytometry. Blood from 24 healthy volunteers was incubated for 30 min with 1.8 and 7.2 mg/l phosphate-buffered saline-diluted acetylsalicylic acid in the presence or absence of apyrase. Platelet serotonin release, and the surface expression of platelet receptors with or without apyrase were determined using the following monoclonal antibodies: anit-CD41 [glycoprotein (GP)IIb/IIIa], CD42b (GPIb), CD62p (P-selectin), CD51/CD61 (vitronectin receptor), CD31 [platelet/endothelial cellular adhesion molecule-1 (PECAM-1)], CD107a [lysosomal associated membrane protein (LAMP)-1], CD107b (LAMP-2), CD63 (LIMP or LAMP-3), and CD151 (PETA-3). Samples were then immediately fixed with 2% paraformaldehyde, and run on the flow cytometer within 48 h. Aspirin does not affect serotonin release from human platelets. Dose-dependent inhibition of GPIIb/IIIa, P-selectin, CD63, and CD107a receptor expression was observed in the aspirin-treated whole-blood samples. Apyrase potentiates the effects of aspirin, and independently inhibits PECAM-1. In addition to the known effect of irreversibly inhibiting platelet cyclooxygenase-1, thereby blocking thromboxane A(2) synthesis, it appears that aspirin exhibits direct effects on selective major platelet receptors.

  20. Expression analysis and clinical significance of CXCL16/CXCR6 in patients with bladder cancer

    PubMed Central

    LEE, JUN TAIK; LEE, SANG DON; LEE, JEONG ZOO; CHUNG, MOON KEE; HA, HONG KOO

    2013-01-01

    The interactions between chemokines and their receptors are closely involved in the progression and metastasis of cancer. We hypothesized that the CXCL16-CXCR6 ligand-receptor system plays an important role in bladder cancer progression. To evaluate this hypothesis, the expression levels of CXCL16 and CXCR6 were evaluated in 160 patients, including 155 patients with bladder cancer and 5 patients with benign bladder disease. The tissues were analyzed by immunohistochemical (IHC) staining and real-time reverse-transcription polymerase chain reaction. We compared the expression of CXCL16/CXCR6 in bladder cancer and benign bladder disease. The expression of CXCR6 was increased in patients with bladder cancer compared with benign bladder disease in RT-PCR. The mRNA expression levels of CXCL16 and CXCR6 were 1.75×10−2 and 1.99×10−2 in benign bladder tissue and 1.39×10−2 and 2.32×10−2 in bladder cancer tissue, respectively. In IHC staining, the expression of CXCL16/CXCR6 in bladder cancer tissues was higher compared with benign bladder tissues. On multivariate analysis, the IHC staining of CXCL16 was correlated with the 2004 WHO grade and lymphovascular invasion (P=0.021 and P=0.011, respectively). CXCR6 was correlated with the 1973 WHO grade (P=0.001), 2004 WHO grade (P<0.001), pathological T stage (P=0.002) and perineural invasion (P=0.031). However, Cox regression analysis revealed that the expression of CXCL16 and CXCR6 was not correlated with cancer recurrence and cancer-specific survival (P=0.142 and P=0.324, respectively). The expression of CXCL16/CXCR6 was higher in bladder cancer compared to benign disease and correlated with aggressive cancer behavior. Based on our results, the CXCL16/CXCR6 axis appears to be important in the progression of bladder cancer. Thus, CXCL16 and CXCR6 serve as potential therapeutic targets. PMID:23255926

  1. Expression analysis and clinical significance of CXCL16/CXCR6 in patients with bladder cancer.

    PubMed

    Lee, Jun Taik; Lee, Sang Don; Lee, Jeong Zoo; Chung, Moon Kee; Ha, Hong Koo

    2013-01-01

    The interactions between chemokines and their receptors are closely involved in the progression and metastasis of cancer. We hypothesized that the CXCL16-CXCR6 ligand-receptor system plays an important role in bladder cancer progression. To evaluate this hypothesis, the expression levels of CXCL16 and CXCR6 were evaluated in 160 patients, including 155 patients with bladder cancer and 5 patients with benign bladder disease. The tissues were analyzed by immunohistochemical (IHC) staining and real-time reverse-transcription polymerase chain reaction. We compared the expression of CXCL16/CXCR6 in bladder cancer and benign bladder disease. The expression of CXCR6 was increased in patients with bladder cancer compared with benign bladder disease in RT-PCR. The mRNA expression levels of CXCL16 and CXCR6 were 1.75×10(-2) and 1.99×10(-2) in benign bladder tissue and 1.39×10(-2) and 2.32×10(-2) in bladder cancer tissue, respectively. In IHC staining, the expression of CXCL16/CXCR6 in bladder cancer tissues was higher compared with benign bladder tissues. On multivariate analysis, the IHC staining of CXCL16 was correlated with the 2004 WHO grade and lymphovascular invasion (P=0.021 and P=0.011, respectively). CXCR6 was correlated with the 1973 WHO grade (P=0.001), 2004 WHO grade (P<0.001), pathological T stage (P=0.002) and perineural invasion (P=0.031). However, Cox regression analysis revealed that the expression of CXCL16 and CXCR6 was not correlated with cancer recurrence and cancer-specific survival (P=0.142 and P=0.324, respectively). The expression of CXCL16/CXCR6 was higher in bladder cancer compared to benign disease and correlated with aggressive cancer behavior. Based on our results, the CXCL16/CXCR6 axis appears to be important in the progression of bladder cancer. Thus, CXCL16 and CXCR6 serve as potential therapeutic targets.

  2. Expression of the P2X2 receptor in different classes of ileum myenteric neurons in the female obese ob/ob mouse

    PubMed Central

    Mizuno, Márcia Sanae; Crisma, Amanda Rabello; Borelli, Primavera; Castelucci, Patricia

    2012-01-01

    AIM: To examine whether the ob/ob mouse model of obesity is accompanied by enteric nervous system abnormalities such as altered motility. METHODS: The study examined the distribution of the P2X2 receptor (P2X2R) in myenteric neurons of female ob/ob mice. Specifically, we used immunohistochemistry to analyze the co-expression of the P2X2R with neuronal nitric oxide synthase (nNOS), choline acetyltransferase (ChAT), and calretinin (CalR) in neurons of the small intestine myenteric plexus in ob/ob and control female mice. In these sections, we used scanning confocal microscopy to analyze the co-localization of these markers as well as the neuronal density (cm2) and area profile (μm²) of P2X2R-positive neurons. In addition, enteric neurons were labeled using the nicotinamide adenine dinucleotide (NADH) diaphorase method and analyzed with light microscopy as an alternate means by which to analyze neuronal density and area. RESULTS: In the present study, we observed a 29.6% increase in the body weight of the ob/ob animals (OG) compared to the control group (CG). In addition, the average small intestine area was increased by approximately 29.6% in the OG compared to the CG. Immunoreactivity (IR) for the P2X2R, nNOS, ChAT and CalR was detectable in the myenteric plexus, as well as in the smooth muscle, in both groups. This IR appeared to be mainly cytoplasmic and was also associated with the cell membrane of the myenteric plexus neurons, where it outlined the neuronal cell bodies and their processes. P2X2R-IR was observed to co-localize 100% with that for nNOS, ChAT and CalR in neurons of both groups. In the ob/ob group, however, we observed that the neuronal density (neuron/cm2) of P2X2R-IR cells was increased by 62% compared to CG, while that of NOS-IR and ChAT-IR neurons was reduced by 49% and 57%, respectively, compared to control mice. The neuronal density of CalR-IR neurons was not different between the groups. Morphometric studies further demonstrated that the

  3. Sphingosine 1-phosphate (S1P)/S1P receptor 1 signaling regulates receptor activator of NF-{kappa}B ligand (RANKL) expression in rheumatoid arthritis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takeshita, Harunori; Kitano, Masayasu, E-mail: mkitano6@hyo-med.ac.jp; Iwasaki, Tsuyoshi

    Highlights: Black-Right-Pointing-Pointer MH7A cells and CD4{sup +} T cells expressed S1P1 and RANKL. Black-Right-Pointing-Pointer S1P increased RANKL expression in MH7A cells and CD4{sup +} T cells. Black-Right-Pointing-Pointer The effect of S1P in MH7A cells was inhibited by specific Gi/Go inhibitors. -- Abstract: Sphingosine 1-phosphate (S1P)/S1P receptor 1 (S1P1) signaling plays an important role in synovial cell proliferation and inflammatory gene expression by rheumatoid arthritis (RA) synoviocytes. The purpose of this study is to clarify the role of S1P/S1P1 signaling in the expression of receptor activator of NF-{kappa}B ligand (RANKL) in RA synoviocytes and CD4{sup +} T cells. We demonstrated MH7Amore » cells, a human RA synovial cell line, and CD4{sup +} T cells expressed S1P1 and RANKL. Surprisingly, S1P increased RANKL expression in MH7A cells and CD4{sup +} T cells in a dose-dependent manner. Moreover, S1P enhanced RANKL expression induced by stimulation with TNF-{alpha} in MH7A cells and CD4{sup +} T cells. These effects of S1P in MH7A cells were inhibited by pretreatment with PTX, a specific Gi/Go inhibitor. These findings suggest that S1P/S1P1 signaling may play an important role in RANKL expression by MH7A cells and CD4{sup +} T cells. S1P/S1P1 signaling of RA synoviocytes is closely connected with synovial hyperplasia, inflammation, and RANKL-induced osteoclastogenesis in RA. Thus, regulation of S1P/S1P1 signaling may become a novel therapeutic target for RA.« less

  4. Expression of Plant Receptor Kinases in Tobacco BY-2 Cells.

    PubMed

    Shinohara, Hidefumi; Matsubayashi, Yoshikatsu

    2017-01-01

    Although more than 600 single-transmembrane receptor kinase genes have been found in the Arabidopsis genome, only a few of them have known physiological functions, and even fewer plant receptor kinases have known specific ligands. Ligand-binding analysis must be operated using the functionally expressed receptor form. However, the relative abundance of native receptor kinase molecules in the plasma membrane is often quite low. Here, we present a method for stable and functional expression of plant receptor kinases in tobacco BY-2 cells that allows preparation of microsomal fractions containing the receptor. This procedure provides a sufficient amount of receptor proteins while maintaining its ligand-binding activities.

  5. The prostaglandin E2 receptor PTGER2 and prostaglandin F2α receptor PTGFR mediate oviductal glycoprotein 1 expression in bovine oviductal epithelial cells.

    PubMed

    Zhang, Nan; Mao, Wei; Zhang, Ying; Huang, Na; Liu, Bo; Gao, Long; Zhang, Shuangyi; Cao, Jinshan

    2018-04-13

    Oviductal glycoprotein 1 (OVGP1), an oviductin, is involved in the maintenance of sperm viability and motility and contributes to sperm capacitation in the oviduct. In this study, the regulatory effects exerted by prostaglandin E 2 (PGE 2 ) and F 2α (PGF 2α ) on OVGP1 expression via their corresponding receptors in bovine oviductal epithelial cells (BOECs) were investigated. BOECs were cultured in vitro, and their expression of receptors of PGE 2 (PTGER1, PTGER2, PTGER3, and PTGER4) and PGF 2α (PTGFR) was measured using RT-qPCR. Ca 2+ concentration was determined with a fluorescence-based method and cAMP was quantified by enzyme-linked immunosorbent assays to verify activation of PTGER2 and PTGFR by their corresponding agonists in these cells. OVGP1 mRNA and protein expression was measured using RT-qPCR and western blotting, respectively, following PTGER2 and PTGFR agonist-induced activation. PTGER1, PTGER2, PTGER4, and PTGFR were found to be present in BOECs; however, PTGER3 expression was not detected. OVGP1 expression was significantly promoted by 10 -6 M butaprost (a PTGER2 agonist) and decreased by 10 -6 M fluprostenol (a PTGFR agonist). In addition, 3 μM H-89 (a PKA inhibitor) and 3 μM U0126 (an ERK inhibitor) effectively inhibited PGE 2 -induced upregulation of OVGP1, and 5 μM chelerythrine chloride (a PKC inhibitor) and 3 μM U0126 negated OVGP1 downregulation by PGF 2α . In conclusion, this study demonstrates that OVGP1 expression in BOECs is enhanced by PGE 2 via PTGER2-cAMP-PKA signaling, and reduced by PGF 2α through the PTGFR-Ca 2+ -PKC pathway.

  6. [Upregulation of P2X3 receptors in dorsal root ganglion of TRPV1 knockout female mice].

    PubMed

    Fang, Xiao; Shi, Xiao-Han; Huang, Li-Bin; Rong, Wei-Fang; Ma, Bei

    2014-08-25

    The study was aimed to investigate the changes in mechanical pain threshold in the condition of chronic inflammatory pain after transient receptor potential vanilloid 1 (TRPV1) gene was knockout. Hind-paw intraplantar injection of complete freund's adjuvant (CFA, 20 μL) produced peripheral inflammation in wild-type and TRPV1 knockout female mice. The mechanical pain thresholds were measured during the 8 days after injection and pre-injection by using Von-Frey hair. Nine days after injection, mice were killed and the differences of expression of c-Fos and P2X3 receptor in the dorsal root ganglia (DRG) and spinal cord dorsal horn were examined by Western blotting between the two groups. Compared with that in wild-type mice, the mechanical pain threshold was increased significantly in TRPV1 knockout mice (P < 0.05); 3 days after CFA injection, the baseline mechanical pain threshold in the TRPV1 knockout mice group was significantly higher than that in the wild-type mice group (P < 0.05); The result of Western blotting showed that the expression of c-Fos protein both in DRG and spinal cord dorsal horn of TRPV1 knockout mice group was decreased significantly compared with that in wild-type mice group (P < 0.01, P < 0.05), while the expression of P2X3 receptor in DRG of TRPV1 knockout mice group was increased significantly compared with that in wild-type mice group (P < 0.05). Our findings indicate that TRPV1 may influence the peripheral mechanical pain threshold by mediating the expression of c-Fos protein both in DRG and spinal cord dorsal horn and changing the expression of P2X3 receptor in DRG.

  7. P2X receptor characterization and IL-1/IL-1Ra release from human endothelial cells.

    PubMed

    Wilson, H L; Varcoe, R W; Stokes, L; Holland, K L; Francis, S E; Dower, S K; Surprenant, A; Crossman, D C

    2007-05-01

    The pro-inflammatory cytokine, interleukin-1beta (IL-1beta), has been implicated in the pathogenesis of atherosclerosis, potentially via its release from vascular endothelium. Endothelial cells (EC) synthesize IL-1beta in response to inflammatory stimuli, but the demonstration and mechanism of release of IL-1 from ECs remains unclear. In activated monocytes, efficient release of bioactive IL-1beta occurred via activation of ATP-gated P2X(7) receptors (P2X(7)Rs). Activation of P2X(7)R in ECs from human umbilical vein (HUVECs) released IL-1 receptor antagonist (IL-1Ra). The purpose of this study was to provide a quantitative investigation of P2XR expression and function, in parallel with IL-1beta and IL-1Ra synthesis, processing and release, in HUVECs under pro-inflammatory conditions. Quantitative RT-PCR, immunoblotting, ELISA, flow cytometry, and whole-cell patch clamp recordings were used to determine protein expression and receptor function. IL-8-luciferase-reporter was used as an IL-1 sensitive bioassay. HUVECs expressed P2X(4)R and P2X(7)R subtypes and both were significantly up-regulated under inflammatory conditions. P2X(7)R currents were increased 3-fold by inflammatory stimuli, whereas no P2X(4)R-mediated currents were detected. Caspase-1, but not IL-1beta, was present intracellularly under basal conditions; inflammatory stimuli activated the synthesis of intracellular pro-IL-1beta and increased caspase-1 levels. Activation of P2X(7)Rs resulted in low-level release of bioactive IL-1beta and simultaneous release of IL-1Ra. The net biological effect of release was anti-inflammatory. Endothelial P2X(7)Rs induced secretion of both pro- and anti-inflammatory IL-1 receptor ligands, the balance of which may provide a means for altering the inflammatory state of the arterial vessel wall.

  8. Substance P acts via the neurokinin receptor 1 to elicit bronchoconstriction, oxidative stress, and upregulated ICAM-1 expression after oil smoke exposure.

    PubMed

    Li, Ping-Chia; Chen, Wen-Chung; Chang, Li-Ching; Lin, Shao-Chieh

    2008-05-01

    This study aimed to 1) assess whether substance P (SP) acts via neurokinin (NK)-1 and NK-2 receptors to stimulate neurogenic inflammation (indicated by formation of ICAM-1 expression and oxidative stress) following oil smoke exposure (OSE) in rats; and 2) determine if pretreatment with antioxidants ameliorates the deleterious effects of OSE. Rats were pretreated with NK-1 receptor antagonist CP-96345, NK-2 receptor antagonist SR-48968, vitamin C, or catechins. OSE was for 30-120 min. Rats were killed 0-8 h later. Total lung resistance (RL), airway smooth muscle activity (ASMA), lung ICAM-1 expression, neurogenic plasma extravasation (via India ink and Evans blue dye), bronchoalveolar lavage fluid SP concentrations, and reactive oxygen species formation [via lucigenin- and luminal-amplified chemiluminescence (CL)] were assessed. Lung histology was performed. SP concentrations increased significantly in nonpretreated rats following OSE in a dose-dependent manner. RL and total ASMA increased over time after OSE. Vitamin C and catechin pretreatments were associated with significantly reduced lucigenin CL 2 and 4 h after OSE. Pretreatment with catechins significantly reduced luminal CL counts 4 and 8 h after OSE. Evans blue levels were significantly reduced following 60 and 120 min of OSE in catechin- and CP-96345-pretreated rats. ICAM-1 protein expression was significantly decreased in all pretreatment groups after OSE. Thickening of the alveolar capillary membrane, focal hemorrhaging, interstitial pneumonitis, and peribronchiolar inflammation were apparent in OSE lungs. These findings suggest that SP acts via the NK-1 receptor to provoke neurogenic inflammation, oxidative stress, and ICAM-1 expression after OSE in rats.

  9. Pregnane X receptor-dependent induction of the CYP3A4 gene by o,p'-1,1,1,-trichloro-2,2-bis (p-chlorophenyl)ethane.

    PubMed

    Medina-Díaz, Irma M; Arteaga-Illán, Georgina; de León, Mario Bermudez; Cisneros, Bulmaro; Sierra-Santoyo, Adolfo; Vega, Libia; Gonzalez, Frank J; Elizondo, Guillermo

    2007-01-01

    CYP3A4, the predominant cytochrome P450 (P450) expressed in human liver and intestine, contributes to the metabolism of approximately half the drugs in clinical use today. CYP3A4 catalyzes the 6beta-hydroxylation of a number of steroid hormones and is involved in the bioactivation of environmental procarcinogens. The expression of CYP3A4 is affected by several stimuli, including environmental factors such as insecticides and pesticides. The o,p'-1,1,1,-trichloro-2,2-bis (p-chlorophenyl)ethane (DDT) isomer of DDT comprises approximately 20% of technical grade DDT, which is an organochloride pesticide. We have recently shown that o,p'-DDT exposure increases CYP3A4 mRNA levels in HepG2 cells. To determine the mechanism by which o,p'-DDT induces CYP3A4 expression, transactivation and electrophoretic mobility shift assays were carried out, revealing that o,p'-DDT activates the CYP3A4 gene promoter through the pregnane X receptor (PXR). CYP3A4 gene promoter activation resulted in both an increase in CYP3A4 mRNA levels and an increase in the total CYP3A4 activity in HepG2 cells. We also observed induction of CYP3A4 and mouse Cyp3a11 mRNA in the intestine of CYP3A4-transgenic mice after exposure to 1 mg/kg o,p'-DDT. At higher doses, a decrease of CYP3A4 inducibility was observed together with an increase in levels of interleukin 6 mRNA, a proinflammatory cytokine that strongly represses CYP3A4 transcription. The present study indicates that regulation of other genes under PXR control may be altered by o,p'-DDT exposure.

  10. Spontaneous firing and evoked responses of spinal nociceptive neurons are attenuated by blockade of P2X3 and P2X2/3 receptors in inflamed rats.

    PubMed

    Xu, Jun; Chu, Katharine L; Brederson, Jill-Desiree; Jarvis, Michael F; McGaraughty, Steve

    2012-08-01

    P2X3 and P2X2/3 receptors are selectively expressed on primary afferent nociceptors and have been implicated in modulating nociception in different models of pathological pain, including inflammatory pain. In an effort to delineate further the role of P2X3 receptors (homomeric and heteromeric) in the modulation of nociceptive transmission after a chronic inflammation injury, A-317491, a potent and selective P2X3-P2X2/3 antagonist, was administered to CFA-inflamed rats in order to examine its effects on responses of spinal dorsal horn neurons to mechanical and thermal stimulation. Systemic injection of A-317491 (30 μmol/kg, i.v.) reduced the responses of wide-dynamic-range (WDR) and nociceptive specific (NS) neurons to both high-intensity mechanical (pinch) and heat (49°C) stimulation. A-317491 also decreased low-intensity (10 g von Frey hair) mechanically evoked activity of WDR neurons but did not alter WDR neuronal responses to cold stimulation (5°C). Spontaneous firing of WDR neurons in CFA-inflamed rats was also significantly attenuated by A-317491 injection. By using immunohistochemistry, P2X3 receptors were demonstrated to be enhanced in lamina II of the spinal dorsal horn after inflammation. In summary, blockade of P2X3 and P2X2/3 receptors dampens mechanical- and heat-related signaling, as well as nonevoked activity of key classes of spinal nociceptive neurons in inflamed animals. These data suggest that P2X3 and/or P2X2/3 receptors have a broad contribution to somatosensory/nociceptive transmission in rats with a chronic inflammatory injury and are consistent with previous behavioral data demonstrating antiallodynic and antihyperalgesic effects of receptor antagonists. Copyright © 2012 Wiley Periodicals, Inc.

  11. Distribution of the P2X2 receptor and chemical coding in ileal enteric neurons of obese male mice (ob/ob)

    PubMed Central

    Mizuno, Márcia Sanae; Crisma, Amanda Rabello; Borelli, Primavera; Schäfer, Bárbara Tavares; Silveira, Mariana Póvoa; Castelucci, Patricia

    2014-01-01

    AIM: To investigate the colocalization, density and profile of neuronal areas of enteric neurons in the ileum of male obese mice. METHODS: The small intestinal samples of male mice in an obese group (OG) (C57BL/6J ob/ob) and a control group (CG) (+/+) were used. The tissues were analyzed using a double immunostaining technique for immunoreactivity (ir) of the P2X2 receptor, nitric oxide synthase (NOS), choline acetyl transferase (ChAT) and calretinin (Calr). Also, we investigated the density and profile of neuronal areas of the NOS-, ChAT- and Calr-ir neurons in the myenteric plexus. Myenteric neurons were labeled using an NADH-diaphorase histochemical staining method. RESULTS: The analysis demonstrated that the P2X2 receptor was expressed in the cytoplasm and in the nuclear and cytoplasmic membranes only in the CG. Neuronal density values (neuron/cm2) decreased 31% (CG: 6579 ± 837; OG: 4556 ± 407) and 16.5% (CG: 7796 ± 528; OG: 6513 ± 610) in the NOS-ir and calretinin-ir neurons in the OG, respectively (P < 0.05). Density of ChAT-ir (CG: 6200 ± 310; OG: 8125 ± 749) neurons significantly increased 31% in the OG (P < 0.05). Neuron size studies demonstrated that NOS, ChAT, and Calr-ir neurons did not differ significantly between the CG and OG groups. The examination of NADH-diaphorase-positive myenteric neurons revealed an overall similarity between the OG and CG. CONCLUSION: Obesity may exert its effects by promoting a decrease in P2X2 receptor expression and modifications in the density of the NOS-ir, ChAT-ir and CalR-ir myenteric neurons. PMID:25320527

  12. Decreased expression of G-protein coupled receptor kinase 2 in cold thyroid nodules.

    PubMed

    Voigt, C; Holzapfel, H-P; Paschke, R

    2005-02-01

    G-protein coupled receptor kinases (GRKs) have been shown to regulate the homologous desensitization of different G-protein coupled receptors. We have previously demonstrated that the expression of GRK 3 and 4 is increased in hyperfunctioning thyroid nodules (HTNs) and that GRKs 2, 3, 5 and 6 are able to desensitize the TSHR in vitro. Since cold thyroid nodules (CTNs) and HTNs show different molecular and functional properties, different expression patterns of GRKs in these nodules can be expected. The comparison of GRK expression between CTNs and HTNs could give additional insight into the regulation mechanisms of these nodules. We therefore examined the expression of GRKs in CTNs and analyzed the differences to HTNs. The expression of the different GRKs in CTNs was measured by Western blot followed by chemiluminescence imaging. We found a decreased expression of GRK 2 in CTNs compared to their surrounding tissues and an increased expression of GRK 3 and 4 in CTNs, which is similar to HTNs. The decreased GRK 2 expression most likely results from reduced cAMP stimulation in CTNs. However, the increased GRK 3 and 4 expression in CTNs remains unclear and requires further investigations.

  13. P2X(7) is a scavenger receptor for apoptotic cells in the absence of its ligand, extracellular ATP.

    PubMed

    Gu, Ben J; Saunders, Bernadette M; Petrou, Steven; Wiley, James S

    2011-09-01

    Phagocytosis of apoptotic cells is essential during development and tissue remodeling. Our previous study has shown that the P2X(7) receptor regulates phagocytosis of nonopsonized particles and bacteria. In this study, we demonstrate that P2X(7) also mediates phagocytosis of apoptotic lymphocytes and neuronal cells by human monocyte-derived macrophages under serum-free conditions. ATP inhibited this process to a similar extent as observed with cytochalasin D. P2X(7)-transfected HEK-293 cells acquired the ability to phagocytose apoptotic lymphocytes. Injection of apoptotic thymocytes into the peritoneal cavity of wild-type mice resulted in their phagocytosis by macrophages, but injection of ATP prior to thymocytes markedly decreased this uptake. In contrast, ATP failed to inhibit phagocytosis of apoptotic thymocytes in vivo by P2X(7)-deficient peritoneal macrophages. The surface expression of P2X(7) on phagocytes increased significantly during phagocytosis of either beads or apoptotic cells. A peptide screen library containing 24 biotin-conjugated peptides mimicking the extracellular domain of P2X(7) was used to evaluate the binding profile to beads, bacteria, and apoptotic cells. One peptide showed binding to all particles and cell membrane lipids. Three other cysteine-containing peptides uniquely bound the surface of apoptotic cells but not viable cells, whereas substitution of alanine for cysteine abolished peptide binding. Several thiol-reactive compounds including N-acetyl-L-cysteine abolished phagocytosis of apoptotic SH-SY5Y cells by macrophages. These data suggest that the P2X(7) receptor in its unactivated state acts like a scavenger receptor, and its extracellular disulphide bonds play an important role in direct recognition and engulfment of apoptotic cells.

