Sample records for overexpressed wild-type kras

  1. A novel method, digital genome scanning detects KRAS gene amplification in gastric cancers: involvement of overexpressed wild-type KRAS in downstream signaling and cancer cell growth

    PubMed Central

    2009-01-01

    Background Gastric cancer is the third most common malignancy affecting the general population worldwide. Aberrant activation of KRAS is a key factor in the development of many types of tumor, however, oncogenic mutations of KRAS are infrequent in gastric cancer. We have developed a novel quantitative method of analysis of DNA copy number, termed digital genome scanning (DGS), which is based on the enumeration of short restriction fragments, and does not involve PCR or hybridization. In the current study, we used DGS to survey copy-number alterations in gastric cancer cells. Methods DGS of gastric cancer cell lines was performed using the sequences of 5000 to 15000 restriction fragments. We screened 20 gastric cancer cell lines and 86 primary gastric tumors for KRAS amplification by quantitative PCR, and investigated KRAS amplification at the DNA, mRNA and protein levels by mutational analysis, real-time PCR, immunoblot analysis, GTP-RAS pull-down assay and immunohistochemical analysis. The effect of KRAS knock-down on the activation of p44/42 MAP kinase and AKT and on cell growth were examined by immunoblot and colorimetric assay, respectively. Results DGS analysis of the HSC45 gastric cancer cell line revealed the amplification of a 500-kb region on chromosome 12p12.1, which contains the KRAS gene locus. Amplification of the KRAS locus was detected in 15% (3/20) of gastric cancer cell lines (8–18-fold amplification) and 4.7% (4/86) of primary gastric tumors (8–50-fold amplification). KRAS mutations were identified in two of the three cell lines in which KRAS was amplified, but were not detected in any of the primary tumors. Overexpression of KRAS protein correlated directly with increased KRAS copy number. The level of GTP-bound KRAS was elevated following serum stimulation in cells with amplified wild-type KRAS, but not in cells with amplified mutant KRAS. Knock-down of KRAS in gastric cancer cells that carried amplified wild-type KRAS resulted in the

  2. FOLFIRI plus panitumumab in the treatment of wild-type KRAS and wild-type NRAS metastatic colorectal cancer.

    PubMed

    Geredeli, Caglayan; Yasar, Nurgul

    2018-03-27

    The aim of this study was to investigate the efficacy and safety of first-line panitumumab plus folinic acid, 5-fluorouracil and irinotecan (FOLFIRI) in patients with wild-type KRAS and wild-type NRAS metastatic colorectal cancer (mCRC). Patients with wild-type KRAS and wild-type NRAS mCRC presenting to the medical oncology department of the Okmeydani Training and Research Hospital in Istanbul, Turkey, between April 2014 and January 2018 were enrolled in this study. A total of 64 patients (35 males and 29 females) with a median age of 59 (35-81) years old were enrolled. The median follow-up was 18.9 months, and the median progression-free survival was 13 months. The median overall survival (OS) was 26 months in the patients with wild-type KRAS and wild-type NRAS mCRC. It was 90.4% for the 6-month OS, 79.5% for the 1-year OS, 53.7% for the 2-year OS and 31.1% for the 3-year OS. The median OS of the patients who underwent metastasectomies was 40 [95% confidence interval (CI) = 19.9-60.1] months, and the median OS of the patients without metastasectomies was 22 (95% CI = 17.7-26.4) months. There was a statistically significant difference between these (P = 0.007). The first-line FOLFIRI plus panitumumab was associated with favourable efficacy in the patients with wild-type KRAS and wild-type NRAS mCRC, and it was well tolerated. The removal of the metastases that became resectable after chemotherapy further prolonged the patients' survival. Retrospectively registered: 33886.

  3. Exploratory biomarker analysis for treatment response in KRAS wild type metastatic colorectal cancer patients who received cetuximab plus irinotecan.

    PubMed

    Kim, Seung Tae; Ahn, Tae Jin; Lee, Eunjin; Do, In-Gu; Lee, Su Jin; Park, Se Hoon; Park, Joon Oh; Park, Young Suk; Lim, Ho Yeong; Kang, Won Ki; Kim, Suk Hyeong; Lee, Jeeyun; Kim, Hee Cheol

    2015-10-20

    More than half of the patients selected based on KRAS mutation status fail to respond to the treatment with cetuximab in metastatic colorectal cancer (mCRC). We designed a study to identify additional biomarkers that could act as indicators for cetuximab treatment in mCRC. We investigated 58 tumor samples from wild type KRAS CRC patients treated with cetuximab plus irinotecan (CI). We conducted the genotyping for mutations in either BRAF or PIK3CA and profiled comprehensively the expression of 522 kinase genes. BRAF mutation was detected in 5.1 % (3/58) of patients. All 50 patients showed wild type PIK3CA. Gene expression patterns that categorized patients with or without the disease control to CI were compared by supervised classification analysis. PSKH1, TLK2 and PHKG2 were overexpressed significantly in patients with the disease control to IC. The higher expression value of PSKH1 (r = 0.462, p < 0.001) and TLK2 (r = 0.361, p = 0.005) had the significant correlation to prolonged PFS. The result of this work demonstrated that expression nature of kinase genes such as PSKH1, TLK2 and PHKG2 may be informative to predict the efficacy of CI in wild type KRAS CRC. Mutations in either BRAF or PIK3CA were rare subsets in wild type KRAS CRC.

  4. Combination PI3K/MEK inhibition promotes tumor apoptosis and regression in PIK3CA wild-type, KRAS mutant colorectal cancer

    PubMed Central

    Roper, Jatin; Sinnamon, Mark J.; Coffee, Erin M.; Belmont, Peter; Keung, Lily; Georgeon-Richard, Larissa; Wang, Wei Vivian; Faber, Anthony C.; Yun, Jihye; Yilmaz, Omer H.; Bronson, Roderick T.; Martin, Eric S.; Tsichlis, Philip N.; Hung, Kenneth E.

    2014-01-01

    PI3K inhibition in combination with other agents has not been studied in the context of PIK3CA wild-type, KRAS mutant cancer. In a screen of phospho-kinases, PI3K inhibition of KRAS mutant colorectal cancer cells activated the MAPK pathway. Combination PI3K/MEK inhibition with NVP-BKM120 and PD-0325901 induced tumor regression in a mouse model of PIK3CA wild-type, KRAS mutant colorectal cancer, which was mediated by inhibition of mTORC1, inhibition of MCL-1, and activation of BIM. These findings implicate mitochondrial-dependent apoptotic mechanisms as determinants for the efficacy of PI3K/MEK inhibition in the treatment of PIK3CA wild-type, KRAS mutant cancer. PMID:24576621

  5. KRAS Mutation Is a Predictor of Oxaliplatin Sensitivity in Colon Cancer Cells

    PubMed Central

    Lin, Yu-Lin; Ou, Da-Liang; Lin, Liang-In; Tseng, Li-Hui; Chang, Yih-Leong; Yeh, Kun-Huei; Cheng, Ann-Lii

    2012-01-01

    Molecular biomarkers to determine the effectiveness of targeted therapies in cancer treatment have been widely adopted in colorectal cancer (CRC), but those to predict chemotherapy sensitivity remain poorly defined. We tested our hypothesis that KRAS mutation may be a predictor of oxaliplatin sensitivity in CRC. KRAS was knocked-down in KRAS-mutant CRC cells (DLD-1G13D and SW480G12V) by small interfering RNAs (siRNA) and overexpressed in KRAS-wild-type CRC cells (COLO320DM) by KRAS-mutant vectors to generate paired CRC cells. These paired CRC cells were tested by oxaliplatin, irinotecan and 5FU to determine the change in drug sensitivity by MTT assay and flow cytometry. Reasons for sensitivity alteration were further determined by western blot and real-time quantitative reverse transcriptase polymerase chain reaction (qRT -PCR). In KRAS-wild-type CRC cells (COLO320DM), KRAS overexpression by mutant vectors caused excision repair cross-complementation group 1 (ERCC1) downregulation in protein and mRNA levels, and enhanced oxaliplatin sensitivity. In contrast, in KRAS-mutant CRC cells (DLD-1G13D and SW480G12V), KRAS knocked-down by KRAS-siRNA led to ERCC1 upregulation and increased oxaliplatin resistance. The sensitivity of irinotecan and 5FU had not changed in the paired CRC cells. To validate ERCC1 as a predictor of sensitivity for oxaliplatin, ERCC1 was knocked-down by siRNA in KRAS-wild-type CRC cells, which restored oxaliplatin sensitivity. In contrast, ERCC1 was overexpressed by ERCC1-expressing vectors in KRAS-mutant CRC cells, and caused oxaliplatin resistance. Overall, our findings suggest that KRAS mutation is a predictor of oxaliplatin sensitivity in colon cancer cells by the mechanism of ERCC1 downregulation. PMID:23209813

  6. Wild-type H- and N-Ras promote mutant K-Ras driven tumorigenesis by modulating the DNA damage response

    PubMed Central

    Grabocka, Elda; Pylayeva-Gupta, Yuliya; Jones, Mathew JK; Lubkov, Veronica; Yemanaberhan, Eyoel; Taylor, Laura; Jeng, Hao Hsuan; Bar-Sagi, Dafna

    2014-01-01

    SUMMARY Mutations in KRAS are prevalent in human cancers and universally predictive of resistance to anti-cancer therapeutics. Although it is widely accepted that acquisition of an activating mutation endows RAS genes with functional autonomy, recent studies suggest that the wild-type forms of Ras may contribute to mutant Ras-driven tumorigenesis. Here we show that downregulation of wild-type H-Ras or N-Ras in mutant K-Ras cancer cells leads to hyperactivation of the Erk/p90RSK and PI3K/Akt pathways, and consequently, the phosphorylation of Chk1 at an inhibitory site, Ser 280. The resulting inhibition of ATR/Chk1 signaling abrogates the activation of the G2 DNA damage checkpoint and confers specific sensitization of mutant K-Ras cancer cells to DNA damage chemotherapeutic agents in vitro and in vivo. PMID:24525237

  7. KRAS Protein Stability Is Regulated through SMURF2: UBCH5 Complex-Mediated β-TrCP1 Degradation12

    PubMed Central

    Shukla, Shirish; SankarAllam, Uday; Ahsan, Aarif; Chen, Guoan; Krishnamurthy, Pranathi Meda; Marsh, Katherine; Rumschlag, Matthew; Shankar, Sunita; Whitehead, Christopher; Schipper, Matthew; Basrur, Venkatesha; Southworth, Daniel R; Chinnaiyan, Arul M; Rehemtulla, Alnawaz; Beer, David G; Lawrence, Theodore S; Nyati, Mukesh K; Ray, Dipankar

    2014-01-01

    Attempts to target mutant KRAS have been unsuccessful. Here, we report the identification of Smad ubiquitination regulatory factor 2 (SMURF2) and UBCH5 as a critical E3:E2 complex maintaining KRAS protein stability. Loss of SMURF2 either by small interfering RNA/short hairpin RNA (siRNA/shRNA) or by overexpression of a catalytically inactive mutant causes KRAS degradation, whereas overexpression of wild-type SMURF2 enhances KRAS stability. Importantly, mutant KRAS is more susceptible to SMURF2 loss where protein half-life decreases from >12 hours in control siRNA-treated cells to <3 hours on Smurf2 silencing, whereas only marginal differences were noted for wild-type protein. This loss of mutant KRAS could be rescued by overexpressing a siRNA-resistant wild-type SMURF2. Our data further show that SMURF2 monoubiquitinates UBCH5 at lysine 144 to form an active complex required for efficient degradation of a RAS-family E3, β-transducing repeat containing protein 1 (β-TrCP1). Conversely, β-TrCP1 is accumulated on SMURF2 loss, leading to increased KRAS degradation. Therefore, as expected, β-TrCP1 knockdown following Smurf2 siRNA treatment rescues mutant KRAS loss. Further, we identify two conserved proline (P) residues in UBCH5 critical for SMURF2 interaction; mutant of either of these P to alanine also destabilizes KRAS. As a proof of principle, we demonstrate that Smurf2 silencing reduces the clonogenic survival in vitro and prolongs tumor latency in vivo in cancer cells including mutant KRAS-driven tumors. Taken together, we show that SMURF2:UBCH5 complex is critical in maintaining KRAS protein stability and propose that targeting such complex may be a unique strategy to degrade mutant KRAS to kill cancer cells. PMID:24709419

  8. Cost-effectiveness of first-line treatments for patients with KRAS wild-type metastatic colorectal cancer

    PubMed Central

    Ewara, E.M.; Zaric, G.S.; Welch, S.; Sarma, S.

    2014-01-01

    Background Combinations of chemotherapy regimens and monoclonal antibodies have been demonstrated to improve clinical outcomes in patients with metastatic colorectal cancer (mcrc). Although these combination treatment strategies are safe and effective in first-line treatment for mcrc, little is known about their economic consequences and resource allocation implications. In the present study, we evaluated the cost-effectiveness of bevacizumab plus folfiri, cetuximab plus folfiri, and panitumumab plus folfiri for patients with KRAS wild-type mcrc. Methods A Markov model simulated the lifetime patient outcomes and costs of each first-line treatment strategy and subsequent lines of treatment from the perspective of the health care payer in Ontario. The model was parameterized using data from the Ontario Cancer Registry, Ontario health administrative databases, and published randomized control trials. Patient outcomes were measured in quality-adjusted life years (qalys), and costs were measured in monetary terms. Costs and outcomes were both discounted at 5% and expressed in 2012 Canadian dollars. Results For mcrc patients with KRAS wild-type disease, the treatment strategy of bevacizumab plus folfiri was found to dominate the other two first-line treatment strategies. Sensitivity analyses revealed that the incremental cost-effectiveness ratio values were sensitive to the effectiveness of treatment, the costs of bevacizumab and cetuximab, and health utility values. Conclusions Evidence from Ontario showed that bevacizumab plus folfiri is the cost-effective first-line treatment strategy for patients with KRAS wild-type mcrc. The panitumumab plus folfiri and cetuximab plus folfiri options were both dominated, but the cetuximab plus folfiri strategy must be further investigated given that, in the sensitivity analyses, the cost-effectiveness of that strategy was found to be superior to that of bevacizumab plus folfiri under certain ranges of parameter values. PMID:25089105

  9. Tumour gene expression predicts response to cetuximab in patients with KRAS wild-type metastatic colorectal cancer.

    PubMed

    Baker, J B; Dutta, D; Watson, D; Maddala, T; Munneke, B M; Shak, S; Rowinsky, E K; Xu, L-A; Harbison, C T; Clark, E A; Mauro, D J; Khambata-Ford, S

    2011-02-01

    Although it is accepted that metastatic colorectal cancers (mCRCs) that carry activating mutations in KRAS are unresponsive to anti-epidermal growth factor receptor (EGFR) monoclonal antibodies, a significant fraction of KRAS wild-type (wt) mCRCs are also unresponsive to anti-EGFR therapy. Genes encoding EGFR ligands amphiregulin (AREG) and epiregulin (EREG) are promising gene expression-based markers but have not been incorporated into a test to dichotomise KRAS wt mCRC patients with respect to sensitivity to anti-EGFR treatment. We used RT-PCR to test 110 candidate gene expression markers in primary tumours from 144 KRAS wt mCRC patients who received monotherapy with the anti-EGFR antibody cetuximab. Results were correlated with multiple clinical endpoints: disease control, objective response, and progression-free survival (PFS). Expression of many of the tested candidate genes, including EREG and AREG, strongly associate with all clinical endpoints. Using multivariate analysis with two-layer five-fold cross-validation, we constructed a four-gene predictive classifier. Strikingly, patients below the classifier cutpoint had PFS and disease control rates similar to those of patients with KRAS mutant mCRC. Gene expression appears to identify KRAS wt mCRC patients who receive little benefit from cetuximab. It will be important to test this model in an independent validation study.

  10. STK33 kinase activity is nonessential in KRAS-dependent cancer cells.

    PubMed

    Babij, Carol; Zhang, Yihong; Kurzeja, Robert J; Munzli, Anke; Shehabeldin, Amro; Fernando, Manory; Quon, Kim; Kassner, Paul D; Ruefli-Brasse, Astrid A; Watson, Vivienne J; Fajardo, Flordeliza; Jackson, Angela; Zondlo, James; Sun, Yu; Ellison, Aaron R; Plewa, Cherylene A; San, Miguel Tisha; Robinson, John; McCarter, John; Schwandner, Ralf; Judd, Ted; Carnahan, Josette; Dussault, Isabelle

    2011-09-01

    Despite the prevalence of KRAS mutations in human cancers, there remain no targeted therapies for treatment. The serine-threonine kinase STK33 has been proposed to be required for the survival of mutant KRAS-dependent cell lines, suggesting that small molecule kinase inhibitors of STK33 may be useful to treat KRAS-dependent tumors. In this study, we investigated the role of STK33 in mutant KRAS human cancer cells using RNA interference, dominant mutant overexpression, and small molecule inhibitors. As expected, KRAS downregulation decreased the survival of KRAS-dependent cells. In contrast, STK33 downregulation or dominant mutant overexpression had no effect on KRAS signaling or survival of these cells. Similarly, a synthetic lethal siRNA screen conducted in a broad panel of KRAS wild-type or mutant cells identified KRAS but not STK33 as essential for survival. We also obtained similar negative results using small molecule inhibitors of the STK33 kinase identified by high-throughput screening. Taken together, our findings refute earlier proposals that STK33 inhibition may be a useful therapeutic approach to target human KRAS mutant tumors. ©2011 AACR.

  11. Suppression of KRas-mutant cancer through the combined inhibition of KRAS with PLK1 and ROCK

    PubMed Central

    Wang, Jieqiong; Hu, Kewen; Guo, Jiawei; Cheng, Feixiong; Lv, Jing; Jiang, Wenhao; Lu, Weiqiang; Liu, Jinsong; Pang, Xiufeng; Liu, Mingyao

    2016-01-01

    No effective targeted therapies exist for cancers with somatic KRAS mutations. Here we develop a synthetic lethal chemical screen in isogenic KRAS-mutant and wild-type cells to identify clinical drug pairs. Our results show that dual inhibition of polo-like kinase 1 and RhoA/Rho kinase (ROCK) leads to the synergistic effects in KRAS-mutant cancers. Microarray analysis reveals that this combinatory inhibition significantly increases transcription and activity of cyclin-dependent kinase inhibitor p21WAF1/CIP1, leading to specific G2/M phase blockade in KRAS-mutant cells. Overexpression of p21WAF1/CIP1, either by cDNA transfection or clinical drugs, preferentially impairs the growth of KRAS-mutant cells, suggesting a druggable synthetic lethal interaction between KRAS and p21WAF1/CIP1. Co-administration of BI-2536 and fasudil either in the LSL-KRASG12D mouse model or in a patient tumour explant mouse model of KRAS-mutant lung cancer suppresses tumour growth and significantly prolongs mouse survival, suggesting a strong synergy in vivo and a potential avenue for therapeutic treatment of KRAS-mutant cancers. PMID:27193833

  12. Economic Analysis of Panitumumab Compared With Cetuximab in Patients With Wild-type KRAS Metastatic Colorectal Cancer That Progressed After Standard Chemotherapy.

    PubMed

    Graham, Christopher N; Maglinte, Gregory A; Schwartzberg, Lee S; Price, Timothy J; Knox, Hediyyih N; Hechmati, Guy; Hjelmgren, Jonas; Barber, Beth; Fakih, Marwan G

    2016-06-01

    In this analysis, we compared costs and explored the cost-effectiveness of subsequent-line treatment with cetuximab or panitumumab in patients with wild-type KRAS (exon 2) metastatic colorectal cancer (mCRC) after previous chemotherapy treatment failure. Data were used from ASPECCT (A Study of Panitumumab Efficacy and Safety Compared to Cetuximab in Patients With KRAS Wild-Type Metastatic Colorectal Cancer), a Phase III, head-to-head randomized noninferiority study comparing the efficacy and safety of panitumumab and cetuximab in this population. A decision-analytic model was developed to perform a cost-minimization analysis and a semi-Markov model was created to evaluate the cost-effectiveness of panitumumab monotherapy versus cetuximab monotherapy in chemotherapy-resistant wild-type KRAS (exon 2) mCRC. The cost-minimization model assumed equivalent efficacy (progression-free survival) based on data from ASPECCT. The cost-effectiveness analysis was conducted with the full information (uncertainty) from ASPECCT. Both analyses were conducted from a US third-party payer perspective and calculated average anti-epidermal growth factor receptor doses from ASPECCT. Costs associated with drug acquisition, treatment administration (every 2 weeks for panitumumab, weekly for cetuximab), and incidence of infusion reactions were estimated in both models. The cost-effectiveness model also included physician visits, disease progression monitoring, best supportive care, and end-of-life costs and utility weights estimated from EuroQol 5-Dimension questionnaire responses from ASPECCT. The cost-minimization model results demonstrated lower projected costs for patients who received panitumumab versus cetuximab, with a projected cost savings of $9468 (16.5%) per panitumumab-treated patient. In the cost-effectiveness model, the incremental cost per quality-adjusted life-year gained revealed panitumumab to be less costly, with marginally better outcomes than cetuximab. These economic

  13. Comparison of HER2 gene amplification and KRAS alteration in eyelid sebaceous carcinomas with that in other eyelid tumors.

    PubMed

    Kwon, Mi Jung; Shin, Hyung Sik; Nam, Eun Sook; Cho, Seong Jin; Lee, Min Joung; Lee, Samuel; Park, Hye-Rim

    2015-05-01

    Eyelid sebaceous carcinoma (SC) represents a highly aggressive malignancy. Despite the poor prognosis, genetic alterations as potential molecular targets are not available. KRAS mutation and HER2 gene amplification may be candidates related to their genetic alterations. We examined the HER2 and KRAS alteration status in eyelid SCs and compared it with that in other eyelid tumors. The controversial topics of the human papillomavirus (HPV) and p16 expression were also investigated. HER2 amplification was determined by silver in situ hybridization, while immunohistochemistry was performed to study protein expressions in 14 SCs and controls, including 23 other eyelid malignancies and 14 benign tumors. Peptide nucleic acid-mediated PCR clamping and direct sequencing were used to detect KRAS mutations. HER2 protein overexpression was observed in 85.7% (12/14) of the SCs, of which two-thirds showed HER2 gene amplification. HER2 protein overexpression and HER2 amplification were found more frequently in eyelid SCs than in other eyelid tumors. All SCs harbored wild type KRAS genes. No HPV infections were identified in the SCs. Nevertheless, p16 overexpression was found in 71.4% (10/14) of SCs, irrespective of the status of HPV infection. Furthermore, p16 overexpression in eyelid SCs was also significantly higher than that in other eyelid tumors. HER2 protein overexpression, HER2 gene amplifications, and wild type KRAS genes are common in eyelid SCs. HER2 gene amplification may represent potential therapeutic targets for the treatment of eyelid SCs. Copyright © 2014 Elsevier GmbH. All rights reserved.

  14. The YAP1/SIX2 axis is required for DDX3-mediated tumor aggressiveness and cetuximab resistance in KRAS-wild-type colorectal cancer

    PubMed Central

    Wu, De-Wei; Lin, Po-Lin; Wang, Lee; Huang, Chi-Chou; Lee, Huei

    2017-01-01

    The mechanism underlying tumor aggressiveness and cetuximab (CTX) resistance in KRAS-wild-type (KRAS -WT) colorectal cancer remains obscure. We here provide evidence that DDX3 promoted soft agar growth and invasiveness of KRAS-WT cells, as already confirmed in KRAS-mutated cells. Mechanistically, increased KRAS expression induced ROS production, which elevated HIF-1α and YAP1 expression. Increased HIF-1α persistently promoted DDX3 expression via a KRAS/ROS/HIF-1α feedback loop. DDX3-mediated aggressiveness and CTX resistance were regulated by the YAP1/SIX2 axis in KRAS-WT cells and further confirmed in animal models. Kaplan-Meier and Cox regression analysis indicated that DDX3, KRAS, and YAP1 expression had prognostic value for OS and RFS in KRAS-WT and KRAS-mutated tumors, but SIX2 and YAP1/SIX2 were prognostic value only in KRAS-WT patients. The observation from patients seemed to support the mechanistic action of cell and animal models. We therefore suggest that combining YAP1 inhibitors with CTX may therefore suppress DDX3-mediated tumor aggressiveness and enhance CTX sensitivity in KRAS-WT colorectal cancer. PMID:28435452

  15. Involvement of overexpressed wild-type BRAF in the growth of malignant melanoma cell lines.

    PubMed

    Tanami, Hideaki; Imoto, Issei; Hirasawa, Akira; Yuki, Yasuhiro; Sonoda, Itaru; Inoue, Jun; Yasui, Kohichiro; Misawa-Furihata, Akiko; Kawakami, Yutaka; Inazawa, Johji

    2004-11-18

    Comparative genomic hybridization (CGH) using 40 cell lines derived from malignant melanomas (MMs) revealed frequent amplification at 7q33-q34 containing BRAF gene, which often is mutated in MM. We found this gene to be amplified to a remarkable degree in the MM cell lines that exhibited high-level gains at 7q33-q34 in CGH. Among 40 cell lines, the eight lines that revealed neither BRAF nor NRAS mutations showed even higher levels of BRAF mRNA expression than the 32 mutated lines, although DNA amplification at 7q33-q34 was not detected in every lines overexpressing BRAF. MM cells that carried wild-type BRAF and NRAS showed constitutive overexpression of B-Raf protein and phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2), even after serum starvation. Not only downregulation of the endogenously overexpressed wild-type B-Raf by antisense oligonucleotide but also a treatment with an inhibitor of mitogen-activated protein kinase kinase (MAPKK, MEK) reduced phosphorylated ERK1/2 and cell growth, whereas the exogenously expressed wild-type B-Raf promoted cell growth in MM cells. Our results provide the evidence that overexpression of wild-type B-Raf, in part but not always as a result of gene amplification, is one of the mechanisms underlying constitutive activation of the MAPK pathway that stimulates growth of MM cells.

  16. Lin28-let7 Modulates Radiosensitivity of Human Cancer Cells With Activation of K-Ras

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oh, Jee-Sun.; Kim, Jae-Jin; Byun, Ju-Yeon

    2010-01-15

    Purpose: To evaluate the potential of targeting Lin28-let7 microRNA regulatory network for overcoming the radioresistance of cancer cells having activated K-Ras signaling. Methods and Materials: A549 lung carcinoma cells and ASPC1 pancreatic cancer cells possessing K-RAS mutation were transfected with pre-let7a microRNA or Lin28 siRNA, respectively. Clonogenic assay, quantitative reverse transcription polymerase chain reaction, and Western analysis were performed. The effects of Lin28 on SQ20B cells having wild-type K-RAS, and a normal fibroblast were also assessed. Results: The overexpression of let-7a decreased expression of K-Ras and radiosensitized A549 cells. Inhibition of Lin28, a repressor of let-7, attenuated K-Ras expression andmore » radiosensitized A549 and ASPC1 cells. Neither SQ20B cells expressing wild-type K-RAS nor HDF, the normal human fibroblasts, were radiosensitized by this approach. Conclusions: The Lin28-let7 regulatory network may be a potentially useful therapeutic target for overcoming the radioresistance of human cancers having activated K-Ras signaling.« less

  17. Capturing the metabolomic diversity of KRAS mutants in non-small-cell lung cancer cells

    PubMed Central

    Marabese, Mirko; Broggini, Massimo; Pastorelli, Roberta

    2014-01-01

    In non-small-cell lung cancer (NSCLC), one-fifth of patients have KRAS mutations, which are considered a negative predictive factor to first-line therapy. Evidence is emerging that not all KRAS mutations have the same biological activities and possible remodeling of cell metabolism by KRAS activation might complicate the scenario. An open question is whether different KRAS mutations at codon-12 affect cellular metabolism differently with possible implications for different responses to cancer treatments. We applied an explorative mass spectrometry-based untargeted metabolomics strategy to characterize the largest possible number of metabolites that might distinguish isogenic NSCLC cells overexpressing mutated forms of KRAS at codon-12 (G12C, G12D, G12V) and the wild-type. The glutamine deprivation assay and real-time PCR were used to confirm the involvement of some of the metabolic pathways highlighted. Cell clones indicated distinct metabolomic profiles in KRAS wild-type and mutants. Clones harboring different KRAS mutations at codon-12 also had different metabolic remodeling, such as a different redox buffering system and different glutamine-dependency not driven by the transcriptional state of enzymes involved in glutaminolysis. These findings indicate that KRAS mutations at codon-12 are associated with different metabolomic profiles that might affect the responses to cancer treatments. PMID:24952473

  18. KRAS Mutation as a Potential Prognostic Biomarker of Biliary Tract Cancers

    PubMed Central

    Yokoyama, Masaaki; Ohnishi, Hiroaki; Ohtsuka, Kouki; Matsushima, Satsuki; Ohkura, Yasuo; Furuse, Junji; Watanabe, Takashi; Mori, Toshiyuki; Sugiyama, Masanori

    2016-01-01

    BACKGROUND The aim of this study was to identify the unique molecular characteristics of biliary tract cancer (BTC) for the development of novel molecular-targeted therapies. MATERIALS AND METHODS We performed mutational analysis of KRAS, BRAF, PIK3CA, and FBXW7 and immunohistochemical analysis of EGFR and TP53 in 63 Japanese patients with BTC and retrospectively evaluated the association between the molecular characteristics and clinicopathological features of BTC. RESULTS KRAS mutations were identified in 9 (14%) of the 63 BTC patients; no mutations were detected within the analyzed regions of BRAF, PIK3CA, and FBXW7. EGFR overexpression was observed in 5 (8%) of the 63 tumors, while TP53 overexpression was observed in 48% (30/63) of the patients. Overall survival of patients with KRAS mutation was significantly shorter than that of patients with the wild-type KRAS gene (P = 0.005). By multivariate analysis incorporating molecular and clinicopathological features, KRAS mutations and lymph node metastasis were identified to be independently associated with shorter overall survival (KRAS, P = 0.004; lymph node metastasis, P = 0.015). CONCLUSIONS Our data suggest that KRAS mutation is a poor prognosis predictive biomarker for the survival in BTC patients. PMID:28008299

  19. Activation Of Wild-Type Hras Suppresses The Earliest Stages Of Pancreatic Cancer.

    PubMed

    Weyandt, Jamie

    2015-08-01

    The RAS family of small GTPases is comprised of HRAS, NRAS, and KRAS. KRAS is invariably oncogenically mutated in pancreatic cancers, which is known to induce this disease. Beyond oncogenic KRAS, redox-dependent reactions have been implicated in the activation of the remaining wild-type RAS proteins in pancreatic cancer cell lines. These results suggest a possible involvement of wild-type RAS proteins in pancreatic cancer. To evaluate the impact of genetically suppressing wild-type RAS expression on pancreatic cancer. Hras homozygous null mice (Hras -/- ) were crossed into a Pdx-Cre; LSL-Kras G12D/+ (KC) murine background in which oncogenic Kras is activated in the pancreas to promote preinvasive pancreatic cancer. Tumor burden was then measured at different stages of disease. HRas -/- ;KC mice exhibited more precancerous lesions in the pancreas and more off-target skin papillomas compared to their wild-type counterparts, suggesting that Hras suppresses early oncogenic Kras-driven tumorigenesis, possibly at the time of initiation. Loss of Hras also reduced the survival of mice engineered to develop aggressive pancreatic cancer by the additional disruption of one allele of the tumor suppressor p53 (Trp53 R172H/+ ). However, this survival advantage was lost when both alleles of Trp53 were mutated, suggesting that wild-type Hras inhibits tumorigenesis in a p53-dependent fashion. Loss of wild-type Hras promotes the earliest stages of pancreatic tumorigenesis, and moreover results in more rapid progression of the disease. As such, mechanisms leading to activation of wild-type Ras proteins, including but not limited to redox-dependent reactions, may influence the development of pancreatic cancer. Copyright © 2015. Published by Elsevier B.V.

  20. Single-Tubed Wild-Type Blocking Quantitative PCR Detection Assay for the Sensitive Detection of Codon 12 and 13 KRAS Mutations

    PubMed Central

    Duan, Guang-Jie; Shi, Yan; Deng, Guo-Hong; Xia, Han; Xu, Han-Qing; Zhao, Na; Fu, Wei-Ling; Huang, Qing

    2015-01-01

    The high degree of intra-tumor heterogeneity has meant that it is important to develop sensitive and selective assays to detect low-abundance KRAS mutations in metastatic colorectal carcinoma (mCRC) patients. As a major potential source of tumor DNA in the aforementioned genotyping assays, it was necessary to conduct an analysis on both the quality and quantity of DNA extracted from formalin-fixed paraffin-embedded (FFPE). Therefore, four commercial FFPE DNA extraction kits were initially compared with respect to their ability to facilitate extraction of amplifiable DNA. The results showed that TrimGen kits showed the greatest performance in relation to the quality and quantity of extracted FFPE DNA solutions. Using DNA extracted by TrimGen kits as a template for tumor genotyping, a real-time wild-type blocking PCR (WTB-PCR) assay was subsequently developed to detect the aforementioned KRAS mutations in mCRC patients. The results showed that WTB-PCR facilitated the detection of mutated alleles at a ratio of 1:10,000 (i.e. 0.01%) wild-type alleles. When the assay was subsequently used to test 49 mCRC patients, the results showed that the mutation detection levels of the WTB-PCR assay (61.8%; 30/49) were significantly higher than that of traditional PCR (38.8%; 19/49). Following the use of the real-time WTB-PCR assay, the ΔC q method was used to quantitatively analyze the mutation levels associated with KRAS in each FFPE sample. The results showed that the mutant levels ranged from 53.74 to 0.12% in the patients analyzed. In conclusion, the current real-time WTB-PCR is a rapid, simple, and low-cost method that permits the detection of trace amounts of the mutated KRAS gene. PMID:26701781

  1. KRAS-G12C mutation is associated with poor outcome in surgically resected lung adenocarcinoma.

    PubMed

    Nadal, Ernest; Chen, Guoan; Prensner, John R; Shiratsuchi, Hiroe; Sam, Christine; Zhao, Lili; Kalemkerian, Gregory P; Brenner, Dean; Lin, Jules; Reddy, Rishindra M; Chang, Andrew C; Capellà, Gabriel; Cardenal, Felipe; Beer, David G; Ramnath, Nithya

    2014-10-01

    The aim of this study was to examine the effects of KRAS mutant subtypes on the outcome of patients with resected lung adenocarcinoma (AC). Using clinical and sequencing data, we identified 179 patients with resected lung AC for whom KRAS mutational status was determined. A multivariate Cox model was used to identify factors associated with disease-free survival (DFS) and overall survival (OS). Publicly available mutation and gene-expression data from lung cancer cell lines and lung AC were used to assess whether distinct KRAS mutant variants have a different profile. Patients with KRAS mutation had a significantly shorter DFS compared with those with KRAS wild-type (p = 0.009). Patients with KRAS-G12C mutant tumors had significantly shorter DFS compared with other KRAS mutants and KRAS wild-type tumors (p < 0.001). In the multivariate Cox model, KRAS-G12C remained as an independent prognostic marker for DFS (Hazard ratio = 2.46, 95% confidence interval 1.51-4.00, p < 0.001) and for OS (Hazard ratio = 2.35, 95% confidence interval 1.35-4.10, p = 0.003). No genes were statistically significant when comparing the mutational or transcriptional profile of lung cancer cell lines and lung AC harboring KRAS-G12C with other KRAS mutant subtypes. Gene set enrichment analysis revealed that KRAS-G12C mutants overexpressed epithelial to mesenchymal transition genes and expressed lower levels of genes predicting KRAS dependency. KRAS-G12C mutation is associated with worse DFS and OS in resected lung AC. Gene-expression profiles in lung cancer cell lines and surgically resected lung AC revealed that KRAS-G12C mutants had an epithelial to mesenchymal transition and a KRAS-independent phenotype.

  2. Chloroplast parameters differ in wild type and transgenic poplars overexpressing gsh1 in the cytosol.

    PubMed

    Ivanova, L A; Ronzhina, D A; Ivanov, L A; Stroukova, L V; Peuke, A D; Rennenberg, H

    2009-07-01

    Poplar mutants overexpressing the bacterial genes gsh1 or gsh2 encoding the enzymes of glutathione biosynthesis are among the best-characterised transgenic plants. However, this characterisation originates exclusively from laboratory studies, and the performance of these mutants under field conditions is largely unknown. Here, we report a field experiment in which the wild-type poplar hybrid Populus tremula x P. alba and a transgenic line overexpressing the bacterial gene gsh1 encoding gamma-glutamylcysteine synthetase in the cytosol were grown for 3 years at a relatively clean (control) field site and a field site contaminated with heavy metals. Aboveground biomass accumulation was slightly smaller in transgenic compared to wild-type plants; soil contamination significantly decreased biomass accumulation in both wild-type and transgenic plants by more than 40%. Chloroplasts parameters, i.e., maximal diameter, projection area and perimeter, surface area and volume, surface/volume ratio and a two-dimensional form coefficient, were found to depend on plant type, leaf tissue and soil contamination. The greatest differences between wild and transgenic poplars were observed at the control site. Under these conditions, chloroplast sizes in palisade tissue of transgenic poplar significantly exceeded those of the wild type. In contrast to the wild type, palisade chloroplast volume exceeded that of spongy chloroplasts in transgenic poplars at both field sites. Chlorophyll content per chloroplast was the same in wild and transgenic poplars. Apparently, the increase in chloroplast volume was not connected to changes in the photosynthetic centres. Chloroplasts of transgenic poplar at the control site were more elongated in palisade cells and close to spherical in spongy mesophyll chloroplasts. At the contaminated site, palisade and spongy cell chloroplasts of leaves from transgenic trees and the wild type were the same shape. Transgenic poplars also had a smaller chloroplast

  3. MLH1-deficient Colorectal Carcinoma With Wild-type BRAF and MLH1 Promoter Hypermethylation Harbor KRAS Mutations and Arise From Conventional Adenomas.

    PubMed

    Farchoukh, Lama; Kuan, Shih-Fan; Dudley, Beth; Brand, Randall; Nikiforova, Marina; Pai, Reetesh K

    2016-10-01

    Between 10% and 15% of colorectal carcinomas demonstrate sporadic DNA mismatch-repair protein deficiency as a result of MLH1 promoter methylation and are thought to arise from sessile serrated adenomas, termed the serrated neoplasia pathway. Although the presence of the BRAF V600E mutation is indicative of a sporadic cancer, up to 30% to 50% of colorectal carcinomas with MLH1 promoter hypermethylation will lack a BRAF mutation. We report the clinicopathologic and molecular features of MLH1-deficient colorectal carcinoma with wild-type BRAF and MLH1 promoter hypermethylation (referred to as MLH1-hypermethylated BRAF wild-type colorectal carcinoma, n=36) in comparison with MLH1-deficient BRAF-mutated colorectal carcinoma (n=113) and Lynch syndrome-associated colorectal carcinoma (n=36). KRAS mutations were identified in 31% of MLH1-hypermethylated BRAF wild-type colorectal carcinomas compared with 0% of MLH1-deficient BRAF-mutated colorectal carcinomas and 37% of Lynch syndrome-associated colorectal carcinomas. When a precursor polyp was identified, MLH1-hypermethylated BRAF wild-type colorectal carcinomas arose from precursor polyps resembling conventional tubular/tubulovillous adenomas in contrast to MLH1-deficient BRAF-mutated colorectal carcinomas, which arose from precursor sessile serrated adenomas (P<0.001). Both MLH1-hypermethylated BRAF wild-type colorectal carcinoma and MLH1-deficient BRAF-mutated colorectal carcinoma had a predilection for the right colon compared with Lynch syndrome-associated colorectal carcinoma (86% vs. 92% vs. 49%, P<0.001). There was no significant difference in mucinous differentiation, tumor-infiltrating lymphocytes, Crohn-like reaction, and medullary differentiation between the 3 tumor groups. Using Kaplan-Meier survival functions, there was no significant difference in disease-specific survival between the 3 patient groups (P>0.05). In conclusion, our results indicate that MLH1-hypermethylated BRAF wild-type colorectal carcinomas

  4. Selective targeting of KRAS-Mutant cells by miR-126 through repression of multiple genes essential for the survival of KRAS-Mutant cells

    PubMed Central

    Hara, Toshifumi; Jones, Matthew F.; Subramanian, Murugan; Li, Xiao Ling; Ou, Oliver; Zhu, Yuelin; Yang, Yuan; Wakefield, Lalage M.; Hussain, S. Perwez; Gaedcke, Jochen; Ried, Thomas; Luo, Ji; Caplen, Natasha J.; Lal, Ashish

    2014-01-01

    MicroRNAs (miRNAs) regulate the expression of hundreds of genes. However, identifying the critical targets within a miRNA-regulated gene network is challenging. One approach is to identify miRNAs that exert a context-dependent effect, followed by expression profiling to determine how specific targets contribute to this selective effect. In this study, we performed miRNA mimic screens in isogenic KRAS-Wild-type (WT) and KRAS-Mutant colorectal cancer (CRC) cell lines to identify miRNAs selectively targeting KRAS-Mutant cells. One of the miRNAs we identified as a selective inhibitor of the survival of multiple KRAS-Mutant CRC lines was miR-126. In KRAS-Mutant cells, miR-126 over-expression increased the G1 compartment, inhibited clonogenicity and tumorigenicity, while exerting no effect on KRAS-WT cells. Unexpectedly, the miR-126-regulated transcriptome of KRAS-WT and KRAS-Mutant cells showed no significant differences. However, by analyzing the overlap between miR-126 targets with the synthetic lethal genes identified by RNAi in KRAS-Mutant cells, we identified and validated a subset of miR-126-regulated genes selectively required for the survival and clonogenicity of KRAS-Mutant cells. Our strategy therefore identified critical target genes within the miR-126-regulated gene network. We propose that the selective effect of miR-126 on KRAS-Mutant cells could be utilized for the development of targeted therapy for KRAS mutant tumors. PMID:25245095

  5. Cetuximab Plus Various Chemotherapy Regimens for Patients with KRAS Wild-Type Metastatic Colorectal Cancer.

    PubMed

    Azadeh, Payam; Mortazavi, Nafiseh; Tahmasebi, Arezoo; Hosseini Kamal, Farnaz; Novin, Kambiz

    2016-01-01

    The aim of this study was to compare the efficacy and hematologic toxicity of cetuximab combined with various types of chemotherapy regimens in patients with KRAS wild-type metastatic colorectal cancer (mCRC). The response rate, progression-free survival (PFS) and overall survival of the patients were analyzed. In total, 45 patients were included in the study. The overall response rate for the combination of cetuximab and FOLFOX, FOLFIRI and CAPOX was 20, 46 and 30%, respectively, but the differences were not statistically significant. The median PFS for the three groups were 8, 6 and 3.5 months, respectively, but again these differences were not significant. All-grade leukopenia and anemia for the cetuximab plus FOLFOX group were significantly higher than for the other chemotherapy regimens. Our findings suggest that the combination of cetuximab and the three standard chemotherapy regimens resulted in the same outcomes in our patient population of mCRC, with higher hematologic toxicities among the FOLFOX subgroup. © 2015 S. Karger AG, Basel.

  6. Randomized Phase Ib/II Trial of Rilotumumab or Ganitumab with Panitumumab versus Panitumumab Alone in Patients with Wild-type KRAS Metastatic Colorectal Cancer

    PubMed Central

    Cutsem, Eric Van; Eng, Cathy; Nowara, Elzbieta; Świeboda-Sadlej, Anna; Tebbutt, Niall C.; Mitchell, Edith; Davidenko, Irina; Stephenson, Joe; Elez, Elena; Prenen, Hans; Deng, Hongjie; Tang, Rui; McCaffery, Ian; Oliner, Kelly S.; Chen, Lisa; Gansert, Jennifer; Loh, Elwyn; Smethurst, Dominic; Tabernero, Josep

    2015-01-01

    Purpose Panitumumab, a fully human anti-epidermal growth factor receptor monoclonal antibody (mAb), has demonstrated efficacy in patients with wild-type KRAS metastatic colorectal cancer (mCRC). Rilotumumab and ganitumab are investigational, fully human mAbs against hepatocyte growth factor (HGF)/scatter factor and IGF1R, respectively. Here we evaluate combining rilotumumab or ganitumab with panitumumab in previously treated patients with wild-type KRAS mCRC. Experimental Design Part 1 was a phase Ib dose-finding study of panitumumab plus rilotumumab. The primary endpoint was the incidence of dose-limiting toxicities (DLT). Part 2 was a randomized phase II trial of panitumumab in combination with rilotumumab, ganitumab, or placebo. The primary endpoint was objective response rate (ORR); safety, progression-free survival (PFS), and overall survival (OS) were secondary endpoints. Archival tissue specimens were collected for exploratory correlative work. Results In part 1, no DLTs were reported. A recommended phase II dose of 10 mg/kg rilotumumab was selected. In part 2, for the panitumumab plus rilotumumab (n = 48), panitumumab plus ganitumab (n = 46), and panitumumab plus placebo arms (n = 48), the ORRs were 31%, 22%, and 21%, respectively. The median PFS was 5.2, 5.3, and 3.7 months and median OS 13.8,10.6, and 11.6 months, respectively. Adverse events were tolerable. Exploratory biomarker analyses, including MET and IGF-related protein expression, failed to indicate conclusive predictive evidence on efficacy endpoints. Conclusions Panitumumab plus rilotumumab met the prespecified criterion for improvement in ORR whereas ganitumab did not. This is the first study to suggest a benefit for combining an HGF inhibitor (rilotumumab) with panitumumab in previously treated patients with wild-type KRAS mCRC. PMID:24919569

  7. Expression of Abelson Interactor 1 (Abi1) Correlates with Inflammation, KRAS Mutation and Adenomatous Change during Colonic Carcinogenesis

    PubMed Central

    Steinestel, Konrad; Brüderlein, Silke; Steinestel, Julie; Märkl, Bruno; Schwerer, Michael J.; Arndt, Annette; Kraft, Klaus; Pröpper, Christian; Möller, Peter

    2012-01-01

    Background Abelson interactor 1 (Abi1) is an important regulator of actin dynamics during cytoskeletal reorganization. In this study, our aim was to investigate the expression of Abi1 in colonic mucosa with and without inflammation, colonic polyps, colorectal carcinomas (CRC) and metastases as well as in CRC cell lines with respect to BRAF/KRAS mutation status and to find out whether introduction of KRAS mutation or stimulation with TNFalpha enhances Abi1 protein expression in CRC cells. Methodology/Principal Findings We immunohistochemically analyzed Abi1 protein expression in 126 tissue specimens from 95 patients and in 5 colorectal carcinoma cell lines with different mutation status by western immunoblotting. We found that Abi1 expression correlated positively with KRAS, but not BRAF mutation status in the examined tissue samples. Furthermore, Abi1 is overexpressed in inflammatory mucosa, sessile serrated polyps and adenomas, tubular adenomas, invasive CRC and CRC metastasis when compared to healthy mucosa and BRAF-mutated as well as KRAS wild-type hyperplastic polyps. Abi1 expression in carcinoma was independent of microsatellite stability of the tumor. Abi1 protein expression correlated with KRAS mutation in the analyzed CRC cell lines, and upregulation of Abi1 could be induced by TNFalpha treatment as well as transfection of wild-type CRC cells with mutant KRAS. The overexpression of Abi1 could be abolished by treatment with the PI3K-inhibitor Wortmannin after KRAS transfection. Conclusions/Significance Our results support a role for Abi1 as a downstream target of inflammatory response and adenomatous change as well as oncogenic KRAS mutation via PI3K, but not BRAF activation. Furthermore, they highlight a possible role for Abi1 as a marker for early KRAS mutation in hyperplastic polyps. Since the protein is a key player in actin dynamics, our data encourages further studies concerning the exact role of Abi1 in actin reorganization upon enhanced KRAS/PI3K

  8. Concurrent Targeting of KRAS and AKT by MiR-4689 Is a Novel Treatment Against Mutant KRAS Colorectal Cancer

    PubMed Central

    Hiraki, Masayuki; Nishimura, Junichi; Takahashi, Hidekazu; Wu, Xin; Takahashi, Yusuke; Miyo, Masaaki; Nishida, Naohiro; Uemura, Mamoru; Hata, Taishi; Takemasa, Ichiro; Mizushima, Tsunekazu; Soh, Jae-Won; Doki, Yuichiro; Mori, Masaki; Yamamoto, Hirofumi

    2015-01-01

    KRAS mutations are a major cause of drug resistance to molecular-targeted therapies. Aberrant epidermal growth factor receptor (EGFR) signaling may cause dysregulation of microRNA (miRNA) and gene regulatory networks, which leads to cancer initiation and progression. To address the functional relevance of miRNAs in mutant KRAS cancers, we transfected exogenous KRASG12V into human embryonic kidney 293 and MRC5 cells with wild-type KRAS and BRAF genes, and we comprehensively profiled the dysregulated miRNAs. The result showed that mature miRNA oligonucleotide (miR)-4689, one of the significantly down-regulated miRNAs in KRASG12V overexpressed cells, was found to exhibit a potent growth-inhibitory and proapoptotic effect both in vitro and in vivo. miR-4689 expression was significantly down-regulated in cancer tissues compared to normal mucosa, and it was particularly decreased in mutant KRAS CRC tissues. miR-4689 directly targets v-ki-ras2 kirsten rat sarcoma viral oncogene homolog (KRAS) and v-akt murine thymoma viral oncogene homolog 1(AKT1), key components of two major branches in EGFR pathway, suggesting KRAS overdrives this signaling pathway through inhibition of miR-4689. Overall, this study provided additional evidence that mutant KRAS functions as a broad regulator of the EGFR signaling cascade by inhibiting miR-4689, which negatively regulates both RAS/mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K)/AKT pathways. These activities indicated that miR-4689 may be a promising therapeutic agent in mutant KRAS CRC. PMID:25756961

  9. Comparison of KRAS genotype: therascreen assay vs. LNA-mediated qPCR clamping assay.

    PubMed

    Chang, Shao-Chun; Denne, Jonathan; Zhao, Luping; Horak, Christine; Green, George; Khambata-Ford, Shirin; Bray, Christopher; Celik, Ilhan; Van Cutsem, Eric; Harbison, Christopher

    2013-09-01

    Kirsten rat sarcoma virus (KRAS) wild-type status determined using a locked nucleic acid (LNA)-mediated quantitative polymerase chain reaction (qPCR) clamping assay (LNA assay) predicted response to therapy in the CRYSTAL (Cetuximab Combined With Irinotecan in First-Line Therapy for Metastatic Colorectal Cancer) study. A companion KRAS diagnostic tool has been developed for routine clinical use (QIAGEN therascreen kit) (QIAGEN Manchester Ltd, Manchester, UK). We wanted to assess the concordance between the validated US Food and Drug Administration (FDA)-approved therascreen assay and the LNA assay in determining the KRAS status of a subset of patients enrolled in the CRYSTAL study. DNA extracted from paraffin-embedded tumor sections was tested for KRAS status using the therascreen assay. Efficacy data from the CRYSTAL study were assessed to determine if the overall survival (OS) hazard ratio for cetuximab in patients identified as having KRAS wild-type status using the therascreen assay was equivalent to that in patients identified as KRAS wild-type using the LNA assay. This was determined by assessing if the concordance between the therascreen assay and the LNA assay met the minimum threshold (prespecified as 0.8) to achieve a significant difference in the OS hazard ratio in favor of the cetuximab + FOLFIRI (5-fluorouracil, leucovorin [folinic acid], irinotecan) arm in the KRAS wild-type population as identified using the therascreen assay. Of the 148 samples determined to be KRAS wild-type (therascreen assay), 141 (95.3%) samples were also KRAS wild-type (LNA assay) and 7 samples (4.7%) were KRAS mutant (LNA assay). The prespecified primary concordance measure p was 141/148 = 0.953 (95% confidence interval [CI], 0.905-0.981). The concordance was statistically significantly higher than the prespecified threshold of 0.8 for concordance between the therascreen assay and the LNA assay. Consistent with the concordance exceeding the prespecified threshold, the OS

  10. KRAS-mutation status dependent effect of zoledronic acid in human non-small cell cancer preclinical models

    PubMed Central

    Kenessey, István; Kói, Krisztina; Horváth, Orsolya; Cserepes, Mihály; Molnár, Dávid; Izsák, Vera; Dobos, Judit; Hegedűs, Balázs

    2016-01-01

    Background In non-small cell lung cancer (NSCLC) KRAS-mutant status is a negative prognostic and predictive factor. Nitrogen-containing bisphosphonates inhibit prenylation of small G-proteins (e.g. Ras, Rac, Rho) and thus may affect proliferation and migration. In our preclinical work, we investigated the effect of an aminobisphosphonate compound (zoledronic acid) on mutant and wild type KRAS-expressing human NSCLC cell lines. Results We confirmed that zoledronic acid was unable to inhibit the prenylation of mutant K-Ras unlike in the case of wild type K-Ras. In case of in vitro proliferation, the KRAS-mutant human NSCLC cell lines showed resistance to zoledronic acid wild-type KRAS-cells proved to be sensitive. Combinatory application of zoledronic acid enhanced the cytostatic effect of cisplatin. Zoledronic acid did not induce significant apoptosis. In xenograft model, zoledronic acid significantly reduced the weight of wild type KRAS-EGFR-expressing xenograft tumor by decreasing the proliferative capacity. Futhermore, zoledronic acid induced VEGF expression and improved in vivo tumor vascularization. Materials and methods Membrane association of K-Ras was examined by Western-blot. In vitro cell viability, apoptotic cell death and migration were measured in NSCLC lines with different molecular background. The in vivo effect of zoledronic acid was investigated in a SCID mouse subcutaneous xenograft model. Conclusions The in vitro and in vivo inhibitory effect of zoledronic acid was based on the blockade of cell cycle in wild type KRAS-expressing human NSCLC cells. The zoledronic acid induced vascularization supported in vivo cytostatic effect. Our preclinical investigation suggests that patients with wild type KRAS-expressing NSCLC could potentially benefit from aminobisphosphonate therapy. PMID:27780929

  11. Changes in fatty acid content and composition between wild type and CsHMA3 overexpressing Camelina sativa under heavy-metal stress.

    PubMed

    Park, Won; Feng, Yufeng; Kim, Hyojin; Suh, Mi Chung; Ahn, Sung-Ju

    2015-09-01

    Under heavy-metal stress, CsHMA3 overexpressing transgenic Camelina plants displayed not only a better quality, but also a higher quantity of unsaturated fatty acids in their seeds compared with wild type. Camelina sativa L. belongs to the Brassicaceae family and is frequently used as a natural vegetable oil source, as its seeds contain a high content of fatty acids. In this study, we observed that, when subjected to heavy metals (Cd, Co, Zn and Pb), the seeds of CsHMA3 (Heavy-Metal P1B-ATPase 3) transgenic lines retained their original golden yellow color and smooth outline, unlike wild-type seeds. Furthermore, we investigated the fatty acids content and composition of wild type and CsHMA3 transgenic lines after heavy metal treatments compared to the control. The results showed higher total fatty acid amounts in seeds of CsHMA3 transgenic lines compared with those in wild-type seeds under heavy-metal stresses. In addition, the compositions of unsaturated fatty acids-especially 18:1 (oleic acid), 18:2 (linoleic acid; only in case of Co treatment), 18:3 (linolenic acid) and 20:1 (eicosenoic acid)-in CsHMA3 overexpressing transgenic lines treated with heavy metals were higher than those of wild-type seeds under the same conditions. Furthermore, reactive oxygen species (ROS) contents in wild-type leaves and roots when treated with heavy metal were higher than in CsHMA3 overexpressing transgenic lines. These results indicate that overexpression of CsHMA3 affects fatty acid composition and content-factors that are responsible for the fuel properties of biodiesel-and can alleviate ROS accumulation caused by heavy-metal stresses in Camelina. Due to these factors, we propose that CsHMA3 transgenic Camelina can be used for phytoremediation of metal-contaminated soil as well as for oil production.

  12. Oncogenic KRAS and BRAF Drive Metabolic Reprogramming in Colorectal Cancer *

    PubMed Central

    Hutton, Josiah E.; Wang, Xiaojing; Zimmerman, Lisa J.; Slebos, Robbert J. C.; Trenary, Irina A.; Young, Jamey D.; Li, Ming; Liebler, Daniel C.

    2016-01-01

    Metabolic reprogramming, in which altered utilization of glucose and glutamine supports rapid growth, is a hallmark of most cancers. Mutations in the oncogenes KRAS and BRAF drive metabolic reprogramming through enhanced glucose uptake, but the broader impact of these mutations on pathways of carbon metabolism is unknown. Global shotgun proteomic analysis of isogenic DLD-1 and RKO colon cancer cell lines expressing mutant and wild type KRAS or BRAF, respectively, failed to identify significant differences (at least 2-fold) in metabolic protein abundance. However, a multiplexed parallel reaction monitoring (PRM) strategy targeting 73 metabolic proteins identified significant protein abundance increases of 1.25–twofold in glycolysis, the nonoxidative pentose phosphate pathway, glutamine metabolism, and the phosphoserine biosynthetic pathway in cells with KRAS G13D mutations or BRAF V600E mutations. These alterations corresponded to mutant KRAS and BRAF-dependent increases in glucose uptake and lactate production. Metabolic reprogramming and glucose conversion to lactate in RKO cells were proportional to levels of BRAF V600E protein. In DLD-1 cells, these effects were independent of the ratio of KRAS G13D to KRAS wild type protein. A study of 8 KRAS wild type and 8 KRAS mutant human colon tumors confirmed the association of increased expression of glycolytic and glutamine metabolic proteins with KRAS mutant status. Metabolic reprogramming is driven largely by modest (<2-fold) alterations in protein expression, which are not readily detected by the global profiling methods most commonly employed in proteomic studies. The results indicate the superiority of more precise, multiplexed, pathway-targeted analyses to study functional proteome systems. Data are available through MassIVE Accession MSV000079486 at ftp://MSV000079486@massive.ucsd.edu. PMID:27340238

  13. SensiScreen® KRAS exon 2-sensitive simplex and multiplex real-time PCR-based assays for detection of KRAS exon 2 mutations

    PubMed Central

    Guldmann-Christensen, Mariann; Hauge Kyneb, Majbritt; Voogd, Kirsten; Andersen, Christina; Epistolio, Samantha; Merlo, Elisabetta; Yding Wolff, Tine; Hamilton-Dutoit, Stephen; Lorenzen, Jan; Christensen, Ulf Bech

    2017-01-01

    Activating mutations in codon 12 and codon 13 of the KRAS (Kirsten rat sarcoma viral oncogene homolog) gene are implicated in the development of several human cancer types and influence their clinical evaluation, treatment and prognosis. Numerous different methods for KRAS genotyping are currently available displaying a wide range of sensitivities, time to answer and requirements for laboratory equipment and user skills. Here we present SensiScreen® KRAS exon 2 simplex and multiplex CE IVD assays, that use a novel real-time PCR-based method for KRAS mutation detection based on PentaBase’s proprietary DNA analogue technology and designed to work on standard real-time PCR instruments. By means of the included BaseBlocker™ technology, we show that SensiScreen® specifically amplifies the mutated alleles of interest with no or highly subdued amplification of the wild type allele. Furthermore, serial dilutions of mutant DNA in a wild type background demonstrate that all SensiScreen® assays display a limit of detection that falls within the range of 0.25–1%. Finally, in three different colorectal cancer patient populations, SensiScreen® assays confirmed the KRAS genotype previously determined by commonly used methods for KRAS mutation testing, and notably, in two of the populations, SensiScreen® identified additional mutant positive cases not detected by common methods. PMID:28636636

  14. Erlotinib for Patients with EGFR Wild-Type Metastatic NSCLC: a Retrospective Biomarkers Analysis.

    PubMed

    Inno, Alessandro; Di Noia, Vincenzo; Martini, Maurizio; D'Argento, Ettore; Di Salvatore, Mariantonietta; Arena, Vincenzo; Schinzari, Giovanni; Orlandi, Armando; Larocca, Luigi Maria; Cassano, Alessandra; Barone, Carlo

    2018-03-20

    Erlotinib is approved for the treatment of patients with EGFR mutation positive, metastatic NSCLC. It is also approved as second/third line therapy for EGFR mutation negative patients, but in this setting the benefit of erlotinib is modest and there is no validated biomarker for selecting EGFR wild-type patients who may benefit the most from the treatment. We retrospectively assessed EGFR and K-RAS mutational status, and EGFR, c-MET and IGF1-R expression in tumor samples of 72 patients with metastatic NSCLC treated with erlotinib after at least one prior line of chemotherapy, from 2008 to 2012. We analyzed the association between biomarkers and outcome (RR, PFS, and OS). EGFR mutated patients achieved a better RR (56% vs 8%, p = .002), PFS (10 vs 3 months, HR 0.53, p = 0.48) and OS (20 vs 6 months, HR 0.55, p = .07), compared to EGFR wild-type patients. Among 63 EGFR wild-type patients, those with EGFR high-expression had a better outcome in terms of RR (40% vs 2%, p = .002), PFS (7.5 vs 2 months, HR 0.45, p = .007) and OS (30 vs 5 months, HR 0.34, p < .001) compared to patients with EGFR intermediate or low/negative-expression. IGF1-R expression, c-MET expression and K-RAS mutational status did not significantly affect the outcome; however, no patients with K-RAS mutation or c-MET high-expression achieved an objective response. In patients with metastatic, chemo-refractory EGFR wild-type NSCLC, EGFR high-expression may represent a positive predictor of activity for erlotinib, whereas K-RAS mutation and c-MET high-expression may predict lack of activity. These findings deserve further prospective evaluation.

  15. Biweekly cetuximab in combination with FOLFOX-4 in the first-line treatment of wild-type KRAS metastatic colorectal cancer: final results of a phase II, open-label, clinical trial (OPTIMIX-ACROSS Study).

    PubMed

    Fernandez-Plana, Julen; Pericay, Carlos; Quintero, Guillermo; Alonso, Vicente; Salud, Antonieta; Mendez, Miguel; Salgado, Mercedes; Saigi, Eugeni; Cirera, Luis

    2014-11-22

    This phase II study aims to evaluate the efficacy and safety of biweekly cetuximab in combination with oxaliplatin, leucovorin, and fluorouracil (FOLFOX-4) as first-line treatment of metastatic wild-type KRAS colorectal cancer. Previously untreated patients with wild-type KRAS tumours received biweekly cetuximab (500 mg/m2 on day 1) plus FOLFOX-4 (oxaliplatin 85 mg/m2 on day 1, leucovorin 200 mg/m2 on days 1 and 2, and fluorouracil as a 400 mg/m2 bolus followed by a 22-hour 600 mg/m2 infusion on day 1 and 2). Treatment was continued until disease progression, onset of unacceptable toxicities, metastases surgery, or discontinuation request. The primary endpoint was ORR. The intention-to-treat population included 99 patients with a median age of 64.1 years (range, 34-82). The ORR was 60.6% (95% CI, 50.3% to 70.3%). The median follow-up was 17.8 months; the median OS and PFS were 20.8 and 10.1 months, respectively. Metastases from colorectal cancer were surgically resected in 26 (26.3%) patients, with complete resection achieved in 18 (69.2%) patients. Median PFS and OS in patients undergoing metastatic resection were 12.6 and 29.5 months, respectively. The most common grade 3-4 toxicities were neutropenia (32.3%), acne-like rash (15.2%) and diarrhoea (11.1%). The efficacy of the biweekly combination of cetuximab with FOLFOX-4 in patients with wild-type KRAS tumours supports the administration of cetuximab in a dosing regimen more convenient for patients and healthcare providers. The activity of the biweekly administration is similar to what has been reported for the weekly regimen. Reported toxicity was also consistent with the known toxicity profile of weekly cetuximab. EudraCT Number 200800690916.

  16. Accelerated telomere shortening and replicative senescence in human fibroblasts overexpressing mutant and wild-type lamin A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang Shurong; Risques, Rosa Ana; Martin, George M.

    2008-01-01

    LMNA mutations are responsible for a variety of genetic disorders, including muscular dystrophy, lipodystrophy, and certain progeroid syndromes, notably Hutchinson-Gilford Progeria. Although a number of clinical features of these disorders are suggestive of accelerated aging, it is not known whether cells derived from these patients exhibit cellular phenotypes associated with accelerated aging. We examined a series of isogenic skin fibroblast lines transfected with LMNA constructs bearing known pathogenic point mutations or deletion mutations found in progeroid syndromes. Fibroblasts overexpressing mutant lamin A exhibited accelerated rates of loss of telomeres and shortened replicative lifespans, in addition to abnormal nuclear morphology. Tomore » our surprise, these abnormalities were also observed in lines overexpressing wild-type lamin A. Copy number variants are common in human populations; those involving LMNA, whether arising meiotically or mitotically, might lead to progeroid phenotypes. In an initial pilot study of 23 progeroid cases without detectable WRN or LMNA mutations, however, no cases of altered LMNA copy number were detected. Nevertheless, our findings raise a hypothesis that changes in lamina organization may cause accelerated telomere attrition, with different kinetics for overexpession of wild-type and mutant lamin A, which leads to rapid replicative senescence and progroid phenotypes.« less

  17. CMS-dependent prognostic impact of KRAS and BRAFV600E mutations in primary colorectal cancer.

    PubMed

    Smeby, J; Sveen, A; Merok, M A; Danielsen, S A; Eilertsen, I A; Guren, M G; Dienstmann, R; Nesbakken, A; Lothe, R A

    2018-05-01

    The prognostic impact of KRAS and BRAFV600E mutations in primary colorectal cancer (CRC) varies with microsatellite instability (MSI) status. The gene expression-based consensus molecular subtypes (CMSs) of CRC define molecularly and clinically distinct subgroups, and represent a novel stratification framework in biomarker analysis. We investigated the prognostic value of these mutations within the CMS groups. Totally 1197 primary tumors from a Norwegian series of CRC stage I-IV were analyzed for MSI and mutation status in hotspots in KRAS (codons 12, 13 and 61) and BRAF (codon 600). A subset was analyzed for gene expression and confident CMS classification was obtained for 317 samples. This cohort was expanded with clinical and molecular data, including CMS classification, from 514 patients in the publically available dataset GSE39582. Gene expression signatures associated with KRAS and BRAFV600E mutations were used to evaluate differential impact of mutations on gene expression among the CMS groups. BRAFV600E and KRAS mutations were both associated with inferior 5-year overall survival (OS) exclusively in MSS tumors (BRAFV600E mutation versus KRAS/BRAF wild-type: Hazard ratio (HR) 2.85, P < 0.001; KRAS mutation versus KRAS/BRAF wild-type: HR 1.30, P = 0.013). BRAFV600E-mutated MSS tumors were strongly enriched and associated with metastatic disease in CMS1, leading to negative prognostic impact in this subtype (OS: BRAFV600E mutation versus wild-type: HR 7.73, P = 0.001). In contrast, the poor prognosis of KRAS mutations was limited to MSS tumors with CMS2/CMS3 epithelial-like gene expression profiles (OS: KRAS mutation versus wild-type: HR 1.51, P = 0.011). The subtype-specific prognostic associations were substantiated by differential effects of BRAFV600E and KRAS mutations on gene expression signatures according to the MSI status and CMS group. BRAFV600E mutations are enriched and associated with metastatic disease in CMS1 MSS tumors, leading

  18. Differential proteomic and behavioral effects of long-term voluntary exercise in wild-type and APP-overexpressing transgenics.

    PubMed

    Rao, Shailaja Kishan; Ross, Jordan M; Harrison, Fiona E; Bernardo, Alexandra; Reiserer, Randall S; Reiserer, Ronald S; Mobley, James A; McDonald, Michael P

    2015-06-01

    Physical exercise may provide protection against the cognitive decline and neuropathology associated with Alzheimer's disease, although the mechanisms are not clear. In the present study, APP/PSEN1 double-transgenic and wild-type mice were allowed unlimited voluntary exercise for 7months. Consistent with previous reports, wheel-running improved cognition in the double-transgenic mice. Interestingly, the average daily distance run was strongly correlated with spatial memory in the water maze in wild-type mice (r(2)=.959), but uncorrelated in transgenics (r(2)=.013). Proteomics analysis showed that sedentary transgenic mice differed significantly from sedentary wild-types with respect to proteins involved in synaptic transmission, cytoskeletal regulation, and neurogenesis. When given an opportunity to exercise, the transgenics' deficiencies in cytoskeletal regulation and neurogenesis largely normalized, but abnormal synaptic proteins did not change. In contrast, exercise enhanced proteins associated with cytoskeletal regulation, oxidative phosphorylation, and synaptic transmission in wild-type mice. Soluble and insoluble Aβ40 and Aβ42 levels were significantly decreased in both cortex and hippocampus of active transgenics, suggesting that this may have played a role in the cognitive improvement in APP/PSEN1 mice. β-secretase was significantly reduced in active APP/PSEN1 mice compared to sedentary controls, suggesting a mechanism for reduced Aβ. Taken together, these data illustrate that exercise improves memory in wild-type and APP-overexpressing mice in fundamentally different ways. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Akt mediated ROS-dependent selective targeting of mutant KRAS tumors.

    PubMed

    Iskandar, Kartini; Rezlan, Majidah; Pervaiz, Shazib

    2014-10-01

    Reactive oxygen species (ROS) play a critical role in a variety of cellular processes, ranging from cell survival and proliferation to cell death. Previously, we reported the ability of a small molecule compound, C1, to induce ROS dependent autophagy associated apoptosis in human cancer cell lines and primary tumor cells (Wong C. et al. 2010). Our ongoing investigations have unraveled a hitherto undefined novel signaling network involving hyper-phosphorylation of Akt and Akt-mediated ROS production in cancer cell lines. Interestingly, drug-induced Akt activation is selectively seen in cell lines that carry mutant KRAS; HCT116 cells that carry the V13D KRAS mutation respond favorably to C1 while HT29 cells expressing wild type KRAS are relatively resistant. Of note, not only does the compound target mutant KRAS expressing cells but also induces RAS activation as evidenced by the PAK pull down assay. Corroborating this, pharmacological inhibition as well as siRNA mediated silencing of KRAS or Akt, blocked C1-induced ROS production and rescued tumor colony forming ability in HCT116 cells. To further confirm the involvement of KRAS, we made use of mutant KRAS transformed RWPE-1 prostate epithelial cells. Notably, drug-induced ROS generation and death sensitivity was significantly higher in RWPE-1-KRAS cells than the RWPE-1-vector cells, thus confirming the results obtained with mutant KRAS colorectal carcinoma cell line. Lastly, we made use of HCT116 mutant KRAS knockout cells (KO) where the mutant KRAS allele had been deleted, thus expressing a single wild-type KRAS allele. Exposure of the KO cells to C1 failed to induce Akt activation and mitochondrial ROS production. Taken together, results show the involvement of activated Akt in ROS-mediated selective targeting of mutant KRAS expressing tumors, which could have therapeutic implications given the paucity of chemotherapeutic strategies specifically targeting KRAS mutant cancers. Copyright © 2014. Published by

  20. Correlation between PET/CT parameters and KRAS expression in colorectal cancer.

    PubMed

    Chen, Shang-Wen; Chiang, Hua-Che; Chen, William Tzu-Liang; Hsieh, Te-Chun; Yen, Kuo-Yang; Chiang, Shu-Fen; Kao, Chia-Hung

    2014-08-01

    The objective of this study was to correlate the association between mutated KRAS and wild-type colorectal cancer (CRC) by using various F-FDG PET-related parameters. One hundred twenty-one CRC patients who had undergone preoperative PET/CT were included in this study. Several PET/CT-related parameters, including SUVmax and various thresholds of metabolic tumor volume, total lesion glycolysis, and PET/CT-based tumor width, were measured. Tumor- and PET/CT-related parameters were correlated with genomic expression between KRAS mutant and wild-type groups, using a Mann-Whitney U test and logistic regression analysis. Colorectal cancer tumors with a mutated KRAS exhibited higher SUVmax and an increased accumulation of FDG among several threshold methods. Multivariate analysis showed that SUVmax and using a 40% threshold level for maximal uptake of TW (TW40%) were the 2 predictors of KRAS mutations. The odds ratio was 1.23 for SUVmax (P = 0.02; 95% confidence interval, 1.01-1.52) and 1.15 for TW40% (P = 0.02; 95% confidence interval, 1.02-1.30). The accuracy of SUVmax for predicting mutated KRAS was higher in patients with colon or sigmoid colon cancers, whereas it was TW40% in those with rectal cancers. SUVmax and TW40% were associated in CRC with KRAS mutations. PET/CT parameters can supplement genomic analysis to determine KRAS expression in CRC.

  1. Review on comparative efficacy of bevacizumab, panitumumab and cetuximab antibody therapy with combination of FOLFOX-4 in KRAS-mutated colorectal cancer patients.

    PubMed

    Pathak, Surajit; S, Sushmitha; Banerjee, Antara; Marotta, Francesco; Gopinath, Madhumala; Murugesan, Ramachandran; Zhang, Hong; B, Bhavani; Girigoswami, Agnishwar; Sollano, Jose; Sun, Xiao-Feng

    2018-01-26

    Colorectal cancer, fourth leading form of cancer worldwide and is increasing in alarming rate in the developing countries. Treating colorectal cancer has become a big challenge worldwide and several antibody therapies such as bevacizumab, panitumumab and cetuximab are being used with limited success. Moreover, mutation in KRAS gene which is linked with the colorectal cancer initiation and progression further interferes with the antibody therapies. Considering median progression free survival and overall survival in account, this review focuses to identify the most efficient antibody therapy in combination with chemotherapy (FOLFOX-4) in KRAS mutated colorectal cancer patients. The bevacizumab plus FOLFOX-4 therapy shows about 9.3 months and 8.7 months of progression free survival for KRAS wild and mutant type, respectively. The overall survival is about 34.8 months for wild type whereas for the mutant it is inconclusive for the same therapy. In comparison, panitumumab results in better progression-free survival which is about (9.6 months) and overall survival is about (23.9 months) for the wild type KRAS and the overall survival is about 15.5 months for the mutant KRAS . Cetuximab plus FOLFOX-4 therapy shows about 7.7 months and 5.5 months of progression-free survival for wild type KRAS and mutant type, respectively. Thus, panitumumab shows significant improvement in overall survival rate for wild type KRAS , validating as a cost effective therapeutic for colorectal cancer therapy. This review depicts that panitumumab along with FOLFOX-4 has a higher response in colorectal cancer patients than the either of the two monoclonal antibodies plus FOLFOX-4.

  2. Adenocarcinoma arising from intracranial recurrent mature teratoma and featuring mutated KRAS and wild-type BRAF genes.

    PubMed

    Kim, Eun Soo; Kwon, Mi Jung; Song, Joon Ho; Kim, Dong Hoon; Park, Hye-Rim

    2015-02-01

    Malignant transformation or recurrence of intracranial mature teratoma is an extremely rare occurrence, compared to the usual ovarian counterpart. Previously, yolk sac tumor elements have been considered to be selective progenitors of enteric-type adenocarcinoma arising from intracranial germ cell tumors. However, the present case demonstrates the occurrence of enteric-type adenocarcinoma in recurrent intracranial mature cystic teratoma 12 years after gross total removal, a case of which has not previously been documented in the literature. The 11.5-cm long, dura mater-based tumor on the right fronto-temporal lobe displaced the brain; however, the patient had no neurologic symptoms or discomfort other than pus-like discharge on the scalp. Microscopic examinations revealed a small focus of adenocarcinoma and dysplastic colonic mucosa in the mature cystic teratoma. No immature elements were seen. The cystic wall was almost denuded and showed an exuberant xanthogranulomatous reaction with foreign-body type giant cells engulfing keratin materials and cholesterol clefts, suggesting that chronic inflammation due to repeated cyst wall rupture and the previous resection may contribute to malignant transformation. The adenocarcinoma showed strong immunohistochemical expression of CK20 and p53, but CK7 in patches. The molecular profile of the adenocarcinoma showed a mutation in KRAS and wild-type BRAF, which might be associated with malignant transformation of intracranial mature teratomas. In conclusion, the intracranial mature teratomas should require long-term follow-up, and clinicians, radiologists and pathologists should be aware of the potential for malignant progression of recurrent intracranial mature cystic teratoma despite gross total resection and no neurologic symptoms. © 2014 Japanese Society of Neuropathology.

  3. Analyses of clinicopathological, molecular, and prognostic associations of KRAS codon 61 and codon 146 mutations in colorectal cancer: cohort study and literature review

    PubMed Central

    2014-01-01

    Background KRAS mutations in codons 12 and 13 are established predictive biomarkers for anti-EGFR therapy in colorectal cancer. Previous studies suggest that KRAS codon 61 and 146 mutations may also predict resistance to anti-EGFR therapy in colorectal cancer. However, clinicopathological, molecular, and prognostic features of colorectal carcinoma with KRAS codon 61 or 146 mutation remain unclear. Methods We utilized a molecular pathological epidemiology database of 1267 colon and rectal cancers in the Nurse’s Health Study and the Health Professionals Follow-up Study. We examined KRAS mutations in codons 12, 13, 61 and 146 (assessed by pyrosequencing), in relation to clinicopathological features, and tumor molecular markers, including BRAF and PIK3CA mutations, CpG island methylator phenotype (CIMP), LINE-1 methylation, and microsatellite instability (MSI). Survival analyses were performed in 1067 BRAF-wild-type cancers to avoid confounding by BRAF mutation. Cox proportional hazards models were used to compute mortality hazard ratio, adjusting for potential confounders, including disease stage, PIK3CA mutation, CIMP, LINE-1 hypomethylation, and MSI. Results KRAS codon 61 mutations were detected in 19 cases (1.5%), and codon 146 mutations in 40 cases (3.2%). Overall KRAS mutation prevalence in colorectal cancers was 40% (=505/1267). Of interest, compared to KRAS-wild-type, overall, KRAS-mutated cancers more frequently exhibited cecal location (24% vs. 12% in KRAS-wild-type; P < 0.0001), CIMP-low (49% vs. 32% in KRAS-wild-type; P < 0.0001), and PIK3CA mutations (24% vs. 11% in KRAS-wild-type; P < 0.0001). These trends were evident irrespective of mutated codon, though statistical power was limited for codon 61 mutants. Neither KRAS codon 61 nor codon 146 mutation was significantly associated with clinical outcome or prognosis in univariate or multivariate analysis [colorectal cancer-specific mortality hazard ratio (HR) = 0.81, 95% confidence

  4. Perturbation of auxin homeostasis by overexpression of wild-type IAA15 results in impaired stem cell differentiation and gravitropism in roots.

    PubMed

    Yan, Da-Wei; Wang, Jing; Yuan, Ting-Ting; Hong, Li-Wei; Gao, Xiang; Lu, Ying-Tang

    2013-01-01

    Aux/IAAs interact with auxin response factors (ARFs) to repress their transcriptional activity in the auxin signaling pathway. Previous studies have focused on gain-of-function mutations of domain II and little is known about whether the expression level of wild-type Aux/IAAs can modulate auxin homeostasis. Here we examined the perturbation of auxin homeostasis by ectopic expression of wild-type IAA15. Root gravitropism and stem cell differentiation were also analyzed. The transgenic lines were less sensitive to exogenous auxin and exhibited low-auxin phenotypes including failures in gravity response and defects in stem cell differentiation. Overexpression lines also showed an increase in auxin concentration and reduced polar auxin transport. These results demonstrate that an alteration in the expression of wild-type IAA15 can disrupt auxin homeostasis.

  5. GeLC-MRM quantitation of mutant KRAS oncoprotein in complex biological samples.

    PubMed

    Halvey, Patrick J; Ferrone, Cristina R; Liebler, Daniel C

    2012-07-06

    Tumor-derived mutant KRAS (v-Ki-ras-2 Kirsten rat sarcoma viral oncogene) oncoprotein is a critical driver of cancer phenotypes and a potential biomarker for many epithelial cancers. Targeted mass spectrometry analysis by multiple reaction monitoring (MRM) enables selective detection and quantitation of wild-type and mutant KRAS proteins in complex biological samples. A recently described immunoprecipitation approach (Proc. Nat. Acad. Sci.2011, 108, 2444-2449) can be used to enrich KRAS for MRM analysis, but requires large protein inputs (2-4 mg). Here, we describe sodium dodecyl sulfate-polyacrylamide gel electrophoresis-based enrichment of KRAS in a low molecular weight (20-25 kDa) protein fraction prior to MRM analysis (GeLC-MRM). This approach reduces background proteome complexity, thus, allowing mutant KRAS to be reliably quantified in low protein inputs (5-50 μg). GeLC-MRM detected KRAS mutant variants (G12D, G13D, G12V, G12S) in a panel of cancer cell lines. GeLC-MRM analysis of wild-type and mutant was linear with respect to protein input and showed low variability across process replicates (CV = 14%). Concomitant analysis of a peptide from the highly similar HRAS and NRAS proteins enabled correction of KRAS-targeted measurements for contributions from these other proteins. KRAS peptides were also quantified in fluid from benign pancreatic cysts and pancreatic cancers at concentrations from 0.08 to 1.1 fmol/μg protein. GeLC-MRM provides a robust, sensitive approach to quantitation of mutant proteins in complex biological samples.

  6. Oncogenic Kras initiates leukemia in hematopoietic stem cells.

    PubMed

    Sabnis, Amit J; Cheung, Laurene S; Dail, Monique; Kang, Hio Chung; Santaguida, Marianne; Hermiston, Michelle L; Passegué, Emmanuelle; Shannon, Kevin; Braun, Benjamin S

    2009-03-17

    How oncogenes modulate the self-renewal properties of cancer-initiating cells is incompletely understood. Activating KRAS and NRAS mutations are among the most common oncogenic lesions detected in human cancer, and occur in myeloproliferative disorders (MPDs) and leukemias. We investigated the effects of expressing oncogenic Kras(G12D) from its endogenous locus on the proliferation and tumor-initiating properties of murine hematopoietic stem and progenitor cells. MPD could be initiated by Kras(G12D) expression in a highly restricted population enriched for hematopoietic stem cells (HSCs), but not in common myeloid progenitors. Kras(G12D) HSCs demonstrated a marked in vivo competitive advantage over wild-type cells. Kras(G12D) expression also increased the fraction of proliferating HSCs and reduced the overall size of this compartment. Transplanted Kras(G12D) HSCs efficiently initiated acute T-lineage leukemia/lymphoma, which was associated with secondary Notch1 mutations in thymocytes. We conclude that MPD-initiating activity is restricted to the HSC compartment in Kras(G12D) mice, and that distinct self-renewing populations with cooperating mutations emerge during cancer progression.

  7. K-Ras Populates Conformational States Differently from Its Isoform H-Ras and Oncogenic Mutant K-RasG12D.

    PubMed

    Parker, Jillian A; Volmar, Alicia Y; Pavlopoulos, Spiro; Mattos, Carla

    2018-06-05

    Structures of wild-type K-Ras from crystals obtained in the presence of guanosine triphosphate (GTP) or its analogs have remained elusive. Of the K-Ras mutants, only K-RasG12D and K-RasQ61H are available in the PDB representing the activated form of the GTPase not in complex with other proteins. We present the crystal structure of wild-type K-Ras bound to the GTP analog GppCH 2 p, with K-Ras in the state 1 conformation. Signatures of conformational states obtained by one-dimensional proton NMR confirm that K-Ras has a more substantial population of state 1 in solution than H-Ras, which predominantly favors state 2. The oncogenic mutant K-RasG12D favors state 2, changing the balance of conformational states in favor of interactions with effector proteins. Differences in the population of conformational states between K-Ras and H-Ras, as well as between K-Ras and its mutants, can provide a structural basis for focused targeting of the K-Ras isoform in cancer-specific strategies. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Determination of synthetic lethal interactions in KRAS oncogene-dependent cancer cells reveals novel therapeutic targeting strategies

    PubMed Central

    Steckel, Michael; Molina-Arcas, Miriam; Weigelt, Britta; Marani, Michaela; Warne, Patricia H; Kuznetsov, Hanna; Kelly, Gavin; Saunders, Becky; Howell, Michael; Downward, Julian; Hancock, David C

    2012-01-01

    Oncogenic mutations in RAS genes are very common in human cancer, resulting in cells with well-characterized selective advantages, but also less well-understood vulnerabilities. We have carried out a large-scale loss-of-function screen to identify genes that are required by KRAS-transformed colon cancer cells, but not by derivatives lacking this oncogene. Top-scoring genes were then tested in a larger panel of KRAS mutant and wild-type cancer cells. Cancer cells expressing oncogenic KRAS were found to be highly dependent on the transcription factor GATA2 and the DNA replication initiation regulator CDC6. Extending this analysis using a collection of drugs with known targets, we found that cancer cells with mutant KRAS showed selective addiction to proteasome function, as well as synthetic lethality with topoisomerase inhibition. Combination targeting of these functions caused improved killing of KRAS mutant cells relative to wild-type cells. These observations suggest novel targets and new ways of combining existing therapies for optimal effect in RAS mutant cancers, which are traditionally seen as being highly refractory to therapy. PMID:22613949

  9. Radiohybridization PET imaging of KRAS G12D mRNA expression in human pancreas cancer xenografts with [(64)Cu]DO3A-peptide nucleic acid-peptide nanoparticles.

    PubMed

    Chakrabarti, A; Zhang, K; Aruva, M R; Cardi, C A; Opitz, A W; Wagner, N J; Thakur, M L; Wickstrom, E

    2007-06-01

    There is a compelling need to image pancreas cancer at an early stage. Human pancreas cancer cells display elevated levels of KRAS protein due to high copy numbers of KRAS mRNA, and elevated levels of insulin-like growth factor 1 receptor (IGF1R) due to overexpression of IGF1R mRNA. Therefore we hypothesized that pancreas cancer could be detected in vivo with a single probe that targets both KRAS mRNA and IGF1R. Because positron emission tomography (PET) is a sensitive imaging technique, we designed a probe incorporating the positron-emitting nuclide (64)Cu. The KRAS-specific hybridization probe consisted of 1,4,7-tris(carboxymethylaza)cyclododecane-10-aza-acetyl (DO3A) on the N-terminus of a peptide nucleic acid (PNA) hybridization sequence (GCCATCAGCTCC) linked to a cyclized IGF1 peptide analog (d-Cys-Ser-Lys-Cys) on the C-terminus, for IGF1R-mediated endocytosis. A series of such KRAS radiohybridization probes with 0, 1, 2 or 3 mismatches to KRAS G12D mRNA, including exact matches to wild type KRAS mRNA and KRAS G12V mRNA, along with a double d(Ala) replacement IGF1 peptide control, were assembled by continuous solid phase synthesis. To test the hypothesis that KRAS-IGF1 dual probes could specifically image KRAS mRNA expression noninvasively in human IGF1R-overexpressing AsPC1 pancreas cancer xenografts in immunocompromised mice, [(64)Cu]PNA radiohybridization probes and controls were administered by tail vein. The [(64)Cu]KRAS-IGF1 radiohybridization probe yielded strong tumor contrast in PET images, 8.6 +/- 1.4-fold more intense in the center of human pancreas cancer xenografts than in the contralateral muscle at 4 h post-injection. Control experiments with single base KRASmismatches, an IGF1 peptide mismatch, and a breast cancer xenograft lacking KRAS activation yielded weak tumor contrast images. These experiments are consistent with our hypothesis for noninvasive PET imaging of KRAS oncogene expression in pancreas cancer xenografts. Imaging oncogene m

  10. K-ras mutation promotes ionizing radiation-induced invasion and migration of lung cancer in part via the Cathepsin L/CUX1 pathway.

    PubMed

    Wang, Long; Zhao, Yifan; Xiong, Yajie; Wang, Wenjuan; Fei, Yao; Tan, Caihong; Liang, Zhongqin

    2018-01-15

    K-ras mutation is involved in cancer progression including invasion and migration, but the underlying mechanism is not yet clear. Cathepsin L is a lysosomal cysteine protease and has recently been associated with invasion and migration in human cancers when it is overexpressed. Our recent studies have shown that ionizing radiation (IR) enhanced expression of cathepsin L and increased invasion and migration of tumor cells, but the molecular mechanism is still unclear. In the present study, the effects of K-ras mutation and IR induced invasion and migration of lung cancer as well as the underlying mechanisms were investigated both in vitro and in vivo. Firstly, the levels of cathepsin L and epithelial mesenchymal transition (EMT) marker proteins remarkably changed in A549 (K-ras mutant) after irradiation compared with H1299 (K-ras wild), thereby promoting invasion and migration. Additionally, cathepsin L and its downstream transcription factor CUX1/p110 were increased after irradiation in A549 transfected with CUX1/p200, and the proteolytic processing of CUX1 by cathepsin L was remarkably increased after co-transfection of CUX1/p200 and cathepsin L-lentivirus in H1299. In addition, delivery of a mutant K-ras (V12) into HEK 293 cells stimulated EMT after irradiation due to the accumulation of cathepsin L. Moreover, mutated K-ras was associated with IR-induced cathepsin L and EMT in BALB/c nude mice. Finally, the level of cathepsin L expression was higher in samples carrying a K-ras mutation than in wild-type K-ras samples and the mesenchymal markers were upregulated in the samples of mutant K-ras, whereas the epithelial marker E-cadherin was downregulated in non-small cell lung cancers tissues. In conclusion, the findings demonstrated that mutated K-ras promotes cathepsin L expression and plays a pivotal role in EMT of human lung cancer. The regulatory effect of IR-induced cathepsin L on lung cancer invasion and migration was partially attributed to the Cathepsin L

  11. Let-7 Sensitizes KRAS Mutant Tumor Cells to Chemotherapy

    PubMed Central

    Dai, Xin; Jiang, Ying; Tan, Chalet

    2015-01-01

    KRAS is the most commonly mutated oncogene in human cancers and is associated with poor prognosis and drug resistance. Let-7 is a family of tumor suppressor microRNAs that are frequently suppressed in solid tumors, where KRAS mutations are highly prevalent. In this study, we investigated the potential use of let-7 as a chemosensitizer. We found that let-7b repletion selectively sensitized KRAS mutant tumor cells to the cytotoxicity of paclitaxel and gemcitabine. Transfection of let-7b mimic downregulated the expression of mutant but not wild-type KRAS. Combination of let-7b mimic with paclitaxel or gemcitabine diminished MEK/ERK and PI3K/AKT signaling concurrently, triggered the onset of apoptosis, and reverted the epithelial-mesenchymal transition in KRAS mutant tumor cells. In addition, let-7b repletion downregulated the expression of β-tubulin III and ribonucleotide reductase subunit M2, two proteins known to mediate tumor resistance to paclitaxel and gemcitabine, respectively. Let-7 may represent a new class of chemosensitizer for the treatment of KRAS mutant tumors. PMID:25946136

  12. Early and progressive sensorimotor anomalies in mice overexpressing wild-type human alpha-synuclein.

    PubMed

    Fleming, Sheila M; Salcedo, Jonathan; Fernagut, Pierre-Olivier; Rockenstein, Edward; Masliah, Eliezer; Levine, Michael S; Chesselet, Marie-Françoise

    2004-10-20

    Accumulation of alpha-synuclein in brain is a hallmark of synucleinopathies, neurodegenerative diseases that include Parkinson's disease. Mice overexpressing alpha-synuclein under the Thy-1 promoter (ASO) show abnormal accumulation of alpha-synuclein in cortical and subcortical regions of the brain, including the substantia nigra. We examined the motor deficits in ASO mice with a battery of sensorimotor tests that are sensitive to alterations in the nigrostriatal dopaminergic system. Male wild-type and ASO mice were tested every 2 months for 8 months for motor performance and coordination on a challenging beam, inverted grid, and pole, sensorimotor deficits in an adhesive removal test, spontaneous activity in a cylinder, and gait. Fine motor skills were assessed by the ability to grasp cotton from a bin. ASO mice displayed significant impairments in motor performance and coordination and a reduction in spontaneous activity as early as 2 months of age. Motor performance and coordination impairments became progressively worse with age and sensorimotor deficits appeared at 6 months. Fine motor skills were altered at 4 months and worsened at 8 months. These data indicate that overexpression of alpha-synuclein induced an early and progressive behavioral phenotype that can be detected in multiple tests of sensorimotor function. These behavioral deficits provide a useful way to assess novel drug therapy in genetic models of synucleinopathies.

  13. KRAS and BRAF mutation analysis in metastatic colorectal cancer: a cost-effectiveness analysis from a Swiss perspective.

    PubMed

    Blank, Patricia R; Moch, Holger; Szucs, Thomas D; Schwenkglenks, Matthias

    2011-10-01

    Monoclonal antibodies against the epidermal growth factor receptor (EGFR), such as cetuximab, have led to significant clinical benefits for metastatic colorectal cancer (mCRC) patients but have also increased treatment costs considerably. Recent evidence associates KRAS and BRAF mutations with resistance to EGFR antibodies. We assessed the cost-effectiveness of predictive testing for KRAS and BRAF mutations, prior to cetuximab treatment of chemorefractory mCRC patients. A life-long Markov simulation model was used to estimate direct medical costs (€) and clinical effectiveness [quality-adjusted life-years (QALY)] of the following strategies: KRAS testing, KRAS testing with subsequent BRAF testing of KRAS wild-types (KRAS/BRAF), cetuximab treatment without testing. Comparison was against no cetuximab treatment (reference strategy). In the testing strategies, cetuximab treatment was initiated if no mutations were detected. Best supportive care was given to all patients. Survival times/utilities were derived from published randomized clinical trials. Costs were assessed from the perspective of the Swiss health system. Average remaining lifetime costs ranged from €3,983 (no cetuximab) to €38,662 (no testing). Cetuximab treatment guided by KRAS/BRAF achieved gains of 0.491 QALYs compared with the reference strategy. The KRAS testing strategy achieved an additional gain of 0.002 QALYs compared with KRAS/BRAF. KRAS/BRAF testing was the most cost-effective approach when compared with the reference strategy (incremental cost-effectiveness ratio: €62,653/QALY). New predictive tests for KRAS and BRAF status are currently being introduced in pathology. Despite substantial costs of predictive testing, it is economically favorable to identify patients with KRAS and BRAF wild-type status. ©2011 AACR

  14. Phosphorylation at Ser-181 of oncogenic KRAS is required for tumor growth.

    PubMed

    Barceló, Carles; Paco, Noelia; Morell, Mireia; Alvarez-Moya, Blanca; Bota-Rabassedas, Neus; Jaumot, Montserrat; Vilardell, Felip; Capella, Gabriel; Agell, Neus

    2014-02-15

    KRAS phosphorylation has been reported recently to modulate the activity of mutant KRAS protein in vitro. In this study, we defined S181 as a specific phosphorylation site required to license the oncogenic function of mutant KRAS in vivo. The phosphomutant S181A failed to induce tumors in mice, whereas the phosphomimetic mutant S181D exhibited an enhanced tumor formation capacity, compared with the wild-type KRAS protein. Reduced growth of tumors composed of cells expressing the nonphosphorylatable KRAS S181A mutant was correlated with increased apoptosis. Conversely, increased growth of tumors composed of cells expressing the phosphomimetic KRAS S181D mutant was correlated with increased activation of AKT and ERK, two major downstream effectors of KRAS. Pharmacologic treatment with PKC inhibitors impaired tumor growth associated with reduced levels of phosphorylated KRAS and reduced effector activation. In a panel of human tumor cell lines expressing various KRAS isoforms, we showed that KRAS phosphorylation was essential for survival and tumorigenic activity. Furthermore, we identified phosphorylated KRAS in a panel of primary human pancreatic tumors. Taken together, our findings establish that KRAS requires S181 phosphorylation to manifest its oncogenic properties, implying that its inhibition represents a relevant target to attack KRAS-driven tumors. ©2013 AACR.

  15. miR-143 or miR-145 overexpression increases cetuximab-mediated antibody-dependent cellular cytotoxicity in human colon cancer cells

    PubMed Central

    Gomes, Sofia E.; Simões, André E. S.; Pereira, Diane M.; Castro, Rui E.; Rodrigues, Cecília M. P.; Borralho, Pedro M.

    2016-01-01

    miR-143 and miR-145 are downregulated in colon cancer. Here, we tested the effect of restoring these miRNAs on sensitization to cetuximab in mutant KRAS (HCT116 and SW480) and wild-type KRAS (SW48) colon cancer cells. We evaluated cetuximab-mediated antibody-dependent cellular cytotoxicity (ADCC) and the modulation of signaling pathways involved in immune effector cell-mediated elimination of cancer cells. Stable miR-143 or miR-145 overexpression increased cell sensitivity to cetuximab, resulting in a significant increase of cetuximab-mediated ADCC independently of KRAS status. Importantly, HCT116 cells overexpressing these miRNAs triggered apoptosis in result of cetuximab-mediated ADCC, effected by peripheral blood mononuclear cells (p < 0.01). This was associated with increased apoptosis and caspase-3/7 activity, and reduced Bcl-2 protein expression (p < 0.01). In addition, caspase inhibition abrogated cetuximab-mediated ADCC in HCT116 cells overexpressing either miR-143 or miR-145 (p < 0.01). Furthermore, Bcl-2 silencing led to high level of cetuximab-mediated ADCC, compared to control siRNA (p < 0.05). Importantly, granzyme B inhibition, abrogated cetuximab-mediated ADCC, reducing caspase-3/7 activity (p < 0.01). Collectively, our data suggests that re-introduction of miR-143 or miR-145 may provide a new approach for development of therapeutic strategies to re-sensitize colon cancer cells to cetuximab by stimulating cetuximab-dependent ADCC to induce cell death. PMID:26824186

  16. Comparison of the prevalence of KRAS-LCS6 polymorphism (rs61764370) within different tumour types (colorectal, breast, non-small cell lung cancer and brain tumours). A study of the Czech population.

    PubMed

    Uvirova, Magdalena; Simova, Jarmila; Kubova, Barbora; Dvorackova, Nina; Tomaskova, Hana; Sedivcova, Monika; Dite, Petr

    2015-09-01

    A germline SNP (rs61764370) is located in a let-7 complementary site (LCS6) in the 3'UTR of KRAS oncogene, and it was found to alter the binding capability of the mature let-7 microRNA to the KRAS mRNA. The aim of the study was to evaluate the frequency of the KRAS-LCS6 variant allele in different cancer types that included patients with colorectal cancer (CRC), breast cancer (BC), non-small cell lung cancer (NSCLC) and brain tumour patient subgroups from the Czech Republic. The occurrence of this genetic variant was correlated with the presence of selected somatic mutations representing predictive biomarkers in the respective tumours. DNA of tumour tissues was isolated from 428 colorectal cancer samples, 311 non-small cell lung cancer samples, 195 breast cancer samples and 151 samples with brain tumour. Analysis of SNP (rs61764370) was performed by the PCR+RFLP method and direct sequencing. KRAS, BRAF and EGFR mutation status was assessed using real-time PCR. The status of the HER2 gene was assessed using the FISH method. The KRAS-LCS6 TG genotype has been detected in 16.4% (32/195) of breast cancer cases (in HER2 positive breast cancer 3.3%, in HER2 negative breast cancer 20.1%), in 12.4% (53/428) of CRC cases (KRAS/BRAF wild type CRC in 10.6%, KRAS mutant CRC in 10.1%, BRAF V600E mutant CRC in 18.5%), in 13.2% (41/311) of NSCLC samples, (EGFR mutant NSCLC patients in 8%, EGFR wild type NSCLC in 12.9%), and 17.9% (27/151) of brain tumour cases. The KRAS-LCS6 TG genotype was not significantly different across the studied tumours. In our study, the GG genotype has not been found among the cancer samples. Based on the findings, it is concluded that the occurrence of the KRAS-LCS6 TG genotype was statistically significantly different in association with status of the HER2 gene in breast cancer. Furthermore, significant association between the mutation status of analysed somatic variants in genes of the EGFR signalling pathway (KRAS, BRAF, EGFR) and the KRAS-LCS6

  17. Correlation of EGFR or KRAS mutation status with 18F-FDG uptake on PET-CT scan in lung adenocarcinoma.

    PubMed

    Takamochi, Kazuya; Mogushi, Kaoru; Kawaji, Hideya; Imashimizu, Kota; Fukui, Mariko; Oh, Shiaki; Itoh, Masayoshi; Hayashizaki, Yoshihide; Ko, Weijey; Akeboshi, Masao; Suzuki, Kenji

    2017-01-01

    18F-fluoro-2-deoxy-glucose (18F-FDG) positron emission tomography (PET) is a functional imaging modality based on glucose metabolism. The correlation between EGFR or KRAS mutation status and the standardized uptake value (SUV) of 18F-FDG PET scanning has not been fully elucidated. Correlations between EGFR or KRAS mutation status and clinicopathological factors including SUVmax were statistically analyzed in 734 surgically resected lung adenocarcinoma patients. Molecular causal relationships between EGFR or KRAS mutation status and glucose metabolism were then elucidated in 62 lung adenocarcinomas using cap analysis of gene expression (CAGE), a method to determine and quantify the transcription initiation activities of mRNA across the genome. EGFR and KRAS mutations were detected in 334 (46%) and 83 (11%) of the 734 lung adenocarcinomas, respectively. The remaining 317 (43%) patients had wild-type tumors for both genes. EGFR mutations were more frequent in tumors with lower SUVmax. In contrast, no relationship was noted between KRAS mutation status and SUVmax. CAGE revealed that 4 genes associated with glucose metabolism (GPI, G6PD, PKM2, and GAPDH) and 5 associated with the cell cycle (ANLN, PTTG1, CIT, KPNA2, and CDC25A) were positively correlated with SUVmax, although expression levels were lower in EGFR-mutated than in wild-type tumors. No similar relationships were noted with KRAS mutations. EGFR-mutated adenocarcinomas are biologically indolent with potentially lower levels of glucose metabolism than wild-type tumors. Several genes associated with glucose metabolism and the cell cycle were specifically down-regulated in EGFR-mutated adenocarcinomas.

  18. A combinatorial strategy for treating KRAS mutant lung cancer

    PubMed Central

    Manchado, Eusebio; Weissmueller, Susann; Morris, John P.; Chen, Chi-Chao; Wullenkord, Ramona; Lujambio, Amaia; de Stanchina, Elisa; Poirier, John T.; Gainor, Justin F.; Corcoran, Ryan B.; Engelman, Jeffrey A.; Rudin, Charles M.; Rosen, Neal; Lowe, Scott W.

    2016-01-01

    Therapeutic targeting of KRAS-mutant lung adenocarcinoma represents a major goal of clinical oncology. KRAS itself has proven difficult to inhibit, and the effectiveness of agents that target key KRAS effectors has been thwarted by activation of compensatory or parallel pathways that limit their efficacy as single agents. Here we take a systematic approach towards identifying combination targets for trametinib, an FDA-approved MEK inhibitor that acts downstream of KRAS to suppress signaling through the mitogen-activated protein kinase (MAPK) cascade. Informed by a short-hairpin RNA (shRNA) screen, we show that trametinib provokes a compensatory response involving the fibroblast growth factor receptor 1 (FGFR1) that leads to signaling rebound and adaptive drug resistance. As a consequence, genetic or pharmacologic inhibition of FGFR1 in combination with trametinib enhances tumor cell death in vitro and in vivo. This compensatory response shows distinct specificities – it is dominated by FGFR1 in KRAS mutant lung and pancreatic cancer cells, but is not activated or involves other mechanisms in KRAS wild-type lung and KRAS-mutant colon cancer cells. Importantly, KRAS-mutant lung cancer cells and patient tumors treated with trametinib show an increase in FRS2 phosphorylation, a biomarker of FGFR activation; this increase is abolished by FGFR1 inhibition and correlates with sensitivity to trametinib and FGFR inhibitor combinations. These results demonstrate that FGFR1 can mediate adaptive resistance to trametinib and validate a combinatorial approach for treating KRAS-mutant lung cancer. PMID:27338794

  19. Multicenter Phase II study of FOLFOX or biweekly XELOX and Erbitux (cetuximab) as first-line therapy in patients with wild-type KRAS/BRAF metastatic colorectal cancer: The FLEET study.

    PubMed

    Soda, Hitoshi; Maeda, Hiromichi; Hasegawa, Junichi; Takahashi, Takao; Hazama, Shoichi; Fukunaga, Mutsumi; Kono, Emiko; Kotaka, Masahito; Sakamoto, Junichi; Nagata, Naoki; Oba, Koji; Mishima, Hideyuki

    2015-10-14

    The clinical benefit of cetuximab combined with oxaliplatin-based chemotherapy remains under debate. The aim of the present multicenter open-label Phase II study was to explore the efficacy and safety of biweekly administration of cetuximab and mFOLFOX-6 or XELOX as first-line chemotherapy in patients with metastatic colorectal cancer. Sixty-two patients with previously untreated KRAS/BRAF wild-type metastatic colorectal cancer were recruited to the study between April 2010 and May 2011. Patients received one of two treatment regimens, either cetuximab plus mFOLFOX-6 (FOLFOX + Cmab) or cetuximab plus biweekly XELOX (XELOX + Cmab), according to their own preference. Treatment was continued until disease progression or the appearance of intolerable toxicities. The primary endpoint was response rate; secondary endpoints were progression-free survival, overall survival, disease control rate, dose intensity, conversion rate to surgical resection, and safety. The response rates in the FOLFOX + Cmab (n = 37) and XELOX + Cmab (n = 25) groups were 64.9 % (24/37) and 72.0 % (18/25), respectively. The median PFS in the FOLFOX + Cmab and XELOX + Cmab groups was 13.1 months (95 % confidence interval [CI] 12.1-17.5) and 13.4 months (95 % CI 10.1-17.9), respectively. Neutropenia was the most frequent grade 3/4 adverse event in both groups (33.9 %), followed by anorexia, acneiform eruption, skin fissure and paronychia. A waterfall plot of tumor diameter showed prominent shrinkage of the tumors in 88.7 % of patients. The results of the present study indicate that biweekly cetuximab plus mFOLFOX-6/XELOX is an effective and tolerable treatment regimen. Biweekly administration of cetuximab requires only one hospital visit every 2 weeks, and may become a convenient treatment option for patients with KRAS/BRAF wild-type metastatic colorectal cancer. This study is registered with University Hospital Medical Information Network (UMIN 000003253 ). Registration date is 02/24/2010.

