Science.gov

Sample records for overexpressed wild-type kras

  1. The mystery of oncogenic KRAS: Lessons from studying its wild-type counter part.

    PubMed

    Chang, Yuan-I; Damnernsawad, Alisa; Kong, Guangyao; You, Xiaona; Wang, Demin; Zhang, Jing

    2016-07-22

    Using conditional knock-in mouse models, we and others have shown that despite the very high sequence identity between Nras and Kras proteins, oncogenic Kras displays a much stronger leukemogenic activity than oncogenic Nras in vivo. In this manuscript, we will summarize our recent work of characterizing wild-type Kras function in adult hematopoiesis and in oncogenic Kras-induced leukemogenesis. We attribute the strong leukemogenic activity of oncogenic Kras to 2 unique aspects of Kras signaling. First, Kras is required in mediating cell type- and cytokine-specific ERK1/2 signaling. Second, oncogenic Kras, but not oncogenic Nras, induces hyperactivation of wild-type Ras, which significantly enhances Ras signaling in vivo. We will also discuss a possible mechanism that mediates oncogenic Kras-evoked hyperactivation of wild-type Ras and a potential approach to down-regulate oncogenic Kras signaling.

  2. Exploratory biomarker analysis for treatment response in KRAS wild type metastatic colorectal cancer patients who received cetuximab plus irinotecan.

    PubMed

    Kim, Seung Tae; Ahn, Tae Jin; Lee, Eunjin; Do, In-Gu; Lee, Su Jin; Park, Se Hoon; Park, Joon Oh; Park, Young Suk; Lim, Ho Yeong; Kang, Won Ki; Kim, Suk Hyeong; Lee, Jeeyun; Kim, Hee Cheol

    2015-10-20

    More than half of the patients selected based on KRAS mutation status fail to respond to the treatment with cetuximab in metastatic colorectal cancer (mCRC). We designed a study to identify additional biomarkers that could act as indicators for cetuximab treatment in mCRC. We investigated 58 tumor samples from wild type KRAS CRC patients treated with cetuximab plus irinotecan (CI). We conducted the genotyping for mutations in either BRAF or PIK3CA and profiled comprehensively the expression of 522 kinase genes. BRAF mutation was detected in 5.1 % (3/58) of patients. All 50 patients showed wild type PIK3CA. Gene expression patterns that categorized patients with or without the disease control to CI were compared by supervised classification analysis. PSKH1, TLK2 and PHKG2 were overexpressed significantly in patients with the disease control to IC. The higher expression value of PSKH1 (r = 0.462, p < 0.001) and TLK2 (r = 0.361, p = 0.005) had the significant correlation to prolonged PFS. The result of this work demonstrated that expression nature of kinase genes such as PSKH1, TLK2 and PHKG2 may be informative to predict the efficacy of CI in wild type KRAS CRC. Mutations in either BRAF or PIK3CA were rare subsets in wild type KRAS CRC.

  3. Panitumumab as a radiosensitizing agent in KRAS wild-type locally advanced rectal cancer.

    PubMed

    Mardjuadi, Feby Ingriani; Carrasco, Javier; Coche, Jean-Charles; Sempoux, Christine; Jouret-Mourin, Anne; Scalliet, Pierre; Goeminne, Jean-Charles; Daisne, Jean-François; Delaunoit, Thierry; Vuylsteke, Peter; Humblet, Yves; Meert, Nicolas; van den Eynde, Marc; Moxhon, Anne; Haustermans, Karin; Canon, Jean-Luc; Machiels, Jean-Pascal

    2015-09-01

    Our goal was to optimize the radiosensitizing potential of anti-epidermal growth factor receptor (EGFR) monoclonal antibodies, when given concomitantly with preoperative radiotherapy in KRAS wild-type locally advanced rectal cancer (LARC). Based on pre-clinical studies conducted by our group, we designed a phase II trial in which panitumumab (6 mg/kg/q2 weeks) was combined with preoperative radiotherapy (45 Gy in 25 fractions) to treat cT3-4/N + KRAS wild-type LARC. The primary endpoint was complete pathologic response (pCR) (H0 = 5%, H1 = 17%, α = 0.05, β = 0.2). From 19 enrolled patients, 17 (89%) were evaluable for pathology assessment. Although no pCR was observed, seven patients (41%) had grade 3 Dworak pathological tumor regression. The regimen was safe and was associated with 95% of sphincter-preservation rate. No NRAS, BRAF, or PI3KCA mutation was found in this study, but one patient (5%) showed loss of PTEN expression. The quantification of plasma EGFR ligands during treatment showed significant upregulation of plasma TGF-α and EGF following panitumumab administration (p < 0.05). At surgery, patients with important pathological regression (grade 3 Dworak) had higher plasma TGF-α (p = 0.03) but lower plasma EGF (p = 0.003) compared to those with grade 0-2 Dworak. Our study suggests that concomitant panitumumab and preoperative radiotherapy in KRAS wild-type LARC is feasible and results in some tumor regression. However, pCR rate remained modest. Given that the primary endpoint of our study was not reached, we remain unable to recommend the use of panitumumab as a radiosensitizer in KRAS wild-type LARC outside a research setting.

  4. KRAS codon 61, 146 and BRAF mutations predict resistance to cetuximab plus irinotecan in KRAS codon 12 and 13 wild-type metastatic colorectal cancer

    PubMed Central

    Loupakis, F; Ruzzo, A; Cremolini, C; Vincenzi, B; Salvatore, L; Santini, D; Masi, G; Stasi, I; Canestrari, E; Rulli, E; Floriani, I; Bencardino, K; Galluccio, N; Catalano, V; Tonini, G; Magnani, M; Fontanini, G; Basolo, F; Falcone, A; Graziano, F

    2009-01-01

    Background: KRAS codons 12 and 13 mutations predict resistance to anti-EGFR monoclonal antibodies (moAbs) in metastatic colorectal cancer. Also, BRAF V600E mutation has been associated with resistance. Additional KRAS mutations are described in CRC. Methods: We investigated the role of KRAS codons 61 and 146 and BRAF V600E mutations in predicting resistance to cetuximab plus irinotecan in a cohort of KRAS codons 12 and 13 wild-type patients. Results: Among 87 KRAS codons 12 and 13 wild-type patients, KRAS codons 61 and 146 were mutated in 7 and 1 case, respectively. None of mutated patients responded vs 22 of 68 wild type (P=0.096). Eleven patients were not evaluable. KRAS mutations were associated with shorter progression-free survival (PFS, HR: 0.46, P=0.028). None of 13 BRAF-mutated patients responded vs 24 of 74 BRAF wild type (P=0.016). BRAF mutation was associated with a trend towards shorter PFS (HR: 0.59, P=0.073). In the subgroup of BRAF wild-type patients, KRAS codons 61/146 mutations determined a lower response rate (0 vs 37%, P=0.047) and worse PFS (HR: 0.45, P=0.023). Patients bearing KRAS or BRAF mutations had poorer response rate (0 vs 37%, P=0.0005) and PFS (HR: 0.51, P=0.006) compared with KRAS and BRAF wild-type patients. Conclusion: Assessing KRAS codons 61/146 and BRAF V600E mutations might help optimising the selection of the candidate patients to receive anti-EGFR moAbs. PMID:19603018

  5. KRAS codon 61, 146 and BRAF mutations predict resistance to cetuximab plus irinotecan in KRAS codon 12 and 13 wild-type metastatic colorectal cancer.

    PubMed

    Loupakis, F; Ruzzo, A; Cremolini, C; Vincenzi, B; Salvatore, L; Santini, D; Masi, G; Stasi, I; Canestrari, E; Rulli, E; Floriani, I; Bencardino, K; Galluccio, N; Catalano, V; Tonini, G; Magnani, M; Fontanini, G; Basolo, F; Falcone, A; Graziano, F

    2009-08-18

    KRAS codons 12 and 13 mutations predict resistance to anti-EGFR monoclonal antibodies (moAbs) in metastatic colorectal cancer. Also, BRAF V600E mutation has been associated with resistance. Additional KRAS mutations are described in CRC. We investigated the role of KRAS codons 61 and 146 and BRAF V600E mutations in predicting resistance to cetuximab plus irinotecan in a cohort of KRAS codons 12 and 13 wild-type patients. Among 87 KRAS codons 12 and 13 wild-type patients, KRAS codons 61 and 146 were mutated in 7 and 1 case, respectively. None of mutated patients responded vs 22 of 68 wild type (P=0.096). Eleven patients were not evaluable. KRAS mutations were associated with shorter progression-free survival (PFS, HR: 0.46, P=0.028). None of 13 BRAF-mutated patients responded vs 24 of 74 BRAF wild type (P=0.016). BRAF mutation was associated with a trend towards shorter PFS (HR: 0.59, P=0.073). In the subgroup of BRAF wild-type patients, KRAS codons 61/146 mutations determined a lower response rate (0 vs 37%, P=0.047) and worse PFS (HR: 0.45, P=0.023). Patients bearing KRAS or BRAF mutations had poorer response rate (0 vs 37%, P=0.0005) and PFS (HR: 0.51, P=0.006) compared with KRAS and BRAF wild-type patients. Assessing KRAS codons 61/146 and BRAF V600E mutations might help optimising the selection of the candidate patients to receive anti-EGFR moAbs.

  6. Overexpression of wild-type p21Ras plays a prominent role in colorectal cancer

    PubMed Central

    Bai, Shuang; Feng, Qiang; Pan, Xin-Yan; Zou, Hong; Chen, Hao-Bin; Wang, Peng; Zhou, Xin-Liang; Hong, Yan-Ling; Song, Shu-Ling; Yang, Ju-Lun

    2017-01-01

    Colorectal cancer (CRC) is the most common gastrointestinal type of cancer. The overexpression of Ras proteins, particularly p21Ras, are involved in the development of CRC. However, the subtypes of the p21Ras proteins that are overexpressed and the mutation status remain unknown restricting the development of therapeutic antibodies targeting p21Ras proteins. The present study aimed to investigate the mutation status of ras genes associated with Ras proteins that are overexpressed in CRC and explore whether or not wild-type p21Ras could be a target for CRC therapy. p21Ras expression was examined immunohistochemically in normal colorectal epithelium, benign lesions and malignant colorectal tumor tissues by monoclonal antibody (Mab) KGH-R1 which is able to react with three types of p21Ras proteins: H-p21Ras, N-p21Ras and K-p21Ras. Then, the expression levels of p21Ras subtypes were determined in CRC by a specific Mab for each p21Ras subtype. Mutation status of ras genes in p21Ras-overexpressing CRC was detected by DNA sequencing. There was rare p21Ras expression in normal colorectal epithelium but a high level of p21Ras expression in CRC, with a significant increase from normal colorectal epithelium to inflammatory polyps, low-grade intraepithelial neoplasia, high-grade intraepithelial neoplasia and invasive colorectal adenocarcinoma, respectively. Overexpression of K-p21Ras was found in all CRC tissues tested, overexpression of N-p21Ras was found in 85.7% of the CRC tissues, while H-p21Ras expression was not found in any CRC tissue. DNA sequencing showed that there were no K-ras mutations in 60% of the K-p21Ras-overexpressing CRC, while 40% of the CRC tissues harbored K-ras mutations. N-ras mutations were not found in any N-p21Ras-overexpressing CRC. Our findings indicate that overexpression of wild-type p21Ras may play a prominent role in the development of CRC in addition to ras mutations and could be a promising target for CRC therapy. PMID:28259994

  7. High resolution melting analysis of KRAS, BRAF and PIK3CA in KRAS exon 2 wild-type metastatic colorectal cancer

    PubMed Central

    2013-01-01

    Background KRAS is an EGFR effector in the RAS/RAF/ERK cascade that is mutated in about 40% of metastatic colorectal cancer (mCRC). Activating mutations in codons 12 and 13 of the KRAS gene are the only established negative predictors of response to anti-EGFR therapy and patients whose tumors harbor such mutations are not candidates for therapy. However, 40 to 60% of wild-type cases do not respond to anti-EGFR therapy, suggesting the involvement of other genes that act downstream of EGFR in the RAS-RAF-MAPK and PI3K-AKT pathways or activating KRAS mutations at other locations of the gene. Methods DNA was obtained from a consecutive series of 201 mCRC cases (FFPE tissue), wild-type for KRAS exon 2 (codons 12 and 13). Mutational analysis of KRAS (exons 3 and 4), BRAF (exons 11 and 15), and PIK3CA (exons 9 and 20) was performed by high resolution melting (HRM) and positive cases were then sequenced. Results One mutation was present in 23.4% (47/201) of the cases and 3.0% additional cases (6/201) had two concomitant mutations. A total of 53 cases showed 59 mutations, with the following distribution: 44.1% (26/59) in KRAS (13 in exon 3 and 13 in exon 4), 18.6% (11/59) in BRAF (two in exon 11 and nine in exon 15) and 37.3% (22/59) in PIK3CA (16 in exon 9 and six in exon 20). In total, 26.4% (53/201) of the cases had at least one mutation and the remaining 73.6% (148/201) were wild-type for all regions studied. Five of the mutations we report, four in KRAS and one in BRAF, have not previously been described in CRC. BRAF and PIK3CA mutations were more frequent in the colon than in the sigmoid or rectum: 20.8% vs. 1.6% vs. 0.0% (P=0.000) for BRAF and 23.4% vs. 12.1% vs. 5.4% (P=0.011) for PIK3CA mutations. Conclusions About one fourth of mCRC cases wild-type for KRAS codons 12 and 13 present other mutations either in KRAS, BRAF, or PIK3CA, many of which may explain the lack of response to anti-EGFR therapy observed in a significant proportion of these patients. PMID

  8. Endoscopic ultrasound-guided fine-needle aspirate-derived preclinical pancreatic cancer models reveal panitumumab sensitivity in KRAS wild-type tumors.

    PubMed

    Berry, William; Algar, Elizabeth; Kumar, Beena; Desmond, Christopher; Swan, Michael; Jenkins, Brendan J; Croagh, Daniel

    2017-05-15

    Pancreatic cancer (PC) is largely refractory to existing therapies used in unselected patient trials, thus emphasizing the pressing need for new approaches for patient selection in personalized medicine. KRAS mutations occur in 90% of PC patients and confer resistance to epidermal growth factor receptor (EGFR) inhibitors (e.g., panitumumab), suggesting that KRAS wild-type PC patients may benefit from targeted panitumumab therapy. Here, we use tumor tissue procured by endoscopic ultrasound-guided fine-needle aspirate (EUS-FNA) to compare the in vivo sensitivity in patient-derived xenografts (PDXs) of KRAS wild-type and mutant PC tumors to panitumumab, and to profile the molecular signature of these tumors in patients with metastatic or localized disease. Specifically, RNASeq of EUS-FNA-derived tumor RNA from localized (n = 20) and metastatic (n = 20) PC cases revealed a comparable transcriptome profile. Screening the KRAS mutation status of tumor genomic DNA obtained from EUS-FNAs stratified PC patients into either KRAS wild-type or mutant cohorts, and the engraftment of representative KRAS wild-type and mutant EUS-FNA tumor samples into NOD/SCID mice revealed that the growth of KRAS wild-type, but not mutant, PDXs was selectively suppressed with panitumumab. Furthermore, in silico transcriptome interrogation of The Cancer Genome Atlas (TCGA)-derived KRAS wild-type (n = 38) and mutant (n = 132) PC tumors revealed 391 differentially expressed genes. Taken together, our study validates EUS-FNA for the application of a novel translational pipeline comprising KRAS mutation screening and PDXs, applicable to all PC patients, to evaluate personalized anti-EGFR therapy in patients with KRAS wild-type tumors.

  9. Combination PI3K/MEK inhibition promotes tumor apoptosis and regression in PIK3CA wild-type, KRAS mutant colorectal cancer

    PubMed Central

    Roper, Jatin; Sinnamon, Mark J.; Coffee, Erin M.; Belmont, Peter; Keung, Lily; Georgeon-Richard, Larissa; Wang, Wei Vivian; Faber, Anthony C.; Yun, Jihye; Yilmaz, Omer H.; Bronson, Roderick T.; Martin, Eric S.; Tsichlis, Philip N.; Hung, Kenneth E.

    2014-01-01

    PI3K inhibition in combination with other agents has not been studied in the context of PIK3CA wild-type, KRAS mutant cancer. In a screen of phospho-kinases, PI3K inhibition of KRAS mutant colorectal cancer cells activated the MAPK pathway. Combination PI3K/MEK inhibition with NVP-BKM120 and PD-0325901 induced tumor regression in a mouse model of PIK3CA wild-type, KRAS mutant colorectal cancer, which was mediated by inhibition of mTORC1, inhibition of MCL-1, and activation of BIM. These findings implicate mitochondrial-dependent apoptotic mechanisms as determinants for the efficacy of PI3K/MEK inhibition in the treatment of PIK3CA wild-type, KRAS mutant cancer. PMID:24576621

  10. Selective 'stencil'-aided pre-PCR cleavage of wild-type sequences as a novel approach to detection of mutant K-RAS.

    PubMed

    Lichtenstein, A V; Serdjuk, O I; Sukhova, T I; Melkonyan, H S; Umansky, S R

    2001-09-01

    The enriched PCR widely used for detection of mutant K-RAS in either tumor tissues or circulating DNA was modified so that abundant wild-type K-RAS alleles are cleaved prior to PCR. We took advantage of an AluI recognition site located immediately upstream of the K-RAS codon 12. The site was reconstituted upon DNA denaturation followed by annealing with a 'stencil', a 16-bp synthetic oligonucleotide complementary to the wild-type sequence. As opposed to normal K-RAS, the mutant allele forms, upon annealing with the stencil, a mismatch at the codon 12 which lies within the AluI enzyme binding site and partially inhibits its activity. The mismatch also lowers the melting temperature of the stencil-mutant K-RAS double helix as compared to stencil-wild-type duplex, so that only the latter is double stranded and selectively digested by AluI at elevated temperatures. The proposed method of stencil-aided mutation analysis (SAMA) based on selective pre-PCR elimination of wild-type sequences can be highly advantageous for detection of mutant K-RAS due to: (i) an enhanced sensitivity because of reduced competition with a great excess of normal K-RAS, and (ii) a decrease in a number of false-positive results from Taq polymerase errors. Application of SAMA for generalized detection of DNA mutations is discussed.

  11. A phase 3 trial evaluating panitumumab plus best supportive care vs best supportive care in chemorefractory wild-type KRAS or RAS metastatic colorectal cancer

    PubMed Central

    Kim, Tae Won; Elme, Anneli; Kusic, Zvonko; Park, Joon Oh; Udrea, Anghel Adrian; Kim, Sun Young; Ahn, Joong Bae; Valencia, Ricardo Villalobos; Krishnan, Srinivasan; Bilic, Ante; Manojlovic, Nebojsa; Dong, Jun; Guan, Xuesong; Lofton-Day, Catherine; Jung, A Scott; Vrdoljak, Eduard

    2016-01-01

    Background: We assessed the treatment effect of panitumumab plus best supportive care (BSC) vs BSC on overall survival (OS) in patients with chemorefractory wild-type KRAS exon 2 metastatic colorectal cancer (mCRC) and report the first prospective extended RAS analysis in a phase 3 trial. Methods: Patients with wild-type KRAS exon 2 mCRC were randomised 1 : 1 to panitumumab (6 mg kg−1 Q2W) plus BSC or BSC. On-study crossover was prohibited. RAS mutation status was determined by central laboratory testing. The primary endpoint was OS in wild-type KRAS exon 2 mCRC; OS in wild-type RAS mCRC (KRAS and NRAS exons 2, 3, and 4) was a secondary endpoint. Results: Three hundred seventy seven patients with wild-type KRAS exon 2 mCRC were randomised. Median OS was 10.0 months with panitumumab plus BSC vs 7.4 months with BSC (HR=0.73; 95% CI=0.57–0.93; P=0.0096). RAS ascertainment was 86%. In wild-type RAS mCRC, median OS for panitumumab plus BSC was 10.0 vs 6.9 months for BSC (HR=0.70; 95% CI=0.53–0.93; P=0.0135). Patients with RAS mutations did not benefit from panitumumab (OS HR=0.99; 95% CI=0.49–2.00). No new safety signals were observed. Conclusions: Panitumumab significantly improved OS in wild-type KRAS exon 2 mCRC. The effect was more pronounced in wild-type RAS mCRC, validating previous retrospective analyses. PMID:27736842

  12. A phase 3 trial evaluating panitumumab plus best supportive care vs best supportive care in chemorefractory wild-type KRAS or RAS metastatic colorectal cancer.

    PubMed

    Kim, Tae Won; Elme, Anneli; Kusic, Zvonko; Park, Joon Oh; Udrea, Anghel Adrian; Kim, Sun Young; Ahn, Joong Bae; Valencia, Ricardo Villalobos; Krishnan, Srinivasan; Bilic, Ante; Manojlovic, Nebojsa; Dong, Jun; Guan, Xuesong; Lofton-Day, Catherine; Jung, A Scott; Vrdoljak, Eduard

    2016-11-08

    We assessed the treatment effect of panitumumab plus best supportive care (BSC) vs BSC on overall survival (OS) in patients with chemorefractory wild-type KRAS exon 2 metastatic colorectal cancer (mCRC) and report the first prospective extended RAS analysis in a phase 3 trial. Patients with wild-type KRAS exon 2 mCRC were randomised 1 : 1 to panitumumab (6 mg kg(-1) Q2W) plus BSC or BSC. On-study crossover was prohibited. RAS mutation status was determined by central laboratory testing. The primary endpoint was OS in wild-type KRAS exon 2 mCRC; OS in wild-type RAS mCRC (KRAS and NRAS exons 2, 3, and 4) was a secondary endpoint. Three hundred seventy seven patients with wild-type KRAS exon 2 mCRC were randomised. Median OS was 10.0 months with panitumumab plus BSC vs 7.4 months with BSC (HR=0.73; 95% CI=0.57-0.93; P=0.0096). RAS ascertainment was 86%. In wild-type RAS mCRC, median OS for panitumumab plus BSC was 10.0 vs 6.9 months for BSC (HR=0.70; 95% CI=0.53-0.93; P=0.0135). Patients with RAS mutations did not benefit from panitumumab (OS HR=0.99; 95% CI=0.49-2.00). No new safety signals were observed. Panitumumab significantly improved OS in wild-type KRAS exon 2 mCRC. The effect was more pronounced in wild-type RAS mCRC, validating previous retrospective analyses.

  13. Different metabolic responses to PI3K inhibition in NSCLC cells harboring wild-type and G12C mutant KRAS

    PubMed Central

    Marabese, Mirko; Broggini, Massimo; Lupi, Monica; Pastorelli, Roberta

    2016-01-01

    KRAS mutations in non-small-cell lung cancer (NSCLC) patients are considered a negative predictive factor and indicate poor response to anticancer treatments. KRAS mutations lead to activation of the PI3K/akt/mTOR pathway, whose inhibition remains a challenging clinical target. Since the PI3K/akt/mTOR pathway and KRAS oncogene mutations all have roles in cancer cell metabolism, we investigated whether the activity of PI3K/akt/mTOR inhibitors (BEZ235 and BKM120) in cells harboring different KRAS status is related to their metabolic effect. Isogenic NSCLC cell clones expressing wild-type (WT) and mutated (G12C) KRAS were used to determine the response to BEZ235 and BKM120. Metabolomics analysis indicated the impairment of glutamine in KRAS-G12C and serine metabolism in KRAS-WT, after pharmacological blockade of the PI3K signaling, although the net effect on cell growth, cell cycle distribution and caspase activation was similar. PI3K inhibitors caused autophagy in KRAS-WT, but not in KRAS-G12C, where there was a striking decrease in ammonia production, probably a consequence of glutamine metabolism impairment. These findings lay the grounds for more effective therapeutic combinations possibly distinguishing wild-type and mutated KRAS cancer cells in NSCLC, exploiting their different metabolic responses to PI3K/akt/mTOR inhibitors. PMID:27283493

  14. Wild-Type N-Ras, Overexpressed in Basal-like Breast Cancer, Promotes Tumor Formation by Inducing IL-8 Secretion via JAK2 Activation.

    PubMed

    Zheng, Ze-Yi; Tian, Lin; Bu, Wen; Fan, Cheng; Gao, Xia; Wang, Hai; Liao, Yi-Hua; Li, Yi; Lewis, Michael T; Edwards, Dean; Zwaka, Thomas P; Hilsenbeck, Susan G; Medina, Daniel; Perou, Charles M; Creighton, Chad J; Zhang, Xiang H-F; Chang, Eric C

    2015-07-21

    Basal-like breast cancers (BLBCs) are aggressive, and their drivers are unclear. We have found that wild-type N-RAS is overexpressed in BLBCs but not in other breast cancer subtypes. Repressing N-RAS inhibits transformation and tumor growth, whereas overexpression enhances these processes even in preinvasive BLBC cells. We identified N-Ras-responsive genes, most of which encode chemokines; e.g., IL8. Expression levels of these chemokines and N-RAS in tumors correlate with outcome. N-Ras, but not K-Ras, induces IL-8 by binding and activating the cytoplasmic pool of JAK2; IL-8 then acts on both the cancer cells and stromal fibroblasts. Thus, BLBC progression is promoted by increasing activities of wild-type N-Ras, which mediates autocrine/paracrine signaling that can influence both cancer and stroma cells.

  15. Oncogenic K-Ras signals through epidermal growth factor receptor and wild-type H-Ras to promote radiation survival in pancreatic and colorectal carcinoma cells.

    PubMed

    Cengel, Keith A; Voong, K Rahn; Chandrasekaran, Sanjay; Maggiorella, Laurence; Brunner, Thomas B; Stanbridge, Eric; Kao, Gary D; McKenna, W Gillies; Bernhard, Eric J

    2007-04-01

    Pancreatic and colorectal carcinomas frequently express oncogenic/mutant K-Ras that contributes to both tumorigenesis and clinically observed resistance to radiation treatment. We have previously shown that farnesyltransferase inhibitors (FTI) radiosensitize many pancreatic and colorectal cancer cell lines that express oncogenic K-ras at doses that inhibit the prenylation and activation of H-Ras but not K-Ras. In the present study, we have examined the mechanism of FTI-mediated radiosensitization in cell lines that express oncogenic K-Ras and found that wild-type H-Ras is a contributor to radiation survival in tumor cells that express oncogenic K-Ras. In these experiments, inhibiting the expression of oncogenic K-Ras, wild-type H-Ras, or epidermal growth factor receptor (EGFR) led to similar levels of radiosensitization as treatment with the FTI tipifarnib. Treatment with the EGFR inhibitor gefitinib led to similar levels of radiosensitization, and the combinations of tipifarnib or gefitinib plus inhibition of K-Ras, H-Ras, or EGFR expression did not provide additional radiosensitization compared with tipifarnib or gefitinib alone. Finally, supplementing culture medium with the EGFR ligand transforming growth factor alpha was able to reverse the radiosensitizing effect of inhibiting K-ras expression. Taken together, these findings suggest that EGFR-activated H-Ras signaling is initiated by oncogenic K-Ras to promote radiation survival in pancreatic and colorectal cancers.

  16. Oncogenic K-Ras Signals through Epidermal Growth Factor Receptor and Wild-Type H-Ras to Promote Radiation Survival in Pancreatic and Colorectal Carcinoma Cells1

    PubMed Central

    Cengel, Keith A.; Voong, K. Rahn; Chandrasekaran, Sanjay; Maggiorella, Laurence; Brunner, Thomas B.; Stanbridge, Eric; Kao, Gary D.; McKenna, W. Gillies; Bernhard, Eric J.

    2007-01-01

    Pancreatic and colorectal carcinomas frequently express oncogenic/mutant K-Ras that contributes to both tumorigenesis and clinically observed resistance to radiation treatment. We have previously shown that farnesyltransferase inhibitors (FTI) radiosensitize many pancreatic and colorectal cancer cell lines that express oncogenic K-ras at doses that inhibit the prenylation and activation of H-Ras but not K-Ras. In the present study, we have examined the mechanism of FTI-mediated radiosensitization in cell lines that express oncogenic K-Ras and found that wild-type H-Ras is a contributor to radiation survival in tumor cells that express oncogenic K-Ras. In these experiments, inhibiting the expression of oncogenic K-Ras, wild-type H-Ras, or epidermal growth factor receptor (EGFR) led to similar levels of radiosensitization as treatment with the FTI tipifarnib. Treatment with the EGFR inhibitor gefitinib led to similar levels of radiosensitization, and the combinations of tipifarnib or gefitinib plus inhibition of K-Ras, H-Ras, or EGFR expression did not provide additional radiosensitization compared with tipifarnib or gefitinib alone. Finally, supplementing culture medium with the EGFR ligand transforming growth factor α was able to reverse the radiosensitizing effect of inhibiting K-ras expression. Taken together, these findings suggest that EGFR-activated H-Ras signaling is initiated by oncogenic K-Ras to promote radiation survival in pancreatic and colorectal cancers. PMID:17460778

  17. Chloroplast parameters differ in wild type and transgenic poplars overexpressing gsh1 in the cytosol.

    PubMed

    Ivanova, L A; Ronzhina, D A; Ivanov, L A; Stroukova, L V; Peuke, A D; Rennenberg, H

    2009-07-01

    Poplar mutants overexpressing the bacterial genes gsh1 or gsh2 encoding the enzymes of glutathione biosynthesis are among the best-characterised transgenic plants. However, this characterisation originates exclusively from laboratory studies, and the performance of these mutants under field conditions is largely unknown. Here, we report a field experiment in which the wild-type poplar hybrid Populus tremula x P. alba and a transgenic line overexpressing the bacterial gene gsh1 encoding gamma-glutamylcysteine synthetase in the cytosol were grown for 3 years at a relatively clean (control) field site and a field site contaminated with heavy metals. Aboveground biomass accumulation was slightly smaller in transgenic compared to wild-type plants; soil contamination significantly decreased biomass accumulation in both wild-type and transgenic plants by more than 40%. Chloroplasts parameters, i.e., maximal diameter, projection area and perimeter, surface area and volume, surface/volume ratio and a two-dimensional form coefficient, were found to depend on plant type, leaf tissue and soil contamination. The greatest differences between wild and transgenic poplars were observed at the control site. Under these conditions, chloroplast sizes in palisade tissue of transgenic poplar significantly exceeded those of the wild type. In contrast to the wild type, palisade chloroplast volume exceeded that of spongy chloroplasts in transgenic poplars at both field sites. Chlorophyll content per chloroplast was the same in wild and transgenic poplars. Apparently, the increase in chloroplast volume was not connected to changes in the photosynthetic centres. Chloroplasts of transgenic poplar at the control site were more elongated in palisade cells and close to spherical in spongy mesophyll chloroplasts. At the contaminated site, palisade and spongy cell chloroplasts of leaves from transgenic trees and the wild type were the same shape. Transgenic poplars also had a smaller chloroplast

  18. Randomized study of FOLFIRI plus either panitumumab or bevacizumab for wild-type KRAS colorectal cancer-WJOG 6210G.

    PubMed

    Shitara, Kohei; Yonesaka, Kimio; Denda, Tadamichi; Yamazaki, Kentaro; Moriwaki, Toshikazu; Tsuda, Masahiro; Takano, Toshimi; Okuda, Hiroyuki; Nishina, Tomohiro; Sakai, Kazuko; Nishio, Kazuto; Tokunaga, Shoji; Yamanaka, Takeharu; Boku, Narikazu; Hyodo, Ichinosuke; Muro, Kei

    2016-12-01

    This randomized phase II trial compared panitumumab plus fluorouracil, leucovorin, and irinotecan (FOLFIRI) with bevacizumab plus FOLFIRI as second-line chemotherapy for wild-type (WT) KRAS exon 2 metastatic colorectal cancer (mCRC) and to explore the values of oncogenes in circulating tumor DNA (ctDNA) and serum proteins as predictive biomarkers. Patients with WT KRAS exon 2 mCRC refractory to first-line chemotherapy containing oxaliplatin and bevacizumab were randomly assigned to panitumumab plus FOLFIRI or bevacizumab plus FOLFIRI. Of 121 randomly assigned patients, 117 were eligible. Median overall survival (OS) for panitumumab plus FOLFIRI and bevacizumab plus FOLFIRI were 16.2 and 13.4 months [hazard ratio (HR), 1.16; 95% CI, 0.76-1.77], respectively. Progression-free survival (PFS) was also similar (HR, 1.14; 95% CI, 0.78-1.66). KRAS, NRAS, and BRAF status using ctDNA was successfully examined in 109 patients, and mutations were identified in 19 patients (17.4%). Panitumumab plus FOLFIRI showed favorable survival compared with bevacizumab plus FOLFIRI in WT patients and unfavorable survival in those with mutations (P for interaction = 0.026 in OS and 0.054 in PFS). OS with bevacizumab plus FOLFIRI was better than panitumumab plus FOLFIRI in patients with high serum vascular endothelial growth factor-A (VEGF-A) levels and worse in those with low levels (P for interaction = 0.016). Second-line FOLFIRI plus panitumumab and FOLFIRI plus bevacizumab showed a similar efficacy in patients with WT KRAS exon 2 mCRC. RAS and BRAF mutation in ctDNA could be a negative predictive marker for panitumumab.

  19. First-line cetuximab-based chemotherapies for patients with advanced or metastatic KRAS wild-type colorectal cancer

    PubMed Central

    Uemura, Mamoru; Kim, Ho Min; Hata, Tsuyoshi; Sakata, Kazuya; Okuyama, Masaki; Takemoto, Hiroyoshi; Fujii, Hitoshi; Fukuzaki, Takayuki; Morita, Tetsushi; Hata, Taishi; Takemasa, Ichiro; Satoh, Taroh; Mizushima, Tsunekazu; Doki, Yuichiro; Mori, Maski

    2016-01-01

    Colorectal cancer (CRC) is one of the most commonly occurring cancers worldwide. A burgeoning number of studies have demonstrated that the addition of cetuximab to another standard first-line regimen markedly improves the outcome of CRC treatment. However, at present, the efficacy and safety of cetuximab-based combination chemotherapy has not been well described in Japan. The aim of the present study was to evaluate the efficacy and safety of first-line chemotherapies that included cetuximab for patients with advanced or metastatic Kirsten rat sarcoma viral oncogene homolog (KRAS) wild-type CRC in Japan. This prospective multicenter observational study was conducted at 13 affiliated medical institutions. A total of 64 patients were enrolled between 2010 and 2013. The patients met the following criteria for eligibility: i) histologically confirmed, advanced or metastatic KRAS wild-type CRC; and ii) cetuximab-based chemotherapies administered as a first-line treatment. First-line cetuximab-based treatments were administered as follows: 29 patients (45.3%) received a combination of infusional fluorouracil, leucovorin and oxaliplatin; 14 patients (21.9%) received a combination of capecitabine and oxaliplatin; and 10 patients (15.6%) received a combination of infusional fluorouracil, leucovorin and irinotecan. The overall response rate (including complete plus partial responses) was 50% (32/64 patients). Initially, 48 lesions were diagnosed as unresectable. Among those, 13 lesions (27.1%) were converted to a resectable status following cetuximab-based combination chemotherapy treatments. The median overall survival time and the progression-free survival time were 1,189 and 359 days, respectively. The most frequent grade 3/4 adverse event was neutropenia, which occurred in 20.3% of the patients. The incidence of grade 3/4 skin toxicity was 17.2% (11/64 patients). Cetuximab-based therapies may represent a promising first-line regimen for patients with advanced or

  20. Biweekly cetuximab and first-line chemotherapy in chinese patients with k-ras wild-type colorectal cancers.

    PubMed

    Chan, Wing-Lok; Lee, Victor Ho Fun; Siu, Wai Kwan Steven; Ho, Pui Ying Patty; Liu, Rico King Yin; Leung, To Wai

    2014-07-01

    The efficacy and safety of using combination chemotherapy with cetuximab as first-line treatment in patients with K-ras wild-type colorectal cancers has been well established. In general, weekly cetuximab was given with biweekly chemotherapy FOLFOX-4 or FOLFIRI, synchronizing them would be appealed to both patients and health care professionals. This Phase II, prospective study investigated the efficacy and safety of using biweekly cetuximab 500 mg/m(2) with chemotherapy FOLFOX-4 or FOLFIRI as first-line treatment for Chinese patients with K-ras wild-type metastatic colorectal cancer. The study endpoints included overall objective response (OR), progression-free survival (PFS), overall survival (OS) and safety. Total 15 Chinese patients (male: 10 [67%]; median age: 60 [range 41-80]) were enrolled. Patients received median 12 cycles (range 2-12) of chemotherapy + cetuximab (FOLFOX-4 + cetuximab: 9 [60%]; FOLFIRI + cetuximab: 6 [40%]). Six patients (40%) with non-progressive disease after 12 cycles of chemotherapy + cetuximab carried on maintenance cetuximab. Median duration of follow-up (FU) was 23.7 months. The OR was 40% (complete response: 0%; partial response: 40%) for a disease control rate of 87%. Median PFS and OS were 7.8 months and 17.9 months respectively. For maintenance cetuximab phase, median PFS since the start of maintenance cetuximab was 6.8 months and median OS was 17.0 months. The only grade 3-4 toxicities were neutropenia (26.7%) in chemotherapy phase and acneiform rashes (16.7%) in maintenance phase. Biweekly cetuximab with combination chemotherapy was effective and safe as weekly dose. Further studies are warranted for the role of maintenance cetuximab.

  1. Overexpression of Wild-Type Murine Tau Results in Progressive Tauopathy and Neurodegeneration

    PubMed Central

    Adams, Stephanie J.; Crook, Richard J.P.; DeTure, Michael; Randle, Suzanne J.; Innes, Amy E.; Yu, Xin Z.; Lin, Wen-Lang; Dugger, Brittany N.; McBride, Melinda; Hutton, Mike; Dickson, Dennis W.; McGowan, Eileen

    2009-01-01

    Here, we describe the generation and characterization of a novel tau transgenic mouse model (mTau) that overexpresses wild-type murine tau protein by twofold compared with endogenous levels. Transgenic tau expression was driven by a BAC transgene containing the entire wild-type mouse tau locus, including the endogenous promoter and the regulatory elements associated with the tau gene. The mTau model therefore differs from other tau models in that regulation of the genomic mouse transgene mimics that of the endogenous gene, including normal exon splicing regulation. Biochemical data from the mTau mice demonstrated that modest elevation of mouse tau leads to tau hyperphosphorylation at multiple pathologically relevant epitopes and accumulation of sarkosyl-insoluble tau. The mTau mice show a progressive increase in hyperphosphorylated tau pathology with age up to 15 to 18 months, which is accompanied by gliosis and vacuolization. In contrast, older mice show a decrease in tau pathology levels, which may represent hippocampal neuronal loss occurring in this wild-type model. Collectively, these results describe a novel model of tauopathy that develops pathological changes reminiscent of early stage Alzheimer’s disease and other related neurodegenerative diseases, achieved without overexpression of a mutant human tau transgene. This model will provide an important tool for understanding the early events leading to the development of tau pathology and a model for analysis of potential therapeutic targets for sporadic tauopathies. PMID:19717642

  2. Current Approaches for Predicting a Lack of Response to Anti-EGFR Therapy in KRAS Wild-Type Patients

    PubMed Central

    Er, Tze-Kiong; Bujanda, Luis

    2014-01-01

    Targeting epidermal growth factor receptor (EGFR) has been one of the most effective colorectal cancer strategies. Anti-EGFR antibodies function by binding to the extracellular domain of EGFR, preventing its activation, and ultimately providing clinical benefit. KRAS mutations in codons 12 and 13 are recognized prognostic and predictive biomarkers that should be analyzed at the clinic prior to the administration of anti-EGFR therapy. However, still an important fraction of KRAS wild-type patients do not respond to the treatment. The identification of additional genetic determinants of primary or secondary resistance to EGFR targeted therapy for further improving the selection of patients is urgent. Herein, we review the latest published literature highlighting the most important genes that may predict resistance to anti-EGFR monoclonal antibodies in colorectal cancer patients. According to the available findings, the evaluation of BRAF, NRAS, PIK3CA, and PTEN status could be the right strategy to select patients who are likely to respond to anti-EGFR therapies. In the future, the combination of those biomarkers will help establish consensus that can be introduced into clinical practice. PMID:25032217

  3. MicroRNA-143 replenishment re-sensitizes colorectal cancer cells harboring mutant, but not wild-type, KRAS to paclitaxel treatment.

    PubMed

    Fei, Bing-Yuan; Wang, Xiu-Ying; Fang, Xue-Dong

    2016-05-01

    Colorectal cancer (CRC) global incidence is one of the highest among cancers. The KRAS gene has been shown as a robust biomarker for poor prognosis and drug resistance. MicroRNA-143 (miR-143) and let-7 are families of tumor suppressor microRNAs that are often downregulated in CRC, especially with coexistent KRAS mutations. In order to evaluate if miR-143 and/or let-7b replenishment would re-sensitize CRC cells to paclitaxel treatment, we investigated in effect of miR-143 and let-7b replenishments on sensitivity to paclitaxel treatment in KRAS mutant LoVo and wild-type SW48 CRC cell lines. Our results showed that miR-143, but not let-7b, increased sensitization of KRAS mutant tumor cells to paclitaxel. Furthermore, transfection of miR-143, but not let-7b, mimic negatively regulated the expression of mutant but not wild-type KRAS. Combination of miR-143 mimic and paclitaxel induced the onset of apoptosis, and reverted in vitro metastatic properties (migration and invasion) in KRAS mutant tumor cells. MiR-143 thus can be used as a chemosensitizer for the treatment of KRAS mutant tumors and warrants further investigations in in vitro and pre-clinical in vivo models.

  4. Chemotherapy Plus Cetuximab versus Chemotherapy Alone for Patients with KRAS Wild Type Unresectable Liver-Confined Metastases Colorectal Cancer: An Updated Meta-Analysis of RCTs

    PubMed Central

    Lv, W.; Zhang, G. Q.; Jiao, A.; Zhao, B. C.; Shi, Y.; Chen, B. M.

    2017-01-01

    Purpose. Our study analyses clinical trials and evaluates the efficacy of adding cetuximab in systematic chemotherapy for unresectable colorectal cancer liver-confined metastases patients. Materials and Methods. Search EMBASE, PubMed, and the Cochrane Central Register of Controlled Trials for RCTs comparing chemotherapy plus cetuximab with chemotherapy alone for KRAS wild type patients with colorectal cancer liver metastases (CRLMs). We calculated the relative risks (RRs) with 95% confidence interval and performed meta-analysis of hazard ratios (HRs) for the R0 resection rate, the overall response rate (ORR), the progression-free survival (PFS) and overall survival (OS). Results. 1173 articles were retrieved and 4 RCTs were available for our study. The four studies involved 504 KRAS wild type patients with CRLMs. The addition of cetuximab significantly improved all the 4 outcomes: the R0 resection rate (RR 2.03, p = 0.004), the ORR (RR 1.76, p < 0.00001), PFS (HR 0.63, p < 0.0001), and also OS (HR 0.74, p = 0.04); the last outcome is quite different from the conclusion published before. Conclusions. Although the number of patients analysed was limited, we found that the addition of cetuximab significantly improves the outcomes in KRAS wild type patients with unresectable colorectal cancer liver-confined metastases. Cetuximab combined with systematic chemotherapy perhaps suggests a promising choice for KRAS wild type patients with unresectable liver metastases. PMID:28167959

  5. Accelerated Telomere Shortening and Replicative Senescence in Human Fibroblasts Overexpressing Mutant and Wild Type Lamin A

    PubMed Central

    Huang, Shurong; Risques, Rosa Ana; Martin, George M.; Rabinovitch, Peter S.; Oshima, Junko

    2008-01-01

    LMNA mutations are responsible for a variety of genetic disorders, including muscular dystrophy, lipodystrophy, and certain progeroid syndromes, notably Hutchinson-Gilford Progeria. Although a number of clinical features of these disorders are suggestive of accelerated aging, it is not known whether cells derived from these patients exhibit cellular phenotypes associated with accelerated aging. We examined a series of isogenic skin fibroblast lines transfected with LMNA constructs bearing known pathogenic point mutations or deletion mutations found in progeroid syndromes. Fibroblasts overexpressing mutant lamin A exhibited accelerated rates of loss of telomeres and shortened replicative lifespans, in addition to abnormal nuclear morphology. To our surprise, these abnormalities were also observed in lines overexpressing wild-type lamin A. Copy number variants are common in human populations; those involving LMNA, whether arising meiotically or mitotically, might lead to progeroid phenotypes. In an initial pilot study of 23 progeroid cases without detectible WRN or LMNA mutations, however, no cases of altered LMNA copy number were detected. Nevertheless, our findings raise a hypothesis that changes in lamina organization may cause accelerated telomere attrition, with different kinetics for overexpession of wild-type and mutant lamin A, which leads to rapid replicative senescence and progroid phenotypes. PMID:17870066

  6. Analysis of PTEN, BRAF and PI3K status for determination of benefit from cetuximab therapy in metastatic colorectal cancer patients refractory to chemotherapy with wild-type KRAS.

    PubMed

    Tural, Deniz; Batur, Sebnem; Erdamar, Sibel; Akar, Emre; Kepil, Nuray; Mandel, Nil Molinas; Serdengeçti, Süheyla

    2014-02-01

    We investigated predictive values of BRAF, PI3K and PTEN in cetuximab responses in KRAS wild-type (+) chemotherapy refractory, metastatic colorectal cancer (CRC) patients. Primary tumour tissues of 41 KRAS wild-type mCRC patients receiving cetuximab-based chemotherapy were investigated for PI3K, PTEN, KRAS and BRAF mutations. Progression-free survival (PFS) and overall survival (OS) periods were calculated with Kaplan-Meier method and the Cox proportional hazards model was used. PTEN and PI3K expressions were 63 and 42 %, respectively. BRAF mutation was observed as 9.8 % among patients. Tumours with BRAF mutation had statistically lower response rates (RR) for cetuximab-based treatment than tumours with BRAF wild type (0 vs. 58 %, p = 0.02). PTEN expressing tumours had statistically higher RR for cetuximab-based treatment than tumours with PTEN loss (42 vs. 12 %, p = 0.04). PI3K expression had worse significant effect on cetuximab RR than PI3K non-expressed tumours (15 vs. 44 %, p = 0.023). Median PFS was significantly longer in patients with PTEN expression (14 months) than in patients with PTEN loss (5 months) (HR, 0.4; p = 0.028). Median PFS was significantly longer in patients with PI3K non-expression (15.2 months) than in patients with PI3K expression (4.1 months) (HR, 0.31; p = 0.001). Significant difference in PFS and OS between patients with BRAF mutated and BRAF wild-type tumours was not detected. However, patients with PTEN expression had significantly longer OS (15.1 months) than patients with PTEN loss tumour (9.9 months) (HR, 0.34; p = 0.008). Patients without PI3K expression had significantly longer OS (18.2 months) than patients with PI3K expression (10.1 months) (HR, 0.27; p = 0.001). Multivariate analyses revealed that PTEN expression (HR, 0.48; p = 0.02) and absence of PI3K expression (HR, 0.2; p = 0.001) were independent prognostic factors for increased PFS. Similarly, PTEN overexpression (HR, 0.62; p = 0.03) and absence of PI3K expression (HR, 0

  7. Phase II study of gemcitabine, oxaliplatin in combination with panitumumab in KRAS wild-type unresectable or metastatic biliary tract and gallbladder cancer

    PubMed Central

    Hezel, A F; Noel, M S; Allen, J N; Abrams, T A; Yurgelun, M; Faris, J E; Goyal, L; Clark, J W; Blaszkowsky, L S; Murphy, J E; Zheng, H; Khorana, A A; Connolly, G C; Hyrien, O; Baran, A; Herr, M; Ng, K; Sheehan, S; Harris, D J; Regan, E; Borger, D R; Iafrate, A J; Fuchs, C; Ryan, D P; Zhu, A X

    2014-01-01

    Background: Current data suggest that platinum-based combination therapy is the standard first-line treatment for biliary tract cancer. EGFR inhibition has proven beneficial across a number of gastrointestinal malignancies; and has shown specific advantages among KRAS wild-type genetic subtypes of colon cancer. We report the combination of panitumumab with gemcitabine (GEM) and oxaliplatin (OX) as first-line therapy for KRAS wild-type biliary tract cancer. Methods: Patients with histologically confirmed, previously untreated, unresectable or metastatic KRAS wild-type biliary tract or gallbladder adenocarcinoma with ECOG performance status 0–2 were treated with panitumumab 6 mg kg−1, GEM 1000 mg m−2 (10 mg m−2 min−1) and OX 85 mg m−2 on days 1 and 15 of each 28-day cycle. The primary objective was to determine the objective response rate by RECIST criteria v.1.1. Secondary objectives were to evaluate toxicity, progression-free survival (PFS), and overall survival. Results: Thirty-one patients received at least one cycle of treatment across three institutions, 28 had measurable disease. Response rate was 45% and disease control rate was 90%. Median PFS was 10.6 months (95% CI 5–24 months) and median overall survival 20.3 months (95% CI 9–25 months). The most common grade 3/4 adverse events were anaemia 26%, leukopenia 23%, fatigue 23%, neuropathy 16% and rash 10%. Conclusions: The combination of gemcitabine, oxaliplatin and panitumumab in KRAS wild type metastatic biliary tract cancer showed encouraging efficacy, additional efforts of genetic stratification and targeted therapy is warranted in biliary tract cancer. PMID:24960403

  8. Silencing the wild-type and mutant K-ras increases the resistance to 5-flurouracil in HCT-116 as a colorectal cancer cell line.

    PubMed

    Teimoori-Toolabi, Ladan; Hashemi, Saba; Azadmanesh, Kayhan; Eghbalpour, Farnaz; Safavifar, Farnaz; Khorramizadeh, Mohammad Reza

    2015-02-01

    Colon cancer is the second to third common cancer worldwide. Several efforts have been made to reveal the pathways responsible for drug resistance in this type of cancer. We aimed to investigate the effect of silencing both mutant and wild-type Kristen Rous sarcoma (k-ras) on the response of human colorectal tumor 116 (HCT-116) as a colon cancer cell line to the cytotoxic effect of 5-flurouracil (5-FU). One oligonucelotide against mutant k-ras (12th codon, namely 207) and two against wild-type k-ras (namely 535 and 689) were cloned into pSilencer neo2.1. The linearized vectors besides the negative control plasmid were stably transfected into HCT-116. The proliferation rates of these cells in different concentrations of 5-FU and the apoptosis rates of the cells after treatment with lethal doses of 5-FU were studied. Moreover, the cell cycle in these cells was also analyzed by staining the cells with propidium iodide. Stably transfected cells were named HCT207ks, HCT535ks, HCT689ks, and HCT-Sc (transfected with the negative control plasmid). Decreased expression of k-ras in HCT207ks, HCT535ks, and to a lesser extent in HCT689ks was proved by quantitative real-time PCR. Although in HCT207ks the cells were mostly in G0/G1 and G2/M phases, in HCT535ks and HCT689ks, the cells in the S phase were higher in comparison with nontransfected HCT-116. Lethal doses of 5-FU in HCT-116 and HCT-Sc were 2.5-3 and 3-3.5 µmol/l, whereas in HCT207ks, HCT535ks, and HCT689ks, they were 35-40, 37.5-40, and 22.5-25 µmol/l. In conclusion, silencing mutant and wild-type k-ras would increase the resistance of HCT-116 cell line as a model of colorectal cancer to 5-FU. The degree of resistance was related directly to the k-ras mRNA level. Therefore, both mutant and wild-type k-ras may play a role in sensitizing colorectal cancer cells to 5-FU as a common chemotherapeutic drug.

  9. Adenocarcinoma arising from intracranial recurrent mature teratoma and featuring mutated KRAS and wild-type BRAF genes.

    PubMed

    Kim, Eun Soo; Kwon, Mi Jung; Song, Joon Ho; Kim, Dong Hoon; Park, Hye-Rim

    2015-02-01

    Malignant transformation or recurrence of intracranial mature teratoma is an extremely rare occurrence, compared to the usual ovarian counterpart. Previously, yolk sac tumor elements have been considered to be selective progenitors of enteric-type adenocarcinoma arising from intracranial germ cell tumors. However, the present case demonstrates the occurrence of enteric-type adenocarcinoma in recurrent intracranial mature cystic teratoma 12 years after gross total removal, a case of which has not previously been documented in the literature. The 11.5-cm long, dura mater-based tumor on the right fronto-temporal lobe displaced the brain; however, the patient had no neurologic symptoms or discomfort other than pus-like discharge on the scalp. Microscopic examinations revealed a small focus of adenocarcinoma and dysplastic colonic mucosa in the mature cystic teratoma. No immature elements were seen. The cystic wall was almost denuded and showed an exuberant xanthogranulomatous reaction with foreign-body type giant cells engulfing keratin materials and cholesterol clefts, suggesting that chronic inflammation due to repeated cyst wall rupture and the previous resection may contribute to malignant transformation. The adenocarcinoma showed strong immunohistochemical expression of CK20 and p53, but CK7 in patches. The molecular profile of the adenocarcinoma showed a mutation in KRAS and wild-type BRAF, which might be associated with malignant transformation of intracranial mature teratomas. In conclusion, the intracranial mature teratomas should require long-term follow-up, and clinicians, radiologists and pathologists should be aware of the potential for malignant progression of recurrent intracranial mature cystic teratoma despite gross total resection and no neurologic symptoms. © 2014 Japanese Society of Neuropathology.

  10. Highly sensitive KRAS mutation detection from formalin-fixed paraffin-embedded biopsies and circulating tumour cells using wild-type blocking polymerase chain reaction and Sanger sequencing.

    PubMed

    Huang, Meggie Mo Chao; Leong, Sai Mun; Chua, Hui Wen; Tucker, Steven; Cheong, Wai Chye; Chiu, Lily; Li, Mo-Huang; Koay, Evelyn Siew-Chuan

    2014-08-01

    Among patients with colorectal cancer (CRC), KRAS mutations were reported to occur in 30-51 % of all cases. CRC patients with KRAS mutations were reported to be non-responsive to anti-epidermal growth factor receptor (EGFR) monoclonal antibody (MoAb) treatment in many clinical trials. Hence, accurate detection of KRAS mutations would be critical in guiding the use of anti-EGFR MoAb therapies in CRC. In this study, we carried out a detailed investigation of the efficacy of a wild-type (WT) blocking real-time polymerase chain reaction (PCR), employing WT KRAS locked nucleic acid blockers, and Sanger sequencing, for KRAS mutation detection in rare cells. Analyses were first conducted on cell lines to optimize the assay protocol which was subsequently applied to peripheral blood and tissue samples from patients with CRC. The optimized assay provided a superior sensitivity enabling detection of as little as two cells with mutated KRAS in the background of 10(4) WT cells (0.02 %). The feasibility of this assay was further investigated to assess the KRAS status of 45 colorectal tissue samples, which had been tested previously, using a conventional PCR sequencing approach. The analysis showed a mutational discordance between these two methods in 4 of 18 WT cases. Our results present a simple, effective, and robust method for KRAS mutation detection in both paraffin embedded tissues and circulating tumour cells, at single-cell level. The method greatly enhances the detection sensitivity and alleviates the need of exhaustively removing co-enriched contaminating lymphocytes.

  11. Amplification-free In Situ KRAS Point Mutation Detection at 60 copies/mL in Urine in a Background of 1000-fold Wild Type

    PubMed Central

    KirimLi, Ceyhun E.; Shih, Wei-Heng; Shih, Wan Y.

    2016-01-01

    We have examined in situ detection of single-nucleotide KRAS mutation in urine using a (Pb(Mg1/3Nb2/3)O3)0.65(PbTiO3)0.35 (PMN-PT) piezoelectric plate sensor (PEPS) coated with a 17-nucleotide (nt) locked nucleic acid (LNA) probe DNA complementary to the KRAS mutation. To enhance in situ mutant (MT) DNA detection specificity against the wild type (WT), the detection was carried out in a flow with a flow rate of 4 mL/min and at 63°C with the PEPS vertically situated at the center of the flow in which both the temperature and the flow impingement force discriminated the wild type. Under such conditions, PEPS was shown to specifically detect KRAS MT in situ with 60 copies/mL analytical sensitivity in a background of clinically-relevant 1000-fold more WT in 30 min without DNA isolation, amplification, or labeling. For validation, the detection was followed with detection in a mixture of blue MT fluorescent reporter microspheres (FRMs) (MT FRMs) that bound to only the captured MT and orange WT FRMs that bound to only the captured WT. Microscopic examinations showed that the captured blue MT FRMs still outnumbered the orange WT FRMs by a factor of 4 to 1 even though WT was 1000-fold of MT in urine. Finally, multiplexed specific mutation detection was demonstrated using a 6-PEPS array each with a probe DNA targeting one of the 6 codon-12 KRAS mutations. PMID:26783561

  12. Single-Tubed Wild-Type Blocking Quantitative PCR Detection Assay for the Sensitive Detection of Codon 12 and 13 KRAS Mutations

    PubMed Central

    Duan, Guang-Jie; Shi, Yan; Deng, Guo-Hong; Xia, Han; Xu, Han-Qing; Zhao, Na; Fu, Wei-Ling; Huang, Qing

    2015-01-01

    The high degree of intra-tumor heterogeneity has meant that it is important to develop sensitive and selective assays to detect low-abundance KRAS mutations in metastatic colorectal carcinoma (mCRC) patients. As a major potential source of tumor DNA in the aforementioned genotyping assays, it was necessary to conduct an analysis on both the quality and quantity of DNA extracted from formalin-fixed paraffin-embedded (FFPE). Therefore, four commercial FFPE DNA extraction kits were initially compared with respect to their ability to facilitate extraction of amplifiable DNA. The results showed that TrimGen kits showed the greatest performance in relation to the quality and quantity of extracted FFPE DNA solutions. Using DNA extracted by TrimGen kits as a template for tumor genotyping, a real-time wild-type blocking PCR (WTB-PCR) assay was subsequently developed to detect the aforementioned KRAS mutations in mCRC patients. The results showed that WTB-PCR facilitated the detection of mutated alleles at a ratio of 1:10,000 (i.e. 0.01%) wild-type alleles. When the assay was subsequently used to test 49 mCRC patients, the results showed that the mutation detection levels of the WTB-PCR assay (61.8%; 30/49) were significantly higher than that of traditional PCR (38.8%; 19/49). Following the use of the real-time WTB-PCR assay, the ΔCq method was used to quantitatively analyze the mutation levels associated with KRAS in each FFPE sample. The results showed that the mutant levels ranged from 53.74 to 0.12% in the patients analyzed. In conclusion, the current real-time WTB-PCR is a rapid, simple, and low-cost method that permits the detection of trace amounts of the mutated KRAS gene. PMID:26701781

  13. Differential proteomic and behavioral effects of long-term voluntary exercise in wild-type and APP-overexpressing transgenics

    PubMed Central

    Rao, Shailaja Kishan; Ross, Jordan M.; Harrison, Fiona E.; Bernardo, Alexandra; Reiserer, Randall S.; Reiserer, Ronald S.; Mobley, James A.; McDonald, Michael P.

    2015-01-01

    Physical exercise may provide protection against the cognitive decline and neuropathology associated with Alzheimer’s disease, although the mechanisms are not clear. In the present study, APP/PSEN1 double-transgenic and wild-type mice were allowed unlimited voluntary exercise for 7 months. Consistent with previous reports, wheel-running improved cognition in the double-transgenic mice. Interestingly, the average daily distance run was strongly correlated with spatial memory in the water maze in wild-type mice (r2 = .959), but uncorrelated in transgenics (r2 = .013). Proteomics analysis showed that sedentary transgenic mice differed significantly from sedentary wild-types with respect to proteins involved in synaptic transmission, cytoskeletal regulation, and neurogenesis. When given an opportunity to exercise, the transgenics’ deficiencies in cytoskeletal regulation and neurogenesis largely normalized, but abnormal synaptic proteins did not change. In contrast, exercise enhanced proteins associated with cytoskeletal regulation, oxidative phosphorylation, and synaptic transmission in wild-type mice. Soluble and insoluble Aβ40 and Aβ42 levels were significantly decreased in both cortex and hippocampus of active transgenics, suggesting that this may have played a role in the cognitive improvement in APP/PSEN1 mice. β-secretase was significantly reduced in active APP/PSEN1 mice compared to sedentary controls, suggesting a mechanism for reduced Aβ. Taken together, these data illustrate that exercise improves memory in wild-type and APP-overexpressing mice in fundamentally different ways. PMID:25818006

  14. Differential proteomic and behavioral effects of long-term voluntary exercise in wild-type and APP-overexpressing transgenics.

    PubMed

    Rao, Shailaja Kishan; Ross, Jordan M; Harrison, Fiona E; Bernardo, Alexandra; Reiserer, Randall S; Reiserer, Ronald S; Mobley, James A; McDonald, Michael P

    2015-06-01

    Physical exercise may provide protection against the cognitive decline and neuropathology associated with Alzheimer's disease, although the mechanisms are not clear. In the present study, APP/PSEN1 double-transgenic and wild-type mice were allowed unlimited voluntary exercise for 7months. Consistent with previous reports, wheel-running improved cognition in the double-transgenic mice. Interestingly, the average daily distance run was strongly correlated with spatial memory in the water maze in wild-type mice (r(2)=.959), but uncorrelated in transgenics (r(2)=.013). Proteomics analysis showed that sedentary transgenic mice differed significantly from sedentary wild-types with respect to proteins involved in synaptic transmission, cytoskeletal regulation, and neurogenesis. When given an opportunity to exercise, the transgenics' deficiencies in cytoskeletal regulation and neurogenesis largely normalized, but abnormal synaptic proteins did not change. In contrast, exercise enhanced proteins associated with cytoskeletal regulation, oxidative phosphorylation, and synaptic transmission in wild-type mice. Soluble and insoluble Aβ40 and Aβ42 levels were significantly decreased in both cortex and hippocampus of active transgenics, suggesting that this may have played a role in the cognitive improvement in APP/PSEN1 mice. β-secretase was significantly reduced in active APP/PSEN1 mice compared to sedentary controls, suggesting a mechanism for reduced Aβ. Taken together, these data illustrate that exercise improves memory in wild-type and APP-overexpressing mice in fundamentally different ways. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. A Q-TWiST analysis comparing panitumumab plus best supportive care (BSC) with BSC alone in patients with wild-type KRAS metastatic colorectal cancer

    PubMed Central

    Wang, J; Zhao, Z; Barber, B; Sherrill, B; Peeters, M; Wiezorek, J

    2011-01-01

    Background: Panitumumab+best supportive care (BSC) significantly improved progression-free survival (PFS) vs BSC alone in patients with chemo-refractory wild-type KRAS metastatic colorectal cancer (mCRC). We applied the quality-adjusted time without symptoms of disease or toxicity (Q-TWiST) analysis to provide an integrated measure of clinical benefit, with the objective of comparing quality-adjusted survival between the two arms. As the trial design allowed patients on BSC alone to receive panitumumab after disease progression, which confounded overall survival (OS), the focus of this analysis was on PFS. Methods: For each treatment group, the time spent in the toxicity (grade 3 or 4 adverse events; TOX), time without symptoms of disease or toxicity (TWiST), and relapse (after disease progression; REL) states were estimated by the product-limit method, and adjusted using utility weights derived from patient-reported EuroQoL 5-dimensions measures. Sensitivity analyses were performed in which utility weights (varying from 0 to 1) were applied to time in the TOX and REL health states. Results: There was a significant difference between groups favouring panitumumab+BSC in quality-adjusted PFS (12.3 weeks vs 5.8 weeks, respectively, P<0.0001) and quality-adjusted OS (P=0.0303). Conclusion: In patients with chemo-refractory wild-type KRAS mCRC, panitumumab+BSC significantly improved quality-adjusted survival compared with BSC alone. PMID:21610704

  16. A Q-TWiST analysis comparing panitumumab plus best supportive care (BSC) with BSC alone in patients with wild-type KRAS metastatic colorectal cancer.

    PubMed

    Wang, J; Zhao, Z; Barber, B; Sherrill, B; Peeters, M; Wiezorek, J

    2011-06-07

    Panitumumab+best supportive care (BSC) significantly improved progression-free survival (PFS) vs BSC alone in patients with chemo-refractory wild-type KRAS metastatic colorectal cancer (mCRC). We applied the quality-adjusted time without symptoms of disease or toxicity (Q-TWiST) analysis to provide an integrated measure of clinical benefit, with the objective of comparing quality-adjusted survival between the two arms. As the trial design allowed patients on BSC alone to receive panitumumab after disease progression, which confounded overall survival (OS), the focus of this analysis was on PFS. For each treatment group, the time spent in the toxicity (grade 3 or 4 adverse events; TOX), time without symptoms of disease or toxicity (TWiST), and relapse (after disease progression; REL) states were estimated by the product-limit method, and adjusted using utility weights derived from patient-reported EuroQoL 5-dimensions measures. Sensitivity analyses were performed in which utility weights (varying from 0 to 1) were applied to time in the TOX and REL health states. There was a significant difference between groups favouring panitumumab+BSC in quality-adjusted PFS (12.3 weeks vs 5.8 weeks, respectively, P<0.0001) and quality-adjusted OS (P=0.0303). In patients with chemo-refractory wild-type KRAS mCRC, panitumumab+BSC significantly improved quality-adjusted survival compared with BSC alone.

  17. Podocyte-Specific Overexpression of Wild Type or Mutant Trpc6 in Mice Is Sufficient to Cause Glomerular Disease

    PubMed Central

    Kairath, Pamela; Carmona-Mora, Paulina; Molina, Jessica; Carpio, J. Daniel; Ruiz, Phillip; Mezzano, Sergio A.; Li, Jing; Wei, Changli; Reiser, Jochen; Young, Juan I.; Walz, Katherina

    2010-01-01

    Mutations in the TRPC6 calcium channel (Transient receptor potential channel 6) gene have been associated with familiar forms of Focal and Segmental Glomerulosclerosis (FSGS) affecting children and adults. In addition, acquired glomerular diseases are associated with increased expression levels of TRPC6. However, the exact role of TRPC6 in the pathogenesis of FSGS remains to be elucidated. In this work we describe the generation and phenotypic characterization of three different transgenic mouse lines with podocyte-specific overexpression of the wild type or any of two mutant forms of Trpc6 (P111Q and E896K) previously related to FSGS. Consistent with the human phenotype a non-nephrotic range of albuminuria was detectable in almost all transgenic lines. The histological analysis demonstrated that the transgenic mice developed a kidney disease similar to human FSGS. Differences of 2–3 folds in the presence of glomerular lesions were found between the non transgenic and transgenic mice expressing Trpc6 in its wild type or mutant forms specifically in podocytes. Electron microscopy of glomerulus from transgenic mice showed extensive podocyte foot process effacement. We conclude that overexpression of Trpc6 (wild type or mutated) in podocytes is sufficient to cause a kidney disease consistent with FSGS. Our results contribute to reinforce the central role of podocytes in the etiology of FSGS. These mice constitute an important new model in which to study future therapies and outcomes of this complex disease. PMID:20877463

  18. Cetuximab in the first-line treatment of K-ras wild-type metastatic colorectal cancer: the choice and schedule of fluoropyrimidine matters.

    PubMed

    Ku, Geoffrey Y; Haaland, Benjamin A; de Lima Lopes, Gilberto

    2012-08-01

    Cetuximab, a monoclonal antibody against the epidermal growth factor receptor, inconsistently improves response rates (RR), progression-free survival (PFS) and overall survival (OS) in the first-line treatment of advanced colorectal cancer patients with K-ras wild-type (WT) tumors. We performed a meta-analysis of four trials where K-ras WT Pts received a fluoropyrimidine (infusional vs. bolus 5-fluorouracil (5-FU) vs. capecitabine) and oxaliplatin or irinotecan with and without cetuximab (CRYSTAL, OPUS, COIN and NORDIC VII trials) and two trials, where K-ras WT and mutant patients received cetuximab and a fluoropyrimidine (capecitabine in a German AIO study and infusional 5-FU in the CECOG study) with oxaliplatin versus irinotecan. We sought to determine whether the choice of fluoropyrimidine or of oxaliplatin versus irinotecan affects the response to cetuximab. Meta-analysis was performed in the context of a mixed effects model with a random effect for each study. Only patients treated with infusional 5-FU-based chemotherapy derived benefit from cetuximab. Relative to infusional 5-FU, patients treated with capecitabine/bolus 5-FU-based doublet chemotherapy had a 42 % (95 % CI 21-58 %; p < 0.001) decrease in response probability and a 52 % (95 % CI 20-93 %; p < 0.001) and 33 % (95 % CI 7-65 %; p = 0.012) increase, respectively, in risk of progression and death. The choice of oxaliplatin or irinotecan did not affect benefit from cetuximab. The lack of benefit for cetuximab with capecitabine/bolus 5-FU regimens is unexpected. Cetuximab should only be used with infusional 5-FU regimens in the first-line treatment of K-ras WT colorectal cancer patients. Further study is urgently needed to elucidate the basis of this observation.

  19. Overall survival of patients with KRAS wild-type tumor treated with FOLFOX/FORFIRI±cetuximab as the first-line treatment for metastatic colorectal cancer

    PubMed Central

    Yang, Ya-Fan; Wang, Gui-Ying; He, Jing-Li; Wu, Feng-Peng; Zhang, Yan-Ni

    2017-01-01

    Abstract The addition of cetuximab to FOLFIRI or FOLFOX as the first-line treatment for metastatic colorectal cancer (mCRC) was shown to reduce the risk of disease progression and increase the chance of response in patients with KRAS wild-type disease. An updated systematic meta-analysis was undertaken to determine the efficacy of cetuximab plus FOLFIRI or FOLFOX. Major databases were searched to identify RCTs investigating wild-type KRAS mCRC after the first-line treatment, and treatment with FOLFOX/FORFIRI ± cetuximab was compared. Data on clinical efficacy and safety were pooled and compared by ORs, HRs, and 95% CIs. Five eligible trials with 1464 patients were included in the meta-analysis. Compared to FOLFOX/FORFIRI, cetuximab as the first-line therapy has improved overall survival (OS) (hazard ratio [HR] = 0.82, 95% confidence interval [CI]: 0.72–0.93, P = 0.003), progression-free survival (PFS) (HR = 0.66, 95% CI: 0.56 –0.77, P < 0.00001), and overall response rate (ORR) (odds ratio [OR] = 2.12, 95% CI: 1.70–2.65, P < 0.00001). However, Grade 3/4 AE was increased with the OR of 2.76 (95%CI: 2.01–3.78, P < 0.00001). The most common grade 3/4 toxicity in the wild-type KRAS population was neutropenia and diarrhea. For cetuximab plus FOLFIRI, there was a higher incidence of grade 3 or 4 diarrhea (OR = 1.76, 95% CI: 1.15–2.70, P = 0.01), but there was no significant difference for neutropenia (OR = 1.35, 95% CI: 1.00–1.83, P = 0.05). The addition of cetuximab in mCRC as the first-line treatment is a potential effective approach in the improved outcomes but associated with increased toxicity. PMID:28328812

  20. Evaluation of antibody-dependent cell-mediated cytotoxicity activity and cetuximab response in KRAS wild-type metastatic colorectal cancer patients.

    PubMed

    Lo Nigro, Cristiana; Ricci, Vincenzo; Vivenza, Daniela; Monteverde, Martino; Strola, Giuliana; Lucio, Francesco; Tonissi, Federica; Miraglio, Emanuela; Granetto, Cristina; Fortunato, Mirella; Merlano, Marco Carlo

    2016-02-15

    To investigate the prognostic role of invariant natural killer T (iNKT) cells and antibody-dependent cell-mediated cytotoxicity (ADCC) in wild type KRAS metastatic colorectal cancer (mCRC) patients treated with cetuximab. Forty-one KRAS wt mCRC patients, treated with cetuximab and irinotecan-based chemotherapy in II and III lines were analyzed. Genotyping of single nucleotide polymorphism (SNP)s in the FCGR2A, FCGR3A and in the 3' untranslated regions of KRAS and mutational analysis for KRAS, BRAF and NRAS genes was determined either by sequencing or allelic discrimination assays. Enriched NK cells were obtained from lymphoprep-peripheral blood mononuclear cell and iNKT cells were defined by co-expression of CD3, TCRVα24, TCRVβ11. ADCC was evaluated as ex vivo NK-dependent activity, measuring lactate dehydrogenase release. At basal, mCRC patients performing ADCC activity above the median level (71%) showed an improved overall survival (OS) compared to patients with ADCC below (median 16 vs 8 mo; P = 0.026). We did not find any significant correlation of iNKT cells with OS (P = 0.19), albeit we observed a trend to a longer survival after 10 mo in patients with iNKT above median basal level (0.382 cells/microliter). Correlation of OS and progression-free survival (PFS) with interesting SNPs involved in ADCC ability revealed not to be significant. Patients carrying alleles both with A in FCGR2A and TT in FCGR3A presented a trend of longer PFS (median 9 vs 5 mo; P = 0.064). Chemotherapy impacted both iNKT cells and ADCC activity. Their prognostic values get lost when we analysed them after 2 and 4 mo of treatment. Our results suggest a link between iNKT cells, basal ADCC activity, genotypes in FCGR2A and FCGR3A, and efficacy of cetuximab in KRAS wt mCRC patients.

  1. The S492R EGFR ectodomain mutation is never detected in KRAS wild-type colorectal carcinoma before exposure to EGFR monoclonal antibodies.

    PubMed

    Esposito, Claudia; Rachiglio, Anna Maria; La Porta, Maria Libera; Sacco, Alessandra; Roma, Cristin; Iannaccone, Alessia; Tatangelo, Fabiana; Forgione, Laura; Pasquale, Raffaella; Barbaro, Americo; Botti, Gerardo; Ciardiello, Fortunato; Normanno, Nicola

    2013-12-01

    The activity of the epidermal growth factor receptor (EGFR) antibodies cetuximab and panitumumab in metastatic colorectal carcinoma (mCRC) is significantly limited by molecular mechanisms leading to intrinsic or acquired resistance. The S492R mutation of the EGFR, which is caused by either the 1476C>A or the 1474A>C substitution, interferes with binding to cetuximab but not to panitumumab, and has been detected in mCRC with acquired resistance to cetuximab. Since mechanisms of acquired and intrinsic resistance to EGFR monoclonal antibodies in CRC significantly overlap, we evaluated the frequency of the S492R mutation in a series of KRAS-exon 2 wild-type CRC patients. Genomic DNA was extracted from formalin fixed paraffin embedded (FFPE) tissues that were obtained from 505 systemic therapy-naïve CRC patients. A PCR/sequencing method for the detection of the S492R mutation was developed, by using as positive control a plasmid in which the 1474A>C mutation was generated by site directed mutagenesis. The lowest level of detection of this assay was approximately 10% mutant DNA in a background of wild-type DNA. PCR sequencing analysis revealed no S492R mutations in any of the analyzed 505 CRC specimens. Our findings suggest that the S492R mutation is not involved in primary resistance to cetuximab in CRC. Therefore, patients with mCRC should not be routinely screened for this mutation prior therapy with cetuximab.

  2. Comparative metabolomics profiling of isogenic KRAS wild type and mutant NSCLC cells in vitro and in vivo

    PubMed Central

    Brunelli, Laura; Caiola, Elisa; Marabese, Mirko; Broggini, Massimo; Pastorelli, Roberta

    2016-01-01

    Oncogenes induce metabolic reprogramming on cancer cells. Recently, G12C KRAS mutation in isogenic NSCLC cell line has been shown to be a key player in promoting metabolic rewiring mainly through the regulation of glutamine metabolism to fuel growth and proliferation. Even though cell lines possessing many of the genetic backgrounds of the primary cancer they derive from could be a valuable pre-clinical model, they do not have the additional complexity present in the whole tumor that impact metabolism. This preliminary study is aimed to explore how cancer cell metabolism in culture might recapitulate the metabolic alterations present in vivo. Our result highlighted that the gross metabolic changes observed in G12C KRAS mutant cells growing in culture were also maintained in the derived xenograft model, suggesting that a simple in vitro cell model can give important insights into the metabolic alterations induced by cancer. This is of relevance for guiding effective targeting of those metabolic traits that underlie tumor progression and anticancer treatment responses. PMID:27329432

  3. Accelerated telomere shortening and replicative senescence in human fibroblasts overexpressing mutant and wild-type lamin A

    SciTech Connect

    Huang Shurong; Risques, Rosa Ana; Martin, George M.; Rabinovitch, Peter S.; Oshima, Junko

    2008-01-01

    LMNA mutations are responsible for a variety of genetic disorders, including muscular dystrophy, lipodystrophy, and certain progeroid syndromes, notably Hutchinson-Gilford Progeria. Although a number of clinical features of these disorders are suggestive of accelerated aging, it is not known whether cells derived from these patients exhibit cellular phenotypes associated with accelerated aging. We examined a series of isogenic skin fibroblast lines transfected with LMNA constructs bearing known pathogenic point mutations or deletion mutations found in progeroid syndromes. Fibroblasts overexpressing mutant lamin A exhibited accelerated rates of loss of telomeres and shortened replicative lifespans, in addition to abnormal nuclear morphology. To our surprise, these abnormalities were also observed in lines overexpressing wild-type lamin A. Copy number variants are common in human populations; those involving LMNA, whether arising meiotically or mitotically, might lead to progeroid phenotypes. In an initial pilot study of 23 progeroid cases without detectable WRN or LMNA mutations, however, no cases of altered LMNA copy number were detected. Nevertheless, our findings raise a hypothesis that changes in lamina organization may cause accelerated telomere attrition, with different kinetics for overexpession of wild-type and mutant lamin A, which leads to rapid replicative senescence and progroid phenotypes.

  4. Genomic markers of panitumumab resistance including ERBB2/ HER2 in a phase II study of KRAS wild-type (wt) metastatic colorectal cancer (mCRC).

    PubMed

    Barry, Garrett S; Cheang, Maggie C; Chang, Hector Li; Kennecke, Hagen F

    2016-04-05

    A prospective study was conducted to identify biomarkers associated with resistance to panitumumab monotherapy in patients with metastatic colorectal cancer (mCRC). Patients with previously treated, codon 12/13 KRAS wt, mCRC were prospectively administered panitumumab 6 mg/kg IV q2weeks. Of 34 panitumumab-treated patients, 11 (32%) had progressive disease at 8 weeks and were classified as non-responders. A Nanostring nCounter-based assay identified a 5-gene expression signature (ERBB2, MLPH, IRX3, MYRF, and KLK6) associated with panitumumab resistance (P = 0.001). Immunohistochemistry and in situ hybridization determined that the HER2 (ERBB2) protein was overexpressed in 4/11 non-responding and 0/21 responding cases (P = 0.035). Two non-responding tumors had ERBB2 gene amplification only, and one demonstrated both ERBB2 amplification and mutation. A non-codon 12/13 KRAS mutation occurred in one panitumumab-resistant patient and was mutually exclusive with ERBB2/HER2 abnormalities. This study identifies a 5-gene signature associated with non-response to single agent panitumumab, including a subgroup of non-responders with evidence of aberrant ERBB2/HER2 signaling. KRAS wt tumors resistant to EGFRi may be identified by gene signature analysis, and the HER2 pathway plays an important role in resistance to therapy.

  5. Effect of First-Line Chemotherapy Combined With Cetuximab or Bevacizumab on Overall Survival in Patients With KRAS Wild-Type Advanced or Metastatic Colorectal Cancer

    PubMed Central

    Venook, Alan P.; Niedzwiecki, Donna; Lenz, Heinz-Josef; Innocenti, Federico; Fruth, Briant; Meyerhardt, Jeffrey A.; Schrag, Deborah; Greene, Claire; O’Neil, Bert H.; Atkins, James Norman; Berry, Scott; Polite, Blase N.; O’Reilly, Eileen M.; Goldberg, Richard M.; Hochster, Howard S.; Schilsky, Richard L.; Bertagnolli, Monica M.; El-Khoueiry, Anthony B.; Watson, Peter; Benson, Al B.; Mulkerin, Daniel L.; Mayer, Robert J.; Blanke, Charles

    2017-01-01

    IMPORTANCE Combining biologic monoclonal antibodies with chemotherapeutic cytotoxic drugs provides clinical benefit to patients with advanced or metastatic colorectal cancer, but the optimal choice of the initial biologic therapy in previously untreated patients is unknown. OBJECTIVE To determine if the addition of cetuximab vsbevacizumab to the combination of leucovorin, fluorouracil, and oxaliplatin (mFOLFOX6) regimen or the combination of leucovorin, fluorouracil, and irinotecan (FOLFIRI) regimen is superior as first-line therapy in advanced or metastatic KRAS wild-type (wt) colorectal cancer. DESIGN, SETTING, AND PARTICIPANTS Patients (≥18 years) enrolled at community and academic centers throughout the National Clinical Trials Network in the United States and Canada (November 2005-March 2012) with previously untreated advanced or metastatic colorectal cancer whose tumors were KRAS wt chose to take either the mFOLFOX6 regimen or the FOLFIRI regimen as chemotherapy and were randomized to receive either cetuximab (n = 578) or bevacizumab (n = 559). The last date of follow-up was December 15, 2015. INTERVENTIONS Cetuximab vs bevacizumab combined with either mFOLFOX6 or FOLFIRI chemotherapy regimen chosen by the treating physician and patient. MAIN OUTCOMES AND MEASURES The primary end point was overall survival. Secondary objectives included progression-free survival and overall response rate, site-reported confirmed or unconfirmed complete or partial response. RESULTS Among 1137 patients (median age, 59 years; 440 [39%] women), 1074 (94%) of patients met eligibility criteria. As of December 15, 2015, median follow-up for 263 surviving patients was 47.4 months (range, 0–110.7 months), and 82% of patients (938 of 1137) experienced disease progression. The median overall survival was 30.0 months in the cetuximab-chemotherapy group and 29.0 months in the bevacizumab-chemotherapy group with a stratified hazard ratio (HR) of 0.88 (95% CI, 0.77–1.01; P = .08). The

  6. [Efficacy and safety of panitumumab for K-ras wild-type unresectable or recurrent colorectal cancer - a study focusing on first-line treatment].

    PubMed

    Mitomo, Shingo; Suto, Takayuki; Umemura, Akira; Ishida, Kaoru; Kanno, Kiminori; Takeda, Daiki; Fujita, Tomonori; Otsuka, Koki; Nitta, Hiroyuki; Uesugi, Noriyuki; Sugai, Tamotsu; Wakabayashi, Go

    2014-06-01

    Panitumumab was approved in June 2010 for use in the treatment of unresectable advanced/recurrent colorectal cancer. Here, we report outcomes and adverse events of panitumumab combination therapy or single-agent chemotherapy for K-ras wild-type unresectable or recurrent colorectal cancers. Our study focused on first-line treatments. The study involved 18 patients who started receiving panitumumab in October 2010. Nine patients received panitumumab as a first-line treatment; 4, as a second-line treatment; and 5, as a third-line or subsequent treatment. The overall response rate was 27.8%. Among the patients who received panitumumab as a first-line treatment, the response rate was 55.6%. Grade 1 and 2 skin disorders were common adverse events. Grade 2 interstitial pneumonia was observed in 1 patient(5.6%). Grade 3 or higher events comprised peripheral neuropathy in 1 patient(5.6%)and neutropenia in another patient(5.6%). The treatment was beneficial, and metastatic foci were resected in 3 patients. In this study, the only adverse events of Grade 3 or higher were 1 case each of peripheral neuropathy and neutropenia. Accordingly, adequate control seemed possible. The specific line of treatment that panitumumab should belong to remains controversial. However, active initiation as first-line treatment should be considered for cases in which resection of metastatic foci can be expected from tumor reductions due to panitumumab.

  7. Overexpression of wild-type aspartokinase increases L-lysine production in the thermotolerant methylotrophic bacterium Bacillus methanolicus.

    PubMed

    Jakobsen, Oyvind M; Brautaset, Trygve; Degnes, Kristin F; Heggeset, Tonje M B; Balzer, Simone; Flickinger, Michael C; Valla, Svein; Ellingsen, Trond E

    2009-02-01

    Aspartokinase (AK) controls the carbon flow into the aspartate pathway for the biosynthesis of the amino acids l-methionine, l-threonine, l-isoleucine, and l-lysine. We report here the cloning of four genes (asd, encoding aspartate semialdehyde dehydrogenase; dapA, encoding dihydrodipicolinate synthase; dapG, encoding AKI; and yclM, encoding AKIII) of the aspartate pathway in Bacillus methanolicus MGA3. Together with the known AKII gene lysC, dapG and yclM form a set of three AK genes in this organism. Overexpression of dapG, lysC, and yclM increased l-lysine production in wild-type B. methanolicus strain MGA3 2-, 10-, and 60-fold (corresponding to 11 g/liter), respectively, without negatively affecting the specific growth rate. The production levels of l-methionine (less than 0.5 g/liter) and l-threonine (less than 0.1 g/liter) were low in all recombinant strains. The AK proteins were purified, and biochemical analyses demonstrated that they have similar V(max) values (between 47 and 58 micromol/min/mg protein) and K(m) values for l-aspartate (between 1.9 and 5.0 mM). AKI and AKII were allosterically inhibited by meso-diaminopimelate (50% inhibitory concentration [IC(50)], 0.1 mM) and by l-lysine (IC(50), 0.3 mM), respectively. AKIII was inhibited by l-threonine (IC(50), 4 mM) and by l-lysine (IC(50), 5 mM), and this enzyme was synergistically inhibited in the presence of both of these amino acids at low concentrations. The correlation between the impact on l-lysine production in vivo and the biochemical properties in vitro of the individual AK proteins is discussed. This is the first example of improving l-lysine production by metabolic engineering of B. methanolicus and also the first documentation of considerably increasing l-lysine production by overexpression of a wild-type AK.