  14. Association between platelet P2Y12 haplotype and risk of cardiovascular events in chronic coronary disease.

    PubMed

    Schettert, Isolmar T; Pereira, Alexandre C; Lopes, Neuza H; Hueb, Whady A; Krieger, Jose E

    2006-01-01

    A positive association was recently described between P2Y12 platelet receptor H1 and H2 haplotypes and peripheral artery disease. We tested the described P2Y12 receptor haplotypes in a group of patients with coronary artery disease. The P2Y12 platelet receptor H1 and H2 haplotypes was tested in a group of 540 patients enrolled in the Medical, Angioplasty, or Surgery Study II (MASS II), a randomized trial comparing treatments for patients with coronary artery disease (CAD) and preserved left ventricular function. After a 3-year follow-up period, the incidence of the composite end point of cardiac death, myocardial infarction, and refractory angina requiring revascularization was determined in the H1/H1, H1/H2 and H2/H2 haplotype groups. We used Student's t-test and the chi-square test to analyze the differences among groups and Kaplan-Meier method to calculate survival curves. Risk was assessed with the use of a Cox proportional-hazards model. The frequency of haplotypes among studied patients were 410 (75.9%) H1/H1, 119 (22.0%) H1/H2 and 11 (2.1%) H2/H2. The baseline clinical characteristics, mean clinical follow-up time and received treatment of each genotype group were similar. We did not disclose any association between haplotype groups regarding the incidence of any of the studied cardiovascular end-points. This is the first report studying the association of P2Y12 platelet receptor H1 and H2 haplotype and cardiovascular events. Our findings do not provide evidence for a strong association between H1/H1 and H1/H2 haplotypes and a increased risk of cardiovascular events in a population with CAD. Future works should address the role of the H2/H2 haplotype as a genetic marker for cardiovascular events.

  15. Effect of artemisinin on neuropathic pain mediated by P2X4 receptor in dorsal root ganglia.

    PubMed

    Ying, Mofeng; Liu, Hui; Zhang, Tengling; Jiang, Chenxu; Gong, Yingxin; Wu, Bing; Zou, Lifang; Yi, Zhihua; Rao, Shenqiang; Li, Guilin; Zhang, Chunping; Jia, Tianyu; Zhao, Shanhong; Yuan, Huilong; Shi, Liran; Li, Lin; Liang, Shangdong; Liu, Shuangmei

    2017-09-01

    Neuropathic pain is a type of chronic pain caused by nervous system damage and dysfunction. The pathogenesis of chronic pain is complicated, and there are no effective therapies for neuropathic pain. Studies show that the P2X 4 receptor expressed in the satellite glial cells (SGCs) of dorsal root ganglia (DRG) is related to neuropathic pain. Artemisinin is a monomeric component extracted from traditional Chinese medicine and has a variety of important pharmacological effects and potential applications. This study observed the effect of artemisinin on neuropathic pain and delineated its possible mechanism. The chronic constriction injury (CCI) rat model was used in this study. The results demonstrated that artemisinin relieved pain behaviors in the CCI rats, inhibited the expression of P2X 4 receptor in the DRG, and decreased the ATP-activated currents in HEK293 cells transfected with P2X 4 plasmid. Dual-labeling immunofluorescence showed that the coexpression of P2X 4 receptor and glial fibrillary acidic protein (GFAP) in the DRG of CCI rats was increased compared to control rats. After CCI rats were treated with artemisinin, the coexpression of P2X 4 receptor and GFAP in the DRG was significantly decreased compared to the CCI group. This finding suggested that artemisinin could inhibit the nociceptive transmission mediated by P2X 4 receptor in the DRG SGCs and thus relieve pain behaviors in the CCI rats. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Tamoxifen impairs prepubertal mammary development and alters expression of estrogen receptor α (ESR1) and progesterone receptors (PGR).

    PubMed

    Tucker, H L M; Parsons, C L M; Ellis, S; Rhoads, M L; Akers, R M

    2016-01-01

    Research has shown that prepubertal heifers experience allometric mammary growth that is influenced by the ovaries. Our purpose was to determine the role of estrogen in prepubertal mammary gland development. Sixteen Holstein calves were randomly assigned to 1 of 2 treatment groups: tamoxifen-injected (TAM) or control (CON). Calves were administered the antiestrogen tamoxifen (0.3 mg kg(1) d(1)) or placebo from 28 to 120 d of age. At 120 d, calves were euthanized and udders removed. Weight and DNA content of trimmed parenchymal tissue were halved (P ≤ 0.0001) in TAM compared with CON calves. Parenchymal samples from 3 zones of the left rear mammary gland (lower, middle, and outer regions) were processed for immunohistochemical staining for estrogen receptor α (ESR1) and progesterone receptor (PGR), Ki67-positive cells, and 5-bromo-2'-deoxyuridine label retaining cells (LRCs). Overall, neither the percentage nor location within the epithelial tissue layer of either ESR1- or PGR-positive cells was impacted by TAM treatment. However, image analysis indicated a 6.2-fold lower (P = 0.0001) level of ESR1 protein expression in TAM calves. Similarly, messenger RNA expression of ESR1 was also reduced (P = 0.0001) in TAM heifers. In contrast, expression of PGR protein was greater by 43% (P = 0.03) in TAM calves, but messenger RNA expression did not differ between treatments. Overall, TAM calves had a higher (P ≤ 0.03) percentage and density (cells per tissue area) of Ki67-positive cells. Irrespective of treatment, there were also more Ki67-labeled cells in the outer zones of the mammary gland (P ≤ 0.001). We were able to effectively use multispectral imaging to identify positive cells and quantify the expression of ESR1 and PGR protein. We also identified and counted the proportion of label retaining cells (LCR) (putative epithelial stem cells). We noted an overall 2.9-fold greater number of LRCs in TAM heifers and more LRCs in the outer sampling zones. This suggests

  17. Pimecrolimus enhances TLR2/6-induced expression of antimicrobial peptides in keratinocytes.

    PubMed

    Büchau, Amanda S; Schauber, Jürgen; Hultsch, Thomas; Stuetz, Anton; Gallo, Richard L

    2008-11-01

    Calcineurin inhibitors are potent inhibitors of T-cell-receptor mediated activation of the adaptive immune system. The effects of this class of drug on the innate immune response system are not known. Keratinocytes are essential to innate immunity in skin and rely on toll-like receptors (TLRs) and antimicrobial peptides to appropriately recognize and respond to injury or microbes. In this study we examined the response of cultured human keratinocytes to pimecrolimus. We observed that pimecrolimus enhances distinct expression of cathelicidin, CD14, and human beta-defensin-2 and beta-defensin-3 in response to TLR2/6 ligands. Some of these responses were further enhanced by 1,25 vitamin D3. Pimecrolimus also increased the functional capacity of keratinocytes to inhibit growth of Staphylococcus aureus and decreased TLR2/6-induced expression of IL-10 and IL-1beta. Furthermore, pimecrolimus inhibited nuclear translocation of NFAT and NF-kappaB in keratinocytes. These observations uncover a previously unreported function for pimecrolimus in cutaneous innate host defense.

  18. Dietary Omega-3 Polyunsaturated Fatty Acids Prevent Vascular Dysfunction and Attenuate Cytochrome P4501A1 Expression by 2,3,7,8-Tetrachlorodibenzo-P-Dioxin.

    PubMed

    Wiest, Elani F; Walsh-Wilcox, Mary T; Rothe, Michael; Schunck, Wolf-Hagen; Walker, Mary K

    2016-11-01

    Omega-3 polyunsaturated fatty acids (n-3 PUFAs) found in fish protect against cardiovascular morbidity and mortality; however, many individuals avoid fish consumption due to concerns about pollutants. We tested the hypothesis that n-3 PUFAs would prevent vascular dysfunction induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). C57Bl/6 male mice were fed a chow or n-3 PUFA diet for 10 weeks and were exposed to vehicle or 300 ng/kg/d TCDD during the final 2 weeks on each diet. Aortic vasoconstriction mediated by arachidonic acid (AA) ± SKF525 (P450 inhibitor) or SQ29548 (thromboxane/prostanoid [TP] receptor antagonist) was assessed. RBC fatty acids and expression of n-3 and n-6 PUFA metabolites were analyzed. Cytochrome P4501A1 (CYP1A1), CYP1B1, and aryl hydrocarbon receptor (AHR) expression was measured. TCDD significantly increased AA-mediated vasoconstriction on a chow diet by increasing the contribution of P450s and TP receptor to the constriction response. In contrast, the n-3 PUFA diet prevented the TCDD-induced increase in AA vasoconstriction and normalized the contribution of P450s and TP receptor. Although TCDD increased the levels of AA vasoconstrictors on the chow diet, this increase was prevent by the n-3 PUFA diet. Additionally, the n-3 PUFA diet significantly increased the levels of n-3 PUFA-derived vasodilators and TCDD increased these levels further. Interestingly, the n-3 PUFA diet significantly attenuated CYP1A1 induction by TCDD without a significant effect on AHR expression. These data suggest that n-3 PUFAs can prevent TCDD-induced vascular dysfunction by decreasing vasoconstrictors, increasing vasodilators, and attenuating CYP1A1 induction, which has been shown previously to contribute to TCDD-induced vascular dysfunction. © The Author 2016. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. Correlation between hormone receptor status and age, and its prognostic implications in breast cancer patients in Bahrain

    PubMed Central

    AlZaman, Aysha S.; Mughal, Saad A.; AlZaman, Yahya S.; AlZaman, Entisar S.

    2016-01-01

    Objectives: To assess the correlation between hormone receptor status (HRS) and age, and its significance as a predictor of outcome in patients with breast cancer (BC). Methods: This retrospective review was conducted on 109 patients diagnosed with BC at Salmaniya Medical Complex, Manama, Bahrain from 2010-2013. Patients were divided into 2 age groups; under and over 40 years, and were analyzed for tumor histology, lymph node status, stage, and HRS. Results: Younger patients with BC were more likely to be of higher stage, grade, and of larger size. Older women were more likely to be estrogen receptor (ER) positive (72.6% versus 55.3%), and progesterone receptor (PR) positive (71% versus 53.2%) (p=0.03). The human epidermal growth factor receptor (HER)-2 over-expression was seen more in younger women (51% versus 40%) (p=0.2). Younger patients had higher lymph node metastases (88.6% versus 56.1%) (p=0.0004), and higher distant metastases (26.7% versus 6.8%) (p=0.005). The HER-2 over-expression strongly correlated with lymph node status. A total of 63.4% of lymph node positive patients had HER-2 over-expression compared with only 13.3% of lymph node negative patients (p<0.00001). Conclusion: Breast cancer is more aggressive and advanced in younger women, a fact that can be significantly attributed to under expression of ER and PR, and over expression of HER-2, which also correlates well with lymph node status, as a measure of aggressiveness. Further studies should evaluate the genetic profile of BC in such population to improve their outcomes. PMID:26739972

  20. Melanocortin-3 receptors expressed in Nkx2.1(+ve) neurons are sufficient for controlling appetitive responses to hypocaloric conditioning

    PubMed Central

    Girardet, Clémence; Mavrikaki, Maria M.; Stevens, Joseph R.; Miller, Courtney A.; Marks, Daniel L.; Butler, Andrew A.

    2017-01-01

    Melanocortin-3 receptors (MC3R) have a contextual role in appetite control that is amplified with hypocaloric conditioning. C57BL/6J (B6) mice subjected to hypocaloric feeding schedules (HFS) exhibit compulsive behavioral responses involving food anticipatory activity (FAA) and caloric loading following food access. These homeostatic responses to calorie-poor environs are attenuated in B6 mice in which Mc3r transcription is suppressed by a lox-stop-lox sequence in the 5’UTR (Mc3rTB/TB). Here, we report that optimization of caloric loading in B6 mice subject to HFS, characterized by increased meal size and duration, is not observed in Mc3rTB/TB mice. Analysis of hypothalamic and neuroendocrine responses to HFS throughout the light-dark cycle suggests uncoupling of hypothalamic responses involving appetite-stimulating fasting-responsive hypothalamic neurons expressing agouti-related peptide (AgRP) and neuropeptide Y (Npy). Rescuing Mc3rs expression in Nkx2.1(+ve) neurons is sufficient to restore normal hypothalamic responses to negative energy balance. In addition, Mc3rs expressed in Nkx2.1(+ve) neurons are also sufficient to restore FAA and caloric loading of B6 mice subjected to HFS. In summary, MC3Rs expressed in Nkx2.1(+ve) neurons are sufficient to coordinate hypothalamic response and expression of compulsive behavioral responses involving meal anticipation and consumption of large meals during situations of prolonged negative energy balance. PMID:28294152

  1. Interleukin-1 Receptor Type 2 Acts with c-Fos to Enhance the Expression of Interleukin-6 and Vascular Endothelial Growth Factor A in Colon Cancer Cells and Induce Angiogenesis*

    PubMed Central

    Mar, Ai-Chung; Chu, Chun-Ho; Lee, Hui-Ju; Chien, Chia-Wen; Cheng, Jing-Jy; Yang, Shung-Haur; Jiang, Jeng-Kai; Lee, Te-Chang

    2015-01-01

    Interleukin-1 receptor type 2 (IL1R2) acts as a decoy receptor of exogenous IL-1; however, its intracellular activity is poorly understood. We previously demonstrated that IL1R2 intracellularly activates the expression of several proinflammatory cytokines and affects cell migration. In this study, we found that intracellular IL1R2 expression was increased in human colorectal cancer cells (CRCs) compared with normal colon cells. We also observed that the mRNA levels of IL1R2 were highly correlated with IL-6 in tumor tissues of CRC patients. By modulating its expression in CRC cells, we verified that enhanced IL1R2 expression transcriptionally activated the expression of IL-6 and VEGF-A. Conditioned medium harvested from IL1R2-overexpressing CRC cells contained higher levels of IL-6 and VEGF-A than that from vector control cells and significantly enhanced the proliferation, migration, and tube formation of cultured endothelial cells. We further demonstrated a positive association of intracellular IL1R2 levels with tumor growth and microvessel density in xenograft mouse models. These results revealed that IL1R2 activates the expression of angiogenic factors. Mechanistically, we revealed that IL1R2 complexes with c-Fos and binds to the AP-1 site at the IL-6 and VEGF-A promoters. Together, these results reveal a novel function of intracellular IL1R2 that acts with c-Fos to enhance the transcription of IL-6 and VEGF-A, which promotes angiogenesis in CRC. PMID:26209639

  2. Reduced GABAA receptor α6 expression in the trigeminal ganglion alters inflammatory TMJ hypersensitivity

    PubMed Central

    Puri, Jyoti; Vinothini, Priya; Reuben, Jayne; Bellinger, Larry L.; Ailing, Li; Peng, Yuan B.; Kramer, Phillip R.

    2012-01-01

    Trigeminal ganglia neurons express the GABAA receptor subunit alpha 6 (Gabrα6) but the role of this particular subunit in orofacial hypersensitivity is unknown. In this report the function of Gabrα6 was tested by reducing its expression in the trigeminal ganglia and measuring the effect of this reduction on inflammatory temporomandibular joint (TMJ) hypersensitivity. Gabrα6 expression was reduced by infusing the trigeminal ganglia of male Sprague Dawley rats with small interfering RNA (siRNA) having homology to either the Gabrα6 gene (Gabrα6 siRNA) or no known gene (control siRNA). Sixty hours after siRNA infusion the rats received a bilateral TMJ injection of complete Freund’s adjuvant to induce an inflammatory response. Hypersensitivity was then quantitated by measuring meal duration, which lengthens when hypersensitivity increases. Neuronal activity in the trigeminal ganglia was also measured by quantitating the amount of phosphorylated ERK. Rats in a different group that did not have TMJ inflammation had an electrode placed in the spinal cord at the level of C1 sixty hours after siRNA infusion to record extracellular electrical activity of neurons that responded to TMJ stimulation. Our results show that Gabrα6 was expressed in both neurons and satellite glia of the trigeminal ganglia and that Gabrα6 positive neurons within the trigeminal ganglia have afferents in the TMJ. Gabrα6 siRNA infusion reduced Gabrα6 gene expression by 30% and significantly lengthened meal duration in rats with TMJ inflammation. Gabrα6 siRNA infusion also significantly increased p-ERK expression in the trigeminal ganglia of rats with TMJ inflammation and increased electrical activity in the spinal cord of rats without TMJ inflammation. These results suggest that maintaining Gabrα6 expression was necessary to inhibit primary sensory afferents in the trigeminal pathway and reduce inflammatory orofacial nociception. PMID:22521829

  3. Human Epidermal Growth Factor Receptor 2 Expression in Unresectable Gastric Cancers: Relationship with CT Characteristics.

    PubMed

    Lee, Jeong Sub; Kim, Se Hyung; Im, Seock-Ah; Kim, Min A; Han, Joon Koo

    2017-01-01

    To retrospectively analyze the qualitative CT features that correlate with human epidermal growth factor receptor 2 (HER2)-expression in pathologically-proven gastric cancers. A total of 181 patients with pathologically-proven unresectable gastric cancers with HER2-expression (HER2-positive [n = 32] and negative [n = 149]) were included. CT features of primary gastric and metastatic tumors were reviewed. The prevalence of each CT finding was compared in both groups. Thereafter, binary logistic regression determined the most significant differential CT features. Clinical outcomes were compared using Kaplan-Meier method. HER2-postive cancers showed lower clinical T stage (21.9% vs. 8.1%; p = 0.015), hyperattenuation on portal phase (62.5% vs. 30.9%; p = 0.003), and was more frequently metastasized to the liver (62.5% vs. 32.2%; p = 0.001), than HER2-negative cancers. On binary regression analysis, hyperattenuation of the tumor (odds ratio [OR], 4.68; p < 0.001) and hepatic metastasis (OR, 4.43; p = 0.001) were significant independent factors that predict HER2-positive cancers. Median survival of HER2-positive cancers (13.7 months) was significantly longer than HER2-negative cancers (9.6 months) ( p = 0.035). HER2-positive gastric cancers show less-advanced T stage, hyperattenuation on the portal phase, and frequently metastasize to the liver, as compared to HER2-negative cancers.

  4. (+/-)-3-[4-(2-dimethylamino-1-methylethoxy)-phenyl]-1H-pyrazolo[3,4- B]pyridine-1-acetic acid (Y-25510) stimulates production of IL-1 beta and IL-6 at the level of messenger RNA expression in cultured human monocytes.

    PubMed

    Kusuhara, H; Komatsu, H; Hisadome, M; Ikeda, Y

    1996-12-01

    (+/-)-3-[4-(2-Dimethylamino-1-methylethoxy)phenyl]-1H-pyrazolo[3, 4-b]pyridine-1-acetic acid (Y-25510) stimulated the mRNA expression for interleukin-1 beta (IL-1 beta), and enhanced the expression induced by lipopolysaccharide (LPS) in cultured human peripheral blood mononuclear cells (PBMC) and THP-1 cells, a cell-line derived from human monocytic leukemia. Y-25510 also stimulated the mRNA expression for IL-6 in both types of the cells, however, the stimulation required the presence of LPS. In THP-1 cells, the stimulation of IL-1 beta mRNA expression by Y-25510 was suppressed by cycloheximide, an inhibitor of protein synthesis. This phenomenon indicates that the stimulation requires de norv protein synthesis. In contrast, the stimulation of mRNA expression for IL-6 by Y-25510 was not suppressed by cycloheximide but suppressed by N alpha-p-tosyl-L-phenylalanine chloromethyl ketone (TPCK), an inhibitor of nuclear transcription factor-kappa B (NF-kappa B) activation, in the presence of LPS, suggesting that the stimulation requires NF-kappa activation. These results demonstrate that Y-25510 stimulates the mRNA expression for IL-1 beta and IL-6 by different mechanisms. Dexamethasone suppressed the LPS-induced expression of mRNA for IL-1 beta and IL-6 in THP-1 cells, whereas the drug never suppressed the mRNA expression for these cytokines in the presence of Y-25510. The result indicates that Y-25510 stimulates the mRNA expression for IL-1 beta and IL-6 by different mechanisms from those of LPS.

  5. Piracy of PGE2/EP receptor mediated signaling by Kaposi’s sarcoma associated herpes virus (KSHV/HHV-8) for latency gene expression: Strategy of a successful pathogen

    PubMed Central

    Paul, Arun George; Sharma-Walia, Neelam; Kerur, Nagaraj; White, Carl; Chandran, Bala

    2010-01-01

    KSHV is implicated in the pathogenesis of KS, a chronic inflammation associated malignancy. COX-2 and its metabolite PGE2, two pivotal proinflammatory/oncogeneic molecules, are proposed to play roles in the expression of major KSHV latency associated nuclear antigen-1 (LANA-1). Microsomal prostaglandin E2 synthase (mPGES), PGE2 and its receptors (EP1, EP2, EP3, and EP4) were detected in KS lesions with the distinct staining of EP2/EP4 in KS lesions. In latently infected endothelial TIVE-LTC cells, EP receptor antagonists down-regulated LANA-1 expression as well as Ca2+, p-Src, p-PI3K, p-PKCζ/λ, and p-NF-κB, which are also some of the signal molecules proposed to be important in KS pathogenesis. Exogenous PGE2 and EP receptor agonists induced the LANA-1 promoter in 293 cells, and YY1, Sp1, Oct-1, Oct-6, C/EBP and c-Jun transcription factors appear to be involved in this induction. PGE2/EP receptor induced LANA-1 promoter activity was down-regulated significantly by the inhibition of Ca2+, p-Src, p-PI3K, p-PKCζ/λ, and p-NF-κB. These findings implicate the inflammatory PGE2/EP receptors and the associated signal molecules in herpes virus latency and uncover a novel paradigm that demonstrates the evolution of KSHV genome plasticity to utilize inflammatory response for its survival advantage of maintaining latent gene expression. This data also suggests that potential use of anti-COX-2 and anti-EP receptor therapy may not only ameliorate the chronic inflammation associated with KS but could also lead to elimination of the KSHV latent infection and the associated KS lesions. PMID:20388794

  6. Modulation of P2X7 Receptor during Inflammation in Multiple Sclerosis

    PubMed Central

    Amadio, Susanna; Parisi, Chiara; Piras, Eleonora; Fabbrizio, Paola; Apolloni, Savina; Montilli, Cinzia; Luchetti, Sabina; Ruggieri, Serena; Gasperini, Claudio; Laghi-Pasini, Franco; Battistini, Luca; Volonté, Cinzia

    2017-01-01

    Multiple sclerosis (MS) is characterized by macrophage accumulation and inflammatory infiltrates into the CNS contributing to demyelination. Because purinergic P2X7 receptor (P2X7R) is known to be abundantly expressed on cells of the hematopoietic lineage and of the nervous system, we further investigated its phenotypic expression in MS and experimental autoimmune encephalomyelitis conditions. By quantitative reverse transcription polymerase chain reaction and flow cytometry, we analyzed the P2X7R expression in human mononuclear cells of peripheral blood from stable and acute relapsing-remitting MS phases. Human monocytes were also challenged in vitro with pro-inflammatory stimuli such as the lipopolysaccharide, or the P2X7R preferential agonist 2′(3′)-O-(4 Benzoylbenzoyl)adenosine 5′-triphosphate, before evaluating P2X7R protein expression. Finally, by immunohistochemistry and immunofluorescence confocal analysis, we investigated the P2X7R expression in frontal cortex from secondary progressive MS cases. We demonstrated that P2X7R is present and inhibited on peripheral monocytes isolated from MS donors during the acute phase of the disease, moreover it is down-regulated in human monocytes after pro-inflammatory stimulation in vitro. P2X7R is instead up-regulated on astrocytes in the parenchyma of frontal cortex from secondary progressive MS patients, concomitantly with monocyte chemoattractant protein-1 chemokine, while totally absent from microglia/macrophages or oligodendrocytes, despite the occurrence of inflammatory conditions. Our results suggest that inhibition of P2X7R on monocytes and up-regulation in astrocytes might contribute to sustain inflammatory mechanisms in MS. By acquiring further knowledge about P2X7R dynamics and identifying P2X7R as a potential marker for the disease, we expect to gain insights into the molecular pathways of MS. PMID:29187851

  7. Uridine adenosine tetraphosphate (Up{sub 4}A) is a strong inductor of smooth muscle cell migration via activation of the P2Y{sub 2} receptor and cross-communication to the PDGF receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiedon, Annette; Toelle, Markus; Bastine, Joschika

    2012-01-20

    Highlights: Black-Right-Pointing-Pointer Up{sub 4}A induces VSMC migration. Black-Right-Pointing-Pointer VSMC migration towards Up{sub 4}A involves P2Y{sub 2} activation. Black-Right-Pointing-Pointer Up{sub 4}A-induced VSMC migration is OPN-dependent. Black-Right-Pointing-Pointer Activation of ERK1/2 pathway is necessary for VSMC migration towards Up{sub 4}A. Black-Right-Pointing-Pointer Up{sub 4}A-directed VSMC migration cross-communicates with the PDGFR. -- Abstract: The recently discovered dinucleotide uridine adenosine tetraphosphate (Up{sub 4}A) was found in human plasma and characterized as endothelium-derived vasoconstrictive factor (EDCF). A further study revealed a positive correlation between Up{sub 4}A and vascular smooth muscle cell (VSMC) proliferation. Due to the dominant role of migration in the formation of atherosclerotic lesions ourmore » aim was to investigate the migration stimulating potential of Up{sub 4}A. Indeed, we found a strong chemoattractant effect of Up{sub 4}A on VSMC by using a modified Boyden chamber. This migration dramatically depends on osteopontin secretion (OPN) revealed by the reduction of the migration signal down to 23% during simultaneous incubation with an OPN-blocking antibody. Due to inhibitory patterns using specific and unspecific purinoreceptor inhibitors, Up{sub 4}A mediates it's migratory signal mainly via the P2Y{sub 2}. The signaling behind the receptor was investigated with luminex technique and revealed an activation of the extracellular signal-regulated kinases 1 and 2 (ERK1/2) pathway. By use of the specific PDGF receptor (PDGFR) inhibitor AG1296 and siRNA technique against PDGFR-{beta} we found a strongly reduced migration signal after Up{sub 4}A stimulation in the PDGFR-{beta} knockdown cells compared to control cells. In this study, we present substantiate data that Up{sub 4}A exhibits migration stimulating potential probably involving the signaling cascade of MEK1 and ERK1/2 as well as the matrix protein

  8. Depot differences in steroid receptor expression in adipose tissue: possible role of the local steroid milieu.

    PubMed

    Rodriguez-Cuenca, S; Monjo, M; Proenza, A M; Roca, P

    2005-01-01

    Sex hormones play an important role in adipose tissue metabolism by activating specific receptors that alter several steps of the lipolytic and lipogenic signal cascade in depot- and sex-dependent manners. However, studies focusing on steroid receptor status in adipose tissue are scarce. In the present study, we analyzed steroid content [testosterone (T), 17beta-estradiol (17beta-E2), and progesterone (P4)] and steroid receptor mRNA levels in different rat adipose tissue depots. As expected, T levels were higher in males than in females (P = 0.031), whereas the reverse trend was observed for P4 (P < 0.001). It is noteworthy that 17beta-E2 adipose tissue levels were higher in inguinal than in the rest of adipose tissues for both sexes, where no sex differences in 17beta-E2 tissue levels were noted (P = 0.010 for retroperitoneal, P = 0.005 for gonadal, P = 0.018 for mesenteric). Regarding steroid receptor levels, androgen (AR) and estrogen receptor (ER)alpha and ERbeta densities were more clearly dependent on adipose depot location than on sex, with visceral depots showing overall higher mRNA densities than their subcutaneous counterparts. Besides, expression of ERalpha predominated over ERbeta expression, and progesterone receptor (PR-B form and PR-A+B form) mRNAs were identically expressed regardless of anatomic depot and sex. In vitro studies in 3T3-L1 cells showed that 17beta-E2 increased ERalpha (P = 0.001) and AR expression (P = 0.001), indicating that estrogen can alter estrogenic and androgenic signaling in adipose tissue. The results highlighted in this study demonstrate important depot-dependent differences in the sensitivity of adipose tissues to sex hormones between visceral and subcutaneous depots that could be related to metabolic situations observed in response to sex hormones.