  20. CDK1 Is a Synthetic Lethal Target for KRAS Mutant Tumours

    PubMed Central

    Costa-Cabral, Sara; Brough, Rachel; Konde, Asha; Aarts, Marieke; Campbell, James; Marinari, Eliana; Riffell, Jenna; Bardelli, Alberto; Torrance, Christopher; Lord, Christopher J.; Ashworth, Alan

    2016-01-01

    Activating KRAS mutations are found in approximately 20% of human cancers but no RAS-directed therapies are currently available. Here we describe a novel, robust, KRAS synthetic lethal interaction with the cyclin dependent kinase, CDK1. This was discovered using parallel siRNA screens in KRAS mutant and wild type colorectal isogenic tumour cells and subsequently validated in a genetically diverse panel of 26 colorectal and pancreatic tumour cell models. This established that the KRAS/CDK1 synthetic lethality applies in tumour cells with either amino acid position 12 (p.G12V, pG12D, p.G12S) or amino acid position 13 (p.G13D) KRAS mutations and can also be replicated in vivo in a xenograft model using a small molecule CDK1 inhibitor. Mechanistically, CDK1 inhibition caused a reduction in the S-phase fraction of KRAS mutant cells, an effect also characterised by modulation of Rb, a master control of the G1/S checkpoint. Taken together, these observations suggest that the KRAS/CDK1 interaction is a robust synthetic lethal effect worthy of further investigation. PMID:26881434

  1. Effectiveness of Cetuximab as First-Line Therapy for Patients With Wild-Type KRAS and Unresectable Metastatic Colorectal Cancer in Real-Life Practice: Results of the EREBUS Cohort.

    PubMed

    Rouyer, Magali; François, Eric; Cunha, Antonio Sa; Monnereau, Alain; Noize, Pernelle; Robinson, Philip; Droz-Perroteau, Cécile; Le Monies de Sagazan, Alise; Jové, Jérémy; Lassalle, Régis; Moore, Nicholas; Fourrier-Réglat, Annie; Smith, Denis

    2018-06-01

    Few real-life data are available on cetuximab benefit. The EREBUS cohort was performed to assess metastases resection rate, use, safety, and survival outcomes in wild-type KRAS (Kirsten rat sarcoma viral oncogene) patients with initially unresectable metastatic colorectal cancer (mCRC) treated by cetuximab in real practice. The study cohort comprised patients initiating cetuximab between January 2009 and December 2010 in 65 French centers, with initially unresectable mCRC and wild-type KRAS. Kaplan-Meier analysis estimated 24-month probability of metastases resection and progression-free survival, and 36-month overall survival (OS). Cox proportional hazards models investigated factors associated with survival outcomes. Among the 389 patients included, median age was 64 years, 67.4% were male, 77.9% had Eastern Cooperative Oncology Group performance status ≤ 1, and hepatic metastases were most frequent at baseline (n = 146 exclusively, n = 149 not exclusively, n = 94 nonliver only). Median duration of cetuximab use was 4.8 months. Metastases resection was performed in 106 patients (27.2%) (n = 60 liver exclusively, n = 33 not exclusively, n = 13 nonliver only). The 24-month probability (95% confidence interval) of metastases resection occurrence was 33.6% (28.5-39.3). Median progression-free survival was 9.2 (8.5-9.8) months for the total cohort and 13.0 (11.6-15.1) for those resected; median OS was 23.0 (20.6-26.3) months for the total cohort and was not reached after 36 months for those who were resected. The strongest factor associated with higher OS was metastases resection with complete remission (hazard ratio, 0.41; 95% confidence interval, 0.19-0.88). This cohort study highlights in French real-life practice the benefit of cetuximab in first-line mCRC therapy, notably in case of metastases resection with complete remission. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Overexpression of Wild-Type Aspartokinase Increases l-Lysine Production in the Thermotolerant Methylotrophic Bacterium Bacillus methanolicus▿

    PubMed Central

    Jakobsen, Øyvind M.; Brautaset, Trygve; Degnes, Kristin F.; Heggeset, Tonje M. B.; Balzer, Simone; Flickinger, Michael C.; Valla, Svein; Ellingsen, Trond E.

    2009-01-01

    Aspartokinase (AK) controls the carbon flow into the aspartate pathway for the biosynthesis of the amino acids l-methionine, l-threonine, l-isoleucine, and l-lysine. We report here the cloning of four genes (asd, encoding aspartate semialdehyde dehydrogenase; dapA, encoding dihydrodipicolinate synthase; dapG, encoding AKI; and yclM, encoding AKIII) of the aspartate pathway in Bacillus methanolicus MGA3. Together with the known AKII gene lysC, dapG and yclM form a set of three AK genes in this organism. Overexpression of dapG, lysC, and yclM increased l-lysine production in wild-type B. methanolicus strain MGA3 2-, 10-, and 60-fold (corresponding to 11 g/liter), respectively, without negatively affecting the specific growth rate. The production levels of l-methionine (less than 0.5 g/liter) and l-threonine (less than 0.1 g/liter) were low in all recombinant strains. The AK proteins were purified, and biochemical analyses demonstrated that they have similar Vmax values (between 47 and 58 μmol/min/mg protein) and Km values for l-aspartate (between 1.9 and 5.0 mM). AKI and AKII were allosterically inhibited by meso-diaminopimelate (50% inhibitory concentration [IC50], 0.1 mM) and by l-lysine (IC50, 0.3 mM), respectively. AKIII was inhibited by l-threonine (IC50, 4 mM) and by l-lysine (IC50, 5 mM), and this enzyme was synergistically inhibited in the presence of both of these amino acids at low concentrations. The correlation between the impact on l-lysine production in vivo and the biochemical properties in vitro of the individual AK proteins is discussed. This is the first example of improving l-lysine production by metabolic engineering of B. methanolicus and also the first documentation of considerably increasing l-lysine production by overexpression of a wild-type AK. PMID:19060158

  3. Overexpression of wild-type aspartokinase increases L-lysine production in the thermotolerant methylotrophic bacterium Bacillus methanolicus.

    PubMed

    Jakobsen, Oyvind M; Brautaset, Trygve; Degnes, Kristin F; Heggeset, Tonje M B; Balzer, Simone; Flickinger, Michael C; Valla, Svein; Ellingsen, Trond E

    2009-02-01

    Aspartokinase (AK) controls the carbon flow into the aspartate pathway for the biosynthesis of the amino acids l-methionine, l-threonine, l-isoleucine, and l-lysine. We report here the cloning of four genes (asd, encoding aspartate semialdehyde dehydrogenase; dapA, encoding dihydrodipicolinate synthase; dapG, encoding AKI; and yclM, encoding AKIII) of the aspartate pathway in Bacillus methanolicus MGA3. Together with the known AKII gene lysC, dapG and yclM form a set of three AK genes in this organism. Overexpression of dapG, lysC, and yclM increased l-lysine production in wild-type B. methanolicus strain MGA3 2-, 10-, and 60-fold (corresponding to 11 g/liter), respectively, without negatively affecting the specific growth rate. The production levels of l-methionine (less than 0.5 g/liter) and l-threonine (less than 0.1 g/liter) were low in all recombinant strains. The AK proteins were purified, and biochemical analyses demonstrated that they have similar V(max) values (between 47 and 58 micromol/min/mg protein) and K(m) values for l-aspartate (between 1.9 and 5.0 mM). AKI and AKII were allosterically inhibited by meso-diaminopimelate (50% inhibitory concentration [IC(50)], 0.1 mM) and by l-lysine (IC(50), 0.3 mM), respectively. AKIII was inhibited by l-threonine (IC(50), 4 mM) and by l-lysine (IC(50), 5 mM), and this enzyme was synergistically inhibited in the presence of both of these amino acids at low concentrations. The correlation between the impact on l-lysine production in vivo and the biochemical properties in vitro of the individual AK proteins is discussed. This is the first example of improving l-lysine production by metabolic engineering of B. methanolicus and also the first documentation of considerably increasing l-lysine production by overexpression of a wild-type AK.

  4. Prognostic impact of KRAS mutation subtypes in 677 patients with metastatic lung adenocarcinomas

    PubMed Central

    Yu, Helena A.; Sima, Camelia S.; Shen, Ronglai; Kass, Samantha; Gainor, Justin; Shaw, Alice; Hames, Megan; Iams, Wade; Aston, Jonathan; Lovly, Christine M.; Horn, Leora; Lydon, Christine; Oxnard, Geoffrey R.; Kris, Mark G.; Ladanyi, Marc; Riely, Gregory J.

    2015-01-01

    Background We previously demonstrated that patients with metastatic KRAS mutant lung cancers have a shorter survival compared to patients with KRAS wild type cancers. Recent reports have suggested different clinical outcomes and distinct activated signaling pathways depending on KRAS mutation subtype. To better understand the impact of KRAS mutation subtype, we analyzed data from 677 patients with KRAS mutant metastatic lung cancer. Methods We reviewed all patients with metastatic or recurrent lung cancers found to have KRAS mutations over a 6 year time period. We evaluated the associations between KRAS mutation type, clinical factors, and overall survival in univariate and multivariate analyses. Any significant findings were validated in an external multi-institution patient data set. Results Among 677 patients with KRAS mutant lung cancers (53 at codon 13, 624 at codon 12), there was no difference in overall survival for patients when comparing KRAS transition versus transversion mutations (p=0.99), smoking status (p=0.33) or when comparing specific amino acid substitutions (p=0.20). In our data set, patients with KRAS codon 13 mutant tumors (n=53) had shorter overall survival compared to patients with codon 12 mutant tumors (n=624)( 1.1 vs 1.3 years, respectively, p=0.009), and the findings were confirmed in a multivariate Cox model controlling for age, sex and smoking status (HR 1.52 95% CI 1.11-2.08, p=0.008). In an independent validation set of tumors from 682 patients with stage IV KRAS mutant lung cancers, there was no difference in survival between patients with KRAS codon 13 versus codon 12 mutations (1.0 vs 1.1 years respectively, p=0.41). Conclusions Among individuals with KRAS mutant metastatic lung cancers treated with conventional therapy, there are apparent differences in outcome based on KRAS mutation subtype PMID:25415430

  5. Fendiline Inhibits K-Ras Plasma Membrane Localization and Blocks K-Ras Signal Transmission

    PubMed Central

    van der Hoeven, Dharini; Cho, Kwang-jin; Ma, Xiaoping; Chigurupati, Sravanthi; Parton, Robert G.

    2013-01-01

    Ras proteins regulate signaling pathways important for cell growth, differentiation, and survival. Oncogenic mutant Ras proteins are commonly expressed in human tumors, with mutations of the K-Ras isoform being most prevalent. To be active, K-Ras must undergo posttranslational processing and associate with the plasma membrane. We therefore devised a high-content screening assay to search for inhibitors of K-Ras plasma membrane association. Using this assay, we identified fendiline, an L-type calcium channel blocker, as a specific inhibitor of K-Ras plasma membrane targeting with no detectable effect on the localization of H- and N-Ras. Other classes of L-type calcium channel blockers did not mislocalize K-Ras, suggesting a mechanism that is unrelated to calcium channel blockade. Fendiline did not inhibit K-Ras posttranslational processing but significantly reduced nanoclustering of K-Ras and redistributed K-Ras from the plasma membrane to the endoplasmic reticulum (ER), Golgi apparatus, endosomes, and cytosol. Fendiline significantly inhibited signaling downstream of constitutively active K-Ras and endogenous K-Ras signaling in cells transformed by oncogenic H-Ras. Consistent with these effects, fendiline blocked the proliferation of pancreatic, colon, lung, and endometrial cancer cell lines expressing oncogenic mutant K-Ras. Taken together, these results suggest that inhibitors of K-Ras plasma membrane localization may have utility as novel K-Ras-specific anticancer therapeutics. PMID:23129805

  6. A cross-sectional study examining the expression of splice variants K-RAS4A and K-RAS4B in advanced non-small-cell lung cancer patients.

    PubMed

    Aran, Veronica; Masson Domingues, Pedro; Carvalho de Macedo, Fabiane; Moreira de Sousa, Carlos Augusto; Caldas Montella, Tatiane; de Souza Accioly, Maria Theresa; Ferreira, Carlos Gil

    2018-02-01

    Mammalian cells differently express 4 RAS isoforms: H-RAS, N-RAS, K-RAS4A and K-RAS4B, which are important in promoting oncogenic processes when mutated. In lung cancer, the K-RAS isoform is the most frequently altered RAS protein, being also a difficult therapeutic target. Interestingly, there are two K-RAS splice variants (K-RAS4A and K-RAS4B) and little is known about the role of K-RAS4A. Most studies targeting K-RAS, or analysing it as a prognostic factor, have not taken into account the two isoforms. Consequently, the in-depth investigation of them is needed. The present study analysed 98 specimens from advanced non-small cell lung cancer (NSCLC) adenocarcinoma patients originated from Brazil. The alterations present in K-RAS at the DNA level (Sanger sequencing) as well as the expression of the splicing isoforms at the RNA (qRT-PCR) and protein levels (immunohistochemistry analysis), were evaluated. Possible associations between clinicopathological features and the molecular findings were also investigated. Our results showed that in the non-smoking population, the cancer incidence was higher among women. In contrast, in smokers and former smokers, the incidence was higher among men. Regarding sequencing results, 10.5% of valid samples presented mutations in exon 2, being all wild-type for exon 3, and the most frequently occurring base change was the transversion G → T. Our qRT-PCR and immunohistochemical analysis showed that both, K-RAS4A and K-RAS4B, were differently expressed in NSCLC tumour samples. For example, tumour specimens showed higher K-RAS4A mRNA expression in relation to commercial normal lung control than did K-RAS4B. In addition, K-RAS4B protein expression was frequently stronger than K-RAS4A in the patients analysed. Our results highlight the differential expression of K-RAS4A and K-RAS4B in advanced adenocarcinoma NSCLC patients and underline the need to further clarify the enigma behind their biological significance in various cancer

  7. HER2 overexpression and amplification as a potential therapeutic target in colorectal cancer: analysis of 3256 patients enrolled in the QUASAR, FOCUS and PICCOLO colorectal cancer trials.

    PubMed

    Richman, Susan D; Southward, Katie; Chambers, Philip; Cross, Debra; Barrett, Jennifer; Hemmings, Gemma; Taylor, Morag; Wood, Henry; Hutchins, Gordon; Foster, Joseph M; Oumie, Assa; Spink, Karen G; Brown, Sarah R; Jones, Marc; Kerr, David; Handley, Kelly; Gray, Richard; Seymour, Matthew; Quirke, Philip

    2016-03-01

    HER2 overexpression/amplification is linked to trastuzumab response in breast/gastric cancers. One suggested anti-EGFR resistance mechanism in colorectal cancer (CRC) is aberrant MEK-AKT pathway activation through HER2 up-regulation. We assessed HER2-amplification/overexpression in stage II-III and IV CRC patients, assessing relationships to KRAS/BRAF and outcome. Pathological material was obtained from 1914 patients in the QUASAR stage II-III trial and 1342 patients in stage IV trials (FOCUS and PICCOLO). Tissue microarrays were created for HER2 immunohistochemistry. HER2-amplification was assessed using FISH and copy number variation. KRAS/BRAF mutation status was assessed by pyrosequencing. Progression-free survival (PFS) and overall survival (OS) data were obtained for FOCUS/PICCOLO and recurrence and mortality for QUASAR; 29/1342 (2.2%) stage IV and 25/1914 (1.3%) stage II-III tumours showed HER2 protein overexpression. Of the HER2-overexpressing cases, 27/28 (96.4%) stage IV tumours and 20/24 (83.3%) stage II-III tumours demonstrated HER2 amplification by FISH; 41/47 (87.2%) also showed copy number gains. HER2-overexpression was associated with KRAS/BRAF wild-type (WT) status at all stages: in 5.2% WT versus 1.0% mutated tumours (p < 0.0001) in stage IV and 2.1% versus 0.2% in stage II-III tumours (p = 0.01), respectively. HER2 was not associated with OS or PFS. At stage II-III, there was no significant correlation between HER2 overexpression and 5FU/FA response. A higher proportion of HER2-overexpressing cases experienced recurrence, but the difference was not significant. HER2-amplification/overexpression is identifiable by immunohistochemistry, occurring infrequently in stage II-III CRC, rising in stage IV and further in KRAS/BRAF WT tumours. The value of HER2-targeted therapy in patients with HER2-amplified CRC must be tested in a clinical trial. © 2015 The Authors. Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society

  8. Cost-effectiveness analysis of KRAS testing and cetuximab as last-line therapy for colorectal cancer.

    PubMed

    Shiroiwa, Takeru; Motoo, Yoshiharu; Tsutani, Kiichiro

    2010-12-01

    Cetuximab, a monoclonal antibody directed against the epidermal growth factor receptor, improves progression-free survival and overall survival in patients with metastatic colorectal cancer (mCRC). However, patients with a KRAS gene mutation do not benefit from cetuximab therapy. We performed a cost-effectiveness analysis of KRAS testing and cetuximab treatment as last-line therapy for patients with mCRC in Japan. In our analysis, we considered three treatment strategies. In the 'KRAS-testing strategy' (strategy A), KRAS testing was performed to guide treatment: patients with wild-type KRAS received cetuximab, and those with mutant KRAS received best supportive care (BSC). In the 'no-KRAS-testing strategy' (strategy B), genetic testing was not conducted and all patients received cetuximab. In the 'no-cetuximab strategy' (strategy C), genetic testing was not conducted and all patients received BSC. To evaluate the cost effectiveness of KRAS testing, the KRAS-testing strategy was compared with the no-KRAS-testing strategy; to evaluate the cost effectiveness of KRAS testing and cetuximab, the KRAS-testing strategy was compared with the no-cetuximab strategy; and to evaluate the cost effectiveness of cetuximab treatment without KRAS testing, the no-KRAS-testing strategy was compared with the no-cetuximab strategy. A three-state Markov model was used to predict expected costs and outcomes for each group. Outcomes in the model were based on those reported in a retrospective analysis of data from the National Cancer Institute of Canada Clinical Trials Group CO.17 study. We included only direct medical costs from the perspective of the Japanese healthcare payer. A 3% discount rate was used for both costs and outcome. Two outcomes, life-years (LYs) gained and quality-adjusted life-years (QALYs) gained, were used to calculate the incremental cost-effectiveness ratio (ICER). Our cost-effectiveness analysis revealed that the KRAS-testing strategy was dominant compared with the

  9. Panitumumab Use in Metastatic Colorectal Cancer and Patterns of KRAS Testing: Results from a Europe-Wide Physician Survey and Medical Records Review

    PubMed Central

    Trojan, Jörg; Mineur, Laurent; Tomášek, Jiří; Rouleau, Etienne; Fabian, Pavel; de Maglio, Giovanna; García-Alfonso, Pilar; Aprile, Giuseppe; Taylor, Aliki; Kafatos, George; Downey, Gerald; Terwey, Jan-Henrik; van Krieken, J. Han

    2015-01-01

    Background From 2008–2013, the European indication for panitumumab required that patients’ tumor KRAS exon 2 mutation status was known prior to starting treatment. To evaluate physician awareness of panitumumab prescribing information and how physicians prescribe panitumumab in patients with metastatic colorectal cancer (mCRC), two European multi-country, cross-sectional, observational studies were initiated in 2012: a physician survey and a medical records review. The first two out of three planned rounds for each study are reported. Methods The primary objective in the physician survey was to estimate the prevalence of KRAS testing, and in the medical records review, it was to evaluate the effect of test results on patterns of panitumumab use. The medical records review study also included a pathologists’ survey. Results In the physician survey, nearly all oncologists (299/301) were aware of the correct panitumumab indication and the need to test patients’ tumor KRAS status before treatment with panitumumab. Nearly all oncologists (283/301) had in the past 6 months of clinical practice administered panitumumab correctly to mCRC patients with wild-type KRAS status. In the medical records review, 97.5% of participating oncologists (77/79) conducted a KRAS test for all of their patients prior to prescribing panitumumab. Four patients (1.3%) did not have tumor KRAS mutation status tested prior to starting panitumumab treatment. Approximately one-quarter of patients (85/306) were treated with panitumumab and concurrent oxaliplatin-containing chemotherapy; of these, 83/85 had confirmed wild-type KRAS status prior to starting panitumumab treatment. All 56 referred laboratories that participated used a Conformité Européenne-marked or otherwise validated KRAS detection method, and nearly all (55/56) participated in a quality assurance scheme. Conclusions There was a high level of knowledge amongst oncologists around panitumumab prescribing information and the

  10. Panitumumab Use in Metastatic Colorectal Cancer and Patterns of KRAS Testing: Results from a Europe-Wide Physician Survey and Medical Records Review.

    PubMed

    Trojan, Jörg; Mineur, Laurent; Tomášek, Jiří; Rouleau, Etienne; Fabian, Pavel; de Maglio, Giovanna; García-Alfonso, Pilar; Aprile, Giuseppe; Taylor, Aliki; Kafatos, George; Downey, Gerald; Terwey, Jan-Henrik; van Krieken, J Han

    2015-01-01

    From 2008-2013, the European indication for panitumumab required that patients' tumor KRAS exon 2 mutation status was known prior to starting treatment. To evaluate physician awareness of panitumumab prescribing information and how physicians prescribe panitumumab in patients with metastatic colorectal cancer (mCRC), two European multi-country, cross-sectional, observational studies were initiated in 2012: a physician survey and a medical records review. The first two out of three planned rounds for each study are reported. The primary objective in the physician survey was to estimate the prevalence of KRAS testing, and in the medical records review, it was to evaluate the effect of test results on patterns of panitumumab use. The medical records review study also included a pathologists' survey. In the physician survey, nearly all oncologists (299/301) were aware of the correct panitumumab indication and the need to test patients' tumor KRAS status before treatment with panitumumab. Nearly all oncologists (283/301) had in the past 6 months of clinical practice administered panitumumab correctly to mCRC patients with wild-type KRAS status. In the medical records review, 97.5% of participating oncologists (77/79) conducted a KRAS test for all of their patients prior to prescribing panitumumab. Four patients (1.3%) did not have tumor KRAS mutation status tested prior to starting panitumumab treatment. Approximately one-quarter of patients (85/306) were treated with panitumumab and concurrent oxaliplatin-containing chemotherapy; of these, 83/85 had confirmed wild-type KRAS status prior to starting panitumumab treatment. All 56 referred laboratories that participated used a Conformité Européenne-marked or otherwise validated KRAS detection method, and nearly all (55/56) participated in a quality assurance scheme. There was a high level of knowledge amongst oncologists around panitumumab prescribing information and the need to test and confirm patients' tumors as

  11. Overexpressing wild-type γ2 subunits rescued the seizure phenotype in Gabrg2+/Q390X Dravet syndrome mice.

    PubMed

    Huang, Xuan; Zhou, Chengwen; Tian, Mengnan; Kang, Jing-Qiong; Shen, Wangzhen; Verdier, Kelienne; Pimenta, Aurea; MacDonald, Robert L

    2017-08-01

    The mutant γ-aminobutyric acid type A (GABA A ) receptor γ2(Q390X) subunit (Q351X in the mature peptide) has been associated with the epileptic encephalopathy, Dravet syndrome, and the epilepsy syndrome genetic epilepsy with febrile seizures plus (GEFS+). The mutation generates a premature stop codon that results in translation of a stable truncated and misfolded γ2 subunit that accumulates in neurons, forms intracellular aggregates, disrupts incorporation of γ2 subunits into GABA A receptors, and affects trafficking of partnering α and β subunits. Heterozygous Gabrg2 +/Q390X knock-in (KI) mice had reduced cortical inhibition, spike wave discharges on electroencephalography (EEG), a lower seizure threshold to the convulsant drug pentylenetetrazol (PTZ), and spontaneous generalized tonic-clonic seizures. In this proof-of-principal study, we attempted to rescue these deficits in KI mice using a γ2 subunit gene (GABRG2) replacement therapy. We introduced the GABRG2 allele by crossing Gabrg2 +/Q390X KI mice with bacterial artificial chromosome (BAC) transgenic mice overexpressing HA (hemagglutinin)-tagged human γ2 HA subunits, and compared GABA A receptor subunit expression by Western blot and immunohistochemical staining, seizure threshold by monitoring mouse behavior after PTZ-injection, and thalamocortical inhibition and network oscillation by slice recording. Compared to KI mice, adult mice carrying both mutant allele and transgene had increased wild-type γ2 and partnering α1 and β2/3 subunits, increased miniature inhibitory postsynaptic current (mIPSC) amplitudes recorded from layer VI cortical neurons, reduced thalamocortical network oscillations, and higher PTZ seizure threshold. Based on these results we suggest that seizures in a genetic epilepsy syndrome caused by epilepsy mutant γ2(Q390X) subunits with dominant negative effects could be rescued potentially by overexpression of wild-type γ2 subunits. Wiley Periodicals, Inc. © 2017 International

  12. Long-term survivors of pancreatic adenocarcinoma show low rates of genetic alterations in KRAS, TP53 and SMAD4.

    PubMed

    Masetti, Michele; Acquaviva, Giorgia; Visani, Michela; Tallini, Giovanni; Fornelli, Adele; Ragazzi, Moira; Vasuri, Francesco; Grifoni, Daniela; Di Giacomo, Simone; Fiorino, Sirio; Lombardi, Raffaele; Tuminati, David; Ravaioli, Matteo; Fabbri, Carlo; Bacchi-Reggiani, Maria Letizia; Pession, Annalisa; Jovine, Elio; de Biase, Dario

    2018-02-06

    Pancreatic adenocarcinoma (PDAC) is one of the deadliest human malignancies. Although surgery is currently the only effective treatment for PDAC, most patients survive less than 20 months after tumor resection. The primary goal was to investigate alterations in KRAS, TP53, SMAD4 and CDKN2A/p16 in tumors from patients with exceptionally long survival after surgery. Tumors from 15 patients with PDAC that survived more than 55 months after surgery ("LS") were analyzed for KRAS, TP53, IDH1, NRAS and BRAF using next-generation sequencing. SMAD4 and CDKN2A/p16 was tested using immunohistochemistry. MGMT promoter methylation was investigated. Tumors from "LS" have a lower prevalence of KRAS and TP53 mutations and had more frequently SMAD4 retained expression, if compared with that of patients died within 24 months from surgery. The survival of patients with wild-type KRAS and TP53 tumors was more than twice longer than that of patients bearing KRAS and TP53 mutations (90.2 vs. 41.1 months). Patients with KRAS wild-type tumors and that retained SMAD4 expression had a survival twice longer than cases with alterations in both genes (83.8 vs. 36.7 months). Eleven tumors (39.3%) showed MGMT methylation. Our data indicate that absence of KRAS, TP53 and SMAD4 genetic alterations may identify a subset of pancreatic carcinomas with better outcome.

  13. Safety and efficacy of the addition of simvastatin to panitumumab in previously treated KRAS mutant metastatic colorectal cancer patients.

    PubMed

    Baas, Jara M; Krens, Lisanne L; Bos, Monique M; Portielje, Johanneke E A; Batman, Erdogan; van Wezel, Tom; Morreau, Hans; Guchelaar, Henk-Jan; Gelderblom, Hans

    2015-09-01

    Panitumumab has proven efficacy in patients with metastatic or locally advanced colorectal cancer patients, provided that they have no activating KRAS mutation in their tumour. Simvastatin blocks the mevalonate pathway and thereby interferes with the post-translational modification of KRAS. We hypothesize that the activity of the RAS-induced pathway in patients with a KRAS mutation might be inhibited by simvastatin. This would theoretically result in increased sensitivity to panitumumab, potentially comparable with tumours with wild-type KRAS. A Simon two-stage design single-arm, phase II study was designed to test the safety and efficacy of the addition of simvastatin to panitumumab in colorectal cancer patients with a KRAS mutation after failing fluoropyrimidine-based, oxaliplatin-based and irinotecan-based therapy. The primary endpoint of this study was the proportion of patients alive and free from progression 11 weeks after the first administration of panitumumab, aiming for at least 40%, which is comparable with, although slightly lower than, that in KRAS wild-type patients in this setting. If this 40% was reached, then the study would continue into the second step up to 46 patients. Explorative correlative analysis for mutations in the KRAS and related pathways was carried out. One of 14 patients was free from progression at the primary endpoint time. The median progression-free survival was 8.4 weeks and the median overall survival status was 19.6 weeks. We conclude that the concept of mutant KRAS phenotype expression modulation with simvastatin was not applicable in the clinic.

  14. [Clinical relevance of the K-ras oncogene in colorectal cancer: experience in a Mexican population].

    PubMed

    Cabrera-Mendoza, F; Gainza-Lagunes, S; Castañeda-Andrade, I; Castro-Zárate, A

    2014-01-01

    Colorectal cancer is frequent in the developed countries, with a cancer-specific mortality rate of 33%. Different biomarkers are associated with overall survival and the prediction of monoclonal treatment effectiveness. The presence of mutations in the K-ras oncogene alters the response to target therapy with cetuximab and could be an independent prognostic factor. To analyze the difference in survival between patients with mutated K-ras and those with K-ras wild-type status. Thirty-one clinical records were retrospectively analyzed of patients presenting with colorectal cancer that underwent K-ras sequencing through real-time polymerase chain reaction within the time frame of 2009 to 2012 at the Hospital de Alta Especialidad de Veracruz of the Instituto para la Salud y Seguridad Social de los Trabajadores del Estado (HAEV-ISSSTE). Survival analysis for patients with and without K-ras mutation was performed using the Kaplan Meier method. Contrast of covariates was performed using logarithmic transformations. No statistically significant difference was found in relation to survival in the patients with mutated K-ras vs. those with K-ras wild-type (P=.416), nor were significant differences found when analyzing the covariants and survival in the patients with mutated K-ras: ECOG scale (P=.221); age (less than, equal to or greater than 65years, P=.441); clinical stage according to the AJCC (P=.057), and primary lesion site (P=.614). No relation was found between the K-ras oncogene mutation and reduced survival, in contrast to what has been established in the international medical literature. Further studies that include both a larger number of patients and those receiving monoclonal treatment, need to be conducted. There were only 5 patients in the present study that received cetuximab, resulting in a misleading analysis. Copyright © 2013 Asociación Mexicana de Gastroenterología. Published by Masson Doyma México S.A. All rights reserved.

  15. Phase II Trial of Biweekly Cetuximab and Irinotecan as Third-Line Therapy for Pretreated KRAS Exon 2 Wild-Type Colorectal Cancer.

    PubMed

    Osumi, Hiroki; Shinozaki, Eiji; Mashima, Tetsuo; Wakatsuki, Takeru; Suenaga, Mitsukuni; Ichimura, Takashi; Ogura, Mariko; Ota, Yumiko; Nakayama, Izuma; Takahari, Daisuke; Chin, Keisho; Miki, Yoshio; Yamaguchi, Kensei

    2018-06-16

    Efficacy and safety of biweekly cetuximab plus irinotecan were evaluated to provide guidance for its use in Japan as third-line treatment for pretreated metastatic colorectal cancer patients harboring wild-type KRAS Exon 2. Objective response rate was used as primary endpoint based on an expected proportion of 0.23 with confidence width of 0.298 (95% confidence interval, 0.105-0.403), which showed 35 to be the minimal participant number. Forty patients, refractory to first- and second-line chemotherapy containing irinotecan, oxaliplatin, and fluoropyrimidine were enrolled. Objective response and disease control rates were 25.0% (95% CI:11.5%-38.4%) and 72.5% (95% CI:56.8%-86.4%), respectively. Median progression-free survival, overall survival, and number of courses were 5.70 months (95% CI;2.7-7.9), 15.1 months (95% CI;11.8-19.0), and 10.5 (range:3.0-31.0), respectively. Grade 3 adverse events were skin toxicity (12.5%), diarrhea (10.0%), neutropenia (5.0%), febrile neutropenia (5.0%), nausea (5.0%), anorexia (5.0%), and fatigue (2.5%). Cetuximab C max mean was 723.2 μg/mL after first dose. High AUC last variance was associated with t 1/2 range of 131.2-1209.6 h (median, 174.4 h). Early tumor shrinkage and median depth of response were 25.0% and 13.0%, respectively. Mutation frequencies in KRAS exon 3 or 4, NRAS, BRAF, and PIK3CA were 5.5%, 2.7%, 8.3%, and 5.5%, respectively. Multivariate Cox regression analysis assessed whether any gene mutations and early tumor shrinkage are predictors for progression-free survival, and whether performance status, synchronous metastasis, and early tumor shrinkage are predictors for overall survival. Importantly, the data provide guidance for a biweekly cetuximab plus irinotecan regimen in metastatic colorectal cancer patients. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  16. KRAS Mutation Status Is Not a Predictor for Tumor Response and Survival in Rectal Cancer Patients Who Received Preoperative Radiotherapy With 5-Fluoropyrimidine Followed by Curative Surgery.

    PubMed

    Lee, Jeong Won; Lee, Jong Hoon; Shim, Byoung Yong; Kim, Sung Hwan; Chung, Mi-Joo; Kye, Bong-Hyeon; Kim, Hyung Jin; Cho, Hyeon Min; Jang, Hong Seok

    2015-08-01

    We evaluated the tumor response and survival according to the KRAS oncogene status in locally advanced rectal cancer. One hundred patients with locally advanced rectal cancer (cT3-4N0-2M0) received preoperative radiation of 50.4 Gy in 28 fractions with 5-fluorouracil and total mesorectal excision. Tumor DNA from each patient was obtained from pretreatment biopsy tissues. A Kirsten rat sarcoma viral oncogene homolog (KRAS) mutation was found in 26 (26%) of the 100 patients. Downstaging (ypT0-2N0M0) rates after preoperative chemoradiotheray were not statistically different between the wild-type and mutant-type KRAS groups (30.8% vs 27.0%, P = 0.715, respectively). After a median follow-up time of 34 months, there was no statistically significant difference in the 3-year relapse-free survival (82.2% vs 82.6%, P = 0.512) and overall survival (94.7% vs 92.3%, P = 0.249) rates between wild-type and mutant-type KRAS groups, respectively. The KRAS mutation status does not influence the tumor response to the radiotherapy and survival in locally advanced rectal cancer patients who received preoperative chemoradiotherapy and curative surgery.

  17. Biochip-Based Detection of KRAS Mutation in Non-Small Cell Lung Cancer

    PubMed Central

    Kriegshäuser, Gernot; Fabjani, Gerhild; Ziegler, Barbara; Zöchbauer-Müller, Sabine; End, Adelheid; Zeillinger, Robert

    2011-01-01

    This study is aimed at evaluating the potential of a biochip assay to sensitively detect KRAS mutation in DNA from non-small cell lung cancer (NSCLC) tissue samples. The assay covers 10 mutations in codons 12 and 13 of the KRAS gene, and is based on mutant-enriched PCR followed by reverse-hybridization of biotinylated amplification products to an array of sequence-specific probes immobilized on the tip of a rectangular plastic stick (biochip). Biochip hybridization identified 17 (21%) samples to carry a KRAS mutation of which 16 (33%) were adenocarcinomas and 1 (3%) was a squamous cell carcinoma. All mutations were confirmed by DNA sequencing. Using 10 ng of starting DNA, the biochip assay demonstrated a detection limit of 1% mutant sequence in a background of wild-type DNA. Our results suggest that the biochip assay is a sensitive alternative to protocols currently in use for KRAS mutation testing on limited quantity samples. PMID:22272089

  18. Multiplex picodroplet digital PCR to detect KRAS mutations in circulating DNA from the plasma of colorectal cancer patients.

    PubMed

    Taly, Valerie; Pekin, Deniz; Benhaim, Leonor; Kotsopoulos, Steve K; Le Corre, Delphine; Li, Xinyu; Atochin, Ivan; Link, Darren R; Griffiths, Andrew D; Pallier, Karine; Blons, Hélène; Bouché, Olivier; Landi, Bruno; Hutchison, J Brian; Laurent-Puig, Pierre

    2013-12-01

    Multiplex digital PCR (dPCR) enables noninvasive and sensitive detection of circulating tumor DNA with performance unachievable by current molecular-detection approaches. Furthermore, picodroplet dPCR facilitates simultaneous screening for multiple mutations from the same sample. We investigated the utility of multiplex dPCR to screen for the 7 most common mutations in codons 12 and 13 of the KRAS (Kirsten rat sarcoma viral oncogene homolog) oncogene from plasma samples of patients with metastatic colorectal cancer. Fifty plasma samples were tested from patients for whom the primary tumor biopsy tissue DNA had been characterized by quantitative PCR. Tumor characterization revealed that 19 patient tumors had KRAS mutations. Multiplex dPCR analysis of the plasma DNA prepared from these samples identified 14 samples that matched the mutation identified in the tumor, 1 sample contained a different KRAS mutation, and 4 samples had no detectable mutation. Among the tumor samples that were wild type for KRAS, 2 KRAS mutations were identified in the corresponding plasma samples. Duplex dPCR (i.e., wild-type and single-mutation assay) was also used to analyze plasma samples from patients with KRAS-mutated tumors and 5 samples expected to contain the BRAF (v-raf murine sarcoma viral oncogene homolog B) V600E mutation. The results for the duplex analysis matched those for the multiplex analysis for KRAS-mutated samples and, owing to its higher sensitivity, enabled detection of 2 additional samples with low levels of KRAS-mutated DNA. All 5 samples with BRAF mutations were detected. This work demonstrates the clinical utility of multiplex dPCR to screen for multiple mutations simultaneously with a sensitivity sufficient to detect mutations in circulating DNA obtained by noninvasive blood collection.

  19. KRAS Mutation Status Is Not a Predictor for Tumor Response and Survival in Rectal Cancer Patients Who Received Preoperative Radiotherapy With 5-Fluoropyrimidine Followed by Curative Surgery

    PubMed Central

    Lee, Jeong Won; Lee, Jong Hoon; Shim, Byoung Yong; Kim, Sung Hwan; Chung, Mi-Joo; Kye, Bong-Hyeon; Kim, Hyung Jin; Cho, Hyeon Min; Jang, Hong Seok

    2015-01-01

    Abstract We evaluated the tumor response and survival according to the KRAS oncogene status in locally advanced rectal cancer. One hundred patients with locally advanced rectal cancer (cT3-4N0-2M0) received preoperative radiation of 50.4 Gy in 28 fractions with 5-fluorouracil and total mesorectal excision. Tumor DNA from each patient was obtained from pretreatment biopsy tissues. A Kirsten rat sarcoma viral oncogene homolog (KRAS) mutation was found in 26 (26%) of the 100 patients. Downstaging (ypT0-2N0M0) rates after preoperative chemoradiotheray were not statistically different between the wild-type and mutant-type KRAS groups (30.8% vs 27.0%, P = 0.715, respectively). After a median follow-up time of 34 months, there was no statistically significant difference in the 3-year relapse-free survival (82.2% vs 82.6%, P = 0.512) and overall survival (94.7% vs 92.3%, P = 0.249) rates between wild-type and mutant-type KRAS groups, respectively. The KRAS mutation status does not influence the tumor response to the radiotherapy and survival in locally advanced rectal cancer patients who received preoperative chemoradiotherapy and curative surgery. PMID:26252300

  20. Efficacy of BET bromodomain inhibition in Kras-mutant non-small cell lung cancer

    PubMed Central

    Shimamura, Takeshi; Chen, Zhao; Soucheray, Margaret; Carretero, Julian; Kikuchi, Eiki; Tchaicha, Jeremy H.; Gao, Yandi; Cheng, Katherine A.; Cohoon, Travis J.; Qi, Jun; Akbay, Esra; Kimmelman, Alec C.; Kung, Andrew L.; Bradner, James E.; Wong, Kwok-Kin

    2013-01-01

    Purpose Amplification of MYC is one of the most common genetic alterations in lung cancer, contributing to a myriad of phenotypes associated with growth, invasion and drug resistance. Murine genetics has established both the centrality of somatic alterations of Kras in lung cancer, as well as the dependency of mutant Kras tumors on MYC function. Unfortunately, drug-like small-molecule inhibitors of KRAS and MYC have yet to be realized. The recent discovery, in hematologic malignancies, that BET bromodomain inhibition impairs MYC expression and MYC transcriptional function established the rationale of targeting KRAS-driven NSCLC with BET inhibition. Experimental Design We performed functional assays to evaluate the effects of JQ1 in genetically defined NSCLC cells lines harboring KRAS and/or LKB1 mutations. Furthermore, we evaluated JQ1 in transgenic mouse lung cancer models expressing mutant kras or concurrent mutant kras and lkb1. Effects of bromodomain inhibition on transcriptional pathways were explored and validated by expression analysis. Results While JQ1 is broadly active in NSCLC cells, activity of JQ1 in mutant KRAS NSCLC is abrogated by concurrent alteration or genetic knock-down of LKB1. In sensitive NSCLC models, JQ1 treatment results in the coordinate downregulation of the MYC-dependent transcriptional program. We found that JQ1 treatment produces significant tumor regression in mutant kras mice. As predicted, tumors from mutant kras and lkb1 mice did not respond to JQ1. Conclusion Bromodomain inhibition comprises a promising therapeutic strategy for KRAS mutant NSCLC with wild-type LKB1, via inhibition of MYC function. Clinical studies of BET bromodomain inhibitors in aggressive NSCLC will be actively pursued. PMID:24045185

  1. Efficient Genotyping of KRAS Mutant Non-Small Cell Lung Cancer Using a Multiplexed Droplet Digital PCR Approach.

    PubMed

    Pender, Alexandra; Garcia-Murillas, Isaac; Rana, Sareena; Cutts, Rosalind J; Kelly, Gavin; Fenwick, Kerry; Kozarewa, Iwanka; Gonzalez de Castro, David; Bhosle, Jaishree; O'Brien, Mary; Turner, Nicholas C; Popat, Sanjay; Downward, Julian

    2015-01-01

    Droplet digital PCR (ddPCR) can be used to detect low frequency mutations in oncogene-driven lung cancer. The range of KRAS point mutations observed in NSCLC necessitates a multiplex approach to efficient mutation detection in circulating DNA. Here we report the design and optimisation of three discriminatory ddPCR multiplex assays investigating nine different KRAS mutations using PrimePCR™ ddPCR™ Mutation Assays and the Bio-Rad QX100 system. Together these mutations account for 95% of the nucleotide changes found in KRAS in human cancer. Multiplex reactions were optimised on genomic DNA extracted from KRAS mutant cell lines and tested on DNA extracted from fixed tumour tissue from a cohort of lung cancer patients without prior knowledge of the specific KRAS genotype. The multiplex ddPCR assays had a limit of detection of better than 1 mutant KRAS molecule in 2,000 wild-type KRAS molecules, which compared favourably with a limit of detection of 1 in 50 for next generation sequencing and 1 in 10 for Sanger sequencing. Multiplex ddPCR assays thus provide a highly efficient methodology to identify KRAS mutations in lung adenocarcinoma.

  2. Efficient Genotyping of KRAS Mutant Non-Small Cell Lung Cancer Using a Multiplexed Droplet Digital PCR Approach

    PubMed Central

    Pender, Alexandra; Garcia-Murillas, Isaac; Rana, Sareena; Cutts, Rosalind J.; Kelly, Gavin; Fenwick, Kerry; Kozarewa, Iwanka; Gonzalez de Castro, David; Bhosle, Jaishree; O’Brien, Mary; Turner, Nicholas C.; Popat, Sanjay; Downward, Julian

    2015-01-01

    Droplet digital PCR (ddPCR) can be used to detect low frequency mutations in oncogene-driven lung cancer. The range of KRAS point mutations observed in NSCLC necessitates a multiplex approach to efficient mutation detection in circulating DNA. Here we report the design and optimisation of three discriminatory ddPCR multiplex assays investigating nine different KRAS mutations using PrimePCR™ ddPCR™ Mutation Assays and the Bio-Rad QX100 system. Together these mutations account for 95% of the nucleotide changes found in KRAS in human cancer. Multiplex reactions were optimised on genomic DNA extracted from KRAS mutant cell lines and tested on DNA extracted from fixed tumour tissue from a cohort of lung cancer patients without prior knowledge of the specific KRAS genotype. The multiplex ddPCR assays had a limit of detection of better than 1 mutant KRAS molecule in 2,000 wild-type KRAS molecules, which compared favourably with a limit of detection of 1 in 50 for next generation sequencing and 1 in 10 for Sanger sequencing. Multiplex ddPCR assays thus provide a highly efficient methodology to identify KRAS mutations in lung adenocarcinoma. PMID:26413866

  3. Multiplex Detection of KRAS Mutations Using Passive Droplet Fusion.

    PubMed

    Pekin, Deniz; Taly, Valerie

    2017-01-01

    We describe a droplet microfluidics method to screen for multiple mutations of a same oncogene in a single experiment using passive droplet fusion. Genomic DNA from H1573 cell-line was screened for the presence of the six common mutations of the KRAS oncogene as well as wild-type sequences with a detection efficiency of 98 %. Furthermore, the mutant allelic fraction of the cell-line was also assessed correctly showing that the technique is quantitative.

  4. Genotype-specific signal generation based on digestion of 3-way DNA junctions: application to KRAS variation detection.

    PubMed

    Amicarelli, Giulia; Adlerstein, Daniel; Shehi, Erlet; Wang, Fengfei; Makrigiorgos, G Mike

    2006-10-01

    Genotyping methods that reveal single-nucleotide differences are useful for a wide range of applications. We used digestion of 3-way DNA junctions in a novel technology, OneCutEventAmplificatioN (OCEAN) that allows sequence-specific signal generation and amplification. We combined OCEAN with peptide-nucleic-acid (PNA)-based variant enrichment to detect and simultaneously genotype v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS) codon 12 sequence variants in human tissue specimens. We analyzed KRAS codon 12 sequence variants in 106 lung cancer surgical specimens. We conducted a PNA-PCR reaction that suppresses wild-type KRAS amplification and genotyped the product with a set of OCEAN reactions carried out in fluorescence microplate format. The isothermal OCEAN assay enabled a 3-way DNA junction to form between the specific target nucleic acid, a fluorescently labeled "amplifier", and an "anchor". The amplifier-anchor contact contains the recognition site for a restriction enzyme. Digestion produces a cleaved amplifier and generation of a fluorescent signal. The cleaved amplifier dissociates from the 3-way DNA junction, allowing a new amplifier to bind and propagate the reaction. The system detected and genotyped KRAS sequence variants down to approximately 0.3% variant-to-wild-type alleles. PNA-PCR/OCEAN had a concordance rate with PNA-PCR/sequencing of 93% to 98%, depending on the exact implementation. Concordance rate with restriction endonuclease-mediated selective-PCR/sequencing was 89%. OCEAN is a practical and low-cost novel technology for sequence-specific signal generation. Reliable analysis of KRAS sequence alterations in human specimens circumvents the requirement for sequencing. Application is expected in genotyping KRAS codon 12 sequence variants in surgical specimens or in bodily fluids, as well as single-base variations and sequence alterations in other genes.

  5. The usability of allele-specific PCR and reverse-hybridization assays for KRAS genotyping in Serbian colorectal cancer patients.

    PubMed

    Brotto, Ksenija; Malisic, Emina; Cavic, Milena; Krivokuca, Ana; Jankovic, Radmila

    2013-04-01

    Colorectal cancers (CRCs) with wild-type KRAS respond to EGFR-targeted antibody treatment. Analysis of the hotspot clustered mutations in codons 12 and 13 is compulsory before therapy and no standardized methodology for that purpose has been established so far. Since these mutations may have different biological effects and clinical outcome, reliable frequency and types of KRAS mutations need to be determined for individual therapy. The purpose of this study was to describe the KRAS mutation spectrum in a group of 481 Serbian mCRC patients and to compare the general performances of allele-specific PCR and reverse-hybridization assays. KRAS testing was performed with two diagnostic analyses, DxS TheraScreen K-RAS PCR Kit and KRAS StripAssay™. KRAS mutations in codons 12 and 13 were present in 37.6 % of analyzed formalin-fixed paraffin-embedded (FFPE) DNA samples. The seven most frequent mutation types were observed with both assays: p.G12D 34.6 %, p.G12V 24.9 %, p.G12A 10.3 %, p.G12C 8.1 %, p.G12S 5.4 %, p.G12R 1.6 %, and p.G13D 15.1 %. Regarding double mutants, 0.8 % of them were present among all tested samples and 2.2 % among KRAS mutated ones. Two screening approaches that were used in this study have been shown as suitable tests for detecting KRAS mutations in diagnostic settings. In addition, they appear to be good alternatives to methods presently in use. In our experience, both methods showed capacity to detect and identify double mutations which may be important for potential further subgrouping of CRC patients.

  6. Effect of KRAS codon13 mutations in patients with advanced colorectal cancer (advanced CRC) under oxaliplatin containing chemotherapy. Results from a translational study of the AIO colorectal study group

    PubMed Central

    2012-01-01

    Background To evaluate the value of KRAS codon 13 mutations in patients with advanced colorectal cancer (advanced CRC) treated with oxaliplatin and fluoropyrimidines. Methods Tumor specimens from 201 patients with advanced CRC from a randomized, phase III trial comparing oxaliplatin/5-FU vs. oxaliplatin/capecitabine were retrospectively analyzed for KRAS mutations. Mutation data were correlated to response data (Overall response rate, ORR), progression-free survival (PFS) and overall survival (OS). Results 201 patients were analysed for KRAS mutation (61.2% males; mean age 64.2 ± 8.6 years). KRAS mutations were identified in 36.3% of tumors (28.8% in codon 12, 7.4% in codon 13). The ORR in codon 13 patients compared to codon 12 and wild type patients was significantly lower (p = 0.008). There was a tendency for a better overall survival in KRAS wild type patients compared to mutants (p = 0.085). PFS in all patients was not different in the three KRAS genetic groups (p = 0.72). However, we found a marked difference in PFS between patients with codon 12 and 13 mutant tumors treated with infusional 5-FU versus capecitabine based regimens. Conclusions Our data suggest that the type of KRAS mutation may be of clinical relevance under oxaliplatin combination chemotherapies without the addition of monoclonal antibodies in particular when overall response rates are important. Trial registration number 2002-04-017 PMID:22876876

  7. Differential tumor biology effects of double-initiation in a mouse skin chemical carcinogenesis model comparing wild type versus protein kinase Cepsilon overexpression mice.

    PubMed

    Li, Yafan; Wheeler, Deric L; Ananthaswamy, Honnavara N; Verma, Ajit K; Oberley, Terry D

    2007-12-01

    Our previous studies showed that protein kinase Cepsilon (PKCepsilon) verexpression in mouse skin resulted in metastatic squamous cell carcinoma (SCC) elicited by single 7,12-dimethylbenz(a)anthracene (DMBA)-initiation and 12-O-tetradecanoylphorbol-13-acetate (TPA)-promotion in the absence of preceding papilloma formation as is typically observed in wild type mice. The present study demonstrates that double-DMBA initiation modulates tumor incidence, multiplicity, and latency period in both wild type and PKCepsilon overexpression transgenic (PKCepsilon-Tg) mice. After 17 weeks (wks) of tumor promotion, a reduction in papilloma multiplicity was observed in double- versus single-DMBA initiated wild type mice. Papilloma multiplicity was inversely correlated with cell death indices of interfollicular keratinocytes, indicating decreased papilloma formation was caused by increased cell death and suggesting the origin of papillomas is in interfollicular epidermis. Double-initiated PKCepsilon-Tg mice had accelerated carcinoma formation and cancer incidence in comparison to single-initiated PKCepsilon-Tg mice. Morphologic analysis of mouse skin following double initiation and tumor promotion showed a similar if not identical series of events to those previously observed following single initiation and tumor promotion: putative preneoplastic cells were observed arising from hyperplastic hair follicles (HFs) with subsequent cancer cell infiltration into the dermis. Single-initiated PKCepsilon-Tg mice exhibited increased mitosis in epidermal cells of HFs during tumor promotion.

  8. Effects of Hypoxanthine Substitution in Peptide Nucleic Acids Targeting KRAS2 Oncogenic mRNA Molecules: Theory and Experiment

    PubMed Central

    Sanders, Jeffrey M.; Wampole, Matthew E.; Chen, Chang-Po; Sethi, Dalip; Singh, Amrita; Dupradeau, François-Yves; Wang, Fan; Gray, Brian D.; Thakur, Mathew L.; Wickstrom, Eric

    2013-01-01

    Genetic disorders can arise from single base substitutions in a single gene. A single base substitution for wild type guanine in the twelfth codon of KRAS2 mRNA occurs frequently to initiate lung, pancreatic, and colon cancer. We have observed single base mismatch specificity in radioimaging of mutant KRAS2 mRNA in tumors in mice by in vivo hybridization with radiolabeled peptide nucleic acid (PNA) dodecamers. We hypothesized that multi-mutant specificity could be achieved with a PNA dodecamer incorporating hypoxanthine, which can form Watson-Crick basepairs with adenine, cytosine, thymine, and uracil. Using molecular dynamics simulations and free energy calculations, we show that hypoxanthine substitutions in PNAs are tolerated in KRAS2 RNA-PNA duplexes where wild type guanine is replaced by mutant uracil or adenine in RNA. To validate our predictions, we synthesized PNA dodecamers with hypoxanthine, and then measured the thermal stability of RNA-PNA duplexes. Circular dichroism thermal melting results showed that hypoxanthine-containing PNAs are more stable in duplexes where hypoxanthine-adenine and hypoxanthine-uracil base pairs are formed than single mismatch duplexes or duplexes containing hypoxanthine-guanine opposition. PMID:23972113

  9. Synthetic Lethal Therapy for KRAS Mutant Non-small-cell Lung Carcinoma with Nanoparticle-mediated CDK4 siRNA Delivery

    PubMed Central

    Mao, Cheng-Qiong; Xiong, Meng-Hua; Liu, Yang; Shen, Song; Du, Xiao-Jiao; Yang, Xian-Zhu; Dou, Shuang; Zhang, Pei-Zhuo; Wang, Jun

    2014-01-01

    The KRAS mutation is present in ~20% of lung cancers and has not yet been effectively targeted for therapy. This mutation is associated with a poor prognosis in non-small-cell lung carcinomas (NSCLCs) and confers resistance to standard anticancer treatment drugs, including epidermal growth factor receptor tyrosine kinase inhibitors. In this study, we exploited a new therapeutic strategy based on the synthetic lethal interaction between cyclin-dependent kinase 4 (CDK4) downregulation and the KRAS mutation to deliver micellar nanoparticles (MNPs) containing small interfering RNA targeting CDK4 (MNPsiCDK4) for treatment in NSCLCs harboring the oncogenic KRAS mutation. Following MNPsiCDK4 administration, CDK4 expression was decreased, accompanied by inhibited cell proliferation, specifically in KRAS mutant NSCLCs. However, this intervention was harmless to normal KRAS wild-type cells, confirming the proposed mechanism of synthetic lethality. Moreover, systemic delivery of MNPsiCDK4 significantly inhibited tumor growth in an A549 NSCLC xenograft murine model, with depressed expression of CDK4 and mutational KRAS status, suggesting the therapeutic promise of MNPsiCDK4 delivery in KRAS mutant NSCLCs via a synthetic lethal interaction between KRAS and CDK4. PMID:24496383

  10. Influence of K-ras status and anti-tumour treatments on complications due to colorectal self-expandable metallic stents: a retrospective multicentre study.

    PubMed

    Fuccio, Lorenzo; Correale, Loredana; Arezzo, Alberto; Repici, Alessandro; Manes, Gianpiero; Trovato, Cristina; Mangiavillano, Benedetto; Manno, Mauro; Cortelezzi, Claudio Camillo; Dinelli, Marco; Cennamo, Vincenzo; de Bellis, Mario

    2014-06-01

    This study aimed to explore the relationship between K-ras status, anti-tumour treatments, and the complications of colorectal self-expandable metallic stenting in colorectal cancer. This is a retrospective, multicentre study of 91 patients with obstructive advanced colorectal cancer palliated with enteral stents between 2007 and 2011. K-ras wild-type tumours were diagnosed in 44 patients (48.4%); 82 (90.1%) received chemotherapy and 45 (49.4%) had additional biological therapy (34 bevacizumab, 11 cetuximab). Twenty-one (23.1%) experienced stent-related complications: 11 (52.4%) occurred in the K-ras mutant group (P=0.9). K-ras wild-type patients were not less likely to develop adverse events than K-ras mutant patients (OR, 0.99; 95% CI: 0.4-2.7). Overall mean time to complication was 167.6 days (range 4-720 days), with no difference between the two groups (141 vs. 197 days; P=0.5). Chemotherapy did not influence the risk of complications (OR, 0.56; 95% CI: 0.14-2.9), and there was no evidence that patients treated with chemotherapy and cetuximab were more likely to experience stent-related complications than patients treated with chemotherapy alone, or untreated (OR, 1.2; 95% CI: 0.2-5.9). Although perforation rates were higher with bevacizumab-based treatment (11.8% vs. 7%), this result was not statistically significant (P=0.69). K-ras mutation status, chemotherapy, and biological treatments should not influence colorectal stent-related complication rates. Copyright © 2014 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.

  11. Overexpression of HER2 in the pancreas promotes development of intraductal papillary mucinous neoplasms in mice.

    PubMed

    Shibata, Wataru; Kinoshita, Hiroto; Hikiba, Yohko; Sato, Takeshi; Ishii, Yasuaki; Sue, Soichiro; Sugimori, Makoto; Suzuki, Nobumi; Sakitani, Kosuke; Ijichi, Hideaki; Mori, Ryutaro; Endo, Itaru; Maeda, Shin

    2018-04-18

    Pancreatic ductal adenocarcinoma (PDA) has a 5-year survival rate of less than 5% and is the sixth leading cause of cancer death. Although KRAS mutations are one of the major driver mutations in PDA, KRAS mutation alone is not sufficient to induce invasive pancreatic cancer in mice model. HER2, also known as ERBB2, is a receptor tyrosine kinase, and overexpression of HER2 is associated with poor clinical outcomes in pancreatic cancer. However, no report has shown whether HER2 and its downstream signaling contributes to the pancreatic cancer development. By immunohistochemical analysis in human cases, HER2 protein expression was detected in 40% of PDAs and 29% of intraductal papillary mucinous carcinomas, another type of pancreatic cancer. In a mouse model, we showed overexpression of activated HER2 (HER2 NT ) in the pancreas, in which cystic neoplastic lesions resembling intraductal papillary mucinous neoplasm-like lesions in humans had developed. We also found that HER2 NT cooperated with oncogenic Kras to accelerate the development of pancreatic intraepithelial neoplasms. In addition, using pancreatic organoids in 3D cultures, we found that organoids cultured from HER2 NT /Kras double transgenic mice showed proliferative potential and tumorigenic ability cooperatively. HER2-signaling inhibition was suggested to be an new therapeutic target in some types of PDAs.

  12. Functional signaling pathway analysis of lung adenocarcinomas identifies novel therapeutic targets for KRAS mutant tumors

    PubMed Central

    Baldelli, Elisa; Bellezza, Guido; Haura, Eric B.; Crinó, Lucio; Cress, W. Douglas; Deng, Jianghong; Ludovini, Vienna; Sidoni, Angelo; Schabath, Matthew B.; Puma, Francesco; Vannucci, Jacopo; Siggillino, Annamaria; Liotta, Lance A.; Petricoin, Emanuel F.; Pierobon, Mariaelena

    2015-01-01

    Little is known about the complex signaling architecture of KRAS and the interconnected RAS-driven protein-protein interactions, especially as it occurs in human clinical specimens. This study explored the activated and interconnected signaling network of KRAS mutant lung adenocarcinomas (AD) to identify novel therapeutic targets. Thirty-four KRAS mutant (MT) and twenty-four KRAS wild-type (WT) frozen biospecimens were obtained from surgically treated lung ADs. Samples were subjected to laser capture microdissection and reverse phase protein microarray analysis to explore the expression/activation levels of 150 signaling proteins along with co-activation concordance mapping. An independent set of 90 non-small cell lung cancers (NSCLC) was used to validate selected findings by immunohistochemistry (IHC). Compared to KRAS WT tumors, the signaling architecture of KRAS MT ADs revealed significant interactions between KRAS downstream substrates, the AKT/mTOR pathway, and a number of Receptor Tyrosine Kinases (RTK). Approximately one-third of the KRAS MT tumors had ERK activation greater than the WT counterpart (p<0.01). Notably 18% of the KRAS MT tumors had elevated activation of the Estrogen Receptor alpha (ER-α) (p=0.02). This finding was verified in an independent population by IHC (p=0.03). KRAS MT lung ADs appear to have a more intricate RAS linked signaling network than WT tumors with linkage to many RTKs and to the AKT-mTOR pathway. Combination therapy targeting different nodes of this network may be necessary to treat this group of patients. In addition, for patients with KRAS MT tumors and activation of the ER-α, anti-estrogen therapy may have important clinical implications. PMID:26468985

  13. KRAS Testing and Epidermal Growth Factor Receptor Inhibitor Treatment for Colorectal Cancer in Community Settings

    PubMed Central

    Webster, Jennifer; Kauffman, Tia L.; Feigelson, Heather Spencer; Pawloski, Pamala A.; Onitilo, Adedayo A.; Potosky, Arnold L.; Cross, Deanna; Meier, Paul R.; Mirabedi, Anousheh S.; Delate, Thomas; Daida, Yihe; Williams, Andrew E.; Alexander, Gwen L.; McCarty, Catherine A.; Honda, Stacey; Kushi, Lawrence H.; Goddard, Katrina A.B.

    2013-01-01

    Background In metastatic colorectal cancer (mCRC), mutations in the KRAS gene predict poor response to epidermal growth factor receptor (EGFR) inhibitors. Clinical treatment guidelines now recommend KRAS testing if EGFR inhibitors are considered. Our study investigates the clinical uptake and utilization of KRAS testing. Methods We included 1,188 patients with mCRC diagnosed from 2004 to 2009, from seven integrated health care delivery systems with a combined membership of 5.5 million. We used electronic medical records and targeted manual chart review to capture the complexity and breadth of real-world clinical oncology care. Results Overall, 428 patients (36%) received KRAS testing during their clinical care, and 266 (22%) were treated with EGFR inhibitors. Age at diagnosis (p=0.0034), comorbid conditions (p=0.0316), and survival time from diagnosis (p<0.0001) influence KRAS testing and EGFR inhibitor prescribing. The proportion who received KRAS testing increased from 7% to 97% for those treated in 2006 and 2010, respectively, and 83% of all treated patients had a KRAS wild type genotype. Most patients with a KRAS mutation (86%) were not treated with EGFR inhibitors. The interval between mCRC diagnosis and receipt of KRAS testing decreased from 26 months (2006) to 10 months (2009). Conclusions These findings demonstrate rapid uptake and incorporation of this predictive biomarker into clinical oncology care. Impact In this delivery setting, KRAS testing is widely used to guide treatment decisions with EGFR inhibitors in patients with mCRC. An important future research goal is to evaluate utilization of KRAS testing in other delivery settings in the US. PMID:23155138

  14. Knockdown of Oncogenic KRAS in Non-Small Cell Lung Cancers Suppresses Tumor Growth and Sensitizes Tumor Cells to Targeted Therapy

    PubMed Central

    Sunaga, Noriaki; Shames, David S.; Girard, Luc; Peyton, Michael; Larsen, Jill E.; Imai, Hisao; Soh, Junichi; Sato, Mitsuo; Yanagitani, Noriko; Kaira, Kyoichi; Xie, Yang; Gazdar, Adi F.; Mori, Masatomo; Minna, John D.

    2011-01-01

    Oncogenic KRAS is found in >25% of lung adenocarcinomas, the major histologic subtype of non-small cell lung cancer (NSCLC), and is an important target for drug development. To this end, we generated four NSCLC lines with stable knockdown selective for oncogenic KRAS. As expected, stable knockdown of oncogenic KRAS led to inhibition of in vitro and in vivo tumor growth in the KRAS mutant NSCLC cells, but not in NSCLC cells that have wild-type KRAS (but mutant NRAS). Surprisingly, we did not see large-scale induction of cell death and the growth inhibitory effect was not complete. To further understand the ability of NSCLCs to grow despite selective removal of mutant KRAS expression, we performed microarray expression profiling of NSCLC cell lines with or without mutant KRAS knockdown and isogenic human bronchial epithelial cell lines (HBECs) with and without oncogenic KRAS. We found that while the MAPK pathway is significantly down-regulated after mutant KRAS knockdown, these NSCLCs showed increased levels of phospho-STAT3 and phospho-EGFR, and variable changes in phospho-Akt. In addition, mutant KRAS knockdown sensitized the NSCLCs to p38 and EGFR inhibitors. Our findings suggest that targeting oncogenic KRAS by itself will not be sufficient treatment but may offer possibilities of combining anti-KRAS strategies with other targeted drugs. PMID:21306997

  15. Emergence of KRAS mutations and acquired resistance to anti-EGFR therapy in colorectal cancer.

    PubMed

    Misale, Sandra; Yaeger, Rona; Hobor, Sebastijan; Scala, Elisa; Janakiraman, Manickam; Liska, David; Valtorta, Emanuele; Schiavo, Roberta; Buscarino, Michela; Siravegna, Giulia; Bencardino, Katia; Cercek, Andrea; Chen, Chin-Tung; Veronese, Silvio; Zanon, Carlo; Sartore-Bianchi, Andrea; Gambacorta, Marcello; Gallicchio, Margherita; Vakiani, Efsevia; Boscaro, Valentina; Medico, Enzo; Weiser, Martin; Siena, Salvatore; Di Nicolantonio, Federica; Solit, David; Bardelli, Alberto

    2012-06-28

    A main limitation of therapies that selectively target kinase signalling pathways is the emergence of secondary drug resistance. Cetuximab, a monoclonal antibody that binds the extracellular domain of epidermal growth factor receptor (EGFR), is effective in a subset of KRAS wild-type metastatic colorectal cancers. After an initial response, secondary resistance invariably ensues, thereby limiting the clinical benefit of this drug. The molecular bases of secondary resistance to cetuximab in colorectal cancer are poorly understood. Here we show that molecular alterations (in most instances point mutations) of KRAS are causally associated with the onset of acquired resistance to anti-EGFR treatment in colorectal cancers. Expression of mutant KRAS under the control of its endogenous gene promoter was sufficient to confer cetuximab resistance, but resistant cells remained sensitive to combinatorial inhibition of EGFR and mitogen-activated protein-kinase kinase (MEK). Analysis of metastases from patients who developed resistance to cetuximab or panitumumab showed the emergence of KRAS amplification in one sample and acquisition of secondary KRAS mutations in 60% (6 out of 10) of the cases. KRAS mutant alleles were detectable in the blood of cetuximab-treated patients as early as 10 months before radiographic documentation of disease progression. In summary, the results identify KRAS mutations as frequent drivers of acquired resistance to cetuximab in colorectal cancers, indicate that the emergence of KRAS mutant clones can be detected non-invasively months before radiographic progression and suggest early initiation of a MEK inhibitor as a rational strategy for delaying or reversing drug resistance.

  16. Nicotine promotes initiation and progression of KRAS-induced pancreatic cancer via Gata6-dependent dedifferentiation of acinar cells in mice.

    PubMed

    Hermann, Patrick C; Sancho, Patricia; Cañamero, Marta; Martinelli, Paola; Madriles, Francesc; Michl, Patrick; Gress, Thomas; de Pascual, Ricardo; Gandia, Luis; Guerra, Carmen; Barbacid, Mariano; Wagner, Martin; Vieira, Catarina R; Aicher, Alexandra; Real, Francisco X; Sainz, Bruno; Heeschen, Christopher

    2014-11-01

    Although smoking is a leading risk factor for pancreatic ductal adenocarcinoma (PDAC), little is known about the mechanisms by which smoking promotes initiation or progression of PDAC. We studied the effects of nicotine administration on pancreatic cancer development in Kras(+/LSLG12Vgeo);Elas-tTA/tetO-Cre (Ela-KRAS) mice, Kras(+/LSLG12D);Trp53+/LSLR172H;Pdx-1-Cre (KPC) mice (which express constitutively active forms of KRAS), and C57/B6 mice. Mice were given nicotine for up to 86 weeks to produce blood levels comparable with those of intermediate smokers. Pancreatic tissues were collected and analyzed by immunohistochemistry and reverse transcriptase polymerase chain reaction; cells were isolated and assayed for colony and sphere formation and gene expression. The effects of nicotine were also evaluated in primary pancreatic acinar cells isolated from wild-type, nAChR7a(-/-), Trp53(-/-), and Gata6(-/-);Trp53(-/-) mice. We also analyzed primary PDAC cells that overexpressed GATA6 from lentiviral expression vectors. Administration of nicotine accelerated transformation of pancreatic cells and tumor formation in Ela-KRAS and KPC mice. Nicotine induced dedifferentiation of acinar cells by activating AKT-ERK-MYC signaling; this led to inhibition of Gata6 promoter activity, loss of GATA6 protein, and subsequent loss of acinar differentiation and hyperactivation of oncogenic KRAS. Nicotine also promoted aggressiveness of established tumors as well as the epithelial-mesenchymal transition, increasing numbers of circulating cancer cells and their dissemination to the liver, compared with mice not exposed to nicotine. Nicotine induced pancreatic cells to acquire gene expression patterns and functional characteristics of cancer stem cells. These effects were markedly attenuated in K-Ras(+/LSL-G12D);Trp53(+/LSLR172H);Pdx-1-Cre mice given metformin. Metformin prevented nicotine-induced pancreatic carcinogenesis and tumor growth by up-regulating GATA6 and promoting

  17. Extreme assay sensitivity in molecular diagnostics further unveils intratumour heterogeneity in metastatic colorectal cancer as well as artifactual low-frequency mutations in the KRAS gene.

    PubMed

    Mariani, Sara; Bertero, Luca; Osella-Abate, Simona; Di Bello, Cristiana; Francia di Celle, Paola; Coppola, Vittoria; Sapino, Anna; Cassoni, Paola; Marchiò, Caterina

    2017-07-25

    Gene mutations in the RAS family rule out metastatic colorectal carcinomas (mCRCs) from anti-EGFR therapies. We report a retrospective analysis by Sequenom Massarray and fast COLD-PCR followed by Sanger sequencing on 240 mCRCs. By Sequenom, KRAS and NRAS exons 2-3-4 were mutated in 52.9% (127/240) of tumours, while BRAF codon 600 mutations reached 5% (12/240). Fast COLD-PCR found extra mutations at KRAS exon 2 in 15/166 (9%) of samples, previously diagnosed by Sequenom as wild-type or mutated at RAS (exons 3-4) or BRAF genes. After UDG digestion results were reproduced in 2/12 analysable subclonally mutated samples leading to a frequency of true subclonal KRAS mutations of 1.2% (2.1% of the previous Sequenom wild-type subgroup). In 10 out of 12 samples, the subclonal KRAS mutations disappeared (9 out of 12) or turned to a different sequence variant (1 out of 12). mCRC can harbour coexisting multiple gene mutations. High sensitivity assays allow the detection of a small subset of patients harbouring true subclonal KRAS mutations. However, DNA changes with mutant allele frequencies <3% detected in formalin-fixed paraffin-embedded samples may be artifactual in a non-negligible fraction of cases. UDG pre-treatment of DNA is mandatory to identify true DNA changes in archival samples and avoid misinterpretation due to artifacts.

  18. Selective sensitization to DNA-damaging agents in a human rhabdomyosarcoma cell line with inducible wild-type p53 overexpression.

    PubMed

    Gibson, A A; Harwood, F G; Tillman, D M; Houghton, J A

    1998-01-01

    Drug-induced cytotoxicity or apoptosis may be influenced by the expression of the p53 tumor suppressor gene and by the specific oncogene expressed, which may dictate the threshold at which a cytotoxic response may by induced. The objective of the study was to elucidate how DNA-damaging agents with different mechanisms of action were sensitized in the context of expression of the Pax3/FKHR fusion protein, a transformation event unique to alveolar rhabdomyosarcomas (ARMSs), and wild-type p53 (wtp53). A wtp53 cDNA was subcloned into the pGRE5-2/EBV vector with dexamethasone-inducible overexpression and transfected into Rh30 ARMS cells that express Pax3/FKHR and a mutant p53 phenotype. Following dexamethasone induction of wtp53 overexpression in a derived clone (Cl.#27), growth was slowed, and cells accumulated in G1. Functional wtp53 activity was demonstrated by selective transactivation of p50-2, a wtp53 chloramphenicol acetyltransferase reporter construct, and by up-regulated expression of endogenous p21Waf1. Data demonstrated p53-dependent sensitization (> or = 4-fold) to bleomycin, actinomycin D, and 5-fluorouracil and considerably less p53-dependence (< or = 2-fold) for doxorubicin, topotecan, etoposide, and cisplatin in Cl.#27 compared to an equivalent clone containing the pGRE5-EBV vector alone (VC#3). Data demonstrate that ARMS cells show a selective sensitization to DNA-damaging agents when wtp53 is overexpressed. The cytotoxic activity of agents that are not potentiated substantially must, therefore, depend upon p53-independent factors that relate to the mechanism of drug action.

  19. Mutational landscape of EGFR-, MYC-, and Kras-driven genetically engineered mouse models of lung adenocarcinoma

    PubMed Central

    McFadden, David G.; Politi, Katerina; Bhutkar, Arjun; Chen, Frances K.; Song, Xiaoling; Pirun, Mono; Santiago, Philip M.; Kim-Kiselak, Caroline; Platt, James T.; Lee, Emily; Hodges, Emily; Rosebrock, Adam P.; Bronson, Roderick T.; Socci, Nicholas D.; Hannon, Gregory J.; Jacks, Tyler; Varmus, Harold

    2016-01-01

    Genetically engineered mouse models (GEMMs) of cancer are increasingly being used to assess putative driver mutations identified by large-scale sequencing of human cancer genomes. To accurately interpret experiments that introduce additional mutations, an understanding of the somatic genetic profile and evolution of GEMM tumors is necessary. Here, we performed whole-exome sequencing of tumors from three GEMMs of lung adenocarcinoma driven by mutant epidermal growth factor receptor (EGFR), mutant Kirsten rat sarcoma viral oncogene homolog (Kras), or overexpression of MYC proto-oncogene. Tumors from EGFR- and Kras-driven models exhibited, respectively, 0.02 and 0.07 nonsynonymous mutations per megabase, a dramatically lower average mutational frequency than observed in human lung adenocarcinomas. Tumors from models driven by strong cancer drivers (mutant EGFR and Kras) harbored few mutations in known cancer genes, whereas tumors driven by MYC, a weaker initiating oncogene in the murine lung, acquired recurrent clonal oncogenic Kras mutations. In addition, although EGFR- and Kras-driven models both exhibited recurrent whole-chromosome DNA copy number alterations, the specific chromosomes altered by gain or loss were different in each model. These data demonstrate that GEMM tumors exhibit relatively simple somatic genotypes compared with human cancers of a similar type, making these autochthonous model systems useful for additive engineering approaches to assess the potential of novel mutations on tumorigenesis, cancer progression, and drug sensitivity. PMID:27702896

  20. Mutational landscape of EGFR-, MYC-, and Kras-driven genetically engineered mouse models of lung adenocarcinoma.

    PubMed

    McFadden, David G; Politi, Katerina; Bhutkar, Arjun; Chen, Frances K; Song, Xiaoling; Pirun, Mono; Santiago, Philip M; Kim-Kiselak, Caroline; Platt, James T; Lee, Emily; Hodges, Emily; Rosebrock, Adam P; Bronson, Roderick T; Socci, Nicholas D; Hannon, Gregory J; Jacks, Tyler; Varmus, Harold

    2016-10-18

    Genetically engineered mouse models (GEMMs) of cancer are increasingly being used to assess putative driver mutations identified by large-scale sequencing of human cancer genomes. To accurately interpret experiments that introduce additional mutations, an understanding of the somatic genetic profile and evolution of GEMM tumors is necessary. Here, we performed whole-exome sequencing of tumors from three GEMMs of lung adenocarcinoma driven by mutant epidermal growth factor receptor (EGFR), mutant Kirsten rat sarcoma viral oncogene homolog (Kras), or overexpression of MYC proto-oncogene. Tumors from EGFR- and Kras-driven models exhibited, respectively, 0.02 and 0.07 nonsynonymous mutations per megabase, a dramatically lower average mutational frequency than observed in human lung adenocarcinomas. Tumors from models driven by strong cancer drivers (mutant EGFR and Kras) harbored few mutations in known cancer genes, whereas tumors driven by MYC, a weaker initiating oncogene in the murine lung, acquired recurrent clonal oncogenic Kras mutations. In addition, although EGFR- and Kras-driven models both exhibited recurrent whole-chromosome DNA copy number alterations, the specific chromosomes altered by gain or loss were different in each model. These data demonstrate that GEMM tumors exhibit relatively simple somatic genotypes compared with human cancers of a similar type, making these autochthonous model systems useful for additive engineering approaches to assess the potential of novel mutations on tumorigenesis, cancer progression, and drug sensitivity.

  1. KRAS mutations in pancreatic circulating tumor cells: a pilot study.

    PubMed

    Kulemann, Birte; Liss, Andrew S; Warshaw, Andrew L; Seifert, Sindy; Bronsert, Peter; Glatz, Torben; Pitman, Martha B; Hoeppner, Jens

    2016-06-01

    Pancreatic ductal adenocarcinoma (PDAC) is most often diagnosed in a metastatic stage. Circulating tumor cells (CTC) in the blood are hypothesized as the means of systemic dissemination. We aimed to isolate and characterize CTC to evaluate their significance as prognostic markers in PDAC. Blood obtained from healthy donors and patients with PDAC before therapy was filtered with ScreenCell® filtration devices for size-based CTC isolation. Captured cells were analyzed by immunofluorescence for an epithelial to mesenchymal transition (EMT) marker (zinc finger E-box binding homebox 1 (ZEB1)) and an epithelial antigen (cytokeratin (CK)). Molecular analysis of parallel specimens evaluated the KRAS mutation status of the CTC. The survival of each patient after study was recorded. As demonstrated by either cytology or finding of a KRAS mutation, CTC were detected in 18 of 21 patients (86 %) with proven PDAC: 8 out of 10 patients (80 %) with early stage (UICC IIA/IIB) and 10 out of 11 (91 %) with late stage (UICC III/IV) disease. CTC were not found in any of the 10 control patients (p < 0.001). The presence of CTC did not adversely affect median survival: 16 months in CTC-positive (n = 18) vs. 10 months in CTC-negative (n = 3) patients. Neither ZEB1 nor cytological characteristics correlated with overall survival, although ZEB1 was found almost exclusively in CTC of patients with established metastases. Patients with a CTC KRAS mutation (CTC-KRAS (mut)) had a substantially better survival, 19.4 vs. 7.4 months than patients with wild type KRAS (p = 0.015). With ScreenCell filtration, CTC are commonly found in PDAC (86 %). Molecular and genetic characterization, including mutations such as KRAS, may prove useful for prognosis.

  2. KRAS mutations: variable incidences in a Brazilian cohort of 8,234 metastatic colorectal cancer patients

    PubMed Central

    2014-01-01

    Background KRAS mutations are frequently found in colorectal cancer (CRC) indicating the importance of its genotyping in the study of the molecular mechanisms behind this disease. Although major advances have occurred over the past decade, there are still important gaps in our understanding of CRC carcinogenesis, particularly whether sex-linked factors play any role. Methods The profile of KRAS mutations in the Brazilian population was analyzed by conducting direct sequencing of KRAS codons 12 and 13 belonging to 8,234 metastatic CRC patient samples. DNA was extracted from paraffin-embedded tissue, exon 1 was amplified by PCR and submitted to direct sequencing. The data obtained was analysed comparing different geographical regions, gender and age. Results The median age was 59 years and the overall percentage of wild-type and mutated KRAS was 62.8% and 31.9%, respectively. Interestingly, different percentages of mutated KRAS patients were observed between male and female patients (32.5% versus 34.8%, respectively; p = 0.03). KRAS Gly12Asp mutation was the most prevalent for both genders and for most regions, with the exception of the North where Gly12Val was the most frequent mutation found. Conclusions To the best of our knowledge this is one of the largest cohorts of KRAS genotyping in CRC patients and the largest to indicate a higher incidence of KRAS mutation in females compared to males in Brazil. Nevertheless, further research is required to better address the impact of gender differences in colorectal cancer. PMID:24720724

  3. Cationic lipid-assisted polymeric nanoparticle mediated GATA2 siRNA delivery for synthetic lethal therapy of KRAS mutant non-small-cell lung carcinoma.

    PubMed

    Shen, Song; Mao, Chong-Qiong; Yang, Xian-Zhu; Du, Xiao-Jiao; Liu, Yang; Zhu, Yan-Hua; Wang, Jun

    2014-08-04

    Synthetic lethal interaction provides a conceptual framework for the development of wiser cancer therapeutics. In this study, we exploited a therapeutic strategy based on the interaction between GATA binding protein 2 (GATA2) downregulation and the KRAS mutation status by delivering small interfering RNA targeting GATA2 (siGATA2) with cationic lipid-assisted polymeric nanoparticles for treatment of non-small-cell lung carcinoma (NSCLC) harboring oncogenic KRAS mutations. Nanoparticles carrying siGATA2 (NPsiGATA2) were effectively taken up by NSCLC cells and resulted in targeted gene suppression. NPsiGATA2 selectively inhibited cell proliferation and induced cell apoptosis in KRAS mutant NSCLC cells. However, this intervention was harmless to normal KRAS wild-type NSCLC cells and HL7702 hepatocytes, confirming the advantage of synthetic lethality-based therapy. Moreover, systemic delivery of NPsiGATA2 significantly inhibited tumor growth in the KRAS mutant A549 NSCLC xenograft murine model, suggesting the therapeutic promise of NPsiGATA2 delivery in KRAS mutant NSCLC therapy.

  4. Detection of KRAS G12D in colorectal cancer stool by droplet digital PCR

    PubMed Central

    Olmedillas-López, Susana; Lévano-Linares, Dennis César; Alexandre, Carmen Laura Aúz; Vega-Clemente, Luz; Sánchez, Edurne León; Villagrasa, Alejandro; Ruíz-Tovar, Jaime; García-Arranz, Mariano; García-Olmo, Damián

    2017-01-01

    AIM To assess KRAS G12D mutation detection by droplet digital PCR (ddPCR) in stool-derived DNA from colorectal cancer (CRC) patients. METHODS In this study, tumor tissue and stool samples were collected from 70 patients with stage I-IV CRC diagnosed by preoperative biopsy. KRAS mutational status was determined by pyrosequencing analysis of DNA obtained from formalin-fixed paraffin-embedded (FFPE) tumor tissues. The KRAS G12D mutation was then analyzed by ddPCR in FFPE tumors and stool-derived DNA from patients with this point mutation. Wild-type (WT) tumors, as determined by pyrosequencing, were included as controls; analysis of FFPE tissue and stool-derived DNA by ddPCR was performed for these patients as well. RESULTS Among the total 70 patients included, KRAS mutations were detected by pyrosequencing in 32 (45.71%), whereas 38 (54.29%) had WT tumors. The frequency of KRAS mutations was higher in left-sided tumors (11 located in the right colon, 15 in the left, and 6 in the rectum). The predominant point mutation was KRAS G12D (14.29%, n = 10), which was more frequent in early-stage tumors (I-IIA, n = 7). In agreement with pyrosequencing results, the KRAS G12D mutation was detected by ddPCR in FFPE tumor-derived DNA, and only a residual number of mutated copies was found in WT controls. The KRAS G12D mutation was also detected in stool-derived DNA in 80% of all fecal samples from CRC patients with this point mutation. CONCLUSION ddPCR is a reliable and sensitive method to analyze KRAS G12D mutation in stool-derived DNA from CRC patients, especially at early stages. This non-invasive approach is potentially applicable to other relevant biomarkers for CRC management. PMID:29093617

  5. KRAS mutation testing in colorectal cancer: comparison of the results obtained using 3 different methods for the analysis of codons G12 and G13.

    PubMed

    Bihl, Michel P; Hoeller, Sylvia; Andreozzi, Maria Carla; Foerster, Anja; Rufle, Alexander; Tornillo, Luigi; Terracciano, Luigi

    2012-03-01

    Targeting the epidermal growth factor receptor (EGFR) is a new therapeutic option for patients with metastatic colorectal or lung carcinoma. However, the therapy efficiency highly depends on the KRAS mutation status in the given tumour. Therefore a reliable and secure KRAS mutation testing is crucial. Here we investigated 100 colorectal carcinoma samples with known KRAS mutation status (62 mutated cases and 38 wild type cases) in a comparative manner with three different KRAS mutation testing techniques (Pyrosequencing, Dideoxysequencing and INFINITI) in order to test their reliability and sensitivity. For the large majority of samples (96/100, 96%), the KRAS mutation status obtained by all three methods was the same. Only two cases with clear discrepancies were observed. One case was reported as wild type by the INFINITI method while the two other methods detected a G13C mutation. In the second case the mutation could be detected by the Pyrosequencing and INFINITI method (15% and 15%), while no signal for mutation could be observed with the Dideoxysequencing method. Additional two unclear results were due to a detection of a G12V with the INFINITI method, which was below cut-off when repeated and which was not detectable by the other two methods and very weak signals in a G12V mutated case with the Dideoxy- and Pyroseqencing method compared to the INFINITI method, respectively. In summary all three methods are reliable and robust methods in detecting KRAS mutations. INFINITI, however seems to be slightly more sensitive compared to Dideoxy- and Pyrosequencing.

  6. KRAS driven expression signature has prognostic power superior to mutation status in non-small cell lung cancer.

    PubMed

    Nagy, Ádám; Pongor, Lőrinc Sándor; Szabó, András; Santarpia, Mariacarmela; Győrffy, Balázs

    2017-02-15

    KRAS is the most frequently mutated oncogene in non-small cell lung cancer (NSCLC). However, the prognostic role of KRAS mutation status in NSCLC still remains controversial. We hypothesize that the expression changes of genes affected by KRAS mutation status will have the most prominent effect and could be used as a prognostic signature in lung cancer. We divided NSCLC patients with mutation and RNA-seq data into KRAS mutated and wild type groups. Mann-Whitney test was used to identify genes showing altered expression between these cohorts. Mean expression of the top five genes was designated as a "transcriptomic fingerprint" of the mutation. We evaluated the effect of this signature on clinical outcome in 2,437 NSCLC patients using univariate and multivariate Cox regression analysis. Mutation of KRAS was most common in adenocarcinoma. Mutation status and KRAS expression were not correlated to prognosis. The transcriptomic fingerprint of KRAS include FOXRED2, KRAS, TOP1, PEX3 and ABL2. The KRAS signature had a high prognostic power. Similar results were achieved when using the second and third set of strongest genes. Moreover, all cutoff values delivered significant prognostic power (p < 0.01). The KRAS signature also remained significant (p < 0.01) in a multivariate analysis including age, gender, smoking history and tumor stage. We generated a "surrogate signature" of KRAS mutation status in NSCLC patients by computationally linking genotype and gene expression. We show that secondary effects of a mutation can have a higher prognostic relevance than the primary genetic alteration itself. © 2016 The Authors International Journal of Cancer published by John Wiley & Sons Ltd on behalf of UICC.

  7. Synthetic Lethality of a Novel Small Molecule Against Mutant KRAS-Expressing Cancer Cells Involves AKT-Dependent ROS Production.

    PubMed

    Iskandar, Kartini; Rezlan, Majidah; Yadav, Sanjiv Kumar; Foo, Chuan Han Jonathan; Sethi, Gautam; Qiang, Yu; Bellot, Gregory L; Pervaiz, Shazib

    2016-05-10

    We recently reported the death-inducing activity of a small-molecule compound, C1, which triggered reactive oxygen species (ROS)-dependent autophagy-associated apoptosis in a variety of human cancer cell lines. In this study, we examine the ability of the compound to specifically target cancer cells harboring mutant KRAS with minimal activity against wild-type (WT) RAS-expressing cells. HCT116 cells expressing mutated KRAS are susceptible, while the WT-expressing HT29 cells are resistant. Interestingly, C1 triggers activation of mutant RAS, which results in the downstream phosphorylation and activation of AKT/PKB. Gene knockdown of KRAS or AKT or their pharmacological inhibition resulted in the abrogation of C1-induced ROS production and rescued tumor colony-forming ability. We also made use of HCT116 mutant KRAS knockout (KO) cells, which express only a single WT KRAS allele. Exposure of KO cells to C1 failed to increase mitochondrial ROS and cell death, unlike the parental cells harboring mutant KRAS. Similarly, mutant KRAS-transformed prostate epithelial cells (RWPE-1-RAS) were more sensitive to the ROS-producing and death-inducing effects of C1 than the vector only expressing RWPE-1 cells. An in vivo model of xenograft tumors generated with HCT116 KRAS(WT/MUT) or KRAS(WT/-) cells showed the efficacy of C1 treatment and its ability to affect the relative mitotic index in tumors harboring KRAS mutant. These data indicate a synthetic lethal effect against cells carrying mutant KRAS, which could have therapeutic implications given the paucity of KRAS-specific chemotherapeutic strategies. Antioxid. Redox Signal. 24, 781-794.

  8. Genotyping of K-ras codons 12 and 13 mutations in colorectal cancer by capillary electrophoresis.

    PubMed

    Chen, Yen-Ling; Chang, Ya-Sian; Chang, Jan-Gowth; Wu, Shou-Mei

    2009-06-26

    Point mutations of the K-ras gene located in codons 12 and 13 cause poor responses to the anti-epidermal growth factor receptor (anti-EGFR) therapy of colorectal cancer (CRC) patients. Besides, mutations of K-ras gene have also been proven to play an important role in human tumor progression. We established a simple and effective capillary electrophoresis (CE) method for simultaneous point mutation detection in codons 12 and 13 of K-ras gene. We combined one universal fluorescence-based nonhuman-sequence primer and two fragment-oriented primers in one tube, and performed this two-in-one polymerase chain reaction (PCR). PCR fragments included wild type and seven point mutations at codons 12 and 13 of K-ras gene. The amplicons were analyzed by single-strand conformation polymorphism (SSCP)-CE method. The CE analysis was performed by using a 1x Tris-borate-EDTA (TBE) buffer containing 1.5% (w/v) hydroxyethylcellulose (HEC) (MW 250,000) under reverse polarity with 15 degrees C and 30 degrees C. Ninety colorectal cancer patients were blindly genotyped using this developed method. The results showed good agreement with those of DNA sequencing method. The SSCP-CE was feasible for mutation screening of K-ras gene in populations.

  9. Rapid and accurate detection of KRAS mutations in colorectal cancers using the isothermal-based optical sensor for companion diagnostics

    PubMed Central

    Koo, Bonhan; Lee, Tae Yoon; Lee, Jeong Hoon; Shin, Yong; Lim, Seok-Byung

    2017-01-01

    Although KRAS mutational status testing is becoming a companion diagnostic tool for managing patients with colorectal cancer (CRC), there are still several difficulties when analyzing KRAS mutations using the existing assays, particularly with regard to low sensitivity, its time-consuming, and the need for large instruments. We developed a rapid, sensitive, and specific mutation detection assay based on the bio-photonic sensor termed ISAD (isothermal solid-phase amplification/detection), and used it to analyze KRAS gene mutations in human clinical samples. To validate the ISAD-KRAS assay for use in clinical diagnostics, we examined for hotspot KRAS mutations (codon 12 and codon 13) in 70 CRC specimens using PCR and direct sequencing methods. In a serial dilution study, ISAD-KRAS could detect mutations in a sample containing only 1% of the mutant allele in a mixture of wild-type DNA, whereas both PCR and direct sequencing methods could detect mutations in a sample containing approximately 30% of mutant cells. The results of the ISAD-KRAS assay from 70 clinical samples matched those from PCR and direct sequencing, except in 5 cases, wherein ISAD-KRAS could detect mutations that were not detected by PCR and direct sequencing. We also found that the sensitivity and specificity of ISAD-KRAS were 100% within 30 min. The ISAD-KRAS assay provides a rapid, highly sensitive, and label-free method for KRAS mutation testing, and can serve as a robust and near patient testing approach for the rapid detection of patients most likely to respond to anti-EGFR drugs. PMID:29137388

  10. Acquired drug resistance conferred by a KRAS gene mutation following the administration of cetuximab: a case report

    PubMed Central

    2013-01-01

    Background Although a number of studies have reported acquired drug resistance due to administration of epidermal growth factor receptor antibody inhibitors, the underlying causes of this phenomenon remain unclear. Case presentation Here we report a case of a 75-year-old man with liver metastasis at 3 years after a successful transverse colectomy to treat KRAS wild-type colorectal cancer. While initial administration of epidermal growth factor receptor inhibitors proved effective, continued use of the same treatment resulted in new peritoneal seeding. An acquired KRAS mutation was found in a resected tissue specimen from one such area. This mutation, possibly caused by administration of epidermal growth factor receptor inhibitors, appears to have conferred drug resistance. Conclusion The present findings suggest that administration of epidermal growth factor receptor inhibitors results in an acquired KRAS mutation that confers drug resistance. PMID:24304820

  11. Extreme assay sensitivity in molecular diagnostics further unveils intratumour heterogeneity in metastatic colorectal cancer as well as artifactual low-frequency mutations in the KRAS gene

    PubMed Central

    Mariani, Sara; Bertero, Luca; Osella-Abate, Simona; Di Bello, Cristiana; Francia di Celle, Paola; Coppola, Vittoria; Sapino, Anna; Cassoni, Paola; Marchiò, Caterina

    2017-01-01

    Background: Gene mutations in the RAS family rule out metastatic colorectal carcinomas (mCRCs) from anti-EGFR therapies. Methods: We report a retrospective analysis by Sequenom Massarray and fast COLD-PCR followed by Sanger sequencing on 240 mCRCs. Results: By Sequenom, KRAS and NRAS exons 2-3-4 were mutated in 52.9% (127/240) of tumours, while BRAF codon 600 mutations reached 5% (12/240). Fast COLD-PCR found extra mutations at KRAS exon 2 in 15/166 (9%) of samples, previously diagnosed by Sequenom as wild-type or mutated at RAS (exons 3-4) or BRAF genes. After UDG digestion results were reproduced in 2/12 analysable subclonally mutated samples leading to a frequency of true subclonal KRAS mutations of 1.2% (2.1% of the previous Sequenom wild-type subgroup). In 10 out of 12 samples, the subclonal KRAS mutations disappeared (9 out of 12) or turned to a different sequence variant (1 out of 12). Conclusions: mCRC can harbour coexisting multiple gene mutations. High sensitivity assays allow the detection of a small subset of patients harbouring true subclonal KRAS mutations. However, DNA changes with mutant allele frequencies <3% detected in formalin-fixed paraffin-embedded samples may be artifactual in a non-negligible fraction of cases. UDG pre-treatment of DNA is mandatory to identify true DNA changes in archival samples and avoid misinterpretation due to artifacts. PMID:28618430

  12. Hybridization-Induced Aggregation Technology for Practical Clinical Testing: KRAS Mutation Detection in Lung and Colorectal Tumors.

    PubMed

    Sloane, Hillary S; Landers, James P; Kelly, Kimberly A

    2016-07-01

    KRAS mutations have emerged as powerful predictors of response to targeted therapies in the treatment of lung and colorectal cancers; thus, prospective KRAS genotyping is essential for appropriate treatment stratification. Conventional mutation testing technologies are not ideal for routine clinical screening, as they often involve complex, time-consuming processes and/or costly instrumentation. In response, we recently introduced a unique analytical strategy for revealing KRAS mutations, based on the allele-specific hybridization-induced aggregation (HIA) of oligonucleotide probe-conjugated microbeads. Using simple, inexpensive instrumentation, this approach allows for the detection of any common KRAS mutation in <10 minutes after PCR. Here, we evaluate the clinical utility of the HIA method for mutation detection (HIAMD). In the analysis of 20 lung and colon tumor pathology specimens, we observed a 100% correlation between the KRAS mutation statuses determined by HIAMD and sequencing. In addition, we were able to detect KRAS mutations in a background of 75% wild-type DNA-a finding consistent with that reported for sequencing. With this, we show that HIAMD allows for the rapid and cost-effective detection of KRAS mutations, without compromising analytical performance. These results indicate the validity of HIAMD as a mutation-testing technology suitable for practical clinical testing. Further expansion of this platform may involve the detection of mutations in other key oncogenic pathways. Copyright © 2016 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  13. KRAS Mutation Status and Clinical Outcome of Preoperative Chemoradiation With Cetuximab in Locally Advanced Rectal Cancer: A Pooled Analysis of 2 Phase II Trials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Sun Young; Shim, Eun Kyung; Yeo, Hyun Yang

    2013-01-01

    Purpose: Cetuximab-containing chemotherapy is known to be effective for KRAS wild-type metastatic colorectal cancer; however, it is not clear whether cetuximab-based preoperative chemoradiation confers an additional benefit compared with chemoradiation without cetuximab in patients with locally advanced rectal cancer. Methods and Materials: We analyzed EGFR, KRAS, BRAF, and PIK3CA mutation status with direct sequencing and epidermal growth factor receptor (EGFR) and Phosphatase and tensin homolog (PTEN) expression status with immunohistochemistry in tumor samples of 82 patients with locally advanced rectal cancer who were enrolled in the IRIX trial (preoperative chemoradiation with irinotecan and capecitabine; n=44) or the ERBIRIX trial (preoperativemore » chemoradiation with irinotecan and capecitabine plus cetuximab; n=38). Both trials were similarly designed except for the administration of cetuximab; radiation therapy was administered at a dose of 50.4 Gy/28 fractions and irinotecan and capecitabine were given at doses of 40 mg/m{sup 2} weekly and 1650 mg/m{sup 2}/day, respectively, for 5 days per week. In the ERBIRIX trial, cetuximab was additionally given with a loading dose of 400 mg/m{sup 2} on 1 week before radiation, and 250 mg/m{sup 2} weekly thereafter. Results: Baseline characteristics before chemoradiation were similar between the 2 trial cohorts. A KRAS mutation in codon 12, 13, and 61 was noted in 15 (34%) patients in the IRIX cohort and 5 (13%) in the ERBIRIX cohort (P=.028). Among 62 KRAS wild-type cancer patients, major pathologic response rate, disease-free survival and pathologic stage did not differ significantly between the 2 cohorts. No mutations were detected in BRAF exon 11 and 15, PIK3CA exon 9 and 20, or EGFR exon 18-24 in any of the 82 patients, and PTEN and EGFR expression were not predictive of clinical outcome. Conclusions: In patients with KRAS wild-type locally advanced rectal cancer, the addition of cetuximab to the

  14. Significance of KRAS, NRAS, BRAF and PIK3CA mutations in metastatic colorectal cancer patients receiving Bevacizumab: a single institution experience

    PubMed Central

    Baltruškevičienė, Edita; Mickys, Ugnius; Žvirblis, Tadas; Stulpinas, Rokas; Pipirienė Želvienė, Teresė; Aleknavičius, Eduardas

    2016-01-01

    Background. KRAS mutation is an important predictive and prognostic factor for patients receiving anti-EGFR therapy. An expanded KRAS, NRAS, BRAF, PIK3CA mutation analysis provides additional prognostic information, but its role in predicting bevacizumab efficacy is unclear. The aim of our study was to evaluate the incidence of KRAS, NRAS, BRAF and PIK3CA mutations in metastatic colorectal cancer patients receiving first line oxaliplatin based chemotherapy with or without bevacizumab and to evaluate their prognostic and predictive significance. Methods. 55 patients with the first-time diagnosed CRC receiving FOLFOX ± bevacizumab were involved in the study. Tumour blocks were tested for KRAS mutations in exons 2, 3 and 4, NRAS mutations in exons 2, 3 and 4, BRAF mutation in exon 15 and PIK3CA mutations in exons 9 and 20. The association between mutations and clinico-pathological factors, treatment outcomes and survival was analyzed. Results. KRAS mutations were detected in 67.3% of the patients, BRAF in 1.8%, PIK3CA in 5.5% and there were no NRAS mutations. A significant association between the high CA 19–9 level and KRAS mutation was detected (mean CA 19–9 levels were 276 and 87 kIU/l, respectively, p = 0.019). There was a significantly higher response rate in the KRAS, NRAS, BRAF and PIK3CA wild type cohort receiving bevacizumab compared to any gene mutant type (100 and 60%, respectively, p = 0.030). The univariate Cox regression analysis did not confirm KRAS and other tested mutations as prognostic factors for PFS or OS. Conclusions. Our study revealed higher KRAS and lower NRAS, BRAF and PIK3CA mutation rates in the Lithuanian population than those reported in the literature. KRAS mutation was associated with the high CA 19–9 level and mucinous histology type, but did not show any predictive or prognostic significance. The expanded KRAS, NRAS, BRAF and PIK3CA mutation analysis provided additional significant predictive information. PMID:28356789

  15. Mutations in both KRAS and BRAF may contribute to the methylator phenotype in colon cancer

    PubMed Central

    Nagasaka, Takeshi; Koi, Minoru; Kloor, Matthias; Gebert, Johannes; Vilkin, Alex; Nishida, Naoshi; Shin, Sung Kwan; Sasamoto, Hiromi; Tanaka, Noriaki; Matsubara, Nagahide; Boland, C. Richard; Goel, Ajay

    2008-01-01

    Background Colorectal cancers (CRCs) with the CpG island methylator phenotype (CIMP) often associate with epigenetic silencing of hMLH1 and an activating mutation in the BRAF gene. However, the current CIMP criteria are ambiguous, and often result in an underestimation of CIMP frequencies in CRCs. Since BRAF and KRAS belong to same signaling pathway, we hypothesized that not only mutations in BRAF, but mutant KRAS, may also associate with CIMP in CRC. Methods We determined the methylation status of a panel of 14 markers (7 canonical CIMP-related loci, and 7 new loci), MSI status, and BRAF/KRAS mutations in a cohort of 487 colorectal tissues that included both sporadic and Lynch syndrome patients. Results Methylation analysis of seven CIMP-related markers revealed that the mean number of methylated loci was highest in BRAF mutated CRCs [3.6], versus KRAS-mutated [1.2; P<0.0001] or BRAF/KRAS wild-type tumors [0.7; P<0.0001]. However, analyses with seven additional markers showed that the mean number of methylated loci in BRAF mutant tumors [4.4] was the same as in KRAS mutant CRCs [4.3; P=0.8610]. Although sporadic MSI-H tumors had the most average number of methylated markers [8.4], surprisingly Lynch syndrome CRCs also demonstrated frequent methylation [5.1]. Conclusions CIMP in CRC may result from activating mutations in either BRAF or KRAS, and the inclusion of additional methylation markers that correlate with mutant KRAS may help clarify CIMP in future studies. Additionally, aberrant DNA methylation is a common event not only in sporadic CRC, but also in Lynch syndrome CRCs. PMID:18435933

  16. KRAS, NRAS and BRAF mutations in Greek and Romanian patients with colorectal cancer: a cohort study

    PubMed Central

    Negru, Serban; Papadopoulou, Eirini; Apessos, Angela; Stanculeanu, Dana Lucia; Ciuleanu, Eliade; Volovat, Constantin; Croitoru, Adina; Kakolyris, Stylianos; Aravantinos, Gerasimos; Ziras, Nikolaos; Athanasiadis, Elias; Touroutoglou, Nikolaos; Pavlidis, Nikolaos; Kalofonos, Haralabos P; Nasioulas, George

    2014-01-01

    Objectives Treatment decision-making in colorectal cancer is often guided by tumour tissue molecular analysis. The aim of this study was the development and validation of a high-resolution melting (HRM) method for the detection of KRAS, NRAS and BRAF mutations in Greek and Romanian patients with colorectal cancer and determination of the frequency of these mutations in the respective populations. Setting Diagnostic molecular laboratory located in Athens, Greece. Participants 2425 patients with colorectal cancer participated in the study. Primary and secondary outcome measures 2071 patients with colorectal cancer (1699 of Greek and 372 of Romanian origin) were analysed for KRAS exon 2 mutations. In addition, 354 tumours from consecutive patients (196 Greek and 161 Romanian) were subjected to full KRAS (exons 2, 3 and 4), NRAS (exons 2, 3 and 4) and BRAF (exon 15) analysis. KRAS, NRAS and BRAF mutation detection was performed by a newly designed HRM analysis protocol, followed by Sanger sequencing. Results KRAS exon 2 mutations (codons 12/13) were detected in 702 of the 1699 Greek patients with colorectal carcinoma analysed (41.3%) and in 39.2% (146/372) of the Romanian patients. Among the 354 patients who were subjected to full KRAS, NRAS and BRAF analysis, 40.96% had KRAS exon 2 mutations (codons 12/13). Among the KRAS exon 2 wild-type patients 15.31% harboured additional RAS mutations and 12.44% BRAF mutations. The newly designed HRM method used showed a higher sensitivity compared with the sequencing method. Conclusions The HRM method developed was shown to be a reliable method for KRAS, NRAS and BRAF mutation detection. Furthermore, no difference in the mutation frequency of KRAS, NRAS and BRAF was observed between Greek and Romanian patients with colorectal cancer. PMID:24859998

  17. Toll-like receptor 3 as an immunotherapeutic target for KRAS mutated colorectal cancer

    PubMed Central

    Maitra, Radhashree; Augustine, Titto; Dayan, Yitzchak; Chandy, Carol; Coffey, Matthew; Goel, Sanjay

    2017-01-01

    New therapeutic interventions are essential for improved management of patients with metastatic colorectal cancer (mCRC). This is especially critical for those patients whose tumors harbor a mutation in the KRAS oncogene (40-45% of all patients). This patient cohort is excluded from receiving anti-EGFR monoclonal antibodies that have added a significant therapeutic benefit for KRAS wild type CRC patients. Reovirus, a double stranded (ds) RNA virus is in clinical development for patients with chemotherapy refractory KRAS mutated tumors. Toll Like Receptor (TLR) 3, a member of the toll like receptor family of the host innate immune system is the pattern recognition motif for dsRNA pathogens. Using TLR3 expressing commercial HEK-Blue™-hTLR3 cells we confirm that TLR3 is the host pattern recognition motif responsible for the detection of reovirus. Further, our investigation with KRAS mutated HCT116 cell line showed that effective expression of host TLR3 dampens the infection potential of reovirus by mounting a robust innate immune response. Down regulation of TLR3 expression with siRNA improves the anticancer activity of reovirus. In vivo experiments using human CRC cells derived xenografts in athymic mice further demonstrate the beneficial effects of TLR3 knock down by improving tumor response rates to reovirus. Strategies to mitigate the TLR3 response pathway can be utilized as a tool towards improved reovirus efficacy to specifically target the dissemination of KRAS mutated CRC. PMID:28422714

  18. Simultaneous identification of 36 mutations in KRAS codons 61and 146, BRAF, NRAS, and PIK3CA in a single reaction by multiplex assay kit

    PubMed Central

    2013-01-01

    Background Retrospective analyses in the West suggest that mutations in KRAS codons 61 and 146, BRAF, NRAS, and PIK3CA are negative predictive factors for cetuximab treatment in colorectal cancer patients. We developed a novel multiplex kit detecting 36 mutations in KRAS codons 61 and 146, BRAF, NRAS, and PIK3CA using Luminex (xMAP) assay in a single reaction. Methods Tumor samples and clinical data from Asian colorectal cancer patients treated with cetuximab were collected. We investigated KRAS, BRAF, NRAS, and PIK3CA mutations using both the multiplex kit and direct sequencing methods, and evaluated the concordance between the 2 methods. Objective response, progression-free survival (PFS), and overall survival (OS) were also evaluated according to mutational status. Results In total, 82 of 83 samples (78 surgically resected specimens and 5 biopsy specimens) were analyzed using both methods. All multiplex assays were performed using 50 ng of template DNA. The concordance rate between the methods was 100%. Overall, 49 (59.8%) patients had all wild-type tumors, 21 (25.6%) had tumors harboring KRAS codon 12 or 13 mutations, and 12 (14.6%) had tumors harboring KRAS codon 61, KRAS codon 146, BRAF, NRAS, or PIK3CA mutations. The response rates in these patient groups were 38.8%, 4.8%, and 0%, respectively. Median PFS in these groups was 6.1 months (95% confidence interval (CI): 3.1–9.2), 2.7 months (1.2–4.2), and 1.6 months (1.5–1.7); median OS was 13.8 months (9.2–18.4), 8.2 months (5.7–10.7), and 6.3 months (1.3–11.3), respectively. Statistically significant differences in both PFS and OS were found between patients with all wild-type tumors and those with KRAS codon 61, KRAS codon 146, BRAF, NRAS, or PIK3CA mutations (PFS: 95% CI, 0.11–0.44; P < 0.0001; OS: 95% CI, 0.15–0.61; P < 0.0001). Conclusions Our newly developed multiplex kit is practical and feasible for investigation of a range of sample types. Moreover, mutations in KRAS

  19. Phenformin enhances the therapeutic effect of selumetinib in KRAS-mutant non-small cell lung cancer irrespective of LKB1 status

    PubMed Central

    Zhang, Jun; Nannapaneni, Sreenivas; Wang, Dongsheng; Liu, Fakeng; Wang, Xu; Jin, Rui; Liu, Xiuju; Rahman, Mohammad Aminur; Peng, Xianghong; Qian, Guoqing; Chen, Zhuo G.; Wong, Kwok-Kin; Khuri, Fadlo R.; Zhou, Wei; Shin, Dong M.