  8. [Effects of wild-type PTEN overexpression and its mutation on F-actin in activated hepatic stellate cells].

    PubMed

    Hao, L S; Liu, Y L; Zhang, G L; Chen, J; Song, X J; Wang, Y L; Wang, J; Jin, L M

    2017-01-20

    Objective: To investigate the effect of overexpression of wild-type phosphatase and tensin homolog (PTEN) deleted on chromosome 10 and its mutant G129E (exhibiting the activity of protein phosphatase and losing the activity of lipid phosphatase) on F-actin in activated hepatic stellate cells (HSCs) cultured in vitro. Methods: The activated hepatic stellate cell-T6 (HSC-T6) cells were cultured in vitro, and activated HSCs were transfected with adenovirus that carried wild-type PTEN gene and G129E gene using transient transfection. The HSCs were divided into the following groups: control group, which was transfected with DMEM medium instead of virus solution; Ad-GFP group, which was transfected with the empty adenovirus vector with the expression of green fluorescent protein (GFP); Ad-PTEN group, which was transfected with the recombinant adenovirus with wild-type PTEN gene and GFP expression; Ad-G129E group, which was transfected with the recombinant adenovirus with G129E gene and GFP expression. Western blot and quantitative real-time PCR were used to measure the protein and mRNA expression of PTEN in activated HSCs; under a laser scanning confocal microscope (LSCM), phalloidine labeled with the fluorescein tetramethylrhodamine isothiocyanate (TRITC) was used to observe the morphology of HSCs, distribution and fluorescence intensity of F-actin, and changes in pseudopodia and stress fibers, and a calcium fluorescence probe (Rhod-2/AM) was used to measure the changes in Ca(2+) concentration in HSCs. A one-way analysis of variance was used for comparison between multiple groups, and the least significant difference test was used for comparison between two groups. Results: Wild-type PTEN and G129E genes were highly expressed in activated HSCs. In the control group and the Ad-GFP group, HSCs had a starlike or polygonal shape, F-actin was reconfigured and formed a large number of stress fibers which stretched across the whole cell, and layered pseudopodia were seen

  9. Overexpression of wild-type PKD2 leads to increased proliferation and invasion of BON endocrine cells

    SciTech Connect

    Jackson, Lindsey N.; Li Jing; Chen, L. Andy; Townsend, Courtney M.; Evers, B. Mark . E-mail: mevers@utmb.edu

    2006-09-29

    Carcinoid tumors are rare neuroendocrine tumors with a predilection for the gastrointestinal tract. Protein kinase D (PKD), a novel serine/threonine protein kinase, has been implicated in the regulation of transport processes in certain cell types. We have reported an important role for PKD in stimulated peptide secretion from a human (BON) carcinoid cell line; however, the role of PKD isoforms, including PKD2, in the proliferation and invasion of carcinoid tumors remains unclear. In the present study, we found that overexpression of PKD2 by stable transfection of BON cells with PKD2-wild type (PKD2{sub WT}) significantly increased proliferation and invasion compared to cells transfected with PKD2-kinase dead (PKD2{sub KD}) or pcDNA3 (control). Similarly, inhibition of PKD2 activity with small interfering RNA (siRNA) significantly decreased proliferation and invasion compared to cells transfected with non-targeting control (NTC) siRNA. These data support an important role for PKD2 in carcinoid tumor progression. Targeted inhibition of the PKD family may prove to be a novel treatment option for patients with carcinoid tumors.

  10. Alphaviral Vector-Transduced Dendritic Cells are Successful Therapeutic Vaccines against neu-Overexpressing Tumors in Wild-Type Mice

    PubMed Central

    Moran, Timothy P.; Burgents, Joseph E.; Long, Brian; Ferrer, Ivana; Jaffee, Elizabeth M.; Tisch, Roland M.; Johnston, Robert E.; Serody, Jonathan S.

    2009-01-01

    While dendritic cell (DC) vaccines can protect hosts from tumor challenge, their ability to effectively inhibit the growth of established tumors remains indeterminate. Previously, we have shown that human DCs transduced with Venezuelan equine encephalitis virus replicon particles (VRPs) were potent stimulators of antigen-specific T cells in vitro. Therefore, we investigated the ability of VRP-transduced DCs (VRP-DCs) to induce therapeutic immunity in vivo against tumors overexpressing the neu oncoprotein. Transduction of murine DCs with VRPs resulted in high-level transgene expression, DC maturation and secretion of proinflammatory cytokines. Vaccination with VRP-transduced DCs (VRP-DCs) expressing a truncated neu oncoprotein induced robust neu-specific CD8+ T cell and anti-neu IgG responses. Furthermore, a single vaccination with VRP-DCs induced the regression of large established tumors in wild-type mice. Interestingly, depletion of CD4+, but not CD8+, T cells completely abrogated inhibition of tumor growth following vaccination. Taken together, our results demonstrate that VRP-DC vaccines induce potent immunity against established tumors, and emphasize the importance of the generation of both CD4+ T cell and B cell responses for efficient tumor inhibition. These findings provide the rationale for future evaluation VRP-DC vaccines in the clinical setting. PMID:17675184

  11. Alphaviral vector-transduced dendritic cells are successful therapeutic vaccines against neu-overexpressing tumors in wild-type mice.

    PubMed

    Moran, Timothy P; Burgents, Joseph E; Long, Brian; Ferrer, Ivana; Jaffee, Elizabeth M; Tisch, Roland M; Johnston, Robert E; Serody, Jonathan S

    2007-09-04

    While dendritic cell (DC) vaccines can protect hosts from tumor challenge, their ability to effectively inhibit the growth of established tumors remains indeterminate. Previously, we have shown that human DCs transduced with Venezuelan equine encephalitis virus replicon particles (VRPs) were potent stimulators of antigen-specific T cells in vitro. Therefore, we investigated the ability of VRP-transduced DCs (VRP-DCs) to induce therapeutic immunity in vivo against tumors overexpressing the neu oncoprotein. Transduction of murine DCs with VRPs resulted in high-level transgene expression, DC maturation and secretion of proinflammatory cytokines. Vaccination with VRP-DCs expressing a truncated neu oncoprotein induced robust neu-specific CD8(+) T cell and anti-neu IgG responses. Furthermore, a single vaccination with VRP-DCs induced the regression of large established tumors in wild-type mice. Interestingly, depletion of CD4(+), but not CD8(+), T cells completely abrogated inhibition of tumor growth following vaccination. Taken together, our results demonstrate that VRP-DC vaccines induce potent immunity against established tumors, and emphasize the importance of the generation of both CD4(+) T cell and B cell responses for efficient tumor inhibition. These findings provide the rationale for future evaluation of VRP-DC vaccines in the clinical setting.

  12. Prolonged ethanol administration depletes mitochondrial DNA in MnSOD-overexpressing transgenic mice, but not in their wild type littermates

    SciTech Connect

    Larosche, Isabelle; Choumar, Amal; Fromenty, Bernard; Letteron, Philippe; Abbey-Toby, Adje; Van Remmen, Holly; Epstein, Charles J.; Richardson, Arlan; Feldmann, Gerard; Pessayre, Dominique; Mansouri, Abdellah

    2009-02-01

    Alcohol consumption increases reactive oxygen species formation and lipid peroxidation, whose products can damage mitochondrial DNA (mtDNA) and alter mitochondrial function. A possible role of manganese superoxide dismutase (MnSOD) on these effects has not been investigated. To test whether MnSOD overexpression modulates alcohol-induced mitochondrial alterations, we added ethanol to the drinking water of transgenic MnSOD-overexpressing (TgMnSOD) mice and their wild type (WT) littermates for 7 weeks. In TgMnSOD mice, alcohol administration further increased the activity of MnSOD, but decreased cytosolic glutathione as well as cytosolic glutathione peroxidase activity and peroxisomal catalase activity. Whereas ethanol increased cytochrome P-450 2E1 and mitochondrial ROS generation in both WT and TgMnSOD mice, hepatic iron, lipid peroxidation products and respiratory complex I protein carbonyls were only increased in ethanol-treated TgMnSOD mice but not in WT mice. In ethanol-fed TgMnSOD mice, but not ethanol-fed WT mice, mtDNA was depleted, and mtDNA lesions blocked the progress of polymerases. The iron chelator, DFO prevented hepatic iron accumulation, lipid peroxidation, protein carbonyl formation and mtDNA depletion in alcohol-treated TgMnSOD mice. Alcohol markedly decreased the activities of complexes I, IV and V of the respiratory chain in TgMnSOD, with absent or lesser effects in WT mice. There was no inflammation, apoptosis or necrosis, and steatosis was similar in ethanol-treated WT and TgMnSOD mice. In conclusion, prolonged alcohol administration selectively triggers iron accumulation, lipid peroxidation, respiratory complex I protein carbonylation, mtDNA lesions blocking the progress of polymerases, mtDNA depletion and respiratory complex dysfunction in TgMnSOD mice but not in WT mice.

  13. Overexpression of insulin-like growth factor 1 receptor and frequent mutational inactivation of SDHA in wild-type SDHB-negative gastrointestinal stromal tumors.

    PubMed

    Belinsky, Martin G; Rink, Lori; Flieder, Douglas B; Jahromi, Mona S; Schiffman, Joshua D; Godwin, Andrew K; Mehren, Margaret von

    2013-02-01

    Approximately 15% of gastrointestinal stromal tumors (GISTs) in adults and 85% in children lack mutations in KIT and PDGFRA and are known as wild-type GISTs. Wild-type GISTs from adults and children express high levels of insulin-like growth factor 1 receptor (IGF1R) and exhibit stable genomes compared to mutant GISTs. Pediatric wild-type GISTs, GISTs from the multitumor Carney-Stratakis syndrome, and the Carney triad share other clinicopathological properties (e.g., early-onset, multifocal GISTs with epitheliod cell morphology), suggesting a common etiology. Carney-Stratakis is an inherited association of GIST and paragangliomas caused by germline mutations in succinate dehydrogenase (SDH) genes. The connection between defective cellular respiration and GIST pathology has been strengthened by the utilization of SDHB immunohistochemistry to identify SDH deficiency in pediatric GISTs, syndromic GISTs, and some adult wild-type GISTs. SDHB and IGF1R expression was examined in 12 wild-type and 12 mutant GIST cases. Wild-type GISTs were screened for coding-region alterations in SDH genes and for chromosomal aberrations using genome-wide single-nucleotide polymorphism and MIP arrays. SDHB-deficiency, identified in 11/12 wild-type GIST cases, was tightly associated with overexpression of IGF1R protein and transcript. Biallelic inactivation of the SDHA gene was a surprisingly frequent event, identified in 5 of 11 SDHB-negative cases, generally due to germline point mutations accompanied by somatic SDHA allelic losses. As a novel finding, inactivation of the SDHC gene from a combination of a heterozygous coding-region mutation and hypermethylation of the wild-type allele was found in one SDHB-negative case. Copyright © 2012 Wiley Periodicals, Inc.

  14. Silencing KRAS Overexpression in Cadmium-Transformed Prostate Epithelial Cells Mitigates Malignant Phenotype.

    PubMed

    Ngalame, Ntube N O; Waalkes, Michael P; Tokar, Erik J

    2016-09-19

    Cadmium (Cd) is a potential human prostate carcinogen. Chronic Cd exposure malignantly transforms RWPE-1 human prostate epithelial cells into CTPE cells by an unclear mechanism. Previous studies show that RWPE-1 can also be malignantly transformed by arsenic, and KRAS activation is key to causation and maintenance of this phenotype. Although Cd and arsenic can both transform prostate epithelial cells, it is uncertain whether their mechanisms are similar. Thus, here we determined whether KRAS activation is critical in causing and maintaining Cd-induced malignant transformation in CTPE cells. Expression of KRAS, miRNAs, and other genes of interest was analyzed by Western blot and RT-PCR. Following stable KRAS knockdown (KD) by RNA interference using shRNAmir, the malignant phenotype was assessed by various physical and genetic parameters. CTPE cells greatly overexpressed KRAS by 20-fold, indicating a likely role in Cd transformation. Thus, we attempted to reverse the malignant phenotype via KRAS KD. Two weeks after shRNAmir transduction, KRAS protein was undetectable in CTPE KD cells, confirming stable KD. KRAS KD reduced stimulated RAS/ERK and PI3K/AKT signaling pathways and markedly mitigated multiple physical and molecular malignant cell characteristics including: hypersecretion of MMP-2, colony formation, cell survival, and expression of cancer-relevant genes (reduced proliferation and cell cycle-related genes; activated tumor suppressor PTEN). However, KRAS KD did not reverse miRNA expression originally down-regulated by Cd transformation. These data strongly suggest KRAS is a key gene in development and maintenance of the Cd-induced malignant phenotype, at least in the prostate. It is not, however, the only genetic factor sustaining this phenotype.

  15. Perturbation of auxin homeostasis by overexpression of wild-type IAA15 results in impaired stem cell differentiation and gravitropism in roots.

    PubMed

    Yan, Da-Wei; Wang, Jing; Yuan, Ting-Ting; Hong, Li-Wei; Gao, Xiang; Lu, Ying-Tang

    2013-01-01

    Aux/IAAs interact with auxin response factors (ARFs) to repress their transcriptional activity in the auxin signaling pathway. Previous studies have focused on gain-of-function mutations of domain II and little is known about whether the expression level of wild-type Aux/IAAs can modulate auxin homeostasis. Here we examined the perturbation of auxin homeostasis by ectopic expression of wild-type IAA15. Root gravitropism and stem cell differentiation were also analyzed. The transgenic lines were less sensitive to exogenous auxin and exhibited low-auxin phenotypes including failures in gravity response and defects in stem cell differentiation. Overexpression lines also showed an increase in auxin concentration and reduced polar auxin transport. These results demonstrate that an alteration in the expression of wild-type IAA15 can disrupt auxin homeostasis.

  16. Biweekly cetuximab in combination with FOLFOX-4 in the first-line treatment of wild-type KRAS metastatic colorectal cancer: final results of a phase II, open-label, clinical trial (OPTIMIX-ACROSS Study).

    PubMed

    Fernandez-Plana, Julen; Pericay, Carlos; Quintero, Guillermo; Alonso, Vicente; Salud, Antonieta; Mendez, Miguel; Salgado, Mercedes; Saigi, Eugeni; Cirera, Luis

    2014-11-22

    This phase II study aims to evaluate the efficacy and safety of biweekly cetuximab in combination with oxaliplatin, leucovorin, and fluorouracil (FOLFOX-4) as first-line treatment of metastatic wild-type KRAS colorectal cancer. Previously untreated patients with wild-type KRAS tumours received biweekly cetuximab (500 mg/m2 on day 1) plus FOLFOX-4 (oxaliplatin 85 mg/m2 on day 1, leucovorin 200 mg/m2 on days 1 and 2, and fluorouracil as a 400 mg/m2 bolus followed by a 22-hour 600 mg/m2 infusion on day 1 and 2). Treatment was continued until disease progression, onset of unacceptable toxicities, metastases surgery, or discontinuation request. The primary endpoint was ORR. The intention-to-treat population included 99 patients with a median age of 64.1 years (range, 34-82). The ORR was 60.6% (95% CI, 50.3% to 70.3%). The median follow-up was 17.8 months; the median OS and PFS were 20.8 and 10.1 months, respectively. Metastases from colorectal cancer were surgically resected in 26 (26.3%) patients, with complete resection achieved in 18 (69.2%) patients. Median PFS and OS in patients undergoing metastatic resection were 12.6 and 29.5 months, respectively. The most common grade 3-4 toxicities were neutropenia (32.3%), acne-like rash (15.2%) and diarrhoea (11.1%). The efficacy of the biweekly combination of cetuximab with FOLFOX-4 in patients with wild-type KRAS tumours supports the administration of cetuximab in a dosing regimen more convenient for patients and healthcare providers. The activity of the biweekly administration is similar to what has been reported for the weekly regimen. Reported toxicity was also consistent with the known toxicity profile of weekly cetuximab. EudraCT Number 200800690916.

  17. Panitumumab and pegylated liposomal doxorubicin in platinum-resistant epithelial ovarian cancer with KRAS wild-type: the PaLiDo study, a phase II nonrandomized multicenter study.

    PubMed

    Steffensen, Karina Dahl; Waldstrøm, Marianne; Pallisgård, Niels; Lund, Bente; Bergfeldt, Kjell; Wihl, Jessica; Keldsen, Nina; Marth, Christian; Vergote, Ignace; Jakobsen, Anders

    2013-01-01

    The increasing number of negative trials for ovarian cancer treatment has prompted an evaluation of new biologic agents, which in combination with chemotherapy may improve survival. The aim of this study was to investigate the response rate in platinum-resistant, KRAS wild-type ovarian cancer patients treated with pegylated liposomal doxorubicin (PLD) supplemented with panitumumab. Major eligibility criteria were relapsed ovarian/fallopian/peritoneal cancer patients with platinum-resistant disease, measurable disease by GCIG CA125 criteria and KRAS wild-type. Patients were treated with panitumumab 6 mg/kg day 1 and day 15 and with PLD 40 mg/m2 day 1, every 4 weeks. Forty-six patients were enrolled by 6 study sites in this multi-institutional phase II trial. The response rate in the intention-to-treat population (n = 43) was 18.6%. Progression-free and overall survival in the intention-to-treat population was 2.7 months (2.5-3.2 months, 95% confidence interval) and 8.1 months (5.6-11.7 months, 95% confidence interval), respectively. The most common treatment-related grade 3 toxicities included skin toxicity (42%), fatigue (19%), and vomiting (12%). The combination of PLD and panitumumab demonstrates efficacy in platinum refractory/resistant patients but the skin toxicity was considerable.

  18. Pancreatic cell plasticity and cancer initiation induced by oncogenic Kras is completely dependent on wild-type PI 3-kinase p110α

    PubMed Central

    Baer, Romain; Cintas, Célia; Dufresne, Marlène; Cassant-Sourdy, Stéphanie; Schönhuber, Nina; Planque, Laetitia; Lulka, Hubert; Couderc, Bettina; Bousquet, Corinne; Garmy-Susini, Barbara; Vanhaesebroeck, Bart; Pyronnet, Stéphane; Saur, Dieter; Guillermet-Guibert, Julie

    2014-01-01

    Increased PI 3-kinase (PI3K) signaling in pancreatic ductal adenocarcinoma (PDAC) correlates with poor prognosis, but the role of class I PI3K isoforms during its induction remains unclear. Using genetically engineered mice and pharmacological isoform-selective inhibitors, we found that the p110α PI3K isoform is a major signaling enzyme for PDAC development induced by a combination of genetic and nongenetic factors. Inactivation of this single isoform blocked the irreversible transition of exocrine acinar cells into pancreatic preneoplastic ductal lesions by oncogenic Kras and/or pancreatic injury. Hitting the other ubiquitous isoform, p110β, did not prevent preneoplastic lesion initiation. p110α signaling through small GTPase Rho and actin cytoskeleton controls the reprogramming of acinar cells and regulates cell morphology in vivo and in vitro. Finally, p110α was necessary for pancreatic ductal cancers to arise from Kras-induced preneoplastic lesions by increasing epithelial cell proliferation in the context of mutated p53. Here we identify an in vivo context in which p110α cellular output differs depending on the epithelial transformation stage and demonstrate that the PI3K p110α is required for PDAC induced by oncogenic Kras, the key driver mutation of PDAC. These data are critical for a better understanding of the development of this lethal disease that is currently without efficient treatment. PMID:25452273

  19. Panitumumab and irinotecan every 3 weeks is an active and convenient regimen for second-line treatment of patients with wild-type K-RAS metastatic colorectal cancer.

    PubMed

    Carrato, A; Gómez, A; Escudero, P; Chaves, M; Rivera, F; Marcuello, E; González, E; Grávalos, C; Constenla, M; Manzano, J Luis; Losa, F; Maurel, J; Dueñas, R; Massuti, B; Gallego, J; Aparicio, J; Antón, A; Aranda, E

    2013-09-01

    To evaluate the efficacy and safety profile of the combination of panitumumab and irinotecan every 3 weeks in a phase II trial as second-line treatment in patients with advanced wild-type (WT) K-RAS colorectal cancer (CRC). Fifty-three patients received 9 mg/kg of panitumumab followed by 350 mg/m(2) of irinotecan every 21 days until disease progression, unacceptable toxicity or consent withdrawal. Median age of patients included was 67 years. All patients had previously received 5-fluorouracil, 84 % oxaliplatin and 8 % irinotecan as first-line treatment. Patients received a median of five infusions of panitumumab and irinotecan. On an intention-to-treat analysis, 12 patients (23 %) achieved partial responses and 22 patients (41 %) achieved disease stabilization. Median progression-free survival and overall survival were 4.5 and 15.1 months, respectively. The most frequent treatment-related severe toxicities per patient were diarrhoea (35.8 %), followed by skin rash (32.1 %), asthenia (18.9 %) and neutropenia (13.2 %). A significant association between clinical response and incidence and grade of skin toxicity was observed (p = 0.0032). This study shows that the administration of panitumumab plus irinotecan every 3 weeks is safe, active and feasible as second-line treatment in patients with advanced WT K-RAS CRC.

  20. Mobility and subcellular localization of endogenous, gene-edited Tau differs from that of over-expressed human wild-type and P301L mutant Tau

    PubMed Central

    Di Xia; Gutmann, Julia M.; Götz, Jürgen

    2016-01-01

    Alzheimer’s disease (AD) and a subset of frontotemporal dementia termed FTLD-Tau are characterized by a massive, yet incompletely characterized and understood redistribution of Tau. To establish a framework for understanding this pathology, we used the genome-editing tool TALEN and generated Tau-mEOS2 knock-in mice to determine the mobility and subcellular localization of endogenous Tau in hippocampal cultures. We analysed Tau in axons, dendrites and spines at three stages of maturation using live-cell imaging, photo-conversion and FRAP assays. Tau-mEOS2 cultures were compared with those over-expressing EGFP-tagged forms of human wild-type (hWT-Tau) and P301L mutant Tau (hP301L-Tau), modelling Tau accumulation in AD and FTLD-Tau, respectively. In developing neurons, Tau-mEOS2 followed a proximo-distal gradient in axons and a subcellular distribution similar to that of endogenous Tau in neurons obtained from wild-type mice, which were abolished, when either hWT-Tau or hP301L-Tau was over-expressed. For the three conditions, FRAP analysis revealed a similar mobility in dendrites compared with axons; however, Tau-mEOS2 was less mobile than hWT-Tau and hP301L-Tau and the mobile fraction was smaller, possibly reflecting less efficient microtubule binding of Tau when over-expressed. Together, our study presents Tau-mEOS2 mice as a novel tool for the study of Tau in a physiological and a pathological context. PMID:27378256

  1. Analysis of striatal transcriptome in mice overexpressing human wild-type alpha-synuclein supports synaptic dysfunction and suggests mechanisms of neuroprotection for striatal neurons

    PubMed Central

    2011-01-01

    Background Alpha synuclein (SNCA) has been linked to neurodegenerative diseases (synucleinopathies) that include Parkinson's disease (PD). Although the primary neurodegeneration in PD involves nigrostriatal dopaminergic neurons, more extensive yet regionally selective neurodegeneration is observed in other synucleinopathies. Furthermore, SNCA is ubiquitously expressed in neurons and numerous neuronal systems are dysfunctional in PD. Therefore it is of interest to understand how overexpression of SNCA affects neuronal function in regions not directly targeted for neurodegeneration in PD. Results The present study investigated the consequences of SNCA overexpression on cellular processes and functions in the striatum of mice overexpressing wild-type, human SNCA under the Thy1 promoter (Thy1-aSyn mice) by transcriptome analysis. The analysis revealed alterations in multiple biological processes in the striatum of Thy1-aSyn mice, including synaptic plasticity, signaling, transcription, apoptosis, and neurogenesis. Conclusion The results support a key role for SNCA in synaptic function and revealed an apoptotic signature in Thy1-aSyn mice, which together with specific alterations of neuroprotective genes suggest the activation of adaptive compensatory mechanisms that may protect striatal neurons in conditions of neuronal overexpression of SNCA. PMID:22165993

  2. Lead uptake increases drought tolerance of wild type and transgenic poplar (Populus tremula x P. alba) overexpressing gsh 1.

    PubMed

    Samuilov, Sladjana; Lang, Friedericke; Djukic, Matilda; Djunisijevic-Bojovic, Danijela; Rennenberg, Heinz

    2016-09-01

    Growth and development of plants largely depends on their adaptation ability in a changing climate. This is particularly true on heavy metal contaminated soils, but the interaction of heavy metal stress and climate on plant performance has not been intensively investigated. The aim of the present study was to elucidate if transgenic poplars (Populus tremula x P. alba) with enhanced glutathione content possess an enhanced tolerance to drought and lead (Pb) exposure (single and in combination) and if they are good candidates for phytoremediation of Pb contaminated soil. Lead exposure reduced growth and biomass accumulation only in above-ground tissue of wild type poplar, although most of lead accumulated in the roots. Drought caused a decline of the water content rather than reduced biomass production, while Pb counteracted this decline in the combined exposure. Apparently, metals such as Pb possess a protective function against drought, because they interact with abscisic acid dependent stomatal closure. Lead exposure decreased while drought increased glutathione content in leaves of both plant types. Lead accumulation was higher in the roots of transgenic plants, presumably as a result of chelation by glutathione. Water deprivation enhanced Pb accumulation in the roots, but Pb was subject to leakage out of the roots after re-watering. Transgenic plants showed better adaptation under mild drought plus Pb exposure partially due to improved glutathione synthesis. However, the transgenic plants cannot be considered as a good candidate for phytoremediation of Pb, due to its small translocation to the shoots and its leakage out of the roots upon re-watering.

  3. Effect of HXT1 and HXT7 hexose transporter overexpression on wild-type and lactic acid producing Saccharomyces cerevisiae cells

    PubMed Central

    2010-01-01

    Background Since about three decades, Saccharomyces cerevisiae can be engineered to efficiently produce proteins and metabolites. Even recognizing that in baker's yeast one determining step for the glucose consumption rate is the sugar uptake, this fact has never been conceived to improve the metabolite(s) productivity. In this work we compared the ethanol and/or the lactic acid production from wild type and metabolically engineered S. cerevisiae cells expressing an additional copy of one hexose transporter. Results Different S. cerevisiae strains (wild type and metabolically engineered for lactic acid production) were transformed with the HXT1 or the HXT7 gene encoding for hexose transporters. Data obtained suggest that the overexpression of an Hxt transporter may lead to an increase in glucose uptake that could result in an increased ethanol and/or lactic acid productivities. As a consequence of the increased productivity and of the reduced process timing, a higher production was measured. Conclusion Metabolic pathway manipulation for improving the properties and the productivity of microorganisms is a well established concept. A high production relies on a multi-factorial system. We showed that by modulating the first step of the pathway leading to lactic acid accumulation an improvement of about 15% in lactic acid production can be obtained in a yeast strain already developed for industrial application. PMID:20214823

  4. Effect of HXT1 and HXT7 hexose transporter overexpression on wild-type and lactic acid producing Saccharomyces cerevisiae cells.

    PubMed

    Rossi, Giorgia; Sauer, Michael; Porro, Danilo; Branduardi, Paola

    2010-03-09

    Since about three decades, Saccharomyces cerevisiae can be engineered to efficiently produce proteins and metabolites. Even recognizing that in baker's yeast one determining step for the glucose consumption rate is the sugar uptake, this fact has never been conceived to improve the metabolite(s) productivity.In this work we compared the ethanol and/or the lactic acid production from wild type and metabolically engineered S. cerevisiae cells expressing an additional copy of one hexose transporter. Different S. cerevisiae strains (wild type and metabolically engineered for lactic acid production) were transformed with the HXT1 or the HXT7 gene encoding for hexose transporters.Data obtained suggest that the overexpression of an Hxt transporter may lead to an increase in glucose uptake that could result in an increased ethanol and/or lactic acid productivities. As a consequence of the increased productivity and of the reduced process timing, a higher production was measured. Metabolic pathway manipulation for improving the properties and the productivity of microorganisms is a well established concept. A high production relies on a multi-factorial system. We showed that by modulating the first step of the pathway leading to lactic acid accumulation an improvement of about 15% in lactic acid production can be obtained in a yeast strain already developed for industrial application.

  5. Expanded and Wild-type Ataxin-3 Modify the Redox Status of SH-SY5Y Cells Overexpressing α-Synuclein.

    PubMed

    Noronha, Carolina; Perfeito, Rita; Laço, Mário; Wüllner, Ullrich; Rego, A Cristina

    2017-05-01

    Neurodegenerative diseases are considered to be distinct clinical entities, although they share the formation of proteinaceous aggregates and several neuropathological mechanisms. Increasing evidence suggest a possible interaction between proteins that have been classically associated to distinct neurodegenerative diseases. Thus, common molecular and cellular pathways might explain similarities between disease phenotypes. Interestingly, the characteristic Parkinson's disease (PD) phenotype linked to bradykinesia is also a clinical presentation of other neurodegenerative diseases. An example is Machado-Joseph disease (MJD), with some patients presenting parkinsonism and a positive response to levodopa (L-DOPA). Protein aggregates positive for α-synuclein (α-Syn), a protein associated with PD, in the substantia nigra of MJD models made us hypothesize a putative additive biological effect induced by expression of α-Syn and ataxin-3 (Atx3), the protein affected in MJD. Hence, in this study we analysed the influence of these two proteins (α-Syn and wild-type or mutant Atx3) on modified redox signaling, a pathological process potentially linked to both diseases, and also the impact of exposure to iron and rotenone in SH-SY5Y neuroblastoma cells. Our results show that both α-Syn and mutant Atx3 overexpression per se increased oxidation of dichlorodihydrofluorescein (DCFH2), and co-expression of these proteins exhibited additive effect on intracellular oxidation, with no correlation with apoptotic features. Mutant Atx3 and α-Syn also potentiated altered redox status induced by iron and rotenone, a hint to how these proteins might influence neuronal dysfunction under pro-oxidant conditions. We further show that overexpression of wild-type Atx3 decreased intracellular DCFH2 oxidation, possibly exerting a neuroprotective role.

  6. Overexpression of Galgt2 in skeletal muscle prevents injury resulting from eccentric contractions in both mdx and wild-type mice.

    PubMed

    Martin, Paul T; Xu, Rui; Rodino-Klapac, Louise R; Oglesbay, Elaine; Camboni, Marybeth; Montgomery, Chrystal L; Shontz, Kim; Chicoine, Louis G; Clark, K Reed; Sahenk, Zarife; Mendell, Jerry R; Janssen, Paul M L

    2009-03-01

    The cytotoxic T cell (CT) GalNAc transferase, or Galgt2, is a UDP-GalNAc:beta1,4-N-acetylgalactosaminyltransferase that is localized to the neuromuscular synapse in adult skeletal muscle, where it creates the synaptic CT carbohydrate antigen {GalNAcbeta1,4[NeuAc(orGc)alpha2, 3]Galbeta1,4GlcNAcbeta-}. Overexpression of Galgt2 in the skeletal muscles of transgenic mice inhibits the development of muscular dystrophy in mdx mice, a model for Duchenne muscular dystrophy. Here, we provide physiological evidence as to how Galgt2 may inhibit the development of muscle pathology in mdx animals. Both Galgt2 transgenic wild-type and mdx skeletal muscles showed a marked improvement in normalized isometric force during repetitive eccentric contractions relative to nontransgenic littermates, even using a paradigm where nontransgenic muscles had force reductions of 95% or more. Muscles from Galgt2 transgenic mice, however, showed a significant decrement in normalized specific force and in hindlimb and forelimb grip strength at some ages. Overexpression of Galgt2 in muscles of young adult mdx mice, where Galgt2 has no effect on muscle size, also caused a significant decrease in force drop during eccentric contractions and increased normalized specific force. A comparison of Galgt2 and microdystrophin overexpression using a therapeutically relevant intravascular gene delivery protocol showed Galgt2 was as effective as microdystrophin at preventing loss of force during eccentric contractions. These experiments provide a mechanism to explain why Galgt2 overexpression inhibits muscular dystrophy in mdx muscles. That overexpression also prevents loss of force in nondystrophic muscles suggests that Galgt2 is a therapeutic target with broad potential applications.

  7. Effect of First-Line Chemotherapy Combined With Cetuximab or Bevacizumab on Overall Survival in Patients With KRAS Wild-Type Advanced or Metastatic Colorectal Cancer: A Randomized Clinical Trial.

    PubMed

    Venook, Alan P; Niedzwiecki, Donna; Lenz, Heinz-Josef; Innocenti, Federico; Fruth, Briant; Meyerhardt, Jeffrey A; Schrag, Deborah; Greene, Claire; O'Neil, Bert H; Atkins, James Norman; Berry, Scott; Polite, Blase N; O'Reilly, Eileen M; Goldberg, Richard M; Hochster, Howard S; Schilsky, Richard L; Bertagnolli, Monica M; El-Khoueiry, Anthony B; Watson, Peter; Benson, Al B; Mulkerin, Daniel L; Mayer, Robert J; Blanke, Charles

    2017-06-20

    Combining biologic monoclonal antibodies with chemotherapeutic cytotoxic drugs provides clinical benefit to patients with advanced or metastatic colorectal cancer, but the optimal choice of the initial biologic therapy in previously untreated patients is unknown. To determine if the addition of cetuximab vs bevacizumab to the combination of leucovorin, fluorouracil, and oxaliplatin (mFOLFOX6) regimen or the combination of leucovorin, fluorouracil, and irinotecan (FOLFIRI) regimen is superior as first-line therapy in advanced or metastatic KRAS wild-type (wt) colorectal cancer. Patients (≥18 years) enrolled at community and academic centers throughout the National Clinical Trials Network in the United States and Canada (November 2005-March 2012) with previously untreated advanced or metastatic colorectal cancer whose tumors were KRAS wt chose to take either the mFOLFOX6 regimen or the FOLFIRI regimen as chemotherapy and were randomized to receive either cetuximab (n = 578) or bevacizumab (n = 559). The last date of follow-up was December 15, 2015. Cetuximab vs bevacizumab combined with either mFOLFOX6 or FOLFIRI chemotherapy regimen chosen by the treating physician and patient. The primary end point was overall survival. Secondary objectives included progression-free survival and overall response rate, site-reported confirmed or unconfirmed complete or partial response. Among 1137 patients (median age, 59 years; 440 [39%] women), 1074 (94%) of patients met eligibility criteria. As of December 15, 2015, median follow-up for 263 surviving patients was 47.4 months (range, 0-110.7 months), and 82% of patients (938 of 1137) experienced disease progression. The median overall survival was 30.0 months in the cetuximab-chemotherapy group and 29.0 months in the bevacizumab-chemotherapy group with a stratified hazard ratio (HR) of 0.88 (95% CI, 0.77-1.01; P = .08). The median progression-free survival was 10.5 months in the cetuximab-chemotherapy group and 10

  8. A prospective observational study to examine the relationship between quality of life and adverse events of first-line chemotherapy plus cetuximab in patients with KRAS wild-type unresectable metastatic colorectal cancer: QUACK Trial.

    PubMed

    Ooki, Akira; Ando, Masahiko; Sakamoto, Junichi; Sato, Atushi; Fujii, Hirofumi; Yamaguchi, Kensei

    2014-04-01

    We have planned a multicentre prospective study to examine the relative impact of the efficacy and adverse events of cetuximab plus first-line chemotherapy on the quality of life in Japanese patients with KRAS wild-type unresectable colorectal cancer. The Dermatology Life Quality Index and the European Organization for Research Treatment of Cancer Quality of Life Questionnaire Core 30 will be used to assess dermatology-specific and health-related quality of life. The severity of adverse events will be assessed by using the National Cancer Institute Common Terminology Criteria for adverse Events ver. 4.0. The endpoints will be the following associations: adverse events, including skin toxicity and quality of life; efficacy and skin toxicity; efficacy and quality of life; and skin-related quality of life and health-related quality of life. A total of 140 patients are considered to be appropriate for inclusion in this study. The results of this study will provide more information to both patients and physicians regarding the practical use of cetuximab and its impact on quality of life in patients with unresectable colorectal cancer in Japan. This study was registered at the University Hospital Medical Information Network Clinical Trial Registry as UMIN000010985.

  9. Regulation of sulphate assimilation by glutathione in poplars (Populus tremula x P. alba) of wild type and overexpressing gamma-glutamylcysteine synthetase in the cytosol.

    PubMed

    Hartmann, Tanja; Hönicke, Petra; Wirtz, Markus; Hell, Rüdiger; Rennenberg, Heinz; Kopriva, Stanislav

    2004-04-01

    Glutathione (GSH) is the major low molecular weight thiol in plants with different functions in stress defence and the transport and storage of sulphur. Its synthesis is dependent on the supply of its constituent amino acids cysteine, glutamate, and glycine. GSH is a feedback inhibitor of the sulphate assimilation pathway, the primary source of cysteine synthesis. Sulphate assimilation has been analysed in transgenic poplars (Populus tremula x P. alba) overexpressing gamma-glutamylcysteine synthetase, the key enzyme of GSH synthesis, and the results compared with the effects of exogenously added GSH. Although foliar GSH levels were 3-4-fold increased in the transgenic plants, the activities of enzymes of sulphate assimilation, namely ATP sulphurylase, adenosine 5'-phosphosulphate reductase (APR), sulphite reductase, serine acetyltransferase, and O-acetylserine (thiol)lyase were not affected in three transgenic lines compared with the wild type. Also the mRNA levels of these enzymes were not altered by the increased GSH levels. By contrast, an increase in GSH content due to exogenously supplied GSH resulted in a strong reduction in APR activity and mRNA accumulation. This feedback regulation was reverted by simultaneous addition of O-acetylserine (OAS). However, OAS measurements revealed that OAS cannot be the only signal responsible for the lack of feedback regulation of APR by GSH in the transgenic poplars.

  10. First-line single-agent panitumumab in frail elderly patients with wild-type KRAS metastatic colorectal cancer and poor prognostic factors: A phase II study of the Spanish Cooperative Group for the Treatment of Digestive Tumours.

    PubMed

    Sastre, J; Massuti, B; Pulido, G; Guillén-Ponce, C; Benavides, M; Manzano, J L; Reboredo, M; Rivera, F; Grávalos, C; Safont, M J; Martínez Villacampa, M; Llovet, P; Dotor, E; Díaz-Rubio, E; Aranda, E

    2015-07-01

    Frail elderly patients with metastatic colorectal cancer (mCRC) are not candidates for chemotherapy. Monotherapy with anti-epidermal growth factor receptor (EGFR) monoclonal antibodies may be an option for these patients with few systemic toxic effects. Single-arm, multicentre, phase II trial including patients ⩾ 70y ears with wild-type (WT) KRAS (exon 2) mCRC, Eastern Cooperative Oncology Group (ECOG) status ⩽ 3, KPC (Köhne Prognostic Classification)--defined intermediate or high risk status, frailty and/or ineligibility for chemotherapy. Patients received panitumumab until progression or unacceptable toxicity. The primary end-point was progression free survival (PFS) rate at 6 months. The study included 33 patients (intention-to-treat (ITT) population). Median age: 81 years; sex: 66.7% male; high-risk KPC status: 45.4%. Median treatment duration was 14 weeks and 6-month PFS rate was 36.4% (95% confidence interval (CI): 20.0-52.8). The objective response rate: 9.1% (95% CI: 0-18.9) (all partial responses), and there were 18 stable diseases (54.5%). Median PFS was 4.3 months (95% CI: 2.8-6.4) and median overall survival (OS) was 7.1 months (95% CI: 5.0-12.3). There were no deaths or grade 4-5 adverse events (AEs) related to panitumumab and the most common grade 3-related AE was rash acneiform (15.2%). A significant association between clinical response and RAS status was observed (P=0.037). In the WT RAS subgroup (WT exons 2, 3, and 4 of KRAS and NRAS, N = 15), 6-month PFS rate was 53.3% (95% CI: 30.1-75.2) and median PFS and OS were 7.9 and 12.3 months, respectively. Single-agent panitumumab is active and well tolerated and may be a therapeutic option for high-risk frail elderly patients with WT RAS tumours considered not candidates for chemotherapy (clinicaltrials.gov identifier NCT01126112). Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. A randomized, placebo-controlled, phase 1/2 study of tivantinib (ARQ 197) in combination with irinotecan and cetuximab in patients with metastatic colorectal cancer with wild-type KRAS who have received first-line systemic therapy.

    PubMed

    Eng, Cathy; Bessudo, Alberto; Hart, Lowell L; Severtsev, Aleksey; Gladkov, Oleg; Müller, Lothar; Kopp, Mikhail V; Vladimirov, Vladimir; Langdon, Robert; Kotiv, Bogdan; Barni, Sandro; Hsu, Ching; Bolotin, Ellen; von Roemeling, Reinhard; Schwartz, Brian; Bendell, Johanna C

    2016-07-01

    Cetuximab in combination with an irinotecan-containing regimen is a standard treatment in patients with KRAS wild-type (KRAS WT), metastatic colorectal cancer (mCRC). We investigated the addition of the oral MET inhibitor tivantinib to cetuximab + irinotecan (CETIRI) based on preclinical evidence that activation of the MET pathway may confer resistance to anti-EGFR therapy. Previously treated patients with KRAS WT advanced or mCRC were enrolled. The phase 1, open-label 3 + 3, dose-escalation study evaluated the safety and maximally tolerated dose of tivantinib plus CETIRI. The phase 2, randomized, double-blinded, placebo-controlled study of biweekly CETIRI plus tivantinib or placebo was restricted to patients who had received only one prior line of chemotherapy. The phase 2 primary endpoint was progression-free survival (PFS). The recommended phase 2 dose was tivantinib (360 mg/m(2) twice daily) with biweekly cetuximab (500 mg/m(2)) and irinotecan (180 mg/m(2)). Among 117 patients evaluable for phase 2 analysis, no statistically significant PFS difference was observed: 8.3 months on tivantinib vs. 7.3 months on placebo (HR, 0.85; 95% confidence interval, 0.55-1.33; P = 0.38). Subgroup analyses trended in favor of tivantinib in patients with MET-High tumors by immunohistochemistry, PTEN-Low tumors, or those pretreated with oxaliplatin, but subgroups were too small to draw conclusions. Neutropenia, diarrhea, nausea and rash were the most frequent severe adverse events in tivantinib-treated patients. The combination of tivantinib and CETIRI was well tolerated but did not significantly improve PFS in previously treated KRAS WT mCRC. Tivantinib may be more active in specific subgroups. © 2016 The Authors International Journal of Cancer published by John Wiley & Sons Ltd on behalf of UICC.

  12. KRAS protein stability is regulated through SMURF2: UBCH5 complex-mediated β-TrCP1 degradation.

    PubMed

    Shukla, Shirish; Allam, Uday Sankar; Ahsan, Aarif; Chen, Guoan; Krishnamurthy, Pranathi Meda; Marsh, Katherine; Rumschlag, Matthew; Shankar, Sunita; Whitehead, Christopher; Schipper, Matthew; Basrur, Venkatesha; Southworth, Daniel R; Chinnaiyan, Arul M; Rehemtulla, Alnawaz; Beer, David G; Lawrence, Theodore S; Nyati, Mukesh K; Ray, Dipankar

    2014-02-01

    Attempts to target mutant KRAS have been unsuccessful. Here, we report the identification of Smad ubiquitination regulatory factor 2 (SMURF2) and UBCH5 as a critical E3:E2 complex maintaining KRAS protein stability. Loss of SMURF2 either by small interfering RNA/short hairpin RNA (siRNA/shRNA) or by overexpression of a catalytically inactive mutant causes KRAS degradation, whereas overexpression of wild-type SMURF2 enhances KRAS stability. Importantly, mutant KRAS is more susceptible to SMURF2 loss where protein half-life decreases from >12 hours in control siRNA-treated cells to <3 hours on Smurf2 silencing, whereas only marginal differences were noted for wild-type protein. This loss of mutant KRAS could be rescued by overexpressing a siRNA-resistant wild-type SMURF2. Our data further show that SMURF2 monoubiquitinates UBCH5 at lysine 144 to form an active complex required for efficient degradation of a RAS-family E3, β-transducing repeat containing protein 1 (β-TrCP1). Conversely, β-TrCP1 is accumulated on SMURF2 loss, leading to increased KRAS degradation. Therefore, as expected, β-TrCP1 knockdown following Smurf2 siRNA treatment rescues mutant KRAS loss. Further, we identify two conserved proline (P) residues in UBCH5 critical for SMURF2 interaction; mutation of either of these P to alanine also destabilizes KRAS. As a proof of principle, we demonstrate that Smurf2 silencing reduces the clonogenic survival in vitro and prolongs tumor latency in vivo in cancer cells including mutant KRAS-driven tumors. Taken together, we show that SMURF2:UBCH5 complex is critical in maintaining KRAS protein stability and propose that targeting such complex may be a unique strategy to degrade mutant KRAS to kill cancer cells.

  13. Conditional overexpression of the wild-type Gs alpha as the gsp oncogene initiates chronic extracellularly regulated kinase 1/2 activation and hormone hypersecretion in pituitary cell lines.

    PubMed

    Romano, D; Magalon, K; Pertuit, M; Rasolonjanahary, R; Barlier, A; Enjalbert, A; Gerard, C

    2007-06-01

    In pituitary cells, activation of the cAMP pathway by specific G protein-coupled receptors controls differentiative functions and proliferation. Constitutively active forms of the alpha subunit of the heterotrimeric G(s) protein resulting from mutations at codon 201 or 227 (gsp oncogene) were first identified in 30-40% of human GH-secreting pituitary adenomas. This rate of occurrence suggests that the gsp oncogene is not responsible for initiating the majority of these tumors. Moreover, there is a large overlap between the clinical phenotypes observed in patients with tumors bearing the gsp oncogene and those devoid of this oncogene. To explore the role of G(s)alpha in GH-secreting adenomas, we obtained somatolactotroph GH4C1 cell lines by performing doxycycline-dependent conditional overexpression of the wild-type G(s)alpha protein and expression of the gsp oncogene. Although the resulting adenylyl cyclase and cAMP levels were 10-fold lower in the wild-type G(s)alpha-overexpressing cell line, a sustained MAPK ERK1/2 activation was observed in both cell lines. Overexpression of the wild-type G(s)alpha protein as the gsp oncogene initiated chronic activation of endogenous prolactin synthesis and release, as well as chronic activation of ERK1/2-sensitive human prolactin and GH promoters.

  14. Higher metastatic efficiency of KRas G12V than KRas G13D in a colorectal cancer model.

    PubMed

    Alamo, Patricia; Gallardo, Alberto; Di Nicolantonio, Federica; Pavón, Miguel Angel; Casanova, Isolda; Trias, Manuel; Mangues, María Antonia; Lopez-Pousa, Antonio; Villaverde, Antonio; Vázquez, Esther; Bardelli, Alberto; Céspedes, María Virtudes; Mangues, Ramón

    2015-02-01

    Although all KRas (protein that in humans is encoded by the KRas gene) point mutants are considered to have a similar prognostic capacity, their transformation and tumorigenic capacities vary widely. We compared the metastatic efficiency of KRas G12V (Kirsten rat sarcoma viral oncogene homolog with valine mutation at codon 12) and KRas G13D (Kirsten rat sarcoma viral oncogene homolog with aspartic mutation at codon 13) oncogenes in an orthotopic colorectal cancer (CRC) model. Following subcutaneous preconditioning, recombinant clones of the SW48 CRC cell line [Kras wild-type (Kras WT)] expressing the KRas G12V or KRas G13D allele were microinjected in the mouse cecum. The percentage of animals developing lymph node metastasis was higher in KRas G12V than in KRas G13D mice. Microscopic, macroscopic, and visible lymphatic foci were 1.5- to 3.0-fold larger in KRas G12V than in KRas G13D mice (P < 0.05). In the lung, only microfoci were developed in both groups. KRas G12V primary tumors had lower apoptosis (7.0 ± 1.2 vs. 7.4 ± 1.0 per field, P = 0.02), higher tumor budding at the invasion front (1.2 ± 0.2 vs. 0.6 ± 0.1, P = 0.04), and a higher percentage of C-X-C chemokine receptor type 4 (CXCR4)-overexpressing intravasated tumor emboli (49.8 ± 9.4% vs. 12.8 ± 4.4%, P < 0.001) than KRas G13D tumors. KRas G12V primary tumors showed Akt activation, and β5 integrin, vascular endothelial growth factor A (VEGFA), and Serpine-1 overexpression, whereas KRas G13D tumors showed integrin β1 and angiopoietin 2 (Angpt2) overexpression. The increased cell survival, invasion, intravasation, and specific molecular regulation observed in KRas G12V tumors is consistent with the higher aggressiveness observed in patients with CRC expressing this oncogene.

  15. Intermittent chemotherapy plus either intermittent or continuous cetuximab for first-line treatment of patients with KRAS wild-type advanced colorectal cancer (COIN-B): a randomised phase 2 trial

    PubMed Central

    Wasan, Harpreet; Meade, Angela M; Adams, Richard; Wilson, Richard; Pugh, Cheryl; Fisher, David; Sydes, Benjamin; Madi, Ayman; Sizer, Bruce; Lowdell, Charles; Middleton, Gary; Butler, Rachel; Kaplan, Richard; Maughan, Tim

    2014-01-01

    Summary Background Advanced colorectal cancer is treated with a combination of cytotoxic drugs and targeted treatments. However, how best to minimise the time spent taking cytotoxic drugs and whether molecular selection can refine this further is unknown. The primary aim of this study was to establish how cetuximab might be safely and effectively added to intermittent chemotherapy. Methods COIN-B was an open-label, multicentre, randomised, exploratory phase 2 trial done at 30 hospitals in the UK and one in Cyprus. We enrolled patients with advanced colorectal cancer who had received no previous chemotherapy for metastases. Randomisation was done centrally (by telephone) by the Medical Research Council Clinical Trials Unit using minimisation with a random element. Treatment allocation was not masked. Patients were assigned (1:1) to intermittent chemotherapy plus intermittent cetuximab or to intermittent chemotherapy plus continuous cetuximab. Chemotherapy was FOLFOX (folinic acid and oxaliplatin followed by bolus and infused fluorouracil). Patients in both groups received FOLFOX and weekly cetuximab for 12 weeks, then either had a planned interruption (those taking intermittent cetuximab) or planned maintenance by continuing on weekly cetuximab (continuous cetuximab). On RECIST progression, FOLFOX plus cetuximab or FOLFOX was recommenced for 12 weeks followed by further interruption or maintenance cetuximab, respectively. The primary outcome was failure-free survival at 10 months. The primary analysis population consisted of patients who completed 12 weeks of treatment without progression, death, or leaving the trial. We tested BRAF and NRAS status retrospectively. The trial was registered, ISRCTN38375681. Findings We registered 401 patients, 226 of whom were enrolled. Results for 169 with KRAS wild-type are reported here, 78 (46%) assigned to intermittent cetuximab and 91 (54%) to continuous cetuximab. 64 patients assigned to intermittent cetuximab and 66 of those

  16. Suppression of KRas-mutant cancer through the combined inhibition of KRAS with PLK1 and ROCK

    PubMed Central

    Wang, Jieqiong; Hu, Kewen; Guo, Jiawei; Cheng, Feixiong; Lv, Jing; Jiang, Wenhao; Lu, Weiqiang; Liu, Jinsong; Pang, Xiufeng; Liu, Mingyao

    2016-01-01

    No effective targeted therapies exist for cancers with somatic KRAS mutations. Here we develop a synthetic lethal chemical screen in isogenic KRAS-mutant and wild-type cells to identify clinical drug pairs. Our results show that dual inhibition of polo-like kinase 1 and RhoA/Rho kinase (ROCK) leads to the synergistic effects in KRAS-mutant cancers. Microarray analysis reveals that this combinatory inhibition significantly increases transcription and activity of cyclin-dependent kinase inhibitor p21WAF1/CIP1, leading to specific G2/M phase blockade in KRAS-mutant cells. Overexpression of p21WAF1/CIP1, either by cDNA transfection or clinical drugs, preferentially impairs the growth of KRAS-mutant cells, suggesting a druggable synthetic lethal interaction between KRAS and p21WAF1/CIP1. Co-administration of BI-2536 and fasudil either in the LSL-KRASG12D mouse model or in a patient tumour explant mouse model of KRAS-mutant lung cancer suppresses tumour growth and significantly prolongs mouse survival, suggesting a strong synergy in vivo and a potential avenue for therapeutic treatment of KRAS-mutant cancers. PMID:27193833

  17. Proteomic Analysis of Exosomes from Mutant KRAS Colon Cancer Cells Identifies Intercellular Transfer of Mutant KRAS*

    PubMed Central

    Demory Beckler, Michelle; Higginbotham, James N.; Franklin, Jeffrey L.; Ham, Amy-Joan; Halvey, Patrick J.; Imasuen, Imade E.; Whitwell, Corbin; Li, Ming; Liebler, Daniel C.; Coffey, Robert J.

    2013-01-01

    Activating mutations in KRAS occur in 30% to 40% of colorectal cancers. How mutant KRAS alters cancer cell behavior has been studied intensively, but non-cell autonomous effects of mutant KRAS are less understood. We recently reported that exosomes isolated from mutant KRAS-expressing colon cancer cells enhanced the invasiveness of recipient cells relative to exosomes purified from wild-type KRAS-expressing cells, leading us to hypothesize mutant KRAS might affect neighboring and distant cells by regulating exosome composition and behavior. Herein, we show the results of a comprehensive proteomic analysis of exosomes from parental DLD-1 cells that contain both wild-type and G13D mutant KRAS alleles and isogenically matched derivative cell lines, DKO-1 (mutant KRAS allele only) and DKs-8 (wild-type KRAS allele only). Mutant KRAS status dramatically affects the composition of the exosome proteome. Exosomes from mutant KRAS cells contain many tumor-promoting proteins, including KRAS, EGFR, SRC family kinases, and integrins. DKs-8 cells internalize DKO-1 exosomes, and, notably, DKO-1 exosomes transfer mutant KRAS to DKs-8 cells, leading to enhanced three-dimensional growth of these wild-type KRAS-expressing non-transformed cells. These results have important implications for non-cell autonomous effects of mutant KRAS, such as field effect and tumor progression. PMID:23161513

  18. Lin28-let7 Modulates Radiosensitivity of Human Cancer Cells With Activation of K-Ras

    SciTech Connect

    Oh, Jee-Sun.; Kim, Jae-Jin; Byun, Ju-Yeon; Kim, In-Ah

    2010-01-15

    Purpose: To evaluate the potential of targeting Lin28-let7 microRNA regulatory network for overcoming the radioresistance of cancer cells having activated K-Ras signaling. Methods and Materials: A549 lung carcinoma cells and ASPC1 pancreatic cancer cells possessing K-RAS mutation were transfected with pre-let7a microRNA or Lin28 siRNA, respectively. Clonogenic assay, quantitative reverse transcription polymerase chain reaction, and Western analysis were performed. The effects of Lin28 on SQ20B cells having wild-type K-RAS, and a normal fibroblast were also assessed. Results: The overexpression of let-7a decreased expression of K-Ras and radiosensitized A549 cells. Inhibition of Lin28, a repressor of let-7, attenuated K-Ras expression and radiosensitized A549 and ASPC1 cells. Neither SQ20B cells expressing wild-type K-RAS nor HDF, the normal human fibroblasts, were radiosensitized by this approach. Conclusions: The Lin28-let7 regulatory network may be a potentially useful therapeutic target for overcoming the radioresistance of human cancers having activated K-Ras signaling.

  19. Comparison of HER2 gene amplification and KRAS alteration in eyelid sebaceous carcinomas with that in other eyelid tumors.

    PubMed

    Kwon, Mi Jung; Shin, Hyung Sik; Nam, Eun Sook; Cho, Seong Jin; Lee, Min Joung; Lee, Samuel; Park, Hye-Rim

    2015-05-01

    Eyelid sebaceous carcinoma (SC) represents a highly aggressive malignancy. Despite the poor prognosis, genetic alterations as potential molecular targets are not available. KRAS mutation and HER2 gene amplification may be candidates related to their genetic alterations. We examined the HER2 and KRAS alteration status in eyelid SCs and compared it with that in other eyelid tumors. The controversial topics of the human papillomavirus (HPV) and p16 expression were also investigated. HER2 amplification was determined by silver in situ hybridization, while immunohistochemistry was performed to study protein expressions in 14 SCs and controls, including 23 other eyelid malignancies and 14 benign tumors. Peptide nucleic acid-mediated PCR clamping and direct sequencing were used to detect KRAS mutations. HER2 protein overexpression was observed in 85.7% (12/14) of the SCs, of which two-thirds showed HER2 gene amplification. HER2 protein overexpression and HER2 amplification were found more frequently in eyelid SCs than in other eyelid tumors. All SCs harbored wild type KRAS genes. No HPV infections were identified in the SCs. Nevertheless, p16 overexpression was found in 71.4% (10/14) of SCs, irrespective of the status of HPV infection. Furthermore, p16 overexpression in eyelid SCs was also significantly higher than that in other eyelid tumors. HER2 protein overexpression, HER2 gene amplifications, and wild type KRAS genes are common in eyelid SCs. HER2 gene amplification may represent potential therapeutic targets for the treatment of eyelid SCs.

  20. RAC1b overexpression correlates with poor prognosis in KRAS/BRAF WT metastatic colorectal cancer patients treated with first-line FOLFOX/XELOX chemotherapy.

    PubMed

    Alonso-Espinaco, Virginia; Cuatrecasas, Miriam; Alonso, Vicente; Escudero, Pilar; Marmol, Maribel; Horndler, Carlos; Ortego, Javier; Gallego, Rosa; Codony-Servat, Jordi; Garcia-Albeniz, Xabier; Jares, Pedro; Castells, Antoni; Lozano, Juan José; Rosell, Rafael; Maurel, Joan

    2014-07-01

    Chemotherapy is the principal treatment in metastatic colorectal cancer (mCRC) patients. RAC1b, a RAC1 spliced variant, is over-expressed in colorectal cancer (CRC), and impairs apoptosis by activation of nuclear-factor-KB. Since RAC1b has been associated with the BRAF(V600E) mutation, associated with poor prognosis in CRC, we evaluated the role of RAC1b expression as a predictor of chemotherapy efficacy in mCRC. We analysed KRAS and BRAF mutation, microsatellite instability and RAC1b expression in 157 mCRC patients treated with FOLFOX/XELOX in first-line therapy. KRAS mutations were detected in 46 patients (34%), 10 patients were BRAF mutant (7%) and 79 were WT for both, KRAS and BRAF (59%). RAC1b overexpression was found in 30 patients (19%). In the multivariate analysis, BRAF mutational status was a poor prognostic factor for overall survival (OS); hazard ratio (HR), 2.78 (95% confidence interval (CI), 1.35-5.72; p=0.0057). RAC1b overexpression was a poor survival factor for OS (HR, 2.35; 95% CI, 1.2-4.59; p=0.01) and progression-free survival (PFS) (HR, 2.4; 95% CI, 1.2-4.78; p=0.01) in KRAS/BRAF WT mCRC patients. RAC1b overexpression constitutes a marker of poor prognosis in KRAS/BRAF WT mCRC patients treated with first-line FOLFOX/XELOX therapy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Intracellular calcium homeostasis in human primary muscle cells from malignant hyperthermia-susceptible and normal individuals. Effect Of overexpression of recombinant wild-type and Arg163Cys mutated ryanodine receptors.

    PubMed Central

    Censier, K; Urwyler, A; Zorzato, F; Treves, S

    1998-01-01

    Malignant hyperthermia (MH) is a hypermetabolic disease triggered by volatile anesthetics and succinylcholine in genetically predisposed individuals. Nine point mutations in the skeletal muscle ryanodine receptor (RYR) gene have so far been identified and shown to correlate with the MH-susceptible phenotype, yet direct evidence linking abnormal Ca2+ homeostasis to mutations in the RYR1 cDNA has been obtained for few mutations. In this report, we show for the first time that cultured human skeletal muscle cells derived from MH-susceptible individuals exhibit a half-maximal halothane concentration causing an increase in intracellular Ca2+ concentration which is twofold lower than that of cells derived from MH-negative individuals. We also present evidence demonstrating that overexpression of wild-type RYR1 in cells obtained from MH-susceptible individuals does not restore the MH-negative phenotype, as far as Ca2+ transients elicited by halothane are concerned; on the other hand, overexpression of a mutated RYR1 Arg163Cys Ca2+ channel in muscle cells obtained from MH-negative individuals conveys hypersensitivity to halothane. Finally, our results show that the resting Ca2+ concentration of cultured skeletal muscle cells from MH-negative and MH-susceptible individuals is not significantly different. PMID:9502764

  2. KRAS Mutation as a Potential Prognostic Biomarker of Biliary Tract Cancers

    PubMed Central

    Yokoyama, Masaaki; Ohnishi, Hiroaki; Ohtsuka, Kouki; Matsushima, Satsuki; Ohkura, Yasuo; Furuse, Junji; Watanabe, Takashi; Mori, Toshiyuki; Sugiyama, Masanori

    2016-01-01

    BACKGROUND The aim of this study was to identify the unique molecular characteristics of biliary tract cancer (BTC) for the development of novel molecular-targeted therapies. MATERIALS AND METHODS We performed mutational analysis of KRAS, BRAF, PIK3CA, and FBXW7 and immunohistochemical analysis of EGFR and TP53 in 63 Japanese patients with BTC and retrospectively evaluated the association between the molecular characteristics and clinicopathological features of BTC. RESULTS KRAS mutations were identified in 9 (14%) of the 63 BTC patients; no mutations were detected within the analyzed regions of BRAF, PIK3CA, and FBXW7. EGFR overexpression was observed in 5 (8%) of the 63 tumors, while TP53 overexpression was observed in 48% (30/63) of the patients. Overall survival of patients with KRAS mutation was significantly shorter than that of patients with the wild-type KRAS gene (P = 0.005). By multivariate analysis incorporating molecular and clinicopathological features, KRAS mutations and lymph node metastasis were identified to be independently associated with shorter overall survival (KRAS, P = 0.004; lymph node metastasis, P = 0.015). CONCLUSIONS Our data suggest that KRAS mutation is a poor prognosis predictive biomarker for the survival in BTC patients. PMID:28008299

  3. Inhibition of HSP90 by AUY922 Preferentially Kills Mutant KRAS Colon Cancer Cells by Activating Bim through ER Stress.

    PubMed

    Wang, Chun Yan; Guo, Su Tang; Wang, Jia Yu; Liu, Fen; Zhang, Yuan Yuan; Yari, Hamed; Yan, Xu Guang; Jin, Lei; Zhang, Xu Dong; Jiang, Chen Chen

    2016-03-01

    Oncogenic mutations of KRAS pose a great challenge in the treatment of colorectal cancer. Here we report that mutant KRAS colon cancer cells are nevertheless more susceptible to apoptosis induced by the HSP90 inhibitor AUY922 than those carrying wild-type KRAS. Although AUY922 inhibited HSP90 activity with comparable potency in colon cancer cells irrespective of their KRAS mutational statuses, those with mutant KRAS were markedly more sensitive to AUY922-induced apoptosis. This was associated with upregulation of the BH3-only proteins Bim, Bik, and PUMA. However, only Bim appeared essential, in that knockdown of Bim abolished, whereas knockdown of Bik or PUMA only moderately attenuated apoptosis induced by AUY922. Mechanistic investigations revealed that endoplasmic reticulum (ER) stress was responsible for AUY922-induced upregulation of Bim, which was inhibited by a chemical chaperone or overexpression of GRP78. Conversely, siRNA knockdown of GRP78 or XBP-1 enhanced AUY922-induced apoptosis. Remarkably, AUY922 inhibited the growth of mutant KRAS colon cancer xenografts through activation of Bim that was similarly associated with ER stress. Taken together, these results suggest that AUY922 is a promising drug in the treatment of mutant KRAS colon cancers, and the agents that enhance the apoptosis-inducing potential of Bim may be useful to improve the therapeutic efficacy.

  4. RAD21 cohesin overexpression is a prognostic and predictive marker exacerbating poor prognosis in KRAS mutant colorectal carcinomas

    PubMed Central

    Deb, S; Xu, H; Tuynman, J; George, J; Yan, Y; Li, J; Ward, R L; Mortensen, N; Hawkins, N J; McKay, M J; Ramsay, R G; Fox, S B

    2014-01-01

    Background: RAD21 is a component of the cohesion complex and is integral to chromosome segregation and error-free DNA repair. RAD21 is functionally important in tumour progression but its role in colorectal carcinoma (CRC) is unclear. We therefore assessed its clinicopathological and prognostic significance in CRC, as well as its effect on chemosensitivity. Methods: A retrospective observation study examined RAD21 expression in 652 CRCs using a tissue microarray approach. Correlation with clinicopathological factors including gender, tumour grade, mucinous subtype, TNM stage, disease-specific survival (DSS), BRAF and KRAS mutation status, tumour p53 immunostaining, tumour microsatellite instability and tumour CpG island methylator phenotype was performed. Colorectal cancer cell clones with stable RAD21 knockdown were generated and tested for cellular sensitivity to conventional chemotherapeutic drugs. Results: RAD21 expression was significantly correlated with male gender (56.7% vs 43.3%, P=0.02), well-differentiated histology (14.4% vs 4.0%, P=0.0001), higher T-stage (36.1% vs 27.0%, P=0.01), presence of metastasis (18.8% vs 12.6%, P=0.03), and shorter DSS (hazard ratio (HR) 1.4, 95% CI 1.1 to 1.9, P=0.01) in both univariate and multivariate analysis. RAD21 expression was associated with shorter DSS in patients with KRAS mutant tumours (HR:2.6, 95% CI:1.4–4.3, P=0.001) and in patients receiving adjuvant chemoradiotherapy (HR:1.9, 95% CI:1.2–3.0, P=0.008). Colorectal cancer cells with RAD21 knockdown exhibited enhanced sensitivity to 5-fluorouracil, either alone or in combination with oxaliplatin. Conclusions: RAD21 expression in CRC is associated with aggressive disease especially in KRAS mutant tumours and resistance to chemoradiotherapy. RAD21 may be an important novel therapeutic target. PMID:24548858

  5. Enhanced dependency of KRAS-mutant colorectal cancer cells on RAD51-dependent homologous recombination repair identified from genetic interactions in Saccharomyces cerevisiae.

    PubMed

    Kalimutho, Murugan; Bain, Amanda L; Mukherjee, Bipasha; Nag, Purba; Nanayakkara, Devathri M; Harten, Sarah K; Harris, Janelle L; Subramanian, Goutham N; Sinha, Debottam; Shirasawa, Senji; Srihari, Sriganesh; Burma, Sandeep; Khanna, Kum Kum

    2017-02-07

    Activating KRAS mutations drive colorectal cancer tumorigenesis and influence response to anti-EGFR-targeted therapy. Despite recent advances in understanding Ras signaling biology and the revolution in therapies for melanoma using BRAF inhibitors, no targeted agents have been effective in KRAS-mutant cancers, mainly due to activation of compensatory pathways. Here, by leveraging the largest synthetic lethal genetic interactome in yeast, we identify that KRAS-mutated colorectal cancer cells have augmented homologous recombination repair (HRR) signaling. We found that KRAS mutation resulted in slowing and stalling of the replication fork and accumulation of DNA damage. Moreover, we found that KRAS-mutant HCT116 cells have an increase in MYC-mediated RAD51 expression with a corresponding increase in RAD51 recruitment to irradiation-induced DNA double-strand breaks (DSBs) compared to genetically complemented isogenic cells. MYC depletion using RNA interference significantly reduced IR-induced RAD51 foci formation and HRR. On the contrary, overexpression of either HA-tagged wild-type (WT) MYC or phospho-mutant S62A increased RAD51 protein levels and hence IR-induced RAD51 foci. Likewise, depletion of RAD51 selectively induced apoptosis in HCT116-mutant cells by increasing DSBs. Pharmacological inhibition targeting HRR signaling combined with PARP inhibition selectivity killed KRAS-mutant cells. Interestingly, these differences were not seen in a second isogenic pair of KRAS WT and mutant cells (DLD-1), likely due to their nondependency on the KRAS mutation for survival. Our data thus highlight a possible mechanism by which KRAS-mutant-dependent cells drive HRR in vitro by upregulating MYC-RAD51 expression. These data may offer a promising therapeutic vulnerability in colorectal cancer cells harboring otherwise nondruggable KRAS mutations, which warrants further investigation in vivo.

  6. "Wild type" GIST: Clinicopathological features and clinical practice.

    PubMed

    Wada, Ryuichi; Arai, Hiroki; Kure, Shoko; Peng, Wei-Xia; Naito, Zenya

    2016-08-01

    Gastrointestinal stromal tumor (GIST) is a mesenchymal tumor of the gastrointestinal tract. Mutation of KIT and PDGFRA genes is implicated in the tumorigenesis. Approximately 10% of GISTs do not harbor mutation of these genes, and they are designated as "wild type" GIST. They are classified into succinate dehydrogenase (SDH)-deficient and non-SDH-deficient groups. SDH-deficient group includes Carney triad and Carney Stratakis syndrome. The patients are young women. Tumors occur in the antrum of the stomach, and tumor cells are epithelioid. Lymph node metastasis is frequent. The non-SDH-deficient group includes neurofibromatosis (NF) type 1 and GISTs with mutations of BRAF, KRAS, and PIK3CA and with the ETV6-NTRK3 fusion gene. GIST in NF occurs in the small intestine, and tumor cells are spindle shaped. GIST with BRAF mutation arises in the small intestine. Attention to the age, gender, family history and other neoplasms may raise the prediction of syndromic disease. Location of the tumor, morphology, and pleomorphism of the tumor cells are further informative. Lymphovascular invasion should be carefully evaluated. The determination of KIT expression is essential for the diagnosis. When wild type GIST is suspected, intensive genetic analysis is required. Further, a careful and long-time observation is recommended.

  7. Kras mutations increase telomerase activity and targeting telomerase is a promising therapeutic strategy for Kras-mutant NSCLC

    PubMed Central

    Shi, Bowen; Zhang, Lianmin; Qian, Dong; Li, Chenguang; Zhang, Hua; Wang, Shengguang; Zhu, Jinfang; Gao, Liuwei; Zhang, Qiang; Jia, Bin; Hao, Ligang; Wang, Changli; Zhang, Bin

    2017-01-01

    As shortened telomeres inhibit tumor formation and prolong life span in a KrasG12D mouse lung cancer model, we investigated the implications of telomerase in Kras-mutant NSCLC. We found that Kras mutations increased TERT (telomerase reverse transcriptase) mRNA expression and telomerase activity and telomere length in both immortalized bronchial epithelial cells (BEAS-2B) and lung adenocarcinoma cells (Calu-3). MEK inhibition led to reduced TERT expression and telomerase activity. Furthermore, telomerase inhibitor BIBR1532 shortened telomere length and inhibited mutant Kras-induced long-term proliferation, colony formation and migration capabilities of BEAS-2B and Calu-3 cells. Importantly, BIBR1532 sensitized oncogenic Kras expressing Calu-3 cells to chemotherapeutic agents. The Calu-3-KrasG12D xenograft mouse model confirmed that BIBR1532 enhanced the antitumor efficacy of paclitaxel in vivo. In addition, higher TERT expression was seen in Kras-mutant NSCLC than that with wild-type Kras. Our data suggest that Kras mutations increase telomerase activity and telomere length by activating the RAS/MEK pathway, which contributes to an aggressive phenotype of NSCLC. Kras mutations-induced lung tumorigenesis and chemoresistance are attenuated by telomerase inhibition. Targeting telomerase/telomere may be a promising therapeutic strategy for patients with Kras-mutant NSCLC. PMID:27329725

  8. Mutant Kras copy number defines metabolic reprogramming and therapeutic susceptibilities.

    PubMed

    Kerr, Emma M; Gaude, Edoardo; Turrell, Frances K; Frezza, Christian; Martins, Carla P

    2016-03-03

    The RAS/MAPK (mitogen-activated protein kinase) signalling pathway is frequently deregulated in non-small-cell lung cancer, often through KRAS activating mutations. A single endogenous mutant Kras allele is sufficient to promote lung tumour formation in mice but malignant progression requires additional genetic alterations. We recently showed that advanced lung tumours from Kras(G12D/+);p53-null mice frequently exhibit Kras(G12D) allelic enrichment (Kras(G12D)/Kras(wild-type) > 1) (ref. 7), implying that mutant Kras copy gains are positively selected during progression. Here we show, through a comprehensive analysis of mutant Kras homozygous and heterozygous mouse embryonic fibroblasts and lung cancer cells, that these genotypes are phenotypically distinct. In particular, Kras(G12D/G12D) cells exhibit a glycolytic switch coupled to increased channelling of glucose-derived metabolites into the tricarboxylic acid cycle and glutathione biosynthesis, resulting in enhanced glutathione-mediated detoxification. This metabolic rewiring is recapitulated in mutant KRAS homozygous non-small-cell lung cancer cells and in vivo, in spontaneous advanced murine lung tumours (which display a high frequency of Kras(G12D) copy gain), but not in the corresponding early tumours (Kras(G12D) heterozygous). Finally, we demonstrate that mutant Kras copy gain creates unique metabolic dependences that can be exploited to selectively target these aggressive mutant Kras tumours. Our data demonstrate that mutant Kras lung tumours are not a single disease but rather a heterogeneous group comprising two classes of tumours with distinct metabolic profiles, prognosis and therapeutic susceptibility, which can be discriminated on the basis of their relative mutant allelic content. We also provide the first, to our knowledge, in vivo evidence of metabolic rewiring during lung cancer malignant progression.

  9. A combinatorial strategy for treating KRAS-mutant lung cancer.

    PubMed

    Manchado, Eusebio; Weissmueller, Susann; Morris, John P; Chen, Chi-Chao; Wullenkord, Ramona; Lujambio, Amaia; de Stanchina, Elisa; Poirier, John T; Gainor, Justin F; Corcoran, Ryan B; Engelman, Jeffrey A; Rudin, Charles M; Rosen, Neal; Lowe, Scott W

    2016-06-30

    Therapeutic targeting of KRAS-mutant lung adenocarcinoma represents a major goal of clinical oncology. KRAS itself has proved difficult to inhibit, and the effectiveness of agents that target key KRAS effectors has been thwarted by activation of compensatory or parallel pathways that limit their efficacy as single agents. Here we take a systematic approach towards identifying combination targets for trametinib, a MEK inhibitor approved by the US Food and Drug Administration, which acts downstream of KRAS to suppress signalling through the mitogen-activated protein kinase (MAPK) cascade. Informed by a short-hairpin RNA screen, we show that trametinib provokes a compensatory response involving the fibroblast growth factor receptor 1 (FGFR1) that leads to signalling rebound and adaptive drug resistance. As a consequence, genetic or pharmacological inhibition of FGFR1 in combination with trametinib enhances tumour cell death in vitro and in vivo. This compensatory response shows distinct specificities: it is dominated by FGFR1 in KRAS-mutant lung and pancreatic cancer cells, but is not activated or involves other mechanisms in KRAS wild-type lung and KRAS-mutant colon cancer cells. Importantly, KRAS-mutant lung cancer cells and patients’ tumours treated with trametinib show an increase in FRS2 phosphorylation, a biomarker of FGFR activation; this increase is abolished by FGFR1 inhibition and correlates with sensitivity to trametinib and FGFR inhibitor combinations. These results demonstrate that FGFR1 can mediate adaptive resistance to trametinib and validate a combinatorial approach for treating KRAS-mutant lung cancer.

  10. A combinatorial strategy for treating KRAS mutant lung cancer

    PubMed Central

    Manchado, Eusebio; Weissmueller, Susann; Morris, John P.; Chen, Chi-Chao; Wullenkord, Ramona; Lujambio, Amaia; de Stanchina, Elisa; Poirier, John T.; Gainor, Justin F.; Corcoran, Ryan B.; Engelman, Jeffrey A.; Rudin, Charles M.; Rosen, Neal; Lowe, Scott W.

    2016-01-01

    Therapeutic targeting of KRAS-mutant lung adenocarcinoma represents a major goal of clinical oncology. KRAS itself has proven difficult to inhibit, and the effectiveness of agents that target key KRAS effectors has been thwarted by activation of compensatory or parallel pathways that limit their efficacy as single agents. Here we take a systematic approach towards identifying combination targets for trametinib, an FDA-approved MEK inhibitor that acts downstream of KRAS to suppress signaling through the mitogen-activated protein kinase (MAPK) cascade. Informed by a short-hairpin RNA (shRNA) screen, we show that trametinib provokes a compensatory response involving the fibroblast growth factor receptor 1 (FGFR1) that leads to signaling rebound and adaptive drug resistance. As a consequence, genetic or pharmacologic inhibition of FGFR1 in combination with trametinib enhances tumor cell death in vitro and in vivo. This compensatory response shows distinct specificities – it is dominated by FGFR1 in KRAS mutant lung and pancreatic cancer cells, but is not activated or involves other mechanisms in KRAS wild-type lung and KRAS-mutant colon cancer cells. Importantly, KRAS-mutant lung cancer cells and patient tumors treated with trametinib show an increase in FRS2 phosphorylation, a biomarker of FGFR activation; this increase is abolished by FGFR1 inhibition and correlates with sensitivity to trametinib and FGFR inhibitor combinations. These results demonstrate that FGFR1 can mediate adaptive resistance to trametinib and validate a combinatorial approach for treating KRAS-mutant lung cancer. PMID:27338794

  11. Deubiquitinase USP18 Loss Mislocalizes and Destabilizes KRAS in Lung Cancer.

    PubMed

    Mustachio, Lisa Maria; Lu, Yun; Tafe, Laura J; Memoli, Vincent; Rodriguez-Canales, Jaime; Mino, Barbara; Villalobos, Pamela Andrea; Wistuba, Ignacio; Katayama, Hiroyuki; Hanash, Samir M; Roszik, Jason; Kawakami, Masanori; Cho, Kwang-Jin; Hancock, John F; Chinyengetere, Fadzai; Hu, Shanhu; Liu, Xi; Freemantle, Sarah J; Dmitrovsky, Ethan

    2017-02-27

    KRAS is frequently mutated in lung cancers and is associated with aggressive biology and chemotherapy resistance. Therefore, innovative approaches are needed to treat these lung cancers. Prior work implicated the interferon-stimulated gene 15 (ISG15) deubiquitinase (DUB) USP18 as having anti-neoplastic activity by regulating lung cancer growth and oncoprotein stability. This study demonstrates that USP18 affects the stability of the KRAS oncoprotein. Interestingly, loss of USP18 reduced KRAS expression and engineered gain of USP18 expression increased KRAS protein levels in lung cancer cells. Using the protein synthesis inhibitor cycloheximide (CHX), USP18 knockdown significantly reduced the half-life of KRAS, but gain of USP18 expression significantly increased its stability. Intriguingly, loss of USP18 altered KRAS subcellular localization by mislocalizing KRAS from the plasma membrane. To explore the biological consequences, immunohistochemical (IHC) expression profiles of USP18 were compared in lung cancers of KrasLA2/+ versus cyclin E engineered mouse models. USP18 expression was higher in Kras-driven murine lung cancers, indicating a link between KRAS and USP18 expression in vivo. To solidify this association, loss of Usp18 in KrasLA2/+/Usp18-/- mice was found to significantly reduce lung cancers as compared to parental KrasLA2/+ mice. Lastly, translational relevance was confirmed in a human lung cancer panel by showing USP18 IHC expression was significantly higher in KRAS mutant versus wild-type lung adenocarcinomas.

  12. Ribozyme-mediated inactivation of mutant K-ras oncogene in a colon cancer cell line

    PubMed Central

    Tokunaga, T; Tsuchida, T; Kijima, H; Okamoto, K; Oshika, Y; Sawa, N; Ohnishi, Y; Yamazaki, H; Miura, S; Ueyama, Y; Nakamura, M

    2000-01-01

    Mutation of c-K-ras oncogene is an important step in progression of colon cancer. We used a hammerhead ribozyme (KrasRz) against mutated K-ras gene transcripts (codon 12, GTT) to inactivate mutant K-ras function in the colon cancer cell line SW480, harbouring a mutant K-ras gene. The β-actin promoter-driven KrasRz sequence (pHβ/KrasRz) was introduced into these cells (SW480/KrasRz), and we evaluated its effects on growth of the colon cancer. The gene expression of angiogenesis-related molecules (vascular endothelial growth factor and thrombospondin) was also estimated in SW480/KrasRz. KrasRz specifically and efficiently cleaved the mutant K-ras mRNA but not wild-type mRNA in vitro. SW480/KrasRz showed decreased growth rate under tissue culture conditions (P< 0.01, Dunnett’s test). The xenotransplantability of SW480/KrasRz (XeSW480/KrasRz) was significantly decreased in nude mice (P< 0.05, Fisher’s exact test). Tumour volume of the xenografts XeSW480/KrasRz was significantly smaller than that of XeSW480/DisKrasRz (P< 0.01, Dunnett’s test). Gene expression of VEGF was suppressed in SW480/KrasRz, while TSP1 gene expression was enhanced. The SW480/KrasRz cells showed apoptosis-related features including nuclear condensation and DNA fragmentation. These results suggested that the hammerhead ribozyme-mediated inactivation of the mutated K-ras mRNA induced growth suppression, apoptosis and alteration of angiogenic factor expression. © 2000 Cancer Research Campaign PMID:10952790

  13. Disruption of p16 and Activation of Kras in Pancreas Increase Ductal Adenocarcinoma Formation and Metastasis in vivo

    PubMed Central

    Qiu, Wanglong; Sahin, Fikret; Iacobuzio-Donahue, Christine A.; Garcia-Carracedo, Dario; Wang, Wendy M.; Kuo, Chia-Yu; Chen, Doris; Arking, Dan E.; Lowy, Andrew M.; Hruban, Ralph H.; Remotti, Helen E.; Su, Gloria H.

    2011-01-01

    Inactivation of tumor suppressor gene p16/INK4A and oncogenic activation of KRAS occur in almost all pancreatic cancers. To better understand the roles of p16 in pancreatic tumorigenesis, we created a conditional p16 knockout mouse line (p16flox/flox), in which p16 is specifically disrupted in a tissue-specific manner without affecting p19/ARF expression. p16flox/flox; LSL-KrasG12D; Pdx1-Cre mice developed the full spectrum of pancreatic intraepithelial neoplasia (mPanIN) lesions, pancreatic ductal adenocarcinoma (PDA), and metastases were observed in all the mice. Here we report a mouse model that simulates human pancreatic tumorigenesis at both genetic and histologic levels and is ideal for studies of metastasis. During the progression from primary tumors to metastases, the wild-type allele of Kras was progressively lost (loss of heterozygosity at Kras or LOH at Kras) in p16flox/flox; LSL- KrasG12D; Pdx1-Cre mice. These observations suggest a role for Kras beyond tumor initiation. In vitro assays performed with cancer cell lines derived from primary pancreatic tumors of these mice showed that cancer cells with LOH at Kras exhibited more aggressive phenotypes than those retained the wild-type Kras allele, indicating that LOH at Kras can provide cancer cells functional growth advantages and promote metastasis. Increased LOH at KRAS was also observed in progression of human pancreatic primary tumors to metastases, again supporting a role for the KRAS gene in cancer metastasis. This finding has potential translational implications- future KRAS target therapies may need to consider targeting oncogenic KRAS specifically without inhibiting wild-type KRAS function. PMID:22113502

  14. KRAS-mutation status dependent effect of zoledronic acid in human non-small cell cancer preclinical models

    PubMed Central

    Kenessey, István; Kói, Krisztina; Horváth, Orsolya; Cserepes, Mihály; Molnár, Dávid; Izsák, Vera; Dobos, Judit; Hegedűs, Balázs

    2016-01-01

    Background In non-small cell lung cancer (NSCLC) KRAS-mutant status is a negative prognostic and predictive factor. Nitrogen-containing bisphosphonates inhibit prenylation of small G-proteins (e.g. Ras, Rac, Rho) and thus may affect proliferation and migration. In our preclinical work, we investigated the effect of an aminobisphosphonate compound (zoledronic acid) on mutant and wild type KRAS-expressing human NSCLC cell lines. Results We confirmed that zoledronic acid was unable to inhibit the prenylation of mutant K-Ras unlike in the case of wild type K-Ras. In case of in vitro proliferation, the KRAS-mutant human NSCLC cell lines showed resistance to zoledronic acid wild-type KRAS-cells proved to be sensitive. Combinatory application of zoledronic acid enhanced the cytostatic effect of cisplatin. Zoledronic acid did not induce significant apoptosis. In xenograft model, zoledronic acid significantly reduced the weight of wild type KRAS-EGFR-expressing xenograft tumor by decreasing the proliferative capacity. Futhermore, zoledronic acid induced VEGF expression and improved in vivo tumor vascularization. Materials and methods Membrane association of K-Ras was examined by Western-blot. In vitro cell viability, apoptotic cell death and migration were measured in NSCLC lines with different molecular background. The in vivo effect of zoledronic acid was investigated in a SCID mouse subcutaneous xenograft model. Conclusions The in vitro and in vivo inhibitory effect of zoledronic acid was based on the blockade of cell cycle in wild type KRAS-expressing human NSCLC cells. The zoledronic acid induced vascularization supported in vivo cytostatic effect. Our preclinical investigation suggests that patients with wild type KRAS-expressing NSCLC could potentially benefit from aminobisphosphonate therapy. PMID:27780929

  15. Wild Type and PPAR KO Dataset

    EPA Pesticide Factsheets

    Data set 1 consists of the experimental data for the Wild Type and PPAR KO animal study and includes data used to prepare Figures 1-4 and Table 1 of the Das et al, 2016 paper.This dataset is associated with the following publication:Das, K., C. Wood, M. Lin, A.A. Starkov, C. Lau, K.B. Wallace, C. Corton, and B. Abbott. Perfluoroalky acids-induced liver steatosis: Effects on genes controlling lipid homeostasis. TOXICOLOGY. Elsevier Science Ltd, New York, NY, USA, 378: 32-52, (2017).