  9. Impact of ticagrelor on P2Y1 and P2Y12 localization and on cholesterol levels in platelet plasma membrane.

    PubMed

    Rabani, Vahideh; Montange, Damien; Meneveau, Nicolas; Davani, Siamak

    2017-10-11

    Ticagrelor is an antiplatelet agent that inhibits platelet activation via P2Y12 antagonism. There are several studies showing that P2Y12 needs lipid rafts to be activated, but there are few data about how ticagrelor impacts lipid raft organization. Therefore, we aimed to investigate how ticagrelor could impact the distribution of cholesterol and consequently alter the organization of lipid rafts on platelet plasma membranes. We identified cholesterol-enriched raft fractions in platelet membranes by quantification of their cholesterol levels. Modifications in cholesterol and protein profiles (Flotillin 1, Flotillin 2, CD36, P2Y1, and P2Y12) were studied in platelets stimulated by ADP, treated by ticagrelor, or both. In ADP-stimulated and ticagrelor-treated groups, we found a decreased level of cholesterol in raft fractions of platelet plasma membrane compared to the control group. In addition, the peak of cholesterol in different experimental groups changed its localization on membrane fractions. In the control group, it was situated on fraction 2, while in ADP-stimulated platelets, it was located in fractions 3 to 5, and in fraction 4 in ticagrelor-treated group. The proteins studied also showed changes in their level of expression and localization in fractions of plasma membrane. Cholesterol levels of plasma membranes have a direct role in the organization of platelet membranes and could be modified by stimulation or drug treatment. Since ticagrelor and ADP both changed lipid composition and protein profile, investigating the lipid and protein composition of platelet membranes is of considerable importance as a focus for further research in anti-platelet management.

  10. Estrogen receptor mRNA expression patterns in the liver and ovary of female rainbow trout over a complete reproductive cycle

    PubMed Central

    Nagler, James J.; Cavileer, Timothy D.; Verducci, Joseph S.; Schultz, Irvin R.; Hook, Sharon E.; Hayton, William L.

    2012-01-01

    Estrogens are critical hormones involved in reproduction and need to bind to estrogen receptors in target organs for biological activity. Fishes have two distinct estrogen receptor subtypes, alpha (α) and beta (β), with variable combinations of additional isoforms of each subtype dependent on the history of genome duplication within a taxon. The comparative expression patterns of estrogen receptor isoforms during the female reproductive cycle will provide important insights into the unique function and importance of each. The purpose of this study was to measure the mRNAs for the four estrogen receptor isoforms (erα1, erα2, erβ1, erβ2) in the liver and ovary of adult, female rainbow trout over the course of an annual reproductive cycle. The expression of estrogen receptor mRNA isoforms was measured by quantitative real-time RT-PCR. Several reproductive indices (gonadosomatic index, maximum oocyte diameter, plasma estradiol-17β, plasma vitellogenin, and ovulation) were also quantified for comparison and used in a correlation analysis to examine any inter-relationships. Of the four isoforms, the expression of erα1 was highest in the liver, and had a significant positive correlation with liver erβ1 expression. Liver expression of erα2 mRNA was the lowest, but showed a significant positive correlation with maximum oocyte diameter in the ovary. The pattern of the erβ isoforms in liver was one of initially elevated mRNA expression followed by a gradual decrease as reproductive development proceeded. In the ovary the erβ1 isoform had the highest mRNA expression of all estrogen receptor isoforms, at the beginning of the reproductive cycle, but then decreased afterward. Both ovarian erβ isoforms had a significant positive correlation with one another. In contrast, erα2 mRNA expression showed a high maximum level in the ovary near the end of the cycle along with a significant positive correlation with plasma estradiol-17β levels; the highest gonadosomatic

  11. Structural interpretation of P2X receptor mutagenesis studies on drug action

    PubMed Central

    Evans, Richard J

    2010-01-01

    P2X receptors for ATP are ligand gated cation channels that form from the trimeric assembly of subunits with two transmembrane segments, a large extracellular ligand binding loop, and intracellular amino and carboxy termini. The receptors are expressed throughout the body, involved in functions ranging from blood clotting to inflammation, and may provide important targets for novel therapeutics. Mutagenesis based studies have been used to develop an understanding of the molecular basis of their pharmacology with the aim of developing models of the ligand binding site. A crystal structure for the zebra fish P2X4 receptor in the closed agonist unbound state has been published recently, which provides a major advance in our understanding of the receptors. This review gives an overview of mutagenesis studies that have led to the development of a model of the ATP binding site, as well as identifying residues contributing to allosteric regulation and antagonism. These studies are discussed with reference to the crystal to provide a structural interpretation of the molecular basis of drug action. PMID:20977449

  12. Estrogen Enhances the Expression of the Multidrug Transporter Gene ABCG2-Increasing Drug Resistance of Breast Cancer Cells through Estrogen Receptors.

    PubMed

    Chang, Fung-Wei; Fan, Hueng-Chuen; Liu, Jui-Ming; Fan, Tai-Ping; Jing, Jin; Yang, Chia-Ling; Hsu, Ren-Jun

    2017-01-14

    Multidrug resistance is a major obstacle in the successful therapy of breast cancer. Studies have proved that this kind of drug resistance happens in both human cancers and cultured cancer cell lines. Understanding the molecular mechanisms of drug resistance is important for the reasonable design and use of new treatment strategies to effectively confront cancers. In our study, ATP-binding cassette sub-family G member 2 (ABCG2), adenosine triphosphate (ATP) synthase and cytochrome c oxidase subunit VIc (COX6C) were over-expressed more in the MCF-7/MX cell line than in the normal MCF7 cell line. Therefore, we believe that these three genes increase the tolerance of MCF7 to mitoxantrone (MX). The data showed that the high expression of COX6C made MCF-7/MX have more stable on mitochondrial membrane potential (MMP) and reactive oxygen species (ROS) expression than normal MCF7 cells under hypoxic conditions. The accumulation of MX was greater in the ATP-depleted treatment MCF7/MX cells than in normal MCF7/MX cells. Furthermore, E2 increased the tolerance of MCF7 cells to MX through inducing the expression of ABCG2. However, E2 could not increase the expression of ABCG2 after the inhibition of estrogen receptor α (ERα) in MCF7 cells. According to the above data, under the E2 treatment, MDA-MB231, which lacks ER, had a higher sensitivity to MX than MCF7 cells. E2 induced the expression of ABCG2 through ERα and the over-expressed ABCG2 made MCF7 more tolerant to MX. Moreover, the over-expressed ATP synthase and COX6c affected mitochondrial genes and function causing the over-expressed ABCG2 cells pumped out MX in a concentration gradient from the cell matrix. Finally lead to chemoresistance.

  13. Trophic Activity of Human P2X7 Receptor Isoforms A and B in Osteosarcoma

    PubMed Central

    Giuliani, Anna Lisa; Colognesi, Davide; Ricco, Tiziana; Roncato, Carlotta; Capece, Marina; Amoroso, Francesca; Wang, Qi Guang; De Marchi, Elena; Gartland, Allison; Di Virgilio, Francesco; Adinolfi, Elena

    2014-01-01

    The P2X7 receptor (P2X7R) is attracting increasing attention for its involvement in cancer. Several recent studies have shown a crucial role of P2X7R in tumour cell growth, angiogenesis and invasiveness. In this study, we investigated the role of the two known human P2X7R functional splice variants, the full length P2X7RA and the truncated P2X7RB, in osteosarcoma cell growth. Immunohistochemical analysis of a tissue array of human osteosarcomas showed that forty-four, of a total fifty-four tumours (81.4%), stained positive for both P2X7RA and B, thirty-one (57.4%) were positive using an anti-P2X7RA antibody, whereas fifteen of the total number (27.7%) expressed only P2X7RB. P2X7RB positive tumours showed increased cell density, at the expense of extracellular matrix. The human osteosarcoma cell line Te85, which lacks endogenous P2X7R expression, was stably transfected with either P2X7RA, P2X7RB, or both. Receptor expression was a powerful stimulus for cell growth, the most efficient growth-promoting isoform being P2X7RB alone. Growth stimulation was matched by increased Ca2+ mobilization and enhanced NFATc1 activity. Te85 P2X7RA+B cells presented pore formation as well as spontaneous extracellular ATP release. The ATP release was sustained in all clones by P2X7R agonist (BzATP) and reduced following P2X7R antagonist (A740003) application. BzATP also increased cell growth and activated NFATc1 levels. On the other hand cyclosporin A (CSA) affected both NFATc1 activation and cell growth, definitively linking P2X7R stimulation to NFATc1 and cell proliferation. All transfected clones also showed reduced RANK-L expression, and an overall decreased RANK-L/OPG ratio. Mineralization was increased in Te85 P2X7RA+B cells while it was significantly diminished in Te85 P2X7RB clones, in agreement with immunohistochemical results. In summary, our data show that the majority of human osteosarcomas express P2X7RA and B and suggest that expression of either isoform is differently

  14. DIRECT MODULATION OF P2X1 RECEPTOR-CHANNELS BY THE LIPID PHOSPHATIDYLINOSITOL 4,5-BISPHOSPHATE

    PubMed Central

    Bernier, Louis-Philippe; Ase, Ariel R.; Tong, Xinkang; Hamel, Edith; Blais, Dominique; Zhao, Qi; Logothetis, Diomedes E.; Séguéla, Philippe

    2012-01-01

    The P2X1 receptor-channels activated by extracellular ATP contribute to the neurogenic component of smooth muscle contraction in vascular beds and genito-urinary tracts of rodents and humans. In the present study, we investigated the interactions of plasma membrane phosphoinositides with P2X1 ATP receptors and their physiological consequences. In an isolated rat mesenteric artery preparation, we observed a strong inhibition of P2X1-mediated constrictive responses by depletion of PI(4,5)P2 with the PI4-kinase inhibitor wortmannin. Using the Xenopus oocyte expression system, we provided electrophysiological evidence that lowering PI(4,5)P2 levels with wortmannin significantly decreases P2X1 currents amplitude and recovery. Previously reported modulation of recovery of desensitized P2X1 currents by phospholipase C-coupled 5-HT2A metabotropic receptors was also found wortmannin-sensitive. Treatment with wortmannin alters the kinetics of P2X1 activation and inactivation without changing its sensitivity to ATP. The functional impact of wortmannin on P2X1 currents could be reversed by addition of intracellular PI(4,5)P2, but not PI(3,4,5)P3. and direct application of PI(4,5)P2 to excised inside-out macropatches rescued P2X1 currents from rundown. We showed that the proximal region of the intracellular C-terminus of P2X1 subunit directly binds to PI(4,5)P2 and other anionic phospholipids, and we identified the basic residue K364 as a critical determinant for phospholipid binding and sensitivity to wortmannin. Overall, these results indicate that PI(4,5)P2 plays a key role in the expression of full native and heterologous P2X1 function by regulating the amplitude, recovery and kinetics of ionotropic ATP responses through direct receptor-lipid interactions. PMID:18523136

  15. Transient receptor potential vanilloid type 2 (TRPV2) expression in normal urothelium and in urothelial carcinoma of human bladder: correlation with the pathologic stage.

    PubMed

    Caprodossi, Sara; Lucciarini, Roberta; Amantini, Consuelo; Nabissi, Massimo; Canesin, Giacomo; Ballarini, Patrizia; Di Spilimbergo, Adriana; Cardarelli, Marco Andrea; Servi, Lucilla; Mammana, Gabriele; Santoni, Giorgio

    2008-09-01

    To evaluate the expression of transient receptor potential vanilloid type 2 (TRPV2) in normal human bladder and urothelial carcinoma (UC) tissues. Bladder specimens were obtained by transurethral resection or radical cystectomy. TRPV2 mRNA expression in normal human urothelial cells (NHUCs), UC cell lines, and formalin-fixed paraffin-embedded normal (n=6) and cancer bladder tissues (n=58) was evaluated by polymerase chain reaction (PCR) and quantitative real-time PCR (RT-PCR). TRPV2 protein expression was assessed by cytofluorimetric and confocal microscopy analyses in NHUCs and UC cells and by Western blotting and immunohistochemistry in normal and UC tissues. Enhanced TRPV2 mRNA and protein expression was found in high-grade and -stage UC specimens and UC cell lines. Both the full-length TRPV2 (hTRPV2) and a short splice-variant (s-TRPV2) were detected in NHUC and normal bladder specimens, whereas a progressive decline of s-TRPV2 in pTa, pT1, and pT2 stages was observed, up to a complete loss in pT3 and pT4 UC specimens. Normal human urothelial cells and bladder tissue specimens express TRPV2 at both the mRNA and protein levels. A progressive loss of s-TRPV2 accompanied by a marked increase of hTRPV2 expression was found in high-grade and -stage UC tissues.

  16. Oxidative stress-induced increase of intracellular zinc in astrocytes decreases their functional expression of P2X7 receptors and engulfing activity.

    PubMed

    Furuta, Takahiro; Mukai, Ayumi; Ohishi, Akihiro; Nishida, Kentaro; Nagasawa, Kazuki

    2017-12-01

    Neuron-glia communication mediated by neuro- and glio-transmitters such as ATP and zinc is crucial for the maintenance of brain homeostasis, and its dysregulation is found under pathological conditions. It is reported that under oxidative stress-loaded conditions, astrocytes exhibit increased intra- and extra-cellular labile zinc, the latter triggering microglial M1 activation, while the pathophysiological role of the former remains unrevealed. In this study, we examined whether the oxidative stress-induced increase of intracellular labile zinc is involved in the P2X7 receptor (P2X7R)-mediated regulation of astrocytic engulfing activity. The exposure of cultured astrocytes to sub-lethal oxidative stress through their treatment with 400 μM H 2 O 2 increased intracellular labile zinc, of which the concentration reached a peak level of approximately 2 μM at 2 h after the treatment. In astrocytes under sub-lethal oxidative stress, the uptake of YO-PRO-1 and latex beads as markers for P2X7R channel/pore activity and astrocytic engulfing activity, respectively, was decreased, and these decreased activities were accompanied by decreased expression of P2X7R at the plasma membrane via intracellular labile zinc-mediated translocation of it. With the oxidative stress, the expression level of full length P2X7R relative to that of its splice variants in astrocytes was decreased, leading to a decrease of the relative expression of the trimer consisting of full length P2X7R. Collectively, sub-lethal oxidative stress induces an astrocytic modal shift from the normal resting engulfing mode to the activated astrogliosis mode via an intracellular labile zinc-mediated decrease of the functional expression of P2X7R.

  17. Angiotensin II induces apoptosis in intestinal epithelial cells through the AT2 receptor, GATA-6 and the Bax pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Lihua; Wang, Wensheng; Xiao, Weidong

    2012-08-10

    Highlights: Black-Right-Pointing-Pointer Ang II-induced apoptosis in intestinal epithelial cell through AT2 receptor. Black-Right-Pointing-Pointer The apoptosis process involves in the Bax/Bcl-2 intrinsic pathway. Black-Right-Pointing-Pointer GATA-6 short hairpin RNA reduced Bax expression, but not Bcl-2. Black-Right-Pointing-Pointer GATA-6 may play a critical role in apoptosis in response to the Ang II challenge. -- Abstract: Angiotensin II (Ang II) has been shown to play an important role in cell apoptosis. However, the mechanisms of Ang-II-induced apoptosis in intestinal epithelial cells are not fully understood. GATA-6 is a zinc finger transcription factor expressed in the colorectal epithelium, which directs cell proliferation, differentiation and apoptosis. Inmore » the present study we investigated the underlying mechanism of which GATA-6 affects Ang-II induced apoptosis in intestinal epithelial cells. The in vitro intestinal epithelial cell apoptosis model was established by co-culturing Caco-2 cells with Ang II. Pretreatment with Angiotensin type 2 (AT2) receptor antagonist, PD123319, significantly reduced the expression of Bax and prevented the Caco-2 cells apoptosis induced by Ang II. In addition, Ang II up-regulated the expression of GATA-6. Interestingly, GATA-6 short hairpin RNA prevented Ang II-induced intestinal epithelial cells apoptosis and reduced the expression of Bax, but not Bcl-2. Taken together, the present study suggests that Angiotensin II promotes apoptosis in intestinal epithelial cells through GATA-6 and the Bax pathway in an AT2 receptor-dependent manner.« less

  18. P2Y2R activation by nucleotides released from the highly metastatic breast cancer cell contributes to pre-metastatic niche formation by mediating lysyl oxidase secretion, collagen crosslinking, and monocyte recruitment

    PubMed Central

    Joo, Young Nak; Jin, Hana; Eun, So Young; Park, Sang Won; Chang, Ki Churl; Kim, Hye Jung

    2014-01-01

    Tumor microenvironmental hypoxia induces hypoxia inducible factor-1α (HIF-1α) overexpression, leading to the release of lysyl oxidase (LOX), which crosslinks collagen at distant sites to facilitate environmental changes that allow cancer cells to easily metastasize. Our previous study showed that activation of the P2Y2 receptor (P2Y2R) by ATP released from MDA-MB-231 cells increased MDA-MB-231 cell invasion through endothelial cells. Therefore, in this study, we investigated the role of P2Y2R in breast cancer cell metastasis to distant sites. ATP or UTP released from hypoxia-treated MDA-MB-231 cells induced HIF-1α expression and LOX secretion by the activation of P2Y2R, and this phenomenon was significantly reduced in P2Y2R-depleted MDA-MB-231 cells. Furthermore, P2Y2R-mediated LOX release induced collagen crosslinking in an in vitro model. Finally, nude mice injected with MDA-MB-231 cells showed high levels of LOX secretion, crosslinked collagen and CD11b+ BMDC recruitment in the lung; however, mice that were injected with P2Y2R-depleted MDA-MB-231 cells did not exhibit these changes. These results demonstrate that P2Y2R plays an important role in activation of the HIF-1α–LOX axis, the induction of collagen crosslinking and the recruitment of CD11b+ BMDCs. Furthermore, P2Y2R activation by nucleotides recruits THP-1 monocytes, resulting in primary tumor progression and pre-metastatic niche formation. PMID:25238333

  19. Quantitative RT-PCR analysis of estrogen receptor gene expression in laser microdissected prostate cancer tissue.

    PubMed

    Walton, Thomas J; Li, Geng; McCulloch, Thomas A; Seth, Rashmi; Powe, Desmond G; Bishop, Michael C; Rees, Robert C

    2009-06-01

    Real-time quantitative RT-PCR analysis of laser microdissected tissue is considered the most accurate technique for determining tissue gene expression. The discovery of estrogen receptor beta (ERbeta) has focussed renewed interest on the role of estrogen receptors in prostate cancer, yet few studies have utilized the technique to analyze estrogen receptor gene expression in prostate cancer. Fresh tissue was obtained from 11 radical prostatectomy specimens and from 6 patients with benign prostate hyperplasia. Pure populations of benign and malignant prostate epithelium were laser microdissected, followed by RNA isolation and electrophoresis. Quantitative RT-PCR was performed using primers for androgen receptor (AR), estrogen receptor beta (ERbeta), estrogen receptor alpha (ERalpha), progesterone receptor (PGR) and prostate specific antigen (PSA), with normalization to two housekeeping genes. Differences in gene expression were analyzed using the Mann-Whitney U-test. Correlation coefficients were analyzed using Spearman's test. Significant positive correlations were seen when AR and AR-dependent PSA, and ERalpha and ERalpha-dependent PGR were compared, indicating a representative population of RNA transcripts. ERbeta gene expression was significantly over-expressed in the cancer group compared with benign controls (P < 0.01). In contrast, PGR expression was significantly down-regulated in the cancer group (P < 0.05). There were no significant differences in AR, ERalpha or PSA expression between the groups. This study represents the first to show an upregulation of ERbeta gene expression in laser microdissected prostate cancer specimens. In concert with recent studies the findings suggest differential production of ERbeta splice variants, which may play important roles in the genesis of prostate cancer. (c) 2009 Wiley-Liss, Inc.

  20. Breast cancer risk factors and HER2 over-expression in tumors.

    PubMed

    Swede, H; Moysich, K B; Freudenheim, J L; Quirk, J T; Muti, P C; Hurd, T C; Edge, S B; Winston, J S; Michalek, A M

    2001-01-01

    Few epidemiologic studies have investigated the potential role of HER2 in the etiology of breast cancer. We conducted a case-case study of 156 women with incident, invasive ductal carcinoma. Multivariate unconditional logistic regression was used to estimate the odds ratios for a HER2 positive tumor in relation to known and putative risk factors of breast cancer. HER2 status was detected by immunohistochemistry on archival tissue. HER2 positive breast cancers tended to be larger and were less likely to express estrogen receptors, and the incidence rate was higher in patients less than 40 years old. We observed an association between a self-reported history of benign breast disease and the occurrence of HER2 positive breast cancer (OR, 2.1;95% CI, 1.1-4.1). We did not detect associations between HER2 over-expression and family history of breast cancer, parity, late age at first birth, ever having breast fed an infant, or oral contraceptive use. Our findings merit consideration in light of recent evidence of HER2 amplification or over-expression in benign breast disease. Should the link to breast cancer be established, HER2 positive benign breast disease could potentially serve as an early marker for preventive intervention.

  1. P2X7 receptor inhibition increases CNTF in the subventricular zone, but not neurogenesis or neuroprotection after stroke in adult mice.

    PubMed

    Kang, Seong Su; Keasey, Matthew Phillip; Hagg, Theo

    2013-10-01

    Increasing endogenous ciliary neurotrophic factor (CNTF) expression with a pharmacological agent might be beneficial after stroke as CNTF both promotes neurogenesis and, separately, is neuroprotective. P2X7 purinergic receptor inhibition is neuroprotective in rats and increases CNTF release in rat CMT1A Schwann cells. We, first, investigated the role of P2X7 in regulating CNTF and neurogenesis in adult mouse subventricular zone (SVZ). CNTF expression was increased by daily intravenous injections of the P2X7 antagonist Brilliant Blue G (BBG) in naïve C57BL/6 or Balb/c mice over 3 days. Despite the ∼40-60 % increase or decrease in CNTF with BBG or the agonist BzATP, respectively, the number of proliferated BrdU+SVZ nuclei did not change. BBG failed to increase FGF2, which is involved in CNTF-regulated neurogenesis, but induced IL-6, LIF, and EGF, which are known to reduce SVZ proliferation. Injections of IL-6 next to the SVZ induced CNTF and FGF2, but not proliferation, suggesting that IL-6 counteracts their neurogenesis-inducing effects. Following ischemic injury of the striatum by middle cerebral artery occlusion (MCAO), a 3-day BBG treatment increased CNTF in the medial penumbra containing the SVZ. BBG also induced CNTF and LIF, which are known to be protective following stroke, in the whole striatum after MCAO, but not GDNF or BDNF. However, BBG treatment did not reduce the lesion area or apoptosis in the penumbra. Even so, this study shows that P2X7 can be targeted with systemic drug treatments to differentially regulate neurotrophic factors in the brain following stroke.

  2. Effect of genetic deletion and pharmacological antagonism of P2X7 receptors in a mouse animal model of migraine

    PubMed Central

    2014-01-01

    Background Purine receptors participate in peripheral and central sensitization and are associated with migraine headache. We investigated the role of P2X7 receptor (P2X7) in a nitroglycerin (NTG)-induced mouse model of migraine. Methods Intraperitoneal NTG injection (15 mg/kg) triggered thermal hyperalgesia in the hindpaws of wild-type C57BL/6J mice, followed by the induction of c-fos in upper cervical spinal cord and trigeminal nucleus caudalis. The effect of genetic deletion of P2X7 and the selective P2X7 antagonist Brilliant Blue G (BBG) were examined on hyperalgesia and c-fos induction. Results NTG decreased the paw withdrawal threshold in both wild-type and P2X7 knockout mice. Nevertheless, subacute BBG treatment (50 mg/kg/day i.p.) completely prevented the effect of NTG in wild-type, but not in knockout mice. Whereas P2X7 deficiency differentially affected the expression of c-fos, the average number of fos-immuno-reactive neurons in trigeminal nucleus caudalis, but not in upper cervical spinal cord was lower in BBG-treated wild-type mice after NTG treatment. Conclusions Our results show that P2X7 receptors might participate in the pathogenesis of migraine, although upregulation of other P2X receptors probably compensate for the loss of its action in knockout mice. The data also suggest the therapeutic potential of P2X7 antagonists for the treatment of migraine. PMID:24885962

  3. Lipopolysaccharide Inhibits the Channel Activity of the P2X7 Receptor

    PubMed Central

    Leiva-Salcedo, Elias; Coddou, Claudio; Rodríguez, Felipe E.; Penna, Antonello; Lopez, Ximena; Neira, Tanya; Fernández, Ricardo; Imarai, Mónica; Rios, Miguel; Escobar, Jorge; Montoya, Margarita; Huidobro-Toro, J. Pablo; Escobar, Alejandro; Acuña-Castillo, Claudio

    2011-01-01

    The purinergic P2X7 receptor (P2X7R) plays an important role during the immune response, participating in several events such as cytokine release, apoptosis, and necrosis. The bacterial endotoxin lipopolysaccharide (LPS) is one of the strongest stimuli of the immune response, and it has been shown that P2X7R activation can modulate LPS-induced responses. Moreover, a C-terminal binding site for LPS has been proposed. In order to evaluate if LPS can directly modulate the activity of the P2X7R, we tested several signaling pathways associated with P2X7R activation in HEK293 cells that do not express the TLR-4 receptor. We found that LPS alone was unable to induce any P2X7R-related activity, suggesting that the P2X7R is not directly activated by the endotoxin. On the other hand, preapplication of LPS inhibited ATP-induced currents, intracellular calcium increase, and ethidium bromide uptake and had no effect on ERK activation in HEK293 cells. In splenocytes-derived T-regulatory cells, in which ATP-induced apoptosis is driven by the P2X7R, LPS inhibited ATP-induced apoptosis. Altogether, these results demonstrate that LPS modulates the activity of the P2X7R and suggest that this effect could be of physiological relevance. PMID:21941410

  4. CD40 engagement on dendritic cells induces cyclooxygenase-2 and EP2 receptor via p38 and ERK MAPKs.

    PubMed

    Harizi, Hedi; Limem, Ilef; Gualde, Norbert

    2011-02-01

    We have previously reported that cyclooxygenase (COX)-2-derived prostaglandin (PG)E2 critically regulates dendritic cell (DC) inflammatory phenotype and function through EP2/EP4 receptor subtypes. As genes activated by CD40 engagement are directly relevant to inflammation, we examined the effects of CD40 activation on inflammatory PGs in murine bone marrow-derived DC (mBM-DC). We showed for the first time that activation of mBM-DC with agonist anti-CD40 monoclonal antibody (anti-CD40 mAb) dose dependently induces the synthesis of significant amounts of PGE2 via inducible expression of COX-2 enzyme, as NS-398, a COX-2-selective inhibitor reduces this upregulation. In contrast to lipopolysaccharide, which upregulates mBM-DC surface levels of EP2 and EP4 receptors, CD40 crosslinking on mBM-DC increases EP2, but not EP4, receptor expression. Flow cytometry analysis and radioligand-binding assay showed that EP2 was the major EP receptor subtype, which binds to PGE2 at the surface of anti-CD40-activated mBM-DC. Upregulation of COX-2 and EP2 levels by CD40 engagement was accompanied by dose-dependent phosphorylation of p38 and ERK1/2 mitogen-activated protein kinase (MAPK) and was abrogated by inhibitors of both pathways. Collectively, we demonstrated that CD40 engagement on mBM-DC upregulates COX-2 and EP2 receptor expression through activation of p38 and ERK1/2 MAPK signaling. Triggering the PGE2/EP2 pathway by anti-CD40 mAb resulted on the induction of Th2 immune response. Thus, CD40-induced production of PGE2 by mBM-DC could represent a negative feedback mechanism involving EP2 receptor and limiting the propagation of Th1 responses. Blocking CD40 pathway may represent a novel therapeutic pathway of inhibiting COX-2-derived prostanoids in chronically inflamed tissues (that is, arthritis).

