Science.gov

Sample records for overexpressing human breast

  1. Cell type-dependent pathogenic functions of overexpressed human cathepsin B in murine breast cancer progression

    PubMed Central

    Bengsch, F; Buck, A; Günther, SC; Seiz, JR; Tacke, M; Pfeifer, D; von Elverfeldt, D; Sevenich, L; Hillebrand, LE; Kern, U; Sameni, M; Peters, C; Sloane, BF; Reinheckel, T

    2014-01-01

    The cysteine protease cathepsin B (CTSB) is frequently overexpressed in human breast cancer and correlated with a poor prognosis. Genetic deficiency or pharmacological inhibition of CTSB attenuates tumor growth, invasion and metastasis in mouse models of human cancers. CTSB is expressed in both cancer cells and cells of the tumor stroma, in particular in tumor-associated macrophages (TAM). In order to evaluate the impact of tumor- or stromal cell-derived CTSB on Polyoma Middle T (PyMT)-induced breast cancer progression, we used in vivo and in vitro approaches to induce human CTSB overexpression in PyMT cancer cells or stromal cells alone or in combination. Orthotopic transplantation experiments revealed that CTSB overexpression in cancer cells rather than in the stroma affects PyMT tumor progression. In 3D cultures, primary PyMT tumor cells showed higher extracellular matrix proteolysis and enhanced collective cell invasion when CTSB was overexpressed and proteolytically active. Coculture of PyMT cells with bone marrow-derived macrophages induced a TAM-like macrophage phenotype in vitro, and the presence of such M2-polarized macrophages in 3D cultures enhanced sprouting of tumor spheroids. We employed a doxycycline (DOX)-inducible CTSB expression system to selectively overexpress human CTSB either in cancer cells or in macrophages in 3D cocultures. Tumor spheroid invasiveness was only enhanced when CTSB was overexpressed in cancer cells, whereas CTSB expression in macrophages alone did not further promote invasiveness of tumor spheroids. We conclude that CTSB overexpression in the PyMT mouse model promotes tumor progression not by a stromal effect, but by a direct, cancer cell-inherent mode of action: CTSB overexpression renders the PyMT cancers more invasive by increasing proteolytic extracellular matrix protein degradation fostering collective cell invasion into adjacent tissue. PMID:24077280

  2. Apoptotic effect of tannic acid on fatty acid synthase over-expressed human breast cancer cells.

    PubMed

    Nie, Fangyuan; Liang, Yan; Jiang, Bing; Li, Xiabing; Xun, Hang; He, Wei; Lau, Hay Tong; Ma, Xiaofeng

    2016-02-01

    Breast cancer is one of the most common cancers and is the second leading cause of cancer mortality in women worldwide. Novel therapies and chemo-therapeutic drugs are urgently needed to be developed for the treatment of breast cancer. Increasing evidence suggests that fatty acid synthase (FAS) plays an important role in breast cancer, for the expression of FAS is significantly higher in human breast cancer cells than in normal cells. Tannic acid (TA), a natural polyphenol, possesses significant biological functions, including bacteriostasis, hemostasis, and anti-oxidant. Our previous studies demonstrated that TA is a natural FAS inhibitor whose inhibitory activity is stronger than that of classical FAS inhibitors, such as C75 and cerulenin. This study further assessed the effect and therapeutic potential of TA on FAS over-expressed breast cancer cells, and as a result, TA had been proven to possess the functions of inhibiting intracellular FAS activity, down-regulating FAS expression in human breast cancer MDA-MB-231 and MCF-7 cells, and inducing cancer cell apoptosis. Since high-expressed FAS is recognized as a molecular marker for breast cancer and plays an important role in cancer prognosis, these findings suggest that TA is a potential drug candidate for treatment of breast cancer.

  3. Human epidermal growth factor receptor 2 overexpression in breast cancer of patients with anti-Yo--associated paraneoplastic cerebellar degeneration.

    PubMed

    Rojas-Marcos, Iñigo; Picard, Geraldine; Chinchón, David; Gelpi, Ellen; Psimaras, Dimitri; Giometto, Bruno; Delattre, J Y; Honnorat, J; Graus, F

    2012-04-01

    Isolated case reports suggest that breast tumors from patients with paraneoplastic cerebellar degeneration (PCD) and Yo antibodies overexpress human epidermal growth factor receptor 2 (HER2). HER2 overexpression is present in 15%-25% of breast cancers and is associated with poor prognosis. We retrospectively analyzed the status of HER2 in breast tumors of 27 patients with anti-Yo-associated PCD to evaluate whether HER2 overexpression in this group of patients is higher than expected. In addition, we analyzed HER2 status of 19 breast tumors from patients with paraneoplastic neurological syndromes and Ri antibodies to see whether HER2 was specifically related to anti-Yo-associated PCD. We also assessed cdr2 expression (the onconeural antigen recognized by Yo antibodies) in 21 HER2-positive breast tumors from patients without paraneoplastic neurological syndromes. HER2 was overexpressed in 26 patients (96.3%) with anti-Yo-associated PCD but only in 2 patients (10.5%) with paraneoplastic neurological syndromes associated with Ri antibodies (P< .0001). Only 5 (23.8%) of the 21 HER2-positive breast tumors showed cdr2 immunoreactivity. This study shows a very high frequency of HER2 overexpression in breast cancers in patients with anti-Yo-associated PCD but not in those from patients with Ri antibodies. Although the expression of cdr2 onconeural antigen is not high in HER2-positive breast cancers, HER2 overexpression seems to be an important requirement to develop an anti-Yo-associated PCD.

  4. NUCKS overexpression in breast cancer

    PubMed Central

    Drosos, Yiannis; Kouloukoussa, Mirsini; Østvold, Anne Carine; Grundt, Kirsten; Goutas, Nikos; Vlachodimitropoulos, Dimitrios; Havaki, Sophia; Kollia, Panagoula; Kittas, Christos; Marinos, Evangelos; Aleporou-Marinou, Vassiliki

    2009-01-01

    Background NUCKS (Nuclear, Casein Kinase and Cyclin-dependent Kinase Substrate) is a nuclear, DNA-binding and highly phosphorylated protein. A number of reports show that NUCKS is highly expressed on the level of mRNA in several human cancers, including breast cancer. In this work, NUCKS expression on both RNA and protein levels was studied in breast tissue biopsies consisted of invasive carcinomas, intraductal proliferative lesions, benign epithelial proliferations and fibroadenomas, as well as in primary cultures derived from the above biopsies. Specifically, in order to evaluate the level of NUCKS protein in correlation with the histopathological features of breast disease, immunohistochemistry was employed on paraffin sections of breast biopsies of the above types. In addition, NUCKS expression was studied by means of Reverse Transcription PCR (RT-PCR), real-time PCR (qRT-PCR) and Western immunoblot analyses in the primary cell cultures developed from the same biopsies. Results The immunohistochemical Results showed intense NUCKS staining mostly in grade I and II breast carcinomas compared to normal tissues. Furthermore, NUCKS was moderate expressed in benign epithelial proliferations, such as adenosis and sclerosing adenosis, and highly expressed in intraductal lesions, specifically in ductal carcinomas in situ (DCIS). It is worth noting that all the fibroadenoma tissues examined were negative for NUCKS staining. RT-PCR and qRT-PCR showed an increase of NUCKS expression in cells derived from primary cultures of proliferative lesions and cancerous tissues compared to the ones derived from normal breast tissues and fibroadenomas. This increase was also confirmed by Western immunoblot analysis. Although NUCKS is a cell cycle related protein, its expression does not correlate with Ki67 expression, neither in tissue sections nor in primary cell cultures. Conclusion The results show overexpression of the NUCKS protein in a number of non malignant breast lesions and

  5. Overexpression of SERBP1 (Plasminogen activator inhibitor 1 RNA binding protein) in human breast cancer is correlated with favourable prognosis

    PubMed Central

    2012-01-01

    Background Plasminogen activator inhibitor 1 (PAI-1) overexpression is an important prognostic and predictive biomarker in human breast cancer. SERBP1, a protein that is supposed to regulate the stability of PAI-1 mRNA, may play a role in gynaecological cancers as well, since upregulation of SERBP1 was described in ovarian cancer recently. This is the first study to present a systematic characterisation of SERBP1 expression in human breast cancer and normal breast tissue at both the mRNA and the protein level. Methods Using semiquantitative realtime PCR we analysed SERBP1 expression in different normal human tissues (n = 25), and in matched pairs of normal (n = 7) and cancerous breast tissues (n = 7). SERBP1 protein expression was analysed in two independent cohorts on tissue microarrays (TMAs), an initial evaluation set, consisting of 193 breast carcinomas and 48 normal breast tissues, and a second large validation set, consisting of 605 breast carcinomas. In addition, a collection of benign (n = 2) and malignant (n = 6) mammary cell lines as well as breast carcinoma lysates (n = 16) were investigated for SERBP1 expression by Western blot analysis. Furthermore, applying non-radioisotopic in situ hybridisation a subset of normal (n = 10) and cancerous (n = 10) breast tissue specimens from the initial TMA were analysed for SERBP1 mRNA expression. Results SERBP1 is not differentially expressed in breast carcinoma compared to normal breast tissue, both at the RNA and protein level. However, recurrence-free survival analysis showed a significant correlation (P = 0.008) between abundant SERBP1 expression in breast carcinoma and favourable prognosis. Interestingly, overall survival analysis also displayed a tendency (P = 0.09) towards favourable prognosis when SERBP1 was overexpressed in breast cancer. Conclusions The RNA-binding protein SERBP1 is abundantly expressed in human breast cancer and may represent a novel breast tumour

  6. The a3 isoform of subunit a of the vacuolar ATPase localizes to the plasma membrane of invasive breast tumor cells and is overexpressed in human breast cancer

    PubMed Central

    Cotter, Kristina; Liberman, Rachel; Sun-Wada, GeHong; Wada, Yoh; Sgroi, Dennis; Naber, Stephen; Brown, Dennis; Breton, Sylvie; Forgac, Michael

    2016-01-01

    The vacuolar (H+)-ATPases (V-ATPases) are a family of ATP-driven proton pumps that acidify intracellular compartments and transport protons across the plasma membrane. Previous work has demonstrated that plasma membrane V-ATPases are important for breast cancer invasion in vitro and that the V-ATPase subunit a isoform a3 is upregulated in and critical for MDA-MB231 and MCF10CA1a breast cancer cell invasion. It has been proposed that subunit a3 is present on the plasma membrane of invasive breast cancer cells and is overexpressed in human breast cancer. To test this, we used an a3-specific antibody to assess localization in breast cancer cells. Subunit a3 localizes to the leading edge of migrating breast cancer cells, but not the plasma membrane of normal breast epithelial cells. Furthermore, invasive breast cancer cells express a3 throughout all intracellular compartments tested, including endosomes, the Golgi, and lysosomes. Moreover, subunit a3 knockdown in MB231 breast cancer cells reduces in vitro migration. This reduction is not enhanced upon addition of a V-ATPase inhibitor, suggesting that a3-containing V-ATPases are critical for breast cancer migration. Finally, we have tested a3 expression in human breast cancer tissue and mRNA prepared from normal and cancerous breast tissue. a3 mRNA was upregulated 2.5-47 fold in all breast tumor cDNA samples tested relative to normal tissue, with expression generally correlated to cancer stage. Furthermore, a3 protein expression was increased in invasive breast cancer tissue relative to noninvasive cancer and normal breast tissue. These studies suggest that subunit a3 plays an important role in invasive human breast cancer. PMID:27323815

  7. Aurora kinase-A overexpression in mouse mammary epithelium induces mammary adenocarcinomas harboring genetic alterations shared with human breast cancer.

    PubMed

    Treekitkarnmongkol, Warapen; Katayama, Hiroshi; Kai, Kazuharu; Sasai, Kaori; Jones, Jennifer Carter; Wang, Jing; Shen, Li; Sahin, Aysegul A; Gagea, Mihai; Ueno, Naoto T; Creighton, Chad J; Sen, Subrata

    2016-12-01

    Recent data from The Cancer Genome Atlas analysis have revealed that Aurora kinase A (AURKA) amplification and overexpression characterize a distinct subset of human tumors across multiple cancer types. Although elevated expression of AURKA has been shown to induce oncogenic phenotypes in cells in vitro, findings from transgenic mouse models of Aurora-A overexpression in mammary glands have been distinct depending on the models generated. In the present study, we report that prolonged overexpression of AURKA transgene in mammary epithelium driven by ovine β-lactoglobulin promoter, activated through multiple pregnancy and lactation cycles, results in the development of mammary adenocarcinomas with alterations in cancer-relevant genes and epithelial-to-mesenchymal transition. The tumor incidence was 38.9% (7/18) in Aurora-A transgenic mice at 16 months of age following 4-5 pregnancy cycles. Aurora-A overexpression in the tumor tissues accompanied activation of Akt, elevation of Cyclin D1, Tpx2 and Plk1 along with downregulation of ERα and p53 proteins, albeit at varying levels. Microarray comparative genomic hybridization (CGH) analyses of transgenic mouse mammary adenocarcinomas revealed copy gain of Glp1r and losses of Ercc5, Pten and Tcf7l2 loci. Review of human breast tumor transcriptomic data sets showed association of these genes at varying levels with Aurora-A gain of function alterations. Whole exome sequencing of the mouse tumors also identified gene mutations detected in Aurora-A overexpressing human breast cancers. Our findings demonstrate that prolonged overexpression of Aurora-A can be a driver somatic genetic event in mammary adenocarcinomas associated with deregulated tumor-relevant pathways in the Aurora-A subset of human breast cancer.

  8. Identification of four novel human genes amplified and overexpressed in breast carcinoma and localized to the q11-q21.3 region of chromosome 17

    SciTech Connect

    Tomasetto, C.; Regnier, C.; Basset, P.

    1995-08-10

    We have performed differential screening of a human metastatic lymph node cDNA library to identify genes possibly involved during breast cancer progression. We have identified four novel genes overexpressed in malignant tissues. They were all located between q11 and q21.3, a region known to contain the c-erbB-2 oncogene and the BRCA1 breast carcinomas, and overexpression of three of them was dependent on gene amplification in breast cancer cell lines. These findings further support the concept that human chromosome 17 specifically carries genes possibly involved in breast cancer progression. 61 refs., 3 figs., 4 tabs.

  9. Aloe-emodin inhibits HER-2 expression through the downregulation of Y-box binding protein-1 in HER-2-overexpressing human breast cancer cells

    PubMed Central

    Ma, Jui-Wen; Hung, Chao-Ming; Lin, Ying-Chao; Ho, Chi-Tang; Kao, Jung-Yie; Way, Tzong-Der

    2016-01-01

    Human epidermal growth factor receptor-2 (HER-2)-positive breast cancer tends to be aggressive, highly metastatic, and drug resistant and spreads rapidly. Studies have indicated that emodin inhibits HER-2 expression. This study compared the HER-2-inhibitory effects of two compounds extracted from rhubarb roots: aloe-emodin (AE) and rhein. Our results indicated that AE exerted the most potent inhibitory effect on HER-2 expression. Treatment of HER-2-overexpressing breast cancer cells with AE reduced tumor initiation, cell migration, and cell invasion. AE was able to suppress YB-1 expression, further suppressing downstream HER-2 expression. AE suppressed YB-1 expression through the inhibition of Twist in HER-2-overexpressing breast cancer cells. Our data also found that AE inhibited cancer metastasis and cancer stem cells through the inhibition of EMT. Interestingly, AE suppressed YB-1 expression through the downregulation of the intracellular integrin-linked kinase (ILK)/protein kinase B (Akt)/mTOR signaling pathway in HER-2-overexpressing breast cancer cells. In vivo study showed the positive result of antitumor activity of AE in nude mice injected with human HER-2-overexpressing breast cancer cells. These findings suggest the possible application of AE in the treatment of HER-2-positive breast cancer. PMID:27391337

  10. Aloe-emodin inhibits HER-2 expression through the downregulation of Y-box binding protein-1 in HER-2-overexpressing human breast cancer cells.

    PubMed

    Ma, Jui-Wen; Hung, Chao-Ming; Lin, Ying-Chao; Ho, Chi-Tang; Kao, Jung-Yie; Way, Tzong-Der

    2016-09-13

    Human epidermal growth factor receptor-2 (HER-2)-positive breast cancer tends to be aggressive, highly metastatic, and drug resistant and spreads rapidly. Studies have indicated that emodin inhibits HER-2 expression. This study compared the HER-2-inhibitory effects of two compounds extracted from rhubarb roots: aloe-emodin (AE) and rhein. Our results indicated that AE exerted the most potent inhibitory effect on HER-2 expression. Treatment of HER-2-overexpressing breast cancer cells with AE reduced tumor initiation, cell migration, and cell invasion. AE was able to suppress YB-1 expression, further suppressing downstream HER-2 expression. AE suppressed YB-1 expression through the inhibition of Twist in HER-2-overexpressing breast cancer cells. Our data also found that AE inhibited cancer metastasis and cancer stem cells through the inhibition of EMT. Interestingly, AE suppressed YB-1 expression through the downregulation of the intracellular integrin-linked kinase (ILK)/protein kinase B (Akt)/mTOR signaling pathway in HER-2-overexpressing breast cancer cells. In vivo study showed the positive result of antitumor activity of AE in nude mice injected with human HER-2-overexpressing breast cancer cells. These findings suggest the possible application of AE in the treatment of HER-2-positive breast cancer.

  11. Estrogen receptor alpha (ERα/ESR1) mediates the p53-independent overexpression of MDM4/MDMX and MDM2 in human breast cancer

    PubMed Central

    Swetzig, Wendy M.; Wang, Jianmin; Das, Gokul M.

    2016-01-01

    MDM2 and MDM4 are heterodimeric, non-redundant oncoproteins that potently inhibit the p53 tumor suppressor protein. MDM2 and MDM4 also enhance the tumorigenicity of breast cancer cells in in vitro and in vivo models and are overexpressed in primary human breast cancers. Prior studies have characterized Estrogen Receptor Alpha (ERα/ESR1) as a regulator of MDM2 expression and an MDM2- and p53-interacting protein. However, similar crosstalk between ERα and MDM4 has not been investigated. Moreover, signaling pathways that mediate the overexpression of MDM4 in human breast cancer remain to be elucidated. Using the Cancer Genome Atlas (TCGA) breast invasive carcinoma patient cohort, we have analyzed correlations between ERα status and MDM4 and MDM2 expression in primary, treatment-naïve, invasive breast carcinoma samples. We report that the expression of MDM4 and MDM2 is elevated in primary human breast cancers of luminal A/B subtypes and associates with ERα-positive disease, independently of p53 mutation status. Furthermore, in cell culture models, ERα positively regulates MDM4 and MDM2 expression via p53-independent mechanisms, and these effects can be blocked by the clinically-relevant endocrine therapies fulvestrant and tamoxifen. Additionally, ERα also positively regulates p53 expression. Lastly, we report that endogenous MDM4 negatively regulates ERα expression and forms a protein complex with ERα in breast cancer cell lines and primary human breast tumor tissue. This suggests direct signaling crosstalk and negative feedback loops between ERα and MDM4 expression in breast cancer cells. Collectively, these novel findings implicate ERα as a central component of the p53-MDM2-MDM4 signaling axis in human breast cancer. PMID:26909605

  12. Overexpression and enhanced specific activity of aldoketo reductases (AKR1B1 & AKR1B10) in human breast cancers.

    PubMed

    Reddy, K Ashok; Kumar, P Uday; Srinivasulu, M; Triveni, B; Sharada, K; Ismail, Ayesha; Reddy, G Bhanuprakash

    2017-02-01

    The incidence of breast cancer in India is on the rise and is rapidly becoming the primary cancer in Indian women. The aldoketo reductase (AKR) family has more than 190 proteins including aldose reductase (AKR1B1) and aldose reductase like protein (AKR1B10). Apart from liver cancer, the status of AKR1B1 and AKR1B10 with respect to their expression and activity has not been reported in other human cancers. We studied the specific activity and expression of AKR1B1 and AKR1B10 in breast non tumor and tumor tissues and in the blood. Fresh post-surgical breast cancer and non-cancer tissues and blood were collected from the subjects who were admitted for surgical therapy. Malignant, benign and pre-surgical chemotherapy samples were evaluated by histopathology scoring. Expression of AKR1B1 and AKR1B10 was carried out by immunoblotting and immunohistochemistry (IHC) while specific activity was determined spectrophotometrically. The specific activity of AKR1B1 was significantly higher in red blood cells (RBC) in all three grades of primary surgical and post-chemotherapy samples. Specific activity of both AKR1B1 and AKR1B10 increased in tumor samples compared to their corresponding non tumor samples (primary surgical and post-chemotherapy). Immunoblotting and IHC data also indicated overexpression of AKR1B1 in all grades of tumors compared to their corresponding non tumor samples. There was no change in the specific activity of AKR1B1 in benign samples compared to all grades of tumor and non-tumors.

  13. Overexpression of the wip1 gene abrogates the p38 MAPK/p53/Wip1 pathway and silences p16 expression in human breast cancers.

    PubMed

    Yu, Eunsil; Ahn, Yeon Sun; Jang, Se Jin; Kim, Mi-Jung; Yoon, Ho Sung; Gong, Gyungyub; Choi, Jene

    2007-03-01

    Wild-type p53-induced phosphatase (Wip1 or PPM1D) is a serine/threonine protein phosphatase expressed under various stress conditions, which selectively inactivates p38 MAPK. The finding that this gene is amplified in association with frequent gain of 17q21-24 in breast cancers supports its role as a driver oncogene. However, the pathogenetic mechanism of the wip1 gene expression in breast carcinogenesis remains to be elucidated. In this study, we examine Wip1 mRNA and protein expression in 20 breast cancer tissues and six cell lines. We additionally investigate the relationship among Wip1, active p38 MAPK, p53, and p16 proteins. In our experiments, Wip1 mRNA was significantly upregulated in 7 of 20 (35%) invasive breast cancer samples. Overexpression of Wip1 was inversely correlated with that of active (phosphor-) p38 MAPK (P = 0.007). Furthermore, Wip1-overexpressing tumors exhibited no or low levels of p16, which normally accumulates upon p38 MAPK activation (P = 0.057). Loss of p16 expression was not associated with hypermethylation of its promoter or loss of heterozygosity on 9p21. Among the 135 primary breast carcinomas further examined, a significant association was found between the Wip1 overexpression and negative staining for p53 (P value = 0.057), indicating that the tumors are wild-type for p53. This is first report showing that Wip1 overexpression abrogates the homeostatic balance maintained through the p38-p53-Wip1 pathway, and contributes to malignant progression by inactivating wild-type p53 and p38 MAPK as well as decreasing p16 protein levels in human breast tissues.

  14. Human pituitary tumor-transforming gene 1 overexpression reinforces oncogene-induced senescence through CXCR2/p21 signaling in breast cancer cells

    PubMed Central

    2012-01-01

    Introduction hPTTG1 (human pituitary tumor-transforming gene 1) is an oncogene overexpressed in breast cancer and several other types of cancer. Increased hPTTG1 expression has been shown to be associated with poor patient outcomes in breast cancer. Although hPTTG1 overexpression plays important roles in promoting the proliferation, invasion, and metastasis of cancer cells, it also has been suggested to induce cellular senescence. Deciphering the mechanism by which hPTTG1 overexpression induces these contradictory actions in breast cancer cells is critical to our understanding of the role of hPTTG1 in breast cancer development. Methods MCF-10A and MCF-7 cells were used to identify the mechanism of hPTTG1-induced senescence. The interplay between hPTTG1 overexpression and chemokine C-X-C motif receptor 2 (CXCR2)/p21-dependent senescence in tumor growth and metastasis of MCF-7 cells was investigated by orthotopic transplantation of severe combined immunodeficiency (SCID) mice. Additionally, human invasive ductal carcinoma (IDC) tissue arrays were used to confirm the hPTTG1/CXCR2/p21 axis established in vitro. Results In this study, we investigated the mechanism of hPTTG1-induced senescence as well as its role in breast cancer progression and metastasis. Herein, we showed that hPTTG1 overexpression reinforced senescence through the CXCR2/p21 signaling. Furthermore, hPTTG1 overexpression activated NF-κB signaling to transactivate the expression of interleukin (IL)-8 and growth-regulated oncogene alpha (GROα) to execute CXCR2 signaling in MCF-7 cells. When CXCR2 expression was knocked down in hPTTG1-overexpressing MCF-7 cells, hPTTG1-induced senescence was abrogated by alleviating CXCR2-induced p21 expression. In a mouse model, CXCR2-mediated senescence limited hPTTG1-induced tumor growth and metastasis. Moreover, CXCR2 knockdown in hPTTG1-overexpressing MCF-7 tumors dramatically accelerated tumor growth and metastasis. Our in vitro and in vivo results demonstrated

  15. Methylation of PLCD1 and adenovirus-mediated PLCD1 overexpression elicits a gene therapy effect on human breast cancer

    SciTech Connect

    Mu, Haixi; Wang, Na; Zhao, Lijuan; Li, Shuman; Li, Qianqian; Chen, Ling; Luo, Xinrong; Qiu, Zhu; Li, Lili; Ren, Guosheng; Xu, Yongzhu; Zhou, Xiangyang; Xiang, Tingxiu

    2015-03-15

    Our previous study showed that PLCD1 significantly decreases cell proliferation and affects cell cycle progression in breast cancer cells. In the present study, we aimed to investigate its functional and molecular mechanisms, and whether or not can become a new target for gene therapies. We found reduced PLCD1 protein expression in breast tumor tissues compared with paired surgical margin tissues. PLCD1 promoter CpG methylation was detected in 55 of 96 (57%) primary breast tumors, but not in surgical-margin tissues and normal breast tissues. Ectopic expression of PLCD1 inhibited breast tumor cell proliferation in vivo by inducing apoptosis and suppressed tumor cell migration by regulating cytoskeletal reorganization proteins including RhoA and phospho-cofilin. Furthermore, we found that PLCD1 induced p53 accumulation, increased p27 and p21 protein levels, and cleaved PARP. Finally, we constructed an adenoviral vector expressing PLCD1 (AdH5-PLCD1), which exhibited strong cytotoxicity in breast cancer cells. Our findings provide insights into the development of PLCD1 gene therapies for breast cancer and perhaps, other human cancers. - Highlights: • PLCD1 is downregulated via hypermethylation in breast cancer. • PLCD1 suppressed cell migration by regulating cytoskeletal reorganization proteins. • Adenovirus AdHu5-PLCD1 may be a novel therapeutic option for breast cancer.

  16. Notch3 overexpression causes arrest of cell cycle progression by inducing Cdh1 expression in human breast cancer cells.

    PubMed

    Chen, Chun-Fa; Dou, Xiao-Wei; Liang, Yuan-Ke; Lin, Hao-Yu; Bai, Jing-Wen; Zhang, Xi-Xun; Wei, Xiao-Long; Li, Yao-Chen; Zhang, Guo-Jun

    2016-01-01

    Uncontrolled cell proliferation, genomic instability and cancer are closely related to the abnormal activation of the cell cycle. Therefore, blocking the cell cycle of cancer cells has become one of the key goals for treating malignancies. Unfortunately, the factors affecting cell cycle progression remain largely unknown. In this study, we have explored the effects of Notch3 on the cell cycle in breast cancer cell lines by 3 methods: overexpressing the intra-cellular domain of Notch3 (N3ICD), knocking-down Notch3 by RNA interference, and using X-ray radiation exposure. The results revealed that overexpression of Notch3 arrested the cell cycle at the G0/G1 phase, and inhibited the proliferation and colony-formation rate in the breast cancer cell line, MDA-MB-231. Furthermore, overexpressing N3ICD upregulated Cdh1 expression and resulted in p27(Kip) accumulation by accelerating Skp2 degradation. Conversely, silencing of Notch3 in the breast cancer cell line, MCF-7, caused a decrease in expression levels of Cdh1 and p27(Kip) at both the protein and mRNA levels, while the expression of Skp2 only increased at the protein level. Correspondingly, there was an increase in the percentage of cells in the G0/G1 phase and an elevated proliferative ability and colony-formation rate, which may be caused by alterations of the Cdh1/Skp2/p27 axis. These results were also supported by exposing MDA-MB-231 cells or MCF-7 treated with siN3 to X-irradiation at various doses. Overall, our data showed that overexpression of N3ICD upregulated the expression of Cdh1 and caused p27(Kip) accumulation by accelerating Skp2 degradation, which in turn led to cell cycle arrest at the G0/G1 phase, in the context of proliferating breast cancer cell lines. These findings help to illuminate the precision therapy targeted to cell cycle progression, required for cancer treatment.

  17. Notch3 overexpression causes arrest of cell cycle progression by inducing Cdh1 expression in human breast cancer cells

    PubMed Central

    Chen, Chun-Fa; Dou, Xiao-Wei; Liang, Yuan-Ke; Lin, Hao-Yu; Bai, Jing-Wen; Zhang, Xi-Xun; Wei, Xiao-Long; Li, Yao-Chen; Zhang, Guo-Jun

    2016-01-01

    ABSTRACT Uncontrolled cell proliferation, genomic instability and cancer are closely related to the abnormal activation of the cell cycle. Therefore, blocking the cell cycle of cancer cells has become one of the key goals for treating malignancies. Unfortunately, the factors affecting cell cycle progression remain largely unknown. In this study, we have explored the effects of Notch3 on the cell cycle in breast cancer cell lines by 3 methods: overexpressing the intra-cellular domain of Notch3 (N3ICD), knocking-down Notch3 by RNA interference, and using X-ray radiation exposure. The results revealed that overexpression of Notch3 arrested the cell cycle at the G0/G1 phase, and inhibited the proliferation and colony-formation rate in the breast cancer cell line, MDA-MB-231. Furthermore, overexpressing N3ICD upregulated Cdh1 expression and resulted in p27Kip accumulation by accelerating Skp2 degradation. Conversely, silencing of Notch3 in the breast cancer cell line, MCF-7, caused a decrease in expression levels of Cdh1 and p27Kip at both the protein and mRNA levels, while the expression of Skp2 only increased at the protein level. Correspondingly, there was an increase in the percentage of cells in the G0/G1 phase and an elevated proliferative ability and colony-formation rate, which may be caused by alterations of the Cdh1/Skp2/p27 axis. These results were also supported by exposing MDA-MB-231 cells or MCF-7 treated with siN3 to X-irradiation at various doses. Overall, our data showed that overexpression of N3ICD upregulated the expression of Cdh1 and caused p27Kip accumulation by accelerating Skp2 degradation, which in turn led to cell cycle arrest at the G0/G1 phase, in the context of proliferating breast cancer cell lines. These findings help to illuminate the precision therapy targeted to cell cycle progression, required for cancer treatment. PMID:26694515

  18. A Novel Function for the nm23-Hl Gene: Overexpression in Human Breast Carcinoma Cells Leads to the Formation of Basement Membrane and Growth Arrest

    SciTech Connect

    Howlett, Anthony R; Petersen, Ole W; Steeg, Patricia S; Bissell, Mina J

    1994-01-01

    We have developed a culture system using reconstituted basement membrane components in which normal human mammary epithelial cells exhibit several aspects of the development and differentiation process, including formation of acinar-like structures, production and basal deposition of basement membrane components, and production and apical secretion of sialomucins. Cell lines and cultures from human breast carcinomas failed to recapitulate this process. The data indicate the importance of cellular interactions with the basement membrane in the regulation of normal breast differentiation and, potentially, its loss in neoplasia. Our purpose was to use this assay to investigate the role of the putative metastasis suppressor gene nm23-H1 in mammary development and differentiation. The metastatic human breast carcinoma cell line MDA-MB-435, clones transfected with a control pCMVBamneo vector, and clones transfected with pCMVBamneo vector containing nm23-H1 complementary DNA (the latter of which exhibited a substantial reduction in spontaneous metastatic potential in vivo) were cultured within a reconstituted basement membrane. Clones were examined for formation of acinus-like spheres, deposition of basement membrane components, production of sialomucin, polarization, and growth arrest. In contrast to the parental cell line and control transfectants, MDA-MB-435 breast carcinoma cells overexpressing Nm23-H1 protein regained several aspects of the normal phenotype within reconstituted basement membrane. Nm23-H1 protein-positive cells formed organized acinus-like spheres, deposited the basement membrane components type IV collagen and, to some extent, laminin to the outside of the spheres, expressed sialomucin, and growth arrested. Growth arrest of Nm23-H1 protein-positive cells was preceded by and correlated with formation of a basement membrane, suggesting a causal relationship. The data indicate a previously unidentified cause-and-effect relationship between nm23-H1 gene

  19. The effects of bufadienolides on HER2 overexpressing breast cancer cells.

    PubMed

    Wang, Tianjiao; Mu, Lin; Jin, Haifeng; Zhang, Peng; Wang, Yueyue; Ma, Xiaochi; Pan, Jinjin; Miao, Jian; Yuan, Yuhui

    2016-06-01

    HER2 is a proto-oncogene frequently amplified in human breast cancer, its overexpression is correlated with tamoxifen resistance and decreased recurrence-free survival. Arenobufagin and bufalin are homogeneous bufadienolides of cardiac glycosides agents. In this research, we studied the effects of arenobufagin and bufalin on cellular survival and proliferation of HER2 overexpressing breast cancer cells and the mechanism under the results including the direct effect on HER2 downstream pathways. Our results showed that arenobufagin and bufalin could significantly inhibit the proliferation and survival of HER2 overexpressing breast cancer cells, along with the declination of SRC-1, SRC-3, nuclear transcription factor E2F1, phosphorylated AKT, and ERK. And the combination of each bufadienolide in low dose with tamoxifen could significantly enhance the inhibitory effect of tamoxifen on HER2 overexpressing breast cancer cells. All above suggest that arenobufagin and bufalin may be potential therapy adjuvants for HER2 overexpressing breast cancer therapy.

  20. The Angiogenic Secretome in VEGF overexpressing Breast Cancer Xenografts

    PubMed Central

    Dore-Savard, Louis; Lee, Esak; Kakkad, Samata; Popel, Aleksander S.; Bhujwalla, Zaver M.

    2016-01-01

    The plasticity of cancer cells and the fluidity of the tumor microenvironment continue to present major challenges in the comprehensive understanding of cancer that is essential to design effective treatments. The tumor interstitial fluid (TIF) encompasses the secretome and holds the key to several of the phenotypic characteristics of cancer. Difficulties in sampling this fluid have resulted in limited characterization of its components. Here we have sampled TIF from triple negative and estrogen receptor (ER)-positive human breast tumor xenografts with or without VEGF overexpression. Angiogenesis-related factors were characterized in the TIF and plasma, to understand the relationship between the TIF and plasma secretomes. Clear differences were observed between the TIF and plasma angiogenic secretomes in triple negative MDA-MB-231 breast cancer xenografts compared to ER-positive MCF-7 xenografts with or without VEGF overexpression that provide new insights into TIF components and the role of VEGF in modifying the angiogenic secretome. PMID:27995973

  1. A novel human ghrelin variant (In1-ghrelin) and ghrelin-O-acyltransferase are overexpressed in breast cancer: potential pathophysiological relevance.

    PubMed

    Gahete, Manuel D; Córdoba-Chacón, José; Hergueta-Redondo, Marta; Martínez-Fuentes, Antonio J; Kineman, Rhonda D; Moreno-Bueno, Gema; Luque, Raúl M; Castaño, Justo P

    2011-01-01

    The human ghrelin gene, which encodes the ghrelin and obestatin peptides, contains 5 exons (Ex), with Ex1-Ex4 encoding a 117 amino-acid (aa) preproprotein that is known to be processed to yield a 28-aa (ghrelin) and/or a 23-aa (obestatin) mature peptides, which possess biological activities in multiple tissues. However, the ghrelin gene also encodes additional peptides through alternative splicing or post-translational modifications. Indeed, we previously identified a spliced mRNA ghrelin variant in mouse (In2-ghrelin-variant), which is regulated in a tissue-dependent manner by metabolic status and may thus be of biological relevance. Here, we have characterized a new human ghrelin variant that contains Ex0-1, intron (In) 1, and Ex2 and lacks Ex3-4. This human In1-ghrelin variant would encode a new prepropeptide that conserves the first 12aa of native-ghrelin (including the Ser3-potential octanoylation site) but has a different C-terminal tail. Expression of In1-variant was detected in 22 human tissues and its levels were positively correlated with those of ghrelin-O-acyltransferase (GOAT; p = 0.0001) but not with native-ghrelin expression, suggesting that In1-ghrelin could be a primary substrate for GOAT in human tissues. Interestingly, levels of In1-ghrelin variant expression in breast cancer samples were 8-times higher than those of normal mammary tissue, and showed a strong correlation in breast tumors with GOAT (p = 0.0001), ghrelin receptor-type 1b (GHSR1b; p = 0.049) and cyclin-D3 (a cell-cycle inducer/proliferation marker; p = 0.009), but not with native-ghrelin or GHSR1a expression. Interestingly, In1-ghrelin variant overexpression increased basal proliferation of MDA-MB-231 breast cancer cells. Taken together, our results provide evidence that In1-ghrelin is a novel element of the ghrelin family with a potential pathophysiological role in breast cancer.

  2. MARCKS protein overexpression in inflammatory breast cancer

    PubMed Central

    Manai, Maroua; Lopez, Marc; Eghozzi, Radhia; Ayadi, Sinda; Lamine, Olfa Ben; Manai, Mohamed; Rahal, Khaled; Charafe-Jauffret, Emmanuelle; Jacquemier, Jocelyne; Viens, Patrice; Birnbaum, Daniel; Boussen, Hamouda; Chaffanet, Max; Bertucci, François

    2017-01-01

    Background Inflammatory breast cancer (IBC) is the most aggressive form of locally-advanced breast cancer. Identification of new therapeutic targets is crucial. We previously reported MARCKS mRNA overexpression in IBC in the largest transcriptomics study reported to date. Here, we compared MARCKS protein expression in IBC and non-IBC samples, and searched for correlations between protein expression and clinicopathological features. Results Tumor samples showed heterogeneity with respect to MARCKS staining: 18% were scored as MARCKS-positive (stained cells ≥ 1%) and 82% as MARCKS-negative. MARCKS expression was more frequent in IBC (36%) than in non-IBC (11%; p = 1.4E−09), independently from molecular subtypes and other clinicopathological variables. We found a positive correlation between protein and mRNA expression in the 148/502 samples previously analyzed for MARCKS mRNA expression. MARCKS protein expression was associated with other poor-prognosis features in the whole series of samples such as clinical axillary lymph node or metastatic extension, high pathological grade, ER-negativity, PR-negativity, HER2-positivity, and triple-negative and HER2+ statutes. In IBC, MARCKS expression was the sole tested variable associated with poor MFS. Materials and Methods We retrospectively analyzed MARCKS protein expression by immunohistochemistry in 502 tumors, including 133 IBC and 369 non-IBC, from Tunisian and French patients. All samples were pre-therapeutic clinical samples. We searched for correlations between MARCKS expression and clinicopathological features including the IBC versus non-IBC phenotype and metastasis-free survival (MFS). Conclusions MARCKS overexpression might in part explain the poor prognosis of IBC. As an oncogene associated with poor MFS, MARCKS might represent a new potential therapeutic target in IBC. PMID:28009981

  3. Overexpression of a novel cell cycle regulator ecdysoneless in breast cancer: a marker of poor prognosis in HER2/neu-overexpressing breast cancer patients.

    PubMed

    Zhao, Xiangshan; Mirza, Sameer; Alshareeda, Alaa; Zhang, Ying; Gurumurthy, Channabasavaiah Basavaraju; Bele, Aditya; Kim, Jun Hyun; Mohibi, Shakur; Goswami, Monica; Lele, Subodh M; West, William; Qiu, Fang; Ellis, Ian O; Rakha, Emad A; Green, Andrew R; Band, Hamid; Band, Vimla

    2012-07-01

    Uncontrolled proliferation is one of the hallmarks of breast cancer. We have previously identified the human Ecd protein (human ortholog of Drosophila Ecdysoneless, hereafter called Ecd) as a novel promoter of mammalian cell cycle progression, a function related to its ability to remove the repressive effects of Rb-family tumor suppressors on E2F transcription factors. Given the frequent dysregulation of cell cycle regulatory components in human cancer, we used immunohistochemistry of paraffin-embedded tissues to examine Ecd expression in normal breast tissue versus tissues representing increasing breast cancer progression. Initial studies of a smaller cohort without outcomes information showed that Ecd expression was barely detectable in normal breast tissue and in hyperplasia of breast, but high levels of Ecd were detected in benign breast hyperplasia, ductal carcinoma in situ (DCIS) and infiltrating ductal carcinoma (IDCs) of the breast. In this cohort of 104 IDC patients, Ecd expression levels showed a positive correlation with higher grade (P=0.04). Further analyses of Ecd expression using a larger, independent cohort (954) confirmed these results, with a strong positive correlation of elevated Ecd expression with higher histological grade (P=0.013), mitotic index (P=0.032), and Nottingham Prognostic Index score (P=0.014). Ecd expression was positively associated with HER2/neu (P=0.002) overexpression, a known marker of poor prognosis in breast cancer. Significantly, increased Ecd expression showed a strong positive association with shorter breast cancer specific survival (BCSS) (P=0.008) and disease-free survival (DFS) (P=0.003) in HER2/neu overexpressing patients. Taken together, our results reveal Ecd as a novel marker for breast cancer progression and show that levels of Ecd expression predict poorer survival in Her2/neu overexpressing breast cancer patients.

  4. Aluminium and human breast diseases.

    PubMed

    Darbre, P D; Pugazhendhi, D; Mannello, F

    2011-11-01

    The human breast is exposed to aluminium from many sources including diet and personal care products, but dermal application of aluminium-based antiperspirant salts provides a local long-term source of exposure. Recent measurements have shown that aluminium is present in both tissue and fat of the human breast but at levels which vary both between breasts and between tissue samples from the same breast. We have recently found increased levels of aluminium in noninvasively collected nipple aspirate fluids taken from breast cancer patients (mean 268 ± 28 μg/l) compared with control healthy subjects (mean 131 ± 10 μg/l) providing evidence of raised aluminium levels in the breast microenvironment when cancer is present. The measurement of higher levels of aluminium in type I human breast cyst fluids (median 150 μg/l) compared with human serum (median 6 μg/l) or human milk (median 25 μg/l) warrants further investigation into any possible role of aluminium in development of this benign breast disease. Emerging evidence for aluminium in several breast structures now requires biomarkers of aluminium action in order to ascertain whether the presence of aluminium has any biological impact. To this end, we report raised levels of proteins that modulate iron homeostasis (ferritin, transferrin) in parallel with raised aluminium in nipple aspirate fluids in vivo, and we report overexpression of mRNA for several S100 calcium binding proteins following long-term exposure of MCF-7 human breast cancer cells in vitro to aluminium chlorhydrate.

  5. Diversin Is Overexpressed in Breast Cancer and Accelerates Cell Proliferation and Invasion

    PubMed Central

    Yu, Xinmiao; Wang, Minghao; Dong, Qianze; Jin, Feng

    2014-01-01

    Diversin was recently reported to play roles in Wnt and JNK pathways. However, the expression pattern and biological roles of diversin in human breast cancer have not been reported. In the present study, we found that diversin was overexpressed in breast cancer specimens by immunohistochemistry and western blot. Significant association was observed between diversin overexpression and TNM stage (p = 0.0036), nodal metastasis (p = 0.0033), negative estrogen receptor expression (p = 0.0012) and triple-negative status (p = 0.0017). Furthermore, colony formation assay and matrigel invasion assay showed that knockdown of diversin expression in MDA-MB-231 cell line with high endogenous expression decreased cell proliferation and cell invasion. Transfection of diversin plasmid in MCF-7 cell line increased cell proliferation and invasion. Further analysis showed that diversin depletion downregulated JNK phosphorylation while its overexpression upregulated JNK phosphorylation. In conclusion, our study demonstrated that diversin was overexpressed in human breast cancers. Diversin could contribute to breast cancer cell proliferation and invasion. PMID:24858714

  6. Epidermal Growth Factor Receptor Overexpression as a Target for Auger Electron Radiotherapy of Breast Cancer

    DTIC Science & Technology

    1999-08-01

    proportion of estrogen receptor-negative and hormone-resistant breast cancers. Our objective is to construct a human epidermal growth factor (hEGF...61 5 INTRODUCTION Overexpression of the epidermal growth factor receptor (EGFR) occurs in a high proportion of estrogen receptor-negative and...Lac Iq promotor induced by isopropyl-b- D -thiogalactopyranoside (IPTG). The DNA sequence of the final hEGF-CH1 construct was confirmed (FUi. 2). BamHJ

  7. Immunohistochemical COX-2 overexpression correlates with HER-2/neu overexpression in invasive breast carcinomas: a pilot study.

    PubMed

    Çiriş, Ibrahim Metin; Bozkurt, Kemal Kürşat; Başpinar, Sirin; Kapucuoğlu, Fatma Nilgün

    2011-03-15

    Cyclooxygenase-2 (COX-2) is a prostaglandin synthase that catalyzes the synthesis of prostaglandin G2 and H2. It has been shown that COX-2 plays an important role in tumorigenesis of different tumor types and it is thought to take part in breast carcinogenesis. In the present study, we aimed to investigate the relationship of immunohistochemical COX-2 expression with clinicopathological parameters, including HER-2/neu overexpression in invasive breast carcinoma (IBC). Our study population comprised 10 normal breasts, 25 ductal carcinomas in situ (DCIS), and 51 invasive breast carcinomas. Immunohistochemical overexpressions of COX-2 and HER-2/neu were investigated in sections of formalin-fixed, paraffin-embedded blocks by 3 observers. In normal breast, DCIS and IBC, the COX-2 overexpression rate was 0%, 84%, and 58.8%, respectively. In IBC, COX-2 overexpression had a significant relationship with HER-2/neu overexpression (p=0.026) and a high histological grade (p=0.026). COX-2 expression in both DCIS (n=25) and IBC (n=51) was significantly higher than in normal breast tissue (p<0.0001). In addition, the COX-2 expression rate was significantly higher in DCIS than in IBC (p=0.042). Our results indicated that COX-2 overexpression correlates with aggressive phenotypic features, such as HER-2/neu overexpression and high histological grade in IBC. Increased expression of COX-2 in both DCIS and IBC in comparison to normal breast could indicate a role in breast carcinogenesis. COX-2 overexpression may provide a clinically useful biomarker for estimating tumor aggressiveness.

  8. Overexpressed ubiquitin ligase Cullin7 in breast cancer promotes cell proliferation and invasion via down-regulating p53

    SciTech Connect

    Guo, Hongsheng; Wu, Fenping; Wang, Yan; Yan, Chong; Su, Wenmei

    2014-08-08

    Highlights: • Cullin7 is overexpressed in human breast cancer samples. • Cullin7 stimulated proliferation and invasion of breast cancer cells. • Inhibition of p53 contributes to Cullin7-induced proliferation and invasion. - Abstract: Ubiquitin ligase Cullin7 has been identified as an oncogene in some malignant diseases such as choriocarcinoma and neuroblastoma. However, the role of Cullin7 in breast cancer carcinogenesis remains unclear. In this study, we compared Cullin7 protein levels in breast cancer tissues with normal breast tissues and identified significantly higher expression of Cullin7 protein in breast cancer specimens. By overexpressing Cullin7 in breast cancer cells HCC1937, we found that Cullin7 could promote cell growth and invasion in vitro. In contrast, the cell growth and invasion was inhibited by silencing Cullin7 in breast cancer cell BT474. Moreover, we demonstrated that Cullin7 promoted breast cancer cell proliferation and invasion via down-regulating p53 expression. Thus, our study provided evidence that Cullin7 functions as a novel oncogene in breast cancer and may be a potential therapeutic target for breast cancer management.

  9. Heart remodeling induced by adjuvant trastuzumab-containing chemotherapy for breast cancer overexpressing human epidermal growth factor receptor type 2: a prospective study.

    PubMed

    Piotrowski, Grzegorz; Gawor, Rafał; Bourge, Robert C; Stasiak, Arkadiusz; Potemski, Piotr; Gawor, Zenon; Nanda, Navin C; Banach, Maciej

    2013-12-01

    We aimed to investigate the cardiac changes in patients with human epidermal growth factor receptor 2 (HER2)-positive breast cancer treated with trastuzumab in an adjuvant setting. Two hundred and fifty-three women with HER2-positive breast cancer were included. The assessment of cardiovascular system and echocardiography were performed and compared at baseline, at the termination of trastuzumab therapy and 6 months latter. Left heart remodeling was defined arbitrary as the change in at least one of the analyzed echocardiographic parameters of ≥standard deviation (SD) (in model I) or ≥2×SD (in model II) after 6-month follow-up. After 6-month follow-up 39 (31.7%), 27 (22%), 14 (11.4%), 10 (8.1%), 5 (4.1%) and 1 (0.8%), women had at least one parameter with a change exceeding mean difference ≥SD, respectively; and 30 (24.4%), 9 (7.5%), 3 (2.4%), 2 (1.6%) 1 (0.8%) exceeding mean difference ≥2SD. In stepwise multivariate regression analysis sedentary life style (OR16.7, p=0.003), positive cardiovascular family history (OR 6,9; p=0.013) and left ventricular ejection fraction change after 3 months (OR 1.2; p=0.007) were independent predictors of left heart remodeling in model I, whereas hypertension (OR 5.6; p=0.06) and positive cardiovascular family history (OR 3.9; p=0.032) were independent predictors of heart remodeling in model II. In conclusion, trastuzumab induces LV and left atrial cavity dilatation together with LV systolic function impairment.

  10. Overexpression of LMO4 induces mammary hyperplasia, promotes cell invasion, and is a predictor of poor outcome in breast cancer

    PubMed Central

    Sum, Eleanor Y. M.; Segara, Davendra; Duscio, Belinda; Bath, Mary L.; Field, Andrew S.; Sutherland, Robert L.; Lindeman, Geoffrey J.; Visvader, Jane E.

    2005-01-01

    The zinc finger protein LMO4 is overexpressed in a high proportion of breast carcinomas. Here, we report that overexpression of a mouse mammary tumor virus (MMTV)-Lmo4 transgene in the mouse mammary gland elicits hyperplasia and mammary intraepithelial neoplasia or adenosquamous carcinoma in two transgenic strains with a tumor latency of 13–18 months. To investigate cellular processes controlled by LMO4 and those that may be deregulated during oncogenesis, we used RNA interference. Down-regulation of LMO4 expression reduced proliferation of human breast cancer cells and increased differentiation of mouse mammary epithelial cells. Furthermore, small-interfering-RNA-transfected breast cancer cells (MDA-MB-231) had a reduced capacity to migrate and invade an extracellular matrix. Conversely, overexpression of LMO4 in noninvasive, immortalized human MCF10A cells promoted cell motility and invasion. Significantly, in a cohort of 159 primary breast cancers, high nuclear levels of LMO4 were an independent predictor of death from breast cancer. Together, these findings suggest that deregulation of LMO4 in breast epithelium contributes directly to breast neoplasia by altering the rate of cellular proliferation and promoting cell invasion. PMID:15897450

  11. The impact of cyclin D1 overexpression on the prognosis of ER-positive breast cancers: a meta-analysis.

    PubMed

    Xu, Xiao-Ling; Chen, Shu-Zheng; Chen, Wei; Zheng, Wei-Hui; Xia, Xiang-Hou; Yang, Hong-Jian; Li, Bo; Mao, Wei-Min

    2013-06-01

    Cyclin D1 (CCND1), a key regulator of cell cycle progression, is overexpressed in many human cancers, including breast cancer. However, the impact of CCND1 overexpression in these cancers remains unclear and controversial. We conducted a systematic literature search in PubMed and EMBASE with the search terms "cyclin D1", "CCND1", "breast cancer", "prognosis", and potential studies for analysis were selected. Studies with survival data, including progression-free survival (PFS), overall survival (OS) or metastasis-free survival (MFS), were included in this meta-analysis. A total of 33 studies containing 8,537 cases were included. The combined hazard risk (HR) and its 95 % confidence interval (CI) of OS, PFS and MFS were 1.13 (95 % CI 0.87-1.47; P = 0.35), 1.25 (95 % CI 0.95-1.64; P = 0.12), and 1.04 (95 % CI 0.80-1.36; P = 0.76), respectively, for primary breast cancer patients with tumors exhibiting CCND1 overexpression. Interestingly, the impact of CCND1 expression on OS was a 1.67-fold (95 % CI 1.38-2.02; P = 0.00) increased risk for ER-positive breast cancer patients. However, CCND1 overexpression exhibited no association with the PFS or OS of patients who received epirubicin-based neoadjuvant chemotherapy, for which the P values were 0.63 and 0.47, respectively. In summary, CCND1 overexpression impacts the prognosis of ER-positive breast cancer patients, but not patients with unselected primary breast cancer or patients treated with neoadjuvant chemotherapy.

  12. Analysis of wntless (WLS) expression in gastric, ovarian, and breast cancers reveals a strong association with HER2 overexpression.

    PubMed

    Stewart, Jonathan; James, Jacqueline; McCluggage, Glenn W; McQuaid, Stephen; Arthur, Kenneth; Boyle, David; Mullan, Paul; McArt, Darragh; Yan, Benedict; Irwin, Gareth; Harkin, D Paul; Zhengdeng, Lei; Ong, Chee-Wee; Yu, Jia; Virshup, David M; Salto-Tellez, Manuel

    2015-03-01

    The oncogenic role of WNT is well characterized. Wntless (WLS) (also known as GPR177, or Evi), a key modulator of WNT protein secretion, was recently found to be highly overexpressed in malignant astrocytomas. We hypothesized that this molecule may be aberrantly expressed in other cancers known to possess aberrant WNT signaling such as ovarian, gastric, and breast cancers. Immunohistochemical analysis using a TMA platform revealed WLS overexpression in a subset of ovarian, gastric, and breast tumors; this overexpression was associated with poorer clinical outcomes in gastric cancer (P=0.025). In addition, a strong correlation was observed between WLS expression and human epidermal growth factor receptor 2 (HER2) overexpression. Indeed, 100% of HER2-positive intestinal gastric carcinomas, 100% of HER2-positive serous ovarian carcinomas, and 64% of HER2-positive breast carcinomas coexpressed WLS protein. Although HER2 protein expression or gene amplification is an established predictive biomarker for trastuzumab response in breast and gastric cancers, a significant proportion of HER2-positive tumors display resistance to trastuzumab, which may be in part explainable by a possible mechanistic link between WLS and HER2.

  13. Trastuzumab (Herceptin®): overcoming resistance in HER2-overexpressing breast cancer models.

    PubMed

    Albrecht, Huguette

    2010-11-01

    Evaluation of: Fujimoto-Ouchi K, Sekiguchi F, Yamamoto K et al.: Preclinical study of prolonged administration of trastuzumab as combination therapy after disease progression during trastuzumab monotherapy. Cancer Chemother. Pharmacol. 66, 269-276 (2010). Trastuzumab, a humanized antibody targeted against human epidermal receptor (HER)2, is used in combination with chemotherapy to treat patients with breast cancers overexpressing HER2. Despite initial clinical responses, disease progresses in a significant proportion of patients treated with trastuzumab and chemotherapy. Evidence of resistance to trastuzumab has not deterred a widespread clinical practice in the treatment of metastatic breast cancer - at least before lapatinib entered the clinic - which consists of continued administration of trastuzumab in combination with another chemotherapeutic drug. At present, it is not known if patients benefit from this practice. The present preclinical study demonstrates that, in the MDA-MB-361 and KPL-4 HER2(+) breast cancer models, induced resistance to trastuzumab monotherapy can be overcome by a combination of trastuzumab and granulocyte colony stimulating factor or chemotherapy. The response to trastuzumab and granulocyte colony stimulating factor appears to involve the host's immune system and antibody-dependent cellular cytotoxicity. The mechanisms underlying the response to trastuzumab and chemotherapy remain unclear.

  14. Overexpression of TMPRSS4 promotes tumor proliferation and aggressiveness in breast cancer

    PubMed Central

    Li, Xiao-Mei; Liu, Wen-Lou; Chen, Xu; Wang, Ya-Wen; Shi, Duan-Bo; Zhang, Hui; Ma, Ran-Ran; Liu, Hai-Ting; Guo, Xiang-Yu; Hou, Feng; Li, Ming; Gao, Peng

    2017-01-01

    Transmembrane protease serine 4 (TMPRSS4) is a novel type II transmembrane serine protease that is overexpressed in various types of human cancers and has an important function in cancer progression. However, there is a paucity of data available regarding the biological effects of TMPRSS4 on breast cancer (BC) cells and the underlying mechanisms. In this study, expression of TMPRSS4 in BC tissues was detected by immunohistochemistry. The relationship between TMPRSS4 expression and clinicopathological characteristics as well as prognosis was evaluated. The effects of TMPRSS4 on cell proliferation, migration and invasion were investigated in BC cell lines in vitro. Additionally, RT-qPCR and western blot analysis were used to determine the expressions of epithelial-mesenchymal transition (EMT) biomarkers and TMPRSS4 in BC cell lines. We found that TMPRSS4 was overexpressed in BC tissues and its expression level was closely correlated with tumor size, histological grade, lymph node metastasis, clinical stage as well as poor survival (all P<0.05) and could be recognized as an independent prognostic factor for BC patients. Overexpression of TMPRSS4 promoted the proliferation, migration and invasion of BC cells in vitro. Moreover, TMPRSS4 knockdown significantly enhanced the expression of E-cadherin and claudin-1 and inhibited the expression of vimentin and Slug, indicating suppression of EMT. Our results suggest that TMPRSS4 plays a crucial role in the progression of BC. Moreover, TMPRSS4 overexpression promoted the proliferation, invasion and migration of BC cells by possibly inducing EMT. To conclude, TMPRSS4 may be a potential therapeutic target for cancer treatment. PMID:28259959

  15. Overexpression of miR-206 suppresses glycolysis, proliferation and migration in breast cancer cells via PFKFB3 targeting

    SciTech Connect

    Ge, Xin; Lyu, Pengwei; Cao, Zhang; Li, Jingruo; Guo, Guangcheng; Xia, Wanjun; Gu, Yuanting

    2015-08-07

    miRNAs, sorting as non-coding RNAs, are differentially expressed in breast tumor and act as tumor promoters or suppressors. miR-206 could suppress the progression of breast cancer, the mechanism of which remains unclear. The study here was aimed to investigate the effect of miR-206 on human breast cancers. We found that miR-206 was down-regulated while one of its predicted targets, 6-Phosphofructo-2-kinase (PFKFB3) was up-regulated in human breast carcinomas. 17β-estradiol dose-dependently decreased miR-206 expression as well as enhanced PFKFB3 mRNA and protein expression in estrogen receptor α (ERα) positive breast cancer cells. Furthermore, we identified that miR-206 directly interacted with 3′-untranslated region (UTR) of PFKFB3 mRNA. miR-206 modulated PFKFB3 expression in MCF-7, T47D and SUM159 cells, which was influenced by 17β-estradiol depending on ERα expression. In addition, miR-206 overexpression impeded fructose-2,6-bisphosphate (F2,6BP) production, diminished lactate generation and reduced cell proliferation and migration in breast cancer cells. In conclusion, our study demonstrated that miR-206 regulated PFKFB3 expression in breast cancer cells, thereby stunting glycolysis, cell proliferation and migration. - Highlights: • miR-206 was down-regulated and PFKFB3 was up-regulated in human breast carcinomas. • 17β-estradiol regulated miR-206 and PFKFB3 expression in ERα+ cancer cells. • miR-206directly interacted with 3′-UTR of PFKFB3 mRNA. • miR-206 fructose-2,6-bisphosphate (F2,6BP) impeded production and lactate generation. • miR-206 reduced cell proliferation and migration in breast cancer cells.

  16. Development of the Human Breast

    PubMed Central

    Javed, Asma; Lteif, Aida

    2013-01-01

    Mammalia are so named based on the presence of the mammary gland in the breast. The mammary gland is an epidermal appendage, derived from the apocrine glands. The human breast consists of the parenchyma and stroma, originating from ectodermal and mesodermal elements, respectively. Development of the human breast is distinctive for several reasons. The human breast houses the mammary gland that produces and delivers milk through development of an extensive tree-like network of branched ducts. It is also characterized by cellular plasticity, with extensive remodeling in adulthood, a factor that increases its susceptibility to carcinogenesis. Also, breast development occurs in distinct stages via complex epithelial–mesenchymal interactions, orchestrated by signaling pathways under the regulation of systemic hormones. Congenital and acquired disorders of the breast often have a basis in development, making its study essential to understanding breast pathology. PMID:24872732

  17. Therapeutic strategies and mechanisms of tumorigenesis of HER2-overexpressing breast cancer

    PubMed Central

    Emde, Anna; Köstler, Wolfgang J.; Yarden, Yosef

    2010-01-01

    1. Abstract The receptor tyrosine kinase HER2 is overexpressed in approximately 25% of breast cancers. HER2 acts as a signal amplifier for its siblings, namely three different transmembrane receptors that collectively bind with 11 distinct growth factors of the EGF family. Thus, overexpression of HER2 confers aggressive invasive growth in preclinical models and in patients. Specific therapies targeting HER2 include monoclonal antibodies, antibody-drug conjugates, small molecule tyrosine kinase inhibitors, as well as heat shock protein and sheddase inhibitors. Two of these drugs have shown impressive – yet mostly transient – efficacy in patients with HER2 overexpressing breast cancer. We highlight the biological roles of HER2 in breast cancer progression, and overview the available therapeutic armamentarium directed against this receptor-kinase molecule. Focusing on the mechanisms that confer resistance to individual HER2 targeting agents, we envisage therapeutic approaches to delay or overcome the evolvement of resistance in patients. PMID:20951604

  18. Genes overexpressed in different human solid cancers exhibit different tissue-specific expression profiles

    PubMed Central

    Bock Axelsen, Jacob; Lotem, Joseph; Sachs, Leo; Domany, Eytan

    2007-01-01

    We have analyzed gene expression in different normal human tissues and different types of solid cancers derived from these tissues. The cancers analyzed include brain (astrocytoma and glioblastoma), breast, colon, endometrium, kidney, liver, lung, ovary, prostate, skin, and thyroid cancers. Comparing gene expression in each normal tissue to 12 other normal tissues, we identified 4,917 tissue-selective genes that were selectively expressed in different normal tissues. We also identified 2,929 genes that are overexpressed at least 4-fold in the cancers compared with the normal tissue from which these cancers were derived. The overlap between these two gene groups identified 1,340 tissue-selective genes that are overexpressed in cancers. Different types of cancers, including different brain cancers arising from the same lineage, showed differences in the tissue-selective genes they overexpressed. Melanomas overexpressed the highest number of brain-selective genes and this may contribute to melanoma metastasis to the brain. Of all of the genes with tissue-selective expression, those selectively expressed in testis showed the highest frequency of genes that are overexpressed in at least two types of cancer. However, colon and prostate cancers did not overexpress any testis-selective gene. Nearly all of the genes with tissue-selective expression that are overexpressed in cancers showed selective expression in tissues different from the cancers' tissue of origin. Cancers aberrantly expressing such genes may acquire phenotypic alterations that contribute to cancer cell viability, growth, and metastasis. PMID:17664417

  19. Proteomic characterization of Her2/neu-overexpressing breast cancer cells.

    PubMed

    Chen, Hexin; Pimienta, Genaro; Gu, Yiben; Sun, Xu; Hu, Jianjun; Kim, Min-Sik; Chaerkady, Raghothama; Gucek, Marjan; Cole, Robert N; Sukumar, Saraswati; Pandey, Akhilesh

    2010-11-01

    The receptor tyrosine kinase HER2 is an oncogene amplified in invasive breast cancer and its overexpression in mammary epithelial cell lines is a strong determinant of a tumorigenic phenotype. Accordingly, HER2-overexpressing mammary tumors are commonly indicative of a poor prognosis in patients. Several quantitative proteomic studies have employed two-dimensional gel electrophoresis in combination with MS/MS, which provides only limited information about the molecular mechanisms underlying HER2/neu signaling. In the present study, we used a SILAC-based approach to compare the proteomic profile of normal breast epithelial cells with that of Her2/neu-overexpressing mammary epithelial cells, isolated from primary mammary tumors arising in mouse mammary tumor virus-Her2/neu transgenic mice. We identified 23 proteins with relevant annotated functions in breast cancer, showing a substantial differential expression. This included overexpression of creatine kinase, retinol-binding protein 1, thymosin 4 and tumor protein D52, which correlated with the tumorigenic phenotype of Her2-overexpressing cells. The differential expression pattern of two genes, gelsolin and retinol binding protein 1, was further validated in normal and tumor tissues. Finally, an in silico analysis of published cancer microarray data sets revealed a 23-gene signature, which can be used to predict the probability of metastasis-free survival in breast cancer patients.

  20. Proteomic characterization of Her2/neu-overexpressing breast cancer cells

    PubMed Central

    Chen, Hexin; Pimienta, Genaro; Gu, Yiben; Sun, Xu; Hu, Jianjun; Kim, Min-Sik; Chaerkady, Raghothama; Gucek, Marjan; Cole, Robert N; Sukumar, Saraswati; Pandey, Akhilesh

    2014-01-01

    The receptor tyrosine kinase HER2 is an oncogene amplified in invasive breast cancer and its overexpression in mammary epithelial cell lines is a strong determinant of a tumorigenic phenotype. Accordingly, HER2-overexpressing mammary tumors are commonly indicative of a poor prognosis in patients. Several quantitative proteomic studies have employed two-dimensional gel electrophoresis in combination with tandem mass spectrometry, which provides only limited information about the molecular mechanisms underlying HER2/neu signaling. In the present study, we used a SILAC-based approach to compare the proteomic profile of normal breast epithelial cells with that of Her2/neu-overexpressing mammary epithelial cells, isolated from primary mammary tumors arising in MMTV-Her2/neu transgenic mice. We identified 23 proteins with relevant annotated functions in breast cancer, showing a substantial differential expression. This included overexpression of creatine kinase, retinol-binding protein 1, thymosin beta 4 and tumor protein D52, which correlated with the tumorigenic phenotype of Her2-overexpressing cells. The differential expression pattern of two genes, gelsolin and retinol binding protein 1, was further validated in normal and tumor tissues. Finally, an in silico analysis of published cancer microarray datasets revealed a 23-gene signature which can be used to predict the probability of metastasis-free survival in breast cancer patients. PMID:20960451

  1. Id-1 overexpression in invasive ductal carcinoma cells is significantly associated with intratumoral microvessel density in ER-negative/node-positive breast cancer.

    PubMed

    Jang, Ki-Seok; Han, Hong Xiu; Paik, Seung Sam; Brown, Powel H; Kong, Gu

    2006-12-08

    The aim of this study is to investigate the possible role of inhibitor of DNA binding (Id-1) overexpression in human breast cancer. We examined Id-1 expression by immunohistochemistry in 263 human breast cancers, 15 in situ lesions and 248 invasive cancers to investigate the relationship between its expression and various clinicopathological factors. Id-1 expression was significantly higher in invasive ductal carcinoma than in in situ ductal carcinoma or other invasive cancer subtypes (P=0.029 and 0.006, respectively). We also examined the association between Id-1 expression and tumor angiogenesis by measuring microvessel densities (MVD). Regarding the endothelial cells of microvessels showed negative or very weak Id-1 expression, Id-1 overexpression was found to be significantly related to MVD (P=0.014). Furthermore, Id-1 overexpression was found to be significantly associated with higher MVD in the ER-negative and node-involved subgroups of breast cancer (P=0.040 and 0.046, respectively). These data indicate that Id-1 overexpression is significantly associated with tumor angiogenesis, especially in the ER-negative and node-positive subtypes of invasive breast cancer. Thus, Id-1 presents a possible therapeutic antitumor target molecule in ER-negative and node-positive breast cancer.

  2. Neural Stem Cells Secreting Anti-HER2 Antibody Improve Survival in a Preclinical Model of HER2 Overexpressing Breast Cancer Brain Metastases.

    PubMed

    Kanojia, Deepak; Balyasnikova, Irina V; Morshed, Ramin A; Frank, Richard T; Yu, Dou; Zhang, Lingjiao; Spencer, Drew A; Kim, Julius W; Han, Yu; Yu, Dihua; Ahmed, Atique U; Aboody, Karen S; Lesniak, Maciej S

    2015-10-01

    The treatment of human epidermal growth factor receptor 2 (HER2)-overexpressing breast cancer has been revolutionized by trastuzumab. However, longer survival of these patients now predisposes them to forming HER2 positive brain metastases, as the therapeutic antibodies cannot cross the blood brain barrier. The current oncologic repertoire does not offer a rational, nontoxic targeted therapy for brain metastases. In this study, we used an established human neural stem cell line, HB1.F3 NSCs and generated a stable pool of cells secreting a high amount of functional full-length anti-HER2 antibody, equivalent to trastuzumab. Anti-HER2Ab secreted by the NSCs (HER2Ab-NSCs) specifically binds to HER2 overexpressing human breast cancer cells and inhibits PI3K-Akt signaling. This translates to HER2Ab-NSC inhibition of breast cancer cell growth in vitro. Preclinical in vivo experiments using HER2Ab overexpressing NSCs in a breast cancer brain metastases (BCBM) mouse model demonstrate that intracranial injection of HER2Ab-NSCs significantly improves survival. In effect, these NSCs provide tumor localized production of HER2Ab, minimizing any potential off-target side effects. Our results establish HER2Ab-NSCs as a novel, nontoxic, and rational therapeutic approach for the successful treatment of HER2 overexpressing BCBM, which now warrants further preclinical and clinical investigation.

  3. PGC-1β regulates HER2-overexpressing breast cancer cells proliferation by metabolic and redox pathways.

    PubMed

    Victorino, Vanessa Jacob; Barroso, W A; Assunção, A K M; Cury, V; Jeremias, I C; Petroni, R; Chausse, B; Ariga, S K; Herrera, A C S A; Panis, C; Lima, T M; Souza, H P

    2016-05-01

    Breast cancer is a prevalent neoplastic disease among women worldwide which treatments still present several side effects and resistance. Considering that cancer cells present derangements in their energetic homeostasis, and that peroxisome proliferator-activated receptor- gamma coactivator 1 (PGC-1) is crucial for cellular metabolism and redox signaling, the main objective of this study was to investigate whether there is a relationship between PGC-1 expression, the proliferation of breast cancer cells and the mechanisms involved. We initially assessed PGC-1β expression in complementary DNA (cDNA) from breast tumor of patients bearing luminal A, luminal B, and HER2-overexpressed and triple negative tumors. Our data showed that PGC-1β expression is increased in patients bearing HER2-overexpressing tumors as compared to others subtypes. Using quantitative PCR and immunoblotting, we showed that breast cancer cells with HER2-amplification (SKBR-3) have greater expression of PGC-1β as compared to a non-tumorous breast cell (MCF-10A) and higher proliferation rate. PGC-1β expression was knocked down with short interfering RNA in HER2-overexpressing cells, and cells decreased proliferation. In these PGC-1β-inhibited cells, we found increased citrate synthase activity and no marked changes in mitochondrial respiration. Glycolytic pathway was decreased, characterized by lower intracellular lactate levels. In addition, after PGC-1β knockdown, SKBR-3 cells showed increased reactive oxygen species production, no changes in antioxidant activity, and decreased expression of ERRα, a modulator of metabolism. In conclusion, we show an association of HER2-overexpression and PGC-1β. PGC-1β knockdown impairs HER2-overexpressing cells proliferation acting on ERRα signaling, metabolism, and redox balance.

  4. Metallothionein isoform 3 overexpression is associated with breast cancers having a poor prognosis.

    PubMed

    Sens, M A; Somji, S; Garrett, S H; Beall, C L; Sens, D A

    2001-07-01

    The third isoform (MT-3) of the metallothionein gene family is unique in that it has a limited tissue distribution, is not induced by metals, has a neuronal growth inhibitory activity, and sequesters zinc more effectively under zinc-depleted conditions. The goal of the present study was to determine whether MT-3 was absent in normal breast tissue, was overexpressed in breast cancers, and if MT-3 overexpression would be associated with disease outcome. A combination of immunohistochemistry and reverse-transcription polymerase chain reaction was used to demonstrate that the normal breast had no detectable expression of MT-3 mRNA or protein. Using immunohistochemistry, it was shown that MT-3 was overexpressed in 25 of 34 cases of breast cancer. In all cases of positive staining, MT-3 was diffusely localized to the cytoplasm. The tumors from these 34 cases were divided as to outcome based on known 5-year survival, with 20 patients being disease free at 5 years (good outcome) and the other 14 having recurring disease within 5 years (bad outcome). When analyzed for MT-3 staining, it was shown that there was a trend for increased MT-3 immunoreactivity in the group having bad outcomes. However, when the tumor subgrouping was further defined on the basis of carcinoma in situ (CIS), there was a marked significant difference in MT-3 staining between patients with good and bad outcomes. Limited to DCIS, MT-3 staining was significantly increased in patients with bad outcomes compared to those with good outcomes. Thus, these studies demonstrate that MT-3 is overexpressed in selected breast cancers and that overexpression is associated with tumors having a poor prognosis.

  5. Functionalized immunostimulating complexes with protein A via lipid vinyl sulfones to deliver cancer drugs to trastuzumab-resistant HER2-overexpressing breast cancer cells

    PubMed Central

    Rodríguez-Serrano, Fernando; Mut-Salud, Nuria; Cruz-Bustos, Teresa; Gomez-Samblas, Mercedes; Carrasco, Esther; Garrido, Jose Manuel; López-Jaramillo, F Javier; Santoyo-Gonzalez, Francisco; Osuna, Antonio

    2016-01-01

    Background Around 20%–30% of breast cancers overexpress the proto-oncogene human epidermal growth receptor 2 (HER2), and they are characterized by being very invasive. Therefore, many current studies are focused on testing new therapies against tumors that overexpress this receptor. In particular, there exists major interest in new strategies to fight breast cancer resistant to trastuzumab (Tmab), a humanized antibody that binds specifically to HER2 interfering with its mitogenic signaling. Our team has previously developed immunostimulating complexes (ISCOMs) as nanocapsules functionalized with lipid vinyl sulfones, which can incorporate protein A and bind to G immunoglobulins that makes them very flexible nanocarriers. Methods and results The aim of this in vitro study was to synthesize and evaluate a drug delivery system based on protein A-functionalized ISCOMs to target HER2-overexpressing cells. We describe the preparation of ISCOMs, the loading with the drugs doxorubicin and paclitaxel, the binding of ISCOMs to alkyl vinyl sulfone-protein A, the coupling of Tmab, and the evaluation in both HER2-overexpressing breast cancer cells (HCC1954) and non-overexpressing cells (MCF-7) by flow cytometry and fluorescence microscopy. Results show that the uptake is dependent on the level of overexpression of HER2, and the analysis of the cell viability reveals that targeted drugs are selective toward HCC1954, whereas MCF-7 cells remain unaffected. Conclusion Protein A-functionalized ISCOMs are versatile carriers that can be coupled to antibodies that act as targeting agents to deliver drugs. When coupling to Tmab and loading with paclitaxel or doxorubicin, they become efficient vehicles for the selective delivery of the drug to Tmab-resistant HER2-overexpressing breast cancer cells. These nanoparticles may pave the way for the development of novel therapies for poor prognosis resistant patients. PMID:27698563

  6. Targeting GPR110 in HER2-Overexpressing Breast Cancers

    DTIC Science & Technology

    2015-10-01

    trastuzumab (T) (L+T)), which is effective in a larger group of patients. Drugs targeting G protein-coupled receptors (GPCRs) have low toxicity because of... effects of GPR110 overexpression or knockdown on cell growth in the context of drug resistance will also be determined to understand the possible role...HER2   drug   resistance            CONCLUSIONS    REFERENCES   Figure  8.   Effects  of  GPR110

  7. The Cooperation between hMena Overexpression and HER2 Signalling in Breast Cancer

    PubMed Central

    Di Modugno, Francesca; Mottolese, Marcella; DeMonte, Lucia; Trono, Paola; Balsamo, Michele; Conidi, Andrea; Melucci, Elisa; Terrenato, Irene; Belleudi, Francesca; Torrisi, Maria Rosaria; Alessio, Massimo; Santoni, Angela; Nisticò, Paola

    2010-01-01

    hMena and the epithelial specific isoform hMena11a are actin cytoskeleton regulatory proteins belonging to the Ena/VASP family. EGF treatment of breast cancer cell lines upregulates hMena/hMena11a expression and phosphorylates hMena11a, suggesting cross-talk between the ErbB receptor family and hMena/hMena11a in breast cancer. The aim of this study was to determine whether the hMena/hMena11a overexpression cooperates with HER-2 signalling, thereby affecting the HER2 mitogenic activity in breast cancer. In a cohort of breast cancer tissue samples a significant correlation among hMena, HER2 overexpression, the proliferation index (high Ki67), and phosphorylated MAPK and AKT was found and among the molecular subtypes the highest frequency of hMena overexpressing tumors was found in the HER2 subtype. From a clinical viewpoint, concomitant overexpression of HER2 and hMena identifies a subgroup of breast cancer patients showing the worst prognosis, indicating that hMena overexpression adds prognostic information to HER2 overexpressing tumors. To identify a functional link between HER2 and hMena, we show here that HER2 transfection in MCF7 cells increased hMena/hMena11a expression and hMena11a phosphorylation. On the other hand, hMena/hMena11a knock-down reduced HER3, AKT and p44/42 MAPK phosphorylation and inhibited the EGF and NRG1-dependent HER2 phosphorylation and cell proliferation. Of functional significance, hMena/hMena11a knock-down reduced the mitogenic activity of EGF and NRG1. Collectively these data provide new insights into the relevance of hMena and hMena11a as downstream effectors of the ErbB receptor family which may represent a novel prognostic indicator in breast cancer progression, helping to stratify patients. PMID:21209853

  8. Inhibition of phosphatidylcholine-specific phospholipase C downregulates HER2 overexpression on plasma membrane of breast cancer cells

    PubMed Central

    2010-01-01

    Introduction Overexpression on plasma membrane of human epidermal growth factor receptor 2 (HER2) is reported in 25% to 30% of breast cancers. Heterodimer formation with cognate members of the epidermal growth factor receptor (EGFR) family, such as HER3 and EGFR, activates abnormal cell-signalling cascades responsible for tumorigenesis and further transcriptional HER2 gene upregulation. Targeting the molecular mechanisms controlling HER2 overexpression and recycling may effectively deactivate this feedback-amplification loop. We recently showed that inactivation of phosphatidylcholine-specific phospholipase C (PC-PLC) may exert a pivotal role in selectively modulating the expression on the membrane of specific receptors or proteins relevant to cell function. In the present study, we investigated the capability of PC-PLC inhibition to target the molecular mechanisms controlling HER2 overexpression on the membrane of breast cancer cells by altering the rates of its endocytosis and lysosomal degradation. Methods Localization on the membrane and interaction of PC-PLC with HER2, EGFR, and HER3 were investigated on HER2-overexpressing and HER2-low breast cancer cell lines, by using confocal laser scanning microscopy, flow cytometry, cell-surface biotinylation, isolation of lipid rafts, and immunoprecipitation experiments. The effects of the PC-PLC inhibitor tricyclodecan-9-yl-potassium xanthate (D609) on HER2 expression on the membrane and on the levels of overall HER2, HER2-HER3, and HER2-EGFR contents were monitored in the HER2-overexpressing SKBr3 cells, after either transient or continuous receptor engagement with anti-HER2 monoclonal antibodies, including trastuzumab. Changes of HER2 expression and cell proliferation were examined in SKBr3, BT-474, and MDA-MB-453 cells continuously exposed to D609 alone or combined with trastuzumab. Results PC-PLC selectively accumulates on the plasma membrane of HER2-overexpressing cells, where it colocalizes and associates with

  9. Inhibition of cell growth by BrMC through inactivation of Akt in HER-2/neu-overexpressing breast cancer cells

    PubMed Central

    CAO, XIAO-ZHENG; XIANG, HONG-LIN; QUAN, MEI-FANG; HE, LI-HUA

    2014-01-01

    We previously reported that chrysin (ChR) and its analogs induced cell cycle arrest and apoptosis in human estrogen receptor-positive/-negative breast cancer cells. However, it was unknown whether 8-bromo-7-methoxychrysin (BrMC), a novel synthetic ChR analog, inhibited the cell growth of human epidermal growth factor receptor 2 (HER-2)/neu-overexpressing breast cancers. In the present study, it was demonstrated that BrMC preferentially inhibited the cell viability of HER-2/neu-overexpressing MDA-MB-453 and BT-474 cells. Western blot analysis revealed that HER-2/neu expression and tyrosine phosphorylation were inhibited by BrMC in a concentration-dependent manner; whereas the proteasome inhibitor, MG-132, significantly prevented BrMC-induced HER-2/neu depletion and cell death in MDA-MB-453 cells. This directly indicated that BrMC-induced HER-2/neu depletion and cell growth inhibition was mediated by a proteasomal pathway. BrMC significantly downregulated the expression of cyclin D1, cyclin E and CDK4, followed by the suppression of protein kinase B phosphorylation and downstream effectors, GSK-3β and β-catenin. A colony formation assay also confirmed the growth-inhibitory effects of BrMC. Thus, these findings clearly demonstrate the anticancer activity of BrMC against human HER-2/neu-overexpressing breast cancer cells. Thus, these findings clearly demonstrate the anticancer activity of BrMC against human HER 2/neu-overexpressing breast cancer cells, and highlight BrMC as a promising candidate for breast cancer therapy. PMID:24765191

  10. Overexpression of the protein tyrosine phosphatase PRL-2 correlates with breast tumor formation and progression.

    PubMed

    Hardy, Serge; Wong, Nau Nau; Muller, William J; Park, Morag; Tremblay, Michel L

    2010-11-01

    The PRL-1, PRL-2, and PRL-3 phosphatases are prenylated protein tyrosine phosphatases with oncogenic activity that are proposed to drive tumor metastasis. We found that PRL-2 mRNA is elevated in primary breast tumors relative to matched normal tissue, and also dramatically elevated in metastatic lymph nodes compared with primary tumors. PRL-2 knockdown in metastatic MDA-MB-231 breast cancer cells decreased anchorage-independent growth and cell migration, suggesting that the malignant phenotype of these cells is mediated at least in part through PRL-2 signaling. In different mouse mammary tumor-derived cell lines overexpressing PRL-2, we confirmed its role in anchorage-independent growth and cell migration. Furthermore, injection of PRL-2-overexpressing cells into the mouse mammary fat pad promoted extracellular signal-regulated kinase 1/2 activation and tumor formation. MMTV-PRL-2 transgenic mice engineered to overexpress the enzyme in mammary tissue did not exhibit spontaneous tumorigenesis, but they exhibited an accelerated development of mammary tumors initiated by introduction of an MMTV-ErbB2 transgene. Together, our results argue that PRL-2 plays a role in breast cancer progression.