  16. Akt mediated ROS-dependent selective targeting of mutant KRAS tumors.

    PubMed

    Iskandar, Kartini; Rezlan, Majidah; Pervaiz, Shazib

    2014-10-01

    Reactive oxygen species (ROS) play a critical role in a variety of cellular processes, ranging from cell survival and proliferation to cell death. Previously, we reported the ability of a small molecule compound, C1, to induce ROS dependent autophagy associated apoptosis in human cancer cell lines and primary tumor cells (Wong C. et al. 2010). Our ongoing investigations have unraveled a hitherto undefined novel signaling network involving hyper-phosphorylation of Akt and Akt-mediated ROS production in cancer cell lines. Interestingly, drug-induced Akt activation is selectively seen in cell lines that carry mutant KRAS; HCT116 cells that carry the V13D KRAS mutation respond favorably to C1 while HT29 cells expressing wild type KRAS are relatively resistant. Of note, not only does the compound target mutant KRAS expressing cells but also induces RAS activation as evidenced by the PAK pull down assay. Corroborating this, pharmacological inhibition as well as siRNA mediated silencing of KRAS or Akt, blocked C1-induced ROS production and rescued tumor colony forming ability in HCT116 cells. To further confirm the involvement of KRAS, we made use of mutant KRAS transformed RWPE-1 prostate epithelial cells. Notably, drug-induced ROS generation and death sensitivity was significantly higher in RWPE-1-KRAS cells than the RWPE-1-vector cells, thus confirming the results obtained with mutant KRAS colorectal carcinoma cell line. Lastly, we made use of HCT116 mutant KRAS knockout cells (KO) where the mutant KRAS allele had been deleted, thus expressing a single wild-type KRAS allele. Exposure of the KO cells to C1 failed to induce Akt activation and mitochondrial ROS production. Taken together, results show the involvement of activated Akt in ROS-mediated selective targeting of mutant KRAS expressing tumors, which could have therapeutic implications given the paucity of chemotherapeutic strategies specifically targeting KRAS mutant cancers.

  17. KRAS-mutation incidence and prognostic value are metastatic site-specific in lung adenocarcinoma: poor prognosis in patients with KRAS mutation and bone metastasis

    PubMed Central

    Lohinai, Zoltan; Klikovits, Thomas; Moldvay, Judit; Ostoros, Gyula; Raso, Erzsebet; Timar, Jozsef; Fabian, Katalin; Kovalszky, Ilona; Kenessey, István; Aigner, Clemens; Renyi-Vamos, Ferenc; Klepetko, Walter; Dome, Balazs; Hegedus, Balazs

    2017-01-01

    Current guidelines lack comprehensive information on the metastatic site-specific role of KRAS mutation in lung adenocarcinoma (LADC). We investigated the effect of KRAS mutation on overall survival (OS) in this setting. In our retrospective study, 500 consecutive Caucasian metastatic LADC patients with known KRAS mutational status were analyzed after excluding 32 patients with EGFR mutations. KRAS mutation incidence was 28.6%. The most frequent metastatic sites were lung (45.6%), bone (26.2%), adrenal gland (17.4%), brain (16.8%), pleura (15.6%) and liver (11%). Patients with intrapulmonary metastasis had significantly increased KRAS mutation frequency compared to those with extrapulmonary metastases (35% vs 26.5%, p = 0.0125). In contrast, pleural dissemination and liver involvement were associated with significantly decreased KRAS mutation incidence (vs all other metastatic sites; 17% (p < 0.001) and 16% (p = 0.02) vs 33%, respectively). Strikingly, we found a significant prognostic effect of KRAS status only in the bone metastatic subcohort (KRAS-wild-type vs KRAS-mutant; median OS 9.7 v 3.7 months; HR, 0.49; 95% CI, 0.31 to 0.79; p  = 0.003). Our study suggests that KRAS mutation frequency in LADC patients shows a metastatic site dependent variation and, moreover, that the presence of KRAS mutation is associated with significantly worse outcome in bone metastatic cases. PMID:28051122

  18. Impact of oncogenic K-RAS on YB-1 phosphorylation induced by ionizing radiation

    PubMed Central

    2011-01-01

    Introduction Expression of Y-box binding protein-1 (YB-1) is associated with tumor progression and drug resistance. Phosphorylation of YB-1 at serine residue 102 (S102) in response to growth factors is required for its transcriptional activity and is thought to be regulated by cytoplasmic signaling phosphatidylinositol 3-kinase (PI3K)/Akt and mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathways. These pathways can be activated by growth factors and by exposure to ionizing radiation (IR). So far, however, no studies have been conducted on IR-induced YB-1 phosphorylation. Methods IR-induced YB-1 phosphorylation in K-RAS wild-type (K-RASwt) and K-RAS-mutated (K-RASmt) breast cancer cell lines was investigated. Using pharmacological inhibitors, small interfering RNA (siRNA) and plasmid-based overexpression approaches, we analyzed pathways involved in YB-1 phosphorylation by IR. Using γ-H2AX foci and standard colony formation assays, we investigated the function of YB-1 in repair of IR-induced DNA double-stranded breaks (DNA-DSB) and postirradiation survival was investigated. Results The average level of phosphorylation of YB-1 in the breast cancer cell lines SKBr3, MCF-7, HBL100 and MDA-MB-231 was significantly higher than that in normal cells. Exposure to IR and stimulation with erbB1 ligands resulted in phosphorylation of YB-1 in K-RASwt SKBr3, MCF-7 and HBL100 cells, which was shown to be K-Ras-independent. In contrast, lack of YB-1 phosphorylation after stimulation with either IR or erbB1 ligands was observed in K-RASmt MDA-MB-231 cells. Similarly to MDA-MB-231 cells, YB-1 became constitutively phosphorylated in K-RASwt cells following the overexpression of mutated K-RAS, and its phosphorylation was not further enhanced by IR. Phosphorylation of YB-1 as a result of irradiation or K-RAS mutation was dependent on erbB1 and its downstream pathways, PI3K and MAPK/ERK. In K-RASmt cells K-RAS siRNA as well as YB-1 siRNA blocked

  19. ID4 regulates transcriptional activity of wild type and mutant p53 via K373 acetylation.

    PubMed

    Morton, Derrick J; Patel, Divya; Joshi, Jugal; Hunt, Aisha; Knowell, Ashley E; Chaudhary, Jaideep

    2017-01-10

    Given that mutated p53 (50% of all human cancers) is over-expressed in many cancers, restoration of mutant p53 to its wild type biological function has been sought after as cancer therapy. The conformational flexibility has allowed to restore the normal biological function of mutant p53 by short peptides and small molecule compounds. Recently, studies have focused on physiological mechanisms such as acetylation of lysine residues to rescue the wild type activity of mutant p53. Using p53 null prostate cancer cell line we show that ID4 dependent acetylation promotes mutant p53 DNA-binding capabilities to its wild type consensus sequence, thus regulating p53-dependent target genes leading to subsequent cell cycle arrest and apoptosis. Specifically, by using wild type, mutant (P223L, V274F, R175H, R273H), acetylation mimics (K320Q and K373Q) and non-acetylation mimics (K320R and K373R) of p53, we identify that ID4 promotes acetylation of K373 and to a lesser extent K320, in turn restoring p53-dependent biological activities. Together, our data provides a molecular understanding of ID4 dependent acetylation that suggests a strategy of enhancing p53 acetylation at sites K373 and K320 that may serve as a viable mechanism of physiological restoration of mutant p53 to its wild type biological function.

  20. Single Synonymous Mutations in KRAS Cause Transformed Phenotypes in NIH3T3 Cells

    PubMed Central

    Waters, Andrew M.; Bagni, Rachel; Portugal, Franklin; Hartley, James L.

    2016-01-01

    Synonymous mutations in the KRAS gene are clustered at G12, G13, and G60 in human cancers. We constructed 9 stable NIH3T3 cell lines expressing KRAS, each with one of these synonymous mutations. Compared to the negative control cell line expressing the wild type human KRAS gene, all the synonymous mutant lines expressed more KRAS protein, grew more rapidly and to higher densities, and were more invasive in multiple assays. Three of the cell lines showed dramatic loss of contact inhibition, were more refractile under phase contrast, and their refractility was greatly reduced by treatment with trametinib. Codon usage at these glycines is highly conserved in KRAS compared to HRAS, indicating selective pressure. These transformed phenotypes suggest that synonymous mutations found in driver genes such as KRAS may play a role in human cancers. PMID:27684555

  1. Establishment of a Three-dimensional Floating Cell Culture System for Screening Drugs Targeting KRAS-mediated Signaling Molecules.

    PubMed

    Tsunoda, Toshiyuki; Ishikura, Shuhei; Doi, Keiko; Iwaihara, Yuri; Hidesima, Hiromasa; Luo, Hao; Hirose, Yumiko; Shirasawa, Senji

    2015-08-01

    Oncogenic mutations in the KRAS gene are critically involved in many human tumors but drugs targeting oncogenic KRAS have not yet been clinically developed. Herein, we established a three-dimensional floating (3DF) culture system for screening drugs that target KRAS-mediated signaling molecules. HKe3 cells, derived from colorectal cancer HCT116 cells and disrupted at mutated (mt) KRAS gene, were infected with a retrovirus expressing wild-type (wt) KRAS or mtKRAS to establish HKe3-derived cells expressing wtKRAS or mtKRAS. Established cells were cultured in 96-well plates with an ultra-low attachment surface and round bottom for 3DF culture. HKe3-wtKRAS and HKe3-mtKRAS cells in 3DF culture rapidly assembled into respective single spherical structures (spheroids). Furthermore, mtKRAS but not wtKRAS expression inhibited luminal apoptosis in spheroids indicating that the 3DF culture was compatible with the 3D matrigel culture. This 3DF culture system could be useful for screening drugs that target KRAS-mediated signaling molecules. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  2. Absence of K-Ras Reduces Proliferation and Migration But Increases Extracellular Matrix Synthesis in Fibroblasts.

    PubMed

    Muñoz-Félix, José M; Fuentes-Calvo, Isabel; Cuesta, Cristina; Eleno, Nélida; Crespo, Piero; López-Novoa, José M; Martínez-Salgado, Carlos

    2016-10-01

    The involvement of Ras-GTPases in the development of renal fibrosis has been addressed in the last decade. We have previously shown that H- and N-Ras isoforms participate in the regulation of fibrosis. Herein, we assessed the role of K-Ras in cellular processes involved in the development of fibrosis: proliferation, migration, and extracellular matrix (ECM) proteins synthesis. K-Ras knockout (KO) mouse embryonic fibroblasts (K-ras(-/-) ) stimulated with transforming growth factor-β1 (TGF-β1) exhibited reduced proliferation and impaired mobility than wild-type fibroblasts. Moreover, an increase on ECM production was observed in K-Ras KO fibroblasts in basal conditions. The absence of K-Ras was accompanied by reduced Ras activation and ERK phosphorylation, and increased AKT phosphorylation, but no differences were observed in TGF-β1-induced Smad signaling. The MEK inhibitor U0126 decreased cell proliferation independently of the presence of K-ras but reduced migration and ECM proteins expression only in wild-type fibroblasts, while the PI3K-AKT inhibitor LY294002 decreased cell proliferation, migration, and ECM synthesis in both types of fibroblasts. Thus, our data unveil that K-Ras and its downstream effector pathways distinctively regulate key biological processes in the development of fibrosis. Moreover, we show that K-Ras may be a crucial mediator in TGF-β1-mediated effects in this cell type. J. Cell. Physiol. 231: 2224-2235, 2016. © 2016 Wiley Periodicals, Inc.

  3. Is there a prognostic role of K-ras point mutations in the serum of patients with advanced non-small cell lung cancer?

    PubMed

    Camps, Carlos; Sirera, Rafael; Bremnes, Roy; Blasco, Ana; Sancho, Eva; Bayo, Pilar; Safont, Maria Jose; Sánchez, José Javier; Tarón, Miquel; Rosell, Rafael

    2005-12-01

    The purpose of this study was to investigate the prognostic significance of K-ras mutations in circulating DNA in advanced non-small lung cancer (NSCLC) patients. Serum samples were assessed prior to platinum-based chemotherapy start in 67 patients with advanced NSCLC (stage IIIB or IV), treated between April 1999 and June 2002. Patients were not previously treated with chemotherapy. K-ras oncogene mutations at codon 12 were analyzed by genomic amplification and direct sequencing of the patient's DNA present in serum. Pre-treatment serum was available in all 67 patients. Twenty patients (30%) demonstrated K-ras mutations while 47 patients (70%) had wild-type K-ras. Among K-ras mutations, the amino acid glycine was substituted by cystein in 90% and valine in 10%. When patients were grouped according to K-ras genotype, there was no significant difference for any of the baseline patient characteristics. There was a tendency towards a higher response rate for patients with K-ras mutations versus wild-type K-ras in serum, however not statistically significant (p=0.37). Median progression-free survival was 7.3 months versus 5.5 months in patients with mutations and with wild-type K-ras, respectively (p=0.23). For median overall survival time, the mutation group was comparable to the wild-type K-ras group with 12.5 and 11.4 months, respectively (p=0.28). In conclusion, there were no significant differences between the patients with K-ras mutations and those with wild-type genotype with respect to baseline patient characteristics, response rates, progression-free survival, or overall survival.

  4. Comparative analysis of dideoxy sequencing, the KRAS StripAssay and pyrosequencing for detection of KRAS mutation

    PubMed Central

    Gao, Jing; Li, Yan-Yan; Sun, Ping-Nai; Shen, Lin

    2010-01-01

    AIM: To compare the differences between dideoxy sequencing/KRAS StripAssay/pyrosequencing for detection of KRAS mutation in Chinese colorectal cancer (CRC) patients. METHODS: Formalin-fixed, paraffin-embedded (FFPE) samples with tumor cells ≥ 50% were collected from 100 Chinese CRC patients at Beijing Cancer Hospital. After the extraction of genome DNA from FFPE samples, fragments contained codons 12 and 13 of KRAS exon 2 were amplified by polymerase chain reaction and analyzed by dideoxy sequencing, the KRAS StripAssay and pyrosequencing. In addition, the sensitivities of the 3 methods were compared on serial dilutions (contents of mutant DNA: 100%, 50%, 20%, 15%, 10%, 5%, 1%, 0%) of A549 cell line DNA (carrying the codon 12 Gly>Ser mutation) into wild-type DNA (human normal intestinal mucosa). The results of dideoxy sequencing, the KRAS StripAssay and pyrosequencing were analyzed by Chromas Software, Collector for KRAS StripAssay and the pyrosequencing PyroMarkTM Q24 system, respectively. RESULTS: Among 100 patients, KRAS mutations were identified in 34%, 37% and 37% of patients by dideoxy sequencing, the KRAS StripAssay and pyrosequencing, respectively. The sensitivity was highest with the KRAS StripAssay (1%), followed by pyrosequencing (5%), and dideoxy sequencing was lowest (15%). Six different mutation types were found in this study with 3 main mutations Gly12Asp (GGT>GAT), Gly12Val (GGT>GTT) and Gly13Asp (GGC>GAC). Thirty-three patients were identified to have KRAS mutations by the 3 methods, and a total of 8 patients had conflicting results between 3 methods: 4 mutations not detected by dideoxy sequencing and the KRAS StripAssay were identified by pyrosequencing; 3 mutations not detected by dideoxy sequencing and pyrosequencing were identified by the KRAS StripAssay; and 1 mutation not detected by pyrosequencing was confirmed by dideoxy sequencing and the KRAS StripAssay. Among these discordant results, the results identified by dideoxy sequencing were

  5. Stability of Osaka Mutant and Wild-Type Fibril Models.

    PubMed

    Berhanu, Workalemahu M; Alred, Erik J; Hansmann, Ulrich H E

    2015-10-15

    Single amino acid mutations in amyloid-beta (Aβ) peptides can lead to early onset and increased severity of Alzheimer's disease. An example is the Osaka mutation (Aβ1-40E22D), which is more toxic than wild-type Aβ1-40. This mutant quickly forms early stage fibrils, one of the hallmarks of the disease, and these fibrils can even seed fibrilization of wild-type monomers. Using molecular dynamic simulations, we show that because of formation of various intra- and intermolecular salt bridges the Osaka mutant fibrils are more stable than wild-type fibrils. The mutant fibril also has a wider water channel with increased water flow than the wild type. These two observations can explain the higher toxicity and aggregation rate of the Osaka mutant over the wild type.

  6. KRAS Mutation Detection in Paired Frozen and Formalin-Fixed Paraffin-Embedded (FFPE) Colorectal Cancer Tissues

    PubMed Central

    Solassol, Jérome; Ramos, Jeanne; Crapez, Evelyne; Saifi, Majda; Mangé, Alain; Vianès, Evelyne; Lamy, Pierre-Jean; Costes, Valérie; Maudelonde, Thierry

    2011-01-01

    KRAS mutation has been unambiguously identified as a marker of resistance to cetuximab-based treatment in metastatic colorectal cancer (mCRC) patients. However, most studies of KRAS mutation analysis have been performed using homogenously archived CRC specimens, and studies that compare freshly frozen specimens and formalin-fixed paraffin-embedded (FFPE) specimens of CRC are lacking. The aim of the present study was to evaluate the impact of tissue preservation on the determination of KRAS mutational status. A series of 131 mCRC fresh-frozen tissues were first analyzed using both high-resolution melting (HRM) and direct sequencing. KRAS mutations were found in 47/131 (35.8%) using both approaches. Out of the 47 samples that were positive for KRAS mutations, 33 had available matched FFPE specimens. Using HRM, 2/33 (6%) demonstrated suboptimal template amplification, and 2/33 (6%) expressed an erroneous wild-type KRAS profile. Using direct sequencing, 6/33 (18.1%) displayed a wild-type KRAS status, and 3/33 (9.1%) showed discordant mutations. Finally, the detection of KRAS mutations was lower among the FFPE samples compared with the freshly frozen samples, demonstrating that tissue processing clearly impacts the accuracy of KRAS genotyping. PMID:21686179

  7. Direct inhibition of oncogenic KRAS by hydrocarbon-stapled SOS1 helices.

    PubMed

    Leshchiner, Elizaveta S; Parkhitko, Andrey; Bird, Gregory H; Luccarelli, James; Bellairs, Joseph A; Escudero, Silvia; Opoku-Nsiah, Kwadwo; Godes, Marina; Perrimon, Norbert; Walensky, Loren D

    2015-02-10

    Activating mutations in the Kirsten rat sarcoma viral oncogene homolog (KRAS) underlie the pathogenesis and chemoresistance of ∼ 30% of all human tumors, yet the development of high-affinity inhibitors that target the broad range of KRAS mutants remains a formidable challenge. Here, we report the development and validation of stabilized alpha helices of son of sevenless 1 (SAH-SOS1) as prototype therapeutics that directly inhibit wild-type and mutant forms of KRAS. SAH-SOS1 peptides bound in a sequence-specific manner to KRAS and its mutants, and dose-responsively blocked nucleotide association. Importantly, this functional binding activity correlated with SAH-SOS1 cytotoxicity in cancer cells expressing wild-type or mutant forms of KRAS. The mechanism of action of SAH-SOS1 peptides was demonstrated by sequence-specific down-regulation of the ERK-MAP kinase phosphosignaling cascade in KRAS-driven cancer cells and in a Drosophila melanogaster model of Ras85D(V12) activation. These studies provide evidence for the potential utility of SAH-SOS1 peptides in neutralizing oncogenic KRAS in human cancer.

  8. Prognostic relevance of KRAS genotype in metastatic colorectal cancer patients unfit for FIr-B/FOx intensive regimen

    PubMed Central

    BRUERA, GEMMA; CANNITA, KATIA; GIORDANO, ALDO VICTOR; VICENTINI, ROBERTO; FICORELLA, CORRADO; RICEVUTO, ENRICO

    2014-01-01

    First-line triplet chemotherapy plus bevacizumab (FIr-B/FOx) can improve efficacy of metastatic colorectal cancer (MCRC), KRAS wild-type and mutant. Prognostic relevance of KRAS genotype was evaluated in patients unfit for FIr-B/FOx, treated with conventional medical treatments. Consecutive MCRC patients not eligible for FIr-B/FOx regimen due to age (≥75 years) and/or comorbidities were treated with tailored conventional first-line treatments. KRAS codon 12/13 mutations were screened by direct sequencing. Activity and efficacy were evaluated and compared according to medical treatments, age (non-elderly and elderly ≥65 years), comorbidity stage (Cumulative Illness Rating Scale), metastatic extension (liver-limited and other/multiple metastatic), and KRAS genotype, using log-rank. Selected first line treatments were medical in 37 patients (92.5%), and surgical in 3 patients (7.5%). Medical treatment regimens: triplet, 18 (45%); doublet, 15 (37.5%); mono-therapy, 4 (10%). At median follow-up of 8 months, objective response rate (ORR) was 37%, median progression-free survival (PFS) 7 months, liver metastasectomies 8% (liver-limited disease 37.5%), median overall survival (OS) 13 months. Triplet regimens failed to significantly affect clinical outcome, compared to doublet. According to KRAS genotype, ORR, PFS and OS were, respectively: wild-type 50%, 8 months, 13 months; mutant 25%, 6 months, 9 months. KRAS genotype wild-type compared to mutant significantly affected PFS, while not OS. KRAS c.35 G>A mutation (G12D) significantly affected worse PFS and OS compared to wild-type and/or other mutations. KRAS genotype, specifically the c.35 G>A KRAS mutation, may indicate poor prognosis in MCRC patients unfit for intensive medical treatments. PMID:24715238

  9. Anti-EGFR monoclonal antibodies enhance sensitivity to DNA-damaging agents in BRCA1-mutated and PTEN-wild-type triple-negative breast cancer cells.

    PubMed

    El Guerrab, Abderrahim; Bamdad, Mahchid; Bignon, Yves-Jean; Penault-Llorca, Frédérique; Aubel, Corinne

    2017-05-01

    Increased epidermal growth factor receptor (EGFR) expression in triple-negative breast cancer (TNBC) is recognized as a promising therapeutic target, specifically through the use of selective EGFR inhibitors combined with chemotherapies. TNBC is characterized by genetic instability that leads to increased sensitivity to cytotoxic agents. We analyzed the effect of anti-EGFR monoclonal antibodies (mAbs; cetuximab and panitumumab) in combination with chemotherapeutic agents (docetaxel, cisplatin, and epirubicin) on EGFR-expressing TNBC cell lines that have different mutation statuses for one oncogene (KRAS) and two tumor suppressor genes (PTEN and BRCA1). Both mAbs failed to improve the cytotoxic effect of chemotherapies in the KRAS mutant cell line (MDA-MB-231) and PTEN-null cell lines (HCC-1937 and MDA-MB-468). In contrast, mAbs combined with DNA-damaging agents (cisplatin or epirubicin) had a synergistic effect in the BRCA1-mutant cell line SUM-1315 (wild-type KRAS and PTEN). The reintroduction of wild-type BRCA1 into SUM-1315 cells abolished this synergism. The improved effect of combination therapy was associated with cell cycle arrest at G1 phase and inhibition of the phosphorylation of EGFR and ERK1/2 proteins. These results suggest that patients with BRCA1-associated TNBC without genetic alterations in the PTEN and KRAS genes may have improved therapeutic responses to anti-EGFR mAbs combined with DNA-damaging agents. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  10. KRAS discordance between primary and metastatic tumor in patients with metastatic colorectal carcinoma.

    PubMed

    Siyar Ekinci, Ahmet; Demirci, Umut; Cakmak Oksuzoglu, Berna; Ozturk, Ayse; Esbah, Onur; Ozatli, Tahsin; Celik, Burcin; Budakoglu, Burcin; Turker, Ibrahim; Bal, Oznur; Turan, Nedim

    2015-01-01

    Adding targeted therapies to chemotherapy in metastatic colorectal cancer (CRC) improves response rates and survival. KRAS is a predictive indicator for anti-epidermal growth factor receptor (EGFR) treatments. The most important reasons for KRAS discordance are intratumoral heterogeneity and incorrect mutation analysis. Evaluating the status of KRAS in primary and metastatic lesions becomes even more crucial to ensure efficient usage of anti-EGFR treatments. Patients with metastatic CRC, whose primary disease and liver and/or lung metastases were operated, were retrospectively evaluated, and KRAS assessment was performed on 31 patients who were suitable for DNA analysis. Pyrosequencing with polymerase chain reaction (PCR) was used for KRAS analysis. The median age of 31 patients diagnosed with rectal cancer (N=13) and colon cancer (N=18) was 63 years (range 33-73). Metastasectomy locations included the liver (N=27), lung (N=3), and both lung and liver (N=1). KRAS discordance was detected in 22% (7/31) of the patients. While 3 patients with detected discordance had mutated KRAS in the primary material, wild type KRAS was detected in their liver or lung lesions. On the other hand, while 4 patients had wild type KRAS in the primary material, mutated KRAS was determined in their liver or lung lesions. The McNemar test revealed no significant discordance between primary and metastatic disease (p=1.00). No progression free survival (PFS) difference was detected between patients with determined discordance and patients with undetermined discordance (10.6 vs 14.7 months, p=0.719). This is the first study to evaluate KRAS discordance between primary and metastasis in CRC patients, who underwent metastasectomy, together with survival data. In the literature and recent studies with large patient numbers in which modern KRAS tests were used, the KRAS discordance rate varies between 3-12%. In our study, a higher KRAS discordance (22%) was detected, and no survival difference

  11. Mutations of KRAS/NRAS/BRAF predict cetuximab resistance in metastatic colorectal cancer patients

    PubMed Central

    Hsu, Hung-Chih; Thiam, Tan Kien; Lu, Yen-Jung; Yeh, Chien Yuh; Tsai, Wen-Sy; You, Jeng Fu; Hung, Hsin Yuan; Tsai, Chi-Neu; Hsu, An; Chen, Hua-Chien; Chen, Shu-Jen; Yang, Tsai-Sheng

    2016-01-01

    Approximately 45% of metastatic colorectal cancer (mCRC) patients with wild-type KRAS exon 2 are resistant to cetuximab treatment. We set out to identify additional genetic markers that might predict the response to cetuximab treatment. Fifty-three wild-type KRAS exon 2 mCRC patients were treated with cetuximab/irinotecan-based chemotherapy as a first- or third-line therapy. The mutational statuses of 10 EGFR pathway genes were analyzed in primary tumors using next-generation sequencing. BRAF, PIK3CA, KRAS (exons 3 and 4), NRAS, PTEN, and AKT1 mutations were detected in 6, 6, 5, 4, 1, and 1 patient, respectively. Four of the BRAF mutations were non-V600 variants. Four tumors harbored multiple co-existing (complex) mutations. All patients with BRAF mutations or complex mutation patterns were cetuximab non-responders. All patients but one harboring KRAS, NRAS, or BRAF mutations were non-responders. Mutations in any one of these three genes were associated with a poor response rate (7.1%) and reduced survival (PFS = 8.0 months) compared to wild-type patients (74.4% and 11.6 months). Our data suggest that KRAS, NRAS, and BRAF mutations predict response to cetuximab treatment in mCRC patients. PMID:26989027

  12. A comparison of four methods for detecting KRAS mutations in formalin-fixed specimens from metastatic colorectal cancer patients.

    PubMed

    Matsunaga, Mototsugu; Kaneta, Toshikado; Miwa, Keisuke; Ichikawa, Wataru; Fujita, Ken-Ichi; Nagashima, Fumio; Furuse, Junji; Kage, Masayoshi; Akagi, Yoshito; Sasaki, Yasutsuna

    2016-07-01

    There is currently no standard method for the detection of Kirsten rat sarcoma viral oncogene homolog (KRAS) mutation status in colorectal tumors. In the present study, we compared the KRAS mutation detection ability of four methods: direct sequencing, Scorpion-ARMS assaying, pyrosequencing and multi-analyte profiling (Luminex xMAP). We evaluated 73 cases of metastatic colorectal cancer (mCRC) resistant to irinotecan, oxaliplatin and fluoropyrimidine that were enrolled in an all-case study of cetuximab. The KRAS mutation detection capacity of the four analytical methods was compared using DNA samples extracted from tumor tissue, and the detection success rate and concordance of the detection results were evaluated. KRAS mutations were detected by direct sequencing, Scorpion-ARMS assays, pyrosequencing and Luminex xMAP at success rates of 93.2%, 97.3%, 95.9% and 94.5%, respectively. The concordance rates of the detection results by Scorpion-ARMS, pyrosequencing and Luminex xMAP with those of direct sequencing were 0.897, 0.923 and 0.900 (κ statistics), respectively. The direct sequencing method could not determine KRAS mutation status in five DNA samples. Of these, Scorpion-ARMS, pyrosequencing and Luminex xMAP successfully detected three, two and one KRAS mutation statuses, respectively. Three cases demonstrated inconsistent results, whereby Luminex xMAP detected mutated KRAS in two samples while wild-type KRAS was detected by the other methods. In the remaining case, direct sequencing detected wild-type KRAS, which was identified as mutated KRAS by the other methods. In conclusion, we confirmed that Scorpion-ARMS, pyrosequencing and Luminex xMAP were equally reliable in detecting KRAS mutation status in mCRC. However, in rare cases, the KRAS status was differentially diagnosed using these methods.

  13. A comparison of four methods for detecting KRAS mutations in formalin-fixed specimens from metastatic colorectal cancer patients

    PubMed Central

    MATSUNAGA, MOTOTSUGU; KANETA, TOSHIKADO; MIWA, KEISUKE; ICHIKAWA, WATARU; FUJITA, KEN-ICHI; NAGASHIMA, FUMIO; FURUSE, JUNJI; KAGE, MASAYOSHI; AKAGI, YOSHITO; SASAKI, YASUTSUNA

    2016-01-01

    There is currently no standard method for the detection of Kirsten rat sarcoma viral oncogene homolog (KRAS) mutation status in colorectal tumors. In the present study, we compared the KRAS mutation detection ability of four methods: direct sequencing, Scorpion-ARMS assaying, pyrosequencing and multi-analyte profiling (Luminex xMAP). We evaluated 73 cases of metastatic colorectal cancer (mCRC) resistant to irinotecan, oxaliplatin and fluoropyrimidine that were enrolled in an all-case study of cetuximab. The KRAS mutation detection capacity of the four analytical methods was compared using DNA samples extracted from tumor tissue, and the detection success rate and concordance of the detection results were evaluated. KRAS mutations were detected by direct sequencing, Scorpion-ARMS assays, pyrosequencing and Luminex xMAP at success rates of 93.2%, 97.3%, 95.9% and 94.5%, respectively. The concordance rates of the detection results by Scorpion-ARMS, pyrosequencing and Luminex xMAP with those of direct sequencing were 0.897, 0.923 and 0.900 (κ statistics), respectively. The direct sequencing method could not determine KRAS mutation status in five DNA samples. Of these, Scorpion-ARMS, pyrosequencing and Luminex xMAP successfully detected three, two and one KRAS mutation statuses, respectively. Three cases demonstrated inconsistent results, whereby Luminex xMAP detected mutated KRAS in two samples while wild-type KRAS was detected by the other methods. In the remaining case, direct sequencing detected wild-type KRAS, which was identified as mutated KRAS by the other methods. In conclusion, we confirmed that Scorpion-ARMS, pyrosequencing and Luminex xMAP were equally reliable in detecting KRAS mutation status in mCRC. However, in rare cases, the KRAS status was differentially diagnosed using these methods. PMID:27347117

  14. KRAS and BRAF mutation analysis in metastatic colorectal cancer: a cost-effectiveness analysis from a Swiss perspective.

    PubMed

    Blank, Patricia R; Moch, Holger; Szucs, Thomas D; Schwenkglenks, Matthias

    2011-10-01

    Monoclonal antibodies against the epidermal growth factor receptor (EGFR), such as cetuximab, have led to significant clinical benefits for metastatic colorectal cancer (mCRC) patients but have also increased treatment costs considerably. Recent evidence associates KRAS and BRAF mutations with resistance to EGFR antibodies. We assessed the cost-effectiveness of predictive testing for KRAS and BRAF mutations, prior to cetuximab treatment of chemorefractory mCRC patients. A life-long Markov simulation model was used to estimate direct medical costs (€) and clinical effectiveness [quality-adjusted life-years (QALY)] of the following strategies: KRAS testing, KRAS testing with subsequent BRAF testing of KRAS wild-types (KRAS/BRAF), cetuximab treatment without testing. Comparison was against no cetuximab treatment (reference strategy). In the testing strategies, cetuximab treatment was initiated if no mutations were detected. Best supportive care was given to all patients. Survival times/utilities were derived from published randomized clinical trials. Costs were assessed from the perspective of the Swiss health system. Average remaining lifetime costs ranged from €3,983 (no cetuximab) to €38,662 (no testing). Cetuximab treatment guided by KRAS/BRAF achieved gains of 0.491 QALYs compared with the reference strategy. The KRAS testing strategy achieved an additional gain of 0.002 QALYs compared with KRAS/BRAF. KRAS/BRAF testing was the most cost-effective approach when compared with the reference strategy (incremental cost-effectiveness ratio: €62,653/QALY). New predictive tests for KRAS and BRAF status are currently being introduced in pathology. Despite substantial costs of predictive testing, it is economically favorable to identify patients with KRAS and BRAF wild-type status. ©2011 AACR

  15. Analyses of clinicopathological, molecular, and prognostic associations of KRAS codon 61 and codon 146 mutations in colorectal cancer: cohort study and literature review

    PubMed Central

    2014-01-01

    Background KRAS mutations in codons 12 and 13 are established predictive biomarkers for anti-EGFR therapy in colorectal cancer. Previous studies suggest that KRAS codon 61 and 146 mutations may also predict resistance to anti-EGFR therapy in colorectal cancer. However, clinicopathological, molecular, and prognostic features of colorectal carcinoma with KRAS codon 61 or 146 mutation remain unclear. Methods We utilized a molecular pathological epidemiology database of 1267 colon and rectal cancers in the Nurse’s Health Study and the Health Professionals Follow-up Study. We examined KRAS mutations in codons 12, 13, 61 and 146 (assessed by pyrosequencing), in relation to clinicopathological features, and tumor molecular markers, including BRAF and PIK3CA mutations, CpG island methylator phenotype (CIMP), LINE-1 methylation, and microsatellite instability (MSI). Survival analyses were performed in 1067 BRAF-wild-type cancers to avoid confounding by BRAF mutation. Cox proportional hazards models were used to compute mortality hazard ratio, adjusting for potential confounders, including disease stage, PIK3CA mutation, CIMP, LINE-1 hypomethylation, and MSI. Results KRAS codon 61 mutations were detected in 19 cases (1.5%), and codon 146 mutations in 40 cases (3.2%). Overall KRAS mutation prevalence in colorectal cancers was 40% (=505/1267). Of interest, compared to KRAS-wild-type, overall, KRAS-mutated cancers more frequently exhibited cecal location (24% vs. 12% in KRAS-wild-type; P < 0.0001), CIMP-low (49% vs. 32% in KRAS-wild-type; P < 0.0001), and PIK3CA mutations (24% vs. 11% in KRAS-wild-type; P < 0.0001). These trends were evident irrespective of mutated codon, though statistical power was limited for codon 61 mutants. Neither KRAS codon 61 nor codon 146 mutation was significantly associated with clinical outcome or prognosis in univariate or multivariate analysis [colorectal cancer-specific mortality hazard ratio (HR) = 0.81, 95% confidence

  16. Analyses of clinicopathological, molecular, and prognostic associations of KRAS codon 61 and codon 146 mutations in colorectal cancer: cohort study and literature review.

    PubMed

    Imamura, Yu; Lochhead, Paul; Yamauchi, Mai; Kuchiba, Aya; Qian, Zhi Rong; Liao, Xiaoyun; Nishihara, Reiko; Jung, Seungyoun; Wu, Kana; Nosho, Katsuhiko; Wang, Yaoyu E; Peng, Shouyong; Bass, Adam J; Haigis, Kevin M; Meyerhardt, Jeffrey A; Chan, Andrew T; Fuchs, Charles S; Ogino, Shuji

    2014-05-31

    KRAS mutations in codons 12 and 13 are established predictive biomarkers for anti-EGFR therapy in colorectal cancer. Previous studies suggest that KRAS codon 61 and 146 mutations may also predict resistance to anti-EGFR therapy in colorectal cancer. However, clinicopathological, molecular, and prognostic features of colorectal carcinoma with KRAS codon 61 or 146 mutation remain unclear. We utilized a molecular pathological epidemiology database of 1267 colon and rectal cancers in the Nurse's Health Study and the Health Professionals Follow-up Study. We examined KRAS mutations in codons 12, 13, 61 and 146 (assessed by pyrosequencing), in relation to clinicopathological features, and tumor molecular markers, including BRAF and PIK3CA mutations, CpG island methylator phenotype (CIMP), LINE-1 methylation, and microsatellite instability (MSI). Survival analyses were performed in 1067 BRAF-wild-type cancers to avoid confounding by BRAF mutation. Cox proportional hazards models were used to compute mortality hazard ratio, adjusting for potential confounders, including disease stage, PIK3CA mutation, CIMP, LINE-1 hypomethylation, and MSI. KRAS codon 61 mutations were detected in 19 cases (1.5%), and codon 146 mutations in 40 cases (3.2%). Overall KRAS mutation prevalence in colorectal cancers was 40% (=505/1267). Of interest, compared to KRAS-wild-type, overall, KRAS-mutated cancers more frequently exhibited cecal location (24% vs. 12% in KRAS-wild-type; P < 0.0001), CIMP-low (49% vs. 32% in KRAS-wild-type; P < 0.0001), and PIK3CA mutations (24% vs. 11% in KRAS-wild-type; P < 0.0001). These trends were evident irrespective of mutated codon, though statistical power was limited for codon 61 mutants. Neither KRAS codon 61 nor codon 146 mutation was significantly associated with clinical outcome or prognosis in univariate or multivariate analysis [colorectal cancer-specific mortality hazard ratio (HR) = 0.81, 95% confidence interval (CI) = 0.29-2.26 for

  17. Associations of anthropometric factors with KRAS and BRAF mutation status of primary colorectal cancer in men and women: a cohort study.

    PubMed

    Brändstedt, Jenny; Wangefjord, Sakarias; Nodin, Björn; Eberhard, Jakob; Sundström, Magnus; Manjer, Jonas; Jirström, Karin

    2014-01-01

    Obesity is a well-established risk factor for colorectal cancer (CRC), and accumulating evidence suggests a differential influence of sex and anthropometric factors on the molecular carcinogenesis of the disease. The aim of the present study was to investigate the relationship between height, weight, bodyfat percentage, waist- and hip circumference, waist-hip ratio (WHR), body mass index (BMI) and CRC risk according to KRAS and BRAF mutation status of the tumours, with particular reference to potential sex differences. KRAS and BRAF mutations were analysed by pyrosequencing in tumours from 494 incident CRC cases in the Malmö Diet and Cancer Study. Hazard ratios of CRC risk according to anthropometric factors and mutation status were calculated using multivariate Cox regression models. While all anthropometric measures except height were associated with an increased risk of KRAS-mutated tumours, only BMI was associated with an increased risk of KRAS wild type tumours overall. High weight, hip, waist, WHR and BMI were associated with an increased risk of BRAF wild type tumours, but none of the anthropometric factors were associated with risk of BRAF-mutated CRC, neither in the overall nor in the sex-stratified analysis. In men, several anthropometric measures were associated with both KRAS-mutated and KRAS wild type tumours. In women, only a high WHR was significantly associated with an increased risk of KRAS-mutated CRC. A significant interaction was found between sex and BMI with respect to risk of KRAS-mutated tumours. In men, all anthropometric factors except height were associated with an increased risk of BRAF wild type tumours, whereas in women, only bodyfat percentage was associated with an increased risk of BRAF wild type tumours. The results from this prospective cohort study further support an influence of sex and lifestyle factors on different pathways of colorectal carcinogenesis, defined by KRAS and BRAF mutation status of the tumours.

  18. KRAS and BRAF mutational status in primary colorectal tumors and related metastatic sites: biological and clinical implications.

    PubMed

    Italiano, Antoine; Hostein, Isabelle; Soubeyran, Isabelle; Fabas, Thibault; Benchimol, Daniel; Evrard, Serge; Gugenheim, Jean; Becouarn, Yves; Brunet, René; Fonck, Marianne; François, Eric; Saint-Paul, Marie-Christine; Pedeutour, Florence

    2010-05-01

    KRAS and BRAF mutations in primary colorectal tumors (PT) are predictive of nonresponse to anti-epidermal growth factor receptor (EGFR) antibodies in patients with metastatic colorectal cancer (mCRC). The question of primary resistance to anti-EGFR treatment as a result of the presence of KRAS or BRAF mutations only in metastases has been raised but not resolved. We analyzed the mutational status of KRAS and BRAF in 64 new patients with mCRC and performed a systematic review of published data from 285 patients. A total of 285 and 95 matched PT/metastases were available for the analysis of the KRAS and the BRAF status, respectively. An identical mutational pattern of KRAS in PT and the matching metastases were reported in all the cases but 14 (5%). In six cases (2%), KRAS was mutated in the PT and wild type in the metastatic site, whereas in eight cases (3%), KRAS was wild type in the PT and mutated in the metastatic site. An identical mutational pattern of BRAF in PT and the matching metastases was reported in all but two cases (3%). In one case (1.5%), BRAF was mutated in the PT and wild type in the metastatic site, whereas in one case (1.5%), BRAF was wild type in the PT and mutated in the metastatic site. The acquisition by metastases of a KRAS or a BRAF mutation that was not present in the PT is a rare event, occurring in 5% of cases of mCRC. This is not a frequent mechanism of primary resistance to anti-EGFR treatments in mCRC.

  19. Methionyl-tRNA synthetase overexpression is associated with poor clinical outcomes in non-small cell lung cancer.

    PubMed

    Kim, Eun Young; Jung, Ji Ye; Kim, Arum; Kim, Kwangsoo; Chang, Yoon Soo

    2017-07-05

    Methionyl-tRNA synthetase (MRS) plays a critical role in initiating translation by transferring Met to the initiator tRNA (tRNAi(Met)) and protection against ROS-mediated damage, suggesting that its overexpression is related to cancer growth and drug resistance. In this study, the clinical implication of MRS expression in non-small cell lung cancer (NSCLC) was evaluated. Immunoblot and immunohistochemical (IHC) analyses were performed using tissue lysates and formalin-fixed paraffin embedded (FFPE) tissue blocks from wild type C57BL/6, LSL-Kras G12D, and LSL-Kras G12D:p53(fl/fl) mice. For human studies, 12 paired adjacent normal appearing lung tissue lysates and cancer tissue lysates, in addition to 231 FFPE tissue samples, were used. MRS was weakly expressed in the spleen and intestinal epithelium and only marginally expressed in the kidney, liver, and lungs of wild type C57BL/6 mice. On the other hand, MRS was strongly expressed in the neoplastic region of lung tissue from LSL-Kras G12D and LSL-Kras G12D:p53(fl/fl) mice. Immunoblot analysis of the human normal appearing adjacent and lung cancer paired tissue lysates revealed cancer-specific MRS overexpression, which was related to mTORC1 activity. IHC analysis of the 231 FFPE lung cancer tissue samples showed that MRS expression was frequently detected in the cytoplasm of lung cancer cells (179 out of 231, 77.4%), with a small proportion (73 out of 231, 31.6%) also showing nuclear expression. The proportion of cases with positive MRS expression was higher in the advanced pStage subgroup (P = 0.018, χ(2)-test) and cases with MRS expression also had shorter DFS (161.6 vs 142.3, P = 0.014, log-rank test). Taken together, MRS is frequently overexpressed in NSCLC. Moreover, MRS is related to mTORC1 activity and its overexpression is associated with poor clinical outcomes, indicating that it has potential as a putative therapeutic target.

  20. [Clinical relevance of the K-ras oncogene in colorectal cancer: experience in a Mexican population].

    PubMed

    Cabrera-Mendoza, F; Gainza-Lagunes, S; Castañeda-Andrade, I; Castro-Zárate, A

    2014-01-01

    Colorectal cancer is frequent in the developed countries, with a cancer-specific mortality rate of 33%. Different biomarkers are associated with overall survival and the prediction of monoclonal treatment effectiveness. The presence of mutations in the K-ras oncogene alters the response to target therapy with cetuximab and could be an independent prognostic factor. To analyze the difference in survival between patients with mutated K-ras and those with K-ras wild-type status. Thirty-one clinical records were retrospectively analyzed of patients presenting with colorectal cancer that underwent K-ras sequencing through real-time polymerase chain reaction within the time frame of 2009 to 2012 at the Hospital de Alta Especialidad de Veracruz of the Instituto para la Salud y Seguridad Social de los Trabajadores del Estado (HAEV-ISSSTE). Survival analysis for patients with and without K-ras mutation was performed using the Kaplan Meier method. Contrast of covariates was performed using logarithmic transformations. No statistically significant difference was found in relation to survival in the patients with mutated K-ras vs. those with K-ras wild-type (P=.416), nor were significant differences found when analyzing the covariants and survival in the patients with mutated K-ras: ECOG scale (P=.221); age (less than, equal to or greater than 65years, P=.441); clinical stage according to the AJCC (P=.057), and primary lesion site (P=.614). No relation was found between the K-ras oncogene mutation and reduced survival, in contrast to what has been established in the international medical literature. Further studies that include both a larger number of patients and those receiving monoclonal treatment, need to be conducted. There were only 5 patients in the present study that received cetuximab, resulting in a misleading analysis. Copyright © 2013 Asociación Mexicana de Gastroenterología. Published by Masson Doyma México S.A. All rights reserved.

  1. Epidemiological study of HER-2 mutations among EGFR wild-type lung adenocarcinoma patients in China.

    PubMed

    Li, Xuefei; Zhao, Chao; Su, Chunxia; Ren, Shengxiang; Chen, Xiaoxia; Zhou, Caicun

    2016-10-28

    Human epidermal growth factor receptor (HER)-2 is a driver gene in non-small cell lung cancer (NSCLC). The present study evaluated the mutation rate of HER-2 within the wild-type epidermal growth factor receptor (EGFR) lung adenocarcinoma population in China. Formalin-fixed, paraffin-embedded samples from 456 patients with wild-type EGFR lung adenocarcinoma were analyzed for HER-2 mutations by amplification-refractory mutation system (ARMS), and HER-2 protein expression was evaluated by immunohistochemistry. All samples positive for HER-2 mutation underwent direct sequencing for further verification. HER-2 mutation was detected in 22/456 cases (4.8 %); the rate was 6.7 % among 331 triple-negative samples (i.e., wild-type EGFR, anaplastic lymphoma kinase, and ROS proto-oncogene 1). Direct sequencing confirmed that the results were consistent with those obtained by ARMS analysis in 19 cases. The positive rate was 15.4 % by immunohistochemical analysis of HER-2 expression; this was not correlated with mutation rate. HER-2 mutation and positivity were not correlated with gender, age, smoking status, disease stage, or histological subtype. The 22 cases of HER-2 mutations occurred only in acinar (36.4 %), papillary (36.4 %), minimally invasive (13.6 %), solid (9.2 %), and invasive mucinous (4.5 %) subtypes. Disease-free and overall survival were not associated with HER-2 mutation or HER-2 protein overexpression. The HER-2 mutation rate was 4.8 % among EGFR wild-type lung adenocarcinoma patients in China, and 6.7 % among driver genes, triple-negative lung adenocarcinoma. The incidence of HER-2 mutation varied among different lung adenocarcinoma subtypes, occurring mainly in acinar and papillary predominant subtypes. 15.4 % of EGFR wild-type lung adenocarcinoma patients showed HER-2 protein overexpression, but this was not correlated to HER-2 mutation. Existing follow-up data did not show a correlation between HER-2 mutation with DFS or OS.

  2. Knockdown of Oncogenic KRAS in Non-Small Cell Lung Cancers Suppresses Tumor Growth and Sensitizes Tumor Cells to Targeted Therapy

    PubMed Central

    Sunaga, Noriaki; Shames, David S.; Girard, Luc; Peyton, Michael; Larsen, Jill E.; Imai, Hisao; Soh, Junichi; Sato, Mitsuo; Yanagitani, Noriko; Kaira, Kyoichi; Xie, Yang; Gazdar, Adi F.; Mori, Masatomo; Minna, John D.

    2011-01-01

    Oncogenic KRAS is found in >25% of lung adenocarcinomas, the major histologic subtype of non-small cell lung cancer (NSCLC), and is an important target for drug development. To this end, we generated four NSCLC lines with stable knockdown selective for oncogenic KRAS. As expected, stable knockdown of oncogenic KRAS led to inhibition of in vitro and in vivo tumor growth in the KRAS mutant NSCLC cells, but not in NSCLC cells that have wild-type KRAS (but mutant NRAS). Surprisingly, we did not see large-scale induction of cell death and the growth inhibitory effect was not complete. To further understand the ability of NSCLCs to grow despite selective removal of mutant KRAS expression, we performed microarray expression profiling of NSCLC cell lines with or without mutant KRAS knockdown and isogenic human bronchial epithelial cell lines (HBECs) with and without oncogenic KRAS. We found that while the MAPK pathway is significantly down-regulated after mutant KRAS knockdown, these NSCLCs showed increased levels of phospho-STAT3 and phospho-EGFR, and variable changes in phospho-Akt. In addition, mutant KRAS knockdown sensitized the NSCLCs to p38 and EGFR inhibitors. Our findings suggest that targeting oncogenic KRAS by itself will not be sufficient treatment but may offer possibilities of combining anti-KRAS strategies with other targeted drugs. PMID:21306997

  3. Knockdown of oncogenic KRAS in non-small cell lung cancers suppresses tumor growth and sensitizes tumor cells to targeted therapy.

    PubMed

    Sunaga, Noriaki; Shames, David S; Girard, Luc; Peyton, Michael; Larsen, Jill E; Imai, Hisao; Soh, Junichi; Sato, Mitsuo; Yanagitani, Noriko; Kaira, Kyoichi; Xie, Yang; Gazdar, Adi F; Mori, Masatomo; Minna, John D

    2011-02-01

    Oncogenic KRAS is found in more than 25% of lung adenocarcinomas, the major histologic subtype of non-small cell lung cancer (NSCLC), and is an important target for drug development. To this end, we generated four NSCLC lines with stable knockdown selective for oncogenic KRAS. As expected, stable knockdown of oncogenic KRAS led to inhibition of in vitro and in vivo tumor growth in the KRAS-mutant NSCLC cells, but not in NSCLC cells that have wild-type KRAS (but mutant NRAS). Surprisingly, we did not see large-scale induction of cell death and the growth inhibitory effect was not complete. To further understand the ability of NSCLCs to grow despite selective removal of mutant KRAS expression, we conducted microarray expression profiling of NSCLC cell lines with or without mutant KRAS knockdown and isogenic human bronchial epithelial cell lines with and without oncogenic KRAS. We found that although the mitogen-activated protein kinase pathway is significantly downregulated after mutant KRAS knockdown, these NSCLCs showed increased levels of phospho-STAT3 and phospho-epidermal growth factor receptor, and variable changes in phospho-Akt. In addition, mutant KRAS knockdown sensitized the NSCLCs to p38 and EGFR inhibitors. Our findings suggest that targeting oncogenic KRAS by itself will not be sufficient treatment, but may offer possibilities of combining anti-KRAS strategies with other targeted drugs.

  4. Nicotine promotes initiation and progression of KRAS-induced pancreatic cancer via Gata6-dependent dedifferentiation of acinar cells in mice.

    PubMed

    Hermann, Patrick C; Sancho, Patricia; Cañamero, Marta; Martinelli, Paola; Madriles, Francesc; Michl, Patrick; Gress, Thomas; de Pascual, Ricardo; Gandia, Luis; Guerra, Carmen; Barbacid, Mariano; Wagner, Martin; Vieira, Catarina R; Aicher, Alexandra; Real, Francisco X; Sainz, Bruno; Heeschen, Christopher

    2014-11-01

    Although smoking is a leading risk factor for pancreatic ductal adenocarcinoma (PDAC), little is known about the mechanisms by which smoking promotes initiation or progression of PDAC. We studied the effects of nicotine administration on pancreatic cancer development in Kras(+/LSLG12Vgeo);Elas-tTA/tetO-Cre (Ela-KRAS) mice, Kras(+/LSLG12D);Trp53+/LSLR172H;Pdx-1-Cre (KPC) mice (which express constitutively active forms of KRAS), and C57/B6 mice. Mice were given nicotine for up to 86 weeks to produce blood levels comparable with those of intermediate smokers. Pancreatic tissues were collected and analyzed by immunohistochemistry and reverse transcriptase polymerase chain reaction; cells were isolated and assayed for colony and sphere formation and gene expression. The effects of nicotine were also evaluated in primary pancreatic acinar cells isolated from wild-type, nAChR7a(-/-), Trp53(-/-), and Gata6(-/-);Trp53(-/-) mice. We also analyzed primary PDAC cells that overexpressed GATA6 from lentiviral expression vectors. Administration of nicotine accelerated transformation of pancreatic cells and tumor formation in Ela-KRAS and KPC mice. Nicotine induced dedifferentiation of acinar cells by activating AKT-ERK-MYC signaling; this led to inhibition of Gata6 promoter activity, loss of GATA6 protein, and subsequent loss of acinar differentiation and hyperactivation of oncogenic KRAS. Nicotine also promoted aggressiveness of established tumors as well as the epithelial-mesenchymal transition, increasing numbers of circulating cancer cells and their dissemination to the liver, compared with mice not exposed to nicotine. Nicotine induced pancreatic cells to acquire gene expression patterns and functional characteristics of cancer stem cells. These effects were markedly attenuated in K-Ras(+/LSL-G12D);Trp53(+/LSLR172H);Pdx-1-Cre mice given metformin. Metformin prevented nicotine-induced pancreatic carcinogenesis and tumor growth by up-regulating GATA6 and promoting

  5. Bevacizumab plus chemotherapy continued beyond first progression in patients with metastatic colorectal cancer previously treated with bevacizumab plus chemotherapy: ML18147 study KRAS subgroup findings.

    PubMed

    Kubicka, S; Greil, R; André, T; Bennouna, J; Sastre, J; Van Cutsem, E; von Moos, R; Osterlund, P; Reyes-Rivera, I; Müller, T; Makrutzki, M; Arnold, D

    2013-09-01

    ML18147 evaluated continued bevacizumab with second-line chemotherapy for patients with metastatic colorectal cancer (mCRC) progressing after the standard first-line bevacizumab-containing therapy. Evaluating outcomes according to tumor Kirsten rat sarcoma virus oncogene (KRAS) status was an exploratory analysis. KRAS data were collected from local laboratories (using their established methods) and/or from a central laboratory (mutation-specific Scorpion amplification-refractory mutation system). No adjustment was made for multiplicity; analyses were not powered to detect statistically significant differences. Of 820 patients, 616 (75%) had unambiguous KRAS data; 316 (51%) had KRAS wild-type tumors and 300 (49%) had mutant KRAS tumors. The median progression-free survival (PFS) was 6.4 months for bevacizumab plus chemotherapy and 4.5 months for chemotherapy [P < 0.0001; HR = 0.61; 95% confidence interval (CI): 0.49-0.77] for wild-type KRAS and 5.5 and 4.1 months, respectively (P = 0.0027; HR = 0.70; 95% CI: 0.56-0.89) for mutant KRAS. The median overall survival (OS) was 15.4 and 11.1 months, respectively (P = 0.0052; HR = 0.69; 95% CI: 0.53-0.90) for wild-type KRAS and 10.4 versus 10.0 months, respectively (P = 0.4969; HR = 0.92; 95% CI: 0.71-1.18) for mutant KRAS. In both analyses, no treatment interaction by KRAS status was observed (PFS, P = 0.4436; OS, P = 0.1266). Bevacizumab beyond first progression represents an option for patients with mCRC treated with bevacizumab plus standard first-line chemotherapy, independent of KRAS status.

  6. Metastatic colorectal cancer first-line treatment with bevacizumab: the impact of K-ras mutation.

    PubMed

    Rossi, Luigi; Veltri, Enzo; Zullo, Angelo; Zoratto, Federica; Colonna, Maria; Longo, Flavia; Mottolese, Marcella; Giannarelli, Diana; Ruco, Luigi; Marchetti, Paolo; Romiti, Adriana; Barucca, Viola; Giannini, Giuseppe; Bianchi, Loredana; Tomao, Silverio

    2013-01-01

    Bevacizumab plus chemotherapy prolongs progression-free survival (PFS) and overall survival (OS) in metastatic colorectal cancer (mCRC). Although there is strong evidence to suggest that the mutational status of the K-ras oncogene has a role as a predictive factor for activity in patients treated with cetuximab and panitumumab, few data have been obtained in patients treated with bevacizumab. We conducted an additional retrospective analysis to investigate the prognostic value of K-ras mutation relative to mCRC first-line treatment with bevacizumab. A total of 108 patients were retrospectively reviewed. K-ras status was assessed in the overall population by sequencing. Statistical association for PFS and OS was analyzed using the Kaplan-Meier method, and the prognostic role of K-ras was determined using the logrank test. Median PFS was 10 months both for patients with wild-type (WT) K-ras and mutated (MT) K-ras (hazard ratio [HR] 0.94, P=0.75); neither difference in median OS was significant (27 months WT K-ras versus 26 months MT K-ras, HR 0.92; P=0.70). A further analysis was carried out in the two groups according to metastatic sites. No statistically significant difference in terms of PFS and OS was demonstrated between WT K-ras and MT K-ras with liver metastases only and in those with extrahepatic disease. Although further study is required, our results seem to confirm that K-ras mutation does not have a prognostic role in mCRC patients receiving first-line treatment with bevacizumab.

  7. Functional signaling pathway analysis of lung adenocarcinomas identifies novel therapeutic targets for KRAS mutant tumors

    PubMed Central

    Baldelli, Elisa; Bellezza, Guido; Haura, Eric B.; Crinó, Lucio; Cress, W. Douglas; Deng, Jianghong; Ludovini, Vienna; Sidoni, Angelo; Schabath, Matthew B.; Puma, Francesco; Vannucci, Jacopo; Siggillino, Annamaria; Liotta, Lance A.; Petricoin, Emanuel F.; Pierobon, Mariaelena

    2015-01-01

    Little is known about the complex signaling architecture of KRAS and the interconnected RAS-driven protein-protein interactions, especially as it occurs in human clinical specimens. This study explored the activated and interconnected signaling network of KRAS mutant lung adenocarcinomas (AD) to identify novel therapeutic targets. Thirty-four KRAS mutant (MT) and twenty-four KRAS wild-type (WT) frozen biospecimens were obtained from surgically treated lung ADs. Samples were subjected to laser capture microdissection and reverse phase protein microarray analysis to explore the expression/activation levels of 150 signaling proteins along with co-activation concordance mapping. An independent set of 90 non-small cell lung cancers (NSCLC) was used to validate selected findings by immunohistochemistry (IHC). Compared to KRAS WT tumors, the signaling architecture of KRAS MT ADs revealed significant interactions between KRAS downstream substrates, the AKT/mTOR pathway, and a number of Receptor Tyrosine Kinases (RTK). Approximately one-third of the KRAS MT tumors had ERK activation greater than the WT counterpart (p<0.01). Notably 18% of the KRAS MT tumors had elevated activation of the Estrogen Receptor alpha (ER-α) (p=0.02). This finding was verified in an independent population by IHC (p=0.03). KRAS MT lung ADs appear to have a more intricate RAS linked signaling network than WT tumors with linkage to many RTKs and to the AKT-mTOR pathway. Combination therapy targeting different nodes of this network may be necessary to treat this group of patients. In addition, for patients with KRAS MT tumors and activation of the ER-α, anti-estrogen therapy may have important clinical implications. PMID:26468985

  8. KRAS Testing and Epidermal Growth Factor Receptor Inhibitor Treatment for Colorectal Cancer in Community Settings

    PubMed Central

    Webster, Jennifer; Kauffman, Tia L.; Feigelson, Heather Spencer; Pawloski, Pamala A.; Onitilo, Adedayo A.; Potosky, Arnold L.; Cross, Deanna; Meier, Paul R.; Mirabedi, Anousheh S.; Delate, Thomas; Daida, Yihe; Williams, Andrew E.; Alexander, Gwen L.; McCarty, Catherine A.; Honda, Stacey; Kushi, Lawrence H.; Goddard, Katrina A.B.

    2013-01-01

    Background In metastatic colorectal cancer (mCRC), mutations in the KRAS gene predict poor response to epidermal growth factor receptor (EGFR) inhibitors. Clinical treatment guidelines now recommend KRAS testing if EGFR inhibitors are considered. Our study investigates the clinical uptake and utilization of KRAS testing. Methods We included 1,188 patients with mCRC diagnosed from 2004 to 2009, from seven integrated health care delivery systems with a combined membership of 5.5 million. We used electronic medical records and targeted manual chart review to capture the complexity and breadth of real-world clinical oncology care. Results Overall, 428 patients (36%) received KRAS testing during their clinical care, and 266 (22%) were treated with EGFR inhibitors. Age at diagnosis (p=0.0034), comorbid conditions (p=0.0316), and survival time from diagnosis (p<0.0001) influence KRAS testing and EGFR inhibitor prescribing. The proportion who received KRAS testing increased from 7% to 97% for those treated in 2006 and 2010, respectively, and 83% of all treated patients had a KRAS wild type genotype. Most patients with a KRAS mutation (86%) were not treated with EGFR inhibitors. The interval between mCRC diagnosis and receipt of KRAS testing decreased from 26 months (2006) to 10 months (2009). Conclusions These findings demonstrate rapid uptake and incorporation of this predictive biomarker into clinical oncology care. Impact In this delivery setting, KRAS testing is widely used to guide treatment decisions with EGFR inhibitors in patients with mCRC. An important future research goal is to evaluate utilization of KRAS testing in other delivery settings in the US. PMID:23155138

  9. Wild type but not mutant APP is involved in protective adaptive responses against oxidants.

    PubMed

    Cenini, Giovanna; Maccarinelli, Giuseppina; Lanni, Cristina; Bonini, Sara Anna; Ferrari-Toninelli, Giulia; Govoni, Stefano; Racchi, Marco; Butterfield, David Allan; Memo, Maurizio; Uberti, Daniela

    2010-06-01

    This study points out different behaviour between HEK cells overexpressing wild-type or mutant APP when exposed to oxidative insult. Although apparently both APPwt and APPmut overexpression conferred resistance to oxidative insult, some differences in terms of degree of protection was observed in the two clones. We found that the two clones differed, especially, in terms of redox profile. HEK-APPmut cells were characterized by higher levels of oxidative markers in comparison with HEK-APPwt. In addition, SOD activity appeared more efficient in HEK-APPwt than in HEK-APPmut, thus justifying the differences in terms of cell survival in the two clones. We suggest that, according to "hormesis theory", in HEK-APPwt cells low amount of oxidative stress can exert a beneficial effect that at a higher intensity results harmful. In contrast, HEK-APPmut cells lost this stress resistance probably because the degree of oxidative stress is too high and the antioxidant enzymes are themselves compromised.

  10. Novel Methodology for Rapid Detection of KRAS Mutation Using PNA-LNA Mediated Loop-Mediated Isothermal Amplification

    PubMed Central

    Warigaya, Kenji; Tamura, Takaaki; Shimizu, Yuki; Fujimoto, Masakazu; Kojima, Fumiyoshi; Ichinose, Masao; Murata, Shin-ichi

    2016-01-01

    Detecting point mutation of human cancer cells quickly and accurately is gaining in importance for pathological diagnosis and choice of therapeutic approach. In the present study, we present novel methodology, peptide nucleic acid—locked nucleic acid mediated loop-mediated isothermal amplification (PNA-LNA mediated LAMP), for rapid detection of KRAS mutation using advantages of both artificial DNA and LAMP. PNA-LNA mediated LAMP reactions occurred under isothermal temperature conditions of with 4 primary primers set for the target regions on the KRAS gene, clamping PNA probe that was complimentary to the wild type sequence and LNA primers complementary to the mutated sequences. PNA-LNA mediated LAMP was applied for cDNA from 4 kinds of pancreatic carcinoma cell lines with or without KRAS point mutation. The amplified DNA products were verified by naked-eye as well as a real-time PCR equipment. By PNA-LNA mediated LAMP, amplification of wild type KRAS DNA was blocked by clamping PNA probe, whereas, mutant type KRAS DNA was significantly amplified within 50 min. Mutant alleles could be detected in samples which diluted until 0.1% of mutant-to-wild type ratio. On the other hand, mutant alleles could be reproducibly with a mutant-to-wild type ratio of 30% by direct sequencing and of 1% by PNA-clamping PCR. The limit of detection (LOD) of PNA-LNA mediated LAMP was much lower than the other conventional methods. Competition of LNA clamping primers complementary to two different subtypes (G12D and G12V) of mutant KRAS gene indicated different amplification time depend on subtypes of mutant cDNA. PNA-LNA mediated LAMP is a simple, rapid, specific and sensitive methodology for the detection of KRAS mutation. PMID:26999437

  11. Novel Methodology for Rapid Detection of KRAS Mutation Using PNA-LNA Mediated Loop-Mediated Isothermal Amplification.

    PubMed

    Itonaga, Masahiro; Matsuzaki, Ibu; Warigaya, Kenji; Tamura, Takaaki; Shimizu, Yuki; Fujimoto, Masakazu; Kojima, Fumiyoshi; Ichinose, Masao; Murata, Shin-Ichi

    2016-01-01

    Detecting point mutation of human cancer cells quickly and accurately is gaining in importance for pathological diagnosis and choice of therapeutic approach. In the present study, we present novel methodology, peptide nucleic acid-locked nucleic acid mediated loop-mediated isothermal amplification (PNA-LNA mediated LAMP), for rapid detection of KRAS mutation using advantages of both artificial DNA and LAMP. PNA-LNA mediated LAMP reactions occurred under isothermal temperature conditions of with 4 primary primers set for the target regions on the KRAS gene, clamping PNA probe that was complimentary to the wild type sequence and LNA primers complementary to the mutated sequences. PNA-LNA mediated LAMP was applied for cDNA from 4 kinds of pancreatic carcinoma cell lines with or without KRAS point mutation. The amplified DNA products were verified by naked-eye as well as a real-time PCR equipment. By PNA-LNA mediated LAMP, amplification of wild type KRAS DNA was blocked by clamping PNA probe, whereas, mutant type KRAS DNA was significantly amplified within 50 min. Mutant alleles could be detected in samples which diluted until 0.1% of mutant-to-wild type ratio. On the other hand, mutant alleles could be reproducibly with a mutant-to-wild type ratio of 30% by direct sequencing and of 1% by PNA-clamping PCR. The limit of detection (LOD) of PNA-LNA mediated LAMP was much lower than the other conventional methods. Competition of LNA clamping primers complementary to two different subtypes (G12D and G12V) of mutant KRAS gene indicated different amplification time depend on subtypes of mutant cDNA. PNA-LNA mediated LAMP is a simple, rapid, specific and sensitive methodology for the detection of KRAS mutation.

  12. Picoliter droplet-based digital peptide nucleic acid clamp PCR and dielectric sorting for low abundant K-ras mutations

    NASA Astrophysics Data System (ADS)

    Zhang, Huidan; Sperling, Ralph; Rotem, Assaf; Shan, Lianfeng; Heyman, John; Zhang, Yizhe; Weitz, David

    2012-02-01

    Colorectal cancer (CRC) remains the second leading cause of cancer-related mortality in the US, and the 5-year survival of metastatic CRC (mCRC) is less than 10%. Although monoclonal antibodies against epidermal growth factor receptor (EGFR) provide incremental improvements in survival, approximately 40% of mCRC patients with activating KRAS mutations won't benefit from this therapy. Peptide nucleic acid (PNA), a synthetic non-extendable oligonucleotides, can bind strongly to completely complementary wild-type KRAS by Watson-Crick base pairing and suppress its amplification during PCR, while any mutant allele will show unhindered amplification. The method is particularly suitable for the simultaneously detection of several adjoining mutant sites, just as mutations of codons 12 and 13 of KRAS gene where there are totally 12 possible mutation types. In this work, we describe the development and validation of this method, based on the droplet-based digital PCR. Using a microfluidic system, single target DNA molecule is compartmentalized in microdroplets together with PNA specific for wild-type KRAS, thermocycled and the fluorescence of each droplet was detected, followed by sorting and sequencing. It enables the precise determination of all possible mutant KRAS simultaneously, and the precise quantification of a single mutated KRAS in excess background unmutated KRAS.

  13. KRAS mutations affect prognosis of non-small-cell lung cancer patients treated with first-line platinum containing chemotherapy

    PubMed Central

    Garassino, Marina C.; Shepherd, Frances A.; Piva, Sheila; Caiola, Elisa; Macerelli, Marianna; Bettini, Anna; Lauricella, Calogero; Floriani, Irene; Farina, Gabriella; Longo, Flavia; Bonomi, Lucia; Fabbri, M. Agnese; Veronese, Silvio; Marsoni, Silvia; Broggini, Massimo; Rulli, Eliana

    2015-01-01

    KRAS mutations seem to indicate a poor outcome in Non-Small-Cell Lung Cancer (NSCLC) but such evidence is still debated. The aim of this planned ancillary study within the TAILOR trial was to assess the prognostic value of KRAS mutations in advanced NSCLC patients treated with platinum-based first-line chemotherapy. Patients (N = 540), enrolled in the study in 52 Italian hospitals, were centrally genotyped twice in two independent laboratories for EGFR and KRAS mutational status. Of these, 247 patients were eligible and included in the present study. The primary endpoint was overall survival (OS) according to KRAS mutational status in patients harboring EGFR wild-type. Sixty (24.3%) out of 247 patients harbored KRAS mutations. Median OS was 14.3 months and 10.6 months in wild-type and mutated KRAS patients, respectively (unadjusted Hazard Ratio [HR]=1.41, 95%Confidence Interval [CI]: 1.03-1.94 P = 0.032; adjusted HR=1.39, 95%CI: 1.00-1.94 P = 0.050). This study, with all consecutive patients genotyped, indicates that the presence of KRAS mutations has a mild negative impact on OS in advanced NSCLC patient treated with a first-line platinum-containing regimen. Trial Registration: clinicaltrials.gov identifier NCT00637910 PMID:26416458

  14. Circular RNAs are down-regulated in KRAS mutant colon cancer cells and can be transferred to exosomes

    PubMed Central

    Dou, Yongchao; Cha, Diana J.; Franklin, Jeffrey L.; Higginbotham, James N.; Jeppesen, Dennis K.; Weaver, Alissa M.; Prasad, Nripesh; Levy, Shawn; Coffey, Robert J.; Patton, James G.; Zhang, Bing

    2016-01-01

    Recent studies have shown that circular RNAs (circRNAs) are abundant, widely expressed in mammals, and can display cell-type specific expression. However, how production of circRNAs is regulated and their precise biological function remains largely unknown. To study how circRNAs might be regulated during colorectal cancer progression, we used three isogenic colon cancer cell lines that differ only in KRAS mutation status. Cellular RNAs from the parental DLD-1 cells that contain both wild-type and G13D mutant KRAS alleles and isogenically-matched derivative cell lines, DKO-1 (mutant KRAS allele only) and DKs-8 (wild-type KRAS allele only) were analyzed using RNA-Seq. We developed a bioinformatics pipeline to identify and evaluate circRNA candidates from RNA-Seq data. Hundreds of high-quality circRNA candidates were identified in each cell line. Remarkably, circRNAs were significantly down-regulated at a global level in DLD-1 and DKO-1 cells compared to DKs-8 cells, indicating a widespread effect of mutant KRAS on circRNA abundance. This finding was confirmed in two independent colon cancer cell lines HCT116 (KRAS mutant) and HKe3 (KRAS WT). In all three cell lines, circRNAs were also found in secreted extracellular-vesicles, and circRNAs were more abundant in exosomes than cells. Our results suggest that circRNAs may serve as promising cancer biomarkers. PMID:27892494

  15. Down-regulation of wild-type p53 activity interferes with apoptosis of IL-3-dependent hematopoietic cells following IL-3 withdrawal.

    PubMed Central

    Gottlieb, E; Haffner, R; von Rüden, T; Wagner, E F; Oren, M

    1994-01-01

    Overexpression of wild-type p53 in p53-deficient leukemic cells induces apoptosis, which can be inhibited by hematopoietic survival factors. This suggests that p53 may contribute to survival factor dependence. To assess the role of wild-type p53 in mediating apoptosis following survival factor withdrawal, we interfered with endogenous p53 activity in interleukin-3 (IL-3)-dependent cells. Extended survival without IL-3 was conferred by recombinant retroviruses encoding either a full-length p53 mutant or a C-terminal p53 miniprotein, both of which can act as negative-dominant inhibitors of wild-type p53. On the other hand, excess wild-type p53 activity failed to elicit apoptosis as long as IL-3 was present. We propose that p53 is a positive, though not exclusive, mediator of survival factor dependence in hematopoietic cells. Images PMID:8137820

  16. ERCC1 Induction after Oxaliplatin Exposure May Depend on KRAS Mutational Status in Colorectal Cancer Cell Line: In Vitro Veritas

    PubMed Central

    Orlandi, A.; Di Salvatore, M.; Bagalà, C.; Basso, M.; Strippoli, A.; Plastino, F.; Calegari, M.A.; Cassano, A.; Astone, A.; Barone, C.

    2015-01-01

    Introduction: Oxaliplatin (Oxa) is widely used in metastatic colorectal cancer (mCRC), but currently there are not valid predictors of response to this drug. In the control arms both of OPUS and PRIME studies Oxa seems more active in patients with mCRC with mutated (mt) KRAS than in those with wild type (wt) KRAS. Recently we have retrospectively confirmed this suggestion, therefore we have hypothesized that the mutational status of KRAS could influence the expression of ERCC1, one of the main mechanisms of Oxa resistance. Material and Methods: We used four cell lines of colorectal cancer: two KRAS wild type (wt) (HCT-8 and HT-29) and two KRAS mt (SW620 and SW480). We evaluated the sensitivity of these cell lines to Oxa by MTT-test as well the ERCC1 levels before and after 24 h exposure to Oxa by Real-Time PCR. We silenced KRAS in a KRAS mt cell line (SW620LV) to evaluate the impact on Oxa sensitivity and ERCC1 levels. Lastly, ERCC1 was also silenced in order to confirm the importance of this protein as an Oxa resistance factor. Results: The KRAS mt cell lines resulted more sensitive to Oxa (OR 2.68; IC 95% 1.511-4.757 p<0.001). The basal levels of ERCC1 did not show significant differences between KRAS mt and wt cell lines, however, after 24 h exposure to Oxa, only the wt KRAS lines showed the ability to induce ERCC1, with a statistically significant difference (OR 42.9 IC 95% 17.260-106.972 p<0.0005). By silencing KRAS, sensitivity to Oxa was reduced in mt KRAS cell lines and this effect was associated with the acquisition of ability to induce ERCC1. Silencing of ERCC1, in turn, enhanced the sensitivity to Oxa in wt KRAS cell lines and restored sensitivity to Oxa in SW620LV cell line. Conclusion: KRAS mutated cell lines were more sensitive to Oxa. This feature seems secondary to the inability of these cells to induce ERCC1 after exposure to Oxa. Thus, KRAS mutational status might be a predictor of response to Oxa in CRC surrogating the cell ability to induce ERCC

  17. KRAS mutational status as a predictor of epidermal growth factor receptor inhibitor efficacy in colorectal cancer.

    PubMed

    Baynes, Roy D; Gansert, Jennifer

    2009-01-01

    Inhibitors of the epidermal growth factor receptor (EGFR) have demonstrated promising potential in the treatment of advanced colorectal cancer. However, a proportion of patients do not respond to therapy with EGFR inhibitors, and therefore, there has been interest in identifying those patients most likely to benefit from therapy with these agents. KRAS, a member of the RAS family of signaling proteins, plays an important role in EGFR-mediated regulation of cellular proliferation and survival. Although there is still some debate regarding the prognostic importance of KRAS mutations in patients with metastatic colorectal cancer, several recent phase 2 and 3 studies have identified the presence of mutations at codons 12 and 13 of KRAS as predictors of poor response to the anti-EGFR monoclonal antibodies panitumumab and cetuximab. Patients with wild-type KRAS were found to have significantly better progression-free survival, overall survival, and/or objective response rate compared with patients harboring KRAS mutations. As a result, there has been growing interest in the development of KRAS mutational status as a biomarker for predicting patient response to EGFR-targeted therapy. Screening colorectal tumors for the absence of KRAS mutations may help identify patients most likely to benefit from anti-EGFR therapies.

  18. CDK1 Is a Synthetic Lethal Target for KRAS Mutant Tumours

    PubMed Central

    Costa-Cabral, Sara; Brough, Rachel; Konde, Asha; Aarts, Marieke; Campbell, James; Marinari, Eliana; Riffell, Jenna; Bardelli, Alberto; Torrance, Christopher; Lord, Christopher J.; Ashworth, Alan

    2016-01-01

    Activating KRAS mutations are found in approximately 20% of human cancers but no RAS-directed therapies are currently available. Here we describe a novel, robust, KRAS synthetic lethal interaction with the cyclin dependent kinase, CDK1. This was discovered using parallel siRNA screens in KRAS mutant and wild type colorectal isogenic tumour cells and subsequently validated in a genetically diverse panel of 26 colorectal and pancreatic tumour cell models. This established that the KRAS/CDK1 synthetic lethality applies in tumour cells with either amino acid position 12 (p.G12V, pG12D, p.G12S) or amino acid position 13 (p.G13D) KRAS mutations and can also be replicated in vivo in a xenograft model using a small molecule CDK1 inhibitor. Mechanistically, CDK1 inhibition caused a reduction in the S-phase fraction of KRAS mutant cells, an effect also characterised by modulation of Rb, a master control of the G1/S checkpoint. Taken together, these observations suggest that the KRAS/CDK1 interaction is a robust synthetic lethal effect worthy of further investigation. PMID:26881434

  19. KRAS, NRAS and BRAF mutations in Greek and Romanian patients with colorectal cancer: a cohort study

    PubMed Central

    Negru, Serban; Papadopoulou, Eirini; Apessos, Angela; Stanculeanu, Dana Lucia; Ciuleanu, Eliade; Volovat, Constantin; Croitoru, Adina; Kakolyris, Stylianos; Aravantinos, Gerasimos; Ziras, Nikolaos; Athanasiadis, Elias; Touroutoglou, Nikolaos; Pavlidis, Nikolaos; Kalofonos, Haralabos P; Nasioulas, George

    2014-01-01

    Objectives Treatment decision-making in colorectal cancer is often guided by tumour tissue molecular analysis. The aim of this study was the development and validation of a high-resolution melting (HRM) method for the detection of KRAS, NRAS and BRAF mutations in Greek and Romanian patients with colorectal cancer and determination of the frequency of these mutations in the respective populations. Setting Diagnostic molecular laboratory located in Athens, Greece. Participants 2425 patients with colorectal cancer participated in the study. Primary and secondary outcome measures 2071 patients with colorectal cancer (1699 of Greek and 372 of Romanian origin) were analysed for KRAS exon 2 mutations. In addition, 354 tumours from consecutive patients (196 Greek and 161 Romanian) were subjected to full KRAS (exons 2, 3 and 4), NRAS (exons 2, 3 and 4) and BRAF (exon 15) analysis. KRAS, NRAS and BRAF mutation detection was performed by a newly designed HRM analysis protocol, followed by Sanger sequencing. Results KRAS exon 2 mutations (codons 12/13) were detected in 702 of the 1699 Greek patients with colorectal carcinoma analysed (41.3%) and in 39.2% (146/372) of the Romanian patients. Among the 354 patients who were subjected to full KRAS, NRAS and BRAF analysis, 40.96% had KRAS exon 2 mutations (codons 12/13). Among the KRAS exon 2 wild-type patients 15.31% harboured additional RAS mutations and 12.44% BRAF mutations. The newly designed HRM method used showed a higher sensitivity compared with the sequencing method. Conclusions The HRM method developed was shown to be a reliable method for KRAS, NRAS and BRAF mutation detection. Furthermore, no difference in the mutation frequency of KRAS, NRAS and BRAF was observed between Greek and Romanian patients with colorectal cancer. PMID:24859998

  20. HER2 overexpression and amplification as a potential therapeutic target in colorectal cancer: analysis of 3256 patients enrolled in the QUASAR, FOCUS and PICCOLO colorectal cancer trials.

    PubMed

    Richman, Susan D; Southward, Katie; Chambers, Philip; Cross, Debra; Barrett, Jennifer; Hemmings, Gemma; Taylor, Morag; Wood, Henry; Hutchins, Gordon; Foster, Joseph M; Oumie, Assa; Spink, Karen G; Brown, Sarah R; Jones, Marc; Kerr, David; Handley, Kelly; Gray, Richard; Seymour, Matthew; Quirke, Philip

    2016-03-01

    HER2 overexpression/amplification is linked to trastuzumab response in breast/gastric cancers. One suggested anti-EGFR resistance mechanism in colorectal cancer (CRC) is aberrant MEK-AKT pathway activation through HER2 up-regulation. We assessed HER2-amplification/overexpression in stage II-III and IV CRC patients, assessing relationships to KRAS/BRAF and outcome. Pathological material was obtained from 1914 patients in the QUASAR stage II-III trial and 1342 patients in stage IV trials (FOCUS and PICCOLO). Tissue microarrays were created for HER2 immunohistochemistry. HER2-amplification was assessed using FISH and copy number variation. KRAS/BRAF mutation status was assessed by pyrosequencing. Progression-free survival (PFS) and overall survival (OS) data were obtained for FOCUS/PICCOLO and recurrence and mortality for QUASAR; 29/1342 (2.2%) stage IV and 25/1914 (1.3%) stage II-III tumours showed HER2 protein overexpression. Of the HER2-overexpressing cases, 27/28 (96.4%) stage IV tumours and 20/24 (83.3%) stage II-III tumours demonstrated HER2 amplification by FISH; 41/47 (87.2%) also showed copy number gains. HER2-overexpression was associated with KRAS/BRAF wild-type (WT) status at all stages: in 5.2% WT versus 1.0% mutated tumours (p < 0.0001) in stage IV and 2.1% versus 0.2% in stage II-III tumours (p = 0.01), respectively. HER2 was not associated with OS or PFS. At stage II-III, there was no significant correlation between HER2 overexpression and 5FU/FA response. A higher proportion of HER2-overexpressing cases experienced recurrence, but the difference was not significant. HER2-amplification/overexpression is identifiable by immunohistochemistry, occurring infrequently in stage II-III CRC, rising in stage IV and further in KRAS/BRAF WT tumours. The value of HER2-targeted therapy in patients with HER2-amplified CRC must be tested in a clinical trial. © 2015 The Authors. Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society

  1. Role of Kras status in patients with metastatic colorectal cancer receiving first-line chemotherapy plus bevacizumab: a TTD group cooperative study.

    PubMed

    Díaz-Rubio, Eduardo; Gómez-España, Auxiliadora; Massutí, Bartomeu; Sastre, Javier; Reboredo, Margarita; Manzano, José Luis; Rivera, Fernando; Safont, M José; Montagut, Clara; González, Encarnación; Benavides, Manuel; Marcuello, Eugenio; Cervantes, Andrés; Martínez de Prado, Purificación; Fernández-Martos, Carlos; Arrivi, Antonio; Bando, Inmaculada; Aranda, Enrique

    2012-01-01

    In the MACRO study, patients with metastatic colorectal cancer (mCRC) were randomised to first-line treatment with 6 cycles of capecitabine and oxaliplatin (XELOX) plus bevacizumab followed by either single-agent bevacizumab or XELOX plus bevacizumab until disease progression. An additional retrospective analysis was performed to define the prognostic value of tumour KRAS status on progression-free survival (PFS), overall survival (OS) and response rates. KRAS data (tumour KRAS status and type of mutation) were collected by questionnaire from participating centres that performed KRAS analyses. These data were then cross-referenced with efficacy data for relevant patients in the MACRO study database. KRAS status was analysed in 394 of the 480 patients (82.1%) in the MACRO study. Wild-type (WT) KRAS tumours were found in 219 patients (56%) and mutant (MT) KRAS in 175 patients (44%). Median PFS was 10.9 months for patients with WT KRAS and 9.4 months for patients with MT KRAS tumours (p=0.0038; HR: 1.40; 95% CI:1.12-1.77). The difference in OS was also significant: 26.7 months versus 18.0 months for WT versus MT KRAS, respectively (p=0.0002; HR: 1.55; 95% CI: 1.23-1.96). Univariate and multivariate analyses showed that KRAS was an independent variable for both PFS and OS. Responses were observed in 126 patients (57.5%) with WT KRAS tumours and 76 patients (43.4%) with MT KRAS tumours (p=0.0054; OR: 1.77; 95% CI: 1.18-2.64). This analysis of the MACRO study suggests a prognostic role for tumour KRAS status in patients with mCRC treated with XELOX plus bevacizumab. For both PFS and OS, KRAS status was an independent factor in univariate and multivariate analyses.

  2. Candida albicans Als3p is required for wild-type biofilm formation on silicone elastomer surfaces

    PubMed Central

    Zhao, Xiaomin; Daniels, Karla J.; Oh, Soon-Hwan; Green, Clayton B.; Yeater, Kathleen M.; Soll, David R.; Hoyer, Lois L.