  5. PrP(C) regulates epidermal growth factor receptor function and cell shape dynamics in Neuro2a cells.

    PubMed

    Llorens, Franc; Carulla, Patricia; Villa, Ana; Torres, Juan M; Fortes, Puri; Ferrer, Isidre; del Río, José A

    2013-10-01

    The prion protein (PrP) plays a key role in prion disease pathogenesis. Although the misfolded and pathologic variant of this protein (PrP(SC)) has been studied in depth, the physiological role of PrP(C) remains elusive and controversial. PrP(C) is a cell-surface glycoprotein involved in multiple cellular functions at the plasma membrane, where it interacts with a myriad of partners and regulates several intracellular signal transduction cascades. However, little is known about the gene expression changes modulated by PrP(C) in animals and in cellular models. In this article, we present PrP(C)-dependent gene expression signature in N2a cells and its implication in the most overrepresented functions: cell cycle, cell growth and proliferation, and maintenance of cell shape. PrP(C) over-expression enhances cell proliferation and cell cycle re-entrance after serum stimulation, while PrP(C) silencing slows down cell cycle progression. In addition, MAP kinase and protein kinase B (AKT) pathway activation are under the regulation of PrP(C) in asynchronous cells and following mitogenic stimulation. These effects are due in part to the modulation of epidermal growth factor receptor (EGFR) by PrP(C) in the plasma membrane, where the two proteins interact in a multimeric complex. We also describe how PrP(C) over-expression modulates filopodia formation by Rho GTPase regulation mainly in an AKT-Cdc42-N-WASP-dependent pathway. © 2013 International Society for Neurochemistry.

  6. [Increased expressions of substance P and neurokinin/tachykinin receptor 1 in eosinophils of patients with psoriasis].

    PubMed

    Zuo, Zhe; Wang, Junling; Zhang, Huiyun; Zheng, Wenjiao; Zhang, Zenan; He, Shaoheng

    2017-07-01

    Objective To investigate the expressions of substance P (SP) and its receptor neurokinin/tachykinin receptor 1 (NK1R) in peripheral blood eosinophils of patients with psoriasis. Methods The levels of SP and NK1R in the peripheral blood of both patients with psoriasis and healthy people were detected by flow cytometry. This method was again used to detect the levels of SP and NK1R in the peripheral blood eosinophils of patients with psoriasis after stimulated with the crude extracts of Artemisia pollen, dust mite and Platanus pollen (all at concentrations of 0.1 and 1.0 μg/mL). Results Compared with the healthy controls, the percentages of SP + and NK1R + eosinophils in psoriasis patients increased up to 2.7 and 0.5 folds, respectively. Moreover, the mean fluorescence intensity (MFI) of SP + and NK1R + eosinophils of psoriasis patients were elevated by 1.5 and 0.2 folds, respectively. The percentage of SP + eosinophils in psoriasis were down-regulated by 60% after the stimulation with Platanus pollen extract (1 μg/mL), while 0.1 μg/mL Platanus pollen extract induced a 0.6-fold increase in the percentage of NK1R + eosinophis. Conclusion The expressions of SP and NK1R are up-regulated in peripheral blood eosinophils of patients with psoriasis.

  7. Evaluation of the Pathogenesis of Tumor Development from Endometriosis by Estrogen Receptor, P53 and Bcl-2 Immunohistochemical Staining

    PubMed Central

    Esmaili, Haidarali; Vahedi, Amir; Mohajeri, Shiva; Mostafidi, Elmira; Azimpouran, Mahzad; Behzad, Mohammad Naghavi

    2016-01-01

    Objective: Endometriosis, one of the most common estrogen dependent gynecological disorders, can present as both benign and malignant disease. The prevalence of tumoral transformation is 0.7-1.6% and the most common tumors are clear cell and endometrioid carcinomas. Unfortunately, the pathogenesis of transformation is unknown. For this purpose, we examined molecular alterations in ovarian endometriosis and endometriosis-associated tumors. Methods: Using the data bank of Alzahra hospital pathology department and paraffin blocks from appropriate cases were identified. Sections were cut and stained for 3 markers: estrogen receptor, P53 and bcl2. Correlations between findings were investigated. Results: Nineteen cases of endometriosis-associated tumor and 19 cases of endometriosis were identified. Staining for bcl2 was documented in 14 of 19 (73.7%) of endometriosis-associated tumor cases and also 7 of 19 (36.8%) endometriosis cases (P=0.02). Only 3 of the 19 (15.8%) endometriosis-associated tumors exhibited positive staining for estrogen receptors, compared with 14 of 19 (73.7%) endometriosis cases (P<0.001). Positive staining for P53 was noted in 5 of 19 (31.6%) endometriosis-associated ovarian tumor samples but was absent in endometriosis samples (0%), (P =0.008). Conclusions: Endometriosis-associated tumors appear to be associated with overexpression of bcl2 and P53 and reduced expression of Estrogen receptor. These finding may help to diagnose tumoral transformation with a background of endometriosis. PMID:28125869

  8. Optical Isomers of Atorvastatin, Rosuvastatin and Fluvastatin Enantiospecifically Activate Pregnane X Receptor PXR and Induce CYP2A6, CYP2B6 and CYP3A4 in Human Hepatocytes

    PubMed Central

    Korhonova, Martina; Doricakova, Aneta; Dvorak, Zdenek

    2015-01-01

    Atorvastatin, fluvastatin and rosuvastatin are drugs used for treatment of hypercholesterolemia. They cause numerous drug-drug interactions by inhibiting and inducing drug-metabolizing cytochromes P450. These three statins exist in four optical forms, but they are currently used as enantiopure drugs, i.e., only one single enantiomer. There are numerous evidences that efficacy, adverse effects and toxicity of drugs may be enantiospecific. Therefore, we investigated the effects of optical isomers of atorvastatin, fluvastatin and rosuvastatin on the expression of drug-metabolizing P450s in primary human hepatocytes, using western blots and RT-PCR for measurement of proteins and mRNAs, respectively. The activity of P450 transcriptional regulators, including pregnane X receptor (PXR), aryl hydrocarbon receptor (AhR) and glucocorticoid receptor (GR), was assessed by gene reporter assays and EMSA. Transcriptional activity of AhR was not influenced by any statin tested. Basal transcriptional activity of GR was not affected by tested statins, but dexamethasone-inducible activity of GR was dose-dependently and enantioselectively inhibited by fluvastatin. Basal and ligand-inducible transcriptional activity of PXR was dose-dependently influenced by all tested statins, and the potency and efficacy between individual optical isomers varied depending on statin and optical isomer. The expression of CYP1A1 and CYP1A2 in human hepatocytes was not influenced by tested statins. All statins induced CYP2A6, CYP2B6 and CYP3A4, and the effects on CYP2C9 were rather modulatory. The effects varied between statins and enantiomers and induction potency decreased in order: atorvastatin (RR>RS = SR>SS) > fluvastatin (SR>RS = SS>RR) >> rosuvastatin (only RS active). The data presented here might be of toxicological and clinical importance. PMID:26366873

  9. Control of Endothelin-A Receptor Expression by Progesterone Is Enhanced by Synergy With Gata2

    PubMed Central

    Zhang, Yanping; Knutsen, Gregory R.; Brown, Matthew D.

    2013-01-01

    The endothelin-A receptor (Ednra) is involved in several physiological, pathological, and developmental pathways. Known for its function in vasoconstriction after being activated by endothelin-1, Ednra also controls cephalic neural crest cell development and appears to play a role in several pathologies, including cancer and periodontitis. However, the mechanisms regulating Ednra expression have not been identified despite its important functions. In this study, we investigated the role progesterone plays in Ednra gene expression in vivo and in vitro. In mice, pregnancy promotes Ednra expression in the heart, kidney, lung, uterus, and placenta, and the up-regulation is mediated by progesterone. We determined that the conserved region between −5.7 and −4.2 kb upstream of the mouse Ednra gene is necessary for the progesterone response. We also found that progesterone mediates Ednra activation through progesterone receptor B activation by its recruitment to PRE6, one of the 6 progesterone response elements found in that locus. However, gene activation by means of a GATA2 site was also necessary for the progesterone response. The Gata2 transcription factor enhances the progesterone response mediated by the progesterone receptor B. Together these results indicate that progesterone regulates Ednra expression by synergizing with Gata2 activity, a previously unknown mechanism. This mechanism may have an impact on pathologies involving the endothelin signaling. PMID:23592430

  10. Lysergic acid diethylamide-induced Fos expression in rat brain: role of serotonin-2A receptors.

    PubMed

    Gresch, P J; Strickland, L V; Sanders-Bush, E

    2002-01-01

    Lysergic acid diethylamide (LSD) produces altered mood and hallucinations in humans and binds with high affinity to serotonin-2A (5-HT(2A)) receptors. Although LSD interacts with other receptors, the activation of 5-HT(2A) receptors is thought to mediate the hallucinogenic properties of LSD. The goal of this study was to identify the brain sites activated by LSD and to determine the influence of 5-HT(2A) receptors in this activation. Rats were pretreated with the 5-HT(2A) receptor antagonist MDL 100907 (0.3 mg/kg, i.p.) or vehicle 30 min prior to LSD (500 microg/kg, i.p.) administration and killed 3 h later. Brain tissue was examined for Fos protein expression by immunohistochemistry. LSD administration produced a five- to eight-fold increase in Fos-like immunoreactivity in medial prefrontal cortex, anterior cingulate cortex, and central nucleus of amygdala. However, in dorsal striatum and nucleus accumbens no increase in Fos-like immunoreactivity was observed. Pretreatment with MDL 100907 completely blocked LSD-induced Fos-like immunoreactivity in medial prefrontal cortex and anterior cingulate cortex, but only partially blocked LSD-induced Fos-like immunoreactivity in amygdala. Double-labeled immunohistochemistry revealed that LSD did not induce Fos-like immunoreactivity in cortical cells expressing 5-HT(2A) receptors, suggesting an indirect activation of cortical neurons. These results indicate that the LSD activation of medial prefrontal cortex and anterior cingulate cortex is mediated by 5-HT(2A) receptors, whereas in amygdala 5-HT(2A) receptor activation is a component of the response. These findings support the hypothesis that the medial prefrontal cortex, anterior cingulate cortex, and perhaps the amygdala, are important regions involved in the production of hallucinations. Copyright 2002 IBRO

  11. Sex-dependent regulation of hypothalamic neuropeptide Y-Y1 receptor gene expression in moderate/high fat, high-energy diet-fed mice

    PubMed Central

    Zammaretti, Francesca; Panzica, Giancarlo; Eva, Carola

    2007-01-01

    In this study we investigated whether long-term consumption of a moderate/high fat (MHF), high-energy diet can affect the gene expression of the Y1 receptor (Y1R) for neuropeptide Y (NPY) in the dorsomedial (DMH), ventromedial (VMH), arcuate (ARC) and paraventricular (PVN) hypothalamic nuclei of male and female Y1R/LacZ transgenic mice, carrying the murine Y1R promoter linked to the LacZ gene. MHF diet-fed male mice showed an increased consumption of metabolizable energy that was associated with a significant increase in body weight as compared with chow-fed controls. In parallel, consumption of a MHF diet for 8 weeks significantly decreased Y1R/LacZ transgene expression in the DMH and VMH of male mice whereas no changes were found in the ARC and PVN. Leptin treatment reduced body weight of both MHF diet- and chow-fed male mice but failed to prevent the decrease in Y1R/LacZ transgene expression apparent in the DMH and VMH of male mice after 8 weeks of MHF diet intake. Conversely, no significant changes of metabolizable energy intake, body weight or hypothalamic β-galactosidase expression were found in MHF diet-fed female Y1R/LacZ transgenic mice. A gender-related difference of Y1R/LacZ transgenic mice was also observed in response to leptin treatment that failed to decrease body weight of both MHF diet- and chow-fed female mice. Results herein demonstrate that Y1R/LacZ FVB mice show a sexual dimorphism both on energy intake and on nucleus-specific regulation of the NPY Y1R system in the hypothalamus. Overall, these results provide new insights into the mechanism by which diet composition affects the hypothalamic circuit that controls energy homeostasis. PMID:17584829

  12. P2X7 receptor-stimulation causes fever via PGE2 and IL-1β release.

    PubMed

    Barberà-Cremades, Maria; Baroja-Mazo, Alberto; Gomez, Ana I; Machado, Francisco; Di Virgilio, Francesco; Pelegrín, Pablo

    2012-07-01

    Prostaglandins (PGs) are important lipid mediators involved in the development of inflammatory associated pain and fever. PGE2 is a well-established endogenous pyrogen activated by proinflammatory cytokine interleukin (IL)-1β. P2X7 receptors (P2X7Rs) expressed by inflammatory cells are stimulated by the danger signal extracellular ATP to activate the inflammasome and release IL-1β. Here we show that P2X7R activation is required for the release of PGE2 and other autacoids independent of inflammasome activation, with an ATP EC(50) for PGE2 and IL-1β release of 1.58 and 1.23 mM, respectively. Furthermore, lack of P2X7R or specific antagonism of P2X7R decreased the febrile response in mice triggered after intraperitoneal LPS or IL-1β inoculation. Accordingly, LPS inoculation caused intraperitoneal ATP accumulation. Therefore, P2X7R antagonists emerge as novel therapeutics for the treatment for acute inflammation, pain and fever, with wider anti-inflammatory activity than currently used cyclooxygenase inhibitors.-Barberà-Cremades, M., Baroja-Mazo, A., Gomez, A. I., Machado, F., Di Virgilio, F., Pelegrín, P. P2X7 receptor-stimulation causes fever via PGE2 and IL-1β release.

  13. The p75 neurotrophin receptor localization in blood-CSF barrier: expression in choroid plexus epithelium.

    PubMed

    Spuch, Carlos; Carro, Eva

    2011-05-11

    The presence of neurotrophins and their receptors Trk family has been reported in the choroid plexus. High levels of Nerve Growth Factor (NGF), Neurotrophin-4 (NT-4) and TrkB receptor were detected, while nothing was know about p75 neurotrophin receptor (p75NTR) in the choroid plexus epithelial cells. In neurons, p75NTR receptor has a dual function: promoting survival together with TrkA in response to NGF, and inducing apoptotic signaling through p75NTR. We postulated that p75NTR may also affect the survival pathways in the choroid plexus and also undergoes regulated proteolysis with metalloproteases. Here, we demonstrated the presence of p75NTR receptor in the choroid plexus epithelial cells. The p75NTR receptor would be involved in cell death mechanisms and in the damaged induced by amyloid beta (Aβ) in the choroid plexus and finally, we propose an essential role of p75NTR in the Aβ transcytosis through out choroid plexus barrier. The presence analysis reveals the new localization of p75NTR in the choroid plexus and, the distribution mainly in the cytoplasm and cerebrospinal fluid (CSF) side of the epithelial cells. We propose that p75NTR receptor plays a role in the survival pathways and Aβ-induced cell death. These data suggest that p75NTR dysfunction play an important role in the pathogenesis of brain diseases. The importance and novelty of this expression expands a new role of p75NTR.

  14. Modulation of JB6 Mouse Epidermal Cell Transformation Response by the Prostaglandin F2 Alpha Receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weber, Thomas J.; Markillie, Lye MENG.; Chrisler, William B.

    2002-12-01

    Prostaglandin F2a (PGF2a) has been associated with the modulation of clonal selection processes in the mouse skin model of carcinogenesis. We have investigated whether JB6 mouse epidermal cells express a functional PGF2a receptor (FP) coupled to the regulation of anchorage-dependent and -independent growth. Treatment of JB6 cells with a FP receptor ligand (fluprostenol) potently (pM-nM) increased anchorage-dependent and -independent growth, as determined by a battery of in vitro assays. Treatment of JB6 cells with PGF2a and fluprostenol increased inositol phospholipid accumulation and extracellular signal regulated kinase (ERK) activity, consistent with FP receptor-related signaling. FP receptor mRNA was detected by reversemore » transcription-polymerase chain reaction and a radiolabel binding assay determined the average specific [3H]PGF2a binding to be 8.25 + 0.95 fmol/mg protein. Treatment of cells with fluprostenol as a single exposure resulted in a significant increase in anchorage-dependent and -independent growth in media containing low (0.1-0.5%), but not high (5%) concentrations of fetal bovine serum (FBS). In contrast, treatment of cells with fluprostenol at two day intervals resulted in a more robust growth response under anchorage-dependent conditions only in media containing low FBS concentrations; and under anchorage-independent conditions only in media containing high FBS concentrations. ERK activation and colony size were increased by cotreatment of JB6 cells with EGF and fluprostenol to a greater extent than either treatment alone, while the cotreatment effect on colony number appeared to be simply additive. In summary, FBS concentration and signal oscillation exert pronounced effects on the biological response to a FP receptor agonist. The data raise the possibility that the FP receptor may independently contribute to clonal selection processes, but may play a more important role as a response modifier.« less

  15. P2X2 knockout mice and P2X2/P2X3 double knockout mice reveal a role for the P2X2 receptor subunit in mediating multiple sensory effects of ATP

    PubMed Central

    Cockayne, Debra A; Dunn, Philip M; Zhong, Yu; Rong, Weifang; Hamilton, Sara G; Knight, Gillian E; Ruan, Huai-Zhen; Ma, Bei; Yip, Ping; Nunn, Philip; McMahon, Stephen B; Burnstock, Geoffrey; Ford, Anthony PDW

    2005-01-01

    Extracellular ATP plays a role in nociceptive signalling and sensory regulation of visceral function through ionotropic receptors variably composed of P2X2 and P2X3 subunits. P2X2 and P2X3 subunits can form homomultimeric P2X2, homomultimeric P2X3, or heteromultimeric P2X2/3 receptors. However, the relative contribution of these receptor subtypes to afferent functions of ATP in vivo is poorly understood. Here we describe null mutant mice lacking the P2X2 receptor subunit (P2X2−/−) and double mutant mice lacking both P2X2 and P2X3 subunits (P2X2/P2X3Dbl−/−), and compare these with previously characterized P2X3−/− mice. In patch-clamp studies, nodose, coeliac and superior cervical ganglia (SCG) neurones from wild-type mice responded to ATP with sustained inward currents, while dorsal root ganglia (DRG) neurones gave predominantly transient currents. Sensory neurones from P2X2−/− mice responded to ATP with only transient inward currents, while sympathetic neurones had barely detectable responses. Neurones from P2X2/P2X3Dbl−/− mice had minimal to no response to ATP. These data indicate that P2X receptors on sensory and sympathetic ganglion neurones involve almost exclusively P2X2 and P2X3 subunits. P2X2−/− and P2X2/P2X3Dbl−/− mice had reduced pain-related behaviours in response to intraplantar injection of formalin. Significantly, P2X3−/−, P2X2−/−, and P2X2/P2X3Dbl−/− mice had reduced urinary bladder reflexes and decreased pelvic afferent nerve activity in response to bladder distension. No deficits in a wide variety of CNS behavioural tests were observed in P2X2−/− mice. Taken together, these data extend our findings for P2X3−/− mice, and reveal an important contribution of heteromeric P2X2/3 receptors to nociceptive responses and mechanosensory transduction within the urinary bladder. PMID:15961431

  16. Estrogen Enhances the Expression of the Multidrug Transporter Gene ABCG2—Increasing Drug Resistance of Breast Cancer Cells through Estrogen Receptors

    PubMed Central

    Chang, Fung-Wei; Fan, Hueng-Chuen; Liu, Jui-Ming; Fan, Tai-Ping; Jing, Jin; Yang, Chia-Ling; Hsu, Ren-Jun

    2017-01-01

    Background: Multidrug resistance is a major obstacle in the successful therapy of breast cancer. Studies have proved that this kind of drug resistance happens in both human cancers and cultured cancer cell lines. Understanding the molecular mechanisms of drug resistance is important for the reasonable design and use of new treatment strategies to effectively confront cancers. Results: In our study, ATP-binding cassette sub-family G member 2 (ABCG2), adenosine triphosphate (ATP) synthase and cytochrome c oxidase subunit VIc (COX6C) were over-expressed more in the MCF-7/MX cell line than in the normal MCF7 cell line. Therefore, we believe that these three genes increase the tolerance of MCF7 to mitoxantrone (MX). The data showed that the high expression of COX6C made MCF-7/MX have more stable on mitochondrial membrane potential (MMP) and reactive oxygen species (ROS) expression than normal MCF7 cells under hypoxic conditions. The accumulation of MX was greater in the ATP-depleted treatment MCF7/MX cells than in normal MCF7/MX cells. Furthermore, E2 increased the tolerance of MCF7 cells to MX through inducing the expression of ABCG2. However, E2 could not increase the expression of ABCG2 after the inhibition of estrogen receptor α (ERα) in MCF7 cells. According to the above data, under the E2 treatment, MDA-MB231, which lacks ER, had a higher sensitivity to MX than MCF7 cells. Conclusions: E2 induced the expression of ABCG2 through ERα and the over-expressed ABCG2 made MCF7 more tolerant to MX. Moreover, the over-expressed ATP synthase and COX6c affected mitochondrial genes and function causing the over-expressed ABCG2 cells pumped out MX in a concentration gradient from the cell matrix. Finally lead to chemoresistance. PMID:28098816

  17. FoxP2 directly regulates the reelin receptor VLDLR developmentally and by singing.

    PubMed

    Adam, Iris; Mendoza, Ezequiel; Kobalz, Ursula; Wohlgemuth, Sandra; Scharff, Constance

    2016-07-01

    Mutations of the transcription factor FOXP2 cause a severe speech and language disorder. In songbirds, FoxP2 is expressed in the medium spiny neurons (MSNs) of the avian basal ganglia song nucleus, Area X, which is crucial for song learning and adult song performance. Experimental downregulation of FoxP2 in Area X affects spine formation, prevents neuronal plasticity induced by social context and impairs song learning. Direct target genes of FoxP2 relevant for song learning and song production are unknown. Here we show that a lentivirally mediated FoxP2 knockdown in Area X of zebra finches downregulates the expression of VLDLR, one of the two reelin receptors. Zebra finch FoxP2 binds to the promoter of VLDLR and activates it, establishing VLDLR as a direct FoxP2 target. Consistent with these findings, VLDLR expression is co-regulated with FoxP2 as a consequence of adult singing and during song learning. We also demonstrate that knockdown of FoxP2 affects glutamatergic transmission at the corticostriatal MSN synapse. These data raise the possibility that the regulatory relationship between FoxP2 and VLDLR guides structural plasticity towards the subset of FoxP2-positive MSNs in an activity dependent manner via the reelin pathway. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Differential insulin receptor substrate-1 (IRS1)-related modulation of neuropeptide Y and proopiomelanocortin expression in nondiabetic and diabetic IRS2-/- mice.

    PubMed

    Burgos-Ramos, Emma; González-Rodríguez, Agueda; Canelles, Sandra; Baquedano, Eva; Frago, Laura M; Revuelta-Cervantes, Jesús; Gómez-Ambrosi, Javier; Frühbeck, Gema; Chowen, Julie A; Argente, Jesús; Valverde, Angela M; Barrios, Vicente

    2012-03-01

    Insulin resistance and type 2 diabetes correlate with impaired leptin and insulin signaling. Insulin receptor substrate-2 deficient (IRS2(-/-)) mice are an accepted model for the exploration of alterations in these signaling pathways and their relationship with diabetes; however, disturbances in hypothalamic signaling and the effect on neuropeptides controlling food intake remain unclear. Our aim was to analyze how leptin and insulin signaling may differentially affect the expression of hypothalamic neuropeptides regulating food intake and hypothalamic inflammation in diabetic (D) and nondiabetic (ND) IRS2(-/-) mice. We analyzed the activation of leptin and insulin targets by Western blotting and their association by immunoprecipitation, as well as the mRNA levels of neuropeptide Y (NPY), proopiomelanocortin, and inflammatory markers by real-time PCR and colocalization of forkhead box protein O1 (FOXO1) and NPY by double immunohistochemistry in the hypothalamus. Serum leptin and insulin levels and hypothalamic Janus kinase 2 and signal transducer and activator of transcription factor 3 activation were increased in ND IRS2(-/-) mice. IRS1 levels and its association with Janus kinase 2 and p85 and protein kinase B activation were increased in ND IRS2(-/-). Increased FOXO1 positively correlated with NPY mRNA levels in D IRS2(-/-) mice, with FOXO1 showing mainly nuclear localization in D IRS2(-/-) and cytoplasmic in ND IRS2(-/-) mice. D IRS2(-/-) mice exhibited higher hypothalamic inflammation markers than ND IRS2(-/-) mice. In conclusion, differential activation of these pathways and changes in the expression of NPY and inflammation may exert a protective effect against hypothalamic deregulation of appetite, suggesting that manipulation of these targets could be of interest in the treatment of insulin resistance and type 2 diabetes.