    2017-01-01

    MEK inhibition is potentially valuable in targeting KRAS-mutant non-small cell lung cancer (NSCLC). Here, we analyzed whether concomitant LKB1 mutation alters sensitivity to the MEK inhibitor selumetinib, and whether the metabolism drug phenformin can enhance the therapeutic effect of selumetinib in isogenic cell lines with different LKB1 status. Isogenic pairs of KRAS-mutant NSCLC cell lines A549, H460 and H157, each with wild-type and null LKB1, as well as genetically engineered mouse-derived cell lines 634 (krasG12D/wt/p53-/-/lkb1wt/wt) and t2 (krasG12D/wt/p53-/-/lkb1-/-) were used in vitro to analyze the activities of selumetinib, phenformin and their combination. Synergy was measured and potential mechanisms investigated. The in vitro findings were then confirmed in vivo using xenograft models. The re-expression of wild type LKB1 increased phospho-ERK level, suggesting that restored dependency on MEK->ERK->MAPK signaling might have contributed to the enhanced sensitivity to selumetinib. In contrast, the loss of LKB1 sensitized cells to phenformin. At certain combination ratios, phenformin and selumetinib showed synergistic activity regardless of LKB1 status. Their combination reduced phospho-ERK and S6 levels and induced potent apoptosis, but was likely through different mechanisms in cells with different LKB1 status. Finally, in xenograft models bearing isogenic A549 cells, we confirmed that loss of LKB1 confers resistance to selumetinib, and phenformin significantly enhances the therapeutic effect of selumetinib. Irrespective of LKB1 status, phenformin may enhance the anti-tumor effect of selumetinib in KRAS-mutant NSCLC. The dual targeting of MEK and cancer metabolism may provide a useful strategy to treat this subset of lung cancer. PMID:28938614

  20. Phenformin enhances the therapeutic effect of selumetinib in KRAS-mutant non-small cell lung cancer irrespective of LKB1 status.

    PubMed

    Zhang, Jun; Nannapaneni, Sreenivas; Wang, Dongsheng; Liu, Fakeng; Wang, Xu; Jin, Rui; Liu, Xiuju; Rahman, Mohammad Aminur; Peng, Xianghong; Qian, Guoqing; Chen, Zhuo G; Wong, Kwok-Kin; Khuri, Fadlo R; Zhou, Wei; Shin, Dong M

    2017-08-29

    MEK inhibition is potentially valuable in targeting KRAS-mutant non-small cell lung cancer (NSCLC). Here, we analyzed whether concomitant LKB1 mutation alters sensitivity to the MEK inhibitor selumetinib, and whether the metabolism drug phenformin can enhance the therapeutic effect of selumetinib in isogenic cell lines with different LKB1 status. Isogenic pairs of KRAS-mutant NSCLC cell lines A549, H460 and H157, each with wild-type and null LKB1, as well as genetically engineered mouse-derived cell lines 634 ( kras G12D/wt /p53 -/- /lkb1 wt/wt ) and t2 ( kras G12D/wt /p53 -/- / lkb1 -/- ) were used in vitro to analyze the activities of selumetinib, phenformin and their combination. Synergy was measured and potential mechanisms investigated. The in vitro findings were then confirmed in vivo using xenograft models. The re-expression of wild type LKB1 increased phospho-ERK level, suggesting that restored dependency on MEK->ERK->MAPK signaling might have contributed to the enhanced sensitivity to selumetinib. In contrast, the loss of LKB1 sensitized cells to phenformin. At certain combination ratios, phenformin and selumetinib showed synergistic activity regardless of LKB1 status. Their combination reduced phospho-ERK and S6 levels and induced potent apoptosis, but was likely through different mechanisms in cells with different LKB1 status. Finally, in xenograft models bearing isogenic A549 cells, we confirmed that loss of LKB1 confers resistance to selumetinib, and phenformin significantly enhances the therapeutic effect of selumetinib. Irrespective of LKB1 status, phenformin may enhance the anti-tumor effect of selumetinib in KRAS-mutant NSCLC. The dual targeting of MEK and cancer metabolism may provide a useful strategy to treat this subset of lung cancer.

  1. Effectors of epidermal growth factor receptor pathway: the genetic profiling ofKRAS, BRAF, PIK3CA, NRAS mutations in colorectal cancer characteristics and personalized medicine.

    PubMed

    Shen, Yinchen; Wang, Jianfei; Han, Xiaohong; Yang, Hongying; Wang, Shuai; Lin, Dongmei; Shi, Yuankai

    2013-01-01

    Mutations in KRAS oncogene are recognized biomarkers that predict lack of response to anti- epidermal growth factor receptor (EGFR) antibody therapies. However, some patients with KRAS wild-type tumors still do not respond, so other downstream mutations in BRAF, PIK3CA and NRAS should be investigated. Herein we used direct sequencing to analyze mutation status for 676 patients in KRAS (codons 12, 13 and 61), BRAF (exon 11 and exon 15), PIK3CA (exon 9 and exon 20) and NRAS (codons12, 13 and 61). Clinicopathological characteristics associations were analyzed together with overall survival (OS) of metastatic colorectal cancer patients (mCRC). We found 35.9% (242/674) tumors harbored a KRAS mutation, 6.96% (47/675) harbored a BRAF mutation, 9.9% (62/625) harbored a PIK3CA mutation and 4.19% (26/621) harbored a NRAS mutation. KRAS mutation coexisted with BRAF, PIK3CA and NRAS mutation, PIK3CA exon9 mutation appeared more frequently in KRAS mutant tumors (P = 0.027) while NRAS mutation almost existed in KRAS wild-types (P<0.001). Female patients and older group harbored a higher KRAS mutation (P = 0.018 and P = 0.031, respectively); BRAF (V600E) mutation showed a higher frequency in colon cancer and poor differentiation tumors (P = 0.020 and P = 0.030, respectively); proximal tumors appeared a higher PIK3CA mutation (P<0.001) and distant metastatic tumors shared a higher NRAS mutation (P = 0.010). However, in this study no significant result was found between OS and gene mutation in mCRC group. To our knowledge, the first large-scale retrospective study on comprehensive genetic profile which associated with anti-EGFR MoAbs treatment selection in East Asian CRC population, appeared a specific genotype distribution picture, and the results provided a better understanding between clinicopathological characteristics and gene mutations in CRC patients.

  2. Primary tumor location predicts poor clinical outcome with cetuximab in RAS wild-type metastatic colorectal cancer.

    PubMed

    Kim, Dalyong; Kim, Sun Young; Lee, Ji Sung; Hong, Yong Sang; Kim, Jeong Eun; Kim, Kyu-Pyo; Kim, Jihun; Jang, Se Jin; Yoon, Young-Kwang; Kim, Tae Won

    2017-11-23

    In metastatic colorectal cancer, the location of the primary tumor has been suggested to have biological significance. In this study, we investigated whether primary tumor location affects cetuximab efficacy in patients with RAS wild-type metastatic colorectal cancer. Genotyping by the SequenomMassARRAY technology platform (OncoMap) targeting KRAS, NRAS, PIK3CA, and BRAF was performed in tumors from 307 patients who had been given cetuximab as salvage treatment. Tumors with mutated RAS (KRAS or NRAS; n = 127) and those with multiple primary location (n = 10) were excluded. Right colon cancer was defined as a tumor located in the proximal part to splenic flexure. A total of 170 patients were included in the study (right versus left, 23 and 147, respectively). Patients with right colon cancer showed more mutated BRAF (39.1% vs. 5.4%), mutated PIK3CA (13% vs. 1.4%), poorly differentiated tumor (17.4% vs. 3.4%), and peritoneal involvement (26.1% vs. 8.8%) than those with left colon and rectal cancer. Right colon cancer showed poorer progression-free survival (2.0 vs.5.0 months, P = 0.002) and overall survival (4.1 months and 13.0 months, P < 0.001) than the left colon and rectal cancer. By multivariable analysis, BRAF mutation, right colon primary, poorly differentiated histology, and peritoneal involvement were associated with risk of death. In RAS wild-type colon cancer treated with cetuximab as salvage treatment, right colon primary was associated with poorer survival outcomes than left colon and rectal cancer.

  3. Alterations of LKB1 and KRAS and risk of brain metastasis: comprehensive characterization by mutation analysis, copy number, and gene expression in non-small-cell lung carcinoma.

    PubMed

    Zhao, Ni; Wilkerson, Matthew D; Shah, Usman; Yin, Xiaoying; Wang, Anyou; Hayward, Michele C; Roberts, Patrick; Lee, Carrie B; Parsons, Alden M; Thorne, Leigh B; Haithcock, Benjamin E; Grilley-Olson, Juneko E; Stinchcombe, Thomas E; Funkhouser, William K; Wong, Kwok-Kin; Sharpless, Norman E; Hayes, D Neil

    2014-11-01

    Brain metastases are one of the most malignant complications of lung cancer and constitute a significant cause of cancer related morbidity and mortality worldwide. Recent years of investigation suggested a role of LKB1 in NSCLC development and progression, in synergy with KRAS alteration. In this study, we systematically analyzed how LKB1 and KRAS alteration, measured by mutation, gene expression (GE) and copy number (CN), are associated with brain metastasis in NSCLC. Patients treated at University of North Carolina Hospital from 1990 to 2009 with NSCLC provided frozen, surgically extracted tumors for analysis. GE was measured using Agilent 44,000 custom-designed arrays, CN was assessed by Affymetrix GeneChip Human Mapping 250K Sty Array or the Genome-Wide Human SNP Array 6.0 and gene mutation was detected using ABI sequencing. Integrated analysis was conducted to assess the relationship between these genetic markers and brain metastasis. A model was proposed for brain metastasis prediction using these genetic measurements. 17 of the 174 patients developed brain metastasis. LKB1 wild type tumors had significantly higher LKB1 CN (p<0.001) and GE (p=0.002) than the LKB1 mutant group. KRAS wild type tumors had significantly lower KRAS GE (p<0.001) and lower CN, although the latter failed to be significant (p=0.295). Lower LKB1 CN (p=0.039) and KRAS mutation (p=0.007) were significantly associated with more brain metastasis. The predictive model based on nodal (N) stage, patient age, LKB1 CN and KRAS mutation had a good prediction accuracy, with area under the ROC curve of 0.832 (p<0.001). LKB1 CN in combination with KRAS mutation predicted brain metastasis in NSCLC. Copyright © 2014 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  4. [Detection of KRAS mutation in colorectal cancer patients' cfDNA with droplet digital PCR].

    PubMed

    Luo, Yuwen; Li, Yao

    2018-03-25

    This study aims to develop a new method for the detection of KRAS mutations related to colorectal cancer in cfDNA, and to evaluate the sensitivity and accuracy of the detection. We designed a method of cfDNA based KRAS detection by droplets digital PCR (ddPCR). The theoretical performance of the method is evaluated by reference standard and compared to the ARMS PCR method. Two methods, ddPCR and qPCR, were successfully established to detect KRAS wild type and 7 mutants. Both methods were validated using plasmid standards and actual samples. The results were evaluated by false positive rate, linearity, and limit of detection. Finally, 52 plasma cfDNA samples from patients and 20 samples from healthy people were tested, the clinical sensitivity is 97.64%, clinical specificity is 81.43%. ddPCR method shows higher performance than qPCR. The LOD of ddPCR method reached single digits of cfDNA copies, it can detect as low as 0.01% to 0.04% mutation abundance.

  5. Computational Analysis of KRAS Mutations: Implications for Different Effects on the KRAS p.G12D and p.G13D Mutations

    PubMed Central

    Liu, Yen-Yi; Hwang, Jenn-Kang; Barrio, Maria Jesus; Rodrigo, Maximiliano; Garcia-Toro, Enrique; Herreros-Villanueva, Marta

    2013-01-01

    Background The issue of whether patients diagnosed with metastatic colorectal cancer who harbor KRAS codon 13 mutations could benefit from the addition of anti-epidermal growth factor receptor therapy remains under debate. The aim of the current study was to perform computational analysis to investigate the structural implications of the underlying mutations caused by c.38G>A (p.G13D) on protein conformation. Methods Molecular dynamics (MD) simulations were performed to understand the plausible structural and dynamical implications caused by c.35G>A (p.G12D) and c.38G>A (p.G13D). The potential of mean force (PMF) simulations were carried out to determine the free energy profiles of the binding processes of GTP interacting with wild-type (WT) KRAS and its mutants (MT). Results Using MD simulations, we observed that the root mean square deviation (RMSD) increased as a function of time for the MT c.35G>A (p.G12D) and MT c.38G>A (p.G13D) when compared with the WT. We also observed that the GTP-binding pocket in the c.35G>A (p.G12D) mutant is more open than that of the WT and the c.38G>A (p.G13D) proteins. Intriguingly, the analysis of atomic fluctuations and free energy profiles revealed that the mutation of c.35G>A (p.G12D) may induce additional fluctuations in the sensitive sites (P-loop, switch I and II regions). Such fluctuations may promote instability in these protein regions and hamper GTP binding. Conclusions Taken together with the results obtained from MD and PMF simulations, the present findings implicate fluctuations at the sensitive sites (P-loop, switch I and II regions). Our findings revealed that KRAS mutations in codon 13 have similar behavior as KRAS WT. To gain a better insight into why patients with metastatic colorectal cancer (mCRC) and the KRAS c.38G>A (p.G13D) mutation appear to benefit from anti-EGFR therapy, the role of the KRAS c.38G>A (p.G13D) mutation in mCRC needs to be further investigated. PMID:23437064

  6. Spectrum of somatic EGFR, KRAS, BRAF, PTEN mutations and TTF-1 expression in Brazilian lung cancer patients.

    PubMed

    Carneiro, Juliana G; Couto, Patricia G; Bastos-Rodrigues, Luciana; Bicalho, Maria Aparecida C; Vidigal, Paula V; Vilhena, Alyne; Amaral, Nilson F; Bale, Allen E; Friedman, Eitan; De Marco, Luiz

    2014-01-01

    Lung cancer is the leading global cause of cancer-related mortality. Inter-individual variability in treatment response and prognosis has been associated with genetic polymorphisms in specific genes: EGFR, KRAS, BRAF, PTEN and TTF-1. Somatic mutations in EGFR and KRAS genes are reported at rates of 15-40% in non-small cell lung cancer (NSCLC) in ethnically diverse populations. BRAF and PTEN are commonly mutated genes in various cancer types, including NSCLC, with PTEN mutations exerting an effect on the therapeutic response of EGFR/AKT/PI3K pathway inhibitors. TTF-1 is expressed in approximately 80% of lung adenocarcinomas and its positivity correlates with higher prevalence of EGFR mutation in this cancer type. To determine molecular markers for lung cancer in Brazilian patients, the rate of the predominant EGFR, KRAS, BRAF and PTEN mutations, as well as TTF-1 expression, was assessed in 88 Brazilian NSCLC patients. EGFR exon 19 deletions (del746-750) were detected in 3/88 (3·4%) patients. Activating KRAS mutations in codons 12 and 61 were noted in five (5·7%) and two (2·3%) patients, respectively. None of the common somatic mutations were detected in either the BRAF or PTEN genes. TTF-1 was overexpressed in 40·7% of squamous-cell carcinoma (SCC). Our findings add to a growing body of data that highlights the genetic heterogeneity of the abnormal EGFR pathway in lung cancer among ethnically diverse populations.

  7. Cis-acting elements in its 3′ UTR mediate post-transcriptional regulation of KRAS

    PubMed Central

    Kim, Minlee; Kogan, Nicole; Slack, Frank J.

    2016-01-01

    Multiple RNA-binding proteins and non-coding RNAs, such as microRNAs (miRNAs), are involved in post-transcriptional gene regulation through recognition motifs in the 3′ untranslated region (UTR) of their target genes. The KRAS gene encodes a key signaling protein, and its messenger RNA (mRNA) contains an exceptionally long 3′ UTR; this suggests that it may be subject to a highly complex set of regulatory processes. However, 3′ UTR-dependent regulation of KRAS expression has not been explored in detail. Using extensive deletion and mutational analyses combined with luciferase reporter assays, we have identified inhibitory and stabilizing cis-acting regions within the KRAS 3′ UTR that may interact with miRNAs and RNA-binding proteins, such as HuR. Particularly, we have identified an AU-rich 49-nt fragment in the KRAS 3′ UTR that is required for KRAS 3′ UTR reporter repression. This element contains a miR-185 complementary element, and we show that overexpression of miR-185 represses endogenous KRAS mRNA and protein in vitro. In addition, we have identified another 49-nt fragment that is required to promote KRAS 3′ UTR reporter expression. These findings indicate that multiple cis-regulatory motifs in the 3′ UTR of KRAS finely modulate its expression, and sequence alterations within a binding motif may disrupt the precise functions of trans-regulatory factors, potentially leading to aberrant KRAS expression. PMID:26930719

  8. The Frequency and Type of K-RAS Mutations in Mexican Patients With Colorectal Cancer: A National Study.

    PubMed

    Cárdenas-Ramos, Susana G; Alcázar-González, Gregorio; Reyes-Cortés, Luisa M; Torres-Grimaldo, Abdiel A; Calderón-Garcidueñas, Ana L; Morales-Casas, José; Flores-Sánchez, Patricia; De León-Escobedo, Raúl; Gómez-Díaz, Antonio; Moreno-Bringas, Carmen; Sánchez-Guillén, Jorge; Ramos-Salazar, Pedro; González-de León, César; Barrera-Saldaña, Hugo A

    2017-06-01

    Current metastatic colorectal cancer (mCRC) therapy uses monoclonal antibodies against the epidermal growth factor receptor. This treatment is only useful in the absence of K-RAS gene mutations; therefore the study of such mutations is part of a personalized treatment. The aim of this work is to determine the frequency and type of the most common K-RAS mutations in Mexican patients with metastatic disease by nucleotide sequencing. We studied 888 patients with mCRC from different regions of Mexico. The presence of mutations in exon 2, codons 12 and 13, of the K-RAS gene was determined by nucleotide sequencing. Patients exhibited K-RAS gene mutations in 35% (310/888) of cases. Mutation frequency of codons 12 and 13 was 71% (221/310) and 29% (89/310), respectively. The most common mutation (45.7%) in codon 12 was c.35G>A (p.G12D), whereas the one in codon 13 was c.38G>A (p.G13D) (78.7%). Given the frequency of K-RAS mutations in Mexicans, making a genetic study before deciding to treat mCRC patients with monoclonal antibodies is indispensable.

  9. The genetics and biology of KRAS in lung cancer

    PubMed Central

    Westcott, Peter M. K.; To, Minh D.

    2013-01-01

    Mutational activation of KRAS is a common oncogenic event in lung cancer and other epithelial cancer types. Efforts to develop therapies that counteract the oncogenic effects of mutant KRAS have been largely unsuccessful, and cancers driven by mutant KRAS remain among the most refractory to available treatments. Studies undertaken over the past decades have produced a wealth of information regarding the clinical relevance of KRAS mutations in lung cancer. Mutant Kras-driven mouse models of cancer, together with cellular and molecular studies, have provided a deeper appreciation for the complex functions of KRAS in tumorigenesis. However, a much more thorough understanding of these complexities is needed before clinically effective therapies targeting mutant KRAS-driven cancers can be achieved. PMID:22776234

  10. Nras and Kras mutation in Japanese lung cancer patients: Genotyping analysis using LightCycler.

    PubMed

    Sasaki, Hidefumi; Okuda, Katsuhiro; Kawano, Osamu; Endo, Katsuhiko; Yukiue, Haruhiro; Yokoyama, Tomoki; Yano, Motoki; Fujii, Yoshitaka

    2007-09-01

    Activating mutations of Ras gene families have been found in a variety of human malignancies, including lung cancer, suggesting their dominant role in tumorigenesis. Many studies have showed that the Kras gene is activated by point mutations in approximately 15-20% of non-small cell lung cancers (NSCLCs), however, there are only a few reports on Nras mutations in NSCLC. We have genotyped Nras mutation status (n=195) and Kras mutation status (n=190) in surgically treated lung adenocarcinoma cases. The presence or absence of Nras and Kras mutations was analyzed by real-time quantitative polymerase chain reaction (PCR) with mutation-specific sensor and anchor probes. EGFR mutation status at kinase domain has already been reported. Nras mutation was found in 1 of 195 patients. This mutation was a G-to-T transversion, involving the substitution of the normal glycine (GGT) with cystein (TGT) and thought to be a somatic mutation. The patient was male and a smoker. Kras mutant patients (11.1%; 21/190) had a significantly worse prognosis than wild-type patients (p=0.0013). Eighty-two EGFR mutations at kinase domain had exclusively Nras or Kras mutations. Although Nras gene mutation might be one of the mechanisms of oncogenesis of lung adenocarcinoma, this was a very rare event. Further studies are needed to confirm the mechanisms of Nras mutations for the sensitivity of molecular target therapy for lung cancer.

  11. Recovery of deficient homologous recombination in Brca2-depleted mouse cells by wild-type Rad51 expression.

    PubMed

    Lee, Shauna A; Roques, Céline; Magwood, Alissa C; Masson, Jean-Yves; Baker, Mark D

    2009-02-01

    The BRCA2 tumor suppressor is important in maintaining genomic stability. BRCA2 is proposed to control the availability, cellular localization and DNA binding activity of the central homologous recombination protein, RAD51, with loss of BRCA2 resulting in defective homologous recombination. Nevertheless, the roles of BRCA2 in regulating RAD51 and how other proteins implicated in RAD51 regulation, such as RAD52 and RAD54 function relative to BRCA2 is not known. In this study, we tested whether defective homologous recombination in Brca2-depleted mouse hybridoma cells could be rectified by expression of mouse Rad51 or the Rad51-interacting mouse proteins, Rad52 and Rad54. In the Brca2-depleted cells, defective homologous recombination can be restored by over-expression of wild-type mouse Rad51, but not mouse Rad52 or Rad54. Correction of the homologous recombination defect requires Rad51 ATPase activity. A sizeable fraction ( approximately 50%) of over-expressed wild-type Rad51 is nuclear localized. The restoration of homologous recombination in the presence of a low (i.e., non-functional) level of Brca2 by wild-type Rad51 over-expression is unexpected. We suggest that Rad51 may access the nuclear compartment in a Brca2-independent manner and when Rad51 is over-expressed, the normal requirement for Brca2 control over Rad51 function in homologous recombination is dispensable. Our studies support loss of Rad51 function as a critical underlying factor in the homologous recombination defect in the Brca2-depleted cells.

  12. Cetuximab treatment for metastatic colorectal cancer with KRAS p.G13D mutations improves progression-free survival

    PubMed Central

    OSUMI, HIROKI; SHINOZAKI, EIJI; OSAKO, MASAHIKO; KAWAZOE, YOSHIMASA; OBA, MASARU; MISAKA, TAKAHARU; GOTO, TAKASHI; KAMO, HITOMI; SUENAGA, MITSUKUNI; KUMEKAWA, YOSUKE; OGURA, MARIKO; OZAKA, MASATO; MATSUSAKA, SATOSHI; CHIN, KEISHO; HATAKE, KIYOHIKO; MIZUNUMA, NOBUYUKI

    2015-01-01

    A number of previous studies have reported that 30–50% of patients with colorectal cancer (CRC) harbor Kirsten rat sarcoma viral oncogene homolog (KRAS) mutations, which is a major predictive biomarker of resistance to epidermal growth factor (EGFR)-targeted therapy. Treatment with an anti-EGFR inhibitor is recommended for patients with KRAS wild-type metastatic colorectal cancer (mCRC). A recent retrospective study of cetuximab reported that patients with KRAS p.G13D mutations had better outcomes compared with those with other mutations. The aim of this retrospective study was to assess the prevalence of KRAS p.G13D mutations and evaluate the effectiveness of cetuximab in mCRC patients with KRAS p.G13D or other KRAS mutations. We reviewed the clinical records of 98 mCRC patients with KRAS mutations who were treated between August, 2004 and January, 2011 in four hospitals located in Tokyo and Kyushu Island. We also investigated KRAS mutation subtypes and patient characteristics. In the patients who received cetuximab, univariate and multivariate analyses were performed to assess the effect of KRAS p.G13D mutations on progression-free survival (PFS) and overall survival (OS). Of the 98 patients, 23 (23.5%) had KRAS p.G13D-mutated tumors, whereas 75 (76.5%) had tumors harboring other mutations. Of the 31 patients who received cetuximab, 9 (29.0%) had KRAS p.G13D mutations and 22 (71.0%) had other mutations. There were no significant differences in age, gender, primary site, pathological type, history of chemotherapy, or the combined use of irinotecan between either of the patient subgroups. The univariate analysis revealed no significant difference in PFS or OS between the patients with KRAS p.G13D mutations and those with other mutations (median PFS, 4.5 vs. 2.8 months, respectively; P=0.65; and median OS, 15.3 vs. 8.9 months, respectively; P=0.51). However, the multivariate analysis revealed a trend toward better PFS among patients harboring p.G13D mutations (PFS

  13. The Structural Basis of Oncogenic Mutations G12, G13 and Q61 in Small GTPase K-Ras4B

    NASA Astrophysics Data System (ADS)

    Lu, Shaoyong; Jang, Hyunbum; Nussinov, Ruth; Zhang, Jian

    2016-02-01

    Ras mediates cell proliferation, survival and differentiation. Mutations in K-Ras4B are predominant at residues G12, G13 and Q61. Even though all impair GAP-assisted GTP → GDP hydrolysis, the mutation frequencies of K-Ras4B in human cancers vary. Here we aim to figure out their mechanisms and differential oncogenicity. In total, we performed 6.4 μs molecular dynamics simulations on the wild-type K-Ras4B (K-Ras4BWT-GTP/GDP) catalytic domain, the K-Ras4BWT-GTP-GAP complex, and the mutants (K-Ras4BG12C/G12D/G12V-GTP/GDP, K-Ras4BG13D-GTP/GDP, K-Ras4BQ61H-GTP/GDP) and their complexes with GAP. In addition, we simulated ‘exchanged’ nucleotide states. These comprehensive simulations reveal that in solution K-Ras4BWT-GTP exists in two, active and inactive, conformations. Oncogenic mutations differentially elicit an inactive-to-active conformational transition in K-Ras4B-GTP; in K-Ras4BG12C/G12D-GDP they expose the bound nucleotide which facilitates the GDP-to-GTP exchange. These mechanisms may help elucidate the differential mutational statistics in K-Ras4B-driven cancers. Exchanged nucleotide simulations reveal that the conformational transition is more accessible in the GTP-to-GDP than in the GDP-to-GTP exchange. Importantly, GAP not only donates its R789 arginine finger, but stabilizes the catalytically-competent conformation and pre-organizes catalytic residue Q61; mutations disturb the R789/Q61 organization, impairing GAP-mediated GTP hydrolysis. Together, our simulations help provide a mechanistic explanation of key mutational events in one of the most oncogenic proteins in cancer.

  14. BRAF/KRAS gene sequencing of sebaceous neoplasms after mismatch repair protein analysis.

    PubMed

    Cornejo, Kristine M; Hutchinson, Lloyd; Deng, April; Tomaszewicz, Keith; Welch, Matthew; Lyle, Stephen; Dresser, Karen; Cosar, Ediz F

    2014-06-01

    Sebaceous neoplasms are cutaneous markers for the autosomal-dominant Muir-Torre syndrome (MTS). This phenotypic variant of Lynch syndrome (LS) is caused by germline mutations in DNA mismatch repair (MMR) genes. Microsatellite instability or loss of protein expression suggests a mutation or promoter hypermethylation in 1 of the MMR genes. BRAF gene sequencing may help to distinguish between patients with sporadic and LS-associated colorectal carcinomas with loss of MLH1 expression. LS-associated carcinomas are virtually negative for BRAF mutations, but a subset harbors KRAS mutations. The aim of our study was to test sebaceous neoplasms for V600E BRAF or KRAS mutations to determine if these mutations are associated with somatic or germline MMR defects, analogous to colorectal carcinomas. Over a 4-year period, 32 cases comprising 21 sebaceous adenomas, 3 sebaceomas, and 8 sebaceous carcinomas with sufficient material for testing were collected. MMR immunohistochemistry showed that 7 neoplasms had combined loss of MLH1-PMS2, 16 neoplasms had combined loss of MSH2-MSH6, 2 neoplasms had solitary loss of MSH6, and 7 sebaceous neoplasms had intact protein expression. BRAF/KRAS testing revealed all sebaceous neoplasms contained a wild-type BRAF gene. Two (15%) of 13 patients with MTS were found to harbor a KRAS mutation and loss of MLH1 expression. We conclude that a V600E BRAF mutation may not be helpful in distinguishing sporadic from MTS-associated sebaceous neoplasms. Further studies are needed to determine if KRAS mutations are restricted to patients with MTS or are also present in sporadic sebaceous neoplasms. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. KRAS Mouse Models

    PubMed Central

    O’Hagan, Rónán C.; Heyer, Joerg

    2011-01-01

    KRAS is a potent oncogene and is mutated in about 30% of all human cancers. However, the biological context of KRAS-dependent oncogenesis is poorly understood. Genetically engineered mouse models of cancer provide invaluable tools to study the oncogenic process, and insights from KRAS-driven models have significantly increased our understanding of the genetic, cellular, and tissue contexts in which KRAS is competent for oncogenesis. Moreover, variation among tumors arising in mouse models can provide insight into the mechanisms underlying response or resistance to therapy in KRAS-dependent cancers. Hence, it is essential that models of KRAS-driven cancers accurately reflect the genetics of human tumors and recapitulate the complex tumor-stromal intercommunication that is manifest in human cancers. Here, we highlight the progress made in modeling KRAS-dependent cancers and the impact that these models have had on our understanding of cancer biology. In particular, the development of models that recapitulate the complex biology of human cancers enables translational insights into mechanisms of therapeutic intervention in KRAS-dependent cancers. PMID:21779503

  16. mTOR inhibition specifically sensitizes colorectal cancers with KRAS or BRAF mutations to BCL-2/BCL-XL inhibition by suppressing MCL-1.

    PubMed

    Faber, Anthony C; Coffee, Erin M; Costa, Carlotta; Dastur, Anahita; Ebi, Hiromichi; Hata, Aaron N; Yeo, Alan T; Edelman, Elena J; Song, Youngchul; Tam, Ah Ting; Boisvert, Jessica L; Milano, Randy J; Roper, Jatin; Kodack, David P; Jain, Rakesh K; Corcoran, Ryan B; Rivera, Miguel N; Ramaswamy, Sridhar; Hung, Kenneth E; Benes, Cyril H; Engelman, Jeffrey A

    2014-01-01

    Colorectal cancers harboring KRAS or BRAF mutations are refractory to current targeted therapies. Using data from a high-throughput drug screen, we have developed a novel therapeutic strategy that targets the apoptotic machinery using the BCL-2 family inhibitor ABT-263 (navitoclax) in combination with a TORC1/2 inhibitor, AZD8055. This combination leads to efficient apoptosis specifically in KRAS- and BRAF-mutant but not wild-type (WT) colorectal cancer cells. This specific susceptibility results from TORC1/2 inhibition leading to suppression of MCL-1 expression in mutant, but not WT, colorectal cancers, leading to abrogation of BIM/MCL-1 complexes. This combination strategy leads to tumor regressions in both KRAS-mutant colorectal cancer xenograft and genetically engineered mouse models of colorectal cancer, but not in the corresponding KRAS-WT colorectal cancer models. These data suggest that the combination of BCL-2/BCL-XL inhibitors with TORC1/2 inhibitors constitutes a promising targeted therapy strategy to treat these recalcitrant cancers.

  17. mTOR Inhibition Specifically Sensitizes Colorectal Cancers with KRAS or BRAF Mutations to BCL-2/BCL-XL Inhibition by Suppressing MCL-1

    PubMed Central

    Faber, Anthony C.; Coffee, Erin M.; Costa, Carlotta; Dastur, Anahita; Ebi, Hiromichi; Hata, Aaron N.; Yeo, Alan T.; Edelman, Elena J.; Song, Youngchul; Tam, Ah Ting; Boisvert, Jessica L.; Milano, Randy J.; Roper, Jatin; Kodack, David P.; Jain, Rakesh K.; Corcoran, Ryan B.; Rivera, Miguel N.; Ramaswamy, Sridhar; Hung, Kenneth E.; Benes, Cyril H.; Engelman, Jeffrey A.

    2014-01-01

    Colorectal cancers (CRCs) harboring KRAS or BRAF mutations are refractory to current targeted therapies. Using data from a high-throughput drug screen, we have developed a novel therapeutic strategy that combines targeting of the apoptotic machinery using the BCL-2 family inhibitor ABT-263 (navitoclax) in combination with a TORC1/2 inhibitor, AZD8055. This combination leads to efficient apoptosis specifically in KRAS mutant (MT) and BRAF MT but not wild-type (WT) CRC cells. This specific susceptibility results from TORC1/2 inhibition leading to suppression of MCL-1 expression in mutant, but not WT CRCs, leading to abrogation of BIM/MCL-1 complexes. This combination strategy leads to tumor regressions in both KRAS MT colorectal cancer xenograft and genetically-engineered mouse models of CRC, but not in the corresponding KRAS WT CRC models. These data suggest that the combination of BCL-2/XL inhibitors with TORC1/2 inhibitors constitutes a promising targeted therapy strategy to treat these recalcitrant cancers. PMID:24163374

  18. K-ras p21 expression and activity in lung and lung tumors.

    PubMed

    Ramakrishna, G; Sithanandam, G; Cheng, R Y; Fornwald, L W; Smith, G T; Diwan, B A; Anderson, L M

    2000-12-01

    Although K-ras is mutated in many human and mouse lung adenocarcinomas, the function of K-ras p21 in lung is not known. We sought evidence for the prevalent hypothesis that K-ras p21 activates raf, which in turn passes the signal through the extracellular signal regulated kinases (Erks) to stimulate cell division, and that this pathway is upregulated when K-ras is mutated. Results from both mouse lung tumors and immortalized cultured E10 and C10 lung type II cells failed to substantiate this hypothesis. Lung tumors did not have more total K-ras p21 or K-ras p21 GTP than normal lung tissue, nor were high levels of these proteins found in tumors with mutant K-ras. Activated K-ras p21-GTP levels did not correlate with proliferating cell nuclear antigen. Special features of tumors with mutant K-ras included small size of carcinomas compared with carcinomas lacking this mutation, and correlation of proliferating cell nuclear antigen with raf-1. In nontransformed type II cells in culture, both total and activated K-ras p21 increased markedly at confluence but not after serum stimulation, whereas both Erk1/2 and the protein kinase Akt were rapidly activated by the serum treatment. Reverse transcriptase-polymerase chain reaction (RT-PCR) assays of K-ras mRNA indicated an increase in confluent and especially in postconfluent cells. Together the findings indicate that normal K-ras p21 activity is associated with growth arrest of lung type II cells, and that the exact contribution of mutated K-ras p21 to tumor development remains to be discovered.

  19. The proto-oncogene KRAS and BRAF profiles and some clinical characteristics in colorectal cancer in the Turkish population.

    PubMed

    Ozen, Filiz; Ozdemir, Semra; Zemheri, Ebru; Hacimuto, Gizem; Silan, Fatma; Ozdemir, Ozturk

    2013-02-01

    The aim of the current study was to investigate the prevalence and predictive significance of the KRAS and BRAF mutations in Turkish patients with colorectal cancer (CRC). Totally, 53 fresh tumoral tissue specimens were investigated in patients with CRC. All specimens were obtained during routine surgery of patients who were histopathologically diagnosed and genotyped for common KRAS and BRAF point mutations. After DNA extraction, the target mutations were analyzed using the AutoGenomics INFINITI(®) assay, and some samples were confirmed by quantitative real-time polymerase chain reaction fluorescence melting curve analyses. KRAS mutations were found in 26 (49.05%) CRC samples. Twenty-seven samples (50.95%) had wild-type profiles for KRAS codon 12, 13, and 61 in the current cohort. In 17 (65.38%) samples, codon 12; in 7 (26.93%) samples, codon 13; and in 2 (7.69%) samples, codon 61 were found to be mutated, particularly in grade 2 of tumoral tissues. No point mutation was detected in BRAF codon Val600Glu for the studied CRC patients. Our study, based on a representative collection of human CRC tumors, indicates that KRAS gene mutations were detected in 49.05% of the samples, and the most frequent mutation was in the G12D codon. Results also showed that codons 12 and 13 of KRAS are relatively frequently without BRAF mutation in a CRC cohort from the Turkish population.

  20. A mutation spectrum that includes GNAS, KRAS and TP53 may be shared by mucinous neoplasms of the appendix.

    PubMed

    Hara, Kieko; Saito, Tsuyoshi; Hayashi, Takuo; Yimit, Alkam; Takahashi, Michiko; Mitani, Keiko; Takahashi, Makoto; Yao, Takashi

    2015-09-01

    Appendiceal mucinous tumors (AMTs) are classified as low-grade appendiceal mucinous neoplasms (LAMNs) or mucinous adenocarcinomas (MACs), although their carcinogenesis is not well understood. As somatic activating mutations of GNAS are considered to be characteristic of LAMNs while TP53 mutations have been shown to be specific to MACs, MACs are unlikely to result from transformation of LAMNs. However, emerging evidence also shows the presence of GNAS mutations in MACs. We examined 16 AMTs (11 LAMNs and 5 MACs) for genetic alterations of GNAS, KRAS, BRAF, TP53, CTNNB1, and TERT promoter in order to elucidate the possibility of a shared genetic background in the two tumor types. Extensive histological examination revealed the presence of a low-grade component in all cases of MAC. GNAS mutations were detected in two LAMNs and in one MAC, although the GNAS mutation in this MAC was a nonsense mutation (Q227X) expected not to be activating mutation. TP53 mutations were detected in three LAMNs; they were frequently detected in MACs. KRAS mutations were detected in three LAMNs and three MACs, and CTNNB1 mutations were detected in two LAMNs. KRAS mutation and activating mutation of GNAS occurred exclusively in AMTs. BRAF and TERT mutations were not detected. Overexpression of p53 was observed in only two MACs, and p53 immunostaining clearly discriminated the high-grade lesion from a low-grade component in one. These findings suggest that p53 overexpression plays an important role in the carcinogenesis of AMTs and that, in addition to mutations of GNAS, KRAS and TP53 alterations might be shared by AMTs, thus providing evidence for the possible progression of LAMNs to MAC. Copyright © 2015 Elsevier GmbH. All rights reserved.

  1. Effect of mutant variants of the KRAS gene on PD-L1 expression and on the immune microenvironment and association with clinical outcome in lung adenocarcinoma patients.

    PubMed

    Falk, Alexander T; Yazbeck, Nathalie; Guibert, Nicolas; Chamorey, Emmanuel; Paquet, Agnès; Ribeyre, Lydia; Bence, Coraline; Zahaf, Katia; Leroy, Sylvie; Marquette, Charles-Hugo; Cohen, Charlotte; Mograbi, Baharia; Mazières, Julien; Hofman, Véronique; Brest, Patrick; Hofman, Paul; Ilié, Marius

    2018-07-01

    The effect of anti-PD-1/PD-L1 inhibitors on lung adenocarcinomas (LADCs) with KRAS mutations is debatable. We examined the association between specific mutant KRAS proteins and the immune infiltrates with the outcome of patients with LADCs. In 219 LADCs harboring either wild-type (WT) or mutated KRAS gene, we quantified the density of several immune markers by immunohistochemistry followed by automated digital image analysis. Data were correlated to clinicopathological parameters and outcome of patients. Tumors harboring mutant KRAS-G12 V had a significantly higher PD-L1 expression compared to other tumors (p = 0.044), while mutant KRAS-G12D tumors showed an increase in the density of CD66b+ cells (p = 0.001). High PD-L1 expression in tumor cells was associated to improved overall survival (OS) in KRAS mutant patients (p = 0.012), but not in the WT population (p = 0.385), whereas increased PD-L1 expression in immune cells correlated to poor OS of KRAS-WT patients (p = 0.025), with no difference in patients with KRAS mutations. KRAS mutational status can affect the immune microenvironment and survival of LADC patients in a heterogeneous way, implying that specific mutant KRAS variants expressed by the tumor should be considered when stratifying patients for immunotherapy. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Characterization of a sensitive mouse Aβ40 PD biomarker assay for Alzheimer's disease drug development in wild-type mice.

    PubMed

    Lu, Yanmei; Hoyte, Kwame; Montgomery, William H; Luk, Wilman; He, Dongping; Meilandt, William J; Zuchero, Y Joy Yu; Atwal, Jasvinder K; Scearce-Levie, Kimberly; Watts, Ryan J; DeForge, Laura E

    2016-05-01

    Transgenic mice that overexpress human amyloid precursor protein with Swedish or London (APPswe or APPlon) mutations have been widely used for preclinical Alzheimer's disease (AD) drug development. AD patients, however, rarely possess these mutations or overexpress APP. We developed a sensitive ELISA that specifically and accurately measures low levels of endogenous Aβ40 in mouse plasma, brain and CSF. In wild-type mice treated with a bispecific anti-TfR/BACE1 antibody, significant Aβ reductions were observed in the periphery and the brain. APPlon transgenic mice showed a slightly less reduction, whereas APPswe mice did not have any decrease. This sensitive and well-characterized mouse Aβ40 assay enables the use of wild-type mice for preclinical PK/PD and efficacy studies of potential AD therapeutics.

  3. [Comparative analysis of real-time quantitative PCR-Sanger sequencing method and TaqMan probe method for detection of KRAS/BRAF mutation in colorectal carcinomas].

    PubMed

    Zhang, Xun; Wang, Yuehua; Gao, Ning; Wang, Jinfen

    2014-02-01

    To compare the application values of real-time quantitative PCR-Sanger sequencing and TaqMan probe method in the detection of KRAS and BRAF mutations, and to correlate KRAS/BRAF mutations with the clinicopathological characteristics in colorectal carcinomas. Genomic DNA of the tumor cells was extracted from formalin fixed paraffin embedded (FFPE) tissue samples of 344 colorectal carcinomas by microdissection. Real-time quantitative PCR-Sanger sequencing and TaqMan probe method were performed to detect the KRAS/BRAF mutations. The frequency and types of KRAS/BRAF mutations, clinicopathological characteristics and survival time were analyzed. KRAS mutations were detected in 39.8% (137/344) and 38.7% (133/344) of 344 colorectal carcinomas by using real-time quantitative PCR-Sanger sequencing and TaqMan probe method, respectively. BRAF mutation was detected in 4.7% (16/344) and 4.1% (14/344), respectively. There was no significant correlation between the two methods. The frequency of the KRAS mutation in female was higher than that in male (P < 0.05). The frequency of the BRAF mutation in colon was higher than that in rectum. The frequency of the BRAF mutation in stage III-IV cases was higher than that in stageI-II cases. The frequency of the BRAF mutation in signet ring cell carcinoma was higher than that in mucinous carcinoma and nonspecific adenocarcinoma had the lowest mutation rate. The frequency of the BRAF mutation in grade III cases was higher than that in grade II cases (P < 0.05). The overall concordance for the two methods of KRAS/BRAF mutation detection was 98.8% (kappa = 0.976). There was statistic significance between BRAF and KRAS mutations for the survival time of colorectal carcinomas (P = 0.039). There were no statistic significance between BRAF mutation type and BRAF/KRAS wild type (P = 0.058). (1) Compared with real-time quantitative PCR-Sanger sequencing, TaqMan probe method is better with regard to handling time, efficiency, repeatability, cost

  4. EGFR and KRAS mutation status in non-small-cell lung cancer occurring in HIV-infected patients.

    PubMed

    Créquit, Perrine; Ruppert, Anne-Marie; Rozensztajn, Nathalie; Gounant, Valérie; Vieira, T; Poulot, Virginie; Antoine, Martine; Chouaid, Christos; Wislez, Marie; Cadranel, Jacques; Lavole, Armelle

    2016-06-01

    Non-small-cell lung cancer (NSCLC) is the most common non-acquired immune deficiency syndrome-related malignancy responsible for death. Mutational status is crucial for choosing treatment of advanced NSCLC, yet no data is available on the frequency of epidermal growth factor receptor (EGFR) and Kirsten ras (KRAS) mutations and their impact on NSCLC in human immunodeficiency virus (HIV)-infected patients (HIV-NSCLC). All consecutive HIV-NSCLC patients diagnosed between June 1996 and August 2013 at two Paris university hospitals were reviewed, with tumor samples analyzed for EGFR and KRAS mutational status. Overall, 63 tumor samples were analyzed out of 73 HIV-NSCLC cases, with 63% of advanced NSCLC. There were 60 non-squamous and nine squamous cell carcinomas, with EGFR and KRAS mutations identified in two (3.3%) and seven (11.5%) tumors, respectively. The proportion of KRAS mutations was 29% if solely the more sensitive molecular techniques were considered. The two patients with advanced adenocarcinoma harboring EGFR mutations exhibited lasting partial response to EGFR-tyrosine kinase inhibitors. Overall survival for patients with advanced NSCLC were >30 months for those with EGFR mutations, <3 months for KRAS mutations (n=2), and the median was 9 months [4.1-14.3] for wild-type (n=34). In multivariate analysis, KRAS mutation and CD4<200 cells/μL were associated with poor prognosis (hazard ratio (HR): 24 [4.1-140.2], p=0.0004; HR: 3.1 [1.3-7.5], p=0.01, respectively). EGFR mutation must be investigated in HIV-NSCLC cases due to its predictive and prognostic impact, whereas KRAS mutation is of poor prognostic value. Clinicians should search for drugs dedicated to this target population. Copyright © 2016. Published by Elsevier Ireland Ltd.

  5. Comparative analysis of KRAS codon 12, 13, 18, 61, and 117 mutations using human MCF10A isogenic cell lines

    PubMed Central

    Stolze, Britta; Reinhart, Stefanie; Bulllinger, Lars; Fröhling, Stefan; Scholl, Claudia

    2015-01-01

    KRAS mutations occur in one third of human cancers and cluster in several hotspots, with codons 12 and 13 being most commonly affected. It has been suggested that the position and type of amino acid exchange influence the transforming capacity of mutant KRAS proteins. We used MCF10A human mammary epithelial cells to establish isogenic cell lines that express different cancer-associated KRAS mutations (G12C, G12D, G12V, G13C, G13D, A18D, Q61H, K117N) at physiological or elevated levels, and investigated the biochemical and functional consequences of the different variants. The overall effects of low-expressing mutants were moderate compared to overexpressed variants, but allowed delineation of biological functions that were related to specific alleles rather than KRAS expression level. None of the mutations induced morphological changes, migratory abilities, or increased phosphorylation of ERK, PDK1, and AKT. KRAS-G12D, G12V, G13D, and K117N mediated EGF-independent proliferation, whereas anchorage-independent growth was primarily induced by K117N and Q61H. Both codon 13 mutations were associated with increased EGFR expression. Finally, global gene expression analysis of MCF10A-G13D versus MCF10A-G12D revealed distinct transcriptional changes. Together, we describe a useful resource for investigating the function of multiple KRAS mutations and provide insights into the differential effects of these variants in MCF10A cells. PMID:25705018

  6. Comparison of clinical outcome after first-line platinum-based chemotherapy in different types of KRAS mutated advanced non-small-cell lung cancer.

    PubMed

    Mellema, Wouter W; Masen-Poos, Lucie; Smit, Egbert F; Hendriks, Lizza E L; Aerts, Joachim G; Termeer, Arien; Goosens, Martijn J; Smit, Hans J M; van den Heuvel, Michel M; van der Wekken, Anthonie J; Herder, Gerarda J M; Krouwels, Frans H; Stigt, Jos A; van den Borne, Ben E E M; Haitjema, Tjeerd J; Staal-Van den Brekel, Agnes J; van Heemst, Robbert C; Pouw, Ellen; Dingemans, Anne-Marie C

    2015-11-01

    As suggested by in-vitro data, we hypothesize that subtypes of KRAS mutated non-small cell lung cancer (NSCLC) respond differently to chemotherapy regimens. Patients with advanced NSCLC and known KRAS mutation, treated with first-line platinum-based chemotherapy, were retrieved from hospital databases. to investigate overall response rate (ORR), progression free survival (PFS) and overall survival (OS) between different types of platinum-based chemotherapy per type of KRAS mutation. 464 patients from 17 hospitals, treated between 2000 and 2013, were included. The majority of patients had stage IV disease (93%), had a history of smoking (98%) and known with an adenocarcinoma (91%). Most common types of KRAS mutation were G12C (46%), G12V (20%) and G12D (10%). Platinum was combined with pemetrexed (n=334), taxanes (n=68) or gemcitabine (n=62). Patients treated with taxanes had a significant improved ORR (50%) compared to pemetrexed (21%) or gemcitabine (25%; p<0.01). Patients treated with bevacizumab in addition to taxanes (n=38) had the highest ORR (62%). The PFS was significantly improved in patients treated with taxanes compared to pemetrexed (HR=0.72, p=0.02), but not OS (HR=0.87, p=0.41). In patients with G12V, significantly improved ORR (p<0.01) was observed for taxanes, but not PFS or OS. Patients with G12C or G12D mutation had comparable ORR, PFS and OS in all treatment groups. KRAS mutated NSCLC patients treated with taxane-based chemotherapy had best ORR. Response to chemotherapy regimens was different in types of KRAS mutation. Especially patients with G12V had better response to taxane treatment. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  7. A miR-29b Byproduct Sequence Exhibits Potent Tumor-Suppressive Activities via Inhibition of NF-κB Signaling in KRAS-Mutant Colon Cancer Cells.

    PubMed

    Inoue, Akira; Mizushima, Tsunekazu; Wu, Xin; Okuzaki, Daisuke; Kambara, Nanami; Ishikawa, Sho; Wang, Jiaqi; Qian, Yamin; Hirose, Haruka; Yokoyama, Yuhki; Ikeshima, Ryo; Hiraki, Masayuki; Miyoshi, Norikatsu; Takahashi, Hidekazu; Haraguchi, Naotsugu; Hata, Taishi; Matsuda, Chu; Doki, Yuichiro; Mori, Masaki; Yamamoto, Hirofumi

    2018-05-01

    We previously demonstrated that miR-29b-3p is a hopeful miRNA-based therapy against colorectal cancer. In this study, we aimed to clarify a value of miR-29b-1-5p as a next-generation treatment, especially for KRAS -mutant colorectal cancer. RT-PCR assay showed that the expression of miR-29b-3p was high, and its partner strand, miR-29b-1-5p, level was only negligible in clinical colorectal cancer samples. Mimic-miR-29b-1-5p significantly inhibited proliferation of KRAS -mutant colorectal cancer cell lines DLD1 and SW480 and KRAS wild-type HT29 cells. Proliferative activity was further examined by either miR-29b-1-5p strand or its opposite complementary sequence because miR-29b-1-5p is a passenger miRNA and may have no physiologic function. We found that completely opposite complementary strand to miR-29b-1-5p, but not miR-29b-1-5p, possessed a potent antitumor effect and named this byproduct miRNA sequence "MIRTX." MIRTX directly targeted the 3'-UTR of CXCR2 and PIK3R1 mRNA and suppressed the NF-κB signaling pathway in KRAS -mutated colorectal cancer cells. MIRTX induced apoptosis in DLD1 with downregulation of antiapoptotic BCL2, BCL-xL, and MCL1 and upregulation of cleaved caspase-3 and cleaved PARP. In mouse xenograft models, systemic administration of MIRTX using a super carbonate apatite as a delivery vehicle significantly inhibited tumor growth of DLD1 and HT29 cells without any particular toxicities. In conclusion, these findings indicate that inhibition of NF-κB signaling by this novel miRNA-based therapeutic could be a promising treatment against refractory KRAS -mutant colorectal cancer and KRAS wild-type colorectal cancer. Mol Cancer Ther; 17(5); 977-87. ©2018 AACR . ©2018 American Association for Cancer Research.

  8. External Quality Assessment for KRAS Testing Is Needed: Setup of a European Program and Report of the First Joined Regional Quality Assessment Rounds

    PubMed Central

    Bellon, Ellen; Ligtenberg, Marjolijn J.L.; Tejpar, Sabine; Cox, Karen; de Hertogh, Gert; de Stricker, Karin; Edsjö, Anders; Gorgoulis, Vassilis; Höfler, Gerald; Jung, Andreas; Kotsinas, Athanassios; Laurent-Puig, Pierre; López-Ríos, Fernando; Hansen, Tine Plato; Rouleau, Etienne; Vandenberghe, Peter; van Krieken, Johan J.M.

    2011-01-01

    The use of epidermal growth factor receptor–targeting antibodies in metastatic colorectal cancer has been restricted to patients with wild-type KRAS tumors by the European Medicines Agency since 2008, based on data showing a lack of efficacy and potential harm in patients with mutant KRAS tumors. In an effort to ensure optimal, uniform, and reliable community-based KRAS testing throughout Europe, a KRAS external quality assessment (EQA) scheme was set up. The first large assessment round included 59 laboratories from eight different European countries. For each country, one regional scheme organizer prepared and distributed the samples for the participants of their own country. The samples included unstained sections of 10 invasive colorectal carcinomas with known KRAS mutation status. The samples were centrally validated by one of two reference laboratories. The laboratories were allowed to use their own preferred method for histological evaluation, DNA isolation, and mutation analysis. In this study, we analyze the setup of the KRAS scheme. We analyzed the advantages and disadvantages of the regional scheme organization by analyzing the outcome of genotyping results, analysis of tumor percentage, and written reports. We conclude that only 70% of laboratories correctly identified the KRAS mutational status in all samples. Both the false-positive and false-negative results observed negatively affect patient care. Reports of the KRAS test results often lacked essential information. We aim to further expand this program to more laboratories to provide a robust estimate of the quality of KRAS testing in Europe, and provide the basis for remedial measures and harmonization. PMID:21441573

  9. External quality assessment for KRAS testing is needed: setup of a European program and report of the first joined regional quality assessment rounds.

    PubMed

    Bellon, Ellen; Ligtenberg, Marjolijn J L; Tejpar, Sabine; Cox, Karen; de Hertogh, Gert; de Stricker, Karin; Edsjö, Anders; Gorgoulis, Vassilis; Höfler, Gerald; Jung, Andreas; Kotsinas, Athanassios; Laurent-Puig, Pierre; López-Ríos, Fernando; Hansen, Tine Plato; Rouleau, Etienne; Vandenberghe, Peter; van Krieken, Johan J M; Dequeker, Elisabeth

    2011-01-01

    The use of epidermal growth factor receptor-targeting antibodies in metastatic colorectal cancer has been restricted to patients with wild-type KRAS tumors by the European Medicines Agency since 2008, based on data showing a lack of efficacy and potential harm in patients with mutant KRAS tumors. In an effort to ensure optimal, uniform, and reliable community-based KRAS testing throughout Europe, a KRAS external quality assessment (EQA) scheme was set up. The first large assessment round included 59 laboratories from eight different European countries. For each country, one regional scheme organizer prepared and distributed the samples for the participants of their own country. The samples included unstained sections of 10 invasive colorectal carcinomas with known KRAS mutation status. The samples were centrally validated by one of two reference laboratories. The laboratories were allowed to use their own preferred method for histological evaluation, DNA isolation, and mutation analysis. In this study, we analyze the setup of the KRAS scheme. We analyzed the advantages and disadvantages of the regional scheme organization by analyzing the outcome of genotyping results, analysis of tumor percentage, and written reports. We conclude that only 70% of laboratories correctly identified the KRAS mutational status in all samples. Both the false-positive and false-negative results observed negatively affect patient care. Reports of the KRAS test results often lacked essential information. We aim to further expand this program to more laboratories to provide a robust estimate of the quality of KRAS testing in Europe, and provide the basis for remedial measures and harmonization.

  10. Clinical and economic aspects of KRAS mutational status as predictor for epidermal growth factor receptor inhibitor therapy in metastatic colorectal cancer patients.

    PubMed

    Königsberg, Robert; Hulla, Wolfgang; Klimpfinger, Martin; Reiner-Concin, Angelika; Steininger, Tanja; Büchler, Wilfried; Terkola, Robert; Dittrich, Christian

    2011-01-01

    Treatment of metastasized colorectal cancer (mCRC) patients with anti-epidermal growth factor receptor (EGFR)-directed monoclonal antibodies is driven by the results of the KRAS mutational status (wild type [WT]/mutated [MUT]). To find out as to what extent the treatment selection based on the KRAS status had impact on overall costs, a retrospective analysis was performed. Of 73 mCRC patients 31.5% were MUT carriers. Costs of EGFR inhibitor treatment for WT patients were significantly higher compared to those for patients with MUT (p = 0.005). Higher treatment costs in WT carriers reflect a significantly higher number of treatment cycles (p = 0.012) in this cohort of patients. Savings of drug costs minus the costs for the determination of KRAS status accounted for EUR 779.42 (SD ±336.28) per patient per cycle. The routine use of KRAS screening is a cost-effective strategy. Costs of unnecessary monoclonal EGFR inhibitor treatment can be saved in MUT patients. Copyright © 2012 S. Karger AG, Basel.

  11. Molecular Epidemiology of EGFR and KRAS Mutations in 3026 Lung Adenocarcinomas: Higher Susceptibility of Women to Smoking-related KRAS-mutant Cancers

    PubMed Central

    Dogan, Snjezana; Shen, Ronglai; Ang, Daphne C; Johnson, Melissa L; D’Angelo, Sandra P; Paik, Paul K; Brzostowski, Edyta B; Riely, Gregory J; Kris, Mark G; Zakowski, Maureen F; Ladanyi, Marc

    2012-01-01

    Purpose The molecular epidemiology of most EGFR and KRAS mutations in lung cancer remains unclear. Experimental Design We genotyped 3026 lung adenocarcinomas for the major EGFR (exon 19 deletions and L858R) and KRAS (G12, G13) mutations and examined correlations with demographic, clinical and smoking history data. Results EGFR mutations were found in 43% of never smokers (NS) and in 11% of smokers. KRAS mutations occurred in 34% of smokers and in 6% of NS. In patients with smoking histories up to 10 pack-years, EGFR predominated over KRAS. Among former smokers with lung cancer, multivariate analysis showed that, independent of pack-years, increasing smoking-free years raise the likelihood of EGFR mutation. NS were more likely than smokers to have KRAS G>A transition mutation (mostly G12D) (58% vs. 20%, p=0.0001). KRAS G12C, the most common G>T transversion mutation in smokers, was more frequent in women (p=0.007) and these women were younger than men with the same mutation (median 65 vs. 69, p=0.0008) and had smoked less. Conclusions The distinct types of KRAS mutations in smokers vs. NS suggest that most KRAS-mutant lung cancers in NS are not due to secondhand smoke exposure. The higher frequency of KRAS G12C in women, their younger age, and lesser smoking history together support a heightened susceptibility to tobacco carcinogens. PMID:23014527

  12. SNaPshot and StripAssay as Valuable Alternatives to Direct Sequencing for KRAS Mutation Detection in Colon Cancer Routine Diagnostics

    PubMed Central

    Fariña Sarasqueta, Arantza; Moerland, Elna; de Bruyne, Hanneke; de Graaf, Henk; Vrancken, Tamara; van Lijnschoten, Gesina; van den Brule, Adriaan J.C.

    2011-01-01

    Although direct sequencing is the gold standard for KRAS mutation detection in routine diagnostics, it remains laborious, time consuming, and not very sensitive. Our objective was to evaluate SNaPshot and the KRAS StripAssay as alternatives to sequencing for KRAS mutation detection in daily practice. KRAS exon 2–specific PCR followed by sequencing or by a SNaPshot reaction was performed. For the StripAssay, a mutant-enriched PCR was followed by hybridization to KRAS-specific probes bound to a nitrocellulose strip. To test sensitivities, dilution series of mutated DNA in wild-type DNA were made. Additionally, direct sequencing and SNaPshot were evaluated in 296 colon cancer samples. Detection limits of direct sequencing, SNaPshot, and StripAssay were 20%, 10%, and 1% tumor cells, respectively. Direct sequencing and SNaPshot can detect all 12 mutations in KRAS codons 12 and 13, whereas the StripAssay detects 10 of the most frequent ones. Workload and time to results are comparable for SNaPshot and direct sequencing. SNaPshot is flexible and easy to multiplex. The StripAssay is less time consuming for daily laboratory practice. SNaPshot is more flexible and slightly more sensitive than direct sequencing. The clinical evaluation showed comparable performances between direct sequencing and SNaPshot. The StripAssay is rapid and an extremely sensitive assay that could be considered when few tumor cells are available. However, found mutants should be confirmed to avoid risk of false positives. PMID:21354055

  13. HER2 overexpression and amplification as a potential therapeutic target in colorectal cancer: analysis of 3256 patients enrolled in the QUASAR, FOCUS and PICCOLO colorectal cancer trials

    PubMed Central

    Southward, Katie; Chambers, Philip; Cross, Debra; Barrett, Jennifer; Hemmings, Gemma; Taylor, Morag; Wood, Henry; Hutchins, Gordon; Foster, Joseph M; Oumie, Assa; Spink, Karen G; Brown, Sarah R; Jones, Marc; Kerr, David; Handley, Kelly; Gray, Richard; Seymour, Matthew; Quirke, Philip

    2016-01-01

    Abstract HER2 overexpression/amplification is linked to trastuzumab response in breast/gastric cancers. One suggested anti‐EGFR resistance mechanism in colorectal cancer (CRC) is aberrant MEK–AKT pathway activation through HER2 up‐regulation. We assessed HER2‐amplification/overexpression in stage II–III and IV CRC patients, assessing relationships to KRAS/BRAF and outcome. Pathological material was obtained from 1914 patients in the QUASAR stage II–III trial and 1342 patients in stage IV trials (FOCUS and PICCOLO). Tissue microarrays were created for HER2 immunohistochemistry. HER2‐amplification was assessed using FISH and copy number variation. KRAS/BRAF mutation status was assessed by pyrosequencing. Progression‐free survival (PFS) and overall survival (OS) data were obtained for FOCUS/PICCOLO and recurrence and mortality for QUASAR; 29/1342 (2.2%) stage IV and 25/1914 (1.3%) stage II–III tumours showed HER2 protein overexpression. Of the HER2‐overexpressing cases, 27/28 (96.4%) stage IV tumours and 20/24 (83.3%) stage II–III tumours demonstrated HER2 amplification by FISH; 41/47 (87.2%) also showed copy number gains. HER2‐overexpression was associated with KRAS/BRAF wild‐type (WT) status at all stages: in 5.2% WT versus 1.0% mutated tumours (p < 0.0001) in stage IV and 2.1% versus 0.2% in stage II–III tumours (p = 0.01), respectively. HER2 was not associated with OS or PFS. At stage II–III, there was no significant correlation between HER2 overexpression and 5FU/FA response. A higher proportion of HER2‐overexpressing cases experienced recurrence, but the difference was not significant. HER2‐amplification/overexpression is identifiable by immunohistochemistry, occurring infrequently in stage II–III CRC, rising in stage IV and further in KRAS/BRAF WT tumours. The value of HER2‐targeted therapy in patients with HER2‐amplified CRC must be tested in a clinical trial. © 2015 The Authors. Journal of Pathology published by John

  14. KRAS Testing

    PubMed Central

    Shackelford, Rodney E.; Whitling, Nicholas A.; McNab, Patricia; Japa, Shanker

    2012-01-01

    Activating point mutations in codons 12, 13, and 61 of the KRAS proto-oncogene are common in colorectal, non–small cell lung, pancreatic, and thyroid cancers. Constitutively activated KRAS mutations are strongly associated with a resistance to anti–epidermal growth factor receptor (EGFR) therapies, such as panitumumab and cetuximab used for treating metastatic colorectal carcinoma and EGFR tyrosine inhibitors used for advanced non–small cell lung cancers. Since anti-EGFR therapies are costly and may exert deleterious effects on individuals without activating mutations, KRAS mutation testing is recommended prior to the initiation of anti-EGFR therapy for these malignancies. The goal of this review is to summarize the KRAS mutation testing methods. Testing is now routinely requested in the clinical practice to provide data to assign the most appropriate anticancer chemotherapy for each given patient. Review of the most relevant literature was performed. Several areas were considered: ordering of the test, selection of the sample to be tested, and review of the testing methodologies. We found that several different methods are used for clinical KRAS mutation testing. Each of the methodologies is described, and information is provided about their performance, cost, turnaround times, detection limits, sensitivities, and specificities. We also provided “tips” for the appropriate selection and preparation of the sample to be tested. This is an important aspect of KRAS testing for clinical use, as the results of the test will affect clinical decisions with consequences for the patient. PMID:23264846

  15. Targeted overexpression of endothelial nitric oxide synthase in endothelial cells improves cerebrovascular reactivity in Ins2Akita-type-1 diabetic mice.

    PubMed

    Chandra, Saurav B; Mohan, Sumathy; Ford, Bridget M; Huang, Lei; Janardhanan, Preethi; Deo, Kaiwalya S; Cong, Linlin; Muir, Eric R; Duong, Timothy Q

    2016-06-01

    Reduced bioavailability of nitric oxide due to impaired endothelial nitric oxide synthase (eNOS) activity is a leading cause of endothelial dysfunction in diabetes. Enhancing eNOS activity in diabetes is a potential therapeutic target. This study investigated basal cerebral blood flow and cerebrovascular reactivity in wild-type mice, diabetic mice (Ins2(Akita+/-)), nondiabetic eNOS-overexpressing mice (TgeNOS), and the cross of two transgenic mice (TgeNOS-Ins2(Akita+/-)) at six months of age. The cross was aimed at improving eNOS expression in diabetic mice. The major findings were: (i) Body weights of Ins2(Akita+/-) and TgeNOS-Ins2(Akita+/-) were significantly different from wild-type and TgeNOS mice. Blood pressure of TgeNOS mice was lower than wild-type. (ii) Basal cerebral blood flow of the TgeNOS group was significantly higher than cerebral blood flow of the other three groups. (iii) The cerebrovascular reactivity in the Ins2(Akita+/-) mice was significantly lower compared with wild-type, whereas that in the TgeNOS-Ins2(Akita+/-) was significantly higher compared with the Ins2(Akita+/-) and TgeNOS groups. Overexpression of eNOS rescued cerebrovascular dysfunction in diabetic animals, resulting in improved cerebrovascular reactivity. These results underscore the possible role of eNOS in vascular dysfunction in the brain of diabetic mice and support the notion that enhancing eNOS activity in diabetes is a potential therapeutic target. © The Author(s) 2015.

  16. Mutant Kras copy number defines metabolic reprogramming and therapeutic susceptibilities

    PubMed Central

    Kerr, Emma; Gaude, Edoardo; Turrell, Frances; Frezza, Christian; Martins, Carla P

    2016-01-01

    Summary The RAS/MAPK-signalling pathway is frequently deregulated in non-small cell lung cancer (NSCLC), often through KRAS activating mutations1-3. A single endogenous mutant Kras allele is sufficient to promote lung tumour formation in mice but malignant progression requires additional genetic alterations4-7. We recently showed that advanced lung tumours from KrasG12D/+;p53-null mice frequently exhibit KrasG12D allelic enrichment (KrasG12D/Kraswild-type>1)7, implying that mutant Kras copy gains are positively selected during progression. Through a comprehensive analysis of mutant Kras homozygous and heterozygous MEFs and lung cancer cells we now show that these genotypes are phenotypically distinct. In particular, KrasG12D/G12D cells exhibit a glycolytic switch coupled to increased channelling of glucose-derived metabolites into the TCA cycle and glutathione biosynthesis, resulting in enhanced glutathione-mediated detoxification. This metabolic rewiring is recapitulated in mutant KRAS homozygous NSCLC cells and in vivo, in spontaneous advanced murine lung tumours (which display a high frequency of KrasG12D copy gain), but not in the corresponding early tumours (KrasG12D heterozygous). Finally, we demonstrate that mutant Kras copy gain creates unique metabolic dependences that can be exploited to selectively target these aggressive mutant Kras tumours. Our data demonstrate that mutant Kras lung tumours are not a single disease but rather a heterogeneous group comprised of two classes of tumours with distinct metabolic profiles, prognosis and therapeutic susceptibility, which can be discriminated based on their relative mutant allelic content. We also provide the first in vivo evidence of metabolic rewiring during lung cancer malignant progression. PMID:26909577

  17. Mutational analysis of BRAF and KRAS in ovarian serous borderline (atypical proliferative) tumours and associated peritoneal implants

    PubMed Central

    Ardighieri, Laura; Zeppernick, Felix; Hannibal, Charlotte G; Vang, Russell; Cope, Leslie; Junge, Jette; Kjaer, Susanne K; Kurman, Robert J; Shih, Ie-Ming

    2014-01-01

    There is debate as to whether peritoneal implants associated with serous borderline tumours/atypical proliferative serous tumours (SBT/APSTs) of the ovary are derived from the primary ovarian tumour or arise independently in the peritoneum. We analysed 57 SBT/APSTs from 45 patients with advanced-stage disease identified from a nation-wide tumour registry in Denmark. Mutational analysis for hotspots in KRAS and BRAF was successful in 55 APSTs and demonstrated KRAS mutations in 34 (61.8%) and BRAF mutations in eight (14.5%). Mutational analysis was successful in 56 peritoneal implants and revealed KRAS mutations in 34 (60.7%) and BRAF mutations in seven (12.5%). Mutational analysis could not be performed in two primary tumours and in nine implants, either because DNA amplification failed or because there was insufficient tissue for mutational analysis. For these specimens we performed VE1 immunohistochemistry, which was shown to be a specific and sensitive surrogate marker for a V600E BRAF mutation. VE1 staining was positive in one of two APSTs and seven of nine implants. Thus, among 63 implants for which mutation status was known (either by direct mutational analysis or by VE1 immunohistochemistry), 34 (53.9%) had KRAS mutations and 14 (22%) had BRAF mutations, of which identical KRAS mutations were found in 34 (91%) of 37 SBT/APST–implant pairs and identical BRAF mutations in 14 (100%) of 14 SBT/APST–implant pairs. Wild-type KRAS and BRAF (at the loci investigated) were found in 11 (100%) of 11 SBT/APST–implant pairs. Overall concordance of KRAS and BRAF mutations was 95% in 59 of 62 SBT/APST–implant (non-invasive and invasive) pairs (p < 0.00001). This study provides cogent evidence that the vast majority of peritoneal implants, non-invasive and invasive, harbour the identical KRAS or BRAF mutations that are present in the associated SBT/APST, supporting the view that peritoneal implants are derived from the primary ovarian tumour. PMID:24307542

  18. Common and Rare EGFR and KRAS Mutations in a Dutch Non-Small-Cell Lung Cancer Population and Their Clinical Outcome

    PubMed Central

    Kerner, Gerald S. M. A.; Schuuring, Ed; Sietsma, Johanna; Hiltermann, Thijo J. N.; Pieterman, Remge M.; de Leede, Gerard P. J.; van Putten, John W. G.; Liesker, Jeroen; Renkema, Tineke E. J.; van Hengel, Peter; Platteel, Inge; Timens, Wim; Groen, Harry J. M.

    2013-01-01

    Introduction In randomly assigned studies with EGFR TKI only a minor proportion of patients with NSCLC have genetically profiled biopsies. Guidelines provide evidence to perform EGFR and KRAS mutation analysis in non-squamous NSCLC. We explored tumor biopsy quality offered for mutation testing, different mutations distribution, and outcome with EGFR TKI. Patient and Methods Clinical data from 8 regional hospitals were studied for patient and tumor characteristics, treatment and overall survival. Biopsies sent to the central laboratory were evaluated for DNA quality and subsequently analyzed for mutations in exons 18–21 of EGFR and exon 2 of KRAS by bidirectional sequence analysis. Results Tumors from 442 subsequent patients were analyzed. For 74 patients (17%) tumors were unsuitable for mutation analysis. Thirty-eight patients (10.9%) had EGFR mutations with 79% known activating mutations. One hundred eight patients (30%) had functional KRAS mutations. The mutation spectrum was comparable to the Cosmic database. Following treatment in the first or second line with EGFR TKI median overall survival for patients with EGFR (n = 14), KRAS (n = 14) mutations and wild type EGFR/KRAS (n = 31) was not reached, 20 and 9 months, respectively. Conclusion One out of every 6 tumor samples was inadequate for mutation analysis. Patients with EGFR activating mutations treated with EGFR-TKI have the longest survival. PMID:23922984

  19. Restoration of G1 chemo/radioresistance and double-strand-break repair proficiency by wild-type but not endonuclease-deficient Artemis.

    PubMed

    Mohapatra, Susovan; Kawahara, Misako; Khan, Imran S; Yannone, Steven M; Povirk, Lawrence F

    2011-08-01

    Deficiency in Artemis is associated with lack of V(D)J recombination, sensitivity to radiation and radiomimetic drugs, and failure to repair a subset of DNA double-strand breaks (DSBs). Artemis harbors an endonuclease activity that trims both 5'- and 3'-ends of DSBs. To examine whether endonucleolytic trimming of terminally blocked DSBs by Artemis is a biologically relevant function, Artemis-deficient fibroblasts were stably complemented with either wild-type Artemis or an endonuclease-deficient D165N mutant. Wild-type Artemis completely restored resistance to γ-rays, bleomycin and neocarzinostatin, and also restored DSB-repair proficiency in G0/G1 phase as measured by pulsed-field gel electrophoresis and repair focus resolution. In contrast, cells expressing the D165N mutant, even at very high levels, remained as chemo/radiosensitive and repair deficient as the parental cells, as evidenced by persistent γ-H2AX, 53BP1 and Mre11 foci that slowly increased in size and ultimately became juxtaposed with promyelocytic leukemia protein nuclear bodies. In normal fibroblasts, overexpression of wild-type Artemis increased radioresistance, while D165N overexpression conferred partial repair deficiency following high-dose radiation. Restoration of chemo/radioresistance by wild-type, but not D165N Artemis suggests that the lack of endonucleolytic trimming of DNA ends is the principal cause of sensitivity to double-strand cleaving agents in Artemis-deficient cells.

  20. Bcl-2 protein expression associated with resistance to apoptosis in clear cell adenocarcinomas of the vagina and cervix expressing wild-type p53.

    PubMed

    Waggoner, S E; Baunoch, D A; Anderson, S A; Leigh, F; Zagaja, V G

    1998-09-01

    Clear cell adenocarcinomas (CCAs) of the vagina and cervix are rare tumors that often overexpress wild-type p53. In vitro, expression of protooncogene bcl-2 can block p53-mediated apoptosis. The objective of this study was to determine if bcl-2 is expressed in CCAs and whether this expression is associated with inhibition of apoptosis. Twenty-one paraffin-embedded clear cell adenocarcinomas were immunohistochemically stained for bcl-2 (antibody M 887, Dako, Carpinteria, CA) and DNA fragmentation (ApopTag, Oncor, Gaithersburg, MD), a marker for apoptosis. Fifteen tumors were associated with in utero exposure to diethylstilbestrol (DES). Prior p53 gene analysis had indicated the presence of wild-type p53 in each tumor. Human lymphoid tissue containing bcl-2-expressing lymphocytes and DNase I-exposed CCA tissue sections were used as positive controls for the bcl-2 and apoptosis assays, respectively. Expression of bcl-2 and DNA fragmentation was classified (0 to 3+) according to percentage of positive cells and intensity of staining. Expression of bcl-2 was identified in each CCA examined, and was strongly positive (2+ to 3+) in 18 of 21 samples. Despite the presence of wild-type p53, only 4 of 21 tumors showed evidence of apoptosis as assessed through DNA fragmentation. DNA damage leads to increased intracellular p53 levels. Overexpression of p53 induces apoptosis as a means of protecting organisms from the development of malignancy. CCAs of the vagina and cervix, which contain wild-type p53 genes and often overexpress p53 protein, presumably have evolved mechanisms to avoid p53-induced apoptosis. Our observations are consistent with the hypothesis that overexpression of bcl-2 can inhibit p53-mediated apoptosis and suggest a mechanism by which these rare tumors can arise without mutation of the p53 gene.

  1. A prospective observational study to examine the relationship between quality of life and adverse events of first-line chemotherapy plus cetuximab in patients with KRAS wild-type unresectable metastatic colorectal cancer: QUACK Trial.

    PubMed

    Ooki, Akira; Ando, Masahiko; Sakamoto, Junichi; Sato, Atushi; Fujii, Hirofumi; Yamaguchi, Kensei

    2014-04-01

    We have planned a multicentre prospective study to examine the relative impact of the efficacy and adverse events of cetuximab plus first-line chemotherapy on the quality of life in Japanese patients with KRAS wild-type unresectable colorectal cancer. The Dermatology Life Quality Index and the European Organization for Research Treatment of Cancer Quality of Life Questionnaire Core 30 will be used to assess dermatology-specific and health-related quality of life. The severity of adverse events will be assessed by using the National Cancer Institute Common Terminology Criteria for adverse Events ver. 4.0. The endpoints will be the following associations: adverse events, including skin toxicity and quality of life; efficacy and skin toxicity; efficacy and quality of life; and skin-related quality of life and health-related quality of life. A total of 140 patients are considered to be appropriate for inclusion in this study. The results of this study will provide more information to both patients and physicians regarding the practical use of cetuximab and its impact on quality of life in patients with unresectable colorectal cancer in Japan. This study was registered at the University Hospital Medical Information Network Clinical Trial Registry as UMIN000010985.

  2. CpG Island Methylator Phenotype-Low (CIMP-Low) in Colorectal Cancer: Possible Associations with Male Sex and KRAS Mutations

    PubMed Central

    Ogino, Shuji; Kawasaki, Takako; Kirkner, Gregory J.; Loda, Massimo; Fuchs, Charles S.

    2006-01-01

    The CpG island methylator phenotype (CIMP or CIMP-high) with extensive promoter methylation seems to be a distinct epigenotype of colorectal cancer. However, no study has comprehensively examined features of colorectal cancer with less extensive promoter methylation (designated as “CIMP-low”). Using real-time polymerase chain reaction (MethyLight), we quantified DNA methylation in five CIMP-specific gene promoters [CACNA1G, CDKN2A (p16), CRABP1, MLH1, and NEUROG1] in 840 relatively unbiased, population-based colorectal cancer samples, obtained from two large prospective cohort studies. CIMP-low (defined as 1/5 to 3/5 methylated promoters) colorectal cancers were significantly more common among men (38 versus 30% in women, P = 0.01) and among KRAS-mutated tumors (44 versus 30% in KRAS/BRAF wild-type tumors, P = 0.0003; 19% in BRAF-mutated tumors, P < 0.0001). In addition, KRAS mutations were significantly more common in CIMP-low tumors (47%) than in CIMP-high tumors (with ≥4/5 methylated promoters, 12%, P < 0.0001) and CIMP-0 tumors (with 0/5 methylated promoters, 37%, P = 0.007). The associations of CIMP-low tumors with male sex and KRAS mutations still existed after tumors were stratified by microsatellite instability status. In conclusion, CIMP-low colorectal cancer is associated with male sex and KRAS mutations. The hypothesis that CIMP-low tumors are different from CIMP-high and CIMP-0 tumors needs to be tested further. PMID:17065427

  3. Mutations of the EGFR, K-ras, EML4-ALK, and BRAF genes in resected pathological stage I lung adenocarcinoma.

    PubMed

    Ohba, Taro; Toyokawa, Gouji; Osoegawa, Atsushi; Hirai, Fumihiko; Yamaguchi, Masafumi; Taguchi, Ken-Ichi; Seto, Takashi; Takenoyama, Mitsuhiro; Ichinose, Yukito; Sugio, Kenji

    2016-09-01

    The EGFR, K-ras, EML4-ALK, and BRAF genes are oncogenic drivers of lung adenocarcinoma. We conducted this study to analyze the mutations of these genes in stage I adenocarcinoma. The subjects of this retrospective study were 256 patients with resected stage I lung adenocarcinoma. We analyzed mutations of the EGFR, K-ras, and BRAF genes, and the EML4-ALK fusion gene. We also assessed disease-free survival (DFS) to evaluate the prognostic value and overall survival (OS) to evaluate the predictive value of treatment after recurrence. Mutations of the EGFR, K-ras, EML4-ALK, and BRAF genes were detected in 120 (46.8 %), 14 (5.5 %), 6 (2.3 %), and 2 (0.8 %) of the 256 tumors. Two tumors had double mutations (0.8 %). The incidence of EGFR mutations was significantly higher in women than in men. The EML4-ALK fusion gene was detected only in younger patients. The DFS and OS of the K-ras mutant group were significantly worse than those of the EGFR mutant group, the EML4-ALK fusion gene group, and the wild-type group. Six of the seven patients with the EML4-ALK fusion gene are still alive without recurrent disease. In patients with stage I adenocarcinoma, mutation of the K-ras gene was a poor prognostic factor for recurrence. The presence of a mutation of the EGFR or EML4-ALK gene was not a prognostic factor.

  4. CpG island methylator phenotype-low (CIMP-low) in colorectal cancer: possible associations with male sex and KRAS mutations.

    PubMed

    Ogino, Shuji; Kawasaki, Takako; Kirkner, Gregory J; Loda, Massimo; Fuchs, Charles S

    2006-11-01

    The CpG island methylator phenotype (CIMP or CIMP-high) with extensive promoter methylation seems to be a distinct epigenotype of colorectal cancer. However, no study has comprehensively examined features of colorectal cancer with less extensive promoter methylation (designated as "CIMP-low"). Using real-time polymerase chain reaction (MethyLight), we quantified DNA methylation in five CIMP-specific gene promoters [CACNA1G, CDKN2A (p16), CRABP1, MLH1, and NEUROG1] in 840 relatively unbiased, population-based colorectal cancer samples, obtained from two large prospective cohort studies. CIMP-low (defined as 1/5 to 3/5 methylated promoters) colorectal cancers were significantly more common among men (38 versus 30% in women, P = 0.01) and among KRAS-mutated tumors (44 versus 30% in KRAS/BRAF wild-type tumors, P = 0.0003; 19% in BRAF-mutated tumors, P < 0.0001). In addition, KRAS mutations were significantly more common in CIMP-low tumors (47%) than in CIMP-high tumors (with > or =4/5 methylated promoters, 12%, P < 0.0001) and CIMP-0 tumors (with 0/5 methylated promoters, 37%, P = 0.007). The associations of CIMP-low tumors with male sex and KRAS mutations still existed after tumors were stratified by microsatellite instability status. In conclusion, CIMP-low colorectal cancer is associated with male sex and KRAS mutations. The hypothesis that CIMP-low tumors are different from CIMP-high and CIMP-0 tumors needs to be tested further.

  5. K-RAS(V12) Induces Autocrine Production of EGFR Ligands and Mediates Radioresistance Through EGFR-Dependent Akt Signaling and Activation of DNA-PKcs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minjgee, Minjmaa; Toulany, Mahmoud; Kehlbach, Rainer

    2011-12-01

    Purpose: It is known that postirradiation survival of tumor cells presenting mutated K-RAS is mediated through autocrine activation of epidermal growth factor receptor (EGFR). In this study the molecular mechanism of radioresistance of cells overexpressing mutated K-RAS(V12) was investigated. Methods and Materials: Head-and-neck cancer cells (FaDu) presenting wild-type K-RAS were transfected with empty vector or vector expressing mutated K-RAS(V12). The effect of K-RAS(V12) on autocrine production of EGFR ligands, activation of EGFR downstream pathways, DNA damage repair, and postirradiation survival was analyzed. Results: Conditioned medium collected from K-RAS(V12)-transfected cells enhanced activation of the phosphatidylinositol-3-kinase-Akt pathway and increased postirradiation survival ofmore » wild-type K-RAS parental cells when compared with controls. These effects were reversed by amphiregulin (AREG)-neutralizing antibody. In addition, secretion of the EGFR ligands AREG and transforming growth factor {alpha} was significantly increased upon overexpression of K-RAS(V12). Expression of mutated K-RAS(V12) resulted in an increase in radiation-induced DNA-dependent protein kinase catalytic subunit (DNA-PKcs) phosphorylation at S2056. This increase was accompanied by increased repair of DNA double-strand breaks. Abrogation of DNA-PKcs phosphorylation by serum depletion or AREG-neutralizing antibody underscored the role of autocrine production of EGFR ligands, namely, AREG, in regulating DNA-PKcs activation in K-RAS mutated cells. Conclusions: These data indicate that radioresistance of K-RAS mutated tumor cells is at least in part due to constitutive production of EGFR ligands, which mediate enhanced repair of DNA double-strand breaks through the EGFR-phosphatidylinositol-3-kinase-Akt cascade.« less

  6. Prognostic relevance of autophagy-related markers LC3, p62/sequestosome 1, Beclin-1 and ULK1 in colorectal cancer patients with respect to KRAS mutational status.

    PubMed

    Schmitz, Klaus Juergen; Ademi, Ceflije; Bertram, Stefanie; Schmid, Kurt Werner; Baba, Hideo Andreas

    2016-07-22

    Autophagy is a cellular pathway that regulates transportation of cytoplasmic macromolecules and organelles to lysosomes for degradation. Autophagy is involved in both tumorigenesis and tumour suppression. Here we investigated the potential prognostic value of the autophagy-related proteins Beclin-1, p62, LC3 and uncoordinated (UNC) 51-like kinase 1 (ULK1) in a cohort of colorectal cancer (CRC) specimens. In this study, we analysed the immunoexpression of the autophagy-related proteins p62, LC3, Beclin-1 and ULK1 in 127 CRC patients with known KRAS mutational status and detailed clinical follow-up. Survival analysis of p62 staining showed a significant correlation of cytoplasmic (not nuclear) p62 expression with a favourable tumour-specific overall survival (OS). The prognostic power of cytoplasmic p62 was found in the KRAS-mutated subgroup but was lost in the KRAS wildtype subgroup. Survival analysis of Beclin-1 staining did not show an association with OS in the complete cohort. LC3 overexpression demonstrated a slight, though not significant, association with decreased OS. Upon stratifying cases by KRAS mutational status, nuclear (not cytoplasmic) Beclin-1 staining was associated with a significantly decreased OS in the KRAS-mutated subgroup but not in the KRAS wildtype CRCs. In addition, LC3 overexpression was significantly associated with decreased OS in the KRAS-mutated CRC subgroup. ULK1 expression was not correlated to survival. Immunohistochemical analyses of LC3, p62 and Beclin-1 may constitute promising novel prognostic markers in CRC, especially in KRAS-mutated CRCs. This strategy might help in identifying high-risk patients who would benefit from autophagy-related anticancer drugs.

  7. KRAS as a Therapeutic Target.

    PubMed

    McCormick, Frank

    2015-04-15

    KRAS proteins play a major role in human cancer, but have not yielded to therapeutic attack. New technologies in drug discovery and insights into signaling pathways that KRAS controls have promoted renewed efforts to develop therapies through direct targeting of KRAS itself, new ways of blocking KRAS processing, or by identifying targets that KRAS cancers depend on for survival. Although drugs that block the well-established downstream pathways, RAF-MAPK and PI3K, are being tested in the clinic, new efforts are under way to exploit previously unrecognized vulnerabilities, such as altered metabolic networks, or novel pathways identified through synthetic lethal screens. Furthermore, new ways of suppressing KRAS gene expression and of harnessing the immune system offer further hope that new ways of treating KRAS are finally coming into view. These issues are discussed in this edition of CCR Focus. ©2015 American Association for Cancer Research.

  8. K-RAS GTPase- and B-RAF kinase-mediated T-cell tolerance defects in rheumatoid arthritis.

    PubMed

    Singh, Karnail; Deshpande, Pratima; Li, Guangjin; Yu, Mingcan; Pryshchep, Sergey; Cavanagh, Mary; Weyand, Cornelia M; Goronzy, Jörg J

    2012-06-19

    Autoantibodies to common autoantigens and neoantigens, such as IgG Fc and citrullinated peptides, are immunological hallmarks of rheumatoid arthritis (RA). We examined whether a failure in maintaining tolerance is mediated by defects in T-cell receptor activation threshold settings. RA T cells responded to stimulation with significantly higher ERK phosphorylation (P < 0.001). Gene expression arrays of ERK pathway members suggested a higher expression of KRAS and BRAF, which was confirmed by quantitative PCR (P = 0.003), Western blot, and flow cytometry (P < 0.01). Partial silencing of KRAS and BRAF lowered activation-induced phosphorylated ERK levels (P < 0.01). In individual cells, levels of these signaling molecules correlated with ERK phosphorylation, attesting that their concentrations are functionally important. In confocal studies, B-RAF/K-RAS clustering was increased in RA T cells 2 min after T-cell receptor stimulation (P < 0.001). Overexpression of B-RAF and K-RAS in normal CD4 T cells amplified polyclonal T-cell proliferation and facilitated responses to citrullinated peptides. We propose that increased expression of B-RAF and K-RAS lowers T-cell activation thresholds in RA T cells, enabling responses to autoantigens.

  9. In Situ Detection and Quantification of AR-V7, AR-FL, PSA, and KRAS Point Mutations in Circulating Tumor Cells.

    PubMed

    El-Heliebi, Amin; Hille, Claudia; Laxman, Navya; Svedlund, Jessica; Haudum, Christoph; Ercan, Erkan; Kroneis, Thomas; Chen, Shukun; Smolle, Maria; Rossmann, Christopher; Krzywkowski, Tomasz; Ahlford, Annika; Darai, Evangelia; von Amsberg, Gunhild; Alsdorf, Winfried; König, Frank; Löhr, Matthias; de Kruijff, Inge; Riethdorf, Sabine; Gorges, Tobias M; Pantel, Klaus; Bauernhofer, Thomas; Nilsson, Mats; Sedlmayr, Peter

    2018-03-01

    Liquid biopsies can be used in castration-resistant prostate cancer (CRPC) to detect androgen receptor splice variant 7 (AR-V7), a splicing product of the androgen receptor. Patients with AR-V7-positive circulating tumor cells (CTCs) have greater benefit of taxane chemotherapy compared with novel hormonal therapies, indicating a treatment-selection biomarker. Likewise, in those with pancreatic cancer (PaCa), KRAS mutations act as prognostic biomarkers. Thus, there is an urgent need for technology investigating the expression and mutation status of CTCs. Here, we report an approach that adds AR-V7 or KRAS status to CTC enumeration, compatible with multiple CTC-isolation platforms. We studied 3 independent CTC-isolation devices (CellCollector, Parsortix, CellSearch) for the evaluation of AR-V7 or KRAS status of CTCs with in situ padlock probe technology. Padlock probes allow highly specific detection and visualization of transcripts on a cellular level. We applied padlock probes for detecting AR-V7, androgen receptor full length (AR-FL), and prostate-specific antigen (PSA) in CRPC and KRAS wild-type (wt) and mutant (mut) transcripts in PaCa in CTCs from 46 patients. In situ analysis showed that 71% (22 of 31) of CRPC patients had detectable AR-V7 expression ranging from low to high expression [1-76 rolling circle products (RCPs)/CTC]. In PaCa patients, 40% (6 of 15) had KRAS mut expressing CTCs with 1 to 8 RCPs/CTC. In situ padlock probe analysis revealed CTCs with no detectable cytokeratin expression but positivity for AR-V7 or KRAS mut transcripts. Padlock probe technology enables quantification of AR-V7, AR-FL, PSA, and KRAS mut/wt transcripts in CTCs. The technology is easily applicable in routine laboratories and compatible with multiple CTC-isolation devices. © 2017 American Association for Clinical Chemistry.

  10. Cost-Effectiveness Analysis of Different Sequences of the Use of Epidermal Growth Factor Receptor Inhibitors for Wild-Type KRAS Unresectable Metastatic Colorectal Cancer.

    PubMed

    Riesco-Martínez, Maria Carmen; Berry, Scott R; Ko, Yoo-Joung; Mittmann, Nicole; Giotis, Angie; Lien, Kelly; Wong, William W L; Chan, Kelvin K W

    2016-06-01

    Patients with unresectable wild-type KRAS metastatic colorectal cancer benefit from fluoropyrimidines (FP), oxaliplatin (O), irinotecan (I), bevacizumab (Bev), and epithelial growth factor receptor inhibitors (EGFRI). The most cost-effective regimen remains unclear. A Markov model was constructed to examine the costs and outcomes of three treatment strategies: strategy A (reference strategy): EGFRI monotherapy in third line ([3L]; ie, first-line [1L]: Bev + FOLFIRI [FP + I] or FOLFOX [FP + O]; second line [2L]: FOLFIRI/FOLFOX; 3L: EGFRI); strategy B: EGFRI and I in 3L (ie, 1L: Bev + FOLFIRI/FOLFOX; 2L: FOLFIRI/FOLFOX; 3L: EGFRI + I); and strategy C: EGFRI in 1L (ie, 1L: EGFRI + FOLFIRI/FOLFOX; 2L: Bev + FOLFIRI/FOLFOX; 3L: best supportive care). Efficacy data of the treatments were obtained from the literature. Health system resource use information was derived from chart review and the literature. Using Euro-QOL 5 Dimensions, utilities were obtained by surveying medical oncologists and costs from the Ontario Ministry of Health and the literature. The perspective of the Canadian public health care system was used over a 5-year time horizon with a 5% discount in 2012 Canadian dollars. All three strategies had similar efficacy, but strategy C was most expensive. The incremental cost-effectiveness ratios (ICERs) for strategies B and C compared with A were 119,623 and 3,176,591, respectively. The model was primarily driven by the acquisition cost of the drugs. Strategy B was most cost effective when the willingness-to-pay threshold was > $130,000 per quality-adjusted life-year. Sensitivity analysis showed that strategy C would be cost-effective only when the progression-free survival of EGFRI is better than Bev in 1L with hazard ratio < 0.23 at willingness-to-pay of $150,000 per quality-adjusted life-year. First-line use of EGFRI in metastatic colorectal cancer is not cost effective at its current pricing relative to Bev. Copyright © 2016 by American Society of

  11. K-ras mutations and HLA-DR expression in large bowel adenomas.

    PubMed Central

    Norheim Andersen, S.; Breivik, J.; Løvig, T.; Meling, G. I.; Gaudernack, G.; Clausen, O. P.; Schjölberg, A.; Fausa, O.; Langmark, F.; Lund, E.; Rognum, T. O.

    1996-01-01

    A total of 72 sporadic colorectal adenomas in 56 patients were studied for the presence of point mutations in codons 12 and 13 of the K-ras gene and for HLA-DR antigen expression related to clinicopathological variables. Forty K-ras mutations in 39 adenomas were found (54%): 31 (77%) in codon 12 and nine (23%) in codon 13. There was a strong relationship between the incidence of K-ras mutations and adenoma type, degree of dysplasia and sex. The highest frequency of K-ras mutations was seen in large adenomas of the villous type with high-grade dysplasia. Fourteen out of 15 adenomas obtained from 14 women above 65 years of age carried mutations. HLA-DR positivity was found in 38% of the adenomas, large tumours and those with high-grade dysplasia having the strongest staining. Coexpression of K-ras mutations and HLA-DR was found significantly more frequently in large and highly dysplastic adenomas, although two-way analysis of variance showing size and grade of dysplasia to be the most important variable. None of the adenomas with low-grade dysplasia showed both K-ras mutation and HLA-DR positivity (P = 0.004). K-ras mutation is recognised as an early event in colorectal carcinogenesis. The mutation might give rise to peptides that may be presented on the tumour cell surface by class II molecules, and thereby induce immune responses against neoplastic cells. Images Figure 3 Figure 4 Figure 5 Figure 6 PMID:8679466

  12. The Mutant KRAS Gene Up-regulates BCL-XL Protein via STAT3 to Confer Apoptosis Resistance That Is Reversed by BIM Protein Induction and BCL-XL Antagonism.

    PubMed

    Zaanan, Aziz; Okamoto, Koichi; Kawakami, Hisato; Khazaie, Khashayarsha; Huang, Shengbing; Sinicrope, Frank A

    2015-09-25

    In colorectal cancers with oncogenic GTPase Kras (KRAS) mutations, inhibition of downstream MEK/ERK signaling has shown limited efficacy, in part because of failure to induce a robust apoptotic response. We studied the mechanism of apoptosis resistance in mutant KRAS cells and sought to enhance the efficacy of a KRAS-specific MEK/ERK inhibitor, GDC-0623. GDC-0623 was shown to potently up-regulate BIM expression to a greater extent versus other MEK inhibitors in isogenic KRAS HCT116 and mutant KRAS SW620 colon cancer cells. ERK silencing enhanced BIM up-regulation by GDC-0623 that was due to its loss of phosphorylation at Ser(69), confirmed by a BIM-EL phosphorylation-defective mutant (S69G) that increased protein stability and blocked BIM induction. Despite BIM and BIK induction, the isogenic KRAS mutant versus wild-type cells remained resistant to GDC-0623-induced apoptosis, in part because of up-regulation of BCL-XL. KRAS knockdown by a doxycycline-inducible shRNA attenuated BCL-XL expression. BCL-XL knockdown sensitized KRAS mutant cells to GDC-0623-mediated apoptosis, as did the BH3 mimetic ABT-263. GDC-0623 plus ABT-263 induced a synergistic apoptosis by a mechanism that includes release of BIM from its sequestration by BCL-XL. Furthermore, mutant KRAS activated p-STAT3 (Tyr(705)) in the absence of IL-6 secretion, and STAT3 knockdown reduced BCL-XL mRNA and protein expression. These data suggest that BCL-XL up-regulation by STAT3 contributes to mutant KRAS-mediated apoptosis resistance. Such resistance can be overcome by potent BIM induction and concurrent BCL-XL antagonism to enable a synergistic apoptotic response. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Synergistic effect between erlotinib and MEK inhibitors in KRAS wildtype human pancreatic cancer cells

    PubMed Central

    Diep, Caroline H.; Munoz, Ruben M.; Choudhary, Ashish; Von Hoff, Daniel D.; Han, Haiyong

    2011-01-01

    Purpose The combination of gemcitabine plus erlotinib has shown a small but statistically significant survival advantage when compared to gemcitabine alone in patients with advanced pancreatic cancer. However, the overall survival rate with the erlotinib and gemcitabine combination is still low. In this study we sought to identify gene targets that, when inhibited, would enhance the activity of EGFR-targeted therapies in pancreatic cancer cells. Experimental Design A high-throughput RNAi screen was carried out to identify candidate genes. Selected gene hits were further confirmed and mechanisms of action were further investigated using various assays. Results Six gene hits from siRNA screening were confirmed to significantly sensitize BxPC-3 pancreatic cancer cells to erlotinib. One of the hits, MAPK1, was selected for further mechanistic studies. Combination treatments of erlotinib plus two MAP kinase kinase (MEK) inhibitors, RDEA119 and AZD6244, showed significant synergistic effect for both combinations (RDEA119-erlotinib and AZD6244-erlotinib) compared to the corresponding single drug treatments in pancreatic cancer cell lines with wild-type KRAS (BxPC-3 and Hs 700T) but not in cell lines with mutant KRAS (MIA PaCa-2 and PANC-1). The enhanced antitumor activity of the combination treatment was further verified in the BxPC-3 and MIA PaCa-2 mouse xenograft model. Examination of the MAPK signaling pathway by Western blotting indicated effective inhibition of the EGFR signaling by the drug combination in KRAS wildtype cells but not in KRAS mutant cells. Conclusions Overall, our results suggest that combination therapy of an EGFR and MEK inhibitors may have enhanced efficacy in patients with pancreatic cancer. PMID:21385921

  14. Phase II Study of the Dual EGFR/HER3 Inhibitor Duligotuzumab (MEHD7945A) versus Cetuximab in Combination with FOLFIRI in Second-Line RAS Wild-Type Metastatic Colorectal Cancer.

    PubMed

    Hill, Andrew G; Findlay, Michael P; Burge, Matthew E; Jackson, Christopher; Alfonso, Pilar Garcia; Samuel, Leslie; Ganju, Vinod; Karthaus, Meinolf; Amatu, Alessio; Jeffery, Mark; Bartolomeo, Maria Di; Bridgewater, John; Coveler, Andrew L; Hidalgo, Manuel; Kapp, Amy V; Sufan, Roxana I; McCall, Bruce B; Hanley, William D; Penuel, Elicia M; Pirzkall, Andrea; Tabernero, Josep

    2018-05-15

    Purpose: Duligotuzumab is a dual-action antibody directed against EGFR and HER3. Experimental Design: Metastatic colorectal cancer (mCRC) patients with KRAS ex2 wild-type received duligotuzumab or cetuximab and FOLFIRI until progression or intolerable toxicity. Mandatory tumor samples underwent mutation and biomarker analysis. Efficacy analysis was conducted in patients with RAS exon 2/3 wild-type tumors. Results: Of 134 randomly assigned patients, 98 had RAS ex2/3 wild-type. Duligotuzumab provided no progression-free survival (PFS) or overall survival (OS) benefit compared with cetuximab, although there was a trend for a lower objective response rate (ORR) in the duligotuzumab arm. No relationship was seen between PFS or ORR and ERBB3, NRG1, or AREG expression. There were fewer skin rash events for duligotuzumab but more diarrhea. Although the incidence of grade ≥3 AEs was similar, the frequency of serious AEs was higher for duligotuzumab. Conclusions: Duligotuzumab plus FOLFIRI did not appear to improve the outcomes in patients with RAS exon 2/3 wild-type mCRC compared with cetuximab + FOLFIRI. Clin Cancer Res; 24(10); 2276-84. ©2018 AACR . ©2018 American Association for Cancer Research.

  15. Application of COLD-PCR for improved detection of KRAS mutations in clinical samples.

    PubMed

    Zuo, Zhuang; Chen, Su S; Chandra, Pranil K; Galbincea, John M; Soape, Matthew; Doan, Steven; Barkoh, Bedia A; Koeppen, Hartmut; Medeiros, L Jeffrey; Luthra, Rajyalakshmi

    2009-08-01

    KRAS mutations have been detected in approximately 30% of all human tumors, and have been shown to predict response to some targeted therapies. The most common KRAS mutation-detection strategy consists of conventional PCR and direct sequencing. This approach has a 10-20% detection sensitivity depending on whether pyrosequencing or Sanger sequencing is used. To improve detection sensitivity, we compared our conventional method with the recently described co-amplification-at-lower denaturation-temperature PCR (COLD-PCR) method, which selectively amplifies minority alleles. In COLD-PCR, the critical denaturation temperature is lowered to 80 degrees C (vs 94 degrees C in conventional PCR). The sensitivity of COLD-PCR was determined by assessing serial dilutions. Fifty clinical samples were used, including 20 fresh bone-marrow aspirate specimens and the formalin-fixed paraffin-embedded (FFPE) tissue of 30 solid tumors. Implementation of COLD-PCR was straightforward and required no additional cost for reagents or instruments. The method was specific and reproducible. COLD-PCR successfully detected mutations in all samples that were positive by conventional PCR, and enhanced the mutant-to-wild-type ratio by >4.74-fold, increasing the mutation detection sensitivity to 1.5%. The enhancement of mutation detection by COLD-PCR inversely correlated with the tumor-cell percentage in a sample. In conclusion, we validated the utility and superior sensitivity of COLD-PCR for detecting KRAS mutations in a variety of hematopoietic and solid tumors using either fresh or fixed, paraffin-embedded tissue.

  16. Performance and Cost Efficiency of KRAS Mutation Testing for Metastatic Colorectal Cancer in Routine Diagnosis: The MOKAECM Study, a Nationwide Experience

    PubMed Central

    Chatellier, Gilles; Côté, Jean-François; Pages, Jean-Christophe; de Fraipont, Florence; Boyer, Jean-Christophe; Merlio, Jean Philippe; Morel, Alain; Gorisse, Marie-Claude; de Cremoux, Patricia; Leroy, Karen; Milano, Gérard; Ouafik, L’Houcine; Merlin, Jean-Louis; Le Corre, Delphine; Aucouturier, Pascaline; Sabourin, Jean-Christophe; Nowak, Frédérique; Frebourg, Thierry; Emile, Jean-François; Durand-Zaleski, Isabelle; Laurent-Puig, Pierre

    2013-01-01

    Purpose Rapid advances in the understanding of cancer biology have transformed drug development thus leading to the approval of targeted therapies and to the development of molecular tests to select patients that will respond to treatments. KRAS status has emerged as a negative predictor of clinical benefit from anti-EGFR antibodies in colorectal cancer, and anti-EGFR antibodies use was limited to KRAS wild type tumors. In order to ensure wide access to tumor molecular profiling, the French National Cancer Institute (INCa) has set up a national network of 28 regional molecular genetics centers. Concurrently, a nationwide external quality assessment for KRAS testing (MOKAECM) was granted to analyze reproducibility and costs. Methods 96 cell-line DNAs and 24 DNA samples from paraffin embedded tumor tissues were sent to 40 French laboratories. A total of 5448 KRAS results were collected and analyzed and a micro-costing study was performed on sites for 5 common methods by an independent team of health economists. Results This work provided a baseline picture of the accuracy and reliability of KRAS analysis in routine testing conditions at a nationwide level. Inter-laboratory Kappa values were >0.8 for KRAS results despite differences detection methods and the use of in-house technologies. Specificity was excellent with only one false positive in 1128 FFPE data, and sensitivity was higher for targeted techniques as compared to Sanger sequencing based methods that were dependent upon local expertise. Estimated reagent costs per patient ranged from €5.5 to €19.0. Conclusion The INCa has set-up a network of public laboratories dedicated to molecular oncology tests. Our results showed almost perfect agreements in KRAS testing at a nationwide level despite different testing methods ensuring a cost-effective equal access to personalized colorectal cancer treatment. PMID:23935912

  17. Performance and cost efficiency of KRAS mutation testing for metastatic colorectal cancer in routine diagnosis: the MOKAECM study, a nationwide experience.