    2007-01-01

    Candida albicans ALS3 encodes a large cell-surface glycoprotein that has adhesive properties. Immunostaining of cultured C. albicans germ tubes showed that Als3p is distributed diffusely across the germ tube surface. Two-photon laser scanning microscopy of model catheter biofilms grown using a PALS3-green fluorescent protein (GFP) reporter strain showed GFP production in hyphae throughout the biofilm structure while biofilms grown using a PTPI1-GFP reporter strain showed GFP in both hyphae and yeast-form cells. Model catheter biofilms formed by an als3Δ/als3Δ strain were weakened structurally and had approximately half the biomass of a wild-type biofilm. Reintegration of a wild-type ALS3 allele restored biofilm mass and wild-type biofilm structure. Production of an Als3p-Agα1p fusion protein under control of the ALS3 promoter in the als3Δ/als3Δ strain restored some of the wild-type biofilm structural features, but not the wild-type biofilm mass. Despite its inability to restore wild-type biofilm mass, the Als3p-Agα1p fusion protein mediated adhesion of the als3Δ/als3Δ C. albicans strain to human buccal epithelial cells (BECs). The adhesive role of the Als3p N-terminal domain was further demonstrated by blocking adhesion of C. albicans to BECs with immunoglobulin reactive against the Als3p N-terminal sequences. Together, these data suggest that portions of Als3p that are important for biofilm formation may be different from those that are important in BEC adhesion, and that Als3p may have multiple functions in biofilm formation. Overexpression of ALS3 in an efg1Δ/efg1Δ strain that was deficient for filamentous growth and biofilm formation resulted in growth of elongated C. albicans cells, even under culture conditions that do not favour filamentation. In the catheter biofilm model, the ALS3 overexpression strain formed biofilm with a mass similar to that of a wild-type control. However, C. albicans cells in the biofilm had yeast-like morphology. This

  3. Membrane association and release of wild-type and pathological tau from organotypic brain slice cultures

    PubMed Central

    Croft, Cara L; Wade, Matthew A; Kurbatskaya, Ksenia; Mastrandreas, Pavlina; Hughes, Martina M; Phillips, Emma C; Pooler, Amy M; Perkinton, Michael S; Hanger, Diane P; Noble, Wendy

    2017-01-01

    The spatiotemporal transmission of pathological tau in the brain is characteristic of Alzheimer's disease. Release of both soluble and abnormal tau species from healthy neurons is increased upon stimulation of neuronal activity. It is not yet understood whether the mechanisms controlling soluble tau release from healthy neurons is the same as those involved in the spread of pathological tau species. To begin to understand these events, we have studied tau distribution and release using organotypic brain slice cultures. The slices were cultured from postnatal wild-type and 3xTg-AD mice for up to 1 month. Tau distribution in subcellular compartments was examined by western blotting, and tau release into culture medium was determined using a sensitive sandwich ELISA. We show here that 3xTg-AD cultures have an accelerated development of pathological tau abnormalities including the redistribution of tau to synaptic and membrane compartments. The 3xTg-AD slice cultures show elevated basal tau release relative to total tau when compared with wild-type cultures. However, tau release from 3xTg-AD slices cannot be further stimulated when neuronal activity is increased with potassium chloride. Moreover, we report that there is an increased pool of dephosphorylated membrane-associated tau in conditions where tau release is increased. These data suggest that there may be differential patterns of tau release when using integrated slice culture models of wild-type and transgenic mouse brain, although it will be important to determine the effect of tau overexpression for these findings. These results further increase our knowledge of the molecular mechanisms underlying tau release and propagation in neurodegenerative tauopathies. PMID:28300838

  4. Synthetic Lethality of a Novel Small Molecule Against Mutant KRAS-Expressing Cancer Cells Involves AKT-Dependent ROS Production.

    PubMed

    Iskandar, Kartini; Rezlan, Majidah; Yadav, Sanjiv Kumar; Foo, Chuan Han Jonathan; Sethi, Gautam; Qiang, Yu; Bellot, Gregory L; Pervaiz, Shazib

    2016-05-10

    We recently reported the death-inducing activity of a small-molecule compound, C1, which triggered reactive oxygen species (ROS)-dependent autophagy-associated apoptosis in a variety of human cancer cell lines. In this study, we examine the ability of the compound to specifically target cancer cells harboring mutant KRAS with minimal activity against wild-type (WT) RAS-expressing cells. HCT116 cells expressing mutated KRAS are susceptible, while the WT-expressing HT29 cells are resistant. Interestingly, C1 triggers activation of mutant RAS, which results in the downstream phosphorylation and activation of AKT/PKB. Gene knockdown of KRAS or AKT or their pharmacological inhibition resulted in the abrogation of C1-induced ROS production and rescued tumor colony-forming ability. We also made use of HCT116 mutant KRAS knockout (KO) cells, which express only a single WT KRAS allele. Exposure of KO cells to C1 failed to increase mitochondrial ROS and cell death, unlike the parental cells harboring mutant KRAS. Similarly, mutant KRAS-transformed prostate epithelial cells (RWPE-1-RAS) were more sensitive to the ROS-producing and death-inducing effects of C1 than the vector only expressing RWPE-1 cells. An in vivo model of xenograft tumors generated with HCT116 KRAS(WT/MUT) or KRAS(WT/-) cells showed the efficacy of C1 treatment and its ability to affect the relative mitotic index in tumors harboring KRAS mutant. These data indicate a synthetic lethal effect against cells carrying mutant KRAS, which could have therapeutic implications given the paucity of KRAS-specific chemotherapeutic strategies. Antioxid. Redox Signal. 24, 781-794.

  5. KRAS(G12D)-mediated oncogenic transformation of thyroid follicular cells requires long-term TSH stimulation and is regulated by SPRY1.

    PubMed

    Zou, Minjing; Baitei, Essa Y; Al-Rijjal, Roua A; Parhar, Ranjit S; Al-Mohanna, Futwan A; Kimura, Shioko; Pritchard, Catrin; BinEssa, Huda; Alanazi, Azizah A; Alzahrani, Ali S; Akhtar, Mohammed; Assiri, Abdullah M; Meyer, Brian F; Shi, Yufei

    2015-11-01

    KRAS(G12D) can cause lung cancer rapidly, but is not sufficient to induce thyroid cancer. It is not clear whether long-term serum thyroid stimulating hormone (TSH) stimulation can promote KRAS(G12D)-mediated thyroid follicular cell transformation. In the present study, we investigated the effect of long-term TSH stimulation in KRAS(G12D) knock-in mice and the role of Sprouty1 (SPRY1) in KRAS(G12D)-mediated signaling. We used TPO-KRAS(G12D) mice for thyroid-specific expression of KRAS(G12D) under the endogenous KRAS promoter. Twenty TPO-KRAS(G12D) mice were given anti-thyroid drug propylthiouracil (PTU, 0.1% w/v) in drinking water to induce serum TSH and 20 mice were without PTU treatment. Equal number of wild-type littermates (TPO-KRAS(WT)) was given the same treatment. The expression of SPRY1, a negative regulator of receptor tyrosine kinase (RTK) signaling, was analyzed in both KRAS(G12D)-and BRAF(V600E)-induced thyroid cancers. Without PTU treatment, only mild thyroid enlargement and hyperplasia were observed in TPO-KRAS(G12D) mice. With PTU treatment, significant thyroid enlargement and hyperplasia occurred in both TPO-KRAS(G12D) and TPO-KRAS(WT) littermates. Thyroids from TPO-KRAS(G12D) mice were six times larger than TPO-KRAS(WT) littermates. Distinct thyroid histology was found between TPO-KRAS(G12D) and TPO-KRAS(WT) mice: thyroid from TPO-KRAS(G12D) mice showed hyperplasia with well-maintained follicular architecture whereas in TPO-KRAS(WT) mice this structure was replaced by papillary hyperplasia. Among 10 TPO-KRAS(G12D) mice monitored for 14 months, two developed follicular thyroid cancer (FTC), one with pulmonary metastasis. Differential SPRY1 expression was demonstrated: increased in FTC and reduced in papillary thyroid cancer (PTC). The increased SPRY1 expression in FTC promoted TSH-RAS signaling through PI3K/AKT pathway whereas downregulation of SPRY1 by BRAF(V600E) in PTC resulted in both MAPK and PI3K/AKT activation. We conclude that chronic TSH

  6. Gene mutation analysis in EGFR wild type NSCLC responsive to erlotinib: are there features to guide patient selection?

    PubMed

    Ulivi, Paola; Delmonte, Angelo; Chiadini, Elisa; Calistri, Daniele; Papi, Maximilian; Mariotti, Marita; Verlicchi, Alberto; Ragazzini, Angela; Capelli, Laura; Gamboni, Alessandro; Puccetti, Maurizio; Dubini, Alessandra; Burgio, Marco Angelo; Casanova, Claudia; Crinò, Lucio; Amadori, Dino; Dazzi, Claudio

    2014-12-31

    Tyrosine kinase inhibitors (TKIs) are very efficacious in non-small-cell lung cancer (NSCLC) patients harboring activating Epidermal Growth Factor Receptor (EGFR) mutations. However, about 10% of EGFR wild type (wt) patients respond to TKI, with unknown molecular mechanisms of sensitivity. We considered a case series of 34 EGFR wt NSCLC patients responsive to erlotinib after at least one line of therapy. Responsive patients were matched with an equal number of non-responsive EGFR wt patients. A panel of 26 genes, for a total of 214 somatic mutations, was analyzed by MassARRAY® System (Sequenom, San Diego, CA, USA). A 15% KRAS mutation was observed in both groups, with a prevalence of G12C in non-responders (80% vs. 40% in responders). NOTCH1, p53 and EGFR-resistance-related mutations were found more frequently in non-responders, whereas EGFR-sensitizing mutations and alterations in genes involved in proliferation pathways were more frequent in responders. In conclusion, our findings indicate that p53, NOTCH1 and exon 20 EGFR mutations seem to be related to TKI resistance. KRAS mutations do not appear to influence the TKI response, although G12C mutation is more frequent in non-responders. Finally, the use of highly sensitive methodologies could lead to the identification of under-represented EGFR mutations potentially associated with TKI sensitivity.

  7. Gene Mutation Analysis in EGFR Wild Type NSCLC Responsive to Erlotinib: Are There Features to Guide Patient Selection?

    PubMed Central

    Ulivi, Paola; Delmonte, Angelo; Chiadini, Elisa; Calistri, Daniele; Papi, Maximilian; Mariotti, Marita; Verlicchi, Alberto; Ragazzini, Angela; Capelli, Laura; Gamboni, Alessandro; Puccetti, Maurizio; Dubini, Alessandra; Burgio, Marco Angelo; Casanova, Claudia; Crinò, Lucio; Amadori, Dino; Dazzi, Claudio

    2014-01-01

    Tyrosine kinase inhibitors (TKIs) are very efficacious in non-small-cell lung cancer (NSCLC) patients harboring activating Epidermal Growth Factor Receptor (EGFR) mutations. However, about 10% of EGFR wild type (wt) patients respond to TKI, with unknown molecular mechanisms of sensitivity. We considered a case series of 34 EGFR wt NSCLC patients responsive to erlotinib after at least one line of therapy. Responsive patients were matched with an equal number of non-responsive EGFR wt patients. A panel of 26 genes, for a total of 214 somatic mutations, was analyzed by MassARRAY® System (Sequenom, San Diego, CA, USA). A 15% KRAS mutation was observed in both groups, with a prevalence of G12C in non-responders (80% vs. 40% in responders). NOTCH1, p53 and EGFR-resistance-related mutations were found more frequently in non-responders, whereas EGFR-sensitizing mutations and alterations in genes involved in proliferation pathways were more frequent in responders. In conclusion, our findings indicate that p53, NOTCH1 and exon 20 EGFR mutations seem to be related to TKI resistance. KRAS mutations do not appear to influence the TKI response, although G12C mutation is more frequent in non-responders. Finally, the use of highly sensitive methodologies could lead to the identification of under-represented EGFR mutations potentially associated with TKI sensitivity. PMID:25561229

  8. Structural insights into conformational stability of both wild-type and mutant EZH2 receptor

    PubMed Central

    Aier, Imlimaong; Varadwaj, Pritish Kumar; Raj, Utkarsh

    2016-01-01

    Polycomb group (PcG) proteins have been observed to maintain the pattern of histone by methylation of the histone tail responsible for the gene expression in various cellular processes, of which enhancer of zeste homolog 2 (EZH2) acts as tumor suppressor. Overexpression of EZH2 results in hyper activation found in a variety of cancer. Point mutation on two important residues were induced and the results were compared between the wild type and mutant EZH2. The mutation of Y641 and A677 present in the active region of the protein alters the interaction of the top ranked compound with the newly modeled binding groove of the SET domain, giving a GLIDE score of −12.26 kcal/mol, better than that of the wild type at −11.664 kcal/mol. In depth analysis were carried out for understanding the underlying molecular mechanism using techniques viz. molecular dynamics, principal component analysis, residue interaction network and free energy landscape analysis, which showed that the mutated residues changed the overall conformation of the system along with the residue-residue interaction network. The insight from this study could be of great relevance while designing new compounds for EZH2 enzyme inhibition and the effect of mutation on the overall binding mechanism of the system. PMID:27713574

  9. Prolactin inhibits a major tumor-suppressive function of wild type BRCA1.

    PubMed

    Chen, Kuan-Hui Ethan; Walker, Ameae M

    2016-06-01

    Even though mutations in the tumor suppressor, BRCA1, markedly increase the risk of breast and ovarian cancer, most breast and ovarian cancers express wild type BRCA1. An important question is therefore how the tumor-suppressive function of normal BRCA1 is overcome during development of most cancers. Because prolactin promotes these and other cancers, we investigated the hypothesis that prolactin interferes with the ability of BRCA1 to inhibit the cell cycle. Examining six different cancer cell lines with wild type BRCA1, and making use of both prolactin and the growth-inhibiting selective prolactin receptor modulator, S179D PRL, we demonstrate that prolactin activation of Stat5 results in the formation of a complex between phospho-Stat5 and BRCA1. Formation of this complex does not interfere with nuclear translocation or binding of BRCA1 to the p21 promoter, but does interfere with the ability of BRCA1 to transactivate the p21 promoter. Overexpression of a dominant-negative Stat5 in prolactin-stimulated cells resulted in increased p21 expression. We conclude that prolactin inhibits a major tumor-suppressive function of BRCA1 by interfering with BRCA1's upregulation of expression of the cell cycle inhibitor, p21.

  10. Prognostic significance of KRAS gene mutations in colorectal cancer - preliminary study

    PubMed Central

    Dinu, D; Dobre, M; Panaitescu, E; Bîrlă, R; Iosif, C; Hoara, P; Caragui, A; Boeriu, M; Constantinoiu, S; Ardeleanu, C

    2014-01-01

    Objective: The prognostic significance of KRAS gene mutations, evaluated by using two methods in patients with colorectal cancer (CRC). Material and Methods: Retrospective study involving 58 patients diagnosed with CRC and treated between 2003 and 2010 in the General and Esophageal Surgery Clinic of “Sf. Maria” Hospital, Bucharest. The macroscopic and microscopic examination of the resected specimens was also processed for genetic analysis in NIRDPBS, where KRAS status was determined by using two methods: PCR-RFLP and pyrosequencing. Results: The clinical and biological parameters of the patients were assessed for 72 months in average. A relapse in 21 patients and a 5-year survival rate of 79.3% was discovered. The genetic analyses of KRAS gene found mutations in 22 cases (45.3%): 17 cases had mutations in codon 12, 5 cases in codon 13. The survival rate analyses of patients with wild KRAS gene compared with the patients carrying the mutation on codon 12 /13 revealed a superposition of the survival curve. The statistical analysis based on the TNM stage revealed different survival curves in stage I and II, shorter survival period in patients with KRAS mutation on codon 13 than in those with wild type gene (stage I - p_value=0.015; stage II - p_value=0.000). Conclusions: It was not found that KRAS gene status had any prognostic significance. Nevertheless, for stage I and II patients, the mutation found on codon 13 determined a statistic significant shorter survival rate than for those with wild type. The results obtained by using the pyrosequencing method for the determination of KRAS gene status proved that it represented a reliable and reproducible method. PMID:25713627

  11. The mutational landscapes of genetic and chemical models of Kras-driven lung cancer.

    PubMed

    Westcott, Peter M K; Halliwill, Kyle D; To, Minh D; Rashid, Mamunur; Rust, Alistair G; Keane, Thomas M; Delrosario, Reyno; Jen, Kuang-Yu; Gurley, Kay E; Kemp, Christopher J; Fredlund, Erik; Quigley, David A; Adams, David J; Balmain, Allan

    2015-01-22

    Next-generation sequencing of human tumours has refined our understanding of the mutational processes operative in cancer initiation and progression, yet major questions remain regarding the factors that induce driver mutations and the processes that shape mutation selection during tumorigenesis. Here we performed whole-exome sequencing on adenomas from three mouse models of non-small-cell lung cancer, which were induced either by exposure to carcinogens (methyl-nitrosourea (MNU) and urethane) or by genetic activation of Kras (Kras(LA2)). Although the MNU-induced tumours carried exactly the same initiating mutation in Kras as seen in the Kras(LA2) model (G12D), MNU tumours had an average of 192 non-synonymous, somatic single-nucleotide variants, compared with only six in tumours from the Kras(LA2) model. By contrast, the Kras(LA2) tumours exhibited a significantly higher level of aneuploidy and copy number alterations compared with the carcinogen-induced tumours, suggesting that carcinogen-induced and genetically engineered models lead to tumour development through different routes. The wild-type allele of Kras has been shown to act as a tumour suppressor in mouse models of non-small-cell lung cancer. We demonstrate that urethane-induced tumours from wild-type mice carry mostly (94%) Kras Q61R mutations, whereas those from Kras heterozygous animals carry mostly (92%) Kras Q61L mutations, indicating a major role for germline Kras status in mutation selection during initiation. The exome-wide mutation spectra in carcinogen-induced tumours overwhelmingly display signatures of the initiating carcinogen, while adenocarcinomas acquire additional C > T mutations at CpG sites. These data provide a basis for understanding results from human tumour genome sequencing, which has identified two broad categories of tumours based on the relative frequency of single-nucleotide variations and copy number alterations, and underline the importance of carcinogen models for

  12. Concordant analysis of KRAS, BRAF, PIK3CA mutations, and PTEN expression between primary colorectal cancer and matched metastases

    PubMed Central

    Mao, Chen; Wu, Xin-Yin; Yang, Zu-Yao; Threapleton, Diane Erin; Yuan, Jin-Qiu; Yu, Yuan-Yuan; Tang, Jin-Ling

    2015-01-01

    Current data on the concordance of KRAS, BRAF, PIK3CA mutation status or PTEN expression status between primary tumors and metastases in colorectal cancer (CRC) are conflicting. We conducted a systematic review and meta-analysis to examine concordance and discordance of the status of these four biomarkers between primary tumors and corresponding metastases in CRC patients. The biomarker status in primary tumors was used as the reference standard. Concordance data for KRAS, BRAF, PIK3CA and PTEN were provided by 43, 16, 9 and 7 studies, respectively. The pooled concordance rate was 92.0% (95% CI: 89.7%–93.9%) for KRAS, 96.8% (95% CI: 94.8%–98.0%) for BRAF, 93.9% (95% CI: 89.7%–96.5%) for PIK3CA and 71.7% (95% CI: 57.6%–82.5%) for PTEN. The pooled false positive and false negative rates for KRAS were 9.0% (95% CI: 6.5%–12.4%) and 11.3% (95% CI: 8.0%–15.8%), respectively. KRAS, BRAF and PIK3CA mutations are highly concordant between primary tumors and corresponding metastases in CRC, but PTEN loss is not. Nine percent of patients with wild-type KRAS in primary tumors who received anti-EGFR treatment had mutant KRAS in metastases, while 11.3% patients with mutant KRAS primary tumors had wild-type KRAS in the metastases. These 11.3% patients currently do not receive potentially beneficial anti-EGFR treatment. PMID:25639985

  13. Prognostic value of KRAS genotype in metastatic colorectal cancer (MCRC) patients treated with intensive triplet chemotherapy plus bevacizumab (FIr-B/FOx) according to extension of metastatic disease

    PubMed Central

    2012-01-01

    Background Bevacizumab (BEV) plus triplet chemotherapy can increase efficacy of first-line treatment of metastatic colorectal cancer (MCRC), particularly integrated with secondary liver surgery in liver-limited (L-L) patients. The prognostic value of the KRAS genotype in L-L and other or multiple metastatic (O/MM) MCRC patients treated with the FIr-B/FOx regimen was retrospectively evaluated. Methods Tumoral and metastatic samples were screened for KRAS codon 12 and 13 and BRAF mutations by SNaPshot and/or direct sequencing. Fit MCRC patients <75 years were consecutively treated with FIr-B/FOx regimen: weekly 12-h timed flat-infusion/5-fluorouracil (TFI 5-FU) 900 mg/m2, days 1, 2, 8, 9, 15, 16, 22 and 23; irinotecan (CPT-11) 160 mg/m2 plus BEV 5 mg/kg, days 1, 15; oxaliplatin (OXP) 80 mg/m2, days 8, 22; every 4 weeks. MCRC patients were classified as L-L and O/MM. Activity and efficacy were evaluated and compared using log-rank test. Results In all, 59 patients were evaluated: 31 KRAS wild-type (53%), 28 KRAS mutant (47%). At 21.5 months median follow-up, objective response rate (ORR), progression-free survival (PFS) and overall survival (OS) were, respectively: KRAS wild-type 90%, 14 months, 38 months; KRAS mutant 67%, 11 months, 20 months. PFS and OS were not significantly different. PFS and OS were significantly different in L-L compared to O/MM evaluable patients. In KRAS wild-type patients, clinical outcome of 12 L-L compared to 18 O/MM was significantly different: PFS 21 versus 12 months and OS 47 versus 28 months, respectively. In KRAS mutant patients, the clinical outcome of 13 L-L compared to 14 O/MM was not significantly different: PFS 11 months equivalently and OS 39 versus 19 months, respectively. Conclusions The KRAS genotype wild-type and mutant does not significantly affect different clinical outcomes for MCRC patients treated with the first-line FIr-B/FOx intensive regimen. KRAS wild-type patients with L-L disease may achieve a significantly

  14. Worse prognosis of KRAS c.35 G > A mutant metastatic colorectal cancer (MCRC) patients treated with intensive triplet chemotherapy plus bevacizumab (FIr-B/FOx)

    PubMed Central

    2013-01-01

    Background Prognosis of KRAS wild-type and mutant metastatic colorectal cancer (MCRC) patients (pts) treated with bevacizumab (BEV)-containing chemotherapy is not significantly different. Since specific KRAS mutations confer different aggressive behaviors, the prognostic role of prevalent KRAS mutations was retrospectively evaluated in MCRC pts treated with first line FIr-B/FOx, associating BEV to triplet chemotherapy. Methods Tumor samples were screened for KRAS codon 12, 13 and BRAF V600E mutations by SNaPshot and/or direct sequencing. MCRC pts <75-years-old were consecutively treated with FIr-B/FOx: weekly 12 hour-timed-flat-infusion/5-fluorouracil (900 mg/m2 on days 1,2, 8, 9, 15, 16,22, 23), irinotecan plus BEV (160 mg/m2 and 5 mg/kg, respectively, on days 1,15); and oxaliplatin (80 mg/m2, on days 8,22). Pts were classified as liver-limited (L-L) and other/multiple metastatic (O/MM). Progression-free survival (PFS) and overall survival (OS) were compared using the log-rank test. Results Fifty-nine pts were evaluated at a median follow-up of 21.5 months. KRAS mutant pts: c.35 G > A, 15 (25.4%); c.35 G > T, 7 (11.8%); c.38 G > A, 3 (5%); other, 3 (5%). KRAS wild-type, 31 pts (52.7%). The objective response rate (ORR), PFS and OS were, respectively: c.35 G > A mutant, 71%, 9 months, 14 months; other than c.35 G > A mutants, 61%, 12 months, 39 months. OS was significantly worse in c.35 G > A pts compared to KRAS wild-type (P = 0.002), KRAS/BRAF wild-type (P = 0.03), other MCRC patients (P = 0.002), other than c.35 G > A (P = 0.05), other codon 12 (P = 0.03) mutant pts. OS was not significantly different compared to c.35 G > T KRAS mutant (P = 0.142). Conclusions KRAS c.35 G > A mutant status may be significantly associated with a worse prognosis of MCRC pts treated with first line FIr-B/FOx intensive regimen compared to KRAS/BRAF wild type and other than c.35 G > A mutant pts. PMID:23497191

  15. Purification of extrachloroplastic. beta. -amylase from leaves of starchless and wild type Arabidopsis

    SciTech Connect

    Somerville, C.; Monroe, J.; Preiss, J. )

    1989-04-01

    Amylase activity in crude leaf extracts from starchless mutants of Arabidopsis thaliana is 5 to 10 fold higher than in the wild type (WT) when plants are grown under a 12 h photoperiod. Visualized on native PAGE, the increased activity is attributed primarily to a previously characterized extrachloroplastic {beta}-(exo)amylase. The {beta}-amylases from phosoglucomutase deficient (starchless) and WT leaves were purified to homogeneity in two steps utilizing polyethylene glycol fractionation, and cyclohexaamylose affinity chromatography. The enzyme from both mutant and WT leaves had negligible activity toward either {beta}-limit dextrin or pullulan. The specific activities of both purified enzymes were similar indicating that the protein is over-expressed in the mutant. Preliminary antibody neutralization experiments suggest that the two {beta}-amylases are not different.

  16. Wild-type uromodulin prevents NFkB activation in kidney cells, while mutant uromodulin, causing FJHU nephropathy, does not.

    PubMed

    Dinour, Dganit; Ganon, Liat; Nomy, Levin-Iaina; Ron, Rotem; Holtzman, Eliezer J

    2014-06-01

    Uromodulin (Tamm-Horsfall protein) is the most abundant urinary protein in healthy individuals. Despite 60 years of research, its physiological role remains rather elusive. Familial juvenile hyperuricemic nephropathy and medullary cystic kidney disease Type 2 are autosomal dominant tubulointerstitial nephropathies characterized by gouty arthritis and progressive renal insufficiency, caused by uromodulin (UMOD) mutations. The aim of this study was to compare the cellular effects of mutant and wild-type UMOD. Wild-type UMOD cDNA was cloned from human kidney cDNA into pcDNA3 expression vector. A mutant UMOD construct, containing the previously reported mutation, V273, was created by in vitro mutagenesis. Transient and stable transfection studies were performed in human embryonic kidney cells and mouse distal convoluted tubular cells, respectively. Expression was evaluated by reverse transcription polymerase chain reaction (RT-PCR), western blot and immunofluorescence. Oligosaccharide cleavage by glycosidases was performed to characterize different forms of UMOD. Nuclear translocation of P65 and degradation of IκBα and IRAK1 in response to interleukin (IL)-1β were used to evaluate the effects of wild-type and mutant UMOD on the IL-1R-NFκB pathway. The mutant protein was shown to be retained in the endoplasmic reticulum and was not excreted to the cell medium, as opposed to the wild-type protein. NFκB activation in cells expressing mutant UMOD was similar to that of untransfected cells. In contrast, cells over-expressing wild-type UMOD showed markedly reduced NFκB activation. Our findings suggest that UMOD may have a physiologic function related to its inhibitory effect on the NFκB pathway.

  17. Cost-effectiveness analysis of KRAS testing and cetuximab as last-line therapy for colorectal cancer.

    PubMed

    Shiroiwa, Takeru; Motoo, Yoshiharu; Tsutani, Kiichiro

    2010-12-01

    Cetuximab, a monoclonal antibody directed against the epidermal growth factor receptor, improves progression-free survival and overall survival in patients with metastatic colorectal cancer (mCRC). However, patients with a KRAS gene mutation do not benefit from cetuximab therapy. We performed a cost-effectiveness analysis of KRAS testing and cetuximab treatment as last-line therapy for patients with mCRC in Japan. In our analysis, we considered three treatment strategies. In the 'KRAS-testing strategy' (strategy A), KRAS testing was performed to guide treatment: patients with wild-type KRAS received cetuximab, and those with mutant KRAS received best supportive care (BSC). In the 'no-KRAS-testing strategy' (strategy B), genetic testing was not conducted and all patients received cetuximab. In the 'no-cetuximab strategy' (strategy C), genetic testing was not conducted and all patients received BSC. To evaluate the cost effectiveness of KRAS testing, the KRAS-testing strategy was compared with the no-KRAS-testing strategy; to evaluate the cost effectiveness of KRAS testing and cetuximab, the KRAS-testing strategy was compared with the no-cetuximab strategy; and to evaluate the cost effectiveness of cetuximab treatment without KRAS testing, the no-KRAS-testing strategy was compared with the no-cetuximab strategy. A three-state Markov model was used to predict expected costs and outcomes for each group. Outcomes in the model were based on those reported in a retrospective analysis of data from the National Cancer Institute of Canada Clinical Trials Group CO.17 study. We included only direct medical costs from the perspective of the Japanese healthcare payer. A 3% discount rate was used for both costs and outcome. Two outcomes, life-years (LYs) gained and quality-adjusted life-years (QALYs) gained, were used to calculate the incremental cost-effectiveness ratio (ICER). Our cost-effectiveness analysis revealed that the KRAS-testing strategy was dominant compared with the

  18. Terpenoid Metabolism in Wild-Type and Transgenic Arabidopsis PlantsW⃞

    PubMed Central

    Aharoni, Asaph; Giri, Ashok P.; Deuerlein, Stephan; Griepink, Frans; de Kogel, Willem-Jan; Verstappen, Francel W. A.; Verhoeven, Harrie A.; Jongsma, Maarten A.; Schwab, Wilfried; Bouwmeester, Harro J.

    2003-01-01

    Volatile components, such as terpenoids, are emitted from aerial parts of plants and play a major role in the interaction between plants and their environment. Analysis of the composition and emission pattern of volatiles in the model plant Arabidopsis showed that a range of volatile components are released, primarily from flowers. Most of the volatiles detected were monoterpenes and sesquiterpenes, which in contrast to other volatiles showed a diurnal emission pattern. The active terpenoid metabolism in wild-type Arabidopsis provoked us to conduct an additional set of experiments in which transgenic Arabidopsis overexpressing two different terpene synthases were generated. Leaves of transgenic plants constitutively expressing a dual linalool/nerolidol synthase in the plastids (FaNES1) produced linalool and its glycosylated and hydroxylated derivatives. The sum of glycosylated components was in some of the transgenic lines up to 40- to 60-fold higher than the sum of the corresponding free alcohols. Surprisingly, we also detected the production and emission of nerolidol, albeit at a low level, suggesting that a small pool of its precursor farnesyl diphosphate is present in the plastids. Transgenic lines with strong transgene expression showed growth retardation, possibly as a result of the depletion of isoprenoid precursors in the plastids. In dual-choice assays with Myzus persicae, the FaNES1-expressing lines significantly repelled the aphids. Overexpression of a typical cytosolic sesquiterpene synthase resulted in the production of only trace amounts of the expected sesquiterpene, suggesting tight control of the cytosolic pool of farnesyl diphosphate, the precursor for sesquiterpenoid biosynthesis. This study further demonstrates the value of Arabidopsis for studies of the biosynthesis and ecological role of terpenoids and provides new insights into their metabolism in wild-type and transgenic plants. PMID:14630967

  19. Sublingual vaccines based on wild-type recombinant allergens.

    PubMed

    Van Overtvelt, L; Razafindratsita, A; St-Lu, N; Didierlaurent, A; Batard, Th; Lombardi, V; Martin, E; Moingeon, Ph

    2006-09-01

    Sublingual immunotherapy (SLIT) represents a non invasive alternative to subcutaneous immunotherapy in order to treat type I allergies. Vaccines based on recombinant allergens expressed in a native (i.e. wild-type) configuration, formulated with ad hoc adjuvants designed to target Langerhans cells in the sublingual mucosa should allow to induce allergen-specific regulatory T cells. In this context, we have developed animal and human preclinical models to test the capacity of candidate vaccines to modulate selectively allergen-specific T helper lymphocyte polarization following sublingual vaccination.

  20. Porphyrin Interactions with Wild Type and Mutant Mouse Ferrochelatase

    SciTech Connect

    Ferreira, Gloria C.; Franco, Ricardo; Lu, Yi; Ma, Jian-Guo; Shelnutt, John A.

    1999-05-19

    Ferrochelatase (EC 4.99.1.1), the terminal enzyme of the heme biosynthetic pathway, catalyzes Fe2+ chelation into protoporphyrin IX. Resonance Raman and W-visible absorbance spectroscopes of wild type and engineered variants of murine ferrochelatase were used to examine the proposed structural mechanism for iron insertion into protoporphyrin by ferrochelatase. The recombinant variants (i.e., H207N and E287Q) are enzymes in which the conserved amino acids histidine-207 and glutamate-287 of murine ferrochelatase were substituted with asparagine and glutamine, respectively. Both of these residues are at the active site of the enzyme as deduced from the Bacillus subtilis ferrochelatase three-dimensional structure. Addition of free base or metalated porphyrins to wild type ferrochelatase and H207N variant yields a quasi 1:1 complex, possibly a monomeric protein-bound species. In contrast, the addition of porphyrin (either free base or metalated) to E287Q is sub-stoichiometric, as this variant retains bound porphyrin in the active site during isolation and purification. The specificity of porphyrin binding is confirmed by the narrowing of the structure-sensitive resonance Raman lines and the vinyl vibrational mode. Resonance Raman spectra of free base and metalated porphyrins bound to the wild type ferrochelatase indicate a nonplanar distortion of the porphyrin macrocycle, although the magnitude of the distortion cannot be determined without first defining the specific type of deformation. Significantly, the extent of the nonplanar distortion varies in the case of H207N- and E287Q-bound porphyrins. In fact, resonance Raman spectral decomposition indicates a homogeneous ruffled distortion for the nickel protoporphyrin bound to the wild type ferrochelatase, whereas both a planar and ruffled conformations are present for the H207N-bound porphyrin. Perhaps more revealing is the unusual resonance , 3 Raman spectrum of the endogenous E287Q-bound porphyrin, which has

  1. Mechanisms of Breast Carcinogenesis Involving Wild-Type p53

    DTIC Science & Technology

    1999-09-01

    36 Saos-2 osteosarcoma null control 30 24 43 5 Gy 13 32 52 HL-60 promyelocytic null control 37 24 5 leukemia 5 Gy 11 45 37 a Data were determined...Gryka, M. A., Litwak, G., Gebhardt , M., level of p53 that was expressed in the cells in both these studies Bressac, B., Ozturk, M., Baker, S. J...Cdc25C (x2) (46). amounts of a plasmid expressing wild-type p 5 3 , or a plasmid Cell Lines-The osteosarcoma Saos-2 cell line and the breast carci

  2. KRAS driven expression signature has prognostic power superior to mutation status in non‐small cell lung cancer

    PubMed Central

    Nagy, Ádám; Pongor, Lőrinc Sándor; Szabó, András; Santarpia, Mariacarmela

    2016-01-01

    KRAS is the most frequently mutated oncogene in non‐small cell lung cancer (NSCLC). However, the prognostic role of KRAS mutation status in NSCLC still remains controversial. We hypothesize that the expression changes of genes affected by KRAS mutation status will have the most prominent effect and could be used as a prognostic signature in lung cancer. We divided NSCLC patients with mutation and RNA‐seq data into KRAS mutated and wild type groups. Mann‐Whitney test was used to identify genes showing altered expression between these cohorts. Mean expression of the top five genes was designated as a “transcriptomic fingerprint” of the mutation. We evaluated the effect of this signature on clinical outcome in 2,437 NSCLC patients using univariate and multivariate Cox regression analysis. Mutation of KRAS was most common in adenocarcinoma. Mutation status and KRAS expression were not correlated to prognosis. The transcriptomic fingerprint of KRAS include FOXRED2, KRAS, TOP1, PEX3 and ABL2. The KRAS signature had a high prognostic power. Similar results were achieved when using the second and third set of strongest genes. Moreover, all cutoff values delivered significant prognostic power (p < 0.01). The KRAS signature also remained significant (p < 0.01) in a multivariate analysis including age, gender, smoking history and tumor stage. We generated a “surrogate signature” of KRAS mutation status in NSCLC patients by computationally linking genotype and gene expression. We show that secondary effects of a mutation can have a higher prognostic relevance than the primary genetic alteration itself. PMID:27859136

  3. Inhibition of KRAS codon 12 mutants using a novel DNA-alkylating pyrrole-imidazole polyamide conjugate.

    PubMed

    Hiraoka, Kiriko; Inoue, Takahiro; Taylor, Rhys Dylan; Watanabe, Takayoshi; Koshikawa, Nobuko; Yoda, Hiroyuki; Shinohara, Ken-ichi; Takatori, Atsushi; Sugimoto, Hirokazu; Maru, Yoshiaki; Denda, Tadamichi; Fujiwara, Kyoko; Balmain, Allan; Ozaki, Toshinori; Bando, Toshikazu; Sugiyama, Hiroshi; Nagase, Hiroki

    2015-04-27

    Despite extensive efforts to target mutated RAS proteins, anticancer agents capable of selectively killing tumour cells harbouring KRAS mutations have remained unavailable. Here we demonstrate the direct targeting of KRAS mutant DNA using a synthetic alkylating agent (pyrrole-imidazole polyamide indole-seco-CBI conjugate; KR12) that selectively recognizes oncogenic codon 12 KRAS mutations. KR12 alkylates adenine N3 at the target sequence, causing strand cleavage and growth suppression in human colon cancer cells with G12D or G12V mutations, thus inducing senescence and apoptosis. In xenograft models, KR12 infusions induce significant tumour growth suppression, with low host toxicity in KRAS-mutated but not wild-type tumours. This newly developed approach may be applicable to the targeting of other mutant driver oncogenes in human tumours.

  4. Cuticle surface proteins of wild type and mutant Caenorhabditis elegans.

    PubMed

    Blaxter, M L

    1993-03-25

    The molecular components of the surface of the free-living nematode Caenorhabditis elegans have been identified by surface-specific radioiodination. Four compartments were defined by fractionation of labeled wild type (N2 strain) adult hermaphrodites. Organic solvents extracted cuticular lipids. Homogenization in detergents released a single, non-collagenous, hydrophobic protein. This is not glycosylated and is a heterodimer of 6.5- and 12-kDa subunits. The third compartment, proteins solubilized by reducing agents, included both the cuticular collagens and the heterodimer. Residual material corresponds to the cuticlin fraction. Larval stages showed a similar pattern, except that the dauer larva had an additional 37-kDa detergent-soluble protein. Other species of rhabditid nematodes displayed similar profiles, and comparison with parasitic species suggests that this simple pattern may be primitive in the Nematoda. A C. elegans strain mutant in cuticular collagen (rol-6) had a pattern identical to that of wild type, but another morphological mutant (dpy-3) [corrected] and several mutants that differ in surface reactivity to antibody and lectins (srf mutants) also had striking differences in surface labeling patterns.

  5. Wild-type APC predicts poor prognosis in microsatellite-stable proximal colon cancer

    PubMed Central

    Jorissen, Robert N; Christie, Michael; Mouradov, Dmitri; Sakthianandeswaren, Anuratha; Li, Shan; Love, Christopher; Xu, Zheng-Zhou; Molloy, Peter L; Jones, Ian T; McLaughlin, Stephen; Ward, Robyn L; Hawkins, Nicholas J; Ruszkiewicz, Andrew R; Moore, James; Burgess, Antony W; Busam, Dana; Zhao, Qi; Strausberg, Robert L; Lipton, Lara; Desai, Jayesh; Gibbs, Peter; Sieber, Oliver M

    2015-01-01

    Background: APC mutations (APC-mt) occur in ∼70% of colorectal cancers (CRCs), but their relationship to prognosis is unclear. Methods: APC prognostic value was evaluated in 746 stage I–IV CRC patients, stratifying for tumour location and microsatellite instability (MSI). Microarrays were used to identify a gene signature that could classify APC mutation status, and classifier ability to predict prognosis was examined in an independent cohort. Results: Wild-type APC microsatellite stable (APC-wt/MSS) tumours from the proximal colon showed poorer overall and recurrence-free survival (OS, RFS) than APC-mt/MSS proximal, APC-wt/MSS distal and APC-mt/MSS distal tumours (OS HR⩾1.79, P⩽0.015; RFS HR⩾1.88, P⩽0.026). APC was a stronger prognostic indicator than BRAF, KRAS, PIK3CA, TP53, CpG island methylator phenotype or chromosomal instability status (P⩽0.036). Microarray analysis similarly revealed poorer survival in MSS proximal cancers with an APC-wt-like signature (P=0.019). APC status did not affect outcomes in MSI tumours. In a validation on 206 patients with proximal colon cancer, APC-wt-like signature MSS cases showed poorer survival than APC-mt-like signature MSS or MSI cases (OS HR⩾2.50, P⩽0.010; RFS HR⩾2.14, P⩽0.025). Poor prognosis APC-wt/MSS proximal tumours exhibited features of the sessile serrated neoplasia pathway (P⩽0.016). Conclusions: APC-wt status is a marker of poor prognosis in MSS proximal colon cancer. PMID:26305864

  6. Characterization of a novel oncogenic K-ras mutation in colon cancer

    SciTech Connect

    Akagi, Kiwamu . E-mail: akagi@cancer-c.pref.saitama.jp; Uchibori, Ryosuke; Yamaguchi, Kensei; Kurosawa, Keiko; Tanaka, Yoichiro; Kozu, Tomoko

    2007-01-19

    Activating mutations of RAS are frequently observed in subsets of human cancers, indicating that RAS activation is involved in tumorigenesis. Here, we identified and characterized a novel G to T transversion mutation of the K-ras gene at the third position of codon 19 (TTG) which substituted phenylalanine for leucine in 3 primary colon carcinomas. Biological and biochemical activity was examined using transformed NIH3T3 cells expressing mutant or wild-type K-ras. Transformants harboring the K-ras mutation at codon 19 showed proliferative capacity under serum-starved conditions, less contact inhibition, anchorage-independent growth, tumorigenicity in nude mice and elevation of active Ras-GTP levels. These results indicated that this novel mutation possesses high oncogenic activity.

  7. KRAS G12V Mutation Detection by Droplet Digital PCR in Circulating Cell-Free DNA of Colorectal Cancer Patients

    PubMed Central

    Olmedillas López, Susana; García-Olmo, Dolores C.; García-Arranz, Mariano; Guadalajara, Héctor; Pastor, Carlos; García-Olmo, Damián

    2016-01-01

    KRAS mutations are responsible for resistance to anti-epidermal growth factor receptor (EGFR) therapy in colorectal cancer patients. These mutations sometimes appear once treatment has started. Detection of KRAS mutations in circulating cell-free DNA in plasma (“liquid biopsy”) by droplet digital PCR (ddPCR) has emerged as a very sensitive and promising alternative to serial biopsies for disease monitoring. In this study, KRAS G12V mutation was analyzed by ddPCR in plasma DNA from 10 colorectal cancer patients and compared to six healthy donors. The percentage of KRAS G12V mutation relative to wild-type sequences in tumor-derived DNA was also determined. KRAS G12V mutation circulating in plasma was detected in 9 of 10 colorectal cancer patients whose tumors were also mutated. Colorectal cancer patients had 35.62 copies of mutated KRAS/mL plasma, whereas in healthy controls only residual copies were found (0.62 copies/mL, p = 0.0066). Interestingly, patients with metastatic disease showed a significantly higher number of mutant copies than M0 patients (126.25 versus 9.37 copies/mL, p = 0.0286). Wild-type KRAS was also significantly elevated in colorectal cancer patients compared to healthy controls (7718.8 versus 481.25 copies/mL, p = 0.0002). In conclusion, KRAS G12V mutation is detectable in plasma of colorectal cancer patients by ddPCR and could be used as a non-invasive biomarker. PMID:27043547

  8. Safety and efficacy of the addition of simvastatin to panitumumab in previously treated KRAS mutant metastatic colorectal cancer patients.

    PubMed

    Baas, Jara M; Krens, Lisanne L; Bos, Monique M; Portielje, Johanneke E A; Batman, Erdogan; van Wezel, Tom; Morreau, Hans; Guchelaar, Henk-Jan; Gelderblom, Hans

    2015-09-01

    Panitumumab has proven efficacy in patients with metastatic or locally advanced colorectal cancer patients, provided that they have no activating KRAS mutation in their tumour. Simvastatin blocks the mevalonate pathway and thereby interferes with the post-translational modification of KRAS. We hypothesize that the activity of the RAS-induced pathway in patients with a KRAS mutation might be inhibited by simvastatin. This would theoretically result in increased sensitivity to panitumumab, potentially comparable with tumours with wild-type KRAS. A Simon two-stage design single-arm, phase II study was designed to test the safety and efficacy of the addition of simvastatin to panitumumab in colorectal cancer patients with a KRAS mutation after failing fluoropyrimidine-based, oxaliplatin-based and irinotecan-based therapy. The primary endpoint of this study was the proportion of patients alive and free from progression 11 weeks after the first administration of panitumumab, aiming for at least 40%, which is comparable with, although slightly lower than, that in KRAS wild-type patients in this setting. If this 40% was reached, then the study would continue into the second step up to 46 patients. Explorative correlative analysis for mutations in the KRAS and related pathways was carried out. One of 14 patients was free from progression at the primary endpoint time. The median progression-free survival was 8.4 weeks and the median overall survival status was 19.6 weeks. We conclude that the concept of mutant KRAS phenotype expression modulation with simvastatin was not applicable in the clinic.

  9. KRAS G12V Mutation Detection by Droplet Digital PCR in Circulating Cell-Free DNA of Colorectal Cancer Patients.

    PubMed

    Olmedillas López, Susana; García-Olmo, Dolores C; García-Arranz, Mariano; Guadalajara, Héctor; Pastor, Carlos; García-Olmo, Damián

    2016-04-01

    KRAS mutations are responsible for resistance to anti-epidermal growth factor receptor (EGFR) therapy in colorectal cancer patients. These mutations sometimes appear once treatment has started. Detection of KRAS mutations in circulating cell-free DNA in plasma ("liquid biopsy") by droplet digital PCR (ddPCR) has emerged as a very sensitive and promising alternative to serial biopsies for disease monitoring. In this study, KRAS G12V mutation was analyzed by ddPCR in plasma DNA from 10 colorectal cancer patients and compared to six healthy donors. The percentage of KRAS G12V mutation relative to wild-type sequences in tumor-derived DNA was also determined. KRAS G12V mutation circulating in plasma was detected in 9 of 10 colorectal cancer patients whose tumors were also mutated. Colorectal cancer patients had 35.62 copies of mutated KRAS/mL plasma, whereas in healthy controls only residual copies were found (0.62 copies/mL, p = 0.0066). Interestingly, patients with metastatic disease showed a significantly higher number of mutant copies than M0 patients (126.25 versus 9.37 copies/mL, p = 0.0286). Wild-type KRAS was also significantly elevated in colorectal cancer patients compared to healthy controls (7718.8 versus 481.25 copies/mL, p = 0.0002). In conclusion, KRAS G12V mutation is detectable in plasma of colorectal cancer patients by ddPCR and could be used as a non-invasive biomarker.

  10. Elevated K-ras activity with cholestyramine and lovastatin, but not konjac mannan or niacin in lung—importance of mouse strain

    PubMed Central

    Calvert, Richard J.; Tepper, Shirley; Kammouni, Wafa; Anderson, Lucy M.; Kritchevsky, David

    2007-01-01

    Our previous work established that hypocholesterolemic agents altered K-ras intracellular localization in lung. Here, we examined K-ras activity to define further its potential importance in lung carcinogenesis. K-ras activity in lungs from male A/J, Swiss and C57BL/6 mice was examined. For three weeks, mice consumed either 2 or 4% cholestyramine (CS), 1% niacin, 5% konjac mannan (KM), or were injected with lovastatin 25 mg/kg three or five times weekly (Lov-3X and Lov-5X). A pair-fed (PF) group was fed the same quantity of diet consumed by the Lov-5X mice to control for lower body weights in Lov-5X mice. After three weeks, serum cholesterol was assayed with a commercial kit. Activated K-ras protein from lung was affinity precipitated with a Raf-1 ras binding domain-glutathione-S-transferase fusion protein bound to glutathione-agarose beads, followed by Western blotting, K-ras antibody treatment, and chemiluminescent detection. Only KM reduced serum cholesterol (in 2 of 3 mouse strains). In C56BL/6 mice treated with Lov-3X, lung K-ras activity increased 1.8-fold versus control (p = 0.009). In normal lung with wild-type K-ras, this would be expected to be associated with maintenance of differentiation. In A/J mice fed 4% CS, K-ras activity increased 2.1-fold (p = 0.02), which might be responsible for the reported enhancement of carcinogenesis in carcinogen-treated rats fed CS. KM feeding and PF treatment had no significant effects on K-ras activity. These data are consistent with the concept that K-ras in lung has an oncogenic function when mutated, but may act as a tumor suppressor when wild-type. PMID:17005160

  11. KRAS mutations: variable incidences in a Brazilian cohort of 8,234 metastatic colorectal cancer patients

    PubMed Central

    2014-01-01

    Background KRAS mutations are frequently found in colorectal cancer (CRC) indicating the importance of its genotyping in the study of the molecular mechanisms behind this disease. Although major advances have occurred over the past decade, there are still important gaps in our understanding of CRC carcinogenesis, particularly whether sex-linked factors play any role. Methods The profile of KRAS mutations in the Brazilian population was analyzed by conducting direct sequencing of KRAS codons 12 and 13 belonging to 8,234 metastatic CRC patient samples. DNA was extracted from paraffin-embedded tissue, exon 1 was amplified by PCR and submitted to direct sequencing. The data obtained was analysed comparing different geographical regions, gender and age. Results The median age was 59 years and the overall percentage of wild-type and mutated KRAS was 62.8% and 31.9%, respectively. Interestingly, different percentages of mutated KRAS patients were observed between male and female patients (32.5% versus 34.8%, respectively; p = 0.03). KRAS Gly12Asp mutation was the most prevalent for both genders and for most regions, with the exception of the North where Gly12Val was the most frequent mutation found. Conclusions To the best of our knowledge this is one of the largest cohorts of KRAS genotyping in CRC patients and the largest to indicate a higher incidence of KRAS mutation in females compared to males in Brazil. Nevertheless, further research is required to better address the impact of gender differences in colorectal cancer. PMID:24720724

  12. Emergence of KRAS mutations and acquired resistance to anti EGFR therapy in colorectal cancer

    PubMed Central

    Misale, Sandra; Yaeger, Rona; Hobor, Sebastijan; Scala, Elisa; Janakiraman, Manickam; Liska, David; Valtorta, Emanuele; Schiavo, Roberta; Buscarino, Michela; Siravegna, Giulia; Bencardino, Katia; Cercek, Andrea; Chen, Chin-Tung; Veronese, Silvio; Zanon, Carlo; Sartore-Bianchi, Andrea; Gambacorta, Marcello; Gallicchio, Margherita; Vakiani, Efsevia; Boscaro, Valentina; Medico, Enzo; Weiser, Martin; Siena, Salvatore; Di Nicolantonio, Federica; Solit, David; Bardelli, Alberto

    2014-01-01

    Summary A main limitation of therapies that selectively target kinase signaling pathways is the emergence of secondary drug resistance. Cetuximab, a monoclonal antibody that binds the extracellular domain of EGFR, is effective in a subset of KRAS wild type metastatic colorectal cancers1. After an initial response, secondary resistance invariably ensues, thereby limiting the clinical benefit of this drug2. The molecular bases of secondary resistance to cetuximab in colorectal cancer are poorly understood3-8. Here, we show for the first time that molecular alterations (in most instances point mutations) of KRAS are causally associated with the onset of acquired resistance to anti-EGFR treatment in colorectal cancers. Expression of mutant KRAS under the control of its endogenous gene promoter was sufficient to confer cetuximab resistance but resistant cells remained sensitive to combinatorial inhibition of EGFR and MEK. Analysis of metastases from patients who developed resistance to cetuximab or panitumumab showed the emergence of KRAS amplification in one sample and acquisition of secondary KRAS mutations in 60% (6/10) of the cases. KRAS mutant alleles were detectable in the blood of cetuximab treated patients as early as 10 months prior to radiographic documentation of disease progression. In summary, the results identify KRAS mutations as frequent drivers of acquired resistance to cetuximab in colorectal cancers, indicate that the emergence of KRAS mutant clones can be detected non-invasively months prior to radiographic progression and suggest early initiation of a MEK inhibitor as a rational strategy for delaying or reversing drug resistance. PMID:22722830

  13. Differential expression of RBM5 and KRAS in pancreatic ductal adenocarcinoma and their association with clinicopathological features

    PubMed Central

    PENG, JIE; VALESHABAD, ALI KORD; LI, QINGFU; WANG, YUAN

    2013-01-01

    RNA binding motif 5 (RBM5) is a tumor suppressor gene that regulates cell proliferation, differentiation and apoptosis through pre-mRNA splicing of related genes. This study aimed to detect RBM5 and KRAS expression in pancreatic ductal adenocarcinoma and their association with clinicopathological features. Detection of RBM5 and KRAS expression by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and western blotting was performed at mRNA and protein levels, respectively, in pancreatic cancer and non-tumor tissues. In addition, the association of RBM5 and KRAS expression with clinicopathological parameters and tumor recurrence was analyzed. The expression of RBM5 was significantly downregulated in pancreatic cancer tissues compared to peritumoral tissues at the mRNA and protein levels. Contrastingly, KRAS was significantly overexpressed in pancreatic cancerous tissues compared to peritumoral tissues. Analysis revealed that RBM5 expression was negatively correlated with KRAS expression in pancreatic cancer. Furthermore, reduced RBM5 expression has a close association with lymph node metastasis, distant metastasis, Union for International Cancer Control (UICC) stage and nerve and venous invasion, while overexpression of KRAS proteins was significantly correlated with tumor size, lymph node metastasis, UICC stage and nerve and venous invasion of pancreatic cancer. Significant RBM5 underexpression and KRAS overexpression were observed in pancreatic cancer compared to non-tumor tissues. There is a close association of differential RBM5 and KRAS with poor clinicopathological features, suggesting their potential roles in the progression and metastasis of pancreatic cancer. PMID:23425895

  14. Wild-type p53 controls cell motility and invasion by dual regulation of MET expression

    PubMed Central

    Hwang, Chang-Il; Matoso, Andres; Corney, David C.; Flesken-Nikitin, Andrea; Körner, Stefanie; Wang, Wei; Boccaccio, Carla; Thorgeirsson, Snorri S.; Comoglio, Paolo M.; Hermeking, Heiko; Nikitin, Alexander Yu.

    2011-01-01

    Recent observations suggest that p53 mutations are responsible not only for growth of primary tumors but also for their dissemination. However, mechanisms involved in p53-mediated control of cell motility and invasion remain poorly understood. By using the primary ovarian surface epithelium cell culture, we show that conditional inactivation of p53 or expression of its mutant forms results in overexpression of MET receptor tyrosine kinase, a crucial regulator of invasive growth. At the same time, cells acquire increased MET-dependent motility and invasion. Wild-type p53 negatively regulates MET expression by two mechanisms: (i) transactivation of MET-targeting miR-34, and (ii) inhibition of SP1 binding to MET promoter. Both mechanisms are not functional in p53 absence, but mutant p53 proteins retain partial MET promoter suppression. Accordingly, MET overexpression, cell motility, and invasion are particularly high in p53-null cells. These results identify MET as a critical effector of p53 and suggest that inhibition of MET may be an effective antimetastatic approach to treat cancers with p53 mutations. These results also show that the extent of advanced cancer traits, such as invasion, may be determined by alterations in individual components of p53/MET regulatory network. PMID:21831840

  15. An extra copy of p53 suppresses development of spontaneous Kras-driven but not radiation-induced cancer.

    PubMed

    Moding, Everett J; Min, Hooney D; Castle, Katherine D; Ali, Moiez; Woodlief, Loretta; Williams, Nerissa; Ma, Yan; Kim, Yongbaek; Lee, Chang-Lung; Kirsch, David G

    2016-07-07

    The tumor suppressor p53 blocks tumor progression in multiple tumor types. Radiation-induced cancer following exposure to radiation therapy or space travel may also be regulated by p53 because p53 has been proposed to respond to DNA damage to suppress tumorigenesis. Here, we investigate the role of p53 in lung carcinogenesis and lymphomagenesis in LA-1 Kras(G12D) mice with wild-type p53 or an extra copy of p53 (super p53) exposed to fractionated total body irradiation with low linear energy transfer (low-LET) X-rays or high-LET iron ions and compared tumor formation in these mice with unirradiated controls. We found that an additional copy of p53 suppressed both Kras-driven lung tumor and lymphoma development in the absence of radiation. However, an additional copy of p53 did not affect lymphoma development following low- or high-LET radiation exposure and was unable to suppress radiation-induced expansion of thymocytes with mutated Kras. Moreover, radiation exposure increased lung tumor size in super p53 but not wild-type p53 mice. These results demonstrate that although p53 suppresses the development of spontaneous tumors expressing Kras(G12D), in the context of exposure to ionizing radiation, an extra copy of p53 does not protect against radiation-induced lymphoma and may promote Kras(G12D) mutant lung cancer.

  16. An extra copy of p53 suppresses development of spontaneous Kras-driven but not radiation-induced cancer

    PubMed Central

    Moding, Everett J.; Min, Hooney D.; Castle, Katherine D.; Ali, Moiez; Woodlief, Loretta; Williams, Nerissa; Ma, Yan; Kim, Yongbaek; Lee, Chang-Lung

    2016-01-01

    The tumor suppressor p53 blocks tumor progression in multiple tumor types. Radiation-induced cancer following exposure to radiation therapy or space travel may also be regulated by p53 because p53 has been proposed to respond to DNA damage to suppress tumorigenesis. Here, we investigate the role of p53 in lung carcinogenesis and lymphomagenesis in LA-1 KrasG12D mice with wild-type p53 or an extra copy of p53 (super p53) exposed to fractionated total body irradiation with low linear energy transfer (low-LET) X-rays or high-LET iron ions and compared tumor formation in these mice with unirradiated controls. We found that an additional copy of p53 suppressed both Kras-driven lung tumor and lymphoma development in the absence of radiation. However, an additional copy of p53 did not affect lymphoma development following low- or high-LET radiation exposure and was unable to suppress radiation-induced expansion of thymocytes with mutated Kras. Moreover, radiation exposure increased lung tumor size in super p53 but not wild-type p53 mice. These results demonstrate that although p53 suppresses the development of spontaneous tumors expressing KrasG12D, in the context of exposure to ionizing radiation, an extra copy of p53 does not protect against radiation-induced lymphoma and may promote KrasG12D mutant lung cancer. PMID:27453951

  17. Increased sensitivity of KRAS mutation detection by high-resolution melting analysis of COLD-PCR products.

    PubMed

    Kristensen, Lasse S; Daugaard, Iben L; Christensen, Mariann; Hamilton-Dutoit, Stephen; Hager, Henrik; Hansen, Lise Lotte

    2010-12-01

    Considerable effort has been invested in the development of sophisticated technologies enabling detection of clinically significant low-level tumor specific KRAS mutations. Coamplification at lower denaturation temperature-PCR (COLD-PCR) is a new form of PCR that selectively amplifies mutation-containing templates based on the lower melting temperature of mutant homoduplexes versus wild-type homoduplexes. We have developed a fast COLD-PCR and high-resolution melting (HRM) protocol to increase the sensitivity of KRAS mutation detection. The clinical applicability of COLD-PCR for KRAS mutation detection was assessed by analyzing 61 colorectal cancer specimens, for which KRAS mutation status has been evaluated by the FDA approved TheraScreen(®) KRAS mutation kit. The sensitivity was increased by 5- to 100-fold for melting temperature decreasing mutations when using COLD-PCR compared to standard PCR. Mutations, undetectable by the TheraScreen(®) kit in clinical samples, were detected by COLD-PCR followed by HRM and verified by sequencing. Finally, we have observed a previously undescribed low prevalence synonymous mutation (KRAS c.39C>T, codon 13) in colorectal cancer specimens and in the peripheral blood from an unaffected individual. In conclusion, COLD-PCR combined with HRM, is a simple way of increasing the sensitivity of KRAS mutation detection without adding to the complexity and cost of the experiments. © 2010 Wiley-Liss, Inc.

  18. Prognostic value of the KRAS G12V mutation in 841 surgically resected Caucasian lung adenocarcinoma cases.

    PubMed

    Renaud, Stéphane; Falcoz, Pierre-Emmanuel; Schaëffer, Mickaël; Guenot, Dominique; Romain, Benoit; Olland, Anne; Reeb, Jérémie; Santelmo, Nicola; Chenard, Marie-Pierre; Legrain, Michèle; Voegeli, Anne-Claire; Beau-Faller, Michèle; Massard, Gilbert

    2015-10-20

    Identifying patients who will experience lung cancer recurrence after surgery remains a challenge. We aimed to evaluate whether mutant forms of epidermal growth factor receptor (EGFR) and Kirsten rat sarcoma viral oncogene homolog (KRAS) (mEGFR and mKRAS) are useful biomarkers in resected non-small cell lung cancer (NSCLC). We retrospectively reviewed data from 841 patients who underwent surgery and molecular testing for NSCLC between 2007 and 2012. mEGFR was observed in 103 patients (12.2%), and mKRAS in 265 (31.5%). The median overall survival (OS) and time to recurrence (TTR) were significantly lower for mKRAS (OS: 43 months; TTR: 19 months) compared with mEGFR (OS: 67 months; TTR: 24 months) and wild-type patients (OS: 55 months; disease-free survival (DFS): 24 months). Patients with KRAS G12V exhibited worse OS and TTR compared with the entire cohort (OS: KRAS G12V: 26 months vs 60 months; DFS: KRAS G12V: 15 months vs 24 months). These results were confirmed using multivariate analyses (non-G12V status, hazard ratio (HR): 0.43 (confidence interval: 0.28-0.65), P<0.0001 for OS; HR: 0.67 (0.48-0.92), P=0.01 for TTR). Risk of recurrence was significantly lower for non-KRAS G12V (HR: 0.01, (0.001-0.08), P<0.0001). mKRAS and mEGFR may predict survival and recurrence in early stages of NSCLC. Patients with KRAS G12V exhibited worse OS and higher recurrence incidences.

  19. Expression of catalytically active recombinant Helicobacter pylori urease at wild-type levels in Escherichia coli.

    PubMed Central

    Hu, L T; Mobley, H L

    1993-01-01

    The genes encoding Helicobacter pylori urease, a nickel metalloenzyme, have been cloned and expressed in Escherichia coli. Enzymatic activity, however, has been very weak compared with that in clinical isolates of H. pylori. Conditions under which near wild-type urease activity was achieved were developed. E. coli. SE5000 containing recombinant H. pylori urease genes was grown in minimal medium containing no amino acids, NiCl2 was added to 0.75 microM, and structural genes ureA and ureB (pHP902) were overexpressed in trans to the complete urease gene cluster (pHP808). Under these conditions, E. coli SE5000 pHP808/pHP902) expressed a urease activity up to 87 mumol of urea per min per mg of protein (87 U/mg of protein), a level approaching that of wild-type H. pylori UMAB41 (100 U/mg of protein), from which the genes were cloned. Poor catalytic activity of recombinant clones grown in Luria broth or M9 medium containing 0.5% Casamino Acids was due to chelation of nickel ions by medium components, particularly histidine and cysteine. In cultures containing these amino acids, 63Ni2+ was prevented from being transported into cells and was not incorporated into urease protein. As a consequence, M9 minimal medium cultures containing histidine or cysteine produced only 0.05 and 0.9%, respectively, of active urease produced by control cultures containing no amino acids. We conclude that recombinant H. pylori urease is optimally expressed when Ni2+ transport is not inhibited and when sufficient synthesis of urease subunits UreA and UreB is provided. Images PMID:8500893

  20. Multiple cellular proteins modulate the dynamics of K-ras association with the plasma membrane.

    PubMed

    Bhagatji, Pinkesh; Leventis, Rania; Rich, Rebecca; Lin, Chen-ju; Silvius, John R

    2010-11-17

    Although specific proteins have been identified that regulate the membrane association and facilitate intracellular transport of prenylated Rho- and Rab-family proteins, it is not known whether cellular proteins fulfill similar roles for other prenylated species, such as Ras-family proteins. We used a previously described method to evaluate how several cellular proteins, previously identified as potential binding partners (but not effectors) of K-ras4B, influence the dynamics of K-ras association with the plasma membrane. Overexpression of either PDEδ or PRA1 enhances, whereas knockdown of either protein reduces, the rate of dissociation of K-ras from the plasma membrane. Inhibition of calmodulin likewise reduces the rate of K-ras dissociation from the plasma membrane, in this case in a manner specific for the activated form of K-ras. By contrast, galectin-3 specifically reduces the rate of plasma membrane dissociation of activated K-ras, an effect that is blocked by the K-ras antagonist farnesylthiosalicylic acid (salirasib). Multiple cellular proteins thus control the dynamics of membrane association and intercompartmental movement of K-ras to an important degree even under basal cellular conditions. Copyright © 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  1. MAP kinase pathway gene copy alterations in NRAS/BRAF wild-type advanced melanoma.

    PubMed

    Orouji, Elias; Orouji, Azadeh; Gaiser, Timo; Larribère, Lionel; Gebhardt, Christoffer; Utikal, Jochen

    2016-05-01

    Recent therapeutic advances have improved melanoma patientś clinical outcome. Novel therapeutics targeting BRAF, NRAS and cKit mutant melanomas are widely used in clinical practice. However therapeutic options in NRAS(wild-type) /BRAF(wild-type) /cKit(wild-type) melanoma patients are limited. Our study shows that gene copy numbers of members of the MAPK signaling pathway vary in different melanoma subgroups. NRAS(wild-type) /BRAF(wild-type) melanoma metastases are characterized by significant gains of MAP2K1 (MEK1) and MAPK3 (ERK1) gene loci. These additional gene copies could lead to an activation of the MAPK signaling pathway via a gene-dosage effect. Our results suggest that downstream analyses of the pMEK and pERK expression status in NRAS(wild-type) /BRAF(wild-type) melanoma patients identify patients that could benefit from targeted therapies with MEK and ERK inhibitors.

  2. KRAS Genotype Correlates with Proteasome Inhibitor Ixazomib Activity in Preclinical In Vivo Models of Colon and Non-Small Cell Lung Cancer: Potential Role of Tumor Metabolism

    PubMed Central

    Chattopadhyay, Nibedita; Berger, Allison J.; Koenig, Erik; Bannerman, Bret; Garnsey, James; Bernard, Hugues; Hales, Paul; Maldonado Lopez, Angel; Yang, Yu; Donelan, Jill; Jordan, Kristen; Tirrell, Stephen; Stringer, Bradley; Xia, Cindy; Hather, Greg; Galvin, Katherine; Manfredi, Mark; Rhodes, Nelson; Amidon, Ben

    2015-01-01

    In non-clinical studies, the proteasome inhibitor ixazomib inhibits cell growth in a broad panel of solid tumor cell lines in vitro. In contrast, antitumor activity in xenograft tumors is model-dependent, with some solid tumors showing no response to ixazomib. In this study we examined factors responsible for ixazomib sensitivity or resistance using mouse xenograft models. A survey of 14 non-small cell lung cancer (NSCLC) and 6 colon xenografts showed a striking relationship between ixazomib activity and KRAS genotype; tumors with wild-type (WT) KRAS were more sensitive to ixazomib than tumors harboring KRAS activating mutations. To confirm the association between KRAS genotype and ixazomib sensitivity, we used SW48 isogenic colon cancer cell lines. Either KRAS-G13D or KRAS-G12V mutations were introduced into KRAS-WT SW48 cells to generate cells that stably express activated KRAS. SW48 KRAS WT tumors, but neither SW48-KRAS-G13D tumors nor SW48-KRAS-G12V tumors, were sensitive to ixazomib in vivo. Since activated KRAS is known to be associated with metabolic reprogramming, we compared metabolite profiling of SW48-WT and SW48-KRAS-G13D tumors treated with or without ixazomib. Prior to treatment there were significant metabolic differences between SW48 WT and SW48-KRAS-G13D tumors, reflecting higher oxidative stress and glucose utilization in the KRAS-G13D tumors. Ixazomib treatment resulted in significant metabolic regulation, and some of these changes were specific to KRAS WT tumors. Depletion of free amino acid pools and activation of GCN2-eIF2α-pathways were observed both in tumor types. However, changes in lipid beta oxidation were observed in only the KRAS WT tumors. The non-clinical data presented here show a correlation between KRAS genotype and ixazomib sensitivity in NSCLC and colon xenografts and provide new evidence of regulation of key metabolic pathways by proteasome inhibition. PMID:26709701

  3. Alcoholic fermentation by wild-type Hansenula polymorpha and Saccharomyces cerevisiae versus recombinant strains with an elevated level of intracellular glutathione.

    PubMed

    Grabek-Lejko, Dorota; Kurylenko, Olena O; Sibirny, Vladimir A; Ubiyvovk, Vira M; Penninckx, Michel; Sibirny, Andriy A

    2011-11-01

    The ability of baker's yeast Saccharomyces cerevisiae and of the thermotolerant methylotrophic yeast Hansenula polymorpha to produce ethanol during alcoholic fermentation of glucose was compared between wild-type strains and recombinant strains possessing an elevated level of intracellular glutathione (GSH) due to overexpression of the first gene of GSH biosynthesis, gamma-glutamylcysteine synthetase, or of the central regulatory gene of sulfur metabolism, MET4. The analyzed strains of H. polymorpha with an elevated pool of intracellular GSH were found to accumulate almost twice as much ethanol as the wild-type strain during glucose fermentation, in contrast to GSH1-overexpressing S. cerevisiae strains, which also possessed an elevated pool of GSH. The ethanol tolerance of the GSH-overproducing strains was also determined. For this, the wild-type strain and transformants with an elevated GSH pool were compared for their viability upon exposure to exogenous ethanol. Unexpectedly, both S. cerevisiae and H. polymorpha transformants with a high GSH pool proved more sensitive to exogenous ethanol than the corresponding wild-type strains.

  4. Restoration of G1 chemo/radioresistance and double-strand-break repair proficiency by wild-type but not endonuclease-deficient Artemis.

    PubMed

    Mohapatra, Susovan; Kawahara, Misako; Khan, Imran S; Yannone, Steven M; Povirk, Lawrence F

    2011-08-01

    Deficiency in Artemis is associated with lack of V(D)J recombination, sensitivity to radiation and radiomimetic drugs, and failure to repair a subset of DNA double-strand breaks (DSBs). Artemis harbors an endonuclease activity that trims both 5'- and 3'-ends of DSBs. To examine whether endonucleolytic trimming of terminally blocked DSBs by Artemis is a biologically relevant function, Artemis-deficient fibroblasts were stably complemented with either wild-type Artemis or an endonuclease-deficient D165N mutant. Wild-type Artemis completely restored resistance to γ-rays, bleomycin and neocarzinostatin, and also restored DSB-repair proficiency in G0/G1 phase as measured by pulsed-field gel electrophoresis and repair focus resolution. In contrast, cells expressing the D165N mutant, even at very high levels, remained as chemo/radiosensitive and repair deficient as the parental cells, as evidenced by persistent γ-H2AX, 53BP1 and Mre11 foci that slowly increased in size and ultimately became juxtaposed with promyelocytic leukemia protein nuclear bodies. In normal fibroblasts, overexpression of wild-type Artemis increased radioresistance, while D165N overexpression conferred partial repair deficiency following high-dose radiation. Restoration of chemo/radioresistance by wild-type, but not D165N Artemis suggests that the lack of endonucleolytic trimming of DNA ends is the principal cause of sensitivity to double-strand cleaving agents in Artemis-deficient cells.

  5. Restoration of G1 chemo/radioresistance and double-strand-break repair proficiency by wild-type but not endonuclease-deficient Artemis

    PubMed Central

    Mohapatra, Susovan; Kawahara, Misako; Khan, Imran S.; Yannone, Steven M.; Povirk, Lawrence F.

    2011-01-01

    Deficiency in Artemis is associated with lack of V(D)J recombination, sensitivity to radiation and radiomimetic drugs, and failure to repair a subset of DNA double-strand breaks (DSBs). Artemis harbors an endonuclease activity that trims both 5′- and 3′-ends of DSBs. To examine whether endonucleolytic trimming of terminally blocked DSBs by Artemis is a biologically relevant function, Artemis-deficient fibroblasts were stably complemented with either wild-type Artemis or an endonuclease-deficient D165N mutant. Wild-type Artemis completely restored resistance to γ-rays, bleomycin and neocarzinostatin, and also restored DSB-repair proficiency in G0/G1 phase as measured by pulsed-field gel electrophoresis and repair focus resolution. In contrast, cells expressing the D165N mutant, even at very high levels, remained as chemo/radiosensitive and repair deficient as the parental cells, as evidenced by persistent γ-H2AX, 53BP1 and Mre11 foci that slowly increased in size and ultimately became juxtaposed with promyelocytic leukemia protein nuclear bodies. In normal fibroblasts, overexpression of wild-type Artemis increased radioresistance, while D165N overexpression conferred partial repair deficiency following high-dose radiation. Restoration of chemo/radioresistance by wild-type, but not D165N Artemis suggests that the lack of endonucleolytic trimming of DNA ends is the principal cause of sensitivity to double-strand cleaving agents in Artemis-deficient cells. PMID:21531702

  6. The Structural Basis of Oncogenic Mutations G12, G13 and Q61 in Small GTPase K-Ras4B

    PubMed Central

    Lu, Shaoyong; Jang, Hyunbum; Nussinov, Ruth; Zhang, Jian

    2016-01-01

    Ras mediates cell proliferation, survival and differentiation. Mutations in K-Ras4B are predominant at residues G12, G13 and Q61. Even though all impair GAP-assisted GTP → GDP hydrolysis, the mutation frequencies of K-Ras4B in human cancers vary. Here we aim to figure out their mechanisms and differential oncogenicity. In total, we performed 6.4 μs molecular dynamics simulations on the wild-type K-Ras4B (K-Ras4BWT-GTP/GDP) catalytic domain, the K-Ras4BWT-GTP–GAP complex, and the mutants (K-Ras4BG12C/G12D/G12V-GTP/GDP, K-Ras4BG13D-GTP/GDP, K-Ras4BQ61H-GTP/GDP) and their complexes with GAP. In addition, we simulated ‘exchanged’ nucleotide states. These comprehensive simulations reveal that in solution K-Ras4BWT-GTP exists in two, active and inactive, conformations. Oncogenic mutations differentially elicit an inactive-to-active conformational transition in K-Ras4B-GTP; in K-Ras4BG12C/G12D-GDP they expose the bound nucleotide which facilitates the GDP-to-GTP exchange. These mechanisms may help elucidate the differential mutational statistics in K-Ras4B-driven cancers. Exchanged nucleotide simulations reveal that the conformational transition is more accessible in the GTP-to-GDP than in the GDP-to-GTP exchange. Importantly, GAP not only donates its R789 arginine finger, but stabilizes the catalytically-competent conformation and pre-organizes catalytic residue Q61; mutations disturb the R789/Q61 organization, impairing GAP-mediated GTP hydrolysis. Together, our simulations help provide a mechanistic explanation of key mutational events in one of the most oncogenic proteins in cancer. PMID:26902995

  7. The Structural Basis of Oncogenic Mutations G12, G13 and Q61 in Small GTPase K-Ras4B

    NASA Astrophysics Data System (ADS)

    Lu, Shaoyong; Jang, Hyunbum; Nussinov, Ruth; Zhang, Jian

    2016-02-01

    Ras mediates cell proliferation, survival and differentiation. Mutations in K-Ras4B are predominant at residues G12, G13 and Q61. Even though all impair GAP-assisted GTP → GDP hydrolysis, the mutation frequencies of K-Ras4B in human cancers vary. Here we aim to figure out their mechanisms and differential oncogenicity. In total, we performed 6.4 μs molecular dynamics simulations on the wild-type K-Ras4B (K-Ras4BWT-GTP/GDP) catalytic domain, the K-Ras4BWT-GTP-GAP complex, and the mutants (K-Ras4BG12C/G12D/G12V-GTP/GDP, K-Ras4BG13D-GTP/GDP, K-Ras4BQ61H-GTP/GDP) and their complexes with GAP. In addition, we simulated ‘exchanged’ nucleotide states. These comprehensive simulations reveal that in solution K-Ras4BWT-GTP exists in two, active and inactive, conformations. Oncogenic mutations differentially elicit an inactive-to-active conformational transition in K-Ras4B-GTP; in K-Ras4BG12C/G12D-GDP they expose the bound nucleotide which facilitates the GDP-to-GTP exchange. These mechanisms may help elucidate the differential mutational statistics in K-Ras4B-driven cancers. Exchanged nucleotide simulations reveal that the conformational transition is more accessible in the GTP-to-GDP than in the GDP-to-GTP exchange. Importantly, GAP not only donates its R789 arginine finger, but stabilizes the catalytically-competent conformation and pre-organizes catalytic residue Q61; mutations disturb the R789/Q61 organization, impairing GAP-mediated GTP hydrolysis. Together, our simulations help provide a mechanistic explanation of key mutational events in one of the most oncogenic proteins in cancer.

  8. KRAS mutant allele-specific imbalance is associated with worse prognosis in pancreatic cancer and progression to undifferentiated carcinoma of the pancreas.

    PubMed

    Krasinskas, Alyssa M; Moser, A James; Saka, Burcu; Adsay, N Volkan; Chiosea, Simion I

    2013-10-01

    KRAS codon 12 mutations are present in about 90% of ductal adenocarcinomas and in undifferentiated carcinomas of the pancreas. The role of KRAS copy number changes and resulting KRAS mutant allele-specific imbalance (MASI) in ductal adenocarcinoma (n=94), and its progression into undifferentiated carcinoma of the pancreas (n=25) was studied by direct sequencing and KRAS fluorescence in situ hybridization (FISH). Semi-quantitative evaluation of sequencing electropherograms showed KRAS MASI (ie, mutant allele peak higher than or equal to the wild-type allele peak) in 22 (18.4%) cases. KRAS FISH (performed on 45 cases) revealed a trend for more frequent KRAS amplification among cases with KRAS MASI (7/20, 35% vs 3/25, 12%, P=0.08). KRAS amplification by FISH was seen only in undifferentiated carcinomas (10/24, 42% vs 0/21 pancreatic ductal adenocarcinoma, 0%, P=0.0007). In 6 of 11 cases with both undifferentiated and well-differentiated components, transition to undifferentiated carcinoma was associated with an increase in KRAS copy number, due to amplification and/or chromosome 12 hyperploidy. Pancreatic carcinomas with KRAS MASI (compared to those without MASI) were predominantly undifferentiated (16/22, 73% vs 9/97, 9%, P<0.001), more likely to present at clinical stage IV (5/22, 23% vs 7/97, 7%, P=0.009), and were associated with shorter overall survival (9 months, 95% confidence interval, 5-13, vs 22 months, 95% confidence interval, 17-27; P=0.015) and shorter disease-free survival (5 months, 95% confidence interval, 2-8 vs 13 months, 95% confidence interval, 10-16; P=0.02). Our findings suggest that in a subset of ductal adenocarcinomas, KRAS MASI correlates with the progression to undifferentiated carcinoma of the pancreas.

  9. Wild-type p53 induces diverse effects in 32D cells expressing different oncogenes.

    PubMed Central

    Soddu, S; Blandino, G; Scardigli, R; Martinelli, R; Rizzo, M G; Crescenzi, M; Sacchi, A

    1996-01-01

    Expression of exogenous wild-type (wt) p53 in different leukemia cell lines can induce growth arrest, apoptotic cell death, or cell differentiation. The hematopoietic cell lines that have been used so far to study wt p53 functions have in common the characteristic of not expressing endogenous p53. However, the mechanisms involved in the transformation of these cells are different, and the cells are at different stages of tumor progression. It can be postulated that each type of neoplastic cell offers a particular environment in which p53 might generate different effects. To test this hypothesis, we introduced individual oncogenes into untransformed, interleukin-3 (IL-3)-dependent myeloid precursor 32D cells to have a single transforming agent at a time. The effects induced by wt p53 overexpression were subsequently evaluated in each oncogene-expressing 32D derivative. We found that in not fully transformed, v-ras-expressing 32D cells, as already shown for the parental 32D cells, overexpression of the wt p53 gene caused no phenotypic changes and no reduction of the proliferative rate as long as the cells were maintained in their normal culture conditions (presence of IL-3 and serum). An accelerated rate of apoptosis was observed after IL-3 withdrawal. In contrast, in transformed, IL-3-independent 32D cells, wt p53 overexpression induced different effects. The v-abl-transformed cells manifested a reduction in growth rate, while the v-src-transformed cells underwent monocytic differentiation. These results show that the phenotype effects of wt p53 action(s) can vary as a function of the cellular environment. PMID:8552075

  10. Chronic consumption of Annona muricata juice triggers and aggravates cerebral tau phosphorylation in wild-type and MAPT transgenic mice.

    PubMed

    Rottscholl, Robert; Haegele, Marlen; Jainsch, Britta; Xu, Hong; Respondek, Gesine; Höllerhage, Matthias; Rösler, Thomas W; Bony, Emilie; Le Ven, Jessica; Guérineau, Vincent; Schmitz-Afonso, Isabelle; Champy, Pierre; Oertel, Wolfgang H; Yamada, Elizabeth S; Höglinger, Günter U

    2016-11-01

    In the pathogenesis of tauopathies, genetic and environmental factors have been identified. While familial clustering led to the identification of mutations in MAPT encoding the microtubule-associated protein tau, the high incidence of a sporadic tauopathy endemic in Guadeloupe was linked to the plant-derived mitochondrial complex I inhibitor annonacin. The interaction of both factors was studied in the present work in a realistic paradigm over a period of 12 months. Mice over-expressing either human wild-type tau or R406W mutant tau as well as non-transgenic mice received either regular drinking water or commercially available tropical fruit juice made of soursop (Annona muricata L.) as dietary source of neurotoxins. HPLC-MS analysis of this juice identified several Annonaceous acetogenins, mainly annonacin (16.2 mg/L), and 41 isoquinoline alkaloids (18.0 mg/L, mainly asimilobine and reticuline). After 12 month of juice consumption, several brain regions showed an increased number of neurons with phosphorylated tau in the somatodendritic compartment of R406W mice and, to a much lesser extent, of non-transgenic mice and mice over-expressing human wild-type tau. Moreover, juice drinking was associated with a reduction in synaptophysin immunoreactivity, as well as an increase in 3-nitrotyrosine (3NT) reactivity in all three genotypes. The increase in 3NT suggests that Annona muricata juice promotes the generation of reactive nitrogen species. This study provides first experimental evidence that long-lasting oral ingestion of a widely consumed environmental factor can induce somatodendritic accumulation of hyperphosphorylated tau in mice expressing rodent or human wild-type tau, and can accelerate tau pathology in R406W-MAPT transgenic mice. © 2016 International Society for Neurochemistry.

  11. DNA vaccines encoding proteins from wild-type and attenuated canine distemper virus protect equally well against wild-type virus challenge.

    PubMed

    Nielsen, Line; Jensen, Trine Hammer; Kristensen, Birte; Jensen, Tove Dannemann; Karlskov-Mortensen, Peter; Lund, Morten; Aasted, Bent; Blixenkrone-Møller, Merete

    2012-10-01

    Immunity induced by DNA vaccines containing the hemagglutinin (H) and nucleoprotein (N) genes of wild-type and attenuated canine distemper virus (CDV) was investigated in mink (Mustela vison), a highly susceptible natural host of CDV. All DNA-immunized mink seroconverted, and significant levels of virus-neutralizing (VN) antibodies were present on the day of challenge with wild-type CDV. The DNA vaccines also primed the cell-mediated memory responses, as indicated by an early increase in the number of interferon-gamma (IFN-γ)-producing lymphocytes after challenge. Importantly, the wild-type and attenuated CDV DNA vaccines had a long-term protective effect against wild-type CDV challenge. The vaccine-induced immunity induced by the H and N genes from wild-type CDV and those from attenuated CDV was comparable. Because these two DNA vaccines were shown to protect equally well against wild-type virus challenge, it is suggested that the genetic/antigenic heterogeneity between vaccine strains and contemporary wild-type strains are unlikely to cause vaccine failure.

  12. KRAS mutation screening by chip-based DNA hybridization--a further step towards personalized oncology.

    PubMed

    Steinbach, Christine; Steinbrücker, Carolin; Pollok, Sibyll; Walther, Katharina; Clement, Joachim H; Chen, Yuan; Petersen, Iver; Cialla-May, Dana; Weber, Karina; Popp, Jürgen

    2015-04-21

    The use of predictive biomarkers can help to improve therapeutic options for the individual cancer patient. For the treatment of colon cancer patients with anti-EGFR-based drugs, the KRAS mutation status has to be determined to pre-select responders that will benefit from this medication. Amongst others, array-based tests have been established for profiling of the KRAS mutation status. Within this article we describe an on-chip hybridization technique to screen therapeutic relevant KRAS codon 12 mutations. The DNA chip-based platform enables the reliable discrimination of selected mutations by allele-specific hybridization. Here, silver deposits represent robust endpoint signals that allow for a simple naked eye rating. With the here presented assay concept a precise identification of heterozygous and homozygous KRAS mutations, even against a background of up to 95% wild-type DNA, was realizable. The applicability of the test was successfully proven for various cancer cell lines as well as clinical tumour samples. Thus, the chip-based DNA hybridization technique seems to be a promising tool for KRAS mutation analysis to further improve personalized cancer treatment.