  19. 64Cu-Labeled Repebody Molecules for Imaging of Epidermal Growth Factor Receptor-Expressing Tumors.

    PubMed

    Pyo, Ayoung; Yun, Misun; Kim, Hyeon Sik; Kim, Tae-Yoon; Lee, Joong-Jae; Kim, Jung Young; Lee, Sunwoo; Kwon, Seong Young; Bom, Hee-Seung; Kim, Hak-Sung; Kim, Dong-Yeon; Min, Jung-Joon

    2018-02-01

    The epidermal growth factor receptor (EGFR) is a member of the erbB family of receptors and is overexpressed in many tumor types. A repebody is a newly designed nonantibody protein scaffold for tumor targeting that contains leucine-rich repeat modules. In this study, 3 64 Cu-labeled anti-EGFR repebodies with different chelators were synthesized, and their biologic characteristics were assessed in cultured cells and tumor-bearing mice. Methods: Repebodies were synthesized with the chelators 2-( p -isothiocyanatobenzyl)-1,4,7-triazacyclononane- N,N',N,″- triacetic acid trihydrochloride ([ p -SCN-Bn]-NOTA), 2,2',2″-(10-(2-(2,5-dioxopyrrolidin-1-yloxy)-2-oxoethyl)-1,4,7,10-tetraazacyclododecane-1,4,7-triyl) triacetic acid (DOTA- N -hydroxysuccinimide ester), or 1-( p -isothiocyanatobenzyl)diethylenetriamine pentaacetic acid trihydrochloride ([ p -SCN-Bn]-DTPA) in 1.0 M NaHCO 3 buffer (pH 9.2) for 24 h. Purified NOTA-, DOTA-, and DTPA-conjugated repebody were radiolabeled with 64 Cu in 0.1 M NH 4 OAc buffer (pH 5.5). To compare the EGFR-binding affinities of the repebodies, cellular uptake studies were performed with the human non-small cell lung cancer cell line H1650 (high expression of EGFR) and the human colon adenocarcinoma cell line SW620 (low expression of EGFR). Biodistribution and small-animal PET imaging studies were performed using H1650 tumor-bearing mice. Results: Radiochemical yields of the 64 Cu-labeled repebodies were approximately 70%-80%. Cellular uptake of the NOTA-, DOTA-, and DTPA-repebodies was over 4-fold higher in H1650 cells than in SW620 cells at 1 h. The 3 repebodies had accumulated specifically in H1650 tumor-bearing nude mice by 1 h after intravenous injection and were retained for over 24 h, as measured by the percentage injected dose per gram of tissue (%ID/g). Tumor uptake of all repebodies increased from 1 to 6 h (at 1 h, 6.28, 8.46, and 6.91 %ID/g for NOTA-, DOTA-, and DTPA-repebody, respectively; at 6 h, 9.4, 8.28, and 10.1 %ID

  20. Sustained expression of steroid receptor coactivator SRC-2/TIF-2 is associated with better prognosis in malignant pleural mesothelioma.

    PubMed

    Jennings, Cormac J; O'Grady, Anthony; Cummins, Robert; Murer, Bruno; Al-Alawi, Mazen; Madden, Stephen F; Mutti, Luciano; Harvey, Brian J; Thomas, Warren; Kay, Elaine W

    2012-01-01

    Estrogen receptor beta (ERβ) overexpression by malignant pleural mesothelioma (MPM) tumor cells correlates with enhanced patient survival. ER-regulated transcription is mediated by the p160 family of steroid receptor coactivators (SRCs), and SRC isoform overexpression is associated with worse prognosis in many steroid-related malignancies. The aim of this study was to establish whether SRC isoform expression varied between individual MPM tumors with positive or negative prognostic significance. Immunohistochemical analysis of tumor biopsies from 89 subjects with confirmed histological diagnosis of MPM and biopsies from 3 normal control subjects was performed to detect the expression of SRC-1, SRC-2 (TIF-2), SRC-3 (AIB-1), and ERβ. Allred scores for expression of ERβ and each of the SRCs were determined, and Kaplan-Meier survival curves were calculated to correlate biomarker expression, gender, and histology type with postdiagnosis survival. ERβ and all the SRCs were expressed at high levels in normal pleural mesothelium, and expression of each biomarker was reduced or lost in a subset of the MPM subjects; however, postdiagnosis survival only significantly correlated with TIF-2 expression. Low or intermediate expression of TIF-2 correlated with reduced median postdiagnosis survival (9 months) compared with those subjects whose tumors highly expressed TIF-2 (20 months) (p = 0.036, log-rank test). Maintained high expression of TIF-2 in tumor cells is a positive prognostic indicator for postdiagnosis survival in patients with confirmed MPM. This is the first clinical study to correlate high TIF-2 expression with improved patient prognosis in any malignancy.

  1. Pimecrolimus Enhances TLR2/6-Induced Expression of Antimicrobial Peptides in Keratinocytes

    PubMed Central

    Büchau, Amanda S.; Schauber, Jürgen; Hultsch, Thomas; Stuetz, Anton; Gallo, Richard L.

    2009-01-01

    Calcineurin inhibitors are potent inhibitors of T-cell-receptor mediated activation of the adaptive immune system. The effects of this class of drug on the innate immune response system are not known. Keratinocytes are essential to innate immunity in skin and rely on toll-like receptors (TLRs) and antimicrobial peptides to appropriately recognize and respond to injury or microbes. In this study we examined the response of cultured human keratinocytes to pimecrolimus. We observed that pimecrolimus enhances distinct expression of cathelicidin, CD14, and human β-defensin-2 and β-defensin-3 in response to TLR2/6 ligands. Some of these responses were further enhanced by 1,25 vitamin D3. Pimecrolimus also increased the functional capacity of keratinocytes to inhibit growth of Staphylococcus aureusand decreased TLR2/6-induced expression of IL-10 and IL-1β. Furthermore, pimecrolimus inhibited nuclear translocation of NFAT and NF-κB in keratinocytes. These observations uncover a previously unreported function for pimecrolimus in cutaneous innate host defense. PMID:18496569

  2. FGF-2 deficiency does not influence FGF ligand and receptor expression during development of the nigrostriatal system.

    PubMed

    Ratzka, Andreas; Baron, Olga; Grothe, Claudia

    2011-01-01

    Secreted proteins of the fibroblast growth factor (FGF) family play important roles during development of various organ systems. A detailed knowledge of their temporal and spatial expression profiles, especially of closely related FGF family members, are essential to further identification of specific functions in distinct tissues. In the central nervous system dopaminergic neurons of the substantia nigra and their axonal projections into the striatum progressively degenerate in Parkinson's disease. In contrast, FGF-2 deficient mice display increased numbers of dopaminergic neurons. In this study, we determined the expression profiles of all 22 FGF-ligands and 10 FGF-receptor isoforms, in order to clarify, if FGF-2 deficiency leads to compensatory up-regulation of other FGFs in the nigrostriatal system. Three tissues, ventral mesencephalon (VM), striatum (STR) and as reference tissue spinal cord (SC) of wild-type and FGF-2 deficient mice at four developmental stages E14.5, P0, P28, and adult were comparatively analyzed by quantitative RT-PCR. As no differences between the genotypes were observed, a compensatory up-regulation can be excluded. Moreover, this analysis revealed that the majority of FGF-ligands (18/22) and FGF-receptors (9/10) are expressed during normal development of the nigrostriatal system and identified dynamic changes for some family members. By comparing relative expression level changes to SC reference tissue, general alterations in all 3 tissues, such as increased expression of FGF-1, -2, -22, FgfR-2c, -3c and decreased expression of FGF-13 during postnatal development were identified. Further, specific changes affecting only one tissue, such as increased FGF-16 (STR) or decreased FGF-17 (VM) expression, or two tissues, such as decreased expression of FGF-8 (VM, STR) and FGF-15 (SC, VM) were found. Moreover, 3 developmentally down-regulated FGFs (FGF-8b, FGF-15, FGF-17a) were functionally characterized by plasmid-based over-expression in

  3. Angiotensin II AT1 receptor alters ACE2 activity, eNOS expression and CD44-hyaluronan interaction in rats with hypertension and myocardial fibrosis.

    PubMed

    Bai, Feng; Pang, Xue-Fen; Zhang, Li-Hui; Wang, Ning-Ping; McKallip, Robert J; Garner, Ronald E; Zhao, Zhi-Qing

    2016-05-15

    This study tested the hypothesis that angiotensin II (Ang II) AT1 receptor is involved in development of hypertension and cardiac fibrosis via modifying ACE2 activity, eNOS expression and CD44-hyaluronan interaction. Male Sprague-Dawley rats were subjected to Ang II infusion (500ng/kg/min) using osmotic minipumps up to 4weeks and the AT1 receptor blocker, telmisartan was administered by gastric gavage (10mg/kg/day) during Ang II infusion. Our results indicated that Ang II enhances AT1 receptor, downregulates AT2 receptor, ACE2 activity and eNOS expression, and increases CD44 expression and hyaluronidase activity, an enzyme for hyaluronan degradation. Further analyses revealed that Ang II increases blood pressure and augments vascular/interstitial fibrosis. Comparison of the Ang II group, treatment with telmisartan significantly increased ACE2 activity and eNOS expression in the intracardiac vessels and intermyocardium. These changes occurred in coincidence with decreased blood pressure. Furthermore, the locally-expressed AT1 receptor was downregulated, as evidenced by an increased ratio of the AT2 over AT1 receptor (1.4±0.4% vs. 0.4±0.1% in Ang II group, P<0.05). Along with these modulations, telmisartan inhibited membrane CD44 expression and hyaluronidase activity, decreased populations of macrophages and myofibroblasts, and reduced expression of TGFβ1 and Smads. Collagen I synthesis and tissue fibrosis were attenuated as demonstrated by the less extensive collagen-rich area. These results suggest that the AT1 receptor is involved in development of hypertension and cardiac fibrosis. Selective activating ACE2/eNOS and inhibiting CD44/HA interaction might be considered as the therapeutic targets for attenuating Ang II induced deleterious cardiovascular effects. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Expression analysis of G Protein-Coupled Receptors in mouse macrophages

    PubMed Central

    Lattin, Jane E; Schroder, Kate; Su, Andrew I; Walker, John R; Zhang, Jie; Wiltshire, Tim; Saijo, Kaoru; Glass, Christopher K; Hume, David A; Kellie, Stuart; Sweet, Matthew J

    2008-01-01

    Background Monocytes and macrophages express an extensive repertoire of G Protein-Coupled Receptors (GPCRs) that regulate inflammation and immunity. In this study we performed a systematic micro-array analysis of GPCR expression in primary mouse macrophages to identify family members that are either enriched in macrophages compared to a panel of other cell types, or are regulated by an inflammatory stimulus, the bacterial product lipopolysaccharide (LPS). Results Several members of the P2RY family had striking expression patterns in macrophages; P2ry6 mRNA was essentially expressed in a macrophage-specific fashion, whilst P2ry1 and P2ry5 mRNA levels were strongly down-regulated by LPS. Expression of several other GPCRs was either restricted to macrophages (e.g. Gpr84) or to both macrophages and neural tissues (e.g. P2ry12, Gpr85). The GPCR repertoire expressed by bone marrow-derived macrophages and thioglycollate-elicited peritoneal macrophages had some commonality, but there were also several GPCRs preferentially expressed by either cell population. Conclusion The constitutive or regulated expression in macrophages of several GPCRs identified in this study has not previously been described. Future studies on such GPCRs and their agonists are likely to provide important insights into macrophage biology, as well as novel inflammatory pathways that could be future targets for drug discovery. PMID:18442421

  5. Expression analysis of G Protein-Coupled Receptors in mouse macrophages.

    PubMed

    Lattin, Jane E; Schroder, Kate; Su, Andrew I; Walker, John R; Zhang, Jie; Wiltshire, Tim; Saijo, Kaoru; Glass, Christopher K; Hume, David A; Kellie, Stuart; Sweet, Matthew J

    2008-04-29

    Monocytes and macrophages express an extensive repertoire of G Protein-Coupled Receptors (GPCRs) that regulate inflammation and immunity. In this study we performed a systematic micro-array analysis of GPCR expression in primary mouse macrophages to identify family members that are either enriched in macrophages compared to a panel of other cell types, or are regulated by an inflammatory stimulus, the bacterial product lipopolysaccharide (LPS). Several members of the P2RY family had striking expression patterns in macrophages; P2ry6 mRNA was essentially expressed in a macrophage-specific fashion, whilst P2ry1 and P2ry5 mRNA levels were strongly down-regulated by LPS. Expression of several other GPCRs was either restricted to macrophages (e.g. Gpr84) or to both macrophages and neural tissues (e.g. P2ry12, Gpr85). The GPCR repertoire expressed by bone marrow-derived macrophages and thioglycollate-elicited peritoneal macrophages had some commonality, but there were also several GPCRs preferentially expressed by either cell population. The constitutive or regulated expression in macrophages of several GPCRs identified in this study has not previously been described. Future studies on such GPCRs and their agonists are likely to provide important insights into macrophage biology, as well as novel inflammatory pathways that could be future targets for drug discovery.

  6. Dietary Lignan Intake and Androgen Receptor Expression in Breast Tumors

    PubMed Central

    Williams, AnnaLynn M.; Bonner, Matthew; Ochs-Balcom, Heather M.; Hwang, Helena; Morrison, Carl; McCann, Susan E.

    2014-01-01

    Purpose Lignans, a class of phytoestrogen commonly found in the Western diet, have been linked to decreased breast cancer risks in epidemiologic studies. Similar to estrogen receptors, the androgen receptor (AR), a prognostic factor in breast tumors, may be affected by lignans. However, few studies have investigated this link in the context of breast cancer etiology. We evaluated the relationship between dietary lignan intake and androgen receptor expression in incident breast tumors. Methods Tumor tissue, epidemiological, and clinical data were collected from 216 women with incident, primary, histologically-confirmed breast cancer enrolled in the Roswell Park Cancer Institute (RPCI) Data Bank and BioRepository (DBBR). On average, three tumor cores from each participant were assembled into a Tissue MicroArray (TMA). After immunohistochemical staining, a trained RPCI pathologist determined AR status of each core. Lignan intake was calculated from a food frequency questionnaire collected upon enrollment into the DBBR. Results We observed a weak positive association between dietary lignans and AR expression (β (SE) 27.6 (17.0), p 0.10) and there was no significant difference in lignan intake across categories of AR expression (p=0.09, R2 =0.35). Conclusion Our results do not support a clear relationship between dietary lignan intake and AR expression. This investigation is the first, to our knowledge, to examine dietary lignan intake and AR expression in breast tumors. Further research is needed within a larger, more representative sample to determine if lignan intake is truly associated with androgen receptor expression. PMID:25471060

  7. Quantitative measurements of tumoral p95HER2 protein expression in metastatic breast cancer patients treated with trastuzumab: independent validation of the p95HER2 clinical cutoff.

    PubMed

    Duchnowska, Renata; Sperinde, Jeff; Chenna, Ahmed; Haddad, Mojgan; Paquet, Agnes; Lie, Yolanda; Weidler, Jodi M; Huang, Weidong; Winslow, John; Jankowski, Tomasz; Czartoryska-Arłukowicz, Bogumiła; Wysocki, Piotr J; Foszczyńska-Kłoda, Małgorzata; Radecka, Barbara; Litwiniuk, Maria M; Zok, Jolanta; Wiśniewski, Michał; Zuziak, Dorota; Biernat, Wojciech; Jassem, Jacek

    2014-05-15

    P95HER2 (p95) is a truncated form of the HER2, which lacks the trastuzumab-binding site and contains a hyperactive kinase domain. Previously, an optimal clinical cutoff of p95 expression for progression-free survival (PFS) and overall survival (OS) was defined using a quantitative VeraTag assay (Monogram Biosciences) in a training set of trastuzumab-treated metastatic breast cancer (MBC) patients. In the current study, the predictive value of the p95 VeraTag assay cutoff established in the training set was retrospectively validated for PFS and OS in an independent series of 240 trastuzumab-treated MBC patients from multiple institutions. In the subset of 190 tumors assessed as HER2-total (H2T)-positive using the quantitative HERmark assay (Monogram Biosciences), p95 VeraTag values above the predefined cutoff correlated with shorter PFS (HR = 1.43; P = 0.039) and shorter OS (HR = 1.94; P = 0.0055) where both outcomes were stratified by hormone receptor status and tumor grade. High p95 expression correlated with shorter PFS (HR = 2.41; P = 0.0003) and OS (HR = 2.57; P = 0.0025) in the hormone receptor-positive subgroup of patients (N = 78), but not in the hormone receptor-negative group. In contrast with the quantitative p95 VeraTag measurements, p95 immunohistochemical expression using the same antibody was not significantly correlated with outcomes. The consistency in the p95 VeraTag cutoff across different cohorts of patients with MBC treated with trastuzumab justifies additional studies using blinded analyses in larger series of patients. ©2014 American Association for Cancer Research.

  8. QishenYiqi Dripping Pill Improves Heart Failure by Up-Regulation of β2-Adrenergic Receptor Expression.

    PubMed

    Sun, Junfeng; Qian, Hua; Li, Xiaoguang; Tang, Xianling

    2017-03-01

    QishenYiqi Dripping Pill (QYDP) is a Chinese herbal medicine that originally was used for the treatment of coronary artery disease. Recently, QYDP was used as a complementary treatment for heart failure (HF) in China. An HF rat model was used to clarify the possible therapeutic effects of QYDP on HF. The HF rats were allocated to two groups, HF and HF+QYDP, while normal rats served as a negative control. Cardiac functions were evaluated echocardiographically and hemodynamically. Cardiac apoptosis and the expression of β-adrenergic receptors were also investigated. Compared to the HF group, rats in the HF+QYDP group had a significantly higher fraction shortening (p<0.05), ejection fraction (p<0.05), left ventricular systolic pressure (p<0.05), maximum positive derivatives of left ventricular pressure (p<0.05), maximum negative derivatives of left ventricular pressure (p<0.05), and β2-adrenergic receptor expression (p<0.05), and lower left ventricular end-diastolic pressure (p<0.05) and apoptotic index (p<0.05). The study results indicated that QYDP could efficiently improve HF, possibly by an inhibition of cardiac apoptosis via the β2-adrenergic receptor signaling pathway. Hence, QYDP might be a promising candidate drug for HF therapy.

  9. Structural interpretation of P2X receptor mutagenesis studies on drug action.

    PubMed

    Evans, Richard J

    2010-11-01

    P2X receptors for ATP are ligand gated cation channels that form from the trimeric assembly of subunits with two transmembrane segments, a large extracellular ligand binding loop, and intracellular amino and carboxy termini. The receptors are expressed throughout the body, involved in functions ranging from blood clotting to inflammation, and may provide important targets for novel therapeutics. Mutagenesis based studies have been used to develop an understanding of the molecular basis of their pharmacology with the aim of developing models of the ligand binding site. A crystal structure for the zebra fish P2X4 receptor in the closed agonist unbound state has been published recently, which provides a major advance in our understanding of the receptors. This review gives an overview of mutagenesis studies that have led to the development of a model of the ATP binding site, as well as identifying residues contributing to allosteric regulation and antagonism. These studies are discussed with reference to the crystal to provide a structural interpretation of the molecular basis of drug action. © 2010 The Author. British Journal of Pharmacology © 2010 The British Pharmacological Society.

  10. Synthesis of [(Ca1-xSrx)2-2y](Ti2-2yLi2y)Si2yO6-y Ceramic and its Application in Efficient Plasma Decomposition of CO2

    NASA Astrophysics Data System (ADS)

    Li, Ruixing; Tang, Qing; Yin, Shu; Sato, Tsugio

    According to both the first principle and materials chemistry, a method for fabricating [(Ca1-xSrx)2-2y](Ti2-2yLi2y)Si2yO6-y ceramic was investigated. It was considered that the sintering was promoted by self-accelerated diffusion due to the formation of point defects caused by doping with Li2Si2O5. Consequently, a concept of non-stoichiometrically activated sintering, which was enhanced by point defects without the help of a grain boundary phase, was systematically studied in the Ca1-xSrxTiO3-Li2Si2O5 system. The mechanical and dielectric properties of [(Ca1-xSrx)2-2y](Ti2-2yLi2y)Si2yO6-y were greatly enhanced by adding Li2Si2O5. To improve CO2 decomposition activity, [(Ca1-xSrx)2-2y](Ti2-2yLi2y)Si2yO6-y, which possesses both high permittivity and high dielectric strength was used as a dielectric barrier to decompose CO2 by dielectric barrier discharges (DBDs) plasma without using any catalyst and auxiliary substance. It successfully generated DBDs plasma and the CO2 conversion was much higher than that using an alumina or a silica glass barrier which was widely used as the dielectric barrier in previous studies.

  11. Elucidation of the Binding Mode of the Carboxyterminal Region of Peptide YY to the Human Y2 Receptor.

    PubMed

    Xu, Bo; Vasile, Silvana; Østergaard, Søren; Paulsson, Johan F; Pruner, Jasna; Åqvist, Johan; Wulff, Birgitte S; Gutiérrez-de-Terán, Hugo; Larhammar, Dan

    2018-04-01

    Understanding the agonist-receptor interactions in the neuropeptide Y (NPY)/peptide YY (PYY) signaling system is fundamental for the design of novel modulators of appetite regulation. We report here the results of a multidisciplinary approach to elucidate the binding mode of the native peptide agonist PYY to the human Y 2 receptor, based on computational modeling, peptide chemistry and in vitro pharmacological analyses. The preserved binding orientation proposed for full-length PYY and five analogs, truncated at the amino terminus, explains our pharmacological results where truncations of the N-terminal proline helix showed little effect on peptide affinity. This was followed by receptor mutagenesis to investigate the roles of several receptor positions suggested by the modeling. As a complement, PYY-(3-36) analogs were synthesized with modifications at different positions in the common PYY/NPY C-terminal fragment ( 32 TRQRY 36 -amide). The results were assessed and interpreted by molecular dynamics and Free Energy Perturbation (FEP) simulations of selected mutants, providing a detailed map of the interactions of the PYY/NPY C-terminal fragment with the transmembrane cavity of the Y 2 receptor. The amidated C-terminus would be stabilized by polar interactions with Gln288 6.55 and Tyr219 5.39 , while Gln130 3.32 contributes to interactions with Q 34 in the peptide and T 32 is close to the tip of TM7 in the receptor. This leaves the core, α -helix of the peptide exposed to make potential interactions with the extracellular loops. This model agrees with most experimental data available for the Y 2 system and can be used as a basis for optimization of Y 2 receptor agonists. Copyright © 2018 by The Author(s).

  12. Pancreatic polypeptide and its central Y4 receptors are essential for cued fear extinction and permanent suppression of fear

    PubMed Central

    Verma, D; Hörmer, B; Bellmann‐Sickert, K; Thieme, V; Beck‐Sickinger, A G; Herzog, H; Sperk, G

    2016-01-01

    Background and purpose Avoiding danger and finding food are closely related behaviours that are essential for surviving in a natural environment. Growing evidence supports an important role of gut‐brain peptides in modulating energy homeostasis and emotional‐affective behaviour. For instance, postprandial release of pancreatic polypeptide (PP) reduced food intake and altered stress‐induced motor activity and anxiety by activating central Y4 receptors. Experimental approach We characterized [K30(PEG2)]hPP2‐36 as long‐acting Y4 receptor agonist and injected it peripherally into wildtype and Y4 receptor knockout (Y4KO) C57Bl/6NCrl mice to investigate the role of Y4 receptors in fear conditioning. Extinction and relapse after extinction was measured by spontaneous recovery and renewal. Key results The Y4KO mice showed impaired cued and context fear extinction without affecting acquisition, consolidation or recall of fear. Correspondingly, peripheral injection of [K30(PEG2)]hPP2‐36 facilitated extinction learning upon fasting, an effect that was long‐lasting and generalized. Furthermore, peripherally applied [K30(PEG2)]hPP2‐36 before extinction inhibited the activation of orexin‐expressing neurons in the lateral hypothalamus in WT, but not in Y4KO mice. Conclusions and implications Our findings suggests suppression of excessive arousal as a possible mechanism for the extinction‐promoting effect of central Y4 receptors and provide strong evidence that fear extinction requires integration of vegetative stimuli with cortical and subcortical information, a process crucially depending on Y4 receptors. Importantly, in the lateral hypothalamus two peptide systems, PP and orexin, interact to generate an emotional response adapted to the current homeostatic state. Detailed investigations of feeding‐relevant genes may thus deliver multiple intervention points for treating anxiety‐related disorders. PMID:26844810

  13. Structure-activity relationship of (N)-Methanocarba phosphonate analogues of 5'-AMP as cardioprotective agents acting through a cardiac P2X receptor.

    PubMed

    Kumar, T Santhosh; Zhou, Si-Yuan; Joshi, Bhalchandra V; Balasubramanian, Ramachandran; Yang, Tiehong; Liang, Bruce T; Jacobson, Kenneth A

    2010-03-25

    P2X receptor activation protects in heart failure models. MRS2339 3, a 2-chloro-AMP derivative containing a (N)-methanocarba (bicyclo[3.1.0]hexane) system, activates this cardioprotective channel. Michaelis-Arbuzov and Wittig reactions provided phosphonate analogues of 3, expected to be stable in vivo due to the C-P bond. After chronic administration via a mini-osmotic pump (Alzet), some analogues significantly increased intact heart contractile function in calsequestrin-overexpressing mice (genetic model of heart failure) compared to vehicle-infused mice (all inactive at the vasodilatory P2Y(1) receptor). Two phosphonates, (1'S,2'R,3'S,4'R,5'S)-4'-(6-amino-2-chloropurin-9-yl)-2',3'-(dihydroxy)-1'-(phosphonomethylene)-bicyclo[3.1.0]hexane, 4 (MRS2775), and its homologue 9 (MRS2935), both 5'-saturated, containing a 2-Cl substitution, improved echocardiography-derived fractional shortening (20.25% and 19.26%, respectively, versus 13.78% in controls), while unsaturated 5'-extended phosphonates, all 2-H analogues, and a CH(3)-phosphonate were inactive. Thus, chronic administration of nucleotidase-resistant phosphonates conferred a beneficial effect, likely via cardiac P2X receptor activation. Thus, we have greatly expanded the range of carbocyclic nucleotide analogues that represent potential candidates for the treatment of heart failure.

  14. Acemannan increases NF-κB/DNA binding and IL-6/-8 expression by selectively binding Toll-like receptor-5 in human gingival fibroblasts.