  11. Segmentation of HER2 protein overexpression in immunohistochemically stained breast cancer images using Support Vector Machines

    NASA Astrophysics Data System (ADS)

    Pezoa, Raquel; Salinas, Luis; Torres, Claudio; Härtel, Steffen; Maureira-Fredes, Cristián; Arce, Paola

    2016-10-01

    Breast cancer is one of the most common cancers in women worldwide. Patient therapy is widely supported by analysis of immunohistochemically (IHC) stained tissue sections. In particular, the analysis of HER2 overexpression by immunohistochemistry helps to determine when patients are suitable to HER2-targeted treatment. Computational HER2 overexpression analysis is still an open problem and a challenging task principally because of the variability of immunohistochemistry tissue samples and the subjectivity of the specialists to assess the samples. In addition, the immunohistochemistry process can produce diverse artifacts that difficult the HER2 overexpression assessment. In this paper we study the segmentation of HER2 overexpression in IHC stained breast cancer tissue images using a support vector machine (SVM) classifier. We asses the SVM performance using diverse color and texture pixel-level features including the RGB, CMYK, HSV, CIE L*a*b* color spaces, color deconvolution filter and Haralick features. We measure classification performance for three datasets containing a total of 153 IHC images that were previously labeled by a pathologist.

  12. CHL1 is involved in human breast tumorigenesis and progression

    SciTech Connect

    He, Li-Hong; Ma, Qin; Shi, Ye-Hui; Ge, Jie; Zhao, Hong-Meng; Li, Shu-Fen; Tong, Zhong-Sheng

    2013-08-23

    Highlights: •CHL1 is down-regulation in breast cancer tissues. •Down-regulation of CHL1 is related to high grade. •Overexpression of CHL1 inhibits breast cancer cell proliferation and invasion in vitro. •CHL1 deficiency induces breast cancer cell proliferation and invasion both in vitro and in vivo. -- Abstract: Neural cell adhesion molecules (CAM) play important roles in the development and regeneration of the nervous system. The L1 family of CAMs is comprised of L1, Close Homolog of L1 (CHL1, L1CAM2), NrCAM, and Neurofascin, which are structurally related trans-membrane proteins in vertebrates. Although the L1CAM has been demonstrated play important role in carcinogenesis and progression, the function of CHL1 in human breast cancer is limited. Here, we found that CHL1 is down-regulated in human breast cancer and related to lower grade. Furthermore, overexpression of CHL1 suppresses proliferation and invasion in MDA-MB-231 cells and knockdown of CHL1 expression results in increased proliferation and invasion in MCF7 cells in vitro. Finally, CHL1 deficiency promotes tumor formation in vivo. Our results may provide a strategy for blocking breast carcinogenesis and progression.

  13. Cooperatively transcriptional and epigenetic regulation of sonic hedgehog overexpression drives malignant potential of breast cancer.

    PubMed

    Duan, Zhao-Heng; Wang, Hao-Chuan; Zhao, Dong-Mei; Ji, Xiao-Xin; Song, Min; Yang, Xiao-Jun; Cui, Wei

    2015-08-01

    Sonic hedgehog (Shh), a ligand of Hedgehog signaling pathway, is considered an important oncogene and an exciting potential therapeutic target in several cancers. Comprehensive understanding of the regulation mechanism of Shh in cancer cells is necessary to find an effective approach to selectively block its tumorigenic function. We and others previously demonstrated that nuclear factor-kappa B (NF-κB) activation and promoter hypomethylation contributed to the overexpression of Shh. However, the relationship between transcriptional and epigenetic regulation of Shh, and their roles in the malignant phenotype of cancer cells are still not clearly elucidated. In the present study, our data showed that the level of Shh was higher in breast cancer tissues with positive NF-κB nuclear staining and promoter hypomethylation. In addition, survival analysis revealed that Shh overexpression, but not hypomethylation and NF-κB nuclear staining, was a poor prognosis indicator for breast cancers. Moreover, in vitro data demonstrated that both NF-κB activation and hypomethylation in promoter region were positively associated with the overexpression of Shh. Mechanistically, the hypomethylation in Shh promoter could facilitate NF-κB binding to its site, and subsequently cooperate to induce transcription of Shh. Furthermore, the biological function data indicated that overexpressed Shh enhanced the self-renewal capacity and migration ability of breast cancer cells, which could be augmented by promoter demethylation and NF-κB activation. Overall, our findings reveal multiple and cooperative mechanisms of Shh upregulation in cancer cells, and the roles of Shh in tumor malignant behavior, thus suggesting a new strategy for therapeutic interventions to reduce Shh in tumors and improve patients' prognosis.

  14. Overexpression of microRNA-24 increases the sensitivity to paclitaxel in drug-resistant breast carcinoma cell lines via targeting ABCB9

    PubMed Central

    Gong, Jian-Ping; Yang, Liu; Tang, Jun-Wei; Sun, Peng; Hu, Qing; Qin, Jian-Wei; Xu, Xiao-Ming; Sun, Bei-Cheng; Tang, Jin-Hai

    2016-01-01

    Paclitaxel has been widely used in the treatment of breast cancer. However, the development of drug resistance often increases the failure of chemotherapy. Growing evidence has reported the significant role of microRNAs (miRs) in drug resistance. The present study identified that miR-24 was significantly downregulated in paclitaxel-resistant (PR) breast cancer patients and in MCF-7/PR human breast carcinoma cells, and that overexpression of miR-24 could increase the effect of paclitaxel on drug-resistant breast carcinoma cells. Furthermore, miR-24 could directly bind to the 3′-untranslated region of ATP binding cassette B9 to downregulate its expression, thereby reducing drug transportation and improving the anti-tumor effect of paclitaxel on breast cancer cells. In vivo experiments also demonstrated that overexpression of miR-24 could increase the sensitivity of drug-resistant MCF-7 cells to paclitaxel. In conclusion, the present results suggested a novel function for miR-24 in reducing paclitaxel resistance in breast cancer, which may be of important clinical significance. PMID:27895747

  15. Inhibition of fatty acid oxidation as a therapy for MYC-overexpressing triple-negative breast cancer

    PubMed Central

    Camarda, Roman; Zhou, Zhou; Kohnz, Rebecca A.; Balakrishnan, Sanjeev; Mahieu, Celine; Anderton, Brittany; Eyob, Henok; Kajimura, Shingo; Tward, Aaron; Krings, Gregor; Nomura, Daniel K.; Goga, Andrei

    2016-01-01

    Expression of the oncogenic transcription factor MYC is disproportionately elevated in triple-negative breast cancer (TNBC) compared to estrogen, progesterone and human epidermal growth factor 2 receptor-positive (RP) breast tumors1,2. We and others have shown that MYC alters metabolism during tumorigenesis3,4. However, the role of MYC in TNBC metabolism remains largely unexplored. We hypothesized that MYC-dependent metabolic dysregulation is essential for MYC-overexpressing (MO) TNBC and may thus identify novel therapeutic targets for this clinically challenging subset of breast cancer. Using a targeted metabolomics approach, we identified fatty acid oxidation (FAO) intermediates as being dramatically upregulated in a MYC-driven model of TNBC. A lipid metabolism gene signature was identified in patients with TNBC from The Cancer Genome Atlas (TCGA) database and multiple other clinical datasets, implicating FAO as a dysregulated pathway critical for TNBC metabolism. We find that MO-TNBC displays increased bioenergetic reliance upon fatty acid oxidation (FAO), and that pharmacologic inhibition of FAO catastrophically decreases energy metabolism of MO-TNBC, blocks growth of a MYC-driven transgenic TNBC model and that of MO-TNBC patient-derived xenografts. Our results demonstrate that inhibition of FAO is a novel therapeutic strategy against MO-TNBC. PMID:26950360

  16. Cadherin-11 expression is upregulated in invasive human breast cancer

    PubMed Central

    Pohlodek, Kamil; Tan, Yen Y.; Singer, Christian F.; Gschwantler-Kaulich, Daphne

    2016-01-01

    Loss of expression of cadherin-11 protein is correlated with a loss of epithelial phenotype and a gain in tumor cell proliferation and invasion. It has been hypothesized that cadherin-11 may be a molecular marker for a more aggressive subtype of breast cancer. The present study examined the expression of the mesenchymal gene/protein cadherin-11 in malignant, benign and healthy breast cancer samples. A paraffin-embedded tissue microarray of both malignant and benign/healthy breast tumor was used. Clinicopathological parameters, including age, grading, tumor size, hormone receptors and HER2 receptors status were obtained from patient medical records. Expression of cadherin-11 was analyzed using the monoclonal mouse anti cadherin-11 IgG2B clone. Total RNA was extracted from each breast cancer sample and subjected to semi-quantitative RT-PCR analysis for cadherin-11. Cadherin-11 was detected in 80/82 malignant breast cancer samples and in 33/70 non-malignant tissue samples. Cadherin-11 expression was observed to be predominantly localized to the membrane of tumor cells. When compared to healthy breast tissue biopsies, both cadherin-11 mRNA and protein were demonstrated to be significantly overexpressed in breast carcinoma (P=0.040 and P<0.0001, respectively). Within malignant tumors, however, protein expression was not identified to be associated with other clinicopathological parameters. Our results indicate that cadherin-11 expression is upregulated in malignant human breast cancer. PMID:28101202

  17. A modified Trastuzumab antibody for the immunohistochemical detection of HER-2 overexpression in breast cancer.

    PubMed

    Bussolati, G; Montemurro, F; Righi, L; Donadio, M; Aglietta, M; Sapino, A

    2005-04-11

    The immunohistochemical determination of HER-2 to identify patients with advanced breast cancer candidates for Trastuzumab treatment proved neither accurate nor fully reliable, possibly because none of the current reagents detects the specific antigenic site target of Trastuzumab. To circumvent this problem, we conjugated the NH2 groups of Trastuzumab with biotin, and the compound obtained, designated BiotHER, was added directly to tissue sections. Biotin-labelling was revealed with horseradish peroxidase-conjugated streptavidin. Specificity and sensitivity of BiotHER immunostaining with respect to HER-2 amplification were tested on 164 breast carcinoma samples. BiotHER staining was detected on the tumour cell membrane of 12% of all specimens and in 49% specimens with gene amplification, while absent in nonamplified tumours. Predictivity of BiotHER status with respect to the clinical outcome was analysed in 54 patients with HER-2 amplified advanced breast cancer treated with Trastuzumab plus chemotherapy. BiotHER staining, detected in 50% of tumours with HER-2 amplification, was an independent predictor of clinical outcome. In fact, BiotHER positivity was independently associated with increased likelihood of tumour response and reduced risk of tumour progression and death. Biotinylated Trastuzumab can thus be used for immunohistochemical detection of HER-2 overexpression in breast cancer, and has the potential to identify patients likely to benefit from Trastuzumab treatment.

  18. Understanding EGFR Signaling in Breast Cancer and Breast Cancer Stem Cells: Overexpression and Therapeutic Implications.

    PubMed

    Alanazi, Ibrahim O; Khan, Zahid

    2016-01-01

    Epidermal growth factor receptors (EGFRs/HERs) and downstream signaling pathways have been implicated in the pathogenesis of several malignancies including breast cancer and its resistance to treatment with chemotherapeutic drugs. Consequently, several monoclonal antibodies as well as small molecule inhibitors targeting these pathways have emerged as therapeutic tools in the recent past. However, studies have shown that utilizing these molecules in combination with chemotherapy has yielded only limited success. This review describes the current understanding of EGFRs/HERs and associated signaling pathways in relation to development of breast cancer and responses to various cancer treatments in the hope of pointing to improved prevention, diagnosis and treatment. Also, we review the role of breast cancer stem cells (BCSCs) in disease and the potential to target these cells.

  19. The bone morphogenetic protein antagonist gremlin 1 is overexpressed in human cancers and interacts with YWHAH protein

    PubMed Central

    Namkoong, Hong; Shin, Seung Min; Kim, Hyun Kee; Ha, Seon-Ah; Cho, Goang Won; Hur, Soo Young; Kim, Tae Eung; Kim, Jin Woo

    2006-01-01

    Background Basic studies of oncogenesis have demonstrated that either the elevated production of particular oncogene proteins or the occurrence of qualitative abnormalities in oncogenes can contribute to neoplastic cellular transformation. The purpose of our study was to identify an unique gene that shows cancer-associated expression, and characterizes its function related to human carcinogenesis. Methods We used the differential display (DD) RT-PCR method using normal cervical, cervical cancer, metastatic cervical tissues, and cervical cancer cell lines to identify genes overexpressed in cervical cancers and identified gremlin 1 which was overexpressed in cervical cancers. We determined expression levels of gremlin 1 using Northern blot analysis and immunohistochemical study in various types of human normal and cancer tissues. To understand the tumorigenesis pathway of identified gremlin 1 protein, we performed a yeast two-hybrid screen, GST pull down assay, and immunoprecipitation to identify gremlin 1 interacting proteins. Results DDRT-PCR analysis revealed that gremlin 1 was overexpressed in uterine cervical cancer. We also identified a human gremlin 1 that was overexpressed in various human tumors including carcinomas of the lung, ovary, kidney, breast, colon, pancreas, and sarcoma. PIG-2-transfected HEK 293 cells exhibited growth stimulation and increased telomerase activity. Gremlin 1 interacted with homo sapiens tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, eta polypeptide (14-3-3 eta; YWHAH). YWHAH protein binding site for gremlin 1 was located between residues 61–80 and gremlin 1 binding site for YWHAH was found to be located between residues 1 to 67. Conclusion Gremlin 1 may play an oncogenic role especially in carcinomas of the uterine cervix, lung, ovary, kidney, breast, colon, pancreas, and sarcoma. Over-expressed gremlin 1 functions by interaction with YWHAH. Therefore, Gremlin 1 and its binding protein YWHAH could be good

  20. Relationship of Sialyl-Lewisx/a Underexpression and E-Cadherin Overexpression in the Lymphovascular Embolus of Inflammatory Breast Carcinoma

    PubMed Central

    Alpaugh, Mary L.; Tomlinson, James S.; Ye, Yin; Barsky, Sanford H.

    2002-01-01

    Inflammatory breast carcinoma (IBC) is characterized by florid tumor emboli within lymphovascular spaces called lymphovascular invasion. These emboli have a unique microscopic appearance of compact clumps of tumor cells retracted away from the surrounding endothelial cell layer. Using a human SCID model of IBC (MARY-X), we, in previous studies, demonstrated that the tumor cell embolus (IBC spheroid) forms on the basis of an intact and overexpressed E-cadherin/α,β-catenin axis that mediates tumor cell-tumor cell adhesion. In the present study we examine the mechanism behind the apparent lack of binding of the tumor embolus to the surrounding endothelium. We find that this lack of tumor cell binding is because of markedly decreased sialyl-Lewisx/a (sLex/a) carbohydrate ligand-binding epitopes on its overexpressed MUC1 and other surface molecules that bind endothelial E-selectin. Decreased sLex/a is because of decreased α3/4-fucosyltransferase activity in MARY-X. The decreased sLex/a fail to confer electrostatic repulsions between tumor cells, which further contributes to the compactness of the MARY-X spheroid by allowing the E-cadherin homodimeric interactions to go unopposed. MARY-X spheroids were retrovirally transfected with FucT-III cDNA, significantly raising their levels of fucosyltransferase activity and surface sLex/a. In parallel experiments, enzymatic transfers with a milk α1,3-fucosyltransferase and an α2,3-sialyltransferase (ST3GalIV) were performed on the MARY-X spheroids and increased surface sLex/a. The addition of sLex/a by either manipulation caused disadherence of the MARY-X spheroids and the disruption of the E-cadherin homodimers mediating cell adhesion. Our findings support the cooperative relationship of sLex/a underexpression and E-cadherin overexpression in the genesis of the lymphovascular embolus of IBC. PMID:12163386

  1. Over-expression of genes and proteins of ubiquitin specific peptidases (USPs) and proteasome subunits (PSs) in breast cancer tissue observed by the methods of RFDD-PCR and proteomics.

    PubMed

    Deng, Shishan; Zhou, Hongying; Xiong, Ruohong; Lu, Youguang; Yan, Dazhong; Xing, Tianyong; Dong, Lihua; Tang, Enjie; Yang, Huijun

    2007-07-01

    The ubiquitin-proteasome system facilitates the degradation of damaged proteins and regulators of growth and stress response. Alterations in this proteolytic system are associated with a variety of human pathologies. By restriction fragment differential display polymerase chain reaction (RFDD-PCR) and matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry (MALDI-TOF-TOF MS) based on two-dimensional polyacrylamide gel electrophoresis (2-DE), differentially expressed genes and proteins of ubiquitin specific proteases (USPs), proteasome subuinits (PSs) and ubiquitin protein ligase E3A (UBE3A) were analyzed between breast cancer and adjacent normal tissues. Some of them were further verified as over-expression by immunohistochemical stain. Five genes of proteasome subunits (PSs), including PSMB5, PSMD1, PSMD2, PSMD8 and PSMD11, four genes of USPs, including USP9X, USP9Y, USP10 and USP25, and ubiquitin protein ligase E3A (UBE3A) were over-expressed (>3-fold) in breast cancer tissue compared to adjacent normal tissue, and over-expression (>4-fold) of proteins of PSMA1 and SMT3A were observed in breast cancer tissue. PSMD8, PSMD11 and UBE3A were further verified as over-expression by immunohistochemical stain. The action of ubiquitin-proteasome system were obviously enhanced in breast cancer, and selectively intervention in action of ubiquitin-proteasome system may be a useful method of treating human breast cancer.

  2. Frequent methylation of the KLOTHO gene and overexpression of the FGFR4 receptor in invasive ductal carcinoma of the breast.

    PubMed

    Dallol, Ashraf; Buhmeida, Abdelbaset; Merdad, Adnan; Al-Maghrabi, Jaudah; Gari, Mamdooh A; Abu-Elmagd, Muhammad M; Elaimi, Aisha; Assidi, Mourad; Chaudhary, Adeel G; Abuzenadah, Adel M; Nedjadi, Taoufik; Ermiah, Eramah; Alkhayyat, Shadi S; Al-Qahtani, Mohammed H

    2015-12-01

    Invasive ductal carcinoma of the breast is the most common cancer affecting women worldwide. The marked heterogeneity of breast cancer is matched only with the heterogeneity in its associated or causative factors. Breast cancer in Saudi Arabia is apparently an early onset with many of the affected females diagnosed before they reach the age of 50 years. One possible rationale underlying this observation is that consanguinity, which is widely spread in the Saudi community, is causing the accumulation of yet undetermined cancer susceptibility mutations. Another factor could be the accumulation of epigenetic aberrations caused by the shift toward a Western-like lifestyle in the past two decades. In order to shed some light into the molecular mechanisms underlying breast cancer in the Saudi community, we identified KLOTHO (KL) as a tumor-specific methylated gene using genome-wide methylation analysis of primary breast tumors utilizing the MBD-seq approach. KL methylation was frequent as it was detected in 55.3 % of breast cancer cases from Saudi Arabia (n = 179) using MethyLight assay. Furthermore, KL is downregulated in breast tumors with its expression induced following treatment with 5-azacytidine. The involvement of KL in breast cancer led us to investigate its relationship in the context of breast cancer, with one of the protagonists of its function, fibroblast growth factor receptor 4 (FGFR4). Overexpression of FGFR4 in breast cancer is frequent in our cohort and this overexpression is associated with poor overall survival. Interestingly, FGFR4 expression is higher in the absence of KL methylation and lower when KL is methylated and presumably silenced, which is suggestive of an intricate relationship between the two factors. In conclusion, our findings further implicate "metabolic" genes or pathways in breast cancer that are disrupted by epigenetic mechanisms and could provide new avenues for understanding this disease in a new context.

  3. Combined treatment with ABT-737 and VX-680 induces apoptosis in Bcl-2- and c-FLIP-overexpressing breast carcinoma cells.

    PubMed

    Choi, Jung Eun; Woo, Seon Min; Min, Kyoung-Jin; Kang, Su Hwan; Lee, Soo Jung; Kwon, Taeg Kyu

    2015-03-01

    ABT-737, a BH3-mimetic small-molecule inhibitor, binds with very high affinity to Bcl-2, Bcl-xL and Bcl-w, and inhibits their activity. Aurora kinase is one of the serine/threonine kinase family members and is a vital and critical regulator of mitosis and meiosis. In the present study, we investigated the effects and mechanisms of a combined treatment of ABT-737 and VX-680 (Aurora kinase inhibitor) in human breast cancer MDA-MB‑435S cells. ABT-737 plus VX-680 induced caspase-dependent apoptosis in the human breast cancer cells. Combined treatment with ABT-737 and VX-680 led to the downregulation of Bcl-2 expression at the transcriptional level and the downregulation of c-FLIP and Mcl-1 expression at the post-transcriptional level. Overexpression of Bcl-2 or c-FLIP could not block the induction of apoptosis caused by the combined treatment with ABT-737 and VX-680. However, overexpression of Mcl-1 partially inhibited the induction of apoptosis. In contrast, the combined treatment with ABT-737 and VX680 had no effect on the apoptosis in normal cells. Taken together, our study demonstrated that combined treatment with ABT-737 and VX-680 induced apoptosis in anti‑apoptotic protein (Bcl-2 or c-FLIP)-overexpressing cells.

  4. Comprehensive profiling of metaplastic breast carcinomas reveals frequent overexpression of programmed death-ligand 1

    PubMed Central

    Joneja, Upasana; Vranic, Semir; Swensen, Jeffrey; Feldman, Rebecca; Chen, Wangjuh; Kimbrough, Jeffrey; Xiao, Nianqing; Reddy, Sandeep; Palazzo, Juan; Gatalica, Zoran

    2017-01-01

    Aims Metaplastic breast carcinoma (MBC) is a rare subtype of breast carcinoma less responsive to conventional chemotherapy than ductal carcinoma. In molecular terms, MBCs usually cluster with triple-negative breast cancers (TNBCs), but have a worse prognosis than TNBCs. Studies investigating MBCs for specific biomarkers of therapy response are rare and limited by the methodological approaches. The aim of the present study was to characterise MBCs on a molecular level and test programmed death-ligand 1 (PD-L1) biomarker expression in MBCs for future therapeutic interventions. Methods We profiled 297 samples (MBC (n=75), TNBC (n=106), human epidermal growth factor receptor 2 (HER2)-positive breast cancers (n=32) and hormone-positive breast cancers (n=84)) by next-generation sequencing. Immunohistochemistry for PD-L1 and programmed cell death 1 (PD-1) expression was performed using automated procedures. Results The most commonly mutated genes in MBCs included TP53 (56%) and PIK3CA (23%). Pathogenic mutations in other genes, including HRAS, FBXW7, PTEN, AKT1 and SMAD4, were rare. PD-L1 expression was detected in a significantly higher proportion of MBCs (46%) than in other subtypes (6% each in hormone-positive and HER2-positive breast cancers, and 9% in TNBC, not otherwise specified, p<0.001). PD-1-positive tumour infiltrating lymphocytes (TILs) varied greatly in MBCs. Conclusions Comprehensive profiling of a large cohort of this rare subtype of breast carcinoma highlighted the predominance of TP53 mutation and increased PD-L1 expression in carcinoma cells. These results can be exploited in clinical trials using immune checkpoint inhibitors. PMID:27531819

  5. Hyaluronan-modified magnetic nanoclusters for detection of CD44-overexpressing breast cancer by MR imaging.

    PubMed

    Lim, Eun-Kyung; Kim, Hyun-Ouk; Jang, Eunji; Park, Joseph; Lee, Kwangyeol; Suh, Jin-Suck; Huh, Yong-Min; Haam, Seungjoo

    2011-11-01

    We fabricated hyaluronan-modified magnetic nanoclusters (HA-MNCs) for detection of CD44-overexpressing breast cancer using magnetic resonance (MR) imaging. CD44 is closely associated with cancer growth, including proliferation, metastasis, invasion, and angiogenesis. Hence, pyrenyl hyaluronan (Py-HA) conjugates were synthesized as CD44-targetable surfactants with hyaluronan (HA) and 1-pyrenylbutyric acid (Py) to modify hyaluronan on hydrophobic magnetic nanocrystals. Subsequently, HA-MNCs were fabricated using the nano-emulsion method; magnetic nanocrystals were simultaneously self-assembled with Py-HA conjugates, and their physical and magnetic properties depended on the degree of substitution (DS) of Py in Py-HA conjugates. HA-MNCs exhibited superior targeting efficiency with MR sensitivity as well as excellent biocompatibility through in vitro/in vivo studies. This suggests that HA-MNCs can be a potent cancer specific molecular imaging agent via targeted detection of CD44 with MR imaging.

  6. Potential use of humanized antibodies in the treatment of breast cancer.

    PubMed

    Schaefer, Niklaus G; Pestalozzi, Bernhard C; Knuth, Alexander; Renner, Christoph

    2006-07-01

    With the growing knowledge of key cellular pathways in tumor induction and evolution, targeted therapies make up an increasing proportion of new drugs entering clinical testing. In the treatment of breast cancer, humanized antibodies have become a major option. The humanized monoclonal antibody trastuzumab (Herceptin); Genentech, Inc., CA, USA) for HER2-overexpressing, metastatic breast cancer, represents a successful agent associated with impressive survival benefits when combined with chemotherapy. Based on impressive results, trastuzumab will become a standard in the adjuvant treatment of HER2-overexpressing breast cancer. The role of trastuzumab in the neoadjuvant setting is promising, but must be further evaluated in large prospective, randomized trials. However, there is still a large proportion of patients overexpressing HER2 that do not respond to trastuzumab. Regarding this patient cohort, the optimal combination of trastuzumab with other agents needs further evaluation. In breast cancer lacking HER2 amplification, the role of the new antibody pertuzumab remains to be defined. The role of antibodies interfering with angiogenesis, tumor stroma or glycoproteins is of a preliminary nature and warrants further investigation. Here, an overview of humanized antibodies in human breast cancer is provided, with emphasis on the recent advances and future prospects in treating malignant breast cancer.

  7. Overexpression of Human Bone Alkaline Phosphatase in Pichia Pastoris

    NASA Technical Reports Server (NTRS)

    Karr, Laurel; Malone, Christine, C.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    The Pichiapastoris expression system was utilized to produce functionally active human bone alkaline phosphatase in gram quantities. Bone alkaline phosphatase is a key enzyme in bone formation and biomineralization, yet important questions about its structural chemistry and interactions with other cellular enzymes in mineralizing tissues remain unanswered. A soluble form of human bone alkaline phosphatase was constructed by deletion of the 25 amino acid hydrophobic C-terminal region of the encoding cDNA and inserted into the X-33 Pichiapastoris strain. An overexpression system was developed in shake flasks and converted to large-scale fermentation. Alkaline phosphatase was secreted into the medium to a level of 32mgAL when cultured in shake flasks. Enzyme activity was 12U/mg measured by a spectrophotometric assay. Fermentation yielded 880mgAL with enzymatic activity of 968U/mg. Gel electrophoresis analysis indicates that greater than 50% of the total protein in the fermentation is alkaline phosphatase. A purification scheme has been developed using ammonium sulfate precipitation followed by hydrophobic interaction chromatography. We are currently screening crystallization conditions of the purified recombinant protein for subsequent X-ray diffraction analyses. Structural data should provide additional information on the role of alkaline phosphatase in normal bone mineralization and in certain bone mineralization anomalies.

  8. Microbiota of Human Breast Tissue

    PubMed Central

    Urbaniak, Camilla; Cummins, Joanne; Brackstone, Muriel; Macklaim, Jean M.; Gloor, Gregory B.; Baban, Chwanrow K.; Scott, Leslie; O'Hanlon, Deidre M.; Burton, Jeremy P.; Francis, Kevin P.; Tangney, Mark

    2014-01-01

    In recent years, a greater appreciation for the microbes inhabiting human body sites has emerged. In the female mammary gland, milk has been shown to contain bacterial species, ostensibly reaching the ducts from the skin. We decided to investigate whether there is a microbiome within the mammary tissue. Using 16S rRNA sequencing and culture, we analyzed breast tissue from 81 women with and without cancer in Canada and Ireland. A diverse population of bacteria was detected within tissue collected from sites all around the breast in women aged 18 to 90, not all of whom had a history of lactation. The principal phylum was Proteobacteria. The most abundant taxa in the Canadian samples were Bacillus (11.4%), Acinetobacter (10.0%), Enterobacteriaceae (8.3%), Pseudomonas (6.5%), Staphylococcus (6.5%), Propionibacterium (5.8%), Comamonadaceae (5.7%), Gammaproteobacteria (5.0%), and Prevotella (5.0%). In the Irish samples the most abundant taxa were Enterobacteriaceae (30.8%), Staphylococcus (12.7%), Listeria welshimeri (12.1%), Propionibacterium (10.1%), and Pseudomonas (5.3%). None of the subjects had signs or symptoms of infection, but the presence of viable bacteria was confirmed in some samples by culture. The extent to which these organisms play a role in health or disease remains to be determined. PMID:24610844

  9. Frequent alterations of HER2 through mutation, amplification, or overexpression in pleomorphic lobular carcinoma of the breast.

    PubMed

    Lien, Huang-Chun; Chen, Yu-Ling; Juang, Yu-Lin; Jeng, Yung-Ming

    2015-04-01

    Mutations in HER2 gene have been identified in a small subset of breast cancer cases. Identification of HER2 mutation has therapeutic implications for breast cancer, but whether a subgroup of breast cancer with a higher frequency of HER2 mutation exists, remains unknown. We analyzed HER2 mutation and pathologic factors on 73 formalin-fixed, paraffin-embedded samples, including 21 pleomorphic invasive lobular carcinoma (p-ILC) cases, 3 pleomorphic lobular carcinoma in situ (p-LCIS) cases, and 49 classic invasive lobular carcinoma (c-ILC) cases. Mutations were identified through direct sequencing. HER2 overexpression and amplification were determined through immunohistochemistry and fluorescent in situ hybridization. Six mutations were identified, including five in the 24 p-ILC or p-LCIS (p-ILC/p-LCIS) cases (20.8 %) and one in the 49 c-ILC cases (2.0 %), and the difference in frequency was significant (p = 0.013). Eight of the 24 (33.3 %) p-ILC/p-LCIS cases exhibited HER2 amplification or overexpression (amplification/overexpression), which was significantly higher than in the c-ILC cases (1/49, 2 %). Mutation and amplification/overexpression were mutually exclusive. HER2 mutations were identified more frequently in the p-ILC/p-LCIS cases with extensive apocrine change (p = 0.018). Combined HER2 alterations through mutation or amplification/overexpression were more frequently identified in p-ILC/p-LCIS cases without estrogen receptor expression. The high frequency (54.1 %, 13/24) of combined HER2 alterations in the p-ILC/p-LCIS cases suggests a crucial role of HER2 in the pathogenesis of p-ILC/p-LCIS. Because of the reported responsiveness of HER2 mutation to anti-HER2 therapy, p-ILC patients without HER2 amplification/overexpression should receive HER2 mutation analysis to identify this therapeutically relevant target.

  10. Overexpression of c-erbB2 is an independent marker of resistance to endocrine therapy in advanced breast cancer

    PubMed Central

    Houston, S J; Plunkett, T A; Barnes, D M; Smith, P; Rubens, R D; Miles, D W

    1999-01-01

    The present study investigated the interaction between c-erbB2 overexpression and the response to first-line endocrine therapy in patients with advanced breast cancer. The primary tumours of 241 patients who were treated at first relapse with endocrine therapy were assessed for overexpression of c-erbB2 by immunohistochemistry. c-erbB2 was overexpressed in 76 (32%) of primary breast cancers and did not correlate with any other prognostic factor. The overall response to treatment and time to progression were significantly lower in patients with c-erbB2-positive tumours compared to those that were c-erbB2-negative (38% vs 56%, P = 0.02; and 4.1 months vs 8.7 months, P < 0.001, respectively). In multivariate analysis, c-erbB2 status was the most significant predictive factor for a short time to progression (P = 0.0009). In patients with ER-positive primary tumours treated at relapse with tamoxifen (n = 170), overexpression of c-erbB2 was associated with a significantly shorter time to progression (5.5 months vs 11.2 months, P < 0.001). In conclusion, overexpression of c-erbB2 in the primary tumour is an independent marker of relative resistance to first-line endocrine therapy in patients with advanced breast cancer. In patients with ER-positive primary tumours, the overexpression of c-erbB2 defines a subgroup less likely to respond to endocrine therapy. © 1999 Cancer Research Campaign PMID:10098763

  11. Human cancers overexpress genes that are specific to a variety of normal human tissues

    PubMed Central

    Lotem, Joseph; Netanely, Dvir; Domany, Eytan; Sachs, Leo

    2005-01-01

    We have analyzed gene expression data from three different kinds of samples: normal human tissues, human cancer cell lines, and leukemic cells from lymphoid and myeloid leukemia pediatric patients. We have searched for genes that are overexpressed in human cancer and also show specific patterns of tissue-dependent expression in normal tissues. Using the expression data of the normal tissues, we identified 4,346 genes with a high variability of expression and clustered these genes according to their relative expression level. Of 91 stable clusters obtained, 24 clusters included genes preferentially expressed either only in hematopoietic tissues or in hematopoietic and one to two other tissues; 28 clusters included genes preferentially expressed in various nonhematopoietic tissues such as neuronal, testis, liver, kidney, muscle, lung, pancreas, and placenta. Analysis of the expression levels of these two groups of genes in the human cancer cell lines and leukemias identified genes that were highly expressed in cancer cells but not in their normal counterparts and, thus, were overexpressed in the cancers. The different cancer cell lines and leukemias varied in the number and identity of these overexpressed genes. The results indicate that many genes that are overexpressed in human cancer cells are specific to a variety of normal tissues, including normal tissues other than those from which the cancer originated. It is suggested that this general property of cancer cells plays a major role in determining the behavior of the cancers, including their metastatic potential. PMID:16339305

  12. Overexpression of HIF1α and CAXI predicts poor outcome in early-stage triple negative breast cancer.

    PubMed

    Jin, Min-Sun; Lee, Hyebin; Park, In Ae; Chung, Yul Ri; Im, Seock-Ah; Lee, Kyung-Hun; Moon, Hyeong-Gon; Han, Wonshik; Kim, Kyubo; Kim, Tae-Yong; Noh, Dong-Young; Ryu, Han Suk

    2016-08-01

    Dysregulated energy metabolism is one of the main mechanisms for uncontrolled growth in solid tumors. Hypoxia-inducible factor 1-alpha (HIF1α) is a transcription factor implicated in regulating several genes that are responsible for cell metabolism, including carbonic anhydrase IX (CAIX). The aim of this study is to determine the clinical significance of immunohistochemical metabolic alteration in early-stage triple negative breast cancer (TNBC) patients who received cyclophosphamide-based chemotherapy or radiotherapy and those with basal phenotype. Immunohistochemical staining for HIF1α and CAIX was performed to determine the correlation with clinicopathologic variables and survival outcome on tissue microarrays from 270 early-stage TNBC patients. In vitro experiments with multiple human TNBC cell lines, suppression of HIF1α by small interfering RNA (siRNA) significantly reduced CAIX protein expression in all cell lines. In multivariate analyses for different therapeutic modalities and basal phenotype, combined HIF1α and CAIX protein overexpression was significantly associated with disease-free survival in the total cohort (OR = 2.583, P = 0.002), stratified cohorts expressing basal phenotype (OR = 2.234, P = 0.021), and in those patients who received adjuvant chemotherapy (OR = 3.078, P = 0.023) and adjuvant radiotherapy (OR = 2.111, P = 0.050), respectively. In early TNBC, combined HIF1α and CAIX protein expression may serve as an unfavorable prognostic indicator particularly in patients treated with cyclophosphamide-based chemotherapy or radiotherapy as well as those with basal phenotype of breast cancer.

  13. Overexpression of cyclins D1 and D3 during estrogen-induced breast oncogenesis in female ACI rats.

    PubMed

    Weroha, S John; Li, Sara Antonia; Tawfik, Ossama; Li, Jonathan J

    2006-03-01

    A common feature of human breast oncogenesis is cell cycle deregulation. The expression of cyclins D1 and D3 was examined during estradiol-17beta (E(2))-induced mammary tumorigenesis in female August Copenhagen Irish (ACI) rats. Low serum E(2) levels ( approximately 60-120 pg/ml) were sufficient to induce mammary gland tumors (MGTs) that remarkably resemble human ductal breast cancer (BC) at the histopathologic and molecular levels. Western blot analysis of the E(2)-induced MGTs revealed a marked rise in cyclins D1 (24-fold), D3 (9-fold) and cdk4 (3-fold) expression compared with age-matched untreated controls. Small focal dysplasias with large, pale staining nuclei were commonly seen at 3-3.6 months, large focal dysplasias, including atypical ductal hyperplasia at 3.6-4.3 months, ductal carcinoma in-situ (DCISs) at 4.3-5.0 months, and 100% incidence of invasive ductal BC/frank tumors at 5-6 months were detected after E(2) treatment. Immunohistochemical analysis of serial sections of focal dysplasias, DCISs and invasive ductal carcinomas showed overexpression of cyclins D1, D3, estrogen receptor-alpha (ERalpha) and progesterone receptor (PR). However, cyclin D3 expression, unlike D1, was confined essentially to early pre-malignant lesions (focal dysplasias and DCISs) and primary MGTs with <1-5% of resting and normal hyperplastic breast cells staining positive. The kinase activity for cyclins D1 and D3, using retinoblastoma (Rb) as a substrate, in E(2)-induced MGTs and their binding to cdk4 was significantly elevated. Semi-quantitative reverse transcriptase PCR analysis of the E(2)-induced MGTs exhibited increased expression of cyclins D1 (2.9-fold) and D3 (1.4-fold) mRNA, indicating that their elevated protein expression was due in part to an increase in mRNA transcription. However, when analyzed by quantitative real-time Q-PCR, these genes were not amplified. These data indicate that in female ACI rat mammary glands, E(2)-induced pre-malignant lesions

  14. Akt phosphorylates and activates HSF-1 independent of heat shock, leading to Slug overexpression and epithelial-mesenchymal transition (EMT) of HER2-overexpressing breast cancer cells.

    PubMed

    Carpenter, R L; Paw, I; Dewhirst, M W; Lo, H-W

    2015-01-29

    Epithelial-mesenchymal transition (EMT) is an essential step for tumor progression, although the mechanisms driving EMT are still not fully understood. In an effort to investigate these mechanisms, we observed that heregulin (HRG)-mediated activation of HER2, or HER2 overexpression, resulted in EMT, which is accompanied with increased expression of a known EMT regulator Slug, but not TWIST or Snail. We then investigated how HER2 induced Slug expression and found, for the first time, that there are four consensus HSF sequence-binding elements (HSEs), the binding sites for heat shock factor-1 (HSF-1), located in the Slug promoter. HSF-1 bound to and transactivated the Slug promoter independent of heat shock, leading to Slug expression in breast cancer cells. Mutation of the putative HSEs ablated Slug transcriptional activation induced by HRG or HSF-1 overexpression. Knockdown of HSF-1 expression by siRNA reduced Slug expression and HRG-induced EMT. The positive association between HSF-1 and Slug was confirmed by immunohistochemical staining of a cohort of 100 invasive breast carcinoma specimens. While investigating how HER2 activated HSF-1 independent of heat shock, we observed that HER2 activation resulted in concurrent phosphorylation of Akt and HSF-1. We then observed, also for the first time, that Akt directly interacted with HSF-1 and phosphorylated HSF-1 at S326. Inhibition of Akt using siRNA, dominant-negative Akt mutant, or small molecule inhibitors prevented HRG-induced HSF-1 activation and Slug expression. Conversely, constitutively active Akt induced HSF-1 phosphorylation and Slug expression. HSF-1 knockdown reduced the ability of Akt to induce Slug expression, indicating an essential role that HSF-1 plays in Akt-induced Slug upregulation. Altogether, our study uncovered the existence of a novel Akt-HSF-1 signaling axis that leads to Slug upregulation and EMT, and potentially contributes to progression of HER2-positive breast cancer.

  15. Overexpression of SDF-1 activates the NF-κB pathway to induce epithelial to mesenchymal transition and cancer stem cell-like phenotypes of breast cancer cells.

    PubMed

    Kong, Lingxin; Guo, Sufen; Liu, Chunfeng; Zhao, Yiling; Feng, Chong; Liu, Yunshuang; Wang, Tao; Li, Caijuan

    2016-03-01

    The formation of EMT and EMT-induced CSC-like phenotype is crucial for the metastasis of tumor cells. The stromal cell-derived factor-1 (SDF-1) is upregulated in various human carcinomas, which is closely associated with proliferation, migration, invasion and prognosis of malignancies. However, limited attention has been directed towards the effect of SDF-1 on epithelial to mesenchymal transition (EMT) or cancer stem cell (CSC)-like phenotype formation in breast cancer cells and the related mechanism. In the present study, we screened MCF-7 cells with low SDF-1 expression level for the purpose of evaluating whether SDF-1 is involved in EMT and CSC-like phenotype formation in MCF-7 cells. The pEGFP-N1-SDF-1 plasmid was transfected into MCF-7 cells, and the stably overexpressed SDF-1 in MCF-7 cells was confirmed by real-time PCR and western blot analysis. Colony formation assay, MTT, wound healing assay and Transwell invasion assay demonstrated that overexpression of SDF-1 significantly boosted the proliferation, migration and invasion of MCF-7 cells compared with parental (P<0.05). Flow cytometry analysis revealed a notable increase of CD44+/CD24- subpopulation in SDF-1 overexpressing MCF-7 cells (P<0.001), accompanied by the apparently elevated ALDH activity and the upregulation of the stem cell markers OCT-4, Nanog, and SOX2 compared with parental (P<0.01). Besides, western blot analysis and immunofluorescence assay observed the significant decreased expression of E-cadherin and enhanced expression of slug, fibronectin and vimentin in SDF-1 overexpressed MCF-7 cells in comparison with parental (P<0.01). Further study found that overexpression of SDF-1 induced the activation of NF-κB pathway in MCF-7 cells. Conversely, suppressing or silencing p65 expression by antagonist or RNA interference could remarkably increase the expression of E-cadherin in SDF-1 overexpressed MCF-7 cells (P<0.001). Overall, the above results indicated that overexpression of SDF-1 enhanced

  16. Molecular apocrine breast cancers are aggressive estrogen receptor negative tumors overexpressing either HER2 or GCDFP15

    PubMed Central

    2013-01-01

    Introduction Molecular apocrine (MA) tumors are estrogen receptor (ER) negative breast cancers characterized by androgen receptor (AR) expression. We analyzed a group of 58 transcriptionally defined MA tumors and proposed a new tool to identify these tumors. Methods We performed quantitative reverse transcription PCR (qRT-PCR) for ESR1, AR, FOXA1 and AR-related genes, and immunohistochemistry (IHC) for ER, PR, Human Epidermal Growth Factor Receptor 2 (HER2), CK5/6, CK17, EGFR, Ki67, AR, FOXA1 and GCDFP15 and we analyzed clinical features. Results MA tumors were all characterized by ESR1(-) AR(+) FOXA1(+) and AR-related genes positive mRNA profile. IHC staining on these tumors showed 93% ER(-), only 58% AR(+) and 90% FOXA1(+). 67% and 57% MA tumors were HER2(3+) and GCDFP15(+), respectively. Almost all MA tumors (94%) had the IHC signature HER2(3+) or GCDFP15(+) but none of the 13 control basal-like (BL) tumors did. Clinically, MA tumors were rather aggressive, with poor prognostic factors. Conclusion MA tumors could be better defined by their qRT-PCR-AR profile than by AR IHC. In addition, we found that HER2 or GCDFP15 protein overexpression is a sensitive and specific tool to differentiate MA from BL in the context of ER negative tumors. A composite molecular and IHC signature could, therefore, help to identify MA tumors in daily practice. PMID:23663520

  17. Skp2 is oncogenic and overexpressed in human cancers.

    PubMed

    Gstaiger, M; Jordan, R; Lim, M; Catzavelos, C; Mestan, J; Slingerland, J; Krek, W

    2001-04-24

    Skp2 is a member of the F-box family of substrate-recognition subunits of SCF ubiquitin-protein ligase complexes that has been implicated in the ubiquitin-mediated degradation of several key regulators of mammalian G(1) progression, including the cyclin-dependent kinase inhibitor p27, a dosage-dependent tumor suppressor protein. In this study, we examined Skp2 and p27 protein expression by immunohistochemistry in normal oral epithelium and in different stages of malignant oral cancer progression, including dysplasia and oral squamous cell carcinoma. We found that increased levels of Skp2 protein are associated with reduced p27 in a subset of oral epithelial dysplasias and carcinomas compared with normal epithelial controls. Tumors with high Skp2 (>20% positive cells) expression invariably showed reduced or absent p27 and tumors with high p27 (>20% positive cells) expression rarely showed Skp2 positivity. Increased Skp2 protein levels were not always correlated with increased cell proliferation (assayed by Ki-67 staining), suggesting that alterations of Skp2 may contribute to the malignant phenotype without affecting proliferation. Skp2 protein overexpression may lead to accelerated p27 proteolysis and contribute to malignant progression from dysplasia to oral epithelial carcinoma. Moreover, we also demonstrate that Skp2 has oncogenic potential by showing that Skp2 cooperates with H-Ras(G12V) to malignantly transform primary rodent fibroblasts as scored by colony formation in soft agar and tumor formation in nude mice. The observations that Skp2 can mediate transformation and is up-regulated during oral epithelial carcinogenesis support a role for Skp2 as a protooncogene in human tumors.

  18. Plasma membrane calcium-ATPase 2 and 4 in human breast cancer cell lines

    SciTech Connect

    Lee, Won Jae; Roberts-Thomson, Sarah J.; Monteith, Gregory R. . E-mail: G.Monteith@pharmacy.uq.edu.au

    2005-11-25

    There is evidence to suggest that plasma membrane Ca{sup 2+}-ATPase (PMCA) isoforms are important mediators sssof mammary gland physiology. PMCA2 in particular is upregulated extensively during lactation. Expression of other isoforms such as PMCA4 may influence mammary gland epithelial cell proliferation and aberrant regulation of PMCA isoform expression may lead or contribute to mammary gland pathophysiology in the form of breast cancers. To explore whether PMCA2 and PMCA4 expression may be deregulated in breast cancer, we compared mRNA expression of these PMCA isoforms in tumorigenic and non-tumorigenic human breast epithelial cell lines using real time RT-PCR. PMCA2 mRNA has a higher level of expression in some breast cancer cell lines and is overexpressed more than 100-fold in ZR-75-1 cells, compared to non-tumorigenic 184B5 cells. Although differences in PMCA4 mRNA levels were observed between breast cell lines, they were not of the magnitude observed for PMCA2. We conclude that PMCA2 mRNA can be highly overexpressed in some breast cancer cells. The significance of PMCA2 overexpression on tumorigenicity and its possible correlation with other properties such as invasiveness requires further study.

  19. PTEN expression as a predictor for the response to trastuzumab-based therapy in Her-2 overexpressing metastatic breast cancer

    PubMed Central

    Tan, Yen Y.; Fuchs, Eva-Maria; Hudelist, Gernot; Köstler, Wolfgang J.; Reiner, Angelika; Leser, Carmen; Salama, Mohamed; Attems, Johannes; Deutschmann, Christine; Zielinski, Christoph C.; Singer, Christian F.

    2017-01-01

    Background Even though trastuzumab is an effective therapy in early stage Her-2+ breast cancer, 40–50% of advanced Her-2+ breast cancer patients develop trastuzumab resistance. A potential resistance mechanism is aberrant downstream signal transmission due to loss of phosphatase and tensin homologue (PTEN). This study investigated the relationship between the expression of PTEN and trastuzumab response in Her-2 overexpressing metastatic breast cancer patients. Methods Between 2000 and 2007, 164 patients with Her-2+ metastatic breast cancer received trastuzumab-based therapy in our institution. We analyzed PTEN status by immunohistochemistry of 115 available tumor tissues and analyzed associations with other histopathological parameters, response rate, progression free survival (PFS) and overall survival (OS) with a median follow-up of 60 months. Results Eighty patients were PTEN positive (69.6%) and 35 patients PTEN negative (30.4%). We found a significant association of the expression of PTEN and p53 (p = 0.041), while there was no association with grading, hormone receptor status, IGFR or MIB. We found significantly more cases with progressive disease under trastuzumab-based therapy in patients with PTEN positive breast cancers (p = 0.018), while there was no significant correlation with PFS or OS. Conclusion In Her-2-positive metastatic breast cancers, PTEN positivity was significantly associated with progressive disease, but not with PFS or OS. PMID:28253285

  20. Plumbagin Suppresses the Invasion of HER2-Overexpressing Breast Cancer Cells through Inhibition of IKKα-Mediated NF-κB Activation

    PubMed Central

    Kawiak, Anna; Domachowska, Anna

    2016-01-01

    HER2-overexpressing breast cancers account for about 30% of breast cancer occurrences and have been correlated with increased tumor aggressiveness and invasiveness. The nuclear factor-κB (NF-κB) is overexpressed in a subset of HER2-positive breast cancers and its upregulation has been associated with the metastatic potential of HER2-overexpressing tumors. The present study aimed at determining the potential of plumbagin, a naturally occurring naphthoquinone, to inhibit the invasion of HER2-overexpressing breast cancer cells and determine the involvement of NF-κB inhibition in plumbagin-mediated cell invasion suppression. In the present research we showed that plumbagin inhibited the transcriptional activity of NF-κB in HER2-positive breast cancer cells. The suppression of NF-κB activation corresponded with the inhibition of NF-κB p65 phosphorylation and downregulation of NF-κB-regulated matrix metalloproteinase 9 (MMP-9) expression. Plumbagin suppressed the invasion of HER2-overexpressing breast cancer cells and the inhibition of cell invasion was associated with the ability of plumbagin to inhibit NF-κB transcriptional activity. The silencing of NF-κB p65 increased the sensitivity of HER2-overexpressing breast cancer cells to plumbagin-induced cell invasion inhibition. NF-κB inhibition was associated with IκB kinase α (IKKα) activity suppression and inhibition of IκBα phosphorylation and degradation. The knockdown of IKKα resulted in increased sensitivity of HER2-positive cells to plumbagin-induced suppression of NF-κB transcriptional activity and expression of MMP-9. In conclusion, plumbagin inhibits the invasion of HER2-overexpressing breast cancer cells through the inhibition of IKKα-mediated NF-κB activation and downregulation of NF-κB-regulated MMP-9 expression. PMID:27727280

  1. Lysophosphatidylcholine acyltransferase 1 (LPCAT1) overexpression in human colorectal cancer.

    PubMed

    Mansilla, Francisco; da Costa, Kerry-Ann; Wang, Shuli; Kruhøffer, Mogens; Lewin, Tal M; Orntoft, Torben F; Coleman, Rosalind A; Birkenkamp-Demtröder, Karin

    2009-01-01

    The alteration of the choline metabolite profile is a well-established characteristic of cancer cells. In colorectal cancer (CRC), phosphatidylcholine is the most prominent phospholipid. In the present study, we report that lysophosphatidylcholine acyltransferase 1 (LPCAT1; NM_024830.3), the enzyme that converts lysophosphatidylcholine into phosphatidylcholine, was highly overexpressed in colorectal adenocarcinomas when compared to normal mucosas. Our microarray transcription profiling study showed a significant (p < 10(-8)) transcript overexpression in 168 colorectal adenocarcinomas when compared to ten normal mucosas. Immunohistochemical analysis of colon tumors with a polyclonal antibody to LPCAT1 confirmed the upregulation of the LPCAT1 protein. Overexpression of LPCAT1 in COS7 cells localized the protein to the endoplasmic reticulum and the mitochondria and increased LPCAT1 specific activity 38-fold. In cultured cells, overexpressed LPCAT1 enhanced the incorporation of [(14)C]palmitate into phosphatidylcholine. COS7 cells transfected with LPCAT1 showed no growth rate alteration, in contrast to the colon cancer cell line SW480, which significantly (p < 10(-5)) increased its growth rate by 17%. We conclude that LPCAT1 may contribute to total choline metabolite accumulation via phosphatidylcholine remodeling, thereby altering the CRC lipid profile, a characteristic of malignancy.

  2. KiSS-1 expression in human breast cancer.

    PubMed

    Martin, Tracey A; Watkins, Gareth; Jiang, Wen G

    2005-01-01

    The KiSS-1 gene encodes a 145 amino acid residue peptide that is further processed to a final peptide, metastin, a ligand to a G-coupled orphan receptor (OT7T175/AXOR12). KiSS-1 has been identified as a putative human metastasis suppressor gene in melanomas and in breast cancer cell lines. This study aimed to determine the expression and distribution of KiSS-1 and its receptor in human breast cancer tissues and to identify a possible link between expression levels and patient prognosis. Frozen sections from breast cancer primary tumours (matched tumour 124 and background 33) were immuno-stained with KiSS-1 antibody. RNA was reverse transcribed and analyzed by Q-PCR (standardized using beta-actin, and normalized with cytokeratin-19 levels). Levels of expression of KiSS-1 were higher in tumour compared to background tissues (3,124+/-1,262 vs 2,397+/-1,181) and significantly increased in node positive tumours compared to node negative (3,637+/-1,719 vs 2,653+/-1,994, P = 0.02). KiSS-1 expression was also increased with increasing grade and TNM status. There were no such trends with the KiSS-1 receptor. Expression of KiSS-1 was higher in patients who had died from breast cancer than those who had remained healthy (4,631+/-3,024 vs 2,280+/-1,403) whereas expression of the receptor was reduced (480+/-162 vs 195+/-134). Immunohistochemical staining showed increased expression of KiSS-1 in tumour sections. Insertion of the KiSS-1 gene into the human breast cancer cell line MDA-MB-231, resulted in cells that were significantly more motile and invasive in behaviour, with reduced adhesion to matrix, using respective assays. In conclusion, KiSS-1 expression is increased in human breast cancer, particularly in patients with aggressive tumours and with mortality. Over-expression of KiSS-1 in breast cancer cells result in more aggressive phenotype. Together, it suggests that KiSS-1 plays a role beyond the initial metastasis repressor in this cancer type.

  3. Epigenetic effects of human breast milk.

    PubMed

    Verduci, Elvira; Banderali, Giuseppe; Barberi, Salvatore; Radaelli, Giovanni; Lops, Alessandra; Betti, Federica; Riva, Enrica; Giovannini, Marcello

    2014-04-24

    A current aim of nutrigenetics is to personalize nutritional practices according to genetic variations that influence the way of digestion and metabolism of nutrients introduced with the diet. Nutritional epigenetics concerns knowledge about the effects of nutrients on gene expression. Nutrition in early life or in critical periods of development, may have a role in modulating gene expression, and, therefore, have later effects on health. Human breast milk is well-known for its ability in preventing several acute and chronic diseases. Indeed, breastfed children may have lower risk of neonatal necrotizing enterocolitis, infectious diseases, and also of non-communicable diseases, such as obesity and related-disorders. Beneficial effects of human breast milk on health may be associated in part with its peculiar components, possible also via epigenetic processes. This paper discusses about presumed epigenetic effects of human breast milk and components. While evidence suggests that a direct relationship may exist of some components of human breast milk with epigenetic changes, the mechanisms involved are still unclear. Studies have to be conducted to clarify the actual role of human breast milk on genetic expression, in particular when linked to the risk of non-communicable diseases, to potentially benefit the infant's health and his later life.

  4. Diosgenin, a naturally occurring steroid, suppresses fatty acid synthase expression in HER2-overexpressing breast cancer cells through modulating Akt, mTOR and JNK phosphorylation.

    PubMed

    Chiang, Chun-Te; Way, Tzong-Der; Tsai, Shang-Jie; Lin, Jen-Kun

    2007-12-22

    Fatty acid synthase (FAS) expression is markedly elevated in HER2-overexpressing breast cancer cells. In this study, diosgenin, a plant-derived steroid, was found to be effective in suppressing FAS expression in HER2-overexpressing breast cancer cells. Diosgenin preferentially inhibited proliferation and induced apoptosis in HER2-overexpressing cancer cells. Furthermore, diosgenin inhibited the phosphorylation of Akt and mTOR, and enhanced phosphorylation of JNK. The use of pharmacological inhibitors revealed that the modulation of Akt, mTOR and JNK phosphorylation was required for diosgenin-induced FAS suppression. Finally, we showed that diosgenin could enhance paclitaxel-induced cytotoxicity in HER2-overexpressing cancer cells. These results suggested that diosgenin has the potential to advance as chemopreventive or chemotherapeutic agent for cancers that overexpress HER2.

  5. Trastuzumab treatment improves brain metastasis outcomes through control and durable prolongation of systemic extracranial disease in HER2-overexpressing breast cancer patients

    PubMed Central

    Park, Y H; Park, M J; Ji, S H; Yi, S Y; Lim, D H; Nam, D H; Lee, J-I; Park, W; Choi, D H; Huh, S J; Ahn, J S; Kang, W K; Park, K; Im, Y-H

    2009-01-01

    In patients with human epidermal growth factor receptor-2 (HER2)-overexpressing breast cancer, treatment with trastuzumab has been shown to markedly improve the outcome. We investigated the role of trastuzumab on brain metastasis (BM) in HER2-positive breast cancer patients. From 1999 to 2006, 251 patients were treated with palliative chemotherapy for HER2-positive metastatic breast cancer at Samsung Medical Center. The medical records of these patients were analysed to study the effects of trastuzumab on BM prevalence and outcomes. Patients were grouped according to trastuzumab therapy: pre-T (no trastuzumab therapy) vs post-T (trastuzumab therapy). The development of BM between the two treatment groups was significantly different (37.8% for post-T vs 25.0% for pre-T, P=0.028). Patients who had received trastuzumab had longer times to BM compared with patients who were not treated with trastuzumab (median 15 months for post-T group vs 10 months for pre-T group, P=0.035). Time to death (TTD) from BM was significantly longer in the post-T group than in the pre-T group (median 14.9 vs 4.0 months, P=0.0005). Extracranial disease control at the time of BM, 12 months or more of progression-free survival of extracranial disease and treatment with lapatinib were independent prognostic factors for TTD from BM. PMID:19240719

  6. Human mammary microenvironment better regulates the biology of human breast cancer in humanized mouse model.

    PubMed

    Zheng, Ming-Jie; Wang, Jue; Xu, Lu; Zha, Xiao-Ming; Zhao, Yi; Ling, Li-Jun; Wang, Shui

    2015-02-01

    During the past decades, many efforts have been made in mimicking the clinical progress of human cancer in mouse models. Previously, we developed a human breast tissue-derived (HB) mouse model. Theoretically, it may mimic the interactions between "species-specific" mammary microenvironment of human origin and human breast cancer cells. However, detailed evidences are absent. The present study (in vivo, cellular, and molecular experiments) was designed to explore the regulatory role of human mammary microenvironment in the progress of human breast cancer cells. Subcutaneous (SUB), mammary fat pad (MFP), and HB mouse models were developed for in vivo comparisons. Then, the orthotopic tumor masses from three different mouse models were collected for primary culture. Finally, the biology of primary cultured human breast cancer cells was compared by cellular and molecular experiments. Results of in vivo mouse models indicated that human breast cancer cells grew better in human mammary microenvironment. Cellular and molecular experiments confirmed that primary cultured human breast cancer cells from HB mouse model showed a better proliferative and anti-apoptotic biology than those from SUB to MFP mouse models. Meanwhile, primary cultured human breast cancer cells from HB mouse model also obtained the migratory and invasive biology for "species-specific" tissue metastasis to human tissues. Comprehensive analyses suggest that "species-specific" mammary microenvironment of human origin better regulates the biology of human breast cancer cells in our humanized mouse model of breast cancer, which is more consistent with the clinical progress of human breast cancer.

  7. Overexpression of AKIP1 predicts poor prognosis of patients with breast carcinoma and promotes cancer metastasis through Akt/GSK-3β/Snail pathway

    PubMed Central

    Mo, Dan; Li, Xinning; Li, Chunhong; Liang, Junrong; Zeng, Tian; Su, Naiwei; Jiang, Qipei; Huang, Jingjing

    2016-01-01

    Recent evidence has demonstrated that A kinase interacting protein 1 (AKIP1), a molecular regulator of protein kinase A, was overexpressed in breast cancer. However, the prognostic and biological role of AKIP1 in breast cancer is still elusive. The purpose of our study was to elucidate the role and molecular mechanism of AKIP1 in breast cancer development. The mRNA levels of AKIP1 in breast cancer and paired normal breast tissues were examined by quantitative real-time PCR. The relationship of AKIP1 expression with clinicopathological characteristics and clinical prognosis of breast cancer patients was investigated. In vitro migration and invasion assays were performed in MCF-7 and SK-BR-3 cells to determine its role in metastasis and the possible mechanism. The result showed that AKIP1 expression was up-regulated in breast cancer tissues compared with that in normal breast tissues. High expression of AKIP1 was associated significantly with advanced tumor stage (P<0.001), tumor size (P=0.029), and lymph node metastasis (P=0.004). Moreover, overexpression of AKIP1 was significantly correlated with poor overall survival and recurrence-free survival (P=0.038 and P=0.005, respectively). Furthermore, down-regulation of AKIP1 remarkably inhibited breast cancer cell motility and invasion through inhibiting the Akt/GSK-3β/Snail pathway. Therefore, AKIP1 may represent a prospective prognostic indicator and a potential therapeutic target of breast cancer. PMID:27904695

  8. Concentrations of parabens in human breast tumours.

    PubMed

    Darbre, P D; Aljarrah, A; Miller, W R; Coldham, N G; Sauer, M J; Pope, G S

    2004-01-01

    Parabens are used as preservatives in many thousands of cosmetic, food and pharmaceutical products to which the human population is exposed. Although recent reports of the oestrogenic properties of parabens have challenged current concepts of their toxicity in these consumer products, the question remains as to whether any of the parabens can accumulate intact in the body from the long-term, low-dose levels to which humans are exposed. Initial studies reported here show that parabens can be extracted from human breast tissue and detected by thin-layer chromatography. More detailed studies enabled identification and measurement of mean concentrations of individual parabens in samples of 20 human breast tumours by high-pressure liquid chromatography followed by tandem mass spectrometry. The mean concentration of parabens in these 20 human breast tumours was found to be 20.6 +/- 4.2 ng x g(-1) tissue. Comparison of individual parabens showed that methylparaben was present at the highest level (with a mean value of 12.8 +/- 2.2 ng x g(-1) tissue) and represents 62% of the total paraben recovered in the extractions. These studies demonstrate that parabens can be found intact in the human breast and this should open the way technically for more detailed information to be obtained on body burdens of parabens and in particular whether body burdens are different in cancer from those in normal tissues.

  9. MUC4 Overexpression Augments Cell Migration and Metastasis through EGFR Family Proteins in Triple Negative Breast Cancer Cells

    PubMed Central

    Mukhopadhyay, Partha; Lakshmanan, Imayavaramban; Ponnusamy, Moorthy P.; Chakraborty, Subhankar; Jain, Maneesh; Pai, Priya; Smith, Lynette M.; Lele, Subodh M.; Batra, Surinder K.

    2013-01-01

    Introduction Current studies indicate that triple negative breast cancer (TNBC), an aggressive breast cancer subtype, is associated with poor prognosis and an early pattern of metastasis. Emerging evidence suggests that MUC4 mucin is associated with metastasis of various cancers, including breast cancer. However, the functional role of MUC4 remains unclear in breast cancers, especially in TNBCs. Method In the present study, we investigated the functional and mechanistic roles of MUC4 in potentiating pathogenic signals including EGFR family proteins to promote TNBC aggressiveness using in vitro and in vivo studies. Further, we studied the expression of MUC4 in invasive TNBC tissue and normal breast tissue by immunostaining. Results MUC4 promotes proliferation, anchorage-dependent and-independent growth of TNBC cells, augments TNBC cell migratory and invasive potential in vitro, and enhances tumorigenicity and metastasis in vivo. In addition, our studies demonstrated that MUC4 up-regulates the EGFR family of proteins, and augments downstream Erk1/2, PKC-γ, and FAK mediated oncogenic signaling. Moreover, our studies also showed that knockdown of MUC4 in TNBC cells induced molecular changes suggestive of mesenchymal to epithelial transition. We also demonstrated in this study, for the first time, that knockdown of MUC4 was associated with reduced expression of EGFR and ErbB3 (EGFR family proteins) in TNBC cells, suggesting that MUC4 uses an alternative to ErbB2 mechanism to promote aggressiveness. We further demonstrate that MUC4 is differentially over-expressed in invasive TNBC tissues compared to normal breast tissue. Conclusions MUC4 mucin expression is associated with TNBC pathobiology, and its knockdown reduced aggressiveness in vitro, and tumorigenesis and metastasis in vivo. Overall, our findings suggest that MUC4 mucin promotes invasive activities of TNBC cells by altering the expression of EGFR, ErbB2, and ErbB3 molecules and their downstream signaling. PMID

  10. Nondestructive testing of the human breast

    NASA Astrophysics Data System (ADS)

    Cockburn, William

    1999-03-01

    The utilization of thermal imaging in the evaluation of the human breast has been for the past two decades a highly effective form of screening for breast cancer and other breast disease. The procedure however, is not without controversy and a continuing debate concerning the competitive paradox with mammography as the gold standard in breast cancer screening/detection still exists. This paper and its accompanying oral presentation at Thermosense XXI will provide a brief historic overview of breast thermal imaging and will explore the authors concepts of the paradigm shift which needs to occur in order for breast thermal imaging to gain acceptance in the scientific, medical, and public communities. Early thermal imaging equipment sold for medical application were based on liquid crystal detector plates, or electronic low band infrared detectors. While the final output of these devices was quite colorful and impressive, they lacked the quantification necessary to accurately measure temperature from a medical perspective, and as such, many false positive findings and papers were produced which damaged the early credibility of the procedure. The author has previously suggested appropriate changes in both technology and in utilization protocol for correction of errors which have hindered the advancement and indeed, the further development and implementation of this most beneficial quantitative diagnostic tool.

  11. Overexpression screens identify conserved dosage chromosome instability genes in yeast and human cancer

    PubMed Central

    Duffy, Supipi; Fam, Hok Khim; Wang, Yi Kan; Styles, Erin B.; Kim, Jung-Hyun; Ang, J. Sidney; Singh, Tejomayee; Larionov, Vladimir; Shah, Sohrab P.; Andrews, Brenda; Boerkoel, Cornelius F.; Hieter, Philip

    2016-01-01

    Somatic copy number amplification and gene overexpression are common features of many cancers. To determine the role of gene overexpression on chromosome instability (CIN), we performed genome-wide screens in the budding yeast for yeast genes that cause CIN when overexpressed, a phenotype we refer to as dosage CIN (dCIN), and identified 245 dCIN genes. This catalog of genes reveals human orthologs known to be recurrently overexpressed and/or amplified in tumors. We show that two genes, TDP1, a tyrosyl-DNA-phosphdiesterase, and TAF12, an RNA polymerase II TATA-box binding factor, cause CIN when overexpressed in human cells. Rhabdomyosarcoma lines with elevated human Tdp1 levels also exhibit CIN that can be partially rescued by siRNA-mediated knockdown of TDP1. Overexpression of dCIN genes represents a genetic vulnerability that could be leveraged for selective killing of cancer cells through targeting of an unlinked synthetic dosage lethal (SDL) partner. Using SDL screens in yeast, we identified a set of genes that when deleted specifically kill cells with high levels of Tdp1. One gene was the histone deacetylase RPD3, for which there are known inhibitors. Both HT1080 cells overexpressing hTDP1 and rhabdomyosarcoma cells with elevated levels of hTdp1 were more sensitive to histone deacetylase inhibitors valproic acid (VPA) and trichostatin A (TSA), recapitulating the SDL interaction in human cells and suggesting VPA and TSA as potential therapeutic agents for tumors with elevated levels of hTdp1. The catalog of dCIN genes presented here provides a candidate list to identify genes that cause CIN when overexpressed in cancer, which can then be leveraged through SDL to selectively target tumors. PMID:27551064

  12. Overexpression of Endothelin-A-receptor in breast cancer: regulation by estradiol and cobalt-chloride induced hypoxia.

    PubMed

    Wülfing, Pia; Götte, Martin; Sonntag, Barbara; Kersting, Christian; Schmidt, Hartmut; Wülfing, Christian; Buerger, Horst; Greb, Robert; Böcker, Werner; Kiesel, Ludwig

    2005-04-01

    Previous studies have demonstrated the potential significance of Endothelin (ET)-1 and its receptors, ETAR and ETBR, in the development and progression of breast cancer. The objective of this study was to assess the expression levels and potential regulation of the "ET axis" in human non-neoplastic and neoplastic breast tissue as well as in various human breast cancer cell lines. Expression of ET-1, ETAR and ETBR was evaluated in 31 neoplastic and 7 non-neoplastic breast tissue samples and in six human breast cancer cell lines using conventional and quantitative real-time RT-PCR, Western blotting and immunohistochemistry. The effects of 17beta-estradiol (E2) and cobalt-chloride (CoCl2) treatment on ET-1, ETAR and ETBR expression were studied in vitro. ETAR mRNA expression levels were found to be statistically significantly higher in breast cancer specimens than in non-neoplastic breast tissue (p<0.001). For ET-1 and ETBR mRNA expression, no significant difference was observed between the two groups. All cell lines exhibited expression of ET-1 and ETAR mRNA, whereas none showed significant ETBR mRNA expression. We observed a strong and reproducible induction of ETAR mRNA and protein expression by E2 and CoCl2 in MDA-MB-468 and BT-474 cells and in MDA-MB-453 and SK-BR-3 cells with a maximum increase after 8 and 16 h of treatment, respectively, while MCF-7 and HBL-100 cells showed a constitutive expression pattern. The present data suggest a novel mechanism in the regulation of ETAR expression in breast cancer. Based on these findings, a combination of ETAR-antagonists with adjuvant endocrine treatment seems to be a reasonable therapeutic strategy.

  13. Gene Therapy of Human Breast Cancer

    DTIC Science & Technology

    1996-10-01

    anticoagulation are ineligible. Study Design. Patients will undergo surgical removal of metastatic disease under local anesthesia in order to provide...tolerate this treatment . Gene Therapy of Human Breast Cancer - Appendix F 1 1 . Patients who require anticoagulation are not eligible. 12 . There i...pregnancy, or lactation, or any significant uncontrolled medical or pyschiatric illness. Patients wh� require corticosteroids or anticoagulation are

  14. Glypican-3 induces a mesenchymal to epithelial transition in human breast cancer cells

    PubMed Central

    Castillo, Lilian Fedra; Tascón, Rocío; Huvelle, María Amparo Lago; Novack, Gisela; Llorens, María Candelaria; dos Santos, Ancely Ferreira; Shortrede, Jorge; Cabanillas, Ana María; Joffé, Elisa Bal de Kier; Labriola, Leticia; Peters, María Giselle

    2016-01-01

    Breast cancer is the disease with the highest impact on global health, being metastasis the main cause of death. To metastasize, carcinoma cells must reactivate a latent program called epithelial-mesenchymal transition (EMT), through which epithelial cancer cells acquire mesenchymal-like traits. Glypican-3 (GPC3), a proteoglycan involved in the regulation of proliferation and survival, has been associated with cancer. In this study we observed that the expression of GPC3 is opposite to the invasive/metastatic ability of Hs578T, MDA-MB231, ZR-75-1 and MCF-7 human breast cancer cell lines. GPC3 silencing activated growth, cell death resistance, migration, and invasive/metastatic capacity of MCF-7 cancer cells, while GPC3 overexpression inhibited these properties in MDA-MB231 tumor cell line. Moreover, silencing of GPC3 deepened the MCF-7 breast cancer cells mesenchymal characteristics, decreasing the expression of the epithelial marker E-Cadherin. On the other side, GPC3 overexpression induced the mesenchymal-epithelial transition (MET) of MDA-MB231 breast cancer cells, which re-expressed E-Cadherin and reduced the expression of vimentin and N-Cadherin. While GPC3 inhibited the canonical Wnt/β-Catenin pathway in the breast cancer cells, this inhibition did not have effect on E-Cadherin expression. We demonstrated that the transcriptional repressor of E-Cadherin - ZEB1 - is upregulated in GPC3 silenced MCF-7 cells, while it is downregulated when GPC3 was overexpressed in MDA-MB231 cells. We presented experimental evidences showing that GPC3 induces the E-Cadherin re-expression in MDA-MB231 cells through the downregulation of ZEB1. Our data indicate that GPC3 is an important regulator of EMT in breast cancer, and a potential target for procedures against breast cancer metastasis. PMID:27507057

  15. Glypican-3 induces a mesenchymal to epithelial transition in human breast cancer cells.

    PubMed

    Castillo, Lilian Fedra; Tascón, Rocío; Lago Huvelle, María Amparo; Novack, Gisela; Llorens, María Candelaria; Dos Santos, Ancely Ferreira; Shortrede, Jorge; Cabanillas, Ana María; Bal de Kier Joffé, Elisa; Labriola, Leticia; Peters, María Giselle

    2016-09-13

    Breast cancer is the disease with the highest impact on global health, being metastasis the main cause of death. To metastasize, carcinoma cells must reactivate a latent program called epithelial-mesenchymal transition (EMT), through which epithelial cancer cells acquire mesenchymal-like traits.Glypican-3 (GPC3), a proteoglycan involved in the regulation of proliferation and survival, has been associated with cancer. In this study we observed that the expression of GPC3 is opposite to the invasive/metastatic ability of Hs578T, MDA-MB231, ZR-75-1 and MCF-7 human breast cancer cell lines. GPC3 silencing activated growth, cell death resistance, migration, and invasive/metastatic capacity of MCF-7 cancer cells, while GPC3 overexpression inhibited these properties in MDA-MB231 tumor cell line. Moreover, silencing of GPC3 deepened the MCF-7 breast cancer cells mesenchymal characteristics, decreasing the expression of the epithelial marker E-Cadherin. On the other side, GPC3 overexpression induced the mesenchymal-epithelial transition (MET) of MDA-MB231 breast cancer cells, which re-expressed E-Cadherin and reduced the expression of vimentin and N-Cadherin. While GPC3 inhibited the canonical Wnt/β-Catenin pathway in the breast cancer cells, this inhibition did not have effect on E-Cadherin expression. We demonstrated that the transcriptional repressor of E-Cadherin - ZEB1 - is upregulated in GPC3 silenced MCF-7 cells, while it is downregulated when GPC3 was overexpressed in MDA-MB231 cells. We presented experimental evidences showing that GPC3 induces the E-Cadherin re-expression in MDA-MB231 cells through the downregulation of ZEB1.Our data indicate that GPC3 is an important regulator of EMT in breast cancer, and a potential target for procedures against breast cancer metastasis.