  13. Synthetic Lethal Therapy for KRAS Mutant Non-small-cell Lung Carcinoma with Nanoparticle-mediated CDK4 siRNA Delivery

    PubMed Central

    Mao, Cheng-Qiong; Xiong, Meng-Hua; Liu, Yang; Shen, Song; Du, Xiao-Jiao; Yang, Xian-Zhu; Dou, Shuang; Zhang, Pei-Zhuo; Wang, Jun

    2014-01-01

    The KRAS mutation is present in ~20% of lung cancers and has not yet been effectively targeted for therapy. This mutation is associated with a poor prognosis in non-small-cell lung carcinomas (NSCLCs) and confers resistance to standard anticancer treatment drugs, including epidermal growth factor receptor tyrosine kinase inhibitors. In this study, we exploited a new therapeutic strategy based on the synthetic lethal interaction between cyclin-dependent kinase 4 (CDK4) downregulation and the KRAS mutation to deliver micellar nanoparticles (MNPs) containing small interfering RNA targeting CDK4 (MNPsiCDK4) for treatment in NSCLCs harboring the oncogenic KRAS mutation. Following MNPsiCDK4 administration, CDK4 expression was decreased, accompanied by inhibited cell proliferation, specifically in KRAS mutant NSCLCs. However, this intervention was harmless to normal KRAS wild-type cells, confirming the proposed mechanism of synthetic lethality. Moreover, systemic delivery of MNPsiCDK4 significantly inhibited tumor growth in an A549 NSCLC xenograft murine model, with depressed expression of CDK4 and mutational KRAS status, suggesting the therapeutic promise of MNPsiCDK4 delivery in KRAS mutant NSCLCs via a synthetic lethal interaction between KRAS and CDK4. PMID:24496383

  14. KRAS and BRAF somatic mutations in colonic polyps and the risk of metachronous neoplasia.

    PubMed

    Juárez, Miriam; Egoavil, Cecilia; Rodríguez-Soler, María; Hernández-Illán, Eva; Guarinos, Carla; García-Martínez, Araceli; Alenda, Cristina; Giner-Calabuig, Mar; Murcia, Oscar; Mangas, Carolina; Payá, Artemio; Aparicio, José R; Ruiz, Francisco A; Martínez, Juan; Casellas, Juan A; Soto, José L; Zapater, Pedro; Jover, Rodrigo

    2017-01-01

    High-risk features of colonic polyps are based on size, number, and pathologic characteristics. Surveillance colonoscopy is often recommended according to these findings. This study aimed to determine whether the molecular characteristics of polyps might provide information about the risk of metachronous advanced neoplasia. We retrospectively included 308 patients with colonic polyps. A total of 995 polyps were collected and tested for somatic BRAF and KRAS mutations. Patients were classified into 3 subgroups, based on the polyp mutational profile at baseline, as follows: non-mutated polyps (Wild-type), at least one BRAF-mutated polyp, or at least one KRAS-mutated polyp. At surveillance, advanced adenomas were defined as adenomas ≥ 10 mm and/or with high grade dysplasia or a villous component. In contrast, advanced serrated polyps were defined as serrated polyps ≥ 10 mm in any location, located proximal to the splenic flexure with any size or with dysplasia. At baseline, 289 patients could be classified as wild-type (62.3%), BRAF mutated (14.9%), or KRAS mutated (22.8%). In the univariate analysis, KRAS mutations were associated with the development of metachronous advanced polyps (OR: 2.36, 95% CI: 1.22-4.58; P = 0.011), and specifically, advanced adenomas (OR: 2.42, 95% CI: 1.13-5.21; P = 0.023). The multivariate analysis, adjusted for age and sex, also showed associations with the development of metachronous advanced polyps (OR: 2.27, 95% CI: 1.15-4.46) and advanced adenomas (OR: 2.23, 95% CI: 1.02-4.85). Our results suggested that somatic KRAS mutations in polyps represent a potential molecular marker for the risk of developing advanced neoplasia.

  15. Prevalence of K-Ras mutations in hepatocellular carcinoma: A Turkish Oncology Group pilot study

    PubMed Central

    TURHAL, NAZIM SERDAR; SAVAŞ, BERNA; ÇOŞKUN, ÖZNUR; BAŞ, EMINE; KARABULUT, BÜLENT; NART, DENIZ; KORKMAZ, TANER; YAVUZER, DILEK; DEMIR, GÖKHAN; DOĞUSOY, GÜLEN; ARTAÇ, MEHMET

    2015-01-01

    Hepatocellular carcinoma (HCC) is the fifth most common male-predominant type of cancer worldwide. There is no effective treatment regimen available for advanced-stage disease and chemotherapy is generally ineffective in these patients. The number of studies on the prevalence of K-Ras mutations in HCC patients is currently limited. A total of 58 patients from 6 comprehensive cancer centers in 4 metropolitan cities of Turkey were enrolled in this study. Each center committed to enroll approximately 10 random patients whose formalin-fixed paraffin-embedded tumor tissues were available for K-Ras, exon 2 genotyping. Two methods were applied based on the availability of adequate amounts of tumor DNA. In the first method, the samples were processed using TheraScreen. The genomic DNA was further used to detect the 7 most frequent somatic mutations (35G>A; 35G>C; 35G>T; 34G>A; 34G>C; 34G>T and 38G>A) in codons 12 and 13 in exon 2 of the K-Ras oncogene by quantitative polymerase chain reaction (PCR). In the second method, the genomic DNA was amplified by PCR using primers specific for K-Ras exon 2 with the GML SeqFinder Sequencing System's KRAS kit. The identified DNA sequence alterations were confirmed by sequencing both DNA strands in two independent experiments with forward and reverse primers. A total of 40 samples had adequate tumor tissue for the mutation analysis. A total of 33 (82.5%) of the investigated samples harbored no mutations in exon 2. All the mutations were identified via a direct sequencing technique, whereas none were identified by TheraScreen. In conclusion, in our patients, HCC exhibited a remarkably low (<20%) K-Ras mutation rate. Patients harboring K-Ras wild-type tumors may be good candidates for treatment with epidermal growth factor inhibitors, such as cetuximab. PMID:26807232

  16. The KRAS-variant and miRNA expression in RTOG endometrial cancer clinical trials 9708 and 9905.

    PubMed

    Lee, Larissa J; Ratner, Elena; Uduman, Mohamed; Winter, Kathryn; Boeke, Marta; Greven, Kathryn M; King, Stephanie; Burke, Thomas W; Underhill, Kelly; Kim, Harold; Boulware, Raleigh J; Yu, Herbert; Parkash, Vinita; Lu, Lingeng; Gaffney, David; Dicker, Adam P; Weidhaas, Joanne

    2014-01-01

    To explore the association of a functional germline variant in the 3'-UTR of KRAS with endometrial cancer risk, as well as the association of microRNA (miRNA) signatures and the KRAS-variant with clinical characteristics and survival outcomes in two prospective RTOG endometrial cancer trials. The association of the KRAS-variant with endometrial cancer risk was evaluated by case-control analysis of 467 women with type 1 or 2 endometrial cancer and 582 age-matched controls. miRNA and DNA were isolated for expression profiling and genotyping from tumor specimens of 46 women with type 1 endometrial cancer enrolled in RTOG trials 9708 and 9905. miRNA expression levels and KRAS-variant genotype were correlated with patient and tumor characteristics, and survival outcomes were evaluated by variant allele type. The KRAS-variant was not significantly associated with overall endometrial cancer risk (14% controls and 17% type 1 cancers), although was enriched in type 2 endometrial cancers (24%, p = 0.2). In the combined analysis of RTOG 9708/9905, miRNA expression differed by age, presence of lymphovascular invasion and KRAS-variant status. Overall survival rates at 3 years for patients with the variant and wild-type alleles were 100% and 77% (HR 0.3, p = 0.24), respectively, favoring the variant. The KRAS-variant may be a genetic marker of risk for type 2 endometrial cancers. In addition, tumor miRNA expression appears to be associated with patient age, lymphovascular invasion and the KRAS-variant, supporting the hypothesis that altered tumor biology can be measured by miRNA expression, and that the KRAS-variant likely impacts endometrial tumor biology.

  17. Analysis of KRAS/NRAS Mutations in a Phase III Study of Panitumumab with FOLFIRI Compared with FOLFIRI Alone as Second-line Treatment for Metastatic Colorectal Cancer.

    PubMed

    Peeters, Marc; Oliner, Kelly S; Price, Timothy J; Cervantes, Andrés; Sobrero, Alberto F; Ducreux, Michel; Hotko, Yevhen; André, Thierry; Chan, Emily; Lordick, Florian; Punt, Cornelis J A; Strickland, Andrew H; Wilson, Gregory; Ciuleanu, Tudor E; Roman, Laslo; Van Cutsem, Eric; He, Pei; Yu, Hua; Koukakis, Reija; Terwey, Jan-Henrik; Jung, Andre S; Sidhu, Roger; Patterson, Scott D

    2015-12-15

    We evaluated the influence of RAS mutation status on the treatment effect of panitumumab in a prospective-retrospective analysis of a randomized, multicenter phase III study of panitumumab plus fluorouracil, leucovorin, and irinotecan (FOLFIRI) versus FOLFIRI alone as second-line therapy in patients with metastatic colorectal cancer (mCRC; ClinicalTrials.gov, NCT0039183). Outcomes were from the study's primary analysis. RAS mutations beyond KRAS exon 2 (KRAS exons 3, 4; NRAS exons 2, 3, 4; BRAF exon 15) were detected by bidirectional Sanger sequencing in wild-type KRAS exon 2 tumor specimens. Progression-free survival (PFS) and overall survival (OS) were coprimary endpoints. The RAS ascertainment rate was 85%; 18% of wild-type KRAS exon 2 tumors harbored other RAS mutations. For PFS and OS, the hazard ratio (HR) for panitumumab plus FOLFIRI versus FOLFIRI alone more strongly favored panitumumab in the wild-type RAS population than in the wild-type KRAS exon 2 population [PFS HR, 0.70 (95% confidence interval [CI], 0.54-0.91); P = 0.007 vs. 0.73 (95% CI, 0.59-0.90); P = 0.004; OS HR, 0.81 (95% CI, 0.63-1.03); P = 0.08 vs. 0.85 (95% CI, 0.70-1.04); P = 0.12]. Patients with RAS mutations were unlikely to benefit from panitumumab. Among RAS wild-type patients, the objective response rate was 41% in the panitumumab-FOLFIRI group versus 10% in the FOLFIRI group. Patients with RAS mutations were unlikely to benefit from panitumumab-FOLFIRI and the benefit-risk of panitumumab-FOLFIRI was improved in the wild-type RAS population compared with the wild-type KRAS exon 2 population. These findings support RAS testing for patients with mCRC. Clin Cancer Res; 21(24); 5469-79. ©2015 AACR.See related commentary by Salazar and Ciardiello, p. 5415. ©2015 American Association for Cancer Research.

  18. Biosafety of Recombinant and Wild Type Nucleopolyhedroviruses as Bioinsecticides

    PubMed Central

    Ashour, Mohamed-Bassem; Ragheb, Didair A.; El-Sheikh, El-Sayed A.; Gomaa, El-Adarosy A.; Kamita, Shizuo G.; Hammock, Bruce D.

    2007-01-01

    The entomopathogenic Autographa californica (Speyer) nucleopolyhedrovirus (AcMNPV) has been genetically modified to increase its speed of kill. The potential adverse effects of a recombinant AcMNPV (AcAaIT) as well as wild type AcMNPV and wild type Spodoptera littoralis NPV (SlNPV) were studied. Cotton plants were treated with these viruses at concentrations that were adjusted to resemble the recommended field application rate (4 × 1012 PIBs/feddan, feddan = 4,200 m2) and 3rd instar larvae of S. littoralis were allowed to feed on the contaminated plants. SDS-PAGE, ELISA, and DNA analyses were used to confirm that larvae that fed on these plants were virus-infected. Polyhedra that were purified from the infected larvae were subjected to structural protein analysis. A 32 KDa protein was found in polyhedra that were isolated from all of the viruses. Subtle differences were found in the size and abundance of ODV proteins. Antisera against polyhedral proteins isolated from AcAaIT polyhedra were raised in rabbits. The terminal bleeds from rabbits were screened against four coating antigens (i.e., polyhedral proteins from AcAaIT, AcAaIT from field-infected larvae (AcAaIT-field), AcMNPV, and SlNPV) using a two-dimensional titration method with the coated antigen format. Competitive inhibition experiments were conducted in parallel to optimize antibody and coating antigen concentrations for ELISA. The IC50 values for each combination ranged from 1.42 to 163 μg/ml. AcAaIT-derived polyhedrin gave the lowest IC50 value, followed by those of SlNPV, AcAaIT-field, and AcMNPV. The optimized ELISA system showed low cross reactivity for AcMNPV (0.87%), AcAaIT-field (1.2%), and SlNPV (4.0%). Genomic DNAs isolated from AcAaIT that were passaged in larvae of S. littoralis that were reared in the laboratory or field did not show any detectable differences. Albino rats (male and female) that were treated with AcAaIT, AcMNPV or SlNPV (either orally or by intraperitoneal injection at

  19. Biosafety of recombinant and wild type nucleopolyhedroviruses as bioinsecticides.

    PubMed

    Ashour, Mohamed-Bassem; Ragheb, Didair A; El-Sheikh, El-Sayed A; Gomaa, El-Adarosy A; Kamita, Shizuo G; Hammock, Bruce D

    2007-06-01

    The entomopathogenic Autographa californica (Speyer) nucleopolyhedrovirus (AcMNPV) has been genetically modified to increase its speed of kill. The potential adverse effects of a recombinant AcMNPV (AcAaIT) as well as wild type AcMNPV and wild type Spodoptera littoralis NPV (SlNPV) were studied. Cotton plants were treated with these viruses at concentrations that were adjusted to resemble the recommended field application rate (4 x 10(12) PIBs/feddan, feddan = 4,200 m2) and 3rd instar larvae of S. littoralis were allowed to feed on the contaminated plants. SDS-PAGE, ELISA, and DNA analyses were used to confirm that larvae that fed on these plants were virus-infected. Polyhedra that were purified from the infected larvae were subjected to structural protein analysis. A 32 KDa protein was found in polyhedra that were isolated from all of the viruses. Subtle differences were found in the size and abundance of ODV proteins. Antisera against polyhedral proteins isolated from AcAaIT polyhedra were raised in rabbits. The terminal bleeds from rabbits were screened against four coating antigens (i.e., polyhedral proteins from AcAaIT, AcAaIT from field-infected larvae (AcAaIT-field), AcMNPV, and SlNPV) using a two-dimensional titration method with the coated antigen format. Competitive inhibition experiments were conducted in parallel to optimize antibody and coating antigen concentrations for ELISA. The IC50 values for each combination ranged from 1.42 to 163 microg/ml. AcAaIT-derived polyhedrin gave the lowest IC50 value, followed by those of SlNPV, AcAaIT-field, and AcMNPV. The optimized ELISA system showed low cross reactivity for AcMNPV (0.87%), AcAaIT-field (1.2%), and SlNPV (4.0%). Genomic DNAs isolated from AcAaIT that were passaged in larvae of S. littoralis that were reared in the laboratory or field did not show any detectable differences. Albino rats (male and female) that were treated with AcAaIT, AcMNPV or SlNPV (either orally or by intraperitoneal injection at

  20. High concordance rate of KRAS/BRAF mutations and MSI-H between primary colorectal cancer and corresponding metastases.

    PubMed

    Fujiyoshi, Kenji; Yamamoto, Gou; Takahashi, Akemi; Arai, Yoshiko; Yamada, Mina; Kakuta, Miho; Yamaguchi, Kensei; Akagi, Yoshito; Nishimura, Yoji; Sakamoto, Hirohiko; Akagi, Kiwamu

    2017-02-01

    Genetic testing is needed for the treatment of colorectal cancer (CRC), especially molecular-targeted therapy. The effects of anti-EGFR therapy and prognosis are affected by the presence of KRAS mutations. However, whether primary CRC or metastatic tissues are appropriate in the analysis is still unclear. In the present study, we assessed the concordance of KRAS/BRAF mutation status and microsatellite instability (MSI) in primary CRC and corresponding metastases. This study enrolled 457 patients with surgically resected primary and corresponding metastatic CRC (499 synchronous metastases and 57 metachronous metastases) and seven local recurrences, and KRAS/BRAF mutation and MSI status were analysed for these tumours. The concordance rates of KRAS mutation, BRAF mutation, wild-type, MSI-H and MSS between primary CRC and corresponding metastases were 93.9% (214/228), 100% (30/30), 99.3% (304/306), 87.5% (21/24) and 100% (137/137), respectively. These high concordance rates were not different between synchronous and metachronous metastases. In conclusion, a high concordance of KRAS/BRAF mutation status and MSI status was observed between primary CRC and corresponding metastases in this study. Either primary CRC or metastatic tissues can be used for testing KRAS/BRAF mutation status and MSI status.

  1. Effect of KRAS codon13 mutations in patients with advanced colorectal cancer (advanced CRC) under oxaliplatin containing chemotherapy. Results from a translational study of the AIO colorectal study group

    PubMed Central

    2012-01-01

    Background To evaluate the value of KRAS codon 13 mutations in patients with advanced colorectal cancer (advanced CRC) treated with oxaliplatin and fluoropyrimidines. Methods Tumor specimens from 201 patients with advanced CRC from a randomized, phase III trial comparing oxaliplatin/5-FU vs. oxaliplatin/capecitabine were retrospectively analyzed for KRAS mutations. Mutation data were correlated to response data (Overall response rate, ORR), progression-free survival (PFS) and overall survival (OS). Results 201 patients were analysed for KRAS mutation (61.2% males; mean age 64.2 ± 8.6 years). KRAS mutations were identified in 36.3% of tumors (28.8% in codon 12, 7.4% in codon 13). The ORR in codon 13 patients compared to codon 12 and wild type patients was significantly lower (p = 0.008). There was a tendency for a better overall survival in KRAS wild type patients compared to mutants (p = 0.085). PFS in all patients was not different in the three KRAS genetic groups (p = 0.72). However, we found a marked difference in PFS between patients with codon 12 and 13 mutant tumors treated with infusional 5-FU versus capecitabine based regimens. Conclusions Our data suggest that the type of KRAS mutation may be of clinical relevance under oxaliplatin combination chemotherapies without the addition of monoclonal antibodies in particular when overall response rates are important. Trial registration number 2002-04-017 PMID:22876876

  2. [Correlation analysis between abundance of K-ras mutation in plasma free DNA and its correlation with clinical outcome and prognosis in patients with metastatic colorectal cancer].

    PubMed

    Bai, Yan-qing; Liu, Xiao-jing; Wang, Yan; Ge, Fei-jiao; Zhao, Chuan-hua; Fu, Ya-li; Lin, Li; Xu, Jian-ming

    2013-09-01

    To detect K-ras gene mutations in plasma free DNA by peptide nucleic acid clamp PCR assay (PNA-PCR) and nested primer PCR, and to analyze the correlation between K-ras mutations and prognosis in patients with metastatic colorectal cancer (mCRC). Peripheral blood was collected and free DNA was extracted from plasma in 106 patients with mCRC. Nested primer PCR and PNA-PCR were used to detect K-ras gene mutation in the plasma free DNA. The patients were divided into three groups by K-ras status: wild-type group (wild-type determined by both methods), low mutation group (mutation by PNA-PCR method, wild-type by nested primer PCR method) and high mutation group (mutation by two methods). The correlation between K-ras mutations and prognosis was analyzed. The mutation rate of K-ras in tumor tissues of the 106 patients was 40.6%. The Mutation rate of K-ras in plasma free DNA detected by PNA-PCR was 31.1%, significantly higher than that of 15.1% detected by nested primer PCR (P = 0.006). The consistent rate of the K-ras status in plasma free DNA detected by PNA-PCR and that in tumor tissue detected by traditional method was up to 83.0%. The median overall survival (OS) of patients of the wild type, low mutation and high mutation groups was 23.5 months, 17.3 months and 13.9 months, respectively (P = 0.002). The median progression-free survival (PFS) of the K-ras wild-type, low mutation and high mutation groups with first-line chemotherapy was 6.8 months, 6.1 months and 3.2 months, respectively (P = 0.002), and the median OS of them were 23.0 months, 15.5 months and 13.9 months, respectively (P = 0.036). The overall response rate (ORR) was improved in the K-ras wide-type patients who received cetuximab combined with chemotherapy as first-line therapy (75.0% vs. 23.4%, P = 0.058). Cetuximab combined with in second-line therapy chemotherapy led to a significant improvement in disease control rate (DCR) ( 100% vs. 35.7%, P < 0.001) as compared with those of chemotherapy alone

  3. Glycoproteomic Approach Identifies KRAS as a Positive Regulator of CREG1 in Non-small Cell Lung Cancer Cells

    PubMed Central

    Clark, David J.; Mei, Yuping; Sun, Shisheng; Zhang, Hui; Yang, Austin J.; Mao, Li

    2016-01-01

    Protein glycosylation plays a fundamental role in a multitude of biological processes, and the associated aberrant expression of glycoproteins in cancer has made them attractive biomarkers and therapeutic targets. In this study, we examined differentially expressed glycoproteins in cell lines derived from three different states of lung tumorigenesis: an immortalized bronchial epithelial cell (HBE) line, a non-small cell lung cancer (NSCLC) cell line harboring a Kirsten rat sarcoma viral oncogene homolog (KRAS) activation mutation and a NSCLC cell line harboring an epidermal growth factor receptor (EGFR) activation deletion. Using a Triple SILAC proteomic quantification strategy paired with hydrazide chemistry N-linked glycopeptide enrichment, we quantified 118 glycopeptides in the three cell lines derived from 82 glycoproteins. Proteomic profiling revealed 27 glycopeptides overexpressed in both NSCLC cell lines, 6 glycopeptides overexpressed only in the EGFR mutant cells and 19 glycopeptides overexpressed only in the KRAS mutant cells. Further investigation of a panel of NSCLC cell lines found that Cellular repressor of E1A-stimulated genes (CREG1) overexpression was closely correlated with KRAS mutation status in NSCLC cells and could be down-regulated by inhibition of KRAS expression. Our results indicate that CREG1 is a down-stream effector of KRAS in a sub-type of NSCLC cells and a novel candidate biomarker or therapeutic target for KRAS mutant NSCLC. PMID:26722374

  4. Function of mutant and wild-type plexinB1 in prostate cancer cells

    PubMed Central

    Damola, Adebiyi; Legendre, Anne; Ball, Stephen; Masters, John R; Williamson, Magali

    2013-01-01

    BACKGROUND Semaphorins act as chemotactic cues for cell movement via their transmembrane receptors, plexins. Somatic missense mutations in the plexinB1 gene coupled with overexpression of the protein frequently occur in prostate tumors, indicating a role for plexinB1 in the pathogenesis of prostate cancer. However, the effect of semaphorin/plexin signaling is highly context dependent and whether plexinB1 acts as an inducer or inhibitor of prostate tumor progression in this context is not known. METHODS The response of prostate cancer cell lines to plexinB1 activation was assessed in migration, invasion, proliferation and protein phosphorylation assays. Expression was assessed by quantitative RTPCR and immunoblotting. RESULTS Different prostate cancer cell lines respond to Sema4D (the ligand for plexinB1) in diverse ways. Activation of endogenous plexinB1 enhances migration, invasion and anchorage-independent growth of LNCaP prostate cancer cells via activation of ErbB2 and Akt. In contrast, Sema4D-stimulation decreased the motility and proliferative capacity of PC3 cells. LNCaP has a missense mutation (Thr1697Ala) in the plexinB1 gene while LNCaP-LN3, a derivative of LNCaP, expresses high levels of wild-type plexinB1 only. Sema4D stimulation increases the motility and anchorage independent growth of both cell lines, showing that these responses are not dependent on the presence of the Thr1697Ala form of plexinB1. ErbB2 and plexinB1 are expressed in primary prostate epithelial cells. CONCLUSIONS PlexinB1 signals via ErbB2 to increase the invasive phenotype of prostate cancer cells. Both wild-type and mutant forms of plexinB1 are potential targets for anti-cancer therapy in prostate tumors that express ErbB2. Prostate 73:1326–1335, 2013. © 2013 The Authors. The Prostate published by Wiley Periodicals, Inc. PMID:23775445

  5. Wild-type and mutated presenilins 2 trigger p53-dependent apoptosis and down-regulate presenilin 1 expression in HEK293 human cells and in murine neurons

    PubMed Central

    Alves da Costa, Cristine; Paitel, Erwan; Mattson, Mark P.; Amson, Robert; Telerman, Adam; Ancolio, Karine; Checler, Frédéric

    2002-01-01

    Presenilins 1 and 2 are two homologous proteins that, when mutated, account for most early onset Alzheimer's disease. Several lines of evidence suggest that, among various functions, presenilins could modulate cell apoptotic responses. Here we establish that the overexpression of presenilin 2 (PS2) and its mutated form Asn-141-Ile-PS2 alters the viability of human embryonic kidney (HEK)293 cells as established by combined trypan blue exclusion, sodium 3′-[1-(phenylamino-carbonyl)-3,4-tetrazolium]-bis(4-methoxy-6-nitro)benzene sulfonic acid hydrate assay, and propidium iodide incorporation FACS analyses. The two parent proteins increase the acetyl-DEVD-al-sensitive caspase-3-like activity in both HEK293 cells and Telencephalon specific murine neurons, modulate Bax and bcl-2 expressions, and enhance cytochrome C translocation into the cytosol. We show that overexpression of both wild-type and mutated PS2 increases p53-like immunoreactivity and transcriptional activity. We also establish that wild-type- and mutated PS2-induced caspase activation is reduced by p53 antisense approach and by pifithrin-α, a chemical inhibitor of p53. Furthermore, mouse fibroblasts in which the PS2 gene has been knocked out exhibited strongly reduced p53-transcriptional activity. Finally, we establish that the overexpression of both wild-type and mutated PS2 is accompanied by a drastic reduction of endogenous presenilin 1 (PS1) expression. Interestingly, pifithrin-α diminished endogenous PS2 immunoreactivity, whereas the inhibitor increases PS1 expression. Altogether, our data demonstrate that wild-type and familial Alzheimer's disease-linked PS2 trigger apoptosis and down-regulate PS1 expression through p53-dependent mechanisms. PMID:11904448

  6. Wild-Type Measles Virus with the Hemagglutinin Protein of the Edmonston Vaccine Strain Retains Wild-Type Tropism in Macaques

    PubMed Central

    Nagata, Noriyo; Kato, Sei-ich; Ami, Yasushi; Suzaki, Yuriko; Suzuki, Tadaki; Sato, Yuko; Tsunetsugu-Yokota, Yasuko; Mori, Kazuyasu; Van Nguyen, Nguyen; Kimura, Hideki; Nagata, Kyosuke

    2012-01-01

    A major difference between vaccine and wild-type strains of measles virus (MV) in vitro is the wider cell specificity of vaccine strains, resulting from the receptor usage of the hemagglutinin (H) protein. Wild-type H proteins recognize the signaling lymphocyte activation molecule (SLAM) (CD150), which is expressed on certain cells of the immune system, whereas vaccine H proteins recognize CD46, which is ubiquitously expressed on all nucleated human and monkey cells, in addition to SLAM. To examine the effect of the H protein on the tropism and attenuation of MV, we generated enhanced green fluorescent protein (EGFP)-expressing recombinant wild-type MV strains bearing the Edmonston vaccine H protein (MV-EdH) and compared them to EGFP-expressing wild-type MV strains. In vitro, MV-EdH replicated in SLAM+ as well as CD46+ cells, including primary cell cultures from cynomolgus monkey tissues, whereas the wild-type MV replicated only in SLAM+ cells. However, in macaques, both wild-type MV and MV-EdH strains infected lymphoid and respiratory organs, and widespread infection of MV-EdH was not observed. Flow cytometric analysis indicated that SLAM+ lymphocyte cells were infected preferentially with both strains. Interestingly, EGFP expression of MV-EdH in tissues and lymphocytes was significantly weaker than that of the wild-type MV. Taken together, these results indicate that the CD46-binding activity of the vaccine H protein is important for determining the cell specificity of MV in vitro but not the tropism in vivo. They also suggest that the vaccine H protein attenuates MV growth in vivo. PMID:22238320

  7. Effect of simultaneous administration of cold-adapted and wild-type influenza A viruses on experimental wild-type influenza infection in humans.

    PubMed

    Youngner, J S; Treanor, J J; Betts, R F; Whitaker-Dowling, P

    1994-03-01

    On the basis of the ability of the attenuated cold-adapted strain of influenza A virus to suppress disease production in ferrets simultaneously infected with epidemic influenza virus (P. Whitaker-Dowling, H.F. Maassab, and J.S. Youngner, J. Infect. Dis. 164:1200-1202, 1991), an evaluation of the ability of the cold-adapted virus to modify clinical disease in humans was made. Adult volunteers with prechallenge serum hemagglutination-inhibition titers to the influenza A/Kawasaki/86 (H1N1) virus of < or = 1:8 received either 10(7) 50% tissue culture infective doses of the wild-type A/Kawasaki virus or a mixture of 10(7) 50% tissue culture infective doses of each of the wild-type virus and a cold-adapted A/Kawasaki reassortant virus by intranasal drops in a randomized, double-blind fashion. Symptoms and wild-type virus shedding were assessed daily for 6 days following challenge. Results were compared with those derived from another group of volunteers who received only cold-adapted virus. Volunteers who received the mixed inoculum of cold-adapted and wild-type viruses had lower symptom scores than those who received wild-type virus alone, suggesting that coinfection with the cold-adapted virus may modify wild-type virus infection, but the differences were not statistically significant in this small study. The data demonstrate that administration of cold-adapted influenza A virus to humans at the time of wild-type virus infection is a safe procedure.

  8. Functionality of chemically modified waxy, partial waxy and wild-type starches from common wheat

    USDA-ARS?s Scientific Manuscript database

    Waxy wheat (Triticum aestivum L.) starch contains little or no amylose. Partial waxy wheats have amylose concentrations intermediate between those of waxy and wild-type (normal) starches. A factorial design was used to compare waxy, wild-type, partial waxy, and blends (10 and 17% amylose) of waxy an...

  9. Hsp90 prevents interaction between CHIP and HERG proteins to facilitate maturation of wild-type and mutant HERG proteins.

    PubMed

    Iwai, Chisato; Li, Peili; Kurata, Yasutaka; Hoshikawa, Yoshiko; Morikawa, Kumi; Maharani, Nani; Higaki, Katsumi; Sasano, Tetsuro; Notsu, Tomomi; Ishido, Yuko; Miake, Junichiro; Yamamoto, Yasutaka; Shirayoshi, Yasuaki; Ninomiya, Haruaki; Nakai, Akira; Murata, Shigeo; Yoshida, Akio; Yamamoto, Kazuhiro; Hiraoka, Masayasu; Hisatome, Ichiro

    2013-12-01

    We examined the role of Hsp90 in expression and maturation of wild-type (WT) and mutant ether-a-go-go related gene (HERG) proteins by using Hsp90 inhibitors, geldanamycin (GA) and radicicol, and Hsp90 overexpression. The proteins were expressed in HEK293 cells or collected from HL-1 mouse cardiomyocytes, and analysed by western blotting, immunoprecipitation, immunofluorescence, and whole-cell patch-clamp techniques. GA and radicicol suppressed maturation of HERG-FLAG proteins and increased their immature forms. Co-expression of Hsp90 counteracted the effects of Hsp90 inhibitors and suppressed ubiquitination of HERG proteins. Overexpressed Hsp90 also inhibited the binding of endogenous C-terminus of Hsp70-interacting protein (CHIP) to HERG-FLAG proteins. Hsp90-induced increase of functional HERG proteins was verified by their increased expression on the cell surface and enhanced HERG channel currents. CHIP overexpression decreased both mature and immature forms of HERG-FLAG proteins in cells treated with GA. Hsp90 facilitated maturation of endogenous ERG proteins, whereas CHIP decreased both forms of ERG proteins in HL-1 cells. Mutant HERG proteins harbouring disease-causing missense mutations were mainly in the immature form and had a higher binding capacity to CHIP than the WT; Hsp90 overexpression suppressed this association. Overexpressed Hsp90 increased the mature form of HERG(1122fs/147) proteins, reduced its ubiquitinated form, increased its immunoreactivity in the endoplasmic reticulum and on the plasma membrane, and increased the mutant-mediated membrane current. CHIP overexpression decreased the immature form of HERG(1122fs/147) proteins. Enhancement of HERG protein expression through Hsp90 inhibition of CHIP binding might be a novel therapeutic strategy for long QT syndrome 2 caused by trafficking abnormalities of HERG proteins.

  10. Factors associated with guideline-recommended KRAS testing in colorectal cancer patients: A population-based study

    PubMed Central

    Charlton, Mary E.; Karlitz, Jordan J.; Schlichting, Jennifer A.; Chen, Vivien W.; Lynch, Charles F.

    2015-01-01

    Objectives Response to epidermal growth factor receptor inhibitors is poorer among Stage IV colorectal cancer (CRC) patients with KRAS mutations, thus KRAS testing is recommended prior to treatment. KRAS testing was collected by Surveillance, Epidemiology, and End Results (SEER) registries for 2010 CRC cases, and our goal was to provide the first population-based estimates of testing in the U.S. Methods SEER CRC cases diagnosed in 2010 were evaluated (n=30,351). Chi-square tests and logistic regression were conducted to determine patient characteristics associated with KRAS testing, stratified by Stages I-III vs. Stage IV. Log-rank tests were used to examine survival by testing status. Results KRAS testing among Stage IV cases ranged from 39% in New Mexico to 15% in Louisiana. In the model, younger age, being married, living in a metropolitan area, and having primary site surgery were associated with greater odds of receiving KRAS testing. Those who received testing had significantly better survival then those who did not (p<0.0001). Among those who received testing, there was no significant difference in survival by mutated vs. wild type KRAS. Five percent of Stage I-III cases received testing. Conclusions Wide variation in documented KRAS testing for Stage IV CRC patients exists among SEER registries. Age remained highly significant in multivariate models, suggesting it plays an independent role in the patient and/or provider decision to be tested. Further research is needed to determine drivers of variation in testing, as well as reasons for testing in Stage I-III cases where it is not recommended. PMID:25844824

  11. Epidermal growth factor inhibitors in first-line for metastatic colorectal cancer with ras wild-type: a perspective based on pharmacological costs.

    PubMed

    Giuliani, Jacopo; Bonetti, Andrea

    2017-06-01

    In light of the relevant expenses of pharmacological interventions it might be interesting to make a balance between the cost of the new drugs administered, such as EGFRIs (cetuximab and panitunumab) and the added value represented by the improvement of the clinical parameters of interest such as progression free survival (PFS). Areas covered: The analysis was conducted to assess the effect of front-line chemotherapy on the PFS, separately, on each arm of the evaluated trials. Only phase III randomized controlled trials (RCTs) were considered. We calculated the pharmacological costs necessary to get the benefit in PFS, for each trial. We have subsequently applied the European Society for Medical Oncology Magnitude of Clinical Benefit Scale (ESMO-MCBS) to the above phase III RCTs. Our analysis evaluated 9 phase III RCTs, including 7199 patients. ESMO-MCBS reached high scores (grade 4) for the CRYSTAL and PRIME trials. The combination of FOLFOX and panitunumab is associated with low difference per month-PFS gained (15 821.9 €) instead of FOLFIRI plus cetuximab (21 854.6 €) in KRAS wild-type patients. Expert commentary: Our data demonstrate a huge difference in cost per month of PFS gained in modern front-line treatments in mCRC with RAS wild-type.

  12. Role of Kras Status in Patients with Metastatic Colorectal Cancer Receiving First-Line Chemotherapy plus Bevacizumab: A TTD Group Cooperative Study

    PubMed Central

    Díaz-Rubio, Eduardo; Gómez-España, Auxiliadora; Massutí, Bartomeu; Sastre, Javier; Reboredo, Margarita; Manzano, José Luis; Rivera, Fernando; Safont, MªJosé; Montagut, Clara; González, Encarnación; Benavides, Manuel; Marcuello, Eugenio; Cervantes, Andrés; Martínez de Prado, Purificación; Fernández-Martos, Carlos; Arrivi, Antonio; Bando, Inmaculada; Aranda, E.; Gómez, A.; Massutí, B.; Yuste, A.; Rubio, E. Díaz; Sastre, J.; Valladares, M.; Abad, A.; Rivera, F.; Safont, MªJosé; Gallén, M.; González, E.; Benavides, M.; Marcuello, E.; Tobeña, M.; Cervantes, A.; Martínez de Prado, P.; Fernández-Martos, C.; Arrivi, A.; López-Ladrón, A.; Lacasta, A.; Llanos, M.; Remón, J.; Anton, A.; Vicent, J. Mª.; Gala´n, A.; Dueñas, R.; Tabernero, J. Mª.; Manzano, H.; Gómez, Mª. J.; Alfaro, J.; Losa, F.; Escudero, P.; García, T.; García López, J. L.; de Paredes, Mª L. García; Velasco, A.; Almenar, D.; Vera, R.; García Puche, J. L.; Carrato, A.; Lescure, A. Rodriguez; Jiménez, E.; Alberola, V.; García-Foncillas, J.; Constenla, M.; Ruiz, A.; Bueso, P.; Cabrera, E.; del Río,, L.; Ponce, J.; Oltra, A.; Checa, T.; Etxeberría, A.; Alonso, C.

    2012-01-01

    Background In the MACRO study, patients with metastatic colorectal cancer (mCRC) were randomised to first-line treatment with 6 cycles of capecitabine and oxaliplatin (XELOX) plus bevacizumab followed by either single-agent bevacizumab or XELOX plus bevacizumab until disease progression. An additional retrospective analysis was performed to define the prognostic value of tumour KRAS status on progression-free survival (PFS), overall survival (OS) and response rates. Methodology/Principal Findings KRAS data (tumour KRAS status and type of mutation) were collected by questionnaire from participating centres that performed KRAS analyses. These data were then cross-referenced with efficacy data for relevant patients in the MACRO study database. KRAS status was analysed in 394 of the 480 patients (82.1%) in the MACRO study. Wild-type (WT) KRAS tumours were found in 219 patients (56%) and mutant (MT) KRAS in 175 patients (44%). Median PFS was 10.9 months for patients with WT KRAS and 9.4 months for patients with MT KRAS tumours (p = 0.0038; HR: 1.40; 95% CI:1.12–1.77). The difference in OS was also significant: 26.7 months versus 18.0 months for WT versus MT KRAS, respectively (p = 0.0002; HR: 1.55; 95% CI: 1.23–1.96). Univariate and multivariate analyses showed that KRAS was an independent variable for both PFS and OS. Responses were observed in 126 patients (57.5%) with WT KRAS tumours and 76 patients (43.4%) with MT KRAS tumours (p = 0.0054; OR: 1.77; 95% CI: 1.18–2.64). Conclusions/Significance This analysis of the MACRO study suggests a prognostic role for tumour KRAS status in patients with mCRC treated with XELOX plus bevacizumab. For both PFS and OS, KRAS status was an independent factor in univariate and multivariate analyses. PMID:23174912

  13. Correlation of EGFR or KRAS mutation status with 18F-FDG uptake on PET-CT scan in lung adenocarcinoma.

    PubMed

    Takamochi, Kazuya; Mogushi, Kaoru; Kawaji, Hideya; Imashimizu, Kota; Fukui, Mariko; Oh, Shiaki; Itoh, Masayoshi; Hayashizaki, Yoshihide; Ko, Weijey; Akeboshi, Masao; Suzuki, Kenji

    2017-01-01

    18F-fluoro-2-deoxy-glucose (18F-FDG) positron emission tomography (PET) is a functional imaging modality based on glucose metabolism. The correlation between EGFR or KRAS mutation status and the standardized uptake value (SUV) of 18F-FDG PET scanning has not been fully elucidated. Correlations between EGFR or KRAS mutation status and clinicopathological factors including SUVmax were statistically analyzed in 734 surgically resected lung adenocarcinoma patients. Molecular causal relationships between EGFR or KRAS mutation status and glucose metabolism were then elucidated in 62 lung adenocarcinomas using cap analysis of gene expression (CAGE), a method to determine and quantify the transcription initiation activities of mRNA across the genome. EGFR and KRAS mutations were detected in 334 (46%) and 83 (11%) of the 734 lung adenocarcinomas, respectively. The remaining 317 (43%) patients had wild-type tumors for both genes. EGFR mutations were more frequent in tumors with lower SUVmax. In contrast, no relationship was noted between KRAS mutation status and SUVmax. CAGE revealed that 4 genes associated with glucose metabolism (GPI, G6PD, PKM2, and GAPDH) and 5 associated with the cell cycle (ANLN, PTTG1, CIT, KPNA2, and CDC25A) were positively correlated with SUVmax, although expression levels were lower in EGFR-mutated than in wild-type tumors. No similar relationships were noted with KRAS mutations. EGFR-mutated adenocarcinomas are biologically indolent with potentially lower levels of glucose metabolism than wild-type tumors. Several genes associated with glucose metabolism and the cell cycle were specifically down-regulated in EGFR-mutated adenocarcinomas.

  14. Challenges in detecting pre-malignant pancreatic lesions during acute pancreatitis using a serum microRNA assay: a study based on KrasG12D transgenic mice

    PubMed Central

    Hong, Xiafei; Zhang, Jie; Wu, Qiao; Wang, Wenze; Ye, Adam Yongxin; Song, Wei; Dai, Hongmei; Wang, Xianze; Wu, Fan; You, Lei; Wu, Wenming; Zhao, Yupei

    2016-01-01

    Caerulein-induced acute pancreatitis accelerates the progression of pancreatic intraepithelial neoplasia (PanIN) lesions in a pancreas-specific KrasG12D mouse model. The purpose of this study was to explore whether serum microRNAs (miRNAs) can serve as sensitive biomarkers to detect occult PanIN in the setting of acute pancreatitis. Serum miRNA profiles were quantified by an array-based method and normalized by both Variance Stabilization Normalization (VSN) and invariant methods. Individual miRNAs were validated by TaqMan real-time PCR with synthetic spike-in C. elegans miRNAs as external controls. Serum miRNA profiles distinguished KrasG12D mice with pancreatitis from wild-type mice without pancreatitis, but failed to differentiate KrasG12D mice with pancreatitis from wild-type mice with pancreatitis. Most individual miRNAs that increased in KrasG12D mice with pancreatitis were not significantly different between KrasG12D mice without pancreatitis and wild-type mice without pancreatitis. Mechanistically, Gene Set Enrichment Analysis (GSEA) of the mRNA array data and immunohistochemical assays showed that caerulein-induced acute pancreatitis involved acinar cell loss and immune cell infiltration, which might contribute to serum miRNA profile changes. This study highlighted the challenges in using sensitive serum miRNA biomarker screening for the early detection of pancreatic malignancies during acute pancreatitis. PMID:27009811

  15. Genome-wide CRISPR screen for essential cell growth mediators in mutant KRAS colorectal cancers.

    PubMed

    Rana, Tariq M; Yau, Edwin H; Kummetha, Indrasena Reddy; Lichinchi, Gianluigi; Tang, Rachel; Zhang, Yunlin

    2017-09-27

    Targeting mutant KRAS signaling pathways continues to attract attention as a therapeutic strategy for KRAS-driven tumors. In this study, we exploited the power of the CRISPR-Cas9 system to identify genes affecting the tumor xenograft growth of human mutant KRAS colorectal cancers (KRASMUT CRC). Using pooled lentiviral single guide RNA libraries, we conducted a genome-wide loss-of-function genetic screen in an isogenic pair of human CRC cell lines harboring mutant or wild-type KRAS. The screen identified novel and established synthetic enhancers or synthetic lethals for KRASMUT CRC, including targetable metabolic genes. Notably, genetic disruption or pharmacologic inhibition of the metabolic enzymes NAD kinase (NADK) or ketohexokinase (KHK) were growth inhibitory in vivo. Additionally, the chromatin remodeling protein INO80C was identified as a novel tumor suppressor in KRASMUT colorectal and pancreatic tumor xenografts. Our findings define a novel targetable set of therapeutic targets for KRASMUT tumors. Copyright ©2017, American Association for Cancer Research.

  16. Accumulation of wild-type p53 protein in astrocytomas is not mediated by MDM2 gene amplification

    SciTech Connect

    Rubio, M.P.; Louis, D.N. Harvard Medical School, Boston, MA )

    1993-05-01

    The authors have previously described ten cases of astrocytoma (three WHO grade II, four grade III and four grade IV) with seemingly contradictory results on immunohistochemical analysis of the p53 protein and molecular genetic analysis of the p53 gene. Fixed, embedded tissues from these cases were immunohistochemically positive with the PAb 1801 antibody, which supposedly implies the presence of mutant protein. These ten cases, however, did not have mutations in exons 5 through 8 of the p53 gene, the conserved regions in which almost all human mutations have been described. The authors suggested that these cases might either represent overexpression of wild-type p53 protein (since the PAb 1801 antibody reacts with both wild-type and mutant p53 protein) or mutations in less conserved regions of the gene. To investigate these possibilities further, they performed single strand conformational polymorphism analysis and DNA sequencing on p53 exons 4, 9 and 10 in the nine cases with available DNA, since rare mutations have been noted at these loci. None of the cases showed alterations, making it highly unlikely that these tumors harbor mutations in exons of the p53 gene. They also performed immunohistochemistry on frozen sections from seven available tumors, using the mutant-specific antibody PAb 240 in addition to PAb 1801. All tumors continued to show positive staining with PAb 1801, but only one tumor reacted with PAb 240. The results support the hypothesis that the accumulated p53 protein in most cases is wild-type. Because the product of the MDM2 oncogene can bind to wild-type p53 protein, and because MDM2 amplification has recently been demonstrated in human tumors, the authors evaluated MDM2 amplification in the nine astrocytomas with available DNA. Using slot blot analysis with a 96-base pair, PCR-generated probe to the first exon of the MDM2 gene, they were unable to show MDM2 gene amplification in these tumors or in other assayed astrocytomas.

  17. Lung Adenocarcinoma: Predictive Value of KRAS Mutation Status in Assessing Local Recurrence in Patients Undergoing Image-guided Ablation.

    PubMed

    Ziv, Etay; Erinjeri, Joseph P; Yarmohammadi, Hooman; Boas, F Edward; Petre, Elena N; Gao, Song; Shady, Waleed; Sofocleous, Constantinos T; Jones, David R; Rudin, Charles M; Solomon, Stephen B

    2017-01-01

    Purpose To establish the relationship between KRAS mutation status and local recurrence after image-guided ablation of lung adenocarcinoma. Materials and Methods This study consisted of a HIPAA-compliant institutional review board-approved retrospective review of 56 primary lung adenocarcinomas in 54 patients (24 men, 30 women; median age, 72 years; range, 54-87 years) treated with percutaneous image-guided ablation and with available genetic mutational analysis. KRAS mutation status and additional clinical and technical variables-Eastern Cooperative Oncology Group (ECOG) status, smoking history, stage at diagnosis, status (new primary or not), history of radiation, history of surgery, prior systemic treatment, modality of ablation, size of nodule, ablation margin, and presence of ground-glass appearance-were recorded and evaluated in relation to time to local recurrence, which was calculated from the time of ablation to the first radiographic evidence of recurrence. Predictors of outcome were identified by using a proportional hazards model for both univariate and multivariate analysis, with death as a competing risk. Results Technical success was 100%. Of the 56 ablated tumors, 37 (66%) were wild type for KRAS and 19 (34%) were KRAS mutants. The 1-year and 3-year cumulative incidences of recurrence were 20% and 35% for wild-type KRAS compared with 40% and 63% for KRAS mutant tumors. KRAS mutation status was a significant predictor of local recurrence at both univariate (P = .05; subdistribution hazard ratio [sHR], 2.32) and multivariate (P = .006; sHR, 3.75) analysis. At multivariate analysis, size (P = .026; sHR, 2.54) and ECOG status (P = .012; sHR, 2.23) were also independent significant predictors, whereas minimum margin (P = .066) was not. Conclusion The results of this study show that there is a relationship between KRAS mutation status and local recurrence after image-guided ablation of lung adenocarcinoma. Specifically, KRAS mutation status of the ablated

  18. Wild-Type and Non-Wild-Type Mycobacterium tuberculosis MIC Distributions for the Novel Fluoroquinolone Antofloxacin Compared with Those for Ofloxacin, Levofloxacin, and Moxifloxacin

    PubMed Central

    Yu, Xia; Wang, Guirong; Chen, Suting; Wei, Guomei; Shang, Yuanyuan; Dong, Lingling; Schön, Thomas; Moradigaravand, Danesh; Peacock, Sharon J.

    2016-01-01

    Antofloxacin (AFX) is a novel fluoroquinolone that has been approved in China for the treatment of infections caused by a variety of bacterial species. We investigated whether it could be repurposed for the treatment of tuberculosis by studying its in vitro activity. We determined the wild-type and non-wild-type MIC ranges for AFX as well as ofloxacin (OFX), levofloxacin (LFX), and moxifloxacin (MFX), using the microplate alamarBlue assay, of 126 clinical Mycobacterium tuberculosis strains from Beijing, China, of which 48 were OFX resistant on the basis of drug susceptibility testing on Löwenstein-Jensen medium. The MIC distributions were correlated with mutations in the quinolone resistance-determining regions of gyrA (Rv0006) and gyrB (Rv0005). Pharmacokinetic/pharmacodynamic (PK/PD) data for AFX were retrieved from the literature. AFX showed lower MIC levels than OFX but higher MIC levels than LFX and MFX on the basis of the tentative epidemiological cutoff values (ECOFFs) determined in this study. All strains with non-wild-type MICs for AFX harbored known resistance mutations that also resulted in non-wild-type MICs for LFX and MFX. Moreover, our data suggested that the current critical concentration of OFX for Löwenstein-Jensen medium that was recently revised by the World Health Organization might be too high, resulting in the misclassification of phenotypically non-wild-type strains with known resistance mutations as wild type. On the basis of our exploratory PK/PD calculations, the current dose of AFX is unlikely to be optimal for the treatment of tuberculosis, but higher doses could be effective. PMID:27324769

  19. Subunit dissociation and activation of wild-type and mutant glucocorticoid receptors.

    PubMed

    Gehring, U; Mugele, K; Arndt, H; Busch, W

    1987-09-01

    Apparent molecular weights of wild-type and nti ('increased nuclear transfer') mutant glucocorticoid receptors were obtained from Stokes radii and sedimentation coefficients. At low salt concentrations molecular forms of Mr 328,000 and 298,000 of the wild-type and mutant, respectively, were predominant. Increasing ionic strength resulted in receptor dissociation. Dissociated forms of Mr 130,000 and 63,000 of the wild-type and mutant, respectively, were obtained at 300 mM KCl and above. Some metal oxi-anions prevented dissociation. Receptor activation to allow DNA binding produced the dissociated forms which could be separated from non-activated receptors by filtration through DNA-cellulose or by DEAE-cellulose chromatography. Non-activated wild-type and nti receptors eluted from DEAE-cellulose under identical conditions while activated wild-type and nti receptors eluted differently. Partially proteolyzed wild-type receptors behaved identically to nti receptors. We conclude that the large forms of wild-type and nti receptors are heteromeric and contain only one hormone-building polypeptide per complex.

  20. Age-dependent arginine phosphokinase activity changes in male vestigial and wild-type Drosophila melanogaster.

    PubMed

    Baker, G T

    1975-01-01

    The activity of arginine phosphokinase, an important muscle enzyme in insects, was investigated with age in vestigial-winged and wild-type Drosophila melanogaster. Identical patterns of age-dependent activity changes were observed in the vestigial-winged flies as in the wild-type, even though vestigial-winged flies exhibit a 50% mortality approximately two thirds that of the wild-type as well as being incapable of flight. Results indicate that the age-dependent changes in arginine phosphokinase activity are intrinsically regulated within the cells of the flight muscle.

  1. Spaceflight Influences both Mucosal and Peripheral Cytokine Production in PTN-Tg and Wild Type Mice

    PubMed Central

    Liu, Yi; Kalmokoff, Martin; Brooks, Stephen P. J.; Green-Johnson, Julia M.

    2013-01-01

    Spaceflight is associated with several health issues including diminished immune efficiency. Effects of long-term spaceflight on selected immune parameters of wild type (Wt) and transgenic mice over-expressing pleiotrophin under the human bone-specific osteocalcin promoter (PTN-Tg) were examined using the novel Mouse Drawer System (MDS) aboard the International Space Station (ISS) over a 91 day period. Effects of this long duration flight on PTN-Tg and Wt mice were determined in comparison to ground controls and vivarium-housed PTN-Tg and Wt mice. Levels of interleukin-2 (IL-2) and transforming growth factor-beta1 (TGF-β1) were measured in mucosal and systemic tissues of Wt and PTN-Tg mice. Colonic contents were also analyzed to assess potential effects on the gut microbiota, although no firm conclusions could be made due to constraints imposed by the MDS payload and the time of sampling. Spaceflight-associated differences were observed in colonic tissue and systemic lymph node levels of IL-2 and TGF-β1 relative to ground controls. Total colonic TGF-β1 levels were lower in Wt and PTN-Tg flight mice in comparison to ground controls. The Wt flight mouse had lower levels of IL-2 and TGF-β1 compared to the Wt ground control in both the inguinal and brachial lymph nodes, however this pattern was not consistently observed in PTN-Tg mice. Vivarium-housed Wt controls had higher levels of active TGF-β1 and IL-2 in inguinal lymph nodes relative to PTN-Tg mice. The results of this study suggest compartmentalized effects of spaceflight and on immune parameters in mice. PMID:23874826

  2. Spaceflight influences both mucosal and peripheral cytokine production in PTN-Tg and wild type mice.

    PubMed

    McCarville, Justin L; Clarke, Sandra T; Shastri, Padmaja; Liu, Yi; Kalmokoff, Martin; Brooks, Stephen P J; Green-Johnson, Julia M

    2013-01-01

    Spaceflight is associated with several health issues including diminished immune efficiency. Effects of long-term spaceflight on selected immune parameters of wild type (Wt) and transgenic mice over-expressing pleiotrophin under the human bone-specific osteocalcin promoter (PTN-Tg) were examined using the novel Mouse Drawer System (MDS) aboard the International Space Station (ISS) over a 91 day period. Effects of this long duration flight on PTN-Tg and Wt mice were determined in comparison to ground controls and vivarium-housed PTN-Tg and Wt mice. Levels of interleukin-2 (IL-2) and transforming growth factor-beta1 (TGF-β1) were measured in mucosal and systemic tissues of Wt and PTN-Tg mice. Colonic contents were also analyzed to assess potential effects on the gut microbiota, although no firm conclusions could be made due to constraints imposed by the MDS payload and the time of sampling. Spaceflight-associated differences were observed in colonic tissue and systemic lymph node levels of IL-2 and TGF-β1 relative to ground controls. Total colonic TGF-β1 levels were lower in Wt and PTN-Tg flight mice in comparison to ground controls. The Wt flight mouse had lower levels of IL-2 and TGF-β1 compared to the Wt ground control in both the inguinal and brachial lymph nodes, however this pattern was not consistently observed in PTN-Tg mice. Vivarium-housed Wt controls had higher levels of active TGF-β1 and IL-2 in inguinal lymph nodes relative to PTN-Tg mice. The results of this study suggest compartmentalized effects of spaceflight and on immune parameters in mice.

  3. Prion-like propagation of human brain-derived alpha-synuclein in transgenic mice expressing human wild-type alpha-synuclein.

    PubMed

    Bernis, Maria E; Babila, Julius T; Breid, Sara; Wüsten, Katharina Annick; Wüllner, Ullrich; Tamgüney, Gültekin

    2015-11-26

    Parkinson's disease (PD) and multiple system atrophy (MSA) are neurodegenerative diseases that are characterized by the intracellular accumulation of alpha-synuclein containing aggregates. Recent increasing evidence suggests that Parkinson's disease and MSA pathology spread throughout the nervous system in a spatiotemporal fashion, possibly by prion-like propagation of alpha-synuclein positive aggregates between synaptically connected areas. Concurrently, intracerebral injection of pathological alpha-synuclein into transgenic mice overexpressing human wild-type alpha-synuclein, or human alpha-synuclein with the familial A53T mutation, or into wild-type mice causes spreading of alpha-synuclein pathology in the CNS. Considering that wild-type mice naturally also express a threonine at codon 53 of alpha-synuclein, it has remained unclear whether human wild-type alpha-synuclein alone, in the absence of endogenously expressed mouse alpha-synuclein, would support a similar propagation of alpha-synuclein pathology in vivo. Here we show that brain extracts from two patients with MSA and two patients with probable incidental Lewy body disease (iLBD) but not phosphate-buffered saline induce prion-like spreading of pathological alpha-synuclein after intrastriatal injection into mice expressing human wild-type alpha-synuclein. Mice were sacrificed at 3, 6, and 9 months post injection and analyzed neuropathologically and biochemically. Mice injected with brain extracts from patients with MSA or probable iLBD both accumulated intraneuronal inclusion bodies, which stained positive for phosphorylated alpha-synuclein and appeared predominantly within the injected brain hemisphere after 6 months. After 9 months these intraneuronal inclusion bodies had spread to the contralateral hemisphere and more rostral and caudal areas. Biochemical analysis showed that brains of mice injected with brain extracts from patients with MSA and probable iLBD contained hyperphosphorylated alpha

  4. Clinicopathologic characteristics and gene expression analyses of non-KRAS 12/13, RAS-mutated metastatic colorectal cancer.

    PubMed

    Morris, V K; Lucas, F A San; Overman, M J; Eng, C; Morelli, M P; Jiang, Z-Q; Luthra, R; Meric-Bernstam, F; Maru, D; Scheet, P; Kopetz, S; Vilar, E

    2014-10-01

    KRAS mutations in codons 12 and 13 are present in ∼40% of all colorectal cancers (CRC). Activating mutations in codons 61 and 146 of KRAS and in codons 12, 13, and 61 of NRAS also occur but are less frequent. The clinicopathologic features and gene expression profiles of this latter subpopulation of RAS-mutant colorectal tumors have not yet been clearly defined but in general are treated similarly to those with KRAS 12 or 13 mutations. Records of patients with metastatic CRC (mCRC) treated at MD Anderson Cancer Center between December 2000 and August 2012 were reviewed for RAS (KRAS or NRAS) and BRAF mutation status, clinical characteristics, and survival outcomes. To study further with an independent cohort, data from The Cancer Genome Atlas were analyzed to define a gene expression signature for patients whose tumors feature these atypical RAS mutations and explore differences with KRAS 12/13-mutated colorectal tumors. Among the 484 patients reviewed, KRAS 12/13, KRAS 61/146, NRAS, and BRAF mutations were detected in 47.7%, 3.0%, 4.1%, and 7.4%, respectively, of patients who were tested for each of these aberrations. Lung metastases were more common in both the KRAS 12/13-mutated and atypical RAS-mutated cohorts relative to patients with RAS/BRAF wild-type tumors. Gene expression analyses revealed similar patterns regardless of the site of RAS mutation, and in silico functional algorithms predicted that KRAS and NRAS mutations in codons 12, 13, 61, and 146 alter the protein function and drive tumorgenesis. Clinicopathologic characteristics, survival outcomes, functional impact, and gene expression profiling were similar between patients with KRAS 12/13 and those with NRAS or KRAS 61/146-mutated mCRC. These clinical and bioinformatic findings support the notion that colorectal tumors driven by these RAS mutations are phenotypically similar. © The Author 2014. Published by Oxford University Press on behalf of the European Society for Medical Oncology. All rights

  5. Selective Targeting of the KRAS Codon 12 Mutation Sequence by Pyrrole-Imidazole Polyamide seco-CBI Conjugates.

    PubMed

    Taylor, Rhys D; Chandran, Anandhakumar; Kashiwazaki, Gengo; Hashiya, Kaori; Bando, Toshikazu; Nagase, Hiroki; Sugiyama, Hiroshi

    2015-10-12

    Mutation of KRAS is a key step in many cancers. Mutations occur most frequently at codon 12, but the targeting of KRAS is notoriously difficult. We recently demonstrated selective reduction in the volume of tumors harboring the KRAS codon 12 mutation in a mouse model by using an alkylating hairpin N-methylpyrrole-N-methylimidazole polyamide seco-1,2,9,9a-tetrahydrocyclopropa[1,2-c]benz[1,2-e]indol-4-one conjugate (conjugate 4) designed to target the KRAS codon 12 mutation sequence. Herein, we have compared the alkylating activity of 4 against three other conjugates that were also designed to target the KRAS codon 12 mutation sequence. Conjugate 4 displayed greater affinity for the G12D mutation sequence than for the G12V sequence. A computer-minimized model suggested that conjugate 4 could bind more efficiently to the G12D match sequence than to a one-base-pair mismatch sequence. Conjugate 4 was modified for next-generation sequencing. Bind-n-Seq analysis supported the evidence showing that conjugate 4 could target the G12D mutation sequence with exceptionally high affinity and the G12V mutation sequence with much higher affinity than that for the wild-type sequence.

  6. Sensitivity of KRAS-Mutant Colorectal Cancers to Combination Therapy that Co-Targets MEK and CDK4/6

    PubMed Central

    Ziemke, Elizabeth K.; Dosch, Joseph S.; Maust, Joel D.; Shettigar, Amrith; Sen, Ananda; Welling, Theodore H.; Hardiman, Karin M.; Sebolt-Leopold, Judith S.

    2015-01-01

    Purpose The emerging need for rational combination treatment approaches led us to test the concept that co-targeting MEK and CDK4/6 would prove efficacious in KRAS mutant (KRASmt) colorectal cancers, where upregulated CDK4 and hyperphosphorylated retinoblastoma (RB) typify the vast majority of tumors. Experimental Design Initial testing was carried out in the HCT-116 tumor model, which is known to harbor a KRAS mutation. Efficacy studies were then performed with five RB+ patient-derived colorectal xenograft models, genomically diverse with respect to KRAS, BRAF, and PIK3CA mutational status. Tolerance, efficacy, and pharmacodynamic evaluation of target modulation were evaluated in response to daily dosing with either agent alone or concurrent co-administration. Results Synergy was observed in vitro when HCT-116 cells were treated over a broad range of doses of trametinib and palbociclib. Subsequent in vivo evaluation of this model showed a higher degree of antitumor activity resulting from the combination compared to that achievable with single agent treatment. Testing of colorectal patient-derived xenograft (PDX) models further showed that combination of trametinib and palbociclib was well tolerated and resulted in objective responses in all KRASmt models tested. Stasis was observed in a KRAS/BRAF wild type and a BRAFmt model. Conclusions Combination of trametinib and palbociclib was well tolerated and highly efficacious in all three KRAS mutant CRC PDX models tested. Promising preclinical activity seen here supports clinical evaluation of this treatment approach to improve therapeutic outcome for metastatic colorectal cancer patients. PMID:26369631

  7. Response to first-line chemotherapy in patients with non-small-cell lung cancer according to epidermal growth factor receptor and K-RAS mutation status.

    PubMed

    Dong, Xiaopeng; Zhao, Xiaogang; Hao, Yingtao; Wei, Yucheng; Yin, Qiuwei; Du, Jiajun

    2013-11-01

    Epidermal growth factor receptor (EGFR)-targeted therapy has shown a favorable efficacy in patients with non-small-cell lung cancer (NSCLC). Conversely, K-RAS mutations were reported to have an adverse effect on the survival of patients with NSCLC. These studies suggest that the tumor biology of patients with EGFR or K-RAS mutations is different from that of patients with wild-type mutations. Therefore, we hypothesized that the response to cytotoxic chemotherapy may differ among patients with and without EGFR or K-RAS mutations. A total of 229 patients with advanced NSCLC who received platinum doublet chemotherapy were included in this retrospective study, and their clinical outcomes were analyzed according to EGFR and K-RAS mutation status. EGFR and K-RAS mutations were found in 52.4% and 27.9% of patients, respectively. Progression-free survival (PFS) was significantly higher in patients with EGFR mutations than in patients with wild-type EGFR (P = .008), and multivariate analysis showed that EGFR mutation was an independent factor to chemotherapy (P = .01). Among the patients with EGFR mutations, the disease control rate for docetaxel was higher than for gemcitabine-based therapy (P = .031). In addition, docetaxel or vinorelbine showed a longer PFS than gemcitabine-based chemotherapy in patients with EGFR mutations (P = .033 and P = .028). However, no similar differences were found according to the K-RAS mutations. EGFR, but not K-RAS mutation, is associated with improved survival time to platinum-based chemotherapy. In patients with EGFR mutations, PFS for docetaxel and gemcitabine was higher than for vinorelbine-based chemotherapies. The predictive meaning of EGFR mutation for chemotherapy should be further investigated. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Alterations of LKB1 and KRAS and Risk of Brain Metastasis: Comprehensive Characterization by Mutation Analysis, Copy Number, and Gene Expression in Non-Small-Cell Lung Carcinoma

    PubMed Central

    Zhao, Ni; Wilkerson, Matthew D.; Shah, Usman; Yin, Xiaoying; Wang, Anyou; Hayward, Michele C.; Roberts, Patrick; Lee, Carrie B.; Parsons, Alden M.; Thorne, Leigh B.; Haithcock, Benjamin E.; Grilley-Olson, Juneko E.; Stinchcombe, Thomas E.; Funkhouser, William K.; Wong, Kwok K.; Sharpless, Norman E.; Hayes, D. Neil

    2015-01-01

    Background Brain metastases are one of the most malignant complications of lung cancer and constitute a significant cause of cancer related morbidity and mortality worldwide. Recent years of investigation suggested a role of LKB1 in NSCLC development and progression, in synergy with KRAS alteration. In this study, we systematically analyzed how LKB1 and KRAS alteration, measured by mutation, gene expression (GE) and copy number (CN), are associated with brain metastasis in NSCLC. Materials and Methods Patients treated at University of North Carolina Hospital from 1990 to 2009 with NSCLC provided frozen, surgically extracted tumors for analysis. GE was measured using Agilent 44,000 custom-designed arrays, CN was assessed by Affymetrix GeneChip Human Mapping 250K Sty Array or the Genome-Wide Human SNP Array 6.0 and gene mutation was detected using ABI sequencing. Integrated analysis was conducted to assess the relationship between these genetic markers and brain metastasis. A model was proposed for brain metastasis prediction using these genetic measurements. Results 17 of the 174 patients developed brain metastasis. LKB1 wild type tumors had significantly higher LKB1 CN (p < 0.001) and GE (p = 0.002) than the LKB1 mutant group. KRAS wild type tumors had significantly lower KRAS GE (p < 0.001) and lower CN, although the latter failed to be significant (p = 0.295). Lower LKB1 CN (p = 0.039) and KRAS mutation (p = 0.007) were significantly associated with more brain metastasis. The predictive model based on nodal (N) stage, patient age, LKB1 CN and KRAS mutation had a good prediction accuracy, with area under the ROC curve of 0.832 (p < 0.001). Conclusion LKB1 CN in combination with KRAS mutation predicted brain metastasis in NSCLC. PMID:25224251

  9. Development of a ligase detection reaction/CGE method using a LIF dual-channel detection system for direct identification of allelic composition of mutated DNA in a mixed population of excess wild-type DNA.

    PubMed

    Hamada, Mariko; Shimase, Koji; Noda, Keiichi; Tsukagoshi, Kazuhiko; Hashimoto, Masahiko

    2013-05-01

    We developed an inexpensive LIF dual-channel detection system and applied it to a ligase detection reaction (LDR)/CGE method to identify the allelic composition of low-abundance point mutations in a large excess of wild-type DNA in a single reaction with a high degree of certainty. Ligation was performed in a tube with a nonlabeled common primer and multiplex discriminating primers, each labeled with a different standard fluorophore. The discriminating primers were directed against three mutant variations in codon 12 of the K-ras oncogene that have a high diagnostic value for colorectal cancer. LDR products generated from a particular K-ras mutation through successful ligation events were separated from remaining discriminating primers by CGE, followed by LIF detection using the new system, which consists of two photomultiplier tubes, each with a unique optical filter. Each fluorophore label conjugated to the corresponding LDR product produced a distinct fluorescence signal intensity ratio from the two detection channels, allowing spectral discrimination of the three labels. The ability of this system to detect point mutations in a wild-type sequence-dominated population, and to disclose their allelic composition, was thus demonstrated successfully.

  10. Panitumumab Use in Metastatic Colorectal Cancer and Patterns of KRAS Testing: Results from a Europe-Wide Physician Survey and Medical Records Review

    PubMed Central

    Trojan, Jörg; Mineur, Laurent; Tomášek, Jiří; Rouleau, Etienne; Fabian, Pavel; de Maglio, Giovanna; García-Alfonso, Pilar; Aprile, Giuseppe; Taylor, Aliki; Kafatos, George; Downey, Gerald; Terwey, Jan-Henrik; van Krieken, J. Han

    2015-01-01

    Background From 2008–2013, the European indication for panitumumab required that patients’ tumor KRAS exon 2 mutation status was known prior to starting treatment. To evaluate physician awareness of panitumumab prescribing information and how physicians prescribe panitumumab in patients with metastatic colorectal cancer (mCRC), two European multi-country, cross-sectional, observational studies were initiated in 2012: a physician survey and a medical records review. The first two out of three planned rounds for each study are reported. Methods The primary objective in the physician survey was to estimate the prevalence of KRAS testing, and in the medical records review, it was to evaluate the effect of test results on patterns of panitumumab use. The medical records review study also included a pathologists’ survey. Results In the physician survey, nearly all oncologists (299/301) were aware of the correct panitumumab indication and the need to test patients’ tumor KRAS status before treatment with panitumumab. Nearly all oncologists (283/301) had in the past 6 months of clinical practice administered panitumumab correctly to mCRC patients with wild-type KRAS status. In the medical records review, 97.5% of participating oncologists (77/79) conducted a KRAS test for all of their patients prior to prescribing panitumumab. Four patients (1.3%) did not have tumor KRAS mutation status tested prior to starting panitumumab treatment. Approximately one-quarter of patients (85/306) were treated with panitumumab and concurrent oxaliplatin-containing chemotherapy; of these, 83/85 had confirmed wild-type KRAS status prior to starting panitumumab treatment. All 56 referred laboratories that participated used a Conformité Européenne-marked or otherwise validated KRAS detection method, and nearly all (55/56) participated in a quality assurance scheme. Conclusions There was a high level of knowledge amongst oncologists around panitumumab prescribing information and the

  11. Electrophoretic Mobilities of Escherichia coli O157:H7 and Wild-Type Escherichia coli Strains

    PubMed Central

    Lytle, Darren A.; Rice, Eugene W.; Johnson, Clifford H.; Fox, Kim R.

    1999-01-01

    The electrophoretic mobilities (EPMs) of a number of Escherichia coli O157:H7 and wild-type E. coli strains were measured. The effects of pH and ionic strength on the EPMs were investigated. The EPMs of E. coli O157:H7 strains differed from those of wild-type strains. As the suspension pH decreased, the EPMs of both types of strains increased. PMID:10388724

  12. Comparison between NOx Evolution Mechanisms of Wild-Type and nr1 Mutant Soybean Leaves 1

    PubMed Central

    Klepper, Lowell

    1990-01-01

    The nr1 soybean (Glycine max [L.] Merr.) mutant does not contain the two constitutive nitrate reductases, one of which is responsible for enzymic conversion of nitrite to NOx (NO + NO2). It was tested for possible nonenzymic NOx formation and evolution because of known chemical reactions between NO2− and plant metabolites and the instability of nitrous acid. It did not evolve NOx during the in vivo NR assay, but intact leaves did evolve small amounts of NOx under dark, anaerobic conditions. Experiments were conducted to compare NO3− reduction, NO2− accumulation, and the NOx evolution processes of the wild type (cv Williams) and the nr1 mutant. In vivo NR assays showed that wild-type leaves had three times more NO3− reducing capacity than the nr1 mutant. NOx evolution from intact, anerobic nr1 leaves was approximately 10 to 20% that from wild-type leaves. Nitrite content of the nr1 mutant leaves was usually higher than wild type due to low NOx evolution. Lag times and threshold NO2− concentrations for NOx evolution were similar for the two genotypes. While only 1 to 2% of NOx from wild type is NO2, the nr1 mutant evolved 15 to 30% NO2. The kinetic patterns of NOx evolution with time weré completely different for the mutant and wild type. Comparisons of light and heat treatments also gave very different results. It is generally accepted that the NOx evolution by wild type is primarily an enzymic conversion of NO2− to NO. However, this report concludes that NOx evolution by the nr1 mutant was due to nonenzymic, chemical reactions between plant metabolites and accumulated NO2− and/or decomposition of nitrous acid. Nonenzymic NOx evolution probably also occurs in wild type to a degree but could be easily masked by high rates of the enzymic process. PMID:16667445

  13. Clinicopathological features and prognostic roles of KRAS, BRAF, PIK3CA and NRAS mutations in advanced gastric cancer

    PubMed Central

    2014-01-01

    Background RAS-RAF-MEK-ERK and PI3K-AKT pathways form a significant cascade for potential molecular target therapy in advanced cancer. The clinical significance of mutations in these genes in advanced gastric cancer (AGC) is uncertain. Methods We collected formalin-fixed, paraffin-embedded and fresh frozen tumor samples from AGC patients and analyzed the KRAS, NRAS, BRAF and PIK3CA mutations by direct-sequencing. We retrospectively investigated the clinicopathological features of these mutations in AGC patients, and selected patients with metastatic gastric cancer. Results Among 167 AGC patients, mutations of KRAS codons 12/13 (N = 8/164, 4.9%), PIK3CA (N = 9/163, 5.5%), and NRAS codon 12/13(N = 3/159, 1.9%) were detected. Comparison of the clinicopathological features of the mutated KRAS, PIK3CA, NRAS genes with an all-wild type of these genes showed that the frequency of the intestinal type was significantly higher in patients whose tumor tissue contained KRAS mutations (P = 0.014). Among 125 patients with metastatic gastric cancer, patients with NRAS codon 12/13 mutations in their tumors had shorter overall survival compared with NRAS wild-type patients (MST: 14.7 vs 8.8 months, P = 0.011). By multivariate analyses, NRAS codon 12/13 mutation was an indicator for poor prognosis in patients with metastatic gastric cancer (adjusted HR 5.607, 95% CI: 1.637-19.203). Conclusions Our study indicated that mutations of KRAS, PIK3CA and NRAS were rare in AGC. NRAS mutations were likely to associate with poor prognosis in metastatic state of AGC patients, but further validation of other research is required. PMID:24774510

  14. Toll-like receptor 9 agonist IMO cooperates with cetuximab in K-ras mutant colorectal and pancreatic cancers.

    PubMed

    Rosa, Roberta; Melisi, Davide; Damiano, Vincenzo; Bianco, Roberto; Garofalo, Sonia; Gelardi, Teresa; Agrawal, Sudhir; Di Nicolantonio, Federica; Scarpa, Aldo; Bardelli, Alberto; Tortora, Giampaolo

    2011-10-15

    K-Ras somatic mutations are a strong predictive biomarker for resistance to epidermal growth factor receptor (EGFR) inhibitors in patients with colorectal and pancreatic cancer. We previously showed that the novel Toll-like receptor 9 (TLR9) agonist immunomodulatory oligonucleotide (IMO) has a strong in vivo activity in colorectal cancer models by interfering with EGFR-related signaling and synergizing with the anti-EGFR monoclonal antibody cetuximab. In the present study, we investigated, both in vitro and in vivo, the antitumor effect of IMO alone or in combination with cetuximab in subcutaneous colon and orthotopic pancreatic cancer models harboring K-Ras mutations and resistance to EGFR inhibitors. We showed that IMO was able to significantly restore the sensitivity of K-Ras mutant cancer cells to cetuximab, producing a marked inhibition of cell survival and a complete suppression of mitogen-activated protein kinase phosphorylation, when used in combination with cetuximab. IMO interfered with EGFR-dependent signaling, modulating the functional interaction between TLR9 and EGFR. In vivo, IMO plus cetuximab combination caused a potent and long-lasting cooperative antitumor activity in LS174T colorectal cancer and in orthotopic AsPC1 pancreatic cancer. The capability of IMO to restore cetuximab sensitivity was further confirmed by using K-Ras mutant colorectal cancer cell models obtained through homologous recombination technology. We showed that IMO markedly inhibits growth of K-Ras mutant colon and pancreatic cancers in vitro and in nude mice and cooperates with cetuximab via multiple mechanisms of action. Therefore, we propose IMO plus cetuximab as a therapeutic strategy for K-Ras wild-type as well for K-Ras mutant, cetuximab-resistant colorectal and pancreatic cancers. ©2011 AACR.

  15. External Quality Assessment for KRAS Testing Is Needed: Setup of a European Program and Report of the First Joined Regional Quality Assessment Rounds

    PubMed Central

    Bellon, Ellen; Ligtenberg, Marjolijn J.L.; Tejpar, Sabine; Cox, Karen; de Hertogh, Gert; de Stricker, Karin; Edsjö, Anders; Gorgoulis, Vassilis; Höfler, Gerald; Jung, Andreas; Kotsinas, Athanassios; Laurent-Puig, Pierre; López-Ríos, Fernando; Hansen, Tine Plato; Rouleau, Etienne; Vandenberghe, Peter; van Krieken, Johan J.M.

    2011-01-01

    The use of epidermal growth factor receptor–targeting antibodies in metastatic colorectal cancer has been restricted to patients with wild-type KRAS tumors by the European Medicines Agency since 2008, based on data showing a lack of efficacy and potential harm in patients with mutant KRAS tumors. In an effort to ensure optimal, uniform, and reliable community-based KRAS testing throughout Europe, a KRAS external quality assessment (EQA) scheme was set up. The first large assessment round included 59 laboratories from eight different European countries. For each country, one regional scheme organizer prepared and distributed the samples for the participants of their own country. The samples included unstained sections of 10 invasive colorectal carcinomas with known KRAS mutation status. The samples were centrally validated by one of two reference laboratories. The laboratories were allowed to use their own preferred method for histological evaluation, DNA isolation, and mutation analysis. In this study, we analyze the setup of the KRAS scheme. We analyzed the advantages and disadvantages of the regional scheme organization by analyzing the outcome of genotyping results, analysis of tumor percentage, and written reports. We conclude that only 70% of laboratories correctly identified the KRAS mutational status in all samples. Both the false-positive and false-negative results observed negatively affect patient care. Reports of the KRAS test results often lacked essential information. We aim to further expand this program to more laboratories to provide a robust estimate of the quality of KRAS testing in Europe, and provide the basis for remedial measures and harmonization. PMID:21441573

  16. The Mutant KRAS Gene Up-regulates BCL-XL Protein via STAT3 to Confer Apoptosis Resistance That Is Reversed by BIM Protein Induction and BCL-XL Antagonism.

    PubMed

    Zaanan, Aziz; Okamoto, Koichi; Kawakami, Hisato; Khazaie, Khashayarsha; Huang, Shengbing; Sinicrope, Frank A

    2015-09-25

    In colorectal cancers with oncogenic GTPase Kras (KRAS) mutations, inhibition of downstream MEK/ERK signaling has shown limited efficacy, in part because of failure to induce a robust apoptotic response. We studied the mechanism of apoptosis resistance in mutant KRAS cells and sought to enhance the efficacy of a KRAS-specific MEK/ERK inhibitor, GDC-0623. GDC-0623 was shown to potently up-regulate BIM expression to a greater extent versus other MEK inhibitors in isogenic KRAS HCT116 and mutant KRAS SW620 colon cancer cells. ERK silencing enhanced BIM up-regulation by GDC-0623 that was due to its loss of phosphorylation at Ser(69), confirmed by a BIM-EL phosphorylation-defective mutant (S69G) that increased protein stability and blocked BIM induction. Despite BIM and BIK induction, the isogenic KRAS mutant versus wild-type cells remained resistant to GDC-0623-induced apoptosis, in part because of up-regulation of BCL-XL. KRAS knockdown by a doxycycline-inducible shRNA attenuated BCL-XL expression. BCL-XL knockdown sensitized KRAS mutant cells to GDC-0623-mediated apoptosis, as did the BH3 mimetic ABT-263. GDC-0623 plus ABT-263 induced a synergistic apoptosis by a mechanism that includes release of BIM from its sequestration by BCL-XL. Furthermore, mutant KRAS activated p-STAT3 (Tyr(705)) in the absence of IL-6 secretion, and STAT3 knockdown reduced BCL-XL mRNA and protein expression. These data suggest that BCL-XL up-regulation by STAT3 contributes to mutant KRAS-mediated apoptosis resistance. Such resistance can be overcome by potent BIM induction and concurrent BCL-XL antagonism to enable a synergistic apoptotic response.

  17. Effects of hypoxanthine substitution in peptide nucleic acids targeting KRAS2 oncogenic mRNA molecules: theory and experiment.

    PubMed

    Sanders, Jeffrey M; Wampole, Matthew E; Chen, Chang-Po; Sethi, Dalip; Singh, Amrita; Dupradeau, François-Yves; Wang, Fan; Gray, Brian D; Thakur, Mathew L; Wickstrom, Eric

    2013-10-03

    Genetic disorders can arise from single base substitutions in a single gene. A single base substitution for wild type guanine in the twelfth codon of KRAS2 mRNA occurs frequently to initiate lung, pancreatic, and colon cancer. We have observed single base mismatch specificity in radioimaging of mutant KRAS2 mRNA in tumors in mice by in vivo hybridization with radiolabeled peptide nucleic acid (PNA) dodecamers. We hypothesized that multimutant specificity could be achieved with a PNA dodecamer incorporating hypoxanthine, which can form Watson-Crick base pairs with adenine, cytosine, thymine, and uracil. Using molecular dynamics simulations and free energy calculations, we show that hypoxanthine substitutions in PNAs are tolerated in KRAS2 RNA:PNA duplexes where wild type guanine is replaced by mutant uracil or adenine in RNA. To validate our predictions, we synthesized PNA dodecamers with hypoxanthine, and then measured the thermal stability of RNA:PNA duplexes. Circular dichroism thermal melting results showed that hypoxanthine-containing PNAs are more stable in duplexes where hypoxanthine-adenine and hypoxanthine-uracil base pairs are formed than single mismatch duplexes or duplexes containing hypoxanthine-guanine opposition.

  18. Wild-type opsin does not aggregate with a misfolded opsin mutant

    PubMed Central

    Gragg, Megan; Kim, Tae Gyun; Howell, Scott; Park, Paul S.-H.

    2016-01-01

    Rhodopsin is the light receptor in photoreceptor cells that plays a central role in phototransduction and photoreceptor cell health. Mutations in rhodopsin are the leading cause of autosomal dominant retinitis pigmentosa (adRP), a retinal degenerative disease. A majority of mutations in rhodopsin cause misfolding and aggregation of the apoprotein opsin. The pathogenesis of adRP caused by misfolded opsin is unclear. It has been proposed that physical interactions between wild-type opsin and misfolded opsin mutants may underlie the autosomal dominant phenotype. To test whether or not wild-type opsin can form a complex with misfolded opsin mutants, we examined the interactions between wild-type opsin and opsin with a G188R mutation, a clinically identified mutation causing adRP. Förster resonance energy transfer (FRET) was utilized to monitor the interactions between fluorescently tagged opsins expressed in live cells. The FRET assay employed was able to discriminate between properly folded opsin oligomers and misfolded opsin aggregates. Wild-type opsin predominantly formed oligomers and only a minor population formed aggregates. Conversely, the G188R opsin mutant predominantly formed aggregates. When wild-type opsin and G188R opsin were coexpressed in cells, properly folded wild-type opsin did not aggregate with G188R opsin and was trafficked normally to the plasma membrane. Thus, the autosomal dominant phenotype in adRP caused by misfolded opsin mutants is not predicted to arise from physical interactions between wild-type opsin and misfolded opsin mutants. PMID:27117643

  19. Resistance and gain-of-resistance phenotypes in cancers harboring wild-type p53

    PubMed Central

    Martinez-Rivera, Michelle; Siddik, Zahid H.