    PubMed

    Thunyakitpisal, Pasutha; Ruangpornvisuti, Vithaya; Kengkwasing, Pattrawadee; Chokboribal, Jaroenporn; Sangvanich, Polkit

    2017-04-01

    Acemannan, an acetylated polymannose from Aloe vera, has immunomodulatory effects. We investigated whether acemannan induces IL-6 and -8 expression and NF-κB/DNA binding in human gingival fibroblasts. IL-6 and -8 expression levels were assessed via RT-PCR and ELISA. The NF-κB p50/p65-DNA binding was determined. The structures of acemannan mono-pentamers and Toll-like receptor 5 (TLR5) were simulated. The binding energies between acemannan and TLR5 were identified. We found that acemannan significantly stimulated IL-6/-8 expression at both the mRNA and protein level and significantly increased p50/DNA binding. Preincubation with an anti-TLR5 neutralizing antibody abolished acemannan-induced IL-6/-8 expression and p50/DNA binding, and co-incubation of acemannan with Bay11-7082, a specific NF- κB inhibitor, abolished IL-6/-8 expression. The computer modeling indicated that monomeric/dimeric single stranded acemannan molecules interacted with the TLR5 flagellin recognition sites with a high binding affinity. We conclude that acemannan induces IL-6/-8 expression, and p50/DNA binding in gingival fibroblasts, at least partly, via a TLR5/NF-κB-dependent signaling pathway. Furthermore, acemannan selectively binds with TLR5 ectodomain flagellin recognition sites. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Low-affinity binding in cis to P2Y2R mediates force-dependent integrin activation during hantavirus infection

    PubMed Central

    Bondu, Virginie; Wu, Chenyu; Cao, Wenpeng; Simons, Peter C.; Gillette, Jennifer; Zhu, Jieqing; Erb, Laurie; Zhang, X. Frank; Buranda, Tione

    2017-01-01

    Pathogenic hantaviruses bind to the plexin-semaphorin-integrin (PSI) domain of inactive, β3 integrins. Previous studies have implicated a cognate cis interaction between the bent conformation β5/β3 integrins and an arginine-glycine-aspartic acid (RGD) sequence in the first extracellular loop of P2Y2R. With single-molecule atomic force microscopy, we show a specific interaction between an atomic force microscopy tip decorated with recombinant αIIbβ3 integrins and (RGD)P2Y2R expressed on cell membranes. Mutation of the RGD sequence to RGE in the P2Y2R removes this interaction. Binding of inactivated and fluorescently labeled Sin Nombre virus (SNV) to the integrin PSI domain stimulates higher affinity for (RGD)P2Y2R on cells, as measured by an increase in the unbinding force. In CHO cells, stably expressing αIIbβ3 integrins, virus engagement at the integrin PSI domain, recapitulates physiologic activation of the integrin as indicated by staining with the activation-specific mAB PAC1. The data also show that blocking of the Gα13 protein from binding to the cytoplasmic domain of the β3 integrin prevents outside-in signaling and infection. We propose that the cis interaction with P2Y2R provides allosteric resistance to the membrane-normal motion associated with the switchblade model of integrin activation, where the development of tensile force yields physiological integrin activation. PMID:28835374

  16. Changes in neuropeptide Y receptors and pro-opiomelanocortin in the anorexia (anx/anx) mouse hypothalamus.

    PubMed

    Broberger, C; Johansen, J; Brismar, H; Johansson, C; Schalling, M; Hökfelt, T

    1999-08-15

    The pro-opiomelanocortinergic (POMCergic) system originating in the hypothalamic arcuate nucleus extends projections widely over the brain and has been shown to be intricately linked and parallel to the arcuate neuropeptide Y (NPY) system. Both NPY and POMC-derived peptides (melanocortins) have been strongly implicated in the control of feeding behavior, with the former exerting orexigenic effects and the latter having anorexigenic properties. Mice homozygous for the lethal anorexia (anx) mutation are hypophagic, emaciated, and exhibit anomalous processing of NPY exclusively in the arcuate nucleus, providing an interesting model to study NPY-POMC interactions. In the present study, several morphological markers were used to investigate the histochemistry and morphology of the POMC system in anx/anx mice. In situ hybridization demonstrated decreased numbers of POMC mRNA-expressing neurons in the anx/anx arcuate nucleus. In parallel, mRNA levels for both the NPY Y1 and Y5 receptors, which are expressed in POMC neurons, were decreased. Also, expression of the NPY Y2 autoreceptor was attenuated. Immunohistochemistry using antibodies against adrenocorticotropic hormone to demonstrate POMC cell bodies, against alpha-melanocyte-stimulating hormone to demonstrate axonal projections and against the NPY Y1 receptor to demonstrate dendritic arborizations, showed strikingly decreased immunoreactivities for all these markers. The present data suggest that degeneration of the arcuate POMC system is a feature characteristic of the anx/anx mouse. The possible relationship to the NPYergic phenotype of this animal is discussed.

  17. Dopamine D2-receptor activation elicits akinesia, rigidity, catalepsy, and tremor in mice expressing hypersensitive α4 nicotinic receptors via a cholinergic-dependent mechanism

    PubMed Central

    Zhao-Shea, Rubing; Cohen, Bruce N.; Just, Herwig; McClure-Begley, Tristan; Whiteaker, Paul; Grady, Sharon R.; Salminen, Outi; Gardner, Paul D.; Lester, Henry A.; Tapper, Andrew R.

    2010-01-01

    Recent studies suggest that high-affinity neuronal nicotinic acetylcholine receptors (nAChRs) containing α4 and β2 subunits (α4β2*) functionally interact with G-protein-coupled dopamine (DA) D2 receptors in basal ganglia. We hypothesized that if a functional interaction between these receptors exists, then mice expressing an M2 point mutation (Leu9′Ala) rendering α4 nAChRs hypersensitive to ACh may exhibit altered sensitivity to a D2-receptor agonist. When challenged with the D2R agonist, quinpirole (0.5–10 mg/kg), Leu9′Ala mice, but not wild-type (WT) littermates, developed severe, reversible motor impairment characterized by rigidity, catalepsy, akinesia, and tremor. While striatal DA tissue content, baseline release, and quinpirole-induced DA depletion did not differ between Leu9′Ala and WT mice, quinpirole dramatically increased activity of cholinergic striatal interneurons only in mutant animals, as measured by increased c-Fos expression in choline acetyltransferase (ChAT)-positive interneurons. Highlighting the importance of the cholinergic system in this mouse model, inhibiting the effects of ACh by blocking muscarinic receptors, or by selectively activating hypersensitive nAChRs with nicotine, rescued motor symptoms. This novel mouse model mimics the imbalance between striatal DA/ACh function associated with severe motor impairment in disorders such as Parkinson’s disease, and the data suggest that a D2R–α4*-nAChR functional interaction regulates cholinergic interneuron activity.—Zhao-Shea, R., Cohen, B. N., Just, H., McClure-Begley, T., Whiteaker, P., Grady, S. R., Salminen, O., Gardner, P. D., Lester, H. A., Tapper, A. R. Dopamine D2-receptor activation elicits akinesia, rigidity, catalepsy, and tremor in mice expressing hypersensitive α4 nicotinic receptors via a cholinergic-dependent mechanism. PMID:19720621

  18. Forkhead box-P3+ regulatory T cells and toll-like receptor 2 co-expression in oral squamous cell carcinoma.

    PubMed

    Hussaini, H M; Parachuru, V P B; Seymour, G J; Rich, A M

    2017-04-01

    The function of forkhead box-P3 (FoxP3) regulatory T cells (Treg) and toll-like receptor (TLR)2 protein in the oral cancer microenvironment is not fully understood, but evidence from other malignancies suggests it is likely they are involved with tumour development and progression. The aim of this study was to investigate the distribution of FoxP3 + cells, TLR2 + cells and double-labelled FoxP3 + TLR2 + immune cells in oral squamous cell carcinoma (OSCC), using immunohistochemistry (IHC) and immunofluorescence (IF). 25 archival cases of OSCC were immunostained with anti-FoxP3 and anti-TLR2 antibodies. Inflamed hyperplastic oral mucosal tissues were used as controls. The proportion of single-labelled, double-labelled and negative cells was determined. A higher frequency of double-labelled FoxP3 + TLR2 + Tregs was observed within the immune cells of OSCC compared to inflamed controls using IHC (p<0.05). Cell-to-cell contact between single-stained TLR2 + cells and FoxP3 + cells was noted. Double IF studies validated demonstration of co-expression of FoxP3 + /TLR2 + immune cells in OSCC. The presence of FoxP3 + TLR2 + cells within the OSCC microenvironment may represent a dendritic cell-dependent pathway capable of inhibiting Treg suppressive activity, potentially enhancing the anti-tumour response. Modulation of TLR2-Treg interactions should be further explored to determine if they have a role in the therapeutic management of OSCC. Copyright © 2017 Elsevier GmbH. All rights reserved.

  19. Expression of protease activated receptor-2 (PAR-2) in central airways of smokers and non-smokers

    PubMed Central

    Miotto, D; Hollenberg, M; Bunnett, N; Papi, A; Braccioni, F; Boschetto, P; Rea, F; Zuin, A; Geppetti, P; Saetta, M; Maestrelli, P; Fabbri, L; Mapp, C

    2002-01-01

    Background: Protease activated receptor-2 (PAR-2) is a transmembrane G protein coupled receptor preferentially activated by trypsin and tryptase. The protease activated receptors play an important role in most components of injury responses including cell proliferation, migration, matrix remodelling, and inflammation. Cigarette smoking causes an inflammatory process in the central airways, peripheral airways, lung parenchyma, and adventitia of pulmonary arteries. Methods: To quantify the expression of PAR-2 in the central airways of smokers and non-smokers, surgical specimens obtained from 30 subjects undergoing lung resection for localised pulmonary lesions (24 with a history of cigarette smoking and six non-smoking control subjects) were examined. Central airways were immunostained with an antiserum specific for PAR-2 and PAR-2 expression was quantified using light microscopy and image analysis. Results: PAR-2 expression was found in bronchial smooth muscle, epithelium, glands, and in the endothelium and smooth muscle of bronchial vessels. PAR-2 expression was similar in the central airways of smokers and non-smokers. When smokers were divided according to the presence of symptoms of chronic bronchitis and chronic airflow limitation, PAR-2 expression was increased in smooth muscle (median 3.8 (interquartile range 2.9–5.8) and 1.4 (1.07–3.4) respectively); glands (33.3 (18.2–43.8) and 16.2 (11.5–22.2), respectively); and bronchial vessels (54.2 (48.7–56.8) and 40.0 (36–40.4), respectively) of smokers with symptoms of chronic bronchitis with normal lung function compared with smokers with chronic airflow limitation (COPD), but the increase was statistically significant (p<0.005) only for bronchial vessels. Conclusions: PAR-2 is present in bronchial smooth muscle, glands, and bronchial vessels of both smokers and non-smokers. An increased expression of PAR-2 was found in bronchial vessels of patients with bronchitis compared with those with COPD. PMID

  20. Lower expressions of the human bitter taste receptor TAS2R in smokers: reverse transcriptase-polymerase chain reaction analysis.

    PubMed

    Aoki, Mieko; Takao, Tetsuya; Takao, Kyoichi; Koike, Fumihiko; Suganuma, Narufumi

    2014-01-01

    Despite the fact that smokers have deficit in detecting taste, particularly bitter taste, no study has investigated its biological correlate. In this context, we compared the expression of the bitter taste receptor gene, taste 2 receptor (TAS2R) in the tongues of smokers and non-smokers. Tissue samples were collected from the lateral portion of the tongues of 22 smokers and 22 age- and gender-matched healthy volunteers (19 males and three females) with no history of smoking. Reverse transcriptase-polymerase chain reaction was used to examine the expression of TAS2R in the two groups, and the effect of aging on TAS2R expression was also assessed. TAS2R expression was significantly lower among smokers than non-smokers (t = 6.525, P < .0001, 11.36 ± 6.0 vs. 2.09 ± 2.8, mean ± SD, non-smokers vs. smokers). Further, a positive correlation between age and expression of TAS2R was observed in non-smokers (r = .642, P = .001), but not smokers (r = .124, P = .584). This correlation difference was significant (Z = 1.96, P = .0496). Smokers showed a significantly lower expression of the bitter taste receptor gene than non-smokers, which is potentially caused by their inability to acquire such receptors with age because of cigarette smoking, in contrast to non-smokers.

  1. Expression of the cytochrome P450s, CYP6P3 and CYP6M2 are significantly elevated in multiple pyrethroid resistant populations of Anopheles gambiae s.s. from Southern Benin and Nigeria

    PubMed Central

    Djouaka, Rousseau F; Bakare, Adekunle A; Coulibaly, Ousmane N; Akogbeto, Martin C; Ranson, Hilary; Hemingway, Janet; Strode, Clare

    2008-01-01

    Background Insecticide resistance in Anopheles mosquitoes is threatening the success of malaria control programmes. This is particularly true in Benin where pyrethroid resistance has been linked to the failure of insecticide treated bed nets. The role of mutations in the insecticide target sites in conferring resistance has been clearly established. In this study, the contribution of other potential resistance mechanisms was investigated in Anopheles gambiae s.s. from a number of localities in Southern Benin and Nigeria. The mosquitoes were sampled from a variety of breeding sites in a preliminary attempt to investigate the role of contamination of mosquito breeding sites in selecting for resistance in adult mosquitoes. Results All mosquitoes sampled belonged to the M form of An. gambiae s.s. There were high levels of permethrin resistance in an agricultural area (Akron) and an urban area (Gbedjromede), low levels of resistance in mosquito samples from an oil contaminated site (Ojoo) and complete susceptibility in the rural Orogun location. The target site mutation kdrW was detected at high levels in two of the populations (Akron f = 0.86 and Gbedjromede f = 0.84) but was not detected in Ojoo or Orogun. Microarray analysis using the Anopheles gambiae detox chip identified two P450s, CYP6P3 and CYP6M2 up regulated in all three populations, the former was expressed at particularly high levels in the Akron (12.4-fold) and Ojoo (7.4-fold) populations compared to the susceptible population. Additional detoxification and redox genes were also over expressed in one or more populations including two cuticular pre-cursor genes which were elevated in two of the three resistant populations. Conclusion Multiple resistance mechanisms incurred in the different breeding sites contribute to resistance to permethrin in Benin. The cytochrome P450 genes, CYP6P3 and CYP6M2 are upregulated in all three resistant populations analysed. Several additional potential resistance mechanisms

  2. Vitamin D modulates tissue factor and protease-activated receptor 2 expression in vascular smooth muscle cells.

    PubMed

    Martinez-Moreno, Julio M; Herencia, Carmen; Montes de Oca, Addy; Muñoz-Castañeda, Juan R; Rodríguez-Ortiz, M Encarnación; Díaz-Tocados, Juan M; Peralbo-Santaella, Esther; Camargo, Antonio; Canalejo, Antonio; Rodriguez, Mariano; Velasco-Gimena, Francisco; Almaden, Yolanda

    2016-03-01

    Clinical and epidemiologic studies reveal an association between vitamin D deficiency and increased risk of cardiovascular disease. Because vascular smooth muscle cell (VSMC)-derived tissue factor (TF) is suggested to be critical for arterial thrombosis, we investigated whether the vitamin D molecules calcitriol and paricalcitol could reduce the expression of TF induced by the proinflammatory cytokine TNF-α in human aortic VSMCs. We found that, compared with controls, incubation with TNF-α increased TF expression and procoagulant activity in a NF-κB-dependent manner, as deduced from the increased nuclear translocation of nuclear factor κ-light-chain-enhancer of activated B cells protein 65 (p65-NF-κB) and direct interaction of NF-κB to the TF promoter. This was accompanied by the up-regulation of TF signaling mediator protease-activated receptor 2 (PAR-2) expression and by the down-regulation of vitamin D receptor expression in a miR-346-dependent way. However, addition of calcitriol or paricalcitol blunted the TNF-α-induced TF expression and activity (2.01 ± 0.24 and 1.32 ± 0.14 vs. 3.02 ± 0.39 pmol/mg protein, P < 0.05), which was associated with down-regulation of NF-κB signaling and PAR-2 expression, as well as with restored levels of vitamin D receptor and enhanced expression of TF pathway inhibitor. Our data suggest that inflammation promotes a prothrombotic state through the up-regulation of TF function in VSMCs and that the beneficial cardiovascular effects of vitamin D may be partially due to decreases in TF expression and its activity in VSMCs. © FASEB.

  3. Expression of androgen receptor and estrogen receptor-alpha in the developing pituitary gland of male sheep lamb.

    PubMed

    Huang, Li-Bo; Yuan, Xue-Jun

    2011-09-01

    To explore the expression of androgen receptor (AR) and estrogen receptor alpha (ERα) in the developing pituitary of male lamb, we detected AR and ERα expression in the anterior pituitary of lambs aged 2-7 months old by immunohistochemistry. The results showed that both AR immunoreactivity (AR-ir) and ERα immunoreactivity (ERα-ir) were localized in the nuclei of anterior pituitary cell. The percentage of the anterior pituitary cells expressing ERα fluctuated from 8.79±0.02% to 11.80±0.04% during the examined stages, but fell significantly to the lowest level at 6 months. While the proportion of AR-ir showed significant changes, it was in 11.52±1.26% at 2 months, it firstly increased to 19.86±1.03% at 3 months, and then significantly decreased to 8.18±1.17% at 6 months (P<0.05). The expression of both AR-ir and ERα-ir were the lowest level at 6 months old. By staining for PCNA, we observed that the changes in expression of AR and ERα at different lamb ages did not result from cell proliferation of anterior pituitary cells. These results indicate that both AR and ERα are important in regulation of secretary function of anterior pituitary in sheep lamb, although the related mechanism needs to be elucidated further. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Effect of Gestational Exposure of Cypermethrin on Postnatal Development of Brain Cytochrome P450 2D1 and 3A1 and Neurotransmitter Receptors.

    PubMed

    Singh, Anshuman; Mudawal, Anubha; Shukla, Rajendra K; Yadav, Sanjay; Khanna, Vinay K; Sethumadhavan, Rao; Parmar, Devendra

    2015-08-01

    Oral administration of low doses (1.25, 2.5, or 5 mg/kg) of cypermethrin to pregnant Wistar rats from gestation days 5 to 21 led to dose-dependent differences in the induction of cytochrome P450 2D1 (CYP2D1) and 3A1 messenger RNA (mRNA) and protein in brain regions isolated from the offsprings postnatally at 3 weeks that persisted up to adulthood (12 weeks). Similar alterations were observed in the expression of GABAergic, muscarinic, dopaminergic, and serotonergic neurotransmitter receptors in brain regions of rat offsprings. Rechallenge of the prenatally exposed offsprings at adulthood (12 weeks old) with cypermethrin (p.o., 10 mg/kg for 6 days) led to a greater magnitude of alterations in the expression of CYPs, neurotransmitter receptors, and neurotransmitter receptor binding in the brain regions when compared to the control offsprings treated at adulthood with cypermethrin or prenatally exposed offsprings. A greater magnitude of decrease was also observed in the spontaneous locomotor activity (SLA) in prenatally exposed offsprings rechallenged with cypermethrin. The present data indicating similarities in the alterations in the expression of CYPs (2D1 and 3A1) and neurotransmitter receptors in brain has led us to suggest that endogenous function regulating CYPs is possibly associated with neurotransmission processes. A greater magnitude of alterations in CYP2D1, 3A1, neurotransmitter receptors, and SLA in rechallenged animals has further provided evidence that alterations in CYPs are possibly linked with neurotransmission processes.

  5. Ontogenetic expression of the vanilloid receptors TRPV1 and TRPV2 in the rat retina.

    PubMed

    Leonelli, Mauro; Martins, Daniel O; Kihara, Alexandre H; Britto, Luiz R G

    2009-11-01

    The present study aimed to analyze the gene and protein expression and the pattern of distribution of the vanilloid receptors TRPV1 and TRPV2 in the developing rat retina. During the early phases of development, TRPV1 was found mainly in the neuroblastic layer of the retina and in the pigmented epithelium. In the adult, TRPV1 was found in microglial cells, blood vessels, astrocytes and in neuronal structures, namely synaptic boutons of both retinal plexiform layers, as well as in cell bodies of the inner nuclear layer and the ganglion cell layer. The pattern of distribution of TRPV1 was mainly punctate, and there was higher TRPV1 labeling in the peripheral retina than in central regions. TRPV2 expression was quite distinct. Its expression was virtually undetectable by immunoblotting before P1, and that receptor was found by immunohistochemistry only by postnatal day 15 (P15). RNA and protein analysis showed that the adult levels are only reached by P60, which includes small processes in the retinal plexiform layers, and labeled cellular bodies in the inner nuclear layer and the ganglion cell layer. There was no overlapping between the signal observed for both receptors. In conclusion, our results showed that the patterns of distribution of TRPV1 and TRPV2 are different during the development of the rat retina, suggesting that they have specific roles in both visual processing and in providing specific cues to neural development.

  6. Tissue kallikrein induces SH-SY5Y cell proliferation via epidermal growth factor receptor and extracellular signal-regulated kinase1/2 pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Zhengyu; Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437; Yang, Qi

    2014-03-28

    Highlights: • TK promotes EGFR phosphorylation in SH-SY5Y cells. • TK activates ERK1/2 and p38 phosphorylation in SH-SY5Y cells. • TK mediates SH-SY5Y cell proliferation via EGFR and ERK1/2 pathway. - Abstract: Tissue kallikrein (TK) is well known to take most of its biological functions through bradykinin receptors. In the present study, we found a novel signaling pathway mediated by TK through epidermal growth factor receptor (EGFR) in human SH-SY5Y cells. We discovered that TK facilitated the activation of EGFR, extracellular signal-regulated kinase (ERK) 1/2 and p38 cascade. Interestingly, not p38 but ERK1/2 phosphorylation was severely compromised in cells depletedmore » of EGFR. Nevertheless, impairment of signaling of ERK1/2 seemed not to be restricted to EGFR phosphorylation. We also observed that TK stimulation could induce SH-SY5Y cell proliferation, which was reduced by EGFR down-regulation or ERK1/2 inhibitor. Overall, our findings provided convincing evidence that TK could mediate cell proliferation via EGFR and ERK1/2 pathway in vitro.« less

  7. Radiation-induced interleukin-6 expression through MAPK/p38/NF-kappaB signaling pathway and the resultant antiapoptotic effect on endothelial cells through Mcl-1 expression with sIL6-Ralpha.

    PubMed

    Chou, Chia-Hung; Chen, Shee-Uan; Cheng, Jason Chia-Hsien

    2009-12-01

    To investigate the mechanism of interleukin-6 (IL-6) activity induced by ionizing radiation. Human umbilical vascular endothelial cells (HUVECs) were irradiated with different doses to induce IL-6. The IL-6 promoter assay and reverse transcriptase-polymerase chain reaction (RT-PCR) were used to examine transcriptional regulation. Specific chemical inhibitors, decoy double-stranded oligodeoxynucleotides, and Western blotting were conducted to investigate the signal transduction pathway. Recombinant soluble human IL-6 receptor alpha-chain (sIL6-Ralpha) and specific small interfering RNA were used to evaluate the biologic function of radiation-induced IL-6. Four grays of radiation induced the highest level of IL-6 protein. The promoter assay and RT-PCR data revealed that the induction of IL-6 was mediated through transcriptional regulation. The p38 inhibitor SB203580, by blocking nuclear factor-kappaB (NF-kappaB) activation, prevented both the transcriptional and translational regulation of radiation-induced IL-6 expression. The addition of sIL6-Ralpha rescued HUVECs from radiation-induced death in an IL-6 concentratio-dependent manner. The antiapoptotic effect of combined sIL6-Ralpha and radiation-induced IL-6 was inhibited by mcl-1-specific small interfering RNA. Radiation transcriptionally induces IL-6 expression in endothelial cells through mitogen-activated protein kinase/p38-mediated NF-kappaB/IkappaB (inhibitor of NF-kappaB) complex activation. In the presence of sIL6-Ralpha, radiation-induced IL-6 expression acts through Mcl-1 expression to rescue endothelial cells from radiation-induced death.

  8. TRAF6 and p62 inhibit amyloid β-induced neuronal death through p75 neurotrophin receptor

    PubMed Central

    Geetha, Thangiah; Zheng, Chen; McGregor, Wade C.; White, B. Douglas; Diaz-Meco, Maria T.; Moscat, Jorge; Babu, Jeganathan Ramesh

    2014-01-01

    Amyloid β (Aβ) aggregates are the primary component of senile plaques in Alzheimer disease (AD) patient’s brain. Aβ is known to bind p75 neurotrophin receptor (p75NTR) and mediates Aβ-induced neuronal death. Recently, we showed that NGF leads to p75NTR polyubiquitination, which promotes neuronal cell survival. Here, we demonstrate that Aβ stimulation impaired the p75NTR polyubiquitination. TRAF6 and p62 are required for polyubiquitination of p75NTR on NGF stimulation. Interestingly, we found that overexpression of TRAF6/p62 restored p75NTR polyubiquitination upon Aβ/NGF treatment. Aβ significantly reduced NF-κB activity by attenuating the interaction of p75NTR with IKKβ. p75NTR increased NF-κB activity by recruiting TRAF6/p62, which thereby mediated cell survival. These findings indicate that TRAF6/p62 abrogated the Aβ-mediated inhibition of p75NTR polyubiquitination and restored neuronal cell survival. PMID:23017601

  9. Primitive ATP-activated P2X receptors: discovery, function and pharmacology

    PubMed Central

    Fountain, Samuel J.