  16. Human breast biomonitoring and environmental chemicals: use of breast tissues and fluids in breast cancer etiologic research.

    PubMed

    LaKind, Judy S; Wilkins, Amy A; Bates, Michael N

    2007-09-01

    Extensive research indicates that the etiology of breast cancer is complex and multifactorial and may include environmental risk factors. Breast cancer etiology and exposure to xenobiotic compounds, diet, electromagnetic fields, and lifestyle have been the subject of numerous scientific inquiries, but research has yielded inconsistent results. Biomonitoring has been used to explore associations between breast cancer and levels of environmental chemicals in the breast. Research using breast tissues and fluids to cast light on the etiology of breast cancer is, for the most part, predicated on the assumption that the tissue or fluid samples either contain measurable traces of the environmental agent(s) associated with the cancer or that they retain biological changes that are biomarkers of such exposure or precursors of carcinogenic effect. In this paper, we review breast cancer etiology research utilizing breast biomonitoring. We first provide a brief synopsis of the current state of understanding of associations between exposure to environmental chemicals and breast cancer etiology. We then describe the published breast cancer research on tissues and fluids, which have been used for biomonitoring, specifically human milk and its components, malignant and benign breast tissue, nipple aspirate fluid (NAF) and breast cyst fluid. We conclude with a discussion on recommendations for biomonitoring of breast tissues and fluids in future breast cancer etiology research. Both human milk and NAF fluids, and the cells contained therein, hold promise for future biomonitoring research into breast cancer etiology, but must be conducted with carefully delineated hypotheses and a scientifically supportable epidemiological approach.

  17. Human SPF45, a Splicing Factor, Has Limited Expression in Normal Tissues, Is Overexpressed in Many Tumors, and Can Confer a Multidrug-Resistant Phenotype to Cells

    PubMed Central

    Sampath, Janardhan; Long, Pandy R.; Shepard, Robert L.; Xia, Xiaoling; Devanarayan, Viswanath; Sandusky, George E.; Perry, William L.; Dantzig, Anne H.; Williamson, Mark; Rolfe, Mark; Moore, Robert E.

    2003-01-01

    Our effort to identify novel drug-resistant genes in cyclophosphamide-resistant EMT6 mouse mammary tumors led us to the identification of SPF45. Simultaneously, other groups identified SPF45 as a component of the spliceosome that is involved in alternative splicing. We isolated the human homologue and examined the normal human tissue expression, tumor expression, and the phenotype caused by overexpression of human SPF45. Our analyses revealed that SPF45 is expressed in many, but not all, normal tissues tested with predominant expression in normal ductal epithelial cells of the breast, liver, pancreas, and prostate. Our analyses using tissue microarrays and sausages of tumors indicated that SPF45 is highly expressed in numerous carcinomas including bladder, breast, colon, lung, ovarian, pancreatic, and prostate. Interestingly, this study revealed that overexpression of SPF45 in HeLa, a cervical carcinoma cell line, resulted in drug resistance to doxorubicin and vincristine, two chemotherapeutic drugs commonly used in cancer. To our knowledge, this is the first study showing tumor overexpression of an alternate splicing factor resulting in drug resistance. PMID:14578179

  18. Over-expression of Skp2 is associated with resistance to preoperative doxorubicin-based chemotherapy in primary breast cancer

    PubMed Central

    Davidovich, Shirly; Ben-Izhak, Ofer; Shapira, Ma'anit; Futerman, Boris; Hershko, Dan D

    2008-01-01

    Introduction Preoperative chemotherapy is often used in patients with locally advanced breast cancer. However, commonly used clinical and pathological parameters are poor predictors of response to this type of therapy. Recent studies have suggested that altered regulation of the cell cycle in cancer may be involved in resistance to chemotherapy. Over-expression of the ubiquitin ligase Skp2 results in loss of the cell cycle inhibitor p27Kip1 and is associated with poor prognosis in early breast cancer. The purpose of the present study was to examine the role of these proteins as predictors of clinical outcome and response to chemotherapy in locally advanced breast cancer. Methods The expression levels of Skp2 and p27Kip1 were determined by immunohistochemistry both before and after preoperative chemotherapy in 40 patients with locally advanced breast cancer. All patients were treated with cyclophosphamide/doxorubicin (adriamycin)/5-fluorouracil (CAF) and some patients received additional treatment with docetaxel. Expression data were compared with patients' clinical and pathological features, clinical outcome, and response to chemotherapy. Results Skp2 expression before preoperative chemotherapy was inversely related to p27Kip1 levels, tumor grade, and expression of estrogen and progesterone receptors. Both Skp2 and p27Kip1 were found to be accurate prognostic markers for disease-free and overall survival. High preoperative expression of Skp2 was associated with resistance to CAF therapy in 94% of patients (P < 0.0001) but not with resistance to docetaxel. Conclusion Skp2 expression may be a useful marker for predicting response to doxorubicin-based preoperative chemotherapy and clinical outcome in patients with locally advanced breast cancer. PMID:18644126

  19. Expression of Axl and its prognostic significance in human breast cancer

    PubMed Central

    Jin, Gaoyuan; Wang, Zhenzhen; Wang, Jianguang; Zhang, Like; Chen, Yanbin; Yuan, Pengfei; Liu, Dechun

    2017-01-01

    Breast cancer is the most common malignant cancer and second leading cause of cancer-related death among women, and its prevalence continues to increase. Axl overexpression has been identified in the many types of human cancer, and it has been demonstrated to participate in signaling pathways related to carcinogenesis and cancer development. In the present study, Axl expression was examined by performing immunohistochemical staining in 60 breast cancer tumors and 40 benign breast lesions (25 mammary dysplasia and 15 breast fibroadenoma). In total, 34 (56.67%) cancer tissues and 13 (32.5%) benign breast lesions were classified as exhibiting high levels of Axl expression, indicating a significant association between malignancy and high Axl expression. High Axl expression was also associated with estrogen receptor (ER) positivity (P=0.028), progesterone receptor (PR) positivity (P=0.007), and poor tumor differentiation (P=0.033). No significant associations were observed between Axl expression and age, tumor size, lymph node metastasis, tumor node metastasis staging, human epidermal growth factor receptor 2 and Ki67 antigen. The Kaplan-Meier survival analysis and Cox proportional hazard model both demonstrated that there was no statistical difference between Axl expression and breast cancer prognosis. However, it remains unclear whether the expression of Axl is correlated with the prognosis of luminal type breast cancer patients. PMID:28356938

  20. Intrathecal trastuzumab (Herceptin) and methotrexate for meningeal carcinomatosis in HER2-overexpressing metastatic breast cancer: a case report.

    PubMed

    Stemmler, Hans-Joachim; Mengele, Karin; Schmitt, Manfred; Harbeck, Nadia; Laessig, Dorit; Herrmann, Karin A; Schaffer, Pamela; Heinemann, Volker

    2008-09-01

    Leptomeningeal carcinomatosis represents a rare manifestation of metastatic breast cancer (MBC). We herewith report on a patient suffering from HER2 overexpressing MBC who received intrathecal methotrexate and trastuzumab for meningeal carcinomatosis. A 48-year-old woman was diagnosed with breast cancer in December 2002. Following surgery, six cycles of adjuvant FE100C plus irradiation and, subsequently for 1 year, trastuzumab were given. As a result of disseminated metastatic spread in October 2005, the patient received whole-brain radiotherapy for symptomatic central nervous system involvement, and was put on several trastuzumab-based combination regimens (capecitabine, vinorelbine, paclitaxel). In June 2006, the patient developed clinical signs of terminal cone involvement with overflow incontinence and paraparesis of the legs. Immediate radiation led to partial relief from clinical symptoms. Subsequently, the patient was put on the tyrosine kinase inhibitor lapatinib and capecitabine (August to October 2007), but on November 6th the patient suffered again from overflow incontinence and weakness of the legs. Failing to respond to lapatinib, the patient received gemcitabine/cisplatin and, additionally, was recommenced on intravenous trastuzumab. Owing to progressive leptomeningeal disease, the patient received repeated doses of intrathecal methotrexate and trastuzumab. Within 2 weeks and four intrathecal treatments, cerebrospinal fluid cytology showed the absence of tumor cells. Moreover, a striking clinical improvement with resolution of the paraparesis of the legs and overflow incontinence was observed. This case report gives details regarding the clinical course of a breast cancer patient who received intrathecal trastuzumab and methotrexate via lumbar puncture for meningeal carcinomatosis of HER2-overexpressing MBC.

  1. The clinical value of HER-2 overexpression and PIK3CA mutations in the older breast cancer population: a FOCUS study analysis.

    PubMed

    Engels, Charla C; Kiderlen, Mandy; Bastiaannet, Esther; van Eijk, Ronald; Mooyaart, Antien; Smit, Vincent T H B M; de Craen, Anton J M; Kuppen, Peter J K; Kroep, Judith R; van de Velde, Cornelis J H; Liefers, Gerrit Jan

    2016-04-01

    Studies to confirm the effect of acknowledged prognostic markers in older breast cancer patients are scarce. The aim of this study was to evaluate the prognostic value of HER-2 overexpression and PIK3CA mutations in older breast cancer patients. Female breast cancer patients aged 65 years or older, diagnosed between 1997 and 2004 in a geographical region in The Netherlands, with an invasive, non-metastatic tumour and tumour material available, were included in the study. The primary endpoint was relapse-free period and secondary endpoint was relative survival. Determinants were immunochemical HER-2 scores (0/1+, 2+ or 3+) and PIK3CA as a binary measure. Overall, 1698 patients were included, and 103 had a HER-2 score of 3+. HER-2 overexpression was associated with a higher recurrence risk (5 years recurrence risk 34 % vs. 12 %, adjusted p = 0.005), and a worse relative survival (10 years relative survival 48 % vs. 84 % for HER-2 negative; p = 0.004). PIK3CA mutations had no significant prognostic effect. We showed, in older breast cancer patients, that HER-2 overexpression was significantly associated with a worse outcome, but PIK3CA mutations had no prognostic effect. These results imply that older patients with HER-2 overexpressing breast cancer might benefit from additional targeted anti-HER-2 therapy.

  2. COPS5 amplification and overexpression confers tamoxifen-resistance in ERα-positive breast cancer by degradation of NCoR

    PubMed Central

    Lu, Renquan; Hu, Xiaobo; Zhou, Junmei; Sun, Jiajun; Zhu, Alan Z.; Xu, Xiaofeng; Zheng, Hui; Gao, Xiang; Wang, Xian; Jin, Hongchuan; Zhu, Ping; Guo, Lin

    2016-01-01

    Oestrogen receptor α (ERα) antagonists are used in endocrine therapies for ERα-positive (ERα+) breast cancer patients. Unfortunately the clinical benefit is limited due to intrinsic and acquired drug resistance. Here using integrated genomic and functional studies, we report that amplification and/or overexpression of COPS5 (CSN5/JAB1) confers resistance to tamoxifen. Amplification and overexpression of COPS5, a catalytic subunit of the COP9 complex, is present in about 9% of the ERα+ primary breast cancer and more frequently (86.7%, 26/30) in tamoxifen-refractory tumours. Overexpression of COPS5, through its isopeptidase activity, leads to ubiquitination and proteasome-mediated degradation of NCoR, a key corepressor for ERα and tamoxifen-mediated suppression of ERα target genes. Importantly, COPS5 overexpression causes tamoxifen-resistance in preclinical breast cancer models in vitro and in vivo. We also demonstrate that genetic inhibition of the isopeptidase activity of COPS5 is sufficient to re-sensitize the resistant breast cancer cells to tamoxifen-treatment, offering a potential therapeutic approach for endocrine-resistant breast cancer patients. PMID:27375289

  3. Drug Efflux Transporters Are Overexpressed in Short-Term Tamoxifen-Induced MCF7 Breast Cancer Cells

    PubMed Central

    Krisnamurti, Desak Gede Budi; Louisa, Melva; Anggraeni, Erlia; Wanandi, Septelia Inawati

    2016-01-01

    Tamoxifen is the first line drug used in the treatment of estrogen receptor-positive (ER+) breast cancer. The development of multidrug resistance (MDR) to tamoxifen remains a major challenge in the treatment of cancer. One of the mechanisms related to MDR is decrease of drug influx via overexpression of drug efflux transporters such as P-glycoprotein (P-gp/MDR1), multidrug resistance associated protein (MRP), or BCRP (breast cancer resistance protein). We aimed to investigate whether the sensitivity of tamoxifen to the cells is maintained through the short period and whether the expressions of several drug efflux transporters have been upregulated. We exposed MCF7 breast cancer cells with tamoxifen 1 μM for 10 passages (MCF7 (T)). The result showed that MCF7 began to lose their sensitivity to tamoxifen from the second passage. MCF7 (T) also showed a significant increase in all transporters examined compared with MCF7 parent cells. The result also showed a significant increase of CC50 in MCF7 (T) compared to that in MCF7 (97.54 μM and 3.04 μM, resp.). In conclusion, we suggest that the expression of several drug efflux transporters such as P-glycoprotein, MRP2, and BCRP might be used and further studied as a marker in the development of tamoxifen resistance. PMID:26981116

  4. Characterization of the paclitaxel loaded chitosan graft Pluronic F127 copolymer micelles conjugate with a DNA aptamer targeting HER-2 overexpressing breast cancer cells

    NASA Astrophysics Data System (ADS)

    Thach Nguyen, Kim; Nguyen, Thu Ha; Do, Dinh Ho; Huan Le, Quang

    2017-03-01

    In this work we report the isolation of DNA aptamer that is specifically bound to a HER-2 overexpressing SK-BR-3 human breast cancer cell line, using SELEX strategy. Paclitaxel (PTX) loaded chitosan graft Pluronic F127 copolymer micelles conjugate with a DNA aptamer was synthesized and its structure was confirmed by TEM image. This binary mixed system consisting of DNA aptamer modified Pluronic F127 and chitosan could enhance PTX loading capacity and increase micelle stability. Morphology images confirmed the existence of PTX micelles, with an average size of approximately 86.22 ± 1.45 nm diameters. Drug release profile showed that the PTX conjugate maintained a sustained PTX release. From in vitro cell experiment it was shown that 89%–93%, 50%–58%, 55%–62%, 24%–28% and 2%–7% of the SK-BR-3, NS-VN-67, LH-VN-48, HT-VN-26 and NV-VN-31, respectively, were dead after 6–48 h. These results demonstrated a novel DNA aptamer-micelle assembly for efficient detection and a system for the delivery of PTX targeting specific HER-2 overexpressing. We have also successfully cultivated cancer tissues of explants from Vietnamese patients on a type I collagen substrate. The NS-VN-67, LH-VN-48, HT-VN-26 and NV-VN-31cell lines were used as cellular model sources for the study of chemotherapy drug in cancer.

  5. Excretion of drugs in human breast milk

    SciTech Connect

    Welch, R.M.; Findlay, J.W.

    1981-01-01

    The present report briefly discusses some of the morphological, physiological, and compositional aspects of animal and human breast milk and how these characteristics might be important for the accumulation of drugs and foreign compounds. In addition, a study is described confirming the presence of caffeine, codeine, morphine, phenacetin, acetaminophen, and salicylic acid in the breast milk of a lactating mother following oral administration of a combination analgesic containing aspirin, phenacetin, caffeine, and codeine. Although the study is limited to one subject, it has provided critically needed data on the rates of appearance in, and elimination of these drugs from, breast milk. A similar amount of information is presented on phenacetin, also a component of the analgesic mixture, which has not been previously reported to enter human milk. The distribution of these drugs between the slightly more acidic breast milk and the relatively neutral plasma is consistent with their weakly basic, acidic, or relatively neutral properties. In general, the study shows that codeine and morphine milk concentrations are higher than, salicylic acid milk levels are much lower than, and phenacetin, caffeine, and acetaminophen milk concentrations are relatively similar to their respective plasma levels. It is projected, from estimated steady-state milk concentrations of the drugs and their metabolites studied, that very low percentages of the therapeutic dosages (less than 0.7%) would be excreted in mother's milk, too low an amount to be clinically significant to the infant.

  6. Chemical Biomarkers of Human Breast Milk Pollution

    PubMed Central

    Massart, Francesco; Gherarducci, Giulia; Marchi, Benedetta; Saggese, Giuseppe

    2008-01-01

    Human milk is, without question, the best source of nutrition for infants containing the optimal balance of fats, carbohydrates and proteins for developing babies. Breastfeeding provides a range of benefits for growth, immunity and development building a powerful bond between mother and her child. Recognition of the manifold benefits of breast milk has led to the adoption of breast-feeding policies by numerous health and professional organizations such as the World Health Organization and American Academy of Pediatrics. In industrially developed as well as in developing nations, human milk contamination by toxic chemicals such as heavy metals, dioxins and organohalogen compounds, however, is widespread and is the consequence of decades of inadequately controlled pollution. Through breastfeeding, the mother may transfer to the suckling infant potentially toxic chemicals to which the mother has previously been exposed. In the present review, environmental exposure, acquisition and current levels of old and emerging classes of breast milk pollutants are systematically presented. Although scientific evidences indicated that the advantages of breast-feeding outweigh any risks from contaminants, it is important to identify contaminant trends, to locate disproportionately exposed populations, and to take public health measures to improve chemical BM pollution as possible. PMID:19578503

  7. Protective effects of catalase overexpression on UVB-induced apoptosis in normal human keratinocytes.

    PubMed

    Rezvani, Hamid Reza; Mazurier, Frédéric; Cario-André, Muriel; Pain, Catherine; Ged, Cécile; Taïeb, Alain; de Verneuil, Hubert

    2006-06-30

    UV-induced apoptosis in keratinocytes is a highly complex process in which various molecular pathways are involved. These include the extrinsic pathway via triggering of death receptors and the intrinsic pathway via DNA damage and reactive oxygen species (ROS) formation. In this study we investigated the effect of catalase and CuZn-superoxide dismutase (SOD) overexpression on apoptosis induced by UVB exposure at room temperature or 4 degrees C on normal human keratinocytes. Irradiation at low temperature reduced UV-induced apoptosis by 40% in normal keratinocytes independently of any change in p53 and with a decrease in caspase-8 activation. Catalase overexpression decreased apoptosis by 40% with a reduction of caspase-9 activation accompanied by a decrease in p53. Keeping cells at low temperature and catalase overexpression had additive effects. CuZn-SOD overexpression had no significant effect on UVB-induced apoptosis. UVB induced an increase in ROS levels at two distinct stages: immediately following irradiation and around 3 h after irradiation. Catalase overexpression inhibited only the late increase in ROS levels. We conclude that catalase overexpression has a protective role against UVB irradiation by preventing DNA damage mediated by the late ROS increase.

  8. Expression of TRPC6 channels in human epithelial breast cancer cells

    PubMed Central

    Guilbert, Arnaud; Dhennin-Duthille, Isabelle; Hiani, Yassine EL; Haren, Nathalie; Khorsi, Hafida; Sevestre, Henri; Ahidouch, Ahmed; Ouadid-Ahidouch, Halima

    2008-01-01

    Background TRP channels have been shown to be involved in tumour generation and malignant growth. However, the expression of these channels in breast cancer remains unclear. Here we studied the expression and function of endogenous TRPC6 channels in a breast cancer cell line (MCF-7), a human breast cancer epithelial primary culture (hBCE) and in normal and tumour breast tissues. Methods Molecular (Western blot and RT-PCR), and immunohistochemical techniques were used to investigate TRPC6 expression. To investigate the channel activity in both MCF-7 cells and hBCE we used electrophysiological technique (whole cell patch clamp configuration). Results A non selective cationic current was activated by the oleoyl-2-acetyl-sn-glycerol (OAG) in both hBCE and MCF-7 cells. OAG-inward current was inhibited by 2-APB, SK&F 96365 and La3+. TRPC6, but not TRPM7, was expressed both in hBCE and in MCF-7 cells. TRPC3 was only expressed in hBCE. Clinically, TRPC6 mRNA and protein were elevated in breast carcinoma specimens in comparison to normal breast tissue. Furthermore, we found that the overexpression of TRPC6 protein levels were not correlated with tumour grades, estrogen receptor expression or lymph node positive tumours. Conclusion Our results indicate that TRPC6 channels are strongly expressed and functional in breast cancer epithelial cells. Moreover, the overexpression of these channels appears without any correlation with tumour grade, ER expression and lymph node metastasis. Our findings support the idea that TRPC6 may have a role in breast carcinogenesis. PMID:18452628

  9. Overexpression of HE4 (human epididymis protein 4) enhances proliferation, invasion and metastasis of ovarian cancer

    PubMed Central

    Wang, Huimin; Tan, Mingzi; Schwab, Carlton L.; Deng, Lu; Gao, Jian; Hao, Yingying; Li, Xiao; Gao, Song; Liu, Juanjuan; Lin, Bei

    2016-01-01

    Overexpression of Human epididymis protein 4 (HE4) related with a role in ovarian cancer tumorigenesis while little is known about the molecular mechanism alteration by HE4 up regulation. Here we reported that overexpressed HE4 promoted ovarian cancer cells proliferation, invasion and metastasis. Furthermore, human whole genome gene expression profile microarrays revealed that 231 differentially expressed genes (DEGs) were altered in response to HE4, in which MAPK signaling, ECM receptor, cell cycle, steroid biosynthesis pathways were involved. The findings suggested that overexpressed HE4 played an important role in ovarian cancer progression and metastasis and that HE4 has the potential to serve as a novel therapeutic target for ovarian cancer. PMID:26575020

  10. Paralemmin-1 is over-expressed in estrogen-receptor positive breast cancers

    PubMed Central

    2012-01-01

    Background Paralemmin-1 is a phosphoprotein lipid-anchored to the cytoplasmic face of membranes where it functions in membrane dynamics, maintenance of cell shape, and process formation. Expression of paralemmin-1 and its major splice variant (Δ exon 8) as well as the extent of posttranslational modifications are tissue- and development-specific. Paralemmin-1 expression in normal breast and breast cancer tissue has not been described previously. Results Paralemmin-1 mRNA and protein expression was evaluated in ten breast cell lines, 26 primary tumors, and 10 reduction mammoplasty (RM) tissues using real time RT-PCR. Paralemmin-1 splice variants were assessed in tumor and RM tissues using a series of primers and RT-PCR. Paralemmin-1 protein expression was examined in cell lines using Western Blots and in 31 ductal carcinomas in situ, 65 infiltrating ductal carcinomas, and 40 RM tissues using immunohistochemistry. Paralemmin-1 mRNA levels were higher in breast cancers than in RM tissue and estrogen receptor (ER)-positive tumors had higher transcript levels than ER-negative tumors. The Δ exon 8 splice variant was detected more frequently in tumor than in RM tissues. Protein expression was consistent with mRNA results showing higher paralemmin-1 expression in ER-positive tumors. Conclusions The differential expression of paralemmin-1 in a subset of breast cancers suggests the existence of variation in membrane dynamics that may be exploited to improve diagnosis or provide a therapeutic target. PMID:22574838

  11. Overexpression of Id-1 is significantly associated with tumour angiogenesis in human pancreas cancers.

    PubMed

    Lee, K T; Lee, Y W; Lee, J K; Choi, S H; Rhee, J C; Paik, S S; Kong, G

    2004-03-22

    It has been suggested that Id-1 has a critical role in the tumour progression and aggressiveness of several human cancers. However, the clinicopathological and biological significance of Id-1 overexpression remains unclear in human primary cancer. To investigate the association between Id-1 expression and cell proliferation or tumour angiogenesis, we examined the cell cycle kinetic indices (the proliferation and apoptotic indices, PI and AI) and intratumoral microvessel density (MVD) in 65 human pancreatic cancers. We also investigated the relationship between its expression and various clinicopathological factors to determine the clinical significance of Id-1 overexpression. Out of a total 65 cases, 32 (49.3%) showed overexpression of Id-1 vs normal tissues. Id-1 expression was found to be significantly associated with MVD (P=0.002). In further analysis of subgroups with higher and lower Id-1 expression, tumours with higher Id-1 expression (scores 4 and 5) showed significantly higher MVD than tumours with lower expression of Id-1 (scores 2 and 3) (111.18+/-57.14 vs 64.13+/-28.19, P<0.001). However, no significant association was found between Id-1 overexpression and patient survival rate. No significant association was also found between Id-1 expression and cell cycle kinetic indices (PI or AI) in pancreatic cancer. Moreover, the overexpression of Id-1 protein was not correlated with any significant clinicopathologic factors. These findings indicate that Id-1 overexpression is closely related with tumour angiogenesis and a higher density of intratumoral vessel, but that it is not associated with a poorer prognosis of survival or a higher cell proliferative potential in human pancreatic cancer.

  12. Gab3 overexpression in human glioma mediates Akt activation and tumor cell proliferation

    PubMed Central

    Gu, Weiting; Zhang, Weifeng

    2017-01-01

    This current study tested expression and potential biological functions of Gab3 in human glioma. Gab3 mRNA and protein expression was significantly elevated in human glioma tissues and glioma cells. Its level was however low in normal brain tissues and primary human astrocytes. In both established (U251MG cell line) and primary human glioma cells, Gab3 knockdown by shRNA/siRNA significantly inhibited Akt activation and cell proliferation. Reversely, forced Gab3 overexpression in U251MG cells promoted Akt activation and cell proliferation. In vivo, the growth of U251MG tumors in nude mice was inhibited following expressing Gab3 shRNA. Akt activation in cancer tissues was also suppressed by Gab3 shRNA. Together, we conclude that Gab3 overexpression in human glioma mediates Akt activation and cancer cell proliferation. PMID:28291820

  13. Defining the cellular precursors to human breast cancer

    PubMed Central

    Keller, Patricia J.; Arendt, Lisa M.; Skibinski, Adam; Logvinenko, Tanya; Klebba, Ina; Dong, Shumin; Smith, Avi E.; Prat, Aleix; Perou, Charles M.; Gilmore, Hannah; Schnitt, Stuart; Naber, Stephen P.; Garlick, Jonathan A.; Kuperwasser, Charlotte

    2012-01-01

    Human breast cancers are broadly classified based on their gene-expression profiles into luminal- and basal-type tumors. These two major tumor subtypes express markers corresponding to the major differentiation states of epithelial cells in the breast: luminal (EpCAM+) and basal/myoepithelial (CD10+). However, there are also rare types of breast cancers, such as metaplastic carcinomas, where tumor cells exhibit features of alternate cell types that no longer resemble breast epithelium. Until now, it has been difficult to identify the cell type(s) in the human breast that gives rise to these various forms of breast cancer. Here we report that transformation of EpCAM+ epithelial cells results in the formation of common forms of human breast cancer, including estrogen receptor-positive and estrogen receptor-negative tumors with luminal and basal-like characteristics, respectively, whereas transformation of CD10+ cells results in the development of rare metaplastic tumors reminiscent of the claudin-low subtype. We also demonstrate the existence of CD10+ breast cells with metaplastic traits that can give rise to skin and epidermal tissues. Furthermore, we show that the development of metaplastic breast cancer is attributable, in part, to the transformation of these metaplastic breast epithelial cells. These findings identify normal cellular precursors to human breast cancers and reveal the existence of a population of cells with epidermal progenitor activity within adult human breast tissues. PMID:21940501

  14. Proprotein Convertases in Human Breast Cancer

    DTIC Science & Technology

    2001-03-01

    are a family of serine gests an important role for proprotein convertases in proteinases of the subtilisin /kexin type. To date, human breast...Sambrook J 1989 Extraction, quences. Alternatively, the potential role of propro- purification and analysis of messenger RNA from eucaryotic tein...Chretien M Genetics 12 223-225. & Marcinkiewicz M 1999 Mammalian subtilisin /kexin Steiner DF, Smeekens SP, Ohagi S & Chan SJ 1992 The new isozyme SKI

  15. RCP is a human breast cancer-promoting gene with Ras-activating function.

    PubMed

    Zhang, Jinqiu; Liu, Xuejing; Datta, Arpita; Govindarajan, Kunde; Tam, Wai Leong; Han, Jianyong; George, Joshy; Wong, Christopher; Ramnarayanan, Kalpana; Phua, Tze Yoong; Leong, Wan Yee; Chan, Yang Sun; Palanisamy, Nallasivam; Liu, Edison Tak-Bun; Karuturi, Krishna Murthy; Lim, Bing; Miller, Lance David

    2009-08-01

    Aggressive forms of cancer are often defined by recurrent chromosomal alterations, yet in most cases, the causal or contributing genetic components remain poorly understood. Here, we utilized microarray informatics to identify candidate oncogenes potentially contributing to aggressive breast cancer behavior. We identified the Rab-coupling protein RCP (also known as RAB11FIP1), which is located at a chromosomal region frequently amplified in breast cancer (8p11-12) as a potential candidate. Overexpression of RCP in MCF10A normal human mammary epithelial cells resulted in acquisition of tumorigenic properties such as loss of contact inhibition, growth-factor independence, and anchorage-independent growth. Conversely, knockdown of RCP in human breast cancer cell lines inhibited colony formation, invasion, and migration in vitro and markedly reduced tumor formation and metastasis in mouse xenograft models. Overexpression of RCP enhanced ERK phosphorylation and increased Ras activation in vitro. As these results indicate that RCP is a multifunctional gene frequently amplified in breast cancer that encodes a protein with Ras-activating function, we suggest it has potential importance as a therapeutic target. Furthermore, these studies provide new insight into the emerging role of the Rab family of small G proteins and their interacting partners in carcinogenesis.

  16. Molecular Portrait of the Normal Human Breast Tissue and Its Influence on Breast Carcinogenesis

    PubMed Central

    Margan, Madalin Marius; Jitariu, Andreea Adriana; Nica, Cristian; Raica, Marius

    2016-01-01

    Normal human breast tissue consists of epithelial and nonepithelial cells with different molecular profiles and differentiation grades. This molecular heterogeneity is known to yield abnormal clones that may contribute to the development of breast carcinomas. Stem cells that are found in developing and mature breast tissue are either positive or negative for cytokeratin 19 depending on their subtype. These cells are able to generate carcinogenesis along with mature cells. However, scientific data remains controversial regarding the monoclonal or polyclonal origin of breast carcinomas. The majority of breast carcinomas originate from epithelial cells that normally express BRCA1. The consecutive loss of the BRCA1 gene leads to various abnormalities in epithelial cells. Normal breast epithelial cells also express hypoxia inducible factor (HIF) 1α and HIF-2α that are associated with a high metastatic rate and a poor prognosis for malignant lesions. The nuclear expression of estrogen receptor (ER) and progesterone receptor (PR) in normal human breast tissue is maintained in malignant tissue as well. Several controversies regarding the ability of ER and PR status to predict breast cancer outcome remain. Both ER and PR act as modulators of cell activity in normal human breast tissue. Ki-67 positivity is strongly correlated with tumor grade although its specific role in applied therapy requires further studies. Human epidermal growth factor receptor 2 (HER2) oncoprotein is less expressed in normal human breast specimens but is highly expressed in certain malignant lesions of the breast. Unlike HER2, epidermal growth factor receptor expression is similar in both normal and malignant tissues. Molecular heterogeneity is not only found in breast carcinomas but also in normal breast tissue. Therefore, the molecular mapping of normal human breast tissue might represent a key research area to fully elucidate the mechanisms of breast carcinogenesis. PMID:27382385

  17. Over-Expression, Purification and Crystallization of Human Dihydrolipoamide Dehydrogenase

    NASA Technical Reports Server (NTRS)

    Hong, Y. S.; Ciszak, Ewa; Patel, Mulchand

    2000-01-01

    Dehydrolipoamide dehydrogenase (E3; dihydrolipoan-tide:NAD+ oxidoreductase, EC 1.8.1.4) is a common catalytic component found in pyruvate dehydrogenase complex, alpha-ketoglutarate dehydrogenase complex, and branched-chain cc-keto acid dehydrogenase complex. E3 is also a component (referred to as L protein) of the glycine cleavage system in bacterial metabolism (2). Active E3 forms a homodimer with four distinctive subdomain structures (FAD binding, NAD+ binding, central and interface domains) with non-covalently but tightly bound FAD in the holoenzyme. Deduced amino acids from cloned full-length human E3 gene showed a total of 509 amino acids with a leader sequence (N-terminal 35 amino acids) that is excised (mature form) during transportation of expressed E3 into mitochondria membrane. So far, three-dimensional structure of human E3 has not been reported. Our effort to achieve the elucidation of the X-ray crystal structure of human E3 will be presented. Recombinant pPROEX-1 expression vector (from GIBCO BRL Life Technologies) having the human E3 gene without leader sequence was constructed by Polymerase Chain Reaction (PCR) and subsequent ligation, and cloned in E.coli XL1-Blue by transformation. Since pPROEX-1 vector has an internal His-tag (six histidine peptide) located at the upstream region of a multicloning site, one-step affinity purification of E3 using nickelnitriloacetic acid (Ni-NTA) agarose resin, which has a strong affinity to His-tag, was feasible. Also a seven-amino-acid spacer peptide and a recombinant tobacco etch virus protease recognition site (seven amino acids peptide) found between His-tag and first amino acid of expressed E3 facilitated the cleavage of His-tag from E3 after the affinity purification. By IPTG induction, ca. 15 mg of human E3 (mature form) was obtained from 1L LB culture with overnight incubation at 25C. Over 98% of purity of E3 from one-step Ni-NTA agarose affinity purification was confirmed by SDS-PAGE analysis. For

  18. Overexpression of sonic hedgehog in the triple negative breast cancer: clinicopathological characteristics of high burden breast cancer patients from Bangladesh.

    PubMed

    Noman, A S; Uddin, M; Rahman, M Z; Nayeem, M J; Alam, S S; Khatun, Z; Wahiduzzaman, M; Sultana, A; Rahman, M L; Ali, M Y; Barua, D; Ahmed, I; Islam, M S; Aboussekhra, A; Yeger, H; Farhat, W A; Islam, S S

    2016-01-05

    Dysregulation of Hedgehog (Hh) signaling pathway has been documented in mammary gland development and breast cancer (BC) progression. Despite the remarkable progress in therapeutic interventions, BC related mortality in Bangladesh increased in the last decade. Triple negative breast cancer (TNBC) still presents a critical therapeutic challenge. Thus effective targeted therapy is urgently needed. In this study, we report the clinicopathological characteristics and prognosis of BC patients from Bangladesh. Routine immunohistochemical analysis and high throughput RNA-Seq data from the TCGA library were used to analyze the expression pattern and association of high and low level of Shh expression in a collection of BC patients with a long-term follow-up. High levels of Shh were observed in a subset of BC tumors with poor prognostic pathological features. Higher level of Shh expression correlated with a significantly poorer overall survival of patients compared with patients whose tumors expressed a low level of Shh. These data support the contention that Shh could be a novel biomarker for breast cancer that is involved in mediating the aggressive phenotype of BC. We propose that BC patients exhibiting a higher level of Shh expression, representing a subset of BC patients, would be amenable to Shh targeted therapy.

  19. Ameliorating replicative senescence of human bone marrow stromal cells by PSMB5 overexpression

    SciTech Connect

    Lu, Li; Song, Hui-Fang; Wei, Jiao-Long; Liu, Xue-Qin; Song, Wen-Hui; Yan, Ba-Yi; Yang, Gui-Jiao; Li, Ang; Yang, Wu-Lin

    2014-01-24

    Highlights: • PSMB5 overexpression restores the differentiation potential of aged hBMSCs. • PSMB5 overexpression enhances the proteasomal activity of late-stage hBMSCs. • PSMB5 overexpression inhibits replicative senescence and improved cell viability. • PSMB5 overexpression promotes cell growth by upregulating the Cyclin D1/CDK4 complex. - Abstract: Multipotent human bone marrow stromal cells (hBMSCs) potentially serve as a source for cell-based therapy in regenerative medicine. However, in vitro expansion was inescapably accompanied with cell senescence, characterized by inhibited proliferation and compromised pluripotency. We have previously demonstrated that this aging process is closely associated with reduced 20S proteasomal activity, with down-regulation of rate-limiting catalytic β-subunits particularly evident. In the present study, we confirmed that proteasomal activity directly contributes to senescence of hBMSCs, which could be reversed by overexpression of the β5-subunit (PSMB5). Knocking down PSMB5 led to decreased proteasomal activity concurrent with reduced cell proliferation in early-stage hBMSCs, which is similar to the senescent phenotype observed in late-stage cells. In contrast, overexpressing PSMB5 in late-stage cells efficiently restored the normal activity of 20S proteasomes and promoted cell growth, possibly via upregulating the Cyclin D1/CDK4 complex. Additionally, PSMB5 could enhance cell resistance to oxidative stress, as evidenced by the increased cell survival upon exposing senescent hBMSCs to hydrogen peroxide. Furthermore, PSMB5 overexpression retained the pluripotency of late-stage hBMSCs by facilitating their neural differentiation both in vitro and in vivo. Collectively, our work reveals a critical role of PSMB5 in 20S proteasome-mediated protection against replicative senescence, pointing to a possible strategy for maintaining the integrity of culture-expanded hBMSCs by manipulating the expression of PSMB5.

  20. A canine model of Alzheimer's disease generated by overexpressing a mutated human amyloid precursor protein.

    PubMed

    Lee, Geun-Shik; Jeong, Yeon Woo; Kim, Joung Joo; Park, Sun Woo; Ko, Kyeong Hee; Kang, Mina; Kim, Yu Kyung; Jung, Eui-Man; Moon, Changjong; Hyun, Sang Hwan; Hwang, Kyu-Chan; Kim, Nam-Hyung; Shin, Taeyoung; Jeung, Eui-Bae; Hwang, Woo Suk

    2014-04-01

    Canines are considered the most authentic model for studying multifactorial human diseases, as these animals typically share a common environment with man. Somatic cell nuclear transfer (SCNT) technology along with genetic engineering of nuclear donor cells provides a unique opportunity for examining human diseases using transgenic canines. In the present study, we generated transgenic canines that overexpressed the human amyloid precursor protein (APP) gene containing well-characterized familial Alzheimer's disease (AD) mutations. We successfully obtained five out of six live puppies by SCNT. This was confirmed by observing the expression of green fluorescence protein in the body as a visual transgenic marker and the overexpression of the mutated APP gene in the brain. The transgenic canines developed AD-like symptoms, such as enlarged ventricles, an atrophied hippocampus, and β-amyloid plaques in the brain. Thus, the transgenic canines we created can serve as a novel animal model for studying human AD.

  1. p16 overexpression and 9p21 deletion are linked to unfavorable tumor phenotype in breast cancer.

    PubMed

    Lebok, Patrick; Roming, Magdalena; Kluth, Martina; Koop, Christina; Özden, Cansu; Taskin, Berivan; Hussein, Khakan; Lebeau, Annette; Witzel, Isabell; Wölber, Linn; Geist, Stefan; Paluchowski, Peter; Wilke, Christian; Heilenkötter, Uwe; Müller, Volkmar; Schmalfeldt, Barbara; Simon, Ronald; Sauter, Guido; Terracciano, Luigi; Krech, Rainer Horst; von der Assen, Albert; Burandt, Eike

    2016-12-06

    Overexpression of the p16 tumor suppressor, but also deletion of its gene locus 9p21, is linked to unfavorable tumor phenotype and poor prognosis in breast cancer. To better understand these contradictory observations, and to clarify the prognostic impact of p16 expression and 9p21 deletion, a tissue microarray (TMA) with 2,197 breast cancers was analyzed by fluorescence in-situ hybridization and immunohistochemistry (FISH) for 9p21 deletion and p16 expression. p16 immunostaining was weak in 25.6%, moderate in 7.1%, and strong in 12.7% of 1,684 evaluable cancers. Strong p16 staining was linked to advanced tumor stage (p = 0.0003), high-grade (p < 0.0001), high tumor cell proliferation (p < 0.0001), negative hormone receptor (ER/PR) status (p < 0.0001 each), and shorter overall survival (p = 0.0038). 9p21 deletion was found in 15.3% of 1,089 analyzable breast cancers, including 1.7% homozygous and 13.6% heterozygous deletions. 9p21 deletion was linked to adverse tumor features, including high-grade (p < 0.0001) and nodal positive cancers (p = 0.0063), high cell proliferation (p < 0.0001), negative hormone receptor (ER/PR) status (p ≤ 0.0006), and HER2 amplification (p = 0.0078). Patient outcome was worse in 9p21 deleted than in undeleted cancers (p = 0.0720). p16 expression was absent in cancers harboring homozygous 9p21 deletions, but no difference in p16 expression was found between cancers with (59.2% p16 positive) and without heterozygous 9p21 deletion (51.3% p16 positive, p = 0.0256). In summary, p16 expression is unrelated to partial 9p21 deletion, but both alterations are linked to aggressive breast cancer phenotype. High-level p16 expression is a strong predictor of unfavorable disease course in breast cancer.

  2. Tyrosine kinase activation in breast carcinoma with correlation to HER-2/neu gene amplification and receptor overexpression.

    PubMed

    Bhargava, R; Naeem, R; Marconi, S; Luszcz, J; Garb, J; Gasparini, R; Otis, C N

    2001-12-01

    The HER-2/neu oncogene encodes a transmembrane receptor with intrinsic tyrosine kinase activity. A pilot study was performed to investigate downstream effects of HER-2/neu (or related growth factor receptor) activation by identifying phosphorylated tyrosine. Fifty-four breast carcinomas were evaluated for HER-2/neu overexpression by the HercepTest (Dako, Carpinteria, CA) and the monoclonal CB11 antibody (Ventana, Tucson, AZ). Phosphotyrosine (an indication of tyrosine kinase activity) was detected by an antiphosphotyrosine mouse monoclonal antibody (Upstate Biotechnology, Lake Placid, NY). The gene amplification status was evaluated in 50 of the 54 cases by fluorescence in situ hybridization (FISH) using the Ventana gene probe. The HER-2/neu oncogene amplification was detected in 28% (14 of 50) of cases. Of the 14 cases showing oncogene amplification, tyrosine kinase activity was detected in 9 (64.2%) cases. There was moderate agreement between HER-2/neu gene amplification and tyrosine kinase activity (kappa = 0.43). Immunohistochemical staining of 3+ (with both HercepTest and CB11) showed better agreement with HER-2/neu oncogene amplification and increased tyrosine kinase activity than 2+ immunohistochemical staining. Overall, oncogene amplification and overexpression correlated with increased tyrosine kinase activity, supporting the mechanism of tyrosine kinase activation by HER-2/neu amplification and overexpression. However, 7 cases showing increased tyrosine kinase activity did not show gene amplification or 3+ receptor expression (by either HercepTest or CB11), raising the possibility of other growth factor receptors operating via the tyrosine kinase pathway. There was no apparent correlation between tyrosine kinase activity and hormone receptor status (estrogen or progesterone). Increased tyrosine kinase activity is more commonly associated with higher-grade tumors and thus may correlate with aggressive biologic behavior in breast carcinoma. The results of

  3. BRCA1-IRIS overexpression promotes and maintains the tumor initiating phenotype: implications for triple negative breast cancer early lesions.

    PubMed

    Sinha, Abhilasha; Paul, Bibbin T; Sullivan, Lisa M; Sims, Hillary; El Bastawisy, Ahmed; Yousef, Hend F; Zekri, Abdel-Rahman N; Bahnassy, Abeer A; ElShamy, Wael M

    2017-02-07

    Tumor-initiating cells (TICs) are cancer cells endowed with self-renewal, multi-lineage differentiation, increased chemo-resistance, and in breast cancers the CD44+/CD24-/ALDH1+ phenotype. Triple negative breast cancers show lack of BRCA1 expression in addition to enhanced basal, epithelial-to-mesenchymal transition (EMT), and TIC phenotypes. BRCA1-IRIS (hereafter IRIS) is an oncogene produced by the alternative usage of the BRCA1 locus. IRIS is involved in induction of replication, transcription of selected oncogenes, and promoting breast cancer cells aggressiveness. Here, we demonstrate that IRIS overexpression (IRISOE) promotes TNBCs through suppressing BRCA1 expression, enhancing basal-biomarkers, EMT-inducers, and stemness-enforcers expression. IRISOE also activates the TIC phenotype in TNBC cells through elevating CD44 and ALDH1 expression/activity and preventing CD24 surface presentation by activating the internalization pathway EGFR→c-Src→cortactin. We show that the intrinsic sensitivity to an anti-CD24 cross-linking antibody-induced cell death in membranous CD24 expressing/luminal A cells could be acquired in cytoplasmic CD24 expressing IRISOE TNBC/TIC cells through IRIS silencing or inactivation. We show that fewer IRISOE TNBC/TICs cells form large tumors composed of TICs, resembling TNBCs early lesions in patients that contain metastatic precursors capable of disseminating and metastasizing at an early stage of the disease. IRIS-inhibitory peptide killed these IRISOE TNBC/TICs, in vivo and prevented their dissemination and metastasis. We propose IRIS inactivation could be pursued to prevent dissemination and metastasis from early TNBC tumor lesions in patients.

  4. N-myc downstream-regulated gene 1 (NDRG1) a differentiation marker of human breast cancer.

    PubMed

    Fotovati, Abbas; Abu-Ali, Samah; Kage, Masayoshi; Shirouzu, Kazuo; Yamana, Hideaki; Kuwano, Michihiko

    2011-09-01

    N-myc downstream-regulated gene 1 (NDRG1), also called differentiation-related gene-1 (Drg1) and Cap43, is expressed in various normal tissues and suppressed in several malignancies. In this study, whether NDRG1 expression was correlated with differentiation of human breast cancer cells has been investigated. Endogenous expression level of NDRG1 was closely correlated with differentiation status of breast cancer cell lines. Furthermore, sodium butyrate (NaB), an inducer of cellular differentiation, increased the expression of β-casein, a milk-related differentiation marker, together with up-regulation of NDRG1 in breast cancer cells. In contrast, inhibition of NDRG1 by its siRNA resulted in reduced accumulation of β-casein. Immunohistochemical analysis showed co-expression of NDRG1 and β-casein or milk fat protein (MFP), another differentiation marker of breast tissue, in the mouse xenograft model of breast cancer. Furthermore, overexpression of NDRG1 expanded the differentiated area in the xenograft model of breast cancer. In human breast cancer, using samples from 45 patients, we also showed close relationship between NDRG1 and β-casein or MFP expression. Altogether, in vitro and in vivo data demonstrated a possible role of NDRG1 in differentiation of breast cancer. We concluded that NDRG1 could be used as a biomarker for differentiation of breast cancer for both diagnostic and therapeutic purposes.

  5. Over-Expressed Twist Associates with Markers of Epithelial Mesenchymal Transition and Predicts Poor Prognosis in Breast Cancers via ERK and Akt Activation

    PubMed Central

    Liang, Yuan-Ke; Chen, Wei-Ling; Zhang, Fan; Bai, Jing-Wen; Qiu, Si-Qi; Du, Cai-Wen; Huang, Wen-He; Zhang, Guo-Jun

    2015-01-01

    Overexpression of Twist, a highly conserved basic helix-loop-helix transcription factor, is associated with epithelial-mesenchymal transition (EMT) and predicts poor prognosis in various kinds of cancers, including breast cancer. In order to further clarify Twist’s role in breast cancer, we detected Twist expression in breast cancer tissues by immunohistochemistry. Twist expression was observed in 54% (220/408) of breast cancer patients and was positively associated with tumor size, Ki67, VEGF-C and HER2 expression. Conversely, Twist was negatively associated with estrogen receptor (ER), progesterone receptor (PgR) and E-cadherin expression. Patients with Twist expression had a poorer prognosis for 30-month disease free survival (DFS) (82.9%) than patients with negative Twist (92.3%). Overexpression of Twist led to dramatic changes in cellular morphology, proliferation, migratory/invasive capability, and expression of EMT-related biomarkers in breast cancer cells. Moreover, we show that Twist serves as a driver of tumorigenesis, as well as an inducer of EMT, at least in part, through activation of the Akt and extracellular signal-regulated protein kinase (ERK) pathways which are critical for Twist-mediated EMT. Our results demonstrate that Twist expression is an important prognostic factor in breast cancer patients. PMID:26295469

  6. Human paraoxonase 1 overexpression in mice stimulates HDL cholesterol efflux and reverse cholesterol transport

    PubMed Central

    Ikhlef, Souade; Berrougui, Hicham; Kamtchueng Simo, Olivier; Zerif, Echarki

    2017-01-01

    This study was aimed to investigate the effect of human PON1 overexpression in mice on cholesterol efflux and reverse cholesterol transport. PON1 overexpression in PON1-Tg mice induced a significant 3-fold (p<0.0001) increase in plasma paraoxonase activity and a significant ~30% (p<0.0001) increase in the capacity of HDL to mediate cholesterol efflux from J774 macrophages compared to wild-type mice. It also caused a significant 4-fold increase (p<0.0001) in the capacity of macrophages to transfer cholesterol to apoA-1, a significant 2-fold (p<0.0003) increase in ABCA1 mRNA and protein expression, and a significant increase in the expression of PPARγ (p<0.0003 and p<0.04, respectively) and LXRα (p<0.0001 and p<0.01, respectively) mRNA and protein compared to macrophages from wild-type mice. Moreover, transfection of J774 macrophages with human PON1 also increased ABCA1, PPARγ and LXRα protein expression and stimulates macrophages cholesterol efflux to apo A1. In vivo measurements showed that the overexpression of PON1 significantly increases the fecal elimination of macrophage-derived cholesterol in PON1-Tg mice. Overall, our results suggested that the overexpression of PON1 in mice may contribute to the regulation of the cholesterol homeostasis by improving the capacity of HDL to mediate cholesterol efflux and by stimulating reverse cholesterol transport. PMID:28278274

  7. Over-expression in Escherichia coli and characterization of two recombinant isoforms of human FAD synthetase

    SciTech Connect

    Brizio, Carmen; Galluccio, Michele; Wait, Robin; Torchetti, Enza Maria; Bafunno, Valeria; Accardi, Rosita; Gianazza, Elisabetta; Indiveri, Cesare; Barile, Maria . E-mail: m.barile@biologia.uniba.it

    2006-06-09

    FAD synthetase (FADS) (EC 2.7.7.2) is a key enzyme in the metabolic pathway that converts riboflavin into the redox cofactor FAD. Two hypothetical human FADSs, which are the products of FLAD1 gene, were over-expressed in Escherichia coli and identified by ESI-MS/MS. Isoform 1 was over-expressed as a T7-tagged protein which had a molecular mass of 63 kDa on SDS-PAGE. Isoform 2 was over-expressed as a 6-His-tagged fusion protein, carrying an extra 84 amino acids at the N-terminal with an apparent molecular mass of 60 kDa on SDS-PAGE. It was purified near to homogeneity from the soluble cell fraction by one-step affinity chromatography. Both isoforms possessed FADS activity and had a strict requirement for MgCl{sub 2}, as demonstrated using both spectrophotometric and chromatographic methods. The purified recombinant isoform 2 showed a specific activity of 6.8 {+-} 1.3 nmol of FAD synthesized/min/mg protein and exhibited a K {sub M} value for FMN of 1.5 {+-} 0.3 {mu}M. This is First report on characterization of human FADS, and First cloning and over-expression of FADS from an organism higher than yeast.

  8. MED28 regulates MEK1-dependent cellular migration in human breast cancer cells.

    PubMed

    Huang, Chun-Yin; Chou, Yu-Hsuan; Hsieh, Nien-Tsu; Chen, Hsin-Hung; Lee, Ming-Fen

    2012-12-01

    MED28, a mammalian Mediator subunit, exhibits several cellular roles, including a merlin, Grb2, and cytoskeleton-associated protein (magicin), a repressor of smooth muscle cell differentiation, and an endothelial-derived gene (EG-1). Overexpression of MED28 may stimulate cell proliferation which presumably results from the transcriptional activation of the Mediator function. Additionally, several tumors, including breast cancer, highly express MED28. We have found recently that MED28 potentiated epidermal growth factor (EGF)-induced migration in human breast cancer cells. Therefore, the objective of this study is to identify the role of MED28 in the aspect of cellular migration and invasion in human breast cancer cells. Suppression of MED28 blocked cellular migration and invasion with concomitant reduced expression levels of matrix metalloproteinase-2 (MMP2) and mitogen-activated protein kinase kinase 1 (MAP2K1; MEK1); overexpression of MED28 enhanced cellular migration and upregulated MMP2 and MEK1 expression. Moreover, suppression of MEK1, by dominant-negative, kinase-dead MEK1 cDNA construct or MEK1-specific small interfering RNA (siRNA) as well as MEK1 inhibitors, blocked MED28-induced MMP2 activation, cellular migration, and invasion in breast cancer cells. Furthermore, ectopic expression of MEK1 rescued the inhibitory effect of MED28 knockdown on invasion, and exogenous MMP2 recombinant protein recovered the suppression on invasion upon MED28 or MEK1 knockdown. Our data indicate that MED28 regulates cellular migration in a MEK1-dependent manner in human breast cancer cells, reinforcing the important cellular roles of MED28.

  9. Characterization of Gene Expression in Human Breast Tumor Endothelium

    DTIC Science & Technology

    2008-05-01

    to UV-induced apoptosis in primary culture of canine mammary gland tumors (7), and SFRP2 decreased apoptosis in cardiomyocytes exposed to hypoxia(8...microdissection (LCM) of vascular cells from frozen human breast tumors and normal breast tissue for genomic analysis. We found SFRP2 to have 6 fold increased...vascular cells from frozen human breast tumors , where the RNA was of high quality and sufficient for genomic analysis(6). We found 55 genes with > 4

  10. The Polycomb group protein RING1B is overexpressed in ductal breast carcinoma and is required to sustain FAK steady state levels in breast cancer epithelial cells

    PubMed Central

    Bosch, Almudena; Panoutsopoulou, Konstantina; Corominas, Josep Maria; Gimeno, Ramón; Moreno-Bueno, Gema; Martín-Caballero, Juan; Morales, Saleta; Lobato, Tania; Martínez-Romero, Carles; Farias, Eduardo F.; Mayol, Xavier; Cano, Amparo; Hernández-Muáoz, Inmaculada

    2014-01-01

    In early stages of metastasis malignant cells must acquire phenotypic changes to enhance their migratory behavior and their ability to breach the matrix surrounding tumors and blood vessel walls. Epigenetic regulation of gene expression allows the acquisition of these features that, once tumoral cells have escape from the primary tumor, can be reverted. Here we report that the expression of the Polycomb epigenetic repressor Ring1B is enhanced in tumoral cells that invade the stroma in human ductal breast carcinoma and its expression is coincident with that of Fak in these tumors. Ring1B knockdown in breast cancer cell lines revealed that Ring1B is required to sustain Fak expression in basal conditions as well as in Tgfβ-treated cells. Functionally, endogenous Ring1B is required for cell migration and invasion in vitro and for in vivo invasion of the mammary fat pad by tumoral cells. Finally we identify p63 as a target of Ring1B to regulate Fak expression: Ring1B depletion results in enhanced p63 expression, which in turns represses Fak expression. Importantly, Fak downregulation upon Ring1B depletion is dependent on p63 expression. Our findings provide new insights in the biology of the breast carcinoma and open new avenues for breast cancer prognosis and therapy. PMID:24742605

  11. Methamphetamine toxicity is attenuated in mice that overexpress human manganese superoxide dismutase.

    PubMed

    Maragos, W F; Jakel, R; Chesnut, D; Pocernich, C B; Butterfield, D A; St Clair, D; Cass, W A

    2000-09-29

    We have investigated methamphetamine (MA) toxicity in transgenic mice that overexpress the human form of mitochondrial manganese superoxide dismutase (MnSOD). Our results reveal a significant reduction in the long-term depletion of striatal dopamine and protein oxidation following repeated administration of MA in transgenic vs. non-transgenic littermates. These findings support the notion that ROS contribute to MA-induced brain damage and suggest that mitochondria may play an important role in this form of neurodegeneration.

  12. Apigenin induces caspase-dependent apoptosis by inhibiting signal transducer and activator of transcription 3 signaling in HER2-overexpressing SKBR3 breast cancer cells.

    PubMed

    Seo, Hye-Sook; Ku, Jin Mo; Choi, Han-Seok; Woo, Jong-Kyu; Jang, Bo-Hyoung; Go, Hoyeon; Shin, Yong Cheol; Ko, Seong-Gyu

    2015-08-01

    Phytoestrogens have been demonstrated to inhibit tumor induction; however, their molecular mechanisms of action have remained elusive. The present study aimed to investigate the effects of a phytoestrogen, apigenin, on proliferation and apoptosis of the human epidermal growth factor receptor 2 (HER2)-expressing breast cancer cell line SKBR3. Proliferation assay, MTT assay, fluorescence-activated cell sorting analysis, western blot analysis, immunocytochemistry, reverse transcription-polymerase chain reaction and ELISA assay were used in the present study. The results of the present study indicated that apigenin inhibited the proliferation of SKBR3 cells in a dose-and time-dependent manner. This inhibition of growth was accompanied by an increase in the sub-G0/G1 apoptotic population. Furthermore, apigenin enhanced the expression levels of cleaved caspase-8 and -3, and induced the cleavage of poly(adenosine diphosphate ribose) polymerase in SKBR3 cells, confirming that apigenin promotes apoptosis via a caspase-dependent pathway. Apigenin additionally reduced the expression of phosphorylated (p)-janus kinase 2 and p-signal transducer and activator of transcription 3 (STAT3), inhibited CoCl2-induced vascular endothelial growth factor (VEGF) secretion and decreased the nuclear localization of STAT3. The STAT3 inhibitor S31-201 decreased the cellular proliferation rate and reduced the expression of p-STAT3 and VEGF. Therefore, these results suggested that apigenin induced apoptosis via the inhibition of STAT3 signaling in SKBR3 cells. In conclusion, the results of the present study indicated that apigenin may be a potentially useful compound for the prevention or treatment of HER2-overexpressing breast cancer.

  13. BAX gene over-expression via nucleofection to induce apoptosis in human lens epithelial cells.

    PubMed

    Fang, Yanwen; Mo, Xiaofen; Luo, Yi; Lu, Yi

    2012-09-01

    Despite significant advances in cataract surgery techniques, posterior capsule opacification (PCO) remains a common complication. In PCO, remaining epithelial cells cloud the lens capsule and impair postoperative vision. This in vitro study was designed to investigate the potential of a gene-based approach, specifically over-expression of the proapoptotic BAX gene, to prevent PCO. Human lens epithelial cells (HLECs) were transfected by nucleofection with a plasmid encoding a fusion protein of green fluorescent protein and human BAX. The expression levels of BAX and its antiapoptotic counterpart BCL2 were determined by realtime reverse transcription polymerase chain reaction, Western blotting and immunofluorescence. BAX over-expression-induced cell death was analyzed by fluorescence-activated cell sorting using the Annexin V antibody. Fluorescence microscopy and transmission electron microscopy were used to assess changes in morphology and ultrastructure. Differential expression of the downstream apoptosis-related factor, caspase 3, was detected by Western blotting. Nucleofection efficiency was high (nearly 80%). BAX-transfected HLECs showed remarkably enhanced BAX gene expression and BAX:BCL2 ratio, but relatively little change in endogenous BCL2 expression. BAX over-expression also led to significant cytotoxicity, induction of apoptosis-related characteristics and activation of caspase 3. In conclusion, our results indicate that BAX gene over-expression can trigger cell death in HLECs via an apoptotic pathway. Thus, BAX may be a promising candidate for human gene therapy to treat PCO.

  14. Geminin overexpression-dependent recruitment and crosstalk with mesenchymal stem cells enhance aggressiveness in triple negative breast cancers

    PubMed Central

    Ananthula, Suryatheja; Sinha, Abhilasha; Gassim, Mohamed El; Batth, Simran; Marshall, Gailen D.; Gardner, Lauren H.; Shimizu, Yoshiko; ElShamy, Wael M.

    2016-01-01

    Resident mesenchymal stem cells (MSCs) promote cancer progression. However, pathways and mechanisms involved in recruiting MSCs into breast tumors remain largely undefined. Here we show that geminin-dependent acetylation releases HMGB1 from the chromatin to the cytoplasm and extracellular space. Extracellular acetylated HMGB1 (Ac-HMGB1) promotes geminin overexpressing (GemOE) cells survival by binding to RAGE and activating NF-κB signaling. Extracellular Ac-HMGB1 also triggers expression and activation of RAGE in the non-expressing MSCs. RAGE activation induces expression of CXCR4 in MSCs and directional migration towards SDF1 (aka CXCL12)-expressing GemOE cells in vitro and in vivo. These effects augmented by the necrotic and hypoxic environment in GemOE tumors, especially within their cores. Reciprocal interactions between newly recruited MSCs and GemOE tumor cells elevate tumor-initiating (TIC), basal and epithelial-to-mesenchymal transition (EMT) traits and enhance aggressiveness in vitro and in vivo in GemOE tumor cells. Indeed, faster, larger and more aggressive tumors develop when GemOE cells are co-injected with MSCs in orthotopic breast tumor model. Concurrently, inhibiting c-Abl (and thus geminin function), RAGE or CXCR4 prevented MSCs recruitment to GemOE cells in vitro and in vivo, and decreased the TIC, basal and EMT phenotypes in these tumor cells. Accordingly, we propose that GemOE tumor cells present within tumor cores represent metastatic precursors, and suppressing the GemOE→HMGB1/RAGE→SDF1/CXCR4 signaling circuit could be a valid target for therapies to inhibit GemOE tumors and their metastases. PMID:26989079

  15. Human Papilloma Viruses and Breast Cancer – Assessment of Causality

    PubMed Central

    Lawson, James Sutherland; Glenn, Wendy K.; Whitaker, Noel James

    2016-01-01

    High risk human papilloma viruses (HPVs) may have a causal role in some breast cancers. Case–control studies, conducted in many different countries, consistently indicate that HPVs are more frequently present in breast cancers as compared to benign breast and normal breast controls (odds ratio 4.02). The assessment of causality of HPVs in breast cancer is difficult because (i) the HPV viral load is extremely low, (ii) HPV infections are common but HPV associated breast cancers are uncommon, and (iii) HPV infections may precede the development of breast and other cancers by years or even decades. Further, HPV oncogenesis can be indirect. Despite these difficulties, the emergence of new evidence has made the assessment of HPV causality, in breast cancer, a practical proposition. With one exception, the evidence meets all the conventional criteria for a causal role of HPVs in breast cancer. The exception is “specificity.” HPVs are ubiquitous, which is the exact opposite of specificity. An additional reservation is that the prevalence of breast cancer is not increased in immunocompromised patients as is the case with respect to HPV-associated cervical cancer. This indicates that HPVs may have an indirect causal influence in breast cancer. Based on the overall evidence, high-risk HPVs may have a causal role in some breast cancers. PMID:27747193

  16. Human Papilloma Viruses and Breast Cancer - Assessment of Causality.

    PubMed

    Lawson, James Sutherland; Glenn, Wendy K; Whitaker, Noel James

    2016-01-01

    High risk human papilloma viruses (HPVs) may have a causal role in some breast cancers. Case-control studies, conducted in many different countries, consistently indicate that HPVs are more frequently present in breast cancers as compared to benign breast and normal breast controls (odds ratio 4.02). The assessment of causality of HPVs in breast cancer is difficult because (i) the HPV viral load is extremely low, (ii) HPV infections are common but HPV associated breast cancers are uncommon, and (iii) HPV infections may precede the development of breast and other cancers by years or even decades. Further, HPV oncogenesis can be indirect. Despite these difficulties, the emergence of new evidence has made the assessment of HPV causality, in breast cancer, a practical proposition. With one exception, the evidence meets all the conventional criteria for a causal role of HPVs in breast cancer. The exception is "specificity." HPVs are ubiquitous, which is the exact opposite of specificity. An additional reservation is that the prevalence of breast cancer is not increased in immunocompromised patients as is the case with respect to HPV-associated cervical cancer. This indicates that HPVs may have an indirect causal influence in breast cancer. Based on the overall evidence, high-risk HPVs may have a causal role in some breast cancers.

  17. Radiosensitizing effect of lapatinib in human epidermal growth factor receptor 2-positive breast cancer cells

    PubMed Central

    Park, Ji Min; Kim, Dan Hyo; Kim, In Ah

    2016-01-01

    Trastuzumab has been widely used for the treatment of human epidermal growth factor receptor 2 (HER2)-overexpressing breast cancer, however, it cannot easily cross the blood-brain barrier (BBB) and is known to increase the incidence of brain metastases. In contrast, lapatinib has a low molecular weight and can cross the BBB and it could be useful to treat brain metastases in patients with HER2-positive breast cancer. To explore the impact of lapatinib on radiation response, we conducted an in vitro experiment using SKBR3 and BT474 breast carcinoma cells exhibiting HER2/neu amplification. Lapatinib down-regulated phosphorylated (p)-HER2, p-epidermal growth factor receptor, p-AKT, and p-extracellular signal-regulated kinase. Pretreatment of lapatinib increased the radiosensitivity of SKBR3 (sensitizer enhancement ratio [SER]: 1.21 at a surviving fraction of 0.5) and BT474 (SER: 1.26 at a surviving fraction of 0.5) cells and hindered the repair of DNA damage, as suggested by the prolongation of radiation-induced γH2AX foci and the down-regulation of phosphorylated DNA-dependent protein kinase, catalytic subunit (p-DNAPKcs). Increases in radiation-induced apoptosis and senescence were suggested to be the major modes of cell death induced by the combination of lapatinib and radiation. Furthermore, lapatinib did not radiosensitize a HER2- negative breast cancer cell line or normal human astrocytes. These findings suggest that lapatinib can potentiate radiation-induced cell death in HER2-overexpressing breast cancer cells and may increase the efficacy of radiotherapy. A phase II clinical trial using lapatinib concurrently with whole-brain radiation therapy (WBRT) is currently being conducted. PMID:27738326

  18. Increased expression of CYP4Z1 promotes tumor angiogenesis and growth in human breast cancer

    SciTech Connect

    Yu, Wei; Chai, Hongyan; Li, Ying; Zhao, Haixia; Xie, Xianfei; Zheng, Hao; Wang, Chenlong; Wang, Xue; Yang, Guifang; Cai, Xiaojun; Falck, John R.; Yang, Jing

    2012-10-01

    Cytochrome P450 (CYP) 4Z1, a novel CYP4 family member, is over-expressed in human mammary carcinoma and associated with high-grade tumors and poor prognosis. However, the precise role of CYP4Z1 in tumor progression is unknown. Here, we demonstrate that CYP4Z1 overexpression promotes tumor angiogenesis and growth in breast cancer. Stable expression of CYP4Z1 in T47D and BT-474 human breast cancer cells significantly increased mRNA expression and production of vascular endothelial growth factor (VEGF)-A, and decreased mRNA levels and secretion of tissue inhibitor of metalloproteinase-2 (TIMP-2), without affecting cell proliferation and anchorage-independent cell growth in vitro. Notably, the conditioned medium from CYP4Z1-expressing cells enhanced proliferation, migration and tube formation of human umbilical vein endothelial cells, and promoted angiogenesis in the zebrafish embryo and chorioallantoic membrane of the chick embryo. In addition, there were lower levels of myristic acid and lauric acid, and higher contents of 20-hydroxyeicosatetraenoic acid (20-HETE) in CYP4Z1-expressing T47D cells compared with vector control. CYP4Z1 overexpression significantly increased tumor weight and microvessel density by 2.6-fold and 1.9-fold in human tumor xenograft models, respectively. Moreover, CYP4Z1 transfection increased the phosphorylation of ERK1/2 and PI3K/Akt, while PI3K or ERK inhibitors and siRNA silencing reversed CYP4Z1-mediated changes in VEGF-A and TIMP-2 expression. Conversely, HET0016, an inhibitor of the CYP4 family, potently inhibited the tumor-induced angiogenesis with associated changes in the intracellular levels of myristic acid, lauric acid and 20-HETE. Collectively, these data suggest that increased CYP4Z1 expression promotes tumor angiogenesis and growth in breast cancer partly via PI3K/Akt and ERK1/2 activation. -- Highlights: ► CYP4Z1 overexpression promotes human breast cancer growth and angiogenesis. ► The pro-angiogenic effects of CYP4Z1 have

  19. Wild-Type N-Ras, Overexpressed in Basal-like Breast Cancer, Promotes Tumor Formation by Inducing IL-8 Secretion via JAK2 Activation.

    PubMed

    Zheng, Ze-Yi; Tian, Lin; Bu, Wen; Fan, Cheng; Gao, Xia; Wang, Hai; Liao, Yi-Hua; Li, Yi; Lewis, Michael T; Edwards, Dean; Zwaka, Thomas P; Hilsenbeck, Susan G; Medina, Daniel; Perou, Charles M; Creighton, Chad J; Zhang, Xiang H-F; Chang, Eric C

    2015-07-21

    Basal-like breast cancers (BLBCs) are aggressive, and their drivers are unclear. We have found that wild-type N-RAS is overexpressed in BLBCs but not in other breast cancer subtypes. Repressing N-RAS inhibits transformation and tumor growth, whereas overexpression enhances these processes even in preinvasive BLBC cells. We identified N-Ras-responsive genes, most of which encode chemokines; e.g., IL8. Expression levels of these chemokines and N-RAS in tumors correlate with outcome. N-Ras, but not K-Ras, induces IL-8 by binding and activating the cytoplasmic pool of JAK2; IL-8 then acts on both the cancer cells and stromal fibroblasts. Thus, BLBC progression is promoted by increasing activities of wild-type N-Ras, which mediates autocrine/paracrine signaling that can influence both cancer and stroma cells.

  20. Nucleolin overexpression in breast cancer cell sub-populations with different stem-like phenotype enables targeted intracellular delivery of synergistic drug combination.

    PubMed

    Fonseca, Nuno A; Rodrigues, Ana S; Rodrigues-Santos, Paulo; Alves, Vera; Gregório, Ana C; Valério-Fernandes, Ângela; Gomes-da-Silva, Lígia C; Rosa, Manuel Santos; Moura, Vera; Ramalho-Santos, João; Simões, Sérgio; Moreira, João Nuno

    2015-11-01

    Breast cancer stem cells (CSC) are thought responsible for tumor growth and relapse, metastization and active evasion to standard chemotherapy. The recognition that CSC may originate from non-stem cancer cells (non-SCC) through plastic epithelial-to-mesenchymal transition turned these into relevant cell targets. Of crucial importance for successful therapeutic intervention is the identification of surface receptors overexpressed in both CSC and non-SCC. Cell surface nucleolin has been described as overexpressed in cancer cells as well as a tumor angiogenic marker. Herein we have addressed the questions on whether nucleolin was a common receptor among breast CSC and non-SCC and whether it could be exploited for targeting purposes. Liposomes functionalized with the nucleolin-binding F3 peptide, targeted simultaneously, nucleolin-overexpressing putative breast CSC and non-SCC, which was paralleled by OCT4 and NANOG mRNA levels in cells from triple negative breast cancer (TNBC) origin. In murine embryonic stem cells, both nucleolin mRNA levels and F3 peptide-targeted liposomes cellular association were dependent on the stemness status. An in vivo tumorigenic assay suggested that surface nucleolin overexpression per se, could be associated with the identification of highly tumorigenic TNBC cells. This proposed link between nucleolin expression and the stem-like phenotype in TNBC, enabled 100% cell death mediated by F3 peptide-targeted synergistic drug combination, suggesting the potential to abrogate the plasticity and adaptability associated with CSC and non-SCC. Ultimately, nucleolin-specific therapeutic tools capable of simultaneous debulk multiple cellular compartments of the tumor microenvironment may pave the way towards a specific treatment for TNBC patient care.

  1. Development of cytotoxicity-sensitive human cells using overexpression of long non-coding RNAs.

    PubMed

    Tani, Hidenori; Torimura, Masaki

    2015-05-01

    Biosensors using live cells are analytical devices that have the advantage of being highly sensitive for their targets. Although attention has primarily focused on reporter gene assays using functional promoters, cell viability assays are still efficient. We focus on long non-coding RNAs (lncRNAs) that are involved in the molecular mechanisms associated with responses to cellular stresses as a new biological material. Here we have developed human live cells transfected with lncRNAs that can be used as an intelligent sensor of cytotoxicity for a broad range of environmental stresses. We identified three lncRNAs (GAS5, IDI2-AS1, and SNHG15) that responded to cycloheximide in HEK293 cells. Overexpression of these lncRNAs sensitized human cells to cell death in response to various stresses (cycloheximide, ultraviolet irradiation, mercury II chloride, or hydrogen peroxide). In particular, dual lncRNA (GAS5 plus IDI2-AS1, or GAS5 plus SNHG15) overexpression sensitized cells to cell death by more cellular stresses. We propose a method for highly sensitive biosensors using overexpression of lncRNAs that can potentially measure the cytotoxicity signals of various environmental stresses.

  2. The effect of moesin overexpression on ageing of human dermal microvascular endothelial cells.

    PubMed

    Lee, Ju Hee; Hong, In Ae; Oh, Sang Ho; Kwon, Yeon Sook; Cho, Soo Hyun; Lee, Kwang Hoon

    2009-11-01

    Senescence of microvascular endothelial cells is known to play an important role in the pathophysiology of vascular diseases related to ageing, but the accurate mechanism or related genes are not known. Moesin, a cytoskeletal protein and the most potent candidate as an ageing-related protein, showed obvious changes in expression when compared before and after ageing. In this study, a lentivirus was used to overexpress moesin in endothelial cells. The expression of cell cycle mediators such as p16, cyclin D1 and cdk4, which can be the markers of ageing, was compared by RNA and was shown to be suppressed in moesin overexpressed endothelial cells. In conclusion, it can be said that the expression of moesin delays senescence of human dermal microvascular endothelial cells and this fundamental discovery can be used as a basis for understanding the mechanism of ageing and age-related diseases.

  3. Impact of SOCS3 overexpression on human skeletal muscle development in vitro.

    PubMed

    Caldow, Marissa K; Steinberg, Gregory R; Cameron-Smith, David

    2011-07-01

    The Janus kinase/signal transducers and activators of transcription (JAK/STAT) signaling cascade has been identified as a crucial factor for myogenesis. The STAT3 isoform is essential for satellite cell migration and myogenic differentiation as it mediates the expression of muscle specific myogenic factors. The SOCS (suppressors of cytokine signaling) family of proteins down-regulates STAT activation. Primary human skeletal muscle cells were isolated and cultured to investigate the effect of SOCS3 adenoviral overexpression on myotube maturation. It was demonstrated that STAT3 inhibition did not influence myotube development or survival. Moreover, SOCS3 overexpression enhances the mRNA expression of downstream targets of STAT3, c-FOS and VEGF. These increases were correlated with enhanced mRNA expression of genes associated with muscle maturation and hypertrophy. Thus SOCS3 influences myoblast differentiation and SOCS3 may be significant in regulating the activity of genes previously identified as transcriptionally regulated by STAT3.

  4. Gene transcriptional networks integrate microenvironmental signals in human breast cancer.

    PubMed

    Xu, Ren; Mao, Jian-Hua

    2011-04-01

    A significant amount of evidence shows that microenvironmental signals generated from extracellular matrix (ECM) molecules, soluble factors, and cell-cell adhesion complexes cooperate at the extra- and intracellular level. This synergetic action of microenvironmental cues is crucial for normal mammary gland development and breast malignancy. To explore how the microenvironmental genes coordinate in human breast cancer at the genome level, we have performed gene co-expression network analysis in three independent microarray datasets and identified two microenvironment networks in human breast cancer tissues. Network I represents crosstalk and cooperation of ECM microenvironment and soluble factors during breast malignancy. The correlated expression of cytokines, chemokines, and cell adhesion proteins in Network II implicates the coordinated action of these molecules in modulating the immune response in breast cancer tissues. These results suggest that microenvironmental cues are integrated with gene transcriptional networks to promote breast cancer development.