    2012-01-01

    Chemotherapy is the bedrock for the clinical management of cancer, and the tumor suppressor p53 has a central role in this therapeutic modality. This protein facilitates favorable antitumor drug response through a variety of key cellular functions, including cell cycle arrest, senescence, and apoptosis. These functions essentially cease once p53 becomes mutated, as occurs in ~50% of cancers, and some p53 mutants even exhibit gain-of-function effects, which lead to greater drug resistance. However, it is becoming increasingly evident that resistance is also seen in cancers harboring wild-type p53. In this review, we discuss how wild-type p53 is inactivated to render cells resistant to antitumor drugs. This may occur through various mechanisms, including an increase in proteasomal degradation, defects in post-translational modification, and downstream defects in p53 target genes. We also consider evidence that the resistance seen in wild-type p53 cancers can be substantially greater than that seen in mutant p53 cancers, and this poses a far greater challenge for efforts to design strategies that increase drug response in resistant cancers already primed with wild-type p53. Because the mechanisms contributing to this wild-type p53 “gain-of-resistance” phenotype are largely unknown, a concerted research effort is needed to identify the underlying basis for the occurrence of this phenotype and, in parallel, to explore the possibility that the phenotype may be a product of wild-type p53 gain-of-function effects. Such studies are essential to lay the foundation for a rational therapeutic approach in the treatment of resistant wild-type p53 cancers. PMID:22227014

  20. Resistance and gain-of-resistance phenotypes in cancers harboring wild-type p53.

    PubMed

    Martinez-Rivera, Michelle; Siddik, Zahid H

    2012-04-15

    Chemotherapy is the bedrock for the clinical management of cancer, and the tumor suppressor p53 has a central role in this therapeutic modality. This protein facilitates favorable antitumor drug response through a variety of key cellular functions, including cell cycle arrest, senescence, and apoptosis. These functions essentially cease once p53 becomes mutated, as occurs in ∼50% of cancers, and some p53 mutants even exhibit gain-of-function effects, which lead to greater drug resistance. However, it is becoming increasingly evident that resistance is also seen in cancers harboring wild-type p53. In this review, we discuss how wild-type p53 is inactivated to render cells resistant to antitumor drugs. This may occur through various mechanisms, including an increase in proteasomal degradation, defects in post-translational modification, and downstream defects in p53 target genes. We also consider evidence that the resistance seen in wild-type p53 cancers can be substantially greater than that seen in mutant p53 cancers, and this poses a far greater challenge for efforts to design strategies that increase drug response in resistant cancers already primed with wild-type p53. Because the mechanisms contributing to this wild-type p53 "gain-of-resistance" phenotype are largely unknown, a concerted research effort is needed to identify the underlying basis for the occurrence of this phenotype and, in parallel, to explore the possibility that the phenotype may be a product of wild-type p53 gain-of-function effects. Such studies are essential to lay the foundation for a rational therapeutic approach in the treatment of resistant wild-type p53 cancers.

  1. In vivo turnover of tau and APP metabolites in the brains of wild-type and Tg2576 mice: greater stability of sAPP in the beta-amyloid depositing mice.

    PubMed

    Morales-Corraliza, Jose; Mazzella, Matthew J; Berger, Jason D; Diaz, Nicole S; Choi, Jennifer H K; Levy, Efrat; Matsuoka, Yasuji; Planel, Emmanuel; Mathews, Paul M

    2009-09-22

    The metabolism of the amyloid precursor protein (APP) and tau are central to the pathobiology of Alzheimer's disease (AD). We have examined the in vivo turnover of APP, secreted APP (sAPP), Abeta and tau in the wild-type and Tg2576 mouse brain using cycloheximide to block protein synthesis. In spite of overexpression of APP in the Tg2576 mouse, APP is rapidly degraded, similar to the rapid turnover of the endogenous protein in the wild-type mouse. sAPP is cleared from the brain more slowly, particularly in the Tg2576 model where the half-life of both the endogenous murine and transgene-derived human sAPP is nearly doubled compared to wild-type mice. The important Abeta degrading enzymes neprilysin and IDE were found to be highly stable in the brain, and soluble Abeta40 and Abeta42 levels in both wild-type and Tg2576 mice rapidly declined following the depletion of APP. The cytoskeletal-associated protein tau was found to be highly stable in both wild-type and Tg2576 mice. Our findings unexpectedly show that of these various AD-relevant protein metabolites, sAPP turnover in the brain is the most different when comparing a wild-type mouse and a beta-amyloid depositing, APP overexpressing transgenic model. Given the neurotrophic roles attributed to sAPP, the enhanced stability of sAPP in the beta-amyloid depositing Tg2576 mice may represent a neuroprotective response.

  2. KRAS analysis in colorectal carcinoma: Analytical aspects of Pyrosequencing and allele-specific PCR in clinical practice

    PubMed Central

    2010-01-01

    Background Epidermal growth factor receptor inhibitor therapy is now approved for treatment of metastatic colorectal carcinomas (CRC) in patients with tumors lacking KRAS mutations. Several procedures to detect KRAS mutations have been developed. However, the analytical sensitivity and specificity of these assays on routine clinical samples are not yet fully characterised. Methods The practical aspects and clinical applicability of a KRAS-assay based on Pyrosequencing were evaluated in a series of 314 consecutive CRC cases submitted for diagnostic KRAS analysis. The performance of Pyrosequencing compared to allele-specific, real-time PCR was then explored by a direct comparison of CE-IVD-marked versions of Pyrosequencing and TheraScreen (DxS) KRAS assays for a consecutive subset (n = 100) of the 314 clinical CRC samples. Results Using Pyrosequencing, 39% of the 314 CRC samples were found KRAS-mutated and several of the mutations (8%) were located in codon 61. To explore the analytical sensitivity of the Pyrosequencing assay, mutated patient DNA was serially diluted with wild-type patient DNA. Dilutions corresponding to 1.25-2.5% tumor cells still revealed detectable mutation signals. In clinical practice, our algorithm for KRAS analysis includes a reanalysis of samples with low tumor cell content (< 10%, n = 56) using an independent assay (allele-specific PCR, DxS). All mutations identified by Pyrosequencing were then confirmed and, in addition, one more mutated sample was identified in this subset of 56 samples. Finally, a direct comparison of the two technologies was done by re-analysis of a subset (n = 100) of the clinical samples using CE-IVD-marked versions of Pyrosequencing and TheraScreen KRAS assays in a single blinded fashion. The number of samples for which the KRAS codon 12/13 mutation status could be defined using the Pyrosequencing or the TheraScreen assay was 94 and 91, respectively, and both assays detected the same number of codon 12 and 13

  3. BRAF V600E mutation and KRAS codon 13 mutations predict poor survival in Chinese colorectal cancer patients.

    PubMed

    Chen, Jing; Guo, Fang; Shi, Xin; Zhang, Lihua; Zhang, Aifeng; Jin, Hui; He, Youji

    2014-11-03

    Mutations in KRAS, BRAF and PIK3CA are the most common somatic alterations found in the colorectal cancer (CRC) patients from Western countries; but their prevalence and prognostic value have not been adequately assessed in Asian patients. The aim of this study was to determine the mutation frequencies of these genes in Chinese CRC patients and to investigate their impact on prognosis. The sequences of exon 2 of KRAS, exon 15 of BRAF and exons 9 and 20 of PIK3CA were evaluated by PCR and direct sequencing using DNA extracted from formalin-fixed paraffin-embedded (FFPE) tissues from primary CRC tumors of 214 patients (colon/rectum: 126/88). KRAS, BRAF and PIK3CA mutations were identified in 44.9% (96/214), 4.2% (9/214) and 12.3% (26/212) CRCs, respectively. The most frequent mutations in KRAS, BRAF and PIK3CA were G12D, V600E and H1047R, respectively. All BRAF and 80.8% PIK3CA mutations were from colon cancer patients. BRAF V600E was associated with advanced TNM (P < 0.001), more distant metastases (P = 0.025), and worse overall survival (OS, P < 0.001; multivariate HR = 4.2, P = 0.004) in colon cancer patients. Compared with KRAS wt/BRAF wt CRC patients (N = 109), those with KRAS codon 13 mutations (N = 25) had significantly worse OS (P = 0.016; multivariate HR = 2.7, P = 0.011), whereas KRAS codon 12-mutated cases were not significantly associated with survival. Among the three most common KRAS mutations, G13D (N = 23) showed significant association with poor OS (P = 0.024; multivariate HR = 2.6, P = 0.016) compared with KRAS wt/BRAF wt patients. Our findings indicate that PI3K/RAS-RAF signaling pathway genes are frequently mutated in Chinese CRC patients, but have different characteristics than found in Western patients. BRAF V600E is an independent prognostic factor for Chinese patients. Our finding that KRAS codon 13 mutations (in particular G13D) are associated with inferior survival in BRAF wild-type

  4. Simultaneous identification of 36 mutations in KRAS codons 61and 146, BRAF, NRAS, and PIK3CA in a single reaction by multiplex assay kit

    PubMed Central

    2013-01-01

    Background Retrospective analyses in the West suggest that mutations in KRAS codons 61 and 146, BRAF, NRAS, and PIK3CA are negative predictive factors for cetuximab treatment in colorectal cancer patients. We developed a novel multiplex kit detecting 36 mutations in KRAS codons 61 and 146, BRAF, NRAS, and PIK3CA using Luminex (xMAP) assay in a single reaction. Methods Tumor samples and clinical data from Asian colorectal cancer patients treated with cetuximab were collected. We investigated KRAS, BRAF, NRAS, and PIK3CA mutations using both the multiplex kit and direct sequencing methods, and evaluated the concordance between the 2 methods. Objective response, progression-free survival (PFS), and overall survival (OS) were also evaluated according to mutational status. Results In total, 82 of 83 samples (78 surgically resected specimens and 5 biopsy specimens) were analyzed using both methods. All multiplex assays were performed using 50 ng of template DNA. The concordance rate between the methods was 100%. Overall, 49 (59.8%) patients had all wild-type tumors, 21 (25.6%) had tumors harboring KRAS codon 12 or 13 mutations, and 12 (14.6%) had tumors harboring KRAS codon 61, KRAS codon 146, BRAF, NRAS, or PIK3CA mutations. The response rates in these patient groups were 38.8%, 4.8%, and 0%, respectively. Median PFS in these groups was 6.1 months (95% confidence interval (CI): 3.1–9.2), 2.7 months (1.2–4.2), and 1.6 months (1.5–1.7); median OS was 13.8 months (9.2–18.4), 8.2 months (5.7–10.7), and 6.3 months (1.3–11.3), respectively. Statistically significant differences in both PFS and OS were found between patients with all wild-type tumors and those with KRAS codon 61, KRAS codon 146, BRAF, NRAS, or PIK3CA mutations (PFS: 95% CI, 0.11–0.44; P < 0.0001; OS: 95% CI, 0.15–0.61; P < 0.0001). Conclusions Our newly developed multiplex kit is practical and feasible for investigation of a range of sample types. Moreover, mutations in KRAS

  5. Wild-type and mutant p53 differentially regulate transcription of the insulin-like growth factor I receptor gene.

    PubMed Central

    Werner, H; Karnieli, E; Rauscher, F J; LeRoith, D

    1996-01-01

    The insulin-like growth factor I receptor (IGF-I-R) plays a critical role in transformation events. It is highly overexpressed in most malignant tissues where it functions as an anti-apoptotic agent by enhancing cell survival. Tumor suppressor p53 is a nuclear transcription factor that blocks cell cycle progression and induces apoptosis. p53 is the most frequently mutated gene in human cancer. Cotransfection of Saos-2 (os-teosarcoma-derived cells) and RD (rhabdomyosarcoma-derived cells) cells with IGF-I-R promoter constructs driving luciferase reporter genes and with wild-type p53 expression vectors suppressed promoter activity in a dose-dependent manner. This effect of p53 is mediated at the level of transcription and it involves interaction with TBP, the TATA box-binding component of TFIID. On the other hand, three tumor-derived mutant forms of p53 (mut 143, mut 248, and mut 273) stimulated the activity of the IGF-I-R promoter and increased the levels of IGF-I-R/luciferase fusion mRNA. These results suggest that wild-type p53 has the potential to suppress the IGF-I-R promoter in the postmitotic, fully differentiated cell, thus resulting in low levels of receptor gene expression in adult tissues. Mutant versions of p53 protein, usually associated with malignant states, can derepress the IGF-I-R promoter, with ensuing mitogenic activation by locally produced or circulating IGFs. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:8710868

  6. A positively gravitropic mutant mirrors the wild-type protonemal response in the moss Ceratodon purpureus

    NASA Technical Reports Server (NTRS)

    Wagner, T. A.; Cove, D. J.; Sack, F. D.

    1997-01-01

    Wild-type Ceratodon purpureus (Hedw.) Brid. protonemata grow up in the dark by negative gravitropism. When upright wild-type protonemata are reoriented 90 degrees, they temporarily grow down soon after reorientation ("initial reversal") and also prior to cytokinesis ("mitotic reversal"). A positively gravitropic mutant designated wrong- way response (wwr-1) has been isolated by screening ultraviolet light-mutagenized Ceratodon protonemata. Protonemata of wwr-l reoriented from the vertical to the horizontal grow down with kinetics comparable to those of the wild-type. Protonemata of wwr-1 also show initial and mitotic reversals where they temporarily grow up. Thus, the direction of gravitropism, initial reversal, and mitotic reversal are coordinated though each are opposite in wwr-1 compared to the wild-type. Normal plastid zonation is still maintained in dark-grown wwr-1 apical cells, but the plastids are more numerous and plastid sedimentation is more pronounced. In addition, wwr-1 apical cells are wider and the tips greener than in the wild-type. These data suggest that a functional WWR gene product is not necessary for the establishment of some gravitropic polarity, for gravitropism, or for the coordination of the reversals. Thus, the WWR protein may normally transduce information about cell orientation.

  7. Modeling the competition between antenna size mutant and wild type microalgae in outdoor mass culture.

    PubMed

    de Mooij, Tim; Schediwy, Kira; Wijffels, René H; Janssen, Marcel

    2016-12-20

    Under high light conditions, microalgae are oversaturated with light which significantly reduces the light use efficiency. Microalgae with a reduced pigment content, antenna size mutants, have been proposed as a potential solution to increase the light use efficiency. The goal of this study was to investigate the competition between antenna size mutants and wild type microalgae in mass cultures. Using a kinetic model and literature-derived experimental data from wild type Chlorella sorokiniana, the productivity and competition of wild type cells and antenna size mutants were simulated. Cultivation was simulated in an outdoor microalgal raceway pond production system which was assumed to be limited by light only. Light conditions were based on a Mediterranean location (Tunisia) and a more temperate location (the Netherlands). Several wild type contamination levels were simulated in each mutant culture separately to predict the effect on the productivity over the cultivation time of a hypothetical summer season of 100days. The simulations demonstrate a good potential of antenna size reduction to increase the biomass productivity of microalgal cultures. However, it was also found that after a contamination with wild type cells the mutant cultures will be rapidly overgrown resulting in productivity loss. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Male and Female Mice Lacking Neuroligin-3 Modify the Behavior of Their Wild-Type Littermates.

    PubMed

    Kalbassi, Shireene; Bachmann, Sven O; Cross, Ellen; Roberton, Victoria H; Baudouin, Stéphane J

    2017-01-01

    In most mammals, including humans, the postnatal acquisition of normal social and nonsocial behavior critically depends on interactions with peers. Here we explore the possibility that mixed-group housing of mice carrying a deletion of Nlgn3, a gene associated with autism spectrum disorders, and their wild-type littermates induces changes in each other's behavior. We have found that, when raised together, male Nlgn3 knockout mice and their wild-type littermates displayed deficits in sociability. Moreover, social submission in adult male Nlgn3 knockout mice correlated with an increase in their anxiety. Re-expression of Nlgn3 in parvalbumin-expressing cells in transgenic animals rescued their social behavior and alleviated the phenotype of their wild-type littermates, further indicating that the social behavior of Nlgn3 knockout mice has a direct and measurable impact on wild-type animals' behavior. Finally, we showed that, unlike male mice, female mice lacking Nlgn3 were insensitive to their peers' behavior but modified the social behavior of their littermates. Altogether, our findings show that the environment is a critical factor in the development of behavioral phenotypes in transgenic and wild-type mice. In addition, these results reveal that the social environment has a sexually dimorphic effect on the behavior of mice lacking Nlgn3, being more influential in males than females.

  9. A positively gravitropic mutant mirrors the wild-type protonemal response in the moss Ceratodon purpureus

    NASA Technical Reports Server (NTRS)

    Wagner, T. A.; Cove, D. J.; Sack, F. D.

    1997-01-01

    Wild-type Ceratodon purpureus (Hedw.) Brid. protonemata grow up in the dark by negative gravitropism. When upright wild-type protonemata are reoriented 90 degrees, they temporarily grow down soon after reorientation ("initial reversal") and also prior to cytokinesis ("mitotic reversal"). A positively gravitropic mutant designated wrong- way response (wwr-1) has been isolated by screening ultraviolet light-mutagenized Ceratodon protonemata. Protonemata of wwr-l reoriented from the vertical to the horizontal grow down with kinetics comparable to those of the wild-type. Protonemata of wwr-1 also show initial and mitotic reversals where they temporarily grow up. Thus, the direction of gravitropism, initial reversal, and mitotic reversal are coordinated though each are opposite in wwr-1 compared to the wild-type. Normal plastid zonation is still maintained in dark-grown wwr-1 apical cells, but the plastids are more numerous and plastid sedimentation is more pronounced. In addition, wwr-1 apical cells are wider and the tips greener than in the wild-type. These data suggest that a functional WWR gene product is not necessary for the establishment of some gravitropic polarity, for gravitropism, or for the coordination of the reversals. Thus, the WWR protein may normally transduce information about cell orientation.

  10. Genomic instability in both wild-type and telomerase null MEFs.

    PubMed

    Hao, Ling-Yang; Greider, Carol W

    2004-09-01

    To examine chromosome instability in the absence of telomerase, we established mouse embryonic fibroblast (MEF) lines from late generation mTR-/- and wild-type animals and examined metaphases using telomere fluorescence in situ hybridization (FISH) and spectral karyotyping (SKY). In early passages, mTR-/- G6 cell lines showed more chromosome ends with no telomere signal, more chromosome end-to-end fusions and greater radiosensitivity than wild-type lines. At later passages, however, the rate of genomic instability in the wild-type MEFs increased to a level similar or higher than seen in the mTR-/- G6 cell lines. This high degree of instability in wild-type MEF lines suggests that post-crisis MEFs should not be considered genetically defined cell lines. Surprisingly, the increased radiosensitivity seen in early passage mTR-/- G6 cultures was lost after crisis. Both post-crisis mTR-/- G6 MEFs and wild-type MEFs showed loss of p53 and gamma-H2AX phosphorylation in response to irradiation, indicating a loss of DNA damage checkpoints.

  11. KRAS — EDRN Public Portal

    Cancer.gov

    The KRAS gene, a Kirsten ras oncogene homolog from the mammalian ras gene family, encodes a protein that is a member of the small GTPase superfamily. A single amino acid substitution is responsible for an activating mutation. The transforming protein that results is implicated in various malignancies, including lung adenocarcinoma, mucinous adenoma, ductal carcinoma of the pancreas and colorectal carcinoma. Alternative splicing leads to variants encoding two isoforms that differ in the C-terminal region.

  12. Proteomic analysis of wild-type and mutant huntingtin-associated proteins in mouse brains identifies unique interactions and involvement in protein synthesis.

    PubMed

    Culver, Brady P; Savas, Jeffrey N; Park, Sung K; Choi, Jeong H; Zheng, Shuqiu; Zeitlin, Scott O; Yates, John R; Tanese, Naoko

    2012-06-22

    Huntington disease is a neurodegenerative disorder caused by a CAG repeat amplification in the gene huntingtin (HTT) that is reflected by a polyglutamine expansion in the Htt protein. Nearly 20 years of research have uncovered roles for Htt in a wide range of cellular processes, and many of these discoveries stemmed from the identification of Htt-interacting proteins. However, no study has employed an impartial and comprehensive strategy to identify proteins that differentially associate with full-length wild-type and mutant Htt in brain tissue, the most relevant sample source to the disease condition. We analyzed Htt affinity-purified complexes from wild-type and HTT mutant juvenile mouse brain from two different biochemical fractions by tandem mass spectrometry. We compared variations in protein spectral counts relative to Htt to identify those proteins that are the most significantly contrasted between wild-type and mutant Htt purifications. Previously unreported Htt interactions with Myo5a, Prkra (PACT), Gnb2l1 (RACK1), Rps6, and Syt2 were confirmed by Western blot analysis. Gene Ontology analysis of these and other Htt-associated proteins revealed a statistically significant enrichment for proteins involved in translation among other categories. Furthermore, Htt co-sedimentation with polysomes in cytoplasmic mouse brain extracts is dependent upon the presence of intact ribosomes. Finally, wild-type or mutant Htt overexpression inhibits cap-dependent translation of a reporter mRNA in an in vitro system. Cumulatively, these data support a new role for Htt in translation and provide impetus for further study into the link between protein synthesis and Huntington disease pathogenesis.

  13. Proteomic Analysis of Wild-type and Mutant Huntingtin-associated Proteins in Mouse Brains Identifies Unique Interactions and Involvement in Protein Synthesis*

    PubMed Central

    Culver, Brady P.; Savas, Jeffrey N.; Park, Sung K.; Choi, Jeong H.; Zheng, Shuqiu; Zeitlin, Scott O.; Yates, John R.; Tanese, Naoko

    2012-01-01

    Huntington disease is a neurodegenerative disorder caused by a CAG repeat amplification in the gene huntingtin (HTT) that is reflected by a polyglutamine expansion in the Htt protein. Nearly 20 years of research have uncovered roles for Htt in a wide range of cellular processes, and many of these discoveries stemmed from the identification of Htt-interacting proteins. However, no study has employed an impartial and comprehensive strategy to identify proteins that differentially associate with full-length wild-type and mutant Htt in brain tissue, the most relevant sample source to the disease condition. We analyzed Htt affinity-purified complexes from wild-type and HTT mutant juvenile mouse brain from two different biochemical fractions by tandem mass spectrometry. We compared variations in protein spectral counts relative to Htt to identify those proteins that are the most significantly contrasted between wild-type and mutant Htt purifications. Previously unreported Htt interactions with Myo5a, Prkra (PACT), Gnb2l1 (RACK1), Rps6, and Syt2 were confirmed by Western blot analysis. Gene Ontology analysis of these and other Htt-associated proteins revealed a statistically significant enrichment for proteins involved in translation among other categories. Furthermore, Htt co-sedimentation with polysomes in cytoplasmic mouse brain extracts is dependent upon the presence of intact ribosomes. Finally, wild-type or mutant Htt overexpression inhibits cap-dependent translation of a reporter mRNA in an in vitro system. Cumulatively, these data support a new role for Htt in translation and provide impetus for further study into the link between protein synthesis and Huntington disease pathogenesis. PMID:22556411

  14. Discrimination of oligonucleotides of different lengths with a wild-type aerolysin nanopore

    NASA Astrophysics Data System (ADS)

    Cao, Chan; Ying, Yi-Lun; Hu, Zheng-Li; Liao, Dong-Fang; Tian, He; Long, Yi-Tao

    2016-08-01

    Protein nanopores offer an inexpensive, label-free method of analysing single oligonucleotides. The sensitivity of the approach is largely determined by the characteristics of the pore-forming protein employed, and typically relies on nanopores that have been chemically modified or incorporate molecular motors. Effective, high-resolution discrimination of oligonucleotides using wild-type biological nanopores remains difficult to achieve. Here, we show that a wild-type aerolysin nanopore can resolve individual short oligonucleotides that are 2 to 10 bases long. The sensing capabilities are attributed to the geometry of aerolysin and the electrostatic interactions between the nanopore and the oligonucleotides. We also show that the wild-type aerolysin nanopores can distinguish individual oligonucleotides from mixtures and can monitor the stepwise cleavage of oligonucleotides by exonuclease I.

  15. Effects of KRAS, BRAF, NRAS, and PIK3CA mutations on the efficacy of cetuximab plus chemotherapy in chemotherapy-refractory metastatic colorectal cancer: a retrospective consortium analysis.

    PubMed

    De Roock, Wendy; Claes, Bart; Bernasconi, David; De Schutter, Jef; Biesmans, Bart; Fountzilas, George; Kalogeras, Konstantine T; Kotoula, Vassiliki; Papamichael, Demetris; Laurent-Puig, Pierre; Penault-Llorca, Frédérique; Rougier, Philippe; Vincenzi, Bruno; Santini, Daniele; Tonini, Giuseppe; Cappuzzo, Federico; Frattini, Milo; Molinari, Francesca; Saletti, Piercarlo; De Dosso, Sara; Martini, Miriam; Bardelli, Alberto; Siena, Salvatore; Sartore-Bianchi, Andrea; Tabernero, Josep; Macarulla, Teresa; Di Fiore, Frédéric; Gangloff, Alice Oden; Ciardiello, Fortunato; Pfeiffer, Per; Qvortrup, Camilla; Hansen, Tine Plato; Van Cutsem, Eric; Piessevaux, Hubert; Lambrechts, Diether; Delorenzi, Mauro; Tejpar, Sabine

    2010-08-01

    Following the discovery that mutant KRAS is associated with resistance to anti-epidermal growth factor receptor (EGFR) antibodies, the tumours of patients with metastatic colorectal cancer are now profiled for seven KRAS mutations before receiving cetuximab or panitumumab. However, most patients with KRAS wild-type tumours still do not respond. We studied the effect of other downstream mutations on the efficacy of cetuximab in, to our knowledge, the largest cohort to date of patients with chemotherapy-refractory metastatic colorectal cancer treated with cetuximab plus chemotherapy in the pre-KRAS selection era. 1022 tumour DNA samples (73 from fresh-frozen and 949 from formalin-fixed, paraffin-embedded tissue) from patients treated with cetuximab between 2001 and 2008 were gathered from 11 centres in seven European countries. 773 primary tumour samples had sufficient quality DNA and were included in mutation frequency analyses; mass spectrometry genotyping of tumour samples for KRAS, BRAF, NRAS, and PIK3CA was done centrally. We analysed objective response, progression-free survival (PFS), and overall survival in molecularly defined subgroups of the 649 chemotherapy-refractory patients treated with cetuximab plus chemotherapy. 40.0% (299/747) of the tumours harboured a KRAS mutation, 14.5% (108/743) harboured a PIK3CA mutation (of which 68.5% [74/108] were located in exon 9 and 20.4% [22/108] in exon 20), 4.7% (36/761) harboured a BRAF mutation, and 2.6% (17/644) harboured an NRAS mutation. KRAS mutants did not derive benefit compared with wild types, with a response rate of 6.7% (17/253) versus 35.8% (126/352; odds ratio [OR] 0.13, 95% CI 0.07-0.22; p<0.0001), a median PFS of 12 weeks versus 24 weeks (hazard ratio [HR] 1.98, 1.66-2.36; p<0.0001), and a median overall survival of 32 weeks versus 50 weeks (1.75, 1.47-2.09; p<0.0001). In KRAS wild types, carriers of BRAF and NRAS mutations had a significantly lower response rate than did BRAF and NRAS wild types

  16. Computational Analysis of KRAS Mutations: Implications for Different Effects on the KRAS p.G12D and p.G13D Mutations

    PubMed Central

    Liu, Yen-Yi; Hwang, Jenn-Kang; Barrio, Maria Jesus; Rodrigo, Maximiliano; Garcia-Toro, Enrique; Herreros-Villanueva, Marta

    2013-01-01

    Background The issue of whether patients diagnosed with metastatic colorectal cancer who harbor KRAS codon 13 mutations could benefit from the addition of anti-epidermal growth factor receptor therapy remains under debate. The aim of the current study was to perform computational analysis to investigate the structural implications of the underlying mutations caused by c.38G>A (p.G13D) on protein conformation. Methods Molecular dynamics (MD) simulations were performed to understand the plausible structural and dynamical implications caused by c.35G>A (p.G12D) and c.38G>A (p.G13D). The potential of mean force (PMF) simulations were carried out to determine the free energy profiles of the binding processes of GTP interacting with wild-type (WT) KRAS and its mutants (MT). Results Using MD simulations, we observed that the root mean square deviation (RMSD) increased as a function of time for the MT c.35G>A (p.G12D) and MT c.38G>A (p.G13D) when compared with the WT. We also observed that the GTP-binding pocket in the c.35G>A (p.G12D) mutant is more open than that of the WT and the c.38G>A (p.G13D) proteins. Intriguingly, the analysis of atomic fluctuations and free energy profiles revealed that the mutation of c.35G>A (p.G12D) may induce additional fluctuations in the sensitive sites (P-loop, switch I and II regions). Such fluctuations may promote instability in these protein regions and hamper GTP binding. Conclusions Taken together with the results obtained from MD and PMF simulations, the present findings implicate fluctuations at the sensitive sites (P-loop, switch I and II regions). Our findings revealed that KRAS mutations in codon 13 have similar behavior as KRAS WT. To gain a better insight into why patients with metastatic colorectal cancer (mCRC) and the KRAS c.38G>A (p.G13D) mutation appear to benefit from anti-EGFR therapy, the role of the KRAS c.38G>A (p.G13D) mutation in mCRC needs to be further investigated. PMID:23437064

  17. Mechanical properties of intact single fibres from wild-type and MLC/mIgf-1 transgenic mouse muscle.

    PubMed

    Colombini, Barbara; Benelli, Giulia; Nocella, Marta; Musarò, Antonio; Cecchi, Giovanni; Bagni, M Angela

    2009-01-01

    The effects of overexpression of the local form of insulin like growth factor-1 (mIgf-1) on skeletal muscle were investigated by comparing the mechanical properties of single intact fibres from the flexor digitorum brevis of wild-type (WT) and (MLC/mIgf-1) transgenic mice (TG)at 21-24 degrees C. Isolated single fibres were clean enough to measure accurately the sarcomere length. The parameters investigated were: tetanic absolute and specific force, the force-velocity relationship, and the sarcomere length-tension relationship. In addition, we investigated the properties of the "static stiffness", a non-crossbridge Ca(2+)-dependent increase of fibre stiffness previously found in frog muscle. Both average cross-sectional area and tetanic force almost doubled in TG fibres, so that specific force was the same in both preparation: 312 +/- 20 and 344 +/- 34 kN m(-2) in WT and TG fibres, respectively. None of the relative force-velocity parameters was altered by Igf-1 overexpression, however, V(max) (8-10 l(0) s(-1)) was greater than previously reported in whole muscles. The sarcomere length-tension relationship was the same in TG and WT fibres showing the classical shape with a plateau region between 2.28 and 2.52 microm and a linear descending limb. The static stiffness was present in both WT and TG fibres and showed similar characteristics to that of frog skeletal muscle. In contrast to the other parameters, static stiffness in TG fibres was about 24% smaller than in WT fibres suggesting a possible effect of Igf-1 overexpression on its mechanism.

  18. Transport of Wild-Type and Recombinant Nucleopolyhedroviruses by Scavenging and Predatory Arthropods.

    PubMed

    Lee; Fuxa

    2000-05-01

    Wild-type and recombinant nucleopolyhedroviruses (NPVs) were compared in their capability to be transported over limited distances by the predator Podisus maculiventris (Say) and scavengers Sarcophaga bullata (Parker) and Acheta domesticus (Linnaeus) in Trichoplusia ni (Hübner) larvae infesting collards in a greenhouse microcosm. Viruses tested were variants of Autographa californica (Speyer) NPV (AcNPV): wild-type virus (AcNPV.WT), AcNPV expressing a scorpion toxin (AcNPV.AaIT), and AcNPV expressing juvenile hormone esterase (AcJHE.SG). Podisus maculiventris transported AcNPV.WT and S. bullata transported AcNPV.WT and AcNPV.AaIT. Prevalence and transport of AcNPV.WT were greater than those of AcNPV.AaIT and AcJHE.SG, regardless of whether the nontarget organism carriers were present or absent. Podisus maculiventris and S. bullata transported recombinant and wild-type NPVs at a rate of up to 62.5 cm/day, and A. domesticus transported wild-type NPV at 125 cm/day. The infected host insects, T. ni, undoubtedly contributed to viral transport in the current research. In every experiment, both the wild-type and recombinant virus spread to some degree in the plots without predators or scavengers. The relative amounts of NPVs that accumulated in soil, as indicated by bioassay mortality percentages, generally exhibited spatial patterns similar to those of T. ni mortality due to NPV on the collards plants. Thus, the predator and scavengers in the current research demonstrated some capacity to transport wild-type as well as recombinant viruses at significant rates in a greenhouse microcosm.

  19. KRAS mutation leads to decreased expression of regulator of calcineurin 2, resulting in tumor proliferation in colorectal cancer

    PubMed Central

    Niitsu, H; Hinoi, T; Kawaguchi, Y; Sentani, K; Yuge, R; Kitadai, Y; Sotomaru, Y; Adachi, T; Saito, Y; Miguchi, M; Kochi, M; Sada, H; Shimomura, M; Oue, N; Yasui, W; Ohdan, H

    2016-01-01

    KRAS mutations occur in 30–40% of all cases of human colorectal cancer (CRC). However, to date, specific therapeutic agents against KRAS-mutated CRC have not been developed. We previously described the generation of mouse models of colon cancer with and without Kras mutations (CDX2P-G22Cre;Apcflox/flox; LSL-KrasG12D and CDX2P-G22Cre;Apcflox/flox mice, respectively). Here, the two mouse models were compared to identify candidate genes, which may represent novel therapeutic targets or predictive biomarkers. Differentially expressed genes in tumors from the two mouse models were identified using microarray analysis, and their expression was compared by quantitative reverse transcription–PCR (qRT–PCR) and immunohistochemical analyses in mouse tumors and surgical specimens of human CRC, with or without KRAS mutations, respectively. Furthermore, the functions of candidate genes were studied using human CRC cell lines. Microarray analysis of 34 000 transcripts resulted in the identification of 19 candidate genes. qRT–PCR analysis data showed that four of these candidate genes (Clps, Irx5, Bex1 and Rcan2) exhibited decreased expression in the Kras-mutated mouse model. The expression of the regulator of calcineurin 2 (RCAN2) was also observed to be lower in KRAS-mutated human CRC. Moreover, inhibitory function for cancer cell proliferation dependent on calcineurin was indicated with overexpression and short hairpin RNA knockdown of RCAN2 in human CRC cell lines. KRAS mutations in CRC lead to a decrease in RCAN2 expression, resulting in tumor proliferation due to derepression of calcineurin–nuclear factor of activated T cells (NFAT) signaling. Our findings suggest that calcineurin–NFAT signal may represent a novel molecular target for the treatment of KRAS-mutated CRC. PMID:27526107

  20. Molecular pathological epidemiology of colorectal cancer in Chinese patients with KRAS and BRAF mutations

    PubMed Central

    Li, Wenbin; Qiu, Tian; Ling, Yun; Guo, Lei; Li, Lin; Ying, Jianming

    2015-01-01

    An investigation of interactive effects of exogenous and endogenous factors and tumor molecular changes can lead to a better understanding of tumor molecular signatures in colorectal cancer. We here report a molecular pathological epidemiology study in a large cohort of 945 colorectal cancer patients. Mutations of KRAS (36.6%) and BRAF (3.46%) were nearly mutually exclusive. KRAS-mutated tumors were more common in female patients (odds ratio [OR] = 1.68; P = 0.0001) and never smokers (OR = 1.60; P = 0.001). Whereas BRAF-mutated tumors demonstrated no discrepancy in aspects of gender and smoking status compared with wild-type tumors. In addition, tumors with BRAF or KRAS mutations were in correlation with elevated serum level of carbohydrate antigen (CA19-9) and carcinoma embryonic antigen (CEA) and the combination of serum biomarkers and molecular mutation status may enhance the more precise risk stratification of CRC patients. Further studies are needed to define the mechanism brought about by the aforementioned epidemiologic and clinicopathologic characteristics that may help optimize cancer prevention and precision therapy. PMID:26530529

  1. CYP1B1 polymorphisms and k-ras mutations in patients with pancreatic ductal adenocarcinoma.

    PubMed

    Crous-Bou, Marta; De Vivo, Immaculata; Porta, Miquel; Pumarega, José A; López, Tomàs; Alguacil, Joan; Morales, Eva; Malats, Núria; Rifà, Juli; Hunter, David J; Real, Francisco X

    2008-05-01

    The frequency of CYP1B1 polymorphisms in pancreatic cancer has never been reported. There is also no evidence on the relationship between CYP1B1 variants and mutations in ras genes (K-, H- or N-ras) in any human neoplasm. We analyzed the following CYP1B1 polymorphisms in 129 incident cases of pancreatic ductal adenocarcinoma (PDA): the m1 allele (Val to Leu at codon 432) and the m2 allele (Asn to Ser at codon 453). The calculated frequencies for the m1 Val and m2 Asn alleles were 0.45 and 0.68, respectively. CYP1B1 genotypes were out of Hardy-Weinberg equilibrium; this was largely due to K-ras mutated PDA cases. The Val/Val genotype was over five times more frequent in PDA cases with a K-ras mutation than in wild-type cases (OR = 5.25; P = 0.121). In PDA, polymorphisms in CYP1B1 might be related with K-ras activation pathways.

  2. Clinical validation of prospective liquid biopsy monitoring in patients with wild-type RAS metastatic colorectal cancer treated with FOLFIRI-cetuximab.

    PubMed

    Toledo, Rodrigo A; Cubillo, Antonio; Vega, Estela; Garralda, Elena; Alvarez, Rafael; de la Varga, Lisardo U; Pascual, Jesús R; Sánchez, Gema; Sarno, Francesca; Prieto, Susana H; Perea, Sofía; Lopéz-Casas, Pedro P; López-Ríos, Fernando; Hidalgo, Manuel

    2016-11-11

    Cancer genomics and translational medicine rely on the molecular profiling of patient's tumor obtained during surgery or biopsy. Alternatively, blood is a less invasive source of tumor DNA shed, amongst other ways, as cell-free DNA (cfDNA). Highly-sensitive assays capable to detect cancer genetic events from patient's blood plasma became popularly known as liquid biopsy (LqB). Importantly, retrospective studies including small number of selected patients with metastatic colorectal cancer (mCRC) patients treated with anti-EGFR therapy have shown LqB capable to detect the acquired clonal mutations in RAS genes leading to therapy resistance. However, the usefulness of LqB in the real-life clinical monitoring of these patients still lack additional validation on controlled studies. In this context, we designed a prospective LqB clinical trial to monitor newly diagnosed KRAS wild-type (wt) mCRC patients who received a standard FOLFIRI-cetuximab regimen. We used BEAMing technique for evaluate cfDNA mutations in KRAS, NRAS, BRAF, and PIK3CA in twenty-five patients during a 2-y period. A total of 2,178 cfDNA mutation analyses were performed and we observed that: a) continued wt circulating status was correlated with a prolonged response; b) smoldering increases in mutant cfDNA were correlated with acquired resistance; while c) mutation upsurge/explosion anticipated a remarkable clinical deterioration. The current study provides evidences, obtained for the first time in an unbiased and prospective manner, that reinforces the utility of LqB for monitoring mCRC patients.

  3. Mutational landscape of EGFR-, MYC-, and Kras-driven genetically engineered mouse models of lung adenocarcinoma

    PubMed Central

    McFadden, David G.; Politi, Katerina; Bhutkar, Arjun; Chen, Frances K.; Song, Xiaoling; Pirun, Mono; Santiago, Philip M.; Kim-Kiselak, Caroline; Platt, James T.; Lee, Emily; Hodges, Emily; Rosebrock, Adam P.; Bronson, Roderick T.; Socci, Nicholas D.; Hannon, Gregory J.; Jacks, Tyler; Varmus, Harold

    2016-01-01

    Genetically engineered mouse models (GEMMs) of cancer are increasingly being used to assess putative driver mutations identified by large-scale sequencing of human cancer genomes. To accurately interpret experiments that introduce additional mutations, an understanding of the somatic genetic profile and evolution of GEMM tumors is necessary. Here, we performed whole-exome sequencing of tumors from three GEMMs of lung adenocarcinoma driven by mutant epidermal growth factor receptor (EGFR), mutant Kirsten rat sarcoma viral oncogene homolog (Kras), or overexpression of MYC proto-oncogene. Tumors from EGFR- and Kras-driven models exhibited, respectively, 0.02 and 0.07 nonsynonymous mutations per megabase, a dramatically lower average mutational frequency than observed in human lung adenocarcinomas. Tumors from models driven by strong cancer drivers (mutant EGFR and Kras) harbored few mutations in known cancer genes, whereas tumors driven by MYC, a weaker initiating oncogene in the murine lung, acquired recurrent clonal oncogenic Kras mutations. In addition, although EGFR- and Kras-driven models both exhibited recurrent whole-chromosome DNA copy number alterations, the specific chromosomes altered by gain or loss were different in each model. These data demonstrate that GEMM tumors exhibit relatively simple somatic genotypes compared with human cancers of a similar type, making these autochthonous model systems useful for additive engineering approaches to assess the potential of novel mutations on tumorigenesis, cancer progression, and drug sensitivity. PMID:27702896

  4. Dnmt3a haploinsufficiency cooperates with oncogenic Kras to promote an early-onset T-cell acute lymphoblastic leukemia

    PubMed Central

    Chang, Yuan-I; Kong, Guangyao; Ranheim, Erik A; Tu, Po-Shu; Yu, Yi-Shan; Zhang, Jing

    2017-01-01

    Mutations in DNA methyltransferase 3A (DNMT3A) are prevalent in various myeloid and lymphoid malignancies. The most common DNMT3A R882 mutations inhibit methyltransferase activity of the remaining wild-type DNMT3A proteins at a heterozygous state due to their dominant-negative activity. Reports and COSMIC database analysis reveal significantly different frequencies of R882 mutations in myeloid versus T-cell malignancies, inspiring us to investigate whether downregulation of DNMT3A regulates malignancies of different lineages in a dose-dependent manner. In a competitive transplant setting, the survival of recipients with KrasG12D/+; Dnmt3a+/- bone marrow (BM) cells was significantly shortened than that of recipients with KrasG12D/+ cells. Moreover, all of the recipients with KrasG12D/+; Dnmt3a+/- cells developed a lethal T-cell acute lymphoblastic leukemia (T-ALL) without significant myeloproliferative neoplasm (MPN) phenotypes, while ~20% of recipients with KrasG12D/+ cells developed MPN with or without T-ALL. This is in sharp contrast to the recipients with KrasG12D/+; Dnmt3a-/- cells, in which ~60% developed a lethal myeloid malignancy (MPN or acute myeloid leukemia [AML]). Our data suggest that in the context of oncogenic Kras, loss of Dnmt3a promotes myeloid malignancies, while Dnmt3a haploinsufficiency induces T-ALL. This dose-dependent phenotype is highly consistent with the prevalence of DNMT3A R882 mutations in AML versus T-ALL in human. PMID:28386358

  5. EGFR High Expression, but not KRAS Status, Predicts Sensitivity of Pancreatic Cancer Cells to Nimotuzumab Treatment In Vivo.

    PubMed

    Zhou, Chenfei; Zhu, Liangjun; Ji, Jun; Ding, Fangmi; Wang, Chao; Cai, Qu; Yu, Yingyan; Zhu, Zhenggang; Zhang, Jun

    2017-01-01

    Nimotuzumab is shown to be efficacious in advanced pancreatic cancer treatment, but its predictive marker has not been established. To investigate the impact of EGFR and KRAS status on antitumor efficacy of nimotuzumab and to explore its underlying mechanism. EGFR expressions of pancreatic cancer cell lines, BxPC3, Panc-1, and Patu-8988, were analyzed by Western blot and immunocytochemistry, and KRAS status was determined by gene sequencing. Anti-tumor effect of nimotuzumab were evaluated in vitro and in vivo. The expressions of related molecules in EGFR pathway and IL-6 was analyzed by Western blot, immunohistochemistry, and/or real-time PCR. BxPC3 cells had wild type KRAS and high-level EGFR; Panc-1 cells had mutant KRAS (G13A) and low-level EGFR; Patu-8988 cells had mutant KRAS (G12V) and high-level EGFR. Nimotuzumab did not affect cell proliferation or apoptosis in vitro. Growth of BxPC3 and Patu-8988 xenografts were significantly inhibited by nimotuzumab, but not Panc-1 xenografts, compared with that of the control group. Expression of EGFR in BxPC3 and Patu-8988 xenografts was significantly reduced by nimotuzumab. The IL-6 expression in BxPC3 and Patu-8988 xenografts was higher than that in Panc-1 xenografts in the control group, and was significantly reduced by nimotuzumab. Pancreatic cancer cells with EGFR high expression were more sensitive to nimotuzumab in vivo. KRAS status had no impact on anti-tumor efficacy of nimotuzumab in pancreatic cancer cells.

  6. Cytoplasmic localization of wild-type survivin is associated with constitutive activation of the PI3K/Akt signaling pathway and represents a favorable prognostic factor in patients with acute myeloid leukemia

    PubMed Central

    Serrano-López, Juana; Serrano, Josefina; Figueroa, Vianihuini; Torres-Gomez, Antonio; Tabares, Salvador; Casaño, Javier; Fernandez-Escalada, Noemi; Sánchez-Garcia, Joaquín

    2013-01-01

    Survivin is over-expressed in most hematologic malignancies but the prognostic significance of the subcompartmental distribution of wild-type or splicing variants in acute myeloid leukemia has not been addressed yet. Using western blotting, we assessed the expression of wild-type survivin and survivin splice variants 2B and Delta-Ex3 in nuclear and cytoplasmic protein extracts in samples taken from 105 patients at the time of their diagnosis of acute myeloid leukemia. Given that survivin is a downstream effector of the PI3K/Akt signaling pathway, survivin expression was also correlated with pSer473-Akt. Wild-type survivin and the 2B splice variant were positive in 76.3% and 78.0% of samples in the nucleus, cytoplasm or both, whereas the Delta-Ex3 isoform was only positive in the nucleus in 37.7% of samples. Cytoplasmic localization of wild-type survivin was significantly associated with the presence of high levels of pSer473-Akt (P<0.001). Inhibition of the PI3K/Akt pathway with wortmannin and Ly294002 caused a significant reduction in the expression of cytoplasmic wild-type survivin. The presence of cytoplasmic wild-type survivin and pSer473-Akt was associated with a lower fraction of quiescent leukemia stem cells (P=0.02). The presence of cytoplasmic wild-type survivin and pSer473-Akt were favorable independent prognostic factors. Moreover, the activation of the PI3K/Akt pathway with expression of cytoplasmic wild-type survivin identified a subgroup of acute myeloid leukemia patients with an excellent outcome (overall survival rate of 60.0±21.9% and relapse-free survival of 63.0±13.5%). Our findings suggest that cytoplasmic wild-type survivin is a critical downstream effector of the PI3K/Akt pathway leading to more chemosensitive cells and a more favorable outcome in acute myeloid leukemia. PMID:23812937

  7. Activated K-RAS Increases Polyamine Uptake in Human Colon Cancer Cells Through Modulation of Caveolar Endocytosis

    PubMed Central

    Basu Roy, Upal K.; Rial, Nathaniel S.; Kachel, Karen L.; Gerner, Eugene W.

    2008-01-01

    Endocytic pathways have been implicated in polyamine transport in mammalian cells, but specific mechanisms have not been described. We have shown that expression of a dominant negative (DN) form of the GTPase Dynamin, but not Eps15, diminished polyamine uptake in colon cancer cells indicating a caveolar and nonclathrin uptake mode. Polyamines co-sediment with lipid raft/caveolin-1 rich fractions, of the plasma membrane in a sucrose density gradient. Knock down of caveolin-1 significantly increased polyamine uptake. Conversely, ectopic expression of this protein resulted in diminished polyamine uptake. We also found that presence of an activated K-RAS oncogene significantly increased polyamine uptake by colon cancer cells. This effect is through an increase in caveolin-1 phosphorylation at tyrosine residue 14. Caveolin-1 is a negative regulator of caveolar endocytosis and phosphorylation in a K-RAS dependent manner leads to an increase in caveolar endocytosis. In cells expressing wild type K-RAS, addition of exogenous uPA was sufficient to stimulate caveolar endocytosis of polyamines. This effect was abrogated by the addition of a SRC kinase inhibitor. These data indicate that polyamine transport follows a dynamin-dependent and clathrin-independent endocytic uptake route, and this route is positively regulated by the oncogenic expression of K-RAS in a caveolin-1 dependent manner. PMID:18176934

  8. The Influence of BRAF and KRAS Mutation Status on the Association between Aspirin Use and Survival after Colon Cancer Diagnosis

    PubMed Central

    Reimers, Marlies S.; Swets, Marloes; Bastiaannet, Esther; Prinse, Bianca; van Eijk, Ronald; Lemmens, Valery E. P. P.; van Herk-Sukel, Myrthe P. P.; van Wezel, Tom; Kuppen, Peter J. K.; Morreau, Hans; van de Velde, Cornelis J. H.; Liefers, Gerrit-Jan

    2017-01-01

    Background Use of aspirin after diagnosis of colon cancer has been associated with improved survival. Identification of cancer subtypes that respond to aspirin treatment may help develop personalized treatment regimens. The aim of this study was to investigate the influence of BRAF and KRAS mutation status on the association between aspirin use and overall survival after colon cancer diagnosis. Methods A random selection of 599 patients with colon cancer were analyzed, selected from the Eindhoven Cancer Registry, and BRAF and KRAS mutation status was determined. Data on aspirin use (80 mg) were obtained from the PHARMO Database Network. Parametric survival models with exponential (Poisson) distribution were used. Results Aspirin use after colon cancer diagnosis was associated with improved overall survival in wild-type BRAF tumors, adjusted rate ratio (RR) of 0.60 (95% CI 0.44–0.83). In contrast, aspirin use in BRAF mutated tumors was not associated with an improved survival (RR 1.11, 95% CI 0.57–2.16). P-value for interaction was non-significant. KRAS mutational status did not differentiate in the association between aspirin use and survival. Conclusion Low-dose aspirin use after colon cancer diagnosis was associated with improved survival in BRAF wild-type tumors only. However, the large confidence interval of the rate ratio for the use of aspirin in patients with BRAF mutation does not rule out a possible benefit. These results preclude BRAF and KRAS mutation status to be used as a marker for individualized treatment with aspirin, if aspirin becomes regular adjuvant treatment for colon cancer patients in the future. PMID:28125730

  9. The Influence of BRAF and KRAS Mutation Status on the Association between Aspirin Use and Survival after Colon Cancer Diagnosis.

    PubMed

    Frouws, Martine A; Reimers, Marlies S; Swets, Marloes; Bastiaannet, Esther; Prinse, Bianca; van Eijk, Ronald; Lemmens, Valery E P P; van Herk-Sukel, Myrthe P P; van Wezel, Tom; Kuppen, Peter J K; Morreau, Hans; van de Velde, Cornelis J H; Liefers, Gerrit-Jan

    2017-01-01

    Use of aspirin after diagnosis of colon cancer has been associated with improved survival. Identification of cancer subtypes that respond to aspirin treatment may help develop personalized treatment regimens. The aim of this study was to investigate the influence of BRAF and KRAS mutation status on the association between aspirin use and overall survival after colon cancer diagnosis. A random selection of 599 patients with colon cancer were analyzed, selected from the Eindhoven Cancer Registry, and BRAF and KRAS mutation status was determined. Data on aspirin use (80 mg) were obtained from the PHARMO Database Network. Parametric survival models with exponential (Poisson) distribution were used. Aspirin use after colon cancer diagnosis was associated with improved overall survival in wild-type BRAF tumors, adjusted rate ratio (RR) of 0.60 (95% CI 0.44-0.83). In contrast, aspirin use in BRAF mutated tumors was not associated with an improved survival (RR 1.11, 95% CI 0.57-2.16). P-value for interaction was non-significant. KRAS mutational status did not differentiate in the association between aspirin use and survival. Low-dose aspirin use after colon cancer diagnosis was associated with improved survival in BRAF wild-type tumors only. However, the large confidence interval of the rate ratio for the use of aspirin in patients with BRAF mutation does not rule out a possible benefit. These results preclude BRAF and KRAS mutation status to be used as a marker for individualized treatment with aspirin, if aspirin becomes regular adjuvant treatment for colon cancer patients in the future.

  10. Genetic characterization of wild-type measles viruses isolated in China, 2006-2007

    PubMed Central

    2010-01-01

    Molecular characterization of wild-type measles viruses in China during 1995-2004 demonstrated that genotype H1 was endemic and widely distributed throughout the country. H1-associated cases and outbreaks caused a resurgence of measles beginning in 2005. A total of 210,094 measles cases and 101 deaths were reported by National Notifiable Diseases Reporting System (NNDRS) and Chinese Measles Laboratory Network (LabNet) from 2006 to 2007, and the incidences of measles were 6.8/100,000 population and 7.2/100,000 population in 2006 and 2007, respectively. Five hundred and sixty-five wild-type measles viruses were isolated from 24 of 31 provinces in mainland China during 2006 and 2007, and all of the wild type virus isolates belonged to cluster 1 of genotype H1. These results indicated that H1-cluster 1 viruses were the predominant viruses circulating in China from 2006 to 2007. This study contributes to previous efforts to generate critical baseline data about circulating wild-type measles viruses in China that will allow molecular epidemiologic studies to help measure the progress made toward China's goal of measles elimination by 2012. PMID:20500809

  11. Thermal stability of wild type and disulfide bridge containing mutant of poplar plastocyanin.

    PubMed

    Guzzi, Rita; Andolfi, Laura; Cannistraro, Salvatore; Verbeet, Martin Ph; Canters, Gerard W; Sportelli, Luigi

    2004-12-01

    A comparative study of the thermal stability of wild type poplar plastocyanin and of a mutant form containing a disulfide bridge between residues 21 and 25 was performed using differential scanning calorimetry and optical spectroscopic techniques. For wild type plastocyanin the transition temperature, determined from the calorimetric profiles, is 62.7 degrees C at the scan rate of 60 degrees C/h, whereas for the mutant it is reduced to 58.0 degrees C. In both cases, the endothermic peak is followed by an exothermic one at higher temperatures. The unfolding process monitored by optical absorption at 596 nm also reveals a reduced thermal stability of the mutated plastocyanin compared to the wild type protein, with transition temperatures of 54.8 and 58.0 degrees C, respectively. For both proteins, the denaturation process was found to be irreversible and dependent on the scan rate preventing the thermodynamic analysis of the unfolding process. In parallel, small conformational changes between wild type and mutant plastocyanin emerge from fluorescence spectroscopy measurements. Here, a difference in the interaction of the two proteins between the microenvironment surrounding the fluorophores and the solvent was proposed. The destabilization observed in the disulfide containing mutant of plastocyanin suggests that the double mutation, Ile21Cys and Glu25Cys, introduces strain into the protein which offsets the stabilizing effect expected from the formation of a covalent crosslink.

  12. ELECTROPHORETIC MOBILITIES OF ESCHERICHIA COLI 0157:H7 AND WILD-TYPE ESCHERICHIA COLI STRAINS

    EPA Science Inventory

    The electrophoretic mobility (EPM) of a number of human-virulent and "wild-type" Escherichia coli strains in phosphate buffered water was measured. The impact of pH, ionic strength, cation type (valence) and concentration, and bacterial strain on the EPM was investigated. Resul...

  13. Measuring cell wall elasticity on enteroaggregative Escherichia coli wild type and dispersin mutant by AFM

    SciTech Connect

    Beckmann, Melissa; Venkataraman, Sankar; Doktycz, Mitchel John; Nataro, James P; Sullivan, Claretta J; Morrell-Falvey, Jennifer L; Allison, David P

    2006-07-01

    Enteroaggregative Escherichia coli (EAEC) is pathogenic and produces severe diarrhea in humans. A mutant of EAEC that does not produce dispersin, a cell surface protein, is not pathogenic. It has been proposed that dispersin imparts a positive charge to the bacterial cell surface allowing the bacteria to colonize on the negatively charged intestinal mucosa. However, physical properties of the bacterial cell surface, such as rigidity, may be influenced by the presence of dispersin and may contribute to pathogenicity. Using the system developed in our laboratory for mounting and imaging bacterial cells by atomic force microscopy (AFM), in liquid, on gelatin coated mica surfaces, studies were initiated to measure cell surface elasticity. This was carried out in both wild type EAEC, that produces dispersin, and the mutant that does not produce dispersin. This was accomplished using AFM force-distance (FD) spectroscopy on the wild type and mutant grown in liquid or on solid medium. Images in liquid and in air of both the wild-type and mutant grown in liquid and on solid media are presented. This work represents an initial step in efforts to understand the pathogenic role of the dispersin protein in the wild-type bacteria.

  14. ELECTROPHORETIC MOBILITIES OF ESCHERICHIA COLI 0157:H7 AND WILD-TYPE ESCHERICHIA COLI STRAINS

    EPA Science Inventory

    The electrophoretic mobility (EPM) of a number of human-virulent and "wild-type" Escherichia coli strains in phosphate buffered water was measured. The impact of pH, ionic strength, cation type (valence) and concentration, and bacterial strain on the EPM was investigated. Resul...

  15. Phosphate uptake in Saccharomyces cerevisiae Hansen wild type and phenotypes exposed to space flight irradiation.

    PubMed Central

    Berry, D; Volz, P A

    1979-01-01

    Rates of phosphate uptake were approximately twice as great for Saccharomyces cerevisiae single-cell phenotypic isolates exposed to space parameters as for the wild-type ground control. Quantitative determination of 32P was performed by liquid scintillation spectrometry utilizing Cerenkov radiation counting techniques. PMID:395899

  16. Wild-type microglia arrest pathology in a mouse model of Rett syndrome.

    PubMed

    Derecki, Noël C; Cronk, James C; Lu, Zhenjie; Xu, Eric; Abbott, Stephen B G; Guyenet, Patrice G; Kipnis, Jonathan

    2012-03-18

    Rett syndrome is an X-linked autism spectrum disorder. The disease is characterized in most cases by mutation of the MECP2 gene, which encodes a methyl-CpG-binding protein. Although MECP2 is expressed in many tissues, the disease is generally attributed to a primary neuronal dysfunction. However, as shown recently, glia, specifically astrocytes, also contribute to Rett pathophysiology. Here we examine the role of another form of glia, microglia, in a murine model of Rett syndrome. Transplantation of wild-type bone marrow into irradiation-conditioned Mecp2-null hosts resulted in engraftment of brain parenchyma by bone-marrow-derived myeloid cells of microglial phenotype, and arrest of disease development. However, when cranial irradiation was blocked by lead shield, and microglial engraftment was prevented, disease was not arrested. Similarly, targeted expression of MECP2 in myeloid cells, driven by Lysm(cre) on an Mecp2-null background, markedly attenuated disease symptoms. Thus, through multiple approaches, wild-type Mecp2-expressing microglia within the context of an Mecp2-null male mouse arrested numerous facets of disease pathology: lifespan was increased, breathing patterns were normalized, apnoeas were reduced, body weight was increased to near that of wild type, and locomotor activity was improved. Mecp2(+/-) females also showed significant improvements as a result of wild-type microglial engraftment. These benefits mediated by wild-type microglia, however, were diminished when phagocytic activity was inhibited pharmacologically by using annexin V to block phosphatydilserine residues on apoptotic targets, thus preventing recognition and engulfment by tissue-resident phagocytes. These results suggest the importance of microglial phagocytic activity in Rett syndrome. Our data implicate microglia as major players in the pathophysiology of this devastating disorder, and suggest that bone marrow transplantation might offer a feasible therapeutic approach for it.

  17. The effect of 3-acetylpyridine on inferior olivary neuron degeneration in Lurcher mutant and wild-type mice.

    PubMed

    Caddy, K W; Vozeh, F

    1997-07-09

    Lurcher mutant and wild-type mice were given intraperitoneal injections of 3-acetylpyridine to look at the toxic effects of this drug on the inferior olivary neurons. Intraperitoneal administration of 3-acetylpyridine is characterized by the different sensitivity of inferior olivary neurons in Lurcher mutant and wild-type mice. Lurcher mutants suffered a destruction of these neurons while wild-type mice were unaffected. The results show that there is a different effect of 3-acetylpyridine between genetic mutations and wild-type mice on the same inbred strain of mice. The different affinity of 3-acetylpyridine for the inferior olivary neurons of this mutant is briefly discussed.

  18. Sex and Immunogen-Specific Benefits of Immunotherapy Targeting Islet Amyloid Polypeptide in Transgenic and Wild-Type Mice

    PubMed Central

    Krishnamurthy, Pavan K.; Rajamohamedsait, Hameetha B.; Gonzalez, Veronica; Rajamohamedsait, Wajitha J.; Ahmed, Nawal; Krishnaswamy, Senthilkumar; Sigurdsson, Einar M.

    2016-01-01

    Type 2 diabetes mellitus is characterized by the deposition of islet amyloid polypeptide (IAPP) as amyloid in islets, a process thought to be toxic to β-cells. To determine the feasibility of targeting these aggregates therapeutically, we vaccinated transgenic (Tg) mice that overexpress human IAPP and were fed a high-fat diet to promote their diabetic phenotype. Our findings indicate that prophylactic vaccination with IAPP and its derivative IAPP7-19-TT, protects wild-type female mice, but not males, from obesity-induced early mortality, and the derivative showed a strong trend for prolonging the lifespan of Tg females but not males. Furthermore, IAPP7-19-TT-immunized Tg females cleared a glucose bolus more efficiently than controls, while IAPP-immunized Tg females showed an impaired ability to clear a glucose bolus compared to their adjuvant injected Tg controls. Interestingly, IAPP or IAPP7-19-TT treatments had no effect on glucose clearance in Tg males. Overall, these beneficial effects of IAPP targeted immunization depend on Tg status, sex, and immunogen. Hence, future studies in this field should carefully consider these variables that clearly affect the therapeutic outcome. In conclusion, IAPP targeting immunotherapy may have benefits in patients with type 2 diabetes. PMID:27379014

  19. Wild-type p53-induced phosphatase 1 is a prognostic marker and therapeutic target in bladder transitional cell carcinoma

    PubMed Central

    Wang, Zhi-Peng; Chen, Shu-Yuan; Tian, Ye

    2017-01-01

    Wild-type p53-induced phosphatase (Wip1) is an established oncogene and is associated with development of multiple forms of human cancer. However, the expression and role of Wip1 in human bladder transitional cell carcinoma (TCC) remains to be elucidated. In the present study, immunohistochemistry demonstrated that Wip1 was overexpressed in bladder TCC tissues compared with corresponding normal bladder tissues in 106 bladder TCC cases (P<0.0001). Furthermore, high expression levels of Wip1 were significantly associated with increasing tumor size (P=0.002), pathological grade (P=0.025), clinical T stage (P=0.001) and lymph nodal metastasis (P=0.003). Kaplan-Meier survival analysis identified that patients with high Wip1 expression levels exhibited a lower overall survival time (P<0.0001), and Cox proportional hazards regression model analysis demonstrated that Wip1 expression was an independent prognostic factor in patients with bladder TCC (P=0.025). In addition, downregulation of Wip1 expression by transfection with small interfering RNA in bladder cancer cells inhibited cell proliferation, invasion and migration (P<0.05), along with the upregulation of p53 protein levels (P<0.05). These findings suggest that Wip1 may function as a potential prognostic marker and therapeutic target in bladder cancer. PMID:28356972

  20. Spontaneous generation of rapidly transmissible prions in transgenic mice expressing wild-type bank vole prion protein.

    PubMed

    Watts, Joel C; Giles, Kurt; Stöhr, Jan; Oehler, Abby; Bhardwaj, Sumita; Grillo, Sunny K; Patel, Smita; DeArmond, Stephen J; Prusiner, Stanley B

    2012-02-28

    Currently, there are no animal models of the most common human prion disorder, sporadic Creutzfeldt-Jakob disease (CJD), in which prions are formed spontaneously from wild-type (WT) prion protein (PrP). Interestingly, bank voles (BV) exhibit an unprecedented promiscuity for diverse prion isolates, arguing that bank vole PrP (BVPrP) may be inherently prone to adopting misfolded conformations. Therefore, we constructed transgenic (Tg) mice expressing WT BVPrP. Tg(BVPrP) mice developed spontaneous CNS dysfunction between 108 and 340 d of age and recapitulated the hallmarks of prion disease, including spongiform degeneration, pronounced astrogliosis, and deposition of alternatively folded PrP in the brain. Brain homogenates of ill Tg(BVPrP) mice transmitted disease to Tg(BVPrP) mice in ∼35 d, to Tg mice overexpressing mouse PrP in under 100 d, and to WT mice in ∼185 d. Our studies demonstrate experimentally that WT PrP can spontaneously form infectious prions in vivo. Thus, Tg(BVPrP) mice may be useful for studying the spontaneous formation of prions, and thus may provide insight into the etiology of sporadic CJD.

  1. Biochemical characterization and structural modeling of human cathepsin E variant 2 in comparison to the wild-type protein

    PubMed Central

    Puizdar, Vida; Zajc, Tajana; Žerovnik, Eva; Renko, Miha; Pieper, Ursula; Eswar, Narayanan; Šali, Andrej; Dolenc, Iztok; Turk, Vito

    2014-01-01

    Cathepsin E splice variant 2 appears in a number of gastric carcinoma. Here, we report detecting this variant in HeLa cells using polyclonal antibodies and biotinylated inhibitor pepstatin A. An overexpression of GFP fusion proteins of cathepsin E and its splice variant within HEK-293T cells was performed to show their localization. Their distribution under a fluorescence microscope showed that they are colocalized. We also expressed variant 1 and variant 2 of cathepsins E, with propeptide and without it, in Echerichia coli. After refolding from the inclusion bodies, the enzymatic activity and circular dichroism spectra of the splice variant 2 were compared to those of the wild-type mature active cathepsins E. While full-length cathepsin E variant1 is activated at acid pH, the splice variant remains inactive. In contrast to the active cathepsin E, the splice variant 2 predominantly assumes β-sheet structure, prone to oligomerization, at least under in vitro conditions, as shown by Atomic Force Microscopy as shallow disk-like particles. A comparative structure model of splice variant 2 was computed based on its alignment to the known structure of cathepsin E intermediate (Protein Data Bank code 1TZS), and used to rationalize its conformational properties and loss of activity. PMID:22718633

  2. Differential morphology and transcriptome profile between the incompletely fused carpels ovary and its wild-type in maize

    PubMed Central

    Li, Hongping; Wu, Yufeng; Zhao, Yali; Hu, Xiuli; Chang, Jianfeng; Wang, Qun; Dong, Pengfei; Zhang, Moubiao; Li, Chaohai

    2016-01-01

    We have isolated a new mutation in maize, incompletely fused carpels (ifc), which results in an open stylar canal on the ovary and an incomplete pericarp at the top of the kernel. The maize ovary derives from the fusion of three carpels; however, the molecular networks regulating maize carpel fusion remain largely unclear. In this study, RNA sequencing (RNA-seq) was performed on wild-type (WT) and ifc ovaries that were collected after carpel fusion defects could be morphologically distinguished. In total, 877 differentially expressed genes were identified. Functional analysis revealed overexpression of genes related to “DNA binding”, “transcription regulation”, “hormones”, and “stress responses”. Among the 88 differentially expressed transcription factor (TF) genes, five showed a high degree of conservation (77.7–88.0% amino acid identity) of their conserved domains with genes associated with carpel fusion deficiency in Arabidopsis thaliana, suggesting that these five genes might control carpel fusion in maize. In addition, 30 genes encoding components of hormone synthesis and signaling pathways were differentially expressed between ifc and WT ovaries, indicating complex hormonal regulation during carpel fusion. These results help elucidate the underlying mechanisms that regulate carpel fusion, supporting the functional analysis of genes involved in producing this phenotype. PMID:27587343

  3. Differential Transcriptome Networks between IDO1-Knockout and Wild-Type Mice in Brain Microglia and Macrophages.

    PubMed

    Gonzalez-Pena, Dianelys; Nixon, Scott E; Southey, Bruce R; Lawson, Marcus A; McCusker, Robert H; Hernandez, Alvaro G; Dantzer, Robert; Kelley, Keith W; Rodriguez-Zas, Sandra L

    2016-01-01

    Microglia in the brain and macrophages in peripheral organs are cell types responsible for immune response to challenges. Indoleamine 2,3-dioxygenase 1 (IDO1) is an immunomodulatory enzyme of the tryptophan pathway that is expressed in the brain. The higher activity of IDO1 in response to immune challenge has been implicated in behavioral disorders. The impact of IDO1 depletion on the microglia transcriptome has not been studied. An investigation of the transcript networks in the brain microglia from IDO1-knockout (IDO1-KO) mice was undertaken, relative to peripheral macrophages and to wild-type (WT) mice under unchallenged conditions. Over 105 transcript isoforms were differentially expressed between WT and IDO1-KO within cell type. Within microglia, Saa3 and Irg1 were over-expressed in IDO1-KO relative to WT. Within macrophages, Csf3 and Sele were over-expressed in IDO1-KO relative to WT. Among the genes differentially expressed between strains, enriched biological processes included ion homeostasis and ensheathment of neurons within microglia, and cytokine and chemokine expression within macrophages. Over 11,110 transcript isoforms were differentially expressed between microglia and macrophages and of these, over 10,800 transcripts overlapped between strains. Enriched biological processes among the genes over- and under-expressed in microglia relative to macrophages included cell adhesion and apoptosis, respectively. Detected only in microglia or macrophages were 421 and 43 transcript isoforms, respectively. Alternative splicing between cell types based on differential transcript isoform abundance was detected in 210 genes including Phf11d, H2afy, and Abr. Across strains, networks depicted a predominance of genes under-expressed in microglia relative to macrophages that may be a precursor for the different response of both cell types to challenges. The detected transcriptome differences enhance the understanding of the role of IDO1 in the microglia transcriptome

  4. Differential Transcriptome Networks between IDO1-Knockout and Wild-Type Mice in Brain Microglia and Macrophages

    PubMed Central

    Gonzalez-Pena, Dianelys; Nixon, Scott E.; Southey, Bruce R.; Lawson, Marcus A.; McCusker, Robert H.; Hernandez, Alvaro G.; Dantzer, Robert; Kelley, Keith W.; Rodriguez-Zas, Sandra L.

    2016-01-01

    Microglia in the brain and macrophages in peripheral organs are cell types responsible for immune response to challenges. Indoleamine 2,3-dioxygenase 1 (IDO1) is an immunomodulatory enzyme of the tryptophan pathway that is expressed in the brain. The higher activity of IDO1 in response to immune challenge has been implicated in behavioral disorders. The impact of IDO1 depletion on the microglia transcriptome has not been studied. An investigation of the transcript networks in the brain microglia from IDO1-knockout (IDO1-KO) mice was undertaken, relative to peripheral macrophages and to wild-type (WT) mice under unchallenged conditions. Over 105 transcript isoforms were differentially expressed between WT and IDO1-KO within cell type. Within microglia, Saa3 and Irg1 were over-expressed in IDO1-KO relative to WT. Within macrophages, Csf3 and Sele were over-expressed in IDO1-KO relative to WT. Among the genes differentially expressed between strains, enriched biological processes included ion homeostasis and ensheathment of neurons within microglia, and cytokine and chemokine expression within macrophages. Over 11,110 transcript isoforms were differentially expressed between microglia and macrophages and of these, over 10,800 transcripts overlapped between strains. Enriched biological processes among the genes over- and under-expressed in microglia relative to macrophages included cell adhesion and apoptosis, respectively. Detected only in microglia or macrophages were 421 and 43 transcript isoforms, respectively. Alternative splicing between cell types based on differential transcript isoform abundance was detected in 210 genes including Phf11d, H2afy, and Abr. Across strains, networks depicted a predominance of genes under-expressed in microglia relative to macrophages that may be a precursor for the different response of both cell types to challenges. The detected transcriptome differences enhance the understanding of the role of IDO1 in the microglia transcriptome

  5. A subset of lung adenocarcinomas and atypical adenomatous hyperplasia-associated foci are genotypically related: an EGFR, HER2, and K-ras mutational analysis.

    PubMed

    Sartori, Giuliana; Cavazza, Alberto; Bertolini, Federica; Longo, Lucia; Marchioni, Alessandro; Costantini, Matteo; Barbieri, Fausto; Migaldi, Mario; Rossi, Giulio

    2008-02-01

    Atypical adenomatous hyperplasia (AAH) is considered the preinvasive lesion of pulmonary adenocarcinoma, and mutations of EGFR, HER2, and K-ras are involved in the early stage of lung adenocarcinoma carcinogenesis, also predicting clinical response to anti-EGFR small molecule inhibitors. We analyzed 18 cases of primary lung adenocarcinoma with concomitant AAH foci from 13 patients for mutations of EGFR (exons 18-21), HER2 (exons 19-20), and K-ras (exon 2) by direct sequencing polymerase chain reaction. Among mutated cases, concordant mutations of EGFR or K-ras in adenocarcinoma and related AAH were observed in 5 (63%) of 8 cases. In particular, 3 of 4 adenocarcinomas with EGFR mutations (all L858R point mutations in women, never or former smokers) had a concomitant and identical mutation in AAH, and 2 of 4 adenocarcinomas with K-ras mutations (both at codon 12 in women, a never and a current smoker) showed the same mutation in concomitant AAH. All cases were wild-type for HER2. Mutations of EGFR and K-ras genes represent an early event in lung adenocarcinomagenesis, and AAH convincingly seems to be a precursor lesion in a subset of cases of adenocarcinoma.

  6. The Use of COLD-PCR and High-Resolution Melting Analysis Improves the Limit of Detection of KRAS and BRAF Mutations in Colorectal Cancer

    PubMed Central

    Mancini, Irene; Santucci, Claudio; Sestini, Roberta; Simi, Lisa; Pratesi, Nicola; Cianchi, Fabio; Valanzano, Rosa; Pinzani, Pamela; Orlando, Claudio

    2010-01-01

    Fast and reliable tests to detect mutations in human cancers are required to better define clinical samples and orient targeted therapies. KRAS mutations occur in 30–50% of colorectal cancers (CRCs) and represent a marker of clinical resistance to cetuximab therapy. In addition, the BRAF V600E is mutated in about 10% of CRCs, and the development of a specific inhibitor of mutant BRAF kinase has prompted a growing interest in BRAFV600E detection. Traditional methods, such as PCR and direct sequencing, do not detect low-level mutations in cancer, resulting in false negative diagnoses. In this study, we designed a protocol to detect mutations of KRAS and BRAFV600E in 117 sporadic CRCs based on coamplification at lower denaturation temperature PCR (COLD-PCR) and high-resolution melting (HRM). Using traditional PCR and direct sequencing, we found KRAS mutations in 47 (40%) patients and BRAFV600E in 10 (8.5%). The use of COLD-PCR in apparently wild-type samples allowed us to identify 15 newly mutated CRCs (10 for KRAS and 5 for BRAFV600E), raising the percentage of mutated CRCs to 48.7% for KRAS and to 12.8% for BRAFV600E. Therefore, COLD-PCR combined with HRM permits the correct identification of less represented mutations in CRC and better selection of patients eligible for targeted therapies, without requiring expensive and time-consuming procedures. PMID:20616366

  7. Comparison of the prevalence of KRAS-LCS6 polymorphism (rs61764370) within different tumour types (colorectal, breast, non-small cell lung cancer and brain tumours). A study of the Czech population.

    PubMed

    Uvirova, Magdalena; Simova, Jarmila; Kubova, Barbora; Dvorackova, Nina; Tomaskova, Hana; Sedivcova, Monika; Dite, Petr

    2015-09-01

    A germline SNP (rs61764370) is located in a let-7 complementary site (LCS6) in the 3'UTR of KRAS oncogene, and it was found to alter the binding capability of the mature let-7 microRNA to the KRAS mRNA. The aim of the study was to evaluate the frequency of the KRAS-LCS6 variant allele in different cancer types that included patients with colorectal cancer (CRC), breast cancer (BC), non-small cell lung cancer (NSCLC) and brain tumour patient subgroups from the Czech Republic. The occurrence of this genetic variant was correlated with the presence of selected somatic mutations representing predictive biomarkers in the respective tumours. DNA of tumour tissues was isolated from 428 colorectal cancer samples, 311 non-small cell lung cancer samples, 195 breast cancer samples and 151 samples with brain tumour. Analysis of SNP (rs61764370) was performed by the PCR+RFLP method and direct sequencing. KRAS, BRAF and EGFR mutation status was assessed using real-time PCR. The status of the HER2 gene was assessed using the FISH method. The KRAS-LCS6 TG genotype has been detected in 16.4% (32/195) of breast cancer cases (in HER2 positive breast cancer 3.3%, in HER2 negative breast cancer 20.1%), in 12.4% (53/428) of CRC cases (KRAS/BRAF wild type CRC in 10.6%, KRAS mutant CRC in 10.1%, BRAF V600E mutant CRC in 18.5%), in 13.2% (41/311) of NSCLC samples, (EGFR mutant NSCLC patients in 8%, EGFR wild type NSCLC in 12.9%), and 17.9% (27/151) of brain tumour cases. The KRAS-LCS6 TG genotype was not significantly different across the studied tumours. In our study, the GG genotype has not been found among the cancer samples. Based on the findings, it is concluded that the occurrence of the KRAS-LCS6 TG genotype was statistically significantly different in association with status of the HER2 gene in breast cancer. Furthermore, significant association between the mutation status of analysed somatic variants in genes of the EGFR signalling pathway (KRAS, BRAF, EGFR) and the KRAS-LCS6

  8. Defining New Treatment Approaches for KRAS-Mutant Lung Cancer

    DTIC Science & Technology

    2014-10-01

    NSCLC. KEYWORDS: Provide a brief list of keywords (limit to 20 words). Kras, Lung cancer, oncogene addiction . ACCOMPLISHMENTS: The PI is reminded...to KRAS- addicted cancers. In order to identify genes specifically required for KRAS-driven cancers, we conducted a pooled short hairpin RNA (shRNA...While most of the KRAS mutant lines were KRAS addicted , BRAF mutants were not. Our goal was to find genes that, when depleted, would inhibit the

  9. Oncogenic KRAS signalling in pancreatic cancer.

    PubMed

    Eser, S; Schnieke, A; Schneider, G; Saur, D

    2014-08-26

    Pancreatic ductal adenocarcinoma (PDAC) is almost universally fatal. The annual number of deaths equals the number of newly diagnosed cases, despite maximal treatment. The overall 5-year survival rate of <5% has remained stubbornly unchanged over the last 30 years, despite tremendous efforts in preclinical and clinical science. There is unquestionably an urgent need to further improve our understanding of pancreatic cancer biology, treatment response and relapse, and to identify novel therapeutic targets. Rigorous research in the field has uncovered genetic aberrations that occur during PDAC development and progression. In most cases, PDAC is initiated by oncogenic mutant KRAS, which has been shown to drive pancreatic neoplasia. However, all attempts to target KRAS directly have failed in the clinic and KRAS is widely assumed to be undruggable. This has led to intense efforts to identify druggable critical downstream targets and nodes orchestrated by mutationally activated KRAS. This includes context-specific KRAS effector pathways, synthetic lethal interaction partners and KRAS-driven metabolic changes. Here, we review recent advances in oncogenic KRAS signalling and discuss how these might benefit PDAC treatment in the future.

  10. Pooled Analysis of the Prognostic and Predictive Effects of KRAS Mutation Status and KRAS Mutation Subtype in Early-Stage Resected Non–Small-Cell Lung Cancer in Four Trials of Adjuvant Chemotherapy

    PubMed Central

    Shepherd, Frances A.; Domerg, Caroline; Hainaut, Pierre; Jänne, Pasi A.; Pignon, Jean-Pierre; Graziano, Stephen; Douillard, Jean-Yves; Brambilla, Elizabeth; Le Chevalier, Thierry; Seymour, Lesley; Bourredjem, Abderrahmane; Teuff, Gwénaël Le; Pirker, Robert; Filipits, Martin; Rosell, Rafael; Kratzke, Robert; Bandarchi, Bizhan; Ma, Xiaoli; Capelletti, Marzia; Soria, Jean-Charles; Tsao, Ming-Sound

    2013-01-01

    Purpose We undertook this analysis of KRAS mutation in four trials of adjuvant chemotherapy (ACT) versus observation (OBS) to clarify the prognostic/predictive roles of KRAS in non–small-cell lung cancer (NSCLC). Methods KRAS mutation was determined in blinded fashion. Exploratory analyses were performed to characterize relationships between mutation status and subtype and survival outcomes using a multivariable Cox model. Results Among 1,543 patients (763 OBS, 780 ACT), 300 had KRAS mutations (codon 12, n = 275; codon 13, n = 24; codon 14, n = 1). In OBS patients, there was no prognostic difference for overall survival for codon-12 (mutation v wild type [WT] hazard ratio [HR] = 1.04; 95% CI, 0.77 to 1.40) or codon-13 (HR = 1.01; 95% CI, 0.47 to 2.17) mutations. No significant benefit from ACT was observed for WT-KRAS (ACT v OBS HR = 0.89; 95% CI, 0.76 to 1.04; P = .15) or codon-12 mutations (HR = 0.95; 95% CI, 0.67 to 1.35; P = .77); with codon-13 mutations, ACT was deleterious (HR = 5.78; 95% CI, 2.06 to 16.2; P < .001; interaction P = .002). There was no prognostic effect for specific codon-12 amino acid substitution. The effect of ACT was variable among patients with codon-12 mutations: G12A or G12R (HR = 0.66; P = .48), G12C or G12V (HR = 0.94; P = .77) and G12D or G12S (HR = 1.39; P = .48; comparison of four HRs, including WT, interaction P = .76). OBS patients with KRAS-mutated tumors were more likely to develop second primary cancers (HR = 2.76, 95% CI, 1.34 to 5.70; P = .005) but not ACT patients (HR = 0.66; 95% CI, 0.25 to 1.75; P = .40; interaction, P = .02). Conclusion KRAS mutation status is not significantly prognostic. The potential interaction in patients with codon-13 mutations requires validation. At this time, KRAS status cannot be recommended to select patients with NSCLC for ACT. PMID:23630215

  11. Phenformin enhances the therapeutic effect of selumetinib in KRAS-mutant non-small cell lung cancer irrespective of LKB1 status.

    PubMed

    Zhang, Jun; Nannapaneni, Sreenivas; Wang, Dongsheng; Liu, Fakeng; Wang, Xu; Jin, Rui; Liu, Xiuju; Rahman, Mohammad Aminur; Peng, Xianghong; Qian, Guoqing; Chen, Zhuo G; Wong, Kwok-Kin; Khuri, Fadlo R; Zhou, Wei; Shin, Dong M

    2017-08-29

    MEK inhibition is potentially valuable in targeting KRAS-mutant non-small cell lung cancer (NSCLC). Here, we analyzed whether concomitant LKB1 mutation alters sensitivity to the MEK inhibitor selumetinib, and whether the metabolism drug phenformin can enhance the therapeutic effect of selumetinib in isogenic cell lines with different LKB1 status. Isogenic pairs of KRAS-mutant NSCLC cell lines A549, H460 and H157, each with wild-type and null LKB1, as well as genetically engineered mouse-derived cell lines 634 (kras(G12D/wt)/p53(-/-)/lkb1(wt/wt)) and t2 (kras(G12D/wt)/p53(-/-)/lkb1(-/-)) were used in vitro to analyze the activities of selumetinib, phenformin and their combination. Synergy was measured and potential mechanisms investigated. The in vitro findings were then confirmed in vivo using xenograft models. The re-expression of wild type LKB1 increased phospho-ERK level, suggesting that restored dependency on MEK->ERK->MAPK signaling might have contributed to the enhanced sensitivity to selumetinib. In contrast, the loss of LKB1 sensitized cells to phenformin. At certain combination ratios, phenformin and selumetinib showed synergistic activity regardless of LKB1 status. Their combination reduced phospho-ERK and S6 levels and induced potent apoptosis, but was likely through different mechanisms in cells with different LKB1 status. Finally, in xenograft models bearing isogenic A549 cells, we confirmed that loss of LKB1 confers resistance to selumetinib, and phenformin significantly enhances the therapeutic effect of selumetinib. Irrespective of LKB1 status, phenformin may enhance the anti-tumor effect of selumetinib in KRAS-mutant NSCLC. The dual targeting of MEK and cancer metabolism may provide a useful strategy to treat this subset of lung cancer.

  12. Mutational analysis of BRAF and KRAS in ovarian serous borderline (atypical proliferative) tumours and associated peritoneal implants

    PubMed Central

    Ardighieri, Laura; Zeppernick, Felix; Hannibal, Charlotte G; Vang, Russell; Cope, Leslie; Junge, Jette; Kjaer, Susanne K; Kurman, Robert J; Shih, Ie-Ming

    2014-01-01

    There is debate as to whether peritoneal implants associated with serous borderline tumours/atypical proliferative serous tumours (SBT/APSTs) of the ovary are derived from the primary ovarian tumour or arise independently in the peritoneum. We analysed 57 SBT/APSTs from 45 patients with advanced-stage disease identified from a nation-wide tumour registry in Denmark. Mutational analysis for hotspots in KRAS and BRAF was successful in 55 APSTs and demonstrated KRAS mutations in 34 (61.8%) and BRAF mutations in eight (14.5%). Mutational analysis was successful in 56 peritoneal implants and revealed KRAS mutations in 34 (60.7%) and BRAF mutations in seven (12.5%). Mutational analysis could not be performed in two primary tumours and in nine implants, either because DNA amplification failed or because there was insufficient tissue for mutational analysis. For these specimens we performed VE1 immunohistochemistry, which was shown to be a specific and sensitive surrogate marker for a V600E BRAF mutation. VE1 staining was positive in one of two APSTs and seven of nine implants. Thus, among 63 implants for which mutation status was known (either by direct mutational analysis or by VE1 immunohistochemistry), 34 (53.9%) had KRAS mutations and 14 (22%) had BRAF mutations, of which identical KRAS mutations were found in 34 (91%) of 37 SBT/APST–implant pairs and identical BRAF mutations in 14 (100%) of 14 SBT/APST–implant pairs. Wild-type KRAS and BRAF (at the loci investigated) were found in 11 (100%) of 11 SBT/APST–implant pairs. Overall concordance of KRAS and BRAF mutations was 95% in 59 of 62 SBT/APST–implant (non-invasive and invasive) pairs (p < 0.00001). This study provides cogent evidence that the vast majority of peritoneal implants, non-invasive and invasive, harbour the identical KRAS or BRAF mutations that are present in the associated SBT/APST, supporting the view that peritoneal implants are derived from the primary ovarian tumour. PMID:24307542

  13. Pooled Analysis of the Prognostic and Predictive Effects of TP53 Comutation Status Combined With KRAS or EGFR Mutation in Early-Stage Resected Non-Small-Cell Lung Cancer in Four Trials of Adjuvant Chemotherapy.