    PubMed

    Blons, Hélène; Rouleau, Etienne; Charrier, Nathanaël; Chatellier, Gilles; Côté, Jean-François; Pages, Jean-Christophe; de Fraipont, Florence; Boyer, Jean-Christophe; Merlio, Jean Philippe; Morel, Alain; Gorisse, Marie-Claude; de Cremoux, Patricia; Leroy, Karen; Milano, Gérard; Ouafik, L'houcine; Merlin, Jean-Louis; Le Corre, Delphine; Aucouturier, Pascaline; Sabourin, Jean-Christophe; Nowak, Frédérique; Frebourg, Thierry; Emile, Jean-François; Durand-Zaleski, Isabelle; Laurent-Puig, Pierre

    2013-01-01

    Rapid advances in the understanding of cancer biology have transformed drug development thus leading to the approval of targeted therapies and to the development of molecular tests to select patients that will respond to treatments. KRAS status has emerged as a negative predictor of clinical benefit from anti-EGFR antibodies in colorectal cancer, and anti-EGFR antibodies use was limited to KRAS wild type tumors. In order to ensure wide access to tumor molecular profiling, the French National Cancer Institute (INCa) has set up a national network of 28 regional molecular genetics centers. Concurrently, a nationwide external quality assessment for KRAS testing (MOKAECM) was granted to analyze reproducibility and costs. 96 cell-line DNAs and 24 DNA samples from paraffin embedded tumor tissues were sent to 40 French laboratories. A total of 5448 KRAS results were collected and analyzed and a micro-costing study was performed on sites for 5 common methods by an independent team of health economists. This work provided a baseline picture of the accuracy and reliability of KRAS analysis in routine testing conditions at a nationwide level. Inter-laboratory Kappa values were >0.8 for KRAS results despite differences detection methods and the use of in-house technologies. Specificity was excellent with only one false positive in 1128 FFPE data, and sensitivity was higher for targeted techniques as compared to Sanger sequencing based methods that were dependent upon local expertise. Estimated reagent costs per patient ranged from €5.5 to €19.0. The INCa has set-up a network of public laboratories dedicated to molecular oncology tests. Our results showed almost perfect agreements in KRAS testing at a nationwide level despite different testing methods ensuring a cost-effective equal access to personalized colorectal cancer treatment.

  18. Loss of Activin Receptor Type 1B Accelerates Development of Intraductal Papillary Mucinous Neoplasms in Mice With Activated KRAS.

    PubMed

    Qiu, Wanglong; Tang, Sophia M; Lee, Sohyae; Turk, Andrew T; Sireci, Anthony N; Qiu, Anne; Rose, Christian; Xie, Chuangao; Kitajewski, Jan; Wen, Hui-Ju; Crawford, Howard C; Sims, Peter A; Hruban, Ralph H; Remotti, Helen E; Su, Gloria H

    2016-01-01

    Activin, a member of the transforming growth factor-β (TGFB) family, might be involved in pancreatic tumorigenesis, similar to other members of the TGFB family. Human pancreatic ductal adenocarcinomas contain somatic mutations in the activin A receptor type IB (ACVR1B) gene, indicating that ACVR1B could be a suppressor of pancreatic tumorigenesis. We disrupted Acvr1b specifically in pancreata of mice (Acvr1b(flox/flox);Pdx1-Cre mice) and crossed them with LSL-KRAS(G12D) mice, which express an activated form of KRAS and develop spontaneous pancreatic tumors. The resulting Acvr1b(flox/flox);LSL-KRAS(G12D);Pdx1-Cre mice were monitored; pancreatic tissues were collected and analyzed by histology and immunohistochemical analyses. We also analyzed p16(flox/flox);LSL-Kras(G12D);Pdx1-Cre mice and Cre-negative littermates (controls). Genomic DNA, total RNA, and protein were isolated from mouse tissues and primary pancreatic tumor cell lines and analyzed by reverse-transcription polymerase chain reaction, sequencing, and immunoblot analyses. Human intraductal papillary mucinous neoplasm (IPMN) specimens were analyzed by immunohistochemistry. Loss of ACVR1B from pancreata of mice increased the proliferation of pancreatic epithelial cells, led to formation of acinar to ductal metaplasia, and induced focal inflammatory changes compared with control mice. Disruption of Acvr1b in LSL-KRAS(G12D);Pdx1-Cre mice accelerated the growth of pancreatic IPMNs compared with LSL-KRAS(G12D);Pdx1-Cre mice, but did not alter growth of pancreatic intraepithelial neoplasias. We associated perinuclear localization of the activated NOTCH4 intracellular domain to the apical cytoplasm of neoplastic cells with the expansion of IPMN lesions in Acvr1b(flox/flox);LSL-KRAS(G12D);Pdx1-Cre mice. Loss of the gene that encodes p16 (Cdkn2a) was required for progression of IPMNs to pancreatic ductal adenocarcinomas in Acvr1b(flox/flox);LSL-Kras(G12D);Pdx1-Cre mice. We also observed progressive loss of

  19. Terpenoid Metabolism in Wild-Type and Transgenic Arabidopsis PlantsW⃞

    PubMed Central

    Aharoni, Asaph; Giri, Ashok P.; Deuerlein, Stephan; Griepink, Frans; de Kogel, Willem-Jan; Verstappen, Francel W. A.; Verhoeven, Harrie A.; Jongsma, Maarten A.; Schwab, Wilfried; Bouwmeester, Harro J.

    2003-01-01

    Volatile components, such as terpenoids, are emitted from aerial parts of plants and play a major role in the interaction between plants and their environment. Analysis of the composition and emission pattern of volatiles in the model plant Arabidopsis showed that a range of volatile components are released, primarily from flowers. Most of the volatiles detected were monoterpenes and sesquiterpenes, which in contrast to other volatiles showed a diurnal emission pattern. The active terpenoid metabolism in wild-type Arabidopsis provoked us to conduct an additional set of experiments in which transgenic Arabidopsis overexpressing two different terpene synthases were generated. Leaves of transgenic plants constitutively expressing a dual linalool/nerolidol synthase in the plastids (FaNES1) produced linalool and its glycosylated and hydroxylated derivatives. The sum of glycosylated components was in some of the transgenic lines up to 40- to 60-fold higher than the sum of the corresponding free alcohols. Surprisingly, we also detected the production and emission of nerolidol, albeit at a low level, suggesting that a small pool of its precursor farnesyl diphosphate is present in the plastids. Transgenic lines with strong transgene expression showed growth retardation, possibly as a result of the depletion of isoprenoid precursors in the plastids. In dual-choice assays with Myzus persicae, the FaNES1-expressing lines significantly repelled the aphids. Overexpression of a typical cytosolic sesquiterpene synthase resulted in the production of only trace amounts of the expected sesquiterpene, suggesting tight control of the cytosolic pool of farnesyl diphosphate, the precursor for sesquiterpenoid biosynthesis. This study further demonstrates the value of Arabidopsis for studies of the biosynthesis and ecological role of terpenoids and provides new insights into their metabolism in wild-type and transgenic plants. PMID:14630967

  20. Twist1 Suppresses Senescence Programs and Thereby Accelerates and Maintains Mutant Kras-Induced Lung Tumorigenesis

    PubMed Central

    Thiyagarajan, Saravanan; Das, Sandhya T.; Zabuawala, Tahera; Chen, Joy; Cho, Yoon-Jae; Luong, Richard; Tamayo, Pablo; Salih, Tarek; Aziz, Khaled; Adam, Stacey J.; Vicent, Silvestre; Nielsen, Carsten H.; Withofs, Nadia; Sweet-Cordero, Alejandro; Gambhir, Sanjiv S.; Rudin, Charles M.; Felsher, Dean W.

    2012-01-01

    KRAS mutant lung cancers are generally refractory to chemotherapy as well targeted agents. To date, the identification of drugs to therapeutically inhibit K-RAS have been unsuccessful, suggesting that other approaches are required. We demonstrate in both a novel transgenic mutant Kras lung cancer mouse model and in human lung tumors that the inhibition of Twist1 restores a senescence program inducing the loss of a neoplastic phenotype. The Twist1 gene encodes for a transcription factor that is essential during embryogenesis. Twist1 has been suggested to play an important role during tumor progression. However, there is no in vivo evidence that Twist1 plays a role in autochthonous tumorigenesis. Through two novel transgenic mouse models, we show that Twist1 cooperates with KrasG12D to markedly accelerate lung tumorigenesis by abrogating cellular senescence programs and promoting the progression from benign adenomas to adenocarcinomas. Moreover, the suppression of Twist1 to physiological levels is sufficient to cause Kras mutant lung tumors to undergo senescence and lose their neoplastic features. Finally, we analyzed more than 500 human tumors to demonstrate that TWIST1 is frequently overexpressed in primary human lung tumors. The suppression of TWIST1 in human lung cancer cells also induced cellular senescence. Hence, TWIST1 is a critical regulator of cellular senescence programs, and the suppression of TWIST1 in human tumors may be an effective example of pro-senescence therapy. PMID:22654667

  1. Overexpression of NGF ameliorates ethanol neurotoxicity in the developing cerebellum.

    PubMed

    Heaton, M B; Mitchell, J J; Paiva, M

    2000-11-05

    Transgenic mice overexpressing NGF in the central nervous system under the control of the glial fibrillary acidic protein (GFAP) promoter were exposed to ethanol via vapor inhalation on postnatal days 4 and 5 (P4-5), the period of maximal cerebellar Purkinje cell sensitivity to ethanol. Wild-type controls were exposed in a similar manner. There were no differences in body weight or size following these procedures, but the transgenic brain weights at this age were significantly greater than wild-type controls. In the wild-type animals, a significant 33.3% ethanol-mediated loss of Purkinje cells in lobule I was detected via unbiased three-dimensional stereological counting on P5. In the GFAP-NGF transgenic animals, however, the 17.6% difference in Purkinje cell number in control and ethanol-exposed animals was not significant. There was a similar difference in Purkinje cell density in both groups, which did reach statistical significance (-32.7% in wild-type ethanol-treated animals, -17% in transgenic ethanol-exposed animals). These results suggest that endogenous overexpression of neurotrophic factors, which have previously been shown to protect against ethanol neurotoxicity in culture, can serve a similar protective function in the intact animal. Copyright 2000 John Wiley & Sons, Inc.

  2. [Overexpression of LaeA enhances mevastatin production and reduces sporulation of Penicillium citrinum].

    PubMed

    Zheng, Yueliang; Cao, Shuang; Huang, Yuqi; Liao, Guojian; Hu, Changhua

    2014-12-04

    To study the regulation of laeA overexpression on mevastatin production and sporulation in Penicillium citrinum. We cloned the laeA gene from Penicillium citrinum and constructed the vector pGiHTGi-laeA. The plasmid pGiHTGi-laeA was transformed in Penicillium citrinum by agrobacterium tumefaciens-mediated transformation. Positive transformants were detected by cloning the hygromycin gene. The mevastatin production of the wild type and OE:: laeA was compared by HPLC. The conidia number was counted by blood counting chamber. The biosynthetic gene cluster expression quantity of mevastatin in the wild type and OE: :laeA were analyzed by qRT-PCR. We constructed the plasmid pGiHTGi-laeA, and screened the positive transformants that overexpress the laeA in Penicillium citrinum. With the overexpression of laeA, the mevastatin production was increased from (0.69 ± 0.12) mg/g to (4.02 ± 0.50) mg/g dry cell weight. Compared to the wild type strain, the laeA expression quantity in the OE :: laeA strain increased 29%, and the mlcB expression increased 72%, the mlcR expression increased 153%. Moreover, the overexpression of laeA would decrease the conidia number. Overexpression of LaeA enhances mevastatin production and reduces sporulation of Penicillium citrinum, with increases expression of pathway-regulator mlcR, and biosynthetic gene MlcR. These results could guide global regulatory mechanism of mevastatin biosynthesis and the exploitation of high-production strain.

  3. DNA vaccines encoding proteins from wild-type and attenuated canine distemper virus protect equally well against wild-type virus challenge.

    PubMed

    Nielsen, Line; Jensen, Trine Hammer; Kristensen, Birte; Jensen, Tove Dannemann; Karlskov-Mortensen, Peter; Lund, Morten; Aasted, Bent; Blixenkrone-Møller, Merete

    2012-10-01

    Immunity induced by DNA vaccines containing the hemagglutinin (H) and nucleoprotein (N) genes of wild-type and attenuated canine distemper virus (CDV) was investigated in mink (Mustela vison), a highly susceptible natural host of CDV. All DNA-immunized mink seroconverted, and significant levels of virus-neutralizing (VN) antibodies were present on the day of challenge with wild-type CDV. The DNA vaccines also primed the cell-mediated memory responses, as indicated by an early increase in the number of interferon-gamma (IFN-γ)-producing lymphocytes after challenge. Importantly, the wild-type and attenuated CDV DNA vaccines had a long-term protective effect against wild-type CDV challenge. The vaccine-induced immunity induced by the H and N genes from wild-type CDV and those from attenuated CDV was comparable. Because these two DNA vaccines were shown to protect equally well against wild-type virus challenge, it is suggested that the genetic/antigenic heterogeneity between vaccine strains and contemporary wild-type strains are unlikely to cause vaccine failure.

  4. Final Analysis of Outcomes and RAS/BRAF Status in a Randomized Phase 3 Study of Panitumumab and Best Supportive Care in Chemorefractory Wild Type KRAS Metastatic Colorectal Cancer.

    PubMed

    Kim, Tae Won; Elme, Anneli; Park, Joon Oh; Udrea, Anghel Adrian; Kim, Sun Young; Ahn, Joong Bae; Valencia, Ricardo Villalobos; Krishnan, Srinivasan; Manojlovic, Nebojsa; Guan, Xuesong; Lofton-Day, Catherine; Jung, A Scott; Vrdoljak, Eduard

    2018-03-21

    Tumor rat sarcoma gene (RAS) status is a negative predictive biomarker for anti-epidermal growth factor receptor (EGFR) therapy in metastatic colorectal cancer (mCRC). We analyzed outcomes according to RAS and v-Raf murine sarcoma viral oncogene homolog B (BRAF) mutational status, and evaluated early tumor shrinkage (ETS) and depth of response (DpR) for patients with wild type RAS. Patients with confirmed metastatic colon or rectum adenocarcinoma, wild type Kristen rat sarcoma gene tumor exon 2 status, clinical/radiologic disease progression or toxicity during irinotecan or oxaliplatin treatment, and no previous anti-EGFR therapy were randomized 1:1 to receive best supportive care (BSC) with or without panitumumab (6.0 mg/kg, intravenously, on day 1 of each 14-day cycle) in this open-label, multicenter, phase III study (20100007). RAS and BRAF mutation status were determined using Sanger sequencing. ETS was evaluated as maximum percentage change from baseline to week 8; DpR was calculated as the percentage change for tumor shrinkage at nadir versus baseline. Overall, 270 patients had RAS wild type mCRC (panitumumab with BSC, n = 142; BSC, n = 128). For patients with wild type RAS tumors, median overall survival (OS; hazard ratio [HR], 0.72; P = .015) and progression-free survival (PFS; HR, 0.45; P < .0001) were improved with panitumumab with BSC versus BSC. Similar improvements were seen for patients with wild type RAS, and wild type BRAF tumors (OS: HR, 0.75; P = .04; PFS: HR, 0.45; P < .0001). Median DpR was 16.9% for the evaluable panitumumab with BSC wild type RAS population. Overall, 69.5% experienced any type of tumor shrinkage at week 8; 38.2% experienced ≥ 20% shrinkage. Similar improvements in OS and PFS were seen with stratification according to ETS. This analysis showed that panitumumab improved outcomes in wild type RAS mCRC and indicated that ETS and DpR could be used as additional efficacy markers. Copyright © 2018 The Authors. Published by

  5. The Use of COLD-PCR and High-Resolution Melting Analysis Improves the Limit of Detection of KRAS and BRAF Mutations in Colorectal Cancer

    PubMed Central

    Mancini, Irene; Santucci, Claudio; Sestini, Roberta; Simi, Lisa; Pratesi, Nicola; Cianchi, Fabio; Valanzano, Rosa; Pinzani, Pamela; Orlando, Claudio

    2010-01-01

    Fast and reliable tests to detect mutations in human cancers are required to better define clinical samples and orient targeted therapies. KRAS mutations occur in 30–50% of colorectal cancers (CRCs) and represent a marker of clinical resistance to cetuximab therapy. In addition, the BRAF V600E is mutated in about 10% of CRCs, and the development of a specific inhibitor of mutant BRAF kinase has prompted a growing interest in BRAFV600E detection. Traditional methods, such as PCR and direct sequencing, do not detect low-level mutations in cancer, resulting in false negative diagnoses. In this study, we designed a protocol to detect mutations of KRAS and BRAFV600E in 117 sporadic CRCs based on coamplification at lower denaturation temperature PCR (COLD-PCR) and high-resolution melting (HRM). Using traditional PCR and direct sequencing, we found KRAS mutations in 47 (40%) patients and BRAFV600E in 10 (8.5%). The use of COLD-PCR in apparently wild-type samples allowed us to identify 15 newly mutated CRCs (10 for KRAS and 5 for BRAFV600E), raising the percentage of mutated CRCs to 48.7% for KRAS and to 12.8% for BRAFV600E. Therefore, COLD-PCR combined with HRM permits the correct identification of less represented mutations in CRC and better selection of patients eligible for targeted therapies, without requiring expensive and time-consuming procedures. PMID:20616366

  6. KrasG12D-Induced IKK2/β/NF-κB Activation by IL-1α and p62 Feedforward Loops Is Required for Development of Pancreatic Ductal Adenocarcinoma

    PubMed Central

    Ling, Jianhua; Kang, Ya’an; Zhao, Ruiying; Xia, Qianghua; Lee, Dung-Fang; Chang, Zhe; Li, Jin; Peng, Bailu; Fleming, Jason B.; Wang, Huamin; Liu, Jinsong; Lemischka, Ihor R.; Hung, Mien-Chie; Chiao, Paul J.

    2012-01-01

    SUMMARY Constitutive Kras and NF-κB activation is identified as signature alterations in pancreatic ductal adenocarcinoma (PDAC). However, how NF-κB is activated in PDAC is not yet understood. Here, we report that pancreas-targeted IKK2/β inactivation inhibited NF-κB activation and PDAC development in KrasG12D and KrasG12D;Ink4a/ArfF/F mice, demonstrating a mechanistic link between IKK2/β and KrasG12D in PDAC inception. Our findings reveal that KrasG12D-activated AP-1 induces IL-1α, which, in turn, activates NF-κB and its target genes IL-1α and p62, to initiate IL-1α/p62 feedforward loops for inducing and sustaining NF-κB activity. Furthermore, IL-1α overexpression correlates with Kras mutation, NF-κB activity, and poor survival in PDAC patients. Therefore, our findings demonstrate the mechanism by which IKK2/β/NF-κB is activated by KrasG12D through dual feedforward loops of IL-1α/p62. PMID:22264792

  7. GTP Binding and Oncogenic Mutations May Attenuate Hypervariable Region (HVR)-Catalytic Domain Interactions in Small GTPase K-Ras4B, Exposing the Effector Binding Site*

    PubMed Central

    Lu, Shaoyong; Banerjee, Avik; Jang, Hyunbum; Zhang, Jian; Gaponenko, Vadim; Nussinov, Ruth

    2015-01-01

    K-Ras4B, a frequently mutated oncogene in cancer, plays an essential role in cell growth, differentiation, and survival. Its C-terminal membrane-associated hypervariable region (HVR) is required for full biological activity. In the active GTP-bound state, the HVR interacts with acidic plasma membrane (PM) headgroups, whereas the farnesyl anchors in the membrane; in the inactive GDP-bound state, the HVR may interact with both the PM and the catalytic domain at the effector binding region, obstructing signaling and nucleotide exchange. Here, using molecular dynamics simulations and NMR, we aim to figure out the effects of nucleotides (GTP and GDP) and frequent (G12C, G12D, G12V, G13D, and Q61H) and infrequent (E37K and R164Q) oncogenic mutations on full-length K-Ras4B. The mutations are away from or directly at the HVR switch I/effector binding site. Our results suggest that full-length wild-type GDP-bound K-Ras4B (K-Ras4BWT-GDP) is in an intrinsically autoinhibited state via tight HVR-catalytic domain interactions. The looser association in K-Ras4BWT-GTP may release the HVR. Some of the oncogenic mutations weaken the HVR-catalytic domain association in the K-Ras4B-GDP/-GTP bound states, which may facilitate the HVR disassociation in a nucleotide-independent manner, thereby up-regulating oncogenic Ras signaling. Thus, our results suggest that mutations can exert their effects in more than one way, abolishing GTP hydrolysis and facilitating effector binding. PMID:26453300

  8. An integrative approach unveils FOSL1 as an oncogene vulnerability in KRAS-driven lung and pancreatic cancer.

    PubMed

    Vallejo, Adrian; Perurena, Naiara; Guruceaga, Elisabet; Mazur, Pawel K; Martinez-Canarias, Susana; Zandueta, Carolina; Valencia, Karmele; Arricibita, Andrea; Gwinn, Dana; Sayles, Leanne C; Chuang, Chen-Hua; Guembe, Laura; Bailey, Peter; Chang, David K; Biankin, Andrew; Ponz-Sarvise, Mariano; Andersen, Jesper B; Khatri, Purvesh; Bozec, Aline; Sweet-Cordero, E Alejandro; Sage, Julien; Lecanda, Fernando; Vicent, Silve

    2017-02-21

    KRAS mutated tumours represent a large fraction of human cancers, but the vast majority remains refractory to current clinical therapies. Thus, a deeper understanding of the molecular mechanisms triggered by KRAS oncogene may yield alternative therapeutic strategies. Here we report the identification of a common transcriptional signature across mutant KRAS cancers of distinct tissue origin that includes the transcription factor FOSL1. High FOSL1 expression identifies mutant KRAS lung and pancreatic cancer patients with the worst survival outcome. Furthermore, FOSL1 genetic inhibition is detrimental to both KRAS-driven tumour types. Mechanistically, FOSL1 links the KRAS oncogene to components of the mitotic machinery, a pathway previously postulated to function orthogonally to oncogenic KRAS. FOSL1 targets include AURKA, whose inhibition impairs viability of mutant KRAS cells. Lastly, combination of AURKA and MEK inhibitors induces a deleterious effect on mutant KRAS cells. Our findings unveil KRAS downstream effectors that provide opportunities to treat KRAS-driven cancers.

  9. Association of progression-free survival, overall survival, and patient-reported outcomes by skin toxicity and KRAS status in patients receiving panitumumab monotherapy.

    PubMed

    Peeters, Marc; Siena, Salvatore; Van Cutsem, Eric; Sobrero, Alberto; Hendlisz, Alain; Cascinu, Stefano; Kalofonos, Haralabos; Devercelli, Giovanna; Wolf, Michael; Amado, Rafael G

    2009-04-01

    The authors explored the association of skin toxicity (ST) severity as measured by patient-reported ST and Common Terminology Criteria for Adverse Events (CTCAE) grading with efficacy of panitumumab, a fully human antiepidermal growth factor receptor antibody, from a phase 3 metastatic colorectal cancer (CRC) trial. Patients were randomized to panitumumab plus best supportive care (BSC) vs BSC alone. ST by modified National Cancer Institute CTCAE v3.0 and modified Dermatology Life Quality Index (mDLQI), health-related quality of life (HRQOL), and CRC symptoms were measured. ST was analyzed using a landmark approach. Associations by KRAS mutational status were also assessed. Of 463 patients, 208 of 231 (90%) panitumumab patients and 184 of 232 (79%) BSC patients had > or = 1 postbaseline patient-reported outcome (PRO) assessment. Panitumumab patients with more severe ST had significantly longer overall survival (OS) (grade 2-4:grade 1; hazard ratio, 0.60; P = .0033). Lower mDLQI scores (< 67; more bothersome ST) were associated with longer OS (Cox model, P < .0001). Similar results were observed with progression-free survival (PFS). An inverse relation between mDLQI and HRQOL scores was observed, suggesting that ST bother correlated with better HRQOL. KRAS and PRO data were available in 363 patients (188 panitumumab; 175 BSC). Longer OS was associated with lower mDLQI scores, regardless of KRAS status. Longer PFS was associated with more severe ST (lower mDLQI scores and higher CTCAE grade ST) in patients with wild-type (WT) KRAS tumors, but not in patients with mutant KRAS tumors. More severe ST, by both clinical grading and PRO, is associated with better CRC symptoms and HRQOL and with longer OS and PFS among panitumumab-treated patients. The associations for PFS were more pronounced in patients with WT KRAS tumors. (c) 2009 American Cancer Society

  10. A New Microarray Substrate for Ultra-Sensitive Genotyping of KRAS and BRAF Gene Variants in Colorectal Cancer

    PubMed Central

    Pinzani, Pamela; Mancini, Irene; Vinci, Serena; Chiari, Marcella; Orlando, Claudio; Cremonesi, Laura; Ferrari, Maurizio

    2013-01-01

    Molecular diagnostics of human cancers may increase accuracy in prognosis, facilitate the selection of the optimal therapeutic regimen, improve patient outcome, reduce costs of treatment and favour development of personalized approaches to patient care. Moreover sensitivity and specificity are fundamental characteristics of any diagnostic method. We developed a highly sensitive microarray for the detection of common KRAS and BRAF oncogenic mutations. In colorectal cancer, KRAS and BRAF mutations have been shown to identify a cluster of patients that does not respond to anti-EGFR therapies; the identification of these mutations is therefore clinically extremely important. To verify the technical characteristics of the microarray system for the correct identification of the KRAS mutational status at the two hotspot codons 12 and 13 and of the BRAFV600E mutation in colorectal tumor, we selected 75 samples previously characterized by conventional and CO-amplification at Lower Denaturation temperature-PCR (COLD-PCR) followed by High Resolution Melting analysis and direct sequencing. Among these samples, 60 were collected during surgery and immediately steeped in RNAlater while the 15 remainders were formalin-fixed and paraffin-embedded (FFPE) tissues. The detection limit of the proposed method was different for the 7 KRAS mutations tested and for the V600E BRAF mutation. In particular, the microarray system has been able to detect a minimum of about 0.01% of mutated alleles in a background of wild-type DNA. A blind validation displayed complete concordance of results. The excellent agreement of the results showed that the new microarray substrate is highly specific in assigning the correct genotype without any enrichment strategy. PMID:23536897

  11. Differential Reprogramming of Isogenic Colorectal Cancer Cells by Distinct Activating KRAS Mutations

    PubMed Central

    2015-01-01

    Oncogenic mutations of Ras at codons 12, 13, or 61, that render the protein constitutively active, are found in ∼16% of all cancer cases. Among the three major Ras isoforms, KRAS is the most frequently mutated isoform in cancer. Each Ras isoform and tumor type displays a distinct pattern of codon-specific mutations. In colon cancer, KRAS is typically mutated at codon 12, but a significant fraction of patients have mutations at codon 13. Clinical data suggest different outcomes and responsiveness to treatment between these two groups. To investigate the differential effects upon cell status associated with KRAS mutations we performed a quantitative analysis of the proteome and phosphoproteome of isogenic SW48 colon cancer cell lines in which one allele of the endogenous gene has been edited to harbor specific KRAS mutations (G12V, G12D, or G13D). Each mutation generates a distinct signature, with the most variability seen between G13D and the codon 12 KRAS mutants. One notable example of specific up-regulation in KRAS codon 12 mutant SW48 cells is provided by the short form of the colon cancer stem cell marker doublecortin-like Kinase 1 (DCLK1) that can be reversed by suppression of KRAS. PMID:25599653

  12. Responses of hybrid aspen over-expressing a PIP2;5 aquaporin to low root temperature.

    PubMed

    Ranganathan, Kapilan; El Kayal, Walid; Cooke, Janice E K; Zwiazek, Janusz J

    2016-03-15

    Aquaporins mediate the movement of water across cell membranes. Plasma membrane intrinsic protein 2;5 from Populus trichocarpa×deltoides (PtdPIP2;5) was previously demonstrated to be a functionally important water conducting aquaporin. To study the relevance of aquaporin-mediated root water transport at low temperatures, we generated transgenic Populus tremula×alba over-expressing PtdPIP2;5 under control of the maize ubiquitin promoter, and compared the physiological responses and water transport properties of the PtdPIP2;5 over-expressing lines (PtdPIP2;5ox) with wild-type plants. We hypothesized that over-expression of PtdPIP2;5 would reduce temperature sensitivity of root water transport and gas exchange. Decreasing root temperatures to 10 and 5°C significantly decreased hydraulic conductivities (Lp) in wild-type plants, but had no significant effect on Lp in PtdPIP2;5ox plants. Recovery of Lp in the transgenic lines returned to 20°C from 5°C was faster than in the wild-type plants. Low root temperature did not induce major changes in transcript levels for other PIPs. When roots were exposed to 5°C in solution culture and shoots were exposed to 20°C, wild-type plants had significantly lower net photosynthetic and transpiration rates compared to PtdPIP2;5ox plants. Taken together, our results demonstrate that over-expression of PtdPIP2;5 in P. tremula×alba was effective in alleviating the effects of low root temperature on Lp and gas exchange. Copyright © 2016 Elsevier GmbH. All rights reserved.

  13. Nrf2-Dependent Induction of NQO1 in Mouse Aortic Endothelial Cells Overexpressing Catalase

    PubMed Central

    Lin, Xinghua; Yang, Hong; Zhou, LiChun; Guo, ZhongMao

    2011-01-01

    Overexpression of catalase has been shown to accelerate benzo(a)pyrene (BaP) detoxification in mouse aortic endothelial cells (MAECs ). NAD(P)H:quinone oxidoreductase1 (NQO1) is an enzyme that catalyzes BaP-quinone detoxification. Aryl hydrocarbon receptor (AhR) and nuclear factor erythroid 2-related factor-2 (Nrf2) are transcription factors that control NQO1 expression. Here, we investigated the effect of catalase overexpression on NQO1, Nrf2 and AhR expressions. The levels of NQO1 mRNA and protein were comparable in MAECs isolated from wild-type and transgenic mice that overexpress human catalase (hCatTg). BaP treatment increased NQO1 mRNA and protein levels in both groups, with a significantly greater induction in hCatTg MAECs than in wild-type cells. BaP-induced NQO1 promoter activity was dramatically higher in hCatTg MAECs than in wild-type cells. Our data also showed that the basal level of AhR and the BaP-induced level of Nrf2 were significantly higher in hCatTg MAECs than in wild-type cells. Inhibition of specificity protein-1 (Sp1) binding to the AhR promoter region by mithramycin A reversed the enhanced effect of catalase overexpression on AhR expression. Knockdown of AhR by RNA interference diminished BaP-induced expression of Nrf2 and NQO1. Knockdown of Nrf2 significantly decreased NQO1 mRNA and protein levels in cells with or without BaP treatment. NQO1 promoter activity was abrogated by mutation of the Nrf2-binding site in this promoter. In contrast, mutation of the AhR-binding site in NQO1 promoter did not affect the promoter activity. These results suggest that catalase overexpression upregulates BaP-induced NQO1 expression via enhancing the Sp1-AhR-Nrf2 signaling cascade. PMID:21569840

  14. K-Ras protein as a drug target.

    PubMed

    McCormick, Frank

    2016-03-01

    K-Ras proteins are major drivers of human cancers, playing a direct causal role in about one million cancer cases/year. In cancers driven by mutant K-Ras, the protein is locked in the active, GTP-bound state constitutively, through a defect in the off-switch mechanism. As such, the mutant protein resembles the normal K-Ras protein from a structural perspective, making therapeutic attack extremely challenging. K-Ras is a member of a large family of related proteins, which share very similar GDP/GTP-binding domains, making specific therapies more difficult. Furthermore, Ras proteins lack pockets to which small molecules can bind with high affinity, with a few interesting exceptions. However, new insights into the structure and function of K-Ras proteins reveal opportunities for intervention that were not appreciated many years ago, when efforts were launched to develop K-Ras therapies. Furthermore, K-Ras undergoes post-translational modification and interactions with cellular signaling proteins that present additional therapeutic opportunities, such as specific binding to calmodulin and regulation of non-canonical Wnt signaling.

  15. Identification of T-cell Receptors Targeting KRAS-mutated Human Tumors

    PubMed Central

    Wang, Qiong J.; Yu, Zhiya; Griffith, Kayla; Hanada, Ken-ichi; Restifo, Nicholas P.; Yang, James C.

    2015-01-01

    KRAS is one of the most frequently mutated proto-oncogenes in human cancers. The dominant oncogenic mutations of KRAS are single amino acid substitutions at codon 12, in particular G12D and G12V present in 60–70% of pancreatic cancers and 20–30% of colorectal cancers. The consistency, frequency, and tumor specificity of these “neo-antigens” make them attractive therapeutic targets. Recent data associates T cells that target mutated antigens with clinical immunotherapy responses in patients with metastatic melanoma, lung cancer, or cholangiocarcinoma. Using HLA-peptide prediction algorithms, we noted that HLA-A*11:01 could potentially present mutated KRAS variants. By immunizing HLA-A*11:01 transgenic mice, we generated murine T cells and subsequently isolated T-cell receptors (TCRs) highly reactive to the mutated KRAS variants G12V and G12D. Peripheral blood lymphocytes (PBLs) transduced with these TCRs could recognize multiple HLA-A*11:01+ tumor lines bearing the appropriate KRAS mutations. In a xenograft model of large established tumor, adoptive transfer of these transduced PBLs reactive with an HLA-A*11:01, G12D-mutated pancreatic cell line could significantly reduce its growth in NSG mice (P = 0.002). The success of adoptive transfer of TCR-engineered T cells against melanoma and other cancers support clinical trials with these T cells that recognize mutated KRAS in patients with a variety of common cancer types. PMID:26701267

  16. PEP3 overexpression shortens lag phase but does not alter growth rate in Saccharomyces cerevisiae exposed to acetic acid stress

    PubMed Central

    Ding, Jun; Holzwarth, Garrett; Bradford, C. Samuel; Cooley, Ben; Yoshinaga, Allen S.; Patton-Vogt, Jana; Abeliovich, Hagai; Penner, Michael H.; Bakalinsky, Alan T.

    2017-01-01

    In fungi, two recognized mechanisms contribute to pH homeostasis: the plasma membrane proton-pumping ATPase that exports excess protons and the vacuolar proton-pumping ATPase (V-ATPase) that mediates vacuolar proton uptake. Here, we report that overexpression of PEP3 which encodes a component of the HOPS and CORVET complexes involved in vacuolar biogenesis, shortened lag phase in Saccharomyces cerevisiae exposed to acetic acid stress. By confocal microscopy, PEP3-overexpressing cells stained with the vacuolar membrane-specific dye, FM4-64 had more fragmented vacuoles than the wild-type control. The stained overexpression mutant was also found to exhibit about 3.6-fold more FM4-64 fluorescence than the wild-type control as determined by flow cytometry. While the vacuolar pH of the wild-type strain grown in the presence of 80 mM acetic acid was significantly higher than in the absence of added acid, no significant difference was observed in vacuolar pH of the overexpression strain grown either in the presence or absence of 80 mM acetic acid. Based on an indirect growth assay, the PEP3-overexpression strain exhibited higher V-ATPase activity. We hypothesize that PEP3 overexpression provides protection from acid stress by increasing vacuolar surface area and V-ATPase activity and, hence, proton-sequestering capacity. PMID:26051671

  17. Menin determines K-RAS proliferative outputs in endocrine cells

    PubMed Central

    Chamberlain, Chester E.; Scheel, David W.; McGlynn, Kathleen; Kim, Hail; Miyatsuka, Takeshi; Wang, Juehu; Nguyen, Vinh; Zhao, Shuhong; Mavropoulos, Anastasia; Abraham, Aswin G.; O’Neill, Eric; Ku, Gregory M.; Cobb, Melanie H.; Martin, Gail R.; German, Michael S.

    2014-01-01

    Endocrine cell proliferation fluctuates dramatically in response to signals that communicate hormone demand. The genetic alterations that override these controls in endocrine tumors often are not associated with oncogenes common to other tumor types, suggesting that unique pathways govern endocrine proliferation. Within the pancreas, for example, activating mutations of the prototypical oncogene KRAS drive proliferation in all pancreatic ductal adenocarcimomas but are never found in pancreatic endocrine tumors. Therefore, we asked how cellular context impacts K-RAS signaling. We found that K-RAS paradoxically suppressed, rather than promoted, growth in pancreatic endocrine cells. Inhibition of proliferation by K-RAS depended on antiproliferative RAS effector RASSF1A and blockade of the RAS-activated proproliferative RAF/MAPK pathway by tumor suppressor menin. Consistent with this model, a glucagon-like peptide 1 (GLP1) agonist, which stimulates ERK1/2 phosphorylation, did not affect endocrine cell proliferation by itself, but synergistically enhanced proliferation when combined with a menin inhibitor. In contrast, inhibition of MAPK signaling created a synthetic lethal interaction in the setting of menin loss. These insights suggest potential strategies both for regenerating pancreatic β cells for people with diabetes and for targeting menin-sensitive endocrine tumors. PMID:25133424

  18. Coexistence of two different mutations in codon 12 of the Kras gene in colorectal cancer: Report of a case supporting the concept of tumoral heterogeneity.

    PubMed

    Improta, Giuseppina; Zupa, Angela; Possidente, Luciana; Tartarone, Alfredo; Pedicini, Piernicola; Nappi, Antonio; Molinari, Sergio; Fraggetta, Filippo; Vita, Giulia

    2013-05-01

    Evaluation of the mutational status of KRAS is a crucial step for the correct therapeutic approach in treating advanced colorectal cancer as the identification of wild-type KRAS tumors leads to more specific and less toxic treatments for patients. Although several studies have highlighted the differences between primary and metastatic tumors, the possibility of two or more mutations in the same codon has seldom been reported. The present study reports an additional case of an advanced adenocarcinoma of the colon showing two somatic mutations (p.G12D and p.G12V) in the same codon (codon 12) of exon 2 of the KRAS gene, thus supporting the possibility of two differing clonal origins of the tumor. Although the clinical significance of multiple mutations remains unknown at present, based on the limited data available in the literature, this rare event appears to be associated with a more aggressive disease, as in the present case. This case report demonstrates the existence of intratumoral heterogeneity and the coexistence of distinct clones within a tumor that may have profound clinical implications for disease progression and therapeutic responses.

  19. Enhanced MET translation and signaling sustains K-Ras driven proliferation under anchorage-independent growth conditions

    PubMed Central

    Fujita-Sato, Saori; Galeas, Jacqueline; Truitt, Morgan; Pitt, Cameron; Urisman, Anatoly; Bandyopadhyay, Sourav; Ruggero, Davide; McCormick, Frank

    2015-01-01

    Oncogenic K-Ras mutation occurs frequently in several types of cancers including pancreatic and lung cancers. Tumors with K-Ras mutation are resistant to chemotherapeutic drugs as well as molecular targeting agents. Although numerous approaches are ongoing to find effective ways to treat these tumors, there are still no effective therapies for K-Ras mutant cancer patients. Here we report that K-Ras mutant cancers are more dependent on K-Ras in anchorage independent culture conditions than in monolayer culture conditions. In seeking to determine mechanisms that contribute to the K-Ras dependency in anchorage independent culture conditions, we discovered the involvement of Met in K-Ras-dependent, anchorage independent cell growth. The Met signaling pathway is enhanced and plays an indispensable role in anchorage independent growth even in cells in which Met is not amplified. Indeed, Met expression is elevated under anchorage-independent growth conditions and is regulated by K-Ras in a MAPK/ERK kinase (MEK)-dependent manner. Remarkably, in spite of a global down-regulation of mRNA translation during anchorage independent growth, we find that Met mRNA translation is specifically enhanced under these conditions. Importantly, ectopic expression of an active Met mutant rescues K-Ras ablation-derived growth suppression, indicating that K-Ras mediated Met expression drives “K-Ras addiction” in anchorage independent conditions. Our results indicate that enhanced Met expression and signaling is essential for anchorage independent growth of K-Ras mutant cancer cells and suggests that pharmacological inhibitors of Met could be effective for K-Ras mutant tumor patients. PMID:25977330

  20. Dimethyl fumarate is highly cytotoxic in KRAS mutated cancer cells but spares non-tumorigenic cells.

    PubMed

    Bennett Saidu, Nathaniel Edward; Bretagne, Marie; Mansuet, Audrey Lupo; Just, Pierre-Alexandre; Leroy, Karen; Cerles, Olivier; Chouzenoux, Sandrine; Nicco, Carole; Damotte, Diane; Alifano, Marco; Borghese, Bruno; Goldwasser, François; Batteux, Frédéric; Alexandre, Jérôme

    2018-02-06

    KRAS mutation, one of the most common molecular alterations observed in adult carcinomas, was reported to activate the anti-oxidant program driven by the transcription factor NRF2 (Nuclear factor-erythroid 2-related factor 2). We previously observed that the antitumoral effect of Dimethyl fumarate (DMF) is dependent of NRF2 pathway inhibition. We used in vitro methods to examine the effect of DMF on cell death and the activation of the NRF2/DJ-1 antioxidant pathway. We report here that DMF is preferentially cytotoxic against KRAS mutated cancer cells. This effect was observed in patient-derived cancer cell lines harbouring a G12V KRAS mutation, compared with cell lines without such a mutation. In addition, KRAS*G12V over-expression in the human Caco-2 colon cancer cell line significantly promoted DMF-induced cell death, as well as DMF-induced- reactive oxygen species (ROS) formation and -glutathione (GSH) depletion. Moreover, in contrast to malignant cells, our data confirms that the same concentration of DMF has no significant cytotoxic effects on non-tumorigenic human ARPE-19 retinal epithelial, murine 3T3 fibroblasts and primary mice bone marrow cells; but is rather associated with NRF2 activation, decreased ROS and increased GSH levels. Furthermore, DJ-1 down-regulation experiments showed that this protein does not play a protective role against NRF2 in non-tumorigenic cells, as it does in malignant ones. This, interestingly, could be at the root of the differential effect of DMF observed between malignant and non-tumorigenic cells. Our results suggest for the first time that the dependence on NRF2 observed in mutated KRAS malignant cells makes them more sensitive to the cytotoxic effect of DMF, which thus opens up new prospects for the therapeutic applications of DMF.

  1. KRAS, EGFR, PDGFR-α, KIT and COX-2 status in carcinoma showing thymus-like elements (CASTLE)

    PubMed Central

    2014-01-01

    Background CASTLE (Carcinoma showing thymus-like elements) is a rare malignant neoplasm of the thyroid resembling lymphoepithelioma-like and squamous cell carcinoma of the thymus with different biological behaviour and a better prognosis than anaplastic carcinoma of the thyroid. Methods We retrospectively investigated 6 cases of this very rare neoplasm in order to investigate the mutational status of KRAS, EGFR, PDGFR-α and KIT, as well as the immunohistochemical expression pattern of CD117, EGFR and COX-2, and possibly find new therapeutic targets. Results Diagnosis was confirmed by a moderate to strong expression of CD5, CD117 and CK5/6, whereas thyroglobulin, calcitonin and TTF-1 were negative in all cases. Tumors were also positive for COX-2 and in nearly all cases for EGFR. In four cases single nucleotide polymorphisms (SNPs) could be detected in exon 12 of the PDGFR-α gene (rs1873778), in three cases SNPs were found in exon 20 of the EGFR gene (rs1050171). No mutations were found in the KIT and KRAS gene. Conclusions All tumors showed a COX-2 expression as well as an EGFR expression except for one case and a wild-type KRAS status. No activating mutations in the EGFR, KIT and PDGFR-α gene could be detected. Our data may indicate a potential for targeted therapies, but if these therapeutic strategies are of benefit in CASTLE remains to be determined. Virtual Slides The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1658499296115016 PMID:24934485

  2. Differential Effector Engagement by Oncogenic KRAS.

    PubMed

    Yuan, Tina L; Amzallag, Arnaud; Bagni, Rachel; Yi, Ming; Afghani, Shervin; Burgan, William; Fer, Nicole; Strathern, Leslie A; Powell, Katie; Smith, Brian; Waters, Andrew M; Drubin, David; Thomson, Ty; Liao, Rosy; Greninger, Patricia; Stein, Giovanna T; Murchie, Ellen; Cortez, Eliane; Egan, Regina K; Procter, Lauren; Bess, Matthew; Cheng, Kwong Tai; Lee, Chih-Shia; Lee, Liam Changwoo; Fellmann, Christof; Stephens, Robert; Luo, Ji; Lowe, Scott W; Benes, Cyril H; McCormick, Frank

    2018-02-13

    KRAS can bind numerous effector proteins, which activate different downstream signaling events. The best known are RAF, phosphatidylinositide (PI)-3' kinase, and RalGDS families, but many additional direct and indirect effectors have been reported. We have assessed how these effectors contribute to several major phenotypes in a quantitative way, using an arrayed combinatorial siRNA screen in which we knocked down 41 KRAS effectors nodes in 92 cell lines. We show that every cell line has a unique combination of effector dependencies, but in spite of this heterogeneity, we were able to identify two major subtypes of KRAS mutant cancers of the lung, pancreas, and large intestine, which reflect different KRAS effector engagement and opportunities for therapeutic intervention. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  3. [miR-143 inhibits cell proliferation through targeted regulating the expression of K-ras gene in HeLa cells].

    PubMed

    Qin, H X; Cui, H K; Pan, Y; Hu, R L; Zhu, L H; Wang, S J

    2016-12-23

    Objective: To explore the effect of microRNA miR-143 on the proliferation of cervical cancer HeLa cells through targeted regulating the expression of K-ras gene. Methods: The luciferase report carrier containing wild type 3'-UTR of K-ras gene (K-ras-wt) or mutated 3'-UTR of the K-ras (K-ras-mut) were co-transfected with iR-143 mimic into the HeLa cells respectively, and the targeting effect of miR-143 in the transfectants was verified by the dual luciferase report system. HeLa cells were also transfected with miR-143 mimic (miR-143 mimic group), mimic control (negative control group), and miR-143 mimic plus K-ras gene (miR-143 mimic+ K-ras group), respectively. The expression of miR-143 in the transfected HeLa cells was detected by real-time PCR (RT-PCR), and the expression of K-ras protein was detected by Western blot. The cell proliferation activity of each group was examined by MTT assay. In addition, human cervical cancer tissue samples ( n =5) and cervical intraepithelial neoplasia tissue samples ( n =5) were also examined for the expression of miR-143 and K-ras protein by RT-PCR and Western blot, respectively. Results: The luciferase report assay showed that co-transfection with miR-143 mimic decreased the luciferase activity of the K-ras-wt significantly, but did not inhibit the luciferase activity of the K-ras-mut. The expression of miR-143 in the HeLa cells transfected with miR-143 mimic was significantly higher than that in the HeLa cells transfected with the mimic control (3.31±0.45 vs 0.97±0.22, P <0.05). The MTT assay revealed that the cell proliferative activity of the miR-143 mimic group was significantly lower than that of the negative control group ( P <0.05), and the cell proliferative activity of the miR-143 mimic+ K-ras group was also significantly lower than the control group ( P <0.05) but higher than the miR-143 mimic group significantly ( P <0.05). The expression levels of K-ras protein in the miR-143 mimic group, the negative control

  4. KRAS and the Reality of Personalized Medicine in Non-Small Cell Lung Cancer

    PubMed Central

    Kilgoz, Havva O; Bender, Guzide; Scandura, Joseph M; Viale, Agnes; Taneri, Bahar

    2016-01-01

    Lung cancer is the leading cause of mortality among all cancer types worldwide. The latest available global statistics of the World Health Organization report 1.59 million casualities in 2012. Worldwide, 1 in 5 cancer deaths are caused by lung cancer. In 2016, in the United States alone, there are an estimated 224,390 new cases of lung cancer, of which 158,080 are expected to result in death, as reported by the National Cancer Institute. Non-small cell lung cancer (NSCLC), a histological subtype, comprises about 85% of all cases, which is nearly 9 out of 10 lung cancer patients. Efforts are under way to develop and improve targeted therapy strategies. Certain mutations are being clinically targeted, such as those in EGFR and ALK genes. However, one of the most frequently mutated genes in NSCLC is the Kirsten rat sarcoma viral oncogene homolog (KRAS), which is currently not targetable. Approximately 25% of all types of NSCLC tumors contain KRAS mutations, which remain as an undruggable challenge. These mutations are indicative of poor prognosis and show negative response to standard chemotherapy. Furthermore, tumors harboring KRAS mutations are unlikely to respond to currently available targeted treatments such as tyrosine kinase inhibitors. Therefore, there is a definitive, urgent need to generate new targeted therapy approaches for KRAS mutations. Current strategies have major limitations and revolve around targeting molecules upstream and downstream of KRAS. Direct targeting is not available in the clinic. Combination therapies using multiple agents are being sought. Concentrated efforts are needed to accelerate basic research and consecutive clinical trials to achieve effective targeting of KRAS. PMID:27447490

  5. Comparative transcriptomic analysis of silkwormBmovo-1 and wild type silkworm ovary

    PubMed Central

    Xue, Renyu; Hu, Xiaolong; Zhu, Liyuan; Cao, Guangli; Huang, Moli; Xue, Gaoxu; Song, Zuowei; Lu, Jiayu; Chen, Xueying; Gong, Chengliang

    2015-01-01

    The detailed molecular mechanism of Bmovo-1 regulation of ovary size is unclear. To uncover the mechanism of Bmovo-1 regulation of ovarian development and oogenesis using RNA-Seq, we compared the transcriptomes of wild type (WT) and Bmovo-1-overexpressing silkworm (silkworm+Bmovo-1) ovaries. Using a pair-end Illumina Solexa sequencing strategy, 5,296,942 total reads were obtained from silkworm+Bmovo-1 ovaries and 6,306,078 from WT ovaries. The average read length was about 100 bp. Clean read ratios were 98.79% for silkworm+Bmovo-1 and 98.87% for WT silkworm ovaries. Comparative transcriptome analysis showed 123 upregulated and 111 downregulated genes in silkworm+Bmovo-1 ovaries. These differentially expressed genes were enriched in the extracellular and extracellular spaces and involved in metabolism, genetic information processing, environmental information processing, cellular processes and organismal systems. Bmovo-1 overexpression in silkworm ovaries might promote anabolism for ovarian development and oogenesis and oocyte proliferation and transport of nutrients to ovaries by altering nutrient partitioning, which would support ovary development. Excessive consumption of nutrients for ovary development alters nutrient partitioning and deters silk protein synthesis. PMID:26643037

  6. 454 next generation-sequencing outperforms allele-specific PCR, Sanger sequencing, and pyrosequencing for routine KRAS mutation analysis of formalin-fixed, paraffin-embedded samples

    PubMed Central

    Altimari, Annalisa; de Biase, Dario; De Maglio, Giovanna; Gruppioni, Elisa; Capizzi, Elisa; Degiovanni, Alessio; D’Errico, Antonia; Pession, Annalisa; Pizzolitto, Stefano; Fiorentino, Michelangelo; Tallini, Giovanni

    2013-01-01

    Detection of KRAS mutations in archival pathology samples is critical for therapeutic appropriateness of anti-EGFR monoclonal antibodies in colorectal cancer. We compared the sensitivity, specificity, and accuracy of Sanger sequencing, ARMS-Scorpion (TheraScreen®) real-time polymerase chain reaction (PCR), pyrosequencing, chip array hybridization, and 454 next-generation sequencing to assess KRAS codon 12 and 13 mutations in 60 nonconsecutive selected cases of colorectal cancer. Twenty of the 60 cases were detected as wild-type KRAS by all methods with 100% specificity. Among the 40 mutated cases, 13 were discrepant with at least one method. The sensitivity was 85%, 90%, 93%, and 92%, and the accuracy was 90%, 93%, 95%, and 95% for Sanger sequencing, TheraScreen real-time PCR, pyrosequencing, and chip array hybridization, respectively. The main limitation of Sanger sequencing was its low analytical sensitivity, whereas TheraScreen real-time PCR, pyrosequencing, and chip array hybridization showed higher sensitivity but suffered from the limitations of predesigned assays. Concordance between the methods was k = 0.79 for Sanger sequencing and k > 0.85 for the other techniques. Tumor cell enrichment correlated significantly with the abundance of KRAS-mutated deoxyribonucleic acid (DNA), evaluated as ΔCt for TheraScreen real-time PCR (P = 0.03), percentage of mutation for pyrosequencing (P = 0.001), ratio for chip array hybridization (P = 0.003), and percentage of mutation for 454 next-generation sequencing (P = 0.004). Also, 454 next-generation sequencing showed the best cross correlation for quantification of mutation abundance compared with all the other methods (P < 0.001). Our comparison showed the superiority of next-generation sequencing over the other techniques in terms of sensitivity and specificity. Next-generation sequencing will replace Sanger sequencing as the reference technique for diagnostic detection of KRAS mutation in archival tumor tissues. PMID

  7. Overexpression of the transcription activator Msn2 enhances the fermentation ability of industrial baker's yeast in frozen dough.

    PubMed

    Sasano, Yu; Haitani, Yutaka; Hashida, Keisuke; Ohtsu, Iwao; Shima, Jun; Takagi, Hiroshi

    2012-01-01

    We constructed a self-cloning diploid baker's yeast strain that overexpressed the transcription activator Msn2. It showed higher tolerance to freeze-thaw stress and higher intracellular trehalose level than observed in the wild-type strain. Overexpression of Msn2 also enhanced the fermentation ability of baker's yeast cells in frozen dough. Hence, Msn2-overexpressing baker's yeast should be useful in frozen-dough baking.

  8. Impact of fixation artifacts and threshold selection on high resolution melting analysis for KRAS mutation screening.

    PubMed

    Pérez-Báez, Wendy; García-Latorre, Ethel A; Maldonado-Martínez, Héctor Aquiles; Coronado-Martínez, Iris; Flores-García, Leonardo; Taja-Chayeb, Lucía

    2017-10-01

    Treatment in metastatic colorectal cancer (mCRC) has expanded with monoclonal antibodies targeting epidermal growth factor receptor, but is restricted to patients with a wild-type (WT) KRAS mutational status. The most sensitive assays for KRAS mutation detection in formalin-fixed paraffin embedded (FFPE) tissues are based on real-time PCR. Among them, high resolution melting analysis (HRMA), is a simple, fast, highly sensitive, specific and cost-effective method, proposed as adjunct for KRAS mutation detection. However the method to categorize WT vs mutant sequences in HRMA is not clearly specified in available studies, besides the impact of FFPE artifacts on HRMA performance hasn't been addressed either. Avowedly adequate samples from 104 consecutive mCRC patients were tested for KRAS mutations by Therascreen™ (FDA Validated test), HRMA, and HRMA with UDG pre-treatment to reverse FFPE fixation artifacts. Comparisons of KRAS status allocation among the three methods were done. Focusing on HRMA as screening test, ROC curve analyses were performed for HRMA and HMRA-UDG against Therascreen™, in order to evaluate their discriminative power and to determine the threshold of profile concordance between WT control and sample for KRAS status determination. Comparing HRMA and HRMA-UDG against Therascreen™ as surrogate gold standard, sensitivity was 1 for both HRMA and HRMA-UDG; and specificity and positive predictive values were respectively 0.838 and 0.939; and 0.777 and 0.913. As evaluated by the McNemar test, HRMA-UDG allocated samples to a WT/mutated genotype in a significatively different way from HRMA (p > 0.001). On the other hand HRMA-UDG did not differ from Therascreen™ (p = 0.125). ROC-curve analysis showed a significant discriminative power for both HRMA and HRMA-UDG against Therascreen™ (respectively, AUC of 0.978, p > 0.0001, CI 95% 0.957-0.999; and AUC of 0.98, p > 0.0001, CI 95% 0.000-1.0). For HRMA as a screening tool, the best threshold

  9. In vitro modeling of human pancreatic duct epithelial cell transformation defines gene expression changes induced by K-ras oncogenic activation in pancreatic carcinogenesis.

    PubMed

    Qian, Jiaying; Niu, Jiangong; Li, Ming; Chiao, Paul J; Tsao, Ming-Sound

    2005-06-15

    Genetic analysis of pancreatic ductal adenocarcinomas and their putative precursor lesions, pancreatic intraepithelial neoplasias (PanIN), has shown a multistep molecular paradigm for duct cell carcinogenesis. Mutational activation or inactivation of the K-ras, p16(INK4A), Smad4, and p53 genes occur at progressive and high frequencies in these lesions. Oncogenic activation of the K-ras gene occurs in >90% of pancreatic ductal carcinoma and is found early in the PanIN-carcinoma sequence, but its functional roles remain poorly understood. We show here that the expression of K-ras(G12V) oncogene in a near diploid HPV16-E6E7 gene immortalized human pancreatic duct epithelial cell line originally derived from normal pancreas induced the formation of carcinoma in 50% of severe combined immunodeficient mice implanted with these cells. A tumor cell line established from one of these tumors formed ductal cancer when implanted orthotopically. These cells also showed increased activation of the mitogen-activated protein kinase, AKT, and nuclear factor-kappaB pathways. Microarray expression profiling studies identified 584 genes whose expression seemed specifically up-regulated by the K-ras oncogene expression. Forty-two of these genes have been reported previously as differentially overexpressed in pancreatic cancer cell lines or primary tumors. Real-time PCR confirmed the overexpression of a large number of these genes. Immunohistochemistry done on tissue microarrays constructed from PanIN and pancreatic cancer samples showed laminin beta3 overexpression starting in high-grade PanINs and occurring in >90% of pancreatic ductal carcinoma. The in vitro modeling of human pancreatic duct epithelial cell transformation may provide mechanistic insights on gene expression changes that occur during multistage pancreatic duct cell carcinogenesis.

  10. KRAS mutation testing in metastatic colorectal cancer

    PubMed Central

    Tan, Cong; Du, Xiang

    2012-01-01

    The KRAS oncogene is mutated in approximately 35%-45% of colorectal cancers, and KRAS mutational status testing has been highlighted in recent years. The most frequent mutations in this gene, point substitutions in codons 12 and 13, were validated as negative predictors of response to anti-epidermal growth factor receptor antibodies. Therefore, determining the KRAS mutational status of tumor samples has become an essential tool for managing patients with colorectal cancers. Currently, a variety of detection methods have been established to analyze the mutation status in the key regions of the KRAS gene; however, several challenges remain related to standardized and uniform testing, including the selection of tumor samples, tumor sample processing and optimal testing methods. Moreover, new testing strategies, in combination with the mutation analysis of BRAF, PIK3CA and loss of PTEN proposed by many researchers and pathologists, should be promoted. In addition, we recommend that microsatellite instability, a prognostic factor, be added to the abovementioned concomitant analysis. This review provides an overview of KRAS biology and the recent advances in KRAS mutation testing. This review also addresses other aspects of status testing for determining the appropriate treatment and offers insight into the potential drawbacks of mutational testing. PMID:23066310

  11. Overexpression of HvHGGT Enhances Tocotrienol Levels and Antioxidant Activity in Barley.

    PubMed

    Chen, Jianshu; Liu, Cuicui; Shi, Bo; Chai, Yuqiong; Han, Ning; Zhu, Muyuan; Bian, Hongwu

    2017-06-28

    Vitamin E is a potent lipid-soluble antioxidant and essential nutrient for human health. Tocotrienols are the major form of vitamin E in seeds of most monocots. It has been known that homogentisate geranylgeranyl transferase (HGGT) catalyzes the committed step of tocotrienol biosynthesis. In the present study, we generated transgenic barley overexpressing HvHGGT under endogenous D-Hordein promoter (proHor). Overexpression of HvHGGT increased seed size and seed weight in transgenic barley. Notably, total tocotrienol content increased by 10-15% in seeds of transgenic lines, due to the increased levels of δ-, β-, and γ-tocotrienol, but not α-tocotrienol. Total tocopherol content decreased by 14-18% in transgenic lines, compared to wild type. The antioxidant activity of seeds was determined by using 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS), and lipid peroxidation assays. Compared to wild type, radical scavenging activity of seed extracts was enhanced by 17-18% in transgenic lines. Meanwhile, the lipid peroxidation level was decreased by about 20% in transgenic barley seeds. Taken together, overexpression of HvHGGT enhanced the tocotrienol levels and antioxidant capacity in barley seeds.

  12. Overexpressing Ferredoxins in Chlamydomonas reinhardtii Increase Starch and Oil Yields and Enhance Electric Power Production in a Photo Microbial Fuel Cell

    PubMed Central

    Huang, Li-Fen; Lin, Ji-Yu; Pan, Kui-You; Huang, Chun-Kai; Chu, Ying-Kai

    2015-01-01

    Ferredoxins (FDX) are final electron carrier proteins in the plant photosynthetic pathway, and function as major electron donors in diverse redox-driven metabolic pathways. We previously showed that overexpression of a major constitutively expressed ferredoxin gene PETF in Chlamydomonas decreased the reactive oxygen species (ROS) level and enhanced tolerance to heat stress. In addition to PETF, an endogenous anaerobic induced FDX5 was overexpressed in transgenic Chlamydomonas lines here to address the possible functions of FDX5. All the independent FDX transgenic lines showed decreased cellular ROS levels and enhanced tolerance to heat and salt stresses. The transgenic Chlamydomonas lines accumulated more starch than the wild-type line and this effect increased almost three-fold in conditions of nitrogen depletion. Furthermore, the lipid content was higher in the transgenic lines than in the wild-type line, both with and without nitrogen depletion. Two FDX-overexpressing Chlamydomonas lines were assessed in a photo microbial fuel cell (PMFC); power density production by the transgenic lines was higher than that of the wild-type cells. These findings suggest that overexpression of either PETF or FDX5 can confer tolerance against heat and salt stresses, increase starch and oil production, and raise electric power density in a PMFC. PMID:26287179

  13. Hepatic NPC1L1 overexpression ameliorates glucose metabolism in diabetic mice via suppression of gluconeogenesis.

    PubMed

    Kurano, Makoto; Hara, Masumi; Satoh, Hiroaki; Tsukamoto, Kazuhisa

    2015-05-01

    Inhibition of intestinal NPC1L1 by ezetimibe has been demonstrated to improve glucose metabolism in rodent models; however, the role of hepatic NPC1L1 in glucose metabolism has not been elucidated. In this study, we analyzed the effects of hepatic NPC1L1 on glucose metabolism. We overexpressed NPC1L1 in the livers of lean wild type mice, diet-induced obesity mice and db/db mice with adenoviral gene transfer. We found that in all three mouse models, hepatic NPC1L1 overexpression lowered fasting blood glucose levels as well as blood glucose levels on ad libitum; in db/db mice, hepatic NPC1L1 overexpression improved blood glucose levels to almost the same as those found in lean wild type mice. A pyruvate tolerance test revealed that gluconeogenesis was suppressed by hepatic NPC1L1 overexpression. Further analyses revealed that hepatic NPC1L1 overexpression decreased the expression of FoxO1, resulting in the reduced expression of G6Pase and PEPCK, key enzymes in gluconeogenesis. These results indicate that hepatic NPC1L1 might have distinct properties of suppressing gluconeogenesis via inhibition of FoxO1 pathways. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. KRAS, NRAS and BRAF mutations detected by next generation sequencing, and differential clinical outcome in metastatic colorectal cancer (MCRC) patients treated with first line FIr-B/FOx adding bevacizumab (BEV) to triplet chemotherapy.

    PubMed

    Bruera, Gemma; Pepe, Francesco; Malapelle, Umberto; Pisapia, Pasquale; Mas, Antonella Dal; Di Giacomo, Daniela; Calvisi, Giuseppe; Troncone, Giancarlo; Ricevuto, Enrico

    2018-05-29

    First line triplet chemotherapy/BEV significantly improved clinical outcome of MCRC. KRAS/NRAS/BRAF mutations were evaluated by next generation sequencing (NGS) in MCRC patients treated with first line FIr-B/FOx. KRAS exons 2-4 ( KRAS 2-4 ), NRAS 2-4 , BRAF 15 were evaluated in 67 tumours by ION Torrent platform. Mutation detection criteria: >500×sequence coverage (cov); >1% mutant allelic fraction (AF). Clinical outcomes were compared by log-rank. In 63 samples, KRAS 2-4 / NRAS 2-4 / BRAF 15 wild-type (wt) were 14 (22.2%), mutant (mut) 49 (77.8%): KRAS 2-4 42 (66.7%); NRAS 2-4 11 (16.4%); BRAF 15 5 (7.5%). Sixty mutations were detected, range 1-3 mut: 43 (71.7%) >1000×cov/>5% AF; 9 (15%) >500×cov/>5% AF; 8 (13.3%) >1000×cov/<5% AF. Mut distribution in KRAS 2-4 / NRAS 2-4 / BRAF 15 : 40 (63.5%) >1000×cov/>5% AF, 8 (12.7%) >500×cov/>5% AF, 1 (1.6%) >1000×cov/<5% AF; BRAF 15 1 (1.5%) >500×cov/>5% AF, 4 (6%) >1000×cov/<5% AF. Prevalence of ≥2 mut samples: KRAS 2-4 / NRAS 2-4 / BRAF 15 8 (12.7%); KRAS 2-4 7 (11.1%); NRAS 2-4 5 (7.5%). BRAF 15 mutant were all ≥2 mut (7.5%), atypical and associated to KRAS and/or NRAS mut: c.1405 G>A; c.1406 G>C; c.1756 G>A, 2 samples; c.1796 C>T. At 21 months (m) follow-up, clinical outcome wt compared to mut was not significantly different: in KRAS 2-4 / NRAS 2-4 / BRAF 15 , progression-free survival (PFS) 18/12 m, overall survival (OS) 28/22 m; 1/≥2 mutations, PFS 14/11, OS 37/22. PFS was trendy worse in RAS / BRAF wt vs ≥2 mut genes ( P 0.059). Most MCRC harboured KRAS 2-4 / NRAS 2-4 / BRAF 15 mutations by NGS, often multiple and affecting few tumoral clones; 22% were triple wt. Clinical outcome is not significantly affected by KRAS 2-4 / NRAS 2-4 / BRAF 15 genotype, trendy different in triple wt, compared with KRAS 2-4 / NRAS 2-4 / BRAF 15 ≥2 mut.

  15. Effects of camptothecin or TOP1 overexpression on genetic stability in Saccharomyces cerevisiae.

    PubMed

    Sloan, Roketa; Huang, Shar-Yin Naomi; Pommier, Yves; Jinks-Robertson, Sue

    2017-11-01

    Topoisomerase I (Top1) removes DNA torsional stress by nicking and resealing one strand of DNA, and is essential in higher eukaryotes. The enzyme is frequently overproduced in tumors and is the sole target of the chemotherapeutic drug camptothecin (CPT) and its clinical derivatives. CPT stabilizes the covalent Top1-DNA cleavage intermediate, which leads to toxic double-strand breaks (DSBs) when encountered by a replication fork. In the current study, we examined genetic instability associated with CPT treatment or with Top1 overexpression in the yeast Saccharomyces cerevisiae. Two types of instability were monitored: Top1-dependent deletions in haploid strains, which do not require processing into a DSB, and instability at the repetitive ribosomal DNA (rDNA) locus in diploid strains, which reflects DSB formation. Three 2-bp deletion hotspots were examined and mutations at each were elevated either when a wild-type strain was treated with CPT or when TOP1 was overexpressed, with the mutation frequency correlating with the level of TOP1 overexpression. Under both conditions, deletions at novel positions were enriched. rDNA stability was examined by measuring loss-of-heterozygosity and as was observed previously upon CPT treatment of a wild-type strain, Top1 overexpression destabilized rDNA. We conclude that too much, as well as too little of Top1 is detrimental to eukaryotic genomes, and that CPT has destabilizing effects that extend beyond those associated with DSB formation. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Overexpression of the A-FABP gene facilitates intermuscular fat deposition in transgenic mice.

    PubMed

    Liu, Z W; Fan, H L; Liu, X F; Ding, X B; Wang, T; Sui, G N; Li, G P; Guo, H

    2015-03-31

    Adipocyte fatty acid-binding protein (A-FABP), the most abundant FABP in adipocytes, controls fatty acid uptake, transport, and metabolism in fat cells. We constructed a transgenic mice model that overexpressed the cattle A-FABP gene to investigate the relationship between A-FABP expression and intermuscular fat deposition. There was no significant difference in body weight and serum biochemical indexes between transgenic and wild-type mice. Further, there were no significant differences in intermuscular triglyceride content and A-FABP expression levels over three generations of transgenic mice. However, abdominal adipose rate, A-FABP protein content, and intermuscular triglyceride levels of transgenic mice were significantly higher than those of wild-type mice. In addition, triglycerides were remarkably higher in the skeletal muscle but lower in the myocardium of transgenic mice. Thus, overexpression of cattle A-FABP gene promoted fat deposition in the skeletal muscle of transgenic mice.

  17. Overexpression of PaFT gene in the wild orchid Phalaenopsis amabilis (L.) Blume

    NASA Astrophysics Data System (ADS)

    Semiarti, Endang; Mercuriani, Ixora S.; Rizal, Rinaldi; Slamet, Agus; Utami, Bekti S.; Bestari, Ida A.; Aziz-Purwantoro, Moeljopawiro, S.; Jang, Soenghoe; Machida, Y.; Machida, C.

    2015-09-01

    To shorten vegetative stage and induce transition from vegetative to reproductive stage in orchids, we overexpressed Phalaenopsis amabilis Flowering LocusT (PaFT) gene under the control of Ubiquitin promoter into protocorm of Indonesian Wild Orchid Phalaenopsis amabilis (L.) Blume. The dynamic expression of vegetative gene Phalaenopsis Homeobox1 (POH1) and flowering time gene PaFT has been analyzed. Accumulation of mRNA was detected in shoot and leaves of both transgenic and non transgenic plants by using Reverse transcriptase-PCR (RT-PCR) with specific gene primers for POH1 and PaFT in 24 months old plants. To analyze the POH1 and PaFT genes, three pairs of degenerate primers PaFT degF1R1, F2R2 and F3R3 that amplified 531 bp PaFT cDNA were used. We detected 700 bp PaFTcDNA from leaves and shoots of transgenic plants, but not in NT plants. POH1 mRNA was detected in plants. PaFT protein consists of Phospatidyl Ethanolamine-Binding Protein (PEBP) in interval base 73-483 and CETS family protein at base 7-519, which are important motif for transmembrane protein. We inserted Ubipro::PaFT/pGAS101 into P. amabilis protocorm using Agrobacterium. Analysis of transgenic plants showed that PaFTmRNA was accumulated in leaves of 12 months after sowing, although it is not detected in non transgeic plants. Compare to the wild type (NT plants), ectopic expression of PaFT shows alter phenotype as follows: 31% normal, 19% with short-wavy leaves, 5% form rosette leaves and 45% produced multishoots. Analysis of protein profiles of trasgenic plants showed that a putative PaFT protein (MW 19,7 kDa) was produced in 1eaves and shoots.This means that at 12 months, POH1 gene expression gradually decreased/negatively regulated, the expression of PaFT gene was activated, although there is no flower initiation yet. Some environmental factors might play a role to induce inflorescens. This experiment is in progress.

  18. Differential expression of the TWEAK receptor Fn14 in IDH1 wild-type and mutant gliomas.

    PubMed

    Hersh, David S; Peng, Sen; Dancy, Jimena G; Galisteo, Rebeca; Eschbacher, Jennifer M; Castellani, Rudy J; Heath, Jonathan E; Legesse, Teklu; Kim, Anthony J; Woodworth, Graeme F; Tran, Nhan L; Winkles, Jeffrey A

    2018-06-01

    The TNF receptor superfamily member Fn14 is overexpressed by many solid tumor types, including glioblastoma (GBM), the most common and lethal form of adult brain cancer. GBM is notable for a highly infiltrative growth pattern and several groups have reported that high Fn14 expression levels can increase tumor cell invasiveness. We reported previously that the mesenchymal and proneural GBM transcriptomic subtypes expressed the highest and lowest levels of Fn14 mRNA, respectively. Given the recent histopathological re-classification of human gliomas by the World Health Organization based on isocitrate dehydrogenase 1 (IDH1) gene mutation status, we extended this work by comparing Fn14 gene expression in IDH1 wild-type (WT) and mutant (R132H) gliomas and in cell lines engineered to overexpress the IDH1 R132H enzyme. We found that both low-grade and high-grade (i.e., GBM) IDH1 R132H gliomas exhibit low Fn14 mRNA and protein levels compared to IDH1 WT gliomas. Forced overexpression of the IDH1 R132H protein in glioma cells reduced Fn14 expression, while treatment of IDH1 R132H-overexpressing cells with the IDH1 R132H inhibitor AGI-5198 or the DNA demethylating agent 5-aza-2'-deoxycytidine increased Fn14 expression. These results support a role for Fn14 in the more aggressive and invasive phenotype associated with IDH1 WT tumors and indicate that the low levels of Fn14 gene expression noted in IDH1 R132H mutant gliomas may be due to epigenetic regulation via changes in DNA methylation.

  19. Biglycan Overexpression on Tooth Enamel Formation in Transgenic Mice

    PubMed Central

    Wen, Xin; Zou, YanMing; Luo, Wen; Goldberg, Michel; Moats, Rex; Conti, Peter S.; Snead, Malcolm L.; Paine, Michael L.

    2008-01-01

    Previously it was shown that the volume of forming enamel of molar teeth in biglycan-null mice was greater than in genetically matched wild-type mice. This phenotypic change appeared to result from an increase in amelogenin expression, implying that biglycan directly influences amelogenin synthesis. To determine whether biglycan over-expression resulted in decreased amelogenin expression, we engineered transgenic mice to over-express biglycan in the enamel organ epithelium. Biglycan over-expression did not significantly affect the amelogenin expression in incisor and molar teeth in 3-day transgenic mice. In the transgenic animals we observed that the immature and mature enamel appeared normal. These results suggested that increasing the biglycan expression, in the cells that synthesize the precursor protein matrix for enamel, has a negligible influence on amelogenesis. PMID:18727043

  20. Overexpression of the Mitochondrial T3 Receptor p43 Induces a Shift in Skeletal Muscle Fiber Types

    PubMed Central

    Casas, François; Pessemesse, Laurence; Grandemange, Stéphanie; Seyer, Pascal; Gueguen, Naïg; Baris, Olivier; Lepourry, Laurence; Cabello, Gérard; Wrutniak-Cabello, Chantal

    2008-01-01

    In previous studies, we have characterized a new hormonal pathway involving a mitochondrial T3 receptor (p43) acting as a mitochondrial transcription factor and consequently stimulating mitochondrial activity and mitochondrial biogenesis. We have established the involvement of this T3 pathway in the regulation of in vitro myoblast differentiation.We have generated mice overexpressing p43 under control of the human α-skeletal actin promoter. In agreement with the previous characterization of this promoter, northern-blot and western-blot experiments confirmed that after birth p43 was specifically overexpressed in skeletal muscle. As expected from in vitro studies, in 2-month old mice, p43 overexpression increased mitochondrial genes expression and mitochondrial biogenesis as attested by the increase of mitochondrial mass and mt-DNA copy number. In addition, transgenic mice had a body temperature 0.8°C higher than control ones and displayed lower plasma triiodothyronine levels. Skeletal muscles of transgenic mice were redder than wild-type animals suggesting an increased oxidative metabolism. In line with this observation, in gastrocnemius, we recorded a strong increase in cytochrome oxidase activity and in mitochondrial respiration. Moreover, we observed that p43 drives the formation of oxidative fibers: in soleus muscle, where MyHC IIa fibers were partly replaced by type I fibers; in gastrocnemius muscle, we found an increase in MyHC IIa and IIx expression associated with a reduction in the number of glycolytic fibers type IIb. In addition, we found that PGC-1α and PPARδ, two major regulators of muscle phenotype were up regulated in p43 transgenic mice suggesting that these proteins could be downstream targets of mitochondrial activity. These data indicate that the direct mitochondrial T3 pathway is deeply involved in the acquisition of contractile and metabolic features of muscle fibers in particular by regulating PGC-1α and PPARδ. PMID:18575627

  1. miR-181a shows tumor suppressive effect against oral squamous cell carcinoma cells by downregulating K-ras

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shin, Ki-Hyuk, E-mail: kshin@dentistry.ucla.edu; Dental Research Institute, University of California, Los Angeles, CA 90095; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095

    2011-01-28

    Research highlights: {yields} MicroRNA-181a (miR-181a) was frequently downregulated in oral squamous cell carcinoma (OSCC). {yields} Overexpression of miR-181a suppressed OSCC growth. {yields} K-ras is a novel target of miR-181a. {yields} Decreased miR-181a expression is attributed to its lower promoter activity in OSCC. -- Abstract: MicroRNAs (miRNAs) are epigenetic regulators of gene expression, and their deregulation plays an important role in human cancer, including oral squamous cell carcinoma (OSCC). Recently, we found that miRNA-181a (miR-181a) was upregulated during replicative senescence of normal human oral keratinocytes. Since senescence is considered as a tumor suppressive mechanism, we thus investigated the expression and biologicalmore » role of miR-181a in OSCC. We found that miR-181a was frequently downregulated in OSCC. Ectopic expression of miR-181a suppressed proliferation and anchorage independent growth ability of OSCC. Moreover, miR-181a dramatically reduces the growth of OSCC on three dimensional organotypic raft culture. We also identified K-ras as a novel target of miR-181a. miR-181a decreased K-ras protein level as well as the luciferase activity of reporter vectors containing the 3'-untranslated region of K-ras gene. Finally, we defined a minimal regulatory region of miR-181a and found a positive correlation between its promoter activity and the level of miR-181a expression. In conclusion, miR-181a may function as an OSCC suppressor by targeting on K-ras oncogene. Thus, miR-181a should be considered for therapeutic application for OSCC.« less

  2. PIK3CA and KRAS mutations in cell free circulating DNA are useful markers for monitoring ovarian clear cell carcinoma

    PubMed Central

    Morikawa, Asuka; Hayashi, Tomoatsu; Shimizu, Naomi; Kobayashi, Mana; Taniue, Kenzui; Takahashi, Akiko; Tachibana, Kota; Saito, Misato; Kawabata, Ayako; Iida, Yasushi; Ueda, Kazu; Saito, Motoaki; Yanaihara, Nozomu; Tanabe, Hiroshi; Yamada, Kyosuke; Takano, Hirokuni; Nureki, Osamu; Okamoto, Aikou; Akiyama, Tetsu

    2018-01-01

    Ovarian clear cell carcinoma (OCCC) exhibits distinct phenotypes, such as resistance to chemotherapy, poor prognosis and an association with endometriosis. Biomarkers and imaging techniques currently in use are not sufficient for reliable diagnosis of this tumor or prediction of therapeutic response. It has recently been reported that analysis of somatic mutations in cell-free circulating DNA (cfDNA) released from tumor tissues can be useful for tumor diagnosis. In the present study, we attempted to detect mutations in PIK3CA and KRAS in cfDNA from OCCC patients using droplet digital PCR (ddPCR). Here we show that we were able to specifically detect PIK3CA-H1047R and KRAS-G12D in cfDNA from OCCC patients and monitor their response to therapy. Furthermore, we found that by cleaving wild-type PIK3CA using the CRISPR/Cas9 system, we were able to improve the sensitivity of the ddPCR method and detect cfDNA harboring PIK3CA-H1047R. Our results suggest that detection of mutations in cfDNA by ddPCR would be useful for the diagnosis of OCCC, and for predicting its recurrence. PMID:29632642

  3. Impact of KRAS codon subtypes from a randomised phase II trial of selumetinib plus docetaxel in KRAS mutant advanced non-small-cell lung cancer.

    PubMed

    Jänne, P A; Smith, I; McWalter, G; Mann, H; Dougherty, B; Walker, J; Orr, M C M; Hodgson, D R; Shaw, A T; Pereira, J R; Jeannin, G; Vansteenkiste, J; Barrios, C H; Franke, F A; Crinò, L; Smith, P

    2015-07-14

    Selumetinib (AZD6244, ARRY-142886)+docetaxel increases median overall survival (OS) and significantly improves progression-free survival (PFS) and objective response rate (ORR) compared with docetaxel alone in patients with KRAS mutant, stage IIIB/IV non-small-cell lung cancer (NSCLC; NCT00890825). Retrospective analysis of OS, PFS, ORR and change in tumour size at week 6 for different sub-populations of KRAS codon mutations. In patients receiving selumetinib+docetaxel and harbouring KRAS G12C or G12V mutations there were trends towards greater improvement in OS, PFS and ORR compared with other KRAS mutations. Different KRAS mutations in NSCLC may influence selumetinib/docetaxel sensitivity.

  4. Novel approach to abuse the hyperactive K-Ras pathway for adenoviral gene therapy of colorectal cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naumov, Inna; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv; Kazanov, Dina

    2012-01-15

    Background: Functional activation of oncogenic K-Ras signaling pathway plays an important role in the early events of colorectal carcinogenesis (CRC). K-Ras proto-oncogene is involved in 35-40% of CRC cases. Mutations in the Ras gene trigger the transduction of proliferative and anti-apoptotic signals, even in the absence of extra cellular stimuli. The objective of the current study was to use a gene-targeting approach to kill human CRC cells selectively harboring mutated K-Ras. Results: A recombinant adenovirus that carries a lethal gene, PUMA, under the control of a Ras responsive promoter (Ad-Py4-SV40-PUMA) was used selectively to target CRC cells (HCT116, SW480, DLD1more » and RIE-Ras) that possess a hyperactive Ras pathway while using HT29 and RIE cells as a control that harbors wild type Ras and exhibit very low Ras activity. Control vector, without the Ras responsive promoter elements was used to assess the specificity of our 'gene therapy' approach. Both adenoviral vectors were assed in vitro and in xenograft model in vivo. Ad-Py4-SV40-PUMA showed high potency to induce {approx} 50% apoptosis in vitro, to abolish completely tumor formation by infecting cells with the Ad-Py4-SV40-PUMA prior xenografting them in nude mice and high ability to suppress by {approx} 35% tumor progression in vivo in already established tumors. Conclusions: Selective targeting of CRC cells with the activated Ras pathway may be a novel and effective therapy in CRC. The high potency of this adenoviral vector may help to overcome an undetectable micro metastasis that is the major hurdle in challenging with CRC.« less

  5. H-Ras and K-Ras Oncoproteins Induce Different Tumor Spectra When Driven by the Same Regulatory Sequences.

    PubMed

    Drosten, Matthias; Simón-Carrasco, Lucía; Hernández-Porras, Isabel; Lechuga, Carmen G; Blasco, María T; Jacob, Harrys K C; Fabbiano, Salvatore; Potenza, Nicoletta; Bustelo, Xosé R; Guerra, Carmen; Barbacid, Mariano

    2017-02-01

    Genetic studies in mice have provided evidence that H-Ras and K-Ras proteins are bioequivalent. However, human tumors display marked differences in the association of RAS oncogenes with tumor type. Thus, to further assess the bioequivalence of oncogenic H-Ras and K-Ras, we replaced the coding region of the murine K-Ras locus with H-Ras G12V oncogene sequences. Germline expression of H-Ras G12V or K-Ras G12V from the K-Ras locus resulted in embryonic lethality. However, expression of these genes in adult mice led to different tumor phenotypes. Whereas H-Ras G12V elicited papillomas and hematopoietic tumors, K-Ras G12V induced lung tumors and gastric lesions. Pulmonary expression of H-Ras G12V created a senescence-like state caused by excessive MAPK signaling. Likewise, H-Ras G12V but not K-Ras G12V induced senescence in mouse embryonic fibroblasts. Label-free quantitative analysis revealed that minor differences in H-Ras G12V expression levels led to drastically different biological outputs, suggesting that subtle differences in MAPK signaling confer nonequivalent functions that influence tumor spectra induced by RAS oncoproteins. Cancer Res; 77(3); 707-18. ©2016 AACR. ©2016 American Association for Cancer Research.

  6. Prolonged lifespan with enhanced exploratory behavior in mice overexpressing the oxidized nucleoside triphosphatase hMTH1.

    PubMed

    De Luca, Gabriele; Ventura, Ilenia; Sanghez, Valentina; Russo, Maria Teresa; Ajmone-Cat, Maria Antonietta; Cacci, Emanuele; Martire, Alberto; Popoli, Patrizia; Falcone, Germana; Michelini, Flavia; Crescenzi, Marco; Degan, Paolo; Minghetti, Luisa; Bignami, Margherita; Calamandrei, Gemma

    2013-08-01

    The contribution that oxidative damage to DNA and/or RNA makes to the aging process remains undefined. In this study, we used the hMTH1-Tg mouse model to investigate how oxidative damage to nucleic acids affects aging. hMTH1-Tg mice express high levels of the hMTH1 hydrolase that degrades 8-oxodGTP and 8-oxoGTP and excludes 8-oxoguanine from both DNA and RNA. Compared to wild-type animals, hMTH1-overexpressing mice have significantly lower steady-state levels of 8-oxoguanine in both nuclear and mitochondrial DNA of several organs, including the brain. hMTH1 overexpression prevents the age-dependent accumulation of DNA 8-oxoguanine that occurs in wild-type mice. These lower levels of oxidized guanines are associated with increased longevity and hMTH1-Tg animals live significantly longer than their wild-type littermates. Neither lipid oxidation nor overall antioxidant status is significantly affected by hMTH1 overexpression. At the cellular level, neurospheres derived from adult hMTH1-Tg neural progenitor cells display increased proliferative capacity and primary fibroblasts from hMTH1-Tg embryos do not undergo overt senescence in vitro. The significantly lower levels of oxidized DNA/RNA in transgenic animals are associated with behavioral changes. These mice show reduced anxiety and enhanced investigation of environmental and social cues. Longevity conferred by overexpression of a single nucleotide hydrolase in hMTH1-Tg animals is an example of lifespan extension associated with healthy aging. It provides a link between aging and oxidative damage to nucleic acids. © 2013 John Wiley & Sons Ltd and the Anatomical Society.

  7. Impact of KRAS codon subtypes from a randomised phase II trial of selumetinib plus docetaxel in KRAS mutant advanced non-small-cell lung cancer

    PubMed Central

    Jänne, P A; Smith, I; McWalter, G; Mann, H; Dougherty, B; Walker, J; Orr, M C M; Hodgson, D R; Shaw, A T; Pereira, J R; Jeannin, G; Vansteenkiste, J; Barrios, C H; Franke, F A; Crinò, L; Smith, P

    2015-01-01

    Background: Selumetinib (AZD6244, ARRY-142886)+docetaxel increases median overall survival (OS) and significantly improves progression-free survival (PFS) and objective response rate (ORR) compared with docetaxel alone in patients with KRAS mutant, stage IIIB/IV non-small-cell lung cancer (NSCLC; NCT00890825). Methods: Retrospective analysis of OS, PFS, ORR and change in tumour size at week 6 for different sub-populations of KRAS codon mutations. Results: In patients receiving selumetinib+docetaxel and harbouring KRAS G12C or G12V mutations there were trends towards greater improvement in OS, PFS and ORR compared with other KRAS mutations. Conclusion: Different KRAS mutations in NSCLC may influence selumetinib/docetaxel sensitivity. PMID:26125448

  8. Overexpression of Cdk5 or non-phosphorylatable retinoblastoma protein protects septal neurons from oxygen-glucose deprivation.

    PubMed

    Panickar, Kiran S; Nonner, Doris; White, Michael G; Barrett, John N

    2008-09-01

    Activation of cyclin dependent kinases (Cdks) contributes to neuronal death following ischemia. We used oxygen-glucose deprivation (OGD) in septal neuronal cultures to test for possible roles of cell cycle proteins in neuronal survival. Increased cdc2-immunoreactive neurons were observed at 24 h after the end of 5 h OGD. Green fluorescent protein (GFP) or GFP along with a wild type or dominant negative form of the retinoblastoma protein (Rb), or cyclin-dependent kinase5 (Cdk5), were overexpressed using plasmid constructs. Following OGD, when compared to controls, neurons expressing both GFP and dominant negative Rb, RbDeltaK11, showed significantly less damage using microscopy imaging. Overexpression of Rb-wt did not affect survival. Surprisingly, overexpression of Cdk5-wild type significantly protected neurons from process disintegration but Cdk5T33, a dominant negative Cdk5, gave little or no protection. Thus phosphorylation of the cell cycle regulator, Rb, contributes to death in OGD in septal neurons but Cdk5 can have a protective role.

  9. Overexpression of ADH1 and HXT1 genes in the yeast Saccharomyces cerevisiae improves the fermentative efficiency during tequila elaboration.

    PubMed

    Gutiérrez-Lomelí, Melesio; Torres-Guzmán, Juan Carlos; González-Hernández, Gloria Angélica; Cira-Chávez, Luis Alberto; Pelayo-Ortiz, Carlos; Ramírez-Córdova, Jose de Jesús

    2008-05-01

    This work assessed the effect of the overexpression of ADH1 and HXT1 genes in the Saccharomyces cerevisiae AR5 strain during fermentation of Agave tequilana Weber blue variety must. Both genes were cloned individually and simultaneously into a yeast centromere plasmid. Two transformant strains overexpressing ADH1 and HXT1 individually and one strain overexpressing both genes were randomly selected and named A1, A3 and A5 respectively. Overexpression effect on growth and ethanol production of the A1, A3 and A5 strains was evaluated in fermentative conditions in A. tequilana Weber blue variety must and YPD medium. During growth in YPD and Agave media, all the recombinant strains showed lower cell mass formation than the wild type AR5 strain. Adh enzymatic activity in the recombinant strains A1 and A5 cultivated in A. tequilana and YPD medium was higher than in the wild type. The overexpression of both genes individually and simultaneously had no significant effect on ethanol formation; however, the fermentative efficiency of the A5 strain increased from 80.33% to 84.57% and 89.40% to 94.29% in YPD and Agave medium respectively.

  10. Clinical validation of prospective liquid biopsy monitoring in patients with wild-type RAS metastatic colorectal cancer treated with FOLFIRI-cetuximab

    PubMed Central

    Vega, Estela; Garralda, Elena; Alvarez, Rafael; de la Varga, Lisardo U.; Pascual, Jesús R.; Sánchez, Gema; Sarno, Francesca; Prieto, Susana H.; Perea, Sofía; Lopéz-Casas, Pedro P.; López-Ríos, Fernando; Hidalgo, Manuel

    2017-01-01

    Cancer genomics and translational medicine rely on the molecular profiling of patient's tumor obtained during surgery or biopsy. Alternatively, blood is a less invasive source of tumor DNA shed, amongst other ways, as cell-free DNA (cfDNA). Highly-sensitive assays capable to detect cancer genetic events from patient's blood plasma became popularly known as liquid biopsy (LqB). Importantly, retrospective studies including small number of selected patients with metastatic colorectal cancer (mCRC) patients treated with anti-EGFR therapy have shown LqB capable to detect the acquired clonal mutations in RAS genes leading to therapy resistance. However, the usefulness of LqB in the real-life clinical monitoring of these patients still lack additional validation on controlled studies. In this context, we designed a prospective LqB clinical trial to monitor newly diagnosed KRAS wild-type (wt) mCRC patients who received a standard FOLFIRI-cetuximab regimen. We used BEAMing technique for evaluate cfDNA mutations in KRAS, NRAS, BRAF, and PIK3CA in twenty-five patients during a 2-y period. A total of 2,178 cfDNA mutation analyses were performed and we observed that: a) continued wt circulating status was correlated with a prolonged response; b) smoldering increases in mutant cfDNA were correlated with acquired resistance; while c) mutation upsurge/explosion anticipated a remarkable clinical deterioration. The current study provides evidences, obtained for the first time in an unbiased and prospective manner, that reinforces the utility of LqB for monitoring mCRC patients. PMID:27852040

  11. Clinical validation of prospective liquid biopsy monitoring in patients with wild-type RAS metastatic colorectal cancer treated with FOLFIRI-cetuximab.

    PubMed

    Toledo, Rodrigo A; Cubillo, Antonio; Vega, Estela; Garralda, Elena; Alvarez, Rafael; de la Varga, Lisardo U; Pascual, Jesús R; Sánchez, Gema; Sarno, Francesca; Prieto, Susana H; Perea, Sofía; Lopéz-Casas, Pedro P; López-Ríos, Fernando; Hidalgo, Manuel

    2017-05-23

    Cancer genomics and translational medicine rely on the molecular profiling of patient's tumor obtained during surgery or biopsy. Alternatively, blood is a less invasive source of tumor DNA shed, amongst other ways, as cell-free DNA (cfDNA). Highly-sensitive assays capable to detect cancer genetic events from patient's blood plasma became popularly known as liquid biopsy (LqB). Importantly, retrospective studies including small number of selected patients with metastatic colorectal cancer (mCRC) patients treated with anti-EGFR therapy have shown LqB capable to detect the acquired clonal mutations in RAS genes leading to therapy resistance. However, the usefulness of LqB in the real-life clinical monitoring of these patients still lack additional validation on controlled studies. In this context, we designed a prospective LqB clinical trial to monitor newly diagnosed KRAS wild-type (wt) mCRC patients who received a standard FOLFIRI-cetuximab regimen. We used BEAMing technique for evaluate cfDNA mutations in KRAS, NRAS, BRAF, and PIK3CA in twenty-five patients during a 2-y period. A total of 2,178 cfDNA mutation analyses were performed and we observed that: a) continued wt circulating status was correlated with a prolonged response; b) smoldering increases in mutant cfDNA were correlated with acquired resistance; while c) mutation upsurge/explosion anticipated a remarkable clinical deterioration. The current study provides evidences, obtained for the first time in an unbiased and prospective manner, that reinforces the utility of LqB for monitoring mCRC patients.

  12. Genetic disruption of oncogenic Kras sensitizes lung cancer cells to Fas receptor-mediated apoptosis.

    PubMed

    Mou, Haiwei; Moore, Jill; Malonia, Sunil K; Li, Yingxiang; Ozata, Deniz M; Hough, Soren; Song, Chun-Qing; Smith, Jordan L; Fischer, Andrew; Weng, Zhiping; Green, Michael R; Xue, Wen

    2017-04-04

    Genetic lesions that activate KRAS account for ∼30% of the 1.6 million annual cases of lung cancer. Despite clinical need, KRAS is still undruggable using traditional small-molecule drugs/inhibitors. When oncogenic Kras is suppressed by RNA interference, tumors initially regress but eventually recur and proliferate despite suppression of Kras Here, we show that tumor cells can survive knockout of oncogenic Kras , indicating the existence of Kras -independent survival pathways. Thus, even if clinical KRAS inhibitors were available, resistance would remain an obstacle to treatment. Kras -independent cancer cells exhibit decreased colony formation in vitro but retain the ability to form tumors in mice. Comparing the transcriptomes of oncogenic Kras cells and Kras knockout cells, we identified 603 genes that were specifically up-regulated in Kras knockout cells, including the Fas gene, which encodes a cell surface death receptor involved in physiological regulation of apoptosis. Antibodies recognizing Fas receptor efficiently induced apoptosis of Kras knockout cells but not oncogenic Kras -expressing cells. Increased Fas expression in Kras knockout cells was attributed to decreased association of repressive epigenetic marks at the Fas promoter. Concordant with this observation, treating oncogenic Kras cells with histone deacetylase inhibitor and Fas-activating antibody efficiently induced apoptosis, thus bypassing the need to inhibit Kras. Our results suggest that activation of Fas could be exploited as an Achilles' heel in tumors initiated by oncogenic Kras.

  13. Mutant KRAS promotes malignant pleural effusion formation

    PubMed Central

    Αgalioti, Theodora; Giannou, Anastasios D.; Krontira, Anthi C.; Kanellakis, Nikolaos I.; Kati, Danai; Vreka, Malamati; Pepe, Mario; Spella, Μagda; Lilis, Ioannis; Zazara, Dimitra E.; Nikolouli, Eirini; Spiropoulou, Nikolitsa; Papadakis, Andreas; Papadia, Konstantina; Voulgaridis, Apostolos; Harokopos, Vaggelis; Stamou, Panagiota; Meiners, Silke; Eickelberg, Oliver; Snyder, Linda A.; Antimisiaris, Sophia G.; Kardamakis, Dimitrios; Psallidas, Ioannis; Μarazioti, Antonia; Stathopoulos, Georgios T.

    2017-01-01

    Malignant pleural effusion (MPE) is the lethal consequence of various human cancers metastatic to the pleural cavity. However, the mechanisms responsible for the development of MPE are still obscure. Here we show that mutant KRAS is important for MPE induction in mice. Pleural disseminated, mutant KRAS bearing tumour cells upregulate and systemically release chemokine ligand 2 (CCL2) into the bloodstream to mobilize myeloid cells from the host bone marrow to the pleural space via the spleen. These cells promote MPE formation, as indicated by splenectomy and splenocyte restoration experiments. In addition, KRAS mutations are frequently detected in human MPE and cell lines isolated thereof, but are often lost during automated analyses, as indicated by manual versus automated examination of Sanger sequencing traces. Finally, the novel KRAS inhibitor deltarasin and a monoclonal antibody directed against CCL2 are equally effective against an experimental mouse model of MPE, a result that holds promise for future efficient therapies against the human condition. PMID:28508873

  14. Long-term clinical benefit from salvage EGFR tyrosine kinase inhibitors in advanced non-small-cell lung cancer patients with EGFR wild-type tumors.

    PubMed

    Koinis, F; Voutsina, A; Kalikaki, A; Koutsopoulos, A; Lagoudaki, E; Tsakalaki, E; Dermitzaki, E K; Kontopodis, E; Pallis, A G; Georgoulias, V; Kotsakis, A

    2018-02-01

    Erlotinib has been approved for the management of NSCLC patients after failure of the first or subsequent line of chemotherapy. Although the efficacy of erlotinib is clearly associated with the presence of EGFR mutations, there is a subset of patients with EGFR wild-type (EGFRwt) tumors who impressively respond. Patients with EGFRwt NSCLC who received salvage (≥2nd line) treatment with erlotinib for a prolonged period (>6 months), were sought from the database of the Hellenic Oncology Research Group. We retrospectively analyzed the clinical, pathological and molecular characteristics of the patients with available tumor material. Forty-four patients that received erlotinib for >6 months (median 10.1 months) were enrolled in the study. The majority of them were male, never-smokers with adenocarcinoma histology and a good performance status. KRAS and PIK3CA mutations were detected in 21% (9/42 tested) and 13% (4/30 tested) of the patients, respectively. The ALK-EML4 translocation was found in 10% (2/20 tested); there was no patient with HER2 or BRAF mutated tumor. Twelve (54.5%) tumor specimens were considered positive for EGFR-overexpression. Eleven patients experienced a partial response (objective response rate 25%; 95% CI 12-38%) and the remaining 33 had stable disease. The median progression-free survival and overall survival were 10.1 (95% CI 8.6-11.6 months) and 24.1 (95% CI 11.2-37 months), respectively. Treatment with erlotinib significantly improves the clinical outcome in a subset of NSCLC patients with EGFRwt tumors. Further molecular analysis of such tumor specimens could provide a more comprehensive characterization of this particular group of patients. Nevertheless, the presence of other mutations should not prevent the treating physician from using erlotinib at later lines of salvage therapy for NSCLC patients.

  15. Lower risk of postinfarct rupture in mouse heart overexpressing beta 2-adrenergic receptors: importance of collagen content.

    PubMed

    Gao, Xiao-Ming; Dilley, Rodney J; Samuel, Chrishan S; Percy, Elodie; Fullerton, Meryl J; Dart, Anthony M; Du, Xiao-Jun

    2002-10-01

    This paper addresses whether the enhanced left ventricular (LV) contractility and heart rate, seen in transgenic mice overexpressing beta -adrenergic receptor in the heart, might raise the incidence of LV rupture after myocardial infarct. Transgenic and wild-type mice underwent left coronary artery occlusion. Postinfarct deaths that occurred 1-7 days after surgery were analyzed. Hemodynamics, morphologic parameters, and collagen content in the LV were determined. A significantly lower incidence of LV rupture was observed in transgenic than in wild-type mice 3-5 days after myocardial infarct (2.5 versus 19.7%, p < 0.05), despite a similar infarct size between the two groups and better hemodynamic function in transgenic mouse hearts. Morphologic analysis showed a more severe infarct expansion in wild-type versus transgenic mice or in mice dying of rupture versus those that died of acute heart failure. Collagen content was higher in the LV of sham-operated transgenic than wild-type mice (p < 0.01) with both type I and type III collagen elevated. Such difference in collagen content between transgenic and wild-type mice was maintained in noninfarcted and infarcted LV. In conclusion, transgenic mice overexpressing beta -adrenergic receptor had a lower risk of cardiac rupture during the acute phase after infarction despite the markedly enhanced LV contractility and heart rate. As a hyperdynamic function due to beta-adrenergic activation would likely increase the risk of cardiac rupture and infarct expansion, the lack of rupture in this transgenic mouse model suggests that the interstitial collagen level is a more important factor than functional status in the pathogenesis of rupture and infarct expansion.

  16. Molecular biomarkers for progression of intraductal papillary mucinous neoplasm of the pancreas.

    PubMed

    Kuboki, Yuko; Shimizu, Kyoko; Hatori, Takashi; Yamamoto, Masakazu; Shibata, Noriyuki; Shiratori, Keiko; Furukawa, Toru

    2015-03-01

    We aimed to identify molecular biomarkers for assessing the progression of intraductal papillary mucinous neoplasm of the pancreas (IPMN). We retrospectively investigated molecular aberrations and their associations with clinicopathological features in 172 IPMNs. GNAS and KRAS mutations were detected in 48% and 56% of IPMNs, respectively. No mutations of EGFR, PIK3CA GNAO1, GNAQ, or GNAI2 were observed. Significant associations were observed between IPMN morphological types and GNAS mutations, KRAS mutations, the expression of phosphorylated MAPK (pMAPK), AKT, and phosphorylated AKT (pAKT), nuclear accumulation of β-catenin, SMAD4 loss, and TP53 overexpression; histological grades and the expression of EGFR, pMAPK, AKT, and pAKT, the nuclear β-catenin, SMAD4 loss, and TP53 overexpression; invasive phenotypes and KRAS mutations, the nuclear β-catenin, and SMAD4 loss; and prognosis and SMAD4 loss and TP53 overexpression. Multivariate analysis to compare prognostic impacts of multiple molecular features revealed that TP53 overexpression was an independent prognostic factor (P = 0.030; hazard ratio, 5.533). These results indicate that mutations in GNAS and KRAS, the expression of EGFR and pMAPK, the nuclear β-catenin, SMAD4 loss, and TP53 overexpression may be relevant for assessing the clinical course of IPMN, including its progression into different morphological types, invasion, and prognosis.

  17. Genetic disruption of oncogenic Kras sensitizes lung cancer cells to Fas receptor-mediated apoptosis

    PubMed Central

    Mou, Haiwei; Moore, Jill; Malonia, Sunil K.; Li, Yingxiang; Ozata, Deniz M.; Hough, Soren; Song, Chun-Qing; Smith, Jordan L.; Fischer, Andrew; Weng, Zhiping; Xue, Wen

    2017-01-01

    Genetic lesions that activate KRAS account for ∼30% of the 1.6 million annual cases of lung cancer. Despite clinical need, KRAS is still undruggable using traditional small-molecule drugs/inhibitors. When oncogenic Kras is suppressed by RNA interference, tumors initially regress but eventually recur and proliferate despite suppression of Kras. Here, we show that tumor cells can survive knockout of oncogenic Kras, indicating the existence of Kras-independent survival pathways. Thus, even if clinical KRAS inhibitors were available, resistance would remain an obstacle to treatment. Kras-independent cancer cells exhibit decreased colony formation in vitro but retain the ability to form tumors in mice. Comparing the transcriptomes of oncogenic Kras cells and Kras knockout cells, we identified 603 genes that were specifically up-regulated in Kras knockout cells, including the Fas gene, which encodes a cell surface death receptor involved in physiological regulation of apoptosis. Antibodies recognizing Fas receptor efficiently induced apoptosis of Kras knockout cells but not oncogenic Kras-expressing cells. Increased Fas expression in Kras knockout cells was attributed to decreased association of repressive epigenetic marks at the Fas promoter. Concordant with this observation, treating oncogenic Kras cells with histone deacetylase inhibitor and Fas-activating antibody efficiently induced apoptosis, thus bypassing the need to inhibit Kras. Our results suggest that activation of Fas could be exploited as an Achilles’ heel in tumors initiated by oncogenic Kras. PMID:28320962

  18. Overexpression of Indian hedgehog partially rescues short stature homeobox 2-overexpression-associated congenital dysplasia of the temporomandibular joint in mice

    PubMed Central

    LI, XIHAI; LIANG, WENNA; YE, HONGZHI; WENG, XIAPING; LIU, FAYUAN; LIN, PINGDONG; LIU, XIANXIANG

    2015-01-01

    The role of short stature homeobox 2 (shox2) in the development and homeostasis of the temporomandibular joint (TMJ) has been well documented. Shox2 is known to be expressed in the progenitor cells and perichondrium of the developing condyle. A previous study by our group reported that overexpression of shox2 leads to congenital dysplasia of the TMJ via downregulation of the Indian hedgehog (Ihh) signaling pathway, which is essential for embryonic disc primordium formation and mandibular condylar growth. To determine whether overexpression of Ihh may rescue the overexpression of shox2 leading to congenital dysplasia of the TMJ, a mouse model in which Ihh and shox2 were overexpressed (Wnt1-Cre; pMes-stop shox2; pMes-stop Ihh mice) was utilized to assess the consequences of this overexpression on TMJ development during post-natal life. The results showed that the developmental process and expression levels of runt-related transcription factor 2 and sex determining region Y-box 9 in the TMJ of the Wnt1-Cre; pMes-stop shox2; pMes-stop Ihh mice were similar to those in wild-type mice. Overexpression of Ihh rescued shox2 overexpression-associated reduction of extracellular matrix components. However, overexpression of Ihh did not inhibit the shox2 overexpression-associated increase of matrix metalloproteinases (MMPs) MMP9, MMP13 and apoptosis in the TMJ. These combinatory cellular and molecular defects appeared to account for the observed congenital dysplasia of TMJ, suggesting that overexpression of Ihh partially rescued shox2 overexpression-associated congenital dysplasia of the TMJ in mice. PMID:26096903

  19. Induction of MDM2-P2 Transcripts Correlates with Stabilized Wild-Type p53 in Betel- and Tobacco-Related Human Oral Cancer

    PubMed Central

    Ralhan, Ranju; Sandhya, Agarwal; Meera, Mathur; Bohdan, Wasylyk; Nootan, Shukla K.