  5. WISP-1 overexpression upregulates cell proliferation in human salivary gland carcinomas via regulating MMP-2 expression

    PubMed Central

    Li, Fu-Jun; Wang, Xin-Juan; Zhou, Xiao-Li

    2016-01-01

    Background WISP-1 is a member of the CCN family of growth factors and has been reported to play an important role in tumorigenesis by triggering downstream events via integrin signaling. However, little is known about the role of WISP-1 in proliferation of salivary gland carcinoma (SGC) cells. Methods In this study, we investigated the WISP-1 expression in SGC tissues via immunohistochemical staining, Western blotting assay, and real-time quantitative polymerase chain reaction method, and then evaluated the regulatory role of WISP-1 in the growth of SGC A-253 cells. In addition, the role of MMP-2 in the WISP-1-mediated growth regulation was also investigated. Results It was demonstrated that the WISP-1 expression was upregulated at both mRNA and protein levels in 15 of 21 SGC tumor tissues, compared to the non-tumor tissues (five of 21), associated with the lymph node dissection and bone invasion. The in vitro CCK-8 assay and colony-forming assay demonstrated that the exogenous WISP-1 treatment or the WISP-1 overexpression promoted the growth of A-253 cells. In addition, we confirmed that the WISP-1 overexpression upregulated the MMP-2 expression in A-253 cells with the gain-of-function and loss-of-function strategies, and that the MMP-2 knockdown attenuated the WISP-1-mediated growth promotion of A-253 cells. Conclusion We found that WISP-1 was overexpressed in the human SGCs, and the WISP-1 overexpression promoted the salivary gland cell proliferation via upregulating MMP-2 expression. Our study recognized the oncogenic role of WISP-1 in human SGCs, which could serve as a potential target for anticancer therapy. PMID:27799801

  6. Mutations in p53 as potential molecular markers for human breast cancer

    SciTech Connect

    Runnebaum, I.B.; Nagarajan, M.; Bowman, M.; Soto, D.; Sukumar, S. )

    1991-12-01

    Based on the high incidence of loss of heterozygosity for loci on chromosome 17p in the vicinity of the p53 locus in human breast tumors. The authors investigated the frequency and effects of mutations in the p53 tumor suppressor gene in mammary neoplasia. They examined the p53 gene in 20 breast cancer cell lines and 59 primary breast tumors. Northern blot analysis, immunoprecipitation, and nucleotide sequencing analysis revealed aberrant mRNA expression, over-expression of protein, and point mutations in the p53 gene in 50% of the cell line tested. A multiplex PCR assay was developed to search for deletions in the p53 genomic locus. Multiplex PCR of genomic DNA showed that up to 36% of primary tumors contained aberrations in the p53 locus. Mutations in exons 5-9 of the p53 gene were found in 10 out of 59 (17%) of the primary tumors studied by single-stranded conformation polymorphism analysis. They conclude that, compared to amplification of HER2/NEU, MYC, or INT2 oncogene loci, p53 gene mutations and deletions are the most frequently observed genetic change in breast cancer related to a single gene. Correlated to disease status, p53 gene mutations could prove to be a valuable marker for diagnosis and/or prognosis of breast neoplasia.

  7. Human antimicrobial protein hCAP18/LL-37 promotes a metastatic phenotype in breast cancer

    PubMed Central

    Weber, Günther; Chamorro, Clara Ibel; Granath, Fredrik; Liljegren, Annelie; Zreika, Sami; Saidak, Zuzana; Sandstedt, Bengt; Rotstein, Samuel; Mentaverri, Romuald; Sánchez, Fabio; Pivarcsi, Andor; Ståhle, Mona

    2009-01-01

    Introduction Human cathelicidin antimicrobial protein, hCAP18, and its C-terminal peptide LL-37 is a multifunctional protein. In addition to being important in antimicrobial defense, it induces chemotaxis, stimulates angiogenesis and promotes tissue repair. We previously showed that human breast cancer cells express high amounts of hCAP18, and hypothesised that hCAP18/LL-37 may be involved in tumour progression. Methods hCAP18 mRNA was quantified in 109 primary breast cancers and compared with clinical findings and ERBB2 mRNA expression. Effects of exogenous LL-37 and transgenic overexpression of hCAP18 on ErbB2 signalling were investigated by immunoblotting using extracts from breast cancer cell lines ZR75-1 and derivatives of MCF7. We further analysed the impact of hCAP18/LL-37 on the morphology of breast cancer cells grown in soft agar, on cell migration and on tumour development in severe combined immunodeficiency (SCID) mice. Results The expression of hCAP18 correlated closely with that of ERBB2 and with the presence of lymph node metastases in oestrogen receptor-positive tumours. hCAP18/LL-37 amplified Heregulin-induced mitogen-activated protein kinase (MAPK) signalling through ErbB2, identifying a functional association between hCAP18/LL-37 and ErbB2 in breast cancer. Treatment with LL-37 peptide significantly stimulated the migration of breast cancer cells and their colonies acquired a dispersed morphology indicative of increased metastatic potential. A truncated version of LL-37 competitively inhibited LL-37 induced MAPK phosphorylation and significantly reduced the number of altered cancer cell colonies induced by LL-37 as well as suppressed their migration. Transgenic overexpression of hCAP18 in a low malignant breast cancer cell line promoted the development of metastases in SCID mice, and analysis of hCAP18 transgenic tumours showed enhanced activation of MAPK signalling. Conclusions Our results provide evidence that hCAP18/LL-37 contributes to breast

  8. Integrin activation controls metastasis in human breast cancer

    PubMed Central

    Felding-Habermann, Brunhilde; O'Toole, Timothy E.; Smith, Jeffrey W.; Fransvea, Emilia; Ruggeri, Zaverio M.; Ginsberg, Mark H.; Hughes, Paul E.; Pampori, Nisar; Shattil, Sanford J.; Saven, Alan; Mueller, Barbara M.

    2001-01-01

    Metastasis is the primary cause of death in human breast cancer. Metastasis to bone, lungs, liver, and brain involves dissemination of breast cancer cells via the bloodstream and requires adhesion within the vasculature. Blood cell adhesion within the vasculature depends on integrins, a family of transmembrane adhesion receptors, and is regulated by integrin activation. Here we show that integrin αvβ3 supports breast cancer cell attachment under blood flow conditions in an activation-dependent manner. Integrin αvβ3 was found in two distinct functional states in human breast cancer cells. The activated, but not the nonactivated, state supported tumor cell arrest during blood flow through interaction with platelets. Importantly, activated αvβ3 was expressed by freshly isolated metastatic human breast cancer cells and variants of the MDA-MB 435 human breast cancer cell line, derived from mammary fat pad tumors or distant metastases in severe combined immunodeficient mice. Expression of constitutively activated mutant αvβ3D723R, but not αvβ3WT, in MDA-MB 435 cells strongly promoted metastasis in the mouse model. Thus breast cancer cells can exhibit a platelet-interactive and metastatic phenotype that is controlled by the activation of integrin αvβ3. Consequently, alterations within tumors that lead to the aberrant control of integrin activation are expected to adversely affect the course of human breast cancer. PMID:11172040

  9. Integrin activation controls metastasis in human breast cancer

    NASA Astrophysics Data System (ADS)

    Felding-Habermann, Brunhilde; O'Toole, Timothy E.; Smith, Jeffrey W.; Fransvea, Emilia; Ruggeri, Zaverio M.; Ginsberg, Mark H.; Hughes, Paul E.; Pampori, Nisar; Shattil, Sanford J.; Saven, Alan; Mueller, Barbara M.

    2001-02-01

    Metastasis is the primary cause of death in human breast cancer. Metastasis to bone, lungs, liver, and brain involves dissemination of breast cancer cells via the bloodstream and requires adhesion within the vasculature. Blood cell adhesion within the vasculature depends on integrins, a family of transmembrane adhesion receptors, and is regulated by integrin activation. Here we show that integrin v3 supports breast cancer cell attachment under blood flow conditions in an activation-dependent manner. Integrin v3 was found in two distinct functional states in human breast cancer cells. The activated, but not the nonactivated, state supported tumor cell arrest during blood flow through interaction with platelets. Importantly, activated αvβ3 was expressed by freshly isolated metastatic human breast cancer cells and variants of the MDA-MB 435 human breast cancer cell line, derived from mammary fat pad tumors or distant metastases in severe combined immunodeficient mice. Expression of constitutively activated mutant αvβ3D723R, but not αvβ3WT, in MDA-MB 435 cells strongly promoted metastasis in the mouse model. Thus breast cancer cells can exhibit a platelet-interactive and metastatic phenotype that is controlled by the activation of integrin αvβ3. Consequently, alterations within tumors that lead to the aberrant control of integrin activation are expected to adversely affect the course of human breast cancer.

  10. Six1 overexpression at early stages of HPV16-mediated transformation of human keratinocytes promotes differentiation resistance and EMT

    SciTech Connect

    Xu, Hanwen; Pirisi, Lucia; Creek, Kim E.

    2015-01-01

    Previous studies in our laboratory discovered that SIX1 mRNA expression increased during in vitro progression of HPV16-immortalized human keratinocytes (HKc/HPV16) toward a differentiation-resistant (HKc/DR) phenotype. In this study, we explored the role of Six1 at early stages of HPV16-mediated transformation by overexpressing Six1 in HKc/HPV16. We found that Six1 overexpression in HKc/HPV16 increased cell proliferation and promoted cell migration and invasion by inducing epithelial–mesenchymal transition (EMT). Moreover, the overexpression of Six1 in HKc/HPV16 resulted in resistance to serum and calcium-induced differentiation, which is the hallmark of the HKc/DR phenotype. Activation of MAPK in HKc/HPV16 overexpressing Six1 is linked to resistance to calcium-induced differentiation. In conclusion, this study determined that Six1 overexpression resulted in differentiation resistance and promoted EMT at early stages of HPV16-mediated transformation of human keratinocytes. - Highlights: • Six1 expression increases during HPV16-mediated transformation. • Six1 overexpression causes differentiation resistance in HPV16-immortalized cells. • Six1 overexpression in HPV16-immortalized keratinocytes activates MAPK. • Activation of MAPK promotes EMT and differentiation resistance. • Six1 overexpression reduces Smad-dependent TGF-β signaling.

  11. Durable Clinical Benefit of Pertuzumab in a Young Patient with BRCA2 Mutation and HER2-Overexpressing Breast Cancer Involving the Brain

    PubMed Central

    Koumarianou, Anna; Kontopoulou, Christina; Kouloulias, Vassilis; Tsionou, Christina

    2016-01-01

    Patients with HER2-positive breast cancer and brain metastases have limited treatment options, and, as a result of their poor performance status and worse prognosis, they are underrepresented in clinical trials. Not surprisingly, these patients may not be fit enough to receive any active treatment and are offered supportive therapy. BRCA2 mutations are reported to be rarely associated with HER2-overexpressing advanced breast cancer and even more rarely with brain metastases at diagnosis. We report on a BRCA2-positive breast cancer patient with metastatic disease in multiple sites, including the brain, and poor performance status who exhibited an extraordinary clinical and imaging response to the novel anti-HER2 therapy pertuzumab after multiple lines of therapy including anti-HER2 targeting. To our knowledge, the clinicopathologic and therapeutic characteristics of this patient point to a unique case and an urgent need for further investigation of pertuzumab in patients with brain metastases. PMID:27195161

  12. Durable Clinical Benefit of Pertuzumab in a Young Patient with BRCA2 Mutation and HER2-Overexpressing Breast Cancer Involving the Brain.

    PubMed

    Koumarianou, Anna; Kontopoulou, Christina; Kouloulias, Vassilis; Tsionou, Christina

    2016-01-01

    Patients with HER2-positive breast cancer and brain metastases have limited treatment options, and, as a result of their poor performance status and worse prognosis, they are underrepresented in clinical trials. Not surprisingly, these patients may not be fit enough to receive any active treatment and are offered supportive therapy. BRCA2 mutations are reported to be rarely associated with HER2-overexpressing advanced breast cancer and even more rarely with brain metastases at diagnosis. We report on a BRCA2-positive breast cancer patient with metastatic disease in multiple sites, including the brain, and poor performance status who exhibited an extraordinary clinical and imaging response to the novel anti-HER2 therapy pertuzumab after multiple lines of therapy including anti-HER2 targeting. To our knowledge, the clinicopathologic and therapeutic characteristics of this patient point to a unique case and an urgent need for further investigation of pertuzumab in patients with brain metastases.

  13. Overexpression of human β-defensin 2 promotes growth and invasion during esophageal carcinogenesis.

    PubMed

    Shi, Ni; Jin, Feng; Zhang, Xiaoli; Clinton, Steven K; Pan, Zui; Chen, Tong

    2014-11-30

    Human β-defensin 2 (HBD-2) is an antimicrobial peptide produced by mucosal surfaces in response to microbial exposure or inflammatory cytokines. Although HBD-2 is expressed in the esophagus in response to stress and infectious agents, little is known regarding its expression and functional role in esophageal carcinogenesis. In the current investigation, normal esophagus and N-nitrosomethylbenzylamine (NMBA)-induced precancerous and papillomatous lesions of the rat esophagus were characterized for HBD-2 encoding gene Defb4 and protein. HBD-2 was found to be overexpressed in esophagi of rats treated with NMBA compared to animals in control group. Results of Real-time PCR, Western blot and immunohistochemistry demonstrated a positive correlation between the overexpression of HBD-2 and the progression of rat squamous cell carcinogenesis (SCC) in the esophagus. We also observed that HBD-2 is overexpressed in tumor tissues removed from patients with esophageal SCC. Moreover, Defb4 silencing in vitro suppresses the tumor cell proliferation, mobility and invasion in esophageal SCC cell line KYSE-150. The results from this study provide experimental evidence that HBD-2 may play an oncogenic role in the initiation and progression of esophageal SCC and thus serves as a target for chemopreventive and therapeutic interventions.

  14. Human muscle precursor cells overexpressing PGC-1α enhance early skeletal muscle tissue formation.

    PubMed

    Haralampieva, Deana; Salemi, Souzan; Dinulovic, Ivana; Sulser, Tullio; M Ametamey, Simon; Handschin, Christoph; Eberli, Daniel

    2017-02-03

    Muscle precursor cells (MPCs) are activated satellite cells capable of muscle fiber reconstruction. Therefore, autologous MPC transplantation is envisioned for the treatment of muscle diseases. However, the density of MPCs, as well as their proliferation and differentiation potential gradually decline with age. The goal of this research was to genetically modify human MPCs (hMPCs) to overexpress the peroxisome proliferator-activated receptor gamma coactivator (PGC-1α), a key regulator of exercise-mediated adaptation, and thereby to enhance early skeletal muscle formation and quality. We were able to confirm the sustained myogenic phenotype of the genetically modified hMPCs. While maintaining their viability and proliferation potential, PGC-1α modified hMPCs showed an enhanced myofiber formation capacity in vitro. Engineered muscle tissues were harvested 1, 2 and 4 weeks after subcutaneous injection of cell-collagen suspensions and histological analysis confirmed the earlier myotube formation in PGC-1α modified samples, predominantly of slow twitch myofibers. Increased contractile protein levels were detected by Western Blot. In summary, by genetically modifying hMPCs to overexpress PGC-1α we were able to promote early muscle fiber formation in vitro and in vivo, with an initial switch to slow type myofibers. Therefore, overexpressing PGC-1α is novel strategy to further enhance skeletal muscle tissue engineering.

  15. The overexpression and altered localization of the atypical protein kinase C lambda/iota in breast cancer correlates with the pathologic type of these tumors.

    PubMed

    Kojima, Yasuyuki; Akimoto, Kazunori; Nagashima, Yoji; Ishiguro, Hitoshi; Shirai, Sumiko; Chishima, Takashi; Ichikawa, Yasushi; Ishikawa, Takashi; Sasaki, Takeshi; Kubota, Yoshinobu; Inayama, Yoshiaki; Aoki, Ichiro; Ohno, Shigeo; Shimada, Hiroshi

    2008-06-01

    Breast cancer is one of the common malignant diseases among women in Japan as well as in western countries, and its incidence continues to increase. Normal mammary duct epithelial cells exhibit a well-organized apicobasal polarity, which forms the basis for their specific structure and function. Although the loss of epithelial cell polarity is one of the major changes that occur during the progression of tumor cells, including breast cancer, the underlying molecular mechanisms for this, as well as their relationship to other changes such as increased proliferation and metastasis, remain to be elucidated. The atypical protein kinase C lambda/iota (aPKC lambda/iota) is involved in several signal transduction pathways, including the establishment of epithelial cell polarity. In this study we evaluated the expression and localization of aPKC lambda/iota in breast cancer by immunohistochemistry and compared our findings with the clinicopathologic factors associated with the tumor specimens. We detected aPK Clambda/iota protein overexpression in 88 of the 110 breast cancer cases (80.0%) under study, expect for decreased expression in a few cases. The immunoreactivity of aPK Clambda/iota was generally weak in ductal carcinoma in situ, but strong in invasive ductal carcinoma (IDC; P = .022). The correlation between apical or cytoplasmic aPKC lambda/iota localization and tumor pathologic type (ie, atypical ductal hyperplasia, ductal carcinoma in situ. or IDC) was also demonstrated (P < .001). These results thus indicate that the normal apicobasal polarity is lost upon the progression of a breast lesion to IDC. This is also the first evidence to show aPKC lambda/iota overexpression in breast cancer and demonstrates that its localization is associated with the trend of pathologic type of the tumor.

  16. Targeting uPAR with antagonistic recombinant human antibodies in aggressive breast cancer.

    PubMed

    LeBeau, Aaron M; Duriseti, Sai; Murphy, Stephanie T; Pepin, Francois; Hann, Byron; Gray, Joe W; VanBrocklin, Henry F; Craik, Charles S

    2013-04-01

    Components of the plasminogen activation system, which are overexpressed in aggressive breast cancer subtypes, offer appealing targets for development of new diagnostics and therapeutics. By comparing gene expression data in patient populations and cultured cell lines, we identified elevated levels of the urokinase plasminogen activation receptor (uPAR, PLAUR) in highly aggressive breast cancer subtypes and cell lines. Recombinant human anti-uPAR antagonistic antibodies exhibited potent binding in vitro to the surface of cancer cells expressing uPAR. In vivo these antibodies detected uPAR expression in triple negative breast cancer (TNBC) tumor xenografts using near infrared imaging and (111)In single-photon emission computed tomography. Antibody-based uPAR imaging probes accurately detected small disseminated lesions in a tumor metastasis model, complementing the current clinical imaging standard (18)F-fluorodeoxyglucose at detecting non-glucose-avid metastatic lesions. A monotherapy study using the antagonistic antibodies resulted in a significant decrease in tumor growth in a TNBC xenograft model. In addition, a radioimmunotherapy study, using the anti-uPAR antibodies conjugated to the therapeutic radioisotope (177)Lu, found that they were effective at reducing tumor burden in vivo. Taken together, our results offer a preclinical proof of concept for uPAR targeting as a strategy for breast cancer diagnosis and therapy using this novel human antibody technology.

  17. Overexpression of AKR1C3 significantly enhances human prostate cancer cells resistance to radiation

    PubMed Central

    Gao, Xian-Shu; Li, Yi; Yu, Hongliang; Xiong, Wei; Yu, Hao; Wang, Wen; Li, Yingbo; Teng, Yingqi; Zhou, Demin

    2016-01-01

    Aldo-keto reductase 1C3(AKR1C3) is an enzyme involved in prostaglandins metabolism. Studies suggest that AKR1C3 has a pivotal role in the radioresistance of esophageal cancer and non-small-cell lung cancer, yet the role of AKR1C3 in prostate cancer cells radiation resistance has not yet been clarified. In our study, we established a stable overexpressing AKR1C3 cell line (AKR1C3-over) derived from the prostate cell line DU145 and its control cell line (Control). We conducted colony formation assay to determine the role of AKR1C3 in radioresistance and we used its chemical inhibitor to detect whether it can restored the sensitivity of the acquired tumor cells. Flow cytometry assay was carried out to detect IR-induced ROS accumulation. Elisa was adopted to dedect the concentration of PGF2α in the suspension of the cells after 6GY radiation. Western blotting was used to dedect the MAPK and PPAR γ. The results demonstrated that overexpression of AKR1C3 in prostate cancer can result in radioresistance and suppression of AKR1C3 via its chemical inhibitor indocin restored the sensitivity of the acquired tumor cells. According to the flow cytometry assay, ROS was decreased by 80% in DU145-over cells. Also overexpression of AKR1C3 could result in the accumulation of prostaglandin F2α (PGF2α), which can not only promote prostate cancer cell 's proliferation but also could enhance prostate cancer cells resistance to radiation and activated the MAPK pathway and inhibited the expression of PPARγ. In conclusion, we found that overexpression of AKR1C3 significantly enhanced human prostate cancer cells resistance to radiation through activation of MAPK pathway. PMID:27385003

  18. Induced overexpression of OCT4A in human embryonic stem cells increases cloning efficiency.

    PubMed

    Tsai, Steven C; Chang, David F; Hong, Chang-Mu; Xia, Ping; Senadheera, Dinithi; Trump, Lisa; Mishra, Suparna; Lutzko, Carolyn

    2014-06-15

    Our knowledge of the molecular mechanisms underlying human embryonic stem cell (hESC) self-renewal and differentiation is incomplete. The level of octamer-binding transcription factor 4 (Oct4), a critical regulator of pluripotency, is precisely controlled in mouse embryonic stem cells. However, studies of human OCT4 are often confounded by the presence of three isoforms and six expressed pseudogenes, which has complicated the interpretation of results. Using an inducible lentiviral overexpression and knockdown system to manipulate OCT4A above or below physiological levels, we specifically examine the functional role of the OCT4A isoform in hESC. (We also designed and generated a comparable series of vectors, which were not functional, for the overexpression and knockdown of OCT4B.) We show that specific knockdown of OCT4A results in hESC differentiation, as indicated by morphology changes, cell surface antigen expression, and upregulation of ectodermal genes. In contrast, inducible overexpression of OCT4A in hESC leads to a transient instability of the hESC phenotype, as indicated by changes in morphology, cell surface antigen expression, and transcriptional profile, that returns to baseline within 5 days. Interestingly, sustained expression of OCT4A past 5 days enhances hESC cloning efficiency, suggesting that higher levels of OCT4A can support self-renewal. Overall, our results indicate that high levels of OCT4A increase hESC cloning efficiency and do not induce differentiation (whereas OCT4B expression cannot be induced in hESC), highlighting the importance of isoform-specific studies in a stable and inducible expression system for human OCT4. Additionally, we demonstrate the utility of an efficient method for conditional gene expression in hESC.

  19. In vitro comparative models for canine and human breast cancers

    PubMed Central

    VISAN, SIMONA; BALACESCU, OVIDIU; BERINDAN-NEAGOE, IOANA; CATOI, CORNEL

    2016-01-01

    During the past four decades, an increased number of similarities between canine mammary tumors and human breast cancer have been reported: molecular, histological, morphological, clinical and epidemiological, which lead to comparative oncological studies. One of the most important goals in human and veterinary oncology is to discover potential molecular biomarkers that could detect breast cancer in an early stage and to develop new effective therapies. Recently, cancer cell lines have successfully been used as an in vitro model to study the biology of cancer, to investigate molecular pathways and to test the efficiency of anticancer drugs. Moreover, establishment of an experimental animal model for the study of human breast cancer will improve testing potential anti-cancer therapies and the discovery of effective therapeutic schemes suitable for human clinical trials. In this review, we collected data from previous studies that strengthen the value of canine mammary cancer cell lines as an in vitro model for the study of human breast cancer. PMID:27004024

  20. Genes amplified and overexpressed in human multidrug-resistant cell lines.

    PubMed

    Van der Bliek, A M; Baas, F; Van der Velde-Koerts, T; Biedler, J L; Meyers, M B; Ozols, R F; Hamilton, T C; Joenje, H; Borst, P

    1988-11-01

    Multidrug resistance (MDR) is associated with overproduction of Mr 170,000 membrane proteins (P-glycoproteins) caused by either gene amplification, transcriptional activation, or both. In rodents the amplified domain comprises genes that encode P-glycoproteins and at least five unrelated genes, one of which encodes the calcium-binding protein sorcin. The amplification and increased expression of these genes always includes one P-glycoprotein-encoding gene (pgp1 in hamsters, homologous to mdr1 in humans). In human MDR cells only elevated mdr1 expression has been shown thusfar, although another P-glycoprotein encoding gene (mdr3, homologous to hamster pgp3) is closely linked. Here we show that the human homolog of the hamster sorcin gene resides on chromosome 7 like the P-glycoprotein-encoding genes. Furthermore, gene classes designated 4, 5, and 6 are coamplified with mdr1 and mdr3 in the human ovarian carcinoma cell line 2780AD, which strongly suggests that the overall structure of the human MDR domain is the same as in rodents. Class 6 was moderately and mdr1 was highly overexpressed in this cell line. Four other human MDR cell lines also have much higher mdr1 overexpression than expected from the relatively low levels (2- to 30-fold) of gene amplification. This contrasts with the results of previous work with rodent MDR cells, in which the increase in P-glycoprotein mRNA levels usually parallels the increase in gene copy number. Although four of the five human MDR cell lines have coamplified mdr3, its expression was undetectable. Our results confirm the central role of the mdr1 (pgp1) gene in MDR and suggest that different cross-resistance patterns are not due to differential expression of different P-glycoprotein genes.

  1. Epidermal Growth Factor Receptor Overexpression as a Target for Auger Electron Radiotherapy of Breast Cancer

    DTIC Science & Technology

    2002-08-01

    pharmacokinetics of ’In-DTPA-hEGF after s.c. injection was studied in non-tumor bearing athymic mice. The mice were first anaesthetized by s.c. injection of...induction of apoptosis [1,23]. DNA damage caused by Auger electron-emitting radiopharmaceuticals is dependent on the proximity of the radionuclide decay...S.H. Kaufmnann, Y.L. Ottaviano, Y. Furuya, J.A. Buckley, J.T. Isaacs, N.E. Davidson. Epidermal growth factor-mediated apoptosis of MDA-MB-468 human

  2. Cyclopamine and jervine induce COX-2 overexpression in human erythroleukemia cells but only cyclopamine has a pro-apoptotic effect

    SciTech Connect

    Ghezali, Lamia; Leger, David Yannick; Limami, Youness; Cook-Moreau, Jeanne; Beneytout, Jean-Louis; Liagre, Bertrand

    2013-04-15

    Erythroleukemia is generally associated with a very poor response and survival to current available therapeutic agents. Cyclooxygenase-2 (COX-2) has been described to play a crucial role in the proliferation and differentiation of leukemia cells, this enzyme seems to play an important role in chemoresistance in different cancer types. Previously, we demonstrated that diosgenin, a plant steroid, induced apoptosis in HEL cells with concomitant COX-2 overexpression. In this study, we investigated the antiproliferative and apoptotic effects of cyclopamine and jervine, two steroidal alkaloids with similar structures, on HEL and TF1a human erythroleukemia cell lines and, for the first time, their effect on COX-2 expression. Cyclopamine, but not jervine, inhibited cell proliferation and induced apoptosis in these cells. Both compounds induced COX-2 overexpression which was responsible for apoptosis resistance. In jervine-treated cells, COX-2 overexpression was NF-κB dependent. Inhibition of NF-κB reduced COX-2 overexpression and induced apoptosis. In addition, cyclopamine induced apoptosis and COX-2 overexpression via PKC activation. Inhibition of the PKC pathway reduced both apoptosis and COX-2 overexpression in both cell lines. Furthermore, we demonstrated that the p38/COX-2 pathway was involved in resistance to cyclopamine-induced apoptosis since p38 inhibition reduced COX-2 overexpression and increased apoptosis in both cell lines. - Highlights: ► Cyclopamine alone but not jervine induces apoptosis in human erythroleukemia cells. ► Cyclopamine and jervine induce COX-2 overexpression. ► COX-2 overexpression is implicated in resistance to cyclopamine-induced apoptosis. ► Apoptotic potential of jervine is restrained by NF-κB pathway activation. ► PKC is involved in cyclopamine-induced apoptosis and COX-2 overexpression.

  3. Atypical scrapie prions from sheep and lack of disease in transgenic mice overexpressing human prion protein.

    PubMed

    Wadsworth, Jonathan D F; Joiner, Susan; Linehan, Jacqueline M; Balkema-Buschmann, Anne; Spiropoulos, John; Simmons, Marion M; Griffiths, Peter C; Groschup, Martin H; Hope, James; Brandner, Sebastian; Asante, Emmanuel A; Collinge, John

    2013-11-01

    Public and animal health controls to limit human exposure to animal prions are focused on bovine spongiform encephalopathy (BSE), but other prion strains in ruminants may also have zoonotic potential. One example is atypical/Nor98 scrapie, which evaded statutory diagnostic methods worldwide until the early 2000s. To investigate whether sheep infected with scrapie prions could be another source of infection, we inoculated transgenic mice that overexpressed human prion protein with brain tissue from sheep with natural field cases of classical and atypical scrapie, sheep with experimental BSE, and cattle with BSE. We found that these mice were susceptible to BSE prions, but disease did not develop after prolonged postinoculation periods when mice were inoculated with classical or atypical scrapie prions. These data are consistent with the conclusion that prion disease is less likely to develop in humans after exposure to naturally occurring prions of sheep than after exposure to epizootic BSE prions of ruminants.

  4. Detection of human cytomegalovirus in normal and neoplastic breast epithelium

    PubMed Central

    2010-01-01

    Introduction Human cytomegalovirus (HCMV) establishes a persistent life-long infection, and can cause severe pathology in the fetus and the immunocompromised host[1]. Breast milk is the primary route of transmission in humans worldwide, and breast epithelium is thus a likely site of persistent infection and/or reactivation, though this phenomenon has not previously been demonstrated. Increasing evidence indicates HCMV infection can modulate signaling pathways associated with oncogenesis. We hypothesized that persistent HCMV infection occurs in normal adult breast epithelium and that persistent viral expression might be associated with normal and neoplastic ductal epithelium. Methods Surgical biopsy specimens of normal breast (n = 38) breast carcinoma (n = 39) and paired normal breast from breast cancer patients (n = 21) were obtained. Specimens were evaluated by immunohistochemistry, in situ hybridization, PCR and DNA sequencing for evidence of HCMV antigens and nucleic acids. Results We detected HCMV expression specifically in glandular epithelium in 17/27 (63%) of normal adult breast cases evaluated. In contrast, HCMV expression was evident in the neoplastic epithelium of 31/32 (97%) patients with ductal carcinoma in situ (DCIS) and infiltrating ductal carcinoma (IDC) cases evaluated (p = 0.0009). Conclusions These findings are the first to demonstrate that persistent HCMV infection occurs in breast epithelium in a significant percentage of normal adult females. HCMV expression was also evident in neoplastic breast epithelium in a high percentage of normal and neoplastic breast tissues obtained from breast cancer patients, raising the possibility that viral infection may be involved in the neoplastic process. PMID:21429243

  5. Expression of Wnt3 activates Wnt/β-catenin pathway and promotes EMT-like phenotype in trastuzumab-resistant HER2-overexpressing breast cancer cells.

    PubMed

    Wu, Yanyuan; Ginther, Charles; Kim, Juri; Mosher, Nicole; Chung, Seyung; Slamon, Dennis; Vadgama, Jaydutt V

    2012-12-01

    To understand the mechanisms leading to trastuzumab resistance in HER2-overexpressing breast tumors, we created trastuzumab-insensitive cell lines (SKBR3/100-8 and BT474/100-2). The cell lines maintain HER2 receptor overexpression and show increase in EGF receptor (EGFR). Upon trastuzumab treatment, SKBR3/100-8 and BT474/100-2 cell lines displayed increased growth rate and invasiveness. The trastuzumab resistance in SKBR3/100-8 and BT474/100-2 was accompanied with activation of the Wnt/β-catenin signaling pathway. Further investigation found that Wnt3 overexpression played a key role toward the development of trastuzumab resistance. The expression of Wnt3 in trastuzumab-resistant cells increased nuclear expression of β-catenin and transactivated expression of EGFR. The increased Wnt3 in the trastuzumab-resistant cells also promoted a partial EMT-like transition (epithelial-to-mesenchymal transition); increased N-cadherin, Twist, Slug; and decreased E-cadherin. Knockdown of Wnt3 by siRNA restored cytoplasmic expression of β-catenin and decreased EGFR expression in trastuzumab-resistant cells. Furthermore, the EMT markers were decreased, E-cadherin was increased, and the cell invasiveness was inhibited in response to the Wnt3 downregulation. Conversely, SKBR3 cells which had been stably transfected with full-length Wnt3 exhibited EMT-like transition. The Wnt3 transfectants, SKBR3/Wnt3-7 and SKBR3/Wnt3-9, showed a significant decrease in E-cadherin and increase in N-cadherin, Twist, and Slug. The cells were less sensitive to trastuzumab than parental SKBR3 and vector-transfected cells. In summary, our data suggest that Wnt3 overexpression activates Wnt/β-catenin signaling pathway that leads to transactivation of EGFR and promotes EMT-like transition. This could be an important mechanism leading to trastuzumab resistance in HER2-overexpressing breast cancer cells.

  6. Plasma Membrane Proteomics of Human Breast Cancer Cell Lines Identifies Potential Targets for Breast Cancer Diagnosis and Treatment

    PubMed Central

    Ziegler, Yvonne S.; Moresco, James J.; Tu, Patricia G.; Yates, John R.; Nardulli, Ann M.

    2014-01-01

    The use of broad spectrum chemotherapeutic agents to treat breast cancer results in substantial and debilitating side effects, necessitating the development of targeted therapies to limit tumor proliferation and prevent metastasis. In recent years, the list of approved targeted therapies has expanded, and it includes both monoclonal antibodies and small molecule inhibitors that interfere with key proteins involved in the uncontrolled growth and migration of cancer cells. The targeting of plasma membrane proteins has been most successful to date, and this is reflected in the large representation of these proteins as targets of newer therapies. In view of these facts, experiments were designed to investigate the plasma membrane proteome of a variety of human breast cancer cell lines representing hormone-responsive, ErbB2 over-expressing and triple negative cell types, as well as a benign control. Plasma membranes were isolated by using an aqueous two-phase system, and the resulting proteins were subjected to mass spectrometry analysis. Overall, each of the cell lines expressed some unique proteins, and a number of proteins were expressed in multiple cell lines, but in patterns that did not always follow traditional clinical definitions of breast cancer type. From our data, it can be deduced that most cancer cells possess multiple strategies to promote uncontrolled growth, reflected in aberrant expression of tyrosine kinases, cellular adhesion molecules, and structural proteins. Our data set provides a very rich and complex picture of plasma membrane proteins present on breast cancer cells, and the sorting and categorizing of this data provides interesting insights into the biology, classification, and potential treatment of this prevalent and debilitating disease. PMID:25029196

  7. Anticancer activity of protocatechualdehyde in human breast cancer cells.

    PubMed

    Choi, Jieun; Jiang, Xiaojing; Jeong, Jin Boo; Lee, Seong-Ho

    2014-08-01

    Protocatechualdehyde (PCA) is a natural polyphenol compound isolated from the root of the herb S. miltiorrhiza and barley tea plants. PCA possesses antiproliferative and pro-apoptotic properties in human colorectal cancer cells. However, the cellular mechanism has not been fully understood. β-catenin and cyclin D1 are proto-oncogene that is overexpressed in many types of cancers and leads to cancer development. The present study was performed to elucidate the molecular mechanism by which PCA stimulates cell growth arrest and apoptosis in human breast cancer cells. PCA repressed cell proliferation and induced apoptosis in dose-dependent manner. PCA suppressed the expression of β-catenin and cyclin D1 with no changes in mRNA levels. Inhibition of proteosomal degradation using MG-132 and Ada-(Ahx)3-(Leu)3-vinyl sulfone ameliorates PCA-induced downregulation of β-catenin and cyclin D1. PCA treatment decreased the half-life of β-catenin and cyclin D1. PCA-mediated β-catenin downregulation depends on GSK3β. We further provide the evidence that PCA increased nuclear translocation of nuclear factor kappa-B (NF-κB) and the blockage of NF-κB using Bay11-7082 inhibited PCA-mediated β-catenin downregulation. The current study demonstrates that PCA suppress β-catenin expression through GSK3β- and NF-κB-mediated proteosomal degradation. In addition, PCA decreased cyclin D1 expression independent to β-catenin through proteosomal degradation.

  8. The risks and benefits of human donor breast milk.

    PubMed

    Brent, Nancy

    2013-05-01

    CME EDUCATIONAL OBJECTIVES: 1.Review the advantages and disadvantages of donor-banked milk over informal milk sharing.2.List disadvantages of proprietary infant formula for use as supplementation.3.Determine the primary ethical concerns when electing to use donor human milk versus propriety infant formula for supplementation. The benefits of breast-feeding, as well as the risks of some artificial formula, are well known. This growing recognition of the advantages of breast-feeding is reflected in the increased incidence of breast-feeding in recent years. However, one of the most common reasons for premature weaning is low milk supply, perceived or real, followed by nipple or breast pain. Given the increased awareness of the superiority of breast milk, however, more parents are turning to human donor milk to supplement their babies after they have been weaned.

  9. Agonists and antagonists of GnRH-I and -II reduce metastasis formation by triple-negative human breast cancer cells in vivo.

    PubMed

    Schubert, Antje; Hawighorst, Thomas; Emons, Günter; Gründker, Carsten

    2011-12-01

    Metastasis to bone is a frequent problem of advanced breast cancer. Particularly breast cancers, which do not express estrogen and progesterone receptors and which have no overexpression/amplification of the HER2-neu gene, so called triple-negative breast cancers, are considered as very aggressive and possess a bad prognosis. About 60% of all human breast cancers and about 74% of triple-negative breast cancers express receptors for gonadotropin-releasing hormone (GnRH), which might be used as a therapeutic target. Recently, we could show that bone-directed invasion of human breast cancer cells in vitro is time- and dose-dependently reduced by GnRH analogs. In the present study, we have analyzed whether GnRH analogs are able to reduce metastases of triple-negative breast cancers in vivo. In addition, we have evaluated the effects of GnRH analogs on tumor growth. To quantify formation of metastasis by triple-negative MDA-MB-435 and MDA-MB-231 human breast cancers, we used a real-time PCR method based on detection of human-specific alu sequences measuring accurately the amount of human tumor DNA in athymic mouse organs. To analyze tumor growth, the volumes of breast cancer xenotransplants into nude mice were measured. We could demonstrate that GnRH analogs significantly reduced metastasis formation by triple-negative breast cancer in vivo. In addition, we could show that GnRH analogs significantly inhibited the growth of breast cancer into nude mice. Side effects were not detectable. In conclusion, GnRH analogs seem to be suitable drugs for an efficacious therapy for triple-negative, GnRH receptor-positive human breast cancers to prevent metastasis formation.

  10. The human chemokine receptor CCRL2 suppresses chemotaxis and invasion by blocking CCL2-induced phosphorylation of p38 MAPK in human breast cancer cells.

    PubMed

    Wang, Lei-Ping; Cao, Jun; Zhang, Jian; Wang, Bi-Yun; Hu, Xi-Chun; Shao, Zhi-Min; Wang, Zhong-Hua; Ou, Zhou-Luo

    2015-11-01

    The human chemokine receptor CCRL2 is a member of the atypical chemokine receptor family. CCRL2 is unable to couple with G-proteins and fails to induce classical chemokine signaling for the highly conserved DRYLAIV motif essential for signaling has been changed to QRYLVFL. We investigated whether CCRL2 is involved in the chemotaxis, invasion, and proliferation of human breast cancer cells. Firstly, expression of CCRL2 was determined in six breast cancer cell lines by real-time RT-PCR and Western blot. Then, we established stable cell lines overexpressing CCRL2 to explore the function of CCRL2 in chemotaxis and invasion by transwell assays, and the signaling downstream was further investigated. The effect of CCRL2 on proliferation was detected by colony formation assays and tumor xenograft study. We found that stable overexpression of CCRL2 in MDA-MB-231 and BT-549 cells attenuated the chemotaxis and invasion stimulated by its ligand CCL2. CCRL2 inhibits p38 MAPK (p38) phosphorylation and up-regulates the expression of E-cadherin. This effect was eliminated by the inhibitor of p38 MAPK. CCRL2 inhibited the growth of breast cancer cells in vitro and in vivo. Our results suggest that CCRL2 functions as a tumor suppressor in human breast cancer cells.

  11. ErbB2 overexpression on occult metastatic cells in bone marrow predicts poor clinical outcome of stage I-III breast cancer patients.

    PubMed

    Braun, S; Schlimok, G; Heumos, I; Schaller, G; Riethdorf, L; Riethmüller, G; Pantel, K

    2001-03-01

    Occult hematogenous micrometastases are the major cause for metastatic relapse and cancer-related death in patients with operable primary breast cancer. Although sensitive immunocytochemical and molecular methods allow detection of individual breast cancer cells in bone marrow (BM), a major site of metastatic relapse, current detection techniques cannot discriminate between nonviable shed tumor cells and seminal metastatic cells. To address this problem, we analyzed the relevance of erbB2 overexpression on disseminated cytokeratin-18-positive breast cancer cells in the BM of 52 patients with locoregionally restricted primary breast cancer using immunocytochemical double labeling with monoclonal antibody 9G6 to the p185erbB2 oncoprotein. Expression of p185erbB2 on BM micrometastases was detected in 31 of 52 (60%) patients independent of established risk factors such as lymph node involvement, primary tumor size, differentiation grade, or expression of p185erbB2 on primary tumor cells. After a median follow-up of 64 months, patients with p185erbB2-positive BM micrometastases had developed fatal metastatic relapses more frequently than patients with p185erbB2-negative micrometastases (21 versus 7 events; P = 0.032). In multivariate analysis, the presence of p185erbB2-positive micrometastases was an independent prognostic factor with a hazard ratio of 2.78 (95% confidence interval, 1.11-6.96) for overall survival (P = 0.029). We therefore conclude that erbB2 overexpression characterizes a clinically relevant subset of breast cancer micrometastases.

  12. Growth retardation and hair loss in transgenic mice overexpressing human H-ferritin gene.

    PubMed

    Hasegawa, Sumitaka; Harada, Kazutoshi; Morokoshi, Yukie; Tsukamoto, Satoshi; Furukawa, Takako; Saga, Tsuneo

    2013-06-01

    H-ferritin (HF) is a core subunit of the iron storage protein ferritin, and plays a central role in the regulation of cellular iron homeostasis. Recent studies revealed that ferritin and HF are involved in a wide variety of iron-independent functions, including regulating biological processes during physiological and pathological conditions, and can be overexpressed in some human diseases. To investigate the in vivo function of HF, we generated transgenic (tg) mice overexpressing the human HF gene (hHF-tg). We established two independent hHF-tg mouse lines. Although both lines of hHF-tg mice were viable, they showed reduced body size compared to wild-type (WT) mice at 4-12 weeks of age. Serum iron concentration and blood parameters of hHF-tg mice such as hemoglobin and red blood cell counts were comparable to those of WT mice. At 3-5 weeks of age, hHF-tg mice exhibited temporary loss of coat hair on the trunk, but not on the head or face. Histological analyses revealed that although initial hair development was normal, hHF-tg mice had epidermal hyperplasia with hyperkeratosis, dilated hair follicles, bended hair shafts and keratinous debris during the hairless period. In conclusion, we showed that hHF-tg mice exhibited mild growth retardation and temporary hairless phenotype. Our findings highlight the physiological roles of HF and demonstrate that hHF-tg mice are useful for understanding the in vivo functions of HF.

  13. Human Neural Stem Cells Overexpressing Choline Acetyltransferase Restore Unconditioned Fear in Rats with Amygdala Injury

    PubMed Central

    Shin, Kyungha; Cha, Yeseul; Kim, Kwang Sei; Choi, Ehn-Kyoung; Choi, Youngjin; Guo, Haiyu; Ban, Young-Hwan; Kim, Jong-Choon; Park, Dongsun; Kim, Yun-Bae

    2016-01-01

    Amygdala is involved in the fear memory that recognizes certain environmental cues predicting threatening events. Manipulation of neurotransmission within the amygdala affects the expression of conditioned and unconditioned emotional memories such as fear freezing behaviour. We previously demonstrated that F3.ChAT human neural stem cells (NSCs) overexpressing choline acetyltransferase (ChAT) improve cognitive function of Alzheimer's disease model rats with hippocampal or cholinergic nerve injuries by increasing acetylcholine (ACh) level. In the present study, we examined the effect of F3.ChAT cells on the deficit of unconditioned fear freezing. Rats given N-methyl-d-aspartate (NMDA) in their amygdala 2 weeks prior to cat odor exposure displayed very short resting (freezing) time compared to normal animals. NMDA induced neuronal degeneration in the amygdala, leading to a decreased ACh concentration in cerebrospinal fluid. However, intracerebroventricular transplantation of F3.ChAT cells attenuated amygdala lesions 4 weeks after transplantation. The transplanted cells were found in the NMDA-injury sites and produced ChAT protein. In addition, F3.ChAT-receiving rats recuperated freezing time staying remote from the cat odor source, according to the recovery of brain ACh concentration. The results indicate that human NSCs overexpressing ChAT may facilitate retrieval of unconditioned fear memory by increasing ACh level. PMID:27087745

  14. Podocyte-specific overexpression of human angiotensin-converting enzyme 2 attenuates diabetic nephropathy in mice.

    PubMed

    Nadarajah, Renisha; Milagres, Rosangela; Dilauro, Marc; Gutsol, Alex; Xiao, Fengxia; Zimpelmann, Joseph; Kennedy, Chris; Wysocki, Jan; Batlle, Daniel; Burns, Kevin D

    2012-08-01

    Angiotensin-converting enzyme 2 (ACE2) degrades angiotensin II to angiotensin-(1-7) and is expressed in podocytes. Here we overexpressed ACE2 in podocytes in experimental diabetic nephropathy using transgenic methods where a nephrin promoter drove the expression of human ACE2. Glomeruli from these mice had significantly increased mRNA, protein, and activity of ACE2 compared to wild-type mice. Male mice were treated with streptozotocin to induce diabetes. After 16 weeks, there was no significant difference in plasma glucose levels between wild-type and transgenic diabetic mice. Urinary albumin was significantly increased in wild-type diabetic mice at 4 weeks, whereas albuminuria in transgenic diabetic mice did not differ from wild-type nondiabetic mice. However, this effect was transient and by 16 weeks both transgenic and nontransgenic diabetic mice had similar rates of proteinuria. Compared to wild-type diabetic mice, transgenic diabetic mice had an attenuated increase in mesangial area, decreased glomerular area, and a blunted decrease in nephrin expression. Podocyte numbers decreased in wild-type diabetic mice at 16 weeks, but were unaffected in transgenic diabetic mice. At 8 weeks, kidney cortical expression of transforming growth factor-β1 was significantly inhibited in transgenic diabetic mice as compared to wild-type diabetic mice. Thus, the podocyte-specific overexpression of human ACE2 transiently attenuates the development of diabetic nephropathy.

  15. Establishment of a canine model of human type 2 diabetes mellitus by overexpressing phosphoenolypyruvate carboxykinase.

    PubMed

    Jeong, Yeon Woo; Lee, Geun-Shik; Kim, Joung Joo; Park, Sun Woo; Ko, Kyeong Hee; Kang, Mina; Kim, Yu Kyung; Jung, Eui-Man; Hyun, Sang Hwan; Shin, Taeyoung; Jeung, Eui-Bae; Hwang, Woo Suk

    2012-08-01

    Dogs are useful models for studying human metabolic diseases such as type 2 diabetes mellitus due to similarities in physiology, anatomy and life styles with humans. Somatic cell nuclear transfer (SCNT) facilitates the production of transgenic dogs. In this study, we generated transgenic dogs expressing the phosphoenolpyruvate carboxykinase (PEPCK) gene, which is closely involved in the pathogenesis of type 2 diabetes mellitus. In addition, we assessed the cloning efficiency associated with adult or fetal (cloned or natural mating) fibroblasts as a nuclear source. Cloning efficiency was determined by the fusion, pregnancy and cloning rates. The fusion rates were significantly high for fibroblasts from cloned fetuses, but the pregnancy and cloning rates were relatively high for cells from normal fetuses. Based on these data, fetal fibroblasts were selected as the nuclear donor for SCNT and genetically engineered to overexpress the PEPCK gene and dual selection marker genes controlled by the PEPCK promoter. The transgenic cells were introduced into oocytes and transferred into five recipient dogs, resulting in two pregnancies. Finally, three puppies were born and confirmed by microsatellite analysis to be genetically identical to the donor. One puppy successfully overexpressed PEPCK mRNA and protein in the liver. This canine disease model may be useful for studying the pathogenesis and/or therapeutic targets of type 2 diabetes mellitus.

  16. [Human milk--some recent aspects of breast feeding].

    PubMed

    Plenert, W

    1979-01-01

    New data on the quality and quantity of protein and nor-protein nitrogen in human milk are discussed in the first part of this review. The second part presents a short review of current knowledge on immunologically important components of human milk (secretory IgA, Lactoferrin, ligands for folic acid and vitamine B-12. Lysozyme, cells, induction of breast milk flora in the intestine). There are very good reasons to enhance breast feeding also in developed countries.

  17. Human Progesterone A-Form as a Target for New Drug Discovery in Human Breast Cancer

    DTIC Science & Technology

    2001-07-01

    Progesterone A-Form as a Target for New Drug Discovery in Human Breast Cancer PRINCIPAL INVESTIGATOR: James Voltz Paloma Giangrande Donald McDonnell, Ph.D...SUBTITLE 5. FUNDING NUMBERS Human Progesterone A-Form as a Target for New Drug DAMD17-98-1-8070 Discovery in Human Breast Cancer 6. AUTHOR(S) James

  18. Overexpression of ErbB2 renders breast cancer cells susceptible to 3-BrPA through the increased dissociation of hexokinase II from mitochondrial outer membrane

    PubMed Central

    GAO, SUJIE; CHEN, XUEBO; JIN, HONGYONG; REN, SHENGNAN; LIU, ZHUO; FANG, XUEDONG; ZHANG, GUIZHEN

    2016-01-01

    ErbB2 is known to upregulate glycolysis in breast cancer, however, the precise mechanisms remain unclear. In the present study, ErbB2 upregulated Hexokinase II (HK II) activity by increasing the binding of HK II to the mitochondrial outer membrane. Dysregulated glucose metabolism in high ErbB2-expressing breast cancer cells induces susceptibility to glucose starvation and glycolysis inhibition. Additionally, HK II has a tendency to dissociate from the mitochondria outer membrane in ErbB2-overexpressing cells following treatment with the HK II inhibitor, 3-BrPA. Furthermore, 3-BrPA treatment results in decreased mitochondria membrane potential and release of cytochrome c into cytoplasm in ErbB2-overexpressing cells, leading to activation of the mitochondrial apoptotic signaling pathway. In summary, the results demonstrate a novel mechanism for ErbB2-activated glycolysis and reveal that 3-BrPA is effective in reducing ErbB2-positive breast cancer cell viability by targeting HK II in vitro and in vivo. PMID:26893781

  19. The physiology of the normal human breast: an exploratory study.

    PubMed

    Mills, Dixie; Gordon, Eva J; Casano, Ashley; Lahti, Sarah Michelle; Nguyen, Tinh; Preston, Alex; Tondre, Julie; Wu, Kuan; Yanase, Tiffany; Chan, Henry; Chia, David; Esfandiari, Mahtash; Himmel, Tiffany; Love, Susan M

    2011-12-01

    The physiology of the nonlactating human breast likely plays a key role in factors that contribute to the etiology of breast cancer and other breast conditions. Although there has been extensive research into the physiology of lactation, few reports explore the physiology of the resting mammary gland, including mechanisms by which compounds such as hormones, drugs, and potential carcinogens enter the breast ducts. The purpose of this study was to explore transport of exogenous drugs into ductal fluid in nonlactating women and determine if their concentrations in the fluid are similar to those observed in the breast milk of lactating women. We selected two compounds that have been well characterized during lactation, caffeine and cimetidine. Caffeine passively diffuses into breast milk, but cimetidine is actively transported and concentrated in breast milk. After ingestion of caffeine and cimetidine, 14 nonlactating subjects had blood drawn and underwent ductal lavage at five time points over 12 h to measure drug levels in the fluid and blood. The concentrations of both caffeine and cimetidine in lavage fluid were substantially less than those observed in breast milk. Our results support recent evidence that the cimetidine transporter is not expressed in the nonlactating mammary gland, and highlight intriguing differences in the physiology and molecular transport of the lactating and nonlactating breast. The findings of this exploratory study warrant further exploration into the physiology of the nonlactating mammary gland to elucidate factors involved in disease initiation and progression.

  20. Osterix transcriptional factor is involved in the metastasis of human breast cancers.

    PubMed

    Dai, Qiang-Sheng; Zhou, Hong-Yan; Wu, Zhuang-Hong; Long, Jian-Ting; Shao, Nan; Cheang, Tuck-Yun; Wang, Shen-Ming

    2015-09-01

    The transcriptional factor Osterix is specifically expressed in bone tissues to regulate the differentiation and maturation of osteoblasts. Recent studies have also identified the expression of Osterix in a number of cancer tissues, such as kidney and lung cancers. However, the association of Osterix with the metastasis of breast cancers has never been reported. The present study, for the first time, provides evidence supporting the involvement of Osterix in breast cancer metastasis. Western blotting was employed to investigate the expression of Osterix in a number of human breast cancer cell lines with different metastatic features. Gain-of-function and loss-of-function experiments were performed in MCF7 cells (low level of metastasis) and MDA-MB-361 cells (high level of metastasis). The expression of several metastasis-associated genes was analyzed by western blotting and quantitative polymerase chain reaction. A firefly luciferase-based reporter gene assay was conducted in order to study whether Osterix regulated the promoter activities of the MMP2 and MMP9 genes, which play critical roles in cancer metastasis. The results showed that Osterix was highly expressed in the MDA-MB-231 and MDA-MB-361 cells, but was not detectable in the MCF7 cells. The overexpression of Osterix in the MCF7 cells promoted the expression of VEGF, MMP9 and β-catenin, while downregulating the expression of E-cadherin. In addition, suppression of Osterix expression in the MDA-MB-361 cells reversed the alteration of VEGF, MMP9, β-catenin and E-cadherin expression. A reporter gene assay suggested that Osterix activated MMP2 and MMP9 promoter activity. In conclusion, Osterix is involved in the metastasis of human breast cancer and may be a target for the efficient treatment of human breast cancers.

  1. Overexpression of Dishevelled-2 contributes to proliferation and migration of human esophageal squamous cell carcinoma.

    PubMed

    Zhou, Guoren; Ye, Jinjun; Sun, Lei; Zhang, Zhi; Feng, Jifeng

    2016-06-01

    Dishevelled-2 (Dvl2) was associated with tumor cell proliferation and migration. We aimed to examine the mechanism of Dvl2 in esophageal squamous cell carcinoma (ESCC). Dvl2 was overexpressed in human ESCC tissues and cell lines ECA109 and TE1 cells. CCK-8 and colony formation assay was performed to evaluate the proliferation in ECA109 cells transfected with Dvl2-shRNA. Wound-healing assay and transwell assay were used to examine the activities of migration and invasion in Dvl2-silenced ESCC cells. Knockdown of Dvl2 significantly reduced ECA109 cell proliferation and migration. Moreover, we demonstrated that the proliferation and migration ability of Dvl2 might through the activation of Wnt pathway by targeting the Cyclin D1 and MMP-9. We came to the conclusion that the proliferation and migration effects of Dvl2 might contribute to malignant development of human ESCC.

  2. Growth inhibitory activity of extracts and compounds from Cimicifuga species on human breast cancer cells.

    PubMed

    Einbond, Linda Saxe; Wen-Cai, Ye; He, Kan; Wu, Hsan-au; Cruz, Erica; Roller, Marc; Kronenberg, Fredi

    2008-06-01

    The purpose of this report is to explore the growth inhibitory effect of extracts and compounds from black cohosh and related Cimicifuga species on human breast cancer cells and to determine the nature of the active components. Black cohosh fractions enriched for triterpene glycosides and purified components from black cohosh and related Asian species were tested for growth inhibition of the ER(-) Her2 overexpressing human breast cancer cell line MDA-MB-453. Growth inhibitory activity was assayed using the Coulter Counter, MTT and colony formation assays. Results suggested that the growth inhibitory activity of black cohosh extracts appears to be related to their triterpene glycoside composition. The most potent Cimicifuga component tested was 25-acetyl-7,8-didehydrocimigenol 3-O-beta-d-xylopyranoside, which has an acetyl group at position C-25. It had an IC(50) of 3.2microg/ml (5microM) compared to 7.2microg/ml (12.1microM) for the parent compound 7,8-didehydrocimigenol 3-O-beta-d-xylopyranoside. Thus, the acetyl group at position C-25 enhances growth inhibitory activity. The purified triterpene glycoside actein (beta-d-xylopyranoside), with an IC(50) equal to 5.7microg/ml (8.4microM), exhibited activity comparable to cimigenol 3-O-beta-d-xyloside. MCF7 (ER(+)Her2 low) cells transfected for Her2 are more sensitive than the parental MCF7 cells to the growth inhibitory effects of actein from black cohosh, indicating that Her2 plays a role in the action of actein. The effect of actein on Her2 overexpressing MDA-MB-453 and MCF7 (ER(+)Her2 low) human breast cancer cells was examined by fluorescent microscopy. Treatment with actein altered the distribution of actin filaments and induced apoptosis in these cells. These findings, coupled with our previous evidence that treatment with the triterpene glycoside actein induced a stress response and apoptosis in human breast cancer cells, suggest that compounds from Cimicifuga species may be useful in the prevention and

  3. Functional roles of Fli-1, a member of the Ets family of transcription factors, in human breast malignancy.

    PubMed

    Sakurai, Takuya; Kondoh, Nobuo; Arai, Massaki; Hamada, Jun-ichi; Yamada, Toshiyuki; Kihara-Negishi, Fumiko; Izawa, Tetsuya; Ohno, Hideki; Yamamoto, Mikio; Oikawa, Tsuneyuki

    2007-01-01

    The Ets family of transcription factors is implicated in malignant transformation and tumor progression, including invasion, metastasis and neo-angiogenesis. In the present study, we found that the Fli-1 gene, a member of the Ets family, was highly expressed in several breast cancer cell lines (MDA-MB231, MDA-MB436, BT-549 and HCC1395). To investigate the functional roles of Fli-1 in breast cancer malignancy, we introduced an expression plasmid containing full-length Fli-1 cDNA into MCF7 breast cancer cells in which endogenous expression of Fli-1 was barely detectable.Overexpression of Fli-1 in MCF7 cells led to inhibition of apoptosis induced by serum depletion or ultraviolet irradiation, although it did not affect cell growth rate in liquid media, colony formation in soft agar or the in vitro invasion capacity of the cells. Expression of Fli-1 and antiapoptotic bcl-2 was coordinately upregulated by serum depletion in MCF7 cells, and the upregulation was inhibited by treatment of the cells with a c-Jun-NH(2)-terminal kinase-specific inhibitor. Furthermore, expression of the bcl-2 gene and protein was enhanced in Fli-1-overexpressing MCF7 cells compared with mock-transfected cells. In addition, human bcl-2 promoter activity was transactivated by Fli-1. These results suggest that Fli-1 contributes to the malignancy of human breast cancer by inhibiting apoptosis through upregulated expression of the bcl-2 gene.

  4. Expression of human endogenous retrovirus-K is strongly associated with the basal-like breast cancer phenotype

    PubMed Central

    Johanning, Gary L.; Malouf, Gabriel G.; Zheng, Xiaofeng; Esteva, Francisco J.; Weinstein, John N.; Wang-Johanning, Feng; Su, Xiaoping

    2017-01-01

    Human endogenous retroviruses (HERVs), which make up approximately 8% of the human genome, are overexpressed in some breast cancer cells and tissues but without regard to cancer subtype. We, therefore, analyzed TCGA RNA-Seq data to evaluate differences in expression of the HERV-K family in breast cancers of the various subtypes. Four HERV-K loci on different chromosomes were analyzed in basal, Her2E, LumA, and LumB breast cancer subtypes of 512 breast cancer patients with invasive ductal carcinoma (IDC). The results for all four loci showed higher HERV-K expression in the basal subtype, suggesting similar mechanisms of regulation regardless of locus. Expression of the HERV-K envelope gene (env) was highly significantly increased in basal tumors in comparison with the also-upregulated expression of other HERV-K genes. Analysis of reverse-phase protein array data indicated that increased expression of HERV-K is associated with decreased mutation of H-Ras (wild-type). Our results show elevation of HERV-K expression exclusively in the basal subtype of IDC breast cancer (as opposed to the other subtypes) and suggest HERV-K as a possible target for cancer vaccines or immunotherapy against this highly aggressive form of breast cancer. PMID:28165048

  5. Tubulin binding cofactor C (TBCC) suppresses tumor growth and enhances chemosensitivity in human breast cancer cells

    PubMed Central

    2010-01-01

    Background Microtubules are considered major therapeutic targets in patients with breast cancer. In spite of their essential role in biological functions including cell motility, cell division and intracellular transport, microtubules have not yet been considered as critical actors influencing tumor cell aggressivity. To evaluate the impact of microtubule mass and dynamics on the phenotype and sensitivity of breast cancer cells, we have targeted tubulin binding cofactor C (TBCC), a crucial protein for the proper folding of α and β tubulins into polymerization-competent tubulin heterodimers. Methods We developed variants of human breast cancer cells with increased content of TBCC. Analysis of proliferation, cell cycle distribution and mitotic durations were assayed to investigate the influence of TBCC on the cell phenotype. In vivo growth of tumors was monitored in mice xenografted with breast cancer cells. The microtubule dynamics and the different fractions of tubulins were studied by time-lapse microscopy and lysate fractionation, respectively. In vitro sensitivity to antimicrotubule agents was studied by flow cytometry. In vivo chemosensitivity was assayed by treatment of mice implanted with tumor cells. Results TBCC overexpression influenced tubulin fraction distribution, with higher content of nonpolymerizable tubulins and lower content of polymerizable dimers and microtubules. Microtubule dynamicity was reduced in cells overexpressing TBCC. Cell cycle distribution was altered in cells containing larger amounts of TBCC with higher percentage of cells in G2-M phase and lower percentage in S-phase, along with slower passage into mitosis. While increased content of TBCC had little effect on cell proliferation in vitro, we observed a significant delay in tumor growth with respect to controls when TBCC overexpressing cells were implanted as xenografts in vivo. TBCC overexpressing variants displayed enhanced sensitivity to antimicrotubule agents both in vitro and

  6. In vitro methods to culture primary human breast epithelial cells.

    PubMed

    Raouf, Afshin; Sun, Yu Jia

    2013-01-01

    Current evidence suggests that much like leukemia, breast tumors are maintained by a small subpopulation of tumor cells that have stem cell properties. These cancer stem cells are envisaged to be responsible for tumor formation and relapse. Therefore, knowledge about their nature will provide a platform to develop therapies to eliminate these breast cancer stem cells. This concept highlights the need to understand the mechanisms that regulate the normal functions of the breast stem cells and their immediate progeny as alterations to these same mechanisms can cause these primitive cells to act as cancer stem cells. The study of the primitive cell functions relies on the ability to isolate them from primary sources of breast tissue. This chapter describes processing of discarded tissue from reduction mammoplasty samples as sources of normal primary human breast epithelial cells and describes cell culture systems to grow single-cell suspensions prepared from these reduction samples in vitro.

  7. HER-2/Neu overexpression does not predict response to neoadjuvant chemotherapy or prognosticate survival in patients with locally advanced breast cancer.

    PubMed

    Tulbah, Asma M; Ibrahim, Ezzeldin M; Ezzat, Adnan A; Ajarim, Dahish S; Rahal, Mohammed M; El Weshi, Amr N; Sorbris, Ralph

    2002-01-01

    Data about the prognostic and predictive value of HER-2/neu overexpression in patients with locally advanced breast cancer (LABC) treated with primary chemotherapy is limited. Therefore, this retrospective study was performed to examine this issue. Fifty-four consecutive patients with LABC were prospectively managed using a uniform multimodality approach. Response to neoadjuvant chemotherapy and survival were examined against HER-2/neu overexpression as determined by an immunohistochemistry method on formalin-fixed, paraffin-embedded samples of breast cancer using the commercially available, United States Food and Drug Administration-approved kit HercepTest (Dako Corp, Carpinteria, CA). The number of patients in each HercepTest immunostaining group were as follows; 0 in 12 patients (22%), 1+ in 8 (15%), 2+ in 12 (22%), and 3+ in 22 (41%). None of the clinical variables was significantly associated with HER-2/neu expression. After primary therapy, 22% of patients attained clinical complete response and an additional 70% achieved clinical partial response with an overall response rate of 92% (95% confidence interval: 100% to 79%). There was no significant correlation between clinical response and HercepTest positivity (p = 0.85). Of 52 patients with complete pathological data, there was no significant difference in HercepTest status between those who attained complete pathological response (46%) and those who did not (38%) (p = 0.74). Moreover, there was no significant difference in disease-free survival (75% vs 84%, [p = 0.26]) or overall survival (81% vs 84% [p = 0.31]) between those who overexpressed HER-2/neu and those with negative HercepTest, respectively. In patients with LABC, HER-2/neu overexpression determined using HercepTest assay and according to the manufacturer's approved guidelines failed to demonstrate a predictive or a prognostic role.

  8. Accelerated Telomere Shortening and Replicative Senescence in Human Fibroblasts Overexpressing Mutant and Wild Type Lamin A

    PubMed Central

    Huang, Shurong; Risques, Rosa Ana; Martin, George M.; Rabinovitch, Peter S.; Oshima, Junko

    2008-01-01

    LMNA mutations are responsible for a variety of genetic disorders, including muscular dystrophy, lipodystrophy, and certain progeroid syndromes, notably Hutchinson-Gilford Progeria. Although a number of clinical features of these disorders are suggestive of accelerated aging, it is not known whether cells derived from these patients exhibit cellular phenotypes associated with accelerated aging. We examined a series of isogenic skin fibroblast lines transfected with LMNA constructs bearing known pathogenic point mutations or deletion mutations found in progeroid syndromes. Fibroblasts overexpressing mutant lamin A exhibited accelerated rates of loss of telomeres and shortened replicative lifespans, in addition to abnormal nuclear morphology. To our surprise, these abnormalities were also observed in lines overexpressing wild-type lamin A. Copy number variants are common in human populations; those involving LMNA, whether arising meiotically or mitotically, might lead to progeroid phenotypes. In an initial pilot study of 23 progeroid cases without detectible WRN or LMNA mutations, however, no cases of altered LMNA copy number were detected. Nevertheless, our findings raise a hypothesis that changes in lamina organization may cause accelerated telomere attrition, with different kinetics for overexpession of wild-type and mutant lamin A, which leads to rapid replicative senescence and progroid phenotypes. PMID:17870066

  9. Overexpression of c-Jun contributes to sorafenib resistance in human hepatoma cell lines

    PubMed Central

    Haga, Yuki; Nakamura, Masato; Nakamoto, Shingo; Sasaki, Reina; Takahashi, Koji; Wu, Shuang; Yokosuka, Osamu

    2017-01-01

    Background Despite recent advances in treatment strategies, it is still difficult to cure patients with hepatocellular carcinoma (HCC). Sorafenib is the only approved multiple kinase inhibitor for systemic chemotherapy in patients with advanced HCC. The majority of advanced HCC patients are resistant to sorafenib. The mechanisms of sorafenib resistance are still unknown. Methods The expression of molecules involved in the mitogen-activated protein kinase (MAPK) signaling pathway in human hepatoma cell lines was examined in the presence or absence of sorafenib. Apoptosis of human hepatoma cells treated with sorafenib was investigated, and the expression of Jun proto-oncogene (c-Jun) was measured. Results The expression and phosphorylation of c-Jun were enhanced in human hepatoma cell lines after treatment with sorafenib. Inhibiting c-Jun enhanced sorafenib-induced apoptosis. The overexpression of c-Jun impaired sorafenib-induced apoptosis. The expression of osteopontin, one of the established AP-1 target genes, was enhanced after treatment with sorafenib in human hepatoma cell lines. Conclusions The protein c-Jun plays a role in sorafenib resistance in human hepatoma cell lines. The modulation and phosphorylation of c-Jun could be a new therapeutic option for enhancing responsiveness to sorafenib. Modulating c-Jun may be useful for certain HCC patients with sorafenib resistance. PMID:28323861

  10. Generation of a Functional Human Neural Network by NDM29 Overexpression in Neuroblastoma Cancer Cells.

    PubMed

    Alloisio, Susanna; Garbati, Patrizia; Viti, Federica; Dante, Silvia; Barbieri, Raffaella; Arnaldi, Giovanni; Petrelli, Alessia; Gigoni, Arianna; Giannoni, Paolo; Quarto, Rodolfo; Nobile, Mario; Vassalli, Massimo; Pagano, Aldo

    2016-10-03

    Recent advances in life sciences suggest that human and rodent cell responses to stimuli might differ significantly. In this context, the results achieved in neurotoxicology and biomedical research practices using neural networks obtained from mouse or rat primary culture of neurons would benefit of the parallel evaluation of the same parameters using fully differentiated neurons with a human genetic background, thus emphasizing the current need of neuronal cells with human origin. In this work, we developed a human functionally active neural network derived by human neuroblastoma cancer cells genetically engineered to overexpress NDM29, a non-coding RNA whose increased synthesis causes the differentiation toward a neuronal phenotype. These cells are here analyzed accurately showing functional and morphological traits of neurons such as the expression of neuron-specific proteins and the possibility to generate the expected neuronal current traces and action potentials. Their morphometrical analysis is carried out by quantitative phase microscopy showing soma and axon sizes compatible with those of functional neurons. The ability of these cells to connect autonomously forming physical junctions recapitulates that of hippocampal neurons, as resulting by connect-ability test. Lastly, these cells self-organize in neural networks able to produce spontaneous firing, in which spikes can be clustered in bursts. Altogether, these results show that the neural network obtained by NDM29-dependent differentiation of neuroblastoma cells is a suitable tool for biomedical research practices.

  11. Overexpression of Recombinant Human Beta Interferon (rhINF-β) in Periplasmic Space of Escherichia coli

    PubMed Central

    Morowvat, Mohammad Hossein; Babaeipour, Valiollah; Rajabi-Memari, Hamid; Vahidi, Hossein; Maghsoudi, Nader

    2014-01-01

    Human Interferon β (INF-β) is a member of cytokines family which different studies have shown its immunomodulatory and antiviral activities. In this study an expression vector was designed and constructed for expression of human INF-β-1b either in shake flasks or bench top bioreactor. The designed vector was constructed based upon pET-25b(+) with T7 promoter. Recombinant human beta interferon (rhINF-β) was codon optimized and overexpressed as a soluble, N-terminal pelB fusion protein and secreted into the periplasmic space of Escherichia coli BL21 (DE3). The sugar, Isopropyl-β-D-thiogalactopyranoside (IPTG) was used as a chemical inducer for rhINF-β production in the shake flasks and bench top bioreactor. Timing of beta interferon expression was controlled by using the T7 promoter. The rhINF-β protein was extracted from periplasmic space by osmotic shock treatment and the expression of the beta interferon encoding gene in random selected transformants, was confirmed by western and dot blot methods. The maximum of product formation achieved at the OD600nm = 3.42 was found to be 35 % of the total protein content of the strain which translates to 0.32 g L-1. The constructed vector could efficiently overexpress the rhINF-β into the periplasmic space of E. coli. The obtained yield of the produced rhINF-β was more than previous reports. The system is easily adapted to include other vectors, tags or fusions and therefore has the potential to be broadly applicable to express other recombinant proteins. PMID:24711841

  12. Co-transplantation of human hematopoietic stem cells and human breast cancer cells in NSG mice: a novel approach to generate tumor cell specific human antibodies.

    PubMed

    Wege, Anja K; Schmidt, Marcus; Ueberham, Elke; Ponnath, Marvin; Ortmann, Olaf; Brockhoff, Gero; Lehmann, Jörg

    2014-01-01

    Humanized tumor mice (HTM) were generated by the co-transplantation of human hematopoietic stem cells and human breast cancer cells overexpressing HER2 into neonatal NOD-scid IL2Rγ(null) (NSG) mice. These mice are characterized by the development of a human immune system in combination with human breast cancer growth. Due to concurrent transplantation into newborn mice, transfer of MHC-mismatched tumor cells resulted in solid coexistence and immune cell activation (CD4(+) T cells, natural killer cells, and myeloid cells), but without evidence for rejection. Histological staining of the spleen of HTM revealed co-localization of human antigen-presenting cells together with human T and B cells allowing MHC-dependent interaction, and thereby the generation of T cell-dependent antibody production. Here, we investigated the capability of these mice to generate human tumor-specific antibodies and correlated immunoglobulin titers with tumor outgrowth. We found detectable IgM and also IgG amounts in the serum of HTM, which apparently controlled tumor development when IgG serum concentrations were above 10 µg/ml. Western blot analyses revealed that the tumor-specific antibodies generated in HTM did not recognize HER2/neu antigens, but different, possibly relevant antigens for breast cancer therapy. In conclusion, HTM offer a novel approach to generate complete human monoclonal antibodies that do not require further genetic manipulation (e. g., humanization) for a potential application in humans. In addition, efficacy and safety of the generated antibodies can be tested in the same mouse model under human-like conditions. This might be of particular interest for cancer subtypes with no currently available antibody therapy.

  13. Efficacy and mechanism of action of Proellex, an antiprogestin in aromatase overexpressing and Letrozole resistant T47D breast cancer cells.

    PubMed

    Gupta, Akash; Mehta, Rajeshwari; Alimirah, Fatouma; Peng, Xinjian; Murillo, Genoveva; Wiehle, Ronald; Mehta, Rajendra G

    2013-01-01

    Aromatase inhibitors (AI) are considered as a first line therapy for ER+PR+ breast cancers. However, many patients acquire resistance to AI. In this study, we determined the response of antiprogestin CDB-4124 (Proellex) on the aromatase overexpressing and Letrozole resistant cell lines and also studies its mechanism of action in inhibition of breast cancer cell proliferation. For these studies we generated aromatase overexpressing T47D (T47Darom) and respective control (T47Dcon) breast cancer cell lines by stable transfection with plasmid containing CYP19A1 gene, or empty vector respectively. Letrozole resistant cell line (T47DaromLR) was generated by incubating T47Darom for 75 weeks in the presence of 10 μM Letrozole. Cell proliferation was determined by MTT or crystal violet assays. Gene expressions were quantified by QRT-PCR whereas proteins were identified by western blot analyses, flow cytometry and immunofluorescence staining. Aromatase activity was determined by estradiol ELISA. The effects of Proellex on the anchorage independent growth were measured by soft agar colony formation. Statistical differences between the various groups were determined by Student's 't' test or ANOVA followed by Bonferroni's post hoc test. Results showed that T47Darom and T47DaromLR cell lines had significantly higher aromatase expression (mRNA; 80-90 fold and protein) and as a result exhibited increased aromatization of testosterone to estradiol as compared to T47Dcon. Both these cell lines showed enhanced growth in the presence of Testosterone (50-60%). In T47DaromLR cells increased PR-B and EGFR expression as compared to T47Dcon cells was observed. Proellex and other known aromatase inhibitors (Letrozole, Anastrozole, and Exemestane) inhibited testosterone induced cell proliferation and anchorage independent growth of T47Darom cells. Cell growth inhibition was significantly greater when cells were treated with Proellex alone or in combination with other AIs as compared to AIs

  14. Inhibition of Cell Growth and Induction of Apoptosis by Antrodia camphorata in HER-2/neu-Overexpressing Breast Cancer Cells through the Induction of ROS, Depletion of HER-2/neu, and Disruption of the PI3K/Akt Signaling Pathway

    PubMed Central

    Lee, Chuan-Chen; Yang, Hsin-Ling; Way, Tzong-Der; Kumar, K. J. Senthil; Juan, Ying-Chen; Cho, Hsin-Ju; Lin, Kai-Yuan; Hsu, Li-Sung; Chen, Ssu-Ching; Hseu, You-Cheng

    2012-01-01

    Previously, we demonstrated that a submerged fermentation culture of Antrodia camphorata (AC) promotes cell-cycle arrest and apoptosis in human estrogen receptor-positive/negative breast cancer cells. However, whether AC is effective against HER-2/neu-overexpressing breast cancers has not been thoroughly elucidated. In the present study, we showed that AC exhibited a significant cytotoxic effect against HER-2/neu-overexpressing MDA-MB-453 and BT-474 cells. Immunoblot analysis demonstrated that HER-2/neu and their tyrosine phosphorylation were inhibited by AC in a dose-dependent manner. An increase in intracellular reactive oxygen species (ROS) was observed in AC-treated cells, whereas antioxidant N-acetylcysteine (NAC) significantly prevented AC induced HER-2/neu depletion and cell death, which directly indicates that AC-induced HER-2/neu depletion and cell death was mediated by ROS generation. Also, AC significantly downregulated the expression of cyclin D1, cyclin E, and CDK4 followed by the suppression of PI3K/Akt, and their downstream effectors GSK-3β and β-catenin. Notably, AC-treatment induced apoptotic cell death, which was associated with sub-G1 accumulation, DNA fragmentation, mitochondrial dysfunction, cytochrome c release, caspase-3/-9 activation, PARP degradation, and Bcl-2/Bax dysregulation. Assays for colony formation also confirmed the growth-inhibitory effects of AC. This is the first report confirming the anticancer activity of this potentially beneficial mushroom against human HER-2/neu-overexpressing breast cancers. PMID:22701509

  15. E2F7 overexpression leads to tamoxifen resistance in breast cancer cells by competing with E2F1 at miR-15a/16 promoter.

    PubMed

    Chu, Junjun; Zhu, Yinghua; Liu, Yujie; Sun, Lijuan; Lv, Xiaobin; Wu, Yanqin; Hu, Pengnan; Su, Fengxi; Gong, Chang; Song, Erwei; Liu, Bodu; Liu, Qiang

    2015-10-13

    About 50-70% of breast cancers are estrogen receptor α (ERα) positive and most of them are sensitive to endocrine therapy including tamoxifen. However, one third of these patients will eventually develop resistance and relapse. We found that the expression of miR-15a and miR-16 were significantly decreased in tamoxifen resistant ER positive breast cancer cell lines. Exogenous expression of miR-15a/16 mimics re-sensitized resistant cells to tamoxifen by inhibiting Cyclin E1 and B cell lymphoma-2 (Bcl-2) to induce cell growth arrest and apoptosis respectively. Further, we identified that a repressive member of E2F family, E2F7, was responsible for the suppression of miR-15a/16 cluster by competing with E2F1 for E2F binding site at the promoter of their host gene DLEU2. Moreover, high expression of E2F7 is correlated with high risk of relapse and poor prognosis in breast cancer patients receiving tamoxifen treatment. Together, our results suggest that overexpression of E2F7 represses miR-15a/16 and then increases Cyclin E1 and Bcl-2 that result in tamoxifen resistance. E2F7 may be a valuable prognostic marker and a therapeutic target of tamoxifen resistance in breast cancer.