    PubMed

    Shepherd, Frances A; Lacas, Benjamin; Le Teuff, Gwénaël; Hainaut, Pierre; Jänne, Pasi A; Pignon, Jean-Pierre; Le Chevalier, Thierry; Seymour, Lesley; Douillard, Jean-Yves; Graziano, Stephen; Brambilla, Elizabeth; Pirker, Robert; Filipits, Martin; Kratzke, Robert; Soria, Jean-Charles; Tsao, Ming-Sound

    2017-06-20

    Purpose Our previous work evaluated individual prognostic and predictive roles of TP53, KRAS, and EGFR in non-small-cell lung cancer (NSCLC). In this analysis, we explore the prognostic and predictive roles of TP53/KRAS and TP53/EGFR comutations in randomized trials of adjuvant chemotherapy versus observation. Patients and Methods Mutation analyses (wild-type [WT] and mutant) for TP53, KRAS, and EGFR were determined in blinded fashion in multiple laboratories. Primary and secondary end points of pooled analysis were overall survival and disease-free survival. We evaluated the role of TP53/KRAS comutation in all patients and in the adenocarcinoma subgroup as well as the TP53/EGFR comutation in adenocarcinoma only through a multivariable Cox proportional hazards model stratified by trial. Results Of 3,533 patients with NSCLC, 1,181 (557 deaths) and 404 (170 deaths) were used for TP53/KRAS and TP53/EGFR analyses. For TP53/KRAS mutation status, no prognostic effect was observed ( P = .61), whereas a borderline predictive effect ( P = .04) was observed with a deleterious effect of chemotherapy with TP53/KRAS comutations versus WT/WT (hazard ratio, 2.49 [95% CI, 1.10 to 5.64]; P = .03). TP53/EGFR comutation in adenocarcinoma was neither prognostic ( P = .83), nor significantly predictive ( P = .86). Similar results were observed for both groups for disease-free survival. Conclusion We could identify no prognostic effect of the KRAS or EGFR driver and TP53 tumor suppressor comutation. Our observation of a potential negative predictive effect of TP53/KRAS comutation requires validation.

  14. FLO11 is the primary factor in flor formation caused by cell surface hydrophobicity in wild-type flor yeast.

    PubMed

    Ishigami, Mari; Nakagawa, Youji; Hayakawa, Masayuki; Iimura, Yuzuru

    2006-03-01

    Some strains of Saccharomyces cerevisiae form a biofilm called a "flor" on the surface of wine after ethanolic fermentation, but the molecular mechanism of flor formation by the wild-type flor strain involved in wine making is not clear. Previously, we found that expression of the C-terminally truncated form of NRG1 (NRG1(1-470)) on a multicopy plasmid increases the hydrophobicity of the cell surface, conferring flor formation on the non-flor laboratory strain. Here we show that in Ar5-H12, a wild-type flor haploid strain, flor formation is regulated by NRG1(1-470). Moreover, the disruptant of the wild-type flor diploid strain (Deltaflo11/Deltaflo11) show a weak ability to form the flor. The expression of FLO11 is always high in the wild-type flor strain, regardless of carbon source. Thus FLO11 is primary factor for wild-type flor strains. Furthermore, the disruptant (Deltaflo11) shows lower hydrophobicity of cell surface than the wild type. However, the hydrophobicity of the wild-type flor strains grown in ethanol medium was much higher than those grown in glucose medium. These results indicate that cell surface hydrophobicity is closely related to flor formation in wild-type flor yeasts.

  15. Genomic sequence of temperate phage TEM126 isolated from wild type S. aureus.

    PubMed

    Lee, Young-Duck; Chang, Hyo-Ihl; Park, Jong-Hyun

    2011-04-01

    Bacteriophage TEM126, a newly isolated temperate phage from a mitomycin-C-induced lysate of wild-type Staphylococcus aureus isolated from food, has an isometric head, a noncontractile tail, and a double-stranded DNA genome with a length of 33,540 bp and a G+C content of 33.94%. Bioinformatics analysis of the phage genome revealed 44 putative open reading frames (ORFs). Predicted protein products of the ORFs were determined and described. Temperate phage TEM126 can be classified as a member of the family Siphoviridae by morphology and genome structure. Temperate phage TEM126 showed 84% similarity with Staphylococcus phage phiNM1. To our knowledge, this is the first report of genomic sequencing and characterization of temperate phage TEM126 from a wild-type S. aureus isolated from foods in Korea.

  16. Effects of novel and wild-type endophytes in perennial ryegrass on cow health and production.

    PubMed

    Thom, E R; Waugh, C D; Minneé, E M K; Waghorn, G C

    2013-03-01

    To measure the effects of AR37, AR1 and Wild-type endophytes in perennial ryegrass on cow health and milk production. Four indoor and six grazing experiments were used to evaluate a perennial ryegrass cultivar containing either novel (AR37, AR1) or Wild-type (HE or Standard) endophytes or no endophyte (Nil). Three hectares of each ryegrass/endophyte association were sown with a white clover cultivar in April 2005 and either grazed or cut for indoor feeding from July 2005 to March 2009. The novel endophytes were distinguished by the production of epoxy-janthitrems by AR37 and peramine only by AR1, both of which deter insect attack. This is the first assessment of the effects of AR37 endophyte on dairy cow health and production. In all experiments, cows were monitored for indications of ryegrass staggers (RGS) by visual scoring, respiration rate as an indicator of heat stress and, in some instances, packed cell volume (blood haematocrit), blood serum albumin concentrations and skin elasticity as indicators of dehydration. Milk production and composition were measured routinely. Pasture production, composition and alkaloid content were determined, as well as temperature and humidity in the indoor feeding facility. Indoor experiments enabled accurate measurement of dry matter intakes, as well as water consumption in some instances. Cows eating AR37 or AR1 ryegrass did not develop RGS. During indoor feeding experiments in summer and autumn, cows eating ryegrass infected with Wild-type (Wild-type ryegrass) always developed RGS, while under rotational grazing, onset of RGS was less predictable and rarely affected all animals in the group. Severity of RGS was related to the concentration of lolitrem B in ryegrass. No cows demonstrated signs of extreme heat stress in any situation. During summer indoor feeding, cows eating ryegrass infected with AR1 endophyte (AR1 ryegrass) sometimes produced more milk and milksolids (MS) compared to ryegrass infected with AR37 (AR37

  17. In vitro permissivity of bovine cells for wild-type and vaccinal myxoma virus strains.

    PubMed

    Pignolet, Béatrice; Duteyrat, Jean-Luc; Allemandou, Aude; Gelfi, Jacqueline; Foucras, Gilles; Bertagnoli, Stéphane

    2007-09-27

    Myxoma virus (MYXV), a leporide-specific poxvirus, represents an attractive candidate for the generation of safe, non-replicative vaccine vector for non-host species. However, there is very little information concerning infection of non-laboratory animals species cells with MYXV. In this study, we investigated interactions between bovine cells and respectively a wild type strain (T1) and a vaccinal strain (SG33) of MYXV. We showed that bovine KOP-R, BT and MDBK cell lines do not support MYXV production. Electron microscopy observations of BT-infected cells revealed the low efficiency of viral entry and the production of defective virions. In addition, infection of bovine peripheral blood mononuclear cells (PBMC) occurred at a very low level, even following non-specific activation, and was always abortive. We did not observe significant differences between the wild type strain and the vaccinal strain of MYXV, indicating that SG33 could be used for new bovine vaccination strategies.

  18. A ten-week biochemistry lab project studying wild-type and mutant bacterial alkaline phosphatase.

    PubMed

    Witherow, D Scott

    2016-11-12

    This work describes a 10-week laboratory project studying wild-type and mutant bacterial alkaline phosphatase, in which students purify, quantitate, and perform kinetic assays on wild-type and selected mutants of the enzyme. Students also perform plasmid DNA purification, digestion, and gel analysis. In addition to simply learning important techniques, students acquire novel biochemical data in their kinetic analysis of mutant enzymes. The experiments are designed to build on students' work from week to week in a way that requires them to apply quantitative analysis and reasoning skills, reinforcing traditional textbook biochemical concepts. Students are assessed through lab reports focused on journal style writing, quantitative and conceptual question sheets, and traditional exams. © 2016 by The International Union of Biochemistry and Molecular Biology, 44(6):555-564, 2016. © 2016 The International Union of Biochemistry and Molecular Biology.

  19. DNA intercalator korkormicin A preferentially kills tumor cells expressing wild type p53.

    PubMed

    Kitagaki, Jirouta; Yang, Yili

    2011-10-14

    Korkormicin A belongs to a family of nature-produced cyclic depsipeptides. It has potent antitumor activity against both leukemia cell P388 and carcinoma cell M109. To further explore its potential as a cancer therapeutic, the mechanism of its antitumor activity was investigated. We found that korkormicin A can bind to DNA through intercalation. It also induces p53 phosphorylation, which leads to inhibition of p53 degradation and activation of p53-dependent transcription. Furthermore, korkormicin A preferentially induces apoptosis in transformed cells retaining wild type p53. As it has been shown that p53 usually induces apoptosis in transformed cells, but only growth arrest in untransformed cells, these results indicate that korkormicin A is a potential antitumor agent for cancers with wild type p53. Published by Elsevier Inc.

  20. Cytochemical Analysis of Pollen Development in Wild-Type Arabidopsis and a Male-Sterile Mutant.

    PubMed Central

    Regan, SM; Moffatt, BA

    1990-01-01

    Microsporogenesis has been examined in wild-type Arabidopsis thaliana and the nuclear male-sterile mutant BM3 by cytochemical staining. The mutant lacks adenine phosphoribosyltransferase, an enzyme of the purine salvage pathway that converts adenine to AMP. Pollen development in the mutant began to diverge from wild type just after meiosis, as the tetrads of microspores were released from their callose walls. The first indication of abnormal pollen development in the mutant was a darker staining of the microspore wall due to an incomplete synthesis of the intine. Vacuole formation was delayed and irregular in the mutant, and the majority of the mutant microspores failed to undergo mitotic divisions. Enzyme activities of alcohol dehydrogenase and esterases decreased in the mutant soon after meiosis and were undetectable in mature pollen grains of the mutant. RNA accumulation was also diminished. These results are discussed in relation to the possible role(s) of adenine salvage in pollen development. PMID:12354970

  1. Detection by PCR of wild-type canine parvovirus which contaminates dog vaccines.

    PubMed Central

    Senda, M; Parrish, C R; Harasawa, R; Gamoh, K; Muramatsu, M; Hirayama, N; Itoh, O

    1995-01-01

    A method for detecting wild-type canine parvovirus (CPV) strains which contaminate vaccines for dogs has been developed by PCR. PCR primers which distinguish vaccine strains from the most common, recent strains of wild-type CPV in many countries, including Japan and the United States, were developed. This PCR is based on the differences in nucleotide sequences which determine the two antigenic types of this virus. CPV vaccine strains derived from antigenically old-type virus prevalent in former times were not detected by PCR with differential primers. Detection sensitivity of PCR was 100- to 10,000-fold higher than that of the culture method in Crandell feline kidney cells. PMID:7699026

  2. Rule governing the division pattern in Escherichia coli minB and wild-type filaments.

    PubMed Central

    Jaffé, A; Boye, E; D'Ari, R

    1990-01-01

    Escherichia coli minB mutants form anucleate minicells and multinucleate filaments. We show here that the overwhelming majority of nucleate cells contain 2n (n = 0, 1, 2, ...) nucleoids, as determined by 4',6-diamidino-2-phenylindole staining, and 2n (n = 1, 2, 3, ...) copies of the replication origin, as determined by flow cytometry. This shows that division sites are not chosen randomly among the available sites in minB filaments. Similarly, wild-type cells contain 2n nucleoids, both during cell division inhibition and when furazlocillin-induced filaments are allowed to divide. We conclude that the min+ function is only to prevent septation only at polar sites; the placement of internal cell division sites must obey strict rules, which are the same in minB and wild-type cells. PMID:2188963

  3. Effectors of epidermal growth factor receptor pathway: the genetic profiling ofKRAS, BRAF, PIK3CA, NRAS mutations in colorectal cancer characteristics and personalized medicine.

    PubMed

    Shen, Yinchen; Wang, Jianfei; Han, Xiaohong; Yang, Hongying; Wang, Shuai; Lin, Dongmei; Shi, Yuankai

    2013-01-01

    Mutations in KRAS oncogene are recognized biomarkers that predict lack of response to anti- epidermal growth factor receptor (EGFR) antibody therapies. However, some patients with KRAS wild-type tumors still do not respond, so other downstream mutations in BRAF, PIK3CA and NRAS should be investigated. Herein we used direct sequencing to analyze mutation status for 676 patients in KRAS (codons 12, 13 and 61), BRAF (exon 11 and exon 15), PIK3CA (exon 9 and exon 20) and NRAS (codons12, 13 and 61). Clinicopathological characteristics associations were analyzed together with overall survival (OS) of metastatic colorectal cancer patients (mCRC). We found 35.9% (242/674) tumors harbored a KRAS mutation, 6.96% (47/675) harbored a BRAF mutation, 9.9% (62/625) harbored a PIK3CA mutation and 4.19% (26/621) harbored a NRAS mutation. KRAS mutation coexisted with BRAF, PIK3CA and NRAS mutation, PIK3CA exon9 mutation appeared more frequently in KRAS mutant tumors (P = 0.027) while NRAS mutation almost existed in KRAS wild-types (P<0.001). Female patients and older group harbored a higher KRAS mutation (P = 0.018 and P = 0.031, respectively); BRAF (V600E) mutation showed a higher frequency in colon cancer and poor differentiation tumors (P = 0.020 and P = 0.030, respectively); proximal tumors appeared a higher PIK3CA mutation (P<0.001) and distant metastatic tumors shared a higher NRAS mutation (P = 0.010). However, in this study no significant result was found between OS and gene mutation in mCRC group. To our knowledge, the first large-scale retrospective study on comprehensive genetic profile which associated with anti-EGFR MoAbs treatment selection in East Asian CRC population, appeared a specific genotype distribution picture, and the results provided a better understanding between clinicopathological characteristics and gene mutations in CRC patients.

  4. Evaluation of MIC Strip Isavuconazole Test for Susceptibility Testing of Wild-Type and Non-Wild-Type Aspergillus fumigatus Isolates

    PubMed Central

    Verweij, Paul; Nielsen, Henrik Vedel

    2016-01-01

    ABSTRACT We evaluated the MIC Strip Isavuconazole test against EUCAST E.Def 9.3 by using 40 wild-type and 39 CYP51A mutant Aspergillus fumigatus strains. The strip full inhibition endpoint (FIE) and 80% growth inhibition endpoint were determined by two independent readers, reader 1 (R1) and R2. The essential (within ±0, ±1, and ±2 twofold dilutions) and categorical agreements were best with the FIE (for R1/R2, 42%/41%, 75%/73%, and 90%/89% for essential agreement, and 91.1%/92.4% categorical agreement, with 6.3/8.9% very major errors and 0/1.3% major errors, respectively). The MIC Strip Isavuconazole test with the FIE appears to be useful. PMID:27799223

  5. Stability of Iowa mutant and wild type Aβ-peptide aggregates

    SciTech Connect

    Alred, Erik J.; Scheele, Emily G.; Berhanu, Workalemahu M.; Hansmann, Ulrich H. E.

    2014-11-07

    Recent experiments indicate a connection between the structure of amyloid aggregates and their cytotoxicity as related to neurodegenerative diseases. Of particular interest is the Iowa Mutant, which causes early-onset of Alzheimer's disease. While wild-type Amyloid β-peptides form only parallel beta-sheet aggregates, the mutant also forms meta-stable antiparallel beta sheets. Since these structural variations may cause the difference in the pathological effects of the two Aβ-peptides, we have studied in silico the relative stability of the wild type and Iowa mutant in both parallel and antiparallel forms. We compare regular molecular dynamics simulations with such where the viscosity of the samples is reduced, which, we show, leads to higher sampling efficiency. By analyzing and comparing these four sets of all-atom molecular dynamics simulations, we probe the role of the various factors that could lead to the structural differences. Our analysis indicates that the parallel forms of both wild type and Iowa mutant aggregates are stable, while the antiparallel aggregates are meta-stable for the Iowa mutant and not stable for the wild type. The differences result from the direct alignment of hydrophobic interactions in the in-register parallel oligomers, making them more stable than the antiparallel aggregates. The slightly higher thermodynamic stability of the Iowa mutant fibril-like oligomers in its parallel organization over that in antiparallel form is supported by previous experimental measurements showing slow inter-conversion of antiparallel aggregates into parallel ones. Knowledge of the mechanism that selects between parallel and antiparallel conformations and determines their relative stability may open new avenues for the development of therapies targeting familial forms of early-onset Alzheimer's disease.

  6. An emerging role for misfolded wild-type SOD1 in sporadic ALS pathogenesis

    PubMed Central

    Rotunno, Melissa S.; Bosco, Daryl A.

    2013-01-01

    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder that targets motor neurons, leading to paralysis and death within a few years of disease onset. While several genes have been linked to the inheritable, or familial, form of ALS, much less is known about the cause(s) of sporadic ALS, which accounts for ~90% of ALS cases. Due to the clinical similarities between familial and sporadic ALS, it is plausible that both forms of the disease converge on a common pathway and, therefore, involve common factors. Recent evidence suggests the Cu,Zn-superoxide dismutase (SOD1) protein to be one such factor that is common to both sporadic and familial ALS. In 1993, mutations were uncovered in SOD1 that represent the first known genetic cause of familial ALS. While the exact mechanism of mutant-SOD1 toxicity is still not known today, most evidence points to a gain of toxic function that stems, at least in part, from the propensity of this protein to misfold. In the wild-type SOD1 protein, non-genetic perturbations such as metal depletion, disruption of the quaternary structure, and oxidation, can also induce SOD1 to misfold. In fact, these aforementioned post-translational modifications cause wild-type SOD1 to adopt a “toxic conformation” that is similar to familial ALS-linked SOD1 variants. These observations, together with the detection of misfolded wild-type SOD1 within human post-mortem sporadic ALS samples, have been used to support the controversial hypothesis that misfolded forms of wild-type SOD1 contribute to sporadic ALS pathogenesis. In this review, we present data from the literature that both support and contradict this hypothesis. We also discuss SOD1 as a potential therapeutic target for both familial and sporadic ALS. PMID:24379756

  7. Stability of Iowa mutant and wild type Aβ-peptide aggregates

    NASA Astrophysics Data System (ADS)

    Alred, Erik J.; Scheele, Emily G.; Berhanu, Workalemahu M.; Hansmann, Ulrich H. E.

    2014-11-01

    Recent experiments indicate a connection between the structure of amyloid aggregates and their cytotoxicity as related to neurodegenerative diseases. Of particular interest is the Iowa Mutant, which causes early-onset of Alzheimer's disease. While wild-type Amyloid β-peptides form only parallel beta-sheet aggregates, the mutant also forms meta-stable antiparallel beta sheets. Since these structural variations may cause the difference in the pathological effects of the two Aβ-peptides, we have studied in silico the relative stability of the wild type and Iowa mutant in both parallel and antiparallel forms. We compare regular molecular dynamics simulations with such where the viscosity of the samples is reduced, which, we show, leads to higher sampling efficiency. By analyzing and comparing these four sets of all-atom molecular dynamics simulations, we probe the role of the various factors that could lead to the structural differences. Our analysis indicates that the parallel forms of both wild type and Iowa mutant aggregates are stable, while the antiparallel aggregates are meta-stable for the Iowa mutant and not stable for the wild type. The differences result from the direct alignment of hydrophobic interactions in the in-register parallel oligomers, making them more stable than the antiparallel aggregates. The slightly higher thermodynamic stability of the Iowa mutant fibril-like oligomers in its parallel organization over that in antiparallel form is supported by previous experimental measurements showing slow inter-conversion of antiparallel aggregates into parallel ones. Knowledge of the mechanism that selects between parallel and antiparallel conformations and determines their relative stability may open new avenues for the development of therapies targeting familial forms of early-onset Alzheimer's disease.

  8. Secreted enzymatic activities of wild-type and pilD-deficient Legionella pneumophila.

    PubMed

    Aragon, V; Kurtz, S; Flieger, A; Neumeister, B; Cianciotto, N P

    2000-04-01

    Legionella pneumophila, the agent of Legionnaires' disease, is an intracellular pathogen of protozoa and macrophages. Previously, we had determined that the Legionella pilD gene is involved in type IV pilus biogenesis, type II protein secretion, intracellular infection, and virulence. Since the loss of pili and a protease do not account for the infection defect exhibited by a pilD-deficient strain, we sought to define other secreted proteins absent in the mutant. Based upon the release of p-nitrophenol (pNP) from p-nitrophenyl phosphate, acid phosphatase activity was detected in wild-type but not in pilD mutant supernatants. Mutant supernatants also did not release either pNP from p-nitrophenyl caprylate and palmitate or free fatty acid from 1-monopalmitoylglycerol, suggesting that they lack a lipase-like activity. However, since wild-type samples failed to release free fatty acids from 1,2-dipalmitoylglycerol or to cleave a triglyceride derivative, this secreted activity should be viewed as an esterase-monoacylglycerol lipase. The mutant supernatants were defective for both release of free fatty acids from phosphatidylcholine and degradation of RNA, indicating that PilD-negative bacteria lack a secreted phospholipase A (PLA) and nuclease. Finally, wild-type but not mutant supernatants liberated pNP from p-nitrophenylphosphorylcholine (pNPPC). Characterization of a new set of mutants defective for pNPPC-hydrolysis indicated that this wild-type activity is due to a novel enzyme, as opposed to a PLC or another known enzyme. Some, but not all, of these mutants were greatly impaired for intracellular infection, suggesting that a second regulator or processor of the pNPPC hydrolase is critical for L. pneumophila virulence.

  9. Interaction of root gravitropism and phototropism in Arabidopsis wild-type and starchless mutants.

    PubMed

    Vitha, S; Zhao, L; Sack, F D

    2000-02-01

    Root gravitropism in wild-type Arabidopsis and in two starchless mutants, pgm1-1 and adg1-1, was evaluated as a function of light position to determine the relative strengths of negative phototropism and of gravitropism and how much phototropism affects gravitropic measurements. Gravitropism was stronger than phototropism in some but not all light positions in wild-type roots grown for an extended period, indicating that the relationship between the two tropisms is more complex than previously reported. Root phototropism significantly influenced the time course of gravitropic curvature and the two measures of sensitivity. Light from above during horizontal exposure overestimated all three parameters for all three genotypes except the wild-type perception time. At the irradiance used (80 micromol m(-2) s(-1)), the shortest periods of illumination found to exaggerate gravitropism were 45 min of continuous illumination and 2-min doses of intermittent illumination. By growing roots in circumlateral light or by gravistimulating in the dark, corrected values were obtained for each gravitropic parameter. Roots of both starchless mutants were determined to be about three times less sensitive than prior estimates. This study demonstrates the importance of accounting for phototropism in the design of root gravitropism experiments in Arabidopsis.

  10. Root graviresponsiveness and cellular differentiation in wild-type and a starchless mutant of Arabidopsis thaliana

    NASA Technical Reports Server (NTRS)

    Moore, R.

    1989-01-01

    Primary roots of a starchless mutant of Arabidopsis thaliana L. are strongly graviresponsive despite lacking amyloplasts in their columella cells. The ultrastructures of calyptrogen and peripheral cells in wild-type as compared to mutant seedlings are not significantly different. The largest difference in cellular differentiation in caps of mutant and wild-type roots is the relative volume of plastids in columella cells. Plastids occupy 12.3% of the volume of columella cells in wild-type seedlings, but only 3.69% of columella cells in mutant seedlings. These results indicate that: (1) amyloplasts and starch are not necessary for root graviresponsiveness; (2) the increase in relative volume of plastids that usually accompanies differentiation of columella cells is not necessary for root graviresponsiveness; and (3) the absence of starch and amyloplasts does not affect the structure of calyptrogen (i.e. meristematic) and secretory (i.e. peripheral) cells in root caps. These results are discussed relative to proposed models for root gravitropism.

  11. Interaction of root gravitropism and phototropism in Arabidopsis wild-type and starchless mutants

    NASA Technical Reports Server (NTRS)

    Vitha, S.; Zhao, L.; Sack, F. D.

    2000-01-01

    Root gravitropism in wild-type Arabidopsis and in two starchless mutants, pgm1-1 and adg1-1, was evaluated as a function of light position to determine the relative strengths of negative phototropism and of gravitropism and how much phototropism affects gravitropic measurements. Gravitropism was stronger than phototropism in some but not all light positions in wild-type roots grown for an extended period, indicating that the relationship between the two tropisms is more complex than previously reported. Root phototropism significantly influenced the time course of gravitropic curvature and the two measures of sensitivity. Light from above during horizontal exposure overestimated all three parameters for all three genotypes except the wild-type perception time. At the irradiance used (80 micromol m(-2) s(-1)), the shortest periods of illumination found to exaggerate gravitropism were 45 min of continuous illumination and 2-min doses of intermittent illumination. By growing roots in circumlateral light or by gravistimulating in the dark, corrected values were obtained for each gravitropic parameter. Roots of both starchless mutants were determined to be about three times less sensitive than prior estimates. This study demonstrates the importance of accounting for phototropism in the design of root gravitropism experiments in Arabidopsis.

  12. Energy cost of intracellular metal and metalloid detoxification in wild-type eukaryotic phytoplankton.

    PubMed

    Lavoie, Michel; Raven, John A; Jones, Oliver A H; Qian, Haifeng

    2016-10-01

    Microalgae use various cellular mechanisms to detoxify both non-essential and excess essential metals or metalloids. There exists however, a threshold in intracellular metal(loid) concentrations beyond which detoxification mechanisms are no longer effective and inhibition of cell division inevitably occurs. It is therefore important to determine whether the availability of energy in the cell could constrain metal(loid) detoxification capacity and to better define the thresholds beyond which a metal(loid) becomes toxic. To do this we performed the first extensive bioenergetics analysis of intracellular metal(loid) detoxification mechanisms (e.g., metal-binding peptides, polyphosphate granules, metal efflux, metal and metalloid reduction, metalloid methylation, enzymatic and non-enzymatic antioxidants) in wild-type eukaryotic phytoplankton based on the biochemical mechanisms of each detoxification strategy and on experimental measurements of detoxifying biomolecules in the literature. The results show that at the onset of metal(loid) toxicity to growth, all the detoxification strategies considered required only a small fraction of the total cellular energy available for growth indicating that intracellular detoxification ability in wild-type eukaryotic phytoplankton species is not constrained by the availability of cellular energy. The present study brings new insights into metal(loid) toxicity mechanisms and detoxification strategies in wild-type eukaryotic phytoplankton.

  13. Root graviresponsiveness and cellular differentiation in wild-type and a starchless mutant of Arabidopsis thaliana

    NASA Technical Reports Server (NTRS)

    Moore, R.

    1989-01-01

    Primary roots of a starchless mutant of Arabidopsis thaliana L. are strongly graviresponsive despite lacking amyloplasts in their columella cells. The ultrastructures of calyptrogen and peripheral cells in wild-type as compared to mutant seedlings are not significantly different. The largest difference in cellular differentiation in caps of mutant and wild-type roots is the relative volume of plastids in columella cells. Plastids occupy 12.3% of the volume of columella cells in wild-type seedlings, but only 3.69% of columella cells in mutant seedlings. These results indicate that: (1) amyloplasts and starch are not necessary for root graviresponsiveness; (2) the increase in relative volume of plastids that usually accompanies differentiation of columella cells is not necessary for root graviresponsiveness; and (3) the absence of starch and amyloplasts does not affect the structure of calyptrogen (i.e. meristematic) and secretory (i.e. peripheral) cells in root caps. These results are discussed relative to proposed models for root gravitropism.

  14. Metabolism and tissue distribution of sulforaphane in Nrf2 knockout and wild-type mice.

    PubMed

    Clarke, John D; Hsu, Anna; Williams, David E; Dashwood, Roderick H; Stevens, Jan F; Yamamoto, Masayuki; Ho, Emily

    2011-12-01

    To determine the metabolism and tissue distribution of the dietary chemoprotective agent sulforaphane following oral administration to wild-type and Nrf2 knockout (Nrf2(-/-)) mice. Male and female wild-type and Nrf2(-/-) mice were given sulforaphane (5 or 20 μmoles) by oral gavage; plasma, liver, kidney, small intestine, colon, lung, brain and prostate were collected at 2, 6 and 24 h (h). The five major metabolites of sulforaphane were measured in tissues by high performance liquid chromatography coupled with tandem mass spectrometry. Sulforaphane metabolites were detected in all tissues at 2 and 6 h post gavage, with the highest concentrations in the small intestine, prostate, kidney and lung. A dose-dependent increase in sulforaphane concentrations was observed in all tissues except prostate. At 5 μmole, Nrf2(-/-) genotype had no effect on sulforaphane metabolism. Only Nrf2(-/-) females given 20 μmoles sulforaphane for 6 h exhibited a marked increase in tissue sulforaphane metabolite concentrations. The relative abundance of each metabolite was not strikingly different between genders and genotypes. Sulforaphane is metabolized and reaches target tissues in wild-type and Nrf2(-/-) mice. These data provide further evidence that sulforaphane is bioavailable and may be an effective dietary chemoprevention agent for several tissue sites.

  15. Effect of Fluorosis on Liver Cells of VC Deficient and Wild Type Mice

    PubMed Central

    Wei, Wei; Jiao, Yan; Ma, Yonghui; Stuart, John M.; Li, Xiudian; Zhao, Fusheng; Wang, Lishi; Sun, DianJun

    2014-01-01

    For decades, mouse and other rodents have been used for the study of oxidative or related studies such as the effect of fluoride. It is known that rodents normally synthesize their own vitamin C (VC) due to the presence of a key enzyme in ascorbic acid synthesis, l-gulono-lactone-γ-oxidase (Gulo), while humans do not have the capacity of VC synthesis due to the deletion of most parts of the GULO gene. The spontaneous fracture (sfx) mouse recently emerged as a model for study of VC deficiency. We investigated the effect of fluoride on liver cells from wild type Balb/c and sfx mice. We found that activities of SOD, GPx, and CAT were reduced in both wild type and sfx mice; however, the amount of reduction in the sfx cells is more than that in Balb/c cells. In addition, while both cells increased MDA, the increase in the sfx cells is greater than that in Balb/c cells. Gene networks of Sod, Gpx, and Cat in the liver of humans and mice are also different. Our study suggests that reaction to fluoride in vitamin C deficient mice might be different from that of wild type mice. PMID:24693236

  16. Interaction of Root Gravitropism and Phototropism in Arabidopsis Wild-Type and Starchless Mutants1

    PubMed Central

    Vitha, Stanislav; Zhao, Liming; Sack, Fred David

    2000-01-01

    Root gravitropism in wild-type Arabidopsis and in two starchless mutants, pgm1-1 and adg1-1, was evaluated as a function of light position to determine the relative strengths of negative phototropism and of gravitropism and how much phototropism affects gravitropic measurements. Gravitropism was stronger than phototropism in some but not all light positions in wild-type roots grown for an extended period, indicating that the relationship between the two tropisms is more complex than previously reported. Root phototropism significantly influenced the time course of gravitropic curvature and the two measures of sensitivity. Light from above during horizontal exposure overestimated all three parameters for all three genotypes except the wild-type perception time. At the irradiance used (80 μmol m−2 s−1), the shortest periods of illumination found to exaggerate gravitropism were 45 min of continuous illumination and 2-min doses of intermittent illumination. By growing roots in circumlateral light or by gravistimulating in the dark, corrected values were obtained for each gravitropic parameter. Roots of both starchless mutants were determined to be about three times less sensitive than prior estimates. This study demonstrates the importance of accounting for phototropism in the design of root gravitropism experiments in Arabidopsis. PMID:10677438

  17. Requirements for Mutant and Wild-Type Prion Protein Misfolding In Vitro

    PubMed Central

    Noble, Geoffrey P.; Walsh, Daniel J.; Miller, Michael B.; Jackson, Walker S.; Supattapone, Surachai

    2015-01-01

    Misfolding of the prion protein (PrP) plays a central role in the pathogenesis of infectious, sporadic, and inherited prion diseases. Here we use a chemically defined prion propagation system to study misfolding of the pathogenic PrP mutant D177N in vitro. This mutation causes PrP to misfold spontaneously in the absence of cofactor molecules in a process dependent on time, temperature, pH, and intermittent sonication. Spontaneously misfolded mutant PrP is able to template its unique conformation onto wild-type PrP substrate in a process that requires a phospholipid activity distinct from that required for the propagation of infectious prions. Similar results were obtained with a second pathogenic PrP mutant, E199K, but not with the polymorphic substitution M128V. Moreover, wild-type PrP inhibits mutant PrP misfolding in a dose-dependent manner, and cofactor molecules can antagonize this effect. These studies suggest that interactions between mutant PrP, wild-type PrP, and other cellular factors may control the rate of PrP misfolding in inherited prion diseases. PMID:25584902

  18. Interaction of root gravitropism and phototropism in Arabidopsis wild-type and starchless mutants

    NASA Technical Reports Server (NTRS)

    Vitha, S.; Zhao, L.; Sack, F. D.

    2000-01-01

    Root gravitropism in wild-type Arabidopsis and in two starchless mutants, pgm1-1 and adg1-1, was evaluated as a function of light position to determine the relative strengths of negative phototropism and of gravitropism and how much phototropism affects gravitropic measurements. Gravitropism was stronger than phototropism in some but not all light positions in wild-type roots grown for an extended period, indicating that the relationship between the two tropisms is more complex than previously reported. Root phototropism significantly influenced the time course of gravitropic curvature and the two measures of sensitivity. Light from above during horizontal exposure overestimated all three parameters for all three genotypes except the wild-type perception time. At the irradiance used (80 micromol m(-2) s(-1)), the shortest periods of illumination found to exaggerate gravitropism were 45 min of continuous illumination and 2-min doses of intermittent illumination. By growing roots in circumlateral light or by gravistimulating in the dark, corrected values were obtained for each gravitropic parameter. Roots of both starchless mutants were determined to be about three times less sensitive than prior estimates. This study demonstrates the importance of accounting for phototropism in the design of root gravitropism experiments in Arabidopsis.

  19. Production of maltase by wild-type and a constitutive mutant of Saccharomyces italicus

    SciTech Connect

    Schaefer, E.J.; Cooney, C.L.

    1982-01-01

    The production of maltase, an inducible and repressible catabolic enzyme in Saccharomyces italicus, was studied and compared in batch, fed-batch, and continuous fermentations. Tight genetic controls on maltase synthesis limited the effect of environmental manipulations such as fed-batch or continuous culture in enhancement of maltase synthesis, and neither approach was able to improve the performance above the batch process for maltase production. Saccharomyces italicus was mutated, and a constitutive producer of maltase was isolated. The mutant was detected by its ability to grow on sucrose, which is a noninducing substrate that is hydrolyzed by maltase; Saccharomyces italicus does not possess invertase and will not normally grow on sucrose. Maltase production by this mutant was studied during growth on sucrose in batch and continuous cultures and marked improvement in enzyme productivity was observed. The specific activity of maltase produced by this mutant was more than twice that of the parent wild type: 2,210 and 1,370 U/g of cells for the mutant versus 890 and 510 U/g of cells for the wild type in batch and continuous cultures, respectively. Maltase specific productivity was increased from 74 to 288 U/g of cells per h by switching from batch growth of the wild type to continuous cultivation of the mutant. (Refs. 10).

  20. Clavulanic acid production by the MMS 150 mutant obtained from wild type Streptomyces clavuligerus ATCC 27064

    PubMed Central

    da Silva Vasconcelos, Eliton; de Lima, Vanderlei Aparecido; Goto, Leandro Seiji; Cruz-Hernández, Isara Lourdes; Hokka, Carlos Osamu

    2013-01-01

    Clavulanic acid (CA) is a powerful inhibitor of the beta-lactamases, enzymes produced by bacteria resistants to penicillin and cefalosporin. This molecule is produced industrially by strains of Streptomyces clavuligerus in complex media which carbon and nitrogen resources are supplied by inexpensive compounds still providing high productivity. The genetic production improvement using physical and chemical mutagenic agents is an important strategy in programs of industrial production development of bioactive metabolites. However, parental strains are susceptible to loss of their original productivity due genetic instability phenomenona. In this work, some S. clavuligerus mutant strains obtained by treatment with UV light and with MMS are compared with the wild type (Streptomyces clavuligerus ATCC 27064). The results indicated that the random mutations originated some strains with different phenotypes, most divergent demonstrated by the mutants strains named AC116, MMS 150 and MMS 54, that exhibited lack of pigmentation in their mature spores. Also, the strain MMS 150 presented a larger production of CA when cultivated in semi-synthetics media. Using other media, the wild type strain obtained a larger CA production. Besides, using the modifed complex media the MMS 150 strain showed changes in its lipolitic activity and a larger production of CA. The studies also allowed finding the best conditions for a lipase activity exhibited by wild type S. clavuligerus and the MMS150 mutant. PMID:24688492

  1. Induction of MDM2-P2 Transcripts Correlates with Stabilized Wild-Type p53 in Betel- and Tobacco-Related Human Oral Cancer

    PubMed Central

    Ralhan, Ranju; Sandhya, Agarwal; Meera, Mathur; Bohdan, Wasylyk; Nootan, Shukla K.

    2000-01-01

    MDM2, a critical element of cellular homeostasis mechanisms, is involved in complex interactions with important cell-cycle and stress-response regulators including p53. The mdm2-P2 promoter is a transcriptional target of p53. The aim of this study was to determine the association between mdm2-P2 transcripts and the status of the p53 gene in betel- and tobacco-related oral squamous cell carcinomas (SCCs) to understand the mechanism of deregulation of MDM2 and p53 expression and their prognostic implications in oral tumorigenesis. Elevated levels of MDM2 proteins were observed in 11 of 25 (44%) oral hyperplastic lesions, nine of 15 (60%) dysplastic lesions, and 71 of 100 (71%) SCCs. The intriguing feature of the study was the identification and different subcellular localization of three isoforms of MDM2 (ie, 90 kd, 76 kd, and 57 kd) in oral SCCs and their correlation with p53 overexpression in each tumor. The hallmark of the study was the detection of mdm2-P2 transcripts in 12 of 20 oral SCCs overexpressing both MDM2 and p53 proteins while harboring wild-type p53 alleles. Furthermore, mdm2 amplification was an infrequent event in betel- and tobacco-associated oral tumorigenesis. The differential compartmentalization of the three isoforms of MDM2 suggests that each has a distinct function, potentially in the regulation of p53 and other gene products implicated in oral tumorigenesis. In conclusion, we report herein the first evidence suggesting that enhanced translation of mdm2-P2 transcripts (S-mdm2) may represent an important mechanism of overexpression and consequent stabilization and functional inactivation of wild-type p53 serving as an adverse prognosticator in betel- and tobacco-related oral cancer. The clinical significance of the functional inactivation of wild-type p53 by MDM2 is underscored by the significantly shorter median disease-free survival time (16 months) observed in p53/MDM2-positive cases as compared to those which did not show co-expression of

  2. Mutant KRAS promotes malignant pleural effusion formation.

    PubMed

    Agalioti, Theodora; Giannou, Anastasios D; Krontira, Anthi C; Kanellakis, Nikolaos I; Kati, Danai; Vreka, Malamati; Pepe, Mario; Spella, Magda; Lilis, Ioannis; Zazara, Dimitra E; Nikolouli, Eirini; Spiropoulou, Nikolitsa; Papadakis, Andreas; Papadia, Konstantina; Voulgaridis, Apostolos; Harokopos, Vaggelis; Stamou, Panagiota; Meiners, Silke; Eickelberg, Oliver; Snyder, Linda A; Antimisiaris, Sophia G; Kardamakis, Dimitrios; Psallidas, Ioannis; Marazioti, Antonia; Stathopoulos, Georgios T

    2017-05-16

    Malignant pleural effusion (MPE) is the lethal consequence of various human cancers metastatic to the pleural cavity. However, the mechanisms responsible for the development of MPE are still obscure. Here we show that mutant KRAS is important for MPE induction in mice. Pleural disseminated, mutant KRAS bearing tumour cells upregulate and systemically release chemokine ligand 2 (CCL2) into the bloodstream to mobilize myeloid cells from the host bone marrow to the pleural space via the spleen. These cells promote MPE formation, as indicated by splenectomy and splenocyte restoration experiments. In addition, KRAS mutations are frequently detected in human MPE and cell lines isolated thereof, but are often lost during automated analyses, as indicated by manual versus automated examination of Sanger sequencing traces. Finally, the novel KRAS inhibitor deltarasin and a monoclonal antibody directed against CCL2 are equally effective against an experimental mouse model of MPE, a result that holds promise for future efficient therapies against the human condition.

  3. Pharmacological strategies to target oncogenic KRAS signaling in pancreatic cancer.

    PubMed

    Chuang, Hsiao-Ching; Huang, Po-Hsien; Kulp, Samuel K; Chen, Ching-Shih

    2017-03-01

    The clear importance of mutated KRAS as a therapeutic target has driven the investigation of multiple approaches to inhibit oncogenic KRAS signaling at different molecular levels. However, no KRAS-targeted therapy has reached the clinic to date, which underlies the intrinsic difficulty in developing effective, direct inhibitors of KRAS. Thus, this article provides an overview of the history and recent progress in the development of pharmacological strategies to target oncogenic KRAS with small molecule agents. Mechanistically, these KRAS-targeted agents can be classified into the following four categories. (1) Small-molecule RAS-binding ligands that prevent RAS activation by binding within or outside the nucleotide-binding motif. (2) Inhibitors of KRAS membrane anchorage. (3) Inhibitors that bind to RAS-binding domains of RAS-effector proteins. (4) Inhibitors of KRAS expression. The advantage and limitation of each type of these anti-KRAS agents are discussed.

  4. Molecular characterization and functional analysis of pteridine reductase in wild-type and antimony-resistant Leishmania lines.

    PubMed

    de Souza Moreira, Douglas; Ferreira, Rafael Fernandes; Murta, Silvane M F

    2016-01-01

    Pteridine reductase (PTR1) is an NADPH-dependent reductase that participates in the salvage of pteridines, which are essential to maintain growth of Leishmania. In this study, we performed the molecular characterization of ptr1 gene in wild-type (WTS) and SbIII-resistant (SbR) lines from Leishmania guyanensis (Lg), Leishmania amazonensis (La), Leishmania braziliensis (Lb) and Leishmania infantum (Li), evaluating the chromosomal location, mRNA levels of the ptr1 gene and PTR1 protein expression. PFGE results showed that the ptr1 gene is located in a 797 kb chromosomal band in all Leishmania lines analyzed. Interestingly, an additional chromosomal band of 1070 kb was observed only in LbSbR line. Northern blot results showed that the levels of ptr1 mRNA are increased in the LgSbR, LaSbR and LbSbR lines. Western blot assays using the polyclonal anti-LmPTR1 antibody demonstrated that PTR1 protein is more expressed in the LgSbR, LaSbR and LbSbR lines compared to their respective WTS counterparts. Nevertheless, no difference in the level of mRNA and protein was observed between the LiWTS and LiSbR lines. Functional analysis of PTR1 enzyme was performed to determine whether the overexpression of ptr1 gene in the WTS L. braziliensis and L. infantum lines would change the SbIII-resistance phenotype of transfected parasites. Western blot results showed that the expression level of PTR1 protein was increased in the transfected parasites compared to the non-transfected ones. IC50 analysis revealed that the overexpression of ptr1 gene in the WTS L. braziliensis line increased 2-fold the SbIII-resistance phenotype compared to the non-transfected counterpart. Furthermore, the overexpression of ptr1 gene in the WTS L. infantum line did not change the SbIII-resistance phenotype. These results suggest that the PTR1 enzyme may be implicated in the SbIII-resistance phenotype in L. braziliensis line. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Optimization of melting analysis with TaqMan probes for detection of KRAS, NRAS, and BRAF mutations.

    PubMed

    Botezatu, Irina V; Nechaeva, Irina O; Stroganova, Аnna М; Senderovich, Anastasia I; Kondratova, Valentina N; Shelepov, Valery P; Lichtenstein, Anatoly V

    2015-12-15

    The TaqMan probes that have been long and effectively used in real-time polymerase chain reaction (PCR) may also be used in DNA melting analysis. We studied some factors affecting efficiency of the approach such as (i) number of asymmetric PCR cycles preceding DNA melting analysis, (ii) choice of fluorophores for the multiplex DNA melting analysis, and (iii) choice of sense or antisense TaqMan probes for optimal resolution of wild-type and mutant alleles. We also determined ΔTm (i.e., the temperature shift of a heteroduplex relative to the corresponding homoduplex) as a means of preliminary identification of mutation type. In experiments with serial dilution of mutant KRAS DNA with wild-type DNA, the limit of detection of mutant alleles was 1.5-3.0%. Using DNA from both tumor and formalin-fixed paraffin-embedded tissues, we demonstrated a high efficiency of TaqMan probes in mono- and multiplex mutation scanning of KRAS, NRAS (codons 12, 13, and 61), and BRAF (codon 600) genes. This cost-effective method, which can be applied to practically any mutation hot spot in the human genome, combines simplicity, ease of execution, and high sensitivity-all of the qualities required for clinical genotyping.

  6. The orl rat is more responsive to methacholine challenge than wild type

    PubMed Central

    Rodriguez, Elena; Barthold, Julia S.; Kreiger, Portia A.; Armani, Milena Hirata; Wang, Jordan; Michelini, Katherine A.; Wolfson, Marla R.; Boyce, Roberta; Barone, Carol A.; Zhu, Yan; Waldman, Scott A.; Shaffer, Thomas H.

    2015-01-01

    Background This study presents an animal model of native airway hyperresponsiveness (AHR). AHR is a fundamental aspect of asthma and reflects an abnormal response characterized by airway narrowing following exposure to a wide variety of non-immunological stimuli. Undescended testis (UDT) is one of the most common male congenital anomalies. The orl rat is a Long Evans substrain with inherited UDT. Since boys born with congenital UDT are more likely to manifest asthma symptoms, the main aim in of this study was to investigate the alternative hypothesis that orl rats have greater AHR to a methacholine aerosol challenge than wild type rats. Methods Long Evans wild type (n = 9) and orl (n = 13) rats were anesthetized, tracheostomized, and mechanically ventilated at 4 weeks of age. Escalating concentrations of inhaled methacholine were delivered. The methacholine potency and efficacy in the strains were measured. Respiratory resistance was the primary endpoint. After the final methacholine aerosol challenge, the short-acting β2-adrenoceptor agonist albuterol was administered as an aerosol and lung/diaphragm tissues were assayed for interleukin (IL)-4, IL-6, and tumor necrosis factor (TNF)-α. Histological and histomorphometrical analyses were performed. Results The methacholine concentratione-response curve in the orl group indicated increased sensitivity, hyperreactivity, and exaggerated maximal response in comparison with the wild type group, indicating that orl rats had abnormally greater AHR responses to methacholine. Histological findings in orl rats showed the presence of eosinophils, unlike wild type rats. β2-Adrenoceptor agonist intervention resulted in up-regulation of IL-4 diaphragmatic levels and down-regulation of IL-4 and IL-6 in the lungs of orl rats. Conclusion orl rats had greater AHR than wild type rats during methacholine challenge, with higher IL-4 levels in diaphragmatic tissue homogenates. Positive immunostaining for IL-4 was detected in lung and

  7. The orl rat is more responsive to methacholine challenge than wild type.

    PubMed

    Rodriguez, Elena; Barthold, Julia S; Kreiger, Portia A; Armani, Milena Hirata; Wang, Jordan; Michelini, Katherine A; Wolfson, Marla R; Boyce, Roberta; Barone, Carol A; Zhu, Yan; Waldman, Scott A; Shaffer, Thomas H

    2014-12-01

    This study presents an animal model of native airway hyperresponsiveness (AHR). AHR is a fundamental aspect of asthma and reflects an abnormal response characterized by airway narrowing following exposure to a wide variety of non-immunological stimuli. Undescended testis (UDT) is one of the most common male congenital anomalies. The orl rat is a Long Evans substrain with inherited UDT. Since boys born with congenital UDT are more likely to manifest asthma symptoms, the main aim of this study was to investigate the alternative hypothesis that orl rats have greater AHR to a methacholine aerosol challenge than wild type rats. Long Evans wild type (n = 9) and orl (n = 13) rats were anesthetized, tracheostomized, and mechanically ventilated at 4 weeks of age. Escalating concentrations of inhaled methacholine were delivered. The methacholine potency and efficacy in the strains were measured. Respiratory resistance was the primary endpoint. After the final methacholine aerosol challenge, the short-acting β2-adrenoceptor agonist albuterol was administered as an aerosol and lung/diaphragm tissues were assayed for interleukin (IL)-4, IL-6, and tumor necrosis factor (TNF)-α. Histological and histomorphometrical analyses were performed. The methacholine concentration-response curve in the orl group indicated increased sensitivity, hyperreactivity, and exaggerated maximal response in comparison with the wild type group, indicating that orl rats had abnormally greater AHR responses to methacholine. Histological findings in orl rats showed the presence of eosinophils, unlike wild type rats. β2-Adrenoceptor agonist intervention resulted in up-regulation of IL-4 diaphragmatic levels and down-regulation of IL-4 and IL-6 in the lungs of orl rats. orl rats had greater AHR than wild type rats during methacholine challenge, with higher IL-4 levels in diaphragmatic tissue homogenates. Positive immunostaining for IL-4 was detected in lung and diaphragmatic tissue in both strains. This

  8. Comparative effects of chlorpyrifos in wild type and cannabinoid Cb1 receptor knockout mice

    SciTech Connect

    Baireddy, Praveena; Liu, Jing; Hinsdale, Myron; Pope, Carey

    2011-11-15

    Endocannabinoids (eCBs) modulate neurotransmission by inhibiting the release of a variety of neurotransmitters. The cannabinoid receptor agonist WIN 55.212-2 (WIN) can modulate organophosphorus (OP) anticholinesterase toxicity in rats, presumably by inhibiting acetylcholine (ACh) release. Some OP anticholinesterases also inhibit eCB-degrading enzymes. We studied the effects of the OP insecticide chlorpyrifos (CPF) on cholinergic signs of toxicity, cholinesterase activity and ACh release in tissues from wild type (+/+) and cannabinoid CB1 receptor knockout (-/-) mice. Mice of both genotypes (n = 5-6/treatment group) were challenged with CPF (300 mg/kg, 2 ml/kg in peanut oil, sc) and evaluated for functional and neurochemical changes. Both genotypes exhibited similar cholinergic signs and cholinesterase inhibition (82-95% at 48 h after dosing) in cortex, cerebellum and heart. WIN reduced depolarization-induced ACh release in vitro in hippocampal slices from wild type mice, but had no effect in hippocampal slices from knockouts or in striatal slices from either genotype. Chlorpyrifos oxon (CPO, 100 {mu}M) reduced release in hippocampal slices from both genotypes in vitro, but with a greater reduction in tissues from wild types (21% vs 12%). CPO had no significant in vitro effect on ACh release in striatum. CPF reduced ACh release in hippocampus from both genotypes ex vivo, but reduction was again significantly greater in tissues from wild types (52% vs 36%). In striatum, CPF led to a similar reduction (20-23%) in tissues from both genotypes. Thus, while CB1 deletion in mice had little influence on the expression of acute toxicity following CPF, CPF- or CPO-induced changes in ACh release appeared sensitive to modulation by CB1-mediated eCB signaling in a brain-regional manner. -- Highlights: Black-Right-Pointing-Pointer C57Bl/6 mice showed dose-related cholinergic toxicity following subcutaneous chlorpyrifos exposure. Black-Right-Pointing-Pointer Wild type and

  9. Comparison of intestinal warm ischemic injury in PACAP knockout and wild-type mice.

    PubMed

    Ferencz, Andrea; Kiss, Peter; Weber, Gyorgy; Helyes, Zsuzsanna; Shintani, Norihito; Baba, Akemichi; Reglodi, Dora

    2010-11-01

    Pituitary adenylate cyclase-activating polypeptide (PACAP) is present in the gastrointestinal tract and plays a central role in the intestinal physiology, mainly in the secretion and motility. The aim of our study was to compare the ischemic injury in wild-type and PACAP-38 knockout mice following warm mesenteric small bowel ischemia. Warm ischemia groups were designed with occlusion of superior mesenteric artery for 1, 3, and 6 h in wild-type (n = 10 in each group) and PACAP-38 knockout (n = 10 in each group) mice. Small bowel biopsies were collected after laparotomy (control) and at the end of the ischemia periods. To determine oxidative stress parameters, malondialdehyde (MDA), reduced glutathione (GSH), and superoxide dismutase (SOD) were measured. Tissue damage was analyzed by qualitative and quantitative methods on hematoxylin/eosin-stained sections. In PACAP-38 knockout animals, tissue MDA increased significantly after 3 and 6 h ischemia (133.97 ± 6,2; 141.86 ± 5,8) compared to sham-operated (100.92 ± 3,6) and compared to wild-type results (112.8 ± 2,1; 118.4 ± 1.03 μmol/g, p < 0.05). Meanwhile, tissue concentration of GSH and activity of SOD decreased significantly in knockout mice compared to wild-type form (GSH, 795.97 ± 10.4; 665.1 ± 8,8 vs. 893.23 ± μmol/g; SOD, 94.4 ± 1.4; 81.2 ± 3.9 vs. 208.09 ± 3,7 IU/g). Qualitative and quantitative histological results showed destruction of the mucous, submucous layers, and crypts in knockout mice compared to wild-type tissues. These processes correlated with the warm ischemia periods. Our present results propose an important protective effect of endogenous PACAP-38 against intestinal warm ischemia, which provides basis for further investigation to elucidate the mechanism of this protective effect.

  10. Biomass Productivities in Wild Type and Pigment Mutant of Cyclotella sp. (Diatom)

    SciTech Connect

    Huesemann, Michael H.; Hausmann, Tom S.; Bartha, Richard; Aksoy, M.; Weissman, Joseph C.; Benemann, John

    2008-07-03

    Microalgae are expected to play a significant role in greenhouse gas mitigation because they can utilize CO2 from powerplant flue gases directly while producing a variety of renewable carbon-neutral biofuels. In order for such a microalgal climate change mitigation strategy to become economically feasible, it will be necessary to significantly improve biomass productivities. One approach to achieve this objective is to reduce, via mutagenesis, the number of light harvesting pigments, which, according to theory, should significantly improve the light utilization efficiency, primarily by increasing the light intensity at which photosynthesis saturates (Is). Employing chemical (ethylmethylsulfonate, EMS) and UV mutagenesis of a wild type strain of the diatom Cyclotella, approximately 10,000 pigment mutants were generated, and two of the most promising ones (CM1 and CM1-1) were subjected to further testing in both laboratory cultures and outdoor ponds. Measurements of photosynthetic oxygen production rates as a function of light intensity (i.e., P-I curves) of samples taken from laboratory batch cultures during the exponential and linear growth phase indicated that the light intensity at which photosynthesis saturates (Is) was two to three times greater in the pigment mutant CM1-1 than in the wild type, i.e., 355-443 versus 116-169 μmole/m2∙sec, respectively. While theory, i.e., the Bush equation, predicts that such a significant gain in Is should increase light utilization efficiencies and thus biomass productivities, particularly at high light intensities, no improvements in biomass productivities were observed in either semi-continuous laboratory cultures or outdoor ponds. In fact, the maximum biomass productivity in semi-continuous laboratory culture was always greater in the wild type than in the mutant, namely 883 versus 725 mg/L∙d, respectively at low light intensity (200 μmole/m2∙sec) and 1229 versus 1043 mg/L∙d, respectively at high light intensity

  11. Probing the folding and unfolding of wild-type and mutant forms of bacteriorhodopsin in micellar solutions: evaluation of reversible unfolding conditions.

    PubMed

    Chen, G Q; Gouaux, E

    1999-11-16

    Wild-type and mutant forms of bacteriorhodopsin (sbR) from Halobacterium salinarium, produced by Escherichia coli overexpression of a synthetic gene, were reversibly unfolded in 1, 2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), 3-[(3-cholamidopropyl)dimethylamino]-2-hydroxyl-1-propane (CHAPSO), and sodium dodecyl sulfate (SDS) mixed micelles. To study the effect on protein stability by substitutions on the hydrophobic surface with polar residues, the unfolding behavior of a G113Q, G116Q mutant [sbR(Q2)] was compared to the wild-type sbR [sbR(WT)]. sbR(Q2) was more sensitive to SDS-induced unfolding than sbR(WT) under equilibrium conditions, and kinetic experiments showed that sbR(Q2) was more sensitive to acid-induced denaturation and thermal unfolding than sbR(WT). Since the mutations in sbR(Q2) were on the detergent-embedded hydrophobic surface of sbR, protein destabilization by these mutations supports the concept that the membrane-embedded segments are important for the stability of sbR. Our experiments provide the basis for studying the thermodynamic stability of sbR by evaluating reversible folding and unfolding conditions in DMPC/CHAPSO/SDS mixed micelles.

  12. TIMP-1 is under regulation of the EGF signaling axis and promotes an aggressive phenotype in KRAS-mutated colorectal cancer cells: A potential novel approach to the treatment of metastatic colorectal cancer

    PubMed Central

    Christensen, Ib J.; Nordgaard, Cathrine; Noer, Julie; Guren, Tormod K.; Glimelius, Bengt; Sorbye, Halfdan; Ikdahl, Tone; Kure, Elin H.; Tveit, Kjell M.; Nielsen, Hans J.

    2016-01-01

    It is now widely accepted that therapeutic antibodies targeting epidermal growth factor receptor (EGFR) can have efficacy in KRAS wild-type advanced colorectal cancer (CRC) patients. What remains to be ascertained is whether a subgroup of KRAS-mutated CRC patients might not also derive benefit from EGFR inhibitors. Metalloproteinase inhibitor 1 (TIMP-1) is a pleiotropic factor predictive of survival outcome of CRC patients. Levels of TIMP-1 were measured in pre-treatment plasma samples (n = 426) of metastatic CRC patients randomized to Nordic FLOX (5-fluorouracil and oxaliplatin) +/− cetuximab (NORDIC VII study). Multivariate analysis demonstrated a significant interaction between plasma TIMP-1 protein levels, KRAS status and treatment with patients bearing KRAS mutated tumors and high TIMP-1 plasma level (> 3rd quartile) showing a significantly longer overall survival if treated with cetuximab (HR, 0.48; 95% CI, 0.25 to 0.93). To gain mechanistic insights into this association we analyzed a set of five different CRC cell lines. We show here that EGFR signaling induces TIMP-1 expression in CRC cells, and that TIMP-1 promotes a more aggressive behavior, specifically in KRAS mutated cells. The two sets of data, clinical and in vitro, are complementary and support each other, lending strength to our contention that TIMP- 1 plasma levels can identify a subset of patients with KRAS-mutated metastatic CRC that will have benefit from EGFR-inhibition therapy. PMID:27509063

  13. Kras is required for adult hematopoiesis

    PubMed Central

    Damnernsawad, Alisa; Kong, Guangyao; Wen, Zhi; Liu, Yangang; Rajagopalan, Adhithi; You, Xiaona; Wang, Jinyong; Zhou, Yun; Ranheim, Erik A.; Luo, Hongbo R.; Chang, Qiang; Zhang, Jing

    2017-01-01

    Previous studies indicate that Kras is dispensable for fetal liver hematopoiesis, but its rolein adult hematopoiesis remains unclear. Here, we generated a Kras conditional knockout allele to address this question. Deletion of Kras in adult bone marrow is mediated by Vav-Cre or inducible Mx1-Cre. We find that loss of Kras leads to greatly reduced TPO signaling in hematopoietic stem cells (HSCs) and multipotent progenitors (MPPs), while SCF-evoked ERK1/2 activation is not affected. The compromised TPO signaling is associated with reduced long term- and intermediate-term HSC compartments and a bias towards myeloid differentiation in MPPs. Although GM-CSF-evoked ERK1/2 activation is only moderately decreased in Kras−/− myeloid progenitors, it is blunted in neutrophils and neutrophil survival is significantly reduced in vitro. At 9–12 months old, Kras conditional knockout mice develop profound hematopoietic defects, including splenomegaly, an expanded neutrophil compartment, and reduced B cell number. In a serial transplantation assay, the reconstitution potential of Kras−/− bone marrow cells is greatly compromised, which is attributable to defects in the self-renewal of Kras−/− HSCs and defects in differentiated hematopietic cells. Our results demonstrate that Kras is a major regulator of TPO and GM-CSF signaling in specific populations of hematopoietic cells and its function is required for adult hematopoiesis. PMID:26972179

  14. Targeting KRAS Oncogene in Colon Cancer Cells with 7-Carboxylate Indolo[3,2-b]quinoline Tri-Alkylamine Derivatives

    PubMed Central

    Brito, Hugo; Martins, Ana Cláudia; Lavrado, João; Mendes, Eduarda; Francisco, Ana Paula; Santos, Sofia A.; Ohnmacht, Stephan A.; Kim, Nam-Soon; Rodrigues, Cecília M. P.; Moreira, Rui; Neidle, Stephen; Borralho, Pedro M.; Paulo, Alexandra

    2015-01-01

    Background A guanine-rich strand within the promoter of the KRAS gene can fold into an intra-molecular G-quadruplex structure (G4), which has an important role in the regulation of KRAS transcription. We have previously identified indolo[3,2-b]quinolines with a 7-carboxylate group and three alkylamine side chains (IQ3A) as effective G4 stabilizers and promising selective anticancer leads. Herein we investigated the anticancer mechanism of action of these compounds, which we hypothesized due to stabilization of the G4 sequence in the KRAS promoter and subsequent down-regulation of gene expression. Methodology/Principal Findings IQ3A compounds showed greater stabilization of G4 compared to duplex DNA structures and reduced KRAS promoter activity in a dual luciferase reporter assay. Moreover, IQ3A compounds showed high anti-proliferative activity in HCT116 and SW620 colon cancer cells (IC50 < 2.69 μM), without eliciting cell death in non-malignant HEK293T human embryonic kidney, and human colon fibroblasts CCD18co. IQ3A compounds significantly reduced KRAS mRNA and protein steady-state levels at IC50 concentrations, and increased p53 protein steady-state levels and cell death by apoptosis in HCT116 cells (mut KRAS, wt p53). Furthermore, KRAS silencing in HCT116 p53 wild-type (p53(+/+)) and null (p53(-/-)) isogenic cell lines induced a higher level of cell death, and a higher IQ3A-induced cell death in HCT116 p53(+/+) compared to HCT116 p53(-/-). Conclusions Herein we provide evidence that G4 ligands such as IQ3A compounds can target G4 motifs present in KRAS promoter, down-regulate the expression of the mutant KRAS gene through inhibition of transcription and translation, and induce cell death by apoptosis in colon cancer cell lines. Thus, targeting KRAS at the genomic level with G4 ligands may be a new anticancer therapy strategy for colon cancer. PMID:26024321

  15. [Comparative analysis of real-time quantitative PCR-Sanger sequencing method and TaqMan probe method for detection of KRAS/BRAF mutation in colorectal carcinomas].

    PubMed

    Zhang, Xun; Wang, Yuehua; Gao, Ning; Wang, Jinfen

    2014-02-01

    To compare the application values of real-time quantitative PCR-Sanger sequencing and TaqMan probe method in the detection of KRAS and BRAF mutations, and to correlate KRAS/BRAF mutations with the clinicopathological characteristics in colorectal carcinomas. Genomic DNA of the tumor cells was extracted from formalin fixed paraffin embedded (FFPE) tissue samples of 344 colorectal carcinomas by microdissection. Real-time quantitative PCR-Sanger sequencing and TaqMan probe method were performed to detect the KRAS/BRAF mutations. The frequency and types of KRAS/BRAF mutations, clinicopathological characteristics and survival time were analyzed. KRAS mutations were detected in 39.8% (137/344) and 38.7% (133/344) of 344 colorectal carcinomas by using real-time quantitative PCR-Sanger sequencing and TaqMan probe method, respectively. BRAF mutation was detected in 4.7% (16/344) and 4.1% (14/344), respectively. There was no significant correlation between the two methods. The frequency of the KRAS mutation in female was higher than that in male (P < 0.05). The frequency of the BRAF mutation in colon was higher than that in rectum. The frequency of the BRAF mutation in stage III-IV cases was higher than that in stageI-II cases. The frequency of the BRAF mutation in signet ring cell carcinoma was higher than that in mucinous carcinoma and nonspecific adenocarcinoma had the lowest mutation rate. The frequency of the BRAF mutation in grade III cases was higher than that in grade II cases (P < 0.05). The overall concordance for the two methods of KRAS/BRAF mutation detection was 98.8% (kappa = 0.976). There was statistic significance between BRAF and KRAS mutations for the survival time of colorectal carcinomas (P = 0.039). There were no statistic significance between BRAF mutation type and BRAF/KRAS wild type (P = 0.058). (1) Compared with real-time quantitative PCR-Sanger sequencing, TaqMan probe method is better with regard to handling time, efficiency, repeatability, cost

  16. Podocyte-specific overexpression of human angiotensin-converting enzyme 2 attenuates diabetic nephropathy in mice.

    PubMed

    Nadarajah, Renisha; Milagres, Rosangela; Dilauro, Marc; Gutsol, Alex; Xiao, Fengxia; Zimpelmann, Joseph; Kennedy, Chris; Wysocki, Jan; Batlle, Daniel; Burns, Kevin D

    2012-08-01

    Angiotensin-converting enzyme 2 (ACE2) degrades angiotensin II to angiotensin-(1-7) and is expressed in podocytes. Here we overexpressed ACE2 in podocytes in experimental diabetic nephropathy using transgenic methods where a nephrin promoter drove the expression of human ACE2. Glomeruli from these mice had significantly increased mRNA, protein, and activity of ACE2 compared to wild-type mice. Male mice were treated with streptozotocin to induce diabetes. After 16 weeks, there was no significant difference in plasma glucose levels between wild-type and transgenic diabetic mice. Urinary albumin was significantly increased in wild-type diabetic mice at 4 weeks, whereas albuminuria in transgenic diabetic mice did not differ from wild-type nondiabetic mice. However, this effect was transient and by 16 weeks both transgenic and nontransgenic diabetic mice had similar rates of proteinuria. Compared to wild-type diabetic mice, transgenic diabetic mice had an attenuated increase in mesangial area, decreased glomerular area, and a blunted decrease in nephrin expression. Podocyte numbers decreased in wild-type diabetic mice at 16 weeks, but were unaffected in transgenic diabetic mice. At 8 weeks, kidney cortical expression of transforming growth factor-β1 was significantly inhibited in transgenic diabetic mice as compared to wild-type diabetic mice. Thus, the podocyte-specific overexpression of human ACE2 transiently attenuates the development of diabetic nephropathy.

  17. Genotype-Temperature Interaction in the Regulation of Development, Growth, and Morphometrics in Wild-Type, and Growth-Hormone Transgenic Coho Salmon

    PubMed Central

    Lõhmus, Mare; Sundström, L. Fredrik; Björklund, Mats; Devlin, Robert H.

    2010-01-01

    Background The neuroendocrine system is an important modulator of phenotype, directing cellular genetic responses to external cues such as temperature. Behavioural and physiological processes in poikilothermic organisms (e.g. most fishes), are particularly influenced by surrounding temperatures. Methodology/Principal Findings By comparing the development and growth of two genotypes of coho salmon (wild-type and transgenic with greatly enhanced growth hormone production) at six different temperatures, ranging between 8° and 18°C, we observed a genotype-temperature interaction and possible trend in directed neuroendocrine selection. Differences in growth patterns of the two genotypes were compared by using mathematical models, and morphometric analyses of juvenile salmon were performed to detect differences in body shape. The maximum hatching and alevin survival rates of both genotypes occurred at 12°C. At lower temperatures, eggs containing embryos with enhanced GH production hatched after a shorter incubation period than wild-type eggs, but this difference was not apparent at and above 16°C. GH transgenesis led to lower body weights at the time when the yolk sack was completely absorbed compared to the wild genotype. The growth of juvenile GH-enhanced salmon was to a greater extent stimulated by higher temperatures than the growth of the wild-type. Increased GH production significantly influenced the shape of the salmon growth curves. Conclusions Growth hormone overexpression by transgenesis is able to stimulate the growth of coho salmon over a wide range of temperatures. Temperature was found to affect growth rate, survival, and body morphology between GH transgenic and wild genotype coho salmon, and differential responses to temperature observed between the genotypes suggests they would experience different selective forces should they ever enter natural ecosystems. Thus, GH transgenic fish would be expected to differentially respond and adapt to shifts in

  18. Global Analysis of S-nitrosylation Sites in the Wild Type (APP) Transgenic Mouse Brain-Clues for Synaptic Pathology *

    PubMed Central

    Zaręba-Kozioł, Monika; Szwajda, Agnieszka; Dadlez, Michał; Wysłouch-Cieszyńska, Aleksandra; Lalowski, Maciej

    2014-01-01

    Alzheimer's disease (AD) is characterized by an early synaptic loss, which strongly correlates with the severity of dementia. The pathogenesis and causes of characteristic AD symptoms are not fully understood. Defects in various cellular cascades were suggested, including the imbalance in production of reactive oxygen and nitrogen species. Alterations in S-nitrosylation of several proteins were previously demonstrated in various AD animal models and patients. In this work, using combined biotin-switch affinity/nano-LC-MS/MS and bioinformatic approaches we profiled endogenous S-nitrosylation of brain synaptosomal proteins from wild type and transgenic mice overexpressing mutated human Amyloid Precursor Protein (hAPP). Our data suggest involvement of S-nitrosylation in the regulation of 138 synaptic proteins, including MAGUK, CamkII, or synaptotagmins. Thirty-eight proteins were differentially S-nitrosylated in hAPP mice only. Ninety-five S-nitrosylated peptides were identified for the first time (40% of total, including 33 peptides exclusively in hAPP synaptosomes). We verified differential S-nitrosylation of 10 (26% of all identified) synaptosomal proteins from hAPP mice, by Western blotting with specific antibodies. Functional enrichment analysis linked S-nitrosylated proteins to various cellular pathways, including: glycolysis, gluconeogenesis, calcium homeostasis, ion, and vesicle transport, suggesting a basic role of this post-translational modification in the regulation of synapses. The linkage of SNO-proteins to axonal guidance and other processes related to APP metabolism exclusively in the hAPP brain, implicates S-nitrosylation in the pathogenesis of Alzheimer's disease. PMID:24895380

  19. Early Cognitive/Social Deficits and Late Motor Phenotype in Conditional Wild-Type TDP-43 Transgenic Mice.

    PubMed

    Alfieri, Julio A; Silva, Pablo R; Igaz, Lionel M

    2016-01-01

    Frontotemporal Dementia (FTD) and amyotrophic lateral sclerosis (ALS) are two neurodegenerative diseases associated to mislocalization and aggregation of TAR DNA-binding protein 43 (TDP-43). To investigate in depth the behavioral phenotype associated with this proteinopathy, we used as a model transgenic (Tg) mice conditionally overexpressing human wild-type TDP 43 protein (hTDP-43-WT) in forebrain neurons. We previously characterized these mice at the neuropathological level and found progressive neurodegeneration and other features that evoke human TDP-43 proteinopathies of the FTD/ALS spectrum. In the present study we analyzed the behavior of mice at multiple domains, including motor, social and cognitive performance. Our results indicate that young hTDP-43-WT Tg mice (1 month after post-weaning transgene induction) present a normal motor phenotype compared to control littermates, as assessed by accelerated rotarod performance, spontaneous locomotor activity in the open field test and a mild degree of spasticity shown by a clasping phenotype. Analysis of social and cognitive behavior showed a rapid installment of deficits in social interaction, working memory (Y-maze test) and recognition memory (novel object recognition test) in the absence of overt motor abnormalities. To investigate if the motor phenotype worsen with age, we analyzed the behavior of mice after long-term (up to 12 months) transgene induction. Our results reveal a decreased performance on the rotarod test and in the hanging wire test, indicating a motor phenotype that was absent in younger mice. In addition, long-term hTDP-43-WT expression led to hyperlocomotion in the open field test. In sum, these results demonstrate a time-dependent emergence of a motor phenotype in older hTDP-43-WT Tg mice, recapitulating aspects of clinical FTD presentations with motor involvement in human patients, and providing a complementary animal model for studying TDP-43 proteinopathies.

  20. Early Cognitive/Social Deficits and Late Motor Phenotype in Conditional Wild-Type TDP-43 Transgenic Mice

    PubMed Central

    Alfieri, Julio A.; Silva, Pablo R.; Igaz, Lionel M.

    2016-01-01

    Frontotemporal Dementia (FTD) and amyotrophic lateral sclerosis (ALS) are two neurodegenerative diseases associated to mislocalization and aggregation of TAR DNA-binding protein 43 (TDP-43). To investigate in depth the behavioral phenotype associated with this proteinopathy, we used as a model transgenic (Tg) mice conditionally overexpressing human wild-type TDP 43 protein (hTDP-43-WT) in forebrain neurons. We previously characterized these mice at the neuropathological level and found progressive neurodegeneration and other features that evoke human TDP-43 proteinopathies of the FTD/ALS spectrum. In the present study we analyzed the behavior of mice at multiple domains, including motor, social and cognitive performance. Our results indicate that young hTDP-43-WT Tg mice (1 month after post-weaning transgene induction) present a normal motor phenotype compared to control littermates, as assessed by accelerated rotarod performance, spontaneous locomotor activity in the open field test and a mild degree of spasticity shown by a clasping phenotype. Analysis of social and cognitive behavior showed a rapid installment of deficits in social interaction, working memory (Y-maze test) and recognition memory (novel object recognition test) in the absence of overt motor abnormalities. To investigate if the motor phenotype worsen with age, we analyzed the behavior of mice after long-term (up to 12 months) transgene induction. Our results reveal a decreased performance on the rotarod test and in the hanging wire test, indicating a motor phenotype that was absent in younger mice. In addition, long-term hTDP-43-WT expression led to hyperlocomotion in the open field test. In sum, these results demonstrate a time-dependent emergence of a motor phenotype in older hTDP-43-WT Tg mice, recapitulating aspects of clinical FTD presentations with motor involvement in human patients, and providing a complementary animal model for studying TDP-43 proteinopathies. PMID:28066234

  1. Bone turnover in wild type and pleiotrophin-transgenic mice housed for three months in the International Space Station (ISS).

    PubMed

    Tavella, Sara; Ruggiu, Alessandra; Giuliani, Alessandra; Brun, Francesco; Canciani, Barbara; Manescu, Adrian; Marozzi, Katia; Cilli, Michele; Costa, Delfina; Liu, Yi; Piccardi, Federica; Tasso, Roberta; Tromba, Giuliana; Rustichelli, Franco; Cancedda, Ranieri

    2012-01-01

    Bone is a complex dynamic tissue undergoing a continuous remodeling process. Gravity is a physical force playing a role in the remodeling and contributing to the maintenance of bone integrity. This article reports an investigation on the alterations of the bone microarchitecture that occurred in wild type (Wt) and pleiotrophin-transgenic (PTN-Tg) mice exposed to a near-zero gravity on the International Space Station (ISS) during the Mice Drawer System (MDS) mission, to date, the longest mice permanence (91 days) in space. The transgenic mouse strain over-expressing pleiotrophin (PTN) in bone was selected because of the PTN positive effects on bone turnover. Wt and PTN-Tg control animals were maintained on Earth either in a MDS payload or in a standard vivarium cage. This study revealed a bone loss during spaceflight in the weight-bearing bones of both strains. For both Tg and Wt a decrease of the trabecular number as well as an increase of the mean trabecular separation was observed after flight, whereas trabecular thickness did not show any significant change. Non weight-bearing bones were not affected. The PTN-Tg mice exposed to normal gravity presented a poorer trabecular organization than Wt mice, but interestingly, the expression of the PTN transgene during the flight resulted in some protection against microgravity's negative effects. Moreover, osteocytes of the Wt mice, but not of Tg mice, acquired a round shape, thus showing for the first time osteocyte space-related morphological alterations in vivo. The analysis of specific bone formation and resorption marker expression suggested that the microgravity-induced bone loss was due to both an increased bone resorption and a decreased bone deposition. Apparently, the PTN transgene protection was the result of a higher osteoblast activity in the flight mice.

  2. Structural and Morphometric Comparison of Lower Incisors in PACAP-Deficient and Wild-Type Mice.

    PubMed

    Sandor, B; Fintor, K; Reglodi, D; Fulop, D B; Helyes, Z; Szanto, I; Nagy, P; Hashimoto, H; Tamas, A

    2016-06-01

    Pituitary adenylate cyclase activating polypeptide (PACAP) is a neuropeptide with widespread distribution. PACAP plays an important role in the development of the nervous system, it has a trophic and protective effect, and it is also implicated in the regulation of various physiological functions. Teeth are originated from the mesenchyme of the neural crest and the ectoderm of the first branchial arch, suggesting similarities with the development of the nervous system. Earlier PACAP-immunoreactive fibers have been found in the odontoblastic and subodontoblastic layers of the dental pulp. Our previous examinations have shown that PACAP deficiency causes alterations in the morphology and structure of the developing molars of 7-day-old mice. In our present study, morphometric and structural comparison was performed on the incisors of 1-year-old wild-type and PACAP-deficient mice. Hard tissue density measurements and morphometric comparison were carried out on the mandibles and the lower incisors with micro-CT. For structural examination, Raman microscopy was applied on frontal thin sections of the mandible. With micro-CT morphometrical measurements, the size of the incisors and the relative volume of the pulp to dentin were significantly smaller in the PACAP-deficient group compared to the wild-type animals. The density of calcium hydroxyapatite in the dentin was reduced in the PACAP-deficient mice. No structural differences could be observed in the enamel with Raman microscopy. Significant differences were found in the dentin of PACAP-deficient mice with Raman microscopy, where increased carbonate/phosphate ratio indicates higher intracrystalline disordering. The evaluation of amide III bands in the dentin revealed higher structural diversity in wild-type mice. Based upon our present and previous results, it is obvious that PACAP plays an important role in tooth development with the regulation of morphogenesis, dentin, and enamel mineralization. Further studies are

  3. Acute intermittent porphyria: expression of mutant and wild-type porphobilinogen deaminase in COS-1 cells.

    PubMed Central

    Mustajoki, S.; Laine, M.; Lahtela, M.; Mustajoki, P.; Peltonen, L.; Kauppinen, R.

    2000-01-01

    BACKGROUND: Acute intermittent porphyria (AIP) is an autosomal dominant disorder that results from the partial deficiency of porphobilinogen deaminase (PBGD) in the heme biosynthetic pathway. Patients with AIP can experience acute attacks consisting of abdominal pain and various neuropsychiatric symptoms. Although molecular biological studies on the porphobilinogen deaminase (PBGD) gene have revealed several mutations responsible for AIP, the properties of mutant PBGD in eukaryotic expression systems have not been studied previously. MATERIALS AND METHODS: Seven mutations were analyzed using transient expression of the mutated polypeptides in COS-1 cells. The properties of mutated polypeptides were studied by enzyme activity measurement, Western blot analysis, pulse-chase experiments, and immunofluorescence staining. RESULTS: Of the mutants studied, R26C, R167W, R173W, R173Q, and R225X resulted in a decreased enzyme activity (0-5%), but R225G and 1073delA (elongated protein) displayed a significant residual activity of 16% and 50%, respectively. In Western blot analysis, the polyclonal PBGD antibody detected all mutant polypeptides except R225X, which was predicted to result in a truncated protein. In the pulse-chase experiment, the mutant polypeptides were as stable as the wild-type enzyme. In the immunofluorescence staining both wild-type and mutant polypeptides were diffusely dispersed in the cytoplasm and, thus, no accumulation of mutated proteins in the cellular compartments could be observed. CONCLUSIONS: The results confirm the causality of mutations for the half normal enzyme activity measured in the patients' erythrocytes. In contrast to the decreased enzyme activity, the majority of the mutations produced a detectable polypeptide, and the stability and the intracellular processing of the mutated polypeptides were both comparable to that of the wild-type PBGD and independent of the cross-reacting immunological material (CRIM) class. PMID:11055586

  4. Growth, seed development and genetic analysis in wild type and Def mutant of Pisum sativum L

    PubMed Central

    2011-01-01

    Background The def mutant pea (Pisum sativum L) showed non-abscission of seeds from the funicule. Here we present data on seed development and growth pattern and their relationship in predicting this particular trait in wild type and mutant lines as well as the inheritance pattern of the def allele in F2 and F3 populations. Findings Pod length and seed fresh weight increase with fruit maturity and this may affect the abscission event in pea seeds. However, the seed position in either the distal and proximal ends of the pod did not show any difference. The growth factors of seed fresh weight (FW), width of funicles (WFN), seed width (SW) and seed height (SH) were highly correlated and their relationships were determined in both wild type and def mutant peas. The coefficient of determination R2 values for the relationship between WFN and FW, SW and SH and their various interactions were higher for the def dwarf type. Stepwise multiple regression analysis showed that variation of WFN was associated with SH and SW. Pearson's chi square analysis revealed that the inheritance and segregation of the Def locus in 3:1 ratio was significant in two F2 populations. Structural analysis of the F3 population was used to confirm the inheritance status of the Def locus in F2 heterozygote plants. Conclusions This study investigated the inheritance of the presence or absence of the Def allele, controlling the presence of an abscission zone (AZ) or an abscission-less zone (ALZ) forming in wild type and mutant lines respectively. The single major gene (Def) controlling this phenotype was monogenic and def mutants were characterized and controlled by the homozygous recessive def allele that showed no palisade layers in the hilum region of the seed coat. PMID:22078070

  5. Efavirenz concentrations in CSF exceed IC50 for wild-type HIV

    PubMed Central

    Best, Brookie M.; Koopmans, Peter P.; Letendre, Scott L.; Capparelli, Edmund V.; Rossi, Steven S.; Clifford, David B.; Collier, Ann C.; Gelman, Benjamin B.; Mbeo, Gilbert; McCutchan, J. Allen; Simpson, David M.; Haubrich, Richard; Ellis, Ronald; Grant, Igor; Grant, Igor; McCutchan, J. Allen; Ellis, Ronald J.; Marcotte, Thomas D.; Franklin, Donald; Ellis, Ronald J.; McCutchan, J. Allen; Alexander, Terry; Letendre, Scott; Capparelli, Edmund; Heaton, Robert K.; Atkinson, J. Hampton; Woods, Steven Paul; Dawson, Matthew; Wong, Joseph K.; Fennema-Notestine, Christine; Taylor, Michael J.; Theilmann, Rebecca; Gamst, Anthony C.; Cushman, Clint; Abramson, Ian; Vaida, Florin; Marcotte, Thomas D.; von Jaeger, Rodney; McArthur, Justin; Smith, Mary; Morgello, Susan; Simpson, David; Mintz, Letty; McCutchan, J. Allen; Toperoff, Will; Collier, Ann; Marra, Christina; Jones, Trudy; Gelman, Benjamin; Head, Eleanor; Clifford, David; Al-Lozi, Muhammad; Teshome, Mengesha

    2011-01-01

    Objectives HIV-associated neurocognitive disorders remain common despite use of potent antiretroviral therapy (ART). Ongoing viral replication due to poor distribution of antivirals into the CNS may increase risk for HIV-associated neurocognitive disorders. This study's objective was to determine penetration of a commonly prescribed antiretroviral drug, efavirenz, into CSF. Methods CHARTER is an ongoing, North American, multicentre, observational study to determine the effects of ART on HIV-associated neurological disease. Single random plasma and CSF samples were drawn within 1 h of each other from subjects taking efavirenz between September 2003 and July 2007. Samples were assayed by HPLC or HPLC/mass spectrometry with detection limits of 39 ng/mL (plasma) and <0.1 ng/mL (CSF). Results Eighty participants (age 44 ± 8 years; 79 ± 15 kg; 20 females) had samples drawn 12.5 ± 5.4 h post-dose. The median efavirenz concentrations after a median of 7 months [interquartile range (IQR) 2–17] of therapy were 2145 ng/mL in plasma (IQR 1384–4423) and 13.9 ng/mL in CSF (IQR 4.1–21.2). The CSF/plasma concentration ratio from paired samples drawn within 1 h of each other was 0.005 (IQR 0.0026–0.0076; n = 69). The CSF/IC50 ratio was 26 (IQR 8–41) using the published IC50 for wild-type HIV (0.51 ng/mL). Two CSF samples had concentrations below the efavirenz IC50 for wild-type HIV. Conclusions Efavirenz concentrations in the CSF are only 0.5% of plasma concentrations but exceed the wild-type IC50 in nearly all individuals. Since CSF drug concentrations reflect those in brain interstitial fluids, efavirenz reaches therapeutic concentrations in brain tissue. PMID:21098541

  6. Horizontal and vertical transmission of wild-type and recombinant Helicoverpa armigera single-nucleocapsid nucleopolyhedrovirus.

    PubMed

    Zhou, Mingzhe; Sun, Xiulian; Sun, Xincheng; Vlak, Just M; Hu, Zhihong; van der Werf, Wopke

    2005-06-01

    Transmission plays a central role in the ecology of baculoviruses and the population dynamics of their hosts. Here, we report on the horizontal and vertical transmission dynamics of wild-type Helicoverpa armigera single-nucleocapsid nucleopolyhedrovirus (HaSNPV-WT) and a genetically modified variant (HaSNPV-AaIT) with enhanced speed of action through the expression of an insect-selective scorpion toxin (AaIT). In caged field plots, horizontal transmission of both HaSNPV variants was greatest when inoculated 3rd instar larvae were used as infectors, transmission was intermediate with 2nd instar infectors and lowest with 1st instar infectors. Transmission was greater at a higher density of infectors (1 per plant) than at a lower density (1 per 4 plants); however, the transmission coefficient (number of new infections per initial infector) was lower at the higher density of infectors than at the lower density. HaSNPV-AaIT exhibited a significantly lower rate of transmission than HaSNPV-WT in the field cages. This was also the case in open field experiments. In the laboratory, the vertical transmission of HaSNPV-AaIT from infected females to offspring of 16.7+/-2.1% was significantly lower than that of HaSNPV-WT (30.9+/-2.9%). Likewise, in the field, vertical transmission of HaSNPV-AaIT (8.4+/-1.1%) was significantly lower than that of HaSNPV-WT (12.6+/-2.0%). The results indicate that the recombinant virus will be transmitted at lower rates in H. armigera populations than the wild-type virus. This may potentially affect negatively its long-term efficacy as compared to wild-type virus, but contributing positively to its biosafety.