    2013-01-01

    Adenosine 5-triphosphate (ATP) is omnipresent in biology. It is therefore no surprise that organisms have evolved multifaceted roles for ATP, exploiting its abundance and restriction of passive diffusion across biological membranes. A striking role is the emergence of ATP as a bona fide transmitter molecule, whereby the movement of ATP across membranes serves as a chemical message through a direct ligand-receptor interaction. P2X receptors are ligand-gated ion channels that mediate fast responses to the transmitter ATP in mammalian cells including central and sensory neurons, vascular smooth muscle, endothelium, and leukocytes. Molecular cloning of P2X receptors and our understanding of structure-function relationships has provided sequence information with which to query an exponentially expanding wealth of genome sequence information including protist, early animal and human pathogen genomes. P2X receptors have now been cloned and characterized from a number of simple organisms. Such work has led to surprising new cellular roles for the P2X receptors family and an unusual phylogeny, with organisms such as Drosophila and C. elegans notably lacking P2X receptors despite retaining ionotropic receptors for other common transmitters that are present in mammals. This review will summarize current work on the evolutionary biology of P2X receptors and ATP as a signaling molecule, discuss what can be drawn from such studies when considering the action of ATP in higher animals and plants, and outline how simple organisms may be exploited experimentally to inform P2X receptor function in a wider context. PMID:24367292

  10. P2X1 Receptor Antagonists Inhibit HIV-1 Fusion by Blocking Virus-Coreceptor Interactions

    PubMed Central

    Giroud, Charline; Marin, Mariana; Hammonds, Jason; Spearman, Paul

    2015-01-01

    ABSTRACT HIV-1 Env glycoprotein-mediated fusion is initiated upon sequential binding of Env to CD4 and the coreceptor CXCR4 or CCR5. Whereas these interactions are thought to be necessary and sufficient to promote HIV-1 fusion, other host factors can modulate this process. Previous studies reported potent inhibition of HIV-1 fusion by selective P2X1 receptor antagonists, including NF279, and suggested that these receptors play a role in HIV-1 entry. Here we investigated the mechanism of antiviral activity of NF279 and found that this compound does not inhibit HIV-1 fusion by preventing the activation of P2X1 channels but effectively blocks the binding of the virus to CXCR4 or CCR5. The notion of an off-target effect of NF279 on HIV-1 fusion is supported by the lack of detectable expression of P2X1 receptors in cells used in fusion experiments and by the fact that the addition of ATP or the enzymatic depletion of ATP in culture medium does not modulate viral fusion. Importantly, NF279 fails to inhibit HIV-1 fusion with cell lines and primary macrophages when added at an intermediate stage downstream of Env-CD4-coreceptor engagement. Conversely, in the presence of NF279, HIV-1 fusion is arrested downstream of CD4 binding but prior to coreceptor engagement. NF279 also antagonizes the signaling function of CCR5, CXCR4, and another chemokine receptor, as evidenced by the suppression of calcium responses elicited by specific ligands and by recombinant gp120. Collectively, our results demonstrate that NF279 is a dual HIV-1 coreceptor inhibitor that interferes with the functional engagement of CCR5 and CXCR4 by Env. IMPORTANCE Inhibition of P2X receptor activity suppresses HIV-1 fusion and replication, suggesting that P2X signaling is involved in HIV-1 entry. However, mechanistic experiments conducted in this study imply that P2X1 receptor is not expressed in target cells or involved in viral fusion. Instead, we found that inhibition of HIV-1 fusion by a specific P2X1

  11. P2X1 Receptor Antagonists Inhibit HIV-1 Fusion by Blocking Virus-Coreceptor Interactions.

    PubMed

    Giroud, Charline; Marin, Mariana; Hammonds, Jason; Spearman, Paul; Melikyan, Gregory B

    2015-09-01

    HIV-1 Env glycoprotein-mediated fusion is initiated upon sequential binding of Env to CD4 and the coreceptor CXCR4 or CCR5. Whereas these interactions are thought to be necessary and sufficient to promote HIV-1 fusion, other host factors can modulate this process. Previous studies reported potent inhibition of HIV-1 fusion by selective P2X1 receptor antagonists, including NF279, and suggested that these receptors play a role in HIV-1 entry. Here we investigated the mechanism of antiviral activity of NF279 and found that this compound does not inhibit HIV-1 fusion by preventing the activation of P2X1 channels but effectively blocks the binding of the virus to CXCR4 or CCR5. The notion of an off-target effect of NF279 on HIV-1 fusion is supported by the lack of detectable expression of P2X1 receptors in cells used in fusion experiments and by the fact that the addition of ATP or the enzymatic depletion of ATP in culture medium does not modulate viral fusion. Importantly, NF279 fails to inhibit HIV-1 fusion with cell lines and primary macrophages when added at an intermediate stage downstream of Env-CD4-coreceptor engagement. Conversely, in the presence of NF279, HIV-1 fusion is arrested downstream of CD4 binding but prior to coreceptor engagement. NF279 also antagonizes the signaling function of CCR5, CXCR4, and another chemokine receptor, as evidenced by the suppression of calcium responses elicited by specific ligands and by recombinant gp120. Collectively, our results demonstrate that NF279 is a dual HIV-1 coreceptor inhibitor that interferes with the functional engagement of CCR5 and CXCR4 by Env. Inhibition of P2X receptor activity suppresses HIV-1 fusion and replication, suggesting that P2X signaling is involved in HIV-1 entry. However, mechanistic experiments conducted in this study imply that P2X1 receptor is not expressed in target cells or involved in viral fusion. Instead, we found that inhibition of HIV-1 fusion by a specific P2X1 receptor antagonist, NF

  12. Mechanisms of Inhibition and Potentiation of α4β2 Nicotinic Acetylcholine Receptors by Members of the Ly6 Protein Family*

    PubMed Central

    Wu, Meilin; Puddifoot, Clare A.; Taylor, Palmer; Joiner, William J.

    2015-01-01

    α4β2 nicotinic acetylcholine receptors (nAChRs) are abundantly expressed throughout the central nervous system and are thought to be the primary target of nicotine, the main addictive substance in cigarette smoking. Understanding the mechanisms by which these receptors are regulated may assist in developing compounds to selectively interfere with nicotine addiction. Here we report previously unrecognized modulatory properties of members of the Ly6 protein family on α4β2 nAChRs. Using a FRET-based Ca2+ flux assay, we found that the maximum response of α4β2 receptors to agonist was strongly inhibited by Ly6h and Lynx2 but potentiated by Ly6g6e. The mechanisms underlying these opposing effects appear to be fundamentally distinct. Receptor inhibition by Lynx2 was accompanied by suppression of α4β2 expression at the cell surface, even when assays were preceded by chronic exposure of cells to an established chaperone, nicotine. Receptor inhibition by Lynx2 also was resistant to pretreatment with extracellular phospholipase C, which cleaves lipid moieties like those that attach Ly6 proteins to the plasma membrane. In contrast, potentiation of α4β2 activity by Ly6g6e was readily reversible by pretreatment with phospholipase C. Potentiation was also accompanied by slowing of receptor desensitization and an increase in peak currents. Collectively our data support roles for Lynx2 and Ly6g6e in intracellular trafficking and allosteric potentiation of α4β2 nAChRs, respectively. PMID:26276394

  13. Characterization of somatostatin receptors and associated signaling pathways in pancreas of R6/2 transgenic mice.

    PubMed

    Somvanshi, Rishi K; Jhajj, Amrit; Heer, Michael; Kumar, Ujendra

    2018-02-01

    The present study describes the status of somatostatin receptors (SSTRs) and their colocalization with insulin (β), glucagon (α) and somatostatin (δ) producing cells in the pancreatic islets of 11weeks old R6/2 Huntington's Disease transgenic (HD tg) and age-matched wild type (wt) mice. We also determined expression of tyrosine hydroxylase (TH), glutamic acid decarboxylase (GAD) and presynaptic marker synaptophysin (SYP) in addition to signal transduction pathways associated with diabetes. In R6/2 mice, islets are relatively smaller in size, exhibit enhanced expression and nuclear inclusion of mHtt along with the loss of insulin, glucagon and somatostatin expression. In comparison to wt, R6/2 mice display enhanced mRNA for all SSTRs except SSTR2. In the pancreatic lysate, SSTR1, 4 and 5 immunoreactivity decreases whereas SSTR3 immunoreactivity increases with no discernible changes in SSTR2 immunoreactivity. Furthermore, at the cellular level, R6/2 mice exhibit a receptor specific distributional pattern of SSTRs like immunoreactivity and colocalization with β, α and δ cells. While GAD expression is increased, TH and SYP immunoreactivity was decreased in R6/2 mice, anticipating a cross-talk between the CNS and pancreas in diabetes pathophysiology. We also dissected out the changes in signaling pathway and found decreased activation and expression of PKA, AKT, ERK1/2 and STAT3 in R6/2 mice pancreas. These findings suggest that the impaired organization of SSTRs within islets may lead to perturbed hormonal regulation and signaling. These interconnected complex events might shed new light on the pathogenesis of diabetes in neurodegenerative diseases and the role of SSTRs in potential therapeutic intervention. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Chemokine and lymph node homing receptor expression on pDC vary by graft source.

    PubMed

    Hosoba, Sakura; Harris, Wayne Ac; Lin, Kaifeng L; Waller, Edmund K

    2014-11-01

    A randomized clinical trial of BM vs. blood stem cell transplants from unrelated donors showed that more plasmacytoid dendritic cells (pDCs) in BM grafts was associated with better post-transplant survival. Here, we describe differences in homing-receptor expression on pDC to explain observed differences following BM vs. blood stem cell transplantation.

  15. Communication between corneal epithelial cells and trigeminal neurons is facilitated by purinergic (P2) and glutamatergic receptors.

    PubMed

    Oswald, Duane J; Lee, Albert; Trinidad, Monique; Chi, Cheryl; Ren, Ruiyi; Rich, Celeste B; Trinkaus-Randall, Vickery

    2012-01-01

    Previously, we demonstrated that nucleotides released upon mechanical injury to corneal epithelium activate purinergic (P2) receptors resulting in mobilization of a Ca(2+) wave. However, the tissue is extensively innervated and communication between epithelium and neurons is critical and not well understood. Therefore, we developed a co-culture of primary trigeminal neurons and human corneal limbal epithelial cells. We demonstrated that trigeminal neurons expressed a repertoire of P2Yand P2X receptor transcripts and responded to P2 agonists in a concentration-dependent manner. Mechanical injuries to epithelia in the co-cultures elicited a Ca(2+) wave that mobilized to neurons and was attenuated by Apyrase, an ectonucleotidase. To elucidate the role of factors released from each cell type, epithelial and neuronal cells were cultured, injured, and the wound media from one cell type was collected and added to the other cell type. Epithelial wound media generated a rapid Ca(2+) mobilization in neuronal cells that was abrogated in the presence of Apyrase, while neuronal wound media elicited a complex response in epithelial cells. The rapid Ca(2+) mobilization was detected, which was abrogated with Apyrase, but it was followed by Ca(2+) waves that occurred in cell clusters. When neuronal wound media was preincubated with a cocktail of N-methyl-D-aspartate (NMDA) receptor inhibitors, the secondary response in epithelia was diminished. Glutamate was detected in the neuronal wound media and epithelial expression of NMDA receptor subunit transcripts was demonstrated. Our results indicate that corneal epithelia and neurons communicate via purinergic and NMDA receptors that mediate the wound response in a highly orchestrated manner.

  16. Relationships between immunophenotype, Ki-67 index, microvascular density, Ep-CAM/P-cadherin, and MMP-2 expression in early-stage invasive ductal breast cancer.

    PubMed

    Niemiec, Joanna A; Adamczyk, Agnieszka; Małecki, Krzysztof; Majchrzyk, Kaja; Ryś, Janusz

    2012-12-01

    There is still a lack of complete consensus on immunohistochemical surrogate markers for luminal A (LA) and luminal B (LB), HER2, and basal-like subtypes of breast carcinomas and their correlation with cancer cell adhesion and invasion-promoting factors. Therefore, early-stage invasive ductal breast cancer patients (N=209) were recruited to the study and divided into 4 subtypes, on the basis of the expression of the estrogen/progesterone receptor and HER2 (LA: 74.4% of cases; LB: 7.8%; HER2: 5.6%; and triple-negative phenotype: 12.2%). Regardless of the above-mentioned classification, we divided all carcinomas into 2 groups: carcinomas expressing at least 1 basal marker [cytokeratine (CK)5/6, CK5, vimentin, epidermal growth factor receptor, or aberrant CK8/18 expression-membranous or in <10% of cells] versus carcinomas negative for basal markers. Then we studied the relationships between the above subtypes (2 classifications) and (i) the expression of adhesion molecules (Ep-CAM, P-cadherin), (ii) matrix metalloproteinases (MMP)-2, (iii) the proliferation index (MIB-1 LI), and (iv) the microvascular density. We confirmed that triple-negative phenotypes are characterized by basal marker expression, a high tumor grade, and high MIB-1 LI. In this subtype, we found MMP-2 expression in stromal leukocytes less frequently. Both LA carcinomas and carcinomas negative for basal markers were more often negative for epithelial cell adhesion molecule (Ep-CAM) and P-cadherin. Moreover, we noted a higher mean value of microvascular density in CK5/6 and Ep-CAM-immunopositive tumors, carcinomas with aberrant CK8/18 expression, and carcinomas with no or strong expression of MMP-2 in stromal fibroblast-like cells. These results might suggest that mechanisms of stroma remodeling and carcinogenesis (Ep-CAM is the suggested marker of breast progenitors) may differ between breast cancer subtypes.

  17. Novel down-regulatory mechanism of the surface expression of the vasopressin V2 receptor by an alternative splice receptor variant.

    PubMed

    Sarmiento, José M; Añazco, Carolina C; Campos, Danae M; Prado, Gregory N; Navarro, Javier; González, Carlos B

    2004-11-05

    In rat kidney, two alternatively spliced transcripts are generated from the V2 vasopressin receptor gene. The large transcript (1.2 kb) encodes the canonical V2 receptor, whereas the small transcript encodes a splice variant displaying a distinct sequence corresponding to the putative seventh transmembrane domain and the intracellular C terminus of the V2 receptor. This work showed that the small spliced transcript is translated in the rat kidney collecting tubules. However, the protein encoded by the small transcript (here called the V2b splice variant) is retained inside the cell, in contrast to the preferential surface distribution of the V2 receptor (here called the V2a receptor). Cells expressing the V2b splice variant do not exhibit binding to 3H-labeled vasopressin. Interestingly, we found that expression of the splice variant V2b down-regulates the surface expression of the V2a receptor, most likely via the formation of V2a.V2b heterodimers as demonstrated by co-immunoprecipitation and fluorescence resonance energy transfer experiments between the V2a receptor and the V2b splice variant. The V2b splice variant would then be acting as a dominant negative. The effect of the V2b splice variant is specific, as it does not affect the surface expression of the G protein-coupled interleukin-8 receptor (CXCR1). Furthermore, the sequence encompassing residues 242-339, corresponding to the C-terminal domain of the V2b splice variant, also down-regulates the surface expression of the V2a receptor. We suggest that some forms of nephrogenic diabetes insipidus are due to overexpression of the splice variant V2b, which could retain the wild-type V2a receptor inside the cell via the formation of V2a.V2b heterodimers.

  18. Hepatocyte growth factor and transforming growth factor beta regulate 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase gene expression in rat hepatocyte primary cultures.

    PubMed Central

    Joaquin, M; Rosa, J L; Salvadó, C; López, S; Nakamura, T; Bartrons, R; Gil, J; Tauler, A

    1996-01-01

    Hepatocyte growth factor (HGF) and transforming growth factor beta (TGF-beta) are believed to be of major importance for hepatic regeneration after liver damage. We have studied the effect of these growth factors on fructose 2,6-bisphosphate (Fru-2,6-P2) levels and the expression of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (6PF2K/Fru-2,6-BPase) in rat hepatocyte primary cultures. Our results demonstrate that HGF activates the expression of the 6PF2K/Fru-2,6-BPase gene by increasing the levels of its mRNA. As a consequence of this activation, the amount of 6PF2K/Fru-2,6-BPase protein and 6-phosphofructo-2-kinase activity increased, which was reflected by a rise in Fru-2,6-P2 levels. In contrast, TGF-beta decreased the levels of 6PF2K/Fru-2,6-BPase mRNA, which led to a decrease in the amount of 6PF2K/Fru-2,6-BPase protein and Fru-2,6-P2. The different actions of HGF and TGF-beta on 6PF2K/Fru-2,6-BPase gene expression are concomitant with their effect on cell proliferation. Here we show that, in the absence of hormones, primary cultures of hepatocytes express the F-type isoenzyme. In addition, HGF increases the expression of this isoenzyme, and dexamethasone activates the L-type isoform. HGF and TGF-beta were able to inhibit this activation. PMID:8660288

  19. [Effect of CD-14 and toll like receptors on the expression of interleukin-6 induced by lipopolysaccharides of Porphyromonas endodontalis].

    PubMed

    Jia, Ge; Qiu, Li-Hong; Li, Ren; Lü, You; Yu, Ya-Qiong; Zhong, Ming

    2011-09-01

    To evaluate the effect of cluster of differentiation 14 (CD-14) and Toll like receptors (TLR) on the expression of interleukin-6 (IL-6) mRNA induced by Porphyromonas endodontalis (Pe) lipopolysaccharides (LPS). MC3T3-E1 cells were treated with 10 mg/L Pe-LPS for different hours, and the cells uninvolved by anything as the blank group. The expression of IL-6 was detected by reverse transcription polymerse chain reaction (RT-PCR) and enzyme-liked immunosorbent assay (ELISA). The expression of CD-14, TLR-2 and TLR-4 mRNA was observed at different time point (0 - 24 h) by RT-PCR. The protein of CD-14, TLR-2 and TLR-4 was analyzed with a flow cytometer. MC3T3-E1 cells were pretreated with anti-CD-14, anti-TLR-2 and anti-TLR-4 antibody for 1 h, and then cells were stimulated with 10 mg/L Pe-LPS for 6 h. The expression of IL-6 mRNA was examined by RT-PCR. Statistical analysis was performed using one-way ANOVA Dunnett-t test with SPSS 11.0 software package. The IL-6 mRNA and proteins increased significantly after treatment with Pe-LPS. When MC3T3-E1 cells treated by Pe-LPS for 6 h, the expression of proteins soared from (11.696 ± 0.672) ng/L to (36.534 ± 0.574) ng/L (P < 0.01); In the control group, the CD-14 and TLR-4 mRNA are ambly-expression, and the ratios of CD-14 and TLR-4 positive cells were (39.038 ± 3.131)% and (11.438 ± 0.385)% respectively in MC3T3-E1. After treatment by Pe-LPS, the expression of CD-14 and TLR-4 mRNA increased significantly, and the ratios of CD-14 and TLR-4 positive cells markedly increased to (62.407 ± 1.800)% and (21.367 ± 2.271)%. TLR-2 expression did not change apparently after Pe-LPS treatment. The expression of IL-6 mRNA was partly inhibited by anti-CD-14 or anti-TLR-4 antibody, but not by TLR-2. Pe-LPS can induce the expression of IL-6 in osteoblast MC3T3-E1 through CD-14 and TLR-4, but not TLR-2.

  20. New candidate tumor-suppressor gene KLF6 and its splice variant KLF6 SV2 counterbalancing expression in primary hepatocarcinoma.

    PubMed

    Zhenzhen, Zhou; De'an, Tian; Limin, Xia; Wei, Yan; Min, Luo

    2012-01-01

    This study aimed to detect the expression of newly discovered zinc finger transcriptional factor KLF6 and its splice variant KLF6 SV2 in primary hepatocarcinoma (PHC) tissues and hepatoma cell strains, and to evaluate their clinicopathologic relationship with PHC. Wild-type KLF6 and KLF6 SV2 mRNA expression was determined by RTPCR in 27 cases of PHC tissues and cell strains of HepG2, SMMC7721 and LO2. Western blotting and immunohistochemical staining were adopted to detect KLF6 protein expression. Positive area ratio of wild-type KLF6 protein expression and its relationship with clinicopathological parameters of PHC was analyzed. Wild-type KLF6 expression in PHC tissues was lower than that in paracancerous tissues. In contrast, KLF6 SV2 mRNA expression was higher in PHC tissues and hepatoma cell strains (p<0.05). Positive area ratio of wild-type KLF6 protein expression was positively correlated with cellular differentiation degree of PHC (p<0.01), but negatively correlated not only with liver cirrhosis, tumor size and extrahepatic metastases (p<0.01), but also with portal vein thrombus and the number of lymph nodes with metastasis (p<0.05). Wild-type KLF6 deletion and inactivation was involved in the growth, cell differentiation and other physiological processes of PHC. The upregulation of KLF6 splice variant might counterbalance the wildtype KLF6 and contribute to the occurrence and development of PHC.

  1. Toll-6 and Toll-7 function as neurotrophin receptors in the Drosophila melanogaster CNS.

    PubMed

    McIlroy, Graham; Foldi, Istvan; Aurikko, Jukka; Wentzell, Jill S; Lim, Mei Ann; Fenton, Janine C; Gay, Nicholas J; Hidalgo, Alicia

    2013-09-01

    Neurotrophin receptors corresponding to vertebrate Trk, p75(NTR) or Sortilin have not been identified in Drosophila, thus it is unknown how neurotrophism may be implemented in insects. Two Drosophila neurotrophins, DNT1 and DNT2, have nervous system functions, but their receptors are unknown. The Toll receptor superfamily has ancient evolutionary origins and a universal function in innate immunity. Here we show that Toll paralogs unrelated to the mammalian neurotrophin receptors function as neurotrophin receptors in fruit flies. Toll-6 and Toll-7 are expressed in the CNS throughout development and regulate locomotion, motor axon targeting and neuronal survival. DNT1 (also known as NT1 and spz2) and DNT2 (also known as NT2 and spz5) interact genetically with Toll-6 and Toll-7, and DNT1 and DNT2 bind to Toll-6 and Toll-7 promiscuously and are distributed in vivo in domains complementary to or overlapping with those of Toll-6 and Toll-7. We conclude that in fruit flies, Tolls are not only involved in development and immunity but also in neurotrophism, revealing an unforeseen relationship between the neurotrophin and Toll protein families.

  2. MUC1, MUC2, MUC4, MUC5AC and MUC6 expression in the progression of prostate cancer.

    PubMed

    Cozzi, Paul J; Wang, Jian; Delprado, Warick; Perkins, Alan C; Allen, Barry J; Russell, Pamela J; Li, Yong

    2005-01-01

    Molecular changes are vital for the development of prognostic markers and therapeutic modalities of prostate cancer (CaP). There is growing interest in mucins as treatment targets in human malignancies, including CaP. The role of their expression in the progression of CaP is however unclear. We examined the expressions MUC1, MUC2, MUC4, MUC5AC and MUC6 in CaP tissues using tissue microarrays (TMAs) to look for tumor-associated antigens (TAAs) for targeted therapy. In this study, 120 paraffin-embedded specimens were selected from patients who underwent radical retro-pubic prostatectomy (RRP) or trans-urethral-resection of the prostate (TURP) for primary, untreated CaP and 10 matched lymph node metastases. A series of MUC monoclonal antibodies (mAbs) was used on TMAs by standard immunohistochemistry. Our results indicate that the over-expression of MUC1 was detected in 58% of primary CaP tissues and 90% of lymph node metastases but not in normal prostate or benign tissues, while the expression of MUC2, MUC4, MUC5AC and MUC6 was found to be negative in both normal and cancer tissues. Of the MUC1 positive tumors 86% were Gleason grade 7 or higher. Over-expression of MUC1 was found in late stage CaP while MUC2, 4, 5AC and 6 were negative in CaP. MUC1 is a TAA that is highly related to tumor progression in CaP patients. This antigen is ideal for targeted therapy to control micrometastases and hormone refractory disease but additional studies are necessary to assess its usefulness in patient biopsies and CaP bone metastases before clinical trial.

  3. Painful purinergic receptors.

    PubMed

    Donnelly-Roberts, Diana; McGaraughty, Steve; Shieh, Char-Chang; Honore, Prisca; Jarvis, Michael F

    2008-02-01

    Multiple P2 receptor-mediated mechanisms exist by which ATP can alter nociceptive sensitivity following tissue injury. Evidence from a variety of experimental strategies, including genetic disruption studies and the development of selective antagonists, has indicated that the activation of P2X receptor subtypes, including P2X(3), P2X(2/3), P2X(4) and P2X(7), and P2Y (e.g., P2Y(2)) receptors, can modulate pain. For example, administration of a selective P2X(3) antagonist, A-317491, has been shown to effectively block both hyperalgesia and allodynia in different animal models of pathological pain. Intrathecally delivered antisense oligonucleotides targeting P2X(4) receptors decrease tactile allodynia following nerve injury. Selective antagonists for the P2X(7) receptor also reduce sensitization in animal models of inflammatory and neuropathic pain, providing evidence that purinergic glial-neural interactions are important modulators of noxious sensory neurotransmission. Furthermore, activation of P2Y(2) receptors leads to sensitization of polymodal transient receptor potential-1 receptors. Thus, ATP acting at multiple purinergic receptors, either directly on neurons (e.g., P2X(3), P2X(2/3), and P2Y receptors) or indirectly through neural-glial cell interactions (P2X(4) and P2X(7) receptors), alters nociceptive sensitivity. The development of selective antagonists for some of these P2 receptors has greatly aided investigations into the nociceptive role of ATP. This perspective highlights some of the recent advances to identify selective P2 receptor ligands, which has enhanced the investigation of ATP-related modulation of pain sensitivity.

  4. Over-accumulation of nuclear IGF-1 receptor in tumor cells requires elevated expression of the receptor and the SUMO-conjugating enzyme Ubc9

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Hua; Lin, Yingbo; Badin, Margherita

    2011-01-14

    Research highlights: {yields} SUMOylation mediates nuclear translocation of IGF-1R which activates transcription. {yields} Here we show that nuclear IGF-1R over-accumulates in tumor cells. {yields} This requires overexpression of the receptor that is a common feature in tumor cells. {yields} An increased expression of the SUMO ligase Ubc9 seems to be an involved mechanism too. -- Abstract: The insulin-like growth factor 1 receptor (IGF-1R) plays crucial roles in tumor cell growth and is overexpressed in many cancers. IGF-1R's trans-membrane kinase signaling pathways have been well characterized. Very recently, we showed that SUMOylation mediates nuclear translocation of the IGF-1R, and that nuclearmore » IGF-1R (nIGF-1R) binds to enhancer regions and activates transcription. We identified three lysine residues in the {beta}-subunit of the receptor and that mutation of these blocks nuclear translocation and gene activation. Furthermore, accumulation of nIGF-1R was proven strongly dependent on the specific SUMO-conjugating enzyme Ubc9. Here we show that nIGF-1R originates solely from the cell membrane and that phosphorylation of the core tyrosine residues of the receptor kinase is crucial for nuclear accumulation. We also compared the levels of nIGF-1R, measured as nuclear/membrane ratios, in tumor and normal cells. We found that the breast cancer cell line MCF-7 has 13-fold higher amounts of nIGF-1R than breast epithelial cells (IME) which showed only a small amount of nIGF-1R. In comparison, the total expression of IGF-1R was only 3.7- higher in MCF-7. Comparison of several other tumor and normal cell lines showed similar tumor cell over-accumulation of nIGF-1R, exceeding the total receptor expression substantially. Ectopic overexpression (>10-fold) of the receptor increased nIGF-1R in IME cells but not to that high level as in wild type MCF-7. The levels of Ubc9 were higher in all tumor cell lines, compared to the normal cells, and this probably contributes to

  5. Identification of a P2X7 receptor in GH(4)C(1) rat pituitary cells: a potential target for a bioactive substance produced by Pfiesteria piscicida.