    2000-01-01

    MDM2, a critical element of cellular homeostasis mechanisms, is involved in complex interactions with important cell-cycle and stress-response regulators including p53. The mdm2-P2 promoter is a transcriptional target of p53. The aim of this study was to determine the association between mdm2-P2 transcripts and the status of the p53 gene in betel- and tobacco-related oral squamous cell carcinomas (SCCs) to understand the mechanism of deregulation of MDM2 and p53 expression and their prognostic implications in oral tumorigenesis. Elevated levels of MDM2 proteins were observed in 11 of 25 (44%) oral hyperplastic lesions, nine of 15 (60%) dysplastic lesions, and 71 of 100 (71%) SCCs. The intriguing feature of the study was the identification and different subcellular localization of three isoforms of MDM2 (ie, 90 kd, 76 kd, and 57 kd) in oral SCCs and their correlation with p53 overexpression in each tumor. The hallmark of the study was the detection of mdm2-P2 transcripts in 12 of 20 oral SCCs overexpressing both MDM2 and p53 proteins while harboring wild-type p53 alleles. Furthermore, mdm2 amplification was an infrequent event in betel- and tobacco-associated oral tumorigenesis. The differential compartmentalization of the three isoforms of MDM2 suggests that each has a distinct function, potentially in the regulation of p53 and other gene products implicated in oral tumorigenesis. In conclusion, we report herein the first evidence suggesting that enhanced translation of mdm2-P2 transcripts (S-mdm2) may represent an important mechanism of overexpression and consequent stabilization and functional inactivation of wild-type p53 serving as an adverse prognosticator in betel- and tobacco-related oral cancer. The clinical significance of the functional inactivation of wild-type p53 by MDM2 is underscored by the significantly shorter median disease-free survival time (16 months) observed in p53/MDM2-positive cases as compared to those which did not show co-expression of

  20. Antarctic Moss Multiprotein Bridging Factor 1c Overexpression in Arabidopsis Resulted in Enhanced Tolerance to Salt Stress

    PubMed Central

    Alavilli, Hemasundar; Lee, Hyoungseok; Park, Mira; Lee, Byeong-ha

    2017-01-01

    Polytrichastrum alpinum is one of the moss species that survives extreme conditions in the Antarctic. In order to explore the functional benefits of moss genetic resources, P. alpinum multiprotein-bridging factor 1c gene (PaMBF1c) was isolated and characterized. The deduced amino acid sequence of PaMBF1c comprises of a multiprotein-bridging factor (MBF1) domain and a helix-turn-helix (HTH) domain. PaMBF1c expression was induced by different abiotic stresses in P. alpinum, implying its roles in stress responses. We overexpressed PaMBF1c in Arabidopsis and analyzed the resulting phenotypes in comparison with wild type and/or Arabidopsis MBF1c (AtMBF1c) overexpressors. Overexpression of PaMBF1c in Arabidopsis resulted in enhanced tolerance to salt and osmotic stress, as well as to cold and heat stress. More specifically, enhanced salt tolerance was observed in PaMBF1c overexpressors in comparison to wild type but not clearly observable in AtMBF1c overexpressing lines. Thus, these results implicate the evolution of PaMBF1c under salt-enriched Antarctic soil. RNA-Seq profiling of NaCl-treated plants revealed that 10 salt-stress inducible genes were already up-regulated in PaMBF1c overexpressing plants even before NaCl treatment. Gene ontology enrichment analysis with salt up-regulated genes in each line uncovered that the terms lipid metabolic process, ion transport, and cellular amino acid biosynthetic process were significantly enriched in PaMBF1c overexpressors. Additionally, gene enrichment analysis with salt down-regulated genes in each line revealed that the enriched categories in wild type were not significantly overrepresented in PaMBF1c overexpressing lines. The up-regulation of several genes only in PaMBF1c overexpressing lines suggest that enhanced salt tolerance in PaMBF1c-OE might involve reactive oxygen species detoxification, maintenance of ATP homeostasis, and facilitation of Ca2+ signaling. Interestingly, many salt down-regulated ribosome- and

  1. New localization and function of calpain-2 in nucleoli of colorectal cancer cells in ribosomal biogenesis: effect of KRAS status

    PubMed Central

    Telechea-Fernández, Marcelino; Rodríguez-Fernández, Lucia; García, Concha; Zaragozá, Rosa; Viña, Juan; Cervantes, Andrés; García-Trevijano, Elena R.

    2018-01-01

    Calpain-2 belongs to a family of pleiotropic Cys-proteases with modulatory rather than degradative functions. Calpain (CAPN) overexpression has been controversially correlated with poor prognosis in several cancer types, including colorectal carcinoma (CRC). However, the mechanisms of substrate-recognition, calpain-2 regulation/deregulation and specific functions in CRC remain elusive. Herein, calpain subcellular distribution was studied as a key event for substrate-recognition and consequently, for calpain-mediated function. We describe a new localization for calpain-2 in the nucleoli of CRC cells. Calpain-2 nucleolar distribution resulted dependent on its enzymatic activity and on the mutational status of KRAS. In KRASWT/- cells serum-starvation induced CAPN2 expression, nucleolar accumulation and increased binding to the rDNA-core promoter and intergenic spacer (IGS), concomitant with a reduction in pre-rRNA levels. Depletion of calpain-2 by specific siRNA prevented pre-rRNA down-regulation after serum removal. Conversely, ribosomal biogenesis proceeded in the absence of serum in unresponsive KRASG13D/- cells whose CAPN2 expression, nucleolar localization and rDNA-occupancy remained unchanged during the time-course of serum starvation. We propose here that nucleolar calpain-2 might be a KRAS-dependent sensor to repress ribosomal biogenesis in growth limiting conditions. Under constitutive activation of the pathway commonly found in CRC, calpain-2 is deregulated and tumor cells become insensitive to the extracellular microenvironment. PMID:29507677

  2. New localization and function of calpain-2 in nucleoli of colorectal cancer cells in ribosomal biogenesis: effect of KRAS status.

    PubMed

    Telechea-Fernández, Marcelino; Rodríguez-Fernández, Lucia; García, Concha; Zaragozá, Rosa; Viña, Juan; Cervantes, Andrés; García-Trevijano, Elena R

    2018-02-06

    Calpain-2 belongs to a family of pleiotropic Cys-proteases with modulatory rather than degradative functions. Calpain (CAPN) overexpression has been controversially correlated with poor prognosis in several cancer types, including colorectal carcinoma (CRC). However, the mechanisms of substrate-recognition, calpain-2 regulation/deregulation and specific functions in CRC remain elusive. Herein, calpain subcellular distribution was studied as a key event for substrate-recognition and consequently, for calpain-mediated function. We describe a new localization for calpain-2 in the nucleoli of CRC cells. Calpain-2 nucleolar distribution resulted dependent on its enzymatic activity and on the mutational status of KRAS. In KRASWT/- cells serum-starvation induced CAPN2 expression, nucleolar accumulation and increased binding to the rDNA-core promoter and intergenic spacer (IGS), concomitant with a reduction in pre-rRNA levels. Depletion of calpain-2 by specific siRNA prevented pre-rRNA down-regulation after serum removal. Conversely, ribosomal biogenesis proceeded in the absence of serum in unresponsive KRASG13D/- cells whose CAPN2 expression, nucleolar localization and rDNA-occupancy remained unchanged during the time-course of serum starvation. We propose here that nucleolar calpain-2 might be a KRAS-dependent sensor to repress ribosomal biogenesis in growth limiting conditions. Under constitutive activation of the pathway commonly found in CRC, calpain-2 is deregulated and tumor cells become insensitive to the extracellular microenvironment.

  3. The prognostic value of KRAS mutation by cell-free DNA in cancer patients: A systematic review and meta-analysis.

    PubMed

    Zhuang, Rongyuan; Li, Song; Li, Qian; Guo, Xi; Shen, Feng; Sun, Hong; Liu, Tianshu

    2017-01-01

    KRAS mutation has been found in various types of cancer. However, the prognostic value of KRAS mutation in cell-free DNA (cfDNA) in cancer patients was conflicting. In the present study, a meta-analysis was conducted to clarify its prognostic significance. Literature searches of Cochrane Library, EMBASE, PubMed and Web of Science were performed to identify studies related to KRAS mutation detected by cfDNA and survival in cancer patients. Two evaluators reviewed and extracted the information independently. Review Manager 5.3 software was used to perform the statistical analysis. Thirty studies were included in the present meta-analysis. Our analysis showed that KRAS mutation in cfDNA was associated with a poorer survival in cancer patients for overall survival (OS, HR 2.02, 95% CI 1.63-2.51, P<0.01) and progression-free survival (PFS, HR 1.64, 95% CI 1.27-2.13, P<0.01). In subgroup analyses, KRAS mutation in pancreatic cancer, colorectal cancer, non-small cell lung cancer and ovarian epithelial cancer had HRs of 2.81 (95% CI 1.83-4.30, P<0.01), 1.67 (95% CI 1.25-2.42, P<0.01), 1.64 (95% CI 1.13-2.39, P = 0.01) and 2.17 (95% 1.12-4.21, p = 0.02) for OS, respectively. In addition, the ethnicity didn't influence the prognostic value of KRAS mutation in cfDNA in cancer patients (p = 0.39). Prognostic value of KRAS mutation was slightly higher in plasma than in serum (HR 2.13 vs 1.65), but no difference was observed (p = 0.37). Briefly, KRAS mutation in cfDNA was a survival prognostic biomarker in cancer patients. Its prognostic value was different in various types of cancer.

  4. Overexpression of HvIcy6 in Barley Enhances Resistance against Tetranychus urticae and Entails Partial Transcriptomic Reprogramming.

    PubMed

    Santamaria, M Estrella; Diaz-Mendoza, Mercedes; Perez-Herguedas, David; Hensel, Goetz; Kumlehn, Jochen; Diaz, Isabel; Martinez, Manuel

    2018-03-01

    Cystatins have been largely used for pest control against phytophagous species. However, cystatins have not been commonly overexpressed in its cognate plant species to test their pesticide capacity. Since the inhibitory role of barley HvCPI-6 cystatin against the phytophagous mite Tetranychus urticae has been previously demonstrated, the purpose of our study was to determine if barley transgenic lines overexpressing its own HvIcy6 gene were more resistant against this phytophagous infestation. Besides, a transcriptomic analysis was done to find differential expressed genes among wild-type and transformed barley plants. Barley plants overexpressing HvIcy6 cystatin gene remained less susceptible to T. urticae attack when compared to wild-type plants, with a significant lesser foliar damaged area and a lower presence of the mite. Transcriptomic analysis revealed a certain reprogramming of cellular metabolism and a lower expression of several genes related to photosynthetic activity. Therefore, although caution should be taken to discard potential deleterious pleiotropic effects, cystatins may be used as transgenes with impact on agricultural crops by conferring enhanced levels of resistance to phytophagous pests.

  5. Overexpressed TRPV3 ion channels in skin keratinocytes modulate pain sensitivity via prostaglandin E2

    PubMed Central

    Huang, Susan M.; Lee, Hyosang; Chung, Man-Kyo; Park, Una; Yu, Yin Yin; Bradshaw, Heather B.; Coulombe, Pierre A.; Walker, J. Michael; Caterina, Michael J.

    2009-01-01

    The ability to sense changes in the environment is essential for survival because it permits responses such as withdrawal from noxious stimuli and regulation of body temperature. Keratinocytes, which occupy much of the skin epidermis, are situated at the interface between the external environment and the body's internal milieu, and have long been appreciated for their barrier function against external insults. The recent discovery of temperature-sensitive TRPV ion channels in keratinocytes has raised the possibility that these cells also actively participate in acute temperature and pain sensation. To address this notion, we generated and characterized transgenic mice that overexpress TRPV3 in epidermal keratinocytes under the control of the keratin 14 promoter. Compared to wild-type controls, keratinocytes overexpressing TRPV3 exhibited larger currents as well as augmented prostaglandin E2 (PGE2) release in response to two TRPV3 agonists, 2-aminoethoxydiphenyl borate (2APB) and heat. Thermal selection behavior and heat-evoked withdrawal behavior of naïve mice overexpressing TRPV3 were not consistently altered. Upon selective pharmacological inhibition of TRPV1 with JNJ-7203212, however, the keratinocyte-specific TRPV3 transgenic mice showed increased escape responses to noxious heat relative to their wild-type littermates. Co-administration of the cyclooxygenase inhibitor, ibuprofen, with the TRPV1 antagonist decreased inflammatory thermal hyperalgesia in transgenic but not wild-type animals. Our results reveal a previously undescribed mechanism for keratinocyte participation in thermal pain transduction through keratinocyte TRPV3 ion channels and the intercellular messenger PGE2. PMID:19091963

  6. Enhanced migration of tissue inhibitor of metalloproteinase overexpressing hepatoma cells is attributed to gelatinases: Relevance to intracellular signaling pathways

    PubMed Central

    Roeb, Elke; Bosserhoff, Anja-Katrin; Hamacher, Sabine; Jansen, Bettina; Dahmen, Judith; Wagner, Sandra; Matern, Siegfried

    2005-01-01

    AIM: To study the effect of gelatinases (especially MMP-9) on migration of tissue inhibitor of metalloproteinase (TIMP-1) overexpressing hepatoma cells. METHODS: Wild type HepG2 cells, cells stably transfected with TIMP-1 and TIMP-1 antagonist (MMP-9-H401A, a catalytically inactive matrix metalloproteinase (MMP) which still binds and neutralizes TIMP-1) were incubated in Boyden chambers either with or without Galardin (a synthetic inhibitor of MMP-1, -2, -3, -8, -9) or a specific inhibitor of gelatinases. RESULTS: Compared to wild type HepG2 cells, the cells overexpressing TIMP-1 showed 115% migration (P<0.05) and the cells overexpressing MMP-9-H401A showed 62% migration (P<0.01). Galardin reduced cell migration dose dependently in all cases. The gelatinase inhibitor reduced migration in TIMP-1 overexpressing cells predominantly. Furthermore, we examined intracellular signal transduction pathways of TIMP-1-dependent HepG2 cells. TIMP-1 deactivates cell signaling pathways of MMP-2 and MMP-9 involving p38 mitogen-activated protein kinase. Specific blockade of the ERK pathway suppresses gelatinase expression either in the presence or absence of TIMP-1. CONCLUSION: Overexpressing functional TIMP-1- enhanced migration of HepG2-TIMP-1 cells depends on enhanced MMP-activity, especially MMP-9. PMID:15754388

  7. Orthotopic transplantation of LH receptor knockout and wild-type ovaries.

    PubMed

    Chudgar, Daksha; Lei, Zhenmin; Rao, Ch V

    2005-10-07

    Luteinizing hormone (LH) receptor knockout animals have an ovarian failure due to an arrest in folliculogenesis at the antral stage. As a result, the animals have an infertility phenotype. The present study was undertaken to determine whether this phenotype could be reversed by orthotopic transplantation of wild-type ovaries. The results revealed that transplanting wild-type ovaries into null animals did not result in resumption of estrus cycles. Although the number of different types of follicles increased, none progressed to ovulation. The serum hormone profiles improved, reflecting the ovarian changes. The wild-type animals with null ovaries also failed to cycle and their ovaries and serum hormone levels were more like null animals with their own ovaries. Although the lack of rescue of null ovaries placed into wild-type animals was predicted, the failure of wild-type ovaries placed in null animals was not, which could be due to chronic exposure of transplanted tissue to high circulating LH levels and also possibly due to altered internal milieu in null animals. These findings may have implications for potential future considerations of grafting normal donor ovaries into women who have an ovarian failure resulting from inactivating LH receptor mutations.

  8. Wild-type APC predicts poor prognosis in microsatellite-stable proximal colon cancer.

    PubMed

    Jorissen, Robert N; Christie, Michael; Mouradov, Dmitri; Sakthianandeswaren, Anuratha; Li, Shan; Love, Christopher; Xu, Zheng-Zhou; Molloy, Peter L; Jones, Ian T; McLaughlin, Stephen; Ward, Robyn L; Hawkins, Nicholas J; Ruszkiewicz, Andrew R; Moore, James; Burgess, Antony W; Busam, Dana; Zhao, Qi; Strausberg, Robert L; Lipton, Lara; Desai, Jayesh; Gibbs, Peter; Sieber, Oliver M

    2015-09-15

    APC mutations (APC-mt) occur in ∼70% of colorectal cancers (CRCs), but their relationship to prognosis is unclear. APC prognostic value was evaluated in 746 stage I-IV CRC patients, stratifying for tumour location and microsatellite instability (MSI). Microarrays were used to identify a gene signature that could classify APC mutation status, and classifier ability to predict prognosis was examined in an independent cohort. Wild-type APC microsatellite stable (APC-wt/MSS) tumours from the proximal colon showed poorer overall and recurrence-free survival (OS, RFS) than APC-mt/MSS proximal, APC-wt/MSS distal and APC-mt/MSS distal tumours (OS HR⩾1.79, P⩽0.015; RFS HR⩾1.88, P⩽0.026). APC was a stronger prognostic indicator than BRAF, KRAS, PIK3CA, TP53, CpG island methylator phenotype or chromosomal instability status (P⩽0.036). Microarray analysis similarly revealed poorer survival in MSS proximal cancers with an APC-wt-like signature (P=0.019). APC status did not affect outcomes in MSI tumours. In a validation on 206 patients with proximal colon cancer, APC-wt-like signature MSS cases showed poorer survival than APC-mt-like signature MSS or MSI cases (OS HR⩾2.50, P⩽0.010; RFS HR⩾2.14, P⩽0.025). Poor prognosis APC-wt/MSS proximal tumours exhibited features of the sessile serrated neoplasia pathway (P⩽0.016). APC-wt status is a marker of poor prognosis in MSS proximal colon cancer.

  9. Wild-Type and Non-Wild-Type Mycobacterium tuberculosis MIC Distributions for the Novel Fluoroquinolone Antofloxacin Compared with Those for Ofloxacin, Levofloxacin, and Moxifloxacin

    PubMed Central

    Yu, Xia; Wang, Guirong; Chen, Suting; Wei, Guomei; Shang, Yuanyuan; Dong, Lingling; Schön, Thomas; Moradigaravand, Danesh; Peacock, Sharon J.

    2016-01-01

    Antofloxacin (AFX) is a novel fluoroquinolone that has been approved in China for the treatment of infections caused by a variety of bacterial species. We investigated whether it could be repurposed for the treatment of tuberculosis by studying its in vitro activity. We determined the wild-type and non-wild-type MIC ranges for AFX as well as ofloxacin (OFX), levofloxacin (LFX), and moxifloxacin (MFX), using the microplate alamarBlue assay, of 126 clinical Mycobacterium tuberculosis strains from Beijing, China, of which 48 were OFX resistant on the basis of drug susceptibility testing on Löwenstein-Jensen medium. The MIC distributions were correlated with mutations in the quinolone resistance-determining regions of gyrA (Rv0006) and gyrB (Rv0005). Pharmacokinetic/pharmacodynamic (PK/PD) data for AFX were retrieved from the literature. AFX showed lower MIC levels than OFX but higher MIC levels than LFX and MFX on the basis of the tentative epidemiological cutoff values (ECOFFs) determined in this study. All strains with non-wild-type MICs for AFX harbored known resistance mutations that also resulted in non-wild-type MICs for LFX and MFX. Moreover, our data suggested that the current critical concentration of OFX for Löwenstein-Jensen medium that was recently revised by the World Health Organization might be too high, resulting in the misclassification of phenotypically non-wild-type strains with known resistance mutations as wild type. On the basis of our exploratory PK/PD calculations, the current dose of AFX is unlikely to be optimal for the treatment of tuberculosis, but higher doses could be effective. PMID:27324769

  10. Rb Loss and KRAS Mutation Are Predictors of the Response to Platinum-Based Chemotherapy in Pancreatic Neuroendocrine Neoplasm with Grade 3: A Japanese Multicenter Pancreatic NEN-G3 Study.

    PubMed

    Hijioka, Susumu; Hosoda, Waki; Matsuo, Keitaro; Ueno, Makoto; Furukawa, Masayuki; Yoshitomi, Hideyuki; Kobayashi, Noritoshi; Ikeda, Masafumi; Ito, Tetsuhide; Nakamori, Shoji; Ishii, Hiroshi; Kodama, Yuzo; Morizane, Chigusa; Okusaka, Takuji; Yanagimoto, Hiroaki; Notohara, Kenji; Taguchi, Hiroki; Kitano, Masayuki; Yane, Kei; Maguchi, Hiroyuki; Tsuchiya, Yoshiaki; Komoto, Izumi; Tanaka, Hiroki; Tsuji, Akihito; Hashigo, Syunpei; Kawaguchi, Yoshiaki; Mine, Tetsuya; Kanno, Atsushi; Murohisa, Go; Miyabe, Katsuyuki; Takagi, Tadayuki; Matayoshi, Nobutaka; Yoshida, Tsukasa; Hara, Kazuo; Imamura, Masayuki; Furuse, Junji; Yatabe, Yasushi; Mizuno, Nobumasa

    2017-08-15

    Purpose: Patients with pancreatic neuroendocrine neoplasm grade-3 (PanNEN-G3) show variable responses to platinum-based chemotherapy. Recent studies indicated that PanNEN-G3 includes well-differentiated neuroendocrine tumor with G3 (NET-G3). Here, we examined the clinicopathologic and molecular features of PanNEN-G3 and assessed the responsiveness to chemotherapy and survival. Experimental Design: A total of 100 patients with PanNEN-G3 were collected from 31 institutions, and after central review characteristics of each histologic subtype [NET-G3 vs. pancreatic neuroendocrine carcinoma (NEC-G3)] were analyzed, including clinical, radiological, and molecular features. Factors that correlate with response to chemotherapy and survival were assessed. Results: Seventy patients analyzed included 21 NETs-G3 (30%) and 49 NECs-G3 (70%). NET-G3 showed lower Ki67-labeling index (LI; median 28.5%), no abnormal Rb expression (0%), and no mutated KRAS (0%), whereas NEC-G3 showed higher Ki67-LI (median 80.0%), Rb loss (54.5%), and KRAS mutations (48.7%). Chemotherapy response rate (RR), platinum-based chemotherapy RR, and prognosis differed significantly between NET-G3 and NEC-G3. Chemotherapeutic outcomes were worse in NET-G3 ( P < 0.001). When we stratified PanNEN-G3 with Rb and KRAS , PanNENs-G3 with Rb loss and those with mutated KRAS showed significantly higher RRs to platinum-based chemotherapy than those without (Rb loss, 80% vs. normal Rb, 24%, P = 0.006; mutated KRAS , 77% versus wild type, 23%, P = 0.023). Rb was a predictive marker of response to platinum-based chemotherapy even in NEC-G3 ( P = 0.035). Conclusions: NET-G3 and NEC-G3 showed distinct clinicopathologic characteristics. Notably, NET-G3 does not respond to platinum-based chemotherapy. Rb and KRAS are promising predictors of response to platinum-based chemotherapy for PanNEN-G3, and Rb for NEC-G3. Clin Cancer Res; 23(16); 4625-32. ©2017 AACR . ©2017 American Association for Cancer Research.

  11. Overexpression of the alfalfa WRKY11 gene enhances salt tolerance in soybean

    PubMed Central

    Wang, Youjing; Jiang, Lin; Chen, Jiaqi; Tao, Lei; An, Yimin; Cai, Hongsheng

    2018-01-01

    The WRKY transcription factors play an important role in the regulation of transcriptional reprogramming associated with plant abiotic stress responses. In this study, the WRKY transcription factor MsWRKY11, containing the plant-specific WRKY zinc finger DNA–binding motif, was isolated from alfalfa. The MsWRKY11 gene was detected in all plant tissues (root, stem, leaf, flower, and fruit), with high expression in root and leaf tissues. MsWRKY11 was upregulated in response to a variety of abiotic stresses, including salinity, alkalinity, cold, abscisic acid, and drought. Overexpression of MsWRKY11 in soybean enhanced the salt tolerance at the seedling stage. Transgenic soybean had a better salt-tolerant phenotype, and the hypocotyls were significantly longer than those of wild-type seeds after salt treatment. Furthermore, MsWRKY11 overexpression increased the contents of chlorophyll, proline, soluble sugar, superoxide dismutase, and catalase, but reduced the relative electrical conductivity and the contents of malonaldehyde, H2O2, and O2-. Plant height, pods per plant, seeds per plant, and 100-seed weight of transgenic MsWRKY11 soybean were higher than those of wild-type soybean, especially OX2. Results of the salt experiment showed that MsWRKY11 is involved in salt stress responses, and its overexpression improves salt tolerance in soybean. PMID:29466387

  12. Cytomorphological identification of advanced pulmonary adenocarcinoma harboring KRAS mutation in lymph node fine-needle aspiration specimens: Comparative investigation of adenocarcinoma with KRAS and EGFR mutations.

    PubMed

    Song, Dae Hyun; Lee, Boram; Shin, Yooju; Choi, In Ho; Ha, Sang Yun; Lee, Jae Jun; Hong, Min Eui; Choi, Yoon-La; Han, Joungho; Um, Sang-Won

    2015-07-01

    Kirsten rat sarcoma 2 viral oncogene homolog (KRAS) mutation in pulmonary adenocarcinoma is clinically important due to its association with resistance to EGFR inhibitors and poor prognosis. To our knowledge, there has not been a comparative study focusing on cytological nuclear features of pulmonary adenocarcinoma harboring KRAS mutation (KRAS-AD). Hence, we compared the cytomorphology of metastatic KRAS-AD and EGFR-positive adenocarcinoma (EGFR-AD) in aspiration specimens from lymph nodes. Forty lymph node aspiration specimens from forty KRAS-AD patients were collected at Samsung Medical Center (Seoul, Korea) from 2009 to 2013. As a control group, 40 EBUS-FNA lymph node specimens from 20 EGFR-AD patients were collected. EGFR-AD specimens were evaluated at Samsung Medical Center (Seoul, Korea) from 2012 to 2013. All 80 specimens were histologically confirmed to metastatic adenocarcinoma. Two pathologists performed a blinded review of all specimens. Compared with EGFR-AD, KRAS-AD exhibited more severe nuclear pleomorphism (P < 0.001), coarse chromatin (P = 0.001), cherry-red nucleoli (P < 0.001) and naked tumor cells (P = 0.002) with necrotic (P < 0.001) and neutrophilic (P = 0.008) background. Our study provides the first demonstration of cytomorphologic differentiation between metastatic KRAS-AD and metastatic EGFR-AD in lymph node aspiration specimens. © 2014 Wiley Periodicals, Inc.

  13. Chronic activation of wild-type epidermal growth factor receptor and loss of Cdkn2a cause mouse glioblastoma formation.

    PubMed

    Acquaviva, Jaime; Jun, Hyun Jung; Lessard, Julie; Ruiz, Rolando; Zhu, Haihao; Donovan, Melissa; Woolfenden, Steve; Boskovitz, Abraham; Raval, Ami; Bronson, Roderick T; Pfannl, Rolf; Whittaker, Charles A; Housman, David E; Charest, Al

    2011-12-01

    Glioblastoma multiforme (GBM) is characterized by overexpression of epidermal growth factor receptor (EGFR) and loss of the tumor suppressors Ink4a/Arf. Efforts at modeling GBM using wild-type EGFR in mice have proven unsuccessful. Here, we present a unique mouse model of wild-type EGFR-driven gliomagenesis. We used a combination of somatic conditional overexpression and ligand-mediated chronic activation of EGFR in cooperation with Ink4a/Arf loss in the central nervous system of adult mice to generate tumors with the histopathologic and molecular characteristics of human GBMs. Sustained, ligand-mediated activation of EGFR was necessary for gliomagenesis, functionally substantiating the clinical observation that EGFR-positive GBMs from patients express EGFR ligands. To gain a better understanding of the clinically disappointing EGFR-targeted therapies for GBM, we investigated the molecular responses to EGFR tyrosine kinase inhibitor (TKI) treatment in this model. Gefitinib treatment of primary GBM cells resulted in a robust apoptotic response, partially conveyed by mitogen-activated protein kinase (MAPK) signaling attenuation and accompanied by BIM(EL) expression. In human GBMs, loss-of-function mutations in the tumor suppressor PTEN are a common occurrence. Elimination of PTEN expression in GBM cells posttumor formation did not confer resistance to TKI treatment, showing that PTEN status in our model is not predictive. Together, these findings offer important mechanistic insights into the genetic determinants of EGFR gliomagenesis and sensitivity to TKIs and provide a robust discovery platform to better understand the molecular events that are associated with predictive markers of TKI therapy.

  14. Mathematical modeling physiological effects of the overexpression of β2-adrenoceptors in mouse ventricular myocytes.

    PubMed

    Rozier, Kelvin; Bondarenko, Vladimir E

    2018-03-01

    Transgenic (TG) mice overexpressing β 2 -adrenergic receptors (β 2 -ARs) demonstrate enhanced myocardial function, which manifests in increased basal adenylyl cyclase activity, enhanced atrial contractility, and increased left ventricular function in vivo. To gain insights into the mechanisms of these effects, we developed a comprehensive mathematical model of the mouse ventricular myocyte overexpressing β 2 -ARs. We found that most of the β 2 -ARs are active in control conditions in TG mice. The simulations describe the dynamics of major signaling molecules in different subcellular compartments, increased basal adenylyl cyclase activity, modifications of action potential shape and duration, and the effects on L-type Ca 2+ current and intracellular Ca 2+ concentration ([Ca 2+ ] i ) transients upon stimulation of β 2 -ARs in control, after the application of pertussis toxin, upon stimulation with a specific β 2 -AR agonist zinterol, and upon stimulation with zinterol in the presence of pertussis toxin. The model also describes the effects of the β 2 -AR inverse agonist ICI-118,551 on adenylyl cyclase activity, action potential, and [Ca 2+ ] i transients. The simulation results were compared with experimental data obtained in ventricular myocytes from TG mice overexpressing β 2 -ARs and with simulation data on wild-type mice. In conclusion, a new comprehensive mathematical model was developed that describes multiple experimental data on TG mice overexpressing β 2 -ARs and can be used to test numerous hypotheses. As an example, using the developed model, we proved the hypothesis of the major contribution of L-type Ca 2+ current to the changes in the action potential and [Ca 2+ ] i transient upon stimulation of β 2 -ARs with zinterol. NEW & NOTEWORTHY We developed a new mathematical model for transgenic mouse ventricular myocytes overexpressing β 2 -adrenoceptors that describes the experimental findings in transgenic mice. The model reveals mechanisms of the

  15. Effect of glycogen synthase overexpression on insulin-stimulated muscle glucose uptake and storage.

    PubMed

    Fogt, Donovan L; Pan, Shujia; Lee, Sukho; Ding, Zhenping; Scrimgeour, Angus; Lawrence, John C; Ivy, John L

    2004-03-01

    Insulin-stimulated muscle glucose uptake is inversely associated with the muscle glycogen concentration. To investigate whether this association is a cause and effect relationship, we compared insulin-stimulated muscle glucose uptake in noncontracted and postcontracted muscle of GSL3-transgenic and wild-type mice. GSL3-transgenic mice overexpress a constitutively active form of glycogen synthase, which results in an abundant storage of muscle glycogen. Muscle contraction was elicited by in situ electrical stimulation of the sciatic nerve. Right gastrocnemii from GSL3-transgenic and wild-type mice were subjected to 30 min of electrical stimulation followed by hindlimb perfusion of both hindlimbs. Thirty minutes of contraction significantly reduced muscle glycogen concentration in wild-type (49%) and transgenic (27%) mice, although transgenic mice retained 168.8 +/- 20.5 micromol/g glycogen compared with 17.7 +/- 2.6 micromol/g glycogen for wild-type mice. Muscle of transgenic and wild-type mice demonstrated similar pre- (3.6 +/- 0.3 and 3.9 +/- 0.6 micromol.g(-1).h(-1) for transgenic and wild-type, respectively) and postcontraction (7.9 +/- 0.4 and 7.0 +/- 0.4 micromol.g(-1).h(-1) for transgenic and wild-type, respectively) insulin-stimulated glucose uptakes. However, the [14C]glucose incorporated into glycogen was greater in noncontracted (151%) and postcontracted (157%) transgenic muscle vs. muscle of corresponding wild-type mice. These results indicate that glycogen synthase activity is not rate limiting for insulin-stimulated glucose uptake in skeletal muscle and that the inverse relationship between muscle glycogen and insulin-stimulated glucose uptake is an association, not a cause and effect relationship.

  16. PNPLA3 overexpression results in reduction of proteins predisposing to fibrosis.

    PubMed

    Pingitore, Piero; Dongiovanni, Paola; Motta, Benedetta Maria; Meroni, Marica; Lepore, Saverio Massimo; Mancina, Rosellina Margherita; Pelusi, Serena; Russo, Cristina; Caddeo, Andrea; Rossi, Giorgio; Montalcini, Tiziana; Pujia, Arturo; Wiklund, Olov; Valenti, Luca; Romeo, Stefano

    2016-12-01

    Liver fibrosis is a pathological scarring response to chronic hepatocellular injury and hepatic stellate cells (HSCs) are key players in this process. PNPLA3 I148M is a common variant robustly associated with liver fibrosis but the mechanisms underlying this association are unknown. We aimed to examine a) the effect of fibrogenic and proliferative stimuli on PNPLA3 levels in HSCs and b) the role of wild type and mutant PNPLA3 overexpression on markers of HSC activation and fibrosis.Here, we show that PNPLA3 is upregulated by the fibrogenic cytokine transforming growth factor-beta (TGF-β), but not by platelet-derived growth factor (PDGF), and is involved in the TGF-β-induced reduction in lipid droplets in primary human HSCs. Furthermore, we show that retinol release from human HSCs ex vivo is lower in cells with the loss-of-function PNPLA3 148M compared with 148I wild type protein. Stable overexpression of PNPLA3 148I wild type, but not 148M mutant, in human HSCs (LX-2 cells) induces a reduction in the secretion of matrix metallopeptidase 2 (MMP2), tissue inhibitor of metalloproteinase 1 and 2 (TIMP1 and TIMP2), which is mediated by retinoid metabolism. In conclusion, we show a role for PNPLA3 in HSC activation in response to fibrogenic stimuli. Moreover, we provide evidence to indicate that PNPLA3-mediated retinol release may protect against liver fibrosis by inducing a specific signature of proteins involved in extracellular matrix remodelling. © The Author 2016. Published by Oxford University Press.

  17. PNPLA3 overexpression results in reduction of proteins predisposing to fibrosis

    PubMed Central

    Pingitore, Piero; Dongiovanni, Paola; Motta, Benedetta Maria; Meroni, Marica; Lepore, Saverio Massimo; Mancina, Rosellina Margherita; Pelusi, Serena; Russo, Cristina; Caddeo, Andrea; Rossi, Giorgio; Montalcini, Tiziana; Pujia, Arturo; Wiklund, Olov; Valenti, Luca; Romeo, Stefano

    2016-01-01

    Abstract Liver fibrosis is a pathological scarring response to chronic hepatocellular injury and hepatic stellate cells (HSCs) are key players in this process. PNPLA3 I148M is a common variant robustly associated with liver fibrosis but the mechanisms underlying this association are unknown. We aimed to examine a) the effect of fibrogenic and proliferative stimuli on PNPLA3 levels in HSCs and b) the role of wild type and mutant PNPLA3 overexpression on markers of HSC activation and fibrosis. Here, we show that PNPLA3 is upregulated by the fibrogenic cytokine transforming growth factor-beta (TGF-β), but not by platelet-derived growth factor (PDGF), and is involved in the TGF-β-induced reduction in lipid droplets in primary human HSCs. Furthermore, we show that retinol release from human HSCs ex vivo is lower in cells with the loss-of-function PNPLA3 148M compared with 148I wild type protein. Stable overexpression of PNPLA3 148I wild type, but not 148M mutant, in human HSCs (LX-2 cells) induces a reduction in the secretion of matrix metallopeptidase 2 (MMP2), tissue inhibitor of metalloproteinase 1 and 2 (TIMP1 and TIMP2), which is mediated by retinoid metabolism. In conclusion, we show a role for PNPLA3 in HSC activation in response to fibrogenic stimuli. Moreover, we provide evidence to indicate that PNPLA3-mediated retinol release may protect against liver fibrosis by inducing a specific signature of proteins involved in extracellular matrix remodelling. PMID:27742777

  18. The Psen1-L166P-knock-in mutation leads to amyloid deposition in human wild-type amyloid precursor protein YAC transgenic mice

    PubMed Central

    Vidal, Ruben; Sammeta, Neeraja; Garringer, Holly J.; Sambamurti, Kumar; Miravalle, Leticia; Lamb, Bruce T.; Ghetti, Bernardino

    2012-01-01

    Genetically engineered mice have been generated to model cerebral β-amyloidosis, one of the hallmarks of Alzheimer disease (AD) pathology, based on the overexpression of a mutated cDNA of the amyloid-β precursor protein (AβPP) or by knock-in of the murine Aβpp gene alone or with presenilin1 mutations. Here we describe the generation and initial characterization of a new mouse line based on the presence of 2 copies of the human genomic region encoding the wild-type AβPP and the L166P presenilin 1 mutation. At ∼6 mo of age, double-mutant mice develop amyloid pathology, with signs of neuritic dystrophy, intracellular Aβ accumulation, and glial inflammation, an increase in AβPP C-terminal fragments, and an 8 times increase in Aβ42 levels with a 40% decrease in Aβ40 levels, leading to a significant increase (14 times) of Aβ42/Aβ40 ratios, with minimal effects on presenilin or the Notch1 pathway in the brain. We conclude that in mice, neither mutations in AβPP nor overexpression of an AβPP isoform are a prerequisite for Aβ pathology. This model will allow the study of AD pathogenesis and testing of therapeutic strategies in a more relevant environment without experimental artifacts due to the overexpression of a single-mutant AβPP isoform using exogenous promoters.—Vidal, R., Sammeta, N., Garringer, H. J., Sambamurti, K., Miravalle, L., Lamb B. T., Ghetti, B. The Psen1-L166P-knock-in mutation leads to amyloid deposition in human wild-type amyloid precursor protein YAC transgenic mice. PMID:22459153

  19. Defining New Treatment Approaches for KRAS-Mutant Lung Cancer

    DTIC Science & Technology

    2014-10-01

    mutant NSCLC , a challenge we must meet to make progress in this clinically challenging NSCLC subset. Mutant KRAS, like ALK or EGFR, is a bone fide NSCLC ...required for KRAS G12D-driven NSCLC . Specific Aim 1. To identify gene products specifically essential for KRAS-driven NSCLC , we will perform a shRNA...screen of thousands of mouse genes, looking for essentiality in multiple independent cell lines derived from two NSCLC GEMMs: one RAF- dependent and

  20. Endometrial carcinomas with significant mucinous differentiation associated with higher frequency of k-ras mutations: a morphologic and molecular correlation study.

    PubMed

    Xiong, Jinjun; He, Mai; Jackson, Cynthia; Ou, Joyce J; Sung, C James; Breese, Virgina; Steinhoff, Margaret M; Quddus, M Ruhul; Tejada-Berges, Trevor; Lawrence, W Dwayne

    2013-09-01

    K-ras gene product in the mitogen-activated protein kinase/extracellular signal-regulated kinase pathway is critical in the development of certain types of malignancies. K-ras mutation-associated pancreatic and ovarian carcinomas often display mucinous differentiation. Previous studies have shown that k-ras mutation is found in 10% to 30% of endometrial carcinomas. We investigated k-ras mutations in several morphologic subtypes of endometrial carcinomas with particular emphasis on various degrees of mucinous differentiation. Genomic DNA was extracted from formalin-fixed paraffin-embedded (FFPE) tissue sections. Polymerase chain reaction amplification for k-ras codons 12 and 13 were performed, followed by sequencing using capillary electrophoresis. The Fisher exact test is used to compare the prevalent difference of k-ras mutation among the groups. P < 0.05 was considered significant. K-ras mutations were detected in 8 (80%) of 10 mucinous carcinomas, 12 (67%) of 18 endometrioid carcinomas (ECs) with significant mucinous differentiation (ECMD), 4 (25%) of 16 ECs, and 1 (9%) of 11 serous carcinomas. The differences were statistically significant between mucinous carcinomas versus EC (P < 0.01) and ECMD versus EC (P < 0.05). The findings suggest that mucinous carcinoma and endometrioid carcinoma with significant mucinous component are more likely to be associated with k-ras mutation. Potential clinical implications of k-ras mutation lies in the management of recurrent or higher-stage endometrial mucinous tumors, which would not be responsive to treatment protocols containing epidermal growth factor receptor inhibitors.

  1. Detection of EGFR and KRAS mutations in fine-needle aspirates stored on Whatman FTA cards: is this the tool for biobanking cytological samples in the molecular era?

    PubMed

    da Cunha Santos, Gilda; Liu, Ni; Tsao, Ming-Sound; Kamel-Reid, Suzanne; Chin, Kayu; Geddie, William R

    2010-12-25

    The aims of this study were to compare the quality of DNA recovered from fine-needle aspirates (FNAs) stored on Whatman FTA cards with that retrieved from corresponding cell blocks and to determine whether the DNA extracted from the cards is suitable for multiple mutation analyses. FNAs collected from 18 resected lung tumors and cell suspensions from 4 lung cancer cell lines were placed on FTA Indicating Micro Cards and further processed to produce paired formalin-fixed paraffin-embedded (FFPE) cell blocks. Fragment analysis was used for the detection of EGFR exon 19 deletion, and direct sequencing for detection of EGFR exon 21 L858R mutation and exon 2 deletion of KRAS. Corresponding FFPE tissue sections from 2 resection specimens were also tested. Analyses were successful with all FNAs and lung cancer-derived cell lines collected on cards. Polymerase chain reaction failed in 2 cell blocks. For FNAs collected on cards, 5 cases showed EGFR and 3 showed KRAS mutations. Eleven cases were wild type. With cell blocks, 4 cases were found to harbor KRAS and 4 harbored EGFR mutations. All lung cancer-derived cell lines tested positive for their respective mutations, and there was complete agreement between card and cell block FNA samples for EGFR exon 21. For EGFR exon 19, 1 of 18 cases showed discordant results between the card and cell block, and for KRAS 1 of 17. The two resection specimens tested gave concordant results with the FTA card. Storage of cytologic material on FTA cards can maximize and simplify sample procurement for multiple mutational analyses with results similar to those from cell blocks.

  2. [Analysis of prevalence of point mutations in codon 12 of oncogene K-ras from non-cancerous samples of cervical cytology positive for type 16 or 18 PVH].

    PubMed

    Golijow, C D; Mourón, S A; Gómez, M A; Dulout, F N

    1999-12-01

    Ninety-one non cancerous samples from genital specimens positives for VPH 16 or 18 and 27 non-infected samples as controls were studied. Mutations at codon 12 in K-ras gene was analyzed using enriched alelic PCR technique. Among the samples studied 17.58% showed mutations in this codon. Significant differences were observed between the control group (negative DNA-HPV) and positives DNA-HPV samples (p < 0.01). No differences were found between both viral types in relation to the mutation frequency. The presence of mutations in the K-ras gene in non cancerous cytological samples point out new questions about the role of mutations in proto-oncogenes and the development of cervical cancer.

  3. Herbicidal and antioxidant responses of transgenic rice overexpressing Myxococcus xanthus protoporphyrinogen oxidase.

    PubMed

    Jung, Sunyo; Back, Kyoungwhan

    2005-05-01

    We analyzed the herbicidal and antioxidant defense responses of transgenic rice plants that overexpressed the Myxococcus xanthus protoporphyrinogen oxidase gene. Leaf squares of the wild-type incubated with oxyfluorfen were characterized by necrotic leaf lesions and increases in conductivity and malonyldialdehyde levels, whereas transgenic lines M4 and M7 did not show any change with up to 100 microM oxyfluorfen. The wild-type had decreased F(v)/F(m) and produced a high level of H(2)O(2) at 18 h after foliar application of oxyfluorfen, whereas transgenic lines M4 and M7 were unaffected. In response to oxyfluorfen, violaxanthin, beta-carotene, and chlorophylls (Chls) decreased in wild-type plants, whereas antheraxanthin and zeaxanthin increased. Only a slight decline in Chls was observed in transgenic lines at 48 h after oxyfluorfen treatment. Noticeable increases of cytosolic Cu/Zn-superoxide dismutase, peroxidase isozymes 1 and 2, and catalase were observed after at 48 h of oxyfluorfen treatment in the wild-type. Non-enzymatic antioxidants appeared to respond faster to oxyfluorfen-induced photodynamic stress than did enzymatic antioxidants. Protective responses for the detoxification of active oxygen species were induced to counteract photodynamic stress in oxyfluorfen-treated, wild-type plants. However, oxyfluorfen-treated, transgenic plants suffered less oxidative stress, confirming increased herbicidal resistance resulted from dual expression of M. xanthus Protox in chloroplasts and mitochondria.

  4. Overexpression of inducible 70-kDa heat shock protein in mouse improves structural and functional recovery of skeletal muscles from atrophy.

    PubMed

    Miyabara, Elen H; Nascimento, Tabata L; Rodrigues, Débora C; Moriscot, Anselmo S; Davila, Wilmer F; AitMou, Younss; deTombe, Pieter P; Mestril, Ruben

    2012-04-01

    Heat shock proteins play a key regulatory role in cellular defense. To investigate the role of the inducible 70-kDa heat shock protein (HSP70) in skeletal muscle atrophy and subsequent recovery, soleus (SOL) and extensor digitorum longus (EDL) muscles from overexpressing HSP70 transgenic mice were immobilized for 7 days and subsequently released from immobilization and evaluated after 7 days. Histological analysis showed that there was a decrease in cross-sectional area of type II myofiber from EDL and types I and II myofiber from SOL muscles at 7-day immobilization in both wild-type and HSP70 mice. At 7-day recovery, EDL and SOL myofibers from HSP70 mice, but not from wild-type mice, recovered their size. Muscle tetanic contraction decreased only in SOL muscles from wild-type mice at both 7-day immobilization and 7-day recovery; however, it was unaltered in the respective groups from HSP70 mice. Although no effect in a fatigue protocol was observed among groups, we noticed a better contractile performance of EDL muscles from overexpressing HSP70 groups as compared to their matched wild-type groups. The number of NCAM positive-satellite cells reduced after immobilization and recovery in both EDL and SOL muscles from wild-type mice, but it was unchanged in the muscles from HSP70 mice. These results suggest that HSP70 improves structural and functional recovery of skeletal muscle after disuse atrophy, and this effect might be associated with preservation of satellite cell amount.

  5. Peroxisomal Ascorbate Peroxidase Resides within a Subdomain of Rough Endoplasmic Reticulum in Wild-Type Arabidopsis Cells1

    PubMed Central

    Lisenbee, Cayle S.; Heinze, Michael; Trelease, Richard N.

    2003-01-01

    Previously we reported (R.T. Mullen, C.S. Lisenbee, J.A. Miernyk, R.N. Trelease [1999] Plant Cell 11: 2167–2185) that overexpressed ascorbate peroxidase (APX), a peroxisomal membrane protein, sorted indirectly to Bright Yellow-2 cell peroxisomes via a subdomain of the endoplasmic reticulum (ER; peroxisomal endoplasmic reticulum [pER]). More recently, a pER-like compartment also was identified in pumpkin (Cucurbita pepo) and transformed Arabidopsis cells (K. Nito, K. Yamaguchi, M. Kondo, M. Hayashi, M. Nishimura [2001] Plant Cell Physiol 42: 20–27). Here, we characterize more extensively the localization of endogenous Arabidopsis peroxisomal APX (AtAPX) in cultured wild-type Arabidopsis cells (Arabidopsis var. Landsberg erecta). AtAPX was detected in peroxisomes, but not in an ER subcompartment, using immunofluorescence microscopy. However, AtAPX was detected readily with immunoblots in both peroxisomal and ER fractions recovered from sucrose (Suc) density gradients. Most AtAPX in microsomes (200,000g, 1 h pellet) applied to gradients exhibited a Mg2+-induced shift from a distribution throughout gradients (approximately 18%–40% [w/w] Suc) to ≥42% (w/w) Suc regions of gradients, including pellets, indicative of localization in rough ER vesicles. Immunogold electron microscopy of the latter fractions verified these findings. Further analyses of peroxisomal and rough ER vesicle fractions revealed that AtAPX in both fractions was similarly associated with and located mostly on the cytosolic face of the membranes. Thus, at the steady state, endogenous peroxisomal AtAPX resides at different levels in rough ER and peroxisomes. Collectively, these findings show that rather than being a transiently induced sorting compartment formed in response to overexpressed peroxisomal APX, portions of rough ER (pER) in wild-type cells serve as a constitutive sorting compartment likely involved in posttranslational routing of constitutively synthesized peroxisomal APX. PMID

  6. Overexpression of SepJ alters septal morphology and heterocyst pattern regulated by diffusible signals in Anabaena.

    PubMed

    Mariscal, Vicente; Nürnberg, Dennis J; Herrero, Antonia; Mullineaux, Conrad W; Flores, Enrique

    2016-09-01

    Filamentous, N2 -fixing, heterocyst-forming cyanobacteria grow as chains of cells that are connected by septal junctions. In the model organism Anabaena sp. strain PCC 7120, the septal protein SepJ is required for filament integrity, normal intercellular molecular exchange, heterocyst differentiation, and diazotrophic growth. An Anabaena strain overexpressing SepJ made wider septa between vegetative cells than the wild type, which correlated with a more spread location of SepJ in the septa as observed with a SepJ-GFP fusion, and contained an increased number of nanopores, the septal peptidoglycan perforations that likely accommodate septal junctions. The septa between heterocysts and vegetative cells, which are narrow in wild-type Anabaena, were notably enlarged in the SepJ-overexpressing mutant. Intercellular molecular exchange tested with fluorescent tracers was increased for the SepJ-overexpressing strain specifically in the case of calcein transfer between vegetative cells and heterocysts. These results support an association between calcein transfer, SepJ-related septal junctions, and septal peptidoglycan nanopores. Under nitrogen deprivation, the SepJ-overexpressing strain produced an increased number of contiguous heterocysts but a decreased percentage of total heterocysts. These effects were lost or altered in patS and hetN mutant backgrounds, supporting a role of SepJ in the intercellular transfer of regulatory signals for heterocyst differentiation. © 2016 John Wiley & Sons Ltd.

  7. Aggregates assembled from overexpression of wild-type alpha-synuclein are not toxic to human neuronal cells.

    PubMed

    Ko, Li-Wen; Ko, Hwai-Hwa C; Lin, Wen-Lang; Kulathingal, Jayanranyan G; Yen, Shu-Hui C

    2008-11-01

    Filamentous alpha-synuclein (alpha-syn) aggregates form Lewy bodies (LBs), the neuropathologic hallmarks of Parkinson disease and related alpha-synucleinopathies. To model Lewy body-associated neurodegeneration, we generated transfectant 3D5 of human neuronal-type in which expression of human wild-type alpha-syn is regulated by the tetracycline off (TetOff)-inducible mechanism. Retinoic acid-elicited differentiation promoted assembly of alpha-syn aggregates after TetOff induction in 3D5 cells. The aggregates accumulated 14 days after TetOff induction were primarily soluble and showed augmented thioflavin affinity with concomitant phosphorylation and nitration of alpha-syn. Extension of the induction led to the formation of sarkosyl-insoluble aggregates that appeared concurrently with thioflavin-positive inclusions. Immunoelectron microscopy revealed that the inclusions consist of dense bundles of 8- to 12-nm alpha-syn fibrils that congregate in the perikarya and resemble Lewy bodies. Most importantly, accumulation of soluble and insoluble aggregates after TetOff induction for 14 and 28 days was reversible and did not compromise the viability of the cells or their subsequent survival. Thus, this chemically defined culture paradigm provides a useful means to elucidate how oxidative injuries and other insults that are associated with aging promote alpha-syn to self-assemble or interact with other molecules leading to neuronal degeneration in alpha-synucleinopathies.

  8. Bacteroides fragilis RecA protein overexpression causes resistance to metronidazole

    PubMed Central

    Steffens, Laura S.; Nicholson, Samantha; Paul, Lynthia V.; Nord, Carl Erik; Patrick, Sheila; Abratt, Valerie R.

    2010-01-01

    Bacteroides fragilis is a human gut commensal and an opportunistic pathogen causing anaerobic abscesses and bacteraemias which are treated with metronidazole (Mtz), a DNA damaging agent. This study examined the role of the DNA repair protein, RecA, in maintaining endogenous DNA stability and its contribution to resistance to Mtz and other DNA damaging agents. RT-PCR of B. fragilis genomic DNA showed that the recA gene was co-transcribed as an operon together with two upstream genes, putatively involved in repairing oxygen damage. A B. fragilis recA mutant was generated using targeted gene inactivation. Fluorescence microscopy using DAPI staining revealed increased numbers of mutant cells with reduced intact double-stranded DNA. Alkaline gel electrophoresis of the recA mutant DNA showed increased amounts of strand breaks under normal growth conditions, and the recA mutant also showed less spontaneous mutagenesis relative to the wild type strain. The recA mutant was sensitive to Mtz, ultraviolet light and hydrogen peroxide. A B. fragilis strain overexpressing the RecA protein exhibited increased resistance to Mtz compared to the wild type. This is the first study to show that overexpression of a DNA repair protein in B. fragilis increases Mtz resistance. This represents a novel drug resistance mechanism in this bacterium. PMID:20435137

  9. Elderly male smokers with right lung tumors are viable candidates for KRAS mutation screening.

    PubMed

    Yang, Yang; Shi, Chun; Sun, Hui; Yin, Wei; Zhou, Xiao; Zhang, Lei; Jiang, Gening

    2016-01-07

    Genetic aberrations in tumor driver genes provide specific molecular targets for therapeutic intervention, which can greatly improve therapeutic outcomes. Here, we analyzed the mutational frequency of EGFR and KRAS gene, as well as EML4-ALK rearrangement, and summarized the clinicopathological characters of Chinese lung cancer patients. We detected the mutation spectrum of 1033 primary lung cancer patients. The analyzed clinicopathological parameters included gender, age at diagnosis, smoking status, pathological TNM stage, tumor morphology and location, visceral pleural invasion, and histological type. A total of 618 patients had mutations in EGFR or KRAS gene as well as rearrangement of EML4-ALK. Exon 19 deletions and L858R in the EGFR gene were the most frequent mutations. Left-side lung cancer was more common in female patients carrying the KRAS mutation. Rearrangement of EML4-ALK was more common in non-tobacco-using male patients, who also exhibited a higher likelihood of visceral pleura invasion. Elderly females who never smoked and possessed 1-20 mm stage I adenocarcinomas in the right side exhibited a higher frequency of EGFR mutations. Elderly male smokers with right lung tumors were viable candidates for KRAS mutation screening.

  10. Mutant KRAS as a critical determinant of the therapeutic response of colorectal cancer

    PubMed Central

    Knickelbein, Kyle; Zhang, Lin

    2014-01-01

    Mutations in the KRAS oncogene represent one of the most prevalent genetic alterations in colorectal cancer (CRC), the third leading cause of cancer-related death in the US. In addition to their well-characterized function in driving tumor progression, KRAS mutations have been recognized as a critical determinant of the therapeutic response of CRC. Recent studies demonstrate that KRAS-mutant tumors are intrinsically insensitive to clinically-used epidermal growth factor receptor (EGFR) targeting antibodies, including cetuximab and panitumumab. Acquired resistance to the anti-EGFR therapy was found to be associated with enrichment of KRAS-mutant tumor cells. However, the underlying molecular mechanism of mutant-KRAS-mediated therapeutic resistance has remained unclear. Despite intensive efforts, directly targeting mutant KRAS has been largely unsuccessful. This review summarizes the recent advances in understanding the biological function of KRAS mutations in determining the therapeutic response of CRC, highlighting several recently developed agents and strategies for targeting mutant KRAS, such as synthetic lethal interactions. PMID:25815366

  11. Cyclophilin B induces chemoresistance by degrading wild type p53 via interaction with MDM2 in colorectal cancer.

    PubMed

    Choi, Tae Gyu; Nguyen, Minh Nam; Kim, Jieun; Jo, Yong Hwa; Jang, Miran; Nguyen, Ngoc Ngo Yen; Yun, Hyeong Rok; Choe, Wonchae; Kang, Insug; Ha, Joohun; Tang, Dean G; Kim, Sung Soo

    2018-06-06

    Colorectal cancer (CRC) is one of the leading causes of cancer-related deaths worldwide. Chemoresistance is a major problem for effective therapy in CRC. Here, we investigated the mechanism by which peptidylprolyl isomerase B (PPIB; cyclophilin B, CypB) regulates chemoresistance in CRC. We found that CypB is a novel wild type p53 (p53WT)-inducible gene but a negative regulator of p53WT in response to oxaliplatin treatment. Overexpression of CypB shortens the half-life of p53WT and inhibits oxaliplatin-induced apoptosis in CRC cells, whereas knockdown of CypB lengthens the half-life of p53WT and stimulates p53WT dependent apoptosis. CypB interacts directly with MDM2, and enhances MDM2-dependent p53WT ubiquitination and degradation. Furthermore, we firmly validated using bioinformatics analyses that overexpression of CypB is associated with poor prognosis in CRC progression and chemoresistance. Hence, we suggest a novel mechanism of chemoresistance caused by overexpressed CypB, which may help to develop new anti-cancer drugs. We also propose that CypB may be utilized as a predictive biomarker in CRC patients. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  12. Identification of Differentially Expressed K-Ras Transcript Variants in Patients With Leiomyoma.

    PubMed

    Zolfaghari, Nooshin; Shahbazi, Shirin; Torfeh, Mahnaz; Khorasani, Maryam; Hashemi, Mehrdad; Mahdian, Reza

    2017-10-01

    Molecular studies have demonstrated a wide range of gene expression variations in uterine leiomyoma. The rat sarcoma virus/rapidly accelerated fibrosarcoma/mitogen-activated protein kinase (RAS/RAF/MAPK) is the crucial cellular pathway in transmitting external signals into nucleus. Deregulation of this pathway contributes to excessive cell proliferation and tumorigenesis. The present study aims to investigate the expression profile of the K-Ras transcripts in tissue samples from patients with leiomyoma. The patients were leiomyoma cases who had no mutation in mediator complex subunit 12 ( MED12) gene. A quantitative approach has been applied to determine the difference in the expression of the 2 main K-Ras messenger RNA (mRNA) variants. The comparison between gene expression levels in leiomyoma and normal myometrium group was performed using relative expression software tool. The expression of K-Ras4B gene was upregulated in leiomyoma group ( P = .016), suggesting the involvement of K-Ras4B in the disease pathogenesis. Pairwise comparison of the K-Ras4B expression between each leiomyoma tissue and its matched adjacent normal myometrium revealed gene upregulation in 68% of the cases. The expression of K-Ras4A mRNA was relatively upregulated in leiomyoma group ( P = .030). In addition, the mean expression of K-Ras4A gene in leiomyoma tissues relative to normal samples was 4.475 (95% confidence interval: 0.10-20.42; standard error: 0.53-12.67). In total, 58% of the cases showed more than 2-fold increase in K-Ras4A gene expression. Our results demonstrated increased expression of both K-Ras mRNA splicing variants in leiomyoma tissue. However, the ultimate result of KRAS expression on leiomyoma development depends on the overall KRAS isoform balance and, consequently, on activated signaling pathways.

  13. Overexpression of ESBP6 improves lactic acid resistance and production in Saccharomyces cerevisiae.

    PubMed

    Sugiyama, Minetaka; Akase, Shin-Pei; Nakanishi, Ryota; Kaneko, Yoshinobu; Harashima, Satoshi

    2016-10-01

    Polylactic acid plastics are receiving increasing attention for the control of atmospheric CO2 emissions. Lactic acid, the building block for polylactic acid, is produced by fermentation technology from renewable carbon sources. The yeast Saccharomyces cerevisiae, harboring the lactate dehydrogenases gene (LDH), produces lactic acid at a large scale due to its strong acid resistance, to its simple nutritional requirements and to its ease of genetic engineering. Since improvement of lactic acid resistance is correlated with an increase of lactic acid production under non-neutralizing condition, we isolated a novel gene that enhances lactic acid resistance using a multi-copy yeast genomic DNA library. In this study, we identified the ESBP6 gene, which increases lactic acid resistance when overexpressed and which encodes a protein with similarity to monocarboxylate permeases. Although ESBP6 was not induced in response to lactic acid stress, it caused weak but reproducible sensitivity to lactic acid when disrupted. Furthermore, intracellular pH in the ESBP6 overexpressing strain was higher than that in the wild-type strain under lactic acid stressed condition, suggesting that Esbp6 plays some roles in lactic acid adaptation response. The ESBP6 overexpressing strain carrying the LDH gene induced 20% increase in lactic acid production compared with the wild-type strain carrying the LDH gene under non-neutralizing conditions. These results indicate that overexpression of ESBP6 provides a novel and useful tool to improve lactic acid resistance and lactic acid production in yeast. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  14. Structural basis of recognition of farnesylated and methylated KRAS4b by PDEδ.

    PubMed

    Dharmaiah, Srisathiyanarayanan; Bindu, Lakshman; Tran, Timothy H; Gillette, William K; Frank, Peter H; Ghirlando, Rodolfo; Nissley, Dwight V; Esposito, Dominic; McCormick, Frank; Stephen, Andrew G; Simanshu, Dhirendra K

    2016-11-01

    Farnesylation and carboxymethylation of KRAS4b (Kirsten rat sarcoma isoform 4b) are essential for its interaction with the plasma membrane where KRAS-mediated signaling events occur. Phosphodiesterase-δ (PDEδ) binds to KRAS4b and plays an important role in targeting it to cellular membranes. We solved structures of human farnesylated-methylated KRAS4b in complex with PDEδ in two different crystal forms. In these structures, the interaction is driven by the C-terminal amino acids together with the farnesylated and methylated C185 of KRAS4b that binds tightly in the central hydrophobic pocket present in PDEδ. In crystal form II, we see the full-length structure of farnesylated-methylated KRAS4b, including the hypervariable region. Crystal form I reveals structural details of farnesylated-methylated KRAS4b binding to PDEδ, and crystal form II suggests the potential binding mode of geranylgeranylated-methylated KRAS4b to PDEδ. We identified a 5-aa-long sequence motif (Lys-Ser-Lys-Thr-Lys) in KRAS4b that may enable PDEδ to bind both forms of prenylated KRAS4b. Structure and sequence analysis of various prenylated proteins that have been previously tested for binding to PDEδ provides a rationale for why some prenylated proteins, such as KRAS4a, RalA, RalB, and Rac1, do not bind to PDEδ. Comparison of all four available structures of PDEδ complexed with various prenylated proteins/peptides shows the presence of additional interactions due to a larger protein-protein interaction interface in KRAS4b-PDEδ complex. This interface might be exploited for designing an inhibitor with minimal off-target effects.

  15. Multi-Center Evaluation of the Fully Automated PCR-Based Idylla™ KRAS Mutation Assay for Rapid KRAS Mutation Status Determination on Formalin-Fixed Paraffin-Embedded Tissue of Human Colorectal Cancer

    PubMed Central

    Solassol, Jérôme; Vendrell, Julie; Märkl, Bruno; Haas, Christian; Bellosillo, Beatriz; Montagut, Clara; Smith, Matthew; O’Sullivan, Brendan; D’Haene, Nicky; Le Mercier, Marie; Grauslund, Morten; Melchior, Linea Cecilie; Burt, Emma; Cotter, Finbarr; Stieber, Daniel; Schmitt, Fernando de Lander; Motta, Valentina; Lauricella, Calogero; Colling, Richard; Soilleux, Elizabeth; Fassan, Matteo; Mescoli, Claudia; Collin, Christine; Pagès, Jean-Christophe; Sillekens, Peter

    2016-01-01

    Since the advent of monoclonal antibodies against epidermal growth factor receptor (EGFR) in colorectal cancer therapy, the determination of RAS mutational status is needed for therapeutic decision-making. Most prevalent in colorectal cancer are KRAS exon 2 mutations (40% prevalence); lower prevalence is observed for KRAS exon 3 and 4 mutations (6%) and NRAS exon 2, 3, and 4 mutations (5%). The Idylla™ KRAS Mutation Test on the molecular diagnostics Idylla™ platform is a simple (<2 minutes hands-on time), highly reliable, and rapid (approximately 2 hours turnaround time) in vitro diagnostic sample-to-result solution. This test enables qualitative detection of 21 mutations in codons 12, 13, 59, 61, 117, and 146 of the KRAS oncogene being clinically relevant according to the latest clinical guidelines. Here, the performance of the Idylla™ KRAS Mutation Assay, for Research Use Only, was assessed on archived formalin-fixed paraffin-embedded (FFPE) tissue sections by comparing its results with the results previously obtained by routine reference approaches for KRAS genotyping. In case of discordance, samples were assessed further by additional methods. Among the 374 colorectal cancer FFPE samples tested, the overall concordance between the Idylla™ KRAS Mutation Assay and the confirmed reference routine test results was found to be 98.9%. The Idylla™ KRAS Mutation Assay enabled detection of 5 additional KRAS-mutated samples not detected previously with reference methods. As conclusion the Idylla™ KRAS Mutation Test can be applied as routine tool in any clinical setting, without needing molecular infrastructure or expertise, to guide the personalized treatment of colorectal cancer patients. PMID:27685259

  16. Overexpression of acetyl-CoA synthetase in Saccharomyces cerevisiae increases acetic acid tolerance

    PubMed Central

    Ding, Jun; Holzwarth, Garrett; Penner, Michael H.; Patton-Vogt, Jana; Bakalinsky, Alan T.

    2015-01-01

    Acetic acid-mediated inhibition of the fermentation of lignocellulose-derived sugars impedes development of plant biomass as a source of renewable ethanol. In order to overcome this inhibition, the capacity of Saccharomyces cerevisiae to synthesize acetyl-CoA from acetic acid was increased by overexpressing ACS2 encoding acetyl-coenzyme A synthetase. Overexpression of ACS2 resulted in higher resistance to acetic acid as measured by an increased growth rate and shorter lag phase relative to a wild-type control strain, suggesting that Acs2-mediated consumption of acetic acid during fermentation contributes to acetic acid detoxification. PMID:25673654

  17. Analysis of KRAS and BRAF genes mutation in the central nervous system metastases of non-small cell lung cancer.

    PubMed

    Nicoś, Marcin; Krawczyk, Paweł; Jarosz, Bożena; Sawicki, Marek; Szumiłło, Justyna; Trojanowski, Tomasz; Milanowski, Janusz

    2016-05-01

    KRAS mutations are associated with tumor resistance to EGFR TKIs (erlotinib, gefitinib) and to monoclonal antibody against EGFR (cetuximab). Targeted treatment of mutated RAS patients is still considered as a challenge. Inhibitors of c-Met (onartuzumab or tiwantinib) and MEK (selumetinib-a dual inhibitor of MEK1 and MEK2) signaling pathways showed activity in patients with mutations in KRAS that can became an effective approach in carriers of such disorders. BRAF mutation is very rare in patients with NSCLC, and its presence is associated with sensitivity of tumor cells to BRAF inhibitors (vemurafenib, dabrafenib). In the present study, the frequency and type of KRAS and BRAF mutation were assessed in 145 FFPE tissue samples from CNS metastases of NSCLC. In 30 patients, material from the primary tumor was simultaneously available. Real-time PCR technique with allele-specific molecular probe (KRAS/BRAF Mutation Analysis Kit, Entrogen, USA) was used for molecular tests. KRAS mutations were detected in 21.4 % of CNS metastatic lesions and in 23.3 % of corresponding primary tumors. Five mutations were identified both in primary and in metastatic lesions, while one mutation only in primary tumor and one mutation only in the metastatic tumor. Most of mutations were observed in codon 12 of KRAS; however, an individual patient had diagnosed a rare G13D and Q61R substitutions. KRAS mutations were significantly more frequent in adenocarcinoma patients and smokers. Additional analysis indicated one patient with rare coexistence of KRAS and DDR2 mutations. BRAF mutation was not detected in the examined materials. KRAS frequency appears to be similar in primary and CNS.

  18. KRAS mutation testing of tumours in adults with metastatic colorectal cancer: a systematic review and cost-effectiveness analysis.

    PubMed

    Westwood, Marie; van Asselt, Thea; Ramaekers, Bram; Whiting, Penny; Joore, Manuela; Armstrong, Nigel; Noake, Caro; Ross, Janine; Severens, Johan; Kleijnen, Jos

    2014-10-01

    with standard chemotherapy or cetuximab plus standard chemotherapy. The analysis took a 'no comparator' approach, which implies that the cost-effectiveness of each strategy will be presented only compared with the next most cost-effective strategy. The de novo model consisted of a decision tree and Markov model. The online survey indicated no differences between tests in batch size, turnaround time, number of failed samples or cost. The literature searches identified 7903 references, of which seven publications of five studies were included in the review. Two studies provided data on the accuracy of KRAS mutation testing for predicting response to treatment in patients treated with cetuximab plus standard chemotherapy. Four RCTs provided data on the clinical effectiveness of cetuximab plus standard chemotherapy compared with that of standard chemotherapy in patients with KRAS wild-type tumours. There were no clear differences in the treatment effects reported by different studies, regardless of which KRAS mutation test was used to select patients. In the 'linked evidence' analysis the Therascreen KRAS RGQ PCR Kit (QIAGEN) was more expensive but also more effective than pyrosequencing or direct sequencing, with an incremental cost-effectiveness ratio of £17,019 per quality-adjusted life-year gained. In the 'assumption of equal prognostic value' analysis the total costs associated with the various testing strategies were similar. The results assume that the differences in outcomes between the trials were solely the result of the different mutation tests used to distinguish between patients; this assumption ignores other factors that might explain this variation. There was no strong evidence that any one KRAS mutation test was more effective or cost-effective than any other test. PROSPERO CRD42013003663. The National Institute for Health Research Health Technology Assessment programme.

  19. Nitrative and oxidative DNA damage caused by K-ras mutation in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohnishi, Shiho; Saito, Hiromitsu; Suzuki, Noboru

    2011-09-23

    Highlights: {yields} Mutated K-ras in transgenic mice caused nitrative DNA damage, 8-nitroguanine. {yields} The mutagenic 8-nitroguanine seemed to be generated by iNOS via Ras-MAPK signal. {yields} Mutated K-ras produces additional mutagenic lesions, as a new oncogenic role. -- Abstract: Ras mutation is important for carcinogenesis. Carcinogenesis consists of multi-step process with mutations in several genes. We investigated the role of DNA damage in carcinogenesis initiated by K-ras mutation, using conditional transgenic mice. Immunohistochemical analysis revealed that mutagenic 8-nitroguanine and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) were apparently formed in adenocarcinoma caused by mutated K-ras. 8-Nitroguanine was co-localized with iNOS, eNOS, NF-{kappa}B, IKK, MAPK, MEK,more » and mutated K-ras, suggesting that oncogenic K-ras causes additional DNA damage via signaling pathway involving these molecules. It is noteworthy that K-ras mutation mediates not only cell over-proliferation but also the accumulation of mutagenic DNA lesions, leading to carcinogenesis.« less

  20. Specific repression of mutant K-RAS by 10-23 DNAzyme: Sensitizing cancer cell to anti-cancer therapies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, S.-H.; Wang, T.-H.; Department of Medical Research and Education, Taipei Veterans General Hospital, No. 201, Sec. 2, Shih-Pai Road, Taipei 11227, Taiwan

    2009-01-09

    Point mutations of the Ras family are frequently found in human cancers at a prevalence rate of 30%. The most common mutation K-Ras(G12V), required for tumor proliferation, survival, and metastasis due to its constitutively active GTPase activity, has provided an ideal target for cancer therapy. 10-23 DNAzyme, an oligodeoxyribonucleotide-based ribonuclease consisting of a 15-nucleotide catalytical domain flanked by two target-specific complementary arms, has been shown to effectively cleave the target mRNA at purine-pyrimidine dinucleotide. Taking advantage of this specific property, 10-23 DNAzyme was designed to cleave mRNA of K-Ras(G12V)(GGU {yields} GUU) at the GU dinucleotide while left the wild-type (WT)more » K-Ras mRNA intact. The K-Ras(G12V)-specific 10-23 DNAzyme was able to reduce K-Ras(G12V) at both mRNA and protein levels in SW480 cell carrying homozygous K-Ras(G12V). No effect was observed on the WT K-Ras in HEK cells. Although K-Ras(G12V)-specific DNAzymes alone did not inhibit proliferation of SW480 or HEK cells, pre-treatment of this DNAzyme sensitized the K-Ras(G12V) mutant cells to anti-cancer agents such as doxorubicin and radiation. These results offer a potential of using allele-specific 10-23 DNAzyme in combination with other cancer therapies to achieve better effectiveness on cancer treatment.« less

  1. HPV positive, wild type TP53, and p16 overexpression correlate with the absence of residual tumors after chemoradiotherapy in anal squamous cell carcinoma.

    PubMed

    Soares, Paulo C; Abdelhay, Eliana S; Thuler, Luiz Claudio S; Soares, Bruno Moreira; Demachki, Samia; Ferro, Gessica Valéria Rocha; Assumpção, Paulo P; Lamarão, Leticia Martins; Ribeiro Pinto, Luis Felipe; Burbano, Rommel Mario Rodríguez

    2018-02-21

    Anal residual tumors are consensually identified within six months of chemoradiotherapy and represent a persistent lesion that may have prognostic value for overall survival. The aim of this study was to evaluate the association of HPV and HIV status, p16 expression level and TP53 mutations with the absence of residual tumors (local response) in Squamous Cell Carcinoma (SCC) of the anal canal after chemoradiotherapy. We performed a study on 78 patients with SCC of the anal canal who submitted to chemoradiotherapy and were followed for a six-month period to identify the absence or presence of residual tumors. HPV DNA was identified by polymerase chain reaction and direct sequencing, HIV RNA was detected by TaqMan amplification, p16 expression was detected by western blotting, and the mutational analysis of TP53 was performed by direct sequencing; additionally, samples carrying mutations underwent fluorescent in sit hybridization. The evaluation of the tumor response to treatment was conducted six months after the conclusion of chemoradiotherapy. The following classifications were used to evaluate the outcomes: a) no response (presence of residual tumor) and b) complete response (absence of residual tumor). The significant variables associated with the absence of residual tumors were HPV positive, p16 overexpressed, wild-type TP53, female gender, and stages I and II. Only the presence of HPV was independently correlated with the clinical response; this variable increased the chances of a response within six months by 31-fold. The presence of HPV in tumor cells was correlated with the absence of a residual tumor. This correlation is valuable and can direct future therapeutic approaches in the anal canal.

  2. Potent and Selective Covalent Quinazoline Inhibitors of KRAS G12C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeng, Mei; Lu, Jia; Li, Lianbo

    Targeted covalent small molecules have shown promise for cancers driven by KRAS G12C. Allosteric compounds that access an inducible pocket formed by movement of a dynamic structural element in KRAS, switch II, have been reported, but these compounds require further optimization to enable their advancement into clinical development. We demonstrate that covalent quinazoline-based switch II pocket (SIIP) compounds effectively suppress GTP loading of KRAS G12C, MAPK phosphorylation, and the growth of cancer cells harboring G12C. Notably we find that adding an amide substituent to the quinazoline scaffold allows additional interactions with KRAS G12C, and remarkably increases the labeling efficiency, potency,more » and selectivity of KRAS G12C inhibitors. Structural studies using X-ray crystallography reveal a new conformation of SIIP and key interactions made by substituents located at the quinazoline 2-, 4-, and 7-positions. Optimized lead compounds in the quinazoline series selectively inhibit KRAS G12C-dependent signaling and cancer cell growth at sub-micromolar concentrations.« less

  3. Overexpression of IRM1 Enhances Resistance to Aphids in Arabidopsis thaliana

    PubMed Central

    Chen, Xi; Zhang, Zhao; Visser, Richard G. F.; Broekgaarden, Colette; Vosman, Ben

    2013-01-01

    Aphids are insects that cause direct damage to crops by the removal of phloem sap, but more importantly they spread devastating viruses. Aphids use their sophisticated mouthpart (i.e. stylet) to feed from the phloem sieve elements of the host plant. To identify genes that affect host plant resistance to aphids, we previously screened an Arabidopsis thaliana activation tag mutant collection. In such mutants, tagged genes are overexpressed by a strong 35S enhancer adjacent to the natural promoter, resulting in a dominant gain-of-function phenotype. We previously identified several of these mutants on which the aphid Myzus persicae showed a reduced population development compared with wild type. In the present study we show that the gene responsible for the phenotype of one of the mutants is At5g65040 and named this gene Increased Resistance to Myzus persicae 1 (IRM1). Overexpression of the cloned IRM1 gene conferred a phenotype identical to that of the original mutant. Conversely, an IRM1 knockout mutant promoted aphid population development compared to the wild type. We performed Electrical Penetration Graph analysis to investigate how probing and feeding behaviour of aphids was affected on plants that either overexpressed IRM1 or contained a knockout mutation in this gene. The EPG results indicated that the aphids encounter resistance factors while reaching for the phloem on the overexpressing line. This resistance mechanism also affected other aphid species and is suggested to be of mechanical nature. Interestingly, genetic variation for IRM1 expression in response to aphid attack was observed. Upon aphid attack the expression of IRM1 was initially (after 6 hours) induced in ecotype Wassilewskija followed by suppression. In Columbia-0, IRM1 expression was already suppressed six hours after the start of the infestation. The resistance conferred by the overexpression of IRM1 in A. thaliana trades off with plant growth. PMID:23951039

  4. Novel KRAS Gene Mutations in Sporadic Colorectal Cancer

    PubMed Central

    Naser, Walid M.; Shawarby, Mohamed A.; Al-Tamimi, Dalal M.; Seth, Arun; Al-Quorain, Abdulaziz; Nemer, Areej M. Al; Albagha, Omar M. E.

    2014-01-01

    Introduction In this article, we report 7 novel KRAS gene mutations discovered while retrospectively studying the prevalence and pattern of KRAS mutations in cancerous tissue obtained from 56 Saudi sporadic colorectal cancer patients from the Eastern Province. Methods Genomic DNA was extracted from formalin-fixed, paraffin-embedded cancerous and noncancerous colorectal tissues. Successful and specific PCR products were then bi-directionally sequenced to detect exon 4 mutations while Mutector II Detection Kits were used for identifying mutations in codons 12, 13 and 61. The functional impact of the novel mutations was assessed using bioinformatics tools and molecular modeling. Results KRAS gene mutations were detected in the cancer tissue of 24 cases (42.85%). Of these, 11 had exon 4 mutations (19.64%). They harbored 8 different mutations all of which except two altered the KRAS protein amino acid sequence and all except one were novel as revealed by COSMIC database. The detected novel mutations were found to be somatic. One mutation is predicted to be benign. The remaining mutations are predicted to cause substantial changes in the protein structure. Of these, the Q150X nonsense mutation is the second truncating mutation to be reported in colorectal cancer in the literature. Conclusions Our discovery of novel exon 4 KRAS mutations that are, so far, unique to Saudi colorectal cancer patients may be attributed to environmental factors and/or racial/ethnic variations due to genetic differences. Alternatively, it may be related to paucity of clinical studies on mutations other than those in codons 12, 13, 61 and 146. Further KRAS testing on a large number of patients of various ethnicities, particularly beyond the most common hotspot alleles in exons 2 and 3 is needed to assess the prevalence and explore the exact prognostic and predictive significance of the discovered novel mutations as well as their possible role in colorectal carcinogenesis. PMID:25412182

  5. Overexpression of Rad in muscle worsens diet-induced insulin resistance and glucose intolerance and lowers plasma triglyceride level

    NASA Astrophysics Data System (ADS)

    Ilany, Jacob; Bilan, Philip J.; Kapur, Sonia; Caldwell, James S.; Patti, Mary-Elizabeth; Marette, Andre; Kahn, C. Ronald

    2006-03-01

    Rad is a low molecular weight GTPase that is overexpressed in skeletal muscle of some patients with type 2 diabetes mellitus and/or obesity. Overexpression of Rad in adipocytes and muscle cells in culture results in diminished insulin-stimulated glucose uptake. To further elucidate the potential role of Rad in vivo, we have generated transgenic (tg) mice that overexpress Rad in muscle using the muscle creatine kinase (MCK) promoter-enhancer. Rad tg mice have a 6- to 12-fold increase in Rad expression in muscle as compared to wild-type littermates. Rad tg mice grow normally and have normal glucose tolerance and insulin sensitivity, but have reduced plasma triglyceride levels. On a high-fat diet, Rad tg mice develop more severe glucose intolerance than the wild-type mice; this is due to increased insulin resistance in muscle, as exemplified by a rightward shift in the dose-response curve for insulin stimulated 2-deoxyglucose uptake. There is also a unexpected further reduction of the plasma triglyceride levels that is associated with increased levels of lipoprotein lipase in the Rad tg mice. These results demonstrate a potential synergistic interaction between increased expression of Rad and high-fat diet in creation of insulin resistance and altered lipid metabolism present in type 2 diabetes. diabetes mellitus | glucose transport | RGK GTPase | transgenic mouse

  6. Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1

    PubMed Central

    Barbie, David A.; Tamayo, Pablo; Boehm, Jesse S.; Kim, So Young; Moody, Susan E.; Dunn, Ian F.; Schinzel, Anna C.; Sandy, Peter; Meylan, Etienne; Scholl, Claudia; Fröhling, Stefan; Chan, Edmond M.; Sos, Martin L.; Michel, Kathrin; Mermel, Craig; Silver, Serena J.; Weir, Barbara A.; Reiling, Jan H.; Sheng, Qing; Gupta, Piyush B.; Wadlow, Raymond C.; Le, Hanh; Hoersch, Sebastian; Wittner, Ben S.; Ramaswamy, Sridhar; Livingston, David M.; Sabatini, David M.; Meyerson, Matthew; Thomas, Roman K.; Lander, Eric S.; Mesirov, Jill P.; Root, David E.; Gilliland, D. Gary; Jacks, Tyler; Hahn, William C.

    2009-01-01

    The proto-oncogene KRAS is mutated in a wide array of human cancers, most of which are aggressive and respond poorly to standard therapies. Although the identification of specific oncogenes has led to the development of clinically effective, molecularly targeted therapies in some cases, KRAS has remained refractory to this approach. A complementary strategy for targeting KRAS is to identify gene products that, when inhibited, result in cell death only in the presence of an oncogenic allele1,2. Here we have used systematic RNA interference (RNAi) to detect synthetic lethal partners of oncogenic KRAS and found that the non-canonical IκB kinase, TBK1, was selectively essential in cells that harbor mutant KRAS. Suppression of TBK1 induced apoptosis specifically in human cancer cell lines that depend on oncogenic KRAS expression. In these cells, TBK1 activated NF-κB anti-apoptotic signals involving cREL and BCL-XL that were essential for survival, providing mechanistic insights into this synthetic lethal interaction. These observations identify TBK1 and NF-κB signaling as essential in KRAS mutant tumors and establish a general approach for the rational identification of co-dependent pathways in cancer. PMID:19847166

  7. SIRT2 deletion enhances KRAS-induced tumorigenesis in vivo by regulating K147 acetylation status.

    PubMed

    Song, Ha Yong; Biancucci, Marco; Kang, Hong-Jun; O'Callaghan, Carol; Park, Seong-Hoon; Principe, Daniel R; Jiang, Haiyan; Yan, Yufan; Satchell, Karla Fullner; Raparia, Kirtee; Gius, David; Vassilopoulos, Athanassios

    2016-12-06

    The observation that cellular transformation depends on breaching a crucial KRAS activity threshold, along with the finding that only a small percentage of cellsharboring KRAS mutations are transformed, support the idea that additional, not fully uncovered, regulatory mechanisms may contribute to KRAS activation. Here we report that KrasG12D mice lacking Sirt2 show an aggressive tumorigenic phenotype as compared to KrasG12D mice. This phenotype includes increased proliferation, KRAS acetylation, and activation of RAS downstream signaling markers. Mechanistically, KRAS K147 is identified as a novel SIRT2-specific deacetylation target by mass spectrometry, whereas its acetylation status directly regulates KRAS activity, ultimately exerting an impact on cellular behavior as revealed by cell proliferation, colony formation, and tumor growth. Given the significance of KRAS activity as a driver in tumorigenesis, identification of K147 acetylation as a novel post-translational modification directed by SIRT2 in vivo may provide a better understanding of the mechanistic link regarding the crosstalk between non-genetic and genetic factors in KRAS driven tumors.

  8. Simultaneous detection of 19 K-ras mutations by free-solution conjugate electrophoresis of ligase detection reaction products on glass microchips

    PubMed Central

    Albrecht, Jennifer Coyne; Kotani, Akira; Lin, Jennifer S.; Soper, Steven A.; Barron, Annelise E.

    2015-01-01

    We demonstrate here the power and flexibility of free-solution conjugate electrophoresis (FSCE) as a method of separating DNA fragments by electrophoresis with no sieving polymer network. Previous work introduced the coupling of FSCE with ligase detection reaction (LDR) to detect point mutations, even at low abundance compared to the wild-type DNA. Here, four large drag-tags are used to achieve free-solution electrophoretic separation of 19 LDR products ranging in size from 42–66 nt that correspond to mutations in the K-ras oncogene. LDR-FSCE enabled electrophoretic resolution of these 19 LDR-FSCE products by CE in 13.5 minutes (E = 310 V/cm) and by microchip electrophoresis in 140 seconds (E = 350 V/cm). The power of FSCE is demonstrated in the unique characteristic of free-solution separations where the separation resolution is constant no matter the electric field strength. By microchip electrophoresis, the electric field was increased to the maximum of the power supply (E = 700 V/cm), and the 19 LDR-FSCE products were separated in < 70 seconds with almost identical resolution to the separation at E = 350 V/cm. These results will aid the goal of screening K-ras mutations on integrated “sample-in/answer-out” devices with amplification, LDR, and detection all on one platform. PMID:23192597

  9. Down-regulation of transmembrane carbonic anhydrases in renal cell carcinoma cell lines by wild-type von Hippel-Lindau transgenes

    PubMed Central

    Ivanov, Sergey V.; Kuzmin, Igor; Wei, Ming-Hui; Pack, Svetlana; Geil, Laura; Johnson, Bruce E.; Stanbridge, Eric J.; Lerman, Michael I.

    1998-01-01

    To discover genes involved in von Hippel-Lindau (VHL)-mediated carcinogenesis, we used renal cell carcinoma cell lines stably transfected with wild-type VHL-expressing transgenes. Large-scale RNA differential display technology applied to these cell lines identified several differentially expressed genes, including an alpha carbonic anhydrase gene, termed CA12. The deduced protein sequence was classified as a one-pass transmembrane CA possessing an apparently intact catalytic domain in the extracellular CA module. Reintroduced wild-type VHL strongly inhibited the overexpression of the CA12 gene in the parental renal cell carcinoma cell lines. Similar results were obtained with CA9, encoding another transmembrane CA with an intact catalytic domain. Although both domains of the VHL protein contribute to regulation of CA12 expression, the elongin binding domain alone could effectively regulate CA9 expression. We mapped CA12 and CA9 loci to chromosome bands 15q22 and 17q21.2 respectively, regions prone to amplification in some human cancers. Additional experiments are needed to define the role of CA IX and CA XII enzymes in the regulation of pH in the extracellular microenvironment and its potential impact on cancer cell growth. PMID:9770531

  10. Increased α-tocotrienol content in seeds of transgenic rice overexpressing Arabidopsis γ-tocopherol methyltransferase.

    PubMed

    Zhang, Gui-Yun; Liu, Ru-Ru; Xu, Geng; Zhang, Peng; Li, Yin; Tang, Ke-Xuan; Liang, Guo-Hua; Liu, Qiao-Quan

    2013-02-01

    Vitamin E comprises a group of eight lipid soluble antioxidant compounds that are an essential part of the human diet. The α-isomers of both tocopherol and tocotrienol are generally considered to have the highest antioxidant activities. γ-tocopherol methyltransferase (γ-TMT) catalyzes the final step in vitamin E biosynthesis, the methylation of γ- and δ-isomers to α- and β-isomers. In present study, the Arabidopsis γ-TMT (AtTMT) cDNA was overexpressed constitutively or in the endosperm of the elite japonica rice cultivar Wuyujing 3 (WY3) by Agrobacterium-mediated transformation. HPLC analysis showed that, in brown rice of the wild type or transgenic controls with empty vector, the α-/γ-tocotrienol ratio was only 0.7, much lower than that for tocopherol (~19.0). In transgenic rice overexpressing AtTMT driven by the constitutive Ubi promoter, most of the γ-isomers were converted to α-isomers, especially the γ- and δ-tocotrienol levels were dramatically decreased. As a result, the α-tocotrienol content was greatly increased in the transgenic seeds. Similarly, over-expression of AtTMT in the endosperm also resulted in an increase in the α-tocotrienol content. The results showed that the α-/γ-tocopherol ratio also increased in the transgenic seeds, but there was no significant effect on α-tocopherol level, which may reflect the fact that γ-tocopherol is present in very small amounts in wild type rice seeds. AtTMT overexpression had no effect on the absolute total content of either tocopherols or tocotrienols. Taken together, these results are the first demonstration that the overexpression of a foreign γ-TMT significantly shift the tocotrienol synthesis in rice, which is one of the world's most important food crops.

  11. Overexpression and deletion of phospholipid transfer protein reduce HDL mass and cholesterol efflux capacity but not macrophage reverse cholesterol transport[S

    PubMed Central

    Kuwano, Takashi; Bi, Xin; Cipollari, Eleonora; Yasuda, Tomoyuki; Lagor, William R.; Szapary, Hannah J.; Tohyama, Junichiro; Millar, John S.; Billheimer, Jeffrey T.; Lyssenko, Nicholas N.; Rader, Daniel J.

    2017-01-01

    Phospholipid transfer protein (PLTP) may affect macrophage reverse cholesterol transport (mRCT) through its role in the metabolism of HDL. Ex vivo cholesterol efflux capacity and in vivo mRCT were assessed in PLTP deletion and PLTP overexpression mice. PLTP deletion mice had reduced HDL mass and cholesterol efflux capacity, but unchanged in vivo mRCT. To directly compare the effects of PLTP overexpression and deletion on mRCT, human PLTP was overexpressed in the liver of wild-type animals using an adeno-associated viral (AAV) vector, and control and PLTP deletion animals were injected with AAV-null. PLTP overexpression and deletion reduced plasma HDL mass and cholesterol efflux capacity. Both substantially decreased ABCA1-independent cholesterol efflux, whereas ABCA1-dependent cholesterol efflux remained the same or increased, even though preβ HDL levels were lower. Neither PLTP overexpression nor deletion affected excretion of macrophage-derived radiocholesterol in the in vivo mRCT assay. The ex vivo and in vivo assays were modified to gauge the rate of cholesterol efflux from macrophages to plasma. PLTP activity did not affect this metric. Thus, deviations in PLTP activity from the wild-type level reduce HDL mass and ex vivo cholesterol efflux capacity, but not the rate of macrophage cholesterol efflux to plasma or in vivo mRCT. PMID:28137768

  12. Caveolin-3 Overexpression Attenuates Cardiac Hypertrophy via Inhibition of T-type Ca2+ Current Modulated by Protein Kinase Cα in Cardiomyocytes*

    PubMed Central

    Markandeya, Yogananda S.; Phelan, Laura J.; Woon, Marites T.; Keefe, Alexis M.; Reynolds, Courtney R.; August, Benjamin K.; Hacker, Timothy A.; Roth, David M.; Patel, Hemal H.; Balijepalli, Ravi C.

    2015-01-01

    Pathological cardiac hypertrophy is characterized by subcellular remodeling of the ventricular myocyte with a reduction in the scaffolding protein caveolin-3 (Cav-3), altered Ca2+ cycling, increased protein kinase C expression, and hyperactivation of calcineurin/nuclear factor of activated T cell (NFAT) signaling. However, the precise role of Cav-3 in the regulation of local Ca2+ signaling in pathological cardiac hypertrophy is unclear. We used cardiac-specific Cav-3-overexpressing mice and in vivo and in vitro cardiac hypertrophy models to determine the essential requirement for Cav-3 expression in protection against pharmacologically and pressure overload-induced cardiac hypertrophy. Transverse aortic constriction and angiotensin-II (Ang-II) infusion in wild type (WT) mice resulted in cardiac hypertrophy characterized by significant reduction in fractional shortening, ejection fraction, and a reduced expression of Cav-3. In addition, association of PKCα and angiotensin-II receptor, type 1, with Cav-3 was disrupted in the hypertrophic ventricular myocytes. Whole cell patch clamp analysis demonstrated increased expression of T-type Ca2+ current (ICa, T) in hypertrophic ventricular myocytes. In contrast, the Cav-3-overexpressing mice demonstrated protection from transverse aortic constriction or Ang-II-induced pathological hypertrophy with inhibition of ICa, T and intact Cav-3-associated macromolecular signaling complexes. siRNA-mediated knockdown of Cav-3 in the neonatal cardiomyocytes resulted in enhanced Ang-II stimulation of ICa, T mediated by PKCα, which caused nuclear translocation of NFAT. Overexpression of Cav-3 in neonatal myocytes prevented a PKCα-mediated increase in ICa, T and nuclear translocation of NFAT. In conclusion, we show that stable Cav-3 expression is essential for protecting the signaling mechanisms in pharmacologically and pressure overload-induced cardiac hypertrophy. PMID:26170457

  13. A KRAS GTPase K104Q Mutant Retains Downstream Signaling by Offsetting Defects in Regulation*

    PubMed Central

    Kistler, Samantha; George, Samuel D.; Kuhlmann, Nora; Garvey, Leslie; Huynh, Minh; Bagni, Rachel K.; Lammers, Michael; Der, Channing J.; Campbell, Sharon L.

    2017-01-01

    The KRAS GTPase plays a critical role in the control of cellular growth. The activity of KRAS is regulated by guanine nucleotide exchange factors (GEFs), GTPase-activating proteins (GAPs), and also post-translational modification. Lysine 104 in KRAS can be modified by ubiquitylation and acetylation, but the role of this residue in intrinsic KRAS function has not been well characterized. We find that lysine 104 is important for GEF recognition, because mutations at this position impaired GEF-mediated nucleotide exchange. Because the KRAS K104Q mutant has recently been employed as an acetylation mimetic, we conducted a series of studies to evaluate its in vitro and cell-based properties. Herein, we found that KRAS K104Q exhibited defects in both GEF-mediated exchange and GAP-mediated GTP hydrolysis, consistent with NMR-detected structural perturbations in localized regions of KRAS important for recognition of these regulatory proteins. Despite the partial defect in both GEF and GAP regulation, KRAS K104Q did not alter steady-state GTP-bound levels or the ability of the oncogenic KRAS G12V mutant to cause morphologic transformation of NIH 3T3 mouse fibroblasts and of WT KRAS to rescue the growth defect of mouse embryonic fibroblasts deficient in all Ras genes. We conclude that the KRAS K104Q mutant retains both WT and mutant KRAS function, probably due to offsetting defects in recognition of factors that up-regulate (GEF) and down-regulate (GAP) RAS activity. PMID:28154176

  14. Economic Analysis of First-Line Treatment with Cetuximab or Panitumumab for RAS Wild-Type Metastatic Colorectal Cancer in England.

    PubMed

    Tikhonova, Irina A; Huxley, Nicola; Snowsill, Tristan; Crathorne, Louise; Varley-Campbell, Jo; Napier, Mark; Hoyle, Martin

    2018-03-01

    Combination therapies with cetuximab (Erbitux ® ; Merck Serono UK Ltd) and panitumumab (Vectibix ® ; Amgen UK Ltd) are shown to be less effective in adults with metastatic colorectal cancer who have mutations in exons 2, 3 and 4 of KRAS and NRAS oncogenes from the rat sarcoma (RAS) family. The objective of the study was to estimate the cost effectiveness of these drugs in patients with previously untreated RAS wild-type (i.e. non-mutated) metastatic colorectal cancer, not eligible for liver resection at baseline, from the UK National Health Service and Personal Social Services perspective. We constructed a partitioned survival model to evaluate the long-term costs and benefits of cetuximab and panitumumab combined with either FOLFOX (folinic acid, fluorouracil and oxaliplatin) or FOLFIRI (folinic acid, fluorouracil and irinotecan) vs. FOLFOX or FOLFIRI alone. The economic analysis was based on three randomised controlled trials. Costs and quality-adjusted life-years were discounted at 3.5% per annum. Based on the evidence available, both drugs fulfil the National Institute for Health and Care Excellence's end-of-life criteria. In the analysis, assuming discount prices for the drugs from patient access schemes agreed by the drug manufacturers with the Department of Health, predicted mean incremental cost-effectiveness ratios for cetuximab + FOLFOX, panitumumab + FOLFOX and cetuximab + FOLFIRI compared with chemotherapy alone appeared cost-effective at the National Institute for Health and Care Excellence's threshold of £50,000 per quality-adjusted life-year gained, applicable to end-of-life treatments. Cetuximab and panitumumab were recommended by the National Institute for Health and Care Excellence for patients with previously untreated RAS wild-type metastatic colorectal cancer, not eligible for liver resection at baseline, for use within the National Health Service in England. Both treatments are available via the UK Cancer Drugs Fund.

  15. TAK1 (MAP3K7) inhibition promotes apoptosis in KRAS-dependent colon cancers

    PubMed Central

    Singh, Anurag; Sweeney, Michael F.; Yu, Min; Burger, Alexa; Greninger, Patricia; Benes, Cyril; Haber, Daniel A.; Settleman, Jeff

    2012-01-01

    Summary Colon cancers frequently harbor KRAS mutations, yet only a subset of KRAS-mutant colon cancer cell lines are dependent upon KRAS signaling for survival. In a screen for kinases that promote survival of KRAS-dependent colon cancer cells, we found that the TAK1 kinase (MAP3K7) is required for tumor cell viability. The induction of apoptosis by RNAi-mediated depletion or pharmacologic inhibition of TAK1 is linked to its suppression of hyperactivated Wnt signaling, evident in both endogenous and genetically reconstituted cells. In APC-mutant/KRAS-dependent cells, KRAS stimulates BMP-7 secretion and BMP signaling, leading to TAK1 activation and enhancement of Wnt-dependent transcription. An in vitro-derived “TAK1-dependency signature” is enriched in primary human colon cancers with mutations in both APC and KRAS, suggesting potential clinical utility in stratifying patient populations. Together, these findings identify TAK1 inhibition as a potential therapeutic strategy for a treatment-refractory subset of colon cancers exhibiting aberrant KRAS and Wnt pathway activation. PMID:22341439

  16. Lifetime alcohol intake is associated with an increased risk of KRAS+ and BRAF-/KRAS- but not BRAF+ colorectal cancer.

    PubMed

    Jayasekara, Harindra; MacInnis, Robert J; Williamson, Elizabeth J; Hodge, Allison M; Clendenning, Mark; Rosty, Christophe; Walters, Rhiannon; Room, Robin; Southey, Melissa C; Jenkins, Mark A; Milne, Roger L; Hopper, John L; Giles, Graham G; Buchanan, Daniel D; English, Dallas R

    2017-04-01

    Ethanol in alcoholic beverages is a causative agent for colorectal cancer. Colorectal cancer is a biologically heterogeneous disease, and molecular subtypes defined by the presence of somatic mutations in BRAF and KRAS are known to exist. We examined associations between lifetime alcohol intake and molecular and anatomic subtypes of colorectal cancer. We calculated usual alcohol intake for 10-year periods from age 20 using recalled frequency and quantity of beverage-specific consumption for 38,149 participants aged 40-69 years from the Melbourne Collaborative Cohort Study. Cox regression was performed to derive hazard ratios (HRs) and 95% confidence intervals (CIs) for the association between lifetime alcohol intake and colorectal cancer risk. Heterogeneity in the HRs across subtypes of colorectal cancer was assessed. A positive dose-dependent association between lifetime alcohol intake and overall colorectal cancer risk (mean follow-up = 14.6 years; n = 596 colon and n = 326 rectal cancer) was observed (HR = 1.08, 95% CI: 1.04-1.12 per 10 g/day increment). The risk was greater for rectal than colon cancer (p homogeneity  = 0.02). Alcohol intake was associated with increased risks of KRAS+ (HR = 1.07, 95% CI: 1.00-1.15) and BRAF-/KRAS- (HR = 1.05, 95% CI: 1.00-1.11) but not BRAF+ tumors (HR = 0.89, 95% CI: 0.78-1.01; p homogeneity  = 0.01). Alcohol intake is associated with an increased risk of KRAS+ and BRAF-/KRAS- tumors originating via specific molecular pathways including the traditional adenoma-carcinoma pathway but not with BRAF+ tumors originating via the serrated pathway. Therefore, limiting alcohol intake from a young age might reduce colorectal cancer originating via the traditional adenoma-carcinoma pathway. © 2016 UICC.

  17. Immunohistochemical detection of p53 protein in ameloblastoma types.

    PubMed

    el-Sissy, N A

    1999-05-01

    Overexpression of p53 protein in unicystic ameloblastoma (uAB) is denser than in the conventional ameloblastoma (cAB) type, indicating increased wild type p53--suppressing the growth potential of uAB and denoting the early event of neoplastic transformation, probably of a previous odontogenic cyst. Overexpression of p53 in borderline cAB and malignant ameloblastoma (mAB) types might reflect a mutational p53 protein playing an oncogenic role, promoting tumour growth. Overexpression of p53 protein could be a valid screening method for predicting underlying malignant genetic changes in AB types, through increased frequency of immunoreactive cells or increased staining density.

  18. Wild-type NM23-H1, but not its S120 mutants, suppresses desensitization of muscarinic potassium current.

    PubMed

    Otero, A S; Doyle, M B; Hartsough, M T; Steeg, P S

    1999-03-08

    NM23 (NDP kinase) modulates the gating of muscarinic K+ channels by agonists through a mechanism distinct from GTP regeneration. To better define the function of NM23 in this pathway and to identify sites in NM23 that are important for its role in muscarinic K+ channel function, we utilized MDA-MB-435 human breast carcinoma cells that express low levels of NM23-H1. M2 muscarinic receptors and GIRK1/GIRK4 channel subunits were co-expressed in cells stably transfected with vector only (control), wild-type NM23-H1, or several NM23-H1 mutants. Lysates from all cell lines tested exhibit comparable nucleoside diphosphate (NDP) kinase activity. Whole cell patch clamp recordings revealed a substantial reduction of the acute desensitization of muscarinic K+ currents in cells overexpressing NM23-H1. The mutants NM23-H1P96S and NM23-H1S44A resembled wild-type NM23-H1 in their ability to reduce desensitization. In contrast, mutants NM23-H1S120G and NM23-H1S120A completely abolished the effect of NM23-H1 on desensitization of muscarinic K+ currents. Furthermore, NM23-H1S120G potentiated acute desensitization, indicating that this mutant retains the ability to interact with the muscarinic pathway, but has properties antithetical to those of the wild-type protein. We conclude that NM23 acts as a suppressor of the processes leading to the desensitization of muscarinic K+ currents, and that Ser-120 is essential for its actions.

  19. Overexpression of CCS in G93A-SOD1 mice leads to accelerated neurological deficits with severe mitochondrial pathology.

    PubMed

    Son, Marjatta; Puttaparthi, Krishna; Kawamata, Hibiki; Rajendran, Bhagya; Boyer, Philip J; Manfredi, Giovanni; Elliott, Jeffrey L

    2007-04-03

    Cu, Zn superoxide dismutase (SOD1) has been detected within spinal cord mitochondria of mutant SOD1 transgenic mice, a model of familial ALS. The copper chaperone for SOD1 (CCS) provides SOD1 with copper, facilitates the conversion of immature apo-SOD1 to a mature holoform, and influences in yeast the cytosolic/mitochondrial partitioning of SOD1. To determine how CCS affects G93A-SOD1-induced disease, we generated transgenic mice overexpressing CCS and crossed them to G93A-SOD1 or wild-type SOD1 transgenic mice. Both CCS transgenic mice and CCS/wild-type-SOD1 dual transgenic mice are neurologically normal. In contrast, CCS/G93A-SOD1 dual transgenic mice develop accelerated neurological deficits, with a mean survival of 36 days, compared with 242 days for G93A-SOD1 mice. Immuno-EM and subcellular fractionation studies on the spinal cord show that G93A-SOD1 is enriched within mitochondria in the presence of CCS overexpression. Our results indicate that CCS overexpression in G93A-SOD1 mice produces severe mitochondrial pathology and accelerates disease course.

  20. KRAS mutation testing in borderline ovarian tumors and low-grade ovarian carcinomas with a rapid, fully integrated molecular diagnostic system.

    PubMed

    Sadlecki, Pawel; Antosik, Paulina; Grzanka, Dariusz; Grabiec, Marek; Walentowicz-Sadlecka, Malgorzata

    2017-10-01

    Epithelial ovarian neoplasms are a heterogeneous group of tumors, including various malignancies with distinct clinicopathologic and molecular features. Mutations in BRAF and KRAS genes are the most frequent genetic aberrations found in low-grade serous ovarian carcinomas and serous and mucinous borderline tumors. Implementation of targeted therapeutic strategies requires access to highly specific and highly sensitive diagnostic tests for rapid determination of mutation status. One candidate for such test is fully integrated, real-time polymerase chain reaction-based Idylla™ system for quick and simple detection of KRAS mutations in formaldehyde fixed-paraffin embedded tumor samples. The primary aim of this study was to verify whether fully integrated real-time polymerase chain reaction-based Idylla system may be useful in determination of KRAS mutation status in patients with borderline ovarian tumors and low-grade ovarian carcinomas. The study included tissue specimens from 37 patients with histopathologically verified ovarian masses, operated on at the Department of Obstetrics and Gynecology, Nicolaus Copernicus University Collegium Medicum in Bydgoszcz (Poland) between January 2009 and June 2012. Based on histopathological examination of surgical specimens, 30 lesions were classified as low-grade ovarian carcinomas and 7 as borderline ovarian tumors. Seven patients examined with Idylla KRAS Mutation Test tested positive for KRAS mutation. No statistically significant association was found between the incidence of KRAS mutations and histopathological type of ovarian tumors. Mean survival of the study subjects was 48.51 months (range 3-60 months). Presence of KRAS mutation did not exert a significant effect on the duration of survival in our series. Our findings suggest that Idylla KRAS Mutation Test may be a useful tool for rapid detection of KRAS mutations in ovarian tumor tissue.

  1. A MEK Inhibitor Abrogates Myeloproliferative Disease in Kras Mutant Mice

    PubMed Central

    Lyubynska, Natalya; Gorman, Matthew F.; Lauchle, Jennifer O.; Hong, Wan Xing; Akutagawa, Jon K.; Shannon, Kevin; Braun, Benjamin S.