  16. E2F7 overexpression leads to tamoxifen resistance in breast cancer cells by competing with E2F1 at miR-15a/16 promoter

    PubMed Central

    Chu, Junjun; Zhu, Yinghua; Liu, Yujie; Sun, Lijuan; Lv, Xiaobin; Wu, Yanqin; Hu, Pengnan; Su, Fengxi; Gong, Chang; Song, Erwei; Liu, Bodu; Liu, Qiang

    2015-01-01

    About 50–70% of breast cancers are estrogen receptor α (ERα) positive and most of them are sensitive to endocrine therapy including tamoxifen. However, one third of these patients will eventually develop resistance and relapse. We found that the expression of miR-15a and miR-16 were significantly decreased in tamoxifen resistant ER positive breast cancer cell lines. Exogenous expression of miR-15a/16 mimics re-sensitized resistant cells to tamoxifen by inhibiting Cyclin E1 and B cell lymphoma-2 (Bcl-2) to induce cell growth arrest and apoptosis respectively. Further, we identified that a repressive member of E2F family, E2F7, was responsible for the suppression of miR-15a/16 cluster by competing with E2F1 for E2F binding site at the promoter of their host gene DLEU2. Moreover, high expression of E2F7 is correlated with high risk of relapse and poor prognosis in breast cancer patients receiving tamoxifen treatment. Together, our results suggest that overexpression of E2F7 represses miR-15a/16 and then increases Cyclin E1 and Bcl-2 that result in tamoxifen resistance. E2F7 may be a valuable prognostic marker and a therapeutic target of tamoxifen resistance in breast cancer. PMID:26397135

  17. The overexpressed human 46-kDa mannose 6-phosphate receptor mediates endocytosis and sorting of. beta. -glucuronidase

    SciTech Connect

    Watanabe, H.; Grubb, J.H.; Sly, W.S. )

    1990-10-01

    The authors studied the function of the human small (46-kDa) mannose 6-phosphate receptor (SMPR) in transfected mouse L cells that do not express the larger insulin-like growth factor II/mannose 6-phosphate receptor. Cells overexpressing human SMPR were studied for enzyme binding to cell surface receptors, for binding to intracellular receptors in permeabilized cells, and for receptor-mediated endocytosis of recombinant human {beta}-glucuronidase. Specific binding to human SMPR in permeabilized cells showed a pH optimum between pH 6.0 and pH 6.5. Binding was significant in the present of EDTA but was enhanced by added divalent cations. Up to 2.3{percent} of the total functional receptor could be detected on the cell surface by enzyme binding. They present experiments showing that at very high levels of overexpression, and at pH 6.5, human SMPR mediated the endocytosis of {beta}-glucuronidase. At pH 7.5, the rate of endocytosis was only 14{percent} the rate seen at pH 6.5. Cells overexpressing human SMPR also showed reduced secretion of newly synthesized {beta}-glucuronidase when compared to cells transfected with vector only, suggesting that overexpressed human SMPR can participate in sorting of newly synthesized {beta}-glucuronidase and partially correct the sorting defect in mouse L cells that do not express the insulin-like growth factor II/mannose 6-phosphate receptor.

  18. Human breast tissue disposition and bioactivity of limonene in women with early-stage breast cancer.

    PubMed

    Miller, Jessica A; Lang, Julie E; Ley, Michele; Nagle, Ray; Hsu, Chiu-Hsieh; Thompson, Patricia A; Cordova, Catherine; Waer, Amy; Chow, H-H Sherry

    2013-06-01

    Limonene is a bioactive food component found in citrus peel oil that has shown chemopreventive and chemotherapeutic activities in preclinical studies. We conducted an open-label pilot clinical study to determine the human breast tissue disposition of limonene and its associated bioactivity. We recruited 43 women with newly diagnosed operable breast cancer electing to undergo surgical excision to take 2 grams of limonene daily for two to six weeks before surgery. Blood and breast tissue were collected to determine drug/metabolite concentrations and limonene-induced changes in systemic and tissue biomarkers of breast cancer risk or carcinogenesis. Limonene was found to preferentially concentrate in the breast tissue, reaching high tissue concentration (mean = 41.3 μg/g tissue), whereas the major active circulating metabolite, perillic acid, did not concentrate in the breast tissue. Limonene intervention resulted in a 22% reduction in cyclin D1 expression (P = 0.002) in tumor tissue but minimal changes in tissue Ki67 and cleaved caspase-3 expression. No significant changes in serum leptin, adiponectin, TGF-β1, insulin-like growth factor binding protein-3 (IGFBP-3), and interleukin-6 (IL-6) levels were observed following limonene intervention. There was a small but statistically significant postintervention increase in insulin-like growth factor I (IGF-I) levels. We conclude that limonene distributed extensively to human breast tissue and reduced breast tumor cyclin D1 expression that may lead to cell-cycle arrest and reduced cell proliferation. Furthermore, placebo-controlled clinical trials and translational research are warranted to establish limonene's role for breast cancer prevention or treatment.

  19. DNA methyltransferase 1/3a overexpression in sporadic breast cancer is associated with reduced expression of estrogen receptor-alpha/breast cancer susceptibility gene 1 and poor prognosis.

    PubMed

    Yu, Zhaojin; Xiao, Qinghuan; Zhao, Lin; Ren, Jie; Bai, Xuefeng; Sun, Mingli; Wu, Huizhe; Liu, Xiaojian; Song, Zhiguo; Yan, Yuanyuan; Mi, Xiaoyi; Wang, Enhua; Jin, Feng; Wei, Minjie

    2015-09-01

    DNA methyltransferases (DNMTs), including DNMT1, 3a, and 3b, play an important role in the progression of many malignant tumors. However, it remains unclear whether expression of DNMTs is associated with the development of breast cancer. This study aimed to explore the clinical significance of DNMT proteins in sporadic breast cancer. We investigated the expression of DNMT1, 3a, and 3b in 256 breast cancer and 36 breast fibroadenoma, using immunohistochemistry. The expression of DNMT1 and 3a was significantly higher in breast cancer than in fibroadenoma. In breast cancer, the expression of DNMT1 was significantly correlated with lymph node metastasis (P = 0.020), and the expression of DNMT3a and 3b was significantly correlated with advanced clinical stages (P = 0.046 and 0.012, respectively). Overexpression of DNMT1/3a was correlated with promoter hypermethylation and reduced expression of ERα and BRCA1. The expression levels of DNMT1 or DNMT3a were associated with a significantly shorter DFS or OS in a subgroup of breast cancer patients (patients with the age ≤50 years old, ERα-negative status, or HER2-postive status). The expression of DNMT1 or a combined expression of DNMT1 and 3a was associated with poor prognosis in patients who received chemotherapy and endocrine therapy, but not in patients who received chemotherapy alone. These findings suggest that DNMT1 and 3a may be involved in the progression and prognosis of sporadic breast cancer.

  20. Overexpression of α-2,6 sialyltransferase stimulates propagation of human influenza viruses in Vero cells.

    PubMed

    Li, N; Qi, Y; Zhang, F Y; Yu, X H; Wu, Y G; Chen, Y; Jiang, C L; Kong, W

    2011-01-01

    Human influenza viruses are major concern as the leading cause of global pandemics. In infecting cells, they preferentially bind to sialyloligosaccharides containing terminal N-acetyl sialic acid linked to galactose by an α-2,6-linkage (NeuAcα2,6Gal). The amount of NeuAcα2,6Gal in Vero cells, which are predominantly used for production of influenza vaccines over the past 30 years, may not be as high as that in epithelial cells of human respiratory tract, what leads to the suboptimal virus growth in Vero cells. In this study, we stably transfected Vero cells with cDNA of human α-2,6-sialyltransferase (SIAT1), an enzyme catalyzing α-2,6-sialylation of galactose on glycoproteins. Overexpression of SIAT1 in the transfected Vero cells (Vero-SIAT1 cells) was confirmed by Western blot analysis and immunofluorescence microscopy. Vero-SIAT1 cells expressed 7 times higher amounts of NeuAcα2,6Gal, but 3 times lower amounts of NeuAcα2,3Gal as compared to parental Vero cells. Furthermore, the influenza viruses A (H1N1 and H3N2) and B grew in Vero-SIAT1 cells to the higher titers than in Vero cells. Taken together, these results imply that Vero-SIAT1 cells are useful not only for the propagation of human influenza viruses, but also for the preparation of influenza vaccines.

  1. Therapeutic targeting of erbB3 with MM-121/SAR256212 enhances antitumor activity of paclitaxel against erbB2-overexpressing breast cancer

    PubMed Central

    2013-01-01

    Introduction Elevated expression of erbB3 rendered erbB2-overexpressing breast cancer cells resistant to paclitaxel via PI-3 K/Akt-dependent upregulation of Survivin. It is unclear whether an erbB3-targeted therapy may abrogate erbB2-mediated paclitaxel resistance in breast cancer. Here, we study the antitumor activity of an anti-erbB3 antibody MM-121/SAR256212 in combination with paclitaxel against erbB2-overexpressing breast cancer. Methods Cell growth assays were used to determine cell viability. Cells undergoing apoptosis were quantified by a specific apoptotic ELISA. Western blot analyses were performed to assess the protein expression and activation. Lentiviral vector containing shRNA was used to specifically knockdown Survivin. Tumor xenografts were established by inoculation of BT474-HR20 cells into nude mice. The tumor-bearing mice were treated with paclitaxel and/or MM-121/SAR256212 to determine whether the antibody (Ab) enhances paclitaxel’s antitumor activity. Immunohistochemistry was carried out to study the combinatorial effects on tumor cell proliferation and induction of apoptosis in vivo. Results MM-121 significantly facilitated paclitaxel-mediated anti-proliferative/anti-survival effects on SKBR3 cells transfected with a control vector or erbB3 cDNA. It specifically downregulated Survivin associated with inactivation of erbB2, erbB3, and Akt. MM-121 enhances paclitaxel-induced poly(ADP-ribose) polymerase (PARP) cleavage, activation of caspase-8 and -3, and apoptosis in both paclitaxel-sensitive and -resistant cells. Specific knockdown of Survivin in the trastuzumab-resistant BT474-HR20 cells dramatically enhanced paclitaxel-induced apoptosis, suggesting that increased Survivin caused a cross-resistance to paclitaxel. Furthermore, the studies using a tumor xenograft model-established from BT474-HR20 cells revealed that either MM-121 (10 mg/kg) or low-dose (7.5 mg/kg) paclitaxel had no effect on tumor growth, their combinations significantly

  2. Rad: A member of the Ras family overexpressed in muscle of type II diabetic humans

    SciTech Connect

    Reynet, C.; Kahn, C.R. )

    1993-11-26

    To identify the gene or genes associated with insulin resistance in Type II (non-insulin-dependent) diabetes mellitus, subtraction libraries were prepared from skeletal muscle of normal and diabetic humans and screened with subtracted probes. Only one clone out of 4000 was selectively overexpressed in Type II diabetic muscle as compared to muscle of non-diabetic or Type I diabetic individuals. This clone encoded a new 290 kilodalton member of the Ras-guanosine triphosphatase superfamily and was termed Rad (Ras associated with diabetes). Messenger ribonucleic acid of Rad was expressed primarily in skeletal and cardiac muscle and was increased an average of 8.6-fold in the muscle of Type II diabetics as compared to normal individuals.

  3. Induction of cell proliferation, clonogenicity and cell accumulation in S phase as a consequence of human UBE2Q1 overexpression

    PubMed Central

    Fahmidehkar, Mohammad Ali; Shafiee, Sayed Mohammad; Eftekhar, Ebrahim; Mahbudi, Laleh; Seghatoleslam, Atefeh

    2016-01-01

    Ubiquitination is an important cellular mechanism with a pivotal role in the degradation of abnormal or short-lived proteins and the regulation of cell cycle and cell growth. The ubiquitin-proteasome pathway is altered in multiple types of human malignancies, including colorectal cancer (CRC). The alteration in the expression of the novel human gene ubiquitin-conjugating enzyme E2 Q1 (UBE2Q1), as a putative member of the E2 ubiquitin-conjugating enzyme family, has been reported in several malignancies, including carcinoma of the breast, hepatocellular and colorectal cancer, and pediatric acute lymphoblastic leukemia. In the present study, the effect of UBE2Q1 overexpression on cell growth, clonogenicity, motility and cell cycle was investigated in a CRC cell line. The UBE2Q1 gene was cloned in the pCMV6-AN-GFP expression vector. A series of stable transfectants of SW1116 cells overexpressing UBE2Q1 protein were established and confirmed by fluorescence microscopy and western blotting. Using these cells, MTT assay was performed to evaluate cell growth and proliferation, while crystal violet staining was used for clonogenicity assay. Cell cycle analysis was also performed to survey the ratio of cells accumulated in different phases of the cell cycle upon transfection. The motility of these cells was also studied using wound healing assay. UBE2Q1 transfectants exhibited a faster growth in cell culture, increased colony formation capacity and enhanced motility compared with control non-transfected cells and cells transfected with empty vector (mock-transfected cells). UBE2Q1 overexpression also resulted in a significant decrease in the number of cells accumulated in the G0/G1 phase of the cell cycle. The present findings suggest that UBE2Q1 may function as an oncogene that induces proliferation of cancer cells, and could be a novel diagnostic tool and a potential therapeutic target for CRC. PMID:27602158

  4. Human wings apart-like gene is specifically overexpressed in cervical cancer.

    PubMed

    Lu, Xiaoqin; Cui, Jinquan; Fu, Meizhou; Wang, Wuliang

    2016-07-01

    Cervical cancer is the third most commonly diagnosed cancer in women. The human wings apart-like (hWAPL) gene, which is 30,793 bp long and located on 10q23.2., is a human homologue of the WAPL gene in Drosophila melanogaster. hWAPL has the characteristics of an oncogene in uterine cervical cancer. The present study investigated the expression of the hWAPL gene in tissues, including 9 common cancers, consisting of cervical, gastric and lung cancers, liver, bladder, esophageal, endometrial, renal and rectal carcinomas, cervical intraepithelial neoplasia (CIN) and benign squamous epithelia. The immunohistochemical analysis was conducted using paraffin-embedded tissues obtained from 413 patients, consisting of 27 benign squamous epithelial tissue samples, and 47 cervical cancer, 30 cervical intraepithelial neoplasia (CIN)I, 33 CINII, 38 CINIII, 29 gastric cancer, 28 liver carcinoma, 26 bladder carcinoma, 35 esophageal carcinoma, 25 endometrial, 26 renal carcinoma, 36 rectal carcinoma and 33 lung cancer tissues. The expression of hWAPL mRNA was evaluated by reverse transcription-quantitative polymerase chain reaction in 8 benign squamous epithelia and 11 cervical cancer tissues. Compared to benign squamous epithelia and the 8 other cancers, hWAPL protein was significantly increased in cervical cancer (P<0.001). The expression of the hWAPL protein in cervical cancer and CINIII tissues was markedly increased compared to the expression in CINI and CINII tissues (P<0.001). Despite the significant difference in the staining scores (P<0.001), no significant difference was observed in the percentage of tissues expressing hWAPL (P=0.102) between cervical cancer and CINIII. The hWAPL gene may therefore be specifically overexpressed in cervical cancer. The overexpression of hWAPL may play an important role in occurrence and development of cervical cancer.

  5. Human wings apart-like gene is specifically overexpressed in cervical cancer

    PubMed Central

    LU, XIAOQIN; CUI, JINQUAN; FU, MEIZHOU; WANG, WULIANG

    2016-01-01

    Cervical cancer is the third most commonly diagnosed cancer in women. The human wings apart-like (hWAPL) gene, which is 30,793 bp long and located on 10q23.2., is a human homologue of the WAPL gene in Drosophila melanogaster. hWAPL has the characteristics of an oncogene in uterine cervical cancer. The present study investigated the expression of the hWAPL gene in tissues, including 9 common cancers, consisting of cervical, gastric and lung cancers, liver, bladder, esophageal, endometrial, renal and rectal carcinomas, cervical intraepithelial neoplasia (CIN) and benign squamous epithelia. The immunohistochemical analysis was conducted using paraffin-embedded tissues obtained from 413 patients, consisting of 27 benign squamous epithelial tissue samples, and 47 cervical cancer, 30 cervical intraepithelial neoplasia (CIN)I, 33 CINII, 38 CINIII, 29 gastric cancer, 28 liver carcinoma, 26 bladder carcinoma, 35 esophageal carcinoma, 25 endometrial, 26 renal carcinoma, 36 rectal carcinoma and 33 lung cancer tissues. The expression of hWAPL mRNA was evaluated by reverse transcription-quantitative polymerase chain reaction in 8 benign squamous epithelia and 11 cervical cancer tissues. Compared to benign squamous epithelia and the 8 other cancers, hWAPL protein was significantly increased in cervical cancer (P<0.001). The expression of the hWAPL protein in cervical cancer and CINIII tissues was markedly increased compared to the expression in CINI and CINII tissues (P<0.001). Despite the significant difference in the staining scores (P<0.001), no significant difference was observed in the percentage of tissues expressing hWAPL (P=0.102) between cervical cancer and CINIII. The hWAPL gene may therefore be specifically overexpressed in cervical cancer. The overexpression of hWAPL may play an important role in occurrence and development of cervical cancer. PMID:27347120

  6. Cdx2 Polymorphism Affects the Activities of Vitamin D Receptor in Human Breast Cancer Cell Lines and Human Breast Carcinomas

    PubMed Central

    Di Benedetto, Anna; Korita, Etleva; Goeman, Frauke; Sacconi, Andrea; Biagioni, Francesca; Blandino, Giovanni; Strano, Sabrina; Muti, Paola; Mottolese, Marcella; Falvo, Elisabetta

    2015-01-01

    Vitamin D plays a role in cancer development and acts through the vitamin D receptor (VDR). It regulates the action of hormone responsive genes and is involved in cell cycle regulation, differentiation and apoptosis. VDR is a critical component of the vitamin D pathway and different common single nucleotide polymorphisms have been identified. Cdx2 VDR polymorphism can play an important role in breast cancer, modulating the activity of VDR. The objective of this study is to assess the relationship between the Cdx2 VDR polymorphism and the activities of VDR in human breast cancer cell lines and carcinomas breast patients. Cdx2 VDR polymorphism and antiproliferative effects of vitamin D treatment were investigated in a panel of estrogen receptor-positive (MCF7 and T-47D) and estrogen receptor-negative (MDA-MB-231, SUM 159PT, SK-BR-3, BT549, MDA-MB-468, HCC1143, BT20 and HCC1954) human breast cancer cell lines. Furthermore, the potential relationship among Cdx2 VDR polymorphism and a number of biomarkers used in clinical management of breast cancer was assessed in an ad hoc set of breast cancer cases. Vitamin D treatment efficacy was found to be strongly dependent on the Cdx2 VDR status in ER-negative breast cancer cell lines tested. In our series of breast cancer cases, the results indicated that patients with variant homozygote AA were associated with bio-pathological characteristics typical of more aggressive tumours, such as ER negative, HER2 positive and G3. Our results may suggest a potential effect of Cdx2 VDR polymorphism on the efficacy of vitamin D treatment in aggressive breast cancer cells (estrogen receptor negative). These results suggest that Cdx2 polymorphism may be a potential biomarker for vitamin D treatment in breast cancer, independently of the VDR receptor expression. PMID:25849303

  7. Cdx2 polymorphism affects the activities of vitamin D receptor in human breast cancer cell lines and human breast carcinomas.

    PubMed

    Pulito, Claudio; Terrenato, Irene; Di Benedetto, Anna; Korita, Etleva; Goeman, Frauke; Sacconi, Andrea; Biagioni, Francesca; Blandino, Giovanni; Strano, Sabrina; Muti, Paola; Mottolese, Marcella; Falvo, Elisabetta

    2015-01-01

    Vitamin D plays a role in cancer development and acts through the vitamin D receptor (VDR). It regulates the action of hormone responsive genes and is involved in cell cycle regulation, differentiation and apoptosis. VDR is a critical component of the vitamin D pathway and different common single nucleotide polymorphisms have been identified. Cdx2 VDR polymorphism can play an important role in breast cancer, modulating the activity of VDR. The objective of this study is to assess the relationship between the Cdx2 VDR polymorphism and the activities of VDR in human breast cancer cell lines and carcinomas breast patients. Cdx2 VDR polymorphism and antiproliferative effects of vitamin D treatment were investigated in a panel of estrogen receptor-positive (MCF7 and T-47D) and estrogen receptor-negative (MDA-MB-231, SUM 159PT, SK-BR-3, BT549, MDA-MB-468, HCC1143, BT20 and HCC1954) human breast cancer cell lines. Furthermore, the potential relationship among Cdx2 VDR polymorphism and a number of biomarkers used in clinical management of breast cancer was assessed in an ad hoc set of breast cancer cases. Vitamin D treatment efficacy was found to be strongly dependent on the Cdx2 VDR status in ER-negative breast cancer cell lines tested. In our series of breast cancer cases, the results indicated that patients with variant homozygote AA were associated with bio-pathological characteristics typical of more aggressive tumours, such as ER negative, HER2 positive and G3. Our results may suggest a potential effect of Cdx2 VDR polymorphism on the efficacy of vitamin D treatment in aggressive breast cancer cells (estrogen receptor negative). These results suggest that Cdx2 polymorphism may be a potential biomarker for vitamin D treatment in breast cancer, independently of the VDR receptor expression.

  8. Prevention of the Angiogenic Switch in Human Breast Cancer

    DTIC Science & Technology

    2006-03-01

    transcription and secretion in breast cancer cells. Oncogene 21, 7730-7739. 4. Sengupta K, Banerjee S , Saxena NK, Banerjee SK . (2004). Thrombospondin-1...findings contained in this report are those of the author( s ) and should not be construed as an official Department of the Army position, policy or...of the Angiogenic Switch in Human Breast Cancer 5b. GRANT NUMBER W81XWH-04-1-0316 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR( S

  9. Development of realistic physical breast phantoms matched to virtual breast phantoms based on human subject data

    SciTech Connect

    Kiarashi, Nooshin; Nolte, Adam C.; Sturgeon, Gregory M.; Ghate, Sujata V.; Segars, William P.; Nolte, Loren W.; Samei, Ehsan; and others

    2015-07-15

    Purpose: Physical phantoms are essential for the development, optimization, and evaluation of x-ray breast imaging systems. Recognizing the major effect of anatomy on image quality and clinical performance, such phantoms should ideally reflect the three-dimensional structure of the human breast. Currently, there is no commercially available three-dimensional physical breast phantom that is anthropomorphic. The authors present the development of a new suite of physical breast phantoms based on human data. Methods: The phantoms were designed to match the extended cardiac-torso virtual breast phantoms that were based on dedicated breast computed tomography images of human subjects. The phantoms were fabricated by high-resolution multimaterial additive manufacturing (3D printing) technology. The glandular equivalency of the photopolymer materials was measured relative to breast tissue-equivalent plastic materials. Based on the current state-of-the-art in the technology and available materials, two variations were fabricated. The first was a dual-material phantom, the Doublet. Fibroglandular tissue and skin were represented by the most radiographically dense material available; adipose tissue was represented by the least radiographically dense material. The second variation, the Singlet, was fabricated with a single material to represent fibroglandular tissue and skin. It was subsequently filled with adipose-equivalent materials including oil, beeswax, and permanent urethane-based polymer. Simulated microcalcification clusters were further included in the phantoms via crushed eggshells. The phantoms were imaged and characterized visually and quantitatively. Results: The mammographic projections and tomosynthesis reconstructed images of the fabricated phantoms yielded realistic breast background. The mammograms of the phantoms demonstrated close correlation with simulated mammographic projection images of the corresponding virtual phantoms. Furthermore, power

  10. Comprehensive molecular portraits of human breast tumors

    PubMed Central

    2012-01-01

    Summary We analyzed primary breast cancers by genomic DNA copy number arrays, DNA methylation, exome sequencing, mRNA arrays, microRNA sequencing and reverse phase protein arrays. Our ability to integrate information across platforms provided key insights into previously-defined gene expression subtypes and demonstrated the existence of four main breast cancer classes when combining data from five platforms, each of which shows significant molecular heterogeneity. Somatic mutations in only three genes (TP53, PIK3CA and GATA3) occurred at > 10% incidence across all breast cancers; however, there were numerous subtype-associated and novel gene mutations including the enrichment of specific mutations in GATA3, PIK3CA and MAP3K1 with the Luminal A subtype. We identified two novel protein expression-defined subgroups, possibly contributed by stromal/microenvironmental elements, and integrated analyses identified specific signaling pathways dominant in each molecular subtype including a HER2/p-HER2/HER1/p-HER1 signature within the HER2-Enriched expression subtype. Comparison of Basal-like breast tumors with high-grade Serous Ovarian tumors showed many molecular commonalities, suggesting a related etiology and similar therapeutic opportunities. The biologic finding of the four main breast cancer subtypes caused by different subsets of genetic and epigenetic abnormalities raises the hypothesis that much of the clinically observable plasticity and heterogeneity occurs within, and not across, these major biologic subtypes of breast cancer. PMID:23000897

  11. MUC1-induced alterations in a lipid metabolic gene network predict response of human breast cancers to tamoxifen treatment

    PubMed Central

    Pitroda, Sean P.; Khodarev, Nikolai N.; Beckett, Michael A.; Kufe, Donald W.; Weichselbaum, Ralph R.

    2009-01-01

    The mucin 1 (MUC1) oncoprotein is aberrantly overexpressed in human breast cancers. Although MUC1 modulates the activity of estrogen receptor α (ER), there is no information regarding the effects of MUC1 on global gene expression patterns and the potential role of MUC1-induced genes in predicting outcome for breast cancer patients. We have developed an experimental model of MUC1-induced transformation that has identified the activation of genes involved in cholesterol and fatty acid metabolism. A 38-gene set of experimentally derived MUC1-induced genes associated with lipid metabolism was applied to the analysis of ER+ breast cancer patients treated with tamoxifen. The results obtained from 2 independent databases demonstrate that patients overexpressing MUC1 and the lipid metabolic pathways are at significantly higher risk for death and recurrence/distant metastasis. By contrast, these genes were not predictive in untreated patients. Furthermore, a positive correlation was found between expression of the 38-gene set and the ER signaling pathway. These findings indicate that (i) MUC1 regulates cholesterol and fatty acid metabolism, and (ii) activation of these pathways in ER+ breast cancers predicts failure to tamoxifen treatment. PMID:19289846

  12. Hydroxytyrosol Protects against Oxidative DNA Damage in Human Breast Cells

    PubMed Central

    Warleta, Fernando; Quesada, Cristina Sánchez; Campos, María; Allouche, Yosra; Beltrán, Gabriel; Gaforio, José J.

    2011-01-01

    Over recent years, several studies have related olive oil ingestion to a low incidence of several diseases, including breast cancer. Hydroxytyrosol and tyrosol are two of the major phenols present in virgin olive oils. Despite the fact that they have been linked to cancer prevention, there is no evidence that clarifies their effect in human breast tumor and non-tumor cells. In the present work, we present hydroxytyrosol and tyrosol’s effects in human breast cell lines. Our results show that hydroxytyrosol acts as a more efficient free radical scavenger than tyrosol, but both fail to affect cell proliferation rates, cell cycle profile or cell apoptosis in human mammary epithelial cells (MCF10A) or breast cancer cells (MDA-MB-231 and MCF7). We found that hydroxytyrosol decreases the intracellular reactive oxygen species (ROS) level in MCF10A cells but not in MCF7 or MDA-MB-231 cells while very high amounts of tyrosol is needed to decrease the ROS level in MCF10A cells. Interestingly, hydroxytyrosol prevents oxidative DNA damage in the three breast cell lines. Therefore, our data suggest that simple phenol hydroxytyrosol could contribute to a lower incidence of breast cancer in populations that consume virgin olive oil due to its antioxidant activity and its protection against oxidative DNA damage in mammary cells. PMID:22254082

  13. Hydroxytyrosol protects against oxidative DNA damage in human breast cells.

    PubMed

    Warleta, Fernando; Quesada, Cristina Sánchez; Campos, María; Allouche, Yosra; Beltrán, Gabriel; Gaforio, José J

    2011-10-01

    Over recent years, several studies have related olive oil ingestion to a low incidence of several diseases, including breast cancer. Hydroxytyrosol and tyrosol are two of the major phenols present in virgin olive oils. Despite the fact that they have been linked to cancer prevention, there is no evidence that clarifies their effect in human breast tumor and non-tumor cells. In the present work, we present hydroxytyrosol and tyrosol's effects in human breast cell lines. Our results show that hydroxytyrosol acts as a more efficient free radical scavenger than tyrosol, but both fail to affect cell proliferation rates, cell cycle profile or cell apoptosis in human mammary epithelial cells (MCF10A) or breast cancer cells (MDA-MB-231 and MCF7). We found that hydroxytyrosol decreases the intracellular reactive oxygen species (ROS) level in MCF10A cells but not in MCF7 or MDA-MB-231 cells while very high amounts of tyrosol is needed to decrease the ROS level in MCF10A cells. Interestingly, hydroxytyrosol prevents oxidative DNA damage in the three breast cell lines. Therefore, our data suggest that simple phenol hydroxytyrosol could contribute to a lower incidence of breast cancer in populations that consume virgin olive oil due to its antioxidant activity and its protection against oxidative DNA damage in mammary cells.

  14. Prognostic significance of PLIN1 expression in human breast cancer

    PubMed Central

    Zhou, Cefan; Wang, Ming; Zhou, Li; Zhang, Yi; Liu, Weiyong; Qin, Wenying; He, Rong; Lu, Yang; Wang, Yefu; Chen, Xing-Zhen; Tang, Jingfeng

    2016-01-01

    Breast cancer is a heterogeneous disease associated with diverse clinical, biological and molecular features, presenting huge challenges for prognosis and treatment. Here we found that perilipin-1 (PLIN1) mRNA expression is significantly downregulated in human breast cancer. Kaplan-Meier analysis indicated that patients presenting with reduced PLIN1 expression exhibited poorer overall metastatic relapse-free survival (p = 0.03). Further Cox proportional hazard models analysis revealed that the reduced expression of PLIN1 is an independent predictor of overall survival in estrogen receptor positive (p < 0.0001, HR = 0.87, 95% CI = 0.81–0.92, N = 3,600) and luminal A-subtype (p = 0.02, HR = 0.88, 95% CI = 0.78–0.98, N = 1,469) breast cancer patients. We also demonstrated that the exogenous expression of PLIN1 in human breast cancer MCF-7 and MDA-MB-231 cells significantly inhibits cell proliferation, migration, invasion and in vivo tumorigenesis in mice. Together, these data provide novel insights into a prognostic significance of PLIN1 in human breast cancer and reveal a potentially new gene therapy target for breast cancer. PMID:27359054

  15. Mice overexpressing murine oncostatin M (OSM) exhibit changes in hematopoietic and other organs that are distinct from those of mice overexpressing human OSM or bovine OSM.

    PubMed

    Juan, T S-C; Bolon, B; Lindberg, R A; Sun, Y; Van, G; Fletcher, F A

    2009-01-01

    Oncostatin M (OSM) and leukemia inhibitory factor (LIF) belong to the interleukin-6 family of cytokines. The authors' previous in vitro work demonstrated that in mouse cells mouse OSM (mOSM) signals through a heterodimeric receptor complex incorporating the mOSM-specific receptor mOSMRbeta while human OSM (hOSM) and bovine OSM (bOSM) use the mouse LIF receptor mLIFRbeta rather than mOSMRbeta. These in vitro data suggest that prior studies in mouse systems with hOSM or bOSM (the usual molecules used in early studies) reflect LIF rather than OSM biology. The current work assessed whether or not this divergence in actions among these three OSMs also occurs in vivo in mouse models. Adult female (C57BL/6J x DBA/2J) F(1) mice were engineered to stably overexpress mOSM, hOSM, or bOSM by retrovirus-mediated gene transfer (n = 10 or more per group). After 4 weeks, molecular and hematologic profiles and anatomic phenotypes in multiple organs were assessed by standard techniques. Animals overexpressing either hOSM or bOSM had an identical phenotype resembling that associated with LIF activation, including significant hematologic abnormalities (anemia, neutrophilia, lymphopenia, eosinopenia, and thrombocytosis); weight loss; profound enlargement (lymph node, spleen) and/or structural reorganization (lymph node, spleen, thymus) of lymphoid organs; and severe osteosclerosis. In contrast, mice overexpressing mOSM did not develop hematologic changes, weight loss, or osteosclerosis and exhibited more modest and anatomically distinct restructuring of lymphoid organs. These data indicate that activities imputed to OSM and the mOSMRbeta signaling pathway using in vitro and in vivo mouse experimental systems are unique to mOSM.

  16. Combinations of parabens at concentrations measured in human breast tissue can increase proliferation of MCF-7 human breast cancer cells.

    PubMed

    Charles, Amelia K; Darbre, Philippa D

    2013-05-01

    The alkyl esters of p-hydroxybenzoic acid (parabens), which are used as preservatives in consumer products, possess oestrogenic activity and have been measured in human breast tissue. This has raised concerns for a potential involvement in the development of human breast cancer. In this paper, we have investigated the extent to which proliferation of MCF-7 human breast cancer cells can be increased by exposure to the five parabens either alone or in combination at concentrations as recently measured in 160 human breast tissue samples. Determination of no-observed-effect concentrations (NOEC), lowest-observed-effect concentrations (LOEC), EC50 and EC100 values for stimulation of proliferation of MCF-7 cells by five parabens revealed that 43/160 (27%) of the human breast tissue samples contained at least one paraben at a concentration ≥ LOEC and 64/160 (40%) > NOEC. Proliferation of MCF-7 cells could be increased by combining all five parabens at concentrations down to the 50(th) percentile (median) values measured in the tissues. For the 22 tissue samples taken at the site of ER + PR + primary cancers, 12 contained a sufficient concentration of one or more paraben to stimulate proliferation of MCF-7 cells. This demonstrates that parabens, either alone or in combination, are present in human breast tissue at concentrations sufficient to stimulate the proliferation of MCF-7 cells in vitro, and that functional consequences of the presence of paraben in human breast tissue should be assessed on the basis of all five parabens and not single parabens individually.

  17. Immunotherapy of human tumour xenografts overexpressing the EGF receptor with rat antibodies that block growth factor-receptor interaction.

    PubMed Central

    Modjtahedi, H.; Eccles, S.; Box, G.; Styles, J.; Dean, C.

    1993-01-01

    Athymic mice bearing xenografts of human tumours that overexpress the receptor (EGFR) for EGF and TGF alpha have been used to evaluate the therapeutic potential of three new rat monoclonal antibodies (mAbs) directed against two distinct epitopes on the extracellular domain of the human EGFR. The antibodies, ICR16 (IgG2a), ICR62 (IgG2b) and ICR64 (IgG1), have been shown (Modjtahedi et al., 1993) to be potent inhibitors of the growth in vitro of a number of human squamous cell carcinomas because they block receptor-ligand interaction. When given i.p. at 200 micrograms dose, the three antibodies were found to induce complete regression of xenografts of the HN5 tumour if treatment with antibody commenced at the time of tumour implantation (total doses: ICR16, 3.0 mg; ICR62, 1.2 mg; ICR64, 2.2 mg). More importantly when treatment was delayed until the tumours were established (mean diam. 0.5 cm) both ICR16 and ICR62 induced complete or almost complete regression of the tumours. Furthermore, treatment with a total dose of only 0.44 mg of ICR62 was found to induce complete remission of xenografts of the breast carcinoma MDA-MB 468, but ICR16 was less effective at this dose of antibody and only 4/8 tumours regressed completely. ICR16 and ICR62 were poor inhibitors of the growth in vitro of the vulval carcinoma A431, but both induced a substantial delay in the growth of xenografts of this tumour and 4/8 tumours regressed completely in the mice treated with ICR62 (total dose 2.2 mg). Although ICR16 and ICR64 were more effective than ICR62 as growth inhibitors in vitro, ICR62 was found to be substantially better at inducing regression of the tumour xenografts due perhaps to additional activation of host immune effector functions by the IgG2b antibody. We conclude that these antibodies may be useful therapeutic agents that can be used alone without conjugation to other cytotoxic moieties. PMID:7679281

  18. Profilin-1 overexpression in MDA-MB-231 breast cancer cells is associated with alterations in proteomics biomarkers of cell proliferation, survival, and motility as revealed by global proteomics analyses.

    PubMed

    Coumans, Joëlle V F; Gau, David; Poljak, Anne; Wasinger, Valerie; Roy, Partha; Moens, Pierre D J

    2014-12-01

    Despite early screening programs and new therapeutic strategies, metastatic breast cancer is still the leading cause of cancer death in women in industrialized countries and regions. There is a need for novel biomarkers of susceptibility, progression, and therapeutic response. Global analyses or systems science approaches with omics technologies offer concrete ways forward in biomarker discovery for breast cancer. Previous studies have shown that expression of profilin-1 (PFN1), a ubiquitously expressed actin-binding protein, is downregulated in invasive and metastatic breast cancer. It has also been reported that PFN1 overexpression can suppress tumorigenic ability and motility/invasiveness of breast cancer cells. To obtain insights into the underlying molecular mechanisms of how elevating PFN1 level induces these phenotypic changes in breast cancer cells, we investigated the alteration in global protein expression profiles of breast cancer cells upon stable overexpression of PFN1 by a combination of three different proteome analysis methods (2-DE, iTRAQ, label-free). Using MDA-MB-231 as a model breast cancer cell line, we provide evidence that PFN1 overexpression is associated with alterations in the expression of proteins that have been functionally linked to cell proliferation (FKPB1A, HDGF, MIF, PRDX1, TXNRD1, LGALS1, STMN1, LASP1, S100A11, S100A6), survival (HSPE1, HSPB1, HSPD1, HSPA5 and PPIA, YWHAZ, CFL1, NME1) and motility (CFL1, CORO1B, PFN2, PLS3, FLNA, FLNB, NME2, ARHGDIB). In view of the pleotropic effects of PFN1 overexpression in breast cancer cells as suggested by these new findings, we propose that PFN1-induced phenotypic changes in cancer cells involve multiple mechanisms. Our data reported here might also offer innovative strategies for identification and validation of novel therapeutic targets and companion diagnostics for persons with, or susceptibility to, breast cancer.

  19. WISP1 overexpression promotes proliferation and migration of human vascular smooth muscle cells via AKT signaling pathway.

    PubMed

    Lu, Shun; Liu, Hao; Lu, Lihe; Wan, Heng; Lin, Zhiqi; Qian, Kai; Yao, Xingxing; Chen, Qing; Liu, Wenjun; Yan, Jianyun; Liu, Zhengjun

    2016-10-05

    Proliferation and migration of vascular smooth muscle cells (VSMCs) play crucial roles in the development of vascular restenosis. Our previous study showed that CCN4, namely Wnt1 inducible signaling pathway protein 1 (WISP1), significantly promotes proliferation and migration of rat VSMCs, but its mechanism remains unclear. This study aims to investigate whether and how WISP1 stimulates proliferation and migration of human VSMCs. Western blot analysis showed that FBS treatment increased WISP1 protein levels in human VSMCs in a dose-dependent manner. Overexpression of WISP1 using adenovirus encoding WISP1 (AD-WISP1) significantly increased proliferation rate of human VSMCs by 2.98-fold compared with empty virus (EV)-transfected cells, shown by EdU incorporation assay. Additionally, Scratch-induced wound healing assay revealed that adenovirus-mediated overexpression of WISP1 significantly increased cell migration compared with EV-transfected cells from 6h (4.56±1.14% vs. 11.23±2.25%, P<0.05) to 48h (25.25±5.51% vs. 97.54±13.12%, P<0.01) after injury. Transwell Migration Assay confirmed that WISP1 overexpression significantly promoted human VSMC migration by 2.25-fold compared with EV. Furthermore, WISP1 overexpression stimulated Akt signaling activation in human VSMCs. Blockage of Akt signaling by Akt inhibitor AZD5363 or PI3K inhibitor LY294002, led to an inhibitory effect of WISP1-induced proliferation and migration in human VSMCs. Moreover, we found that WISP1 overexpression stimulated GSK3α/β phosphorylation, and increased expression of cyclin D1 and MMP9 in human VSMCs, and this effect was abolished by AZD5363. Collectively, we demonstrated that Akt signaling pathway mediates WISP1-induced migration and proliferation of human VSMCs, suggesting that WISP1 may act as a novel potential therapeutic target for vascular restenosis.

  20. Development of octreotide-conjugated polymeric prodrug of bufalin for targeted delivery to somatostatin receptor 2 overexpressing breast cancer in vitro and in vivo

    PubMed Central

    Liu, Tao; Jia, Tingting; Yuan, Xia; Liu, Cheng; Sun, Jian; Ni, Zhenhua; Xu, Jian; Wang, Xuhui; Yuan, Yi

    2016-01-01

    Background Development of polymeric prodrugs of small molecular anticancer drugs has become one of the most promising strategies to overcome the intrinsic shortcomings of small molecular anticancer drugs and improve their anticancer performance. Materials and methods In the current work, we fabricated a novel octreotide (Oct)-modified esterase-sensitive tumor-targeting polymeric prodrug of bufalin (BUF) and explored its anticancer performance against somatostatin receptor 2 overexpressing breast cancer. Results The obtained tumor-targeting polymeric prodrug of BUF, P(oligo[ethylene glycol] monomethyl ether methacrylate [OEGMA]-co-BUF-co-Oct), showed a nanosize dimension and controlled drug release features in the presence of esterase. It was demonstrated by in vitro experiment that P(OEGMA-co-BUF-co-Oct) showed enhanced cytotoxicity, cellular uptake, and apoptosis in comparison with those of free BUF. In vivo experiment further revealed the improved accumulation of drugs in tumor tissues and enhanced anticancer performance of P(OEGMA-co-BUF-co-Oct). Conclusion Taken together, this study indicated that polymeric prodrug of BUF holds promising potential toward the treatment of somatostatin receptor 2 overexpressing breast cancer. PMID:27284243

  1. Testosterone induces cell proliferation and cell cycle gene overexpression in human visceral preadipocytes.

    PubMed

    Barbosa-Desongles, Anna; Hernández, Cristina; Simó, Rafael; Selva, David M

    2013-08-01

    Evidence from the literature suggests that testosterone plays an important role in visceral fat accumulation since both men and women with hyperandrogenism accumulate more adipose tissue in the abdominal cavity than healthy women. However, the underlying mechanisms remain to be elucidated. To shed light on this issue, we have used an in vitro approach to examine the effect of testosterone on human visceral preadipocyte proliferation. Our results showed that testosterone treatment significantly increased proliferation of human visceral preadipocytes in proliferation assays using flow cytometric analysis. We next performed a microarray gene expression analysis of human visceral preadipocytes treated with testosterone or vehicle to identify which genes were involved in the testosterone-induced increase in preadipocyte proliferation. The results showed a total of 140 genes differentially expressed between testosterone vs. vehicle. Among the top 10 upregulated genes, 5 were involved in cellular cycle and proliferation, and 3 (APOBEC3b, CCNA2, and PRC1) were significantly overexpressed by testosterone treatment when analyzed by real-time PCR. We conclude that testosterone exerts a proliferative effect on preadipocytes that may participate in the sex differences in fat distribution and that it may explain visceral fat accumulation in women with hyperandrogenism.

  2. X-ray scattering from human breast tissues and breast-equivalent materials.

    PubMed

    Poletti, M E; Gonçalves, D; Mazzaro, I

    2002-01-07

    The angular distributions of photons scattered by human breast tissues (adipose and glandular) and by eight breast-equivalent materials (water, polymethylmethacrylate, nylon, polyethylene and four commercial breast-equivalent materials simulating different glandular-adipose proportions) have been measured at a photon energy of 17.44 keV (Kalpha-radiation of Mo). Transmission target geometry has been used with an acceptance of +/- 0.6 degrees and an uncertainty of approximately 7%. Experimental molecular form factors were extracted from diffraction patterns normalizing the number of scattered photons with theoretical data in regions where no structure is expected. Linear attenuation coefficients have been measured for all samples at this energy. The results for water, polymethylmethacrylate, nylon and adipose tissue agree with former reported data. The results for human breast tissues at low and medium scattering angle (1-25 degrees, corresponding to the momentum transfer region between 0.2 and 3 nm(-1)) differ from the breast-equivalent materials. The results for adipose tissue are similar to the corresponding values from commercial breast-equivalent materials while the results for glandular tissue are similar to those for water.

  3. Overexpressed genes associated with hormones in terminal ductal lobular units identified by global transcriptome analysis: An insight into the anatomic origin of breast cancer.

    PubMed

    Yang, Jianmin; Yu, Haijing; Zhang, Liang; Deng, Hua; Wang, Qi; Li, Wenping; Zhang, Anqin; Gao, Hongyi; Yin, Aihua

    2016-03-01

    Although human breast ducts and terminal ductal lobular units (TDLUs) share the same cell types, ample evidence shows that TDLUs are the predominant site for the origin of breast cancer. Yet, there is still limited information concerning the molecular mechanisms. Analysis of transcriptomic profiles in TDLUs may provide insight into early breast tumorigenesis. We compared genome-wide expression profiles of 8 matched sets of breast main duct and TDLU samples, using significance analysis of microarray (SAM) software to screen differentially expressed genes (DEGs) with fold-change >2.0 and q-value <0.05. Moreover, we used Gene Ontology for functional enrichment analysis. We identified 472 DEGs between the two tissue types, and confirmed 17 randomly chosen DEGs by quantitative reverse transcription-PCR (qRT-PCR). Notably, hormone-related pathways were highly enriched in the TDLU samples, including various hormone-related DEGs that are associated with breast carcinogenesis and tumor progression. Oncogenic upregulation in TDLUs indicates a potential inappropriate or excessive response to successive hormone stimulus during the proliferation, differentiation and lactation cycles of the human mammary gland. Imbalanced hormone reactions may finally result in the early onset of neoplastic transformation that occurs mostly in breast TDLUs.

  4. Evidence for altered ion transport in Saccharomyces cerevisiae overexpressing human MDR 1 protein.

    PubMed

    Fritz, F; Howard, E M; Hoffman, M M; Roepe, P D

    1999-03-30

    Recently [Hoffman, M. M., and Roepe, P. D. (1997) Biochemistry 36, 11153-11168] we presented evidence for a novel Na+- and Cl--dependent H+ transport process in LR73/hu MDR 1 CHO transfectants that likely explains pHi, volume, and membrane potential changes in eukaryotic cells overexpressing the hu MDR 1 protein. To further explore this process, we have overexpressed human MDR 1 protein in yeast strain 9.3 following a combination of approaches used previously [Kuchler, K., and Thorner, J. (1992) Proc. Natl. Acad. Sci. U.S.A. 89, 2302-2306; Ruetz, S., et al. (1993) Proc. Natl. Acad. Sci. U.S.A. 90, 11588-11592]. Thus, a truncated hu MDR 1 cDNA was cloned behind a tandem array of sterile 6 (Ste6) and alchohol dehydrogenase (Adh) promoters to create the yeast expression vector pFF1. Valinomycin resistance of intact cells and Western blot analysis with purified yeast plasma membranes confirmed the overexpression of full length, functional, and properly localized hu MDR 1 protein in independently isolated 9.3/pFF1 colonies. Interestingly, relative valinomycin resistance and growth of the 9.3/hu MDR 1 strains are found to strongly depend on the ionic composition of the growth medium. Atomic absorption reveals significant differences in intracellular K+ for 9.3/hu MDR 1 versus control yeast. Transport assays using [3H]tetraphenylphosphonium ([3H]TPP+) reveal perturbations in membrane potential for 9.3/hu MDR 1 yeast that are stimulated by KCl and alkaline pHex. ATPase activity of purified plasma membrane fractions from yeast strains and LR73/hu MDR 1 CHO transfectants constructed previously [Hoffman, M. M., et al. (1996) J. Gen. Physiol. 108, 295-313] was compared. MDR 1 ATPase activity exhibits a higher pH optimum and different salt dependencies, relative to yeast H+ ATPase. Inside-out plasma membrane vesicles (ISOV) fabricated from 9.3/hu MDR 1 and control strains were analyzed for formation of H+ gradients +/- verapamil. Similar pharmacologic profiles are found for

  5. Silencing overexpression of FXYD3 protein in breast cancer cells amplifies effects of doxorubicin and γ-radiation on Na(+)/K(+)-ATPase and cell survival.

    PubMed

    Liu, Chia-Chi; Teh, Rachel; Mozar, Christine A; Baxter, Robert C; Rasmussen, Helge H

    2016-01-01

    FXYD3, also known as mammary tumor protein 8, is overexpressed in several common cancers, including in many breast cancers. We examined if such overexpression might protect Na(+)/K(+)-ATPase and cancer cells against the high levels of oxidative stress characteristic of many tumors and often induced by cancer treatments. We measured FXYD3 expression, Na(+)/K(+)-ATPase activity and glutathionylation of the β1 subunit of Na(+)/K(+)-ATPase, a reversible oxidative modification that inhibits the ATPase, in MCF-7 and MDA-MB-468 cells. Expression of FXYD3 was suppressed by transfection with FXYD3 siRNA. A colorimetric end-point assay was used to estimate cell viability. Apoptosis was estimated by caspase 3/7 (DEVDase) activation using a Caspase fluorogenic substrate kit. Expression of FXYD3 in MCF-7 breast cancer cells was ~eightfold and ~twofold higher than in non-cancer MCF-10A cells and MDA-MB-468 cancer cells, respectively. A ~50 % reduction in FXYD3 expression increased glutathionylation of the β1 Na(+)/K(+)-ATPase subunit and reduced Na(+)/K(+)-ATPase activity by ~50 %, consistent with the role of FXYD3 to facilitate reversal of glutathionylation of the β1 subunit of Na(+)/K(+)-ATPase and glutathionylation-induced inhibition of Na(+)/K(+)-ATPase. Treatment of MCF-7 and MDA-MB- 468 cells with doxorubicin or γ-radiation decreased cell viability and induced apoptosis. The treatments upregulated FXYD3 expression in MCF-7 but not in MDA-MB-468 cells and suppression of FXYD3 in MCF-7 but not in MDA-MB-468 cells amplified effects of treatments on Na(+)/K(+)-ATPase activity and treatment-induced cell death and apoptosis. Overexpression of FXYD3 may be a marker of resistance to cancer treatments and a potentially important therapeutic target.

  6. A monoclonal antibody targeting ErbB2 domain III inhibits ErbB2 signaling and suppresses the growth of ErbB2-overexpressing breast tumors

    PubMed Central

    Meng, Y; Zheng, L; Yang, Y; Wang, H; Dong, J; Wang, C; Zhang, Y; Yu, X; Wang, L; Xia, T; Zhang, D; Guo, Y; Li, B

    2016-01-01

    The anti-ErbB2 antibodies trastuzumab and pertuzumab in combination have recently been approved for the treatment of patients with ErbB2-positive metastatic breast cancer. Pertuzumab, which binds to ErbB2 near the center of domain II, and trastuzumab, which binds to the juxtamembrane region of ErbB2 domain IV, directly interfere with domain II- and domain IV-mediated heterodimerization contacts, respectively. In this study, we report a novel anti-ErbB2 antibody, 3E10, which binds to an epitope in domain III that appears to be located opposite to the dimerization interfaces in domain II and domain IV of ErbB2. Our data show that the 3E10 antibody inhibits ErbB2 heterodimerization via a mechanism that strikingly differs from trastuzumab and pertuzumab. It could be speculated that the 3E10 antibody may affect ErbB2 heterodimerization by causing major conformational changes of ErbB2. Furthermore, 3E10 provides synergistic inhibition of ErbB2 heterodimerization and signaling in combination with either trastuzumab or pertuzumab. The combination of these three anti-ErbB2 antibodies that have complementary mechanisms of action appears to be an extremely potent ErbB2 heterodimerization blocker. Compared with trastuzumab plus pertuzumab, the combination of trastuzumab, pertuzumab and 3E10 provides a more potent blockade of ErbB2 signaling. Consistent with this, trastuzumab plus pertuzumab plus 3E10 results in greater in vitro and in vivo antitumor activity in ErbB2-overexpressing breast tumor models, suggesting its potential use for treating ErbB2-overexpressing breast cancer. PMID:26999718

  7. A monoclonal antibody targeting ErbB2 domain III inhibits ErbB2 signaling and suppresses the growth of ErbB2-overexpressing breast tumors.

    PubMed

    Meng, Y; Zheng, L; Yang, Y; Wang, H; Dong, J; Wang, C; Zhang, Y; Yu, X; Wang, L; Xia, T; Zhang, D; Guo, Y; Li, B

    2016-03-21

    The anti-ErbB2 antibodies trastuzumab and pertuzumab in combination have recently been approved for the treatment of patients with ErbB2-positive metastatic breast cancer. Pertuzumab, which binds to ErbB2 near the center of domain II, and trastuzumab, which binds to the juxtamembrane region of ErbB2 domain IV, directly interfere with domain II- and domain IV-mediated heterodimerization contacts, respectively. In this study, we report a novel anti-ErbB2 antibody, 3E10, which binds to an epitope in domain III that appears to be located opposite to the dimerization interfaces in domain II and domain IV of ErbB2. Our data show that the 3E10 antibody inhibits ErbB2 heterodimerization via a mechanism that strikingly differs from trastuzumab and pertuzumab. It could be speculated that the 3E10 antibody may affect ErbB2 heterodimerization by causing major conformational changes of ErbB2. Furthermore, 3E10 provides synergistic inhibition of ErbB2 heterodimerization and signaling in combination with either trastuzumab or pertuzumab. The combination of these three anti-ErbB2 antibodies that have complementary mechanisms of action appears to be an extremely potent ErbB2 heterodimerization blocker. Compared with trastuzumab plus pertuzumab, the combination of trastuzumab, pertuzumab and 3E10 provides a more potent blockade of ErbB2 signaling. Consistent with this, trastuzumab plus pertuzumab plus 3E10 results in greater in vitro and in vivo antitumor activity in ErbB2-overexpressing breast tumor models, suggesting its potential use for treating ErbB2-overexpressing breast cancer.

  8. Mutagens in human breast lipid and milk: the search for environmental agents that initiate breast cancer.

    PubMed

    Phillips, David H; Martin, Francis L; Williams, J Andrew; Wheat, Luise M C; Nolan, Lisa; Cole, Kathleen J; Grover, Philip L

    2002-01-01

    Epidemiological studies indicate the involvement of environmental factors in the etiology of breast cancer, but have not provided clear indications of the nature of the agents responsible. Several environmental carcinogens are known to induce mammary tumors in rodents, and the abundance of adipose tissue in the human breast suggests that the epithelial cells, from which breast tumors commonly arise, could be exposed to lipid-soluble carcinogens sequestered by the adipose tissue. In this report we review our studies in which we have examined human mammary lipid, obtained from elective reduction mammoplasties from healthy donors, and human milk from healthy mothers, for the presence of components with genotoxic activity in several in vitro assays. A significant proportion of lipid extracts induced mutations in bacteria and micronuclei in mammalian cells. They also caused DNA damage, detected as single-strand breaks in the alkaline single-cell gel electrophoresis (comet) assay, in both the MCL-5 cell line and in primary cultures of human mammary epithelial cells. Genotoxic activity was also found in a significant proportion of extracts of human breast milk. Viable cells recovered from milk samples showed evidence of DNA damage and were susceptible to comet formation by genotoxic agents in vitro. Genotoxic activity was found to be less prevalent in milk samples from countries of lower breast cancer incidence (the Far East) compared with that in samples from the UK. The agents responsible for the activity in milk appear to be moderately polar lipophilic compounds and of low molecular weight. Identification of these agents and their sources may hold clues to the origins of breast cancer.

  9. Prodigiosin down-regulates survivin to facilitate paclitaxel sensitization in human breast carcinoma cell lines

    SciTech Connect

    Ho, T.-F.; Peng, Y.-T.; Chuang, S.-M.; Lin, S.-C.; Feng, B.-L.; Lu, C.-H.; Yu, W.-J.; Chang, J.-S. Chang, C.-C.

    2009-03-01

    Prodigiosin is a bacterial metabolite with potent anticancer activity, which is attributed to its proapoptotic effect selectively active in malignant cells. Still, the molecular mechanisms whereby prodigiosin induces apoptosis remain largely unknown. In particular, the role of survivin, a vital inhibitor of apoptosis, in prodigiosin-induced apoptosis has never been addressed before and hence was the primary goal of this study. Our results showed that prodigiosin dose-dependently induced down-regulation of survivin in multiple breast carcinoma cell lines, including MCF-7, T-47D and MDA-MB-231. This down-regulation is mainly regulated at the level of transcription, as prodigiosin reduced the levels of both survivin mRNA and survivin promoter activity but failed to rescue survivin expression when proteasome-mediated degradation is abolished. Importantly, overexpression of survivin rendered cells more resistant to prodigiosin, indicating an essential role of survivin down-regulation in prodigiosin-induced apoptosis. In addition, we found that prodigiosin synergistically enhanced cell death induced by paclitaxel, a chemotherapy drug known to up-regulate survivin that in turn confers its own resistance. This paclitaxel sensitization effect of prodigiosin is ascribed to the lowering of survivin expression, because prodigiosin was shown to counteract survivin induction by paclitaxel and, notably, the sensitization effect was severely abrogated in cells that overexpress survivin. Taken together, our results argue that down-regulation of survivin is an integral component mediating prodigiosin-induced apoptosis in human breast cancer cells, and further suggest the potential of prodigiosin to sensitize anticancer drugs, including paclitaxel, in the treatment of breast cancer.

  10. Brain metastasis in human epidermal growth factor receptor 2-positive breast cancer: from biology to treatment

    PubMed Central

    Koo, Taeryool

    2016-01-01

    Overexpression of human epidermal growth factor receptor 2 (HER2) is found in about 20% of breast cancer patients. With treatment using trastuzumab, an anti-HER2 monoclonal antibody, systemic control is improved. Nonetheless, the incidence of brain metastasis does not be improved, rather seems to be increased in HER2-positive breast cancer. The mainstay treatment for brain metastases is radiotherapy. According to the number of metastatic lesions and performance status of patients, radiosurgery or whole brain radiotherapy can be performed. The concurrent use of a radiosensitizer further improves intracranial control. Due to its large molecular weight, trastuzumab has a limited ability to cross the blood-brain barrier. However, small tyrosine kinase inhibitors such as lapatinib, has been noted to be a promising agent that can be used as a radiosensitizer to affect HER2-positive breast cancer. This review will outline general management of brain metastases and will focus on preclinical findings regarding the radiosensitizing effect of small molecule HER2 targeting agents. PMID:27104161

  11. Leucine deprivation inhibits proliferation and induces apoptosis of human breast cancer cells via fatty acid synthase

    PubMed Central

    Xiao, Fei; Wang, Chunxia; Yin, Hongkun; Yu, Junjie; Chen, Shanghai; Fang, Jing; Guo, Feifan

    2016-01-01

    Substantial studies on fatty acid synthase (FASN) have focused on its role in regulating lipid metabolism and researchers have a great interest in treating cancer with dietary manipulation of amino acids. In the current study, we found that leucine deprivation caused the FASN-dependent anticancer effect. Here we showed that leucine deprivation inhibited cell proliferation and induced apoptosis of MDA-MB-231 and MCF-7 breast cancer cells. In an in vivo tumor xenograft model, the leucine-free diet suppressed the growth of human breast cancer tumors and triggered widespread apoptosis of the cancer cells. Further study indicated that leucine deprivation decreased expression of lipogenic gene FASN in vitro and in vivo. Over-expression of FASN or supplementation of palmitic acid (the product of FASN action) blocked the effects of leucine deprivation on cell proliferation and apoptosis in vitro and in vivo. Moreover, leucine deprivation suppressed the FASN expression via regulating general control non-derepressible (GCN)2 and sterol regulatory element-binding protein 1C (SREBP1C). Taken together, our study represents proof of principle that anticancer effects can be obtained with strategies to deprive tumors of leucine via suppressing FASN expression, which provides important insights in prevention of breast cancer via metabolic intervention. PMID:27579768

  12. Chronic wasting disease prions are not transmissible to transgenic mice overexpressing human prion protein.

    PubMed

    Sandberg, Malin K; Al-Doujaily, Huda; Sigurdson, Christina J; Glatzel, Markus; O'Malley, Catherine; Powell, Caroline; Asante, Emmanuel A; Linehan, Jacqueline M; Brandner, Sebastian; Wadsworth, Jonathan D F; Collinge, John

    2010-10-01

    Chronic wasting disease (CWD) is a prion disease that affects free-ranging and captive cervids, including mule deer, white-tailed deer, Rocky Mountain elk and moose. CWD-infected cervids have been reported in 14 USA states, two Canadian provinces and in South Korea. The possibility of a zoonotic transmission of CWD prions via diet is of particular concern in North America where hunting of cervids is a popular sport. To investigate the potential public health risks posed by CWD prions, we have investigated whether intracerebral inoculation of brain and spinal cord from CWD-infected mule deer transmits prion infection to transgenic mice overexpressing human prion protein with methionine or valine at polymorphic residue 129. These transgenic mice have been utilized in extensive transmission studies of human and animal prion disease and are susceptible to BSE and vCJD prions, allowing comparison with CWD. Here, we show that these mice proved entirely resistant to infection with mule deer CWD prions arguing that the transmission barrier associated with this prion strain/host combination is greater than that observed with classical BSE prions. However, it is possible that CWD may be caused by multiple prion strains. Further studies will be required to evaluate the transmission properties of distinct cervid prion strains as they are characterized.

  13. Overexpression of leucine aminopeptidase 3 contributes to malignant development of human esophageal squamous cell carcinoma.

    PubMed

    Zhang, Shu; Yang, Xiaojing; Shi, Hui; Li, Mei; Xue, Qun; Ren, Hanru; Yao, Li; Chen, Xueyu; Zhang, Jianguo; Wang, Huijie

    2014-06-01

    Leucine aminopeptidases (LAPs) were associated with tumor cell proliferation, invasion and/or angiogenesis. We aimed to examine the biological function of LAP3 in esophageal squamous cell carcinoma (ESCC). LAP3 expressions were examined in human ESCC tissue and cell lines ECA109 and TE1 cells. Recombinant pSilencer4.1-LAP3-shRNA was transfected into ECA109 cells to silence LAP3 expression. The effects of LAP3 silencing on ECA109 cell proliferation in vitro were evaluated. Flow cytometry profiling was used to detect the differentiate cell cycle distribution in LAP3-silenced ECA109 cells. Wound-healing assay and transwell assay were used to examine the activities of migration and invasion in LAP3-silenced ECA109 cells. We overexpressed LAP3 in TE1 cells to find out the corresponding results. LAP3 expression level was abundance in ESCC tissue. LAP3 silencing significantly reduced ECA109 cell proliferation and colony formation. The knockdown of LAP3 resulted in cell cycle arrest at G1-phase. Moreover, over expression of LAP3 favors TE1 cell proliferation and invasiveness which also confirms its contribution in malignant development. We came to the conclusion that LAP3 contributed to ESCC progression by overcoming cell cycle arrest. The proliferative and migration effects of LAP3 might contribute to malignant development of human ESCC.

  14. Aberrant hypomethylation-mediated CD147 overexpression promotes aggressive tumor progression in human prostate cancer.

    PubMed

    Liang, Yu-Xiang; Mo, Ru-Jun; He, Hui-Chan; Chen, Jia-Hong; Zou, Jun; Han, Zhao-Dong; Lu, Jian-Ming; Cai, Chao; Zeng, Yan-Ru; Zhong, Wei-De; Wu, Chin-Lee

    2015-05-01

    Our previous study revealed the potential role of CD147 in human prostate cancer (PCa). Here, we investigated the CD147 promoter methylation status and the correlation with tumorigenicity in human PCa. CD147 mRNA and protein expression levels were both significantly higher in the 4 PCa cell lines, than in the 2 non-tumorigenic benign human prostatic epithelial cell lines (all P<0.01). We showed hypomethylation of promoter regions of CD147 in PCa cell lines with significant CD147 expression as compared to non-tumorigenic benign human prostatic epithelial cell lines slowly expressing CD147. Additionally, the treatment of methylated cell lines with 5-aza-2'-deoxycytidine increased CD147 expression significantly in low-expressing cell lines and also activated the expression of matrix metalloproteinase (MMP)-2, which may be one of the most important downstream targets of CD147. Furthermore, PCa tissues displayed decreased DNA methylation in the promoter region of CD147 compared to the corresponding non-cancerous prostate tissues, and methylation intensity correlated inversely with the CD147 mRNA levels. There was a significant negative correlation between CD147 mRNA levels and the number of methylated sites in PCa tissues (r=-0.467, P<0.01). In conclusion, our data offer convincing evidence for the first time that the DNA promoter hypomethylation of CD147 may be one of the regulatory mechanisms involved in the cancer-related overexpression of CD147 and may play a crucial role in the tumorigenesis of PCa.

  15. Fulvestrant treatment alters MDM2 protein turnover and sensitivity of human breast carcinoma cells to chemotherapeutic drugs.

    PubMed

    Dolfi, Sonia C; Jäger, Adriana V; Medina, Daniel J; Haffty, Bruce G; Yang, Jin-Ming; Hirshfield, Kim M

    2014-08-01

    The human homologue of mouse double minute 2 (MDM2) is overexpressed in tumors and contributes to tumorigenesis through inhibition of p53 activity. We investigated the effect of the anti-estrogen fulvestrant on MDM2 expression and sensitivity of estrogen receptor positive human breast cancer cell lines to chemotherapeutics. Fulvestrant down-regulated MDM2 through increased protein turnover. Fulvestrant blocked estrogen-dependent up-regulation of MDM2 and decreased basal expression of MDM2 in the absence of estradiol. As combinations of fulvestrant with doxorubicin, etoposide or paclitaxel were synergistic, altering cell cycle distribution and increasing cell death, this provides rationale for testing combinatorial chemotherapy with fulvestrant as a novel therapeutic strategy for patients with advanced breast cancer.

  16. T Cell Coinhibition and Immunotherapy in Human Breast Cancer

    PubMed Central

    Janakiram, Murali; Abadi, Yael M.; Sparano, Joseph A.; Zang, Xingxing

    2014-01-01

    Costimulation and coinhibition generated by the B7 family and their receptor CD28 family have key roles in regulating T lymphocyte activation and tolerance. These pathways are very attractive therapeutic targets for human cancers including breast cancer. Gene polymorphisms of B7x (B7-H4/B7S1), PD-1 (CD279), and CTLA-4 (CD152) are associated with increased risk of developing breast cancer although the underlying mechanisms are unclear. In human breast cancer microenvironment, up-regulation of coinhibitory B7/CD28 members B7x, B7-H3 (CD276), and PD-L1 (B7-H1/CD274) on tumor cells as well as PD-1 and PD-L1 on tumor-infiltrating immune cells are emerging as immune evasion pathways. Chemotherapy can affect the expression of these molecules, and therefore may dampen the immune response against breast cancer. Immunotherapy targeting T cell coinhibition as monotherapy or combined with standard therapies are in early stages of clinical development, but hold great promise for treatment of human breast cancer. PMID:23114578

  17. Molecular Mechanisms of Metastasis Suppression in Human Breast Cancer

    DTIC Science & Technology

    1997-07-01

    these results ................... 9 Section 3: Isolation of MDA-MB-435 single cell clones .................................... 9 Rationale... cloned the human homolog, NME 1 or Nm23-H 1, and showed that transfection into the metastatic human breast carcinoma cell line MDA-MB-435 caused...colleagues in a rat prostatic carcinoma model (Dong et al., 1995). The human homolog was cloned and maps to chromosome lIp 1 1.2. Since this gene maps

  18. Detection of cellular senescence within human invasive breast carcinomas distinguishes different breast tumor subtypes

    PubMed Central

    Cotarelo, Cristina L.; Schad, Arno; Kirkpatrick, Charles James; Sleeman, Jonathan P.; Springer, Erik; Schmidt, Marcus; Thaler, Sonja

    2016-01-01

    Oncogene-induced senescence is thought to act as a barrier to tumorigenesis by arresting cells at risk of malignant transformation. Nevertheless, numerous findings suggest that senescent cells may conversely promote tumor progression through the development of the senescence-associated secretome they produce. It is likely that the composition and the physiological consequences mediated by the senescence secretome are dependent on the oncogenes that trigger the senescence program. Breast cancer represents a heterogenous disease that can be divided into breast cancer subtypes due to different subsets of genetic and epigenetic abnormalities. As tumor initiation and progression of these breast cancer subtypes is triggered by diverse oncogenic stimuli, differences in the senescence secretomes within breast tumors might be responsible for tumor initiation, progression, metastasis and therapeutic response. Many studies have addressed the role of senescence as a barrier to tumor progression using murine xenograft models. However, few investigations have been performed to elucidate the degree to which senescent tumor cells are present within untreated human tumors, and if present, whether these senescent tumor cells may play a role in disease progression. In the present study we analysed the appearance of senescent cells within invasive breast cancers. Detection of cellular senescence by the use of SAβ-galactosidase (SAβ-gal) staining within invasive breast carcinoms from 129 untreated patients revealed differences in the amount of SAβ-gal+ tumor cells between breast cancer subtypes. The highest percentages of SAβ-gal+ tumor cells were found in HER2-positive and luminal A breast carcinomas whereas triple negative tumors showed either little or no positivity. PMID:27713152

  19. Cation-selective transporters are critical to the AMPK-mediated antiproliferative effects of metformin in human breast cancer cells.

    PubMed

    Cai, Hao; Zhang, Yunhui; Han, Tianxiang Kevin; Everett, Ruth S; Thakker, Dhiren R

    2016-05-01

    The antidiabetic drug metformin exerts antineoplastic effects against breast cancer and other cancers. One mechanism by which metformin is believed to exert its anticancer effect involves activation of its intracellular target, adenosine monophosphate-activated protein kinase (AMPK), which is also implicated in the antidiabetic effect of metformin. It is proposed that in cancer cells, AMPK activation leads to inhibition of the mammalian target of rapamycin (mTOR) and the downstream pS6K that regulates cell proliferation. Due to its hydrophilic and cationic nature, metformin requires cation-selective transporters to enter cells and activate AMPK. This study demonstrates that expression levels of cation-selective transporters correlate with the antiproliferative and antitumor efficacy of metformin in breast cancer. Metformin uptake and antiproliferative activity were compared between a cation-selective transporter-deficient human breast cancer cell line, BT-20, and a BT-20 cell line that was engineered to overexpress organic cation transporter 3 (OCT3), a representative of cation-selective transporters and a predominant transporter in human breast tumors. Metformin uptake was minimal in BT-20 cells, but increased by >13-fold in OCT3-BT20 cells, and its antiproliferative potency was >4-fold in OCT3-BT20 versus BT-20 cells. This increase in antiproliferative activity was associated with greater AMPK phosphorylation and decreased pS6K phosphorylation in OCT3-BT20 cells. In vitro data were corroborated by in vivo observations of significantly greater antitumor efficacy of metformin in xenograft mice bearing OCT3-overexpressing tumors versus low transporter-expressing wildtype tumors. Collectively, these findings establish a clear relationship between cation-selective transporter expression, the AMPK-mTOR-pS6K signaling cascade, and the antiproliferative activity of metformin in breast cancer.

  20. Overexpression of TGF-β1 enhances chondrogenic differentiation and proliferation of human synovium-derived stem cells

    SciTech Connect

    Kim, Yong Il; Ryu, Jae-Sung; Yeo, Jee Eun; Choi, Yun Jin; Kim, Yong Sang; Ko, Kinarm; Koh, Yong-Gon

    2014-08-08

    Highlights: • Continuous TGF-β1 overexpression in hSD-MSCs did not influence their phenotypes. • Retroviral-mediated transduction of TGFB1 in hSD-MSCs enhances cell proliferation. • TGF-β1 overexpression did not effect to adipo- or osteogenic potential of hSD-MSCs. • TGF-β1 overexpression in hSD-MSCs could stimulate and accelerate chondrogenesis. - Abstract: Transforming growth factor-beta (TGF-β) superfamily proteins play a critical role in proliferation, differentiation, and other functions of mesenchymal stem cells (MSCs). During chondrogenic differentiation of MSCs, TGF-β up-regulates chondrogenic gene expression by enhancing the expression of the transcription factor SRY (sex-determining region Y)-box9 (Sox9). In this study, we investigated the effect of continuous TGF-β1 overexpression in human synovium-derived MSCs (hSD-MSCs) on immunophenotype, differentiation potential, and proliferation rate. hSD-MSCs were transduced with recombinant retroviruses (rRV) encoding TGF-β1. The results revealed that continuous overexpression of TGF-β1 did not affect their phenotype as evidenced by flow cytometry and reverse transcriptase PCR (RT-PCR). In addition, continuous TGF-β1 overexpression strongly enhanced cell proliferation of hSD-MSCs compared to the control groups. Also, induction of chondrogenesis was more effective in rRV-TGFB-transduced hSD-MSCs as shown by RT-PCR for chondrogenic markers, toluidine blue staining and glycosaminoglycan (GAG)/DNA ratio. Our data suggest that overexpression of TGF-β1 positively enhances the proliferation and chondrogenic potential of hSD-MSCs.

  1. Overexpression of PGC-1α Increases Peroxisomal and Mitochondrial Fatty Acid Oxidation in Human Primary Myotubes.

    PubMed

    Huang, Tai-Yu; Zheng, Donghai; Houmard, Joseph A; Brault, Jeffrey J; Hickner, Robert C; Cortright, Ronald N

    2017-01-10

    Peroxisomes are indispensable organelles for lipid metabolism in humans and their biogenesis has been assumed to be under regulation by peroxisome proliferator-activated receptors (PPARs). However, recent studies in hepatocytes suggest that the mitochondrial proliferator PGC-1α (peroxisome proliferator-activated receptor gamma coactivator-1 alpha) also acts as an upstream transcriptional regulator for enhancing peroxisomal abundance and associated activity. It is unknown whether the regulatory mechanism(s) for enhancing peroxisomal function is through the same node as mitochondrial biogenesis in human skeletal muscle (HSkM) and whether fatty acid oxidation (FAO) is affected. Primary myotubes from vastus lateralis biopsies from lean donors (BMI =24.0 ± 0.6 kg/m(2), N = 6) were exposed to adenovirus encoding human PGC-1α or GFP control. Peroxisomal biogenesis proteins (Peroxins) and genes (PEXs) responsible for proliferation and functions were assessed by western blotting and real-time qRT-PCR respectively. 1-(14)C palmitic acid and 1-(14)C lignoceric acid (exclusive peroxisomal specific substrate) were used to assess mitochondrial oxidation of peroxisomal derived metabolites. Following overexpression of PGC-1α, 1) Peroxisomal membrane protein 70kD (PMP70), PEX19, and mitochondrial citrate synthetase protein content were significantly elevated (P<0.05) 2) PGC-1α, PMP70, key PEXs, and peroxisomal β-oxidation mRNA expression levels were significantly upregulated (P<0.05) and 3) A concomitant increase in lignoceric acid oxidation by both peroxisomal and mitochondrial activity was observed (P<0.05). These novel findings demonstrate that, in addition to the proliferative effect on mitochondria, PGC-1α can induce peroxisomes and accompanying elevations in long-chain and very-long-chain fatty acid oxidation by a peroxisomal-mitochondrial functional cooperation as observed in HSkM cells.

  2. Ionizing radiation-mediated premature senescence and paracrine interactions with cancer cells enhance the expression of syndecan 1 in human breast stromal fibroblasts: the role of TGF-β

    PubMed Central

    Liakou, Eleni; Mavrogonatou, Eleni; Pratsinis, Harris; Rizou, Sophia; Evangelou, Konstantinos; Panagiotou, Petros N.; Karamanos, Nikos K.; Gorgoulis, Vassilis G.; Kletsas, Dimitris

    2016-01-01

    The cell surface proteoglycan syndecan 1 (SDC1) is overexpressed in the malignant breast stromal fibroblasts, creating a favorable milieu for tumor cell growth. In the present study, we found that ionizing radiation, a well-established treatment in human breast cancer, provokes premature senescence of human breast stromal fibroblasts in vitro, as well as in the breast tissue in vivo. These senescent cells were found to overexpress SDC1 both in vitro and in vivo. By using a series of specific inhibitors and siRNA approaches, we showed that this SDC1 overexpression in senescent cells is the result of an autocrine action of Transforming Growth Factor-β (TGF-β) through the Smad pathway and the transcription factor Sp1, while the classical senescence pathways of p53 or p38 MAPK - NF-kB are not involved. In addition, the highly invasive human breast cancer cells MDA-MB-231 (in contrast to the low-invasive MCF-7) can also enhance SDC1 expression, both in early-passage and senescent fibroblasts via a paracrine action of TGF-β. The above suggest that radiation-mediated premature senescence and invasive tumor cells, alone or in combination, enhance SDC1 expression in breast stromal fibroblasts, a poor prognostic factor for cancer growth, and that TGF-β plays a crucial role in this process. PMID:27434331

  3. Human breast milk: A review on its composition and bioactivity.

    PubMed

    Andreas, Nicholas J; Kampmann, Beate; Mehring Le-Doare, Kirsty

    2015-11-01

    Breast milk is the perfect nutrition for infants, a result of millions of years of evolution, finely attuning it to the requirements of the infant. Breast milk contains many complex proteins, lipids and carbohydrates, the concentrations of which alter dramatically over a single feed, as well as over lactation, to reflect the infant's needs. In addition to providing a source of nutrition for infants, breast milk contains a myriad of biologically active components. These molecules possess diverse roles, both guiding the development of the infants immune system and intestinal microbiota. Orchestrating the development of the microbiota are the human milk oligosaccharides, the synthesis of which are determined by the maternal genotype. In this review, we discuss the composition of breast milk and the factors that affect it during the course of breast feeding. Understanding the components of breast milk and their functions will allow for the improvement of clinical practices, infant feeding and our understanding of immune responses to infection and vaccination in infants.

  4. Over-expression of human endosulfatase-1 exacerbates cadmium-induced injury to transformed human lung cells in vitro

    SciTech Connect

    Zhang, Huiying; Newman, Donna R.; Bonner, James C.; Sannes, Philip L.