    PubMed Central

    Kimm-Brinson, K L; Moeller, P D; Barbier, M; Glasgow, H; Burkholder, J M; Ramsdell, J S

    2001-01-01

    We examined the pharmacologic activity of a putative toxin (pPfTx) produced by Pfiesteria piscicida by characterizing the signaling pathways that induce the c-fos luciferase construct in GH(4)C(1) rat pituitary cells. Adenosine-5'-triphosphate (ATP) was determined to increase and, at higher concentrations, decrease luciferase activity in GH(4)C(1) rat pituitary cells that stably express c-fos luciferase. The inhibition of luciferase results from cytotoxicity, characteristic of the putative P. piscicida toxin (pPfTx). The actions of both pPfTx and ATP to induce c-fos luciferase were inhibited by the purinogenic receptor antagonist pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid (PPADS). Further characterization of a P2X receptor on the GH(4)C(1) cell was determined by the analog selectivity of P2X agonists. The P2X1/P2X3 agonist alpha,beta-methylene ATP (alpha,beta-MeATP) failed to increase or decrease c-fos luciferase. However, the P2X7 agonist 2',3'-(4-benzoyl)benzoyl ATP (BzATP), which had a predominant cytotoxic effect, was more potent than ATP. Immunoblot analysis of GH(4)C(1) cell membranes confirmed the presence of a 70-kDa protein that was immunoreactive to an antibody directed against the carboxy-terminal domain unique to the P2X7 receptor. The P2X7 irreversible antagonist oxidized-ATP (oxATP) inhibited the action of ATP, BzATP, and pPfTx. These findings indicate that GH(4)C(1) cells express purinogenic receptors with selectivity consistent with the P2X7 subtype and that this receptor pathway mediates the induction of the c-fos luciferase reporter gene by ATP and the putative Pfiesteria toxin PMID:11401756

  6. Cot/tpl2 activity is required for TLR-induced activation of the Akt p70 S6k pathway in macrophages: Implications for NO synthase 2 expression.

    PubMed

    López-Peláez, Marta; Soria-Castro, Irene; Boscá, Lisardo; Fernández, Margarita; Alemany, Susana

    2011-06-01

    LPS stimulation activates IKK and different MAP kinase pathways, as well as the PI3K-Akt-mTOR-p70 S6k pathway, a negative regulator of these MyD88-dependent intracellular signals. Here, we show that Cot/tpl2, a MAP3K responsible for the activation of the MKK1-Erk1/2, controls P-Ser473 Akt and P-Thr389 p70 S6k phosphorylation in LPS-stimulated macrophages. Analysis of the intracellular signalling in Cot/tpl2 KO macrophages versus WT macrophages reveals lower IκBα recovery and higher phosphorylation of JNK and p38α after 1 h of LPS stimulation. Moreover, Cot/tpl2 deficiency increases LPS-induced NO synthase 2 (NOS2) expression in macrophages. Inhibition of the PI3K pathway abolishes the differences in IκBα and NOS2 expression between Cot/tpl2 KO and WT macrophages following LPS administration. Furthermore, in zymosan- and polyI:C-stimulated macrophages, Cot/tpl2 mediates P-Ser473 Akt phosphorylation, increases IκBα levels and decreases NOS2 expression. In conclusion, these data reveal a novel role for the Cot/tpl2 pathway in mediating TLR activation of the Akt-mTOR-p70 S6k pathway, allowing Cot/tpl2 to fine-control the activation state of other signalling pathways. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Effects of electroacupuncture at 2 and 100 Hz on rat type 2 diabetic neuropathic pain and hyperalgesia-related protein expression in the dorsal root ganglion.

    PubMed

    He, Xiao-Fen; Wei, Jun-Jun; Shou, Sheng-Yun; Fang, Jian-Qiao; Jiang, Yong-Liang

    To investigate the analgesic effects of electroacupuncture (EA) at 2 and 100 Hz on type 2 diabetic neuropathic pain (DNP) and on the expressions of the P2X3 receptor and calcitonin gene-related peptide (CGRP) in the dorsal root ganglion (DRG). Rat type 2 DNP was induced by a high calorie and high sugar diet fed for 7 weeks, plus a single intraperitoneal injection of streptozotocin (STZ) after 5 weeks. EA at 2 and 100 Hz was carried out once every day after 7 weeks for 7 consecutive days. Body weight, serum fasting insulin (FINS), fasting blood glucose (FBG), insulin sensitivity index (ISI), and paw withdrawal latency (PWL) were measured. The expressions of L4-L6 DRG P2X3 receptors and CGRP were assessed by immunofluorescence. Type 2 DNP was successfully induced as shown by the increased body weight, FINS, and FBG, as well as the reduced ISI and PWL. Expressions of P2X3 receptors and CGRP in L4-L6 DRGs increased. EA at both 2 and 100 Hz relieved type 2 DNP, but the analgesic effect of EA was stronger at 2 Hz. P2X3 receptor expression decreased in L4-L6 DRGs following EA at 2 Hz and in L5 and L6 DRGs following EA at 100 Hz. EA at both 2 and 100 Hz down-regulated CGRP overexpression in L4-L6 DRGs. These findings indicate that EA at 2 Hz is a good option for the management of type 2 DNP. The EA effect may be related to its down-regulation of the overexpressions of the DRG P2X3 receptors and CGRP in this condition.

  8. Effects of electroacupuncture at 2 and 100 Hz on rat type 2 diabetic neuropathic pain and hyperalgesia-related protein expression in the dorsal root ganglion*

    PubMed Central

    He, Xiao-fen; Wei, Jun-jun; Shou, Sheng-yun; Fang, Jian-qiao; Jiang, Yong-liang

    2017-01-01

    Objective: To investigate the analgesic effects of electroacupuncture (EA) at 2 and 100 Hz on type 2 diabetic neuropathic pain (DNP) and on the expressions of the P2X3 receptor and calcitonin gene-related peptide (CGRP) in the dorsal root ganglion (DRG). Methods: Rat type 2 DNP was induced by a high calorie and high sugar diet fed for 7 weeks, plus a single intraperitoneal injection of streptozotocin (STZ) after 5 weeks. EA at 2 and 100 Hz was carried out once every day after 7 weeks for 7 consecutive days. Body weight, serum fasting insulin (FINS), fasting blood glucose (FBG), insulin sensitivity index (ISI), and paw withdrawal latency (PWL) were measured. The expressions of L4–L6 DRG P2X3 receptors and CGRP were assessed by immunofluorescence. Results: Type 2 DNP was successfully induced as shown by the increased body weight, FINS, and FBG, as well as the reduced ISI and PWL. Expressions of P2X3 receptors and CGRP in L4–L6 DRGs increased. EA at both 2 and 100 Hz relieved type 2 DNP, but the analgesic effect of EA was stronger at 2 Hz. P2X3 receptor expression decreased in L4–L6 DRGs following EA at 2 Hz and in L5 and L6 DRGs following EA at 100 Hz. EA at both 2 and 100 Hz down-regulated CGRP overexpression in L4–L6 DRGs. Conclusions: These findings indicate that EA at 2 Hz is a good option for the management of type 2 DNP. The EA effect may be related to its down-regulation of the overexpressions of the DRG P2X3 receptors and CGRP in this condition. PMID:28271659

  9. Cannabinoids receptor type 2, CB2, expression correlates with human colon cancer progression and predicts patient survival.

    PubMed

    Martínez-Martínez, Esther; Gómez, Irene; Martín, Paloma; Sánchez, Antonio; Román, Laura; Tejerina, Eva; Bonilla, Félix; Merino, Antonio García; de Herreros, Antonio García; Provencio, Mariano; García, Jose M

    2015-01-01

    Many studies have demonstrated that the endocannabinoid system (ECS) is altered in different tumor types, including colon cancer. However, little is known about the role of the ECS in tumor progression. Here we report the correlation between CB 2 expression and pathological data in a series of 175 colorectal cancer patients, as well as the response of the HT29 colon cancer-derived cell line upon CB 2 activation. CB 2 mRNA was detected in 28.6% of samples tested. It was more frequent in N+ patients and predicts disease free survival and overall survival in colon cancer. In positive samples, CB 2 was expressed with great intensity in tumor epithelial cells and correlated with tumor growth. Treatment of HT29 with CB 2 agonist revealed membrane loss of E-cadherin and SNAIL1 overexpression. A direct correlation between CB 2 and SNAIL1 expression was also found in human tumors. CB 2 receptor expression is a poor prognostic marker for colon cancer and the activation of this receptor, with non-apoptotic doses of agonists, could be collaborating with disease progression. These results raise the question whether the activation of CB 2 should be considered as anti-tumoral therapy.

  10. Effects of YM471, a nonpeptide AVP V1A and V2 receptor antagonist, on human AVP receptor subtypes expressed in CHO cells and oxytocin receptors in human uterine smooth muscle cells

    PubMed Central

    Tsukada, Junko; Tahara, Atsuo; Tomura, Yuichi; Wada, Koh-ichi; Kusayama, Toshiyuki; Ishii, Noe; Yatsu, Takeyuki; Uchida, Wataru; Taniguchi, Nobuaki; Tanaka, Akihiro

    2001-01-01

    YM471, (Z)-4′-{4,4-difluoro-5-[2-(4-dimethylaminopiperidino)-2-oxoethylidene]-2,3,4,5-tetrahydro-1H-1-benzoazepine-1-carbonyl}-2-phenylbenzanilide monohydrochloride, is a newly synthesized potent vasopressin (AVP) receptor antagonist. Its effects on binding to and signal transduction by cloned human AVP receptors (V1A, V1B and V2) stably expressed in Chinese hamster ovary (CHO) cells, and oxytocin receptors in human uterine smooth muscle cells (USMC) were studied. YM471 potently inhibited specific [3H]-AVP binding to V1A and V2 receptors with Ki values of 0.62 nM and 1.19 nM, respectively. In contrast, YM471 exhibited much lower affinity for V1B and oxytocin receptors with Ki values of 16.4 μM and 31.6 nM, respectively. In CHO cells expressing V1A receptors, YM471 potently inhibited AVP-induced intracellular Ca2+ concentration ([Ca2+]i) increase, exhibiting an IC50 value of 0.56 nM. However, in human USMC expressing oxytocin receptors, YM471 exhibited much lower potency in inhibiting oxytocin-induced [Ca2+]i increase (IC50=193 nM), and did not affect AVP-induced [Ca2+]i increase in CHO cells expressing V1B receptors. Furthermore, in CHO cells expressing V2 receptors, YM471 potently inhibited the production of cyclic AMP stimulated by AVP with an IC50 value of 1.88 nM. In all assays, YM471 showed no agonistic activity. These results demonstrate that YM471 is a potent, nonpeptide human V1A and V2 receptor antagonist which will be a valuable tool in defining the physiologic and pharmacologic actions of AVP. PMID:11429400

  11. Effects of YM471, a nonpeptide AVP V(1A) and V(2) receptor antagonist, on human AVP receptor subtypes expressed in CHO cells and oxytocin receptors in human uterine smooth muscle cells.

    PubMed

    Tsukada, J; Tahara, A; Tomura, Y; Wada Ki; Kusayama, T; Ishii, N; Yatsu, T; Uchida, W; Taniguchi, N; Tanaka, A

    2001-07-01

    YM471, (Z)-4'-[4,4-difluoro-5-[2-(4-dimethylaminopiperidino)-2-oxoethylidene]-2,3,4,5-tetrahydro-1H-1-benzoazepine-1-carbonyl]-2-phenylbenzanilide monohydrochloride, is a newly synthesized potent vasopressin (AVP) receptor antagonist. Its effects on binding to and signal transduction by cloned human AVP receptors (V(1A), V(1B) and V(2)) stably expressed in Chinese hamster ovary (CHO) cells, and oxytocin receptors in human uterine smooth muscle cells (USMC) were studied. YM471 potently inhibited specific [(3)H]-AVP binding to V(1A) and V(2) receptors with K(i) values of 0.62 nM and 1.19 nM, respectively. In contrast, YM471 exhibited much lower affinity for V(1B) and oxytocin receptors with K(i) values of 16.4 microM and 31.6 nM, respectively. In CHO cells expressing V(1A) receptors, YM471 potently inhibited AVP-induced intracellular Ca(2+) concentration ([Ca(2+)](i)) increase, exhibiting an IC(50) value of 0.56 nM. However, in human USMC expressing oxytocin receptors, YM471 exhibited much lower potency in inhibiting oxytocin-induced [Ca(2+)](i) increase (IC(50)=193 nM), and did not affect AVP-induced [Ca(2+)](i) increase in CHO cells expressing V(1B) receptors. Furthermore, in CHO cells expressing V(2) receptors, YM471 potently inhibited the production of cyclic AMP stimulated by AVP with an IC(50) value of 1.88 nM. In all assays, YM471 showed no agonistic activity. These results demonstrate that YM471 is a potent, nonpeptide human V(1A) and V(2) receptor antagonist which will be a valuable tool in defining the physiologic and pharmacologic actions of AVP.

  12. LncRNA CCAT2 promotes tumorigenesis by over-expressed Pokemon in non-small cell lung cancer.

    PubMed

    Zhao, Zhihong; Wang, Ju; Wang, Shengfa; Chang, Hao; Zhang, Tiewa; Qu, Junfeng

    2017-03-01

    Non-small cell lung cancer (NSCLC) remains one of the most important death-related diseases, with poor effective diagnosis and less therapeutic biomarkers. LncRNA colon cancer-associated transcript 2 (CCAT2) was identified as an oncogenic lncRNA and over-expressed in many tumor cells. The aims of this study were to detect the correlation between CCAT2 and its regulatory genes and then explore the potential mechanism between them in NSCLC. In this study, qRT-PCR was used to detect CCAT2, Pokemon and p21 expression. Western-blot was used to detect protein levels of Pokemon and p21. CCK-8 assay and Transwell chambers were used to assess cell viability and invasion. CCAT2 and Pokemon were over-expressed in NSCLC tissue and cells. In NSCLC cells, CCAT2 knockdown significantly decreased cell viability and invasion as well as Pokemon expression, but increased the expression of p21; then CCAT2 overexpression revealed an opposite result. In addition, over-expressed Pokemon reversed the results that induced by si-CCAT2, while down-regulation of Pokemon significantly reversed the results that induced by CCAT2 overexpression. The results indicated that CCAT2 promotes tumorigenesis by over-expression of Pokemon, and the potential mechanism might relate to the Pokemon related gene p21. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  13. Mechanisms of inhibition and potentiation of α4β2 nicotinic acetylcholine receptors by members of the Ly6 protein family.

    PubMed

    Wu, Meilin; Puddifoot, Clare A; Taylor, Palmer; Joiner, William J

    2015-10-02

    α4β2 nicotinic acetylcholine receptors (nAChRs) are abundantly expressed throughout the central nervous system and are thought to be the primary target of nicotine, the main addictive substance in cigarette smoking. Understanding the mechanisms by which these receptors are regulated may assist in developing compounds to selectively interfere with nicotine addiction. Here we report previously unrecognized modulatory properties of members of the Ly6 protein family on α4β2 nAChRs. Using a FRET-based Ca(2+) flux assay, we found that the maximum response of α4β2 receptors to agonist was strongly inhibited by Ly6h and Lynx2 but potentiated by Ly6g6e. The mechanisms underlying these opposing effects appear to be fundamentally distinct. Receptor inhibition by Lynx2 was accompanied by suppression of α4β2 expression at the cell surface, even when assays were preceded by chronic exposure of cells to an established chaperone, nicotine. Receptor inhibition by Lynx2 also was resistant to pretreatment with extracellular phospholipase C, which cleaves lipid moieties like those that attach Ly6 proteins to the plasma membrane. In contrast, potentiation of α4β2 activity by Ly6g6e was readily reversible by pretreatment with phospholipase C. Potentiation was also accompanied by slowing of receptor desensitization and an increase in peak currents. Collectively our data support roles for Lynx2 and Ly6g6e in intracellular trafficking and allosteric potentiation of α4β2 nAChRs, respectively. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. p21WAF1 immunohistochemical expression in breast carcinoma: correlations with clinicopathological data, oestrogen receptor status, MIB1 expression, p53 gene and protein alterations and relapse-free survival.

    PubMed Central

    Barbareschi, M.; Caffo, O.; Doglioni, C.; Fina, P.; Marchetti, A.; Buttitta, F.; Leek, R.; Morelli, L.; Leonardi, E.; Bevilacqua, G.; Dalla Palma, P.; Harris, A. L.

    1996-01-01

    p21 protein (p21) inhibitor of cyclin-dependent kinases is a critical downstream effector in the p53-specific pathway of growth control. p21 can also be induced by p53-independent pathways in relation to terminal differentiation. We investigated p21 immunoreactivity in normal breast and in 91 breast carcinomas [three in situ ductal carcinomas (DCIS) with microinfiltration and 88 infiltrating carcinomas, 17 of which with an associated DCIS; 57 node negative and 34 node positive] with long-term follow-up (median = 58 months). Seven additional breast carcinomas with known p53 gene mutations were investigated. In normal breast p21 expression was seen in the nuclei of rare luminal cells of acinar structures, and in occasional myoepithelial cells. Poorly differentiated DCIS showed high p21 expression, whereas well-differentiated DCIS tumours showed few p21-reactive cells. p21 was seen in 82 (90%) infiltrating tumours; staining was heterogeneous; the percentage of reactive nuclei ranged from 1% to 35%. High p21 expression (more than 10% of reactive cells) was seen in 24 (26%) cases, and was associated with high tumour grade (P = 0.032); no associations were seen with tumour size, metastases, oestrogen receptor status, MIB1 expression and p53 expression. p21 expression in cases with p53 gene mutations was low in six cases and high in one. High p21 expression was associated with short relapse-free survival (P = 0.003). Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:8688323

  15. The role of P2X7 receptors in a rodent PCP-induced schizophrenia model

    PubMed Central

    Koványi, Bence; Csölle, Cecilia; Calovi, Stefano; Hanuska, Adrienn; Kató, Erzsébet; Köles, László; Bhattacharya, Anindya; Haller, József; Sperlágh, Beáta

    2016-01-01

    P2X7 receptors (P2X7Rs) are ligand-gated ion channels sensitive to extracellular ATP. Here we examined for the first time the role of P2X7R in an animal model of schizophrenia. Using the PCP induced schizophrenia model we show that both genetic deletion and pharmacological inhibition of P2X7Rs alleviate schizophrenia-like behavioral alterations. In P2rx7+/+ mice, PCP induced hyperlocomotion, stereotype behavior, ataxia and social withdrawal. In P2X7 receptor deficient mice (P2rx7−/−), the social interactions were increased, whereas the PCP induced hyperlocomotion and stereotype behavior were alleviated. The selective P2X7 receptor antagonist JNJ-47965567 partly replicated the effect of gene deficiency on PCP-induced behavioral changes and counteracted PCP-induced social withdrawal. We also show that PCP treatment upregulates and increases the functional responsiveness of P2X7Rs in the prefrontal cortex of young adult animals. The amplitude of NMDA evoked currents recorded from layer V pyramidal neurons of cortical slices were slightly decreased by both genetic deletion of P2rx7 and by JNJ-47965567. PCP induced alterations in mRNA expression encoding schizophrenia-related genes, such as NR2A, NR2B, neuregulin 1, NR1 and GABA α1 subunit were absent in the PFC of young adult P2rx7−/− animals. Our findings point to P2X7R as a potential therapeutic target in schizophrenia. PMID:27824163

  16. Overlapping but distinct topology for zebrafish V2R-like olfactory receptors reminiscent of odorant receptor spatial expression zones.

    PubMed

    Ahuja, Gaurav; Reichel, Vera; Kowatschew, Daniel; Syed, Adnan S; Kotagiri, Aswani Kumar; Oka, Yuichiro; Weth, Franco; Korsching, Sigrun I

    2018-05-23

    The sense of smell is unrivaled in terms of molecular complexity of its input channels. Even zebrafish, a model vertebrate system in many research fields including olfaction, possesses several hundred different olfactory receptor genes, organized in four different gene families. For one of these families, the initially discovered odorant receptors proper, segregation of expression into distinct spatial subdomains within a common sensory surface has been observed both in teleost fish and in mammals. However, for the remaining three families, little to nothing was known about their spatial coding logic. Here we wished to investigate, whether the principle of spatial segregation observed for odorant receptors extends to another olfactory receptor family, the V2R-related OlfC genes. Furthermore we thought to examine, how expression of OlfC genes is integrated into expression zones of odorant receptor genes, which in fish share a single sensory surface with OlfC genes. To select representative genes, we performed a comprehensive phylogenetic study of the zebrafish OlfC family, which identified a novel OlfC gene, reduced the number of pseudogenes to 1, and brought the total family size to 60 intact OlfC receptors. We analyzed the spatial pattern of OlfC-expressing cells for seven representative receptors in three dimensions (height within the epithelial layer, horizontal distance from the center of the olfactory organ, and height within the olfactory organ). We report non-random distributions of labeled neurons for all OlfC genes analysed. Distributions for sparsely expressed OlfC genes are significantly different from each other in nearly all cases, broad overlap notwithstanding. For two of the three coordinates analyzed, OlfC expression zones are intercalated with those of odorant receptor zones, whereas in the third dimension some segregation is observed. Our results show that V2R-related OlfC genes follow the same spatial logic of expression as odorant receptors and

  17. Smooth muscle neurokinin-2 receptors mediate contraction in human saphenous veins.

    PubMed

    Mechiche, Hakima; Grassin-Delyle, Stanislas; Pinto, Francisco M; Buenestado, Amparo; Candenas, Luz; Devillier, Philippe

    2011-05-01

    Substance P (SP) and neurokinin A (NKA) are members of the tachykinin peptides family. SP causes endothelial-dependant relaxation but the contractile response to tachykinins in human vessels remains unknown. The objective was to assess the expression and the contractile effects of tachykinins and their receptors in human saphenous veins (SV). Tachykinin expression was assessed with RT-PCR, tachykinin receptors expression with RT-PCR and immunohistochemistry, and functional studies were performed in organ bath. Transcripts of all tachykinin and tachykinin receptor genes were found in SV. NK(1)-receptors were localized in both endothelial and smooth muscle layers of undistended SV, whereas they were only found in smooth muscle layers of varicose SV. The expression of NK(2)- and NK(3)-receptors was limited to the smooth muscle in both preparations. NKA induced concentration-dependent contractions in about half the varicose SV. Maximum effect reached 27.6±5.5% of 90 mM KCl and the pD(2) value was 7.3±0.2. NKA also induced the contraction of undistended veins from bypass and did not cause the relaxation of these vessels after precontraction. The NK(2)-receptor antagonist SR48968 abolished the contraction induced by NKA, and a rapid desensitization of the NK(2)-receptor was observed. In varicose SV, the agonists specific to NK(1)- or NK(3)-receptors did not cause either contraction or relaxation. The stimulation of smooth muscle NK(2)-receptors can induce the contraction of human SV. As SV is richly innervated, tachykinins may participate in the regulation of the tone in this portion of the low pressure vascular system. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Acetylcholine affects osteocytic MLO-Y4 cells via acetylcholine receptors.

    PubMed

    Ma, Yuanyuan; Li, Xianxian; Fu, Jing; Li, Yue; Gao, Li; Yang, Ling; Zhang, Ping; Shen, Jiefei; Wang, Hang

    2014-03-25

    The identification of the neuronal control of bone remodeling has become one of the many significant recent advances in bone biology. Cholinergic activity has recently been shown to favor bone mass accrual by complex cellular regulatory networks. Here, we identified the gene expression of the muscarinic and nicotinic acetylcholine receptors (m- and nAChRs) in mice tibia tissue and in osteocytic MLO-Y4 cells. Acetylcholine, which is a classical neurotransmitter and an osteo-neuromediator, not only influences the mRNA expression of the AChR subunits but also significantly induces the proliferation and viability of osteocytes. Moreover, acetylcholine treatment caused the reciprocal regulation of RANKL and OPG mRNA expression, which resulted in a significant increase in the mRNA ratio of RANKL:OPG in osteocytes via acetylcholine receptors. The expression of neuropeptide Y and reelin, which are two neurogenic markers, was also modulated by acetylcholine via m- and nAChRs in MLO-Y4 cells. These results indicated that osteocytic acetylcholine receptors might be a new valuable mediator for cell functions and even for bone remodeling. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  19. The Mechanism of Functional Up-Regulation of P2X3 Receptors of Trigeminal Sensory Neurons in a Genetic Mouse Model of Familial Hemiplegic Migraine Type 1 (FHM-1)

    PubMed Central

    Hullugundi, Swathi K.; Ferrari, Michel D.; van den Maagdenberg, Arn M. J. M.; Nistri, Andrea

    2013-01-01

    A knock-in (KI) mouse model of FHM-1 expressing the R192Q missense mutation of the Cacna1a gene coding for the α1 subunit of CaV2.1 channels shows, at the level of the trigeminal ganglion, selective functional up-regulation of ATP -gated P2X3 receptors of sensory neurons that convey nociceptive signals to the brainstem. Why P2X3 receptors are constitutively more responsive, however, remains unclear as their membrane expression and TRPV1 nociceptor activity are the same as in wildtype (WT) neurons. Using primary cultures of WT or KI trigeminal ganglia, we investigated whether soluble compounds that may contribute to initiating (or maintaining) migraine attacks, such as TNFα, CGRP, and BDNF, might be responsible for increasing P2X3 receptor responses. Exogenous application of TNFα potentiated P2X3 receptor-mediated currents of WT but not of KI neurons, most of which expressed both the P2X3 receptor and the TNFα receptor TNFR2. However, sustained TNFα neutralization failed to change WT or KI P2X3 receptor currents. This suggests that endogenous TNFα does not regulate P2X3 receptor responses. Nonetheless, on cultures made from both genotypes, exogenous TNFα enhanced TRPV1 receptor-mediated currents expressed by a few neurons, suggesting transient amplification of TRPV1 nociceptor responses. CGRP increased P2X3 receptor currents only in WT cultures, although prolonged CGRP receptor antagonism or BDNF neutralization reduced KI currents to WT levels. Our data suggest that, in KI trigeminal ganglion cultures, constitutive up-regulation of P2X3 receptors probably is already maximal and is apparently contributed by basal CGRP and BDNF levels, thereby rendering these neurons more responsive to extracellular ATP. PMID:23577145

  20. Effect of naringin on gp120-induced injury mediated by P2X7 receptors in rat primary cultured microglia

    PubMed Central

    Liu, Chenglong; Deng, Zeyu; Liu, Yang; Chen, Guoqiao; Liu, Baoyun

    2017-01-01

    Human immunodeficiency virus type-1 (HIV-1) envelope glycoprotein 120 has been shown to activate microglia, causing release of inflammatory and toxic factors. The P2X7 receptor, primarily expressed on microglia, is closely associated with inflammation. Naringin, a plant bioflavonoid, has anti-inflammatory and anti-oxidative properties. We hypothesized that P2X7 receptor mediated gp120-induced injury in primary cultured microglia, and that naringin would have a protective effect. We showed that HIV-1 gp120 peptide (V3 loop, fragment 308–331) appeared to induce apoptosis of primary cultured microglia. However, there was a decrease of microglia apoptosis in gp120+naringin group compared with gp120 group. Using qPCR, Western blot, and immunofluorescence, we showed that gp120 stimulated expression of P2X7 mRNA and receptor protein, and this stimulation was inhibited by naringin. Treatment with gp120 increased concentrations of eATP, TNFα and IL-1β, and these effects were inhibited by naringin. Taken together, these results suggested that gp120 contributed to microglial cell injury and neurotoxic activity by up-regulating expression of P2X7, in a naringin-protective manner. PMID:28832643