    2012-01-01

    Chronic and juvenile myelomonocytic leukemias (CMML and JMML) are aggressive myeloproliferative neoplasms that are incurable with conventional chemotherapy. Mutations that deregulate Ras signaling play a central pathogenic role in both disorders, and Mx1-Cre, KrasLSL-G12D mice that express the Kras oncogene develop a fatal disease that closely mimics these two leukemias in humans. Activated Ras controls multiple downstream effectors, but the specific pathways that mediate the leukemogenic effects of hyperactive Ras are unknown. We used PD0325901, a highly selective pharmacological inhibitor of mitogen-activated protein kinase kinase (MEK), a downstream component of the Ras signaling network, to address how deregulated Raf/MEK/ERK signaling drives neoplasm formation in Mx1-Cre, KrasLSL-G12D mice. PD0325901 treatment induced a rapid and sustained reduction in leukocyte counts, enhanced erythropoiesis, prolonged mouse survival, and corrected the aberrant proliferation and differentiation of bone marrow progenitor cells. These responses were due to direct effects of PD0325901 on Kras mutant cells rather than to stimulation of normal hematopoietic cell proliferation. Consistent with the in vivo response, inhibition of MEK reversed the cytokine hypersensitivity characteristic of KrasG12D hematopoietic progenitor cells in vitro. Our data demonstrate that deregulated Raf/MEK/ERK signaling is integral to the growth of Kras-mediated myeloproliferative neoplasias, and further suggest that MEK inhibition could be a useful way to ameliorate functional hematologic abnormalities in patients with CMML and JMML. PMID:21451123

  2. Endothelial Nitric Oxide Synthase Overexpression Restores the Efficiency of Bone Marrow Mononuclear Cell-Based Therapy

    PubMed Central

    Mees, Barend; Récalde, Alice; Loinard, Céline; Tempel, Dennie; Godinho, Marcia; Vilar, José; van Haperen, Rien; Lévy, Bernard; de Crom, Rini; Silvestre, Jean-Sébastien

    2011-01-01

    Bone marrow-derived mononuclear cells (BMMNCs) enhance postischemic neovascularization, and their therapeutic use is currently under clinical investigation. However, cardiovascular risk factors, including diabetes mellitus and hypercholesterolemia, lead to the abrogation of BMMNCs proangiogenic potential. NO has been shown to be critical for the proangiogenic function of BMMNCs, and increased endothelial NO synthase (eNOS) activity promotes vessel growth in ischemic conditions. We therefore hypothesized that eNOS overexpression could restore both the impaired neovascularization response and decreased proangiogenic function of BMMNCs in clinically relevant models of diabetes and hypercholesterolemia. Transgenic eNOS overexpression in diabetic, atherosclerotic, and wild-type mice induced a 1.5- to 2.3-fold increase in postischemic neovascularization compared with control. eNOS overexpression in diabetic or atherosclerotic BMMNCs restored their reduced proangiogenic potential in ischemic hind limb. This effect was associated with an increase in BMMNC ability to differentiate into cells with endothelial phenotype in vitro and in vivo and an increase in BMMNCs paracrine function, including vascular endothelial growth factor A release and NO-dependent vasodilation. Moreover, although wild-type BMMNCs treatment resulted in significant progression of atherosclerotic plaque in ischemic mice, eNOS transgenic atherosclerotic BMMNCs treatment even had antiatherogenic effects. Cell-based eNOS gene therapy has both proangiogenic and antiatherogenic effects and should be further investigated for the development of efficient therapeutic neovascularization designed to treat ischemic cardiovascular disease. PMID:21224043

  3. Overexpression of TGF-alpha increases lung tissue hysteresivity in transgenic mice.

    PubMed

    Pillow, J J; Korfhagen, T R; Ikegami, M; Sly, P D

    2001-12-01

    Increased transforming growth factor (TGF)-alpha has been observed in neonatal chronic lung disease. Lungs of transgenic mice that overexpress TGF-alpha develop enlarged air spaces and pulmonary fibrosis compared with wild-type mice. We hypothesized that these pathological changes may alter the mechanical coupling of viscous and elastic forces within lung parenchyma. Respiratory impedance was measured in open-chested, tracheostomized adult wild-type and TGF-alpha mice by using the forced oscillation technique (0.25-19.63 Hz) delivered by flexiVent (Scireq, Montreal, PQ). Estimates of airway resistance (Raw), inertance (I), and the coefficients of tissue damping (G(L)) and tissue elastance (H(L)) were obtained by fitting a model to each impedance spectrum. Hysteresivity (eta) was calculated as G(L)/H(L). There was a significant increase in eta (P < 0.01) and a trend to a decrease in H(L) (P = 0.07) of TGF-alpha mice compared with the wild-type group. There was no significant change in Raw, I, or G(L). Structural abnormality present in the lungs of adult TGF-alpha mice alters viscoelastic coupling of the tissues, as evidenced by a change in eta.

  4. A KRAS GTPase K104Q Mutant Retains Downstream Signaling by Offsetting Defects in Regulation.

    PubMed

    Yin, Guowei; Kistler, Samantha; George, Samuel D; Kuhlmann, Nora; Garvey, Leslie; Huynh, Minh; Bagni, Rachel K; Lammers, Michael; Der, Channing J; Campbell, Sharon L

    2017-03-17

    The KRAS GTPase plays a critical role in the control of cellular growth. The activity of KRAS is regulated by guanine nucleotide exchange factors (GEFs), GTPase-activating proteins (GAPs), and also post-translational modification. Lysine 104 in KRAS can be modified by ubiquitylation and acetylation, but the role of this residue in intrinsic KRAS function has not been well characterized. We find that lysine 104 is important for GEF recognition, because mutations at this position impaired GEF-mediated nucleotide exchange. Because the KRAS K104Q mutant has recently been employed as an acetylation mimetic, we conducted a series of studies to evaluate its in vitro and cell-based properties. Herein, we found that KRAS K104Q exhibited defects in both GEF-mediated exchange and GAP-mediated GTP hydrolysis, consistent with NMR-detected structural perturbations in localized regions of KRAS important for recognition of these regulatory proteins. Despite the partial defect in both GEF and GAP regulation, KRAS K104Q did not alter steady-state GTP-bound levels or the ability of the oncogenic KRAS G12V mutant to cause morphologic transformation of NIH 3T3 mouse fibroblasts and of WT KRAS to rescue the growth defect of mouse embryonic fibroblasts deficient in all Ras genes. We conclude that the KRAS K104Q mutant retains both WT and mutant KRAS function, probably due to offsetting defects in recognition of factors that up-regulate (GEF) and down-regulate (GAP) RAS activity. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Impairment of K-Ras signaling networks and increased efficacy of epidermal growth factor receptor inhibitors by a novel synthetic miR-143.

    PubMed

    Akao, Yukihiro; Kumazaki, Minami; Shinohara, Haruka; Sugito, Nobuhiko; Kuranaga, Yuki; Tsujino, Takuya; Yoshikawa, Yuki; Kitade, Yukio

    2018-05-01

    Despite considerable research on K-Ras inhibitors, none had been established until now. We synthesized nuclease-resistant synthetic miR-143 (miR-143#12), which strongly silenced K-Ras, its effector signal molecules AKT and ERK, and the K-Ras activator Sos1. We examined the anti-proliferative effect of miR-143#12 and the mechanism in human colon cancer DLD-1 cell (G13D) and other cell types harboring K-Ras mutations. Cell growth was markedly suppressed in a concentration-dependent manner by miR-143#12 (IC 50 : 1.32 nmol L -1 ) with a decrease in the K-Ras mRNA level. Interestingly, this mRNA level was also downregulated by either a PI3K/AKT or MEK inhibitor, which indicates a positive circuit of K-Ras mRNA expression. MiR-143#12 silenced cytoplasmic K-Ras mRNA expression and impaired the positive circuit by directly targeting AKT and ERK mRNA. Combination treatment with miR-143#12 and a low-dose EGFR inhibitor induced a synergistic inhibition of growth with a marked inactivation of both PI3K/AKT and MAPK/ERK signaling pathways. However, silencing K-Ras by siR-KRas instead of miR-143#12 did not induce this synergism through the combined treatment with the EGFR inhibitor. Thus, miR-143#12 perturbed the K-Ras expression system and K-Ras activation by silencing Sos1 and, resultantly, restored the efficacy of the EGFR inhibitors. The in vivo results also supported those of the in vitro experiments. The extremely potent miR-143#12 enabled us to understand K-Ras signaling networks and shut them down by combination treatment with this miRNA and EGFR inhibitor in K-Ras-driven colon cancer cell lines. © 2018 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  6. Oncolytic reovirus preferentially induces apoptosis in KRAS mutant colorectal cancer cells, and synergizes with irinotecan

    PubMed Central

    Maitra, Radhashree; Seetharam, Raviraja; Tesfa, Lydia; Augustine, Titto A.; Klampfer, Lidija; Coffey, Matthew C.; Mariadason, John M.; Goel, Sanjay

    2014-01-01

    Reovirus is a double stranded RNA virus, with an intrinsic preference for replication in KRAS mutant cells. As 45% of human colorectal cancers (CRC) harbor KRAS mutations, we sought to investigate its efficacy in KRAS mutant CRC cells, and examine its impact in combination with the topoisimerase-1 inhibitor, irinotecan. Reovirus efficacy was examined in the KRAS mutant HCT116, and the isogenic KRAS WT Hke3 cell line, and in the non-malignant rat intestinal epithelial cell line. Apoptosis was determined by flow cytometry and TUNEL staining. Combination treatment with reovirus and irintoecan was investigated in 15 CRC cell lines, including the HCT116 p21 isogenic cell lines. Reovirus preferentially induced apoptosis in KRAS mutant HCT116 cells compared to its isogenic KRAS WT derivative, and in KRAS mutant IEC cells. Reovirus showed a greater degree of caspase 3 activation with PARP 1 cleavage, and preferential inhibition of p21 protein expression in KRAS mutant cells. Reovirus synergistically induced growth inhibition when combined with irinotecan. This synergy was lost upon p21 gene knock out. Reovirus preferentially induces apoptosis in KRAS mutant colon cancer cells. Reovirus and irinotecan combination therapy is synergistic, p21 mediated, and represents a novel potential treatment for patients with CRC. PMID:24798549

  7. Mutation profile of KRAS and BRAF genes in patients with colorectal cancer: association with morphological and prognostic criteria.

    PubMed

    Samara, M; Kapatou, K; Ioannou, M; Kostopoulou, Ε; Papamichali, R; Papandreou, C; Athanasiadis, A; Koukoulis, G

    2015-12-14

    KRAS and BRAF mutations are well-recognized molecular alterations during colorectal carcinogenesis, but there is little agreement on their effect on tumor characteristics. Therefore, we aimed to evaluate the distribution of the most common KRAS and BRAF mutations in Greek patients with colorectal cancer and their possible associations with clinical histopathological parameters. In this study, 322 and 188 colorectal carcinomas were used for the mutation analysis of KRAS (exon 2) and BRAF (exon 15) genes, respectively. The mutational status of both genes was evaluated by polymerase chain reaction and sequencing analysis. Although the overall frequency of KRAS mutations (36.6%) seemed to be similar to those reported for other populations, the rate of point mutations at codon 13 was significantly lower (12%) in Greek patients with colorectal cancer and associated with male gender (P < 0.05). Tumors with G>T codon 12 transversions and G>C transitions showed more frequent lymph node metastasis (P < 0.05, P < 0.005, respectively). The rate of KRAS mutations gradually decreased with increasing histological grade (P < 0.05), as opposed to BRAF mutations, which were strongly associated with poorly differentiated tumors (P < 0.005). Additionally, we found that the histological features of preexisting adenoma were associated with the absence of BRAF mutations, in contrast to KRAS (P < 0.05). Our data suggested that there seems to be a correlation between morphological criteria and discrete genetic pathways in colorectal carcinogenesis. Moreover, ethnic or geographic factors may have an impact on genetic background of colorectal carcinomas, and specific types of KRAS mutations may influence the metastatic potential of colorectal tumors.

  8. Muscle fiber-type conversion in the transgenic pigs with overexpression of PGC1α gene in muscle.

    PubMed

    Ying, Fei; Zhang, Liang; Bu, Guowei; Xiong, Yuanzhu; Zuo, Bo

    2016-11-25

    The peroxisome proliferator-activated receptor gamma, co-activator 1 alpha(PGC1α) effectively induced the biosynthesis of the mitochondria and the energy metabolism, and also regulated the muscle fiber-type shift. Overexpression of PGC1α gene in mice led to higher oxidative muscle fiber composition in muscle. However, no researches about the significant differences of muscle fiber phenotype in pigs after PGC1α overexpression had been reported. The composition of muscle fiber-types which were distinguished by four myosin heavy chain(MYHC) isoforms, can significantly affect the muscle functions. In our study, we generated the transgenic pigs to investigate the effect of overexpression of PGC1α gene on muscle fiber-type conversion. The results showed that the number of oxidative muscle fiber(type1 muscle fiber) was increased and the number of glycolytic muscle fiber(type2b muscle fiber) was decreased in the transgenic pigs. Furthermore, we found that PGC1α overexpression up-regulated the expression of MYHC1 and MYHC2a and down-regulated the expression of MYHC2b.The analysis of genes expression demonstrated the main differentially expressed genes were MSTN, Myog and FOXO1. In conclusion, the overexpression of PGC1α gene can promote the glycolytic muscle fiber transform to the oxidative muscle fiber in pigs. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Overexpression of a Medicago truncatula stress-associated protein gene (MtSAP1) leads to nitric oxide accumulation and confers osmotic and salt stress tolerance in transgenic tobacco.

    PubMed

    Charrier, Aurélie; Planchet, Elisabeth; Cerveau, Delphine; Gimeno-Gilles, Christine; Verdu, Isabelle; Limami, Anis M; Lelièvre, Eric

    2012-08-01

    The impact of Medicago truncatula stress-associated protein gene (MtSAP1) overexpression has been investigated in Nicotiana tabacum transgenic seedlings. Under optimal conditions, transgenic lines overexpressing MtSAP1 revealed better plant development and higher chlorophyll content as compared to wild type seedlings. Interestingly, transgenic lines showed a stronger accumulation of nitric oxide (NO), a signaling molecule involved in growth and development processes. This NO production seemed to be partially nitrate reductase dependent. Due to the fact that NO has been also reported to play a role in tolerance acquisition of plants to abiotic stresses, the responses of MtSAP1 overexpressors to osmotic and salt stress have been studied. Compared to the wild type, transgenic lines were less affected in their growth and development. Moreover, NO content in MtSAP1 overexpressors was always higher than that detected in wild seedlings under stress conditions. It seems that this better tolerance induced by MtSAP1 overexpression could be associated with this higher NO production that would enable seedlings to reach a high protection level to prepare them to cope with abiotic stresses.

  10. Mice over-expressing human O6 alkylguanine-DNA alkyltransferase selectively reduce O6 methylguanine mediated carcinogenic mutations to threshold levels after N-methyl-N-nitrosourea.

    PubMed

    Allay, E; Veigl, M; Gerson, S L

    1999-06-24

    While it is well known that MNU induces thymic lymphomas in the mouse, it remains unclear which pre-mutagenic lesions are responsible for lymphomagenic transformation. One lesion thought to play a critical role is O6methylguanine[O6mG]which initiates G: C to A:T transition mutations in K-ras and other oncogenes. O6alkylguanine-DNA alkyltransferase (AGT), encoded by the methylguanine methyltransferase gene [MGMT], removes the methyl group thereby preventing the mutation from occurring. When overexpressed in the thymus, MGMT protects mice from MNU-induced thymic lymphomas. To determine whether MGMT overexpression reduced G: C to A: T mutation frequency after MNU, Big Blue lacI and MGMT+/Big Blue mice were treated with MNU and analysed for mutations in the lacI and K-ras genes. The incidence of MNU-induced lymphomas was 84% in Big Blue lacI mice compared to 14% in MGMT+Big Blue lacI mice. Sixty-two per cent of the lymphomas had a GGT to GAT activating mutation in codon 12 of K-ras consistent with O6mG adduct-mediated point mutagenesis. LacI mutation frequency in thymus of MNU treated Big Blue mice was 45-fold above background whereas it was 11-fold above background in MNU treated MGMT+/Big Blue mice. Most lacI mutations were G:C to A:T transitions, implicating O6mG even in the MGMT+mice. No mutations were attributable to chromosomal aberrations or rearrangements. Thus, O6mG adducts account for the carcinogenic effect of MNU and MGMT overexpression is selectively able to reduce O6methylguanine adducts below a carcinogenic threshold. Other adducts are mutagenic but appear to contribute much less to malignant transformation or oncogene activation.

  11. Use of multivariate analysis to suggest a new molecular classification of colorectal cancer

    PubMed Central

    Domingo, Enric; Ramamoorthy, Rajarajan; Oukrif, Dahmane; Rosmarin, Daniel; Presz, Michal; Wang, Haitao; Pulker, Hannah; Lockstone, Helen; Hveem, Tarjei; Cranston, Treena; Danielsen, Havard; Novelli, Marco; Davidson, Brian; Xu, Zheng-Zhou; Molloy, Peter; Johnstone, Elaine; Holmes, Christopher; Midgley, Rachel; Kerr, David; Sieber, Oliver; Tomlinson, Ian

    2013-01-01

    Abstract Molecular classification of colorectal cancer (CRC) is currently based on microsatellite instability (MSI), KRAS or BRAF mutation and, occasionally, chromosomal instability (CIN). Whilst useful, these categories may not fully represent the underlying molecular subgroups. We screened 906 stage II/III CRCs from the VICTOR clinical trial for somatic mutations. Multivariate analyses (logistic regression, clustering, Bayesian networks) identified the primary molecular associations. Positive associations occurred between: CIN and TP53 mutation; MSI and BRAF mutation; and KRAS and PIK3CA mutations. Negative associations occurred between: MSI and CIN; MSI and NRAS mutation; and KRAS mutation, and each of NRAS, TP53 and BRAF mutations. Some complex relationships were elucidated: KRAS and TP53 mutations had both a direct negative association and a weaker, confounding, positive association via TP53–CIN–MSI–BRAF–KRAS. Our results suggested a new molecular classification of CRCs: (1) MSI+ and/or BRAF-mutant; (2) CIN+ and/or TP53– mutant, with wild-type KRAS and PIK3CA; (3) KRAS- and/or PIK3CA-mutant, CIN+, TP53-wild-type; (4) KRAS– and/or PIK3CA-mutant, CIN–, TP53-wild-type; (5) NRAS-mutant; (6) no mutations; (7) others. As expected, group 1 cancers were mostly proximal and poorly differentiated, usually occurring in women. Unexpectedly, two different types of CIN+ CRC were found: group 2 cancers were usually distal and occurred in men, whereas group 3 showed neither of these associations but were of higher stage. CIN+ cancers have conventionally been associated with all three of these variables, because they have been tested en masse. Our classification also showed potentially improved prognostic capabilities, with group 3, and possibly group 1, independently predicting disease-free survival. Copyright © 2012 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. PMID:23165447

  12. PKCepsilon overexpression, irrespective of genetic background, sensitizes skin to UVR-induced development of squamous-cell carcinomas.

    PubMed

    Sand, Jordan M; Aziz, Moammir H; Dreckschmidt, Nancy E; Havighurst, Thomas C; Kim, KyungMann; Oberley, Terry D; Verma, Ajit K

    2010-01-01

    Chronic exposure to UVR is the major etiologic factor in the development of human skin cancers including squamous-cell carcinoma (SCC). We have previously shown that protein Kinase C epsilon (PKCepsilon) transgenic mice on FVB/N background, which overexpress PKCepsilon protein approximately eightfold over endogenous levels in epidermis, exhibit about threefold more sensitivity than wild-type littermates to UVR-induced development of SCC. To determine whether it is PKCepsilon and not the mouse genetic background that determines susceptibility to UVR carcinogenesis, we cross-bred PKCepsilon FVB/N transgenic mice with SKH-1 hairless mice to generate PKCepsilon-overexpressing SKH-1 hairless mice. To evaluate the susceptibility of PKCepsilon SKH-1 hairless transgenic mice to UVR carcinogenesis, the mice were exposed to UVR (1-2 KJ m(-2)) three times weekly from a bank of six kodacel-filtered FS40 sunlamps. As compared with the wild-type hairless mice, PKCepsilon overexpression in SKH-1 hairless mice decreased the latency (12 weeks), whereas it increased the incidence (twofold) and multiplicity (fourfold) of SCC. The SKH hairless transgenic mice were observed to be as sensitive as FVB/N transgenic mice to UVR-induced development of SCC and expression of proliferative markers (proliferating cell nuclear antigen, signal transducers and activators of transcription 3, and extracellular signal-regulated kinase 1/2). The results indicate that PKCepsilon level dictates susceptibility, irrespective of genetic background, to UVR carcinogenesis.

  13. Enhancement of geraniol resistance of Escherichia coli by MarA overexpression.

    PubMed

    Shah, Asad Ali; Wang, Chonglong; Chung, Young-Ryun; Kim, Jae-Yean; Choi, Eui-Sung; Kim, Seon-Won

    2013-03-01

    Improvement of a microorganism's tolerance against organic solvents is required for a microbial factory producing terpenoid based biofuels. The bacterial genes, marA, imp, cls and cti have been found to increase organic solvent tolerance. Thus, the tolerance against the following terpenoids (isopentenol, geraniol, myrcene, and farnesol) was studied with overexpression of marA, imp, cls and cti genes in Escherichia coli. The marA overexpression significantly enhanced the tolerance of E. coli against geraniol, whereas there was no tolerance improvement against the terpenoids by overexpression of cls and cti genes. The imp overexpression even yielded sensitive phenotype to the tested solvents. The colony forming efficiency of the marA overexpressing E. coli was increased by 10(4)-fold in plate overlay of geraniol compared to that of wild type E. coli and a two-fold decrease of intracellular geraniol accumulation was also observed in liquid culture of geraniol. Single knock-out mutations of marA, or one of the following genes (acrA, acrB and tolC) encoding AcrAB-TolC efflux pump made E. coli hypersensitive to geraniol. The geraniol tolerance conferred by marA overexpression was attributed to the AcrAB-TolC efflux pump that is activated by MarA. Copyright © 2012 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  14. Panitumumab use in metastatic colorectal cancer and patterns of RAS testing: results from a Europe-wide physician survey and medical records review.

    PubMed

    Han van Krieken, J; Kafatos, George; Bennett, James; Mineur, Laurent; Tomášek, Jiří; Rouleau, Etienne; Fabian, Pavel; De Maglio, Giovanna; García-Alfonso, Pilar; Aprile, Giuseppe; Parkar, Parijan; Downey, Gerald; Demonty, Gaston; Trojan, Jörg

    2017-11-28

    In Europe, treatment of metastatic colorectal cancer (mCRC) with panitumumab requires prior confirmation of RAS wild-type mutation status. Two studies - a physician survey and a medical records review (MRR) - were conducted to evaluate the use of panitumumab and awareness among prescribing oncologists of the associated RAS testing requirements in clinical practice. Both studies enrolled participants from nine European countries and were carried out in three consecutive rounds. Rounds 1 and 2 (2012-2013) examined KRAS (exon 2) testing only; the results have been published in full previously. Round 3 (2014-2015) examined full RAS testing (exons 2, 3, 4 of KRAS and NRAS) and was initiated following a change in prescribing guidelines, from requiring KRAS alone to requiring full RAS testing. For the physician survey, telephone interviews were conducted with oncologists who had prescribed panitumumab to patients with mCRC in the previous 6 months. For the MRR, oncologists were asked to provide anonymised clinical information, extracted from their patients' records. In Round 3, 152 oncologists and 131 patients' records were included in the physician survey and MRR, respectively. In Round 3 of the physician survey, 95.4% (n = 145) of participants correctly identified that panitumumab should only be prescribed in RAS wild-type mCRC compared with 99.0% (n = 298) of 301 participants in Rounds 1 and 2, responding to the same question about KRAS testing. In Round 3 of the MRR, 100% (n = 131) of patients included in the study had confirmed KRAS or RAS wild-type status prior to initiation of panitumumab compared with 97.7% (n = 299) of 306 patients in Rounds 1 and 2 (KRAS only). Of those patients in Round 3, 83.2% (n = 109) had been tested for RAS status and 16.8% (n = 22) had been tested for KRAS status only. Physicians' adherence to prescribing guidelines has remained high over time in Europe, despite the change in indication for panitumumab treatment, from KRAS to

  15. Natural Variation of Drug Susceptibility in Wild-Type Human Immunodeficiency Virus Type 1

    PubMed Central

    Parkin, N. T.; Hellmann, N. S.; Whitcomb, J. M.; Kiss, L.; Chappey, C.; Petropoulos, C. J.

    2004-01-01

    Wild-type viruses from the ViroLogic phenotype-genotype database were evaluated to determine the upper confidence limit of the drug susceptibility distributions, or “biological cutoffs,” for the PhenoSense HIV phenotypic drug susceptibility assay. Definition of the natural variation in drug susceptibility in wild-type human immunodeficiency virus (HIV) type 1 isolates is necessary to determine the prevalence of innate drug resistance and to assess the capability of the PhenoSense assay to reliably measure subtle reductions in drug susceptibility. The biological cutoffs for each drug, defined by the 99th percentile of the fold change in the 50% inhibitory concentration distributions or the mean fold change plus 2 standard deviations, were lower than those previously reported for other phenotypic assays and lower than the clinically relevant cutoffs previously defined for the PhenoSense assay. The 99th percentile fold change values ranged from 1.2 (tenofovir) to 1.8 (zidovudine) for nucleoside reverse transcriptase RT inhibitors (RTIs), from 3.0 (efavirenz) to 6.2 (delavirdine) for nonnucleoside RTIs, and from 1.6 (lopinavir) to 3.6 (nelfinavir) for protease inhibitors. To evaluate the potential role of intrinsic assay variability in the observed variations in the drug susceptibilities of wild-type isolates, 10 reference viruses with different drug susceptibility patterns were tested 8 to 30 times each. The median coefficients of variation in fold change for the reference viruses ranged from 12 to 18% for all drugs except zidovudine (32%), strongly suggesting that the observed differences in wild-type virus susceptibility to the different drugs is related to intrinsic virus variability rather than assay variability. The low biological cutoffs and assay variability suggest that the PhenoSense HIV assay may assist in defining clinically relevant susceptibility cutoffs for resistance to antiretroviral drugs. PMID:14742192

  16. Overexpression of Catalase Enhances Benzo(a)pyrene Detoxification in Endothelial Microsomes.

    PubMed

    Yang, Fang; Yang, Hong; Ramesh, Aramandla; Goodwin, J Shawn; Okoro, Emmanuel U; Guo, ZhongMao

    2016-01-01

    We previously reported that overexpression of catalase upregulated xenobiotic- metabolizing enzyme (XME) expression and diminished benzo(a)pyrene (BaP) intermediate accumulation in mouse aortic endothelial cells (MAECs). Endoplasmic reticulum (ER) is the most active organelle involved in BaP metabolism. To examine the involvement of ER in catalase-induced BaP detoxification, we compared the level and distribution of XMEs, and the profile of BaP intermediates in the microsomes of wild-type and catalase transgenic endothelial cells. Our data showed that endothelial microsomes were enriched in cytochrome P450 (CYP) 1A1, CYP1B1 and epoxide hydrolase 1 (EH1), and contained considerable levels of quinone oxidoreductase-1 (NQO1) and glutathione S-transferase-pi (GSTP). Treatment of wild-type MAECs with 1μM BaP for 2 h increased the expression of microsomal CYP1A1, 1B1 and NQO1 by ~300, 64 and 116%, respectively. However, the same treatment did not significantly alter the expression of EH1 and GSTP. Overexpression of catalase did not significantly increase EH1, but upregulated BaP-induced expression of microsomal CYP1A1, 1B1, NQO1 and GSTP in the following order: 1A1>NQO1>GSTP>1B1. Overexpression of catalase did not alter the distribution of each of these enzymes in the microsomes. In contrast to our previous report showing lower level of BaP phenols versus BaP diols/diones in the whole-cell, this report demonstrated that the sum of microsomal BaP phenolic metabolites were ~60% greater than that of the BaP diols/diones after exposure of microsomes to BaP. Overexpression of catalase reduced the concentrations of microsomal BaP phenols and diols/diones by ~45 and 95%, respectively. This process enhanced the ratio of BaP phenol versus diol/dione metabolites in a potent manner. Taken together, upregulation of phase II XMEs and CYP1 proteins, but not EH1 in the ER might be the mechanism by which overexpression of catalase reduces the levels of all the BaP metabolites, and

  17. Overexpression of acetyl-CoA synthetase in Saccharomyces cerevisiae increases acetic acid tolerance.

    PubMed

    Ding, Jun; Holzwarth, Garrett; Penner, Michael H; Patton-Vogt, Jana; Bakalinsky, Alan T

    2015-01-01

    Acetic acid-mediated inhibition of the fermentation of lignocellulose-derived sugars impedes development of plant biomass as a source of renewable ethanol. In order to overcome this inhibition, the capacity of Saccharomyces cerevisiae to synthesize acetyl-CoA from acetic acid was increased by overexpressing ACS2 encoding acetyl-coenzyme A synthetase. Overexpression of ACS2 resulted in higher resistance to acetic acid as measured by an increased growth rate and shorter lag phase relative to a wild-type control strain, suggesting that Acs2-mediated consumption of acetic acid during fermentation contributes to acetic acid detoxification. © FEMS 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer.

    PubMed

    Kamerkar, Sushrut; LeBleu, Valerie S; Sugimoto, Hikaru; Yang, Sujuan; Ruivo, Carolina F; Melo, Sonia A; Lee, J Jack; Kalluri, Raghu

    2017-06-22

    The mutant form of the GTPase KRAS is a key driver of pancreatic cancer but remains a challenging therapeutic target. Exosomes are extracellular vesicles generated by all cells, and are naturally present in the blood. Here we show that enhanced retention of exosomes, compared to liposomes, in the circulation of mice is likely due to CD47-mediated protection of exosomes from phagocytosis by monocytes and macrophages. Exosomes derived from normal fibroblast-like mesenchymal cells were engineered to carry short interfering RNA or short hairpin RNA specific to oncogenic Kras G12D , a common mutation in pancreatic cancer. Compared to liposomes, the engineered exosomes (known as iExosomes) target oncogenic KRAS with an enhanced efficacy that is dependent on CD47, and is facilitated by macropinocytosis. Treatment with iExosomes suppressed cancer in multiple mouse models of pancreatic cancer and significantly increased overall survival. Our results demonstrate an approach for direct and specific targeting of oncogenic KRAS in tumours using iExosomes.

  19. Acquired resistance to the Hsp90 inhibitor, ganetespib in KRAS mutant NSCLC is mediated via reactivation of the ERK–p90RSK–mTOR signaling network

    PubMed Central

    Chatterjee, Suman; Huang, Eric H.-B.; Christie, Ian; Kurland, Brenda F.; Burns, Timothy F.

    2017-01-01

    Approximately 25% of non-small cell lung cancer (NSCLC) patients have KRAS mutations and no effective therapeutic strategy exists for these patients. The use of Heat shock protein 90 (Hsp90) inhibitors in KRAS mutant NSCLC appeared to be a promising approach since these inhibitors target many KRAS downstream effectors, however, limited clinical efficacy has been observed due to resistance. Here, we examined the mechanism(s) of acquired resistance to the Hsp90 inhibitor, ganetespib, and identified novel and rationally devised Hsp90 inhibitor combinations which may prevent and overcome resistance to Hsp90 inhibitors. We derived KRAS mutant NSCLC ganetespib resistant (GR) cell lines to identify the resistance mechanism(s) and identified hyperactivation of RAF/MEK/ERK/RSK and PI3K/AKT/mTOR pathways as key resistance mechanisms. Furthermore, we found that GR cells are “addicted” to these pathways as ganetespib resistance lead to synthetic lethality to a dual PI3K/mTOR, a PI3K, or an ERK inhibitor. Interestingly, the levels and activity of a key activator of the mTOR pathway and an ERK downstream target, p90 ribosomal S6 kinase (RSK) were also increased in the GR cells. Genetic or pharmacologic inhibition of p90RSK in GR cells restored sensitivity to ganetespib, whereas p90RSK overexpression induced ganetespib resistance in naïve cells, validating p90RSK as a mediator of resistance and a novel therapeutic target. Our studies offer a way forward for Hsp90 inhibitors through the rational design of Hsp90 inhibitor combinations that may prevent and/or overcome resistance to Hsp90 inhibitors providing an effective therapeutic strategy for KRAS mutant NSCLC. PMID:28167505

  20. KRAS: Reasons for optimism in lung cancer.

    PubMed

    Lindsay, C R; Jamal-Hanjani, M; Forster, M; Blackhall, F

    2018-06-09

    Despite being the most frequent gain-of-function genetic alteration in human cancer, KRAS mutation has to date offered only limited potential as a prognostic and predictive biomarker. Results from the phase III SELECT-1 trial in non-small cell lung cancer (NSCLC) recently added to a number of historical and more contemporary disappointments in targeting KRAS mutant disease, including farnesyl transferase inhibition and synthetic lethality partners such as STK33. This narrative review uses the context of these previous failures to demonstrate how the knowledge gained from these experiences can be used as a platform for exciting advances in NSCLC on the horizon. It now seems clear that mutational subtype (most commonly G12C) of individual mutations is of greater relevance than the categorical evaluation of KRAS mutation presence or otherwise. A number of direct small molecules targeted to these subtypes are in development and have shown promising biological activity, with some in the late stages of preclinical validation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Clinical implementation of KRAS testing in metastatic colorectal carcinoma: the pathologist's perspective.

    PubMed

    Ross, Jeffrey S

    2012-10-01

    Mutation status of the KRAS gene identifies a distinct disease subtype of metastatic colorectal carcinoma that does not respond to antibody therapeutics targeting the epidermal growth factor receptor. This is currently the only validated marker in metastatic colorectal carcinoma with a clear implication in treatment selection. KRAS testing is widely accepted in clinical practice to guide metastatic colorectal carcinoma therapeutic decisions, and there are many commercially available platforms to perform the test. To evaluate the critical role of pathologists in the full implementation of KRAS testing by optimizing tumor tissue collection and fixation procedures and by choosing testing technologies and reliable Clinical Laboratory Improvement Amendments of 1988-certified laboratories to perform the tests. Prospective clinical trials, retrospective studies, and quality assessment and survey reports were identified in the following databases: PubMed, American Society of Clinical Oncology Proceedings (American Society of Clinical Oncology Annual Meeting and Gastrointestinal Cancer Symposium) and European Society for Medical Oncology Proceedings (Annals of Oncology European Society for Medical Oncology Congress and Annals of Oncology World Congress on Gastrointestinal Cancers). More bona fide standards are needed to address the variety of available test methods, which have different performance characteristics including speed, sensitivity to detect rare mutations, and technical requirements. Refined standards addressing timing of KRAS testing, laboratory performance and accuracy, quality assurance and control, proper tissue collection, and appropriate result reporting would also be greatly beneficial. Pathologists should be aware that the amount of information they need to manage will increase, because future trends and technological advances will enhance the predictive power of diagnostic tests or the scope of the biomarker panels tested routinely across tumor types.

  2. Impact of pr-10a overexpression on the cryopreservation success of Solanum tuberosum suspension cultures.

    PubMed

    Vaas, Lea A I; Marheine, Maja; Seufert, Stephanie; Schumacher, Heinz Martin; Kiesecker, Heiko; Heine-Dobbernack, Elke

    2012-06-01

    Although many genes are supposed to be a part of plant cell tolerance mechanisms against osmotic or salt stress, their influence on tolerance towards stress during cryopreservation procedures has rarely been investigated. For instance, the overexpression of the pathogenesis-related gene 10a (pr-10a) leads to improved osmotic tolerance in a transgenic cell culture of Solanum tuberosum cv. Désirée. In this study, a cryopreservation method, consisting of osmotic pretreatment, cryoprotection with DMSO and controlled-rate freezing, was used to characterize the relation between cryopreservation success and pr-10a expression in suspension cultures of S. tuberosum wild-type cells and cells overexpressing pathogenesis-related protein 10a (Pr-10a). By varying the sorbitol concentration, thus modifying the strength of the osmotic stress during the pretreatment phase, it can be shown that the wild type can successfully be cryopreserved only in a relatively narrow range of sorbitol concentrations, while the pr-10a overexpression leads to an enhanced cryopreservation success over the whole range of applied sorbitol concentrations. Together with transcription data we show that the pr-10a overexpression causes an enhanced osmotic tolerance, which in turn leads to enhanced cryopreservability, but also indicates a role of pr-10a in signal transduction. An increased cryopreservability of the transgenic cell line occurs for pretreatments longer than 24 h. Since both genotypes, characterized by distinct baseline levels of expression, exhibited similar patterns of expression induction, the induction of pr-10a appears to be a key step in the stress signal transduction of plant cells under osmotic stress.

  3. Effects of co-overexpression of the genes of Rubisco and transketolase on photosynthesis in rice.

    PubMed

    Suzuki, Yuji; Kondo, Eri; Makino, Amane

    2017-03-01

    Metabolome analyses have indicated an accumulation of sedoheptulose 7-phosphate in transgenic rice plants with overproduction of Rubisco (Suzuki et al. in Plant Cell Environ 35:1369-1379, 2012. doi: 10.1111/j.1365-3040.2012.02494.x ). Since Rubisco overproduction did not quantitatively enhance photosynthesis even under CO 2 -limited conditions, it is suspected that such an accumulation of sedoheptulose 7-phosphate hampers the improvement of photosynthetic capacity. In the present study, the gene of transketolase, which is involved in the metabolism of sedoheptulose 7-phosphate, was co-overexpressed with the Rubisco small subunit gene in rice. Rubisco and transketolase were successfully overproduced in comparison with those in wild-type plants by 35-53 and 39-84 %, respectively. These changes in the amounts of the proteins were associated with those of the mRNA levels. However, the rate of CO 2 assimilation under high irradiance and different [CO 2 ] did not differ between co-overexpressed plants and wild-type plants. Thus, co-overproduction of Rubisco and transketolase did not improve photosynthesis in rice. Transketolase was probably not a limiting factor of photosynthesis as overproduction of transketolase alone by 80-94 % did not affect photosynthesis.

  4. Targeted overexpression of amelotin disrupts the microstructure of dental enamel.

    PubMed

    Lacruz, Rodrigo S; Nakayama, Yohei; Holcroft, James; Nguyen, Van; Somogyi-Ganss, Eszter; Snead, Malcolm L; White, Shane N; Paine, Michael L; Ganss, Bernhard

    2012-01-01

    We have previously identified amelotin (AMTN) as a novel protein expressed predominantly during the late stages of dental enamel formation, but its role during amelogenesis remains to be determined. In this study we generated transgenic mice that produce AMTN under the amelogenin (Amel) gene promoter to study the effect of AMTN overexpression on enamel formation in vivo. The specific overexpression of AMTN in secretory stage ameloblasts was confirmed by Western blot and immunohistochemistry. The gross histological appearance of ameloblasts or supporting cellular structures as well as the expression of the enamel proteins amelogenin (AMEL) and ameloblastin (AMBN) was not altered by AMTN overexpression, suggesting that protein production, processing and secretion occurred normally in transgenic mice. The expression of Odontogenic, Ameloblast-Associated (ODAM) was slightly increased in secretory stage ameloblasts of transgenic animals. The enamel in AMTN-overexpressing mice was much thinner and displayed a highly irregular surface structure compared to wild type littermates. Teeth of transgenic animals underwent rapid attrition due to the brittleness of the enamel layer. The microstructure of enamel, normally a highly ordered arrangement of hydroxyapatite crystals, was completely disorganized. Tomes' process, the hallmark of secretory stage ameloblasts, did not form in transgenic mice. Collectively our data demonstrate that the overexpression of amelotin has a profound effect on enamel structure by disrupting the formation of Tomes' process and the orderly growth of enamel prisms.

  5. Targeted Overexpression of Amelotin Disrupts the Microstructure of Dental Enamel

    PubMed Central

    Lacruz, Rodrigo S.; Nakayama, Yohei; Holcroft, James; Nguyen, Van; Somogyi-Ganss, Eszter; Snead, Malcolm L.; White, Shane N.; Paine, Michael L.; Ganss, Bernhard

    2012-01-01

    We have previously identified amelotin (AMTN) as a novel protein expressed predominantly during the late stages of dental enamel formation, but its role during amelogenesis remains to be determined. In this study we generated transgenic mice that produce AMTN under the amelogenin (Amel) gene promoter to study the effect of AMTN overexpression on enamel formation in vivo. The specific overexpression of AMTN in secretory stage ameloblasts was confirmed by Western blot and immunohistochemistry. The gross histological appearance of ameloblasts or supporting cellular structures as well as the expression of the enamel proteins amelogenin (AMEL) and ameloblastin (AMBN) was not altered by AMTN overexpression, suggesting that protein production, processing and secretion occurred normally in transgenic mice. The expression of Odontogenic, Ameloblast-Associated (ODAM) was slightly increased in secretory stage ameloblasts of transgenic animals. The enamel in AMTN-overexpressing mice was much thinner and displayed a highly irregular surface structure compared to wild type littermates. Teeth of transgenic animals underwent rapid attrition due to the brittleness of the enamel layer. The microstructure of enamel, normally a highly ordered arrangement of hydroxyapatite crystals, was completely disorganized. Tomes' process, the hallmark of secretory stage ameloblasts, did not form in transgenic mice. Collectively our data demonstrate that the overexpression of amelotin has a profound effect on enamel structure by disrupting the formation of Tomes' process and the orderly growth of enamel prisms. PMID:22539960

  6. Muscle fiber-type conversion in the transgenic pigs with overexpression of PGC1α gene in muscle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ying, Fei; Zhang, Liang; Bu, Guowei

    The peroxisome proliferator-activated receptor gamma, co-activator 1 alpha(PGC1α) effectively induced the biosynthesis of the mitochondria and the energy metabolism, and also regulated the muscle fiber-type shift. Overexpression of PGC1α gene in mice led to higher oxidative muscle fiber composition in muscle. However, no researches about the significant differences of muscle fiber phenotype in pigs after PGC1α overexpression had been reported. The composition of muscle fiber-types which were distinguished by four myosin heavy chain(MYHC) isoforms, can significantly affect the muscle functions. In our study, we generated the transgenic pigs to investigate the effect of overexpression of PGC1α gene on muscle fiber-typemore » conversion. The results showed that the number of oxidative muscle fiber(type1 muscle fiber) was increased and the number of glycolytic muscle fiber(type2b muscle fiber) was decreased in the transgenic pigs. Furthermore, we found that PGC1α overexpression up-regulated the expression of MYHC1 and MYHC2a and down-regulated the expression of MYHC2b.The analysis of genes expression demonstrated the main differentially expressed genes were MSTN, Myog and FOXO1. In conclusion, the overexpression of PGC1α gene can promote the glycolytic muscle fiber transform to the oxidative muscle fiber in pigs.« less

  7. Apatinib in the treatment of advanced lung adenocarcinoma with KRAS mutation.

    PubMed

    Zeng, Da-Xiong; Wang, Chang-Guo; Huang, Jian-An; Jiang, Jun-Hong

    2017-01-01

    Activating KRAS mutations in lung adenocarcinoma are characterized with treatment resistance and poor prognosis. As a small molecule inhibitor of vascular endothelial growth factor receptor-2 (VEGFR-2) tyrosine kinase, apatinib has been proven successful in advanced gastric cancer and breast cancer. In this study, we show the result of apatinib as salvage treatment in lung adenocarcinoma patients with KRAS mutation. Four advanced lung adenocarcinoma patients with KRAS mutation were orally administered apatinib (250 mg/d) after second-line treatment. One patient showed progressive disease, while 3 patients showed stable disease response to apatinib, with a median progression-free survival (PFS) of 3.8 months (1.5-5.5 months). The main toxicities were hoarseness and hemoptysis, which were manageable. Therefore, apatinib might be an optional choice for advanced lung adenocarcinoma patients with KRAS mutation in post second-line treatment.

  8. EGFR, KRAS, and BRAF mutational profiles of female patients with micropapillary predominant invasive lung adenocarcinoma

    PubMed

    Demirağ, Funda; Yılmaz, Aydın; Yılmaz Demirci, Nilgün; Yılmaz, Ülkü; Erdoğan, Yurdanur

    2017-11-13

    Background/aim: This study aimed to analyze EGFR, KRAS, and BRAF mutations in females with micropapillary predominant invasive lung adenocarcinoma and their relationships with immunohistochemical and clinicopathological patterns.Materials and methods: A total of 15 females with micropapillary lung adenocarcinoma were selected. Mutational analysis of the EGFR, KRAS, and BRAF genes was carried out. Information regarding the demographic data, tumor size, treatment, and survival time for each patient was collated, and the predominant cell type, secondary architectural growth patterns, psammoma bodies, necrosis, and visceral pleural and angiolymphatic invasions were evaluated.Results: We identified EGFR mutation in six cases, KRAS mutation in three cases, and BRAF mutation in one case. EGFR, c-kit, VEGFR, and bcl-2 positivity was observed in ten, seven, four, and six cases, respectively. All cases were positive for VEGF (strong positivity in 11 cases and weak positivity in four cases) and bcl-2 (strong positivity in nine cases and weak positivity in six cases). Seven (46.6%) cases were positive for c-kit and 10 (66.6%) cases were positive for EGFR. Conclusion: EGFR mutation occurred at a higher incidence rate in micropapillary predominant invasive adenocarcinoma than has previously been found in conventional lung adenocarcinomas. KRAS mutation was observed as having a similar frequency to what was previously observed, but the frequency of BRAF mutation was lower than previously reported.

  9. c-Raf in KRas Mutant Cancers: A Moving Target.

    PubMed

    McCormick, Frank

    2018-02-12

    Therapies for KRas cancers remain a major clinical need. In the current issue of Cancer Cell, Sanclemente and coworkers in Mariano Barbacid's group validate c-Raf as a prime target for these cancers. c-Raf ablation caused regression of advanced KRas G12V /Trp53 tumors, without obvious systemic toxicity and without affecting MAPK signaling. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Overexpression of a maize plasma membrane intrinsic protein ZmPIP1;1 confers drought and salt tolerance in Arabidopsis.

    PubMed

    Zhou, Lian; Zhou, Jing; Xiong, Yuhan; Liu, Chaoxian; Wang, Jiuguang; Wang, Guoqiang; Cai, Yilin

    2018-01-01

    Drought and salt stress are major abiotic stress that inhibit plants growth and development, here we report a plasma membrane intrinsic protein ZmPIP1;1 from maize and identified its function in drought and salt tolerance in Arabidopsis. ZmPIP1;1 was localized to the plasma membrane and endoplasmic reticulum in maize protoplasts. Treatment with PEG or NaCl resulted in induced expression of ZmPIP1;1 in root and leaves. Constitutive overexpression of ZmPIP1;1 in transgenic Arabidopsis plants resulted in enhanced drought and salt stress tolerance compared to wild type. A number of stress responsive genes involved in cellular osmoprotection in ZmPIP1;1 overexpression plants were up-regulated under drought or salt condition. ZmPIP1;1 overexpression plants showed higher activities of reactive oxygen species (ROS) scavenging enzymes such as catalase and superoxide dismutase, lower contents of stress-induced ROS such as superoxide, hydrogen peroxide and malondialdehyde, and higher levels of proline under drought and salt stress than did wild type. ZmPIP1;1 may play a role in drought and salt stress tolerance by inducing of stress responsive genes and increasing of ROS scavenging enzymes activities, and could provide a valuable gene for further plant breeding.

  11. Reactive oxygen species and fatigue-induced prolonged low-frequency force depression in skeletal muscle fibres of rats, mice and SOD2 overexpressing mice.

    PubMed

    Bruton, Joseph D; Place, Nicolas; Yamada, Takashi; Silva, José P; Andrade, Francisco H; Dahlstedt, Anders J; Zhang, Shi-Jin; Katz, Abram; Larsson, Nils-Göran; Westerblad, Håkan

    2008-01-01

    Skeletal muscle often shows a delayed force recovery after fatiguing stimulation, especially at low stimulation frequencies. In this study we focus on the role of reactive oxygen species (ROS) in this fatigue-induced prolonged low-frequency force depression. Intact, single muscle fibres were dissected from flexor digitorum brevis (FDB) muscles of rats and wild-type and superoxide dismutase 2 (SOD2) overexpressing mice. Force and myoplasmic free [Ca(2+)] ([Ca(2+)](i)) were measured. Fibres were stimulated at different frequencies before and 30 min after fatigue induced by repeated tetani. The results show a marked force decrease at low stimulation frequencies 30 min after fatiguing stimulation in all fibres. This decrease was associated with reduced tetanic [Ca(2+)](i) in wild-type mouse fibres, whereas rat fibres and mouse SOD2 overexpressing fibres instead displayed a decreased myofibrillar Ca(2+) sensitivity. The SOD activity was approximately 50% lower in wild-type mouse than in rat FDB muscles. Myoplasmic ROS increased during repeated tetanic stimulation in rat fibres but not in wild-type mouse fibres. The decreased Ca(2+) sensitivity in rat fibres could be partially reversed by application of the reducing agent dithiothreitol, whereas the decrease in tetanic [Ca(2+)](i) in wild-type mouse fibres was not affected by dithiothreitol or the antioxidant N-acetylcysteine. In conclusion, we describe two different causes of fatigue-induced prolonged low-frequency force depression, which correlate to differences in SOD activity and ROS metabolism. These findings may have clinical implications since ROS-mediated impairments in myofibrillar function can be counteracted by reductants and antioxidants, whereas changes in SR Ca(2+) handling appear more resistant to interventions.

  12. Endothelial nitric oxide synthase overexpression restores the efficiency of bone marrow mononuclear cell-based therapy.

    PubMed

    Mees, Barend; Récalde, Alice; Loinard, Céline; Tempel, Dennie; Godinho, Marcia; Vilar, José; van Haperen, Rien; Lévy, Bernard; de Crom, Rini; Silvestre, Jean-Sébastien

    2011-01-01

    Bone marrow-derived mononuclear cells (BMMNCs) enhance postischemic neovascularization, and their therapeutic use is currently under clinical investigation. However, cardiovascular risk factors, including diabetes mellitus and hypercholesterolemia, lead to the abrogation of BMMNCs proangiogenic potential. NO has been shown to be critical for the proangiogenic function of BMMNCs, and increased endothelial NO synthase (eNOS) activity promotes vessel growth in ischemic conditions. We therefore hypothesized that eNOS overexpression could restore both the impaired neovascularization response and decreased proangiogenic function of BMMNCs in clinically relevant models of diabetes and hypercholesterolemia. Transgenic eNOS overexpression in diabetic, atherosclerotic, and wild-type mice induced a 1.5- to 2.3-fold increase in postischemic neovascularization compared with control. eNOS overexpression in diabetic or atherosclerotic BMMNCs restored their reduced proangiogenic potential in ischemic hind limb. This effect was associated with an increase in BMMNC ability to differentiate into cells with endothelial phenotype in vitro and in vivo and an increase in BMMNCs paracrine function, including vascular endothelial growth factor A release and NO-dependent vasodilation. Moreover, although wild-type BMMNCs treatment resulted in significant progression of atherosclerotic plaque in ischemic mice, eNOS transgenic atherosclerotic BMMNCs treatment even had antiatherogenic effects. Cell-based eNOS gene therapy has both proangiogenic and antiatherogenic effects and should be further investigated for the development of efficient therapeutic neovascularization designed to treat ischemic cardiovascular disease. Copyright © 2011 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  13. Improved hydrogen production under microaerophilic conditions by overexpression of polyphosphate kinase in Enterobacter aerogenes.

    PubMed

    Lu, Yuan; Zhang, Chong; Lai, Qiheng; Zhao, Hongxin; Xing, Xin-Hui

    2011-02-08

    Effects of different microaerophilic conditions on cell growth, glucose consumption, hydrogen production and cellular metabolism of wild Enterobacter aerogenes strain and polyphosphate kinase (PPK) overexpressing strain were systematically studied in this paper, using NaH(2)PO(4) as the phosphate sources. Under different microaerophilic conditions, PPK-overexpressing strain showed better cell growth, glucose consumption and hydrogen production than the wild strain. In the presence of limited oxygen (2.1%) and by PPK overexpression, the hydrogen production per liter of culture, the hydrogen production per cell and the hydrogen yield per mol of glucose increased by 20.1%, 12.3% and 10.8%, respectively, compared with the wild strain under strict anaerobic conditions. Metabolic analysis showed that the increase of the total hydrogen yield was attributed to the improvement of NADH pathway. The result of more reductive cellular oxidation state balance also further demonstrated that, under proper initial microaerophilic conditions and by PPK overexpression, the cell could adjust the cellular redox states and make more energy flow into hydrogen production pathways. Copyright © 2010 Elsevier Inc. All rights reserved.

  14. System-wide identification of wild-type SUMO-2 conjugation sites

    PubMed Central

    Hendriks, Ivo A.; D'Souza, Rochelle C.; Chang, Jer-Gung; Mann, Matthias; Vertegaal, Alfred C. O.

    2015-01-01

    SUMOylation is a reversible post-translational modification (PTM) regulating all nuclear processes. Identification of SUMOylation sites by mass spectrometry (MS) has been hampered by bulky tryptic fragments, which thus far necessitated the use of mutated SUMO. Here we present a SUMO-specific protease-based methodology which circumvents this problem, dubbed Protease-Reliant Identification of SUMO Modification (PRISM). PRISM allows for detection of SUMOylated proteins as well as identification of specific sites of SUMOylation while using wild-type SUMO. The method is generic and could be widely applied to study lysine PTMs. We employ PRISM in combination with high-resolution MS to identify SUMOylation sites from HeLa cells under standard growth conditions and in response to heat shock. We identified 751 wild-type SUMOylation sites on endogenous proteins, including 200 dynamic SUMO sites in response to heat shock. Thus, we have developed a method capable of quantitatively studying wild-type mammalian SUMO at the site-specific and system-wide level. PMID:26073453

  15. KRAS Mutation and Epithelial-Macrophage Interplay in Pancreatic Neoplastic Transformation.

    PubMed

    Bishehsari, Faraz; Zhang, Lijuan; Barlass, Usman; Preite, Nailliw; Turturro, Sanja; Najor, Matthew S; Shetuni, Brandon B; Zayas, Janet P; Mahdavinia, Mahboobeh; Abukhdeir, Abde M; Keshavarzian, Ali

    2018-05-14

    Pancreatic ductal adenocarcinoma (PDA) is characterized by epithelial mutations in KRAS and prominent tumor-associated inflammation, including macrophage infiltration. But knowledge of early interactions between neoplastic epithelium and macrophages in PDA carcinogenesis is limited. Using a pancreatic organoid model, we found that the expression of mutant KRAS in organoids increased i) ductal to acinar gene expression ratios, ii) epithelial cells proliferation, and iii) colony formation capacity in vitro, and endowed pancreatic cells with the ability to generate neoplastic tumors in vivo. KRAS mutations induced a pro-tumorigenic phenotype in macrophages. Altered macrophages decreased epithelial Pigment Epithelial Derived Factor (PEDF) expression and induced a cancerous phenotype. We validated our findings using annotated patient samples from The Cancer Genome Atlas (TCGA) as well as in our human PDA specimens. Epithelium-macrophage cross talk occurs early in pancreatic carcinogenesis where KRAS directly induces cancer-related phenotypes in epithelium, and also promotes a pro-tumorigenic phenotype in macrophages, in turn augmenting neoplastic growth. This article is protected by copyright. All rights reserved. © 2018 UICC.

  16. Induced overexpression of protein kinase D1 stimulates mitogenic signaling in human pancreatic carcinoma PANC-1 cells.

    PubMed

    Kisfalvi, Krisztina; Hurd, Cliff; Guha, Sushovan; Rozengurt, Enrique

    2010-05-01

    Neurotensin (NT) stimulates protein kinase D1 (PKD1), extracellular signal regulated kinase (ERK), c-Jun N-terminal Kinase (JNK), and DNA synthesis in the human pancreatic adenocarcinoma cell line PANC-1. To determine the effect of PKD1 overexpression on these biological responses, we generated inducible stable PANC-1 clones that express wild-type (WT) or kinase-dead (K618N) forms of PKD1 in response to the ecdysone analog ponasterone-A (PonA). NT potently stimulated c-Jun Ser(63) phosphorylation in both wild type and clonal derivatives of PANC-1 cells. PonA-induced expression of WT, but not K618N PKD1, rapidly blocked NT-mediated c-Jun Ser(63) phosphorylation either at the level of or upstream of MKK4, a dual-specificity kinase that leads to JNK activation. This is the first demonstration that PKD1 suppresses NT-induced JNK/cJun activation in PANC-1 cells. In contrast, PKD1 overexpression markedly increased the duration of NT-induced ERK activation in these cells. The reciprocal influence of PKD1 signaling on pro-mitogenicERK and pro-apopotic JNK/c-Jun pathways prompted us to examine whether PKD1 overexpression promotes DNA synthesis and proliferation of PANC-1 cells. Our results show that PKD1 overexpression increased DNA synthesis and cell numbers of PANC-1 cells cultured in regular dishes or in polyhydroxyethylmethacrylate [Poly-(HEMA)]-coated dishes to eliminate cell adhesion (anchorage-independent growth). Furthermore, PKD1 overexpression markedly enhanced DNA synthesis induced by NT (1-10 nM). These results indicate that PKD1 mediates mitogenic signaling in PANC-1 and suggests that this enzyme could be a novel target for the development of therapeutic drugs that restrict the proliferation of these cells.

  17. KRAS and BRAF Mutation Detection: Is Immunohistochemistry a Possible Alternative to Molecular Biology in Colorectal Cancer?

    PubMed Central

    Borrini, Francesco; Bolognese, Antonio; Lamy, Aude; Sabourin, Jean-Christophe

    2015-01-01

    KRAS genotyping is mandatory in metastatic colorectal cancer treatment prior to undertaking antiepidermal growth factor receptor (EGFR) monoclonal antibody therapy. BRAF V600E mutation is often present in colorectal carcinoma with CpG island methylator phenotype and microsatellite instability. Currently, KRAS and BRAF evaluation is based on molecular biology techniques such as SNaPshot or Sanger sequencing. As molecular testing is performed on formalin-fixed paraffin-embedded (FFPE) samples, immunodetection would appear to be an attractive alternative for detecting mutations. Thus, our objective was to assess the validity of KRAS and BRAF immunodetection of mutations compared with the genotyping reference method in colorectal adenocarcinoma. KRAS and BRAF genotyping was assessed by SNaPshot. A rabbit anti-human KRAS polyclonal antibody was tested on 33 FFPE colorectal tumor samples with known KRAS status. Additionally, a mouse anti-human BRAF monoclonal antibody was tested on 30 FFPE tumor samples with known BRAF status. KRAS immunostaining demonstrated both poor sensitivity (27%) and specificity (64%) in detecting KRAS mutation. Conversely, BRAF immunohistochemistry showed perfect sensitivity (100%) and specificity (100%) in detecting V600E mutation. Although molecular biology remains the reference method for detecting KRAS mutation, immunohistochemistry could be an attractive method for detecting BRAF V600E mutation in colorectal cancer. PMID:25983749

  18. Improvement of exopolysaccharide production in Lactobacillus casei LC2W by overexpression of NADH oxidase gene.

    PubMed

    Li, Nan; Wang, Yuanlong; Zhu, Ping; Liu, Zhenmin; Guo, Benheng; Ren, Jing

    2015-02-01

    Lactobacillus casei LC2W is an exopolysaccharide (EPS)-producing strain with probiotic effects. To investigate the regulation mechanism of EPS biosynthesis and to improve EPS production through cofactor engineering, a H₂O-forming NADH oxidase gene was cloned from Streptococcus mutans and overexpressed in L. casei LC2W under the control of constitutive promoter P₂₃. The recombinant strain LC-nox exhibited 0.854 U/mL of NADH oxidase activity, which was elevated by almost 20-fold in comparison with that of wild-type strain. As a result, overexpression of NADH oxidase resulted in a reduction in growth rate. In addition, lactate production was decreased by 22% in recombinant strain. It was proposed that more carbon source was saved and used for the biosynthesis of EPS, the production of which was reached at 219.4 mg/L, increased by 46% compared to that of wild-type strain. This work provided a novel and convenient genetic approach to manipulate metabolic flux and to increase EPS production. To the best of our knowledge, this is the first report which correlates cofactor engineering with EPS production. Copyright © 2015 Elsevier GmbH. All rights reserved.

  19. Ubiquitin over-expression phenotypes and ubiquitin gene molecular misreading during aging in Drosophila melanogaster

    PubMed Central

    Hoe, Nicholas; Huang, Chung M.; Landis, Gary; Verhage, Marian; Ford, Daniel; Yang, Junsheng; van Leeuwen, Fred W.; Tower, John

    2011-01-01

    Molecular Misreading (MM) is the inaccurate conversion of genomic information into aberrant proteins. For example, when RNA polymerase II transcribes a GAGAG motif it synthesizes at low frequency RNA with a two-base deletion. If the deletion occurs in a coding region, translation will result in production of misframed proteins. During mammalian aging, misframed versions of human amyloid precursor protein (hApp) and ubiquitin (hUbb) accumulate in the aggregates characteristic of neurodegenerative diseases, suggesting dysfunctional degradation or clearance. Here cDNA clones encoding wild-type hUbb and the frame-shifted version hUbb+1 were expressed in transgenic Drosophila using the doxycycline-regulated system. Misframed proteins were abundantly produced, both from the transgenes and from endogenous Drosophila ubiquitin-encoding genes, and their abundance increased during aging in whole-fly extracts. Over-expression of wild-type hUbb, but not hUbb+1, was toxic during fly development. In contrast, when over-expressed specifically in adult flies, hUbb+1 caused small decreases in life span, whereas hUbb was associated with small increases, preferentially in males. The data suggest that MM occurs in Drosophila and that the resultant misframed proteins accumulate with age. MM of the ubiquitin gene can produce alternative ubiquitin gene products with different and sometimes opposing phenotypic effects. PMID:21415465

  20. Lead identification for the K-Ras protein: virtual screening and combinatorial fragment-based approaches

    PubMed Central

    Pathan, Akbar Ali Khan; Panthi, Bhavana; Khan, Zahid; Koppula, Purushotham Reddy; Alanazi, Mohammed Saud; Sachchidanand; Parine, Narasimha Reddy; Chourasia, Mukesh

    2016-01-01

    Objective Kirsten rat sarcoma (K-Ras) protein is a member of Ras family belonging to the small guanosine triphosphatases superfamily. The members of this family share a conserved structure and biochemical properties, acting as binary molecular switches. The guanosine triphosphate-bound active K-Ras interacts with a range of effectors, resulting in the stimulation of downstream signaling pathways regulating cell proliferation, differentiation, and apoptosis. Efforts to target K-Ras have been unsuccessful until now, placing it among high-value molecules against which developing a therapy would have an enormous impact. K-Ras transduces signals when it binds to guanosine triphosphate by directly binding to downstream effector proteins, but in case of guanosine diphosphate-bound conformation, these interactions get disrupted. Methods In the present study, we targeted the nucleotide-binding site in the “on” and “off” state conformations of the K-Ras protein to find out suitable lead compounds. A structure-based virtual screening approach has been used to screen compounds from different databases, followed by a combinatorial fragment-based approach to design the apposite lead for the K-Ras protein. Results Interestingly, the designed compounds exhibit a binding preference for the “off” state over “on” state conformation of K-Ras protein. Moreover, the designed compounds’ interactions are similar to guanosine diphosphate and, thus, could presumably act as a potential lead for K-Ras. The predicted drug-likeness properties of these compounds suggest that these compounds follow the Lipinski’s rule of five and have tolerable absorption, distribution, metabolism, excretion and toxicity values. Conclusion Thus, through the current study, we propose targeting only “off” state conformations as a promising strategy for the design of reversible inhibitors to pharmacologically inhibit distinct conformations of K-Ras protein. PMID:27217775

  1. L-Endoglin Overexpression Increases Renal Fibrosis after Unilateral Ureteral Obstruction

    PubMed Central

    Arévalo, Miguel; Núñez-Gómez, Elena; Pérez-Roque, Lucía; Pericacho, Miguel; González-Núñez, María; Langa, Carmen; Martínez-Salgado, Carlos; Perez-Barriocanal, Fernando; Bernabeu, Carmelo; Lopez-Novoa, José M.

    2014-01-01

    Transforming growth factor-β (TGF-β) plays a pivotal role in renal fibrosis. Endoglin, a 180 KDa membrane glycoprotein, is a TGF-β co-receptor overexpressed in several models of chronic kidney disease, but its function in renal fibrosis remains uncertain. Two membrane isoforms generated by alternative splicing have been described, L-Endoglin (long) and S-Endoglin (short) that differ from each other in their cytoplasmic tails, being L-Endoglin the most abundant isoform. The aim of this study was to assess the effect of L-Endoglin overexpression in renal tubulo-interstitial fibrosis. For this purpose, a transgenic mouse which ubiquitously overexpresses human L-Endoglin (L-ENG+) was generated and unilateral ureteral obstruction (UUO) was performed in L-ENG+ mice and their wild type (WT) littermates. Obstructed kidneys from L-ENG+ mice showed higher amounts of type I collagen and fibronectin but similar levels of α-smooth muscle actin (α-SMA) than obstructed kidneys from WT mice. Smad1 and Smad3 phosphorylation were significantly higher in obstructed kidneys from L-ENG+ than in WT mice. Our results suggest that the higher increase of renal fibrosis observed in L-ENG+ mice is not due to a major abundance of myofibroblasts, as similar levels of α-SMA were observed in both L-ENG+ and WT mice, but to the higher collagen and fibronectin synthesis by these fibroblasts. Furthermore, in vivo L-Endoglin overexpression potentiates Smad1 and Smad3 pathways and this effect is associated with higher renal fibrosis development. PMID:25313562

  2. STK33 kinase inhibitor BRD-8899 has no effect on KRAS-dependent cancer cell viability.

    PubMed

    Luo, Tuoping; Masson, Kristina; Jaffe, Jacob D; Silkworth, Whitney; Ross, Nathan T; Scherer, Christina A; Scholl, Claudia; Fröhling, Stefan; Carr, Steven A; Stern, Andrew M; Schreiber, Stuart L; Golub, Todd R

    2012-02-21

    Approximately 30% of human cancers harbor oncogenic gain-of-function mutations in KRAS. Despite interest in KRAS as a therapeutic target, direct blockade of KRAS function with small molecules has yet to be demonstrated. Based on experiments that lower mRNA levels of protein kinases, KRAS-dependent cancer cells were proposed to have a unique requirement for the serine/threonine kinase STK33. Thus, it was suggested that small-molecule inhibitors of STK33 might have therapeutic benefit in these cancers. Here, we describe the development of selective, low nanomolar inhibitors of STK33's kinase activity. The most potent and selective of these, BRD8899, failed to kill KRAS-dependent cells. While several explanations for this result exist, our data are most consistent with the view that inhibition of STK33's kinase activity does not represent a promising anti-KRAS therapeutic strategy.

  3. STK33 kinase inhibitor BRD-8899 has no effect on KRAS-dependent cancer cell viability

    PubMed Central

    Luo, Tuoping; Masson, Kristina; Jaffe, Jacob D.; Silkworth, Whitney; Ross, Nathan T.; Scherer, Christina A.; Scholl, Claudia; Fröhling, Stefan; Carr, Steven A.; Stern, Andrew M.; Schreiber, Stuart L.; Golub, Todd R.

    2012-01-01

    Approximately 30% of human cancers harbor oncogenic gain-of-function mutations in KRAS. Despite interest in KRAS as a therapeutic target, direct blockade of KRAS function with small molecules has yet to be demonstrated. Based on experiments that lower mRNA levels of protein kinases, KRAS-dependent cancer cells were proposed to have a unique requirement for the serine/threonine kinase STK33. Thus, it was suggested that small-molecule inhibitors of STK33 might have therapeutic benefit in these cancers. Here, we describe the development of selective, low nanomolar inhibitors of STK33’s kinase activity. The most potent and selective of these, BRD8899, failed to kill KRAS-dependent cells. While several explanations for this result exist, our data are most consistent with the view that inhibition of STK33’s kinase activity does not represent a promising anti-KRAS therapeutic strategy. PMID:22323609

  4. A vertically-stacked, polymer, microfluidic point mutation analyzer: Rapid, high accuracy detection of low-abundance K-ras mutations

    PubMed Central

    Han, Kyudong; Lee, Tae Yoon; Nikitopoulos, Dimitris E.; Soper, Steven A.; Murphy, Michael C.

    2011-01-01

    Recognition of point mutations in the K-ras gene can be used for the clinical management of several types of cancers. Unfortunately, several assay and hardware concerns must be addressed to allow users not well-trained in performing molecular analyses the opportunity to undertake these measurements. To provide for a larger user-base for these types of molecular assays, a vertically-stacked microfluidic analyzer with a modular architecture and process automation was developed. The analyzer employed a primary PCR coupled to an allele-specific ligase detection reaction (LDR). Each functional device, including continuous flow thermal reactors for the PCR and LDR, passive micromixers and ExoSAP-IT® purification, was designed and tested. Individual devices were fabricated in polycarbonate using hot embossing and assembled using adhesive bonding for system assembly. The system produced LDR products from a DNA sample in ~1 h, an 80% reduction in time compared to conventional bench-top instrumentation. Purifying the post-PCR products with the ExoSAP-IT® enzyme led to optimized LDR performance minimizing false positive signals and producing reliable results. Mutant alleles in genomic DNA were quantified to the level of 0.25 ng of mutant DNA in 50 ng of wild-type DNA for a 25 μL sample, equivalent to DNA from 42 mutant cells. PMID:21771577

  5. Comparative Quantitative Studies on the Microvasculature of the Heart of a Highly Selected Meat-Type and a Wild-Type Turkey Line

    PubMed Central

    Kattanek, Maria; Richardson, Kenneth C.; Hafez, Hafez Mohamed; Plendl, Johanna; Hünigen, Hana

    2017-01-01

    In this study the macroscopic and microscopic structure of the heart of a fast growing, meat-type turkey line (British United turkeys BUT Big 6) and a wild-type turkey line (Canadian Wild turkey) were compared. At 8 and 16 weeks of age, 10 birds of each genotype and sex were sampled. The body mass and heart mass of the meat-type turkey both increased at a faster rate than those of the wild-type turkey. However in both turkey lines, the relative heart mass decreased slightly with age, the decrease was statistically significant only in the male turkeys. Furthermore meat-type turkeys had a significantly (p < 0.01) lower relative heart mass and relative thickness of the left ventricle compared to the wild-type turkeys of the same age. The wild-type turkeys showed no significant change in the size of cardiomyocytes (cross sectional area and diameter) from 8 weeks to 16 weeks. In contrast, the size of cardiomyocytes increased significantly (p < 0.001) with age in the meat-type turkeys. The number of capillaries in the left ventricular wall increased significantly (p < 0.001) in wild-type turkeys from 2351 per mm2 at the age of 8 weeks to 2843 per mm2 at 16 weeks. However, in the meat-type turkeys there were no significant changes, capillary numbers being 2989 per mm2 at age 8 weeks and 2915 per mm2 at age 16 weeks. Correspondingly the area occupied by capillaries in the myocardium increased in wild-type turkeys from 8.59% at the age of 8 weeks to 9.15% at 16 weeks, whereas in meat-type turkeys this area decreased from 10.4% at 8 weeks to 9.95% at 16 weeks. Our results indicate a mismatch in development between body mass and heart mass and a compromised cardiac capillary density and architecture in the meat-type turkeys in comparison to the wild-type turkeys. PMID:28118415

  6. Thrombospondin-2 overexpression in the skin of transgenic mice reduces the susceptibility to chemically induced multistep skin carcinogenesis.

    PubMed

    Kunstfeld, Rainer; Hawighorst, Thomas; Streit, Michael; Hong, Young-Kwon; Nguyen, Lynh; Brown, Lawrence F; Detmar, Michael

    2014-05-01

    We have previously reported stromal upregulation of the endogenous angiogenesis inhibitor thrombospondin-2 (TSP-2) during multistep carcinogenesis, and we found accelerated and enhanced skin angiogenesis and carcinogenesis in TSP-2 deficient mice. To investigate whether enhanced levels of TSP-2 might protect from skin cancer development. We established transgenic mice with targeted overexpression of TSP-2 in the skin and subjected hemizygous TSP-2 transgenic mice and their wild-type littermates to a chemical skin carcinogenesis regimen. TSP-2 transgenic mice showed a significantly delayed onset of tumor formation compared to wild-type mice, whereas the ratio of malignant conversion to squamous cell carcinomas was comparable in both genotypes. Computer-assisted morphometric analysis of blood vessels revealed pronounced tumor angiogenesis already in the early stages of carcinogenesis in wild type mice. TSP-2 overexpression significantly reduced tumor blood vessel density in transgenic mice but had no overt effect on LYVE-1 positive lymphatic vessels. The percentage of desmin surrounded, mature tumor-associated blood vessels and the degree of epithelial differentiation remained unaffected. The antiangiogenic effect of transgenic TSP-2 was accompanied by a significantly increased number of apoptotic tumor cells in transgenic mice. Our results demonstrate that enhanced levels of TSP-2 in the skin result in reduced susceptibility to chemically-induced skin carcinogenesis and identify TSP-2 as a new target for the prevention of skin cancer. Copyright © 2014 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  7. Sulindac inhibits pancreatic carcinogenesis in LSL-KrasG12D-LSL-Trp53R172H-Pdx-1-Cre mice via suppressing aldo-keto reductase family 1B10 (AKR1B10).

    PubMed

    Li, Haonan; Yang, Allison L; Chung, Yeon Tae; Zhang, Wanying; Liao, Jie; Yang, Guang-Yu

    2013-09-01

    Sulindac has been identified as a competitive inhibitor of aldo-keto reductase 1B10 (AKR1B10), an enzyme that plays a key role in carcinogenesis. AKR1B10 is overexpressed in pancreatic ductal adenocarcinoma (PDAC) and exhibits lipid substrate specificity, especially for farnesyl and geranylgeranyl. There have been no studies though showing that the inhibition of PDAC by sulindac is via inhibition of AKR1B10, particularly the metabolism of farnesyl/geranylgeranyl and Kras protein prenylation. To determine the chemopreventive effects of sulindac on pancreatic carcinogenesis, 5-week-old LSL-Kras(G12D)-LSL-Trp53(R172H)-Pdx-1-Cre mice (Pan(kras/p53) mice) were fed an AIN93M diet with or without 200 p.p.m. sulindac (n = 20/group). Kaplan-Meier survival analysis showed that average animal survival in Pan(kras/p53) mice was 143.7 ± 8.8 days, and average survival with sulindac was increased to 168.0 ± 8.8 days (P < 0.005). Histopathological analyses revealed that 90% of mice developed PDAC, 10% with metastasis to the liver and lymph nodes. With sulindac, the incidence of PDAC was reduced to 56% (P < 0.01) and only one mouse had lymph node metastasis. Immunochemical analysis showed that sulindac significantly decreased Ki-67-labeled cell proliferation and markedly reduced the expression of phosphorylated extracellular signal-regulated kinases 1 and 2 (ERK1/2), c-Raf and mitogen-activated protein kinase kinase 1 and 2. In in vitro experiments with PDAC cells from Pan(kras/p53) mice, sulindac exhibited dose-dependent inhibition of AKR1B10 activity. By silencing AKR1B10 expression through small interfering RNA or by sulindac treatment, these in vitro models showed a reduction in Kras and human DNA-J homolog 2 protein prenylation, and downregulation of phosphorylated C-raf, ERK1/2 and MEK1/2 expression. Our results demonstrate that sulindac inhibits pancreatic carcinogenesis by the inhibition of Kras protein prenylation by targeting AKR1B10.

  8. Differential KrasV12 protein levels control a switch regulating lung cancer cell morphology and motility

    PubMed Central

    Schäfer, C.; Mohan, A.; Burford, W.; Driscoll, M. K.; Ludlow, A. T.; Wright, W. E.; Shay, J. W.; Danuser, G.

    2016-01-01

    Introduction Oncogenic Kras mutations are important drivers of lung cancer development and metastasis. They are known to activate numerous cellular signaling pathways implicated in enhanced proliferation, survival, tumorigenicity and motility during malignant progression. Objectives Most previous studies of Kras in cancer have focused on the comparison of cell states in the absence or presence of oncogenic Kras mutations. Here we show that differential expression of the constitutively active mutation KrasV12 has profound effects on cell morphology and motility that drive metastatic processes. Methods The study relies on lung cancer cell transformation models, patient-derived lung cancer cell lines, and human lung tumor sections combined with molecular biology techniques, live-cell imaging and staining methods. Results Our analysis shows two cell functional states driven by KrasV12 protein levels: a non-motile state associated with high KrasV12 levels and tumorigenicity, and a motile state associated with low KrasV12 levels and cell dissemination. Conversion between the states is conferred by differential activation of a mechano-sensitive double-negative feedback between KrasV12/ERK/Myosin II and matrix-adhesion signaling. KrasV12 expression levels change upon cues such as hypoxia and integrin-mediated cell-matrix adhesion, rendering KrasV12 levels an integrator of micro-environmental signals that translate into cellular function. By live cell imaging of tumor models we observe shedding of mixed high and low KrasV12 expressers forming multi-functional collectives with potentially optimal metastatic properties composed of a highly mobile and a highly tumorigenic unit. Discussion Together these data highlight previously unappreciated roles for the quantitative effects of expression level variation of oncogenic signaling molecules in conferring fundamental alterations in cell function regulation required for cancer progression. PMID:29057096

  9. Inhibition of autophagy as a treatment strategy for p53 wild-type acute myeloid leukemia

    PubMed Central

    Folkerts, Hendrik; Hilgendorf, Susan; Wierenga, Albertus T J; Jaques, Jennifer; Mulder, André B; Coffer, Paul J; Schuringa, Jan Jacob; Vellenga, Edo

    2017-01-01

    Here we have explored whether inhibition of autophagy can be used as a treatment strategy for acute myeloid leukemia (AML). Steady-state autophagy was measured in leukemic cell lines and primary human CD34+ AML cells with a large variability in basal autophagy between AMLs observed. The autophagy flux was higher in AMLs classified as poor risk, which are frequently associated with TP53 mutations (TP53mut), compared with favorable- and intermediate-risk AMLs. In addition, the higher flux was associated with a higher expression level of several autophagy genes, but was not affected by alterations in p53 expression by knocking down p53 or overexpression of wild-type p53 or p53R273H. AML CD34+ cells were more sensitive to the autophagy inhibitor hydroxychloroquine (HCQ) than normal bone marrow CD34+ cells. Similar, inhibition of autophagy by knockdown of ATG5 or ATG7 triggered apoptosis, which coincided with increased expression of p53. In contrast to wild-type p53 AML (TP53wt), HCQ treatment did not trigger a BAX and PUMA-dependent apoptotic response in AMLs harboring TP53mut. To further characterize autophagy in the leukemic stem cell-enriched cell fraction AML CD34+ cells were separated into ROSlow and ROShigh subfractions. The immature AML CD34+-enriched ROSlow cells maintained higher basal autophagy and showed reduced survival upon HCQ treatment compared with ROShigh cells. Finally, knockdown of ATG5 inhibits in vivo maintenance of AML CD34+ cells in NSG mice. These results indicate that targeting autophagy might provide new therapeutic options for treatment of AML since it affects the immature AML subfraction. PMID:28703806

  10. Oncogenic and RASopathy-associated K-RAS mutations relieve membrane-dependent occlusion of the effector-binding site.

    PubMed

    Mazhab-Jafari, Mohammad T; Marshall, Christopher B; Smith, Matthew J; Gasmi-Seabrook, Geneviève M C; Stathopulos, Peter B; Inagaki, Fuyuhiko; Kay, Lewis E; Neel, Benjamin G; Ikura, Mitsuhiko

    2015-05-26

    K-RAS4B (Kirsten rat sarcoma viral oncogene homolog 4B) is a prenylated, membrane-associated GTPase protein that is a critical switch for the propagation of growth factor signaling pathways to diverse effector proteins, including rapidly accelerated fibrosarcoma (RAF) kinases and RAS-related protein guanine nucleotide dissociation stimulator (RALGDS) proteins. Gain-of-function KRAS mutations occur frequently in human cancers and predict poor clinical outcome, whereas germ-line mutations are associated with developmental syndromes. However, it is not known how these mutations affect K-RAS association with biological membranes or whether this impacts signal transduction. Here, we used solution NMR studies of K-RAS4B tethered to nanodiscs to investigate lipid bilayer-anchored K-RAS4B and its interactions with effector protein RAS-binding domains (RBDs). Unexpectedly, we found that the effector-binding region of activated K-RAS4B is occluded by interaction with the membrane in one of the NMR-observable, and thus highly populated, conformational states. Binding of the RAF isoform ARAF and RALGDS RBDs induced marked reorientation of K-RAS4B from the occluded state to RBD-specific effector-bound states. Importantly, we found that two Noonan syndrome-associated mutations, K5N and D153V, which do not affect the GTPase cycle, relieve the occluded orientation by directly altering the electrostatics of two membrane interaction surfaces. Similarly, the most frequent KRAS oncogenic mutation G12D also drives K-RAS4B toward an exposed configuration. Further, the D153V and G12D mutations increase the rate of association of ARAF-RBD with lipid bilayer-tethered K-RAS4B. We revealed a mechanism of K-RAS4B autoinhibition by membrane sequestration of its effector-binding site, which can be disrupted by disease-associated mutations. Stabilizing the autoinhibitory interactions between K-RAS4B and the membrane could be an attractive target for anticancer drug discovery.

  11. Overexpression of rice serotonin N-acetyltransferase 1 in transgenic rice plants confers resistance to cadmium and senescence and increases grain yield.

    PubMed

    Lee, Kyungjin; Back, Kyoungwhan

    2017-04-01

    While ectopic overexpression of serotonin N-acetyltransferase (SNAT) in plants has been accomplished using animal SNAT genes, ectopic overexpression of plant SNAT genes in plants has not been investigated. Because the plant SNAT protein differs from that of animals in its subcellular localization and enzyme kinetics, its ectopic overexpression in plants would be expected to give outcomes distinct from those observed from overexpression of animal SNAT genes in transgenic plants. Consistent with our expectations, we found that transgenic rice plants overexpressing rice (Oryza sativa) SNAT1 (OsSNAT1) did not show enhanced seedling growth like that observed in ovine SNAT-overexpressing transgenic rice plants, although both types of plants exhibited increased melatonin levels. OsSNAT1-overexpressing rice plants did show significant resistance to cadmium and senescence stresses relative to wild-type controls. In contrast to tomato, melatonin synthesis in rice seedlings was not induced by selenium and OsSNAT1 transgenic rice plants did not show tolerance to selenium. T 2 homozygous OsSNAT1 transgenic rice plants exhibited increased grain yield due to increased panicle number per plant under paddy field conditions. These benefits conferred by ectopic overexpression of OsSNAT1 had not been observed in transgenic rice plants overexpressing ovine SNAT, suggesting that plant SNAT functions differently from animal SNAT in plants. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Increased Melanoma Growth and Metastasis Spreading in Mice Overexpressing Placenta Growth Factor

    PubMed Central

    Marcellini, Marcella; De Luca, Naomi; Riccioni, Teresa; Ciucci, Alessandro; Orecchia, Angela; Lacal, Pedro Miguel; Ruffini, Federica; Pesce, Maurizio; Cianfarani, Francesca; Zambruno, Giovanna; Orlandi, Augusto; Failla, Cristina Maria

    2006-01-01

    Placenta growth factor (PlGF), a member of the vascular endothelial growth factor family, plays an important role in adult pathological angiogenesis. To further investigate PlGF functions in tumor growth and metastasis formation, we used transgenic mice overexpressing PlGF in the skin under the control of the keratin 14 promoter. These animals showed a hypervascularized phenotype of the skin and increased levels of circulating PlGF with respect to their wild-type littermates. Transgenic mice and controls were inoculated intradermally with B16-BL6 melanoma cells. The tumor growth rate was fivefold increased in transgenic animals compared to wild-type mice, in the presence of a similar percentage of tumor necrotic tissue. Tumor vessel area was increased in transgenic mice as compared to controls. Augmented mobilization of endothelial and hematopoietic stem cells from the bone marrow was observed in transgenic animals, possibly contributing to tumor vascularization. The number and size of pulmonary metastases were significantly higher in transgenic mice compared to wild-type littermates. Finally, PlGF promoted tumor cell invasion of the extracellular matrix and increased the activity of selected matrix metalloproteinases. These findings indicate that PlGF, in addition to enhancing tumor angiogenesis and favoring tumor growth, may directly influence melanoma dissemination. PMID:16877362

  13. Molecular interaction between K-Ras and H-REV107 in the Ras signaling pathway.

    PubMed

    Han, Chang Woo; Jeong, Mi Suk; Jang, Se Bok

    2017-09-16

    Ras proteins are small GTPases that serve as master moderators of a large number of signaling pathways involved in various cellular processes. Activating mutations in Ras are found in about one-third of cancers. H-REV107, a K-Ras binding protein, plays an important role in determining K-Ras function. H-REV107 is a member of the HREV107 family of class II tumor suppressor genes and a growth inhibitory Ras target gene that suppresses cellular growth, differentiation, and apoptosis. Expression of H-REV107 was strongly reduced in about 50% of human carcinoma cell lines. However, the specific molecular mechanism by which H-REV107 inhibits Ras is still unknown. In the present study, we suggest that H-REV107 forms a strong complex with activating oncogenic mutation Q61H K-Ras from various biochemical binding assays and modeled structures. In addition, the interaction sites between K-Ras and H-REV107 were predicted based on homology modeling. Here, we found that some structure-based mutants of the K-Ras disrupted the complex formation with H-REV107. Finally, a novel molecular mechanism describing K-Ras and H-REV107 binding is suggested and insights into new K-Ras effector target drugs are provided. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Preselection of EGFR mutations in non-small-cell lung cancer patients by immunohistochemistry: comparison with DNA-sequencing, EGFR wild-type expression, gene copy number gain and clinicopathological data.

    PubMed

    Gaber, Rania; Watermann, Iris; Kugler, Christian; Vollmer, Ekkehard; Perner, Sven; Reck, Martin; Goldmann, Torsten

    2017-01-01

    Targeting epidermal growth factor receptor (EGFR) in patients with non-small-cell lung cancer (NSCLC) having EGFR mutations is associated with an improved overall survival. The aim of this study is to verify, if EGFR mutations detected by immunohistochemistry (IHC) is a convincing way to preselect patients for DNA-sequencing and to figure out, the statistical association between EGFR mutation, wild-type EGFR overexpression, gene copy number gain, which are the main factors inducing EGFR tumorigenic activity and the clinicopathological data. Two hundred sixteen tumor tissue samples of primarily chemotherapeutic naïve NSCLC patients were analyzed for EGFR mutations E746-A750del and L858R and correlated with DNA-sequencing. Two hundred six of which were assessed by IHC, using 6B6 and 43B2 specific antibodies followed by DNA-sequencing of positive cases and 10 already genotyped tumor tissues were also included to investigate debugging accuracy of IHC. In addition, EGFR wild-type overexpression was IHC evaluated and EGFR gene copy number determination was performed by fluorescence in situ hybridization (FISH). Forty-one÷206 (19.9%) cases were positive for mutated EGFR by IHC. Eight of them had EGFR mutations of exons 18-21 by DNA-sequencing. Hit rate of 10 already genotyped NSCLC mutated cases was 90% by IHC. Positive association was found between EGFR mutations determined by IHC and both EGFR overexpression and increased gene copy number (p=0.002 and p<0.001, respectively). Additionally, positive association was detected between EGFR mutations, high tumor grade and clinical stage (p<0.001). IHC staining with mutation specific antibodies was demonstrated as a possible useful screening test to preselect patients for DNA-sequencing.

  15. High level of reduced glutathione contributes to detoxification of lipid peroxide-derived reactive carbonyl species in transgenic Arabidopsis overexpressing glutathione reductase under aluminum stress.

    PubMed

    Yin, Lina; Mano, Jun'ichi; Tanaka, Kiyoshi; Wang, Shiwen; Zhang, Meijuan; Deng, Xiping; Zhang, Suiqi

    2017-10-01

    Lipid peroxide-derived reactive carbonyl species (RCS), generated downstream of reactive oxygen species (ROS), are critical damage-inducing species in plant aluminum (Al) toxicity. In mammals, RCS are scavenged primarily by glutathione (reduced form of glutathione, GSH), but in plant Al stress, contribution of GSH to RCS detoxification has not been evaluated. In this study, Arabidopsis plants overexpressing the gene AtGR1 (accession code At3g24170), encoding glutathione reductase (GR), were generated, and their performance under Al stress was examined. These transgenic plants (GR-OE plants) showed higher GSH levels and GSH/GSSG (oxidized form of GSH) ratio, and an improved Al tolerance as they suffered less inhibition of root growth than wild-type under Al stress. Exogenous application of 4-hydroxy-2-nonenal, an RCS responsible for Al toxicity in roots, markedly inhibited root growth in wild-type plants. GR-OE plants suffered significantly smaller inhibition, indicating that the enhanced GSH level increased the capacity of RCS detoxification. The generation of H 2 O 2 due to Al stress in GR-OE plants was lower by 26% than in wild-type. Levels of various RCS, such as malondialdehyde, butyraldehyde, phenylacetaldehyde, (E)-2-heptenal and n-octanal, were suppressed by more than 50%. These results indicate that high levels of GSH and GSH/GSSG ratio by GR overexpression contributed to the suppression of not only ROS, but also RCS. Thus, the maintenance of GSH level by overexpressing GR reinforces dual detoxification functions in plants and is an efficient approach to enhance Al tolerance. © 2017 Scandinavian Plant Physiology Society.

  16. IKK is a therapeutic target in KRAS-Induced lung cancer with disrupted p53 activity.

    PubMed

    Bassères, Daniela S; Ebbs, Aaron; Cogswell, Patricia C; Baldwin, Albert S

    2014-04-01

    Activating mutations in KRAS are prevalent in cancer, but therapies targeted to oncogenic RAS have been ineffective to date. These results argue that targeting downstream effectors of RAS will be an alternative route for blocking RAS-driven oncogenic pathways. We and others have shown that oncogenic RAS activates the NF-κB transcription factor pathway and that KRAS-induced lung tumorigenesis is suppressed by expression of a degradation-resistant form of the IκBα inhibitor or by genetic deletion of IKKβ or the RELA/p65 subunit of NF-κB. Here, genetic and pharmacological approaches were utilized to inactivate IKK in human primary lung epithelial cells transformed by KRAS, as well as KRAS mutant lung cancer cell lines. Administration of the highly specific IKKβ inhibitor Compound A (CmpdA) led to NF-κB inhibition in different KRAS mutant lung cells and siRNA-mediated knockdown of IKKα or IKKβ reduced activity of the NF-κB canonical pathway. Next, we determined that both IKKα and IKKβ contribute to oncogenic properties of KRAS mutant lung cells, particularly when p53 activity is disrupted. Based on these results, CmpdA was tested for potential therapeutic intervention in the Kras-induced lung cancer mouse model (LSL-Kras (G12D)) combined with loss of p53 (LSL-Kras (G12D)/p53 (fl/fl)). CmpdA treatment was well tolerated and mice treated with this IKKβ inhibitor presented smaller and lower grade tumors than mice treated with placebo. Additionally, IKKβ inhibition reduced inflammation and angiogenesis. These results support the concept of targeting IKK as a therapeutic approach for oncogenic RAS-driven tumors with altered p53 activity.

  17. Intrinsic K-Ras dynamics: A novel molecular dynamics data analysis method shows causality between residue pair motions

    NASA Astrophysics Data System (ADS)

    Vatansever, Sezen; Gümüş, Zeynep H.; Erman, Burak

    2016-11-01

    K-Ras is the most frequently mutated oncogene in human cancers, but there are still no drugs that directly target it in the clinic. Recent studies utilizing dynamics information show promising results for selectively targeting mutant K-Ras. However, despite extensive characterization, the mechanisms by which K-Ras residue fluctuations transfer allosteric regulatory information remain unknown. Understanding the direction of information flow can provide new mechanistic insights for K-Ras targeting. Here, we present a novel approach -conditional time-delayed correlations (CTC) - using the motions of all residue pairs of a protein to predict directionality in the allosteric regulation of the protein fluctuations. Analyzing nucleotide-dependent intrinsic K-Ras motions with the new approach yields predictions that agree with the literature, showing that GTP-binding stabilizes K-Ras motions and leads to residue correlations with relatively long characteristic decay times. Furthermore, our study is the first to identify driver-follower relationships in correlated motions of K-Ras residue pairs, revealing the direction of information flow during allosteric modulation of its nucleotide-dependent intrinsic activity: active K-Ras Switch-II region motions drive Switch-I region motions, while α-helix-3L7 motions control both. Our results provide novel insights for strategies that directly target mutant K-Ras.

  18. Staying Alive: Cancer Cells Expressing Mutant KRas Depend on ERH for Survival | Center for Cancer Research

    Cancer.gov

    The small G-protein KRas acts like a molecular switch, turning on and off pro-growth signaling pathways within cells when appropriate. In a large number of cancers, KRas is permanently turned on by a variety of mutations and drives the constant growth of these tumor cells. KRas itself has proved to be a poor drug target so researchers in the laboratory of Ji Luo, Ph.D., in CCR’s Medical Oncology Branch decided to look for other pathways that are essential for the growth of cells expressing mutant KRas. These pathways could present new drug targets, and blocking their activities might selectively affect cells that express mutant KRas.

  19. The effect of constitutive over-expression of insulin-like growth factor 1 on the cognitive function in aged mice.

    PubMed

    Hu, Ankang; Yuan, Honghua; Wu, Lianlian; Chen, Renjin; Chen, Quangang; Zhang, Tengye; Wang, Zhenzhen; Liu, Peng; Zhu, Xiaorong

    2016-01-15

    The neurotrophic factor insulin-like growth factor (IGF)-1 promotes neurogenesis in the mammalian brain and provides protection against brain injury. However, studies regarding the effects of IGF-1 on cognitive function in aged mice remain limited. We investigated the effects of overexpression of IGF-1 specifically in neural stem cells of the hippocampal dentate gyrus on the recognitive function in 18-month-old transgenic mice. Immunohistocytochemistry and Nissl staining revealed the increased population of BrdU-positive cells as well as the upregulated expression of Nestin and neuronal nuclei (NeuN), respective markers for neural progenitors and neurons, in the hippocampus of the aged IGF-1 transgenic mice versus the wild-type, suggesting that IGF-1 overexpression promotes neurogenesis. In addition, the IGF-1 receptor (IGF-1R), the phosphorylation of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) and extracellular signal-regulated kinase (ERK) were enhanced in the transgenic mice than in the wild-type. Transgenic mice also showed superior performance in the Morris water maze and step-down memory tests to their wild-type counterparts. Moreover, the learning and memory abilities of transgenic mice were significantly undermined with the blockage of CaMKII and ERK signaling pathway. Accordingly, our findings indicated that IGF-1 may mitigate the aged-associated cognitive decline via promoting neurogenesis in the hippocampus and activating CaMKII and ERK signaling by binding with IGF-1R. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Overexpression of isocitrate dehydrogenase mutant proteins renders glioma cells more sensitive to radiation.

    PubMed

    Li, Sichen; Chou, Arthur P; Chen, Weidong; Chen, Ruihuan; Deng, Yuzhong; Phillips, Heidi S; Selfridge, Julia; Zurayk, Mira; Lou, Jerry J; Everson, Richard G; Wu, Kuan-Chung; Faull, Kym F; Cloughesy, Timothy; Liau, Linda M; Lai, Albert

    2013-01-01

    Mutations in isocitrate dehydrogenase 1 (IDH1) or 2 (IDH2) are found in a subset of gliomas. Among the many phenotypic differences between mutant and wild-type IDH1/2 gliomas, the most salient is that IDH1/2 mutant glioma patients demonstrate markedly improved survival compared with IDH1/2 wild-type glioma patients. To address the mechanism underlying the superior clinical outcome of IDH1/2 mutant glioma patients, we investigated whether overexpression of the IDH1(R132H) protein could affect response to therapy in the context of an isogenic glioma cell background. Stable clonal U87MG and U373MG cell lines overexpressing IDH1(WT) and IDH1(R132H) were generated, as well as U87MG cell lines overexpressing IDH2(WT) and IDH2(R172K). In vitro experiments were conducted to characterize baseline growth and migration and response to radiation and temozolomide. In addition, reactive oxygen species (ROS) levels were measured under various conditions. U87MG-IDH1(R132H) cells, U373MG-IDH1(R132H) cells, and U87MG-IDH2(R172K) cells demonstrated increased sensitivity to radiation but not to temozolomide. Radiosensitization of U87MG-IDH1(R132H) cells was accompanied by increased apoptosis and accentuated ROS generation, and this effect was abrogated by the presence of the ROS scavenger N-acetyl-cysteine. Interestingly, U87MG-IDH1(R132H) cells also displayed decreased growth at higher cell density and in soft agar, as well as decreased migration. Overexpression of IDH1(R132H) and IDH2(R172K) mutant protein in glioblastoma cells resulted in increased radiation sensitivity and altered ROS metabolism and suppression of growth and migration in vitro. These findings provide insight into possible mechanisms contributing to the improved outcomes observed in patients with IDH1/2 mutant gliomas.

  1. The RAS mutation status predicts survival in patients undergoing hepatic resection for colorectal liver metastases: The results from a genetic analysis of all-RAS.

    PubMed

    Amikura, Katsumi; Akagi, Kiwamu; Ogura, Toshiro; Takahashi, Amane; Sakamoto, Hirohiko

    2018-03-01

    We investigated the impact of mutations in KRAS exons 3-4 and NRAS exons 2-3 in addition to KRAS exon 2, so-called all-RAS mutations, in patients with colorectal liver metastasis (CLM) undergoing hepatic resection. We analyzed 421 samples from CLM patients for their all-RAS mutation status to compare the overall survival rate (OS), recurrence-free survival rate (RFS), and the pattern of recurrence between the patients with and without RAS mutations. RAS mutations were detected in 191 (43.8%). Thirty-two rare mutations (12.2%) were detected in 262 patients with KRAS exon 2 wild-type. After excluding 79 patients who received anti-EGFR antibody therapy, 168 were classified as all-RAS wild-type, and 174 as RAS mutant-type. A multivariate analysis of factors associated with OS and RFS identified the RAS status as an independent factor (OS; hazard ratio [HR] = 1.672, P = 0.0031, RFS; HR = 1.703, P = 0.0024). Recurrence with lung metastasis was observed significantly more frequent in patients with RAS mutations than in patients with RAS wild-type (P = 0.0005). Approximately half of CLM patients may have a RAS mutation. CLM patients with RAS mutations had a significantly worse survival rate in comparison to patients with RAS wild-type, regardless of the administration of anti-EGFR antibody therapy. © 2017 Wiley Periodicals, Inc.

  2. Not just gRASping at flaws: Finding vulnerabilities to develop novel therapies for treating KRAS mutant cancers

    PubMed Central

    Ebi, Hiromichi; Faber, Anthony C; Engelman, Jeffrey A; Yano, Seiji

    2014-01-01

    Mutations in Kirsten rat-sarcoma (KRAS) are well appreciated to be major drivers of human cancers through dysregulation of multiple growth and survival pathways. Similar to many other non-kinase oncogenes and tumor suppressors, efforts to directly target KRAS pharmaceutically have not yet materialized. As a result, there is broad interest in an alternative approach to develop therapies that induce synthetic lethality in cancers with mutant KRAS, therefore exposing the particular vulnerabilities of these cancers. Fueling these efforts is our increased understanding into the biology driving KRAS mutant cancers, in particular the important pathways that mutant KRAS governs to promote survival. In this mini-review, we summarize the latest approaches to treat KRAS mutant cancers and the rationale behind them. PMID:24612015

  3. Overexpression of microRNA-1288 in oesophageal squamous cell carcinoma.

    PubMed

    Gopalan, Vinod; Islam, Farhadul; Pillai, Suja; Tang, Johnny Cheuk-On; Tong, Daniel King-Hung; Law, Simon; Chan, Kwok-Wah; Lam, Alfred King-Yin

    2016-11-01

    This study aims to examine the expression profiles miR-1288 in oesophageal squamous cell carcinoma (ESCC). The cellular implications and target interactions of ESCC cells following miR-1288 overexpression was also examined. In total, 120 oesophageal tissues (90 primary ESCCs and 30 non-neoplastic tissues) were recruited for miR-1288 expression analysis using qRT-PCR. An exogenous miR-1288 mimic and its inhibitor were used to explore the in-vitro effects of miR-1288 on ESCC cells by performing cell proliferation, colony formation, cell invasion and migration assays. Localisation and modulatory changes of various miR-1288 regulated proteins such as FOXO1, p53, TAB3, BCL2 and kRAS was examined using immunofluorescence and western blot. Overexpression of miR-1288 was more often noted in ESCC tissues when compared to non-neoplastic oesophageal tissues. High expression was often noted in high grade carcinomas and with metastases. Patients with high levels of miR-1288 expression showed a slightly better survival compared to patients with low miR-1288 levels. Furthermore, overexpression of miR-1288 showed increased cell proliferation and colony formation, improved cell migration and enhanced cell invasion properties in ESCC cells. In addition, miR-1288 overexpression in ESCC cells showed repression of cytoplasmic tumour suppressor FOXO1 protein expression. Inversely, inhibition of miR-1288 expression exhibited remarkable upregulation of FOXO1 protein, while expressions of other tested proteins remain unchanged. Up regulation of miR-1288 expression in ESCC tissues and miR-1288 induced oncogenic features of ESCC cells in-vitro indicates the oncogenic roles of miR-1288 in ESCCs. Overexpression of miR-1288 play a key role in the pathogenesis of ESCCs and its modulation may have potential therapeutic value in patients with ESCC. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. WT1: a weak spot in KRAS-induced transformation

    PubMed Central

    Licciulli, Silvia; Kissil, Joseph L.

    2010-01-01

    Activating mutations in the Ras alleles are found frequently in tumors, making the proteins they encode highly attractive candidate therapeutic targets. However, Ras proteins have proven difficult to target directly. Recent approaches have therefore focused on identifying indirect targets to inhibit Ras-induced oncogenesis. For example, RNAi-based negative selection screens to identify genes that when silenced in concert with activating Ras mutations are incompatible with cellular proliferation, a concept known as synthetic lethality. In this issue of the JCI, Vicent et al. report on the identification of Wilms tumor 1 (Wt1) as a Kras synthetic-lethal gene in a mouse model of lung adenocarcinoma. Silencing of Wt1 in cells expressing an endogenous allele of activated Kras triggers senescence in vitro and has an impact on tumor progression in vivo. These findings are of significant interest given previous studies suggesting that the ability of oncogenic Kras to induce senescence versus proliferation depends on its levels of expression. PMID:20972324

  5. Prognostic Implications of Multiplex Detection of KRAS Mutations in Cell-Free DNA from Patients with Pancreatic Ductal Adenocarcinoma.

    PubMed

    Kim, Min Kyeong; Woo, Sang Myung; Park, Boram; Yoon, Kyong-Ah; Kim, Yun-Hee; Joo, Jungnam; Lee, Woo Jin; Han, Sung-Sik; Park, Sang-Jae; Kong, Sun-Young

    2018-04-01

    Cell-free DNA (cfDNA) is known to provide potential biomarkers for predicting clinical outcome, but its value in pancreatic ductal adenocarcinoma (PDAC) has not been fully evaluated. The aim of this study was to evaluate the clinical applicability of quantitative analysis of multiplex KRAS mutations in cell-free DNA from patients with PDAC. A total of 106 patients with PDAC were enrolled in this prospective study. The concentration and fraction of KRAS mutations were determined through multiplex detection of KRAS mutations in plasma samples by use of a droplet digital PCR kit (Bio-Rad). KRAS mutations were detected in 96.1% of tissue samples. Eighty patients (80.5%) harbored KRAS mutations in cfDNA, with a median KRAS mutation concentration of 0.165 copies/μL and a median fractional abundance of 0.415%. Multivariable analyses demonstrated that the KRAS mutation concentration [hazard ratio (HR), 2.08; 95% CI, 1.20-3.63] and KRAS fraction (HR, 1.73; 95% CI, 1.02-2.95) were significant factors for progression-free survival. KRAS mutation concentration (HR, 1.97; 95% CI, 1.05-3.67) also had prognostic implications for overall survival. Subgroup analyses showed that KRAS mutation concentration and fractional abundance significantly affected progression-free survival in resectable PDAC ( P = 0.016). Moreover, when combined with the cancer biomarker CA19-9, the KRAS mutation concentration in cfDNA showed additive benefits for the prediction of overall survival. This study demonstrates that multiplex detection of KRAS mutations in plasma cfDNA is clinically relevant, providing a potential candidate biomarker for prognosis of PDAC. © 2018 American Association for Clinical Chemistry.

  6. KRAS mutations testing in colorectal carcinoma patients in Italy: from guidelines to external quality assessment.

    PubMed

    Normanno, Nicola; Pinto, Carmine; Castiglione, Francesca; Bardelli, Alberto; Gambacorta, Marcello; Botti, Gerardo; Nappi, Oscar; Siena, Salvatore; Ciardiello, Fortunato; Taddei, Gianluigi; Marchetti, Antonio

    2011-01-01

    Monoclonal antibodies directed against the epidermal growth factor receptor (EGFR) have been approved for the treatment of patients with metastatic colorectal carcinoma (mCRC) that do not carry KRAS mutations. Therefore, KRAS testing has become mandatory to chose the most appropriate therapy for these patients. In order to guarantee the possibility for mCRC patients to receive an high quality KRAS testing in every Italian region, the Italian Association of Medical Oncology (AIOM) and the Italian Society of Pathology and Cytopathology -Italian division of the International Academy of Pathology (SIAPEC-IAP) started a program to improve KRAS testing. AIOM and SIAPEC identified a large panel of Italian medical oncologists, pathologists and molecular biologists that outlined guidelines for KRAS testing in mCRC patients. These guidelines include specific information on the target patient population, the biological material for molecular analysis, the extraction of DNA, and the methods for the mutational analysis that are summarized in this paper. Following the publication of the guidelines, the scientific societies started an external quality assessment scheme for KRAS testing. Five CRC specimens with known KRAS mutation status were sent to the 59 centers that participated to the program. The samples were validated by three referral laboratories. The participating laboratories were allowed to use their own preferred method for DNA extraction and mutational analysis and were asked to report the results within 4 weeks. The limit to pass the quality assessment was set at 100% of true responses. In the first round, only two centers did not pass (3%). The two centers were offered to participate to a second round and both centers failed again to pass. The results of this first Italian quality assessment for KRAS testing suggest that KRAS mutational analysis is performed with good quality in the majority of Italian centers. © 2011 Normanno et al.