    2012-11-15

    Environmental exposure to cadmium is known to cause damage to alveolar epithelial cells of the lung, impair their capacity to repair, and result in permanent structural alterations. Cell surface heparan sulfate proteoglycans (HSPGs) can modulate cell responses to injury through their interactions with soluble effector molecules. These interactions are often sulfate specific, and the removal of sulfate groups from HS side chains could be expected to influence cellular injury, such as that caused by exposure to cadmium. The goal of this study was to define the role 6-O-sulfate plays in cellular responses to cadmium exposure in two pulmonary epithelial cancer cell lines (H292 and A549) and in normal human primary alveolar type II (hAT2) cells. Sulfate levels were modified by transduced transient over-expression of 6-O-endosulfatase (HSulf-1), a membrane-bound enzyme which specifically removes 6-O-sulfate groups from HSPG side chains. Results showed that cadmium decreased cell viability and activated apoptosis pathways at low concentrations in hAT2 cells but not in the cancer cells. HSulf-1 over-expression, on the contrary, decreased cell viability and activated apoptosis pathways in H292 and A549 cells but not in hAT2 cells. When combined with cadmium, HSulf-1 over-expression further decreased cell viability and exacerbated the activation of apoptosis pathways in the transformed cells but did not add to the toxicity in hAT2 cells. The finding that HSulf-1 sensitizes these cancer cells and intensifies the injury induced by cadmium suggests that 6-O-sulfate groups on HSPGs may play important roles in protection against certain environmental toxicants, such as heavy metals. -- Highlights: ► Primary human lung alveolar type 2 (hAT2) cells and H292 and A549 cells were used. ► Cadmium induced apoptosis in hAT2 cells but not in H292 or A549 cells. ► HSulf-1exacerbates apoptosis induced by cadmium in H292 and A549 but not hAT2 cells.

  5. Thymic epithelial cells of human patients affected by myasthenia gravis overexpress IGF-I immunoreactivity.

    PubMed

    Marinova, Tsvetana T; Kuerten, Stefanie; Petrov, Danail B; Angelov, Doychin N

    2008-01-01

    Accumulating evidence shows that several kinds of thymic cells express insulin-like growth factor-I (IGF-I), which is known to play an important role in T cell ontogeny under both physiological and pathological conditions. Still, little is known about the mechanisms of IGF-I involvement in the pathological transformation of the thymocyte microenvironment. The present study focuses on a comparative analysis of the IGF-I immunoreactivity of thymic epithelial cells (EC) from human patients with hyperplasia-associated myasthenia gravis (MG) versus physiological thymic tissue from healthy controls using immunohistochemistry and immunoelectron microscopy. We show that myasthenic EC overexpress IGF-I in comparison to EC from control subjects. The IGF-I immunoreactivity in the medullary and cortical EC from MG patients was stronger than in the normal gland. The increased expression of IGF-I and more frequent distribution of IGF-I and IGF-I-receptor (IGF-IR) immunopositive EC correlated with modulation in the immunoreactivity of double (IGF-I/IGF-IR) positive EC. Our data provide new immunocytochemial evidence for alterations of IGF-I and IGF-IR immunoreactivity in EC from pathological thymi. The persisting expression of IGF-I and IGF-IR most likely indicates that the myasthenic thymus is still capable of governing IGF-I signaling pathways, which are involved in the local regulation of T cell development and plasticity.

  6. Overexpression of c-fos increases recombination frequency in human osteosarcoma cells.

    PubMed

    van den Berg, S; Rahmsdorf, H J; Herrlich, P; Kaina, B

    1993-05-01

    We have shown previously that overexpression of c-Ha-ras, v-mos or c-fos increases the spontaneous level of chromosomal aberrations and gene mutations in NIH 3T3 cells, and that reduction of the Fos protein level inhibits aberration induction by c-Ha-ras and v-mos and also by irradiation with ultraviolet light (van den Berg et al., Mol. Carcinogenesis, 4, 460-466). In order to examine whether fos is also involved in DNA recombination, thymidine kinase (tk) deficient human osteosarcoma cells containing two versions of the herpes simplex virus tk gene inactivated by base insertion were either transiently or stably transfected with various fos expression plasmids. The frequency of tk+ revertants was significantly enhanced both upon transient transfection with RSV-promoter-fos gene constructs and by stimulation of Fos synthesis in stably transfected cells harbouring an inducible metallothionein promoter-fos construct. No such increases were observed in cells transfected with plasmids containing a truncated version of c-fos. The data indicate that c-fos is involved in generating various types of genetic changes including homologous recombination; a role of c-fos in genetic instability may contribute to its action in tumor promotion and progression.

  7. Excess coenzyme A reduces skeletal muscle performance and strength in mice overexpressing human PANK2.

    PubMed

    Corbin, Deborah R; Rehg, Jerold E; Shepherd, Danielle L; Stoilov, Peter; Percifield, Ryan J; Horner, Linda; Frase, Sharon; Zhang, Yong-Mei; Rock, Charles O; Hollander, John M; Jackowski, Suzanne; Leonardi, Roberta

    2017-02-03

    Coenzyme A (CoA) is a cofactor that is central to energy metabolism and CoA synthesis is controlled by the enzyme pantothenate kinase (PanK). A transgenic mouse strain expressing human PANK2 was derived to determine the physiological impact of PANK overexpression and elevated CoA levels. The Tg(PANK2) mice expressed high levels of the transgene in skeletal muscle and heart; however, CoA was substantially elevated only in skeletal muscle, possibly associated with the comparatively low endogenous levels of acetyl-CoA, a potent feedback inhibitor of PANK2. Tg(PANK2) mice were smaller, had less skeletal muscle mass and displayed significantly impaired exercise tolerance and grip strength. Skeletal myofibers were characterized by centralized nuclei and aberrant mitochondria. Both the content of fully assembled complex I of the electron transport chain and ATP levels were reduced, while markers of oxidative stress were elevated in Tg(PANK2) skeletal muscle. These abnormalities were not detected in the Tg(PANK2) heart muscle, with the exception of spotty loss of cristae organization in the mitochondria. The data demonstrate that excessively high CoA may be detrimental to skeletal muscle function.

  8. BMP Signaling and Podocyte Markers Are Decreased in Human Diabetic Nephropathy in Association With CTGF Overexpression

    PubMed Central

    Turk, Tamara; Leeuwis, Jan Willem; Gray, Julia; Torti, Suzy V.; Lyons, Karen M.; Nguyen, Tri Q.; Goldschmeding, Roel

    2009-01-01

    Diabetic nephropathy is characterized by decreased expression of bone morphogenetic protein-7 (BMP-7) and decreased podocyte number and differentiation. Extracellular antagonists such as connective tissue growth factor (CTGF; CCN-2) and sclerostin domain-containing-1 (SOSTDC1; USAG-1) are important determinants of BMP signaling activity in glomeruli. We studied BMP signaling activity in glomeruli from diabetic patients and non-diabetic individuals and from control and diabetic CTGF+/+ and CTGF+/− mice. BMP signaling activity was visualized by phosphorylated Smad1, -5, and -8 (pSmad1/5/8) immunostaining, and related to expression of CTGF, SOSTDC1, and the podocyte differentiation markers WT1, synaptopodin, and nephrin. In control and diabetic glomeruli, pSmad1/5/8 was mainly localized in podocytes, but both number of positive cells and staining intensity were decreased in diabetes. Nephrin and synaptopodin were decreased in diabetic glomeruli. Decrease of pSmad1/5/8 was only partially explained by decrease in podocyte number. SOSTDC1 and CTGF were expressed exclusively in podocytes. In diabetic glomeruli, SOSTDC1 decreased in parallel with podocyte number, whereas CTGF was strongly increased. In diabetic CTGF+/− mice, pSmad1/5/8 was preserved, compared with diabetic CTGF+/+ mice. In conclusion, in human diabetic nephropathy, BMP signaling activity is diminished, together with reduction of podocyte markers. This might relate to concomitant overexpression of CTGF but not SOSTDC1. (J Histochem Cytochem 57:623–631, 2009) PMID:19255250

  9. Expression of protein tyrosine phosphatase alpha (RPTPalpha) in human breast cancer correlates with low tumor grade, and inhibits tumor cell growth in vitro and in vivo.

    PubMed

    Ardini, E; Agresti, R; Tagliabue, E; Greco, M; Aiello, P; Yang, L T; Ménard, S; Sap, J

    2000-10-12

    Tyrosine phosphorylation is controlled by a balance of tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs). Whereas the contribution of PTKs to breast tumorigenesis is the subject of intense scrutiny, the potential role of PTPs is poorly known. RPTPalpha is implicated in the activation of Src family kinases, and regulation of integrin signaling, cell adhesion, and growth factor responsiveness. To explore its potential contribution to human neoplasia, we surveyed RPTPalpha protein levels in primary human breast cancer. We found RPTPalpha levels to vary widely among tumors, with 29% of cases manifesting significant overexpression. High RPTPalpha protein levels correlated significantly with low tumor grade and positive estrogen receptor status. Expression of RPTPalpha in breast carcinoma cells led to growth inhibition, associated with increased accumulation in G0 and G1, and delayed tumor growth and metastasis. To our knowledge, this is the first example of a study correlating expression level of a specific bona fide PTP with neoplastic disease status in humans.

  10. Globular adiponectin enhances invasion in human breast cancer cells

    PubMed Central

    FALK LIBBY, EMILY; LIU, JIANZHONG; LI, YI; LEWIS, MONICA J.; DEMARK-WAHNEFRIED, WENDY; HURST, DOUGLAS R.

    2016-01-01

    Every year, a large number of women succumb to metastatic breast cancer due to a lack of curative approaches for this disease. Adiponectin (AdipoQ) is the most abundant of the adipocyte-secreted adipokines. In recent years, there has been an interest in the use of AdipoQ and AdipoQ receptor agonists as therapeutic agents for the treatment of breast cancer. However, while multiple epidemiological studies have previously indicated that low levels of circulating plasma AdipoQ portend poor prognosis in patients with breast cancer, recent studies have reported that elevated expression levels of AdipoQ in breast tissue are correlated with advanced stages of the disease. Thus, the aim of the present study was to clarify the mechanism by which AdipoQ in breast tissue acts directly on tumor cells to regulate the early steps of breast cancer metastasis. In the present study, the effects of different AdipoQ isoforms on the metastatic potential of human breast cancer cells were investigated. The results revealed that globular adiponectin (gAd) promoted invasive cell morphology and significantly increased the migration and invasion abilities of breast cancer cells, whereas full-length adiponectin (fAd) had no effect on these cells. Additionally, gAd, but not fAd, increased the expression levels of microtubule-associated protein 1 light chain 3 beta (LC3B)-II and intracellular LC3B puncta, which are indicators of autophagosome formation, thus suggesting autophagic induction by gAd. Furthermore, the inhibition of autophagic function by autophagy-related protein 7 knockdown attenuated the gAd-induced increase in invasiveness in breast cancer cells. Therefore, the results of the present study suggested that a specific AdipoQ isoform may enhance breast cancer invasion, possibly via autophagic induction. Understanding the roles of the different AdipoQ isoforms as microenvironmental regulatory molecules may aid the development of effective AdipoQ-based treatments for breast cancer

  11. Genistein synergizes centchroman action in human breast cancer cells

    PubMed Central

    Kaushik, Shweta; Shyam, Hari; Sharma, Ramesh; Balapure, Anil K.

    2016-01-01

    Objectives: Despite the progress in the diagnosis and treatment of breast cancer, it remains a major health problem in women. Natural flavones along with chemotherapeutic agents enhance therapeutic response and minimize toxicity of chemical agents. Centchroman (CC) colloquially called as ormeloxifene, is a nonsteroidal oral contraceptive categorized as selective estrogen receptor modulator with anti-breast cancer activity. Genistein (GN), an isoflavone found mainly in soy products possesses anti-cancerous potential against a number of cancers including breast. The present study aims at investigating the combination of CC and GN in human breast cancer cell lines (HBCCs). Materials and Methods: Cytotoxic effect of CC and GN separately and in combination were assessed by sulforhodamine B (SRB) assay in MDA MB-231, MDA MB-468, MCF-7, T-47D HBCCs, and nontumorigenic human mammary epithelial cell (HMEC) MCF-10A. The drug interaction was analyzed using CompuSyn software through which combination index and dose reduction index were generated. Results: Combination of CC plus GN exerts significantly higher cytotoxicity compared to each drug per se in HBCCs, whereas HMEC-MCF-10A remains unaffected. Conclusion: On an overall basis, the drugs in combination enhanced cell killing in malignant cells. Therefore, the combination of CC with GN may offer a novel approach for the breast cancer. PMID:28066099

  12. Detection of Volatile Metabolites of Garlic in Human Breast Milk.

    PubMed

    Scheffler, Laura; Sauermann, Yvonne; Zeh, Gina; Hauf, Katharina; Heinlein, Anja; Sharapa, Constanze; Buettner, Andrea

    2016-06-06

    The odor of human breast milk after ingestion of raw garlic at food-relevant concentrations by breastfeeding mothers was investigated for the first time chemo-analytically using gas chromatography-mass spectrometry/olfactometry (GC-MS/O), as well as sensorially using a trained human sensory panel. Sensory evaluation revealed a clear garlic/cabbage-like odor that appeared in breast milk about 2.5 h after consumption of garlic. GC-MS/O analyses confirmed the occurrence of garlic-derived metabolites in breast milk, namely allyl methyl sulfide (AMS), allyl methyl sulfoxide (AMSO) and allyl methyl sulfone (AMSO₂). Of these, only AMS had a garlic-like odor whereas the other two metabolites were odorless. This demonstrates that the odor change in human milk is not related to a direct transfer of garlic odorants, as is currently believed, but rather derives from a single metabolite. The formation of these metabolites is not fully understood, but AMSO and AMSO₂ are most likely formed by the oxidation of AMS in the human body. The excretion rates of these metabolites into breast milk were strongly time-dependent with large inter-individual differences.

  13. Estrogen Receptor Mutants/Variants in Human Breast Cancer.

    DTIC Science & Technology

    1997-12-01

    Recherche Louis- Charles Simard, Montreal, Canada. Four nor- mal human breast tissues from reduction mammoplasties of pre- menopausal women were obtained...to hormone resistance. Cancer Res 1990; 50: 6208-17. 22. Karnik PS, Kulkarni S, Lui XP, Budd GT, Bukowski RM. Estrogen receptor mutations in

  14. Detection of Volatile Metabolites of Garlic in Human Breast Milk

    PubMed Central

    Scheffler, Laura; Sauermann, Yvonne; Zeh, Gina; Hauf, Katharina; Heinlein, Anja; Sharapa, Constanze; Buettner, Andrea

    2016-01-01

    The odor of human breast milk after ingestion of raw garlic at food-relevant concentrations by breastfeeding mothers was investigated for the first time chemo-analytically using gas chromatography−mass spectrometry/olfactometry (GC-MS/O), as well as sensorially using a trained human sensory panel. Sensory evaluation revealed a clear garlic/cabbage-like odor that appeared in breast milk about 2.5 h after consumption of garlic. GC-MS/O analyses confirmed the occurrence of garlic-derived metabolites in breast milk, namely allyl methyl sulfide (AMS), allyl methyl sulfoxide (AMSO) and allyl methyl sulfone (AMSO2). Of these, only AMS had a garlic-like odor whereas the other two metabolites were odorless. This demonstrates that the odor change in human milk is not related to a direct transfer of garlic odorants, as is currently believed, but rather derives from a single metabolite. The formation of these metabolites is not fully understood, but AMSO and AMSO2 are most likely formed by the oxidation of AMS in the human body. The excretion rates of these metabolites into breast milk were strongly time-dependent with large inter-individual differences. PMID:27275838

  15. A Radiolabeled Fully Human Antibody to Human Aspartyl (Asparaginyl) β-Hydroxylase Is a Promising Agent for Imaging and Therapy of Metastatic Breast Cancer.

    PubMed

    Revskaya, Ekaterina; Jiang, Zewei; Morgenstern, Alfred; Bruchertseifer, Frank; Sesay, Muctarr; Walker, Susan; Fuller, Steven; Lebowitz, Michael S; Gravekamp, Claudia; Ghanbari, Hossein A; Dadachova, Ekaterina

    2017-03-01

    There is a need for novel effective and safe therapies for metastatic breast cancer based on targeting tumor-specific molecular markers of cancer. Human aspartyl (asparaginyl) β-hydroxylase (HAAH) is a highly conserved enzyme that hydroxylates epidermal growth factor-like domains in transformation-associated proteins and is overexpressed in a variety of cancers, including breast cancer. A fully human monoclonal antibody (mAb) PAN-622 has been developed to HAAH. In this study, they describe the development of PAN-622 mAb as an agent for imaging and radioimmunotherapy of metastatic breast cancer. PAN-622 was conjugated to several ligands such as DOTA, CHXA″, and DTPA to enable subsequent radiolabeling and its immunoreactivity was evaluated by an HAAH-specific enzyme-linked immunosorbent assay and binding to the HAAH-positive cells. As a result, DTPA-PAN-622 was chosen to investigate biodistribution in healthy CD-1 female mice and 4T1 mammary tumor-bearing BALB/c mice. The (111)In-DTPA-pan622 mAb concentrated in the primary tumors and to some degree in lung metastases as shown by SPECT/CT and Cherenkov imaging. A pilot therapy study with (213)Bi-DTPA-PAN-622 demonstrated a significant effect on the primary tumor. The authors concluded that human mAb PAN-622 to HAAH is a promising reagent for development of imaging and possible therapeutic agents for the treatment of metastatic breast cancer.

  16. The role of semaphorin 4D in tumor development and angiogenesis in human breast cancer

    PubMed Central

    Jiang, Hongchao; Chen, Ceshi; Sun, Qiangming; Wu, Jing; Qiu, Lijuan; Gao, Change; Liu, Weiqing; Yang, Jun; Jun, Nie; Dong, Jian

    2016-01-01

    Background Semaphorin 4D (Sema4D) is highly expressed in certain types of tumors and functions in the regulation of tumor angiogenesis and growth. However, it is still not clear regarding the roles of Sema4D in breast cancer. This study was designed to explore the effects of Sema4D on proliferation, cell cycle progression, apoptosis, invasion, migration, tumor growth, and angiogenesis in breast cancer. Materials and methods The expression level of Sema4D was investigated in MCF10A, 184A1, HCC1937, MDA-MB-468, MDA-MB-231, Hs578T, BT474, MCF-7, and T47D breast cancer cell lines by Western blotting analysis. Sema4D downregulation or overexpression was established by infection with lentiviruses-encoding Sema4D short hairpin RNA (shRNA) or Sema4D. To evaluate the effects of Sema4D on cell proliferation, cell cycle progression, apoptosis, invasion, and migration of MDA-MB-231 and MDA-MB-468 cells, methods including MTT assay, flow cytometry, wound healing assay, and transwell experiments were applied. BALB/c nude mice were injected with MDA-MB-231 cells, which were respectively infected with lentiviruses-encoding Sema4D, Sema4D shRNA, and GFP, followed by tumor angiogenesis assay. Results Sema4D was expressed at higher levels in breast cancer cell lines compared with the normal human breast epithelial cell lines, especially in MDA-MB-231 and MDA-MB-468 cells. Cell proliferation ability was remarkably inhibited in Sema4D downregulated condition, whereas the proportions of cells in the G0/G1 phase and apoptosis increased in MDA-MB-231 and MDA-MB-468 cells. In addition, the invasion and migration abilities of these cells were obviously reduced. Xenograft growth as well as angiogenesis was inhibited when infected with lentiviruses-encoding Sema4D shRNA in vivo. Conclusion Downregulation of Sema4D had notable influence on cell proliferation ability, invasion, migration, and apoptosis of both MDA-MB-231 and MDA-MB-468 cells. Furthermore, infection with lentiviruses

  17. Translational up-regulation of the EGFR by tumor hypoxia provides a nonmutational explanation for its overexpression in human cancer.

    PubMed

    Franovic, Aleksandra; Gunaratnam, Lakshman; Smith, Karlene; Robert, Isabelle; Patten, David; Lee, Stephen

    2007-08-07

    Overexpression of the EGF receptor (EGFR) is a recurrent theme in human cancer and is thought to cause aggressive phenotypes and resistance to standard therapy. There has, thus, been a concerted effort in identifying EGFR gene mutations to explain misregulation of EGFR expression as well as differential sensitivity to anti-EGFR drugs. However, such genetic alterations have proven to be rare occurrences in most types of cancer, suggesting the existence of a more general physiological trigger for aberrant EGFR expression. Here, we provide evidence that overexpression of wild-type EGFR can be induced by the hypoxic microenvironment and activation of hypoxia-inducible factor 2-alpha (HIF2alpha) in the core of solid tumors. Our data suggest that hypoxia/HIF2alpha activation represents a common mechanism for EGFR overexpression by increasing EGFR mRNA translation, thereby diminishing the necessity for gene mutations. This allows for the accumulation of elevated EGFR levels, increasing its availability for the autocrine signaling required for tumor cell growth autonomy. Taken together, our findings provide a nonmutational explanation for EGFR overexpression in human tumors and highlight a role for HIF2alpha activation in the regulation of EGFR protein synthesis.

  18. Activation of an IL-6 Inflammatory Loop Mediates Trastuzumab Resistance in HER2 Overexpressing Breast Cancers by Expanding the Cancer Stem Cell Population

    PubMed Central

    Korkaya, Hasan; Kim, Gwang-il; Davis, April; Malik, Fayaz; Henry, N. Lynn; Ithimakin, Suthinee; Quraishi, Ahmed A.; Tawakkol, Nader; D’Angelo, Rosemarie; Paulson, Amanda; Chung, Susan; Luther, Tahra; Paholak, Hayley S.; Liu, Suling; Hassan, Khaled; Zen, Qin; Clouthier, Shawn G.; Wicha, Max S.

    2012-01-01

    Although inactivation of the PTEN gene has been implicated in the development of resistance to the HER2 targeting antibody trastuzumab, the mechanisms mediating this resistance remain elusive. We generated trastuzumab resistant cells by knocking down PTEN expression in HER2 overexpressing breast cancer cell lines and demonstrate that development of trastuzumab resistance in these cells is mediated by activation of an IL-6 inflammatory feedback loop leading to expansion of the cancer stem cell (CSC) population. Long term trastuzumab treatment generates highly enriched CSCs which display an EMT phenotype secreting over 100-fold more IL-6 than parental cells. An IL-6 receptor antibody interrupted this inflammatory feedback loop reducing the cancer stem cell population resulting in decreased tumor growth and metastasis in mouse xenographs. These studies demonstrate that trastuzumab resistance may be mediated by an IL-6 inflammatory loop and suggest that blocking this loop may provide alternative strategy to overcome trastuzumab resistance. PMID:22819326

  19. Can estrogen receptor overexpression in normal tissues due to previous estrogen deprivation explain the fulvestrant efficacy in breast cancer therapy?

    PubMed

    Kurbel, Sven

    2012-12-01

    Fulvestrant is a down-regulator of estrogen receptors (ERs) with still evolving optimal dosage for ER-positive breast cancer patients. The CONFIRM phase III trial in women with advanced breast cancer proved fulvestrant 500-mg to be associated with a longer time till progression (TTP) than the 250-mg schedule. Detailed results suggest that the fulvestrant in both schedules depended on the previous endocrine therapy. All complete responses and the only significant TTP difference between the two schedules was found among women previously treated with tamoxifen (TAM) and not in women after aromatase inhibitors (AIs). Noting that TAM competes with estrogen binding to ERs is important, so the optimal TAM dosage produces drug concentrations comparable to concentrations of available ER ligands. All AIs diminish production of the main ER ligand, so the optimal AI dosage depends on the overall pool of aromatase molecules in the body. Both treatments are not directly related to the pool of available ERs in the body. Here proposed interpretation is that estrogen deprivation due to years of endocrine breast cancer therapy increases ER expression in breast cancer cells and in other healthy estrogen target tissues. The breast cancer exposure to fulvestrant depends on the presence of all ERs in the body. Only when this overall pool is sufficiently saturated with fulvestrant, we can expect to achieve some breast cancer response due to down-regulation of ER in cancer tissue. The CONFIRM data suggest that among patients switching from TAM to fulvestrant, only the 500-mg schedule could down-regulate the moderately enlarged total body ER pool and thus induce breast cancer regression. In patients switching from previous AI treatments, both 250 and 500-mg schedules were unable to prolong the TTP, suggesting that in both doses, fulvestrant showed no efficacy since the overall ER pool was more enlarged after AIs. Fulvestrant might be more effective before TAM and AIs, in the first line

  20. MicroRNA-544 down-regulates both Bcl6 and Stat3 to inhibit tumor growth of human triple negative breast cancer.

    PubMed

    Zhu, Zhengzhi; Wang, Shengying; Zhu, Jinhai; Yang, Qifeng; Dong, Huiming; Huang, Jiankang

    2016-10-01

    Triple negative breast cancer lacking estrogen receptor (ER), progesterone receptor and Her2 account for account for the majority of the breast cancer deaths, due to the lack of specific gene targeted therapy. Our current study aimed to investigate the role of miR-544 in triple negative breast cancer. Endogenous levels of miR-544 were significantly lower in breast cancer cell lines than in human breast non-tumorigenic and mammary epithelial cell lines. We found that miR-544 directly targeted the 3'-untranslated region (UTR) on both Bcl6 and Stat3 mRNAs, and overexpression of miR-544 in triple negative breast cancer cells significantly down-regulated expressions of Bcl6 and Stat3, which in turn severely inhibited cancer cell proliferation, migration and invasion in vitro. Employing a mouse xenograft model to examine the in vivo function of miR-544, we found that expression of miR-544 significantly repressed the growth of xenograft tumors. Our current study reported miR-544 as a tumor-suppressor microRNA particularly in triple negative breast cancer. Our data supported the role of miR-544 as a potential biomarker in developing gene targeted therapies in the clinical treatment of triple negative breast cancer.

  1. Retinoids interfere with the AP1 signalling pathway in human breast cancer cells.

    PubMed

    Dedieu, Stephane; Lefebvre, Philippe

    2006-06-01

    Retinoic acid and its synthetic analogs exert major effects on many biological processes including cell proliferation and differentiation and are now considered as promising pharmacological agents for prevention and treatment of various cancers. The capacity of retinoids to inhibit AP1-responsive genes seems to be the basis for the chemopreventive and chemotherapeutic effects of these agents against hyperproliferative diseases. However, the molecular basis of retinoid antiproliferative properties remains to this day largely unknown. Here, we showed that retinoids inhibit phorbol ester-induced MMP-1 and MMP-3 expression in human breast cancer cells. Transcriptional interference was observed for both retinoid agonist and antagonist treatments, revealing separated transactivation and transrepression functions of retinoids. In addition, we examined MAP kinases as potential targets of retinoid signalling in human breast cancer cells and demonstrated that retinoids repress AP1-responsive gene expression by inhibiting MKK6/p38 and mainly MEK/ERK signalling pathways. On the contrary, the JNK-dependent pathway was not identified as a molecular relay for AP1 activity and was insensitive to retinoid treatments. Finally, we established that overexpressed c-fos and c-jun partially abolished the ability of retinoids to inhibit AP1 activity, suggesting that c-jun and/or c-fos containing dimers may constitute one target of retinoids for transrepression of AP1. All together, our data help to improve our understanding of how retinoids antagonize AP1 activity and may regulate tumoral cell proliferation.

  2. Therapeutic monoclonal antibodies in human breast milk: a case study.

    PubMed

    Ross, Elle; Robinson, Steven E; Amato, Carol; McMillan, Colette; Westcott, Jay; Wolf, Tiffany; Robinson, William A

    2014-04-01

    Recently, therapeutic monoclonal antibodies have been introduced for the treatment of advanced melanoma and other diseases. It remains unclear whether these drugs can be safely administered to women who are breast feeding because of the potential hazardous side effects for nursing infants. One such therapy for metastatic melanoma is ipilimumab, a human monoclonal antibody that blocks cytotoxic T-lymphocyte-antigen-4, and is the preferred treatment for patients with metastatic melanoma when other molecular therapies are not viable. This study measured ipilimumab levels in the breast milk of a patient undergoing treatment that were enough to raise concerns for a nursing infant exposed to ipilimumab.

  3. Data set of the protein expression profiles of Luminal A, Claudin-low and overexpressing HER2(+) breast cancer cell lines by iTRAQ labelling and tandem mass spectrometry.

    PubMed

    Calderón-González, Karla Grisel; Valero Rustarazo, Ma Luz; Labra-Barrios, Maria Luisa; Bazán-Méndez, César Isaac; Tavera-Tapia, Alejandra; Herrera-Aguirre, Marí aEsther; Sánchez Del Pino, Manuel M; Gallegos-Pérez, José Luis; González-Márquez, Humberto; Hernández-Hernández, Jose Manuel; León-Ávila, Gloria; Rodríguez-Cuevas, Sergio; Guisa-Hohenstein, Fernando; Luna-Arias, Juan Pedro

    2015-09-01

    Breast cancer is the most common and the leading cause of mortality in women worldwide. There is a dire necessity of the identification of novel molecules useful in diagnosis and prognosis. In this work we determined the differentially expression profiles of four breast cancer cell lines compared to a control cell line. We identified 1020 polypeptides labelled with iTRAQ with more than 95% in confidence. We analysed the common proteins in all breast cancer cell lines through IPA software (IPA core and Biomarkers). In addition, we selected the specific overexpressed and subexpressed proteins of the different molecular classes of breast cancer cell lines, and classified them according to protein class and biological process. Data in this article is related to the research article "Determination of the protein expression profiles of breast cancer cell lines by Quantitative Proteomics using iTRAQ Labelling and Tandem Mass Spectrometry" (Calderón-González et al. [1] in press).

  4. Ocular input for human melatonin regulation: relevance to breast cancer

    NASA Technical Reports Server (NTRS)

    Glickman, Gena; Levin, Robert; Brainard, George C.

    2002-01-01

    The impact of breast cancer on women across the world has been extensive and severe. As prevalence of breast cancer is greatest in industrialized regions, exposure to light at night has been proposed as a potential risk factor. This theory is supported by the epidemiological observations of decreased breast cancer in blind women and increased breast cancer in women who do shift-work. In addition, human, animal and in vitro studies which have investigated the melatonin-cancer dynamic indicate an apparent relationship between light, melatonin and cancer, albeit complex. Recent developments in understanding melatonin regulation by light in humans are examined, with particular attention to factors that contribute to the sensitivity of the light-induced melatonin suppression response. Specifically, the role of spectral characteristics of light is addressed, and recent relevant action spectrum studies in humans and other mammalian species are discussed. Across five action spectra for circadian and other non-visual responses, a peak sensitivity between 446-484 nm was identified. Under highly controlled exposure circumstances, less than 1 lux of monochromatic light elicited a significant suppression of nocturnal melatonin. In view of the possible link between light exposure, melatonin suppression and cancer risk, it is important to continue to identify the basic related ocular physiology. Visual performance, rather than circadian function, has been the primary focus of architectural lighting systems. It is now necessary to reevaluate lighting strategies, with consideration of circadian influences, in an effort to maximize physiological homeostasis and health.

  5. Ocular input for human melatonin regulation: relevance to breast cancer.

    PubMed

    Glickman, Gena; Levin, Robert; Brainard, George C

    2002-07-01

    The impact of breast cancer on women across the world has been extensive and severe. As prevalence of breast cancer is greatest in industrialized regions, exposure to light at night has been proposed as a potential risk factor. This theory is supported by the epidemiological observations of decreased breast cancer in blind women and increased breast cancer in women who do shift-work. In addition, human, animal and in vitro studies which have investigated the melatonin-cancer dynamic indicate an apparent relationship between light, melatonin and cancer, albeit complex. Recent developments in understanding melatonin regulation by light in humans are examined, with particular attention to factors that contribute to the sensitivity of the light-induced melatonin suppression response. Specifically, the role of spectral characteristics of light is addressed, and recent relevant action spectrum studies in humans and other mammalian species are discussed. Across five action spectra for circadian and other non-visual responses, a peak sensitivity between 446-484 nm was identified. Under highly controlled exposure circumstances, less than 1 lux of monochromatic light elicited a significant suppression of nocturnal melatonin. In view of the possible link between light exposure, melatonin suppression and cancer risk, it is important to continue to identify the basic related ocular physiology. Visual performance, rather than circadian function, has been the primary focus of architectural lighting systems. It is now necessary to reevaluate lighting strategies, with consideration of circadian influences, in an effort to maximize physiological homeostasis and health.

  6. An early history of human breast cancer: West meets East

    PubMed Central

    Yan, Shou-He

    2013-01-01

    Cancer has been increasingly recognized as a global issue. This is especially true in countries like China, where cancer incidence has increased likely because of changes in environment and lifestyle. However, cancer is not a modern disease; early cases have been recorded in ancient medical books in the West and in China. Here, we provide a brief history of cancer, focusing on cancer of the breast, and review the etymology of ai, the Chinese character for cancer. Notable findings from both Western and Chinese traditional medicine are presented to give an overview of the most important, early contributors to our evolving understanding of human breast cancer. We also discuss the earliest historical documents to record patients with breast cancer. PMID:23958056

  7. Inherited Chromosomally Integrated Human Herpesvirus 6 and Breast Cancer.

    PubMed

    Gravel, Annie; Dubuc, Isabelle; Brooks-Wilson, Angela; Aronson, Kristan J; Simard, Jacques; Velásquez-García, Héctor A; Spinelli, John J; Flamand, Louis

    2017-03-01

    Background: Inherited chromosomally integrated human herpesvirus 6 (iciHHV-6) is a condition observed in approximately 1% of the population. Whether such a genetic alteration predisposes to cancer development in currently unknown. Two studies were conducted to determine whether iciHHV-6 is associated with cancer development.Methods: First, a screen of 19,597 people from the province of Quebec (Canada) was conducted. A replication test, using data from a population-based case-control study of 1,090 women with incident breast cancer and 1,053 controls from British Columbia and Ontario (Canada) was conducted. DNA samples were analyzed by qPCR and droplet digital PCR to identify iciHHV-6(+) carriers.Results: In the initial study, a potential association between iciHHV-6 positivity and breast cancer was identified [OR = 2.66; 95% confidence interval (CI), 0.95-7.44]. In the replication dataset, no association was found between iciHHV-6 positivity in women and breast cancer (OR = 0.87; 95% CI, 0.35-2.15).Conclusions: We found no statistically significant associations between inherited chromosomally integrated HHV-6 and breast cancer in women.Impact: These results do not provide evidence to suggest that iciHHV-6 is a risk factor for breast cancer. Cancer Epidemiol Biomarkers Prev; 26(3); 425-7. ©2016 AACR.

  8. Purification and characterization of human dehydrodolychil diphosphate synthase (DHDDS) overexpressed in E. coli.

    PubMed

    Giladi, Moshe; Edri, Ilan; Goldenberg, Michal; Newman, Hadas; Strulovich, Roi; Khananshvili, Daniel; Haitin, Yoni; Loewenstein, Anat

    2017-04-01

    Protein asparagine (N)-linked glycosylation is a post-translational modification that occurs in the endoplasmic reticulum; it plays an important role in protein folding, oligomerization, quality control, sorting, and transport. Accordingly, disorders of glycosylation may affect practically every organ system. Dehydrodolichyl diphosphate synthase (DHDDS) is an eukaryotic cis prenyltransferase (cis-PT) that catalyzes chain elongation of farnesyl diphosphate via multiple condensations with isopentenyl diphosphate to form dehydrodolichyl diphosphate, a precursor for the glycosyl carrier dolichylpyrophophate involved in N-linked glycosylation. Mutations in DHDDS were shown to result in retinitis pigmentosa, ultimately leading to blindness, but the exact molecular mechanism by which the mutations affect DHDDS function remains elusive. In addition, bacterial cis-PT homologs are involved in bacterial wall synthesis and are therefore potential targets for new antibacterial agents. However, as eukaryotic cis-PT were not thoroughly characterized structurally and functionally, rational design of prokaryotic cis-PT specific drugs is currently impossible. Here, we present a simple protocol for purification of functionally active human DHDDS under non-denaturating conditions using a codon-optimized construct. The purified protein forms a stable homodimer, similar to its bacterial homologs, and shows time- and substrate-dependent activity. Purification of this protein requires the presence of a detergent for protein solubility. The protocol described here may be utilized for the overexpression of other eukaryotic cis-PT. Future structural and functional studies of the recombinant DHDDS may shed light on the mechanisms underlying DHDDS-related retinitis pigmentosa and lead to novel therapeutic approaches.

  9. Overexpression of MMP-3 and uPA with Diminished PAI-1 Related to Metastasis in Ductal Breast Cancer Patients Attending a Public Hospital in Mexico City.

    PubMed

    Barajas-Castañeda, Luis Miguel; Cortés-Gutiérrez, Evelin; García-Rodríguez, Francisco Mario; Campos-Rodríguez, Rafael; Lara-Padilla, Eleazar; Enríquez-Rincón, Fernando; Castro-Mussot, María Eugenia; Figueroa-Arredondo, Paula

    2016-01-01

    Extracellular matrix metalloproteases and the fibrinolytic system are important protease systems interacting with each other in charge of remodeling and recycling of tissues. Their role in tumor invasion and metastasis is often discussed. In this study several metalloproteases such as MMP-1, MMP-3, MMP-9, and TIMP-1 together with molecules from the fibrinolytic system like uPA, its receptor uPAR, and its inhibitor, PAI-1, were studied by immune-histochemistry to establish a comparison with and without metastasis. From the (118) primary tumors of Mexican patients with ductal breast cancer studied, 56% were grade II and 69% were size T2; the group with metastatic ganglia included 64 samples (54.3%). In patients with metastasis the estimated expression of MMP-3 and uPA (resp., 28% and 45%) was higher than that from no metastatic tumors; it means there is higher expression of both markers in metastatic tumors (p < 0.05). At the same time, metastatic tumors showed statistically significant lower signal of PAI-1 (24%) than tumors without metastasis (p < 0.05). We concluded that overexpression of MMP-3 and uPA, altogether with diminished expression of PAI-1 from metastatic tumors, might be a crucial step towards metastasis in ductal breast cancer. Nevertheless, additional studies in different populations are necessary to establish a pattern.

  10. Overexpression of MMP-3 and uPA with Diminished PAI-1 Related to Metastasis in Ductal Breast Cancer Patients Attending a Public Hospital in Mexico City

    PubMed Central

    Barajas-Castañeda, Luis Miguel; Cortés-Gutiérrez, Evelin; García-Rodríguez, Francisco Mario; Campos-Rodríguez, Rafael; Lara-Padilla, Eleazar; Enríquez-Rincón, Fernando; Figueroa-Arredondo, Paula

    2016-01-01

    Extracellular matrix metalloproteases and the fibrinolytic system are important protease systems interacting with each other in charge of remodeling and recycling of tissues. Their role in tumor invasion and metastasis is often discussed. In this study several metalloproteases such as MMP-1, MMP-3, MMP-9, and TIMP-1 together with molecules from the fibrinolytic system like uPA, its receptor uPAR, and its inhibitor, PAI-1, were studied by immune-histochemistry to establish a comparison with and without metastasis. From the (118) primary tumors of Mexican patients with ductal breast cancer studied, 56% were grade II and 69% were size T2; the group with metastatic ganglia included 64 samples (54.3%). In patients with metastasis the estimated expression of MMP-3 and uPA (resp., 28% and 45%) was higher than that from no metastatic tumors; it means there is higher expression of both markers in metastatic tumors (p < 0.05). At the same time, metastatic tumors showed statistically significant lower signal of PAI-1 (24%) than tumors without metastasis (p < 0.05). We concluded that overexpression of MMP-3 and uPA, altogether with diminished expression of PAI-1 from metastatic tumors, might be a crucial step towards metastasis in ductal breast cancer. Nevertheless, additional studies in different populations are necessary to establish a pattern. PMID:27975070

  11. Generation and characterization of a breast carcinoma model by PyMT overexpression in mammary epithelial cells of tree shrew, an animal close to primates in evolution.

    PubMed

    Ge, Guang-Zhe; Xia, Hou-Jun; He, Bao-Li; Zhang, Hai-Lin; Liu, Wen-Jing; Shao, Ming; Wang, Chun-Yan; Xiao, Ji; Ge, Fei; Li, Fu-Bing; Li, Yi; Chen, Ceshi

    2016-02-01

    The tree shrew is becoming an attractive experimental animal model for human breast cancer owing to a closer relationship to primates/humans than rodents. Tree shrews are superior to classical primates because tree shrew are easier to manipulate, maintain and propagate. It is required to establish a high-efficiency tree shrew breast cancer model for etiological research and drug assessment. Our previous studies suggest that 7,12-dimethylbenz(a)anthracene (DMBA) and medroxyprogesterone acetate (MPA) induce breast tumors in tree shrews with a low frequency (<50%) and long latency (∼ 7-month), making these methods less than ideal. We induced mammary tumors in tree shrew (Tupaia belangeri chinensis) by injection of lentivirus expressing the PyMT oncogene into mammary ducts of 22 animals. Most tree shrews developed mammary tumors with a latency of about three weeks, and by 7 weeks all injected tree shrews had developed mammary tumors. Among these, papillary carcinoma is the predominant tumor type. One case showed lymph node and lung metastasis. Interestingly, the expression levels of phosphorylated AKT, ERK and STAT3 were elevated in 41-68% of PyMT-induced mammary tumors, but not all tumors. Finally, we observed that the growth of PyMT-induced tree shrew mammary tumors was significantly inhibited by Cisplatin and Epidoxorubicin. PyMT-induced tree shrew mammary tumor model may be suitable for further breast cancer research and drug development, due to its high efficiency and short latency.

  12. Transgenic rats overexpressing the human MrgX3 gene show cataracts and an abnormal skin phenotype

    SciTech Connect

    Kaisho, Yoshihiko . E-mail: Kaisho_Yoshihiko@takeda.co.jp; Watanabe, Takuya; Nakata, Mitsugu; Yano, Takashi; Yasuhara, Yoshitaka; Shimakawa, Kozo; Mori, Ikuo; Sakura, Yasufumi; Terao, Yasuko; Matsui, Hideki; Taketomi, Shigehisa

    2005-05-13

    The human MrgX3 gene, belonging to the mrgs/SNSRs (mass related genes/sensory neuron specific receptors) family, was overexpressed in transgenic rats using the actin promoter. Two animal lines showed cataracts with liquification/degeneration and swelling of the lens fiber cells. The transient epidermal desquamation was observed in line with higher gene expression. Histopathology of the transgenic rats showed acanthosis and focal parakeratosis. In the epidermis, there was an increase in cellular keratin 14, keratin 10, and loricrin, as well as PGP 9.5 in innervating nerve fibers. These phenotypes accompanied an increase in the number of proliferating cells. These results suggest that overexpression of the human MrgX3 gene causes a disturbance of the normal cell-differentiation process.

  13. Generation of Osteosarcomas From a Combination of Rb Silencing and c-Myc Overexpression in Human Mesenchymal Stem Cells.

    PubMed

    Wang, Jir-You; Wu, Po-Quei; Chen, Paul Chih-Hsueh; Lee, Chia-Wen; Chen, Wei-Ming; Hung, Shih-Chieh

    2016-09-07

    : Osteosarcoma (OS) was a malignant tumor occurring with unknown etiology that made prevention and early diagnosis difficult. Mesenchymal stem cells (MSCs), which were found in bone marrow, were claimed to be a possible origin of OS but with little direct evidence. We aimed to characterize OS cells transformed from human MSCs (hMSCs) and identify their association with human primary OS cells and patient survival. Genetic modification with p53 or retinoblastoma (Rb) knockdown and c-Myc or Ras overexpression was applied for hMSC transformation. Transformed cells were assayed for proliferation, differentiation, tumorigenecity, and gene expression profile. Only the combination of Rb knockdown and c-Myc overexpression successfully transformed hMSCs derived from four individual donors, with increasing cell proliferation, decreasing cell senescence rate, and increasing ability to form colonies and spheres in serum-free medium. These transformed cells lost the expression of certain surface markers, increased in osteogenic potential, and decreased in adipogenic potential. After injection in immunodeficient mice, these cells formed OS-like tumors, as evidenced by radiographic analyses and immunohistochemistry of various OS markers. Microarray with cluster analysis revealed that these transformed cells have gene profiles more similar to patient-derived primary OS cells than their normal MSC counterparts. Most importantly, comparison of OS patient tumor samples revealed that a combination of Rb loss and c-Myc overexpression correlated with a decrease in patient survival. This study successfully transformed human MSCs to OS-like cells by Rb knockdown and c-Myc overexpression that may be a useful platform for further investigation of preventive and target therapy for human OS.

  14. Generation of Osteosarcomas from a Combination of Rb Silencing and c-Myc Overexpression in Human Mesenchymal Stem Cells.

    PubMed

    Wang, Jir-You; Wu, Po-Kuei; Chen, Paul Chih-Hsueh; Lee, Chia-Wen; Chen, Wei-Ming; Hung, Shih-Chieh

    2017-02-01

    Osteosarcoma (OS) was a malignant tumor occurring with unknown etiology that made prevention and early diagnosis difficult. Mesenchymal stem cells (MSCs), which were found in bone marrow, were claimed to be a possible origin of OS but with little direct evidence. We aimed to characterize OS cells transformed from human MSCs (hMSCs) and identify their association with human primary OS cells and patient survival. Genetic modification with p53 or retinoblastoma (Rb) knockdown and c-Myc or Ras overexpression was applied for hMSC transformation. Transformed cells were assayed for proliferation, differentiation, tumorigenecity, and gene expression profile. Only the combination of Rb knockdown and c-Myc overexpression successfully transformed hMSCs derived from four individual donors, with increasing cell proliferation, decreasing cell senescence rate, and increasing ability to form colonies and spheres in serum-free medium. These transformed cells lost the expression of certain surface markers, increased in osteogenic potential, and decreased in adipogenic potential. After injection in immunodeficient mice, these cells formed OS-like tumors, as evidenced by radiographic analyses and immunohistochemistry of various OS markers. Microarray with cluster analysis revealed that these transformed cells have gene profiles more similar to patient-derived primary OS cells than their normal MSC counterparts. Most importantly, comparison of OS patient tumor samples revealed that a combination of Rb loss and c-Myc overexpression correlated with a decrease in patient survival. This study successfully transformed human MSCs to OS-like cells by Rb knockdown and c-Myc overexpression that may be a useful platform for further investigation of preventive and target therapy for human OS. Stem Cells Translational Medicine 2017;6:512-526.

  15. miR-151-3p Targets TWIST1 to Repress Migration of Human Breast Cancer Cells

    PubMed Central

    Yeh, Ting-Chih; Huang, Tzu-Ting; Yeh, Tien-Shun; Chen, Yu-Ren; Hsu, Kai-Wen; Yin, Pen-Hui; Lee, Hsin-Chen; Tseng, Ling-Ming

    2016-01-01

    TWIST1 is a highly conserved basic helix-loop-helix transcription factor that contributes to cancer metastasis by promoting an epithelial-mesenchymal transition and repressing E-cadherin gene expression in breast cancer. In this study, we explored the potential role of miR-151 in TWIST1 expression and cancer properties in human breast cancer cells. We found that the human TWIST1 3’UTR contains a potential binging site for miR-151-3p at the putative target sequence 5’-CAGUCUAG-3’. Using a TWIST1-3’UTR luciferase reporter assay, we demonstrated that the target sequence within the TWIST1 3’UTR is required for miR-151-3p regulation of TWIST1 expression. Moreover, we found that ectopic expression of miR-151-3p by infection with adenoviruses expressing miR-151 significantly decreased TWIST1 expression, migration and invasion, but did not affect cell growth and tumorsphere formation of human breast cancer cells. In addition, overexpression of the protein coding region without the 3’UTR of TWIST1 reversed the repression of cell migration by miR-151-3p. Furthermore, knockdown of miR-151-3p increased TWIST1 expression, reduced E-cadherin expression, and enhanced cell migration. In conclusion, these results suggest that miR-151-3p directly regulates TWIST1 expression by targeting the TWIST1 3’UTR and thus repressing the migration and invasion of human breast cancer cells by enhancing E-cadherin expression. Our findings add to accumulating evidence that microRNAs are involved in breast cancer progression by modulating TWIST1 expression. PMID:27930738

  16. Characterization of human breast cancer by scanning acoustic microscopy

    NASA Astrophysics Data System (ADS)

    Chen, Di; Malyarenko, Eugene; Seviaryn, Fedar; Yuan, Ye; Sherman, Mark; Bandyopadhyay, Sudeshna; Gierach, Gretchen; Greenway, Christopher W.; Maeva, Elena; Strumban, Emil; Duric, Neb; Maev, Roman

    2013-03-01

    Objectives: The purpose of this study was to characterize human breast cancer tissues by the measurement of microacoustic properties. Methods: We investigated eight breast cancer patients using acoustic microscopy. For each patient, seven blocks of tumor tissue were collected from seven different positions around a tumor mass. Frozen sections (10 micrometer, μm) of human breast cancer tissues without staining and fixation were examined in a scanning acoustic microscope with focused transducers at 80 and 200 MHz. Hematoxylin and Eosin (H and E) stained sections from the same frozen breast cancer tissues were imaged by optical microscopy for comparison. Results: The results of acoustic imaging showed that acoustic attenuation and sound speed in cancer cell-rich tissue regions were significantly decreased compared with the surrounding tissue regions, where most components are normal cells/tissues, such as fibroblasts, connective tissue and lymphocytes. Our observation also showed that the ultrasonic properties were influenced by arrangements of cells and tissue patterns. Conclusions: Our data demonstrate that attenuation and sound speed imaging can provide biomechanical information of the tumor and normal tissues. The results also demonstrate the potential of acoustic microscopy as an auxiliary method for operative detection and localization of cancer affected regions.

  17. Noncontact diffuse correlation tomography of human breast tumor

    PubMed Central

    He, Lian; Lin, Yu; Huang, Chong; Irwin, Daniel; Szabunio, Margaret M.; Yu, Guoqiang

    2015-01-01

    Abstract. Our first step to adapt our recently developed noncontact diffuse correlation tomography (ncDCT) system for three-dimensional (3-D) imaging of blood flow distribution in human breast tumors is reported. A commercial 3-D camera was used to obtain breast surface geometry, which was then converted to a solid volume mesh. An ncDCT probe scanned over a region of interest on the mesh surface and the measured boundary data were combined with a finite element framework for 3-D image reconstruction of blood flow distribution. This technique was tested in computer simulations and in vivo human breasts with low-grade carcinoma. Results from computer simulations suggest that relatively high accuracy can be achieved when the entire tumor is within the sensitive region of diffuse light. Image reconstruction with a priori knowledge of the tumor volume and location can significantly improve the accuracy in recovery of tumor blood flow contrasts. In vivo imaging results from two breast carcinomas show higher average blood flow contrasts (5.9- and 10.9-fold) in the tumor regions compared to the surrounding tissues, which are comparable with previous findings using diffuse correlation spectroscopy. The ncDCT system has the potential to image blood flow distributions in soft and vulnerable tissues without distorting tissue hemodynamics. PMID:26259706

  18. Noninvasive molecular imaging of MYC mRNA expression in human breast cancer xenografts with a [99mTc]peptide-peptide nucleic acid-peptide chimera.

    PubMed

    Tian, Xiaobing; Aruva, Mohan R; Qin, Wenyi; Zhu, Weizhu; Sauter, Edward R; Thakur, Mathew L; Wickstrom, Eric

    2005-01-01

    Human estrogen receptor-positive breast cancer cells typically display elevated levels of Myc protein due to overexpression of MYC mRNA, and elevated insulin-like growth factor 1 receptor (IGF1R) due to overexpression of IGF1R mRNA. We hypothesized that scintigraphic detection of MYC peptide nucleic acid (PNA) probes with an IGF1 peptide loop on the C-terminus, and a [99mTc]chelator peptide on the N-terminus, could measure levels of MYC mRNA noninvasively in human IGF1R-overexpressing MCF7 breast cancer xenografts in nude mice. We prepared the chelator-MYC PNA-IGF1 peptide, as well as a 4-nt mismatch PNA control, by solid-phase synthesis. We imaged MCF7 xenografts scintigraphically and measured the distribution of [99mTc]probes by scintillation counting of dissected tissues. MCF7 xenografts in nude mice were visualized at 4 and 24 h after tail vein administration of the [99mTc]PNA probe specific for MYC mRNA, but not with the mismatch control. The [99mTc]probes distributed normally to the kidneys, livers, tumors, and other tissues. Molecular imaging of oncogene mRNAs in solid tumors with radiolabel-PNA-peptide chimeras might provide additional genetic characterization of preinvasive and invasive breast cancers.

  19. Plant cyclopeptide RA-V kills human breast cancer cells by inducing mitochondria-mediated apoptosis through blocking PDK1–AKT interaction

    SciTech Connect

    Fang, Xian-Ying; Chen, Wei; Fan, Jun-Ting; Song, Ran; Wang, Lu; Gu, Yan-Hong; Zeng, Guang-Zhi; Shen, Yan; Wu, Xue-Feng; Tan, Ning-Hua; Xu, Qiang; Sun, Yang

    2013-02-15

    In the present paper, we examined the effects of a natural cyclopeptide RA-V on human breast cancer cells and the underlying mechanisms. RA-V significantly inhibited the growth of human breast cancer MCF-7, MDA-MB-231 cells and murine breast cancer 4T1 cells. In addition, RA-V triggered mitochondrial apoptotic pathway which was indicated by the loss of mitochondrial membrane potential, the release of cytochrome c, and the activation of caspase cascade. Further study showed that RA-V dramatically inhibited phosphorylation of AKT and 3-phosphoinositide dependent protein kinase 1 (PDK1) in MCF-7 cells. Moreover, RA-V disrupted the interaction between PDK1 and AKT in MCF-7 cells. Furthermore, RA-V-induced apoptosis could be enhanced by phosphatidylinositol 3-kinase inhibitor or attenuated by over-expression of AKT in all the three kinds of breast cancer cells. Taken together, this study shows that RA-V, which can induce mitochondria-mediated apoptosis, exerts strong anti-tumor activity against human breast cancer. The underlying anti-cancer mechanism of RA-V is related to the blockage of the interaction between PDK1 and AKT. - Highlights: ► Plant cyclopeptide RA-V kills human breast cancer cells. ► RA-V triggered mitochondrial apoptotic pathway in human breast cancer cells. ► RA-V inhibited phosphorylation of AKT and PDK1 in breast cancer MCF-7 cells. ► Its mechanism is related to the blockage of the interaction between PDK1 and AKT.

  20. Mammalian target of rapamycin activator RHEB is frequently overexpressed in human carcinomas and is critical and sufficient for skin epithelial carcinogenesis.

    PubMed

    Lu, Zhi Hong; Shvartsman, Mark B; Lee, Andrew Y; Shao, Jenny M; Murray, Mollianne M; Kladney, Raleigh D; Fan, Dong; Krajewski, Stan; Chiang, Gary G; Mills, Gordon B; Arbeit, Jeffrey M

    2010-04-15

    Small GTPase Ras homologue enriched in brain (RHEB) binds and activates the key metabolic regulator mTORC1, which has an important role in cancer cells, but the role of RHEB in cancer pathogenesis has not been shown. By performing a meta-analysis of published cancer cytogenetic and transcriptome databases, we defined a gain of chromosome 7q36.1-q36.3 containing the RHEB locus, an overexpression of RHEB mRNA in several different carcinoma histotypes, and an association between RHEB upregulation and poor prognosis in breast and head and neck cancers. To model gain of function in epithelial malignancy, we targeted Rheb expression to murine basal keratinocytes of transgenic mice at levels similar to those that occur in human squamous cancer cell lines. Juvenile transgenic epidermis displayed constitutive mTORC1 pathway activation, elevated cyclin D1 protein, and diffuse skin hyperplasia. Skin tumors subsequently developed with concomitant stromal angio-inflammatory foci, evidencing induction of an epidermal hypoxia-inducible factor-1 transcriptional program, and paracrine feed-forward activation of the interleukin-6-signal transducer and activator of transcription 3 pathway. Rheb-induced tumor persistence and neoplastic molecular alterations were mTORC1 dependent. Rheb markedly sensitized transgenic epidermis to squamous carcinoma induction following a single dose of Ras-activating carcinogen 7,12-dimethylbenz(a)anthracene. Our findings offer direct evidence that RHEB facilitates multistage carcinogenesis through induction of multiple oncogenic mechanisms, perhaps contributing to the poor prognosis of patients with cancers overexpressing RHEB.

  1. Selective growth inhibition of human breast cancer cells by graviola fruit extract in vitro and in vivo involving downregulation of EGFR expression.

    PubMed

    Dai, Yumin; Hogan, Shelly; Schmelz, Eva M; Ju, Young H; Canning, Corene; Zhou, Kequan

    2011-01-01

    The epidermal growth factor receptor (EGFR) is an oncogene frequently overexpressed in breast cancer (BC), and its overexpression has been associated with poor prognosis and drug resistance. EGFR is therefore a rational target for BC therapy development. This study demonstrated that a graviola fruit extract (GFE) significantly downregulated EGFR gene expression and inhibited the growth of BC cells and xenografts. GFE selectively inhibited the growth of EGFR-overexpressing human BC (MDA-MB-468) cells (IC(50) = 4.8 μg/ml) but had no effect on nontumorigenic human breast epithelial cells (MCF-10A). GFE significantly downregulated EGFR mRNA expression, arrested cell cycle in the G0/G1 phase, and induced apoptosis in MDA-MB-468 cells. In the mouse xenograft model, a 5-wk dietary treatment of GFE (200 mg/kg diet) significantly reduced the protein expression of EGFR, p-EGFR, and p-ERK in MDA-MB-468 tumors by 56%, 54%, and 32.5%, respectively. Overall, dietary GFE inhibited tumor growth, as measured by wet weight, by 32% (P < 0.01). These data showed that dietary GFE induced significant growth inhibition of MDA-MB-468 cells in vitro and in vivo through a mechanism involving the EGFR/ERK signaling pathway, suggesting that GFE may have a protective effect for women against EGFR-overexpressing BC.

  2. TIMP-1 via TWIST1 Induces EMT Phenotypes in Human Breast Epithelial Cells

    PubMed Central

    D’Angelo, Rosemarie Chirco; Liu, Xu-Wen; Najy, Abdo J.; Jung, Young Suk; Won, Joshua; Chai, Karl X.; Fridman, Rafael; Kim, Hyeong-Reh Choi

    2014-01-01

    Tissue inhibitor of metalloproteinase-1 (TIMP1) regulates intracellular signaling networks for inhibition of apoptosis. Tetraspanin (CD63), a cell surface binding partner for TIMP-1, was previously shown to regulate integrin-mediated survival pathways in the human breast epithelial cell line MCF10A. In the current study, we show that TIMP-1 expression induces phenotypic changes in cell morphology, cell adhesion, cytoskeletal remodeling, and motility, indicative of an epithelial-mesenchymal transition (EMT). This is evidenced by loss of the epithelial cell adhesion molecule E-cadherin with an increase in the mesenchymal markers vimentin, N-cadherin, and fibronectin. Signaling through TIMP-1, but not TIMP-2, induces the expression of TWIST1, an important EMT transcription factor known to suppress E-cadherin transcription, in a CD63-dependent manner. RNAi-mediated knockdown of TWIST1 rescued E-cadherin expression in TIMP-1 overexpressing cells, demonstrating a functional significance of TWIST1 in TIMP-1 mediated EMT. Furthermore, analysis of TIMP-1 structural mutants reveals that TIMP-1 interactions with CD63 that activate cell survival signaling and EMT do not require the MMP-inhibitory domain of TIMP-1. Taken together, these data demonstrate that TIMP-1 binding to CD63 activates intracellular signal transduction pathways, resulting in EMT-like changes in breast epithelial cells, independent of its MMP-inhibitory function. PMID:24895412

  3. Transgene produces massive overexpression of human beta -glucuronidase in mice, lysosomal storage of enzyme, and strain-dependent tumors.

    PubMed

    Vogler, Carole; Galvin, Nancy; Levy, Beth; Grubb, Jeffery; Jiang, Jinxing; Zhou, Xiao Yan; Sly, William S

    2003-03-04

    beta-Glucuronidase (GUSB) is a lysosomal enzyme important in the normal step-wise degradation of glycosaminoglycans. Deficiency of GUSB causes the lysosomal storage disease mucopolysaccharidosis VII (MPS VII, Sly disease). Affected patients have widespread progressive accumulation of beta-glucuronide-containing glycosaminoglycans in lysosomes. Enzyme replacement, bone marrow transplantation, and gene therapy can correct lysosomal storage in the MPS VII mouse model. Gene therapy in MPS VII patients and animals may result in massive overexpression of GUSB in individual tissues, and the toxicity of such overexpression is incompletely investigated. To gain insight into the effect of massive overexpression of GUSB, we established 19 transgenic mouse lines, two of which expressed very high levels of human GUSB in many tissues. The founder overexpressing mice had from >100- to several thousand-fold increases in tissue and serum GUSB. The enzyme expression in most tissues decreased in subsequent generations in one line, and expression in liver and marrow fell in subsequent generations of the other. Both lines had morphologically similar widespread lysosomal storage of GUSB and secondary elevations of other lysosomal enzymes, a finding characteristic of lysosomal storage disease. One line developed tumors, and one did not. These transgenic models show that massive overexpression of a lysosomal enzyme can be associated with dramatic morphological alterations, which, at least in one of the two lines, had little clinical consequence. For the other transgenic line, the high frequency of tumor development in F(2) FVB progeny suggests that the vector used to generate the transgenic lines has an integration site-dependent potential to be oncogenic, at least in this strain background.

  4. GPER mediates estrogen-induced signaling and proliferations in human breast epithelial cells, and normal and malignant breast

    PubMed Central

    Scaling, Allison L.

    2014-01-01

    17β-estradiol (estrogen), through receptor binding and activation, is required for mammary gland development. Estrogen stimulates epithelial proliferation in the mammary gland, promoting ductal elongation and morphogenesis. In addition to a developmental role, estrogen promotes proliferation in tumorigenic settings, particularly breast cancer. The proliferative effects of estrogen in the normal breast and breast tumors are attributed to estrogen receptor α. Although in vitro studies have demonstrated that the G protein-coupled estrogen receptor (GPER, previously called GPR30) can modulate proliferation in breast cancer cells both positively and negatively depending on cellular context, its role in proliferation in the intact normal or malignant breast remains unclear. Estrogen-induced GPER-dependent proliferation was assessed in the immortalized non-tumorigenic human breast epithelial cell line, MCF10A, and an ex vivo organ culture model employing human breast tissue from reduction mammoplasty or tumor resections. Stimulation by estrogen and the GPER-selective agonist G-1 increased the mitotic index in MCF10A cells and proportion of cells in the cell cycle in human breast and breast cancer explants, suggesting increased proliferation. Inhibition of candidate signaling pathways that may link GPER activation to proliferation revealed a dependence on Src, epidermal growth factor receptor transactivation by heparin-bound EGF and subsequent ERK phosphorylation. Proliferation was not dependent on matrix metalloproteinase cleavage of membrane bound pro-HB-EGF. The contribution of GPER to estrogen-induced proliferation in MCF10A cells and breast tissue was confirmed by the ability of GPER-selective antagonist G36 to abrogate estrogen- and G-1-induced proliferation, and the ability of siRNA knockdown of GPER to reduce estrogen- and G-1-induced proliferation in MCF10A cells. This is the first study to demonstrate GPER-dependent proliferation in primary normal and malignant

  5. Bisphosphonates induce apoptosis in human breast cancer cell lines

    PubMed Central

    Senaratne, S G; Pirianov, G; Mansi, J L; Arnett, T R; Colston, K W

    2000-01-01

    Breast cancer has a prodigious capacity to metastasize to bone. In women with advanced breast cancer and bone metastases, bisphosphonates reduce the incidence of hypercalcaemia and skeletal morbidity. Recent clinical findings suggest that some bisphosphonates reduce the tumour burden in bone with a consequent increase in survival, raising the possibility that bisphosphonates may have a direct effect on breast cancer cells. We have investigated the in vitro effects of bisphosphonates zoledronate, pamidronate, clodronate and EB 1053 on growth, viability and induction of apoptosis in three human breast cancer cell lines (MDA-MB-231, Hs 578T and MCF-7). Cell growth was monitored by crystal violet dye assay, and cell viability was quantitated by MTS dye reduction. Induction of apoptosis was determined by identification of morphological features of apoptosis using time-lapse videomicroscopy, identifying morphological changes in nucleis using Hoechst staining, quantitation of DNA fragmentation, level of expression of bcl-2 and bax proteins and identification of the proteolytic cleavage of Poly (ADP)-ribose polymerase (PARP). All four bisphosphonates significantly reduced cell viability in all three cell lines. Zoledronate was the most potent bisphosphonate with IC50values of 15, 20 and 3 μM respectively in MDA-MB-231, MCF-7 and Hs 578T cells. Corresponding values for pamidronate were 40, 35 and 25 μM, whereas clodronate and EB 1053 were more than two orders of magnitude less potent. An increase in the proportion of cells having morphological features characteristic of apoptosis, characteristic apoptotic changes in the nucleus, time-dependent increase in the percentage of fragmented chromosomal DNA, down-regulation in bcl-2 protein and proteolytic cleavage of PARP, all indicate that bisphosphonates have direct anti-tumour effects on human breast cancer cells. © 2000 Cancer Research Campaign PMID:10780527

  6. Frequent copy number gains at 1q21 and 1q32 are associated with overexpression of the ETS transcription factors ETV3 and ELF3 in breast cancer irrespective of molecular subtypes.

    PubMed

    Mesquita, Bárbara; Lopes, Paula; Rodrigues, Ana; Pereira, Deolinda; Afonso, Mariana; Leal, Conceição; Henrique, Rui; Lind, Guro E; Jerónimo, Carmen; Lothe, Ragnhild A; Teixeira, Manuel R

    2013-02-01

    Several ETS transcription factors are involved in the pathogenesis of human cancers by different mechanisms. As gene copy number gain/amplification is an alternative mechanism of oncogenic activation and 1q gain is the most common copy number change in breast carcinoma, we investigated how that genomic change impacts in the expression of the three 1q ETS family members ETV3, ELK4, and ELF3. We have first evaluated 141 breast carcinomas for genome-wide copy number changes by chromosomal CGH and showed that 1q21 and 1q32 were the two chromosome bands with most frequent genomic copy number gains. Second, we confirmed by FISH with locus-specific BAC clones that cases showing 1q gain/amplification by CGH showed copy number increase of the ETS genes ETV3 (located in 1q21~23), ELF3, and ELK4 (both in 1q32). Third, gene expression levels of the three 1q ETS genes, as well as their potential targets MYC and CRISP3, were evaluated by quantitative real-time PCR. We here show for the first time that the most common genomic copy number gains in breast cancer, 1q21 and 1q32, are associated with overexpression of the ETS transcription factors ETV3 and ELF3 (but not ELK4) at these loci irrespective of molecular subtypes. Among the three 1q ETS genes, ELF3 has a relevant role in breast carcinogenesis and is also the most likely target of the 1q copy number increase. The basal-like molecular subtype presented the worst prognosis regarding disease-specific survival, but no additional prognostic value was found for 1q copy number status or ELF3 expression. In addition, we show that there is a correlation between the expression of the oncogene MYC, irrespectively of copy number gain at its loci in 8q24, and the expression of both the transcriptional repressor ETV3 and the androgen respondent ELK4.

  7. Role of thioredoxin reductase 1 in dysplastic transformation of human breast epithelial cells triggered by chronic oxidative stress

    PubMed Central

    Dong, Chaoran; Zhang, Lei; Sun, Ruoxuan; Liu, Jianying; Yin, Hanwei; Li, Xiaoxiao; Zheng, Xiaoqing; Zeng, Huihui

    2016-01-01

    Thioredoxin reductase 1 (TrxR1) is a pivotal intracellular redox sensor and antioxidant enzyme. On the other hand, overexpression of TrxR1 is closely correlated with the initiation of various tumors including breast cancer, though the detailed mechanism remains unclear. Here we investigated the role of TrxR1 in dysplastic transformation of human breast epithelial cell line MCF-10A induced by chronic oxidative stress. Not surprisingly, sustained exposure to H2O2 significantly augmented the expression and activity of TrxR1 in MCF-10A cells. The dysplastically transformed MCF-10A (MCF-10AT) cells undergoing 8-week H2O2 treatment exhibited a certain degree of malignancy in tumorigenicity evaluation. Moreover, TrxR1 inhibitor ethaselen (BBSKE) could partially reverse some malignant phenotypes including epithelial to mesenchymal transition (EMT) of MCF-10AT as well as MCF-7 cells. Collectively, our results supported the considerable involvement of TrxR1 in the onset of breast cancer and BBSKE may be a promising agent against breast cancer. PMID:27845427

  8. Beta Human Chorionic Gonadotropin - Induction of Apoptosis in Breast Cancer

    DTIC Science & Technology

    2006-01-01

    rehydrated, and digested with proteinase K (25 ug/ml in TBS) using standard 19 methods. After quenching with 3% hydrogen peroxide , sections were...the 19 Chemicon Mouse to Mouse detection kit. Endogenous peroxidase was blocked with 3% aqueous 20 hydrogen peroxide . Slides were incubated with...Agwarwal, M.L., Das, T., Sa, G., 2002. Curcumin induces apoptosis in human breast cancer cells through p53-dependent Bax induction. FEBS Lett. 512

  9. FT-Raman spectroscopy study of human breast tissue

    NASA Astrophysics Data System (ADS)

    Bitar Carter, Renata A.; Martin, Airton A.; Netto, Mario M.; Soares, Fernando A.

    2004-07-01

    Optical spectroscopy has been extensively studied as a potential in vivo diagnostic tool to provide information about the chemical and morphologic structure of tissue. Raman Spectroscpy is an inelastic scattering process that can provide a wealth of spectral features that can be related to the specific molecular structure of the sample. This article reports results of an in vitro study of the FT-Raman human breast tissue spectra. An Nd:YAG laser at 1064nm was used as the excitation source in the FT-Raman Spectrometer. The neoplastic human breast samples, both Fibroadenoma and ICD, were obtained during therapeutical routine medical procedures required by the primary disease, and the non-diseased human tissue was obtained in plastic surgery. No sample preparation was needed for the FT-Raman spectra collection. The FT-Raman spectra were recorded from normal, benign (Fibroadenomas) and malignant (IDC-Intraductal Carcinoma) samples, adding up 51 different areas. The main spectral differences of a typical FT-Raman spectra of a Normal (Non-diseased), Fibroadenoma, and Infiltrating Ductal Carcinoma (IDC) breast tissue at the interval of 600 to 1800cm-1, which may differentiate diagnostically the sample, were found in the bands of 1230 to 1295cm-1, 1440 to 1460 cm-1 and 1650 to 1680 cm-1, assigned to the vibrational bands of the carbohydrate-amide III, proteins and lipids, and carbohydrate-amide I, respectively.

  10. SPARC overexpression in primary tumors correlates with disease recurrence and overall survival in patients with triple negative breast cancer

    PubMed Central

    Zhu, Anjie; Yuan, Peng; Du, Feng; Hong, Ruoxi; Ding, Xiaoyan; Shi, Xiuqing; Fan, Ying; Wang, Jiayu; Luo, Yang; Ma, Fei; Zhang, Pin; Li, Qing; Xu, Binghe

    2016-01-01

    SPARC/osteonectin expression is reportedly altered in various malignancies. However, little is known regarding to the prognostic value of SPARC in triple-negative breast cancer (TNBC) patients. In this study, immunohistochemistry and immunoreactive scores (IRSs) were used to evaluate SPARC protein expression in primary tumors from 211 TNBC patients with up to 10 years of clinical follow-up data. High SPARC expression (IRS ≥3) was detected in 52.1% of primary tumors. Patients expressing high SPARC levels had worse disease-free survival (DFS) (HR=1.58, 95% CI: 1.01-2.47, P=0.044) and overall survival (OS) (HR=1.74, 95% CI: 1.06-2.85, P=0.029) than patients with lower SPARC levels. Furthermore, high SPARC expression was an independent prognostic factor for both DFS (HR=1.73, 95% CI: 1.10-2.73, P=0.018) and OS (HR=1.90, 95% CI: 1.14-3.16, P=0.014) in TNBC patients. These results suggest that increased SPARC expression may be an indicator of greater aggressiveness, and may serve as a prognostic factor for triple-negative breast cancer. PMID:27421134

  11. PHOSPHOLIPASE D (PLD) DRIVES CELL INVASION, TUMOR GROWTH AND METASTASIS IN A HUMAN BREAST CANCER XENOGRAPH MODEL

    PubMed Central

    Henkels, Karen M.; Boivin, Gregory P.; Dudley, Emily S.; Berberich, Steven J.; Gomez-Cambronero, Julian

    2014-01-01

    Breast cancer is one of the most common malignancies in human females in the world. One protein that has elevated enzymatic lipase activity in breast cancers in vitro is phospholipase D (PLD), which is also involved in cell migration. We demonstrate that the PLD2 isoform, which was analyzed directly in the tumors, is crucial for cell invasion that contributes critically to the growth and development of breast tumors and lung metastases in vivo. We used three complementary strategies in a SCID mouse model and also addressed the underlying molecular mechanism. First, the PLD2 gene was silenced in highly metastatic, aggressive breast cancer cells (MDA-MB-231) with lentivirus-based shRNA, which were xenotransplanted in SCID mice. The resulting mouse primary mammary tumors were reduced in size (65%, p<0.05) and their onset delayed when compared to control tumors. Second, we stably overexpressed PLD2 in low-invasive breast cancer cells (MCF-7) with a biscistronic MIEG retroviral vector and observed that these cells were converted into a highly aggressive phenotype, as primary tumors that formed following xenotransplantation were larger, grew faster and developed lung metastases more readily. Third, we implanted osmotic pumps into SCID xenotransplanted mice that delivered two different small-molecule inhibitors of PLD activity (FIPI and NOPT). These inhibitors led to significant (>70%, p<0.05) inhibition of primary tumor growth, metastatic axillary tumors and lung metastases. In order to define the underlying mechanism, we determined that the machinery of PLD-induced cell invasion is mediated by phosphatidic acid (PA), WASp, Grb2 and Rac2 signaling events that ultimately affect actin polymerization and cell invasion. In summary, this study shows that PLD has a central role in the development, metastasis and level of aggressiveness of breast cancer, raising the possibility that PLD2 could be used as a new therapeutic target. PMID:23752189

  12. Overexpression of α2,3sialyl T-antigen in breast cancer determined by miniaturized glycosyltransferase assays and confirmed using tissue microarray immunohistochemical analysis

    PubMed Central

    Patil, Shilpa A.; Bshara, Wiam; Morrison, Carl; Chandrasekaran, E. V.; Matta, Khushi L.; Neelamegham, Sriram

    2014-01-01

    Glycan structure alterations during cancer regulate disease progression and represent clinical biomarkers. The study determined the degree to which changes in glycosyl transferase activities during cancer can be related to aberrant cell-surface tumor associated carbohydrate structures (TACA). To this end, changes in sialyltransferase (sialylT), fucosyltransferase (fucT) and galactosyltransferase (galT) activity were measured in normal and tumor tissue using a miniaturized enzyme activity assay and synthetic glycoconjugates bearing terminal LacNAc Type-I (Galβ1,3GlcNAc), LacNAc Type-II (Galβ1,4GlcNAc), and mucin core-1/Type-III (Galβ1,3GalNAc) structures. These data were related to TACA using tissue microarrays containing 115 breast and 26 colon cancer specimen. The results show that primary human breast and colon tumors, but not adjacent normal tissue, express elevated β1,3 galT and α2,3sialylT activity that can form α2,3sialylated Type-III glycans (Siaα2,3Galβ1,3GalNAc). Prostate tumors did not exhibit such elevated enzymatic activities. α1,3/4fucT activity was higher in breast, but not colon tissue. The enzymology based prediction of enhanced α2,3sialylated Type-III structures in breast tumors was verified using histochemical analysis of tissue sections and tissue microarrays. Here, the binding of two markers that recognize Galβ1,3GalNAc (peanut lectin and mAb A78-G/A7) was elevated in breast tumor, but not normal control, only upon sialidase treatment. These antigens were also upregulated in colon tumors though to a lesser extent. α2,3sialylated Type-III expression correlated inversely with patient HER2 expression and breast metastatic potential. Overall, enzymology measurements of glycoT activity predict glycan structure changes during cancer. High expression of the α2,3sialylated T-antigen O-glycans occur in breast tumors. A transformation from linear core-1 glycan to other epitopes may accompany metastasis. PMID:25142811

  13. Specific overexpression of cyclin E·CDK2 in early preinvasive and primary breast tumors in female ACI rats induced by estrogen.

    PubMed

    Weroha, S John; Lingle, Wilma L; Hong, Yan; Li, Sara Antonia; Li, Jonathan J

    2010-02-01

    Overexpressed Aurora A, amplified centrosomes, and aneuploidy are salient features of estrogen-induced mammary preinvasive lesions and tumors in female August--Copenhagen Irish (ACI) rats. Intimately involved in these events are cyclins and their associated cyclin-dependent kinase (CDK) partners. Cyclin E1·CDK2 overexpression plays an important dual role in late G1/S phase of the cell cycle in cancer cells. It increases DNA replication providing growth advantage to cancer cells and facilitates aberrant centrosome duplication, generating chromosomal instability and aneuploidy leading to tumor development. Presented herein, a 24.0- and 45.0-fold elevation in cyclin E1 and CDK2 was found in 17β-estradiol (E(2))-induced ACI rat mammary tumors (MTs), respectively. Cyclin E·CDK2 positive staining was confined to the large round cells found within focal dysplasias, ductal carcinomas in situ, and invasive MTs. Co-immunoprecipitation and in vitro kinase activity of these tumors revealed that these cell cycle entities are functional. When mammary tissue derived from untreated normal, E(2)-induced hyperplasia and primary tumors were normalized to cyclin E1 levels, low molecular weight (LMW) cyclin E1 forms (33- and 45-kDa) were detected in all of these tissue groups. Moreover, increasing concentrations of protease inhibitor in tissue lysates resulted in a marked reduction of LMW forms, indicating that the presence of cyclin E1 LMW forms can be markedly reduced. Significant increases in cyclin E1 mRNA (2.1-fold) were detected in primary ACI rat E(2)-induced breast tumors, and quantitative real-time polymerase chain reaction revealed a 20% amplification of the cyclin E1 gene (CCNE1). Collectively, these results support the involvement of cyclin E1·CDK2 in centrosome overduplication during each stage of E(2)-induced mammary tumorigenesis.