  7. Foxm1 transcription factor is required for the initiation of lung tumorigenesis by oncogenic Kras(G12D.).

    PubMed

    Wang, I-C; Ustiyan, V; Zhang, Y; Cai, Y; Kalin, T V; Kalinichenko, V V

    2014-11-13

    Lung cancer is the leading cause of deaths in cancer patients in the United States. Identification of new molecular targets is clearly needed to improve therapeutic outcomes of this devastating human disease. Activating mutations in K-Ras oncogene and increased expression of FOXM1 protein are associated with poor prognosis in patients with non-small-cell lung cancer. Transgenic expression of activated Kras(G12D) in mouse respiratory epithelium is sufficient to induce lung adenocarcinomas; however, transcriptional mechanisms regulated by K-Ras during the initiation of lung cancer remain poorly understood. Foxm1 transcription factor, a downstream target of K-Ras, stimulates cellular proliferation during embryogenesis, organ repair and tumor growth, but its role in tumor initiation is unknown. In the present study, we used transgenic mice expressing Kras(G12D) under control of Sftpc promoter to demonstrate that Foxm1 was induced in type II epithelial cells before the formation of lung tumors. Conditional deletion of Foxm1 from Kras(G12D)-expressing respiratory epithelium prevented the initiation of lung tumors in vivo. The loss of Foxm1 inhibited expression of K-Ras target genes critical for the nuclear factor-κB (NF-κB) and c-Jun N-terminal kinase (JNK) pathways, including Ikbkb, Nfkb1, Nfkb2, Rela, Jnk1, N-Myc, Pttg1 and Cdkn2a. Transgenic overexpression of activated FOXM1 mutant was sufficient to induce expression of these genes in alveolar type II cells. FOXM1 directly bound to promoter regions of Ikbkb, Nfkb2, N-Myc, Pttg1 and Cdkn2a, indicating that these genes are direct FOXM1 targets. FOXM1 is required for K-Ras-mediated lung tumorigenesis by activating genes critical for the NF-κB and JNK pathways.

  8. Adaptive thermogenesis and thermal conductance in wild-type and UCP1-KO mice

    PubMed Central

    Willershäuser, Monja; Jastroch, Martin; Rourke, Bryan C.; Fromme, Tobias; Oelkrug, Rebecca; Heldmaier, Gerhard; Klingenspor, Martin

    2010-01-01

    We compared maximal cold-induced heat production (HPmax) and cold limits between warm (WA; 27°C), moderate cold (MCA; 18°C), or cold acclimated (CA; 5°C) wild-type and uncoupling-protein 1 knockout (UCP1-KO) mice. In wild-type mice, HPmax was successively increased after MCA and CA, and the cold limit was lowered to −8.3°C and −18.0°C, respectively. UCP1-KO mice also increased HPmax in response to MCA and CA, although to a lesser extent. Direct comparison revealed a maximal cold-induced recruitment of heat production by +473 mW and +227 mW in wild-type and UCP1-KO mice, respectively. The increase in cold tolerance of UCP1-KO mice from −0.9°C in MCA to −10.1°C in CA could not be directly related to changes in HPmax, indicating that UCP1-KO mice used the dissipated heat more efficiently than wild-type mice. As judged from respiratory quotients, acutely cold-challenged UCP1-KO mice showed a delayed transition toward lipid oxidation, and 5-h cold exposure revealed diminished physical activity and less variability in the control of metabolic rate. We conclude that BAT is required for maximal adaptive thermogenesis but also allows metabolic flexibility and a rapid switch toward sustained lipid-fuelled thermogenesis as an acute response to cold. In both CA groups, expression of contractile proteins (myosin heavy-chain isoforms) showed minor training effects in skeletal muscles, while cardiac muscle of UCP1-KO mice had novel expression of beta cardiac isoform. Neither respiration nor basal proton conductance of skeletal muscle mitochondria were different between genotypes. In subcutaneous white adipose tissue of UCP1-KO mice, cold exposure increased cytochrome-c oxidase activity and expression of the cell death-inducing DFFA-like effector A by 3.6-fold and 15-fold, respectively, indicating the recruitment of mitochondria-rich brown adipocyte-like cells. Absence of functional BAT leads to remodeling of white adipose tissue, which may significantly contribute

  9. Survival differences among freeze-dried genetically engineered and wild-type bacteria.

    PubMed Central

    Israeli, E; Shaffer, B T; Hoyt, J A; Lighthart, B; Ganio, L M

    1993-01-01

    Because the death mechanisms of freeze-dried and air-dried bacteria are thought to be similar, freeze-drying was used to investigate the survival differences between potentially airborne genetically engineered microorganisms and their wild types. To this end, engineered strains of Escherichia coli and Pseudomonas syringae were freeze-dried and exposed to air, visible light, or both. The death rates of all engineered strains were significantly higher than those of their parental strains. Light and air exposure were found to increase the death rates of all strains. Application of death rate models to freeze-dried engineered bacteria to be released into the environment is discussed. PMID:8434925

  10. Does a p53 "Wild-type" Immunophenotype Exclude a Diagnosis of Endometrial Serous Carcinoma?

    PubMed

    Fadare, Oluwole; Roma, Andres A; Parkash, Vinita; Zheng, Wenxin; Walavalkar, Vighnesh

    2017-09-22

    An aberrant p53 immunophenotype may be identified in several histotypes of endometrial carcinoma, and is accordingly recognized to lack diagnostic specificity in and of itself. However, based on the high frequency with which p53 aberrations have historically been identified in endometrial serous carcinoma, a mutation-type immunophenotype is considered to be highly sensitive for the histotype. Using an illustrative case study and a review of the literature, we explore a relatively routine diagnostic question: whether the negative predictive value of a wild-type p53 immunophenotype for serous carcinoma is absolute, that is, whether a p53-wild type immunophenotype is absolutely incompatible with a diagnosis of serous carcinoma. The case is an advanced stage endometrial carcinoma that was reproducibly classified by pathologists from 3 institutions as serous carcinoma based on its morphologic features. By immunohistochemistry, the tumor was p53-wild type (DO-7 clone), diffusely positive for p16 (block positivity), and showed retained expression of PTEN, MSH2, MSH6, MLH1, and PMS2. Next generation sequencing showed that there indeed was an underlying mutation in TP53 (D393fs*78, R213*). The tumor was microsatellite stable, had a low mutational burden (4 mutations per MB), and displayed no mutations in the exonuclease domain of DNA polymerase epsilon (POLE) gene. Other genomic alterations included RB1 mutation (R46fs*19), amplifications in MYST3 and CRKL, and ARID1A deletion (splice site 5125-94_5138del108). A review of the recent literature identified 5 studies in which a total of 259 cases of serous carcinoma were whole-exome sequenced. The average TP53 mutational rate in endometrial serous carcinoma was only 75% (range, 60 to 88). A total of 12 (33%) of 36 immunohistochemical studies reported a p53-aberrant rate of <80% in endometrial serous carcinoma. We discuss in detail several potential explanations that may underlie the scenario of serous carcinoma-like morphology

  11. Ribitol dehydrogenase of Klebsiella aerogenes. Sequence and properties of wild-type and mutant strains.

    PubMed Central

    Dothie, J M; Giglio, J R; Moore, C B; Taylor, S S; Hartley, B S

    1985-01-01

    Evidence is presented for the sequence of 249 amino acids in ribitol dehydrogenase-A from Klebsiella aerogenes. Continuous culture on xylitol yields strains that superproduce 'wild-type' enzyme but mutations appear to have arisen in this process. Other strains selected by such continuous culture produce enzymes with increased specific activity for xylitol but without loss of ribitol activity. One such enzyme, ribitol dehydrogenase-D, has Pro-196 for Gly-196. Another, ribitol dehydrogenase-B, has a different mutation. PMID:3904726

  12. Development of multi-epitope vaccines targeting wild-type sequence p53 peptides.

    PubMed

    DeLeo, Albert B; Whiteside, Theresa L

    2008-09-01

    Loss of p53 tumor-suppressor function is the most common abnormality in human cancer, which can result in enhanced presentation to immune cells of wild-type (wt)-sequence peptides from tumor p53 molecules, thus providing the rationale for wt p53 peptide-based cancer vaccines. We review evidence from preclinical murine tumor models and preclinical studies that led to the clinical introduction of wt p53 peptide-based vaccines for cancer immunotherapy. Overall, this review illustrates the complex process of wt p53 epitope selection and the issues and concerns involved in the application of p53-based vaccines for patients with cancer.

  13. Organophosphonate utilization by the wild-type strain of Pseudomonas fluorescens.

    PubMed Central

    Zboińska, E; Lejczak, B; Kafarski, P

    1992-01-01

    The wild-type strain of Pseudomonas fluorescens was found to utilize a range of structurally diverse organophosphonates as its sole carbon or nitrogen sources. Representative compounds included aminoalkylphosphonates, hydroxyalkylphosphonates, oxoalkylphosphonates, and phosphono dipeptides. Among them, amino(phenyl)methylphosphonate,2-aminoethylphosphonate, aminomethylphosphonate, diisopropyl 9-aminofluoren-9-ylphosphonate, and 2-oxoalkylphosphonates were used by P. fluorescens as its sole sources of phosphorus. Only slight growth was observed on the herbicide glyphosate (N-phosphonomethylglycine), which was metabolized to aminomethylphosphonate. Neither phosphinothricin nor its dialanyl tripeptide, bialaphos, supported growth of P. fluorescens. The possible mechanisms of organophosphonate degradation by this strain are discussed. PMID:1444412

  14. Detection of KRAS mutations using double-stranded toehold-exchange probes.

    PubMed

    Wu, Zhenhua; Ma, Tianle; Coll, Jean-Luc; Liu, Fangming; Zhang, Honglian; Ma, Yunfei; Wang, Zhishuo; Jin, Qinghui; Mao, Hongju; Zhao, Jianlong

    2016-06-15

    Detection of KRAS mutations in cancer tissues is immensely valuable for the identification of personalized genotype-based therapy. Here, we employed a double-stranded toehold-exchange probe, which is labeled with fluorescent molecules (FAM) and quenchers (Dabcyl), to detect KRAS mutations in cancer tissues. This probe was able to differentiate the intended mutation in a sample containing as little as 5% mutant alleles in a background of wild-type DNA. This probe also performed robustly at a wide range of conditions, for examples, from 4 °C to 37 °C, from 200 mM Na(+) to 1M Na(+), and from 200 mM K(+) to 500 mM K(+). Furthermore, we validated the practicality of this probe in a clinical setting using 8 pairs of cancer tissue samples and their NT (corresponding adjacent nontumorous tissue) samples. All the results generated from the probe detection agreed with those from direct sequencing. Combining features of extreme high specificity and robustness, this probe is a valuable tool for reliable diagnosis of cancer-related mutations.

  15. Oncogenic K-Ras Binds to an Anionic Membrane in Two Distinct Orientations: A Molecular Dynamics Analysis.

    PubMed

    Prakash, Priyanka; Zhou, Yong; Liang, Hong; Hancock, John F; Gorfe, Alemayehu A

    2016-03-08

    K-Ras is a membrane-associated GTPase that cycles between active and inactive conformational states to regulate a variety of cell signaling pathways. Somatic mutations in K-Ras are linked to 15-20% of all human tumors. K-Ras attaches to the inner leaflet of the plasma membrane via a farnesylated polybasic domain; however, the structural details of the complex remain poorly understood. Based on extensive (7.5 μs total) atomistic molecular dynamics simulations here we show that oncogenic mutant K-Ras interacts with a negatively charged lipid bilayer membrane in multiple orientations. Of these, two highly populated orientations account for ∼54% of the conformers whose catalytic domain directly interacts with the bilayer. In one of these orientation states, membrane binding involves helices 3 and 4 of the catalytic domain in addition to the farnesyl and polybasic motifs. In the other orientation, β-strands 1-3 and helix 2 on the opposite face of the catalytic domain contribute to membrane binding. Flexibility of the linker region was found to be important for the reorientation. The biological significance of these observations was evaluated by initial experiments in cells overexpressing mutant K-Ras as well as by an analysis of Ras-effector complex structures. The results suggest that only one of the two major orientation states is capable of effector binding. We propose that the different modes of membrane binding may be exploited in structure-based drug design efforts for cancer therapy.

  16. Mutations of p53 and KRAS activate NF-κB to promote chemoresistance and tumorigenesis via dysregulation of cell cycle and suppression of apoptosis in lung cancer cells.

    PubMed

    Yang, Lina; Zhou, Yunjiao; Li, Yinghua; Zhou, Juan; Wu, Yougen; Cui, Yunqing; Yang, Gong; Hong, Yang

    2015-02-28

    Although mutations of p53 and KRAS and activation of NF-κB signaling have been highly associated with chemoresistance and tumorigenesis of lung cancer, the interactive mechanisms between two of p53, KRAS, and NF-κB are elusive. In the present study, we first observed that blocking of NF-κB function in KRAS mutant A549 cell line with an IκBα mutant (IκBαM) inhibited cell cycle progression, anti-apoptosis, chemoresistance, and tumorigenesis. Silencing of p53 or KRAS in A549 or H358 cells either enhanced or attenuated the resistance of cells to cisplatin and taxol through promotion or suppression of the NF-κB p65 nuclear translocation. Introduction of a wild type p53 into p53 null lung cancer cell lines H1299 and H358 inhibited NF-κB activity, leading to the enhanced response to chemotherapeutic drugs. Delivery of a mutant p53 or KRAS-V12 into A549/IκBαM or H1299/p53Wt cells increased cell cycle progression, anti-apoptosis, chemoresistance, and tumorigenesis due to the accumulated nuclear localization of NF-κB p65, while treatment of H1299/p53Wt/KRAS-V12 with NF-κB inhibitor PS1145 diminished these effects. Thus, we conclude that p53 deficiency and KRAS mutation activate the NF-κB signaling to control chemoresistance and tumorigenesis, and that the status of p53 and KRAS may be considered for the targeted therapy against NF-κB in lung cancer patients.

  17. Dietary heme iron and the risk of colorectal cancer with specific mutations in KRAS and APC.

    PubMed

    Gilsing, Anne M J; Fransen, Fiona; de Kok, Theo M; Goldbohm, Alexandra R; Schouten, Leo J; de Bruïne, Adriaan P; van Engeland, Manon; van den Brandt, Piet A; de Goeij, Anton F P M; Weijenberg, Matty P

    2013-12-01

    Red meat intake has been linked to increased colorectal cancer (CRC) risk. Although the underlying mechanisms remain unclear, experimental studies suggest a role for dietary heme iron. Because heme iron was shown to promote specific mutations, it would be insightful to link heme iron data to CRC with mutations in key genes in an observational, population-based study. We investigated the association between dietary heme iron intake and risk of CRC with mutations in APC (adenomatous polyposis coli) and KRAS (Kirsten ras) and P53 overexpression in the Netherlands Cohort Study. After 7.3 years of follow-up, excluding the first 2.3 years due to incomplete coverage of the pathology registry and to avoid preclinical disease, adjusted hazard ratios (including adjustment for total meat) and 95% confidence intervals were calculated, using 4026 subcohort members (aged 55-69 years at baseline), 435 colon and 140 rectal cancer patients. When comparing the highest with the lowest tertile of intake, heme iron intake was associated with an increased risk of CRC harboring activating mutations in KRAS (hazard ratio = 1.71, 95% confidence interval: 1.15-2.57; P for trend = 0.03) and CRC without truncating mutations in APC (hazard ratio = 1.79, 95% confidence interval: 1.23-2.60; P for trend = 0.003). We observed a positive association between heme iron intake and the risk of CRC with activating G>A mutations in KRAS (P for trend = 0.01) and overall G>A mutations in APC (P for trend = 0.005). No associations were found with CRC harboring G>T mutations in KRAS/APC. Heme iron intake was positively associated with the risk of P53 overexpressed tumors but not with tumors without P53 overexpression (Pheterogeneity = 0.12). Heme iron intake was associated with an increased risk of colorectal tumors harboring G>A transitions in KRAS and APC and overexpression of P53. These novel findings suggest that alkylating rather than oxidative DNA-damaging mechanisms are involved in heme

  18. Early recognition of lung cancer by integrin targeted imaging in K-ras mouse model.

    PubMed

    Ermolayev, Vladimir; Mohajerani, Pouyan; Ale, Angelique; Sarantopoulos, Athanasios; Aichler, Michaela; Kayser, Gian; Walch, Axel; Ntziachristos, Vasilis

    2015-09-01

    Non-small cell lung cancer is characterized by slow progression and high heterogeneity of tumors. Integrins play an important role in lung cancer development and metastasis and were suggested as a tumor marker; however their role in anticancer therapy remains controversial. In this work, we demonstrate the potential of integrin-targeted imaging to recognize early lesions in transgenic mouse model of lung cancer based on spontaneous introduction of mutated human gene bearing K-ras mutation. We conducted ex vivo and fluorescence molecular tomography-X-ray computed tomography (FMT-XCT) in vivo imaging and analysis for specific targeting of early lung lesions and tumors in rodent preclinical model for lung cancer. The lesions and tumors were characterized by histology, immunofluorescence and immunohistochemistry using a panel of cancer markers. Ex vivo, the integrin-targeted fluorescent signal significantly differed between wild type lung tissue and K-ras pulmonary lesions (PL) at all ages studied. The panel of immunofluorescence experiments demonstrated that PL, which only partially show cancer cell features were detected by αvβ3-integrin targeted imaging. Human patient material analysis confirmed the specificity of target localization in different lung cancer types. Most importantly, small tumors in the lungs of 4-week-old animals could be noninvasively detected in vivo on the fluorescence channel of FMT-XCT. Our findings demonstrated αvβ3-integrin targeted fluorescent imaging to specifically detect premalignant pleural lesions in K-ras mice. Integrin targeted imaging may find application areas in preclinical research and clinical practice, such as early lung cancer diagnostics, intraoperative assistance or therapy monitoring.

  19. Interruption of poliovirus transmission in Ghana: molecular epidemiology of wild-type 1 poliovirus isolated from 1995 to 2008.

    PubMed

    Odoom, John Kofi; Forrest, Lindsay; Dunn, Glynis; Osei-Kwasi, Mubarak; Obodai, Evangeline; Arthur-Quarm, Jacob; Barnor, Jacob; Minor, Philip D; Martin, Javier

    2012-10-01

    Described in detail is the molecular epidemiology of wild-type 1 poliovirus circulation in Ghana between 1995-2008, following the implementation of a surveillance system for cases of acute flaccid paralysis and poliovirus infection. Molecular phylogenetic analysis combined with a detailed evaluation of epidemiological indicators revealed that the geographical and temporal circulation of wild-type poliovirus in Ghana was determined by the quality of the implementation of global eradication strategies. The transmission of "indigenous" wild-type 1 poliovirus was eliminated in 1999. However, a drastic reduction in national immunization campaigns resulted in the importation in 2003 and 2008 of wild-type 1 poliovirus from neighboring countries. Both outbreaks were promptly interrupted following resumption of immunization activities. The results detailed here provide scientific evidence that supports the feasibility of polio eradication in Central West Africa, one of the remaining endemic areas for the disease, provided that comprehensive immunization campaigns and sensitive surveillance systems are in place.

  20. Clinical outcome of patients with non-small cell lung cancer receiving front-line chemotherapy according to EGFR and K-RAS mutation status.

    PubMed

    Kalikaki, Aristea; Koutsopoulos, Anastasios; Hatzidaki, Dora; Trypaki, Maria; Kontopodis, Emmanouel; Stathopoulos, Efstathios; Mavroudis, Dimitris; Georgoulias, Vassilis; Voutsina, Alexandra

    2010-07-01

    Somatic mutations in EGFR and K-RAS may predict for sensitivity and resistance to EGFR tyrosine kinase inhibitors (TKIs). Whether EGFR and K-RAS mutations could also predict clinical outcome of non-small cell lung cancer (NSCLC) patients following front-line chemotherapy has not yet been established. One hundred and sixty-two chemotherapy-naïve patients with locally advanced/metastatic NSCLC who received front-line chemotherapy were included in this retrospective study and their clinical outcome data was analyzed according to EGFR and K-RAS mutation status of their tumors. Classical activating EGFR and K-RAS mutations were found in 8.2 and 22.6% of patients respectively and were not associated with patients' clinicopathological characteristics. Patients with classical EGFR mutations had a higher probability of response to front-line chemotherapy as compared to those with wild type EGFR (p=0.023). Multivariate analysis showed that the presence of activating EGFR mutations was an independent factor associated with response to front-line chemotherapy (HR=4.85; 95% CI: 1.13-20.83, p=0.034). K-RAS mutation status was not associated with response to front-line chemotherapy. The presence of activating EGFR but not of K-RAS mutations was associated with a significantly higher overall survival compared to patients without mutations treated with platinum-based front-line chemotherapy (p=0.043). The data indicate that EGFR mutation status could be predictive for response to cytotoxic front-line chemotherapy in patients with NSCLC. Additional prospective studies are needed in order to validate this observation and to define whether these patients should be preferentially treated with front-line TKIs or chemotherapy. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.

  1. SNaPshot and StripAssay as Valuable Alternatives to Direct Sequencing for KRAS Mutation Detection in Colon Cancer Routine Diagnostics

    PubMed Central

    Fariña Sarasqueta, Arantza; Moerland, Elna; de Bruyne, Hanneke; de Graaf, Henk; Vrancken, Tamara; van Lijnschoten, Gesina; van den Brule, Adriaan J.C.

    2011-01-01

    Although direct sequencing is the gold standard for KRAS mutation detection in routine diagnostics, it remains laborious, time consuming, and not very sensitive. Our objective was to evaluate SNaPshot and the KRAS StripAssay as alternatives to sequencing for KRAS mutation detection in daily practice. KRAS exon 2–specific PCR followed by sequencing or by a SNaPshot reaction was performed. For the StripAssay, a mutant-enriched PCR was followed by hybridization to KRAS-specific probes bound to a nitrocellulose strip. To test sensitivities, dilution series of mutated DNA in wild-type DNA were made. Additionally, direct sequencing and SNaPshot were evaluated in 296 colon cancer samples. Detection limits of direct sequencing, SNaPshot, and StripAssay were 20%, 10%, and 1% tumor cells, respectively. Direct sequencing and SNaPshot can detect all 12 mutations in KRAS codons 12 and 13, whereas the StripAssay detects 10 of the most frequent ones. Workload and time to results are comparable for SNaPshot and direct sequencing. SNaPshot is flexible and easy to multiplex. The StripAssay is less time consuming for daily laboratory practice. SNaPshot is more flexible and slightly more sensitive than direct sequencing. The clinical evaluation showed comparable performances between direct sequencing and SNaPshot. The StripAssay is rapid and an extremely sensitive assay that could be considered when few tumor cells are available. However, found mutants should be confirmed to avoid risk of false positives. PMID:21354055

  2. GTP Binding and Oncogenic Mutations May Attenuate Hypervariable Region (HVR)-Catalytic Domain Interactions in Small GTPase K-Ras4B, Exposing the Effector Binding Site*

    PubMed Central

    Lu, Shaoyong; Banerjee, Avik; Jang, Hyunbum; Zhang, Jian; Gaponenko, Vadim; Nussinov, Ruth

    2015-01-01

    K-Ras4B, a frequently mutated oncogene in cancer, plays an essential role in cell growth, differentiation, and survival. Its C-terminal membrane-associated hypervariable region (HVR) is required for full biological activity. In the active GTP-bound state, the HVR interacts with acidic plasma membrane (PM) headgroups, whereas the farnesyl anchors in the membrane; in the inactive GDP-bound state, the HVR may interact with both the PM and the catalytic domain at the effector binding region, obstructing signaling and nucleotide exchange. Here, using molecular dynamics simulations and NMR, we aim to figure out the effects of nucleotides (GTP and GDP) and frequent (G12C, G12D, G12V, G13D, and Q61H) and infrequent (E37K and R164Q) oncogenic mutations on full-length K-Ras4B. The mutations are away from or directly at the HVR switch I/effector binding site. Our results suggest that full-length wild-type GDP-bound K-Ras4B (K-Ras4BWT-GDP) is in an intrinsically autoinhibited state via tight HVR-catalytic domain interactions. The looser association in K-Ras4BWT-GTP may release the HVR. Some of the oncogenic mutations weaken the HVR-catalytic domain association in the K-Ras4B-GDP/-GTP bound states, which may facilitate the HVR disassociation in a nucleotide-independent manner, thereby up-regulating oncogenic Ras signaling. Thus, our results suggest that mutations can exert their effects in more than one way, abolishing GTP hydrolysis and facilitating effector binding. PMID:26453300

  3. Electric-field driven translocation of colloidal wild-type and mutant fd viruses through a solid-state nanopore

    NASA Astrophysics Data System (ADS)

    Miao, Wang; Liu, Liping; Lu, Anna; Sharma, Prerna; Dogic, Zvonimir; Huynh, Chuong; Scipioni, Larry; Ling, Xinsheng

    2013-03-01

    Colloidal suspensions of fd viruses are useful model systems for condensed matter physics. Here we explore the transport processes of fd particles in solid-state nanopores. Recently we have observed a nonlinear behavior in the electrophoretic mobility of wild-type fd particles. Here we carried out a comparative study of wild-type and mutant Y21M in their translocation dynamics through a nanopore. This work was supported by NSF-DMR and NSF-MRSEC.

  4. Rearing in Seawater Mesocosms Improves the Spawning Performance of Growth Hormone Transgenic and Wild-Type Coho Salmon

    PubMed Central

    Leggatt, Rosalind A.; Hollo, Tanya; Vandersteen, Wendy E.; McFarlane, Kassandra; Goh, Benjamin; Prevost, Joelle; Devlin, Robert H.

    2014-01-01

    Growth hormone (GH) transgenes can significantly accelerate growth rates in fish and cause associated alterations to their physiology and behaviour. Concern exists regarding potential environmental risks of GH transgenic fish, should they enter natural ecosystems. In particular, whether they can reproduce and generate viable offspring under natural conditions is poorly understood. In previous studies, GH transgenic salmon grown under contained culture conditions had lower spawning behaviour and reproductive success relative to wild-type fish reared in nature. However, wild-type salmon cultured in equal conditions also had limited reproductive success. As such, whether decreased reproductive success of GH transgenic salmon is due to the action of the transgene or to secondary effects of culture (or a combination) has not been fully ascertained. Hence, salmon were reared in large (350,000 L), semi-natural, seawater tanks (termed mesocosms) designed to minimize effects of standard laboratory culture conditions, and the reproductive success of wild-type and GH transgenic coho salmon from mesocosms were compared with that of wild-type fish from nature. Mesocosm rearing partially restored spawning behaviour and success of wild-type fish relative to culture rearing, but remained lower overall than those reared in nature. GH transgenic salmon reared in the mesocosm had similar spawning behaviour and success as wild-type fish reared in the mesocosm when in full competition and without competition, but had lower success in male-only competition experiments. There was evidence of genotype×environmental interactions on spawning success, so that spawning success of transgenic fish, should they escape to natural systems in early life, cannot be predicted with low uncertainty. Under the present conditions, we found no evidence to support enhanced mating capabilities of GH transgenic coho salmon compared to wild-type salmon. However, it is clear that GH transgenic salmon are

  5. Rearing in seawater mesocosms improves the spawning performance of growth hormone transgenic and wild-type coho salmon.

    PubMed

    Leggatt, Rosalind A; Hollo, Tanya; Vandersteen, Wendy E; McFarlane, Kassandra; Goh, Benjamin; Prevost, Joelle; Devlin, Robert H

    2014-01-01

    Growth hormone (GH) transgenes can significantly accelerate growth rates in fish and cause associated alterations to their physiology and behaviour. Concern exists regarding potential environmental risks of GH transgenic fish, should they enter natural ecosystems. In particular, whether they can reproduce and generate viable offspring under natural conditions is poorly understood. In previous studies, GH transgenic salmon grown under contained culture conditions had lower spawning behaviour and reproductive success relative to wild-type fish reared in nature. However, wild-type salmon cultured in equal conditions also had limited reproductive success. As such, whether decreased reproductive success of GH transgenic salmon is due to the action of the transgene or to secondary effects of culture (or a combination) has not been fully ascertained. Hence, salmon were reared in large (350,000 L), semi-natural, seawater tanks (termed mesocosms) designed to minimize effects of standard laboratory culture conditions, and the reproductive success of wild-type and GH transgenic coho salmon from mesocosms were compared with that of wild-type fish from nature. Mesocosm rearing partially restored spawning behaviour and success of wild-type fish relative to culture rearing, but remained lower overall than those reared in nature. GH transgenic salmon reared in the mesocosm had similar spawning behaviour and success as wild-type fish reared in the mesocosm when in full competition and without competition, but had lower success in male-only competition experiments. There was evidence of genotype×environmental interactions on spawning success, so that spawning success of transgenic fish, should they escape to natural systems in early life, cannot be predicted with low uncertainty. Under the present conditions, we found no evidence to support enhanced mating capabilities of GH transgenic coho salmon compared to wild-type salmon. However, it is clear that GH transgenic salmon are

  6. Dynamic imaging of glucose flux impedance using FRET sensors in wild-type Arabidopsis plants.

    PubMed

    Chaudhuri, Bhavna; Hörmann, Friederike; Frommer, Wolf B

    2011-04-01

    Quantitative and dynamic analysis of metabolites and signalling molecules is limited by technical challenges in obtaining temporally resolved information at the cellular and compartmental level. Real-time information on signalling and metabolite levels with subcellular granularity can be obtained with the help of genetically encoded FRET (Förster resonance energy transfer) nanosensors. FRET nanosensors represent powerful tools for gene discovery, and analysis of regulatory networks, for example by screening mutants. However, RNA silencing has impaired our ability to express FRET nanosensors functionally in Arabidopsis plants. This drawback was overcome here by expressing the nanosensors in RNA silencing mutants. However, the use of silencing mutants requires the generation of homozygous lines deficient in RNA silencing as well as the mutation of interest and co-expression of the nanosensor. Here it is shown that dynamic changes in cytosolic glucose levels can readily be quantified in wild-type Arabidopsis plants at early stages of development (7-15 d) before silencing had a major effect on fluorescence intensity. A detailed protocol for screening 10-20 mutant seedlings per day is provided. The detailed imaging protocol provided here is suitable for analysing sugar flux in young wild-type plants as well as mutants affected in sugar signalling, metabolism, or transport using a wide spectrum of FRET nanosensors.

  7. Plastid sedimentation kinetics in roots of wild-type and starch-deficient mutants of Arabidopsis

    NASA Technical Reports Server (NTRS)

    MacCleery, S. A.; Kiss, J. Z.

    1999-01-01

    Sedimentation and movement of plastids in columella cells of the root cap were measured in seedlings of wild-type, a reduced starch mutant, and a starchless mutant of Arabidopsis. To assay for sedimentation, we used both linear measurements and the change of angle from the cell center as indices in vertical and reoriented plants with the aid of computer-assisted image analysis. Seedlings were fixed at short periods after reorientation, and plastid sedimentation correlated with starch content in the three strains of Arabidopsis. Amyloplasts of wild-type seedlings showed the greatest sedimentation, whereas plastids of the starchless mutant showed no significant sedimentation in the vertically grown and reoriented seedlings. Because previous research has shown that a full complement of starch is needed for full gravitropic sensitivity, this study correlates increased sensitivity with plastid sedimentation. However, although plastid sedimentation contributed to gravisensitivity, it was not required, because the gravitropic starchless mutant had plastids that did not sediment. This is the first study, to our knowledge, to measure plastid sedimentation in Arabidopsis roots after reorientation of seedlings. Taken together, the results of this study are consistent with the classic plastid-based and protoplast-based models of graviperception and suggest that multiple systems of perception exist in plant cells.

  8. Isolation and characterization of plasma membranes from wild type Neurospora crassa.

    PubMed

    Bowman, E J; Bowman, B J; Slayman, C W

    1981-12-10

    A method has been developed to isolate plasma membranes with high ATPase activity from wild type Neurospora. Cells are treated with snail enzyme to weaken their cell walls, disrupted by gentle homogenization in a medium designed to keep mitochondria and other organelles intact, and fractionated by differential centrifugation. After removal of mitochondria, several higher speed particulate fractions (particularly one sedimenting at 40,000 X g) contain an ATPase that can be identified as the plasma membrane enzyme on the basis of sensitivity to vanadate and kinetic properties. Its [S]0.5 for Mg.ATP, specificity for nucleotides and divalent cations, and pH optimum are virtually identical with those reported previously for plasma membrane ATPase from the slime mutant of Neurospora (Bowman, B. J., and Slayman, C. W. (1977) J. Biol. Chem. 252, 3357-3363). By contrast, ATPase specific activities in the wild type plasma membranes are much higher than in slime, ranging up to 7.3 mumol/min/mg of protein (the highest value yet reported for Neurospora). The best preparations appear homogeneous upon sucrose density gradient centrifugation, and band at an equilibrium density of 1.15 g/cm3. Two other markers, chitin synthetase and [acetyl-3H] concanavalin A binding, show approximate co-purification with the plasma membrane ATPase through membrane fractionation and sucrose gradient centrifugation.

  9. Genetic recombination of tick-borne flaviviruses among wild-type strains.

    PubMed

    Norberg, Peter; Roth, Anette; Bergström, Tomas

    2013-06-05

    Genetic recombination has been suggested to occur in mosquito-borne flaviviruses. In contrast, tick-borne flaviviruses have been thought to evolve in a clonal manner, although recent studies suggest that recombination occurs also for these viruses. We re-analyzed the data and found that previous conclusions on wild type recombination were probably falsely drawn due to misalignments of nucleotide sequences, ambiguities in GenBank sequences, or different laboratory culture histories suggestive of recombination events in laboratory. To evaluate if reliable predictions of wild type recombination of tick-borne flaviviruses can be made, we analyzed viral strains sequenced exclusively for this study, and other flavivirus sequences retrieved from GenBank. We detected genetic signals supporting recombination between viruses within the three clades of TBEV-Eu, TBEV-Sib and TBEV-Fe, respectively. Our results suggest that the tick-borne encephalitis viruses may undergo recombination under natural conditions, but that geographic barriers restrict most recombination events to involve only closely genetically related viruses. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Plastid sedimentation kinetics in roots of wild-type and starch-deficient mutants of Arabidopsis

    NASA Technical Reports Server (NTRS)

    MacCleery, S. A.; Kiss, J. Z.

    1999-01-01

    Sedimentation and movement of plastids in columella cells of the root cap were measured in seedlings of wild-type, a reduced starch mutant, and a starchless mutant of Arabidopsis. To assay for sedimentation, we used both linear measurements and the change of angle from the cell center as indices in vertical and reoriented plants with the aid of computer-assisted image analysis. Seedlings were fixed at short periods after reorientation, and plastid sedimentation correlated with starch content in the three strains of Arabidopsis. Amyloplasts of wild-type seedlings showed the greatest sedimentation, whereas plastids of the starchless mutant showed no significant sedimentation in the vertically grown and reoriented seedlings. Because previous research has shown that a full complement of starch is needed for full gravitropic sensitivity, this study correlates increased sensitivity with plastid sedimentation. However, although plastid sedimentation contributed to gravisensitivity, it was not required, because the gravitropic starchless mutant had plastids that did not sediment. This is the first study, to our knowledge, to measure plastid sedimentation in Arabidopsis roots after reorientation of seedlings. Taken together, the results of this study are consistent with the classic plastid-based and protoplast-based models of graviperception and suggest that multiple systems of perception exist in plant cells.

  11. Comparative metabolic profiling of mce1 operon mutant vs wild-type Mycobacterium tuberculosis strains.

    PubMed

    Queiroz, Adriano; Medina-Cleghorn, Daniel; Marjanovic, Olivera; Nomura, Daniel K; Riley, Lee W

    2015-11-01

    Mycobacterium tuberculosis disrupted in a 13-gene operon (mce1) accumulates free mycolic acids (FM) in its cell wall and causes accelerated death in mice. Here, to more comprehensively analyze differences in their cell wall lipid composition, we used an untargeted metabolomics approach to compare the lipid profiles of wild-type and mce1 operon mutant strains. By liquid chromatography-mass spectrometry, we identified >400 distinct lipids significantly altered in the mce1 mutant compared to wild type. These lipids included decreased levels of saccharolipids and glycerophospholipids, and increased levels of alpha-, methoxy- and keto mycolic acids (MA), and hydroxyphthioceranic acid. The mutant showed reduced expression of mmpL8, mmpL10, stf0, pks2 and papA2 genes involved in transport and metabolism of lipids recognized to induce proinflammatory response; these lipids were found to be decreased in the mutant. In contrast, the transcripts of mmpL3, fasI, kasA, kasB, acpM and RV3451 involved in MA transport and metabolism increased; MA inhibits inflammatory response in macrophages. Since the mce1 operon is known to be regulated in intracellular M. tuberculosis, we speculate that the differences we observed in cell wall lipid metabolism and composition may affect host response to M. tuberculosis infection and determine the clinical outcome of such an infection. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Gravitropism of hypocotyls of wild-type and starch-deficient Arabidopsis seedlings in spaceflight studies

    NASA Technical Reports Server (NTRS)

    Kiss, J. Z.; Edelmann, R. E.; Wood, P. C.

    1999-01-01

    The major purpose of this spaceflight project was to investigate the starch-statolith hypothesis for gravity perception, and a secondary goal was to study plant growth and development under spaceflight conditions. This research was based on our ground studies of gravity perception in the wild type and three starch-deficient (one starchless and two reduced starch) mutants of Arabidopsis thaliana (L.) Heynh. Dark-grown seedlings that developed in microgravity were given one of several (30 min, 60 min, or 90 min) 1-g stimuli by an on-board centrifuge, and additional controls for seedling development also were performed. These latter control experiments included a morphological study of plants that developed in space in microgravity (F microg), in space on a centrifuge (F 1g), on the ground (G 1g), and on a rotating clinostat on the ground. Since elevated levels of ethylene were reported in the spacecraft atmosphere, additional controls for morphology and gravitropism with added ethylene also were performed. While exogenous ethylene reduced the absolute magnitude of the response in all four strains of Arabidopsis, this gas did not appear to change the relative graviresponsiveness among the strains. The relative response of hypocotyls of microgravity-grown seedlings to the stimuli provided by the in-flight centrifuge was: wild type > starch-deficient mutants. Although the protoplast pressure model for gravity perception cannot be excluded, these results are consistent with a statolith-based model for perception in plants.

  13. Gravitropism of hypocotyls of wild-type and starch-deficient Arabidopsis seedlings in spaceflight studies

    NASA Technical Reports Server (NTRS)

    Kiss, J. Z.; Edelmann, R. E.; Wood, P. C.

    1999-01-01

    The major purpose of this spaceflight project was to investigate the starch-statolith hypothesis for gravity perception, and a secondary goal was to study plant growth and development under spaceflight conditions. This research was based on our ground studies of gravity perception in the wild type and three starch-deficient (one starchless and two reduced starch) mutants of Arabidopsis thaliana (L.) Heynh. Dark-grown seedlings that developed in microgravity were given one of several (30 min, 60 min, or 90 min) 1-g stimuli by an on-board centrifuge, and additional controls for seedling development also were performed. These latter control experiments included a morphological study of plants that developed in space in microgravity (F microg), in space on a centrifuge (F 1g), on the ground (G 1g), and on a rotating clinostat on the ground. Since elevated levels of ethylene were reported in the spacecraft atmosphere, additional controls for morphology and gravitropism with added ethylene also were performed. While exogenous ethylene reduced the absolute magnitude of the response in all four strains of Arabidopsis, this gas did not appear to change the relative graviresponsiveness among the strains. The relative response of hypocotyls of microgravity-grown seedlings to the stimuli provided by the in-flight centrifuge was: wild type > starch-deficient mutants. Although the protoplast pressure model for gravity perception cannot be excluded, these results are consistent with a statolith-based model for perception in plants.

  14. Non-Covalent Wild-Type-Sparing Inhibitors of EGFR T790M

    PubMed Central

    Lee, Ho-June; Schaefer, Gabriele; Heffron, Timothy P.; Shao, Lily; Ye, Xiaofen; Sideris, Steve; Malek, Shiva; Chan, Emily; Merchant, Mark; La, Hank; Ubhayakar, Savita; Yauch, Robert L.; Pirazzoli, Valentina; Politi, Katerina; Settleman, Jeff

    2013-01-01

    Approximately half of EGFR mutant non-small cell lung cancer (NSCLC) patients treated with small molecule EGFR kinase inhibitors develop drug resistance associated with the EGFR T790M “gatekeeper” substitution, prompting efforts to develop covalent EGFR inhibitors, which can effectively suppress EGFR T790M in pre-clinical models. However, these inhibitors have yet to prove clinically efficacious, and their toxicity in skin, reflecting activity against wild-type EGFR, may limit dosing required to effectively suppress EGFR T790M in vivo. While profiling sensitivity to various kinase inhibitors across a large cancer cell line panel, we identified indolocarbazole compounds, including a clinically well-tolerated FLT3 inhibitor, as potent and reversible inhibitors of EGFR T790M, which spare wild-type EGFR. These findings demonstrate the utility of broad cancer cell profiling of kinase inhibitor efficacy to identify unanticipated novel applications, and they identify indolocarbazole compounds as potentially effective EGFR inhibitors in the context of T790M-mediated drug resistance in NSCLC. PMID:23229345

  15. Determination of the dipole moments of RNAse SA wild type and a basic mutant.

    PubMed

    Chari, Ravi; Singh, Shubhadra N; Yadav, Sandeep; Brems, David N; Kalonia, Devendra S

    2012-04-01

    In this study, we report the effects of acidic to basic residue point mutations (5K) on the dipole moment of RNAse SA at different pHs. Dipole moments were determined by measuring solution capacitance of the wild type (WT) and the 5K mutant with an impedance analyzer. The dipole moments were then (1) compared with theoretically calculated dipole moments, (2) analyzed to determine the effect of the point mutations, and (3) analyzed for their contribution to overall protein-protein interactions (PPI) in solution as quantitated by experimentally derived second virial coefficients. We determined that experimental and calculated dipoles were in reasonable agreement. Differences are likely due to local motions of residue side chains, which are not accounted for by the calculated dipole. We observed that the proteins' dipole moments increase as the pH is shifted further from their isoelectric points and that the wild-type dipole moments were greater than those of the 5K. This is likely due to an increase in the proportion of one charge (either negative or positive) relative to the other. A greater charge disparity corresponded to a larger dipole moment. Finally, the larger dipole moments of the WT resulted in greater attractive overall PPI for that protein as compared to the 5K.

  16. Craniofacial statistical deformation models of wild-type mice and Crouzon mice

    NASA Astrophysics Data System (ADS)

    Ólafsdóttir, Hildur; Darvann, Tron A.; Ersbøll, Bjarne K.; Hermann, Nuno V.; Oubel, Estanislao; Larsen, Rasmus; Frangi, Alejandro F.; Larsen, Per; Perlyn, Chad A.; Morriss-Kay, Gillian M.; Kreiborg, Sven

    2007-03-01

    Crouzon syndrome is characterised by premature fusion of cranial sutures and synchondroses leading to craniofacial growth disturbances. The gene causing the syndrome was discovered approximately a decade ago and recently the first mouse model of the syndrome was generated. In this study, a set of Micro CT scans of the heads of wild-type (normal) mice and Crouzon mice were investigated. Statistical deformation models were built to assess the anatomical differences between the groups, as well as the within-group anatomical variation. Following the approach by Rueckert et al. we built an atlas using B-spline-based nonrigid registration and subsequently, the atlas was nonrigidly registered to the cases being modelled. The parameters of these registrations were then used as input to a PCA. Using different sets of registration parameters, different models were constructed to describe (i) the difference between the two groups in anatomical variation and (ii) the within-group variation. These models confirmed many known traits in the wild-type and Crouzon mouse craniofacial anatomy. However, they also showed some new traits.

  17. Wild-type macrophages reverse disease in heme oxygenase 1-deficient mice.

    PubMed

    Kovtunovych, Gennadiy; Ghosh, Manik C; Ollivierre, Wade; Weitzel, R Patrick; Eckhaus, Michael A; Tisdale, John F; Yachie, Akihiro; Rouault, Tracey A

    2014-08-28

    Loss-of-function mutation in the heme oxygenase 1 (Hmox1) gene causes a rare and lethal disease in children, characterized by severe anemia and intravascular hemolysis, with damage to endothelia and kidneys. Previously, we found that macrophages engaged in recycling of red cells were depleted from the tissues of Hmox1(-/-) mice, which resulted in intravascular hemolysis and severe damage to the endothelial system, kidneys, and other organs. Here, we report that subablative bone marrow transplantation (BMT) has a curative effect for disease in Hmox1(-/-) animals as a result of restoration of heme recycling by repopulation of the tissues with wild-type macrophages. Although engraftment was transient, BMT reversed anemia, normalized blood chemistries and iron metabolism parameters, and prevented renal damage. The largest proportion of donor-derived cells was observed in the livers of transplanted animals. These cells, identified as Kupffer cells with high levels of Hmox1 expression, persisted months after transient engraftment of the donor bone marrow and were responsible for the full restoration of heme-recycling ability in Hmox1(-/-) mice and reversing Hmox1-deficient phenotype. Our findings suggest that BMT or the development of specific cell therapies to repopulate patients' tissues with wild-type or reengineered macrophages represent promising approaches for HMOX1 deficiency treatment in humans.

  18. Healthy and tumoral tissue resistivity in wild-type and sparc-/- animal models.

    PubMed

    Meroni, D; Mauri, G; Bovio, D; Bianchi, A M; Chiodoni, C; Colombo, M P; Meroni, E; Aliverti, A

    2016-12-01

    Despite the technological improvement of radiologic, endoscopic and nuclear imaging, the accuracy of diagnostic procedures for tumors can be limited whenever a mass-forming lesion is identified. This is true also because bioptical sampling cannot be properly guided into the lesions so as to puncture neoplastic tissue and to avoid necrotic areas. Under these circumstances, invasive and expensive procedures are still required to obtain diagnosis which is mandatory to plan the most appropriate therapeutic strategy. In order to test if electrical impedance spectroscopy may be helpful in providing further evidence for cancer detection, resistivity measurements were taken on 22 mice, 11 wild-type and 11 sparc-/- (knock out for the protein SPARC: secreted protein acidic and rich in cysteine), bearing mammary carcinomas, by placing a needle-probe into tumor, peritumoral and contralateral healthy fat areas. Tumor resistivity was significantly lower than both peritumoral fat and contralateral fat tissues. Resistivity in sparc-/- mice was lower than wild-type animals. A significant frequency dependence of resistivity was present in tissues analyzed. We conclude that accurate measurements of resistivity may allow to discriminate between tissues with different pathological and/or structural characteristics. Therefore, resistivity measurements could be considered for in vivo detection and differential diagnosis of tumor masses.

  19. In Vitro Root Development in Arabidopsis Thaliana Wild-Type and scr Mutants under Clinorotation

    NASA Astrophysics Data System (ADS)

    Kordyum, E. L.; Sarnatska, V. V.; Talalaiev, A. S.; Ovcharenko, Y. V.

    2008-06-01

    A task of our experiments was to study in vitro rhizogenesis in Arabidopsis thaliana wild type and scr mutants under slow horizontal clinorotation as a convenient model to clear up a question, whether root morphogenesis de novo will occur normally in simulated microgravity. Two methods for obtaining A. thaliana roots in vitro were used: 1) from the primary callus of leaf origin and 2) directly from leaf explants. Light and electron microscopy and RT-PCR were used for an analysis of the experimental materials. Graviperceptive cells differentiated in roots formed de novo from callus and leaf explants of wild type and scr mutants but did not function under clinorotation. Tissue and cell type patterning in a root proper as well as gene expression in all variants in the control and under clinorotation were similar that gives new evidence on normal morphogenesis in altered gravity. We proposed such model for performing the experiments on board the ISS to study morphogenesis in vitro, including differentiation of graviperceptive cells.

  20. Physiological effects of fenpropimorph on wild-type Saccharomyces cerevisiae and fenpropimorph-resistant mutants.

    PubMed Central

    Lorenz, R T; Parks, L W

    1991-01-01

    Fenpropimorph-resistant mutants of Saccharomyces cerevisiae were isolated by a gradient selection procedure. The mutants were cross-resistant to other morpholines (fenpropidin, dodemorph, tridemorph) and 15-azasterol, but were susceptible to azoles (miconazole, clotrimazole, ketoconazole) and nystatin. In the absence of fenpropimorph, the major sterol produced by the mutants and the parental strain was ergosterol. In the presence of fenpropimorph, ignosterol (ergosta-8,14-dien-3 beta-ol) was the major sterol produced by the mutants and the parental strain. The resistance to fenpropimorph involves two recessive genes, each of which allows a semiresistance, when they are isolated apart from one another. Strain JR4 (erg3 erg11), which produces 14-methylfecosterol [14 alpha-methyl-ergosta-8,24(28)-dien- 3-beta-ol) as the major sterol in the presence or absence of fenpropimorph, was also found to be resistant to the drug. The growth inhibitory effect of fenpropimorph on wild-type cells appears to be linked to the production of ignosterol. The uptake of exogenous sterol by wild-type cells was greatly enhanced in the presence of fenpropimorph. The growth inhibition caused by fenpropimorph could only be overcome with bulk levels of exogenous C-5,6-unsaturated sterols. PMID:1929324

  1. Spatial encoding in spinal sensorimotor circuits differs in different wild type mice strains

    PubMed Central

    Thelin, Jonas; Schouenborg, Jens

    2008-01-01

    Background Previous studies in the rat have shown that the spatial organisation of the receptive fields of nociceptive withdrawal reflex (NWR) system are functionally adapted through experience dependent mechanisms, termed somatosensory imprinting, during postnatal development. Here we wanted to clarify 1) if mice exhibit a similar spatial encoding of sensory input to NWR as previously found in the rat and 2) if mice strains with a poor learning capacity in various behavioural tests, associated with deficient long term potention, also exhibit poor adaptation of NWR. The organisation of the NWR system in two adult wild type mouse strains with normal long term potentiation (LTP) in hippocampus and two adult wild type mouse strains exhibiting deficiencies in corresponding LTP were used and compared to previous results in the rat. Receptive fields of reflexes in single hindlimb muscles were mapped with CO2 laser heat pulses. Results While the spatial organisation of the nociceptive receptive fields in mice with normal LTP were very similar to those in rats, the LTP impaired strains exhibited receptive fields of NWRs with aberrant sensitivity distributions. However, no difference was found in NWR thresholds or onset C-fibre latencies suggesting that the mechanisms determining general reflex sensitivity and somatosensory imprinting are different. Conclusion Our results thus confirm that sensory encoding in mice and rat NWR is similar, provided that mice strains with a good learning capability are studied and raise the possibility that LTP like mechanisms are involved in somatosensory imprinting. PMID:18495020

  2. An alternative approach for gene transfer in trees using wild-type Agrobacterium strains.

    PubMed

    Brasileiro, A C; Leplé, J C; Muzzin, J; Ounnoughi, D; Michel, M F; Jouanin, L

    1991-09-01

    Micropropagated shoots of three forest tree species, poplar (Populus tremula x P. alba), wild cherry (Prunus avium L.) and walnut (Juglans nigra x J. regia), were inoculated each with six different wild-type Agrobacterium strains. Poplar and wild cherry developed tumors that grew hormone-independently, whereas on walnut, gall formation was weak. On poplar and wild cherry, tumors induced by nopaline strains developed spontaneously shoots that had a normal phenotype and did not carry oncogenic T-DNA. From these observations, we have established a co-inoculation method to transform plants, using poplar as an experimental model. The method is based on inoculation of stem internodes with an Agrobacterium suspension containing both an oncogenic strain that induces shoot differentiation and a disarmed strain that provides the suitable genes in a binary vector. We used the vector pBI121 carrying neo (kanamycin resistance) and uidA (beta-glucuronidase) genes to facilitate early selection and screening. Poplar plants derived from kanamycin-resistant shoots that did not carry oncogenic T-DNA, were shown to contain and to express neo and uidA genes. These results suggest that wild-type Agrobacterium strains that induce shoot formation directly from tumors can be used as a general tool for gene transfer, avoiding difficult regeneration procedures.

  3. Recovery of the wild type atomic flexibility in the HIV-1 protease double mutants.

    PubMed

    De Conto, Valderes; Braz, Antônio S K; Perahia, David; Scott, Luis P B

    2015-06-01

    The emergence of drug resistant mutations due to the selective pressure exerted by antiretrovirals, including protease inhibitors (PIs), remains a major problem in the treatment of AIDS. During PIs therapy, the occurrence of primary mutations in the wild type HIV-1 protease reduces both the affinity for the inhibitors and the viral replicative capacity compared to the wild type (WT) protein, but additional mutations compensate for this reduced viral fitness. To investigate this phenomenon from the structural point of view, we combined Molecular Dynamics and Normal Mode Analysis to analyze and compare the variations of the flexibility of C-alpha atoms and the differences in hydrogen bond (h-bond) network between the WT and double mutants. In most cases, the flexibility profile of the double mutants was more often similar to that of the WT than to that of the related single base mutants. All single mutants showed a significant alteration in h-bond formation compared to WT. Most of the significant changes occur in the border between the flap and cantilever regions. We found that all the considered double mutants have their h-bond pattern significantly altered in comparison to the respective single base mutants affecting their flexibility profile that becomes more similar to that of WT. This WT flexibility restoration in the double mutants appears as an important factor for the HIV-1 fitness recovery observed in patients.

  4. Retinal ganglion cell responses to voltage and current stimulation in wild-type and rd1 mouse retinas

    NASA Astrophysics Data System (ADS)

    Goo, Yong Sook; Ye, Jang Hee; Lee, Seokyoung; Nam, Yoonkey; Ryu, Sang Baek; Kim, Kyung Hwan

    2011-06-01

    Retinal prostheses are being developed to restore vision for those with retinal diseases such as retinitis pigmentosa or age-related macular degeneration. Since neural prostheses depend upon electrical stimulation to control neural activity, optimal stimulation parameters for successful encoding of visual information are one of the most important requirements to enable visual perception. In this paper, we focused on retinal ganglion cell (RGC) responses to different stimulation parameters and compared threshold charge densities in wild-type and rd1 mice. For this purpose, we used in vitro retinal preparations of wild-type and rd1 mice. When the neural network was stimulated with voltage- and current-controlled pulses, RGCs from both wild-type and rd1 mice responded; however the temporal pattern of RGC response is very different. In wild-type RGCs, a single peak within 100 ms appears, while multiple peaks (approximately four peaks) with ~10 Hz rhythm within 400 ms appear in RGCs in the degenerated retina of rd1 mice. We find that an anodic phase-first biphasic voltage-controlled pulse is more efficient for stimulation than a biphasic current-controlled pulse based on lower threshold charge density. The threshold charge densities for activation of RGCs both with voltage- and current-controlled pulses are overall more elevated for the rd1 mouse than the wild-type mouse. Here, we propose the stimulus range for wild-type and rd1 retinas when the optimal modulation of a RGC response is possible.

  5. Lymphotropism and host responses during acute wild-type canine distemper virus infections in a highly susceptible natural host.

    PubMed

    Nielsen, Line; Søgaard, Mette; Jensen, Trine Hammer; Andersen, Mads Klindt; Aasted, Bent; Blixenkrone-Møller, Merete

    2009-09-01

    The mechanisms behind the in vivo virulence of immunosuppressive wild-type morbillivirus infections are still not fully understood. To investigate lymphotropism and host responses, we have selected the natural host model of canine distemper virus (CDV) infection in mink. This model displays multisystemic infection, similar to measles virus and rinderpest virus infections in their susceptible natural hosts. The wild-type CDVs investigated provoked marked virulence differences, inducing mild versus marked to severe acute disease. The mildly virulent wild-type virus induced transient lymphopenia, despite the development of massive infection of peripheral blood mononuclear cells (PBMCs) exceeding that determined for the highly virulent wild-type virus, indicating an inverse relationship between acute virulence and the extent of viraemia in the investigated wild-type viruses. Single-cell cytokine production in PBMCs was investigated throughout the acute infections. We observed Th1- and Th2-type cytokine responses beginning in the prodromal phase, and late inflammatory responses were shared between the wild-type infections.

  6. GATA2 is epigenetically repressed in human and mouse lung tumors and is not requisite for survival of KRAS mutant lung cancer

    PubMed Central

    Tessema, Mathewos; Yingling, Christin M.; Snider, Amanda M.; Do, Kieu; Juri, Daniel E.; Picchi, Maria A.; Zhang, Xiequn; Liu, Yushi; Leng, Shuguang; Tellez, Carmen S.; Belinsky, Steven A.

    2014-01-01

    Introduction GATA2 was recently described as a critical survival factor and therapeutic target for KRAS mutant non-small cell lung cancer (NSCLC). However, whether this role is affected by epigenetic repression of GATA2 in lung cancer is unclear. Methods GATA2 expression and promoter CpG island methylation were evaluated using human and mouse NSCLC cell lines and tumor-normal pairs. In vitro assays were used to study GATA2 repression on cell survival and during tobacco carcinogen-induced transformation. Results GATA2 expression in KRAS wild-type (n=15) and mutant (n=10) NSCLC cell lines and primary lung tumors (n=24) was significantly lower, 1.3–33.6-fold (p=2.2×10−9), compared to corresponding normal lung. GATA2 promoter was unmethylated in normal lung (0/10) but frequently methylated in lung tumors (96%, 159/165) and NSCLC cell lines (97%, 30/31). This highly prevalent aberrant methylation was independently validated using TCGA data for 369 NSCLC tumor-normal pairs. In vitro studies using an established carcinogen-induced pre-malignancy model revealed that GATA2 expression was initially repressed by chromatin remodeling followed by cytosine methylation during transformation. Similarly, expression of Gata2 in NNK-induced mouse lung tumors (n=6) and cell lines (n=5) was 5-fold and 100-fold lower, respectively, than normal mouse lung. Finally, siRNA-mediated knockdown of GATA2 in KRAS mutant [human (n=4) and murine (n=5)] and wild-type [human (n=4)] NSCLC cell lines showed that further reduction of expression (up to 95%) does not induce cell death. Conclusion GATA2 is epigenetically repressed in human and mouse lung tumors and its further inhibition is not a valid therapeutic strategy for KRAS mutant lung cancer. PMID:24807155

  7. Implication of K-ras and p53 in colorectal cancer carcinogenesis in Tunisian population cohort.

    PubMed

    Ines, Chaar; Donia, Ounissi; Rahma, Boughriba; Ben Ammar, Azza; Sameh, Amara; Khalfallah, Taher; Abdelmajid, Ben Hmida; Sabeh, Mzabi; Saadia, Bouraoui

    2014-07-01

    According to the multistep route of genetic alterations in the colorectal adenoma-carcinoma sequence, the complex K-ras/p53 mutation is one of the first alterations to occur and represent an important genetic event in colorectal cancer (CRC). An evaluation of the mutation spectra in K-ras and p53 gene was effected in 167 Tunisian patients with sporadic CRC to determine whether our populations have similar pattern of genetic alteration as in Maghrebin's population. Mutation patterns of codon 12-13 of K-ras and exon 5-8 of p53 were analyzed by immunohistochemistry and PCR-SSCP and confirmed by sequencing. Mutations in the K-ras gene were detected in 31.13 % and affect the women more than the men (p = 0.008). Immunostaining showed that expression of p21 ras was correlated with the advanced age (p = 0.004), whereas loss of signal was associated with mucinous histotype (p = 0.003). Kaplan-Meier survival curve found that patients with the K-ras mutation had a shorter survival compared with patients without mutation (p = 0.005). Alteration in p53 was seen in 17.4 % of patients and affects three hot spot codons such as 175, 245, and 248. Overexpression of p53 was seen in 34.1 % and correlated with tumor node metastasis (TNM) advanced stage (p = 0.037) and mucinous histotype (p = 0.001). A high concordance between p53 expression and alteration (p<0.005) was shown. Concomitant mutations in K-ras and p53 gene were detected in only 4 % of tumors. K-ras and p53 undergo separate pathways in colorectal tumorogenesis. Interestingly, mutations in the K-ras gene might be considered a valuable prognostic factor correlated to poor outcome. p53 gene alterations were rather low in our set, and methylation pattern of p53 is required to elucidate the molecular basis of this protein in CRC.

  8. Targeting KRAS-dependent tumors with AZD4785, a high-affinity therapeutic antisense oligonucleotide inhibitor of KRAS.

    PubMed

    Ross, Sarah J; Revenko, Alexey S; Hanson, Lyndsey L; Ellston, Rebecca; Staniszewska, Anna; Whalley, Nicky; Pandey, Sanjay K; Revill, Mitchell; Rooney, Claire; Buckett, Linda K; Klein, Stephanie K; Hudson, Kevin; Monia, Brett P; Zinda, Michael; Blakey, David C; Lyne, Paul D; Macleod, A Robert

    2017-06-14

    Activating mutations in KRAS underlie the pathogenesis of up to 20% of human tumors, and KRAS is one of the most frequently mutated genes in cancer. Developing therapeutics to block KRAS activity has proven difficult, and no direct inhibitor of KRAS function has entered clinical trials. We describe the preclinical evaluation of AZD4785, a high-affinity constrained ethyl-containing therapeutic antisense oligonucleotide (ASO) targeting KRAS mRNA. AZD4785 potently and selectively depleted cellular KRAS mRNA and protein, resulting in inhibition of downstream effector pathways and antiproliferative effects selectively in KRAS mutant cells. AZD4785-mediated depletion of KRAS was not associated with feedback activation of the mitogen-activated protein kinase (MAPK) pathway, which is seen with RAS-MAPK pathway inhibitors. Systemic delivery of AZD4785 to mice bearing KRAS mutant non-small cell lung cancer cell line xenografts or patient-derived xenografts resulted in inhibition of KRAS expression in tumors and antitumor activity. The safety of this approach was demonstrated in mice and monkeys with KRAS ASOs that produced robust target knockdown in a broad set of tissues without any adverse effects. Together, these data suggest that AZD4785 is an attractive therapeutic for the treatment of KRAS-driven human cancers and warrants further development. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  9. KRAS Mutation Status and Clinical Outcome of Preoperative Chemoradiation With Cetuximab in Locally Advanced Rectal Cancer: A Pooled Analysis of 2 Phase II Trials

    SciTech Connect

    Kim, Sun Young; Shim, Eun Kyung; Yeo, Hyun Yang; Baek, Ji Yeon; Hong, Yong Sang; Kim, Dae Yong; Kim, Tae Won; Kim, Jee Hyun; Im, Seock-Ah; Jung, Kyung Hae; Chang, Hee Jin

    2013-01-01

    Purpose: Cetuximab-containing chemotherapy is known to be effective for KRAS wild-type metastatic colorectal cancer; however, it is not clear whether cetuximab-based preoperative chemoradiation confers an additional benefit compared with chemoradiation without cetuximab in patients with locally advanced rectal cancer. Methods and Materials: We analyzed EGFR, KRAS, BRAF, and PIK3CA mutation status with direct sequencing and epidermal growth factor receptor (EGFR) and Phosphatase and tensin homolog (PTEN) expression status with immunohistochemistry in tumor samples of 82 patients with locally advanced rectal cancer who were enrolled in the IRIX trial (preoperative chemoradiation with irinotecan and capecitabine; n=44) or the ERBIRIX trial (preoperative chemoradiation with irinotecan and capecitabine plus cetuximab; n=38). Both trials were similarly designed except for the administration of cetuximab; radiation therapy was administered at a dose of 50.4 Gy/28 fractions and irinotecan and capecitabine were given at doses of 40 mg/m{sup 2} weekly and 1650 mg/m{sup 2}/day, respectively, for 5 days per week. In the ERBIRIX trial, cetuximab was additionally given with a loading dose of 400 mg/m{sup 2} on 1 week before radiation, and 250 mg/m{sup 2} weekly thereafter. Results: Baseline characteristics before chemoradiation were similar between the 2 trial cohorts. A KRAS mutation in codon 12, 13, and 61 was noted in 15 (34%) patients in the IRIX cohort and 5 (13%) in the ERBIRIX cohort (P=.028). Among 62 KRAS wild-type cancer patients, major pathologic response rate, disease-free survival and pathologic stage did not differ significantly between the 2 cohorts. No mutations were detected in BRAF exon 11 and 15, PIK3CA exon 9 and 20, or EGFR exon 18-24 in any of the 82 patients, and PTEN and EGFR expression were not predictive of clinical outcome. Conclusions: In patients with KRAS wild-type locally advanced rectal cancer, the addition of cetuximab to the chemoradiation with

  10. Overexpression of alpha2C-adrenoceptors impairs water maze navigation.

    PubMed

    Björklund, M; Sirviö, J; Riekkinen, M; Sallinen, J; Scheinin, M; Riekkinen, P

    2000-01-01

    We investigated the role of overexpression of alpha2C-adrenoceptors in water maze navigation in mice transgenically manipulated to have a threefold overexpression of the alpha2C-adrenoreceptors. Alpha2C-adrenoreceptors overexpressing mice swam more in the peripheral annulus of the pool and did not find the hidden escape platform as well as the wild type control mice. A subtype-nonselective alpha2-adrenoreceptor antagonist, atipamezole (ATI, 1000 microg/kg, s.c.), fully reversed the deficit in platform finding and search strategy in overexpressing mice. Noradrenaline depletion (-95%) induced by N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4) did not impair platform finding of wild type or overexpressing mice. The DSP-4 lesion slightly increased swimming in the peripheral annulus in wild type mice, but not in overexpressing mice. The DSP-4 lesion produced a dissociable effect on the action of atipamezole to improve platform finding and search strategy in overexpressing mice: atipamezole did not alleviate the platform finding deficit in DSP-4 lesioned overexpressing mice, but normalized their abnormal search strategy. These results suggest that the abnormal search pattern and deficit in the accuracy of platform finding are mediated by constitutive activity of overexpressed alpha2C-adrenoreceptors.

  11. Experimental investigation of magneto-aerotaxis on wild-type magnetotactic bacteria in sediment

    NASA Astrophysics Data System (ADS)

    Mao, X.; Egli, R.

    2012-12-01

    Magnetotactic bacteria (MB) synthesize chains of magnetic particles, called magnetosomes, which provide a magnetic dipole that passively aligns the cells along the geomagnetic field. Flagellar propulsion allows MB to swim straight along field lines in what is known as magnetotaxis. The flagellum rotation sense is controlled by the chemical environment, so that MB can efficiently move across chemically stratified environments to reach the so-called oxic-anoxic interface (OAI). This combination of oriented swimming controlled by chemical (oxygen) sensing is called magneto-aerotaxis (Frankel 1997). Experiments with MB cultures show that magnetic spirilla can change instantaneously the swimming direction, while the behaviour of cocci depends on a sort of 'internal state' dictated by their original location with respect to the OAI. Here, we present first results the magneto-aerotactic behaviour of wild-type MB living in microcosms created with sediment retrieved from lake Chiemsee (Bavaria, Germany). In these microcosms, a stable population of MB (mainly unidentified strains of cocci, and Magnetobacterium Bavaricum) occur in the upmost few cm below the sediment surface, with maximum concentrations just below the OAI. We tested the reaction of this MB population to changes in chemical conditions by putting the microcosm inside a glove box with controlled oxygen-free atmospheres (N2 and CO2). A new equilibrium was reached within few weeks, with the OAI first moving upward and then disappearing. The depth distribution and swimming direction of MB was tested during and after the formation of a new equilibrium. We were never able to observe swimming directions consistent with bacteria moving upward in the sediment, as it was the case with cultured cocci in Frankel [1997], even long time after the entire sediment column became completely anoxic. Nevertheless, the disappearance of the OAI was accompanied by a slight but significant decrease of the total MB population

  12. Structural Insights into Conformational Stability of Wild-Type and Mutant β1-Adrenergic Receptor

    PubMed Central

    Balaraman, Gouthaman S.; Bhattacharya, Supriyo; Vaidehi, Nagarajan

    2010-01-01

    Abstract Recent experiments to derive a thermally stable mutant of turkey beta-1-adrenergic receptor (β1AR) have shown that a combination of six single point mutations resulted in a 20°C increase in thermal stability in mutant β1AR. Here we have used the all-atom force-field energy function to calculate a stability score to detect stabilizing point mutations in G-protein coupled receptors. The calculated stability score shows good correlation with the measured thermal stability for 76 single point mutations and 22 multiple mutants in β1AR. We have demonstrated that conformational sampling of the receptor for various mutants improve the prediction of thermal stability by 50%. Point mutations Y227A5.58, V230A5.61, and F338M7.48 in the thermally stable mutant m23-β1AR stabilizes key microdomains of the receptor in the inactive conformation. The Y227A5.58 and V230A5.61 mutations stabilize the ionic lock between R1393.50 on transmembrane helix3 and E2856.30 on transmembrane helix6. The mutation F338M7.48 on TM7 alters the interaction of the conserved motif NPxxY(x)5,6F with helix8 and hence modulates the interaction of TM2-TM7-helix8 microdomain. The D186-R317 salt bridge (in extracellular loops 2 and 3) is stabilized in the cyanopindolol-bound wild-type β1AR, whereas the salt bridge between D184-R317 is preferred in the mutant m23. We propose that this could be the surrogate to a similar salt bridge found between the extracellular loop 2 and TM7 in β2AR reported recently. We show that the binding energy difference between the inactive and active states is less in m23 compared to the wild-type, which explains the activation of m23 at higher norepinephrine concentration compared to the wild-type. Results from this work throw light into the mechanism behind stabilizing mutations. The computational scheme proposed in this work could be used to design stabilizing mutations for other G-protein coupled receptors. PMID:20643076

  13. A New Microarray Substrate for Ultra-Sensitive Genotyping of KRAS and BRAF Gene Variants in Colorectal Cancer

    PubMed Central

    Pinzani, Pamela; Mancini, Irene; Vinci, Serena; Chiari, Marcella; Orlando, Claudio; Cremonesi, Laura; Ferrari, Maurizio

    2013-01-01

    Molecular diagnostics of human cancers may increase accuracy in prognosis, facilitate the selection of the optimal therapeutic regimen, improve patient outcome, reduce costs of treatment and favour development of personalized approaches to patient care. Moreover sensitivity and specificity are fundamental characteristics of any diagnostic method. We developed a highly sensitive microarray for the detection of common KRAS and BRAF oncogenic mutations. In colorectal cancer, KRAS and BRAF mutations have been shown to identify a cluster of patients that does not respond to anti-EGFR therapies; the identification of these mutations is therefore clinically extremely important. To verify the technical characteristics of the microarray system for the correct identification of the KRAS mutational status at the two hotspot codons 12 and 13 and of the BRAFV600E mutation in colorectal tumor, we selected 75 samples previously characterized by conventional and CO-amplification at Lower Denaturation temperature-PCR (COLD-PCR) followed by High Resolution Melting analysis and direct sequencing. Among these samples, 60 were collected during surgery and immediately steeped in RNAlater while the 15 remainders were formalin-fixed and paraffin-embedded (FFPE) tissues. The detection limit of the proposed method was different for the 7 KRAS mutations tested and for the V600E BRAF mutation. In particular, the microarray system has been able to detect a minimum of about 0.01% of mutated alleles in a background of wild-type DNA. A blind validation displayed complete concordance of results. The excellent agreement of the results showed that the new microarray substrate is highly specific in assigning the correct genotype without any enrichment strategy. PMID:23536897

  14. Synergistic effects of acyclovir and 3, 19-isopropylideneandrographolide on herpes simplex virus wild types and drug-resistant strains.

    PubMed

    Priengprom, Thongkoon; Ekalaksananan, Tipaya; Kongyingyoes, Bunkerd; Suebsasana, Supawadee; Aromdee, Chantana; Pientong, Chamsai

    2015-03-11

    An andrographolide analogue, 3, 19-isopropylideneandrographolide (IPAD), exerts an inhibitory effect on replication of wild-type herpes simplex virus serotype 1 (HSV-1). In this study, we examined the anti-viral activity of IPAD on HSV wild types (HSV-1 strain KOS and HSV-2 clinical isolate) and HSV-1 drug-resistant strains (DRs). Synergistic effects of IPAD with acyclovir (ACV) were also evaluated. MTT and cytopathic effect (CPE) reduction assays were performed to determine cytotoxicity and anti-viral activities, respectively. A combination assay was used to determine synergistic effects of IPAD and ACV. Presence of viral DNA and protein in experimental cells was investigated using the polymerase chain reaction and western blotting, respectively. A non-cytotoxic concentration of IPAD (20.50 μM) completely inhibited CPE formation induced by HSV wild types and HSV-1 DRs after viral entry into the cells. The anti-HSV activities included inhibition of viral DNA and protein synthesis. The minimum inhibitory concentrations of ACV for HSV wild types and HSV-1 DRs were 20.20 and 2,220.00 μM, respectively. Combination of ACV with IPAD showed synergistic effects in inhibition of CPE formation, viral DNA and protein synthesis by HSV wild types as well as HSV-1 DRs. For the synergistic effects on HSV wild types and HSV-1 DRs, the effective concentrations of ACV were reduced. These results showed the inhibitory potential of IPAD on HSV wild types and HSV-1 DRs and suggested that IPAD could be used in combination with ACV for treatment of HSV-1 DRs infections.

  15. Quality assessment of the blue mussel (Mytilus edulis): comparison between commercial and wild types.

    PubMed

    De Witte, B; Devriese, L; Bekaert, K; Hoffman, S; Vandermeersch, G; Cooreman, K; Robbens, J

    2014-08-15

    This study compared species identity, microplastics, chemical and microbial contamination between consumption mussels and wild type mussels, collected at Belgian department stores and Belgian groynes and quaysides, respectively. Species identification based on genetic analysis showed a high number of Mytilus (M.) edulis compared to M. galloprovincialis and M. edulis/galloprovincialis hybrid mussels. The number of total microplastics varied from 2.6 to 5.1 fibres/10 g of mussel. A higher prevalence of orange fibres at quaysides is related to fisheries activities. Chemical contamination of polycyclic aromatic hydrocarbons and polychlorobiphenyls could be related to industrial activities and water turbidity, with maximum concentrations at the quayside of port Zeebrugge. The inverse was noted for Escherichia coli contamination, which was relatively low at Zeebrugge quayside with a total count of 3.9 × 10(2)CFU/100 g tissue, due to limited agricultural effluents. Results of this complementary analysis stress the importance of integrated monitoring and quality assessment.

  16. Sinapic acid ester metabolism in wild type and a sinapoylglucose-accumulating mutant of arabidopsis.

    PubMed Central

    Lorenzen, M; Racicot, V; Strack, D; Chapple, C

    1996-01-01

    Sinapoylmalate is one of the major phenylpropanoid metabolites that is accumulated in the vegetative tissue of Arabidopsis thaliana. A thin-layer chromatography-based mutant screen identified two allelic mutant lines that accumulated sinapoylglucose in their leaves in place of sinapoylmalate. Both mutations were found to be recessive and segregated as single Mendelian genes. These mutants define a new locus called SNG1 for sinapoylglucose accumulator. Plants that are homozygous for the sng1 mutation accumulate normal levels of malate in their leaves but lack detectable levels of the final enzyme in sinapate ester biosynthesis, sinapoylglucose:malate sinapoyltransferase. A study of wild-type and sng1 seedlings found that sinapic acid ester biosynthesis in Arabidopsis is developmentally regulated and that the accumulation of sinapate esters is delayed in sng1 mutant seedlings. PMID:8972602

  17. Neurophysiology of Flight in Wild-Type and a Mutant Drosophila

    PubMed Central

    Levine, Jon D.; Wyman, Robert J.

    1973-01-01

    We report the flight motor output pattern in Drosophila melanogaster and the neural network responsible for it, and describe the bursting motor output pattern in a mutant. There are 26 singly-innervated muscle fibers. There are two basic firing patterns: phase progression, shown by units that receive a common input but have no cross-connections, and phase stability, in which synergic units, receiving a common input and inhibiting each other, fire in a repeating sequence. Flies carrying the mutation stripe cannot fly. Their motor output is reduced to a short duration, high-frequency burst, but the patterning within bursts shows many of the characteristics of the wild type. The mutation is restricted in its effect, as the nervous system has normal morphology by light microscopy and other behaviors of the mutant are normal. Images PMID:4197927

  18. Genome sequence of SG33 strain and recombination between wild-type and vaccine myxoma viruses.

    PubMed

    Camus-Bouclainville, Christelle; Gretillat, Magalie; Py, Robert; Gelfi, Jacqueline; Guérin, Jean Luc; Bertagnoli, Stéphane

    2011-04-01

    Myxomatosis in Europe is the result of the release of a South America strain of myxoma virus in 1952. Several attenuated strains with origins in South America or California have since been used as vaccines in the rabbit industry. We sequenced the genome of the SG33 myxoma virus vaccine strain and compared it with those of other myxoma virus strains. We show that SG33 genome carries a large deletion in its right end. Furthermore, our data strongly suggest that the virus isolate from which SG33 is derived results from an in vivo recombination between a wild-type South America (Lausanne) strain and a California MSD-derived strain. These findings raise questions about the use of insufficiently attenuated virus in vaccination.

  19. Comparation of enhanced green fluorescent protein gene transfected and wild-type porcine neural stem cells.

    PubMed

    Zheng, Yue-Mao; An, Zhi-Xing; Zhao, Xiao-E; Quan, Fu-Sheng; Zhao, Hui-Ying; Zhang, Ya-Rong; Liu, Jun; He, Xiao-Ying; He, Xiao-Ning

    2010-02-01

    The aim of this study was to transfect and express the enhanced green fluorescence protein (EGFP) gene into porcine neural stem cells (NSCs) to determine whether EGFP can be used as a marker to monitor NSCs. NSCs were isolated from embryonic day 30 fetal pig brain and transfected with EGFP gene using lipofection. Transfected and wild-type NSCs were induced to differentiate into cells of neuronal and myogenic lineages. Markers of passage three NSCs and their differentiated cells were tested by reverse transcription polymerase chain reaction. The results showed that EGFP could be expressed in NSCs and the differentiated cells. NSCs expressed Nestin, NogoA, DCX, Hes1, Oct4, CD-90 and Sox2. NSCs could differentiated into astrocyte (GFAP(+)), oligodendrocyte (GalC(+)), neuron (NF(+), NSE(+) and MAP2(+)) and myocyte (myf-6(+) and myoD(+)). We concluded that EGFP can be used as a marker in monitoring NSCs.

  20. Resistivity profiles of wild-type, rd1, and rd10 mouse retina.

    PubMed

    Boshuo Wang; Weiland, James D

    2015-08-01

    Electrical impedance of the retina is a critical factor in retinal prostheses, determining the intraretinal current flow and potential distribution of electrical stimulation. Previous resistivity measurements in retina were limited to healthy retina, and didn't include mouse models, a common and important animal model in retinal research. This experimental study measured the resistivity profiles of wild-type, rd1, and rd10 mice, providing basis for computational simulations and predictive modeling studies. The peak resistance frequency method has been utilized to measure the resistivity profiles of the retina cross section, and the results show agreement with previous studies in retina of normal rats and embryonic chicks. Retinal degeneration affects the width of the profile, which is in agreement with histological measurements. Degeneration also results in lower peak resistivity. The results indicate that, on the mesoscopic scale, resistivity is dominated by spatial factors, while influence of remodeling on the cellular level is not apparent under such scale.

  1. Trilostane exerts antidepressive effects among wild-type, but not estrogen receptor [beta] knockout mice.

    PubMed

    Koonce, Carolyn J; Walf, Alicia A; Frye, Cheryl A

    2009-08-05

    Women with estrogen receptor (ER) positive breast cancer, who are treated with the ER blocker, tamoxifen, have an increased risk of depression. Trilostane, a 3b-hydroxysteroid dehydrogenase inhibitor, is now being used to treat tamoxifen-insensitive breast cancer. In-vitro assays show that trilostane may have actions through ERb. Results of in-vivo research shows that actions at ERb may underline some antidepressant effects of estrogen. We hypothesized that trilostane may exert antidepressive effects in the forced swim in part due to actions through ERb. Trilostane (25 mg/kg, intraperitoneally), compared with vehicle, had significant antidepressant-like effects but only when administered to wild-type, not ERb knockout, mice. Thus, actions of trilostane through ERb may underlie some of its antidepressant-like effects.

  2. Trilostane exerts antidepressive effects among wild-type, but not estrogen receptor β knockout mice

    PubMed Central

    Koonce, Carolyn J.; Walf, Alicia A.; Frye, Cheryl A.

    2013-01-01

    Women with estrogen receptor (ER) positive breast cancer, who are treated with the ER blocker, tamoxifen, have an increased risk of depression. Trilostane, a 3β-hydroxysteroid dehydrogenase inhibitor, is now being used to treat tamoxifen-insensitive breast cancer. In-vitro assays show that trilostane may have actions through ERβ. Results of in-vivo research shows that actions at ERβ may underline some antidepressant effects of estrogen. We hypothesized that trilostane may exert antidepressive effects in the forced swim in part due to actions through ERβ. Trilostane (25 mg/kg, intraperitoneally), compared with vehicle, had significant antidepressant-like effects but only when administered to wild-type, not ERβ knockout, mice. Thus, actions of trilostane through ERβ may underlie some of its antidepressant-like effects. PMID:19593916

  3. Intronic T-DNA insertion in Arabidopsis NBR1 conditionally affects wild-type transcript level

    PubMed Central

    Rodríguez, Milagros Collados; Wawrzyńska, Anna; Sirko, Agnieszka

    2014-01-01

    Abstract The SALK_135513 line of Arabidopsis thaliana is annotated by GenBank to have the T-DNA insertion in the fourth exon of NBR1 (At4g24690). Careful molecular analyses of the homozygous plants of SALK_135513 line indicated the place of T-DNA insertion in the fourth intron. Unexpectedly, 2 kinds of NBR1 transcripts, the wild-type and the mutated, resulting from alternative splicing events, were detected in those plants. Our findings explain the problems encountered by us with phenotypic evaluation of this line and emphasize the necessity for independent verification of the exact insertion site followed by careful expression studies when working with Arabidopsis T-DNA insertional mutants. PMID:25482782

  4. Intronic T-DNA insertion in Arabidopsis NBR1 conditionally affects wild-type transcript level.

    PubMed

    Rodríguez, Milagros Collados; Wawrzyńska, Anna; Sirko, Agnieszka

    2014-01-01

    The SALK_135513 line of Arabidopsis thaliana is annotated by GenBank to have the T-DNA insertion in the fourth exon of NBR1 (At4g24690). Careful molecular analyses of the homozygous plants of SALK_135513 line indicated the place of T-DNA insertion in the fourth intron. Unexpectedly, 2 kinds of NBR1 transcripts, the wild-type and the mutated, resulting from alternative splicing events, were detected in those plants. Our findings explain the problems encountered by us with phenotypic evaluation of this line and emphasize the necessity for independent verification of the exact insertion site followed by careful expression studies when working with Arabidopsis T-DNA insertional mutants.

  5. Cloning and nucleotide sequence of wild type and a mutant histidine decarboxylase from Lactobacillus 30a.

    PubMed

    Vanderslice, P; Copeland, W C; Robertus, J D

    1986-11-15

    Prohistidine decarboxylase from Lactobacillus 30a is a protein that autoactivates to histidine decarboxylase by cleaving its peptide chain between serines 81 and 82 and converting Ser-82 to a pyruvoyl moiety. The pyruvoyl group serves as the prosthetic group for the decarboxylation reaction. We have cloned and determined the nucleotide sequence of the gene for this enzyme from a wild type strain and from a mutant with altered autoactivation properties. The nucleotide sequence modifies the previously determined amino acid sequence of the protein. A tripeptide missed in the chemical sequence is inserted, and three other amino acids show conservative changes. The activation mutant shows a single change of Gly-58 to an Asp. Sequence analysis up- and downstream from the gene suggests that histidine decarboxylase is part of a polycistronic message, and that the transcriptional promotor region is strongly homologous to those of other Gram-positive organisms.

  6. The Phenotypic Effects of Royal Jelly on Wild-Type D. melanogaster Are Strain-Specific

    PubMed Central

    Morgan, Stefanie L.; Seggio, Joseph A.; Hicks, Jasmin A.; Sharp, Katherine A.; Axelrod, Jeffrey D.; Wang, Kevin C.

    2016-01-01

    The role for royal jelly (RJ) in promoting caste differentiation of honeybee larvae into queens rather than workers is well characterized. A recent study demonstrated that this poorly understood complex nutrition drives strikingly similar phenotypic effects in Drosophila melanogaster, such as increased body size and reduced developmental time, making possible the use of D. melanogaster as a model system for the genetic analysis of the cellular mechanisms underlying RJ and caste differentiation. We demonstrate here that RJ increases the body size of some wild-type strains of D. melanogaster but not others, and report significant delays in developmental time in all flies reared on RJ. These findings suggest that cryptic genetic variation may be a factor in the D. melanogaster response to RJ, and should be considered when attempting to elucidate response