  7. KRAS Mutations Testing in Colorectal Carcinoma Patients in Italy: From Guidelines to External Quality Assessment

    PubMed Central

    Normanno, Nicola; Pinto, Carmine; Castiglione, Francesca; Bardelli, Alberto; Gambacorta, Marcello; Botti, Gerardo; Nappi, Oscar; Siena, Salvatore; Ciardiello, Fortunato; Taddei, GianLuigi; Marchetti, Antonio

    2011-01-01

    Background Monoclonal antibodies directed against the epidermal growth factor receptor (EGFR) have been approved for the treatment of patients with metastatic colorectal carcinoma (mCRC) that do not carry KRAS mutations. Therefore, KRAS testing has become mandatory to chose the most appropriate therapy for these patients. Methodology/Principal Findings In order to guarantee the possibility for mCRC patients to receive an high quality KRAS testing in every Italian region, the Italian Association of Medical Oncology (AIOM) and the Italian Society of Pathology and Cytopathology -Italian division of the International Academy of Pathology (SIAPEC-IAP) started a program to improve KRAS testing. AIOM and SIAPEC identified a large panel of Italian medical oncologists, pathologists and molecular biologists that outlined guidelines for KRAS testing in mCRC patients. These guidelines include specific information on the target patient population, the biological material for molecular analysis, the extraction of DNA, and the methods for the mutational analysis that are summarized in this paper. Following the publication of the guidelines, the scientific societies started an external quality assessment scheme for KRAS testing. Five CRC specimens with known KRAS mutation status were sent to the 59 centers that participated to the program. The samples were validated by three referral laboratories. The participating laboratories were allowed to use their own preferred method for DNA extraction and mutational analysis and were asked to report the results within 4 weeks. The limit to pass the quality assessment was set at 100% of true responses. In the first round, only two centers did not pass (3%). The two centers were offered to participate to a second round and both centers failed again to pass. Conclusions The results of this first Italian quality assessment for KRAS testing suggest that KRAS mutational analysis is performed with good quality in the majority of Italian centers

  8. The value of KRAS mutation testing with CEA for the diagnosis of pancreatic mucinous cysts

    PubMed Central

    Kadayifci, Abdurrahman; Al-Haddad, Mohammad; Atar, Mustafa; Dewitt, John M.; Forcione, David G.; Sherman, Stuart; Casey, Brenna W.; Fernandez-del Castillo, Carlos; Schmidt, C. Max; Pitman, Martha B.; Brugge, William R.

    2016-01-01

    Background and aims: Pancreatic cyst fluid (PCF) CEA has been shown to be the most accurate preoperative test for detection of cystic mucinous neoplasms (CMNs). This study aimed to assess the added value of PCF KRAS mutational analysis to CEA for diagnosis of CMNs. Patients and methods: This is a retrospective study of prospectively collected endoscopic ultrasonography (EUS) fine-needle aspiration (FNA) data. KRAS mutation was determined by direct sequencing or equivalent methods. Cysts were classified histologically (surgical cohort) or by clinical (EUS or FNA) findings (clinical cohort). Performance characteristics of KRAS, CEA and their combination for detection of a cystic mucinous neoplasm (CMN) and malignancy were calculated. Results: The study cohort consisted of 943 patients: 147 in the surgical cohort and 796 in the clinical cohort. Overall, KRAS and CEA each had high specificity (100 % and 93.2 %), but low sensitivity (48.3 % and 56.3 %) for the diagnosis of a CMN. The positivity of KRAS or CEA increased the diagnostic accuracy (80.8 %) and AUC (0.84) significantly compared to KRAS (65.3 % and 0.74) or CEA (65.8 % and 0.74) alone, but only in the clinical cohort (P < 0.0001 for both). KRAS mutation was significantly more frequent in malignant CMNs compared to histologically confirmed non-malignant CMNs (73 % vs. 37 %, P = 0.001). The negative predictive value of KRAS mutation was 77.6 % in differentiating non-malignant cysts. Conclusions: The detection of a KRAS mutation in PCF is a highly specific test for mucinous cysts. It outperforms CEA for sensitivity in mucinous cyst diagnosis, but the data does not support its routine use. PMID:27092317

  9. Differential Effector Engagement by Oncogenic KRAS. | Office of Cancer Genomics

    Cancer.gov

    KRAS can bind numerous effector proteins, which activate different downstream signaling events. The best known are RAF, phosphatidylinositide (PI)-3' kinase, and RalGDS families, but many additional direct and indirect effectors have been reported. We have assessed how these effectors contribute to several major phenotypes in a quantitative way, using an arrayed combinatorial siRNA screen in which we knocked down 41 KRAS effectors nodes in 92 cell lines.

  10. KRAS exon 2 codon 13 mutation is associated with a better prognosis than codon 12 mutation following lung metastasectomy in colorectal cancer

    PubMed Central

    Renaud, Stéphane; Guerrera, Francesco; Seitlinger, Joseph; Costardi, Lorena; Schaeffer, Mickaël; Romain, Benoit; Mossetti, Claudio; Claire-Voegeli, Anne; Filosso, Pier Luigi; Legrain, Michèle; Ruffini, Enrico; Falcoz, Pierre-Emmanuel; Oliaro, Alberto; Massard, Gilbert

    2017-01-01

    Introduction The utilization of molecular markers as routinely used biomarkers is steadily increasing. We aimed to evaluate the potential different prognostic values of KRAS exon 2 codons 12 and 13 after lung metastasectomy in colorectal cancer (CRC). Results KRAS codon 12 mutations were observed in 116 patients (77%), whereas codon 13 mutations were observed in 34 patients (23%). KRAS codon 13 mutations were associated with both longer time to pulmonary recurrence (TTPR) (median TTPR: 78 months (95% CI: 50.61–82.56) vs 56 months (95% CI: 68.71–127.51), P = 0.008) and improved overall survival (OS) (median OS: 82 months vs 54 months (95% CI: 48.93–59.07), P = 0.009). Multivariate analysis confirmed that codon 13 mutations were associated with better outcomes (TTPR: HR: 0.40 (95% CI: 0.17–0.93), P = 0.033); OS: HR: 0.39 (95% CI: 0.14–1.07), P = 0.07). Otherwise, no significant difference in OS (P = 0.78) or TTPR (P = 0.72) based on the type of amino-acid substitutions was observed among KRAS codon 12 mutations. Materials and Methods We retrospectively reviewed data from 525 patients who underwent a lung metastasectomy for CRC in two departments of thoracic surgery from 1998 to 2015 and focused on 150 patients that had KRAS exon 2 codon 12/13 mutations. Conclusions KRAS exon 2 codon 13 mutations, compared to codon 12 mutations, seem to be associated with better outcomes following lung metastasectomy in CRC. Prospective multicenter studies are necessary to fully understand the prognostic value of KRAS mutations in the lung metastases of CRC. PMID:27911859

  11. K-ras mutation in colorectal cancer: relations to patient age, sex and tumour location.

    PubMed Central

    Breivik, J.; Meling, G. I.; Spurkland, A.; Rognum, T. O.; Gaudernack, G.

    1994-01-01

    DNA from 251 primary tumours obtained from 123 male and 125 female Norwegian patients with colorectal carcinoma was analysed for the presence of K-ras point mutations at codons 12 and 13. Mutations were found in 99 (39%) of the samples. The frequency of K-ras mutations was significantly related to age and sex of the patients, and to the location of the tumours (overall: P = 0.008). K-ras mutations were much less frequent in colonic tumours from male than female patients at younger ages (< 40 years, odds ratio < 0.014). The low frequency might indicate that a different, ras-independent, pathway to neoplasia is dominating in the colon of younger males. In contrast, older men had more mutations than older women (e.g. 90 years, odds ratio = 5.8). An inverse but less pronounced relationship was seen for rectal tumours. The type of mutation was found to be associated to sex of patient and location of tumour. G-->C transversions accounted for 35% of the mutations in rectal tumours from females, in contrast to only 2.5% in the rest of the material (P = 0.0005). This may indicate that there are specific carcinogens acting in this location. PMID:8297737

  12. K-ras Mutations as the Earliest Driving Force in a Subset of Colorectal Carcinomas

    PubMed Central

    MARGETIS, NIKOLAOS; KOULOUKOUSSA, MYRSINI; PAVLOU, KYRIAKI; VRAKAS, SPYRIDON; MARIOLIS-SAPSAKOS, THEODOROS

    2017-01-01

    K-ras oncogene is a key factor in colorectal cancer. Based on published and our data we propose that K-ras could be the oncogene responsible for the inactivation of the tumor-suppressor gene APC, currently considered as the initial step in colorectal tumorigenesis. K-ras fulfills the criteria of the oncogene-induced DNA damage model, as it can provoke well- established causes for inactivating tumor-suppressors, i.e. DNA double-strand breaks (causing allele deletion) and ROS production (responsible for point mutation). The model we propose is a variation of the currently existing model and hypothesizes that, in a subgroup of colorectal carcinomas, K-ras mutation may precede APC inactivation, representing the earliest driving force and, probably, an early biomarker of colorectal carcinogenesis. This observation is clinically useful, since it may modify the preventive colorectal cancer strategy, restricting numerically patients undergoing colonoscopies to those bearing K-ras mutation in their colorectum, either in benign polyps or the normal accompanying mucosa. PMID:28652417

  13. Transgenic overexpression of p23 induces spontaneous hydronephrosis in mice

    PubMed Central

    Lee, Jaehoon; Kim, Hye Jin; Moon, Jung Ah; Sung, Young Hoon; Baek, In-Jeoung; Roh, Jae-il; Ha, Na Young; Kim, Seung-Yeon; Bahk, Young Yil; Lee, Jong Eun; Yoo, Tae Hyun; Lee, Han-Woong

    2011-01-01

    p23 is a cochaperone of heat shock protein 90 and also interacts functionally with numerous steroid receptors and kinases. However, the in vivo roles of p23 remain unclear. To explore its in vivo function, we generated the transgenic (TG) mice ubiquitously overexpressing p23. The p23 TG mice spontaneously developed kidney abnormalities closely resembling human hydronephrosis. Consistently, kidney functions deteriorate significantly in the p23 TG mice compared to their wild-type (WT) littermates. Furthermore, the expression of target genes for aryl hydrocarbon receptor (AhR), such as cytochrome P450, family 1, subfamily A, polypeptide 1 (Cyp1A1) and cytochrome P450, family 1, subfamily B, polypeptide 1 (Cyp1B1), were induced in the kidneys of the p23 TG mice. These results indicate that the overexpression of p23 contributes to the development of hydronephrosis through the upregulation of the AhR pathway in vivo. PMID:21323770

  14. Human apoB overexpression and a high-cholesterol diet differently modify the brain APP metabolism in the transgenic mouse model of atherosclerosis.

    PubMed

    Bjelik, Annamária; Bereczki, Erika; Gonda, Szilvia; Juhász, Anna; Rimanóczy, Agnes; Zana, Marianna; Csont, Tamás; Pákáski, Magdolna; Boda, Krisztina; Ferdinandy, Péter; Dux, László; Janka, Zoltán; Sántha, Miklós; Kálmán, János

    2006-09-01

    Epidemiological and biochemical data suggest a link between the cholesterol metabolism, the amyloid precursor protein (APP) processing and the increased cerebral beta-amyloid (Abeta) deposition in Alzheimer's disease (AD). The individual and combined effects of a high-cholesterol (HC) diet and the overexpression of the human apoB-100 gene were therefore examined on the cerebral expression and processing of APP in homozygous apoB-100 transgenic mice [Tg (apoB(+/+))], a validated model of atherosclerosis. When fed with 2% cholesterol for 17 weeks, only the wild-type mice exhibited significantly increased APP695 (123%) and APP770 (138%) mRNA levels in the cortex. The HC diet-induced hypercholesterolemia significantly increased the APP isoform levels in the membrane-bound fraction, not only in the wild-type animals (114%), but also in the Tg apoB(+/+) group (171%). The overexpression of human apoB-100 gene by the liver alone reduced the brain APP isoform levels in the membrane-bound fraction (78%), whereas the levels were increased by the combined effect of HC and the overexpression of the human apoB-100 gene (134%). The protein kinase C and beta-secretase protein levels were not altered by the individual or combined effects of these two factors. Our data indicate that the two atherogenic factors, the HC diet and the overexpression of the human apoB-100 gene by the liver, could exert different effects on the processing and expression of APP in the mice brain.

  15. Overexpression of heart-type fatty acid binding protein enhances fatty acid-induced podocyte injury.

    PubMed

    Gao, Qing; Sarkar, Alhossain; Chen, Yizhi; Xu, Bo; Zhu, Xiaojuan; Yuan, Yang; Guan, Tianjun

    2018-02-01

    Deregulated lipid metabolism is a characteristic of metabolic diseases including type 2 diabetes and obesity, and likely contributes to podocyte injury and end-stage kidney disease. Heart-type fatty acid binding protein (H-FABP) was reported to be associated with lipid metabolism. The present study investigated whether H-FABP contributes to podocyte homeostasis. Podocytes were transfected by lentiviral vector to construct a cell line which stably overexpressed H-FABP. Small interfering RNA capable of effectively silencing H-FABP was introduced into podocytes to construct a cell line with H-FABP knockdown. Certain groups were treated with palmitic acid (PA) and the fat metabolism, as well as inflammatory and oxidative stress markers were measured. PA accelerated lipid metabolism derangement, inflammatory reaction and oxidative stress in podocytes. Overexpression of H-FABP enhanced the PA-induced disequilibrium in podocytes. The mRNA and protein expression levels of acyl-coenzyme A oxidase 3 and monocyte chemotactic protein 1, and the protein expression levels of 8-hydroxy-2'-deoxyguanosine and 4-hydroxynonenal were upregulated in the H-FABP overexpression group, while the mRNA and protein expression of peroxisome proliferator activated receptor α was downregulated. Knockdown of H-FABP inhibited the PA-induced injury and lipid metabolism derangement, as well as the inflammatory reaction and oxidative stress in podocytes. These results indicated that overexpression of H-FABP enhances fatty acid-induced podocyte injury, while H-FABP inhibition may represent a potential therapeutic strategy for the prevention of lipid metabolism-associated podocyte injury.

  16. Stability of Iowa mutant and wild type Aβ-peptide aggregates

    NASA Astrophysics Data System (ADS)

    Alred, Erik J.; Scheele, Emily G.; Berhanu, Workalemahu M.; Hansmann, Ulrich H. E.

    2014-11-01

    Recent experiments indicate a connection between the structure of amyloid aggregates and their cytotoxicity as related to neurodegenerative diseases. Of particular interest is the Iowa Mutant, which causes early-onset of Alzheimer's disease. While wild-type Amyloid β-peptides form only parallel beta-sheet aggregates, the mutant also forms meta-stable antiparallel beta sheets. Since these structural variations may cause the difference in the pathological effects of the two Aβ-peptides, we have studied in silico the relative stability of the wild type and Iowa mutant in both parallel and antiparallel forms. We compare regular molecular dynamics simulations with such where the viscosity of the samples is reduced, which, we show, leads to higher sampling efficiency. By analyzing and comparing these four sets of all-atom molecular dynamics simulations, we probe the role of the various factors that could lead to the structural differences. Our analysis indicates that the parallel forms of both wild type and Iowa mutant aggregates are stable, while the antiparallel aggregates are meta-stable for the Iowa mutant and not stable for the wild type. The differences result from the direct alignment of hydrophobic interactions in the in-register parallel oligomers, making them more stable than the antiparallel aggregates. The slightly higher thermodynamic stability of the Iowa mutant fibril-like oligomers in its parallel organization over that in antiparallel form is supported by previous experimental measurements showing slow inter-conversion of antiparallel aggregates into parallel ones. Knowledge of the mechanism that selects between parallel and antiparallel conformations and determines their relative stability may open new avenues for the development of therapies targeting familial forms of early-onset Alzheimer's disease.

  17. Proteome profiling of virus-host interactions of wild type and attenuated measles virus strains.

    PubMed

    Billing, Anja M; Kessler, Julia R; Revets, Dominique; Sausy, Aurélie; Schmitz, Stephanie; Barra, Claire; Muller, Claude P

    2014-08-28

    Quantitative gel-based proteomics (2D DIGE coupled to MALDI-TOF/TOF MS) has been used to investigate the effects of different measles virus (MV) strains on the host cell proteome. A549/hSLAM cells were infected either with wild type MV strains, an attenuated vaccine or a multiple passaged Vero cell adapted strain. By including interferon beta treatment as a control it was possible to distinguish between the classical antiviral response and changes induced specifically by the different strains. Of 38 differentially expressed proteins in total (p-value ≤0.05, fold change ≥2), 18 proteins were uniquely modulated following MV infection with up to 9 proteins specific per individual strain. Interestingly, wt strains displayed distinct protein patterns particularly during the late phase of infection. Proteins were grouped into cytoskeleton, metabolism, transcription/translation, immune response and mitochondrial proteins. Bioinformatics analysis revealed mostly changes in proteins regulating cell death and apoptosis. Surprisingly, wt strains affected the cytokeratin system much stronger than the vaccine strain. To our knowledge, this is the first study on the MV-host proteome addressing interstrain differences. In the present study we investigated the host cell proteome upon measles virus (MV) infection. The novelty about this study is the side-by side comparison of different strains from the same virus, which has not been done at the proteome level for any other virus including MV. We used different virus strains including a vaccine strain, wild type isolates derived from MV-infected patients as well as a Vero cell adapted strain, which serves as an intermediate between vaccine and wild type strain. We observed differences between vaccine and wild type strains as well as common features between different wild type strains. Perhaps one of the most surprising findings was that differences did not only occur between wild type and vaccine or Vero cell adapted strains but

  18. Over-expression of AtPAP2 in Camelina sativa leads to faster plant growth and higher seed yield

    PubMed Central

    2012-01-01

    Background Lipids extracted from seeds of Camelina sativa have been successfully used as a reliable source of aviation biofuels. This biofuel is environmentally friendly because the drought resistance, frost tolerance and low fertilizer requirement of Camelina sativa allow it to grow on marginal lands. Improving the species growth and seed yield by genetic engineering is therefore a target for the biofuels industry. In Arabidopsis, overexpression of purple acid phosphatase 2 encoded by Arabidopsis (AtPAP2) promotes plant growth by modulating carbon metabolism. Overexpression lines bolt earlier and produce 50% more seeds per plant than wild type. In this study, we explored the effects of overexpressing AtPAP2 in Camelina sativa. Results Under controlled environmental conditions, overexpression of AtPAP2 in Camelina sativa resulted in longer hypocotyls, earlier flowering, faster growth rate, higher photosynthetic rate and stomatal conductance, increased seed yield and seed size in comparison with the wild-type line and null-lines. Similar to transgenic Arabidopsis, activity of sucrose phosphate synthase in leaves of transgenic Camelina was also significantly up-regulated. Sucrose produced in photosynthetic tissues supplies the building blocks for cellulose, starch and lipids for growth and fuel for anabolic metabolism. Changes in carbon flow and sink/source activities in transgenic lines may affect floral, architectural, and reproductive traits of plants. Conclusions Lipids extracted from the seeds of Camelina sativa have been used as a major constituent of aviation biofuels. The improved growth rate and seed yield of transgenic Camelina under controlled environmental conditions have the potential to boost oil yield on an area basis in field conditions and thus make Camelina-based biofuels more environmentally friendly and economically attractive. PMID:22472516

  19. Defining wild-type life span in Caenorhabditis elegans.

    PubMed

    Gems, D; Riddle, D L

    2000-05-01

    The nematode Caenorhabditis elegans reproduces predominantly as a self-fertilizing hermaphrodite, and this drives laboratory populations to be homozygous at all genetic loci. Passaging of stocks can lead to fixation of spontaneous mutations, especially when the latter do not result in a selective disadvantage under laboratory conditions. Life span may be such a trait, since a comparison of six wild-type N2 lines derived from a common ancestor (but maintained separately in several laboratories) revealed four variants with median adult life spans ranging from 12.0 +/- 0.8 to 17.0 +/- 0.6 days at 20 degrees C. Fertility was also reduced in the two shortest-lived strains. We determined which life span most closely corresponds to that of the authentic wild type by two means. Firstly, N2 hermaphrodites were compared with seven C. elegans wild isolates. The latter were found to resemble only the longest-lived N2 strain. Comparison of male life spans of six lines also revealed additional strain variation. Secondly, life spans of F1 progeny issuing from crosses between N2 variants showed that short life spans were recessive, indicating that they result from loss-of-function mutations. We infer that the longest-lived N2 variant best resembles the original N2 isolate. This is the N2 male stock currently distributed by the Caenorhabditis Genetics Center.

  20. Improved Salinity Tolerance in Carrizo Citrange Rootstock through Overexpression of Glyoxalase System Genes

    PubMed Central

    Alvarez-Gerding, Ximena; Cortés-Bullemore, Rowena; Medina, Consuelo; Romero-Romero, Jesús L.; Inostroza-Blancheteau, Claudio; Aquea, Felipe; Arce-Johnson, Patricio

    2015-01-01

    Citrus plants are widely cultivated around the world and, however, are one of the most salt stress sensitive crops. To improve salinity tolerance, transgenic Carrizo citrange rootstocks that overexpress glyoxalase I and glyoxalase II genes were obtained and their salt stress tolerance was evaluated. Molecular analysis showed high expression for both glyoxalase genes (BjGlyI and PgGlyII) in 5H03 and 5H04 lines. Under control conditions, transgenic and wild type plants presented normal morphology. In salinity treatments, the transgenic plants showed less yellowing, marginal burn in lower leaves and showed less than 40% of leaf damage compared with wild type plants. The transgenic plants showed a significant increase in the dry weight of shoot but there are no differences in the root and complete plant dry weight. In addition, a higher accumulation of chlorine is observed in the roots in transgenic line 5H03 but in shoot it was lower. Also, the wild type plant accumulated around 20% more chlorine in the shoot compared to roots. These results suggest that heterologous expression of glyoxalase system genes could enhance salt stress tolerance in Carrizo citrange rootstock and could be a good biotechnological approach to improve the abiotic stress tolerance in woody plant species. PMID:26236739

  1. A high-fat diet activates oncogenic Kras and COX2 to induce development of pancreatic ductal adenocarcinoma in mice.

    PubMed

    Philip, Bincy; Roland, Christina L; Daniluk, Jaroslaw; Liu, Yan; Chatterjee, Deyali; Gomez, Sobeyda B; Ji, Baoan; Huang, Haojie; Wang, Huamin; Fleming, Jason B; Logsdon, Craig D; Cruz-Monserrate, Zobeida

    2013-12-01

    Obesity is a risk factor for pancreatic ductal adenocarcinoma (PDAC), but it is not clear how obesity contributes to pancreatic carcinogenesis. The oncogenic form of KRAS is expressed during early stages of PDAC development and is detected in almost all of these tumors. However, there is evidence that mutant KRAS requires an additional stimulus to activate its full oncogenic activity and that this stimulus involves the inflammatory response. We investigated whether the inflammation induced by a high-fat diet, and the accompanying up-regulation of cyclooxygenase-2 (COX2), increases Kras activity during pancreatic carcinogenesis in mice. We studied mice with acinar cell-specific expression of KrasG12D (LSL-Kras/Ela-CreERT mice) alone or crossed with COX2 conditional knockout mice (COXKO/LSL-Kras/Ela-CreERT). We also studied LSL-Kras/PDX1-Cre mice. All mice were fed isocaloric diets with different amounts of fat, and a COX2 inhibitor was administered to some LSL-Kras/Ela-CreERT mice. Pancreata were collected from mice and analyzed for Kras activity, levels of phosphorylated extracellular-regulated kinase, inflammation, fibrosis, pancreatic intraepithelial neoplasia (PanIN), and PDACs. Pancreatic tissues from LSL-Kras/Ela-CreERT mice fed high-fat diets (HFDs) had increased Kras activity, fibrotic stroma, and numbers of PanINs and PDACs than LSL-Kras/Ela-CreERT mice fed control diets; the mice fed the HFDs also had shorter survival times than mice fed control diets. Administration of a COX2 inhibitor to LSL-Kras/Ela-CreERT mice prevented these effects of HFDs. We also observed a significant reduction in survival times of mice fed HFDs. COXKO/LSL-Kras/Ela-CreERT mice fed HFDs had no evidence for increased numbers of PanIN lesions, inflammation, or fibrosis, as opposed to the increases observed in LSL-Kras/Ela-CreERT mice fed HFDs. In mice, an HFD can activate oncogenic Kras via COX2, leading to pancreatic inflammation and fibrosis and development of PanINs and PDAC. This

  2. Enhanced Hydrogen Production from Formic Acid by Formate Hydrogen Lyase-Overexpressing Escherichia coli Strains

    PubMed Central

    Yoshida, Akihito; Nishimura, Taku; Kawaguchi, Hideo; Inui, Masayuki; Yukawa, Hideaki

    2005-01-01

    Genetic recombination of Escherichia coli in conjunction with process manipulation was employed to elevate the efficiency of hydrogen production in the resultant strain SR13 2 orders of magnitude above that of conventional methods. The formate hydrogen lyase (FHL)-overexpressing strain SR13 was constructed by combining FHL repressor (hycA) inactivation with FHL activator (fhlA) overexpression. Transcription of large-subunit formate dehydrogenase, fdhF, and large-subunit hydrogenase, hycE, in strain SR13 increased 6.5- and 7.0-fold, respectively, compared to the wild-type strain. On its own, this genetic modification effectively resulted in a 2.8-fold increase in hydrogen productivity of SR13 compared to the wild-type strain. Further enhancement of productivity was attained by using a novel method involving the induction of the FHL complex with high-cell-density filling of a reactor under anaerobic conditions. Continuous hydrogen production was achieved by maintaining the reactor concentration of the substrate (free formic acid) under 25 mM. An initial productivity of 23.6 g hydrogen h−1 liter−1 (300 liters h−1 liter−1 at 37°C) was achieved using strain SR13 at a cell density of 93 g (dry weight) cells/liter. The hydrogen productivity reported in this work has great potential for practical application. PMID:16269707

  3. Enhanced hydrogen production from formic acid by formate hydrogen lyase-overexpressing Escherichia coli strains.

    PubMed

    Yoshida, Akihito; Nishimura, Taku; Kawaguchi, Hideo; Inui, Masayuki; Yukawa, Hideaki

    2005-11-01

    Genetic recombination of Escherichia coli in conjunction with process manipulation was employed to elevate the efficiency of hydrogen production in the resultant strain SR13 2 orders of magnitude above that of conventional methods. The formate hydrogen lyase (FHL)-overexpressing strain SR13 was constructed by combining FHL repressor (hycA) inactivation with FHL activator (fhlA) overexpression. Transcription of large-subunit formate dehydrogenase, fdhF, and large-subunit hydrogenase, hycE, in strain SR13 increased 6.5- and 7.0-fold, respectively, compared to the wild-type strain. On its own, this genetic modification effectively resulted in a 2.8-fold increase in hydrogen productivity of SR13 compared to the wild-type strain. Further enhancement of productivity was attained by using a novel method involving the induction of the FHL complex with high-cell-density filling of a reactor under anaerobic conditions. Continuous hydrogen production was achieved by maintaining the reactor concentration of the substrate (free formic acid) under 25 mM. An initial productivity of 23.6 g hydrogen h(-1) liter(-1) (300 liters h(-1) liter(-1) at 37 degrees C) was achieved using strain SR13 at a cell density of 93 g (dry weight) cells/liter. The hydrogen productivity reported in this work has great potential for practical application.

  4. Overexpression of PSP1 enhances growth of transgenic Arabidopsis plants under ambient air conditions.

    PubMed

    Han, Xiaofang; Peng, Keli; Wu, Haixia; Song, Shanshan; Zhu, Yerong; Bai, Yanling; Wang, Yong

    2017-07-01

    The importance of the phosphorylated pathway (PPSB) of L-serine (Ser) biosynthesis in plant growth and development has been demonstrated, but its specific role in leaves and interaction with photorespiration, the main leaf Ser biosynthetic pathway at daytime, are still unclear. To investigate whether changes in biosynthesis of Ser by the PPSB in leaves could have an impact on photorespiration and plant growth, we overexpressed PSP1, the last enzyme of this pathway, under control of the Cauliflower Mosaic Virus 35S promoter in Arabidopsis thaliana. Overexpressor plants grown in normal air displayed larger rosette diameter and leaf area as well as higher fresh and dry weight than the wild type. By contrast, no statistically significant differences to the wild type were observed when the overexpressor seedlings were transferred to elevated CO 2 , indicating a relationship between PSP1 overexpression and photorespiration. Additionally, the transgenic plants displayed higher photorespiration, an increase in CO 2 net-uptake and stronger expression in the light of genes encoding enzymes involved in photorespiration. We further demonstrated that expression of many genes involved in nitrogen assimilation was also promoted in leaves of transgenic plants and that leaf nitrate reductase activity increased in the light, too, although not in the dark. Our results suggest a close correlation between the function of PPSB and photorespiration, and also nitrogen metabolism in leaves.

  5. Metabolic engineering of mannitol production in Lactococcus lactis: influence of overexpression of mannitol 1-phosphate dehydrogenase in different genetic backgrounds.

    PubMed

    Wisselink, H Wouter; Mars, Astrid E; van der Meer, Pieter; Eggink, Gerrit; Hugenholtz, Jeroen

    2004-07-01

    To obtain a mannitol-producing Lactococcus lactis strain, the mannitol 1-phosphate dehydrogenase gene (mtlD) from Lactobacillus plantarum was overexpressed in a wild-type strain, a lactate dehydrogenase(LDH)-deficient strain, and a strain with reduced phosphofructokinase activity. High-performance liquid chromatography and (13)C nuclear magnetic resonance analysis revealed that small amounts (<1%) of mannitol were formed by growing cells of mtlD-overexpressing LDH-deficient and phosphofructokinase-reduced strains, whereas resting cells of the LDH-deficient transformant converted 25% of glucose into mannitol. Moreover, the formed mannitol was not reutilized upon glucose depletion. Of the metabolic-engineering strategies investigated in this work, mtlD-overexpressing LDH-deficient L. lactis seemed to be the most promising strain for mannitol production.

  6. AMPK and Endothelial Nitric Oxide Synthase Signaling Regulates K-Ras Plasma Membrane Interactions via Cyclic GMP-Dependent Protein Kinase 2

    PubMed Central

    Cho, Kwang-jin; Casteel, Darren E.; Prakash, Priyanka; Tan, Lingxiao; van der Hoeven, Dharini; Salim, Angela A.; Kim, Choel; Capon, Robert J.; Lacey, Ernest; Cunha, Shane R.; Gorfe, Alemayehu A.

    2016-01-01

    K-Ras must localize to the plasma membrane and be arrayed in nanoclusters for biological activity. We show here that K-Ras is a substrate for cyclic GMP-dependent protein kinases (PKGs). In intact cells, activated PKG2 selectively colocalizes with K-Ras on the plasma membrane and phosphorylates K-Ras at Ser181 in the C-terminal polybasic domain. K-Ras phosphorylation by PKG2 is triggered by activation of AMP-activated protein kinase (AMPK) and requires endothelial nitric oxide synthase and soluble guanylyl cyclase. Phosphorylated K-Ras reorganizes into distinct nanoclusters that retune the signal output. Phosphorylation acutely enhances K-Ras plasma membrane affinity, but phosphorylated K-Ras is progressively lost from the plasma membrane via endocytic recycling. Concordantly, chronic pharmacological activation of AMPK → PKG2 signaling with mitochondrial inhibitors, nitric oxide, or sildenafil inhibits proliferation of K-Ras-positive non-small cell lung cancer cells. The study shows that K-Ras is a target of a metabolic stress-signaling pathway that can be leveraged to inhibit oncogenic K-Ras function. PMID:27697864

  7. Clinical relevance of KRAS mutation detection in metastatic colorectal cancer treated by Cetuximab plus chemotherapy

    PubMed Central

    Di Fiore, F; Blanchard, F; Charbonnier, F; Le Pessot, F; Lamy, A; Galais, M P; Bastit, L; Killian, A; Sesboüé, R; Tuech, J J; Queuniet, A M; Paillot, B; Sabourin, J C; Michot, F; Michel, P; Frebourg, T

    2007-01-01

    The predictive value of KRAS mutation in metastatic colorectal cancer (MCRC) patients treated with cetuximab plus chemotherapy has recently been suggested. In our study, 59 patients with a chemotherapy-refractory MCRC treated with cetuximab plus chemotherapy were included and clinical response was evaluated according to response evaluation criteria in solid tumours (RECIST). Tumours were screened for KRAS mutations using first direct sequencing, then two sensitive methods based on SNaPshot and PCR-ligase chain reaction (LCR) assays. Clinical response was evaluated according to gene mutations using the Fisher exact test. Times to progression (TTP) were calculated using the Kaplan–Meier method and compared with log-rank test. A KRAS mutation was detected in 22 out of 59 tumours and, in six cases, was missed by sequencing analysis but detected using the SNaPshot and PCR-LCR assays. Remarkably, no KRAS mutation was found in the 12 patients with clinical response. KRAS mutation was associated with disease progression (P=0.0005) and TTP was significantly decreased in mutated KRAS patients (3 vs 5.5 months, P=0.015). Our study confirms that KRAS mutation is highly predictive of a non-response to cetuximab plus chemotherapy in MCRC and highlights the need to use sensitive molecular methods, such as SNaPshot or PCR-LCR assays, to ensure an efficient mutation detection. PMID:17375050

  8. KRAS oncogene in non-small cell lung cancer: clinical perspectives on the treatment of an old target.

    PubMed

    Román, Marta; Baraibar, Iosune; López, Inés; Nadal, Ernest; Rolfo, Christian; Vicent, Silvestre; Gil-Bazo, Ignacio

    2018-02-19

    Lung neoplasms are the leading cause of death by cancer worldwide. Non-small cell lung cancer (NSCLC) constitutes more than 80% of all lung malignancies and the majority of patients present advanced disease at onset. However, in the last decade, multiple oncogenic driver alterations have been discovered and each of them represents a potential therapeutic target. Although KRAS mutations are the most frequently oncogene aberrations in lung adenocarcinoma patients, effective therapies targeting KRAS have yet to be developed. Moreover, the role of KRAS oncogene in NSCLC remains unclear and its predictive and prognostic impact remains controversial. The study of the underlying biology of KRAS in NSCLC patients could help to determine potential candidates to evaluate novel targeted agents and combinations that may allow a tailored treatment for these patients. The aim of this review is to update the current knowledge about KRAS-mutated lung adenocarcinoma, including a historical overview, the biology of the molecular pathways involved, the clinical relevance of KRAS mutations as a prognostic and predictive marker and the potential therapeutic approaches for a personalized treatment of KRAS-mutated NSCLC patients.

  9. Wild Type and PPAR KO Dataset

    EPA Pesticide Factsheets

    Data set 1 consists of the experimental data for the Wild Type and PPAR KO animal study and includes data used to prepare Figures 1-4 and Table 1 of the Das et al, 2016 paper.This dataset is associated with the following publication:Das, K., C. Wood, M. Lin, A.A. Starkov, C. Lau, K.B. Wallace, C. Corton, and B. Abbott. Perfluoroalky acids-induced liver steatosis: Effects on genes controlling lipid homeostasis. TOXICOLOGY. Elsevier Science Ltd, New York, NY, USA, 378: 32-52, (2017).

  10. miR-1298 inhibits mutant KRAS-driven tumor growth by repressing FAK and LAMB3

    PubMed Central

    Zhou, Ying; Dang, Jason; Chang, Kung-Yen; Yau, Edwin; Aza-Blanc, Pedro; Moscat, Jorge; Rana, Tariq M.

    2016-01-01

    Global microRNA functional screens can offer a strategy to identify synthetic lethal interactions in cancer cells that might be exploited therapeutically. In this study, we applied this strategy to identify novel gene interactions in KRAS mutant cancer cells. In this manner, we discovered miR-1298, a novel miRNA that inhibited the growth of KRAS-driven cells both in vitro and in vivo. Using miR-TRAP affinity purification technology, we identified the tyrosine kinase FAK and the laminin subunit LAMB3 as functional targets of miR-1298. Silencing of FAK or LAMB3 recapitulated the synthetic lethal effects of miR-1298 expression in KRAS-driven cancer cells, whereas co-expression of both proteins was critical to rescue miR-1298-induced cell death. Expression of LAMB3 but not FAK was upregulated by mutant KRAS. In clinical specimens, elevated LAMB3 expression correlated with poorer survival in lung cancer patients with an oncogenic KRAS gene signature, suggesting a novel candidate biomarker in this disease setting. Our results define a novel regulatory pathway in KRAS-driven cancers which offers a potential therapeutic target for their eradication PMID:27698189

  11. Overexpression of angiotensin II type 2 receptor promotes apoptosis and impairs insulin secretion in rat insulinoma cells.

    PubMed

    Liu, Min; Jing, Danqing; Wang, Yan; Liu, Yu; Yin, Shinan

    2015-02-01

    Angiotensin II (Ang II), the major effector hormone of renin-angiotensin system, acts as a promoter of insulin resistance and diabetes mellitus type 2 pathogenesis. Activation of Ang II type 2 receptor (AT2R) has been examined as a potential therapeutic strategy. However, there are conflicting findings regarding the role of AT2R. In the current study, we evaluated the effects of overexpressing AT2R by viral vector transduction on the apoptosis and function of pancreatic β-islet cells. The rat insulinoma cell line, INS-1, was transduced with a recombinant adenoviral vector expressing AT2R (Ad-G-AT2R-EGFP). AT2R overexpression resulted in significantly reduced cell viability and subsequently impaired glucose-stimulated insulin secretion (GSIS) function in INS-1 cells. Down-regulated expressions of GSIS pathway components, insulin, glucose transporter 2, and glucokinase were associated with AT2R overexpression. Further analysis determined that overexpression of AT2R induced G1-phase cell cycle arrest and Ang II-independent apoptotic cell death as indicated by increased Annexin V staining. To understand the apoptosis signaling triggered by AT2R overexpression, levels of caspase proteins were measured. Overexpression of AT2R significantly induced caspase-8, caspase-9, and caspase-3 cleavage, and decreased Bcl-2, pAkt, and pERK expression levels. AT2R-induced cell apoptosis was successfully blocked by the caspase inhibitor Z-VAD-FMK. Our findings suggested that AT2R overexpression triggers the apoptosis of INS-1 cells and dysfunction in insulin secretion. In conclusion, more careful design and consideration are required when applying AT2R-related therapies in treating diabetes.

  12. Overexpression of VMAT-2 and DT-diaphorase protects substantia nigra-derived cells against aminochrome neurotoxicity

    PubMed Central

    Muñoz, Patricia; Paris, Irmgard; Sanders, Laurie H.; Greenamyre, J. Timothy; Segura-Aguilar, Juan

    2013-01-01

    We tested the hypothesis that both VMAT-2 and DT-diaphorase are an important cellular defense against aminochrome-dependent neurotoxicity during dopamine oxidation. A cell line with VMAT-2 and DT-diaphorase over-expressed was created. The transfection of RCSN-3 cells with a bicistronic plasmid coding for VMAT-2 fused with GFP-IRES-DT-diaphorase cDNA induced a significant increase in protein expression of VMAT-2 (7-fold; P<0.001) and DT-diaphorase (9-fold; P<0.001), accompanied by a 4- and 5.5-fold significant increase in transport and enzyme activity, respectively. Studies with synaptic vesicles from rat substantia nigra revealed that VMAT-2 uptake of 3H-aminochrome 6.3 ± 0.4nmol/min/mg was similar to dopamine uptake 6.2 ± 0.3 nmol/min/mg that which were dependent on ATP. Interestingly, aminochrome uptake was inhibited by 2 μM lobeline but not reserpine (1 and 10 μM). Incubation of cells overexpressing VMAT-2 and DT-diaphorase with 20 μM aminochrome resulted in (i) a significant decrease in cell death (6-fold, P<0.001); (ii) normal ultra structure determined by transmission electron microscopy contrasting with a significant increase of autophagosome and a dramatic remodeling of the mitochondrial inner membrane in wild type cells; (iii) normal level of ATP (256 ± 11 μM) contrasting with a significant decrease in wild type cells (121 ± 11 μM, P<0.001); and (iv) a significant decrease in DNA laddering (21 ± 8 pixels, P<0.001) cells in comparison with wild type cells treated with 20 μM aminochrome (269 ± 9). These results support our hypothesis that VMAT-2 and DT-diaphorase are an important defense system against aminochrome formed during dopamine oxidation. PMID:22483869

  13. Chronic expression of wild-type Ret receptor in the mammary gland induces luminal tumors that are sensitive to Ret inhibition.

    PubMed

    Gattelli, Albana; García Solá, Martín E; Roloff, Tim C; Cardiff, Robert D; Kordon, Edith C; Chodosh, Lewis A; Hynes, Nancy E

    2018-04-26

    The receptor tyrosine kinase Ret, a key gain-of-function mutated oncoprotein in thyroid carcinomas, has recently been implicated in other cancer types. While Ret copy number gains and mutations have been reported at low frequencies in breast tumors, we and others have reported that Ret is overexpressed in about 40% of human tumors and this correlates with poor patient prognosis. Ret activation regulates numerous intracellular pathways related to proliferation and inflammation, but it is not known whether abnormal Ret expression is sufficient to induce mammary carcinomas. Using a novel doxycycline-inducible transgenic mouse model with the MMTV promoter controlling Ret expression, we show that overexpression of wild-type Ret in the mammary epithelium produces mammary tumors, displaying a morphology that recapitulates characteristics of human luminal breast tumors. Ret-evoked tumors are estrogen receptor positive and negative for progesterone receptor. Moreover, tumors rapidly regress after doxycycline withdrawal, indicating that Ret is the driving oncoprotein. Using next-generation sequencing, we examined the levels of transcripts in these tumors, confirming a luminal signature. Ret-evoked tumors have been passaged in mice and used to test novel therapeutic approaches. Importantly, we have determined that tumors are resistant to endocrine therapy, but respond successfully to treatment with a Ret kinase inhibitor. Our data provide the first compelling evidence for an oncogenic role of non-mutated Ret in the mammary gland and are an incentive for clinical development of Ret as a cancer biomarker and therapeutic target.

  14. New KRAS Antibodies Available | Office of Cancer Clinical Proteomics Research

    Cancer.gov

    Researchers estimate that approximately 30% of all human cancers are driven by RAS oncogenes. Mutated RAS genes are responsible for making RAS proteins that support cancer development. While anti-RAS therapies may have potential clinical benefit, researchers yet do not understand how the four RAS protein isoforms, KRAS4A, KRAS4B, HRAS, and NRAS, drive malignant phenotypes. Well-characterized and defined reagents like antibodies are central to reproducibility in biomedical research and necessary for future RAS studies.

  15. Sex and Immunogen-Specific Benefits of Immunotherapy Targeting Islet Amyloid Polypeptide in Transgenic and Wild-Type Mice

    PubMed Central

    Krishnamurthy, Pavan K.; Rajamohamedsait, Hameetha B.; Gonzalez, Veronica; Rajamohamedsait, Wajitha J.; Ahmed, Nawal; Krishnaswamy, Senthilkumar; Sigurdsson, Einar M.

    2016-01-01

    Type 2 diabetes mellitus is characterized by the deposition of islet amyloid polypeptide (IAPP) as amyloid in islets, a process thought to be toxic to β-cells. To determine the feasibility of targeting these aggregates therapeutically, we vaccinated transgenic (Tg) mice that overexpress human IAPP and were fed a high-fat diet to promote their diabetic phenotype. Our findings indicate that prophylactic vaccination with IAPP and its derivative IAPP7-19-TT, protects wild-type female mice, but not males, from obesity-induced early mortality, and the derivative showed a strong trend for prolonging the lifespan of Tg females but not males. Furthermore, IAPP7-19-TT-immunized Tg females cleared a glucose bolus more efficiently than controls, while IAPP-immunized Tg females showed an impaired ability to clear a glucose bolus compared to their adjuvant injected Tg controls. Interestingly, IAPP or IAPP7-19-TT treatments had no effect on glucose clearance in Tg males. Overall, these beneficial effects of IAPP targeted immunization depend on Tg status, sex, and immunogen. Hence, future studies in this field should carefully consider these variables that clearly affect the therapeutic outcome. In conclusion, IAPP targeting immunotherapy may have benefits in patients with type 2 diabetes. PMID:27379014

  16. Fragment-Based Approaches to Enhance GTP Competitive KRAS G12C Inhibitors

    DTIC Science & Technology

    During the current period we completed work on a series of guanine nucleotide mimetics and published results. As part of this we developed and...reported a novel method of measuring small molecule binding to KRAS G12C active site. We also published 2 additional manuscripts about KRAS G12C directed

  17. Hepatic overexpression of the prodomain of furin lessens progression of atherosclerosis and reduces vascular remodeling in response to injury.

    PubMed

    Lei, Xia; Basu, Debapriya; Li, Zhiqiang; Zhang, Maoxiang; Rudic, R Dan; Jiang, Xian-Cheng; Jin, Weijun

    2014-09-01

    Atherosclerosis is a complex disease, involving elevated LDL-c, lipid accumulation in the blood vessel wall, foam cell formation and vascular dysfunction. Lowering plasma LDL-c is the cornerstone of current management of cardiovascular disease. However, new approaches which reduce plasma LDL-c and lessen the pathological vascular remodeling occurring in the disease should also have therapeutic value. Previously, we found that overexpression of profurin, the 83-amino acid prodomain of the proprotein convertase furin, lowered plasma HDL levels in wild-type mice. The question that remained was whether it had effects on apolipoprotein B (ApoB)-containing lipoproteins. Adenovirus mediated overexpression of hepatic profurin in Ldlr(-/-)mice and wild-type mice were used to evaluate effects of profurin on ApoB-containing lipoproteins, atherosclerosis and vascular remodeling. Hepatic profurin overexpression resulted in a significant reduction in atherosclerotic lesion development in Ldlr(-/-)mice and a robust reduction in plasma LDL-c. Metabolic studies revealed lower secretion of ApoB and triglycerides in VLDL particles. Mechanistic studies showed that in the presence of profurin, hepatic ApoB, mainly ApoB100, was degraded by proteasomes. There was no effect on ApoB mRNA expression. Importantly, short-term hepatic profurin overexpression did not result in hepatic lipid accumulation. Blood vessel wall thickening caused by either wire-induced femoral artery injury or common carotid artery ligation was reduced. Profurin expression inhibited proliferation and migration in vascular smooth muscle cells in vitro. These results indicate that a profurin-based therapy has the potential to treat atherosclerosis by improving metabolic lipid profiles and reducing both atherosclerotic lesion development and pathological vascular remodeling. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  18. Overexpression of heart-type fatty acid binding protein enhances fatty acid-induced podocyte injury

    PubMed Central

    Gao, Qing; Sarkar, Alhossain; Chen, Yizhi; Xu, Bo; Zhu, Xiaojuan; Yuan, Yang; Guan, Tianjun

    2018-01-01

    Deregulated lipid metabolism is a characteristic of metabolic diseases including type 2 diabetes and obesity, and likely contributes to podocyte injury and end-stage kidney disease. Heart-type fatty acid binding protein (H-FABP) was reported to be associated with lipid metabolism. The present study investigated whether H-FABP contributes to podocyte homeostasis. Podocytes were transfected by lentiviral vector to construct a cell line which stably overexpressed H-FABP. Small interfering RNA capable of effectively silencing H-FABP was introduced into podocytes to construct a cell line with H-FABP knockdown. Certain groups were treated with palmitic acid (PA) and the fat metabolism, as well as inflammatory and oxidative stress markers were measured. PA accelerated lipid metabolism derangement, inflammatory reaction and oxidative stress in podocytes. Overexpression of H-FABP enhanced the PA-induced disequilibrium in podocytes. The mRNA and protein expression levels of acyl-coenzyme A oxidase 3 and monocyte chemotactic protein 1, and the protein expression levels of 8-hydroxy-2′-deoxyguanosine and 4-hydroxynonenal were upregulated in the H-FABP overexpression group, while the mRNA and protein expression of peroxisome proliferator activated receptor α was downregulated. Knockdown of H-FABP inhibited the PA-induced injury and lipid metabolism derangement, as well as the inflammatory reaction and oxidative stress in podocytes. These results indicated that overexpression of H-FABP enhances fatty acid-induced podocyte injury, while H-FABP inhibition may represent a potential therapeutic strategy for the prevention of lipid metabolism-associated podocyte injury. PMID:29434805

  19. Targeting of KRAS mutant tumors by HSP90 inhibitors involves degradation of STK33

    PubMed Central

    Azoitei, Ninel; Hoffmann, Christopher M.; Ellegast, Jana M.; Ball, Claudia R.; Obermayer, Kerstin; Gößele, Ulrike; Koch, Britta; Faber, Katrin; Genze, Felicitas; Schrader, Mark; Kestler, Hans A.; Döhner, Hartmut; Chiosis, Gabriela; Glimm, Hanno

    2012-01-01

    Previous efforts to develop drugs that directly inhibit the activity of mutant KRAS, the most commonly mutated human oncogene, have not been successful. Cancer cells driven by mutant KRAS require expression of the serine/threonine kinase STK33 for their viability and proliferation, identifying STK33 as a context-dependent therapeutic target. However, specific strategies for interfering with the critical functions of STK33 are not yet available. Here, using a mass spectrometry-based screen for STK33 protein interaction partners, we report that the HSP90/CDC37 chaperone complex binds to and stabilizes STK33 in human cancer cells. Pharmacologic inhibition of HSP90, using structurally divergent small molecules currently in clinical development, induced proteasome-mediated degradation of STK33 in human cancer cells of various tissue origin in vitro and in vivo, and triggered apoptosis preferentially in KRAS mutant cells in an STK33-dependent manner. Furthermore, HSP90 inhibitor treatment impaired sphere formation and viability of primary human colon tumor-initiating cells harboring mutant KRAS. These findings provide mechanistic insight into the activity of HSP90 inhibitors in KRAS mutant cancer cells, indicate that the enhanced requirement for STK33 can be exploited to target mutant KRAS-driven tumors, and identify STK33 depletion through HSP90 inhibition as a biomarker-guided therapeutic strategy with immediate translational potential. PMID:22451720

  20. Keap1 loss promotes Kras-driven lung cancer and results in a dependence on glutaminolysis

    PubMed Central

    Romero, Rodrigo; Sayin, Volkan I.; Davidson, Shawn M.; Bauer, Matthew R.; Singh, Simranjit X.; LeBoeuf, Sarah E.; Karakousi, Triantafyllia R.; Ellis, Donald C.; Bhutkar, Arjun; Sanchez-Rivera, Francisco J.; Subbaraj, Lakshmipriya; Martinez, Britney; Bronson, Roderick T.; Prigge, Justin R.; Schmidt, Edward E.; Thomas, Craig J.; Goparaju, Chandra; Davies, Angela; Dolgalev, Igor; Heguy, Adriana; Allaj, Viola; Poirier, John T.; Moreira, Andre L.; Rudin, Charles M.; Pass, Harvey I.; Vander Heiden, Matthew G.; Jacks, Tyler; Papagiannakopoulos, Thales

    2017-01-01

    Treating KRAS-mutant lung adenocarcinoma (LUAD) remains a major challenge in cancer treatment given the difficulties associated with directly inhibiting the KRAS oncoprotein1. One approach to addressing this challenge is to define frequently co-occurring mutations with KRAS, which themselves may lead to therapeutic vulnerabilities in tumors. Approximately 20% of KRAS-mutant LUAD tumors carry loss-of-function (LOF) mutations in Kelch-like ECH-associated protein 1 (KEAP1)2-4, a negative regulator of nuclear factor erythroid 2-like 2 (NFE2L2; hereafter NRF2), which is the master transcriptional regulator of the endogenous antioxidant response5-10. The high frequency of mutations in KEAP1 suggests an important role for the oxidative stress response in lung tumorigenesis. Using a CRISPR/Cas9-based approach in a mouse model of Kras-driven LUAD we examined the effects of Keap1 loss in lung cancer progression. We show that loss of Keap1 hyper-activates Nrf2 and promotes Kras-driven LUAD. Combining CRISPR/Cas9-based genetic screening and metabolomic analyses, we show that Keap1/Nrf2-mutant cancers are dependent on increased glutaminolysis, and this property can be therapeutically exploited through the pharmacological inhibition of glutaminase. Finally, we provide a rationale for sub-stratification of human lung cancer patients with KRAS-KEAP1 or -NRF2-mutant tumors as likely to respond to glutaminase inhibition. PMID:28967920

  1. Targeting KRAS-mutant non-small cell lung cancer with the Hsp90 inhibitor ganetespib.

    PubMed

    Acquaviva, Jaime; Smith, Donald L; Sang, Jim; Friedland, Julie C; He, Suqin; Sequeira, Manuel; Zhang, Chaohua; Wada, Yumiko; Proia, David A

    2012-12-01

    Mutant KRAS is a feature of more than 25% of non-small cell lung cancers (NSCLC) and represents one of the most prevalent oncogenic drivers in this disease. NSCLC tumors with oncogenic KRAS respond poorly to current therapies, necessitating the pursuit of new treatment strategies. Targeted inhibition of the molecular chaperone Hsp90 results in the coordinated blockade of multiple oncogenic signaling pathways in tumor cells and has thus emerged as an attractive avenue for therapeutic intervention in human malignancies. Here, we examined the activity of ganetespib, a small-molecule inhibitor of Hsp90 currently in clinical trials for NSCLCs in a panel of lung cancer cell lines harboring a diverse spectrum of KRAS mutations. In vitro, ganetespib was potently cytotoxic in all lines, with concomitant destabilization of KRAS signaling effectors. Combinations of low-dose ganetespib with MEK or PI3K/mTOR inhibitors resulted in superior cytotoxic activity than single agents alone in a subset of mutant KRAS cells, and the antitumor efficacy of ganetespib was potentiated by cotreatment with the PI3K/mTOR inhibitor BEZ235 in A549 xenografts in vivo. At the molecular level, ganetespib suppressed activating feedback signaling loops that occurred in response to MEK and PI3K/mTOR inhibition, although this activity was not the sole determinant of combinatorial benefit. In addition, ganetespib sensitized mutant KRAS NSCLC cells to standard-of-care chemotherapeutics of the antimitotic, topoisomerase inhibitor, and alkylating agent classes. Taken together, these data underscore the promise of ganetespib as a single-agent or combination treatment in KRAS-driven lung tumors.

  2. Overexpression of the active diacylglycerol acyltransferase variant transforms Saccharomyces cerevisiae into an oleaginous yeast.

    PubMed

    Kamisaka, Yasushi; Kimura, Kazuyoshi; Uemura, Hiroshi; Yamaoka, Masakazu

    2013-08-01

    Lipid production by Saccharomyces cerevisiae was improved by overexpression of the yeast diacylglycerol acyltransferase Dga1p lacking the N-terminal 29 amino acids (Dga1∆Np), which was previously found to be an active form in the ∆snf2 mutant. Overexpression of Dga1∆Np in the ∆snf2 mutant, however, did not increase lipid content as expected, which prompted us to search for a more suitable strain in which to study the role of Dga1∆Np in lipid accumulation. We found that the overexpression of Dga1∆Np in the ∆dga1 mutant effectively increased the lipid content up to about 45 % in the medium containing 10 % glucose. The high lipid content of the transformant was dependent on glucose concentration, nitrogen limitation, and active leucine biosynthesis. To better understand the effect of dga1 disruption on the ability of Dga1∆Np to stimulate lipid accumulation, the ∆dga1-1 mutant, in which the 3'-terminal 36 bp of the dga1 open reading frame (ORF) remained, and the ∆dga1-2 mutant, in which the 3'-terminal 36 bp were also deleted, were prepared with URA3 disruption cassettes. Surprisingly, the overexpression of Dga1∆Np in the ∆dga1-1 mutant had a lower lipid content than the original ∆dga1 mutant, whereas overexpression in the ∆dga1-2 mutant led to a high lipid content of about 45 %. These results indicated that deletion of the 3' terminal region of the dga1 ORF, rather than abrogation of genomic Dga1p expression, was crucial for the effect of Dga1∆Np on lipid accumulation. To investigate whether dga1 disruption affected gene expression adjacent to DGA1, we found that the overexpression of Esa1p together with Dga1∆Np in the ∆dga1 mutant reverted the lipid content to the level of the wild-type strain overexpressing Dga1∆Np. In addition, RT-qPCR analysis revealed that ESA1 mRNA expression in the ∆dga1 mutant was decreased compared to the wild-type strain at the early stages of culture, suggesting that lowered Esa1p expression is

  3. S100B overexpression increases behavioral and neural plasticity in response to the social environment during adolescence.

    PubMed

    Buschert, Jens; Hohoff, Christa; Touma, Chadi; Palme, Rupert; Rothermundt, Matthias; Arolt, Volker; Zhang, Weiqi; Ambrée, Oliver

    2013-11-01

    Genetic variants as well as increased serum levels of the neurotrophic factor S100B are associated with different psychiatric disorders. However, elevated S100B levels are also related to a better therapeutic outcome in psychiatric patients. The functional role of elevated S100B in psychiatric disorders is still unclear. Hence, this study was designed in order to elucidate the differential effects of S100B overexpression in interaction with chronic social stress during adolescence on emotional behavior and adult neurogenesis. S100B transgenic and wild-type mice were housed either in socially stable or unstable environments during adolescence, between postnatal days 28 and 77. In adulthood, anxiety-related behavior in the open field, dark-light, and novelty-induced suppression of feeding test as well as survival of proliferating hippocampal progenitor cells were assessed. S100B transgenic mice revealed significantly reduced anxiety-related behavior in the open field compared to wild-types when reared in stable social conditions. In contrast, when transgenic mice grew up in unstable social conditions, their level of anxiety-related behavior was comparable to the levels of wild-type mice. In addition, S100B overexpressing mice from unstable housing conditions displayed higher numbers of surviving newborn cells in the adult hippocampus which developed into mature neurons. In conclusion, elevated S100B levels increase the susceptibility to environmental stimuli during adolescence resulting in more variable behavioral and neural phenotypes in adulthood. In humans, this increased plasticity might lead to both, enhanced risk for psychiatric disorders in negative environments and improved therapeutic outcome in positive environments. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Over-expression of phage HK022 Nun protein is toxic for Escherichia coli

    PubMed Central

    Uc-Mass, Augusto; Khodursky, Arkady; Brown, Lewis; Gottesman, Max E.

    2008-01-01

    The Nun protein of coliphage HK022 excludes superinfecting λ phage. Nun recognizes and binds to the N utilization (nut) sites on phage λ nascent RNA and induces transcription termination. Over-expression of Nun from a high-copy plasmid is toxic for E.coli, despite the fact that nut sites are not encoded in the E.coli genome. Cells expressing Nun cannot exit stationary phase. Toxicity is related to transcription termination, since host and nun mutations that block termination also suppress cell killing. Nun inhibits expression of wild-type lacZ, but not lacZ expressed from the Crp/cAMP–independent lacUV5 promoter. Microarray and proteomics analyses show Nun down-regulates crp and tnaA. Crp over-expression and high indole concentrations partially reverse Nun-mediated toxicity and restore lacZ expression. PMID:18571198

  5. XPO1-dependent nuclear export is a druggable vulnerability in KRAS-mutant lung cancer

    PubMed Central

    Kim, Jimi; McMillan, Elizabeth; Kim, Hyun Seok; Venkateswaran, Niranjan; Makkar, Gurbani; Rodriguez-Canales, Jaime; Villalobos, Pamela; Neggers, Jasper Edgar; Mendiratta, Saurabh; Wei, Shuguang; Landesman, Yosef; Senapedis, William; Baloglu, Erkan; Chow, Chi-Wan B.; Frink, Robin E.; Gao, Boning; Roth, Michael; Minna, John D.; Daelemans, Dirk; Wistuba, Ignacio I.; Posner, Bruce A.; Scaglioni, PierPaolo; White, Michael A.

    2016-01-01

    The common participation of oncogenic KRAS proteins in many of the most lethal human cancers, together with the ease of detecting somatic KRAS mutant alleles in patient samples, has spurred persistent and intensive efforts to develop drugs that inhibit KRAS activity1. However, advances have been hindered by the pervasive inter- and intra-lineage diversity in the targetable mechanisms that underlie KRAS-driven cancers, limited pharmacological accessibility of many candidate synthetic-lethal interactions and the swift emergence of unanticipated resistance mechanisms to otherwise effective targeted therapies. Here we demonstrate the acute and specific cell-autonomous addiction of KRAS-mutant non-small-cell lung cancer cells to receptor-dependent nuclear export. A multi-genomic, data-driven approach, utilizing 106 human non-small-cell lung cancer cell lines, was used to interrogate 4,725 biological processes with 39,760 short interfering RNA pools for those selectively required for the survival of KRAS-mutant cells that harbour a broad spectrum of phenotypic variation. Nuclear transport machinery was the sole process-level discriminator of statistical significance. Chemical perturbation of the nuclear export receptor XPO1 (also known as CRM1), with a clinically available drug, revealed a robust synthetic-lethal interaction with native or engineered oncogenic KRAS both in vitro and in vivo. The primary mechanism underpinning XPO1 inhibitor sensitivity was intolerance to the accumulation of nuclear IκBα (also known as NFKBIA), with consequent inhibition of NFκB transcription factor activity. Intrinsic resistance associated with concurrent FSTL5 mutations was detected and determined to be a consequence of YAP1 activation via a previously unappreciated FSTL5–Hippo pathway regulatory axis. This occurs in approximately 17% of KRAS-mutant lung cancers, and can be overcome with the co-administration of a YAP1–TEAD inhibitor. These findings indicate that clinically

  6. KRAS mutations in blood circulating cell-free DNA: a pancreatic cancer case-control

    PubMed Central

    Le Calvez-Kelm, Florence; Foll, Matthieu; Wozniak, Magdalena B.; Delhomme, Tiffany M.; Durand, Geoffroy; Chopard, Priscilia; Pertesi, Maroulio; Fabianova, Eleonora; Adamcakova, Zora; Holcatova, Ivana; Foretova, Lenka; Janout, Vladimir; Vallee, Maxime P.; Rinaldi, Sabina; Brennan, Paul; McKay, James D.; Byrnes, Graham B.; Scelo, Ghislaine

    2016-01-01

    The utility of KRAS mutations in plasma circulating cell-free DNA (cfDNA) samples as non-invasive biomarkers for the detection of pancreatic cancer has never been evaluated in a large case-control series. We applied a KRAS amplicon-based deep sequencing strategy combined with analytical pipeline specifically designed for the detection of low-abundance mutations to screen plasma samples of 437 pancreatic cancer cases, 141 chronic pancreatitis subjects, and 394 healthy controls. We detected mutations in 21.1% (N=92) of cases, of whom 82 (89.1%) carried at least one mutation at hotspot codons 12, 13 or 61, with mutant allelic fractions from 0.08% to 79%. Advanced stages were associated with an increased proportion of detection, with KRAS cfDNA mutations detected in 10.3%, 17,5% and 33.3% of cases with local, regional and systemic stages, respectively. We also detected KRAS cfDNA mutations in 3.7% (N=14) of healthy controls and in 4.3% (N=6) of subjects with chronic pancreatitis, but at significantly lower allelic fractions than in cases. Combining cfDNA KRAS mutations and CA19-9 plasma levels on a limited set of case-control samples did not improve the overall performance of the biomarkers as compared to CA19-9 alone. Whether the limited sensitivity and specificity observed in our series of KRAS mutations in plasma cfDNA as biomarkers for pancreatic cancer detection are attributable to methodological limitations or to the biology of cfDNA should be further assessed in large case-control series. PMID:27705932

  7. [A case of locally advanced sigmoid colon cancer curatively resected after neoadjuvant chemotherapy with FOLFIRI plus panitumumab].

    PubMed

    Horioka, Kohei; Kaku, Keizo; Jimi, Sei-ichirou; Oohata, Yoshihiro; Kamei, Takafumi

    2013-03-01

    A 72-year-old woman having abdominal pain and high fever was diagnosed with KRAS wild-type sigmoid colon cancer, invading the urinary bladder and uterus with a pelvic abscess. Considering the difficulty of curative resection, we first performed sigmoid colostomy and abscess drainage. Remarkable tumor regression was indicated by CT and colonoscopy after 1 course of FOLFIRI and 5 courses of FOLFIRI+panitumumab. Following an additional 2 courses of panitumumab, sigmoidectomy and partialcystectomy were performed. Six courses of FOLFIRI+panitumumab were administered postoperatively and no recurrence has been observed for 7 months. FOLFIRI+panitumumab may be an effective preoperative chemotherapy for patients with KRAS wild-type locally advanced colon cancer.

  8. Optimization of circulating cell-free DNA recovery for KRAS mutation and HPV detection in plasma.

    PubMed

    Mazurek, Agnieszka M; Fiszer-Kierzkowska, A; Rutkowski, T; Składowski, K; Pierzyna, M; Scieglińska, D; Woźniak, G; Głowacki, G; Kawczyński, R; Małusecka, E

    2013-01-01

    The precise analysis of tumour markers in blood such as circulating cell-free DNA (cfDNA) could have a significant impact in facilitating monitoring of patients after initial therapy. Although high levels of total cfDNA in plasma of cancer patients are consistently demonstrated, a low sensitivity of DNA alterations is reported. The major question regards the recovery of tumour-specific cfDNA such as KRAS mutated DNA and cancer-associated type 16 of human papillomavirus (HPV16). TaqMan technology was used for detection of KRAS mutation, HPV16 and to quantify cfDNA in blood plasma. Comparison of four different column-based commercial kits shows that the cfDNA purification carried out by the Genomic Mini AX Body Fluids kit and the QIAamp Circulating Nucleic Acid kit gave us the possibility to improve the sensitivity of detection of KRAS mutation and HPV16. The optimized method was used to follow the reduction in cancer-specific cfDNA after therapy. We found that large volume extractions with low volume of DNA eluate enabled trace amounts of tumour-specific cfDNA from cancer patients to be effectively identified. Data presented in this study facilitate detection of tumour-specific cfDNA and improve standards needed for the implementation of cfDNA technology into routine clinical practice.

  9. Spectroscopic investigation of the interaction between G-quadruplex of KRAS promoter sequence and three isoquinoline alkaloids

    NASA Astrophysics Data System (ADS)

    Wen, Li-Na; Xie, Meng-Xia

    2017-01-01

    KRAS promoter can form G-quadruplex structure and regulate gene transcription. The drugs which can bind with G-quadruplex of KRAS promoter may be potential remedy for treatment of cancers associated with KRAS mutation. The interaction mechanism between the G-quadruplex of KRAS promoter and three isoquinoline alkaloids (jatrorrhizine, berberine and sanguinarine) has been investigated by UV-visible, fluorescence and circular dichroism spectroscopic methods. The results showed that the three alkaloids can form complexes with G-quadruplex KRAS promoter with the molecular ratio of 1:1, and the binding constants were (0.90 ± 0.16) × 106 L mol- 1, (0.93 ± 0.21) × 106 L mol- 1 and (1.16 ± 0.45) × 106 L mol- 1 for jatrorrhizine, berberine and sanguinarine. The absorption spectra, KI quenching and fluorescence anisotropy and polarization studies suggested jatrorrhizine and berberine interacted with G-quadruplex by not only end-stacking binding mode but also grooves or loops binding mode, while sanguinarine by end-stacking binding mode. Sanguinarine was more beneficial to maintain the stability and parallel conformation of KRAS promoter G-quadruplex. MTT assay was performed to evaluate antiproliferation effects of the three isoquinoline alkaloids on SW620 cells, and the antiproliferation effects of the three alkaloids were sanguinarine > berberine > jatrorrhizine. All the three alkaloids can bind with KRAS promoter G-quadruplex, and sanguinarine had the better binding property and antiproliferation effects on SW620 cells. The results obtained are meaningful to explore potential reagents targeting the parallel G-quadruplex structure of KRAS promoter for gene theraphy of colorectal carcinomas.

  10. Wild-type presenilin 1 protects against Alzheimer disease mutation-induced amyloid pathology.

    PubMed

    Wang, Runsheng; Wang, Baiping; He, Wanxia; Zheng, Hui

    2006-06-02

    Mutations in presenilin 1 (PS1) lead to dominant inheritance of early onset familial Alzheimer disease (FAD). These mutations are known to alter the gamma-secretase cleavage of the amyloid precursor protein, resulting in increased ratio of Abeta42/Abeta40 and accelerated amyloid plaque pathology in transgenic mouse models. To investigate the factors that drive the Abeta42/Abeta40 ratio and amyloid pathogenesis and to investigate the possible interactions between wild-type and FAD mutant PS1, which are co-expressed in transgenic animals, we expressed the PS1 M146V knock-in allele either on wild-type PS1 (PS1M146V/+) or PS1 null (PS1M146V/-) background and crossed these alleles with the Tg2576 APP transgenic mice. Introduction of the PS1 M146V mutation on Tg2576 background resulted in earlier onset of plaque pathology. Surprisingly, removing the wild-type PS1 in the presence of the PS1 M146V mutation (PS1M146V/-) greatly exacerbated the amyloid burden; and this was attributed to a reduction of gamma-secretase activity rather than an increase in Abeta42. Our findings establish a protective role of the wild-type PS1 against the FAD mutation-induced amyloid pathology through a partial loss-of-function mechanism.

  11. Exosomes Facilitate Therapeutic Targeting of Oncogenic Kras in Pancreatic Cancer

    PubMed Central

    Kamerkar, Sushrut; LeBleu, Valerie S.; Sugimoto, Hikaru; Yang, Sujuan; Ruivo, Carolina F.; Melo, Sonia A.; Lee, J. Jack; Kalluri, Raghu

    2017-01-01

    Summary The mutant form of the GTPase KRAS is a key driver of pancreatic cancer but remains a challenging therapeutic target. Exosomes, extracellular vesicles generated by all cells, are naturally present in the blood. Here we demonstrate that enhanced retention of exosomes in circulation, compared to liposomes, is due to CD47 mediated protection of exosomes from phagocytosis by monocytes and macrophages. Exosomes derived from normal fibroblast-like mesenchymal cells were engineered to carry siRNA or shRNA specific to oncogenic KRASG12D (iExosomes), a common mutation in pancreatic cancer. Compared to liposomes, iExosomes target oncogenic Kras with an enhanced efficacy that is dependent on CD47, and is facilitated by macropinocytosis. iExosomes treatment suppressed cancer in multiple mouse models of pancreatic cancer and significantly increased their overall survival. Our results inform on a novel approach for direct and specific targeting of oncogenic Kras in tumors using iExosomes. PMID:28607485

  12. Mutation Analysis of KRAS and BRAF Genes in Metastatic Colorectal Cancer: a First Large Scale Study from Iran.

    PubMed

    Koochak, Aghigh; Rakhshani, Nasser; Karbalaie Niya, Mohammad Hadi; Tameshkel, Fahimeh Safarnezhad; Sohrabi, Masoud Reza; Babaee, Mohammad Reza; Rezvani, Hamid; Bahar, Babak; Imanzade, Farid; Zamani, Farhad; Khonsari, Mohammad Reza; Ajdarkosh, Hossein; Hemmasi, Gholamreza

    2016-01-01

    The investigation of mutation patterns in oncogenes potentially can make available a reliable mechanism for management and treatment decisions for patients with colorectal cancer (CRC). This study concerns the rate of KRAS and BRAF genes mutations in Iranian metastatic colorectal cancer (mCRC) patients, as well as associations of genotypes with clinicopathological features. A total of 1,000 mCRC specimens collected from 2008 to 2012 that referred to the Mehr Hospital and Partolab center, Tehran, Iran enrolled in this cross sectional study. Using HRM, Dxs Therascreen and Pyrosequencing methods, we analyzed the mutational status of KRAS and BRAF genes in these. KRAS mutations were present in 33.6% cases (n=336). Of KRAS mutation positive cases, 85.1% were in codon 12 and 14.9% were in codon 13. The most frequent mutation at KRAS codon 12 was Gly12Asp; BRAF mutations were not found in any mCRC patients (n=242). In addition, we observed a strong correlation of KRAS mutations with some clinicopathological characteristics. KRAS mutations are frequent in mCRCs while presence of BRAF mutations in these patients is rare. Moreover, associations of KRAS genotypes with non-mucinous adenocarcinoma and depth of invasion (pT3) were remarkable.

  13. A Ten-Week Biochemistry Lab Project Studying Wild-Type and Mutant Bacterial Alkaline Phosphatase

    ERIC Educational Resources Information Center

    Witherow, D. Scott

    2016-01-01

    This work describes a 10-week laboratory project studying wild-type and mutant bacterial alkaline phosphatase, in which students purify, quantitate, and perform kinetic assays on wild-type and selected mutants of the enzyme. Students also perform plasmid DNA purification, digestion, and gel analysis. In addition to simply learning important…

  14. Farnesylated and methylated KRAS4b: high yield production of protein suitable for biophysical studies of prenylated protein-lipid interactions.

    PubMed

    Gillette, William K; Esposito, Dominic; Abreu Blanco, Maria; Alexander, Patrick; Bindu, Lakshman; Bittner, Cammi; Chertov, Oleg; Frank, Peter H; Grose, Carissa; Jones, Jane E; Meng, Zhaojing; Perkins, Shelley; Van, Que; Ghirlando, Rodolfo; Fivash, Matthew; Nissley, Dwight V; McCormick, Frank; Holderfield, Matthew; Stephen, Andrew G

    2015-11-02

    Prenylated proteins play key roles in several human diseases including cancer, atherosclerosis and Alzheimer's disease. KRAS4b, which is frequently mutated in pancreatic, colon and lung cancers, is processed by farnesylation, proteolytic cleavage and carboxymethylation at the C-terminus. Plasma membrane localization of KRAS4b requires this processing as does KRAS4b-dependent RAF kinase activation. Previous attempts to produce modified KRAS have relied on protein engineering approaches or in vitro farnesylation of bacterially expressed KRAS protein. The proteins produced by these methods do not accurately replicate the mature KRAS protein found in mammalian cells and the protein yield is typically low. We describe a protocol that yields 5-10 mg/L highly purified, farnesylated, and methylated KRAS4b from insect cells. Farnesylated and methylated KRAS4b is fully active in hydrolyzing GTP, binds RAF-RBD on lipid Nanodiscs and interacts with the known farnesyl-binding protein PDEδ.

  15. Farnesylated and methylated KRAS4b: high yield production of protein suitable for biophysical studies of prenylated protein-lipid interactions

    PubMed Central

    Gillette, William K.; Esposito, Dominic; Abreu Blanco, Maria; Alexander, Patrick; Bindu, Lakshman; Bittner, Cammi; Chertov, Oleg; Frank, Peter H.; Grose, Carissa; Jones, Jane E.; Meng, Zhaojing; Perkins, Shelley; Van, Que; Ghirlando, Rodolfo; Fivash, Matthew; Nissley, Dwight V.; McCormick, Frank; Holderfield, Matthew; Stephen, Andrew G.

    2015-01-01

    Prenylated proteins play key roles in several human diseases including cancer, atherosclerosis and Alzheimer’s disease. KRAS4b, which is frequently mutated in pancreatic, colon and lung cancers, is processed by farnesylation, proteolytic cleavage and carboxymethylation at the C-terminus. Plasma membrane localization of KRAS4b requires this processing as does KRAS4b-dependent RAF kinase activation. Previous attempts to produce modified KRAS have relied on protein engineering approaches or in vitro farnesylation of bacterially expressed KRAS protein. The proteins produced by these methods do not accurately replicate the mature KRAS protein found in mammalian cells and the protein yield is typically low. We describe a protocol that yields 5–10 mg/L highly purified, farnesylated, and methylated KRAS4b from insect cells. Farnesylated and methylated KRAS4b is fully active in hydrolyzing GTP, binds RAF-RBD on lipid Nanodiscs and interacts with the known farnesyl-binding protein PDEδ. PMID:26522388

  16. Structures and Free Energy Landscapes of the Wild-Type and A30P Mutant-Type α-Synuclein Proteins with Dynamics

    PubMed Central

    2013-01-01

    The genetic missense A30P mutation of the wild-type α-synuclein protein results in the replacement of the 30th amino acid residue from alanine (Ala) to proline (Pro) and was initially found in the members of a German family who developed Parkinson’s disease. Even though the structures of these proteins have been measured before, detailed understanding about the structures and their relationships with free energy landscapes is lacking, which is of interest to provide insights into the pathogenic mechanism of Parkinson’s disease. We report the secondary and tertiary structures and conformational free energy landscapes of the wild-type and A30P mutant-type α-synuclein proteins in an aqueous solution environment via extensive parallel tempering molecular dynamics simulations along with thermodynamic calculations. In addition, we present the residual secondary structure component transition stabilities at the atomic level with dynamics in terms of free energy change calculations using a new strategy that we reported most recently. Our studies yield new interesting results; for instance, we find that the A30P mutation has local as well as long-range effects on the structural properties of the wild-type α-synuclein protein. The helical content at Ala18-Gly31 is less prominent in comparison to the wild-type α-synuclein protein. The β-sheet structure abundance decreases in the N-terminal region upon A30P mutation of the wild-type α-synuclein, whereas the NAC and C-terminal regions possess larger tendencies for β-sheet structure formation. Long-range intramolecular protein interactions are less abundant upon A30P mutation, especially between the NAC and C-terminal regions, which is linked to the less compact and less stable structures of the A30P mutant-type rather than the wild-type α-synuclein protein. Results including the usage of our new strategy for secondary structure transition stabilities show that the A30P mutant-type α-synuclein tendency toward

  17. Structures and free energy landscapes of the wild-type and A30P mutant-type α-synuclein proteins with dynamics.

    PubMed

    Wise-Scira, Olivia; Aloglu, Ahmet Kemal; Dunn, Aquila; Sakallioglu, Isin Tuna; Coskuner, Orkid

    2013-03-20

    The genetic missense A30P mutation of the wild-type α-synuclein protein results in the replacement of the 30th amino acid residue from alanine (Ala) to proline (Pro) and was initially found in the members of a German family who developed Parkinson's disease. Even though the structures of these proteins have been measured before, detailed understanding about the structures and their relationships with free energy landscapes is lacking, which is of interest to provide insights into the pathogenic mechanism of Parkinson's disease. We report the secondary and tertiary structures and conformational free energy landscapes of the wild-type and A30P mutant-type α-synuclein proteins in an aqueous solution environment via extensive parallel tempering molecular dynamics simulations along with thermodynamic calculations. In addition, we present the residual secondary structure component transition stabilities at the atomic level with dynamics in terms of free energy change calculations using a new strategy that we reported most recently. Our studies yield new interesting results; for instance, we find that the A30P mutation has local as well as long-range effects on the structural properties of the wild-type α-synuclein protein. The helical content at Ala18-Gly31 is less prominent in comparison to the wild-type α-synuclein protein. The β-sheet structure abundance decreases in the N-terminal region upon A30P mutation of the wild-type α-synuclein, whereas the NAC and C-terminal regions possess larger tendencies for β-sheet structure formation. Long-range intramolecular protein interactions are less abundant upon A30P mutation, especially between the NAC and C-terminal regions, which is linked to the less compact and less stable structures of the A30P mutant-type rather than the wild-type α-synuclein protein. Results including the usage of our new strategy for secondary structure transition stabilities show that the A30P mutant-type α-synuclein tendency toward

  18. KRAS and TP53 mutations in inflammatory bowel disease-associated colorectal cancer: a meta-analysis

    PubMed Central

    Du, Lijun; Kim, John J.; Shen, Jinhua; Chen, Binrui; Dai, Ning

    2017-01-01

    Although KRAS and TP53 mutations are common in both inflammatory bowel disease-associated colorectal cancer (IBD-CRC) and sporadic colorectal cancer (S-CRC), molecular events leading to carcinogenesis may be different. Previous studies comparing the frequency of KRAS and TP53 mutations in IBD-CRC and S-CRC were inconsistent. We performed a meta-analysis to compare the presence of KRAS and TP53 mutations among patients with IBD-CRC, S-CRC, and IBD without dysplasia. A total of 19 publications (482 patients with IBD-CRC, 4,222 with S-CRC, 281 with IBD without dysplasia) met the study inclusion criteria. KRAS mutation was less frequent (RR=0.71, 95%CI 0.56-0.90; P=0.004) while TP53 mutation was more common (RR=1.24, 95%CI 1.10-1.39; P<0.001) in patients with IBD-CRC compared to S-CRC. Both KRAS (RR=3.09, 95%CI 1.47-6.51; P=0.003) and TP53 (RR=2.15, 95%CI 1.07-4.31 P=0.03) mutations were more prevalent in patients with IBD-CRC compared to IBD without dysplasia. In conclusion, IBD-CRC and S-CRC appear to have biologically different molecular pathways. TP53 appears to be more important than KRAS in IBD-CRC compared to S-CRC. Our findings suggest possible roles of TP53 and KRAS as biomarkers for cancer and dysplasia screening among patients with IBD and may also provide targeted therapy in patients with IBD-CRC. PMID:28077799

  19. Differential induction of Toll-like receptors & type 1 interferons by Sabin attenuated & wild type 1 polioviruses in human neuronal cells.

    PubMed

    Mohanty, Madhu C; Deshpande, Jagadish M

    2013-01-01

    Polioviruses are the causative agent of paralytic poliomyelitis. Attenuated polioviruses (Sabin oral poliovirus vaccine strains) do not replicate efficiently in neurons as compared to the wild type polioviruses and therefore do not cause disease. This study was aimed to investigate the differential host immune response to wild type 1 poliovirus (wild PV) and Sabin attenuated type 1 poliovirus (Sabin PV) in cultured human neuronal cells. By using flow cytometry and real time PCR methods we examined host innate immune responses and compared the role of toll like receptors (TLRs) and cytoplasmic RNA helicases in cultured human neuronal cells (SK-N-SH) infected with Sabin PV and wild PV. Human neuronal cells expressed very low levels of TLRs constitutively. Sabin PV infection induced significantly higher expression of TLR3, TLR7 and melanoma differentiation-associated protein-5 (MDA-5) m-RNA in neuronal cells at the beginning of infection (up to 4 h) as compared to wild PV. Further, Sabin PV also induced the expression of interferon α/β at early time point of infection. The induced expression of IFN α/β gene by Sabin PV in neuronal cells could be suppressed by inhibiting TLR7. Neuronal cell innate immune response to Sabin and wild polioviruses differ significantly for TLR3, TLR7, MDA5 and type 1 interferons. Effects of TLR7 activation and interferon production and Sabin virus replication in neuronal cells need to be actively investigated in future studies.

  20. XPO1-dependent nuclear export is a druggable vulnerability in KRAS-mutant lung cancer | Office of Cancer Genomics

    Cancer.gov

    The common participation of oncogenic KRAS proteins in many of the most lethal human cancers, together with the ease of detecting somatic KRAS mutant alleles in patient samples, has spurred persistent and intensive efforts to develop drugs that inhibit KRAS activity.

  1. Long-term follow-up of chronic pancreatitis patients with K-ras mutation in the pancreatic juice.

    PubMed

    Kamisawa, Terumi; Takuma, Kensuke; Tabata, Taku; Egawa, Naoto; Yamaguchi, Toshikazu

    2011-01-01

    Pancreatic cancer is known to occur during the course of chronic pancreatitis in some patients. This study aimed to identify a high risk group for developing pancreatic cancer associated with chronic pancreatitis, particularly the presence of K-ras mutations in the pancreatic juice. K-ras mutation was analyzed by enriched polymerase chain reaction-enzyme linked mini-sequence assay in endoscopically-collected pancreatic juice of 21 patients with chronic pancreatitis between 1995 and 2000. All of them were followed-up for 6.0 +/- 3.8 (mean +/- SD) years (range, 2.1-14.2 years). K-ras point mutation was observed in the pancreatic juice of 11 patients with chronic pancreatitis (2+, n=2; 1+, n=6; +/-, n=3). Of these, 2 chronic pancreatitis patients with 2+K-ras point mutation developed pancreatic cancer 4.5 and 10.8 years, respectively, after the examination. Two chronic pancreatitis patients with K-ras mutation developed pancreatic cancer 4.5 and 10.8 years later. Semiquantitative analysis of K-ras mutation in endoscopically-collected pancreatic juice appears to be a useful tool for identifying chronic pancreatitis patients at high risk for developing pancreatic cancer.

  2. Overexpression of PtABCC1 contributes to mercury tolerance and accumulation in Arabidopsis and poplar.

    PubMed

    Sun, Liping; Ma, Yifeng; Wang, Huihong; Huang, Weipeng; Wang, Xiaozhu; Han, Li; Sun, Wanmei; Han, Erqin; Wang, Bangjun

    2018-03-18

    Mercury (Hg) is a highly biotoxic heavy metal that contaminates the environment. Phytoremediation is a green technology for environmental remediation and is used to clean up Hg contaminated soil in recent years. In this study, we isolated an ATP-binding cassette (ABC) transporter gene PtABCC1 from Populus trichocarpa and overexpressed it in Arabidopsis and poplar. The transgenic plants conferred higher Hg tolerance than wild type (WT) plants, and overexpression of PtABCC1 could lead to 26-72% or 7-160% increase of Hg accumulation in Arabidopsis or poplar plants, respectively. These results demonstrated that PtABCC1 plays a crucial role in enhancing tolerance and accumulation to Hg in plants, which provides a promising way for phytoremediation of Hg contamination. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. MTBDRplus and MTBDRsl Assays: Absence of Wild-Type Probe Hybridization and Implications for Detection of Drug-Resistant Tuberculosis

    PubMed Central

    Georghiou, Sophia B.; Catanzaro, Donald; Rodrigues, Camilla; Crudu, Valeriu; Victor, Thomas C.; Garfein, Richard S.; Catanzaro, Antonino; Rodwell, Timothy C.

    2016-01-01

    Accurate identification of drug-resistant Mycobacterium tuberculosis is imperative for effective treatment and subsequent reduction in disease transmission. Line probe assays rapidly detect mutations associated with resistance and wild-type sequences associated with susceptibility. Examination of molecular-level performance is necessary for improved assay result interpretation and for continued diagnostic development. Using data collected from a large, multisite diagnostic study, probe hybridization results from line probe assays, MTBDRplus and MTBDRsl, were compared to those of sequencing, and the diagnostic performance of each individual mutation and wild-type probe was assessed. Line probe assay results classified as resistant due to the absence of wild-type probe hybridization were compared to those of sequencing to determine if novel mutations were inhibiting wild-type probe hybridization. The contribution of absent wild-type probe hybridization to the detection of drug resistance was assessed via comparison to a phenotypic reference standard. In our study, mutation probes demonstrated significantly higher specificities than wild-type probes and wild-type probes demonstrated marginally higher sensitivities than mutation probes, an ideal combination for detecting the presence of resistance conferring mutations while yielding the fewest number of false-positive results. The absence of wild-type probe hybridization without mutation probe hybridization was determined to be primarily the result of failure of mutation probe hybridization and not the result of novel or rare mutations. Compared to phenotypic culture-based drug susceptibility testing, the absence of wild-type probe hybridization without mutation probe hybridization significantly contributed to the detection of phenotypic rifampin and fluoroquinolone resistance with negligible increases in false-positive results. PMID:26763971

  4. K-ras mutations in benzotrichloride-induced lung tumors of A/J mice.

    PubMed

    You, M; Wang, Y; Nash, B; Stoner, G D

    1993-06-01

    Benzotrichloride (BTC) is used extensively as a chemical intermediate in the synthesis of benzoyl chloride and benzoyl peroxide. Epidemiological data suggest that BTC is a human lung carcinogen. BTC is also a carcinogen in the A/J mouse lung tumor bioassay. Activated K-ras protooncogenes were detected in BTC-induced lung tumors from A/J mice. The polymerase chain reaction was used to amplify specific DNA segments likely to contain activating mutations, and the amplified DNAs were sequenced to identify the mutation. The activating mutation present in the K-ras gene from all BTC-induced lung tumors (24/24) was a GC-->AT transition in codon 12. Thus, BTC may exert its carcinogenic action by activation of the K-ras protooncogene through a genotoxic mechanism.

  5. Mutant KRAS Circulating Tumor DNA Is an Accurate Tool for Pancreatic Cancer Monitoring.

    PubMed

    Perets, Ruth; Greenberg, Orli; Shentzer, Talia; Semenisty, Valeria; Epelbaum, Ron; Bick, Tova; Sarji, Shada; Ben-Izhak, Ofer; Sabo, Edmond; Hershkovitz, Dov

    2018-05-01

    Many new pancreatic cancer treatment combinations have been discovered in recent years, yet the prognosis of pancreatic ductal adenocarcinoma (PDAC) remains grim. The advent of new treatments highlights the need for better monitoring tools for treatment response, to allow a timely switch between different therapeutic regimens. Circulating tumor DNA (ctDNA) is a tool for cancer detection and characterization with growing clinical use. However, currently, ctDNA is not used for monitoring treatment response. The high prevalence of KRAS hotspot mutations in PDAC suggests that mutant KRAS can be an efficient ctDNA marker for PDAC monitoring. Seventeen metastatic PDAC patients were recruited and serial plasma samples were collected. CtDNA was extracted from the plasma, and KRAS mutation analysis was performed using next-generation sequencing and correlated with serum CA19-9 levels, imaging, and survival. Plasma KRAS mutations were detected in 5/17 (29.4%) patients. KRAS ctDNA detection was associated with shorter survival (8 vs. 37.5 months). Our results show that, in ctDNA positive patients, ctDNA is at least comparable to CA19-9 as a marker for monitoring treatment response. Furthermore, the rate of ctDNA change was inversely correlated with survival. Our results confirm that mutant KRAS ctDNA detection in metastatic PDAC patients is a poor prognostic marker. Additionally, we were able to show that mutant KRAS ctDNA analysis can be used to monitor treatment response in PDAC patients and that ctDNA dynamics is associated with survival. We suggest that ctDNA analysis in metastatic PDAC patients is a readily available tool for disease monitoring. Avoiding futile chemotherapy in metastatic pancreatic ductal adenocarcinoma (PDAC) patients by monitoring response to treatment is of utmost importance. A novel biomarker for monitoring treatment response in PDAC, using mutant KRAS circulating tumor DNA (ctDNA), is proposed. Results, although limited by small sample numbers

  6. Proteomic profiling of γ-ECS overexpressed transgenic Nicotiana in response to drought stress.

    PubMed

    Kumar, Deepak; Datta, Riddhi; Sinha, Ragini; Ghosh, Aparupa; Chattopadhyay, Sharmila

    2014-01-01

    The contribution of Glutathione (GSH) in drought stress tolerance is an established fact. However, the proteins which are directly or indirectly related to the increased level of GSH in response to drought stress are yet to be known. To explore this, here, transgenic tobacco plants (NtGp11) overexpressing gamma-glutamylcysteine synthetase (γ-ECS) was tested for tolerance against drought stress. NtGp11 conferred tolerance to drought stress by increased germination rate, water retention, water recovery, chlorophyll, and proline content compared with wild-type plants. Semi-quantitative RT-PCR analysis revealed that the transcript levels of stress-responsive genes were higher in NtGp11 compared with wild-type in response to drought stress. Two-dimensional gel electrophoresis (2-DE) coupled with MALDI TOF-TOF MS/MS analysis has been used to identify 43 differentially expressed proteins in response to drought in wild-type and NtGp11 plants. The results demonstrated the up-accumulation of 58.1% of proteins among which 36%, 24%, and 20% of them were related to stress and defense, carbon metabolism and energy metabolism categories, respectively. Taken together, our results demonstrated that GSH plays an important role in combating drought stress in plants by inducing stress related genes and proteins like HSP70, chalcone synthase, glutathione peroxidase, thioredoxin peroxidase, ACC oxidase, and heme oxygenase I.

  7. Proteomic profiling of γ-ECS overexpressed transgenic Nicotiana in response to drought stress.

    PubMed

    Kumar, Deepak; Datta, Riddhi; Sinha, Ragini; Ghosh, Aparupa; Chattopadhyay, Sharmila

    2014-05-20

    The contribution of Glutathione (GSH) in drought stress tolerance is an established fact. However, the proteins which are directly or indirectly related to the increased level of GSH in response to drought stress are yet to be known. To explore this, here, transgenic tobacco plants (NtGp 11) overexpressing gamma-glutamylcysteine synthetase (γ-ECS) was tested for tolerance against drought stress. NtGp 11 conferred tolerance to drought stress by increased germination rate, water retention, water recovery, chlorophyll, and proline content compared with wild-type plants. Semi-quantitative RT-PCR analysis revealed that the transcript levels of stress-responsive genes were higher in NtGp 11 compared with wild-type in response to drought stress. Two-dimensional gel electrophoresis (2-DE) coupled with MALDI TOF-TOF MS/MS analysis has been used to identify 43 differentially expressed proteins in response to drought in wild-type and NtGp 11 plants. The results demonstrated the up-accumulation of 58.1% of proteins among which 36%, 24%, and 20% of them were related to stress and defense, carbon metabolism and energy metabolism categories, respectively. Taken together, our results demonstrated that GSH plays an important role in combating drought stress in plants by inducing stress related genes and proteins like HSP70, chalcone synthase, glutathione peroxidase, thioredoxin peroxidase, ACC oxidase, and heme oxygenase I.

  8. Alteration of strain background and a high omega-6 fat diet induces earlier onset of pancreatic neoplasia in EL-Kras transgenic mice.

    PubMed

    Cheon, Eric C; Strouch, Matthew J; Barron, Morgan R; Ding, Yongzeng; Melstrom, Laleh G; Krantz, Seth B; Mullapudi, Bhargava; Adrian, Kevin; Rao, Sambasiva; Adrian, Thomas E; Bentrem, David J; Grippo, Paul J

    2011-06-15

    Diets containing omega-6 (ω-6) fat have been associated with increased tumor development in carcinogen-induced pancreatic cancer models. However, the effects of ω-6 fatty acids and background strain on the development of genetically-induced pancreatic neoplasia is unknown. We assessed the effects of a diet rich in ω-6 fat on the development of pancreatic neoplasia in elastase (EL)-Kras(G12D) (EL-Kras) mice in two different backgrounds. EL-Kras FVB mice were crossed to C57BL/6 (B6) mice to produce EL-Kras FVB6 F1 (or EL-Kras F1) and EL-Kras B6 congenic mice. Age-matched EL-Kras mice from each strain were compared to one another on a standard chow. Two cohorts of EL-Kras FVB and EL-Kras F1 mice were fed a 23% corn oil diet and compared to age-matched mice fed a standard chow. Pancreata were scored for incidence, frequency, and size of neoplastic lesions, and stained for the presence of mast cells to evaluate changes in the inflammatory milieu secondary to a high fat diet. EL-Kras F1 mice had increased incidence, frequency, and size of pancreatic neoplasia compared to EL-Kras FVB mice. The frequency and size of neoplastic lesions and the weight and pancreatic mast cell densities in EL-Kras F1 mice were increased in mice fed a high ω-6 fatty acid diet compared to mice fed a standard chow. We herein introduce the EL-Kras B6 mouse model which presents with increased frequency of pancreatic neoplasia compared to EL-Kras F1 mice. The phenotype in EL-Kras F1 and FVB mice is promoted by a diet rich in ω-6 fatty acid. Copyright © 2010 UICC.

  9. Molecular characterization and functional analysis of pteridine reductase in wild-type and antimony-resistant Leishmania lines.

    PubMed

    de Souza Moreira, Douglas; Ferreira, Rafael Fernandes; Murta, Silvane M F

    2016-01-01

    Pteridine reductase (PTR1) is an NADPH-dependent reductase that participates in the salvage of pteridines, which are essential to maintain growth of Leishmania. In this study, we performed the molecular characterization of ptr1 gene in wild-type (WTS) and SbIII-resistant (SbR) lines from Leishmania guyanensis (Lg), Leishmania amazonensis (La), Leishmania braziliensis (Lb) and Leishmania infantum (Li), evaluating the chromosomal location, mRNA levels of the ptr1 gene and PTR1 protein expression. PFGE results showed that the ptr1 gene is located in a 797 kb chromosomal band in all Leishmania lines analyzed. Interestingly, an additional chromosomal band of 1070 kb was observed only in LbSbR line. Northern blot results showed that the levels of ptr1 mRNA are increased in the LgSbR, LaSbR and LbSbR lines. Western blot assays using the polyclonal anti-LmPTR1 antibody demonstrated that PTR1 protein is more expressed in the LgSbR, LaSbR and LbSbR lines compared to their respective WTS counterparts. Nevertheless, no difference in the level of mRNA and protein was observed between the LiWTS and LiSbR lines. Functional analysis of PTR1 enzyme was performed to determine whether the overexpression of ptr1 gene in the WTS L. braziliensis and L. infantum lines would change the SbIII-resistance phenotype of transfected parasites. Western blot results showed that the expression level of PTR1 protein was increased in the transfected parasites compared to the non-transfected ones. IC50 analysis revealed that the overexpression of ptr1 gene in the WTS L. braziliensis line increased 2-fold the SbIII-resistance phenotype compared to the non-transfected counterpart. Furthermore, the overexpression of ptr1 gene in the WTS L. infantum line did not change the SbIII-resistance phenotype. These results suggest that the PTR1 enzyme may be implicated in the SbIII-resistance phenotype in L. braziliensis line. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Overexpression of plasma membrane H+-ATPase in guard cells promotes light-induced stomatal opening and enhances plant growth.

    PubMed

    Wang, Yin; Noguchi, Ko; Ono, Natsuko; Inoue, Shin-ichiro; Terashima, Ichiro; Kinoshita, Toshinori

    2014-01-07

    Stomatal pores surrounded by a pair of guard cells in the plant epidermis control gas exchange between plants and the atmosphere in response to light, CO2, and the plant hormone abscisic acid. Light-induced stomatal opening is mediated by at least three key components: the blue light receptor phototropin (phot1 and phot2), plasma membrane H(+)-ATPase, and plasma membrane inward-rectifying K(+) channels. Very few attempts have been made to enhance stomatal opening with the goal of increasing photosynthesis and plant growth, even though stomatal resistance is thought to be the major limiting factor for CO2 uptake by plants. Here, we show that transgenic Arabidopsis plants overexpressing H(+)-ATPase using the strong guard cell promoter GC1 showed enhanced light-induced stomatal opening, photosynthesis, and plant growth. The transgenic plants produced larger and increased numbers of rosette leaves, with ∼42-63% greater fresh and dry weights than the wild type in the first 25 d of growth. The dry weights of total flowering stems of 45-d-old transgenic plants, including seeds, siliques, and flowers, were ∼36-41% greater than those of the wild type. In addition, stomata in the transgenic plants closed normally in response to darkness and abscisic acid. In contrast, the overexpression of phototropin or inward-rectifying K(+) channels in guard cells had no effect on these phenotypes. These results demonstrate that stomatal aperture is a limiting factor in photosynthesis and plant growth, and that manipulation of stomatal opening by overexpressing H(+)-ATPase in guard cells is useful for the promotion of plant growth.

  11. High prevalence of mutant KRAS in circulating exosome-derived DNA from early-stage pancreatic cancer patients

    PubMed Central

    Allenson, K.; Castillo, J.; San Lucas, F. A.; Scelo, G.; Kim, D. U.; Bernard, V.; Davis, G.; Kumar, T.; Katz, M.; Overman, M. J.; Foretova, L.; Fabianova, E.; Holcatova, I.; Janout, V.; Meric-Bernstam, F.; Gascoyne, P.; Wistuba, I.; Varadhachary, G.; Brennan, P.; Hanash, S.; Li, D.; Maitra, A.; Alvarez, H.

    2017-01-01

    Background Exosomes arise from viable cancer cells and may reflect a different biology than circulating cell-free DNA (cfDNA) shed from dying tissues. We compare exosome-derived DNA (exoDNA) to cfDNA in liquid biopsies of patients with pancreatic ductal adenocarcinoma (PDAC). Patients and methods Patient samples were obtained between 2003 and 2010, with clinically annotated follow up to 2015. Droplet digital PCR was performed on exoDNA and cfDNA for sensitive detection of KRAS mutants at codons 12/13. A cumulative series of 263 individuals were studied, including a discovery cohort of 142 individuals: 68 PDAC patients of all stages; 20 PDAC patients initially staged with localized disease, with blood drawn after resection for curative intent; and 54 age-matched healthy controls. A validation cohort of 121 individuals (39 cancer patients and 82 healthy controls) was studied to validate KRAS detection rates in early-stage PDAC patients. Primary outcome was circulating KRAS status as detected by droplet digital PCR. Secondary outcomes were disease-free and overall survival. Results KRAS mutations in exoDNA, were identified in 7.4%, 66.7%, 80%, and 85% of age-matched controls, localized, locally advanced, and metastatic PDAC patients, respectively. Comparatively, mutant KRAS cfDNA was detected in 14.8%, 45.5%, 30.8%, and 57.9% of these individuals. Higher exoKRAS MAFs were associated with decreased disease-free survival in patients with localized disease. In the validation cohort, mutant KRAS exoDNA was detected in 43.6% of early-stage PDAC patients and 20% of healthy controls. Conclusions Exosomes are a distinct source of tumor DNA that may be complementary to other liquid biopsy DNA sources. A higher percentage of patients with localized PDAC exhibited detectable KRAS mutations in exoDNA than previously reported for cfDNA. A substantial minority of healthy samples demonstrated mutant KRAS in circulation, dictating careful consideration and application of liquid

  12. VEGF Receptor-2 (Flk-1) Overexpression in Mice Counteracts Focal Epileptic Seizures

    PubMed Central

    Nikitidou, Litsa; Kanter-Schlifke, Irene; Dhondt, Joke; Carmeliet, Peter; Lambrechts, Diether; Kokaia, Mérab

    2012-01-01

    Vascular endothelial growth factor (VEGF) was first described as an angiogenic agent, but has recently also been shown to exert various neurotrophic and neuroprotective effects in the nervous system. These effects of VEGF are mainly mediated by its receptor, VEGFR-2, which is also referred to as the fetal liver kinase receptor 1 (Flk-1). VEGF is up-regulated in neurons and glial cells after epileptic seizures and counteracts seizure-induced neurodegeneration. In vitro, VEGF administration suppresses ictal and interictal epileptiform activity caused by AP4 and 0 Mg2+ via Flk-1 receptor. We therefore explored whether increased VEGF signaling through Flk-1 overexpression may regulate epileptogenesis and ictogenesis in vivo. To this extent, we used transgenic mice overexpressing Flk-1 postnatally in neurons. Intriguingly, Flk-1 overexpressing mice were characterized by an elevated threshold for seizure induction and a decreased duration of focal afterdischarges, indicating anti-ictal action. On the other hand, the kindling progression in these mice was similar to wild-type controls. No significant effects on blood vessels or glia cells, as assessed by Glut1 and GFAP immunohistochemistry, were detected. These results suggest that increased VEGF signaling via overexpression of Flk-1 receptors may directly affect seizure activity even without altering angiogenesis. Thus, Flk-1 could be considered as a novel target for developing future gene therapy strategies against ictal epileptic activity. PMID:22808185

  13. Overexpression of ZDHHC14 promotes migration and invasion of scirrhous type gastric cancer.

    PubMed

    Oo, Htoo Zarni; Sentani, Kazuhiro; Sakamoto, Naoya; Anami, Katsuhiro; Naito, Yutaka; Uraoka, Naohiro; Oshima, Takashi; Yanagihara, Kazuyoshi; Oue, Naohide; Yasui, Wataru

    2014-07-01

    Scirrhous type gastric cancer is highly aggressive and has a poorer prognosis than many other types of gastric carcinoma, due to its characteristic rapid cancer cell infiltration and proliferation, extensive stromal fibrosis, and frequent peritoneal dissemination. The aim of the present study was to identify novel prognostic markers or therapeutic targets for scirrhous type gastric cancer. We reviewed a list of genes with upregulated expression in scirrhous type gastric cancer and compared their expression with that in normal stomach from our previous Escherichia coli (E. coli) ampicillin secretion-trap (CAST) analysis. We focused on the ZDHHC14 gene, which encodes zinc finger, DHHC-type containing 14 protein. qRT-PCR analysis of ZDHHC14 in 41 gastric cancer cases revealed that compared to mRNA levels in normal non-neoplastic gastric mucosa, ZDHHC14 mRNA was overexpressed in 27% of gastric cancer tissue samples. The overexpression of ZDHHC14 was significantly associated with depth of tumor invasion, undifferentiated histology and scirrhous pattern. The invasiveness of ZDHHC14-knockdown HSC-44PE and 44As3 gastric cancer cells was decreased in comparison with that of the negative control siRNA-transfected cells, together with downregulation of MMP-17 mRNA. Integrins α5 and β1 were also downregulated in ZDHHC14-knockdown 44As3 cells. Forced expression of ZDHHC14 activated gastric cancer cell migration and invasion in vitro. These results indicate that ZDHHC14 is involved in tumor progression in patients with scirrhous type gastric cancer.

  14. Epidermal growth factor receptor and K-Ras in non-small cell lung cancer-molecular pathways involved and targeted therapies

    PubMed Central

    de Mello, Ramon Andrade; Marques, Dânia Sofia; Medeiros, Rui; Araújo, António MF

    2011-01-01

    Lung cancer is currently the leading cause of cancer death in Western nations. Non-small cell lung cancer (NSCLC) represents 80% of all lung cancers, and adenocarcinoma is the predominant histological type. Despite the intensive research carried out on this field and therapeutic advances, the overall prognosis of these patients remains unsatisfactory, with a 5-year overall survival rate of less than 15%. Nowadays, pharmacogenetics and pharmacogenomics represent the key to successful treatment. Recent studies suggest the existence of two distinct molecular pathways in the carcinogenesis of lung adenocarcinoma: one associated with smoking and activation of the K-Ras oncogene and the other not associated with smoking and activation of the epidermal growth factor receptor (EGFR). The K-ras mutation is mainly responsible for primary resistance to new molecules which inhibit tyrosine kinase EGFR (erlotinib and gefitinib) and most of the EGFR mutations are responsible for increased tumor sensitivity to these drugs. This article aims to conduct a systematic review of the literature regarding the molecular pathways involving the EGFR, K-Ras and EGFR targeted therapies in NSCLC tumor behavior. PMID:22087435

  15. Clinicopathological Characteristics and KRAS Mutation Status of Endometrial Mucinous Metaplasia and Carcinoma.

    PubMed

    Sung, Ji-Youn; Jung, Yoon Yang; Kim, Hyun-Soo

    2018-05-01

    Mucinous metaplasia of the endometrium occurs as a spectrum of epithelial alterations ranging from the formation of simple, tubular glands to architecturally complex glandular proliferation with intraglandular papillary projection and cellular tufts. Endometrial mucinous metaplasia often presents a diagnostic challenge in endometrial curettage. We analyzed the clinicopathological characteristics and the mutation status for V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS) of 11 cases of endometrial mucinous metaplasia. Electronic medical record review and histopathological examination were performed. KRAS mutation status was analyzed using a pyrosequencing technique. Cases were classified histopathologically into simple (5/11) or papillary (6/11) mucinous metaplasias. All (6/6) papillary mucinous metaplasias were associated with atypical hyperplasia/endometrioid intraepithelial neoplasia (AH/EIN; 1/6) or carcinoma (5/6), whereas in a single patient with simple mucinous metaplasia, grade 1 endometrioid carcinoma was incidentally detected. The difference in frequency of association of the metaplasia with AH/EIN or carcinoma was significant (p=0.015). KRAS mutations were identified in five out of six cases of papillary mucinous metaplasias, comprising three cases with G12D and two with G12V mutations; the frequency of KRAS mutation was significantly higher (p=0.015) than in cases of simple mucinous metaplasia (0/5). Papillary mucinous metaplasia is frequently associated with endometrial neoplastic lesions. The high incidence of KRAS mutations in papillary mucinous metaplasia suggests that papillary mucinous metaplasia may be a precancerous lesion of a certain subset of mucinous carcinomas of the endometrium. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  16. Wild-type myoblasts rescue the ability of myogenin-null myoblasts to fuse in vivo.