  14. Dasatinib inhibits c-src phosphorylation and prevents the proliferation of Triple-Negative Breast Cancer (TNBC) cells which overexpress Syndecan-Binding Protein (SDCBP)

    PubMed Central

    Lang, Rong-Gang; Li, Wei-Dong; Sun, Hui; Liu, Fang-Fang; Guo, Xiao-Jing; Gu, Feng; Fu, Li

    2017-01-01

    Triple negative breast cancer (TNBC) progresses rapidly but lacks effective targeted therapies. Our previous study showed that downregulating syndecan-binding protein (SDCBP) in TNBC inhibits the proliferation of TNBC cells. Dasatinib is a new small-molecule inhibitor of c-src phosphorylation. The aim of this study was to investigate if SDCBP is a potential marker to indicate whether a TNBC is suitable for dasatinib therapy. This study applied co-immunoprecipitation to identify the interaction between SDCBP and c-src in TNBC cell lines. In addition, immunohistochemistry was used to investigate SDCBP and tyrosine-419 phosphorylated c-src (p-c-src-Y419) expression in TNBC tissues. SDCBP-overexpressing MDA-MB-231 cells were then constructed to evaluate the effects of dasatinib on SDCBP-induced TNBC progression in vitro and tumor formation in nude mice. We found wild-type SDCBP interacted with c-src and promoted the phosphorylation of c-src; this phosphorylation was completely blocked by dasatinib. SDCBP lacking the PDZ domain had no such effect. Among the 52 consecutive random TNBC cases examined, the expression of SDCBP was consistent with that of p-c-src-Y419, and positively correlated with histological grading or Ki-67 levels. SDCBP overexpression significantly accelerated the proliferation and cell cycle progression of the TNBC cell line MDA-MB-231; these effects were prevented by dasatinib treatment. However, the subsequent inhibition of p27 expression partially restored the proliferation and viability of the TNBC cells. The results of this study suggest that SDCBP interacts with c-src, regulates G1/S in TNBC cells, and enhances tumor cell proliferation by promoting the tyrosine phosphorylation of c-src at residue 419. Dasatinib inhibits such phosphorylation and blocks SDCBP-induced cell cycle progression. Therefore, SDCBP might be an important marker for identifying TNBC cases that are suitable for dasatinib therapy. PMID:28141839

  15. Dasatinib inhibits c-src phosphorylation and prevents the proliferation of Triple-Negative Breast Cancer (TNBC) cells which overexpress Syndecan-Binding Protein (SDCBP).

    PubMed

    Qian, Xiao-Long; Zhang, Jun; Li, Pei-Ze; Lang, Rong-Gang; Li, Wei-Dong; Sun, Hui; Liu, Fang-Fang; Guo, Xiao-Jing; Gu, Feng; Fu, Li

    2017-01-01

    Triple negative breast cancer (TNBC) progresses rapidly but lacks effective targeted therapies. Our previous study showed that downregulating syndecan-binding protein (SDCBP) in TNBC inhibits the proliferation of TNBC cells. Dasatinib is a new small-molecule inhibitor of c-src phosphorylation. The aim of this study was to investigate if SDCBP is a potential marker to indicate whether a TNBC is suitable for dasatinib therapy. This study applied co-immunoprecipitation to identify the interaction between SDCBP and c-src in TNBC cell lines. In addition, immunohistochemistry was used to investigate SDCBP and tyrosine-419 phosphorylated c-src (p-c-src-Y419) expression in TNBC tissues. SDCBP-overexpressing MDA-MB-231 cells were then constructed to evaluate the effects of dasatinib on SDCBP-induced TNBC progression in vitro and tumor formation in nude mice. We found wild-type SDCBP interacted with c-src and promoted the phosphorylation of c-src; this phosphorylation was completely blocked by dasatinib. SDCBP lacking the PDZ domain had no such effect. Among the 52 consecutive random TNBC cases examined, the expression of SDCBP was consistent with that of p-c-src-Y419, and positively correlated with histological grading or Ki-67 levels. SDCBP overexpression significantly accelerated the proliferation and cell cycle progression of the TNBC cell line MDA-MB-231; these effects were prevented by dasatinib treatment. However, the subsequent inhibition of p27 expression partially restored the proliferation and viability of the TNBC cells. The results of this study suggest that SDCBP interacts with c-src, regulates G1/S in TNBC cells, and enhances tumor cell proliferation by promoting the tyrosine phosphorylation of c-src at residue 419. Dasatinib inhibits such phosphorylation and blocks SDCBP-induced cell cycle progression. Therefore, SDCBP might be an important marker for identifying TNBC cases that are suitable for dasatinib therapy.

  16. Disialyl GD2 ganglioside suppresses ICAM-1-mediated invasiveness in human breast cancer MDA-MB231 cells

    PubMed Central

    Kwon, Kyung-Min; Chung, Tae-Wook; Kwak, Choong-Hwan; Choi, Hee-Jung; Kim, Kyung-Woon; Ha, Sun-Hyung; Cho, Seung-Hak; Lee, Young-Choon; Ha, Ki-Tae; Lee, Moon-Jo; Kim, Cheorl-Ho

    2017-01-01

    The disialoganglioside GD3 has been considered to be involved in tumor progression or suppression in various tumor cells. However, the significance of the biological functions of GD3 in breast cancer cells is still controversial. This prompted us to study the possible relationship(s) between GD3 expression and the metastatic potential of a breast cancer MDA-MB231 cells as an estrogen receptor negative (ER-) type. The human GD3 synthase cDNA was transfected into MDA-MB231 cells, and G-418 bulk selection was used to select cells stably overexpressing the GD3 synthase. In vitro invasion potentials of the GD3 synthase over-expressing cells (pc3-GD3s) were significantly suppressed when compared with control cells. Expression of intercellular adhesion molecule-1 (ICAM-1; CD54) was down-regulated in the pc3-GD3s cells and the decrease in ICAM-I expression is directly related to the decrease in invasiveness of the pc3-GD3s cells. Another type of ER negative SK-BR3 cells exhibited the similar level of ICAM-1 expression as MDA-MB231 cells, while the ER positive MCF-7 cells (ER+) showed the increased expression level of ICAM-1. Then, we investigated signaling pathways known to control ICAM-1 expression. No difference was observed in the phosphorylation of ERK and p38 between the pc3-GD3s and control cells (pc3), but the activation of AKT was inhibited in pc3-GD3s, and not in the control (pc3). In addition, the composition of total gangliosides was changed between control (pc3) and pc3-GD3s cells, as confirmed by HPTLC. The pc3-GD3s cells had an accumulation of the GD2 instead of the GD3. RT-PCR results showed that not only GD3 synthase, but also GM2/GD2 synthase (β4-GalNc T) expression was increased in pc3-GD3s cells. Overexpression of GD3 synthase suppresses the invasive potential of human breast cancer MDA-MB-231 cells through down-regulation of ICAM-1 and the crucial pathway to allow the apoptotic effect has been attributed to accumulation of the GD2 ganglioside. ER has

  17. Overexpression of FABP3 inhibits human bone marrow derived mesenchymal stem cell proliferation but enhances their survival in hypoxia

    SciTech Connect

    Wang, Suna Zhou, Yifu; Andreyev, Oleg; Hoyt, Robert F.; Singh, Avneesh; Hunt, Timothy; Horvath, Keith A.

    2014-04-15

    Studying the proliferative ability of human bone marrow derived mesenchymal stem cells in hypoxic conditions can help us achieve the effective regeneration of ischemic injured myocardium. Cardiac-type fatty acid binding protein (FABP3) is a specific biomarker of muscle and heart tissue injury. This protein is purported to be involved in early myocardial development, adult myocardial tissue repair and responsible for the modulation of cell growth and proliferation. We have investigated the role of FABP3 in human bone marrow derived mesenchymal stem cells under ischemic conditions. MSCs from 12 donors were cultured either in standard normoxic or modified hypoxic conditions, and the differential expression of FABP3 was tested by quantitative {sup RT}PCR and western blot. We also established stable FABP3 expression in MSCs and searched for variation in cellular proliferation and differentiation bioprocesses affected by hypoxic conditions. We identified: (1) the FABP3 differential expression pattern in the MSCs under hypoxic conditions; (2) over-expression of FABP3 inhibited the growth and proliferation of the MSCs; however, improved their survival in low oxygen environments; (3) the cell growth factors and positive cell cycle regulation genes, such as PCNA, APC, CCNB1, CCNB2 and CDC6 were all down-regulated; while the key negative cell cycle regulation genes TP53, BRCA1, CASP3 and CDKN1A were significantly up-regulated in the cells with FABP3 overexpression. Our data suggested that FABP3 was up-regulated under hypoxia; also negatively regulated the cell metabolic process and the mitotic cell cycle. Overexpression of FABP3 inhibited cell growth and proliferation via negative regulation of the cell cycle and down-regulation of cell growth factors, but enhances cell survival in hypoxic or ischemic conditions. - Highlights: • FABP3 expression pattern was studied in 12 human hypoxic-MSCs. • FABP3 mRNA and proteins are upregulated in the MSCs under hypoxic conditions.

  18. Simvastatin inhibits tumor angiogenesis in HER2-overexpressing human colorectal cancer.

    PubMed

    Li, Gang; Zheng, Junhua; Xu, Bin; Ling, Jie; Qiu, Wei; Wang, Yongbing

    2017-01-01

    Overexpression of the HER2 oncogene contributes to tumor angiogenesis, which is an essential hallmark of cancer. Simvastatin has been reported to exhibit antitumor activities in several cancers; however, its roles and molecular mechanismsin the regulation of colorectal angiogenesis remain to be clarified. Here, we show that colon cancer cells express high levels of VEGF, total HER2 and phosphorylated HER2, and simvastatin apparently decreased their expression in HER2-overexpressing colon cancer cells. Simvastatin pretreatment reduced endothelial tube formation in vitro and microvessel density in vivo. Furthermore, simvastatin markedly inhibited tumor angiogenesis even in the presence of heregulin (HRG)-β1 (a HER2 co-activator) pretreatment in HER2+ tumor cells. Mechanistic investigation showed that simvastatin significantly abrogated HER2-induced tumor angiogenesis by inhibiting VEGF secretion. Together, these results provide a novel mechanism underlying the simvastatin-induced inhibition of tumor angiogenesis through regulating HER2/VEGF axis.

  19. Mouse Model of Human Breast Cancer Initiated by a Fusion Oncogene

    DTIC Science & Technology

    2006-09-01

    AD_________________ Award Number: W81XWH-05-1-0502 TITLE: Mouse Model of Human Breast Cancer ...TYPE Final 3. DATES COVERED (From - To) 15 AUG 2005 - 14 AUG 2006 4. TITLE AND SUBTITLE Mouse Model of Human Breast Cancer Initiated by a Fusion...SUPPLEMENTARY NOTES 14. ABSTRACT: In this study, we generated a novel mouse model of human breast cancer based on a recurrent chromosomal

  20. PTEN overexpression improves cisplatin-resistance of human ovarian cancer cells through upregulating KRT10 expression

    SciTech Connect

    Wu, Huijuan; Wang, Ke; Liu, Wenxin; Hao, Quan

    2014-02-07

    Highlights: • Overexpression of PTEN enhanced the sensitivity of C13K cells to cisplatin. • KRT10 is a downstream molecule of PTEN involved in the resistance-reversing effect. • Overexpression of KRT10 enhanced the chemosensitivity of C13K cells to cisplatin. - Abstract: Multi-drug resistance (MDR) is a common cause of the failure of chemotherapy in ovarian cancer. PTEN, a tumor suppressor gene, has been demonstrated to be able to reverse cisplatin-resistance in ovarian cancer cell line C13K. However, the downstream molecules of PTEN involved in the resistance-reversing effect have not been completely clarified. Therefore, we screened the downstream molecules of PTEN and studied their interactions in C13K ovarian cancer cells using a 3D culture model. Firstly, we constructed an ovarian cancer cell line stably expressing PTEN, C13K/PTEN. MTT assay showed that overexpression of PTEN enhanced the sensitivity of C13K cells to cisplatin, but not to paclitaxel. Then we examined the differently expressed proteins that interacted with PTEN in C13K/PTEN cells with or without cisplatin treatment by co-immunoprecipitation. KRT10 was identified as a differently expressed protein in cisplatin-treated C13K/PTEN cells. Further study confirmed that cisplatin could induce upregulation of KRT10 mRNA and protein in C13K/PTEN cells and there was a directly interaction between KRT10 and PTEN. Forced expression of KRT10 in C13K cells also enhanced cisplatin-induced proliferation inhibition and apoptosis of C13K cells. In addition, KRT10 siRNA blocked cisplatin-induced proliferation inhibition of C13K/PTEN cells. In conclusion, our data demonstrate that KRT10 is a downstream molecule of PTEN which improves cisplatin-resistance of ovarian cancer and forced KRT10 overexpression may also act as a therapeutic method for overcoming MDR in ovarian cancer.

  1. Overexpression of human kynurenine-3-monooxygenase protects against 3-hydroxykynurenine-mediated apoptosis through bidirectional nonlinear feedback

    PubMed Central

    Wilson, K; Auer, M; Binnie, M; Zheng, X; Pham, N T; Iredale, J P; Webster, S P; Mole, D J

    2016-01-01

    Kynurenine 3-monooxygenase (KMO) is a critical regulator of inflammation. The preferred KMO substrate, kynurenine, is converted to 3-hydroxykynurenine (3HK), and this product exhibits cytotoxicity through mechanisms that culminate in apoptosis. Here, we report that overexpression of human KMO with orthotopic localisation to mitochondria creates a metabolic environment during which the cell exhibits increased tolerance for exogenous 3HK-mediated cellular injury. Using the selective KMO inhibitor Ro61-8048, we show that KMO enzyme function is essential for cellular protection. Pan-caspase inhibition with Z-VAD-FMK confirmed apoptosis as the mode of cell death. By defining expression of pathway components upstream and downstream of KMO, we observed alterations in other key kynurenine pathway components, particularly tryptophan-2,3-dioxygenase upregulation, through bidirectional nonlinear feedback. KMO overexpression also increased expression of inducible nitric oxide synthase (iNOS). These changes in gene expression are functionally relevant, because siRNA knockdown of the pathway components kynureninase and quinolinate phosphoribosyl transferase caused cells to revert to a state of susceptibility to 3HK-mediated apoptosis. In summary, KMO overexpression, and importantly KMO activity, have metabolic repercussions that fundamentally affect resistance to cell stress. PMID:27077813

  2. S100A4 Elevation Empowers Expression of Metastasis Effector Molecules in Human Breast Cancer

    PubMed Central

    Ismail, Thamir M.; Bennett, Daimark; Platt-Higgins, Angela M.; Al-Medhity, Morteta; Barraclough, Roger; Rudland, Philip S.

    2017-01-01

    Many human glandular cancers metastasize along nerve tracts, but the mechanisms involved are generally poorly understood. The calcium-binding protein S100A4 is expressed at elevated levels in human cancers, where it has been linked to increased invasion and metastasis. Here we report genetic studies in a Drosophila model to define S100A4 effector functions that mediate metastatic dissemination of mutant Ras-induced tumors in the developing nervous system. In flies overexpressing mutant RasVal12 and S100A4, there was a significant increase in activation of the stress kinase JNK and production of the matrix metalloproteinase MMP1. Genetic or chemical blockades of JNK and MMP1 suppressed metastatic dissemination associated with S100A4 elevation, defining required signaling pathway(s) for S100A4 in this setting. In clinical specimens of human breast cancer, elevated levels of the mammalian paralogs MMP2, MMP9, and MMP13 are associated with a 4- to 9-fold relative decrease in patient survival. In individual tumors, levels of MMP2 and MMP13 correlated more closely with levels of S100A4, whereas MMP9 levels correlated more closely with the S100 family member S100P. Overall, our results suggest the existence of evolutionarily conserved pathways used by S100A4 to promote metastatic dissemination, with potential prognostic and therapeutic implications for metastasis by cancers that preferentially exploit nerve tract migration routes. PMID:27927689

  3. Persistent organic pollutants in human breast milk from Asian countries.

    PubMed

    Tanabe, Shinsuke; Kunisue, Tatsuya

    2007-03-01

    In this paper, we concisely reviewed the contamination of persistent organic pollutants (POPs) such as polychlorinated dibenzo-p-dioxins (PCDDs), dibenzofurans (PCDFs), biphenyls (PCBs), dichlorodiphenyltrichloroethane and its metabolites (DDTs), hexachlorocyclohexane isomers (HCHs), chlordane compounds (CHLs), hexachlorobenzene (HCB) in human breast milk collected from Asian countries such as Japan, China, Philippines, Vietnam, Cambodia, India, Malaysia, and Indonesia during 1999-2003. Dioxins, PCBs, CHLs in Japanese, and DDTs in Vietnamese, Chinese, Cambodian, Malaysian, and HCHs in Chinese, Indian, and HCB in Chinese breast milk were predominant. In India, levels of dioxins and related compounds (DRCs) in the mothers living around the open dumping site were notably higher than those from the reference site and other Asian developing countries, indicating that significant pollution sources of DRCs are present in the dumping site of India and the residents there have been exposed to relatively higher levels of these contaminants possibly via bovine milk.

  4. Human melanomas and ovarian cancers overexpressing mechanical barrier molecule genes lack immune signatures and have increased patient mortality risk

    PubMed Central

    Salerno, Elise P.; Bedognetti, Davide; Mauldin, Ileana S.; Deacon, Donna H.; Shea, Sofia M.; Obeid, Joseph M.; Coukos, George; Gajewski, Thomas F.; Marincola, Francesco M.; Slingluff, Craig L.

    2016-01-01

    ABSTRACT We have identified eight genes whose expression in human melanoma metastases and ovarian cancers is associated with a lack of Th1 immune signatures. They encode molecules with mechanical barrier function in the skin and other normal tissues and include filaggrin (FLG), tumor-associated calcium signal transducer 2 (TACSTD2), and six desmosomal proteins (DST, DSC3, DSP, PPL, PKP3, and JUP). This association has been validated in an independent series of 114 melanoma metastases. In these, DST expression alone is sufficient to identify melanomas without immune signatures, while FLG and the other six putative barrier molecules are overexpressed in a different subset of melanomas lacking immune signatures. Similar associations have been identified in a set of 186 ovarian cancers. RNA-seq data from 471 melanomas and 307 ovarian cancers in the TCGA database further support these findings and also reveal that overexpression of barrier molecules is strongly associated with early patient mortality for melanoma (p = 0.0002) and for ovarian cancer (p < 0.01). Interestingly, this association persists for FLG for melanoma (p = 0.012) and ovarian cancer (p = 0.006), whereas DST overexpression is negatively associated with CD8+ gene expression, but not with patient survival. Thus, overexpression of FLG or DST identifies two distinct patient populations with low immune cell infiltration in these cancers, but with different prognostic implications for each. These data raise the possibility that molecules with mechanical barrier function in skin and other tissues may be used by cancer cells to protect them from immune cell infiltration and immune-mediated destruction. PMID:28123876

  5. Human melanomas and ovarian cancers overexpressing mechanical barrier molecule genes lack immune signatures and have increased patient mortality risk.

    PubMed

    Salerno, Elise P; Bedognetti, Davide; Mauldin, Ileana S; Deacon, Donna H; Shea, Sofia M; Pinczewski, Joel; Obeid, Joseph M; Coukos, George; Wang, Ena; Gajewski, Thomas F; Marincola, Francesco M; Slingluff, Craig L

    2016-01-01

    We have identified eight genes whose expression in human melanoma metastases and ovarian cancers is associated with a lack of Th1 immune signatures. They encode molecules with mechanical barrier function in the skin and other normal tissues and include filaggrin (FLG), tumor-associated calcium signal transducer 2 (TACSTD2), and six desmosomal proteins (DST, DSC3, DSP, PPL, PKP3, and JUP). This association has been validated in an independent series of 114 melanoma metastases. In these, DST expression alone is sufficient to identify melanomas without immune signatures, while FLG and the other six putative barrier molecules are overexpressed in a different subset of melanomas lacking immune signatures. Similar associations have been identified in a set of 186 ovarian cancers. RNA-seq data from 471 melanomas and 307 ovarian cancers in the TCGA database further support these findings and also reveal that overexpression of barrier molecules is strongly associated with early patient mortality for melanoma (p = 0.0002) and for ovarian cancer (p < 0.01). Interestingly, this association persists for FLG for melanoma (p = 0.012) and ovarian cancer (p = 0.006), whereas DST overexpression is negatively associated with CD8(+) gene expression, but not with patient survival. Thus, overexpression of FLG or DST identifies two distinct patient populations with low immune cell infiltration in these cancers, but with different prognostic implications for each. These data raise the possibility that molecules with mechanical barrier function in skin and other tissues may be used by cancer cells to protect them from immune cell infiltration and immune-mediated destruction.

  6. Distinct Biochemical Pools of Golgi Phosphoprotein 3 in the Human Breast Cancer Cell Lines MCF7 and MDA-MB-231

    PubMed Central

    Luchsinger, Charlotte; Rivera-Dictter, Andrés; Arriagada, Cecilia; Acuña, Diego; Aguilar, Marcelo; Cavieres, Viviana; Burgos, Patricia V.; Ehrenfeld, Pamela; Mardones, Gonzalo A.

    2016-01-01

    Golgi phosphoprotein 3 (GOLPH3) has been implicated in the development of carcinomas in many human tissues, and is currently considered a bona fide oncoprotein. Importantly, several tumor types show overexpression of GOLPH3, which is associated with tumor progress and poor prognosis. However, the underlying molecular mechanisms that connect GOLPH3 function with tumorigenicity are poorly understood. Experimental evidence shows that depletion of GOLPH3 abolishes transformation and proliferation of tumor cells in GOLPH3-overexpressing cell lines. Conversely, GOLPH3 overexpression drives transformation of primary cell lines and enhances mouse xenograft tumor growth in vivo. This evidence suggests that overexpression of GOLPH3 could result in distinct features of GOLPH3 in tumor cells compared to that of non-tumorigenic cells. GOLPH3 is a peripheral membrane protein mostly localized at the trans-Golgi network, and its association with Golgi membranes depends on binding to phosphatidylinositol-4-phosphate. GOLPH3 is also contained in a large cytosolic pool that rapidly exchanges with Golgi-associated pools. GOLPH3 has also been observed associated with vesicles and tubules arising from the Golgi, as well as other cellular compartments, and hence it has been implicated in several membrane trafficking events. Whether these and other features are typical to all different types of cells is unknown. Moreover, it remains undetermined how GOLPH3 acts as an oncoprotein at the Golgi. Therefore, to better understand the roles of GOLPH3 in cancer cells, we sought to compare some of its biochemical and cellular properties in the human breast cancer cell lines MCF7 and MDA-MB-231 with that of the non-tumorigenic breast human cell line MCF 10A. We found unexpected differences that support the notion that in different cancer cells, overexpression of GOLPH3 functions in diverse fashions, which may influence specific tumorigenic phenotypes. PMID:27123979

  7. The overexpression of SOX2 affects the migration of human teratocarcinoma cell line NT2/D1.

    PubMed

    Drakulic, Danijela; Vicentic, Jelena Marjanovic; Schwirtlich, Marija; Tosic, Jelena; Krstic, Aleksandar; Klajn, Andrijana; Stevanovic, Milena

    2015-03-01

    The altered expression of the SOX2 transcription factor is associated with oncogenic or tumor suppressor functions in human cancers. This factor regulates the migration and invasion of different cancer cells. In this study we investigated the effect of constitutive SOX2 overexpression on the migration and adhesion capacity of embryonal teratocarcinoma NT2/D1 cells derived from a metastasis of a human testicular germ cell tumor. We detected that increased SOX2 expression changed the speed, mode and path of cell migration, but not the adhesion ability of NT2/D1 cells. Additionally, we demonstrated that SOX2 overexpression increased the expression of the tumor suppressor protein p53 and the HDM2 oncogene. Our results contribute to the better understanding of the effect of SOX2 on the behavior of tumor cells originating from a human testicular germ cell tumor. Considering that NT2/D1 cells resemble cancer stem cells in many features, our results could contribute to the elucidation of the role of SOX2 in cancer stem cells behavior and the process of metastasis.

  8. MicroRNA-101 inhibits cell progression and increases paclitaxel sensitivity by suppressing MCL-1 expression in human triple-negative breast cancer.

    PubMed

    Liu, Xiaoping; Tang, Hailin; Chen, Jianping; Song, Cailu; Yang, Lu; Liu, Peng; Wang, Neng; Xie, Xinhua; Lin, Xiaoti; Xie, Xiaoming

    2015-08-21

    Triple-negative breast cancer is the most aggressive breast cancer subtype. The aim of our study was to investigate the functional role of both miR-101 and MCL-1 in the sensitivity of human triple-negative breast cancer (TNBC) to paclitaxel. We found that the expression of miR-101 was strongly decreased in triple-negative breast cancer tissues and cell lines. The expression of miR-101 was not associated with clinical stage or lymph node infiltration in TNBC. Ectopic overexpression of miR-101 inhibit growth and induced apoptosis in vitro and suppressed tumorigenicity in vivo. MCL-1 was significantly overexpressed in most of the TNBC tissues and cell lines. Luciferase assay results confirmed MCL-1 as a direct target gene of miR-101. MiR-101 inhibited MCL-1 expression in TNBC cells and transplanted tumors. There was a negative correlation between the level of expression of miR-101 and MCL-1 in TNBC tissues. Suppression of MCL-1 enhanced the sensitivity of MDA-MB-435 cells to paclitaxel. Furthermore, miR-101 increased paclitaxel sensitivity by inhibiting MCL-1 expression. Our findings provide significant insight into the molecular mechanisms of TNBC carcinogenesis and may have clinical relevance for the development of novel, targeted therapies for TNBC.

  9. SOX2 overexpression affects neural differentiation of human pluripotent NT2/D1 cells.

    PubMed

    Klajn, A; Drakulic, D; Tosic, M; Pavkovic, Z; Schwirtlich, M; Stevanovic, M

    2014-11-01

    SOX2 is one of the key transcription factors involved in maintenance of neural progenitor identity. However, its function during the process of neural differentiation, including phases of lineage-specification and terminal differentiation, is still poorly understood. Considering growing evidence indicating that SOX2 expression level must be tightly controlled for proper neural development, the aim of this research was to analyze the effects of constitutive SOX2 overexpression on outcome of retinoic acid-induced neural differentiation of pluripotent NT2/D1 cells. We demonstrated that in spite of constitutive SOX2 overexpression, NT2/D1 cells were able to reach final phases of neural differentiation yielding both neuronal and glial cells. However, SOX2 overexpression reduced the number of mature MAP2-positive neurons while no difference in the number of GFAP-positive astrocytes was detected. In-depth analysis at single-cell level showed that SOX2 downregulation was in correlation with both neuronal and glial phenotype acquisitions. Interestingly, while in mature neurons SOX2 was completely downregulated, astrocytes with low level of SOX2 expression were detected. Nevertheless, cells with high level of SOX2 expression were incapable of entering in either of two differentiation pathways, neurogenesis or gliogenesis. Accordingly, our results indicate that fine balance between undifferentiated state and neural differentiation depends on SOX2 expression level. Unlike neurons, astrocytes could maintain low level of SOX2 expression after they acquired glial fate. Further studies are needed to determine whether differences in the level of SOX2 expression in GFAP-positive astrocytes are in correlation with their self-renewal capacity, differentiation status, and/or their phenotypic characteristics.

  10. C-kit overexpression correlates with KIT gene copy numbers increases in phyllodes tumors of the breast.

    PubMed

    Liu, Junjun; Liu, Xiaozhen; Feng, Xiaolong; Liu, Jian; Lv, Shuhua; Zhang, Wei; Niu, Yun

    2015-01-01

    We determined c-kit expression in the stroma and epithelia of benign, borderline, and malignant phyllodes tumors (PTs), respectively, as well as the relationship between c-kit expression in stromal elements and KIT gene copy number variations (CNVs). To assess c-kit expression and KIT CNVs, 348 PT cases were studied: 120 (34.4 %) benign cases, 115 (33.1 %) borderline cases, and 113 (32.5 %) malignant cases. All of these cases were evaluated for c-kit (CD117) expression using immunohistochemistry. Forty-two cases (29 c-kit-positive in the stromal cells cases and 13 negative cases) were investigated for KIT gene CNVs via genomic polymerase chain reaction (PCR). The overall rate of c-kit positivity in the stroma was 46.8 %, as well as 24.2, 53.1, and 64.6 %, respectively, in PTs of three different grades. However, in the majority of cases, the epithelia were c-kit positive (98.2 %), and the positivity was 100, 99.1, and 95 % in PTs of three different grades, respectively. There was a significant change in the expression of c-kit in the stroma and epithelia according to grade (P < 0.001, P = 0.014). From the genomic PCR results, we can confirm that c-kit positivity in the stroma is directly correlated with KIT gene copy numbers increases (P = 0.003, P = 0.041). We demonstrated that c-kit expression in the stroma of PTs is positively associated with malignancy. c-Kit epithelial positivity was inversely correlated with PTs malignancy. c-Kit overexpression in the stroma was related to KIT gene copy numbers increases.

  11. Overexpression of human alpha-galactosidase A results in its intracellular aggregation, crystallization in lysosomes, and selective secretion

    PubMed Central

    1992-01-01

    Human lysosomal alpha-galactosidase A (alpha-Gal A) was stably overexpressed in CHO cells and its biosynthesis and targeting were investigated. Clone AGA5.3-1000Mx, which was the highest enzyme overexpressor, produced intracellular alpha-Gal A levels of 20,900 U/mg (approximately 100 micrograms of enzyme/10(7) cells) and secreted approximately 13,000 U (or 75 micrograms/10(7) cells) per day. Ultrastructural examination of these cells revealed numerous 0.25-1.5 microns crystalline structures in dilated trans-Golgi network (TGN) and in lysosomes which stained with immunogold particles using affinity- purified anti-human alpha-Gal A antibodies. Pulse-chase studies revealed that approximately 65% of the total enzyme synthesized was secreted, while endogenous CHO lysosomal enzymes were not, indicating that the alpha-Gal A secretion was specific. The recombinant intracellular and secreted enzyme forms were normally processed and phosphorylated; the secreted enzyme had mannose-6-phosphate moieties and bound the immobilized 215-kD mannose-6-phosphate receptor (M6PR). Thus, the overexpressed enzyme's selective secretion did not result from oversaturation of the M6PR-mediated pathway or abnormal binding to the M6PR. Of note, the secreted alpha-Gal A was sulfated and the percent of enzyme sulfation decreased with increasing amplification, presumably due to the inaccessibility of the enzyme's tyrosine residues for the sulfotransferase in the TGN. Overexpression of human lysosomal alpha-N-acetylgalactosaminidase and acid sphingomyelinase in CHO cell lines also resulted in their respective selective secretion. In vitro studies revealed that purified secreted alpha-Gal A was precipitated as a function of enzyme concentration and pH, with 30% of the soluble enzyme being precipitated when 10 mg/ml of enzyme was incubated at pH 5.0. Thus, it is hypothesized that these overexpressed lysosomal enzymes are normally modified until they reach the TGN where the more acidic environment of

  12. Overexpression of miR-26a-2 in human liposarcoma is correlated with poor patient survival.

    PubMed

    Lee, D H; Amanat, S; Goff, C; Weiss, L M; Said, J W; Doan, N B; Sato-Otsubo, A; Ogawa, S; Forscher, C; Koeffler, H P

    2013-05-20

    Approximately 90% of well-differentiated/de-differentiated liposarcomas (WDLPS/DDLPS), the most common LPS subtype, have chromosomal amplification at 12q13-q22. Many protein-coding genes in the region, such as MDM2 and , have been studied as potential therapeutic targets for LPS treatment, with minimal success. In the amplified region near the MDM2 gene, our single nucleotide polymorphism (SNP) array analysis of 75 LPS samples identified frequent amplification of miR-26a-2. Besides being in the amplicon, miR-26a-2 was overexpressed significantly in WDLPS/DDLPS (P<0.001), as well as in myxoid/round cell LPS (MRC) (P<0.05). Furthermore, Kaplan-Meier survival analysis showed that overexpression of miR-26a-2 significantly correlated with poor patient survival in both types of LPS (P<0.05 for WDLPS/DDLPS; P<0.001 for MRC). Based on these findings, we hypothesized that miR-26a-2 has an important role in LPS tumorigenesis, regardless of LPS subtypes. Overexpression of miR-26a-2 in three LPS cell lines (SW872, LPS141 and LP6) enhanced the growth and survival of these cells, including faster cell proliferation and migration, enhanced clonogenicity, suppressed adipocyte differentiation and/or resistance to apoptosis. Inhibition of miR-26a-2 in LPS cells using anti-miR-26a-2 resulted in the opposite responses. To explain further the effect of miR-26a-2 overexpression in LPS cells, we performed in silico analysis and identified 93 candidate targets of miR-26a-2. Among these genes, RCBTB1 (regulator of chromosome condensation and BTB domain-containing protein 1) is located at 13q12.3-q14.3, a region of recurrent loss of heterozygosity (LOH) in LPS. Indeed, either overexpression or inhibition of RCBTB1 made LPS cells more susceptible or resistant to apoptosis, respectively. In conclusion, our study for the first time reveals the contribution of miR-26a-2 to LPS tumorigenesis, partly through inhibiting RCBTB1, suggesting that miR-26a-2 is a novel therapeutic target for human LPS.

  13. Expression status of cyclase‑associated protein 2 as a prognostic marker for human breast cancer.

    PubMed

    Xu, Lihua; Peng, Sida; Huang, Qunai; Liu, Yu; Jiang, Hua; Li, Xi; Wang, Jiani

    2016-10-01

    Cyclase-associated protein 2 (CAP2) protein is reported to be upregulated in hepatocellular carcinoma (HCC). However, data regarding its expression pattern and clinical relevance in breast cancer are unknown. The aim of this study was to investigate CAP2 expression and its prognostic significance in breast cancer. CAP2 expression at the mRNA and protein levels was examined by real‑time quantitative-polymerase chain reaction and western blotting in 10 paired breast cancer tissues and adjacent normal tissues. The expression level of CAP2 protein in normal breast epithelial cells and breast cancer cell lines was quantified by western blotting. CAP2 protein expression was analyzed in paraffin‑embedded breast cancer samples, paired adjacent non‑tumor and normal breast tissues by immunohistochemical analysis. Statistical analyses were also performed to evaluate the clinicopathological significance of CAP2 expression. The results showed that the expression of CAP2 mRNA and protein was higher in breast cancer than that noted in the adjacent normal tissues in 10 paired samples. The expression level of CAP2 protein in breast cancer cell lines was higher than that in normal breast epithelial cells. In paraffin‑embedded tissue samples, the expression of CAP2 was higher in breast cancer than that found in the adjacent non‑cancerous tissues and normal breast tissues. Compared with the adjacent non‑cancerous tissues, overexpression of CAP2 was detected in 29.4% (37/126) of the patients. Overexpression of CAP2 was significantly associated with progesterone receptor (PR) expression (p<0.05), and decreased overall survival (OS) (p<0.05). In multivariate analysis, expression of CAP2 was an independent prognostic factor for OS [hazard ratio (HR), 4.821; 95% confidence interval (CI), 2.442‑9.518; p<0.001]. CAP2 is upregulated in breast cancer and is associated with the expression of PR and patient survival. CAP2 may serve as a prognostic indicator for patients

  14. Marker evaluation of human breast and bladder cancers

    SciTech Connect

    Mayall, B.H.; Carroll, P.R.; Chen, Ling-Chun; Cohen, M.B.; Goodson, W.H. III; Smith, H.S.; Waldman, F.M. )

    1990-11-02

    We are investigating multiple markers in human breast and bladder cancers. Our aim is to identify markers that are clinically relevant and that contribute to our understanding of the disease process in individual patients. Good markers accurately assess the malignant potential of a cancer in an individual patient. Thus, they help identify those cancers that will recur, and they may be used to predict more accurately time to recurrence, response to treatment, and overall prognosis. Therapy and patient management may then be optimized to the individual patient. Relevant markers reflect the underlying pathobiology of individual tumors. As a tissue undergoes transformation from benign to malignant, the cells lose their differentiated phenotype. As a generalization, the more the cellular phenotype, cellular proliferation and cellular genotype depart from normal, the more advanced is the tumor in its biological evolution and the more likely it is that the patient has a poor prognosis. We use three studies to illustrate our investigation of potential tumor markers. Breast cancers are labeled in vivo with 5-bromodeoxyuridine (BrdUrd) to give a direct measure of the tumor labeling index. Bladder cancers are analyzed immunocytochemically using an antibody against proliferation. Finally, the techniques of molecular genetics are used to detect allelic loss in breast cancers. 6 refs., 3 figs.

  15. Analysis of DLC-1 expression in human breast cancer.

    PubMed

    Plaumann, Marlies; Seitz, Susanne; Frege, Renate; Estevez-Schwarz, Lope; Scherneck, Siegfried

    2003-06-01

    The chromosome region 8p12-p22 shows frequent allelic loss in many neoplasms, including breast cancer (BC). The DLC-1 gene, located on 8p21-p22, might be a candidate tumor suppressor gene in this region. To evaluate the involvement of DLC-1 in breast carcinogenesis we studied DLC-1 mRNA expression in a panel of 14 primary human BC and the corresponding normal breast cells as well as 8 BC cell lines. Low levels or absence of DLC-1 mRNA were observed in 57% of primary BC and 62.5% of BC cell lines, respectively. We could not find any correlation between DLC-1 mRNA expression and deletions at the DLC-1 locus. Transfection of the gene into DLC-1 deficient T-47D cells raised the DLC-1 mRNA level and resulted in inhibition of cell growth and reduced colony-forming capacity. Our results indicate a role of DLC-1 in BC carcinogenesis.

  16. Mathematical analysis of mammary ducts in lactating human breast.

    PubMed

    Mortazavi, S Negin; Geddes, Donna; Hassiotou, Foteini; Hassanipour, Fatemeh

    2014-01-01

    This work studies a simple model for milk transport through lactating human breast ducts, and describes mathematically the mass transfer from alveolar sacs through the mammary ducts to the nipple. In this model both the phenomena of diffusion in the sacs and conventional flow in ducts have been considered. The ensuing analysis reveals that there is an optimal range of bifurcation numbers leading to the easiest milk flow based on the minimum flow resistance. This model formulates certain difficult-to-measure values like diameter of the alveolar sacs, and the total length of the milk path as a function of easy-to-measure properties such as milk fluid properties and macroscopic measurements of the breast. Alveolar dimensions from breast tissues of six lactating women are measured and reported in this paper. The theoretically calculated alveoli diameters for optimum milk flow (as a function of bifurcation numbers) show excellent match with our biological data on alveolar dimensions. Also, the mathematical model indicates that for minimum milk flow resistance the glandular tissue must be within a short distance from the base of the nipple, an observation that matches well with the latest anatomical and physiological research.

  17. Identification and functional characterization of breast cancer resistance protein in human bronchial epithelial cells (Calu-3)

    PubMed Central

    Paturi, Durga Kalyani; Kwatra, Deep; Ananthula, Hari Krishna; Pal, Dhananjay; Mitra, Ashim K.

    2010-01-01

    Breast cancer resistance protein (BCRP), a 72 kDa protein belongs to the subfamily G of the human ATP binding cassette transporter superfamily. Overexpression of BCRP was found to play a major role in the development of resistance against various chemotherapeutic agents. BCRP plays an important role in absorption, distribution and elimination of several therapeutic agents. BCRP expression and functional activity across human bronchial epithelium and its impact on pulmonary drug accumulation has not been established. The objective of this study is to identify and characterize the BCRP efflux transporter across human bronchial epithelium. Calu-3, a human bronchial epithelial cell line was employed as a model for this study. Reverse transcription-polymerase chain reaction (RT-PCR), western blot and immunocytochemical studies were performed to identify and characterize the expression of BCRP. RT-PCR studies detected ABCG2 mRNA levels in Calu-3 cells. A strong band for BCRP with a molecular weight of approximately 72 kDa was observed in Western blot analysis. Immunocytochemical studies confirmed the presence of BCRP on the apical membrane of human bronchial epithelium. Functional activity of BCRP was determined by performing uptake of radioactive substrate [3H]-mitoxantrone in the presence and absence of BCRP inhibitors. Uptake of [3H]-mitoxantrone was elevated significantly in the presence of GF120918 and fumitremorgin C. An increase in the accumulation of Hoechst 33342, a fluorescent dye was also detected in the presence of BCRP inhibitors when compared to control. In summary, this study provides evidence for the presence of an ATP dependent, membrane bound efflux transporter BCRP across human bronchial epithelial cell line, Calu-3. PMID:19782742

  18. Polymeric micelles as a diagnostic tool for image-guided drug delivery and radiotherapy of HER2 overexpressing breast cancer

    NASA Astrophysics Data System (ADS)

    Hoang, Nu Bryan

    Block copolymer micelles have emerged as a viable formulation strategy with several drugs relying on this technology in clinical evaluation. To date, information on the tumor penetration and intratumoral distribution of block copolymer micelles (BCM) has been quite limited. Thus, there is impetus to develop a radiolabeled formulation that can be used to gain invaluable insight into the intratumoral distribution of the BCMs. This information could then be used to direct formulation strategies as a means to optimize treatment outcomes. This thesis describes the synthesis and characterization of a targeted block copolymer micelle system based on poly(ethylene glycol)-block -poly(epsilon-caprolactone) labeled with the radionuclide Indium-111 (111In). The incorporation of the imageable component, 111In permits pursuit of image-guided drug delivery for real-time monitoring of tumor localization and intratumoral distribution. Intracellular trafficking of drugs and therapies such as Auger electron emitting radionuclides to perinuclear and nuclear regions of cells is critical to realizing their full therapeutic potential. HER2 specific antibodies (trastuzumab fab fragments) and nuclear localization signal peptides were conjugated to the surface of the BCMs to direct uptake in HER2 expressing cells and subsequent localization in the cell nucleus. Cell uptake was HER2 density dependent, confirming receptor-mediated internalization of the BCMs. Importantly, conjugation of NLS resulted in a significant increase in nuclear uptake of the radionuclide 111In. Successful nuclear targeting was shown to improve the antiproliferative effect of the Auger electrons. In addition, a significant radiation enhancement effect was observed by concurrent delivery of low-dose MTX and 111In in all breast cancer cell lines evaluated. Imaging enabled the accurate quantification of the specific tumor uptake of the micelles and visualization of their degree of tumor penetration in relation to

  19. Gene amplification-associated overexpression of the RNA editing enzyme ADAR1 enhances human lung tumorigenesis

    PubMed Central

    Anadón, C; Guil, S; Simó-Riudalbas, L; Moutinho, C; Setien, F; Martínez-Cardús, A; Moran, S; Villanueva, A; Calaf, M; Vidal, A; Lazo, P A; Zondervan, I; Savola, S; Kohno, T; Yokota, J; de Pouplana, L R; Esteller, M

    2016-01-01

    The introduction of new therapies against particular genetic mutations in non-small-cell lung cancer is a promising avenue for improving patient survival, but the target population is small. There is a need to discover new potential actionable genetic lesions, to which end, non-conventional cancer pathways, such as RNA editing, are worth exploring. Herein we show that the adenosine-to-inosine editing enzyme ADAR1 undergoes gene amplification in non-small cancer cell lines and primary tumors in association with higher levels of the corresponding mRNA and protein. From a growth and invasion standpoint, the depletion of ADAR1 expression in amplified cells reduces their tumorigenic potential in cell culture and mouse models, whereas its overexpression has the opposite effects. From a functional perspective, ADAR1 overexpression enhances the editing frequencies of target transcripts such as NEIL1 and miR-381. In the clinical setting, patients with early-stage lung cancer, but harboring ADAR1 gene amplification, have poor outcomes. Overall, our results indicate a role for ADAR1 as a lung cancer oncogene undergoing gene amplification-associated activation that affects downstream RNA editing patterns and patient prognosis. PMID:26640150

  20. Gene amplification-associated overexpression of the RNA editing enzyme ADAR1 enhances human lung tumorigenesis.

    PubMed

    Anadón, C; Guil, S; Simó-Riudalbas, L; Moutinho, C; Setien, F; Martínez-Cardús, A; Moran, S; Villanueva, A; Calaf, M; Vidal, A; Lazo, P A; Zondervan, I; Savola, S; Kohno, T; Yokota, J; de Pouplana, L R; Esteller, M

    2016-08-18

    The introduction of new therapies against particular genetic mutations in non-small-cell lung cancer is a promising avenue for improving patient survival, but the target population is small. There is a need to discover new potential actionable genetic lesions, to which end, non-conventional cancer pathways, such as RNA editing, are worth exploring. Herein we show that the adenosine-to-inosine editing enzyme ADAR1 undergoes gene amplification in non-small cancer cell lines and primary tumors in association with higher levels of the corresponding mRNA and protein. From a growth and invasion standpoint, the depletion of ADAR1 expression in amplified cells reduces their tumorigenic potential in cell culture and mouse models, whereas its overexpression has the opposite effects. From a functional perspective, ADAR1 overexpression enhances the editing frequencies of target transcripts such as NEIL1 and miR-381. In the clinical setting, patients with early-stage lung cancer, but harboring ADAR1 gene amplification, have poor outcomes. Overall, our results indicate a role for ADAR1 as a lung cancer oncogene undergoing gene amplification-associated activation that affects downstream RNA editing patterns and patient prognosis.

  1. The endogenous cannabinoid anandamide inhibits human breast cancer cell proliferation

    PubMed Central

    De Petrocellis, Luciano; Melck, Dominique; Palmisano, Antonella; Bisogno, Tiziana; Laezza, Chiara; Bifulco, Maurizio; Di Marzo, Vincenzo

    1998-01-01

    Anandamide was the first brain metabolite shown to act as a ligand of “central” CB1 cannabinoid receptors. Here we report that the endogenous cannabinoid potently and selectively inhibits the proliferation of human breast cancer cells in vitro. Anandamide dose-dependently inhibited the proliferation of MCF-7 and EFM-19 cells with IC50 values between 0.5 and 1.5 μM and 83–92% maximal inhibition at 5–10 μM. The proliferation of several other nonmammary tumoral cell lines was not affected by 10 μM anandamide. The anti-proliferative effect of anandamide was not due to toxicity or to apoptosis of cells but was accompanied by a reduction of cells in the S phase of the cell cycle. A stable analogue of anandamide (R)-methanandamide, another endogenous cannabinoid, 2-arachidonoylglycerol, and the synthetic cannabinoid HU-210 also inhibited EFM-19 cell proliferation, whereas arachidonic acid was much less effective. These cannabimimetic substances displaced the binding of the selective cannabinoid agonist [3H]CP 55,940 to EFM-19 membranes with an order of potency identical to that observed for the inhibition of EFM-19 cell proliferation. Moreover, anandamide cytostatic effect was inhibited by the selective CB1 receptor antagonist SR 141716A. Cell proliferation was arrested by a prolactin mAb and enhanced by exogenous human prolactin, whose mitogenic action was reverted by very low (0.1–0.5 μM) doses of anandamide. Anandamide suppressed the levels of the long form of the prolactin receptor in both EFM-19 and MCF-7 cells, as well as a typical prolactin-induced response, i.e., the expression of the breast cancer cell susceptibility gene brca1. These data suggest that anandamide blocks human breast cancer cell proliferation through CB1-like receptor-mediated inhibition of endogenous prolactin action at the level of prolactin receptor. PMID:9653194

  2. Mapping MRI/MRS Parameters with Genetic Over-expression Profiles In Human Prostate Cancer: Demonstrating the Potential

    PubMed Central

    Lenkinski, Robert E.; Bloch, B. Nicholas; Liu, Fangbing; Frangioni, John V.; Perner, Sven; Rubin, Mark A.; Genega, Elizabeth; Rofsky, Neil M.; Gaston, Sandra M.

    2009-01-01

    Magnetic resonance imaging (MRI) and MR spectroscopy can probe a variety of physiological (e.g. blood vessel permeability) and metabolic characteristics of prostate cancer. However, little is known about the changes in gene expression that underlie the spectral and imaging features observed in prostate cancer. Tumor induced changes in vascular permeability and angiogenesis are thought to contribute to patterns of dynamic contrast enhanced (DCE) MRI images of prostate cancer even though the genetic basis of tumor vasculogenesis is complex and the specific mechanisms underlying these DCEMRI features have not yet been determined. In order to identify the changes in gene expression that correspond to MRS and DCEMRI patterns in human prostate cancers, we have utilized tissue print micropeel techniques to generate “whole mount” molecular maps of radical prostatectomy specimens that correspond to pre-surgical MRI/MRS studies. These molecular maps include RNA expression profiles from both Affymetrix GeneChip microarrays and quantitative reverse transcriptase PCR (qrt-PCR) analysis, as well as immunohistochemical studies. Using these methods on patients with prostate cancer, we found robust over-expression of choline kinase a in the majority of primary tumors. We also observed overexpression of neuropeptide Y (NPY), a newly identified angiogenic factor, in a subset of DCEMRI positive prostate cancers. These studies set the stage for establishing MRI/MRS parameters as validated biomarkers for human prostate cancer. PMID:18752015

  3. Overexpression of the multidrug resistance-associated protein (MRP1) in human heavy metal-selected tumor cells.

    PubMed

    Vernhet, L; Courtois, A; Allain, N; Payen, L; Anger, J P; Guillouzo, A; Fardel, O

    1999-01-29

    Cellular and molecular mechanisms involved in the resistance to cytotoxic heavy metals remain largely to be characterized in mammalian cells. To this end, we have analyzed a metal-resistant variant of the human lung cancer GLC4 cell line that we have selected by a step-wise procedure in potassium antimony tartrate. Antimony-selected cells, termed GLC4/Sb30 cells, poorly accumulated antimony through an enhanced cellular efflux of metal, thus suggesting up-regulation of a membrane export system in these cells. Indeed, GLC4/Sb30 cells were found to display a functional overexpression of the multidrug resistance-associated protein MRP1, a drug export pump, as demonstrated by Western blotting, reverse transcriptase-polymerase chain reaction and calcein accumulation assays. Moreover, MK571, a potent inhibitor of MRP1 activity, was found to markedly down-modulate resistance of GLC4/Sb30 cells to antimony and to decrease cellular export of the metal. Taken together, our data support the conclusion that overexpression of functional MRP1 likely represents one major mechanism by which human cells can escape the cytotoxic effects of heavy metals.

  4. Detection of Human Papillomavirus in Korean Breast Cancer Patients by Real-Time Polymerase Chain Reaction and Meta-Analysis of Human Papillomavirus and Breast Cancer

    PubMed Central

    Choi, Jinhyuk; Kim, Chungyeul; Lee, Hye Seung; Choi, Yoo Jin; Kim, Ha Yeon; Lee, Jinhwan; Chang, Hyeyoon; Kim, Aeree

    2016-01-01

    Background Human papillomavirus (HPV) is a well-established oncogenic virus of cervical, anogenital, and oropharyngeal cancer. Various subtypes of HPV have been detected in 0% to 60% of breast cancers. The roles of HPV in the carcinogenesis of breast cancer remain controversial. This study was performed to determine the prevalence of HPV-positive breast cancer in Korean patients and to evaluate the possibility of carcinogenic effect of HPV on breast. Methods Meta-analysis was performed in 22 case-control studies for HPV infection in breast cancer. A total of 123 breast cancers, nine intraductal papillomas and 13 nipple tissues of patients with proven cervical HPV infection were tested by real-time polymerase chain reaction to detect 28 subtypes of HPV. Breast cancers were composed of 106 formalin-fixed and paraffin embedded (FFPE) breast cancer samples and 17 touch imprint cytology samples of breast cancers. Results The overall odds ratio between breast cancer and HPV infection was 5.43 (95% confidence interval, 3.24 to 9.12) with I2 = 34.5% in meta-analysis of published studies with case-control setting and it was statistically significant. HPV was detected in 22 cases of breast cancers (17.9%) and two cases of intaductal papillomas (22.2%). However, these cases had weak positivity. Conclusions These results failed to serve as significant evidence to support the relationship between HPV and breast cancer. Further study with larger epidemiologic population is merited to determine the relationship between HPV and breast cancer. PMID:27725620

  5. Pathway-focused proteomic signatures in HER2-overexpressing breast cancer with a basal-like phenotype: new insights into de novo resistance to trastuzumab (Herceptin).

    PubMed

    Oliveras-Ferraros, Cristina; Vazquez-Martin, Alejandro; Martin-Castilló, Begoña; Pérez-Martínez, Maria Carmen; Cufí, Silvia; Del Barco, Sonia; Bernado, Luis; Brunet, Joan; López-Bonet, Eugeni; Menendez, Javíer A

    2010-09-01

    Pioneering clinical studies in de novo refractoriness to the anti-HER2 monoclonal antibody trastuzumab have suggested that HER2 gene-amplification can take place also in a basal-like molecular background to generate basal/HER2+ tumors intrinsically resistant to trastuzumab. Here, we first investigated the unique histogenesis of the basal/HER2+ phenotype in breast carcinomas. The presence of basal CK5/CK6 cytokeratin expression in HER2+ tumors revealed a significant overlap in the histological features of HER2+/CK5/6+ and basal-like breast carcinomas. Basal/HER2+ tumors were typically poorly differentiated, high-grade invasive ductal carcinomas with large geographic necrosis, pushing margins of invasion, syncytial arrangement of tumor cells, ribbon- or festoon-like architecture, squamous metaplasia, stromal lymphocytic infiltrates, high mitotic index and strong p53 positivity. Secondly, we performed low-scale proteomic approaches in JIMT-1 cells, a unique model of HER2-gene amplified trastuzumab-resistant breast carcinoma with a basal-like phenotype, to develop biomarker signatures that may differentiate trastuzumab-responsive from non-responsive tumors. When applying antibody-based array technology to the extracellular milieu of trastuzumab-refractory JIMT-1 and trastuzumab-sensitive SKBR3 cell cultures, JIMT-1 cells were found to secrete higher amounts of several growth factors including amphiregulin, EGF, IGFBP-6, PDGF-AA, neurotrophins, TGFbeta and VEGF. Semi-quantitative signaling node multi-target sandwich ELISAs revealed that JIMT-1 cells drastically overactivate RelA, the prosurvival subunit of NF-kappaB as compared to trastuzumab-sensitive luminal/HER2+ SKBR3 cells. When simultaneously assessing the activation status of 42 receptor tyrosine kinases (RTK) using a human phospho-RTK array, JIMT-1 cells were found to constitutively display hyperactivation of the insulin-like growth factor-I receptor (IGF-1R). High-content immunofluorescence imaging revealed

  6. Role of ornithine decarboxylase in regulation of estrogen receptor alpha expression and growth in human breast cancer cells

    PubMed Central

    Zhu, Qingsong; Jin, Lihua; Casero, Robert A.

    2013-01-01

    Our previous studies demonstrated that specific polyamine analogues, oligoamines, down-regulated the activity of a key polyamine biosynthesis enzyme, ornithine decarboxylase (ODC), and suppressed expression of estrogen receptor alpha (ERα) in human breast cancer cells. However, the mechanism underlying the potential regulation of ERα expression by polyamine metabolism has not been explored. Here, we demonstrated that RNAi-mediated knockdown of ODC (ODC KD) down-regulated the polyamine pool, and hindered growth in ERα-positive MCF7 and T47D and ERα-negative MDA-MB-231 breast cancer cells. ODC KD significantly induced the expression and activity of the key polyamine catabolism enzymes, spermine oxidase (SMO) and spermidine/spermine N1-acetyltransferase (SSAT). However, ODC KD-induced growth inhibition could not be reversed by exogenous spermidine or overexpression of antizyme inhibitor (AZI), suggesting that regulation of ODC on cell proliferation may involve the signaling pathways independent of polyamine metabolism. In MCF7 and T47D cells, ODC KD, but not DFMO treatment, diminished the mRNA and protein expression of ERα. Overexpression of antizyme (AZ), an ODC inhibitory protein, suppressed ERα expression, suggesting that ODC plays an important role in regulation of ERα expression. Decrease of ERα expression by ODC siRNA altered the mRNA expression of a subset of ERα response genes. Our previous analysis showed that oligoamines disrupt the binding of Sp1 family members to an ERα minimal promoter element containing GC/CA-rich boxes. By using DNA affinity precipitation and mass spectrometry analysis, we identified ZBTB7A, MeCP2, PARP-1, AP2, and MAZ as co-factors of Sp1 family members that are associated with the ERα minimal promoter element. Taken together, these data provide insight into a novel antiestrogenic mechanism for polyamine biosynthesis enzymes in breast cancer. PMID:22976807

  7. Inhibition of Migration and Invasion by Tet-1 Overexpression in Human Lung Carcinoma H460 Cells.

    PubMed

    Park, Si Jun; Lee, Bo Ram; Kim, Hyeng-Soo; Ji, Young Rae; Sung, Yong Hun; ShikChoi, Kwang; Park, Hum Dai; Kim, Sung-Hyun; Kim, Myoung Ok; Ryoo, Zae Young

    2016-01-01

    In the present study, we found that lung cancer cell line (H460 cells) expressing Tet1 showed higher levels of adhesion, and Tet1 inhibited H460 cell proliferation. In addition, these cells showed a significantly reduced ability of collagen degradation and Smad2/3 phosphorylation compared to controls. Furthermore, vimentin was found to be highly expressed in larger metastatic cancer area. Tet1 overexpression was reduced in the epithelial marker E-cadherin. Moreover, Tet1 repressed cancer cell metastasis in nude mice. Collectively, these findings suggest that Tet1 expression plays a critical role in metastasis of lung cancer cells by suppression of invasion and epithelial-mesenchymal transition (EMT).

  8. High risk human papillomavirus and Epstein Barr virus in human breast milk

    PubMed Central

    2012-01-01

    Background Multiple viruses, including human immunodeficiency virus, Epstein Barr virus (EBV) and mouse mammary tumour virus have been identified in human milk. High risk human papillomavirus (HPV) sequences have been identified in breast cancer. The aim of this study is to determine if viral sequences are present in human milk from normal lactating women. Findings Standard (liquid) and in situ polymerase chain reaction (PCR) techniques were used to identify HPV and EBV in human milk samples from normal lactating Australian women who had no history of breast cancer. High risk human papillomavirus was identified in milk samples of 6 of 40 (15%) from normal lactating women - sequencing on four samples showed three were HPV 16 and one was HPV 18. Epstein Barr virus was identified in fourteen samples (33%). Conclusion The presence of high risk HPV and EBV in human milk suggests the possibility of milk transmission of these viruses. However, given the rarity of viral associated malignancies in young people, it is possible but unlikely, that such transmission is associated with breast or other cancers. PMID:22937830

  9. Effects of the overexpression of IFITM5 and IFITM5 c.-14C>T mutation on human osteosarcoma cells.

    PubMed

    Liu, Bao-Yan; Lu, Yan-Qin; Han, Feng; Wang, Yong; Mo, Xin-Kai; Han, Jin-Xiang

    2017-01-01

    The present study aimed to investigate the effects of overexpression of interferon-induced transmembrane protein 5 (IFITM5) and IFITM5 c.-14C>T mutation on osteogenic differentiation, and the proliferation, migration and invasion of SaOS2 cells. SaOS2 cells were transfected with plasmids containing wild type IFITM5 (W) or IFITM5 containing the c.-14C>T mutation (MU). The mRNA and protein expression levels of IFITM5 in SaOS2 cells were respectively detected by reverse transcription quantitative polymerase chain reaction and western blotting. The proliferative, migratory and invasive ability of SaOS2 cells was also examined. In addition, the expression levels of osteogenic differentiation markers alkaline phosphatase (ALP), osteocalcin (OCN) and runt-related transcription factor 2 (Runx2) were detected. Mineralized nodules were detected by Alizarin Red S staining and were quantified by measuring absorbance. The mRNA and protein expression levels of IFITM5 were high in cells transfected with IFITM5 and IFITM5 c.-14C>T mutation, and were higher in cells transfected with IFITM5 c.-14C>T mutation. There was no difference in proliferation between the control group (C) and the W and MU groups. However, overexpression of IFITM5 and IFITM5 c.-14C>T mutation increased apoptotic rate, decreased invasive capacity, increased the expression of ALP, OCN and Runx2, and increased the number of mineralized nodules following osteogenic induction. In addition, compared with C and W groups, cells transfected with IFITM5 c.-14C>T mutation exhibited decreased migratory ability. In conclusion, overexpression of IFITM5 and IFITM5 c.-14C>T mutation promotes tumor cell apoptosis, inhibits tumor invasion and promotes osteogenic differentiation. These findings may provide a theoretical basis for the development of a novel treatment method that targets IFITM5, and provides a platform for the potential treatment of human osteosarcoma.

  10. Role of human neutrophil gelatinase associated lipocalin (NGAL) and Matrix Metalloproteinase-9 (MMP-9) overexpression in neoplastic colon polyps.

    PubMed

    Odabasi, Mehmet; Yesil, Atakan; Ozkara, Selvinaz; Paker, Nurcan; Ozkan, Sevil; Eris, Cengiz; Yildiz, Mehmet Kamil; Abuoglu, Hacı Hasan; Gunay, Emre; Tekeşin, Kemal

    2014-01-01

    To explore the role of Human neutrophil gelatinase associated lipocalin (NGAL) and Matrix Metalloproteinase-9 (MMP-9) overexpression in neoplastic polyps and might used as a marker to separate those from non-noeplastic polyps. The study was performed on total 65 cases, 40% (n = 26) of them females and 60% (n = 39) of them males, in Haydarpasa Numune Education and Research Hospital between March 2012 and June 2012. The assessment of immunostained sections was performed by a random principle by one experinced pathologists to the clinico-pathological data. NGAL expression was based on the presence of cytoplasmic and membranous staining. The NGAL intensities of the cases show highly statistically significantly difference according to the pathological results (p < 0.01). The NGAL prevalences of the cases show highly statistically significantly difference according to the pathological results (p < 0.01). The NGAL ID scores of the cases show highly statistically significantly difference according to the pathological results (p < 0.01). We could hypothesize that NGAL and MMP-9 overexpression in neoplastic polyps might be used as a marker to separate those from non-noeplastic polyps. However, in this study, we determined that NGAL overexpression could not distinguish dysplasia from adenocancer. Finally, we suggest NGAL and MMP-9 as an immunohistochemical marker for colonic dysplasia. To determine dysplasia in early steps of colorectal adenoma-carcinoma sequence, it could help to determine new targets in preventive cancer therapy for colorectal cancer. We suggest development of standards for study method, introduction to routine practice by investigating in future studies including many patients.

  11. Immune accessory functions of human endothelial cells are modulated by overexpression of B7-H1 (PDL1).

    PubMed

    LaGier, Adriana J; Pober, Jordan S

    2006-08-01

    B7-H1 (PDL1) is a B7-related protein that inhibits T-cell responses. Human endothelial cells (EC), which can support polyclonal stimulation (by anti-CD3 or Phytohemagglutinin (PHA)) or direct alloantigen stimulation of T cells, basally express B7-H1 and increase expression in response to IFN-gamma or coculture with allogeneic T cells. Previous studies have suggested that endogenous B7-H1 on EC reduces T-cell responses. We engineered overexpression of B7-H1 in EC (B7H1-EC) to evaluate whether this manipulation could reduce T-cell responses even further. Compared with green fluorescent protein-transduced EC (GFP-EC), B7H1-EC support less anti-CD3 or PHA-induced proliferation of CD4+ memory T cells; naive CD4+ T-cell or CD8+ T-cell responses were less inhibited. The effect of transduced B7H1-EC was more apparent when the EC were fixed prior to coculture, a manipulation that reduces the strength of costimulation and prevents upregulation of the endogenous B7-H1 molecule. T-cell activation markers, including CD25, CD62L, CD152 (CTLA-4), and CD154 (CD40L), were not altered by EC overexpression of B7-H1, whereas there was a reduction in CD69. B7-H1 reduced secretion of IL-2 and IL-10 by memory T cells. B7H1-EC were less able to stimulate allogeneic proliferation of CD4+ memory T cells than control EC. These data suggest that B7-H1 overexpression may be a useful approach for reducing allogeneic CD4+ memory T-cell responses to EC.

  12. Aflatoxin M1 in human breast milk in southeastern Turkey.

    PubMed

    Kılıç Altun, Serap; Gürbüz, Semra; Ayağ, Emin

    2016-12-28

    This study was performed to determine aflatoxin M1 (AFM1) in human breast milk samples collected in Şanlıurfa, located in Southeastern region of Turkey, and to investigate a possible correlation between AFM1 occurrence (frequency and levels) and sampling seasons. Human breast milk samples collected in December 2014 and in June 2015 from a total of 74 nursing women, both outpatient and inpatient volunteers in hospitals located in Şanlıurfa, Turkey, were analyzed using competitive enzyme-linked immunosorbent assay (ELISA) for the presence of AFM1. AFM1 was detected in 66 (89.2%) out of 74 samples at an average concentration of 19.0 ± 13.0 ng/l (min.-max., 9.6-80 ng/l). There was a statistically significant difference between December and June concerning AFM1 levels (p < 0.05). Further detailed studies will be needed to determine the main sources of aflatoxins in food, to establish protection strategies against maternal and infant exposure to these mycotoxins.

  13. Glyphosate induces human breast cancer cells growth via estrogen receptors.

    PubMed

    Thongprakaisang, Siriporn; Thiantanawat, Apinya; Rangkadilok, Nuchanart; Suriyo, Tawit; Satayavivad, Jutamaad

    2013-09-01

    Glyphosate is an active ingredient of the most widely used herbicide and it is believed to be less toxic than other pesticides. However, several recent studies showed its potential adverse health effects to humans as it may be an endocrine disruptor. This study focuses on the effects of pure glyphosate on estrogen receptors (ERs) mediated transcriptional activity and their expressions. Glyphosate exerted proliferative effects only in human hormone-dependent breast cancer, T47D cells, but not in hormone-independent breast cancer, MDA-MB231 cells, at 10⁻¹² to 10⁻⁶M in estrogen withdrawal condition. The proliferative concentrations of glyphosate that induced the activation of estrogen response element (ERE) transcription activity were 5-13 fold of control in T47D-KBluc cells and this activation was inhibited by an estrogen antagonist, ICI 182780, indicating that the estrogenic activity of glyphosate was mediated via ERs. Furthermore, glyphosate also altered both ERα and β expression. These results indicated that low and environmentally relevant concentrations of glyphosate possessed estrogenic activity. Glyphosate-based herbicides are widely used for soybean cultivation, and our results also found that there was an additive estrogenic effect between glyphosate and genistein, a phytoestrogen in soybeans. However, these additive effects of glyphosate contamination in soybeans need further animal study.

  14. Broccoli and watercress suppress matrix metalloproteinase-9 activity and invasiveness of human MDA-MB-231 breast cancer cells

    SciTech Connect

    Rose, Peter . E-mail: bchpcr@nus.edu.sg; Huang, Qing; Ong, Choon Nam; Whiteman, Matt

    2005-12-01

    A high dietary intake of cruciferous vegetables has been associated with a reduction in numerous human pathologies particularly cancer. In the current study, we examined the inhibitory effects of broccoli (Brassica oleracea var. italica) and watercress (Rorripa nasturtium aquaticum) extracts on 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced cancer cell invasion and matrix metalloproteinase-9 activity using human MDA-MB-231 breast cancer cells. Aberrant overexpression of matrix metalloproteinases, including metalloproteinase-9, is associated with increased invasive potential in cancer cell lines. Our results demonstrate that extracts of broccoli and Rorripa suppressed TPA-induced MMP-9 activity and invasiveness in a concentration dependant manner as determined by zymographic analysis. Furthermore, fractionation of individual extracts followed by liquid chromatography mass spectroscopy analysis (LC-MS) revealed that the inhibitory effects of each vegetable were associated with the presence of 4-methysulfinylbutyl (sulforaphane) and 7-methylsulphinylheptyl isothiocyanates. Taken together, our data indicate that isothiocyanates derived form broccoli and Rorripa inhibit metalloproteinase 9 activities and also suppress the invasive potential of human MDA-MB-231 breast cancer cells in vitro. The inhibitory effects observed in the current study may contribute to the suppression of carcinogenesis by diets high in cruciferous vegetables.

  15. Broccoli and watercress suppress matrix metalloproteinase-9 activity and invasiveness of human MDA-MB-231 breast cancer cells.

    PubMed

    Rose, Peter; Huang, Qing; Ong, Choon Nam; Whiteman, Matt

    2005-12-01

    A high dietary intake of cruciferous vegetables has been associated with a reduction in numerous human pathologies particularly cancer. In the current study, we examined the inhibitory effects of broccoli (Brassica oleracea var. italica) and watercress (Rorripa nasturtium aquaticum) extracts on 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced cancer cell invasion and matrix metalloproteinase-9 activity using human MDA-MB-231 breast cancer cells. Aberrant overexpression of matrix metalloproteinases, including metalloproteinase-9, is associated with increased invasive potential in cancer cell lines. Our results demonstrate that extracts of broccoli and Rorripa suppressed TPA-induced MMP-9 activity and invasiveness in a concentration dependent manner as determined by zymographic analysis. Furthermore, fractionation of individual extracts followed by liquid chromatography mass spectroscopy analysis (LC-MS) revealed that the inhibitory effects of each vegetable were associated with the presence of 4-methysulfinylbutyl (sulforaphane) and 7-methylsulphinylheptyl isothiocyanates. Taken together, our data indicate that isothiocyanates derived form broccoli and Rorripa inhibit metalloproteinase 9 activities and also suppress the invasive potential of human MDA-MB-231 breast cancer cells in vitro. The inhibitory effects observed in the current study may contribute to the suppression of carcinogenesis by diets high in cruciferous vegetables.

  16. MicroRNA-34a Suppresses Cell Proliferation by Targeting LMTK3 in Human Breast Cancer MCF-7 Cell Line

    PubMed Central

    Zhao, Guoqing; Guo, Jun; Li, Dong; Jia, Chengyou; Yin, Wanzhong; Sun, Ran; Lv, Zhongwei

    2013-01-01

    Breast cancer remains the leading cause of cancer mortality in females, and about 70% of the primary breast cancer patients are diagnosed ERα-positive, which is the most common type of breast cancer. MicroRNA-34a (miR-34a) has been shown to be a master regulator of tumor suppression in many types of cancers including breast cancer. However, the role of miR-34a in ERα-positive breast cancer has not been elucidated. Here, we find that in MCF-7, which is an ERα-positive breast cancer cell line, miR-34a is remarkably downregulated after E2 treatment. Overexpression of miR-34a by lentivirus suppresses cell proliferation, S phase ratio, and tumor formation in an E2-dependent manner in vitro. According to the mRNA sequence, lemur tyrosine kinase 3 (LMTK3), which is an important regulator of estrogen receptor alpha (ERα), is a predicted target of miR-34a. This is confirmed by dual luciferase reporter assay and the decrease of LMTK3 mRNA and protein levels after overexpression of miR-34a. Moreover, miR-34a overexpression decreases AKT signaling pathway and increases ERα phosphorylation status. Taken together, these results suggest that miR-34a inhibits breast cancer proliferation by targeting LMTK3 and might be used as an anti-ERα agent in breast cancer therapy. PMID:24050776

  17. Breast Cancer In Women

    Cancer.gov

    This infographic shows the Breast Cancer Subtypes in Women. It’s important for guiding treatment and predicting survival. Know the Science: HR = Hormone receptor. HR+ means tumor cells have receptors for the hormones estrogen or progesterone, which can promote the growth of HR+ tumors. Hormone therapies like tamoxifen can be used to treat HR+ tumors. HER2 = Human epidermal growth Factor receptor, HER2+ means tumor cells overexpress (make high levels of) a protein, called HE2/neu, which has been shown to be associated with certain aggressive types of breast cancer. Trastuzumab and some other therapies can target cells that overexpress HER2. HR+/HER2, aka “LuminalA”. 73% of all breast cancer cases: best prognosis, most common subtype for every race, age, and poverty level. HR-/HER2, aka “Triple Negative”: 13% of all breast cancer cases, Worst prognosis, Non-Hispanic blacks have the highest rate of this subtype at every age and poverty level. HR+/HER2+, aka “Luminal B”, 10% of all breast cancer cases, little geographic variation by state. HR-/HER2+, aka”HER2-enriched”, 5% of all breast cancer cases, lowest rates for all races and ethnicities. www.cancer.gov Source: Special section of the Annual Report to the Nation on the Status of Cancer, 1975-2011.

  18. Overexpression of orphan G-protein-coupled receptor, Gpr49, in human hepatocellular carcinomas with beta-catenin mutations.

    PubMed

    Yamamoto, Yoshiya; Sakamoto, Michiie; Fujii, Gen; Tsuiji, Hitomi; Kenetaka, Kengo; Asaka, Masahiro; Hirohashi, Setsuo

    2003-03-01

    To identify the genes responsible for carcinogenesis and progression of hepatocellular carcinoma (HCC), we screened differentially expressed genes in several human HCC cell lines. Among these genes, Gpr49 was up-regulated in PLC/PRF/5 and HepG2. Gpr49 is a member of the glycoprotein hormone receptor subfamily, which includes the thyroid-stimulating hormone receptor (TSHR). However, Gpr49 remains to be an orphan G-protein-coupled receptor. By real-time quantitative reverse transcriptase polymerase chain reaction (RT-PCR) analysis, overexpression (>3-fold increase compared with the corresponding noncancerous liver tissue) of Gpr49 mRNA was observed in 18 of 38 (47%) HCCs compared with corresponding noncancerous livers. Clinicopathologically, overexpression of Gpr49 was frequently observed in HCC with mutation in beta-catenin exon 3 (14 of 16 cases, 87.5%). Moreover, introduction of mutant beta-catenin into mouse hepatocytes in culture caused up-regulation of the Gpr49 mouse homologue. Therefore, Gpr49 is likely to be a target gene activated by Wnt-signaling in HCC. In conclusion, although much is still unknown, Gpr49 may be critically involved in the development of HCCs with beta-catenin mutations and has the potential to be a new therapeutic target in the treatment of HCC.

  19. Overexpression and activation of hepatocyte growth factor/scatter factor in human non-small-cell lung carcinomas.

    PubMed Central

    Olivero, M.; Rizzo, M.; Madeddu, R.; Casadio, C.; Pennacchietti, S.; Nicotra, M. R.; Prat, M.; Maggi, G.; Arena, N.; Natali, P. G.; Comoglio, P. M.; Di Renzo, M. F.

    1996-01-01

    Hepatocyte growth factor/scatter factor (HGF/SF) stimulates the invasive growth of epithelial cells via the c-MET oncogene-encoded receptor. In normal lung, both the receptor and the ligand are detected, and the latter is known to be a mitogenic and a motogenic factor for both cultured bronchial epithelial cells and non-small-cell carcinoma lines. Here, ligand and receptor expression was examined in 42 samples of primary human non-small-cell lung carcinoma of different histotype. Each carcinoma sample was compared with adjacent normal lung tissue. The Met/HGF receptor was found to be 2 to 10-fold increased in 25% of carcinoma samples (P = 0.0113). The ligand, HGF/SF, was found to be 10 to 100-fold overexpressed in carcinoma samples (P < 0.0001). Notably, while HGF/SF was occasionally detectable and found exclusively as a single-chain inactive precursor in normal tissues, it was constantly in the biologically-active heterodimeric form in carcinomas. Immunohistochemical staining showed homogeneous expression of both the receptor and the ligand in carcinoma samples, whereas staining was barely detectable in their normal counterparts. These data show that HGF/SF is overexpressed and consistently activated in non-small-cell lung carcinomas and may contribute to the invasive growth of lung cancer. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:8980383

  20. In vivo enhancement of chemosensitivity of human salivary gland cancer cells by overexpression of TGF-beta stimulated clone-22.

    PubMed

    Omotehara, F; Uchida, D; Hino, S; Begum, N M; Yoshida, H; Sato, M; Kawamata, H

    2000-01-01

    We have isolated transforming growth factor-beta-stimulated clone-22 (TSC-22) cDNA as an anti-cancer drug-inducible gene in a human salivary gland cancer cell line, TYS. We have previously reported that TSC-22 negatively regulates the growth of TYS cells, and that overexpression of TSC-22 protein in TYS cells enhanced the in vitro chemosensitivity of the cells. In this study, we examined the in vivo chemosensitivity of TSC-22-expressing TYS cells. TSC-22-expressing TYS cells formed tumors in nude mice, but tumors formed by TSC-22-expressing TYS cells were significantly smaller than tumors formed by control cells (p<0.001, one way ANOVA). Furthermore, intraperitoneal injection of 5-fluorouracil (5-FU) markedly inhibited the growth of the TSC-22-expressing TYS tumors, but did not affect the growth of control tumors. It was found by TUNEL assay that TSC-22-expressing TYS tumors were induced to undergo apoptosis by 5-FU treatment. These findings suggest that overexpression of TSC-22 protein in TYS cells enhances the in vivo chemosensitivity of the cells to 5-FU via induction of apoptosis.

  1. Human patched (PTCH) mRNA is overexpressed consistently in tumor cells of both familial and sporadic basal cell carcinoma.

    PubMed

    Undén, A B; Zaphiropoulos, P G; Bruce, K; Toftgård, R; Ståhle-Bäckdahl, M

    1997-06-15

    Recently, a human homologue of the Drosophila patched gene, PTCH, was identified as a putative tumor suppressor mutated in both hereditary and sporadic basal cell carcinomas. Because PTCH controls its own transcription, inactivating mutations in PTCH may lead to overexpression of mutant PTCH mRNA due to loss of autoregulation. The present study is aimed at evaluating whether deregulation of PTCH mRNA expression is a general feature of BCCs of varying histological growth pattern and malignant potential. Irrespective of histological subtype, PTCH mRNA was overexpressed consistently as determined by in situ hybridization in all of the sporadic (n = 16) and hereditary (n = 20) tumors examined. PTCH expression was found in all of the tumor cells but appeared stronger in the peripheral palisading cells. PTCH mRNA was not detected in adjacent nontumor epidermal cells or in other parts of the epidermis. In the majority of tumors (20 of 36), nuclear immunostaining for p53 was found in scattered cells, whereas seven tumors completely lacked p53 immunoreactivity. Our finding of an up-regulation of PTCH mRNA levels in all of the BCCs analyzed indicates that deregulation of the PTCH signaling pathway constitutes an early rate-limiting event in BCC development.