    PubMed

    Myer, A; Wagner, D S; Vivian, J L; Olson, E N; Klein, W H

    1997-05-15

    Skeletal muscle is formed via a complex series of events during embryogenesis. These events include commitment of mesodermal precursor cells, cell migration, cell-cell recognition, fusion of myoblasts, activation of structural genes, and maturation. In mice lacking the bHLH transcription factor myogenin, myoblasts are specified and positioned correctly, but few fuse to form multinucleated fibers. This indicates that myogenin is critical for the fusion process and subsequent differentiation events of myogenesis. To further define the nature of the myogenic defects in myogenin-null mice, we investigated whether myogenin-null myoblasts are capable of fusing with wild-type myoblasts in vivo using chimeric mice containing mixtures of myogenin-null and wild-type cells. Chimeric embryos demonstrated that myogenin-null myoblasts readily fused in the presence of wild-type myoblasts. However, chimeric myofibers did not express wild-type levels of muscle-specific gene products, and myofibers with a high percentage of mutant nuclei appeared abnormal, suggesting that the wild-type nuclei could not fully rescue mutant nuclei in the myofibers. These data demonstrate that myoblast fusion can be uncoupled from complete myogenic differentiation and that myogenin regulates a specific subset of genes with diverse function. Thus, myogenin appears to control not only transcription of muscle structural genes but also the extracellular environment in which myoblast fusion takes place. We propose that myogenin regulates the expression of one or more extracellular or cell surface proteins required to initiate the muscle differentiation program.

  17. Cdx mutant axial progenitor cells are rescued by grafting to a wild type environment.

    PubMed

    Bialecka, Monika; Wilson, Valerie; Deschamps, Jacqueline

    2010-11-01

    Cdx transcription factors are required for axial extension. Cdx genes are expressed in the posterior growth zone, a region that supplies new cells for axial elongation. Cdx2(+/-)Cdx4(-/-) (Cdx2/4) mutant embryos show abnormalities in axis elongation from E8.5, culminating in axial truncation at E10.5. These data raised the possibility that the long-term axial progenitors of Cdx mutants are intrinsically impaired in their ability to contribute to posterior growth. We investigated whether we could identify cell-autonomous defects of the axial progenitor cells by grafting mutant cells into a wild type growth zone environment. We compared the contribution of GFP labeled mutant and wild type progenitors grafted to unlabeled wild type recipients subsequently cultured over the period during which Cdx2/4 defects emerge. Descendants of grafted cells were scored for their contribution to differentiated tissues in the elongating axis and to the posterior growth zone. No difference between the contribution of descendants from wild type and mutant grafted progenitors was detected, indicating that rescue of the Cdx mutant progenitors by the wild type recipient growth zone is provided non-cell autonomously. Recently, we showed that premature axial termination of Cdx mutants can be partly rescued by stimulating canonical Wnt signaling in the posterior growth zone. Taken together with the data shown here, this suggests that Cdx genes function to maintain a signaling-dependent niche for the posterior axial progenitors. Copyright © 2010 Elsevier Inc. All rights reserved.

  18. Staying Alive: Cancer Cells Expressing Mutant KRas Depend on ERH for Survival | Center for Cancer Research

    Cancer.gov

    The small G-protein KRas acts like a molecular switch, turning on and off pro-growth signaling pathways within cells when appropriate. In a large number of cancers, KRas is permanently turned on by a variety of mutations and drives the constant growth of these tumor cells. KRas itself has proved to be a poor drug target so researchers in the laboratory of Ji Luo, Ph.D., in

  19. A positively gravitropic mutant mirrors the wild-type protonemal response in the moss Ceratodon purpureus

    NASA Technical Reports Server (NTRS)

    Wagner, T. A.; Cove, D. J.; Sack, F. D.

    1997-01-01

    Wild-type Ceratodon purpureus (Hedw.) Brid. protonemata grow up in the dark by negative gravitropism. When upright wild-type protonemata are reoriented 90 degrees, they temporarily grow down soon after reorientation ("initial reversal") and also prior to cytokinesis ("mitotic reversal"). A positively gravitropic mutant designated wrong- way response (wwr-1) has been isolated by screening ultraviolet light-mutagenized Ceratodon protonemata. Protonemata of wwr-l reoriented from the vertical to the horizontal grow down with kinetics comparable to those of the wild-type. Protonemata of wwr-1 also show initial and mitotic reversals where they temporarily grow up. Thus, the direction of gravitropism, initial reversal, and mitotic reversal are coordinated though each are opposite in wwr-1 compared to the wild-type. Normal plastid zonation is still maintained in dark-grown wwr-1 apical cells, but the plastids are more numerous and plastid sedimentation is more pronounced. In addition, wwr-1 apical cells are wider and the tips greener than in the wild-type. These data suggest that a functional WWR gene product is not necessary for the establishment of some gravitropic polarity, for gravitropism, or for the coordination of the reversals. Thus, the WWR protein may normally transduce information about cell orientation.

  20. Modeling the competition between antenna size mutant and wild type microalgae in outdoor mass culture.

    PubMed

    de Mooij, Tim; Schediwy, Kira; Wijffels, René H; Janssen, Marcel

    2016-12-20

    Under high light conditions, microalgae are oversaturated with light which significantly reduces the light use efficiency. Microalgae with a reduced pigment content, antenna size mutants, have been proposed as a potential solution to increase the light use efficiency. The goal of this study was to investigate the competition between antenna size mutants and wild type microalgae in mass cultures. Using a kinetic model and literature-derived experimental data from wild type Chlorella sorokiniana, the productivity and competition of wild type cells and antenna size mutants were simulated. Cultivation was simulated in an outdoor microalgal raceway pond production system which was assumed to be limited by light only. Light conditions were based on a Mediterranean location (Tunisia) and a more temperate location (the Netherlands). Several wild type contamination levels were simulated in each mutant culture separately to predict the effect on the productivity over the cultivation time of a hypothetical summer season of 100days. The simulations demonstrate a good potential of antenna size reduction to increase the biomass productivity of microalgal cultures. However, it was also found that after a contamination with wild type cells the mutant cultures will be rapidly overgrown resulting in productivity loss. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Selective Targeting of CTNNB1-, KRAS- or MYC-Driven Cell Growth by Combinations of Existing Drugs

    PubMed Central

    Uitdehaag, Joost C. M.; de Roos, Jeroen A. D. M.; van Doornmalen, Antoon M.; Prinsen, Martine B. W.; Spijkers-Hagelstein, Jill A. P.; de Vetter, Judith R. F.; de Man, Jos; Buijsman, Rogier C.; Zaman, Guido J. R.

    2015-01-01

    The aim of combination drug treatment in cancer therapy is to improve response rate and to decrease the probability of the development of drug resistance. Preferably, drug combinations are synergistic rather than additive, and, ideally, drug combinations work synergistically only in cancer cells and not in non-malignant cells. We have developed a workflow to identify such targeted synergies, and applied this approach to selectively inhibit the proliferation of cell lines with mutations in genes that are difficult to modulate with small molecules. The approach is based on curve shift analysis, which we demonstrate is a more robust method of determining synergy than combination matrix screening with Bliss-scoring. We show that the MEK inhibitor trametinib is more synergistic in combination with the BRAF inhibitor dabrafenib than with vemurafenib, another BRAF inhibitor. In addition, we show that the combination of MEK and BRAF inhibitors is synergistic in BRAF-mutant melanoma cells, and additive or antagonistic in, respectively, BRAF-wild type melanoma cells and non-malignant fibroblasts. This combination exemplifies that synergistic action of drugs can depend on cancer genotype. Next, we used curve shift analysis to identify new drug combinations that specifically inhibit cancer cell proliferation driven by difficult-to-drug cancer genes. Combination studies were performed with compounds that as single agents showed preference for inhibition of cancer cells with mutations in either the CTNNB1 gene (coding for β-catenin), KRAS, or cancer cells expressing increased copy numbers of MYC. We demonstrate that the Wnt-pathway inhibitor ICG-001 and trametinib acted synergistically in Wnt-pathway-mutant cell lines. The ERBB2 inhibitor TAK-165 was synergistic with trametinib in KRAS-mutant cell lines. The EGFR/ERBB2 inhibitor neratinib acted synergistically with the spindle poison docetaxel and with the Aurora kinase inhibitor GSK-1070916 in cell lines with MYC amplification

  2. The impact of KRAS mutations on VEGF-A production and tumour vascular network

    PubMed Central

    2013-01-01

    Background The malignant potential of tumour cells may be influenced by the molecular nature of KRAS mutations being codon 13 mutations less aggressive than codon 12 ones. Their metabolic profile is also different, with an increased anaerobic glycolytic metabolism in cells harbouring codon 12 KRAS mutations compared with cells containing codon 13 mutations. We hypothesized that this distinct metabolic behaviour could be associated with different HIF-1α expression and a distinct angiogenic profile. Methods Codon13 KRAS mutation (ASP13) or codon12 KRAS mutation (CYS12) NIH3T3 transfectants were analyzed in vitro and in vivo. Expression of HIF-1α, and VEGF-A was studied at RNA and protein levels. Regulation of VEGF-A promoter activity was assessed by means of luciferase assays using different plasmid constructs. Vascular network was assessed in tumors growing after subcutaneous inoculation. Non parametric statistics were used for analysis of results. Results Our results show that in normoxic conditions ASP13 transfectants exhibited less HIF-1α protein levels and activity than CYS12. In contrast, codon 13 transfectants exhibited higher VEGF-A mRNA and protein levels and enhanced VEGF-A promoter activity. These differences were due to a differential activation of Sp1/AP2 transcription elements of the VEGF-A promoter associated with increased ERKs signalling in ASP13 transfectants. Subcutaneous CYS12 tumours expressed less VEGF-A and showed a higher microvessel density (MVD) than ASP13 tumours. In contrast, prominent vessels were only observed in the latter. Conclusion Subtle changes in the molecular nature of KRAS oncogene activating mutations occurring in tumour cells have a major impact on the vascular strategy devised providing with new insights on the role of KRAS mutations on angiogenesis. PMID:23506169

  3. Overexpression of HARDY, an AP2/ERF gene from Arabidopsis, improves drought and salt tolerance by reducing transpiration and sodium uptake in transgenic Trifolium alexandrinum L.

    PubMed

    Abogadallah, Gaber M; Nada, Reham M; Malinowski, Robert; Quick, Paul

    2011-06-01

    Trifolium alexandrinum L. was transformed with the Arabidopsis HARDY gene that belongs to the stress-related AP2/ERF (APETALA2/ethylene responsive element binding factors) superfamily of transcription factors. The fresh weights of the transgenic lines L2 and L3 were improved by 42 and 55% under drought stress and by 38 and 95% under salt stress compared to the wild type, respectively. The dry weights were similarly improved. Overexpression of HARDY improved the instantaneous water use efficiency (WUE) under drought stress by reducing transpiration (E) and under salt stress by improving photosynthesis (A), through reducing Na+ accumulation in leaves, and reducing E. However, HARDY improved the growth of drought-stressed transgenic plants as compared to the wild type by delaying water depletion from soil and preventing rapid decline in A. L2 and L3 had thicker stems and in case of L3, more xylem rows per vascular bundle, which may have made L3 more resistant to lodging in the field. Field performance of L2 and L3 under combined drought and salt stress was significantly better than that of the wild type in terms of fresh and dry weights (40%, 46% and 31%, 40%, respectively). The results provide further evidence for the efficiency of overexpression of a single gene in improving tolerance to abiotic stress under field conditions.

  4. The cornerstone K-RAS mutation in pancreatic adenocarcinoma: From cell signaling network, target genes, biological processes to therapeutic targeting.

    PubMed

    Jonckheere, Nicolas; Vasseur, Romain; Van Seuningen, Isabelle

    2017-03-01

    RAS belongs to the super family of small G proteins and plays crucial roles in signal transduction from membrane receptors in the cell. Mutations of K-RAS oncogene lead to an accumulation of GTP-bound proteins that maintains an active conformation. In the pancreatic ductal adenocarcinoma (PDAC), one of the most deadly cancers in occidental countries, mutations of the K-RAS oncogene are nearly systematic (>90%). Moreover, K-RAS mutation is the earliest genetic alteration occurring during pancreatic carcinogenetic sequence. In this review, we discuss the central role of K-RAS mutations and their tremendous diversity of biological properties by the interconnected regulation of signaling pathways (MAPKs, NF-κB, PI3K, Ral…). In pancreatic ductal adenocarcinoma, transcriptome analysis and preclinical animal models showed that K-RAS mutation alters biological behavior of PDAC cells (promoting proliferation, migration and invasion, evading growth suppressors, regulating mucin pattern, and miRNA expression). K-RAS also impacts tumor microenvironment and PDAC metabolism reprogramming. Finally we discuss therapeutic targeting strategies of K-RAS that have been developed without significant clinical success so far. As K-RAS is considered as the undruggable target, targeting its multiple effectors and target genes should be considered as potential alternatives. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Pharmacologic Treatment Assigned for Niemann Pick Type C1 Disease Partly Changes Behavioral Traits in Wild-Type Mice.

    PubMed

    Schlegel, Victoria; Thieme, Markus; Holzmann, Carsten; Witt, Martin; Grittner, Ulrike; Rolfs, Arndt; Wree, Andreas

    2016-11-09

    Niemann-Pick Type C1 (NPC1) is an autosomal recessive inherited disorder characterized by accumulation of cholesterol and glycosphingolipids. Previously, we demonstrated that BALB/c-npc1 nih Npc1 -/- mice treated with miglustat, cyclodextrin and allopregnanolone generally performed better than untreated Npc1 -/- animals. Unexpectedly, they also seemed to accomplish motor tests better than their sham-treated wild-type littermates. However, combination-treated mutant mice displayed worse cognition performance compared to sham-treated ones. To evaluate effects of these drugs in healthy BALB/c mice, we here analyzed pharmacologic effects on motor and cognitive behavior of wild-type mice. For combination treatment mice were injected with allopregnanolone/cyclodextrin weekly, starting at P7. Miglustat injections were performed daily from P10 till P23. Starting at P23, miglustat was embedded in the chow. Other mice were treated with miglustat only, or sham-treated. The battery of behavioral tests consisted of accelerod, Morris water maze, elevated plus maze, open field and hot-plate tests. Motor capabilities and spontaneous motor behavior were unaltered in both drug-treated groups. Miglustat-treated wild-type mice displayed impaired spatial learning compared to sham- and combination-treated mice. Both combination- and miglustat-treated mice showed enhanced anxiety in the elevated plus maze compared to sham-treated mice. Additionally, combination treatment as well as miglustat alone significantly reduced brain weight, whereas only combination treatment reduced body weight significantly. Our results suggest that allopregnanolone/cyclodextrin ameliorate most side effects of miglustat in wild-type mice.

  6. Targeting oncogenic KRAS in non-small cell lung cancer cells by phenformin inhibits growth and angiogenesis.

    PubMed

    Wang, Zhi Dong; Wei, Sheng Quan; Wang, Qin Yi

    2015-01-01

    Tumors require a vascular supply to grow and can achieve this via the expression of pro-angiogenic growth factors. Many potential oncogenic mutations have been identified in tumor angiogenesis. Somatic mutations in the small GTPase KRAS are the most common activating lesions found in human cancer, and are generally associated with poor response to standard therapies. Biguanides, such as the diabetes therapeutics metformin and phenformin, have demonstrated anti-tumor activity both in vitro and in vivo. The extracellular regulated protein kinases (ERK) signaling is known to be a major cellular target of biguanides. Based on KRAS activates several down-stream effectors leading to the stimulation of the RAF/mitogen-activated protein kinase/extracellular signal-regulated kinase (RAF/MEK/ERK) and phosphatidylinositol-3-kinase (PI3K) pathways, we investigated the anti-tumor effects of biguanides on the proliferation of KRAS-mutated tumor cells in vitro and on KRAS-driven tumor growth in vivo. In cancer cells harboring oncogenic KRAS, phenformin switches off the ERK pathway and inhibit the expression of pro-angiogenic molecules. In tumor xenografts harboring the KRAS mutation, phenformin extensively modifies the tumor growth causing abrogation of angiogenesis. These results strongly suggest that significant therapeutic advantage may be achieved by phenformin anti-angiogenesis for the treatment of tumor.

  7. Overexpressed human heme Oxygenase-1 decreases adipogenesis in pigs and porcine adipose-derived stem cells.

    PubMed

    Park, Eun Jung; Koo, Ok Jae; Lee, Byeong Chun

    2015-11-27

    Adipose-derived mesenchymal stem cells (ADSC) are multipotent, which means they are able to differentiate into several lineages in vivo and in vitro under proper conditions. This indicates it is possible to determine the direction of differentiation of ADSC by controlling the microenvironment. Heme oxygenase 1 (HO-1), a type of antioxidant enzyme, attenuates adipogenicity and obesity. We produced transgenic pigs overexpressing human HO-1 (hHO-1-Tg), and found that these animals have little fatty tissue when autopsied. To determine whether overexpressed human HO-1 suppresses adipogenesis in pigs, we analyzed body weight increases of hHO-1-Tg pigs and wild type (WT) pigs of the same strain, and induced adipogenic differentiation of ADSC derived from WT and hHO-1-Tg pigs. The hHO-1-Tg pigs had lower body weights than WT pigs from 16 weeks of age until they died. In addition, hHO-1-Tg ADSC showed reduced adipogenic differentiation and expression of adipogenic molecular markers such as PPARγ and C/EBPα compared to WT ADSC. These results suggest that HO-1 overexpression reduces adipogenesis both in vivo and in vitro, which could support identification of therapeutic targets of obesity and related metabolic diseases. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. A Phase 1/1b Study Evaluating Trametinib Plus Docetaxel or Pemetrexed in Patients With Advanced Non-Small Cell Lung Cancer.

    PubMed

    Gandara, David R; Leighl, Natasha; Delord, Jean-Pierre; Barlesi, Fabrice; Bennouna, Jaafar; Zalcman, Gerald; Infante, Jeffrey R; Reckamp, Karen L; Kelly, Karen; Shepherd, Frances A; Mazieres, Julien; Janku, Filip; Gardner, Olivia S; Mookerjee, Bijoyesh; Wu, Yuehui; Cox, Donna S; Schramek, Dan; Peddareddigari, Vijay; Liu, Yuan; D'Amelio, Anthony M; Blumenschein, George

    2017-03-01

    This two-part study evaluated trametinib, a MEK1/2 inhibitor, in combination with anticancer agents. Inhibition of MEK, a downstream effector of KRAS, demonstrated preclinical synergy with chemotherapy in KRAS-mutant NSCLC cell lines. Part 1 of this study identified recommended phase 2 doses of trametinib combinations. Part 2, reported herein, evaluated the safety, tolerability, pharmacokinetics, and efficacy of trametinib combinations in patients with NSCLC with and without KRAS mutations. Phase 1b evaluated trametinib plus docetaxel with growth factor support (trametinib, 2.0 mg once daily, and docetaxel, 75 mg/m 2 every 3 weeks) or pemetrexed (trametinib, 1.5 mg once daily, and pemetrexed, 500 mg/m 2 every 3 weeks). Eligibility criteria for the expansion cohorts included metastatic NSCLC with measurable disease, known KRAS mutation status, Eastern Cooperative Oncology Group performance status of 1 or lower, and no more than two prior regimens. The primary end point of overall response rate (ORR) was met for both combinations. A confirmed partial response (PR) was observed in 10 of the 47 patients with NSCLC who received trametinib plus docetaxel (21%). The ORR was 18% (four PRs in 22 patients) in those with KRAS wild-type NSCLC versus 24% (six PRs in 25 patients) in those with KRAS-mutant NSCLC. Of the 42 patients with NSCLC treated with trametinib plus pemetrexed, six (14%) had a PR; the ORR was 17% (four of 23) in patients with KRAS-mutated NSCLC versus 11% (two of 19) in KRAS wild-type NSCLC. Adverse events-most commonly diarrhea, nausea, and fatigue-were manageable. Trametinib-plus-chemotherapy combinations were tolerable. Clinical activity exceeding the ORRs previously reported with docetaxel or pemetrexed alone in KRAS-mutated NSCLC and meeting prespecified criteria was observed. Copyright © 2016 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.

  9. Overexpression of a MADS-box gene from birch (Betula platyphylla) promotes flowering and enhances chloroplast development in transgenic tobacco.

    PubMed

    Qu, Guan-Zheng; Zheng, Tangchun; Liu, Guifeng; Wang, Wenjie; Zang, Lina; Liu, Huanzhen; Yang, Chuanping

    2013-01-01

    In this study, a MADS-box gene (BpMADS), which is an ortholog of AP1 from Arabidopsis, was isolated from birch (Betula platyphylla). Transgenic Arabidopsis containing a BpMADS promoter::GUS construct was produced, which exhibited strong GUS staining in sepal tissues. Ectopic expression of BpMADS significantly enhanced the flowering of tobacco (35S::BpMADS). In addition, the chloroplasts of transgenic tobacco exhibited much higher growth and division rates, as well rates of photosynthesis, than wild-type. A grafting experiment demonstrated that the flowering time of the scion was not affected by stock that overexpressed BpMADS. In addition, the overexpression of BpMADS resulted in the upregulation of some flowering-related genes in tobacco.

  10. Wild-Type Measles Viruses with Non-Standard Genome Lengths

    PubMed Central

    Bankamp, Bettina; Liu, Chunyu; Rivailler, Pierre; Bera, Jayati; Shrivastava, Susmita; Kirkness, Ewen F.; Bellini, William J.; Rota, Paul A.

    2014-01-01

    The length of the single stranded, negative sense RNA genome of measles virus (MeV) is highly conserved at 15,894 nucleotides (nt). MeVs can be grouped into 24 genotypes based on the highly variable 450 nucleotides coding for the carboxyl-terminus of the nucleocapsid protein (N-450). Here, we report the genomic sequences of 2 wild-type viral isolates of genotype D4 with genome lengths of 15,900 nt. Both genomes had a 7 nt insertion in the 3′ untranslated region (UTR) of the matrix (M) gene and a 1 nt deletion in the 5′ UTR of the fusion (F) gene. The net gain of 6 nt complies with the rule-of-six required for replication competency of the genomes of morbilliviruses. The insertions and deletion (indels) were confirmed in a patient sample that was the source of one of the viral isolates. The positions of the indels were identical in both viral isolates, even though epidemiological data and the 3 nt differences in N-450 between the two genomes suggested that the viruses represented separate chains of transmission. Identical indels were found in the M-F intergenic regions of 14 additional genotype D4 viral isolates that were imported into the US during 2007–2010. Viral isolates with and without indels produced plaques of similar size and replicated efficiently in A549/hSLAM and Vero/hSLAM cells. This is the first report of wild-type MeVs with genome lengths other than 15,894 nt and demonstrates that the length of the M-F UTR of wild-type MeVs is flexible. PMID:24748123

  11. Overexpression of Medicago sativa TMT elevates the α-tocopherol content in Arabidopsis seeds, alfalfa leaves, and delays dark-induced leaf senescence.

    PubMed

    Jiang, Jishan; Jia, Huili; Feng, Guangyan; Wang, Zan; Li, Jun; Gao, Hongwen; Wang, Xuemin

    2016-08-01

    Alfalfa (Medicago sativa L.) is a major forage legume for livestock and a target for improving their dietary quality. Vitamin E is an essential vitamin that animals must obtain from their diet for proper growth and development. γ-tocopherol methyltransferase (γ-TMT), which catalyzes the conversion of δ- and γ-tocopherols (or tocotrienols) to β- and α-tocopherols (or tocotrienols), respectively, is the final enzyme involved in the vitamin E biosynthetic pathway. The overexpression of M. sativa L.'s γ-TMT (MsTMT) increased the α-tocopherol content 10-15 fold above that of wild type Arabidopsis seeds without altering the total content of vitamin E. Additionally, in response to osmotic stress, the biomass and the expression levels of several osmotic marker genes were significantly higher in the transgenic lines compared with wild type. Overexpression of MsTMT in alfalfa led to a modest, albeit significant, increase in α-tocopherol in leaves and was also responsible for a delayed leaf senescence phenotype. Additionally, the crude protein content was increased, while the acid and neutral detergent fiber contents were unchanged in these transgenic lines. Thus, increased α-tocopherol content occurred in transgenic alfalfa without compromising the nutritional qualities. The targeted metabolic engineering of vitamin E biosynthesis through MsTMT overexpression provides a promising approach to improve the α-tocopherol content of forage crops. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  12. BAD overexpression inhibits cell growth and induces apoptosis via mitochondrial-dependent pathway in non-small cell lung cancer.

    PubMed

    Jiang, Li; Luo, Man; Liu, Dan; Chen, Bojiang; Zhang, Wen; Mai, Lin; Zeng, Jing; Huang, Na; Huang, Yi; Mo, Xianming; Li, Weimin

    2013-06-01

    The pro-apoptotic Bcl-2 protein BAD initiated apoptosis in human cells and has been identified as a prognostic marker in non-small cell lung cancer (NSCLC). In this study, we aimed to explore the functions of BAD in NSCLC. Overexpression of BAD was performed by transfecting different NSCLC cell lines with wild-type BAD. Cell proliferation, cell cycle, apoptosis, and invasion were characterized in vitro. Tumorigenicity was analyzed in vivo. Western blot was performed to determine the effects of BAD overexpression on the Bcl-2 family proteins and apoptosis-related proteins. Overexpression of BAD significantly inhibited cell proliferation in H1299, H292, and SPC-A1 but not in SK-MES-1 and H460 cell lines in vitro. BAD overexpression also reduced the tumorigenicity of H1299/SPC-A1 cell in vivo. However, no appreciable effects on cell cycle distribution and invasion were observed in all these cell lines. BAD overexpression also induced apoptosis in all cell types, in which process expression of mitochondrial cytochrom c (cyto-c) and caspase 3 were increased, whereas Bcl-xl, Bcl-2, Bax and caspase 8 expressions did not changed. These findings indicated that a mitochondrial pathway, in which process cyto-c was released from mitochondrial to activate caspase 3, was involved in BAD overexpression-mediated apoptosis. Our data suggested that increased expression of BAD enhance apoptosis and has negative influence on cell proliferation and tumor growth in NSCLC. Bad is a new potential target for tumor interventions.

  13. Inactivation of the DNA repair gene O6-methylguanine-DNA methyltransferase by promoter hypermethylation is associated with G to A mutations in K-ras in colorectal tumorigenesis.

    PubMed

    Esteller, M; Toyota, M; Sanchez-Cespedes, M; Capella, G; Peinado, M A; Watkins, D N; Issa, J P; Sidransky, D; Baylin, S B; Herman, J G

    2000-05-01

    O6-methylguanine DNA methyltransferase (MGMT) is a DNA repair protein that removes mutagenic and cytotoxic adducts from the O6 position of guanine. O6-methylguanine mispairs with thymine during replication, and if the adduct is not removed, this results in conversion from a guanine-cytosine pair to an adenine-thymine pair. In vitro assays show that MGMT expression avoids G to A mutations and MGMT transgenic mice are protected against G to A transitions at ras genes. We have recently demonstrated that the MGMT gene is silenced by promoter methylation in many human tumors, including colorectal carcinomas. To study the relevance of defective MGMT function by aberrant methylation in relation to the presence of K-ras mutations, we studied 244 colorectal tumor samples for MGMT promoter hypermethylation and K-ras mutational status. Our results show a clear association between the inactivation of MGMT by promoter hypermethylation and the appearance of G to A mutations at K-ras: 71% (36 of 51) of the tumors displaying this particular type of mutation had abnormal MGMT methylation, whereas only 32% (12 of 37) of those with other K-ras mutations not involving G to A transitions and 35% (55 of 156) of the tumors without K-ras mutations demonstrated MGMT methylation (P = 0.002). In addition, MGMT loss associated with hypermethylation was observed in the small adenomas, including those that do not yet contain K-ras mutations. Hypermethylation of other genes such as p16INK4a and p14ARF was not associated with either MGMT hypermethylation or K-ras mutation. Our data suggest that epigenetic silencing of MGMT by promoter hypermethylation may lead to a particular genetic change in human cancer, specifically G to A transitions in the K-ras oncogene.

  14. Lead uptake increases drought tolerance of wild type and transgenic poplar (Populus tremula x P. alba) overexpressing gsh 1.

    PubMed

    Samuilov, Sladjana; Lang, Friedericke; Djukic, Matilda; Djunisijevic-Bojovic, Danijela; Rennenberg, Heinz

    2016-09-01

    Growth and development of plants largely depends on their adaptation ability in a changing climate. This is particularly true on heavy metal contaminated soils, but the interaction of heavy metal stress and climate on plant performance has not been intensively investigated. The aim of the present study was to elucidate if transgenic poplars (Populus tremula x P. alba) with enhanced glutathione content possess an enhanced tolerance to drought and lead (Pb) exposure (single and in combination) and if they are good candidates for phytoremediation of Pb contaminated soil. Lead exposure reduced growth and biomass accumulation only in above-ground tissue of wild type poplar, although most of lead accumulated in the roots. Drought caused a decline of the water content rather than reduced biomass production, while Pb counteracted this decline in the combined exposure. Apparently, metals such as Pb possess a protective function against drought, because they interact with abscisic acid dependent stomatal closure. Lead exposure decreased while drought increased glutathione content in leaves of both plant types. Lead accumulation was higher in the roots of transgenic plants, presumably as a result of chelation by glutathione. Water deprivation enhanced Pb accumulation in the roots, but Pb was subject to leakage out of the roots after re-watering. Transgenic plants showed better adaptation under mild drought plus Pb exposure partially due to improved glutathione synthesis. However, the transgenic plants cannot be considered as a good candidate for phytoremediation of Pb, due to its small translocation to the shoots and its leakage out of the roots upon re-watering. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Blockade of the IL-6 trans-signalling/STAT3 axis suppresses cachexia in Kras-induced lung adenocarcinoma.

    PubMed

    Miller, A; McLeod, L; Alhayyani, S; Szczepny, A; Watkins, D N; Chen, W; Enriori, P; Ferlin, W; Ruwanpura, S; Jenkins, B J

    2017-05-25

    Lung cancer is the leading cause of cancer death worldwide, and is frequently associated with the devastating paraneoplastic syndrome of cachexia. The potent immunomodulatory cytokine interleukin (IL)-6 has been linked with the development of lung cancer as well as cachexia; however, the mechanisms by which IL-6 promotes muscle wasting in lung cancer cachexia are ill-defined. In this study, we report that the gp130 F/F knock-in mouse model displaying hyperactivation of the latent transcription factor STAT3 via the common IL-6 cytokine family signalling receptor, gp130, develops cachexia during Kras-driven lung carcinogenesis. Specifically, exacerbated weight loss, early mortality and reduced muscle and adipose tissue mass were features of the gp130 F/F :Kras G12D model, but not parental Kras G12D mice in which STAT3 was not hyperactivated. Gene expression profiling of muscle tissue in cachectic gp130 F/F :Kras G12D mice revealed the upregulation of IL-6 and STAT3-target genes compared with Kras G12D muscle tissue. These cachectic features of gp130 F/F :Kras G12D mice were abrogated upon the genetic normalization of STAT3 activation or ablation of IL-6 in gp130 F/F :Kras G12D :Stat3 -/+ or gp130 F/F :Kras G12D :Il6 -/- mice, respectively. Furthermore, protein levels of the soluble IL-6 receptor (sIL-6R), which is the central facilitator of IL-6 trans-signalling, were elevated in cachectic muscle from gp130 F/F :Kras G12D mice, and the specific blockade of IL-6 trans-signalling, but not classical signalling, with an anti-IL-6R antibody ameliorated cachexia-related characteristics in gp130 F/F :Kras G12D mice. Collectively, these preclinical findings identify trans-signalling via STAT3 as the signalling modality by which IL-6 promotes muscle wasting in lung cancer cachexia, and therefore support the clinical evaluation of the IL-6 trans-signalling/STAT3 axis as a therapeutic target in advanced lung cancer patients presenting with cachexia.

  16. Targeted overexpression of mitochondrial catalase prevents radiation-induced cognitive dysfunction.

    PubMed

    Parihar, Vipan K; Allen, Barrett D; Tran, Katherine K; Chmielewski, Nicole N; Craver, Brianna M; Martirosian, Vahan; Morganti, Josh M; Rosi, Susanna; Vlkolinsky, Roman; Acharya, Munjal M; Nelson, Gregory A; Allen, Antiño R; Limoli, Charles L

    2015-01-01

    Radiation-induced disruption of mitochondrial function can elevate oxidative stress and contribute to the metabolic perturbations believed to compromise the functionality of the central nervous system. To clarify the role of mitochondrial oxidative stress in mediating the adverse effects of radiation in the brain, we analyzed transgenic (mitochondrial catalase [MCAT]) mice that overexpress human catalase localized to the mitochondria. Compared with wild-type (WT) controls, overexpression of the MCAT transgene significantly decreased cognitive dysfunction after proton irradiation. Significant improvements in behavioral performance found on novel object recognition and object recognition in place tasks were associated with a preservation of neuronal morphology. While the architecture of hippocampal CA1 neurons was significantly compromised in irradiated WT mice, the same neurons in MCAT mice did not exhibit extensive and significant radiation-induced reductions in dendritic complexity. Irradiated neurons from MCAT mice maintained dendritic branching and length compared with WT mice. Protected neuronal morphology in irradiated MCAT mice was also associated with a stabilization of radiation-induced variations in long-term potentiation. Stabilized synaptic activity in MCAT mice coincided with an altered composition of the synaptic AMPA receptor subunits GluR1/2. Our findings provide the first evidence that neurocognitive sequelae associated with radiation exposure can be reduced by overexpression of MCAT, operating through a mechanism involving the preservation of neuronal morphology. Our article documents the neuroprotective properties of reducing mitochondrial reactive oxygen species through the targeted overexpression of catalase and how this ameliorates the adverse effects of proton irradiation in the brain.

  17. Seed-specific overexpression of AtFAX1 increases seed oil content in Arabidopsis.

    PubMed

    Tian, Yinshuai; Lv, Xueyan; Xie, Guilan; Zhang, Jing; Xu, Ying; Chen, Fang

    2018-06-02

    Biosynthesis of plant seed oil is accomplished through the coordinate action of multiple enzymes in multiple subcellular compartments. Fatty acid (FA) has to be transported from plastid to endoplasmic reticulum (ER) for TAG synthesis. However, the role of plastid FA transportation during seed oil accumulation has not been evaluated. AtFAX1 (Arabidopsis fatty acid export1) mediated the FA export from plastid. In this study, we overexpressed AtFAX1 under the control of a seed specific promoter in Arabidopsis. The resultant overexpression lines (OEs) produced seeds which contained 21-33% more oil and 24-30% more protein per seed than those of the wild type (WT). The increased oil content was probably because of the enhanced FA and TAG synthetic activity. The seed size and weight were both increased accordingly. In addition, the seed number per silique and silique number per plant had no changes in transgenic plants. Taken together, our results demonstrated that seed specific overexpression of AtFAX1 could promote oil accumulation in Arabidopsis seeds and manipulating FA transportation is a feasible strategy for increasing the seed oil content. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Mouse model of proximal colon-specific tumorigenesis driven by microsatellite instability-induced Cre-mediated inactivation of Apc and activation of Kras.

    PubMed

    Kawaguchi, Yasuo; Hinoi, Takao; Saito, Yasufumi; Adachi, Tomohiro; Miguchi, Masashi; Niitsu, Hiroaki; Sasada, Tatsunari; Shimomura, Manabu; Egi, Hiroyuki; Oka, Shiro; Tanaka, Shinji; Chayama, Kazuaki; Sentani, Kazuhiro; Oue, Naohide; Yasui, Wataru; Ohdan, Hideki

    2016-05-01

    KRAS gene mutations are found in 40-50% of colorectal cancer cases, but their functional contribution is not fully understood. To address this issue, we generated genetically engineered mice with colon tumors expressing an oncogenic Kras(G12D) allele in the context of the Adenomatous polyposis coli (Apc) deficiency to compare them to tumors harboring Apc deficiency alone. CDX2P9.5-G22Cre (referred to as G22Cre) mice showing inducible Cre recombinase transgene expression in the proximal colon controlled under the CDX2 gene promoter were intercrossed with Apc (flox/flox) mice and LSL-Kras (G12D) mice carrying loxP-flanked Apc and Lox-Stop-Lox oncogenic Kras(G12D) alleles, respectively, to generate G22Cre; Apc(flox/flox); Kras(G12D) and G22Cre; Apc(flox/flox); KrasWT mice. Gene expression profiles of the tumors were analyzed using high-density oligonucleotide arrays. Morphologically, minimal difference in proximal colon tumor was observed between the two mouse models. Consistent with previous findings in vitro, Glut1 transcript and protein expression was up-regulated in the tumors of G22Cre;Apc (flox/flox) ; Kras(G12D) mice. Immunohistochemical staining analysis revealed that GLUT1 protein expression correlated with KRAS mutations in human colorectal cancer. Microarray analysis identified 11 candidate genes upregulated more than fivefold and quantitative PCR analysis confirmed that Aqp8, Ttr, Qpct, and Slc26a3 genes were upregulated 3.7- to 30.2-fold in tumors with mutant Kras. These results demonstrated the validity of the G22Cre; Apc(flox/flox) ;Kras (G12D) mice as a new mouse model with oncogenic Kras activation. We believe that this model can facilitate efforts to define novel factors that contribute to the pathogenesis of human colorectal cancer with KRAS mutations.

  19. The transcriptomic fingerprint of glucoamylase over-expression in Aspergillus niger

    PubMed Central

    2012-01-01

    Background Filamentous fungi such as Aspergillus niger are well known for their exceptionally high capacity for secretion of proteins, organic acids, and secondary metabolites and they are therefore used in biotechnology as versatile microbial production platforms. However, system-wide insights into their metabolic and secretory capacities are sparse and rational strain improvement approaches are therefore limited. In order to gain a genome-wide view on the transcriptional regulation of the protein secretory pathway of A. niger, we investigated the transcriptome of A. niger when it was forced to overexpression the glaA gene (encoding glucoamylase, GlaA) and secrete GlaA to high level. Results An A. niger wild-type strain and a GlaA over-expressing strain, containing multiple copies of the glaA gene, were cultivated under maltose-limited chemostat conditions (specific growth rate 0.1 h-1). Elevated glaA mRNA and extracellular GlaA levels in the over-expressing strain were accompanied by elevated transcript levels from 772 genes and lowered transcript levels from 815 genes when compared to the wild-type strain. Using GO term enrichment analysis, four higher-order categories were identified in the up-regulated gene set: i) endoplasmic reticulum (ER) membrane translocation, ii) protein glycosylation, iii) vesicle transport, and iv) ion homeostasis. Among these, about 130 genes had predicted functions for the passage of proteins through the ER and those genes included target genes of the HacA transcription factor that mediates the unfolded protein response (UPR), e.g. bipA, clxA, prpA, tigA and pdiA. In order to identify those genes that are important for high-level secretion of proteins by A. niger, we compared the transcriptome of the GlaA overexpression strain of A. niger with six other relevant transcriptomes of A. niger. Overall, 40 genes were found to have either elevated (from 36 genes) or lowered (from 4 genes) transcript levels under all conditions that were

  20. Wild type measles virus attenuation independent of type I IFN.

    PubMed

    Druelle, Johan; Sellin, Caroline I; Waku-Kouomou, Diane; Horvat, Branka; Wild, Fabian T

    2008-02-03

    Measles virus attenuation has been historically performed by adaptation to cell culture. The current dogma is that attenuated virus strains induce more type I IFN and are more resistant to IFN-induced protection than wild type (wt). The adaptation of a measles virus isolate (G954-PBL) by 13 passages in Vero cells induced a strong attenuation of this strain in vivo. The adapted virus (G954-V13) differs from its parental strain by only 5 amino acids (4 in P/V/C and 1 in the M gene). While a vaccine strain, Edmonston Zagreb, could replicate equally well in various primate cells, both G954 strains exhibited restriction to the specific cell type used initially for their propagation. Surprisingly, we observed that both G954 strains induced type I IFN, the wt strain inducing even more than the attenuated ones, particularly in human plasmacytoid Dendritic Cells. Type I IFN-induced protection from the infection of both G954 strains depended on the cell type analyzed, being less efficient in the cells used to grow the viral strain. Thus, mutations in M and P/V/C proteins can critically affect MV pathogenicity, cellular tropism and lead to virus attenuation without interfering with the alpha/beta IFN system.

  1. Wild type measles virus attenuation independent of type I IFN

    PubMed Central

    Druelle, Johan; Sellin, Caroline I; Waku-Kouomou, Diane; Horvat, Branka; Wild, Fabian T

    2008-01-01

    Background Measles virus attenuation has been historically performed by adaptation to cell culture. The current dogma is that attenuated virus strains induce more type I IFN and are more resistant to IFN-induced protection than wild type (wt). Results The adaptation of a measles virus isolate (G954-PBL) by 13 passages in Vero cells induced a strong attenuation of this strain in vivo. The adapted virus (G954-V13) differs from its parental strain by only 5 amino acids (4 in P/V/C and 1 in the M gene). While a vaccine strain, Edmonston Zagreb, could replicate equally well in various primate cells, both G954 strains exhibited restriction to the specific cell type used initially for their propagation. Surprisingly, we observed that both G954 strains induced type I IFN, the wt strain inducing even more than the attenuated ones, particularly in human plasmacytoid Dendritic Cells. Type I IFN-induced protection from the infection of both G954 strains depended on the cell type analyzed, being less efficient in the cells used to grow the viral strain. Conclusion Thus, mutations in M and P/V/C proteins can critically affect MV pathogenicity, cellular tropism and lead to virus attenuation without interfering with the α/β IFN system. PMID:18241351

  2. Male and Female Mice Lacking Neuroligin-3 Modify the Behavior of Their Wild-Type Littermates.

    PubMed

    Kalbassi, Shireene; Bachmann, Sven O; Cross, Ellen; Roberton, Victoria H; Baudouin, Stéphane J

    2017-01-01

    In most mammals, including humans, the postnatal acquisition of normal social and nonsocial behavior critically depends on interactions with peers. Here we explore the possibility that mixed-group housing of mice carrying a deletion of Nlgn3 , a gene associated with autism spectrum disorders, and their wild-type littermates induces changes in each other's behavior. We have found that, when raised together, male Nlgn3 knockout mice and their wild-type littermates displayed deficits in sociability. Moreover, social submission in adult male Nlgn3 knockout mice correlated with an increase in their anxiety. Re-expression of Nlgn3 in parvalbumin-expressing cells in transgenic animals rescued their social behavior and alleviated the phenotype of their wild-type littermates, further indicating that the social behavior of Nlgn3 knockout mice has a direct and measurable impact on wild-type animals' behavior. Finally, we showed that, unlike male mice, female mice lacking Nlgn3 were insensitive to their peers' behavior but modified the social behavior of their littermates. Altogether, our findings show that the environment is a critical factor in the development of behavioral phenotypes in transgenic and wild-type mice. In addition, these results reveal that the social environment has a sexually dimorphic effect on the behavior of mice lacking Nlgn3 , being more influential in males than females.

  3. Male and Female Mice Lacking Neuroligin-3 Modify the Behavior of Their Wild-Type Littermates

    PubMed Central

    Kalbassi, Shireene; Cross, Ellen

    2017-01-01

    Abstract In most mammals, including humans, the postnatal acquisition of normal social and nonsocial behavior critically depends on interactions with peers. Here we explore the possibility that mixed-group housing of mice carrying a deletion of Nlgn3, a gene associated with autism spectrum disorders, and their wild-type littermates induces changes in each other’s behavior. We have found that, when raised together, male Nlgn3 knockout mice and their wild-type littermates displayed deficits in sociability. Moreover, social submission in adult male Nlgn3 knockout mice correlated with an increase in their anxiety. Re-expression of Nlgn3 in parvalbumin-expressing cells in transgenic animals rescued their social behavior and alleviated the phenotype of their wild-type littermates, further indicating that the social behavior of Nlgn3 knockout mice has a direct and measurable impact on wild-type animals’ behavior. Finally, we showed that, unlike male mice, female mice lacking Nlgn3 were insensitive to their peers’ behavior but modified the social behavior of their littermates. Altogether, our findings show that the environment is a critical factor in the development of behavioral phenotypes in transgenic and wild-type mice. In addition, these results reveal that the social environment has a sexually dimorphic effect on the behavior of mice lacking Nlgn3, being more influential in males than females. PMID:28795135

  4. Adeno-Associated Virus Type 2 Wild-Type and Vector-Mediated Genomic Integration Profiles of Human Diploid Fibroblasts Analyzed by Third-Generation PacBio DNA Sequencing

    PubMed Central

    Hüser, Daniela; Gogol-Döring, Andreas; Chen, Wei

    2014-01-01

    ABSTRACT Genome-wide analysis of adeno-associated virus (AAV) type 2 integration in HeLa cells has shown that wild-type AAV integrates at numerous genomic sites, including AAVS1 on chromosome 19q13.42. Multiple GAGY/C repeats, resembling consensus AAV Rep-binding sites are preferred, whereas rep-deficient AAV vectors (rAAV) regularly show a random integration profile. This study is the first study to analyze wild-type AAV integration in diploid human fibroblasts. Applying high-throughput third-generation PacBio-based DNA sequencing, integration profiles of wild-type AAV and rAAV are compared side by side. Bioinformatic analysis reveals that both wild-type AAV and rAAV prefer open chromatin regions. Although genomic features of AAV integration largely reproduce previous findings, the pattern of integration hot spots differs from that described in HeLa cells before. DNase-Seq data for human fibroblasts and for HeLa cells reveal variant chromatin accessibility at preferred AAV integration hot spots that correlates with variant hot spot preferences. DNase-Seq patterns of these sites in human tissues, including liver, muscle, heart, brain, skin, and embryonic stem cells further underline variant chromatin accessibility. In summary, AAV integration is dependent on cell-type-specific, variant chromatin accessibility leading to random integration profiles for rAAV, whereas wild-type AAV integration sites cluster near GAGY/C repeats. IMPORTANCE Adeno-associated virus type 2 (AAV) is assumed to establish latency by chromosomal integration of its DNA. This is the first genome-wide analysis of wild-type AAV2 integration in diploid human cells and the first to compare wild-type to recombinant AAV vector integration side by side under identical experimental conditions. Major determinants of wild-type AAV integration represent open chromatin regions with accessible consensus AAV Rep-binding sites. The variant chromatin accessibility of different human tissues or cell types will

  5. Droplet digital PCR of circulating tumor cells from colorectal cancer patients can predict KRAS mutations before surgery.

    PubMed

    Denis, Jérôme Alexandre; Patroni, Alexia; Guillerm, Erell; Pépin, Dominique; Benali-Furet, Naoual; Wechsler, Janine; Manceau, Gilles; Bernard, Maguy; Coulet, Florence; Larsen, Annette K; Karoui, Mehdi; Lacorte, Jean-Marc

    2016-10-01

    In colorectal cancer (CRC), KRAS mutations are a strong negative predictor for treatment with the EGFR-targeted antibodies cetuximab and panitumumab. Since it can be difficult to obtain appropriate tumor tissues for KRAS genotyping, alternative methods are required. Circulating tumor cells (CTCs) are believed to be representative of the tumor in real time. In this study we explored the capacity of a size-based device for capturing CTCs coupled with a multiplex KRAS screening assay using droplet digital PCR (ddPCR). We showed that it is possible to detect a mutant ratio of 0.05% and less than one KRAS mutant cell per mL total blood with ddPCR compared to about 0.5% and 50-75 cells for TaqMeltPCR and HRM. Next, CTCs were isolated from the blood of 35 patients with CRC at various stage of the disease. KRAS genotyping was successful for 86% (30/35) of samples with a KRAS codon 12/13 mutant ratio of 57% (17/30). In contrast, only one patient was identified as KRAS mutant when size-based isolation was combined with HRM or TaqMeltPCR. KRAS status was then determined for the 26 available formalin-fixed paraffin-embedded tumors using standard procedures. The concordance between the CTCs and the corresponding tumor tissues was 77% with a sensitivity of 83%. Taken together, the data presented here suggest that is feasible to detect KRAS mutations in CTCs from blood samples of CRC patients which are predictive for those found in the tumor. The minimal invasive nature of this procedure in combination with the high sensitivity of ddPCR might provide in the future an opportunity to monitor patients throughout the course of disease on multiple levels including early detection, prognosis, treatment and relapse as well as to obtain mechanistic insight with respect to tumor invasion and metastasis. Copyright © 2016 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  6. Structural insight into the rearrangement of the switch I region in GTP-bound G12A K-Ras.

    PubMed

    Xu, Shenyuan; Long, Brian N; Boris, Gabriel H; Chen, Anqi; Ni, Shuisong; Kennedy, Michael A

    2017-12-01

    K-Ras, a molecular switch that regulates cell growth, apoptosis and metabolism, is activated when it undergoes a conformation change upon binding GTP and is deactivated following the hydrolysis of GTP to GDP. Hydrolysis of GTP in water is accelerated by coordination to K-Ras, where GTP adopts a high-energy conformation approaching the transition state. The G12A mutation reduces intrinsic K-Ras GTP hydrolysis by an unexplained mechanism. Here, crystal structures of G12A K-Ras in complex with GDP, GTP, GTPγS and GppNHp, and of Q61A K-Ras in complex with GDP, are reported. In the G12A K-Ras-GTP complex, the switch I region undergoes a significant reorganization such that the Tyr32 side chain points towards the GTP-binding pocket and forms a hydrogen bond to the GTP γ-phosphate, effectively stabilizing GTP in its precatalytic state, increasing the activation energy required to reach the transition state and contributing to the reduced intrinsic GTPase activity of G12A K-Ras mutants.

  7. Structural insight into the rearrangement of the switch I region in GTP-bound G12A K-Ras

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Shenyuan; Long, Brian N.; Boris, Gabriel H.

    K-Ras, a molecular switch that regulates cell growth, apoptosis and metabolism, is activated when it undergoes a conformation change upon binding GTP and is deactivated following the hydrolysis of GTP to GDP. Hydrolysis of GTP in water is accelerated by coordination to K-Ras, where GTP adopts a high-energy conformation approaching the transition state. The G12A mutation reduces intrinsic K-Ras GTP hydrolysis by an unexplained mechanism. Here, crystal structures of G12A K-Ras in complex with GDP, GTP, GTPγS and GppNHp, and of Q61A K-Ras in complex with GDP, are reported. In the G12A K-Ras–GTP complex, the switch I region undergoes amore » significant reorganization such that the Tyr32 side chain points towards the GTP-binding pocket and forms a hydrogen bond to the GTP γ-phosphate, effectively stabilizing GTP in its precatalytic state, increasing the activation energy required to reach the transition state and contributing to the reduced intrinsic GTPase activity of G12A K-Ras mutants.« less

  8. Overexpression of Plastid Transketolase in Tobacco Results in a Thiamine Auxotrophic Phenotype[OPEN

    PubMed Central

    Khozaei, Mahdi; Fisk, Stuart; Lawson, Tracy; Gibon, Yves; Sulpice, Ronan; Stitt, Mark; Lefebvre, Stephane C.; Raines, Christine A.

    2015-01-01

    To investigate the effect of increased plastid transketolase on photosynthetic capacity and growth, tobacco (Nicotiana tabacum) plants with increased levels of transketolase protein were produced. This was achieved using a cassette composed of a full-length Arabidopsis thaliana transketolase cDNA under the control of the cauliflower mosaic virus 35S promoter. The results revealed a major and unexpected effect of plastid transketolase overexpression as the transgenic tobacco plants exhibited a slow-growth phenotype and chlorotic phenotype. These phenotypes were complemented by germinating the seeds of transketolase-overexpressing lines in media containing either thiamine pyrophosphate or thiamine. Thiamine levels in the seeds and cotyledons were lower in transketolase-overexpressing lines than in wild-type plants. When transketolase-overexpressing plants were supplemented with thiamine or thiamine pyrophosphate throughout the life cycle, they grew normally and the seed produced from these plants generated plants that did not have a growth or chlorotic phenotype. Our results reveal the crucial importance of the level of transketolase activity to provide the precursor for synthesis of intermediates and to enable plants to produce thiamine and thiamine pyrophosphate for growth and development. The mechanism determining transketolase protein levels remains to be elucidated, but the data presented provide evidence that this may contribute to the complex regulatory mechanisms maintaining thiamine homeostasis in plants. PMID:25670766

  9. KRAS Testing for Anti-EGFR Therapy in Advanced Colorectal Cancer: An Evidence-Based and Economic Analysis.

    PubMed

    2010-01-01

    In February 2010, the Medical Advisory Secretariat (MAS) began work on evidence-based reviews of the literature surrounding three pharmacogenomic tests. This project came about when Cancer Care Ontario (CCO) asked MAS to provide evidence-based analyses on the effectiveness and cost-effectiveness of three oncology pharmacogenomic tests currently in use in Ontario.Evidence-based analyses have been prepared for each of these technologies. These have been completed in conjunction with internal and external stakeholders, including a Provincial Expert Panel on Pharmacogenomics (PEPP). Within the PEPP, subgroup committees were developed for each disease area. For each technology, an economic analysis was also completed by the Toronto Health Economics and Technology Assessment Collaborative (THETA) and is summarized within the reports.THE FOLLOWING REPORTS CAN BE PUBLICLY ACCESSED AT THE MAS WEBSITE AT: www.health.gov.on.ca/mas or at www.health.gov.on.ca/english/providers/program/mas/mas_about.htmlGENE EXPRESSION PROFILING FOR GUIDING ADJUVANT CHEMOTHERAPY DECISIONS IN WOMEN WITH EARLY BREAST CANCER: An Evidence-Based and Economic AnalysisEpidermal Growth Factor Receptor Mutation (EGFR) Testing for Prediction of Response to EGFR-Targeting Tyrosine Kinase Inhibitor (TKI) Drugs in Patients with Advanced Non-Small-Cell Lung Cancer: an Evidence-Based and Economic AnalysisK-RAS testing in Treatment Decisions for Advanced Colorectal Cancer: an Evidence-Based and Economic Analysis. The objective of this systematic review is to determine the predictive value of KRAS testing in the treatment of metastatic colorectal cancer (mCRC) with two anti-EGFR agents, cetuximab and panitumumab. Economic analyses are also being conducted to evaluate the cost-effectiveness of KRAS testing. CONDITION AND TARGET POPULATION Metastatic colorectal cancer (mCRC) is usually defined as stage IV disease according to the American Joint Committee on Cancer tumour node metastasis (TNM) system or stage D in

  10. Genetic relationships and epidemiological links between wild type 1 poliovirus isolates in Pakistan and Afghanistan

    PubMed Central

    2012-01-01

    Background/Aim Efforts have been made to eliminate wild poliovirus transmission since 1988 when the World Health Organization began its global eradication campaign. Since then, the incidence of polio has decreased significantly. However, serotype 1 and serotype 3 still circulate endemically in Pakistan and Afghanistan. Both countries constitute a single epidemiologic block representing one of the three remaining major global reservoirs of poliovirus transmission. In this study we used genetic sequence data to investigate transmission links among viruses from diverse locations during 2005-2007. Methods In order to find the origins and routes of wild type 1 poliovirus circulation, polioviruses were isolated from faecal samples of Acute Flaccid Paralysis (AFP) patients. We used viral cultures, two intratypic differentiation methods PCR, ELISA to characterize as vaccine or wild type 1 and nucleic acid sequencing of entire VP1 region of poliovirus genome to determine the genetic relatedness. Results One hundred eleven wild type 1 poliovirus isolates were subjected to nucleotide sequencing for genetic variation study. Considering the 15% divergence of the sequences from Sabin 1, Phylogenetic analysis by MEGA software revealed that active inter and intra country transmission of many genetically distinct strains of wild poliovirus type 1 belonged to genotype SOAS which is indigenous in this region. By grouping wild type 1 polioviruses according to nucleotide sequence homology, three distinct clusters A, B and C were obtained with multiple chains of transmission together with some silent circulations represented by orphan lineages. Conclusion Our results emphasize that there was a persistent transmission of wild type1 polioviruses in Pakistan and Afghanistan during 2005-2007. The epidemiologic information provided by the sequence data can contribute to the formulation of better strategies for poliomyelitis control to those critical areas, associated with high risk

  11. Overexpression of Mafb in Podocytes Protects against Diabetic Nephropathy

    PubMed Central

    Yoh, Keigyou; Ojima, Masami; Okamura, Midori; Nakamura, Megumi; Hamada, Michito; Shimohata, Homare; Moriguchi, Takashi; Yamagata, Kunihiro; Takahashi, Satoru

    2014-01-01

    We previously showed that the transcription factor Mafb is essential for podocyte differentiation and foot process formation. Podocytes are susceptible to injury in diabetes, and this injury leads to progression of diabetic nephropathy. In this study, we generated transgenic mice that overexpress Mafb in podocytes using the nephrin promoter/enhancer. To examine a potential pathogenetic role for Mafb in diabetic nephropathy, Mafb transgenic mice were treated with either streptozotocin or saline solution. Diabetic nephropathy was assessed by renal histology and biochemical analyses of urine and serum. Podocyte-specific overexpression of Mafb had no effect on body weight or blood glucose levels in either diabetic or control mice. Notably, albuminuria and changes in BUN levels and renal histology observed in diabetic wild-type animals were ameliorated in diabetic Mafb transgenic mice. Moreover, hyperglycemia-induced downregulation of Nephrin was mitigated in diabetic Mafb transgenic mice, and reporter assay results suggested that Mafb regulates Nephrin directly. Mafb transgenic glomeruli also overexpressed glutathione peroxidase, an antioxidative stress enzyme, and levels of the oxidative stress marker 8-hydroxydeoxyguanosine decreased in the urine of diabetic Mafb transgenic mice. Finally, Notch2 expression increased in diabetic glomeruli, and this effect was enhanced in diabetic Mafb transgenic glomeruli. These data indicate Mafb has a protective role in diabetic nephropathy through regulation of slit diaphragm proteins, antioxidative enzymes, and Notch pathways in podocytes and suggest that Mafb could be a therapeutic target. PMID:24722438

  12. Overexpression of Mafb in podocytes protects against diabetic nephropathy.

    PubMed

    Morito, Naoki; Yoh, Keigyou; Ojima, Masami; Okamura, Midori; Nakamura, Megumi; Hamada, Michito; Shimohata, Homare; Moriguchi, Takashi; Yamagata, Kunihiro; Takahashi, Satoru

    2014-11-01

    We previously showed that the transcription factor Mafb is essential for podocyte differentiation and foot process formation. Podocytes are susceptible to injury in diabetes, and this injury leads to progression of diabetic nephropathy. In this study, we generated transgenic mice that overexpress Mafb in podocytes using the nephrin promoter/enhancer. To examine a potential pathogenetic role for Mafb in diabetic nephropathy, Mafb transgenic mice were treated with either streptozotocin or saline solution. Diabetic nephropathy was assessed by renal histology and biochemical analyses of urine and serum. Podocyte-specific overexpression of Mafb had no effect on body weight or blood glucose levels in either diabetic or control mice. Notably, albuminuria and changes in BUN levels and renal histology observed in diabetic wild-type animals were ameliorated in diabetic Mafb transgenic mice. Moreover, hyperglycemia-induced downregulation of Nephrin was mitigated in diabetic Mafb transgenic mice, and reporter assay results suggested that Mafb regulates Nephrin directly. Mafb transgenic glomeruli also overexpressed glutathione peroxidase, an antioxidative stress enzyme, and levels of the oxidative stress marker 8-hydroxydeoxyguanosine decreased in the urine of diabetic Mafb transgenic mice. Finally, Notch2 expression increased in diabetic glomeruli, and this effect was enhanced in diabetic Mafb transgenic glomeruli. These data indicate Mafb has a protective role in diabetic nephropathy through regulation of slit diaphragm proteins, antioxidative enzymes, and Notch pathways in podocytes and suggest that Mafb could be a therapeutic target. Copyright © 2014 by the American Society of Nephrology.

  13. Gene expression patterns in the hippocampus during the development and aging of Glud1 (Glutamate Dehydrogenase 1) transgenic and wild type mice.

    PubMed

    Wang, Xinkun; Patel, Nilam D; Hui, Dongwei; Pal, Ranu; Hafez, Mohamed M; Sayed-Ahmed, Mohamed M; Al-Yahya, Abdulaziz A; Michaelis, Elias K

    2014-03-04

    Extraneuronal levels of the neurotransmitter glutamate in brain rise during aging. This is thought to lead to synaptic dysfunction and neuronal injury or death. To study the effects of glutamate hyperactivity in brain, we created transgenic (Tg) mice in which the gene for glutamate dehydrogenase (Glud1) is over-expressed in neurons and in which such overexpression leads to excess synaptic release of glutamate. In this study, we analyzed whole genome expression in the hippocampus, a region important for learning and memory, of 10 day to 20 month old Glud1 and wild type (wt) mice. During development, maturation and aging, both Tg and wt exhibited decreases in the expression of genes related to neurogenesis, neuronal migration, growth, and process elongation, and increases in genes related to neuro-inflammation, voltage-gated channel activity, and regulation of synaptic transmission. Categories of genes that were differentially expressed in Tg vs. wt during development were: synaptic function, cytoskeleton, protein ubiquitination, and mitochondria; and, those differentially expressed during aging were: synaptic function, vesicle transport, calcium signaling, protein kinase activity, cytoskeleton, neuron projection, mitochondria, and protein ubiquitination. Overall, the effects of Glud1 overexpression on the hippocampus transcriptome were greater in the mature and aged than the young. Glutamate hyperactivity caused gene expression changes in the hippocampus at all ages. Some of these changes may result in premature brain aging. The identification of these genomic expression differences is important in understanding the effects of glutamate dysregulation on neuronal function during aging or in neurodegenerative diseases.

  14. Overexpression of the Squalene Epoxidase Gene Alone and in Combination with the 3-Hydroxy-3-methylglutaryl Coenzyme A Gene Increases Ganoderic Acid Production in Ganoderma lingzhi.

    PubMed

    Zhang, De-Huai; Jiang, Lu-Xi; Li, Na; Yu, Xuya; Zhao, Peng; Li, Tao; Xu, Jun-Wei

    2017-06-14

    The squalene epoxidase (SE) gene from the biosynthetic pathway of ganoderic acid (GA) was cloned and overexpressed in Ganoderma lingzhi. The strain that overexpressed the SE produced approximately 2 times more GA molecules than the wild-type (WT) strain. Moreover, SE overexpression upregulated lanosterol synthase gene expression in the biosynthetic pathway. These results indicated that SE stimulates GA accumulation. Then, the SE and 3-hydroxy-3-methylglutaryl coenzyme A (HMGR) genes were simultaneously overexpressed in G. lingzhi. Compared with the individual overexpression of SE or HMGR, the combined overexpression of the two genes further enhanced individual GA production. The overexpressing strain produced maximum GA-T, GA-S, GA-Mk, and GA-Me contents of 90.4 ± 7.5, 35.9 ± 5.4, 6.2 ± 0.5, and 61.8 ± 5.8 μg/100 mg dry weight, respectively. These values were 5.9, 4.5, 2.4, and 5.8 times higher than those produced by the WT strain. This is the first example of the successful manipulation of multiple biosynthetic genes to improve GA content in G. lingzhi.

  15. Differential Expression of IL-17, 22 and 23 in the Progression of Colorectal Cancer in Patients with K-ras Mutation: Ras Signal Inhibition and Crosstalk with GM-CSF and IFN-γ

    PubMed Central

    Petanidis, Savvas; Anestakis, Doxakis; Argyraki, Maria; Hadzopoulou-Cladaras, Margarita; Salifoglou, Athanasios

    2013-01-01

    Recent studies have suggested that aberrant K-ras signaling is responsible for triggering immunological responses and inflammation-driven tumorigenesis. Interleukins IL-17, IL-22, and IL-23 have been reported in various types of malignancies, but the exact mechanistic role of these molecules remains to be elucidated. Given the role of K-ras and the involvement of interleukins in colorectal tumorigenesis, research efforts are reported for the first time, showing that differentially expressed interleukin IL-17, IL-22, and IL-23 levels are associated with K-ras in a stage-specific fashion along colorectal cancer progression. Specifically, a) the effect of K-ras signaling was investigated in the overall expression of interleukins in patients with colorectal cancer and healthy controls, and b) an association was established between mutant K-ras and cytokines GM-CSF and IFN-γ. The results indicate that specific interleukins are differentially expressed in K-ras positive patients and the use of K-ras inhibitor Manumycin A decreases both interleukin levels and apoptosis in Caco-2 cells by inhibiting cell viability. Finally, inflammation-driven GM-CSF and IFN-γ levels are modulated through interleukin expression in tumor patients, with interleukin expression in the intestinal lumen and cancerous tissue mediated by aberrant K-ras signaling. Collectively, the findings a) indicate that interleukin expression is influenced by ras signaling and specific interleukins play an oncogenic promoter role in colorectal cancer, highlighting the molecular link between inflammation and tumorigenesis, and b) accentuate the interwoven molecular correlations as leads to new therapeutic approaches in the future. PMID:24040001

  16. A combination therapy for KRAS-driven lung adenocarcinomas using lipophilic bisphosphonates and rapamycin

    DOE PAGES

    Xia, Yifeng; Liu, Yi -Liang; Xie, Yonghua; ...

    2014-11-19

    Lung cancer is the most common human malignancy and leads to about one-third of all cancer-related deaths. Lung adenocarcinomas harboring KRAS mutations, in contrast to those with EGFR and EML4-ALK mutations, have not yet been successfully targeted. Here in this paper, we describe a combination therapy for treating these malignancies using two agents: a lipophilic bisphosphonate and rapamycin. This drug combination is much more effective than either agent acting alone in the KRAS G12D induced mouse lung model. Lipophilic bisphosphonates inhibit both farnesyl and geranylgeranyldiphosphate synthases, effectively blocking prenylation of the KRAS and other small G-proteins critical for tumor growthmore » and cell survival. Bisphosphonate treatment of cells initiated autophagy but was ultimately unsuccessful and led to p62 accumulation and concomitant NF-κB activation, resulting in dampened efficacy in vivo. However, we found that rapamycin, in addition to inhibiting the mTOR pathway, facilitated autophagy and prevented p62 accumulation-induced NF-κB activation and tumor cell proliferation. Lastly, these results suggest that using lipophilic bisphosphonates in combination with rapamycin may provide an effective strategy for targeting lung adenocarcinomas harboring KRAS mutations.« less

  17. Genomic Knockout of Endogenous Canine P-Glycoprotein in Wild-Type, Human P-Glycoprotein and Human BCRP Transfected MDCKII Cell Lines by Zinc Finger Nucleases.

    PubMed

    Gartzke, Dominik; Delzer, Jürgen; Laplanche, Loic; Uchida, Yasuo; Hoshi, Yutaro; Tachikawa, Masanori; Terasaki, Tetsuya; Sydor, Jens; Fricker, Gert

    2015-06-01

    To investigate whether it is possible to specifically suppress the expression and function of endogenous canine P-glycoprotein (cPgp) in Madin-Darby canine kidney type II cells (MDCKII) transfected with hPGP and breast cancer resistance protein (hBCRP) by zinc finger nuclease (ZFN) producing sequence specific DNA double strand breaks. Wild-type, hPGP-transfected, and hBCRP-transfected MDCKII cells were transfected with ZFN targeting for cPgp. Net efflux ratios (NER) of Pgp and Bcrp substrates were determined by dividing efflux ratios (basal-to-apical / apical-to-basal) in over-expressing cell monolayers by those in wild-type ones. From ZFN-transfected cells, cell populations (ko-cells) showing knockout of cPgp were selected based on genotyping by PCR. qRT-PCR analysis showed the significant knock-downs of cPgp and interestingly also cMrp2 expressions. Specific knock-downs of protein expression for cPgp were shown by western blotting and quantitative targeted absolute proteomics. Endogenous canine Bcrp proteins were not detected. For PGP-transfected cells, NERs of 5 Pgp substrates in ko-cells were significantly greater than those in parental cells not transfected with ZFN. Similar result was obtained for BCRP-transfected cells with a dual Pgp and Bcrp substrate. Specific efflux mediated by hPGP or hBCRP can be determined with MDCKII cells where cPgp has been knocked out by ZFN.

  18. Biomarkers that currently affect clinical practice: EGFR, ALK, MET, KRAS

    PubMed Central

    Vincent, M.D.; Kuruvilla, M.S.; Leighl, N.B.; Kamel–Reid, S.

    2012-01-01

    New drugs such as pemetrexed, the epidermal growth factor receptor (egfr) tyrosine kinase inhibitors, and the Alk inhibitor crizotinib have recently enabled progress in the management of advanced non-small-cell lung cancer (nsclc). More drugs, especially Met inhibitors, will follow. However, the benefits of these agents are not uniform across the spectrum of nsclc, and optimizing their utility requires some degree of subgrouping of nsclc by the presence or absence of certain biomarkers. The biomarkers of current or imminent value are EGFR and KRAS mutational status, ALK rearrangements, and MET immunohistochemistry. As a predictor of benefit for anti-egfr monoclonal antibodies, EGFR immunohistochemistry is also of potential interest. Some of the foregoing biomarkers (EGFR, ALK, MET) are direct drivers of the malignant phenotype. As such, they are, quite rationally, the direct targets of inhibitory drugs. However, KRAS, while definitely a driver, has resisted attempts at direct pharmacologic manipulation, and its main value might lie in its role as part of an efficient testing algorithm, because KRAS mutations appear to exclude EGFR and ALK mutations. The indirect value of KRAS in determining sensitivity to other targeted agents or to pemetrexed remains controversial. The other biomarkers (EGFR, ALK, MET) may also have indirect value as predictors of sensitivity to chemotherapy in general, to pemetrexed specifically, and to radiotherapy and molecularly targeted agents. These biomarkers have all enabled the co-development of new drugs with companion diagnostics, and they illustrate the paradigm that will govern progress in oncology in the immediate future. However, in nsclc, the acquisition of sufficient biopsy material remains a stubborn obstacle to the evolution of novel targeted therapies. PMID:22787409

  19. Detection of K-ras gene mutations in feces by magnetic nanoprobe in patients with pancreatic cancer: A preliminary study.

    PubMed

    Wang, Xiaoguang; Wang, Jingshuai; Chen, Fei; Zhong, Zhengxiang; Qi, Lifeng

    2018-01-01

    The present study aimed to investigate the feasibility and effectiveness of detecting K-ras mutation by using magnetic nanoparticles in fecal samples of patients with pancreatic cancer at different stages. The novel methodology of K-ras mutation detection was compared to the existing methodology of cancer antigen (CA)19-9 examination. Patients with pancreatic cancer (n=88), pancreatic benign diseases who displayed chronic pancreatitis (n=35), pancreatic mucinous cyst neoplasms (n=10) and pancreatic serous cyst (n=9) admitted to the Department of Surgery, Jiaxing Second Hospital were enrolled in the present study. Fecal samples were collected from all patients, DNA was extracted and magnetic nanoprobe was then used to detect K-ras mutation. The results obtained using the novel magnetic nanoprobe detection technique showed a K-ras mutation rate of 81.8% (72/88) in the patients with pancreatic cancer and 18.5% (10/54) in patients with pancreatic benign diseases. In patients with pancreatic cancer, the K-ras mutation rate was comparable in stages I + IIA and IIB + III + IV (78.9 vs. 84.0%; P>0.05). The sensitivity and specificity of K-ras mutation for detection of pancreatic cancer was 81.8 and 81.5%, respectively. Sixty-eight pancreatic cancer patients had >37 U/ml CA99 with a sensitivity and specificity for pancreatic cancer detection of 77.3 and 77.8%, which was not significantly lower than detection by the fecal K-ras mutations (P>0.05). Combinational detection of fecal K-ras mutations and serum CA19-9 significantly increased the sensitivity regarding pancreatic cancer detection to 97.7% (P<0.05), while the specificity was not enhanced (80.9%; P>0.05) compared with fecal K-ras mutations or CA19-9 alone. The findings showed that the magnetic nanoprobe is able to detect fecal K-ras mutations in different stages of pancreatic cancer, with comparable sensitivity and specificity to CA19-9 examination for differentiating pancreatic cancer. Furthermore, combined detection

  20. ERp29 Regulates ΔF508 and Wild-type Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Trafficking to the Plasma Membrane in Cystic Fibrosis (CF) and Non-CF Epithelial Cells*

    PubMed Central

    Suaud, Laurence; Miller, Katelyn; Alvey, Lora; Yan, Wusheng; Robay, Amal; Kebler, Catherine; Kreindler, James L.; Guttentag, Susan; Hubbard, Michael J.; Rubenstein, Ronald C.

    2011-01-01

    Sodium 4-phenylbutyrate (4PBA) improves the intracellular trafficking of ΔF508-CFTR in cystic fibrosis (CF) epithelial cells. The underlying mechanism is uncertain, but 4PBA modulates the expression of some cytosolic molecular chaperones. To identify other 4PBA-regulated proteins that might regulate ΔF508-CFTR trafficking, we performed a differential display RT-PCR screen on IB3-1 CF bronchiolar epithelial cells exposed to 4PBA. One transcript up-regulated by 4PBA encoded ERp29, a luminal resident of the endoplasmic reticulum (ER) thought to be a novel molecular chaperone. We tested the hypothesis that ERp29 is a 4PBA-regulated ER chaperone that influences ΔF508-CFTR trafficking. ERp29 mRNA and protein expression was significantly increased (∼1.5-fold) in 4PBA-treated IB3-1 cells. In Xenopus oocytes, ERp29 overexpression increased the functional expression of both wild-type and ΔF508-CFTR over 3-fold and increased wild-type cystic fibrosis transmembrane conductance regulator (CFTR) plasma membrane expression. In CFBE41o− WT-CFTR cells, expression of and short circuit currents mediated by CFTR decreased upon depletion of ERp29 as did maturation of newly synthesized CFTR. In IB3-1 cells, ΔF508-CFTR co-immunoprecipitated with endogenous ERp29, and overexpression of ERp29 led to increased ΔF508-CFTR expression at the plasma membrane. These data suggest that ERp29 is a 4PBA-regulated ER chaperone that regulates WT-CFTR biogenesis and can promote ΔF508-CFTR trafficking in CF epithelial cells. PMID:21525008

  1. ERp29 regulates DeltaF508 and wild-type cystic fibrosis transmembrane conductance regulator (CFTR) trafficking to the plasma membrane in cystic fibrosis (CF) and non-CF epithelial cells.

    PubMed

    Suaud, Laurence; Miller, Katelyn; Alvey, Lora; Yan, Wusheng; Robay, Amal; Kebler, Catherine; Kreindler, James L; Guttentag, Susan; Hubbard, Michael J; Rubenstein, Ronald C

    2011-06-17

    Sodium 4-phenylbutyrate (4PBA) improves the intracellular trafficking of ΔF508-CFTR in cystic fibrosis (CF) epithelial cells. The underlying mechanism is uncertain, but 4PBA modulates the expression of some cytosolic molecular chaperones. To identify other 4PBA-regulated proteins that might regulate ΔF508-CFTR trafficking, we performed a differential display RT-PCR screen on IB3-1 CF bronchiolar epithelial cells exposed to 4PBA. One transcript up-regulated by 4PBA encoded ERp29, a luminal resident of the endoplasmic reticulum (ER) thought to be a novel molecular chaperone. We tested the hypothesis that ERp29 is a 4PBA-regulated ER chaperone that influences ΔF508-CFTR trafficking. ERp29 mRNA and protein expression was significantly increased (∼1.5-fold) in 4PBA-treated IB3-1 cells. In Xenopus oocytes, ERp29 overexpression increased the functional expression of both wild-type and ΔF508-CFTR over 3-fold and increased wild-type cystic fibrosis transmembrane conductance regulator (CFTR) plasma membrane expression. In CFBE41o- WT-CFTR cells, expression of and short circuit currents mediated by CFTR decreased upon depletion of ERp29 as did maturation of newly synthesized CFTR. In IB3-1 cells, ΔF508-CFTR co-immunoprecipitated with endogenous ERp29, and overexpression of ERp29 led to increased ΔF508-CFTR expression at the plasma membrane. These data suggest that ERp29 is a 4PBA-regulated ER chaperone that regulates WT-CFTR biogenesis and can promote ΔF508-CFTR trafficking in CF epithelial cells.

  2. Presence of activating KRAS mutations correlates significantly with expression of tumour suppressor genes DCN and TPM1 in colorectal cancer.

    PubMed

    Mlakar, Vid; Berginc, Gasper; Volavsek, Metka; Stor, Zdravko; Rems, Miran; Glavac, Damjan

    2009-08-13

    Despite identification of the major genes and pathways involved in the development of colorectal cancer (CRC), it has become obvious that several steps in these pathways might be bypassed by other as yet unknown genetic events that lead towards CRC. Therefore we wanted to improve our understanding of the genetic mechanisms of CRC development. We used microarrays to identify novel genes involved in the development of CRC. Real time PCR was used for mRNA expression as well as to search for chromosomal abnormalities within candidate genes. The correlation between the expression obtained by real time PCR and the presence of the KRAS mutation was investigated. We detected significant previously undescribed underexpression in CRC for genes SLC26A3, TPM1 and DCN, with a suggested tumour suppressor role. We also describe the correlation between TPM1 and DCN expression and the presence of KRAS mutations in CRC. When searching for chromosomal abnormalities, we found deletion of the TPM1 gene in one case of CRC, but no deletions of DCN and SLC26A3 were found. Our study provides further evidence of decreased mRNA expression of three important tumour suppressor genes in cases of CRC, thus implicating them in the development of this type of cancer. Moreover, we found underexpression of the TPM1 gene in a case of CRCs without KRAS mutations, showing that TPM1 might serve as an alternative path of development of CRC. This downregulation could in some cases be mediated by deletion of the TPM1 gene. On the other hand, the correlation of DCN underexpression with the presence of KRAS mutations suggests that DCN expression is affected by the presence of activating KRAS mutations, lowering the amount of the important tumour suppressor protein decorin.

  3. Presence of activating KRAS mutations correlates significantly with expression of tumour suppressor genes DCN and TPM1 in colorectal cancer

    PubMed Central

    2009-01-01

    Background Despite identification of the major genes and pathways involved in the development of colorectal cancer (CRC), it has become obvious that several steps in these pathways might be bypassed by other as yet unknown genetic events that lead towards CRC. Therefore we wanted to improve our understanding of the genetic mechanisms of CRC development. Methods We used microarrays to identify novel genes involved in the development of CRC. Real time PCR was used for mRNA expression as well as to search for chromosomal abnormalities within candidate genes. The correlation between the expression obtained by real time PCR and the presence of the KRAS mutation was investigated. Results We detected significant previously undescribed underexpression in CRC for genes SLC26A3, TPM1 and DCN, with a suggested tumour suppressor role. We also describe the correlation between TPM1 and DCN expression and the presence of KRAS mutations in CRC. When searching for chromosomal abnormalities, we found deletion of the TPM1 gene in one case of CRC, but no deletions of DCN and SLC26A3 were found. Conclusion Our study provides further evidence of decreased mRNA expression of three important tumour suppressor genes in cases of CRC, thus implicating them in the development of this type of cancer. Moreover, we found underexpression of the TPM1 gene in a case of CRCs without KRAS mutations, showing that TPM1 might serve as an alternative path of development of CRC. This downregulation could in some cases be mediated by deletion of the TPM1 gene. On the other hand, the correlation of DCN underexpression with the presence of KRAS mutations suggests that DCN expression is affected by the presence of activating KRAS mutations, lowering the amount of the important tumour suppressor protein decorin. PMID:19678923

  4. Spontaneous generation of rapidly transmissible prions in transgenic mice expressing wild-type bank vole prion protein.

    PubMed

    Watts, Joel C; Giles, Kurt; Stöhr, Jan; Oehler, Abby; Bhardwaj, Sumita; Grillo, Sunny K; Patel, Smita; DeArmond, Stephen J; Prusiner, Stanley B

    2012-02-28

    Currently, there are no animal models of the most common human prion disorder, sporadic Creutzfeldt-Jakob disease (CJD), in which prions are formed spontaneously from wild-type (WT) prion protein (PrP). Interestingly, bank voles (BV) exhibit an unprecedented promiscuity for diverse prion isolates, arguing that bank vole PrP (BVPrP) may be inherently prone to adopting misfolded conformations. Therefore, we constructed transgenic (Tg) mice expressing WT BVPrP. Tg(BVPrP) mice developed spontaneous CNS dysfunction between 108 and 340 d of age and recapitulated the hallmarks of prion disease, including spongiform degeneration, pronounced astrogliosis, and deposition of alternatively folded PrP in the brain. Brain homogenates of ill Tg(BVPrP) mice transmitted disease to Tg(BVPrP) mice in ∼35 d, to Tg mice overexpressing mouse PrP in under 100 d, and to WT mice in ∼185 d. Our studies demonstrate experimentally that WT PrP can spontaneously form infectious prions in vivo. Thus, Tg(BVPrP) mice may be useful for studying the spontaneous formation of prions, and thus may provide insight into the etiology of sporadic CJD.

  5. Overexpression of a MADS-Box Gene from Birch (Betula platyphylla) Promotes Flowering and Enhances Chloroplast Development in Transgenic Tobacco

    PubMed Central

    Qu, Guan-Zheng; Zheng, Tangchun; Liu, Guifeng; Wang, Wenjie; Zang, Lina; Liu, Huanzhen; Yang, Chuanping

    2013-01-01

    In this study, a MADS-box gene (BpMADS), which is an ortholog of AP1 from Arabidopsis, was isolated from birch (Betula platyphylla). Transgenic Arabidopsis containing a BpMADS promoter::GUS construct was produced, which exhibited strong GUS staining in sepal tissues. Ectopic expression of BpMADS significantly enhanced the flowering of tobacco (35S::BpMADS). In addition, the chloroplasts of transgenic tobacco exhibited much higher growth and division rates, as well rates of photosynthesis, than wild-type. A grafting experiment demonstrated that the flowering time of the scion was not affected by stock that overexpressed BpMADS. In addition, the overexpression of BpMADS resulted in the upregulation of some flowering-related genes in tobacco. PMID:23691043

  6. Interleukin-6 overexpression induces pulmonary hypertension.

    PubMed

    Steiner, M Kathryn; Syrkina, Olga L; Kolliputi, Narasaish; Mark, Eugene J; Hales, Charles A; Waxman, Aaron B

    2009-01-30

    Inflammatory cytokine interleukin (IL)-6 is elevated in the serum and lungs of patients with pulmonary artery hypertension (PAH). Several animal models of PAH cite the potential role of inflammatory mediators. We investigated role of IL-6 in the pathogenesis of pulmonary vascular disease. Indices of pulmonary vascular remodeling were measured in lung-specific IL-6-overexpressing transgenic mice (Tg(+)) and compared to wild-type (Tg(-)) controls in both normoxic and chronic hypoxic conditions. The Tg(+) mice exhibited elevated right ventricular systolic pressures and right ventricular hypertrophy with corresponding pulmonary vasculopathic changes, all of which were exacerbated by chronic hypoxia. IL-6 overexpression increased muscularization of the proximal arterial tree, and hypoxia enhanced this effect. It also reproduced the muscularization and proliferative arteriopathy seen in the distal arteriolar vessels of PAH patients. The latter was characterized by the formation of occlusive neointimal angioproliferative lesions that worsened with hypoxia and were composed of endothelial cells and T-lymphocytes. IL-6-induced arteriopathic changes were accompanied by activation of proangiogenic factor, vascular endothelial growth factor, the proproliferative kinase extracellular signal-regulated kinase, proproliferative transcription factors c-MYC and MAX, and the antiapoptotic proteins survivin and Bcl-2 and downregulation of the growth inhibitor transforming growth factor-beta and proapoptotic kinases JNK and p38. These findings suggest that IL-6 promotes the development and progression of pulmonary vascular remodeling and PAH through proproliferative antiapoptotic mechanisms.

  7. Strain-specific reverse transcriptase PCR assay: means to distinguish candidate vaccine from wild-type strains of respiratory syncytial virus.

    PubMed Central

    Zheng, H; Peret, T C; Randolph, V B; Crowley, J C; Anderson, L J

    1996-01-01

    Candidate live-virus vaccines for respiratory syncytial virus are being developed and are beginning to be evaluated in clinical trials. To distinguish candidate vaccine strains from wild-type strains isolated during these trials, we developed PCR assays specific to two sets of candidate vaccine strains. The two sets were a group A strain (3A), its three attenuated, temperature-sensitive variant strains, a group B strain (2B), and its four attenuated, temperature-sensitive variant strains. The PCR assays were evaluated by testing 18 group A wild-type strains, the 3A strains, 9 group B wild-type strains, and the 2B strains. PCR specific to group A wild-type strains amplified only group A wild-type strains, and 3A-specific PCR amplified only 3A strains. PCR specific to group B wild-type strains amplified all group A and group B strains but gave a 688-bp product for group B wild-type strains, a 279-bp product for 2B strains, a 547-bp product for all group A strains, and an additional 688-bp product for some group A strains, including 3A strains. These types of PCR assays can, in conjunction with other methods, be used to efficiently distinguish candidate vaccine strains from other respiratory syncytial virus strains. PMID:8789010

  8. SIRT2 and lysine fatty acylation regulate the transforming activity of K-Ras4a

    PubMed Central

    Wisner, Stephanie A; Chen, Xiao; Spiegelman, Nicole A; Linder, Maurine E

    2017-01-01

    Ras proteins play vital roles in numerous biological processes and Ras mutations are found in many human tumors. Understanding how Ras proteins are regulated is important for elucidating cell signaling pathways and identifying new targets for treating human diseases. Here we report that one of the K-Ras splice variants, K-Ras4a, is subject to lysine fatty acylation, a previously under-studied protein post-translational modification. Sirtuin 2 (SIRT2), one of the mammalian nicotinamide adenine dinucleotide (NAD)-dependent lysine deacylases, catalyzes the removal of fatty acylation from K-Ras4a. We further demonstrate that SIRT2-mediated lysine defatty-acylation promotes endomembrane localization of K-Ras4a, enhances its interaction with A-Raf, and thus promotes cellular transformation. Our study identifies lysine fatty acylation as a previously unknown regulatory mechanism for the Ras family of GTPases that is distinct from cysteine fatty acylation. These findings highlight the biological significance of lysine fatty acylation and sirtuin-catalyzed protein lysine defatty-acylation. PMID:29239724

  9. G12V Kras mutations in cervical cancer under virtual microscope of molecular dynamics simulations.

    PubMed

    Chen, X P; Xu, W H; Xu, D F; Fu, S M; Ma, Z C

    2016-01-01

    Kras mutations and cancers are common and their role in the progression of cancer is well known and elucidated. The present work is searching for the most deleterious mutation of the four found at codon 12 and 13 of Kras in cervical cancers using prediction servers; different servers were used to look into different factors that govern the protein function. The in silico results predicted G12V to be the most devastating; this particular mutation was then subjected to molecular dynamics simulation (MDS) for further analysis. The authors' approach of MDSs helped them to place the native and mutant structure under virtual microscope and observe their dynamics over time. The results generated are enlightening the effect of G12V variation on the dynamics of Kras. The structural variation between the native and mutant Kras over 50 nanoseconds (ns) run varied at every parameter checked and the results are in excellent agreement with the available experimental data.

  10. The wild type as concept and in experimental practice: A history of its role in classical genetics and evolutionary theory.

    PubMed

    Holmes, Tarquin

    2017-06-01

    Wild types in genetics are specialised strains of laboratory experimental organism which principally serve as standards against which variation is measured. As selectively inbred lineages highly isolated from ancestral wild populations, there appears to be little wild or typical about them. I will nonetheless argue that they have historically been successfully used as stand-ins for nature, allowing knowledge produced in the laboratory to be extrapolated to the natural world. In this paper, I will explore the 19th century origins of the wild type concept, the theoretical and experimental innovations which allowed concepts and organisms to move from wild nature to laboratory domestication c. 1900 (resulting in the production of standardised lab strains), and the conflict among early geneticists between interactionist and atomist accounts of wild type, which would eventually lead to the conceptual disintegration of wild types and the triumph of genocentrism and population genetics. I conclude by discussing how the strategy of using wild type strains to represent nature in the lab has nonetheless survived the downfall of the wild type concept and continues to provide, significant limitations acknowledged, an epistemically productive means of investigating heredity and evolutionary variation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Activating KRAS mutations are characteristic of oncocytic sinonasal papilloma and associated sinonasal squamous cell carcinoma.

    PubMed

    Udager, Aaron M; McHugh, Jonathan B; Betz, Bryan L; Montone, Kathleen T; Livolsi, Virginia A; Seethala, Raja R; Yakirevich, Evgeny; Iwenofu, O Hans; Perez-Ordonez, Bayardo; DuRoss, Kathleen E; Weigelin, Helmut C; Lim, Megan S; Elenitoba-Johnson, Kojo Sj; Brown, Noah A

    2016-08-01

    Oncocytic sinonasal papillomas (OSPs) are benign tumours of the sinonasal tract, a subset of which are associated with synchronous or metachronous sinonasal squamous cell carcinoma (SNSCC). Activating EGFR mutations were recently identified in nearly 90% of inverted sinonasal papillomas (ISPs) - a related tumour with distinct morphology. EGFR mutations were, however, not found in OSP, suggesting that different molecular alterations drive the oncogenesis of these tumours. In this study, tissue from 51 cases of OSP and five cases of OSP-associated SNSCC was obtained retrospectively from six institutions. Tissue was also obtained from 50 cases of ISP, 22 cases of ISP-associated SNSCC, ten cases of exophytic sinonasal papilloma (ESP), and 19 cases of SNSCC with no known papilloma association. Using targeted next-generation and conventional Sanger sequencing, we identified KRAS mutations in 51/51 (100%) OSPs and 5/5 (100%) OSP-associated SNSCCs. The somatic nature of KRAS mutations was confirmed in a subset of cases with matched germline DNA, and four matched pairs of OSP and concurrent associated SNSCC had concordant KRAS genotypes. In contrast, KRAS mutations were present in only one (5%) SNSCC with no known papilloma association and none of the ISPs, ISP-associated SNSCCs, or ESPs. This is the first report of somatic KRAS mutations in OSP and OSP-associated SNSCC. The presence of identical mutations in OSP and concurrent associated SNSCC supports the putative role of OSP as a precursor to SNSCC, and the high frequency and specificity of KRAS mutations suggest that OSP and OSP-associated SNSCC are biologically distinct from other similar sinonasal tumours. The identification of KRAS mutations in all studied OSP cases represents an important development in our understanding of the pathogenesis of this disease and may have implications for diagnosis and therapy. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd

  12. Overexpression of p53 mRNA in colorectal cancer and its relationship to p53 gene mutation.

    PubMed Central

    el-Mahdani, N.; Vaillant, J. C.; Guiguet, M.; Prévot, S.; Bertrand, V.; Bernard, C.; Parc, R.; Béréziat, G.; Hermelin, B.

    1997-01-01

    We analysed the frequency of p53 mRNA overexpression in a series of 109 primary colorectal carcinomas and its association with p53 gene mutation, which has been correlated with short survival. Sixty-nine of the 109 cases (63%) demonstrated p53 mRNA overexpression, without any correlation with stage or site of disease. Comparison with p53 gene mutation indicated that, besides cases in which p53 gene mutation and p53 mRNA overexpression were either both present (40 cases) or both absent (36 cases), there were also cases in which p53 mRNA was overexpressed in the absence of any mutation (29 cases) and those with a mutant gene in which the mRNA was not overexpressed (four cases). Moreover, the mutant p53 tumours exhibited an increase of p53 mRNA expression, which was significantly higher in tumours expressing the mutated allele alone than in tumours expressing both wild- and mutated-type alleles. These data (1) show that p53 mRNA overexpression is a frequent event in colorectal tumours and is not predictive of the status of the gene, i.e. whether or not a mutation is present; (2) provide further evidence that p53 protein overexpression does not only result from an increase in the half-life of mutated p53 and suggest that inactivation of the p53 function in colorectal cancers involves at least two distinct mechanisms, including p53 overexpression and/or mutation; and (3) suggest that p53 mRNA overexpression is an early event, since it is not correlated with Dukes stage. PMID:9052405

  13. Cardiomyocyte Overexpression of FABP4 Aggravates Pressure Overload-Induced Heart Hypertrophy.

    PubMed

    Zhang, Ji; Qiao, Congzhen; Chang, Lin; Guo, Yanhong; Fan, Yanbo; Villacorta, Luis; Chen, Y Eugene; Zhang, Jifeng

    2016-01-01

    Fatty acid binding protein 4 (FABP4) is a member of the intracellular lipid-binding protein family, responsible for the transportation of fatty acids. It is considered to express mainly in adipose tissues, and be strongly associated with inflammation, obesity, diabetes and cardiovasculardiseases. Here we report that FABP4 is also expressed in cardiomyocytes and plays an important role in regulating heart function under pressure overload. We generated heart-specific transgenic FABP4 (FABP4-TG) mice using α myosin-heavy chain (α-MHC) promoter and human FABP4 sequence, resulting in over-expression of FABP4 in cardiomyocytes. The FABP4-TG mice displayed normal cardiac morphology and contractile function. When they were subjected to the transverse aorta constriction (TAC) procedure, the FABP4-TG mice developed more cardiac hypertrophy correlated with significantly increased ERK phosphorylation, compared with wild type controls. FABP4 over-expression in cardiomyocytes activated phosphor-ERK signal and up-regulate the expression of cardiac hypertrophic marker genes. Conversely, FABP4 induced phosphor-ERK signal and hypertrophic gene expressions can be markedly inhibited by an ERK inhibitor PD098059 as well as the FABP4 inhibitor BMS309403. These results suggest that FABP4 over-expression in cardiomyocytes can aggravate the development of cardiac hypertrophy through the activation of ERK signal pathway.

  14. Cardiomyocyte Overexpression of FABP4 Aggravates Pressure Overload-Induced Heart Hypertrophy

    PubMed Central

    Zhang, Ji; Qiao, Congzhen; Chang, Lin; Guo, Yanhong; Fan, Yanbo; Villacorta, Luis; Chen, Y. Eugene; Zhang, Jifeng

    2016-01-01

    Fatty acid binding protein 4 (FABP4) is a member of the intracellular lipid-binding protein family, responsible for the transportation of fatty acids. It is considered to express mainly in adipose tissues, and be strongly associated with inflammation, obesity, diabetes and cardiovasculardiseases. Here we report that FABP4 is also expressed in cardiomyocytes and plays an important role in regulating heart function under pressure overload. We generated heart-specific transgenic FABP4 (FABP4-TG) mice using α myosin-heavy chain (α-MHC) promoter and human FABP4 sequence, resulting in over-expression of FABP4 in cardiomyocytes. The FABP4-TG mice displayed normal cardiac morphology and contractile function. When they were subjected to the transverse aorta constriction (TAC) procedure, the FABP4-TG mice developed more cardiac hypertrophy correlated with significantly increased ERK phosphorylation, compared with wild type controls. FABP4 over-expression in cardiomyocytes activated phosphor-ERK signal and up-regulate the expression of cardiac hypertrophic marker genes. Conversely, FABP4 induced phosphor-ERK signal and hypertrophic gene expressions can be markedly inhibited by an ERK inhibitor PD098059 as well as the FABP4 inhibitor BMS309403. These results suggest that FABP4 over-expression in cardiomyocytes can aggravate the development of cardiac hypertrophy through the activation of ERK signal pathway. PMID:27294862

  15. Retinal ganglion cell responses to voltage and current stimulation in wild-type and rd1 mouse retinas

    NASA Astrophysics Data System (ADS)

    Goo, Yong Sook; Ye, Jang Hee; Lee, Seokyoung; Nam, Yoonkey; Ryu, Sang Baek; Kim, Kyung Hwan

    2011-06-01

    Retinal prostheses are being developed to restore vision for those with retinal diseases such as retinitis pigmentosa or age-related macular degeneration. Since neural prostheses depend upon electrical stimulation to control neural activity, optimal stimulation parameters for successful encoding of visual information are one of the most important requirements to enable visual perception. In this paper, we focused on retinal ganglion cell (RGC) responses to different stimulation parameters and compared threshold charge densities in wild-type and rd1 mice. For this purpose, we used in vitro retinal preparations of wild-type and rd1 mice. When the neural network was stimulated with voltage- and current-controlled pulses, RGCs from both wild-type and rd1 mice responded; however the temporal pattern of RGC response is very different. In wild-type RGCs, a single peak within 100 ms appears, while multiple peaks (approximately four peaks) with ~10 Hz rhythm within 400 ms appear in RGCs in the degenerated retina of rd1 mice. We find that an anodic phase-first biphasic voltage-controlled pulse is more efficient for stimulation than a biphasic current-controlled pulse based on lower threshold charge density. The threshold charge densities for activation of RGCs both with voltage- and current-controlled pulses are overall more elevated for the rd1 mouse than the wild-type mouse. Here, we propose the stimulus range for wild-type and rd1 retinas when the optimal modulation of a RGC response is possible.

  16. Targeted Overexpression of Mitochondrial Catalase Prevents Radiation-Induced Cognitive Dysfunction

    PubMed Central

    Parihar, Vipan K.; Allen, Barrett D.; Tran, Katherine K.; Chmielewski, Nicole N.; Craver, Brianna M.; Martirosian, Vahan; Morganti, Josh M.; Rosi, Susanna; Vlkolinsky, Roman; Acharya, Munjal M.; Nelson, Gregory A.; Allen, Antiño R.

    2015-01-01

    Abstract Aims: Radiation-induced disruption of mitochondrial function can elevate oxidative stress and contribute to the metabolic perturbations believed to compromise the functionality of the central nervous system. To clarify the role of mitochondrial oxidative stress in mediating the adverse effects of radiation in the brain, we analyzed transgenic (mitochondrial catalase [MCAT]) mice that overexpress human catalase localized to the mitochondria. Results: Compared with wild-type (WT) controls, overexpression of the MCAT transgene significantly decreased cognitive dysfunction after proton irradiation. Significant improvements in behavioral performance found on novel object recognition and object recognition in place tasks were associated with a preservation of neuronal morphology. While the architecture of hippocampal CA1 neurons was significantly compromised in irradiated WT mice, the same neurons in MCAT mice did not exhibit extensive and significant radiation-induced reductions in dendritic complexity. Irradiated neurons from MCAT mice maintained dendritic branching and length compared with WT mice. Protected neuronal morphology in irradiated MCAT mice was also associated with a stabilization of radiation-induced variations in long-term potentiation. Stabilized synaptic activity in MCAT mice coincided with an altered composition of the synaptic AMPA receptor subunits GluR1/2. Innovation: Our findings provide the first evidence that neurocognitive sequelae associated with radiation exposure can be reduced by overexpression of MCAT, operating through a mechanism involving the preservation of neuronal morphology. Conclusion: Our article documents the neuroprotective properties of reducing mitochondrial reactive oxygen species through the targeted overexpression of catalase and how this ameliorates the adverse effects of proton irradiation in the brain. Antioxid. Redox Signal. 22, 78–91. PMID:24949841

  17. Overexpression of DOSOC1, an ortholog of Arabidopsis SOC1, promotes flowering in the orchid Dendrobium Chao Parya Smile.

    PubMed

    Ding, Lihua; Wang, Yanwen; Yu, Hao

    2013-04-01

    SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1) encodes a MADS-box protein that plays an essential role in integrating multiple flowering signals to regulate the transition from vegetative to reproductive development in the model plant Arabidopsis. Although SOC1-like genes have been isolated in various angiosperms, its orthologs in Orchidaceae, one of the largest families of flowering plants, are so far unknown. To investigate the regulatory mechanisms of flowering time control in orchids, we isolated a SOC1-like gene, DOSOC1, from Dendrobium Chao Praya Smile. DOSOC1 was highly expressed in reproductive organs, including inflorescence apices, pedicels, floral buds and open flowers. Its expression significantly increased in whole plantlets during the transition from vegetative to reproductive development, which usually occurred after 8 weeks of culture in Dendrobium Chao Praya Smile. In the shoot apex at the floral transitional stage, DOSOC1 was particularly expressed in emerging floral meristems. Overexpression of DOSOC1 in wild-type Arabidopsis plants resulted in early flowering, which was coupled with the up-regulation of two other flowering promoters, AGAMOUS-LIKE 24 and LEAFY. In addition, overexpression of DOSOC1 was able partially to complement the late-flowering phenotype of Arabidopsis soc1-2 loss-of-function mutants. Furthermore, we successfully created seven 35S:DOSOC1 transgenic Dendrobium orchid lines, which consistently exhibited earlier flowering than wild-type orchids. Our results suggest that SOC1-like genes play an evolutionarily conserved role in promoting flowering in the Orchidaceae family, and that DOSOC1 isolated from Dendrobium Chao Praya Smile could serve as an important target for genetic manipulation of flowering time in orchids.

  18. Synergistic effects of acyclovir and 3, 19-isopropylideneandrographolide on herpes simplex virus wild types and drug-resistant strains.

    PubMed

    Priengprom, Thongkoon; Ekalaksananan, Tipaya; Kongyingyoes, Bunkerd; Suebsasana, Supawadee; Aromdee, Chantana; Pientong, Chamsai

    2015-03-11

    An andrographolide analogue, 3, 19-isopropylideneandrographolide (IPAD), exerts an inhibitory effect on replication of wild-type herpes simplex virus serotype 1 (HSV-1). In this study, we examined the anti-viral activity of IPAD on HSV wild types (HSV-1 strain KOS and HSV-2 clinical isolate) and HSV-1 drug-resistant strains (DRs). Synergistic effects of IPAD with acyclovir (ACV) were also evaluated. MTT and cytopathic effect (CPE) reduction assays were performed to determine cytotoxicity and anti-viral activities, respectively. A combination assay was used to determine synergistic effects of IPAD and ACV. Presence of viral DNA and protein in experimental cells was investigated using the polymerase chain reaction and western blotting, respectively. A non-cytotoxic concentration of IPAD (20.50 μM) completely inhibited CPE formation induced by HSV wild types and HSV-1 DRs after viral entry into the cells. The anti-HSV activities included inhibition of viral DNA and protein synthesis. The minimum inhibitory concentrations of ACV for HSV wild types and HSV-1 DRs were 20.20 and 2,220.00 μM, respectively. Combination of ACV with IPAD showed synergistic effects in inhibition of CPE formation, viral DNA and protein synthesis by HSV wild types as well as HSV-1 DRs. For the synergistic effects on HSV wild types and HSV-1 DRs, the effective concentrations of ACV were reduced. These results showed the inhibitory potential of IPAD on HSV wild types and HSV-1 DRs and suggested that IPAD could be used in combination with ACV for treatment of HSV-1 DRs infections.

  19. Determination of EGFR and KRAS mutational status in Greek non-small-cell lung cancer patients

    PubMed Central

    PAPADOPOULOU, EIRINI; TSOULOS, NIKOLAOS; TSIRIGOTI, ANGELIKI; APESSOS, ANGELA; AGIANNITOPOULOS, KONSTANTINOS; METAXA-MARIATOU, VASILIKI; ZAROGOULIDIS, KONSTANTINOS; ZAROGOULIDIS, PAVLOS; KASARAKIS, DIMITRIOS; KAKOLYRIS, STYLIANOS; DAHABREH, JUBRAIL; VLASTOS, FOTIS; ZOUBLIOS, CHARALAMPOS; RAPTI, AGGELIKI; PAPAGEORGIOU, NIKI GEORGATOU; VELDEKIS, DIMITRIOS; GAGA, MINA; ARAVANTINOS, GERASIMOS; KARAVASILIS, VASILEIOS; KARAGIANNIDIS, NAPOLEON; NASIOULAS, GEORGE

    2015-01-01

    It has been reported that certain patients with non-small-cell lung cancer (NSCLC) that harbor activating somatic mutations within the tyrosine kinase domain of the epidermal growth factor receptor (EGFR) gene may be effectively treated using targeted therapy. The use of EGFR inhibitors in patient therapy has been demonstrated to improve response and survival rates; therefore, it was suggested that clinical screening for EGFR mutations should be performed for all patients. Numerous clinicopathological factors have been associated with EGFR and Kirsten-rat sarcoma oncogene homolog (KRAS) mutational status including gender, smoking history and histology. In addition, it was reported that EGFR mutation frequency in NSCLC patients was ethnicity-dependent, with an incidence rate of ~30% in Asian populations and ~15% in Caucasian populations. However, limited data has been reported on intra-ethnic differences throughout Europe. The present study aimed to investigate the frequency and spectrum of EGFR mutations in 1,472 Greek NSCLC patients. In addition, KRAS mutation analysis was performed in patients with known smoking history in order to determine the correlation of type and mutation frequency with smoking. High-resolution melting curve (HRM) analysis followed by Sanger sequencing was used to identify mutations in exons 18–21 of the EGFR gene and in exon 2 of the KRAS gene. A sensitive next-generation sequencing (NGS) technology was also employed to classify samples with equivocal results. The use of sensitive mutation detection techniques in a large study population of Greek NSCLC patients in routine diagnostic practice revealed an overall EGFR mutation frequency of 15.83%. This mutation frequency was comparable to that previously reported in other European populations. Of note, there was a 99.8% concordance between the HRM method and Sanger sequencing. NGS was found to be the most sensitive method. In addition, female non-smokers demonstrated a high prevalence of

  20. MicroRNA-224 is associated with colorectal cancer progression and response to 5-fluorouracil-based chemotherapy by KRAS-dependent and -independent mechanisms

    PubMed Central

    Amankwatia, E B; Chakravarty, P; Carey, F A; Weidlich, S; Steele, R J C; Munro, A J; Wolf, C R; Smith, G

    2015-01-01

    Background: Colorectal cancers arise from benign adenomas, although not all adenomas progress to cancer and there are marked interpatient differences in disease progression. We have previously associated KRAS mutations with disease progression and reduced survival in colorectal cancer patients. Methods: We used TaqMan low-density array (TLDA) qRT–PCR analysis to identify miRNAs differentially expressed in normal colorectal mucosa, adenomas and cancers and in isogeneic KRAS WT and mutant HCT116 cells, and used a variety of phenotypic assays to assess the influence of miRNA expression on KRAS activity, chemosensitivity, proliferation and invasion. Results: MicroRNA-224 was differentially expressed in dysplastic colorectal disease and in isogeneic KRAS WT and mutant HCT116 cells. Antagomir-mediated miR-224 silencing in HCT116 KRAS WT cells phenocopied KRAS mutation, increased KRAS activity and ERK and AKT phosphorylation. 5-FU chemosensitivity was significantly increased in miR-224 knockdown cells, and in NIH3T3 cells expressing KRAS and BRAF mutant proteins. Bioinformatics analysis of predicted miR-224 target genes predicted altered cell proliferation, invasion and epithelial–mesenchymal transition (EMT) phenotypes that were experimentally confirmed in miR-224 knockdown cells. Conclusions: We describe a novel mechanism of KRAS regulation, and highlight the clinical utility of colorectal cancer-specific miRNAs as disease progression or clinical response biomarkers. PMID:25919696