  2. Accelerated telomere shortening and replicative senescence in human fibroblasts overexpressing mutant and wild-type lamin A

    SciTech Connect

    Huang Shurong; Risques, Rosa Ana; Martin, George M.; Rabinovitch, Peter S.; Oshima, Junko

    2008-01-01

    LMNA mutations are responsible for a variety of genetic disorders, including muscular dystrophy, lipodystrophy, and certain progeroid syndromes, notably Hutchinson-Gilford Progeria. Although a number of clinical features of these disorders are suggestive of accelerated aging, it is not known whether cells derived from these patients exhibit cellular phenotypes associated with accelerated aging. We examined a series of isogenic skin fibroblast lines transfected with LMNA constructs bearing known pathogenic point mutations or deletion mutations found in progeroid syndromes. Fibroblasts overexpressing mutant lamin A exhibited accelerated rates of loss of telomeres and shortened replicative lifespans, in addition to abnormal nuclear morphology. To our surprise, these abnormalities were also observed in lines overexpressing wild-type lamin A. Copy number variants are common in human populations; those involving LMNA, whether arising meiotically or mitotically, might lead to progeroid phenotypes. In an initial pilot study of 23 progeroid cases without detectable WRN or LMNA mutations, however, no cases of altered LMNA copy number were detected. Nevertheless, our findings raise a hypothesis that changes in lamina organization may cause accelerated telomere attrition, with different kinetics for overexpession of wild-type and mutant lamin A, which leads to rapid replicative senescence and progroid phenotypes.

  3. Immunoaffinity purification of the functional 20S proteasome from human cells via transient overexpression of specific proteasome subunits.

    PubMed

    Livinskaya, Veronika A; Barlev, Nickolai A; Nikiforov, Andrey A

    2014-05-01

    The proteasome is a multi-subunit proteolytic complex that plays a central role in protein degradation in all eukaryotic cells. It regulates many vital cellular processes therefore its dysfunction can lead to various pathologies including cancer and neurodegeneration. Isolation of enzymatically active proteasomes is a key step to the successful study of the proteasome regulation and functions. Here we describe a simple and efficient protocol for immunoaffinity purification of the functional 20S proteasomes from human HEK 293T cells after transient overexpression of specific proteasome subunits tagged with 3xFLAG. To construct 3xFLAG-fusion proteins, DNA sequences encoding the 20S proteasome subunits PSMB5, PSMA5, and PSMA3 were cloned into mammalian expression vector pIRES-hrGFP-1a. The corresponding recombinant proteins PSMB5-3xFLAG, PSMA5-3xFLAG, or PSMA3-3xFLAG were transiently overexpressed in human HEK 293T cells and were shown to be partially incorporated into the intact proteasome complexes. 20S proteasomes were immunoprecipitated from HEK 293T cell extracts under mild conditions using antibodies against FLAG peptide. Isolation of highly purified 20S proteasomes were confirmed by SDS-PAGE and Western blotting using antibodies against different proteasome subunits. Affinity purified 20S proteasomes were shown to possess chymotrypsin- and trypsin-like peptidase activities confirming their functionality. This simple single-step affinity method of the 20S proteasome purification can be instrumental to subsequent functional studies of proteasomes in human cells.

  4. 4-tert-Octylphenol stimulates the expression of cathepsins in human breast cancer cells and xenografted breast tumors of a mouse model via an estrogen receptor-mediated signaling pathway.

    PubMed

    Lee, Hye-Rim; Choi, Kyung-Chul

    2013-02-08

    Endocrine disrupting chemicals (EDCs) are defined as environmental compounds that modulate steroid hormone receptor-dependent responses an abnormal manner, resulting in adverse health problems for humans such as cancer growth and metastasis. Cathepsins are proteases that have been implicated in cancer progression. However, there have been few studies about the association between cathepsins and estrogenic chemicals during the cancer progression. In this study, we examined the effect(s) of 4-tert-octylphenol (OP), a potent EDC, on the expression of cathepsins B and D in human MCF-7 breast cancer cells and a xenograft mouse model. Treatment with OP significantly induced the proliferation MCF-7 cells in an MTT assay. In addition, the expression of cathepsins B and D was markedly enhanced in MCF-7 cells at both the transcriptional and the translational levels following treatment with E2 or OP up to 48h. These results demonstrated the ability of OP to disrupt normal transcriptional regulation of cathepsins B and D in human breast cancer cells. However, the effects of OP on cell growth or overexpression of cathepsins by inhibiting ER-mediated signaling were abolished by an ER antagonist and siRNA specific for ERα. In conclusion, our findings suggest that OP at 10(-6)M, like E2, may accelerate breast cancer cell proliferation and the expression of cathepsins through an ER-mediated signaling pathway. In addition, the breast cancer cells exposed with OP to a xenograft mouse model were more aggressive according to our histological analysis and showed markedly increased expression of cathepsin B. These effects of mouse model resulted in an increased potential for metastasis in breast cancer. Taken together, we determined that OP can adversely affect human health by promoting cancer proliferation and metastasis through the amplification of cathepsins B and D via the ER-mediated signaling pathway.

  5. Fluoro-edenite induces fibulin-3 overexpression in non-malignant human mesothelial cells

    PubMed Central

    Rapisarda, Venerando; Salemi, Rossella; Marconi, Andrea; Loreto, Carla; Graziano, Adriana C.; Cardile, Venera; Basile, Maria S.; Candido, Saverio; Falzone, Luca; Spandidos, Demetrios A.; Fenga, Concettina; Libra, Massimo

    2016-01-01

    Exposure to asbestos is associated with the development of mesothelioma. In addition to asbestos, other fibers have been identified as risk factors for malignant and non-malignant diseases of the lungs. Among these, fluoro-edenite (FE) was found in patients from Biancavilla (Sicily, Italy) with pleural and lung disease, suggesting its role for tumor expansion. In this context, the identification of early biomarkers useful for the diagnosis of cancer is mandatory. Fibulin-3 represents an important marker for the diagnosis of mesothelioma. However, it remains to be determined whether it is directly associated with exposure to asbestos-like fibers. In the present study, peripheral blood levels of fibulin-3 from 40 asbestos-exposed workers were compared with those detected in 27 street cleaners from Biancavilla. Intriguingly, the results showed that fibulin-3 levels were higher in the group of street cleaners compared with those of the asbestos-exposed workers, suggesting that these workers used the personal protective equipment according to the current regulations. These data suggest that subjects exposed to FE should be monitored for the risk of mesothelioma. FE and volcanic particulates are probably contained within dust inhaled by street cleaners from Biancavilla during their work activities. Based on these criteria, in this study, such fibers were used to treat mesothelial cells (MeT5A) in order to verify whether fibulin-3 levels are affected by these treatments. The results showed that only treatment with FE was associated with fibulin-3 overexpression at both the transcript and protein levels. It was previously demonstrated that mesothelial cells exhibited low levels of p27 following treatment with FE. Notably, p27 downregulation is associated with stathmin upregulation in cancer, conferring an aggressive phenotype of tumor cells. This observation prompted us to perform a computational evaluation demonstrating the activation of stathmin in lung cancer in

  6. Multidrug Resistance-Associated Protein 4 (MRP4/ABCC4) Controls Efflux Transport of Hesperetin Sulfates in Sulfotransferase 1A3-Overexpressing Human Embryonic Kidney 293 Cells.

    PubMed

    Sun, Hua; Wang, Xiao; Zhou, Xiaotong; Lu, Danyi; Ma, Zhiguo; Wu, Baojian

    2015-10-01

    Sulfonation is an important metabolic pathway for hesperetin. However, the mechanisms for the cellular disposition of hesperetin and its sulfate metabolites are not fully established. In this study, disposition of hesperetin via the sulfonation pathway was investigated using human embryonic kidney (HEK) 293 cells overexpressing sulfotransferase 1A3. Two monosulfates, hesperetin-3'-O-sulfate (H-3'-S) and hesperetin-7-O-sulfate (H-7-S), were rapidly generated and excreted into the extracellular compartment upon incubation of the cells with hesperetin. Regiospecific sulfonation of hesperetin by the cell lysate followed the substrate inhibition kinetics (Vmax = 0.66 nmol/min per mg, Km = 12.9 μM, and Ksi= 58.1 μM for H-3'-S; Vmax = 0.29 nmol/min per mg, Km = 14.8 μM, and Ksi= 49.1 μM for H-7-S). The pan-multidrug resistance-associated protein (MRP) inhibitor MK-571 at 20 μM essentially abolished cellular excretion of both H-3'-S and H-7-S (the excretion activities were only 6% of the control), whereas the breast cancer resistance protein-selective inhibitor Ko143 had no effects on sulfate excretion. In addition, knockdown of MRP4 led to a substantial reduction (>47.1%; P < 0.01) in sulfate excretion. Further, H-3'-S and H-7-S were good substrates for transport by MRP4 according to the vesicular transport assay. Moreover, sulfonation of hesperetin and excretion of its metabolites were well characterized by a two-compartment pharmacokinetic model that integrated drug uptake and sulfonation with MRP4-mediated sulfate excretion. In conclusion, the exporter MRP4 controlled efflux transport of hesperetin sulfates in HEK293 cells. Due to significant expression in various organs/tissues (including the liver and kidney), MRP4 should be a determining factor for the elimination and body distribution of hesperetin sulfates.

  7. Effect of soy isoflavones on the growth of human breast tumors: findings from preclinical studies

    PubMed Central

    Kwon, Youngjoo

    2014-01-01

    Breast cancer is the most common cancer among women worldwide, and many women with breast cancer live more than 5 years after their diagnosis. Breast cancer patients and survivors have a greater interest in taking soy foods and isoflavone supplements. However, the effect of isoflavones on breast cancer remains controversial. Thus, it is critical to determine if and when isoflavones are beneficial or detrimental to breast cancer patients. According to the available preclinical data, high concentrations of isoflavones inhibit the proliferation of breast cancer cells, regardless of their estrogen receptor (ER) status. In comparison, genistein, a major isoflavone, has stimulated tumor growth at low concentrations and mitigated tamoxifen efficacy in ER-positive breast cancer. Studies have indicated that the relative levels of genistein and estrogen at the target site are important to determine the genistein effect on the ER-positive tumor growth. However, studies using ovariectomized mice and subcutaneous xenograft models might not truly reflect estrogen concentrations in human breast tumors. Moreover, it may be an oversimplification that isoflavones stimulate hormone-dependent tumor growth due to their potential estrogenic effect since studies also suggest nonestrogenic anticancer effects of isoflavones and ER-independent anticancer activity of tamoxifen. Therefore, the concentrations of isoflavones and estrogen in human breast tumors should be considered better in future preclinical studies and the parameters that can estimate those levels in breast tumors are required in human clinical/epidemiological investigation. In addition, it will be important to identify the molecular mechanisms that either inhibit or promote the growth of breast cancer cells by soy isoflavones, and use those molecules to evaluate the relevance of the preclinical findings to the human disease and to predict the health effects of isoflavones in human breast tumors. PMID:25493176

  8. GPX4 and GPX7 Over-Expression in Human Hepatocellular Carcinoma Tissues

    PubMed Central

    Guerriero, E.; Capone, F.; Accardo, M.; Sorice, A.; Costantini, M.; Colonna, G.; Castello, G.

    2015-01-01

    Hepatocellular carcinoma (HCC) is the most common type of liver cancer and is still one of the most fatal cancers. Hence, it needs to identify always new putative markers to improve its diagnosis and prognosis. The selenium is an essential trace mineral implicated as a key factor in the early stage of cancer and exerts its biological function through the selenoproteins. In the last years our group has been studying the involvement of some selenoproteins in HCC. However, no many data are reported in literature about the correlation between HCC and the glutathione peroxidases (GPXs), both selenium and non selenium-containing GPXs. In this paper we have evaluated the GPX4 and GPX7 expression in some paraffin-embedded tissues from liver biopsy of patients with hepatitis C virus (HCV)-related cirrhosis and HCC by immunohistochemistry and RT-qPCR analysis. Our results evidenced that i) GPX4 and GPX7 had a statistically significant over-expression in HCC tissues compared to cirrhotic counterparts used as non tumor tissues, and ii) their expression was higher in grade III HCC tissues with respect to grade I-II samples. Therefore, we propose to use GPX4 and GPX7 as possible markers for improving HCC diagnosis/prognosis. PMID:26708178

  9. Connexin 43 is overexpressed in human fetal membrane defects after fetoscopic surgery†

    PubMed Central

    Barrett, David W.; David, Anna L.; Thrasivoulou, Christopher; Mata, Alvaro; Becker, David L.; Engels, Alex C.; Deprest, Jan A.

    2016-01-01

    Abstract Objective We examined whether surgically induced membrane defects elevate connexin 43 (Cx43) expression in the wound edge of the amniotic membrane (AM) and drives structural changes in collagen that affects healing after fetoscopic surgery. Method Cell morphology and collagen microstructure was investigated by scanning electron microscopy and second harmonic generation in fetal membranes taken from women who underwent fetal surgery. Immunofluoresence and real‐time quantitative polymerase chain reaction was used to examine Cx43 expression in control and wound edge AM. Results Scanning electron microscopy showed dense, helical patterns of collagen fibrils in the wound edge of the fetal membrane. This arrangement changed in the fibroblast layer with evidence of collagen fibrils that were highly polarised along the wound edge but not in control membranes. Cx43 was increased by 112.9% in wound edge AM compared with controls (p < 0.001), with preferential distribution in the fibroblast layer compared with the epithelial layer (p < 0.01). In wound edge AM, mesenchymal cells had a flattened morphology, and there was evidence of poor epithelial migration across the defect. Cx43 and COX‐2 expression was significantly increased in wound edge AM compared with controls (p < 0.001). Conclusion Overexpression of Cx43 in the AM after fetal surgery induces morphological and structural changes in the collagenous matrix that may interfere with normal healing mechanisms. © 2016 The Authors. Prenatal Diagnosis published by John Wiley & Sons, Ltd. PMID:27568096

  10. Overexpression and biological function of IQGAP3 in human pancreatic cancer

    PubMed Central

    Xu, Weihong; Xu, Bin; Yao, Yiting; Yu, Xiaoling; Cao, Hua; Zhang, Jun; Liu, Jie; Sheng, Huiming

    2016-01-01

    IQGAP3 (IQ motif containing GTPase activating protein3) belongs to IQGAP family. Recent studies have investigated that IQGAP3 was overexpressed in several tumor tissues. This study was designed to explore the expression and role of IQGAP3 in pancreatic cancer, a highly lethal disease. IQGAP3 mRNA expression was significantly increased in pancreatic cancer tissues, compared with non-cancerous tissues. Moreover, its expression was strongly associated with tumor size, differentiation, lymph node metastasis and patients’ overall survival. Gene set enrichment analysis (GSEA) on The Cancer Genome Atlas (TCGA) dataset showed that cell apoptosis, metastasis and Cdc42 pathways were strongly associated with IQGAP3 expression in pancreatic cancer patients. Knocking down of IQGAP3 in two pancreatic cancer cell lines with high level of IQGAP3 (BXPC-3 and SW1990) significantly inhibited cell proliferation, migration and invasion, and induced cell apoptosis. Moreover, silencing of IQGAP3 also affected the expression of cell apoptosis-, metastasis- and Cdc42 pathway-related proteins. Cdc42 knockdown had similar inhibitory effects on the cellular behavior of BXPC-3 cells. In conclusion, IQGAP3 may act as an oncogene in pancreatic cancer through regulating Cdc42 expression. Our data suggest IQGAP3 might be a novel diagnostic marker and therapeutic target for this cancer. PMID:28078013

  11. Overexpression of TRIM24 is correlated with the progression of human cervical cancer

    PubMed Central

    Lin, Li; Zhao, Weihua; Sun, Bo; Wang, Xinyu; Liu, Qiao

    2017-01-01

    TRIM24, originally known as intermediary factor 1-alpha, is involved in the development of several cancers. This study aimed to evaluate the expression level and prognostic value of TRIM24 in cervical cancer. In the present study, we showed that the expression of TRIM24 was markedly upregulated in cervical cancer cell lines and cancerous specimens at both transcriptional and translational levels. TRIM24 expression was analyzed in 147 archived cervical cancer specimens using immunohistochemistry, and the correlation between TRIM24 expression and clinicopathological parameters was evaluated. Statistical analysis suggested that TRIM24 expression was significantly correlated with clinical stage and (P=0.007) and lymphatic metastasis (P=0.001). Patients with higher TRIM24 expression had shorter overall (P=0.005) and recurrence-free (P=0.011) survival time. Moreover, we found that silencing TRIM24 by short hairpin RNAi caused an inhibition of cell migration and invasion. Further study indicated that TRIM24 induced cervical cancer cell migration and invasion was through the NF-κB and AKT signaling pathways. In conclusion, TRIM24 is overexpressed in cervical cancer and regulates malignant cell metastasis, which makes TRIM24 a candidate therapeutic target for cervical cancer. PMID:28337289

  12. Beneficial role of overexpression of TFPI-2 on tumour progression in human small cell lung cancer☆

    PubMed Central

    Lavergne, Marion; Jourdan, Marie-Lise; Blechet, Claire; Guyetant, Serge; Pape, Alain Le; Heuze-Vourc’h, Nathalie; Courty, Yves; Lerondel, Stephanie; Sobilo, Julien; Iochmann, Sophie; Reverdiau, Pascale

    2013-01-01

    Tissue factor pathway inhibitor-2 (TFPI-2) is a potent inhibitor of plasmin, a protease which is involved in tumour progression by activating (MMPs). This therefore makes TFPI-2 a potential inhibitor of invasiveness and the development of metastases. In this study, low levels of TFPI-2 expression were found in 65% of patients with small cell lung cancer (SCLC), the most aggressive type of lung cancer. To study the impact of TFPI-2 in tumour progression, TFPI-2 was overexpressed in NCI-H209 SCLC cells which were orthotopically implanted in nude mice. Investigations showed that TFPI-2 inhibited lung tumour growth. Such inhibition could be explained in vitro by a decrease in tumour cell viability, blockade of G1/S phase cell cycle transition and an increase in apoptosis shown in NCI-H209 cells expressing TFPI-2. We also demonstrated that TFPI-2 upregulation in NCI-H209 cells decreased MMP expression, particularly by downregulating MMP-1 and MMP-3. Moreover, TFPI-2 inhibited phosphorylation of the MAPK signalling pathway proteins involved in the induction of MMP transcripts, among which MMP-1 was predominant in SCLC tissues and was inversely expressed with TFPI-2 in 35% of cases. These results suggest that downregulation of TFPI-2 expression could favour the development of SCLC. PMID:23905012

  13. Adiponectin Suppresses UVB-Induced Premature Senescence and hBD2 Overexpression in Human Keratinocytes

    PubMed Central

    Kim, MinJeong; Park, Kui Young; Lee, Mi-Kyung; Jin, Taewon; Seo, Seong Jun

    2016-01-01

    Recent studies have revealed that adiponectin can suppress cellular inflammatory signaling pathways. This study aimed to elucidate the effect of adiponectin on the unregulated production of hBD2 in UVB-induced premature senescent keratinocytes. We constructed an in vitro model of premature senescent keratinocytes through repeated exposure to low energy UVB. After repeated low energy UVB exposure, there was significant generation of reactive oxygen species (ROS) and induction of senescence-associated markers, including senescence associated beta-galactosidase activity and expression of p16INK4a and histone H2AX. In addition, the present clinical study showed higher expression of hBD2 in sun-exposed skin of elderly group, and the overexpression of hBD2 was observed by c-Fos activation in vitro. Adiponectin has the ability to scavenge ROS and consequently inhibit MAPKs and SA-markers in UVB-exposed keratinocytes. An inhibitor study demonstrated that adiponectin downregulated hBD2 mRNA expression through suppression of the AP-1 transcription factor components c-Fos via inactivation of p38 MAPK. Collectively, the dysregulated production of hBD2 by the induction of oxidative stress was attenuated by adiponectin through the suppression of p38 and JNK/SAPK MAPK signaling in UVB-mediated premature senescent inducible conditions. These results suggest the feasibility of adiponectin as an anti-photoaging and anti-inflammatory agent in the skin. PMID:27526049

  14. A Pilot Study of Dose-Dense Paclitaxel With Trastuzumab and Lapatinib for Node-negative HER2-Overexpressed Breast Cancer

    PubMed Central

    Iyengar, Neil M.; Fornier, Monica N.; Sugarman, Steven M.; Theodoulou, Maria; Troso-Sandoval, Tiffany A.; D’Andrea, Gabriella M.; Drullinsky, Pamela R.; Gajria, Devika; Goldfarb, Shari B.; Comen, Elizabeth A.; Lake, Diana E.; Modi, Shanu; Traina, Tiffany A.; Lacouture, Mario E.; Chen, Melanie F.; Patil, Sujata; Baselga, José; Norton, Larry; Hudis, Clifford A.; Dang, Chau T.

    2016-01-01

    Treatment of human epidermal growth factor receptor-2 (HER2)-positive breast cancer with dual anti-HER2 therapy has been shown to improve outcomes. In the present pilot phase II study, patients with early-stage HER2-positive breast cancer received adjuvant treatment with dose-dense paclitaxel, trastuzumab, and lapatinib. However, this combination was not feasible because of unexpected toxicity. Background Dual anti-HER2 therapy is effective for HER2-amplified breast cancer. Weekly paclitaxel, trastuzumab, and full-dose lapatinib (PTL) is not feasible because of grade 3 diarrhea. We conducted a phase II feasibility study of dose-dense (DD; every other week) PTL (ClinicalTrials.gov identifier, NCT01827163). Patients and Methods Eligible patients had HER2-positive breast cancer, tumor size ≤ 3 cm, and negative nodes. Treatment included paclitaxel (175 mg/m2 × 4, every 2 weeks with pegfilgrastim), trastuzumab (4 mg/kg load and then 2 mg/kg weekly), and lapatinib (1000 mg daily). After paclitaxel × 4, trastuzumab (6 mg/kg every 3 weeks) plus lapatinib were continued for 1 year. The primary endpoint was feasibility, defined as (1) > 80% of patients completing PTL without a dose delay or reduction, (2) grade 3 diarrhea rate < 20%, and (3) cardiac event rate < 4%. Results From May 2013 to November 2013, we enrolled 20 of 55 planned patients. The median age was 49 years (range, 34–74 years). One patient had immediate paclitaxel hypersensitivity and was deemed inevaluable. Only 13 of 19 evaluable patients (68%) completed PTL without a dose delay or reduction or unacceptable toxicities. Only 3 of 19 (16%) had grade 3 diarrhea. Rash was frequent, with all grades in 18 of 19 (95%) and grade 3 in 2 of 19 (11%). The study was stopped early because of excess toxicity. Conclusion The discontinuation rate during DD PTL was high, owing, in part, to an unexpectedly high incidence of rash. The trial was halted, because the initial discontinuation rate from overall toxicity made

  15. Data set of the protein expression profiles of Luminal A, Claudin-low and overexpressing HER2+ breast cancer cell lines by iTRAQ labelling and tandem mass spectrometry

    PubMed Central

    Calderón-González, Karla Grisel; Valero Rustarazo, Ma Luz; Labra-Barrios, Maria Luisa; Bazán-Méndez, César Isaac; Tavera-Tapia, Alejandra; Herrera-Aguirre, Marí;aEsther; Sánchez del Pino, Manuel M.; Gallegos-Pérez, José Luis; González-Márquez, Humberto; Hernández-Hernández, Jose Manuel; León-Ávila, Gloria; Rodríguez-Cuevas, Sergio; Guisa-Hohenstein, Fernando; Luna-Arias, Juan Pedro

    2015-01-01

    Breast cancer is the most common and the leading cause of mortality in women worldwide. There is a dire necessity of the identification of novel molecules useful in diagnosis and prognosis. In this work we determined the differentially expression profiles of four breast cancer cell lines compared to a control cell line. We identified 1020 polypeptides labelled with iTRAQ with more than 95% in confidence. We analysed the common proteins in all breast cancer cell lines through IPA software (IPA core and Biomarkers). In addition, we selected the specific overexpressed and subexpressed proteins of the different molecular classes of breast cancer cell lines, and classified them according to protein class and biological process. Data in this article is related to the research article “Determination of the protein expression profiles of breast cancer cell lines by Quantitative Proteomics using iTRAQ Labelling and Tandem Mass Spectrometry” (Calderón-González et al. [1] in press). PMID:26217805

  16. Measurement of paraben concentrations in human breast tissue at serial locations across the breast from axilla to sternum.

    PubMed

    Barr, L; Metaxas, G; Harbach, C A J; Savoy, L A; Darbre, P D

    2012-03-01

    The concentrations of five esters of p-hydroxybenzoic acid (parabens) were measured using HPLC-MS/MS at four serial locations across the human breast from axilla to sternum using human breast tissue collected from 40 mastectomies for primary breast cancer in England between 2005 and 2008. One or more paraben esters were quantifiable in 158/160 (99%) of the tissue samples and in 96/160 (60%) all five esters were measured. Variation was notable with respect to individual paraben esters, location within one breast and similar locations in different breasts. Overall median values in nanograms per gram tissue for the 160 tissue samples were highest for n-propylparaben [16.8 (range 0-2052.7)] and methylparaben [16.6 (range 0-5102.9)]; levels were lower for n-butylparaben [5.8 (range 0-95.4)], ethylparaben [3.4 (range 0-499.7)] and isobutylparaben 2.1 (range 0-802.9). The overall median value for total paraben was 85.5 ng g(-1) tissue (range 0-5134.5). The source of the paraben cannot be identified, but paraben was measured in the 7/40 patients who reported never having used underarm cosmetics in their lifetime. No correlations were found between paraben concentrations and age of patient (37-91 years), length of breast feeding (0-23 months), tumour location or tumour oestrogen receptor content. In view of the disproportionate incidence of breast cancer in the upper outer quadrant, paraben concentrations were compared across the four regions of the breast: n-propylparaben was found at significantly higher levels in the axilla than mid (P = 0.004 Wilcoxon matched pairs) or medial (P = 0.021 Wilcoxon matched pairs) regions (P = 0.010 Friedman ANOVA).

  17. Nuclear factor-ĸB plays a critical role in both intrinsic and acquired resistance against endocrine therapy in human breast cancer cells

    PubMed Central

    Oida, Kumiko; Matsuda, Akira; Jung, Kyungsook; Xia, Yan; Jang, Hyosun; Amagai, Yosuke; Ahn, Ginnae; Nishikawa, Sho; Ishizaka, Saori; Jensen-Jarolim, Erika; Matsuda, Hiroshi; Tanaka, Akane

    2014-01-01

    Since more than 75% of breast cancers overexpress estrogen receptors (ER), endocrine therapy targeting ER has significantly improved the survival rate. Nonetheless, breast cancer still afflicts women worldwide and the major problem behind it is resistance to endocrine therapy. We have previously shown the involvement of nuclear factor-κB (NF-κB) in neoplastic proliferation of human breast cancer cells; however, the association with the transformation of ER-positive cells remains unclear. In the current study, we focused on roles of NF-κB in the hormone dependency of breast cancers by means of ER-positive MCF-7 cells. Blocking of NF-κB signals in ER-negative cells stopped proliferation by downregulation of D-type cyclins. In contrast, the MCF-7 cells were resistant to NF-κB inhibition. Under estrogen-free conditions, the ER levels were reduced when compared with the original MCF-7 cells and the established cell subline exhibited tamoxifen resistance. Additionally, NF-κB participated in cell growth instead of the estrogen-ER axis in the subline and consequently, interfering with the NF-κB signals induced additive anticancer effects with tamoxifen. MMP-9 production responsible for cell migration, as well as the cell expansion in vivo, were suppressed by NF-κB inhibition. Therefore, we suggest that NF-κB is a master switch in both ER-positive and ER-negative breast cancers. PMID:24531845

  18. Overexpression of the human homologue of Drosophila patched (PTCH) in skin tumours: specificity for basal cell carcinoma.

    PubMed

    Nagano, T; Bito, T; Kallassy, M; Nakazawa, H; Ichihashi, M; Ueda, M

    1999-02-01

    The human homologue of the Drosophila segment polarity gene patched (PTCH) has been identified as the gene for the naevoid basal cell carcinoma (BCC) syndrome and has also been shown to be mutated in sporadic BCC. In order to elucidate the specificity of the PTCH abnormality in BCC, we examined normal skin and 12 BCC and 24 other types of tumour from Japanese patients for expression of the PTCH transcript by competitive reverse transcription-polymerase chain reaction, as mutational inactivation of PTCH leads to overexpression of the mutant transcript owing to failure of a negative feedback mechanism. We found a high level of PTCH expression in all 12 BCCs, while 23 of the other tumours and four specimens of normal skin showed no or weak expression of the gene, with the exception of one specimen from a patient with Bowen's disease which had high expression. These results indicate that the PTCH abnormality plays a critical role in the pathogenesis of BCC.

  19. Molecular Characterization of Human MUC16 (CA125) in Breast Cancer

    DTIC Science & Technology

    2014-02-01

    MUC16 (CA125) in Breast Cancer PRINCIPAL INVESTIGATOR: Srustidhar Das CONTRACTING ORGANIZATION: University of Nebraska Medical Center...Characterization of Human MUC16 (CA125) in Breast Cancer . 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-11-1-0021 5c. PROGRAM ELEMENT NUMBER 6...understand the role and implications of MUC16 cytoplasmic tail in breast cancer pathogenesis. We would like to update our findings with respect to it since

  20. Molecular Characterization of Human MUC16 (CA125) in Breast Cancer

    DTIC Science & Technology

    2013-02-01

    MUC16 (CA125) in Breast Cancer PRINCIPAL INVESTIGATOR: Srustidhar Das CONTRACTING ORGANIZATION: University of Nebraska Medical Center...Characterization of Human MUC16 (CA125) in Breast Cancer . 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-11-1-0021 5c. PROGRAM ELEMENT NUMBER 6...designed to understand the role and implications of MUC16 cytoplasmic tail in breast cancer pathogenesis. We would like to update our findings with

  1. Secretion of Human Serum Albumin by Kluyveromyces lactis Overexpressing KlPDI1 and KlERO1

    PubMed Central

    Lodi, Tiziana; Neglia, Barbara; Donnini, Claudia

    2005-01-01

    The control of protein conformation during translocation through the endoplasmic reticulum is often a bottleneck for heterologous protein production. The core pathway of the oxidative folding machinery includes two conserved proteins: Pdi1p and Ero1p. We increased the dosage of the genes encoding these proteins in the yeast Kluyveromyces lactis and evaluated the secretion of heterologous proteins. KlERO1, an orthologue of Saccharomyces cerevisiae ERO1, was cloned by functional complementation of the ts phenotype of an Scero1 mutant. The expression of KlERO1 was induced by treatment of the cells with dithiothreitol and by overexpression of human serum albumin (HSA), a disulfide bond-rich protein. Duplication of either PDI1 or ERO1 led to a similar increase in HSA yield. Duplication of both genes accelerated the secretion of HSA and improved cell growth rate and yield. Increasing the dosage of KlERO1 did not affect the production of human interleukin 1β, a protein that has no disulfide bridges. The results confirm that the ERO1 genes of S. cerevisiae and K. lactis are functionally similar even though portions of their coding sequence are quite different and the phenotypes of mutants overexpressing the genes differ. The marked effects of KlERO1 copy number on the expression of heterologous proteins with a high number of disulfide bridges suggests that control of KlERO1 and KlPDI1 is important for the production of high levels of heterologous proteins of this type. PMID:16085825

  2. Early and progressive microstructural brain changes in mice overexpressing human α-Synuclein detected by diffusion kurtosis imaging.

    PubMed

    Khairnar, Amit; Ruda-Kucerova, Jana; Szabó, Nikoletta; Drazanova, Eva; Arab, Anas; Hutter-Paier, Birgit; Neddens, Joerg; Latta, Peter; Starcuk, Zenon; Rektorova, Irena

    2017-03-01

    Diffusion kurtosis imaging (DKI) is sensitive in detecting α-Synuclein (α-Syn) accumulation-associated microstructural changes at late stages of the pathology in α-Syn overexpressing TNWT-61 mice. The aim of this study was to perform DKI in young TNWT-61 mice when α-Syn starts to accumulate and to compare the imaging results with an analysis of motor and memory impairment and α-Syn levels. Three-month-old (3mo) and six-month-old (6mo) mice underwent DKI scanning using the Bruker Avance 9.4T magnetic resonance imaging system. Region of interest (ROI) analyses were performed in the gray matter; tract-based spatial statistics (TBSS) analyses were performed in the white matter. In the same mice, α-Syn expression was evaluated using quantitative immunofluorescence. Mean kurtosis (MK) was the best differentiator between TNWT-61 mice and wildtype (WT) mice. We found increases in MK in 3mo TNWT-61 mice in the striatum and thalamus but not in the substantia nigra (SN), hippocampus, or sensorimotor cortex, even though the immunoreactivity of human α-Syn was similar or even higher in the latter regions. Increases in MK in the SN were detected in 6mo mice. These findings indicate that α-Syn accumulation-associated changes may start in areas with a high density of dopaminergic nerve terminals. We also found TBSS changes in white matter only at 6mo, suggesting α-Syn accumulation-associated changes start in the gray matter and later progress to the white matter. MK is able to detect microstructural changes induced by α-Syn overexpression in TNWT-61 mice and could be a useful clinical tool for detecting early-stage Parkinson's disease in human patients.

  3. Temporal Changes of Human Breast Milk Lipids of Chinese Mothers

    PubMed Central

    Giuffrida, Francesca; Cruz-Hernandez, Cristina; Bertschy, Emmanuelle; Fontannaz, Patric; Masserey Elmelegy, Isabelle; Tavazzi, Isabelle; Marmet, Cynthia; Sanchez-Bridge, Belén; Thakkar, Sagar K.; De Castro, Carlos Antonio; Vinyes-Pares, Gerard; Zhang, Yumei; Wang, Peiyu

    2016-01-01

    Fatty acids (FA), phospholipids (PL), and gangliosides (GD) play a central role in infant growth, immune and inflammatory responses. The aim of this study was to determine FA, PL, and GD compositional changes in human milk (HM) during lactation in a large group of Chinese lactating mothers (540 volunteers) residing in Beijing, Guangzhou, and Suzhou. HM samples were collected after full expression from one breast and while the baby was fed on the other breast. FA were assessed by direct methylation followed by gas chromatography (GC) analysis. PL and GD were extracted using chloroform and methanol. A methodology employing liquid chromatography coupled with an evaporative light scattering detector (ELSD) and with time of flight (TOF) mass spectrometry was used to quantify PL and GD classes in HM, respectively. Saturated FA (SFA), mono-unsaturated FA (MUFA), and PL content decreased during lactation, while polyunsaturated FA (PUFA) and GD content increased. Among different cities, over the lactation time, HM from Beijing showed the highest SFA content, HM from Guangzhou the highest MUFA content and HM from Suzhou the highest n-3PUFA content. The highest total PL and GD contents were observed in HM from Suzhou. In order to investigate the influence of the diet on maternal milk composition, a careful analyses of dietary habits of these population needs to be performed in the future. PMID:27834894

  4. Fulvestrant radiosensitizes human estrogen receptor-positive breast cancer cells.

    PubMed

    Wang, Jing; Yang, Qifeng; Haffty, Bruce G; Li, Xiaoyan; Moran, Meena S

    2013-02-08

    The optimal sequencing for hormonal therapy and radiation are yet to be determined. We utilized fulvestrant, which is showing promise as an alternative to other agents in the clinical setting of hormonal therapy, to assess the cellular effects of concomitant anti-estrogen therapy (fulvestrant) with radiation (F+RT). This study was conducted to assess the effects of fulvestrant alone vs. F+RT on hormone-receptor positive breast cancer to determine if any positive or negative combined effects exist. The effects of F+RT on human breast cancer cells were assessed using MCF-7 clonogenic and tetrazolium salt colorimetric (MTT) assays. The assays were irradiated with a dose of 0, 2, 4, 6 Gy ± fulvestrant. The effects of F+RT vs. single adjuvant treatment alone on cell-cycle distribution were assessed using flow cytometry; relative expression of repair proteins (Ku70, Ku80, DNA-PKcs, Rad51) was assessed using Western Blot analysis. Cell growth for radiation alone vs. F+RT was 0.885±0.013 vs. 0.622±0.029 @2 Gy, 0.599±0.045 vs. 0.475±0.054 @4 Gy, and 0.472±0.021 vs. 0.380±0.018 @6 Gy RT (p=0.003). While irradiation alone induced G2/M cell cycle arrest, the combination of F+RT induced cell redistribution in the G1 phase and produced a significant decrease in the proportion of cells in G2 phase arrest and in the S phase in breast cancer cells (p<0.01). Furthermore, levels of repair proteins DNA-PKcs and Rad51 were significantly decreased in the cells treated with F+RT compared with irradiation alone. F+RT leads to a decrease in the surviving fraction, increased cell cycle arrest, down regulating of nonhomologous repair protein DNA-PKcs and homologous recombination repair protein RAD51. Thus, our findings suggest that F+RT increases breast cancer cell radiosensitivity compared with radiation alone. These findings have salient implications for designing clinical trials using fulvestrant and radiation therapy.

  5. Fulvestrant radiosensitizes human estrogen receptor-positive breast cancer cells

    SciTech Connect

    Wang, Jing; Yang, Qifeng; Haffty, Bruce G.; Li, Xiaoyan; Moran, Meena S.

    2013-02-08

    Highlights: ► Fulvestrant radiosensitizes MCF-7 cells. ► Fulvestrant increases G1 arrest and decreases S phase in MCF-7 cells. ► Fulvestrant down-regulates DNA-PKcs and RAD51 in MCF-7 cells. -- Abstract: The optimal sequencing for hormonal therapy and radiation are yet to be determined. We utilized fulvestrant, which is showing promise as an alternative to other agents in the clinical setting of hormonal therapy, to assess the cellular effects of concomitant anti-estrogen therapy (fulvestrant) with radiation (F + RT). This study was conducted to assess the effects of fulvestrant alone vs. F + RT on hormone-receptor positive breast cancer to determine if any positive or negative combined effects exist. The effects of F + RT on human breast cancer cells were assessed using MCF-7 clonogenic and tetrazolium salt colorimetric (MTT) assays. The assays were irradiated with a dose of 0, 2, 4, 6 Gy ± fulvestrant. The effects of F + RT vs. single adjuvant treatment alone on cell-cycle distribution were assessed using flow cytometry; relative expression of repair proteins (Ku70, Ku80, DNA-PKcs, Rad51) was assessed using Western Blot analysis. Cell growth for radiation alone vs. F + RT was 0.885 ± 0.013 vs. 0.622 ± 0.029 @2 Gy, 0.599 ± 0.045 vs. 0.475 ± 0.054 @4 Gy, and 0.472 ± 0.021 vs. 0.380 ± 0.018 @6 Gy RT (p = 0.003). While irradiation alone induced G2/M cell cycle arrest, the combination of F + RT induced cell redistribution in the G1 phase and produced a significant decrease in the proportion of cells in G2 phase arrest and in the S phase in breast cancer cells (p < 0.01). Furthermore, levels of repair proteins DNA-PKcs and Rad51 were significantly decreased in the cells treated with F + RT compared with irradiation alone. F + RT leads to a decrease in the surviving fraction, increased cell cycle arrest, down regulating of nonhomologous repair protein DNA-PKcs and homologous recombination repair protein RAD51. Thus, our findings suggest that F + RT

  6. Impact of progesterone on stem/progenitor cells in the human breast.

    PubMed

    Hilton, Heidi N; Clarke, Christine L

    2015-06-01

    The epithelium of the human breast is made up of a branching ductal-lobular system, which is lined by a single layer of luminal cells surrounded by a contractile basal cell layer. The co-ordinated development of stem/progenitor cells into these luminal and basal cells is fundamentally important for breast morphogenesis. The ovarian steroid hormone, progesterone, is critical in driving proliferation and normal breast development, yet progesterone analogues have also been shown to be a major driver of breast cancer risk. Studies in recent years have revealed an important role for progesterone in stimulating the mammary stem cell compartment in the mouse mammary gland, and growing evidence supports the notion that progesterone also stimulates progenitor cells in both the normal human breast and in breast cancer cells. As changes in cell type composition are one of the hallmark features of breast cancer progression, these observations have critical implications in discerning the mechanisms of how progesterone increases breast cancer risk. This review summarises recent work regarding the impact of progesterone action on the stem/progenitor cell compartment of the human breast.

  7. Novel nuclear matrix protein HET binds to and influences activity of the HSP27 promoter in human breast cancer cells.

    PubMed

    Oesterreich, S; Lee, A V; Sullivan, T M; Samuel, S K; Davie, J R; Fuqua, S A

    1997-11-01

    Since the small heat shock protein hsp27 enhances both growth and drug resistance in breast cancer cells, and is a bad prognostic factor in certain subsets of breast cancer patients, we have characterized the transcriptional regulation of hsp27, with the long-term goal of targeting its expression clinically. The majority of the promoter activity resides in the most proximal 200 bp. This region contains an imperfect estrogen response element (ERE) that is separated by a 13-bp spacer that contains a TATA box. Gel-shift analysis revealed the binding of a protein (termed HET for Hsp27-ERE-TATA-binding protein) to this region that was neither the estrogen receptor nor TATA-binding protein. We cloned a complete cDNA (2.9 kb) for HET from an MCF-7 cDNA library. To confirm the identity of the HET clone, we expressed a partial HET clone as a glutathione S-transferase fusion protein, and showed binding to the hsp27 promoter fragment in gel-retardation assays. The HET clone is almost identical to a recently published scaffold attachment factor (SAF-B) cloned from a HeLa cell cDNA library. Scaffold attachment factors are a subset of nuclear matrix proteins (NMP) that interact with matrix attachment regions. Analyzing how HET could act as a regulator of hsp27 transcription and as a SAF/NMP, we studied its subnuclear localization and its effect on hsp27 transcription in human breast cancer cells. We were able to show that HET is localized in the nuclear matrix in various breast cancer cell lines. Furthermore, in transient transfection assays using hsp27 promoter-luciferase reporter constructs, HET overexpression resulted in a dose-dependent decrease of hsp27 promoter activity in several cell lines.

  8. Targeting Notch1 inhibits invasion and angiogenesis of human breast cancer cells via inhibition Nuclear Factor-κB signaling

    PubMed Central

    Liu, Yuan; Su, Chuanfu; Shan, Yuqing; Yang, Shouxiang; Ma, Guifeng

    2016-01-01

    Notch-1, a type-1 transmembrane protein, plays critical roles in the pathogenesis and progression of human malignancies, including breast cancer; however, the precise mechanism by which Notch-1 causes tumor cell invasion and angiogenesis remain unclear. Nuclear factor-κB (NF-κB), interleukin-8 (IL-8), vascular endothelial growth factor (VEGF), and matrix metalloproteinases (MMP) are critically involved in the processes of tumor cell invasion and metastasis, we investigated whether targeting Notch-1 could be mechanistically associated with the down-regulation of NF-κB, IL-8, VEGF, and MMP-9, resulting in the inhibition of invasion and angiogenesis of breast cancer cells. Our data showed that down-regulation of Notch-1 leads to the inactivation of NF-κB activity and inhibits the expression of its target genes, such as IL-8, VEGF and MMP-9. We also found that down-regulation of Notch-1 decreased cell invasion, and vice versa Consistent with these results, we also found that the down-regulation of Notch-1 not only decreased MMP-9 mRNA and its protein expression but also inhibited MMP-9 active form. Moreover, conditioned medium from Notch-1 siRNA-transfected breast cancer cells showed reduced levels of IL-8 and VEGF and, in turn, inhibited the tube formation of HUVECs, suggesting that down-regulation of Notch-1 leads to the inhibition of angiogenesis. Furthermore, conditioned medium from Notch-1 cDNA-transfected breast cancer cells showed increased levels of IL-8 and VEGF and, in turn, promoted the tube formation of HUVECs, suggesting that Notch-1 overexpression leads to the promotion of angiogenesis.We therefore concluded that down-regulation of Notch-1 leads to the inactivation NF-κB and its target genes (IL-8, MMP-9 and VEGF), resulting in the inhibition of invasion and angiogenesis. PMID:27398151

  9. Noninvasive Surface Imaging of Breast Cancer in Humans using a Hand-held Optical Imager.

    PubMed

    Erickson-Bhatt, Sarah J; Roman, Manuela; Gonzalez, Jean; Nunez, Annie; Kiszonas, Richard; Lopez-Penalver, Cristina; Godavarty, Anuradha

    2015-12-01

    X-ray mammography, the current gold standard for breast cancer detection, has a 20% false-negative rate (cancer is undetected) and increases in younger women with denser breast tissue. Diffuse optical imaging (DOI) is a safe (nonionizing), and relatively inexpensive method for noninvasive imaging of breast cancer in human subjects (including dense breast tissues) by providing physiological information (e.g. oxy- and deoxy- hemoglobin concentration). At the Optical Imaging Laboratory, a hand-held optical imager has been developed which employs a breast contourable probe head to perform simultaneous illumination and detection of large surfaces towards near real-time imaging of human breast cancer. Gen-1 and gen-2 versions of the handheld optical imager have been developed and previously demonstrated imaging in tissue phantoms and healthy human subjects. Herein, the hand-held optical imagers are applied towards in vivo imaging of breast cancer subjects in an attempt to determine the ability of the imager to detect breast tumors. Five female human subjects (ages 51-74) diagnosed with breast cancer were imaged with the gen-1 optical imager prior to surgical intervention. One of the subjects was also imaged with the gen-2 optical imager. Both imagers use 785 nm laser diode sources and ICCD camera detectors to generate 2D surfaces maps of total hemoglobin absorption. The subjects lay in supine position and images were collected at various locations on both the ipsilateral (tumor-containing) and contralateral (non-tumor containing) breasts. The optical images (2D surface maps of optical absorption due to total hemoglobin concentration) show regions of higher intensity at the tumor location, which is indicative of increased vasculature and higher blood content due to the presence of the tumor. Additionally, a preliminary result indicates the potential to image lymphatic spread. This study demonstrates the potential of the hand-held optical devices to noninvasively image

  10. Ron in Breast Development and Cancer

    DTIC Science & Technology

    2006-10-01

    fraction of human and feline breast cancers. To define the in vivo significance of Ron, mice were generated with a targeted ablation of the tyrosine...with known oncogenes. For example, the skin and breast tumorigenicity of transgenic mice overexpressing the polyoma middle T (36) and RAS (37...Waltz SE. Ron tyrosine kinase receptor regulates papilloma growth and malignant conversion in a murine model of skin carcinogenesis. Oncogene 2005; 24

  11. Overexpression of EB1 in human esophageal squamous cell carcinoma (ESCC) may promote cellular growth by activating beta-catenin/TCF pathway.

    PubMed

    Wang, Yihua; Zhou, Xiaobo; Zhu, Hongxia; Liu, Shuang; Zhou, Cuiqi; Zhang, Guo; Xue, Liyan; Lu, Ning; Quan, Lanping; Bai, Jinfeng; Zhan, Qimin; Xu, Ningzhi

    2005-10-06

    Esophageal squamous cell carcinoma (ESCC) has a multifactorial etiology involving environmental and/or genetic factors. End-binding protein 1 (EB1), which was cloned as an interacting partner of the adenomatous polyposis coli (APC) tumor suppressor protein, was previously found overexpressed in ESCC. However, the precise role of EB1 in the development of this malignancy has not yet been elucidated. In this study, we analysed freshly resected ESCC specimens and demonstrated that EB1 was overexpressed in approximately 63% of tumor samples compared to matched normal tissue. We report that overexpression of EB1 in the ESCC line EC9706 significantly promotes cell growth, whereas suppression of EB1 protein level by RNA interference significantly inhibited growth of esophageal tumor cells. In addition, EB1 overexpression induced nuclear accumulation of beta-catenin and promoted the transcriptional activity of beta-catenin/T-cell factor (TCF). These effects were partially or completely abolished by coexpression of APC or DeltaN TCF4, respectively. Also, we found that EB1 affected the interaction between beta-catenin and APC. Furthermore, EB1 overexpression was correlated with cytoplasmic/nuclear accumulation of beta-catenin in primary human ESCC. Taken together, these results support the novel hypothesis that EB1 overexpression may play a role in the development of ESCC by affecting APC function and activating the beta-catenin/TCF pathway.

  12. Ectopic over-expression of oncogene Pim-2 induce malignant transformation of nontumorous human liver cell line L02.

    PubMed

    Ren, Ke; Duan, Wentao; Shi, Yujun; Li, Bo; Liu, Zuojin; Gong, Jiangping

    2010-07-01

    In order to prove that ectopic over-expression of Pim-2 could induce malignant transformation of human liver cell line L02, three groups of cells were set up including human liver cell line L02 (L02), L02 cells transfected with Pim-2 gene (L02/Pim-2) and L02 cells transfected with empty-vector (L02/Vector). Pim-2 expression levels were detected. The morphology, proliferation level, apoptosis rate and migration ability of the cells were detected respectively. Then the cells were subcutaneously inoculated into athymic mice and the microstructures of the neoplasm were observed. Compared with the controls, Pim-2 expression levels were significantly higher in L02/Pim-2 cells (P<0.05), and their morphology had obvious malignant changes. They also showed a significantly increased proliferation rate (P<0.05) and migration capacity (P<0.05), as well as a significantly decreased apoptosis rate (P<0.05). Only the athymic mice inoculated with L02/Pim-2 cells could generate neoplasm, and the morphology of the neoplasm coincided with that of the hepatoma. The results manifest that ectopic Pim-2 gene could be stably expressed in L02/Pim-2 cells. Both the morphological and biological changes of L02/Pim-2 cells demonstrate the trend of malignant transformation. L02/Pim-2 cells could generate hepatoma in athymic mice. In conclusion, Pim-2 could induce malignant transformation of human liver cell line L02.

  13. Multiplexed ion beam imaging of human breast tumors.

    PubMed

    Angelo, Michael; Bendall, Sean C; Finck, Rachel; Hale, Matthew B; Hitzman, Chuck; Borowsky, Alexander D; Levenson, Richard M; Lowe, John B; Liu, Scot D; Zhao, Shuchun; Natkunam, Yasodha; Nolan, Garry P

    2014-04-01

    Immunohistochemistry (IHC) is a tool for visualizing protein expression that is employed as part of the diagnostic workup for the majority of solid tissue malignancies. Existing IHC methods use antibodies tagged with fluorophores or enzyme reporters that generate colored pigments. Because these reporters exhibit spectral and spatial overlap when used simultaneously, multiplexed IHC is not routinely used in clinical settings. We have developed a method that uses secondary ion mass spectrometry to image antibodies tagged with isotopically pure elemental metal reporters. Multiplexed ion beam imaging (MIBI) is capable of analyzing up to 100 targets simultaneously over a five-log dynamic range. Here, we used MIBI to analyze formalin-fixed, paraffin-embedded human breast tumor tissue sections stained with ten labels simultaneously. The resulting data suggest that MIBI can provide new insights into disease pathogenesis that will be valuable for basic research, drug discovery and clinical diagnostics.

  14. Effects of the overexpression of IFITM5 and IFITM5 c.-14C>T mutation on human osteosarcoma cells

    PubMed Central

    Liu, Bao-Yan; Lu, Yan-Qin; Han, Feng; Wang, Yong; Mo, Xin-Kai; Han, Jin-Xiang

    2017-01-01

    The present study aimed to investigate the effects of overexpression of interferon-induced transmembrane protein 5 (IFITM5) and IFITM5 c.-14C>T mutation on osteogenic differentiation, and the proliferation, migration and invasion of SaOS2 cells. SaOS2 cells were transfected with plasmids containing wild type IFITM5 (W) or IFITM5 containing the c.-14C>T mutation (MU). The mRNA and protein expression levels of IFITM5 in SaOS2 cells were respectively detected by reverse transcription quantitative polymerase chain reaction and western blotting. The proliferative, migratory and invasive ability of SaOS2 cells was also examined. In addition, the expression levels of osteogenic differentiation markers alkaline phosphatase (ALP), osteocalcin (OCN) and runt-related transcription factor 2 (Runx2) were detected. Mineralized nodules were detected by Alizarin Red S staining and were quantified by measuring absorbance. The mRNA and protein expression levels of IFITM5 were high in cells transfected with IFITM5 and IFITM5 c.-14C>T mutation, and were higher in cells transfected with IFITM5 c.-14C>T mutation. There was no difference in proliferation between the control group (C) and the W and MU groups. However, overexpression of IFITM5 and IFITM5 c.-14C>T mutation increased apoptotic rate, decreased invasive capacity, increased the expression of ALP, OCN and Runx2, and increased the number of mineralized nodules following osteogenic induction. In addition, compared with C and W groups, cells transfected with IFITM5 c.-14C>T mutation exhibited decreased migratory ability. In conclusion, overexpression of IFITM5 and IFITM5 c.-14C>T mutation promotes tumor cell apoptosis, inhibits tumor invasion and promotes osteogenic differentiation. These findings may provide a theoretical basis for the development of a novel treatment method that targets IFITM5, and provides a platform for the potential treatment of human osteosarcoma. PMID:28123530

  15. Exploring the stem cell and non-stem cell constituents of human breast milk.

    PubMed

    Indumathi, S; Dhanasekaran, M; Rajkumar, J S; Sudarsanam, D

    2013-05-01

    The immense potency of nutritional components of human breast milk and importance of breastfeeding is known worldwide. Recent researches had identified stem cells as integral component of human breast milk. Nevertheless, there is little proof of evidence on the stem cell constituents of breast milk. It is imperative to explore the cellular constituents of human breast milk, including of stem cells, to open new avenue in child's development and regeneration. Thus, we aimed at identifying the cellular constituents of human breast milk by phenotypic characterisation of diverse cell surface markers of hematopoietic stem cells (CD 34, CD 133, CD 117), mesenchymal stem cells (CD 90, CD 105, CD 73), myoepithelial cells (CD 29, CD 44), Immune cells (CD 209, CD 86, CD 83, CD 14, CD 13, HLADR, CD 45), as well as cell adhesion molecules (CD 31, CD 54, CD 166, CD 106, CD 49d), and other markers (ABCG2, CD140b) using flowcytometry. We found a lower expression of CD 34 (13.07 ± 2.0 %), CD 90 (7.79 ± 0.8 %) and CD 73 (2.19 ± 0.41 %), indicating scanty hematopoietic and mesenchymal stem cell population in human breast milk. On contrary, myoepithelial progenitors, cell adhesion molecules, immune cells and growth factors were identified as the major constituents of breast milk. Overall, this study illuminates the benefits of breast feeding as breast milk encompasses heterogeneous cellular components that benefits child's growth, immunity and development. However, further research on these constituents of human breast milk will widen their applicability in treatment of neonatal disorders.

  16. Absence of human papillomavirus sequences in epithelial breast cancer in a Mexican female population.

    PubMed

    Herrera-Romano, Lisbeth; Fernández-Tamayo, Nora; Gómez-Conde, Eduardo; Reyes-Cardoso, Juan M; Ortiz-Gutierrez, Felipe; Ceballos, Guillermo; Valdivia, Alejandra; Piña, Patricia; Salcedo, Mauricio

    2012-09-01

    The role of human papillomavirus (HPV) in breast cancer is controversial. We evaluated 118 breast carcinomas and two paraffin-embedded tissues of lesions of the nipple of Mexican patients for HPV sequences. No carcinoma sample exhibited koilocytosis, in contrast to lesions of the nipple. We subjected purified DNAs to PCR employing two HPV16/E6 or GP5/6 primer set oligonucleotides. Results showed that HPV DNA sequences were absent in the breast tissues. Absence of HPV in breast carcinoma failed to support an association between HPV infection and this carcinoma.

  17. Overexpression of diacylglycerol acyltransferase-1 reduces phospholipid synthesis, proliferation, and invasiveness in simian virus 40-transformed human lung fibroblasts.

    PubMed

    Bagnato, Carolina; Igal, R Ariel

    2003-12-26

    Diacylglycerol (DAG) is a versatile molecule that participates as substrate in the synthesis of structural and energetic lipids, and acts as the physiological signal that activates protein kinase C. Diacylglycerol acyltransferase (DGAT), the last committed enzyme in triacylglycerol synthesis, could potentially regulate the content and use of both signaling and glycerolipid substrate DAG by converting it into triacylglycerol. To test this hypothesis, we stably overexpressed the DGAT1 mouse gene in human lung SV40-transformed fibroblasts (DGAT cells), which contains high levels of DAG. DGAT cells exhibited a 3.9-fold higher DGAT activity and a 3.2-fold increase in triacylglycerol content, whereas DAG and phosphatidylcholine decreased by 70 and 20%, respectively, compared with empty vector-transfected SV40 cells (Control cells). Both acylation and de novo synthesis of phosphatidylcholine, phosphatidylethanolamine, and sphingomyelin were reduced by 30-40% in DGAT cells compared with controls, suggesting that DGAT used substrates for triacylglycerol synthesis that had originally been destined to produce phospholipids. The incorporation of [14C]DAG and [14C]fatty acids released from plasma membrane by additions of either phospholipase C or phospholipase A2 into triacylglycerol was increased by 6.2- and 2.8-fold, respectively, in DGAT cells compared with control cells, indicating that DGAT can attenuate signaling lipids. Finally, DGAT overexpression reversed the neoplastic phenotype because it dramatically reduced the cell growth rate and suppressed the anchorage-independent growth of the SV40 cells. These results strongly support the view that DGAT participates in the regulation of membrane lipid synthesis and lipid signaling, thereby playing an important role in modulating cell growth properties.

  18. Breast Cancer Prevention by Fatty Acid Binding Protein MRG-Induced Pregnancy Like Mammary Gland Differentiation

    DTIC Science & Technology

    2005-08-01

    Annual Summary 3. DATES COVERED (From - To) 1 AUG 2004 - 31 JUL 2005 4. TITLE AND SUBTITLE Breast Cancer Prevention by Fatty Acid Binding Protein...differentiation. Overexpression of MRG in human breast cancer cells induced differentiation with changes in cellular morphology and a significant increase

  19. Human chorionic gonadotropin decreases human breast cancer cell proliferation and promotes differentiation.

    PubMed

    Liao, Xing-Hua; Wang, Yue; Wang, Nan; Yan, Ting-Bao; Xing, Wen-Jing; Zheng, Li; Zhao, Dong-Wei; Li, Yan-Qi; Liu, Long-Yue; Sun, Xue-Guang; Hu, Peng; Zhang, Tong-Cun

    2014-05-01

    Human chorionic gonadotropin (hCG) is a glycoprotein produced by placental trophoblasts. Previous studies indicated that hCG could be responsible for the pregnancy-induced protection against breast cancer in women. It is reported that hCG decreases proliferation and invasion of breast cancer MCF-7 cells. Our research also demonstrates that hCG can reduce the proliferation of MCF-7 cells by downregulating the expression of proliferation markers, proliferating cell nuclear antigen (PCNA), and proliferation-related Ki-67 antigen (Ki-67). Interestingly, we find here that hCG elevates the state of cellular differentiation, as characterized by the upregulation of differentiation markers, β-casein, cytokeratin-18 (CK-18), and E-cadherin. Inhibition of hCG secretion or luteinizing hormone/hCG receptors (LH/hCGRs) synthesis can weaken the effect of hCG on the induction of cell differentiation. Furthermore, hCG can suppress the expression of estrogen receptor alpha. hCG activated receptor-mediated cyclic adenosine monophosphate/protein kinase A signaling pathway. These findings indicated that a protective effect of hCG against breast cancer may be associated with its growth inhibitory and differentiation induction function in breast cancer cells.

  20. Overexpression and knock-down studies highlight that a disintegrin and metalloproteinase 28 controls proliferation and migration in human prostate cancer

    PubMed Central

    Rudnicka, Caroline; Mochizuki, Satsuki; Okada, Yasunori; McLaughlin, Claire; Leedman, Peter J.; Stuart, Lisa; Epis, Michael; Hoyne, Gerard; Boulos, Sherif; Johnson, Liam; Schlaich, Markus; Matthews, Vance

    2016-01-01

    Abstract Prostate cancer is one of the most prevalent cancers in men. It is critical to identify and characterize oncogenes that drive the pathogenesis of human prostate cancer. The current study builds upon previous research showing that a disintegrin and metallproteinase (ADAM)28 is involved in the pathogenesis of numerous cancers. Our novel study used overexpression, pharmacological, and molecular approaches to investigate the biological function of ADAM28 in human prostate cancer cells, with a focus on cell proliferation and migration. The results of this study provide important insights into the role of metalloproteinases in human prostate cancer. The expression of ADAM28 protein levels was assessed within human prostate tumors and normal adjacent tissue by immunohistochemistry. Immunocytochemistry and western blotting were used to assess ADAM28 protein expression in human prostate cancer cell lines. Functional assays were conducted to assess proliferation and migration in human prostate cancer cells in which ADAM28 protein expression or activity had been altered by overexpression, pharmacological inhibition, or by siRNA gene knockdown. The membrane bound ADAM28 was increased in human tumor biopsies and prostate cancer cell lines. Pharmacological inhibition of ADAM28 activity and/or knockdown of ADAM28 significantly reduced proliferation and migration of human prostate cancer cells, while overexpression of ADAM28 significantly increased proliferation and migration. ADAM28 is overexpressed in primary human prostate tumor biopsies, and it promotes human prostate cancer cell proliferation and migration. This study supports the notion that inhibition of ADAM28 may be a potential novel therapeutic strategy for human prostate cancer. PMID:27749584

  1. Overexpression and knock-down studies highlight that a disintegrin and metalloproteinase 28 controls proliferation and migration in human prostate cancer.

    PubMed

    Rudnicka, Caroline; Mochizuki, Satsuki; Okada, Yasunori; McLaughlin, Claire; Leedman, Peter J; Stuart, Lisa; Epis, Michael; Hoyne, Gerard; Boulos, Sherif; Johnson, Liam; Schlaich, Markus; Matthews, Vance

    2016-10-01

    Prostate cancer is one of the most prevalent cancers in men. It is critical to identify and characterize oncogenes that drive the pathogenesis of human prostate cancer. The current study builds upon previous research showing that a disintegrin and metallproteinase (ADAM)28 is involved in the pathogenesis of numerous cancers. Our novel study used overexpression, pharmacological, and molecular approaches to investigate the biological function of ADAM28 in human prostate cancer cells, with a focus on cell proliferation and migration. The results of this study provide important insights into the role of metalloproteinases in human prostate cancer.The expression of ADAM28 protein levels was assessed within human prostate tumors and normal adjacent tissue by immunohistochemistry. Immunocytochemistry and western blotting were used to assess ADAM28 protein expression in human prostate cancer cell lines. Functional assays were conducted to assess proliferation and migration in human prostate cancer cells in which ADAM28 protein expression or activity had been altered by overexpression, pharmacological inhibition, or by siRNA gene knockdown.The membrane bound ADAM28 was increased in human tumor biopsies and prostate cancer cell lines. Pharmacological inhibition of ADAM28 activity and/or knockdown of ADAM28 significantly reduced proliferation and migration of human prostate cancer cells, while overexpression of ADAM28 significantly increased proliferation and migration.ADAM28 is overexpressed in primary human prostate tumor biopsies, and it promotes human prostate cancer cell proliferation and migration. This study supports the notion that inhibition of ADAM28 may be a potential novel therapeutic strategy for human prostate cancer.

  2. The expression of the ubiquitin ligase subunit Cks1 in human breast cancer

    PubMed Central

    Slotky, Merav; Shapira, Ma'anit; Ben-Izhak, Ofer; Linn, Shai; Futerman, Boris; Tsalic, Medy; Hershko, Dan D

    2005-01-01

    Introduction Loss of the cell-cycle inhibitory protein p27Kip1 is associated with a poor prognosis in breast cancer. The decrease in the levels of this protein is the result of increased proteasome-dependent degradation, mediated and rate-limited by its specific ubiquitin ligase subunits S-phase kinase protein 2 (Skp2) and cyclin-dependent kinase subunit 1 (Cks1). Skp2 was recently found to be overexpressed in breast cancers, but the role of Cks1 in these cancers is unknown. The present study was undertaken to examine the role of Cks1 expression in breast cancer and its relation to p27Kip1 and Skp2 expression and to tumor aggressiveness. Methods The expressions of Cks1, Skp2, and p27Kip1 were examined immunohistochemically on formalin-fixed, paraffin-wax-embedded tissue sections from 50 patients with breast cancer and by immunoblot analysis on breast cancer cell lines. The relation between Cks1 levels and patients' clinical and histological parameters were examined by Cox regression and the Kaplan–Meier method. Results The expression of Cks1 was strongly associated with Skp2 expression (r = 0.477; P = 0.001) and inversely with p27Kip1 (r = -0.726; P < 0.0001). Overexpression of Cks1 was associated with loss of tumor differentiation, young age, lack of expression of estrogen receptors and of progesterone receptors, and decreased disease-free (P = 0.0007) and overall (P = 0.041) survival. In addition, Cks1 and Skp2 expression were increased by estradiol in estrogen-dependent cell lines but were down-regulated by tamoxifen. Conclusion These results suggest that Cks1 is involved in p27Kip1 down-regulation and may have an important role in the development of aggressive tumor behavior in breast cancer. PMID:16168119

  3. Preserved functional autonomic phenotype in adult mice overexpressing moderate levels of human alpha‐synuclein in oligodendrocytes

    PubMed Central

    Tank, Jens; da Costa‐Goncalves, Andrey C.; Kamer, Ilona; Qadri, Fatimunnisa; Ubhi, Kiren; Rockenstein, Edward; Diedrich, André; Masliah, Eliezer; Gross, Volkmar; Jordan, Jens

    2014-01-01

    Abstract Mice overexpressing human alpha‐synuclein in oligodendrocytes (MBP1‐α‐syn) recapitulate some key functional and neuropathological features of multiple system atrophy (MSA). Whether or not these mice develop severe autonomic failure, which is a key feature of human MSA, remains unknown. We explored cardiovascular autonomic regulation using long‐term blood pressure (BP) radiotelemetry and pharmacological testing. We instrumented 12 MBP1‐α‐syn mice and 11 wild‐type mice aged 9 months for radiotelemetry. Animals were tested with atropine, metoprolol, clonidine, and trimethaphan at 9 and 12 months age. We applied spectral and cross‐spectral analysis to assess heart rate (HR) and BP variability. At 9 months of age daytime BP (transgenic: 101 ± 2 vs. wild type: 99 ± 2 mmHg) and HR (497 ± 11 vs. 505 ± 16 beats/min) were similar. Circadian BP and HR rhythms were maintained. Nighttime BP (109 ± 2 vs. 108 ± 2 mmHg) and HR (575 ± 15 vs. 569 ± 14 beats/min), mean arterial BP responses to trimethaphan (−21 ± 8 vs. −10 ± 5 mmHg, P = 0.240) and to clonidine (−8 ± 3 vs. −5 ± 2 mmHg, P = 0.314) were similar. HR responses to atropine (+159 ± 24 vs. +146 ± 22 beats/min), and to clonidine (−188 ± 21 vs. −163 ± 33 beats/min) did not differ between strains. Baroreflex sensitivity (4 ± 1 vs. 4 ± 1 msec/mmHg) and HR variability (total power, 84 ± 17 vs. 65 ± 21 msec²) were similar under resting conditions and during pharmacological testing. Repeated measurements at 12 months of age provided similar results. In mice, moderate overexpression of human alpha‐synuclein in oligodendrocytes is not sufficient to induce overt autonomic failure. Additional mechanisms may be required to express the autonomic failure phenotype including higher levels of expression or more advanced age. PMID:25428949

  4. Hydroquinone induces DNA hypomethylation-independent overexpression of retroelements in human leukemia and hematopoietic stem cells.

    PubMed

    Conti, Anastasia; Rota, Federica; Ragni, Enrico; Favero, Chiara; Motta, Valeria; Lazzari, Lorenza; Bollati, Valentina; Fustinoni, Silvia; Dieci, Giorgio

    2016-06-10

    Hydroquinone (HQ) is an important benzene-derived metabolite associated with acute myelogenous leukemia risk. Although altered DNA methylation has been reported in both benzene-exposed human subjects and HQ-exposed cultured cells, the inventory of benzene metabolite effects on the epigenome is only starting to be established. In this study, we used a monocytic leukemia cell line (THP-1) and hematopoietic stem cells (HSCs) from cord blood to investigate the effects of HQ treatment on the expression of the three most important families of retrotransposons in the human genome: LINE-1, Alu and Endogenous retroviruses (HERVs), that are normally subjected to tight epigenetic silencing. We found a clear tendency towards increased retrotransposon expression in response to HQ exposure, more pronounced in the case of LINE-1 and HERV. Such a partial loss of silencing, however, was generally not associated with HQ-induced DNA hypomethylation. On the other hand, retroelement derepression was also observed in the same cells in response to the hypomethylating agent decitabine. These observations suggest the existence of different types of epigenetic switches operating at human retroelements, and point to retroelement activation in response to benzene-derived metabolites as a novel factor deserving attention in benzene carcinogenesis studies.

  5. Analyses of Resected Human Brain Metastases of Breast Cancer Reveal the Association between Up-regulation of Hexokinase 2 and Poor Prognosis

    PubMed Central

    Palmieri, Diane; Fitzgerald, Daniel; Shreeve, S. Martin; Hua, Emily; Bronder, Julie L.; Weil, Robert J.; Davis, Sean; Stark, Andreas M.; Merino, Maria J.; Kurek, Raffael; Mehdorn, H. Maximilian; Davis, Gary; Steinberg, Seth M.; Meltzer, Paul S.; Aldape, Kenneth; Steeg, Patricia S.

    2009-01-01

    Brain metastases of breast cancer appear to be increasing in incidence as systemic therapy improves. Metastatic disease in the brain is associated with high morbidity and mortality. We present the first gene expression analysis of laser captured epithelial cells from resected human brain metastases of breast cancer compared to unlinked primary breast tumors. The tumors were matched for histology, TNM stage and hormone receptor status. Most differentially expressed genes were down-regulated in the brain metastases which included, surprisingly, many genes associated with metastasis. Q-PCR analysis confirmed statistically significant differences or strong trends in the expression of six genes: BMP1, PEDF, LAMγ3, SIAH, STHMN3 and TSPD2. Hexokinase 2 (HK2) was also of interest because of its increased expression in brain metastases. HK2 is important in glucose metabolism and apoptosis. In agreement with our microarray results, HK2 levels (both mRNA and protein) were elevated in a brain metastatic derivative (231-BR) of the human breast carcinoma cell line MDA-MB-231 relative to the parental cell line (231-P), in vitro. Knockdown of HK2 expression in 231-BR cells using shRNA reduced cell proliferation when cultures were maintained in glucose limiting conditions. Finally, HK2 expression was analyzed in a cohort of 123 resected brain metastases of breast cancer. High HK2 expression was significantly associated with poor patient survival post-craniotomy (P=0.028). The data suggest that HK2 overexpression is associated with metastasis to the brain in breast cancer and it may be a therapeutic target. PMID:19723875

  6. Elevated plasma levels of tissue inhibitors of metalloproteinase-1 and their overexpression in muscle in human and mouse muscular dystrophy.

    PubMed

    Sun, Guilian; Haginoya, Kazuhiro; Chiba, Yoko; Uematsu, Mitsugu; Hino-Fukuyo, Naomi; Tanaka, Soichiro; Onuma, Akira; Iinuma, Kazuie; Tsuchiya, Shigeru

    2010-10-15

    To investigate the role of tissue inhibitors of metalloproteinases (TIMPs) in muscular dystrophy, we examined the expression of TIMP-1 using plasma and biopsied muscle from patients with various muscular dystrophies by ELISA, immunohistochemistry, and Western blot analysis. TIMP-1 immunolocalization was also studied in mouse models of muscular dystrophy. Plasma TIMP-1 was elevated and correlated with TGF-β1 in Duchenne muscular dystrophy (DMD) and congenital muscular dystrophy (CMD), but not in Becker muscular dystrophy. In dystrophic human muscles, TIMP-1 was immunopositive in the regenerating and non-regenerating muscle fibers, and interstitial cells that consist of activated fibroblasts and macrophages. TIMP-1 immunoreactivity was also closely associated with TGF-β1. Western blot analysis showed elevated TIMP-1 protein in muscles in DMD. The semiquantitative analysis of TIMP-1 staining intensity and tissue fibrosis showed that TIMP-1 immunoreactivity is closely associated with the extent of tissue fibrosis in human and mouse dystrophic muscles. In conclusion, the present study implied that the TGF-β1-TIMP-1 pathway is activated in dystrophic muscles and the overexpression of TIMP-1 may result in increased deposition of extracellular matrix leading to tissue fibrosis.

  7. Potential angiogenic role of platelet-activating factor in human breast cancer.

    PubMed

    Montrucchio, G; Sapino, A; Bussolati, B; Ghisolfi, G; Rizea-Savu, S; Silvestro, L; Lupia, E; Camussi, G

    1998-11-01

    This study investigated the presence of platelet-activating factor (PAF) in the lipid extracts of 18 primary breast carcinomas and 20 control breast tissues. The amount of PAF detected in breast carcinomas was significantly higher than in controls. The mass spectrometric analysis of PAF-bioactive lipid extract from breast carcinomas showed the presence of several molecular species of PAF, including C16-alkylPAF, C18-lysophosphatidylcholine (LPC), C16-LPC, lyso-PAF, and C16-acylPAF. The amount of bioactive PAF extracted from breast specimens significantly correlated with tumor vascularization revealed by the number of CD34-and CD31-positive cells. As C16-alkylPAF was previously shown to induce angiogenesis in vivo, we evaluated whether the thin layer chromatography-purified lipid extracts of breast specimens elicited neoangiogenesis in a murine model of subcutaneous Matrigel injection. The lipid extracts from specimens of breast carcinoma containing high levels of PAF bioactivity, but not from breast carcinomas containing low levels of PAF bioactivity or from normal breast tissue, induced a significant angiogenic response. This angiogenic response was significantly inhibited by the PAF receptor antagonist WEB 2170. T47D and MCF7 breast cancer cell lines, but not an immortalized nontumor breast cell line (MCF10), released PAF in the culture medium. A significant in vivo neoangiogenic response, inhibited by WEB 2170, was elicited by T47D and MCF7 but not by MCF10 culture medium. These results indicate that an increased concentration of PAF is present in tumors with high microvessel density and that PAF may account for the neoangiogenic activity induced in mice by the lipid extracts obtained from breast cancer. A contribution of PAF in the neovascularization of human breast cancer is suggested.

  8. Potential Angiogenic Role of Platelet-Activating Factor in Human Breast Cancer

    PubMed Central

    Montrucchio, Giuseppe; Sapino, Anna; Bussolati, Benedetta; Ghisolfi, Gianpiero; Rizea-Savu, Simona; Silvestro, Luigi; Lupia, Enrico; Camussi, Giovanni

    1998-01-01

    This study investigated the presence of platelet-activating factor (PAF) in the lipid extracts of 18 primary breast carcinomas and 20 control breast tissues. The amount of PAF detected in breast carcinomas was significantly higher than in controls. The mass spectrometric analysis of PAF-bioactive lipid extract from breast carcinomas showed the presence of several molecular species of PAF, including C16-alkylPAF, C18-lysophosphatidylcholine (LPC), C16-LPC, lyso-PAF, and C16-acylPAF. The amount of bioactive PAF extracted from breast specimens significantly correlated with tumor vascularization revealed by the number of CD34- and CD31-positive cells. As C16-alkylPAF was previously shown to induce angiogenesis in vivo, we evaluated whether the thin layer chromatography-purified lipid extracts of breast specimens elicited neoangiogenesis in a murine model of subcutaneous Matrigel injection. The lipid extracts from specimens of breast carcinoma containing high levels of PAF bioactivity, but not from breast carcinomas containing low levels of PAF bioactivity or from normal breast tissue, induced a significant angiogenic response. This angiogenic response was significantly inhibited by the PAF receptor antagonist WEB 2170. T47D and MCF7 breast cancer cell lines, but not an immortalized nontumor breast cell line (MCF10), released PAF in the culture medium. A significant in vivo neoangiogenic response, inhibited by WEB 2170, was elicited by T47D and MCF7 but not by MCF10 culture medium. These results indicate that an increased concentration of PAF is present in tumors with high microvessel density and that PAF may account for the neoangiogenic activity induced in mice by the lipid extracts obtained from breast cancer. A contribution of PAF in the neovascularization of human breast cancer is suggested. PMID:9811351

  9. Salidroside induces cell-cycle arrest and apoptosis in human breast cancer cells

    SciTech Connect

    Hu, Xiaolan; Zhang, Xianqi; Qiu, Shuifeng; Yu, Daihua; Lin, Shuxin

    2010-07-16

    Research highlights: {yields} Salidroside inhibits the growth of human breast cancer cells. {yields} Salidroside induces cell-cycle arrest of human breast cancer cells. {yields} Salidroside induces apoptosis of human breast cancer cell lines. -- Abstract: Recently, salidroside (p-hydroxyphenethyl-{beta}-D-glucoside) has been identified as one of the most potent compounds isolated from plants of the Rhodiola genus used widely in traditional Chinese medicine, but pharmacokinetic data on the compound are unavailable. We were the first to report the cytotoxic effects of salidroside on cancer cell lines derived from different tissues, and we found that human breast cancer MDA-MB-231 cells (estrogen receptor negative) were sensitive to the inhibitory action of low-concentration salidroside. To further investigate the cytotoxic effects of salidroside on breast cancer cells and reveal possible ER-related differences in response to salidroside, we used MDA-MB-231 cells and MCF-7 cells (estrogen receptor-positive) as models to study possible molecular mechanisms; we evaluated the effects of salidroside on cell growth characteristics, such as proliferation, cell cycle duration, and apoptosis, and on the expression of apoptosis-related molecules. Our results demonstrated for the first time that salidroside induces cell-cycle arrest and apoptosis in human breast cancer cells and may be a promising candidate for breast cancer treatment.

  10. c-MYC is a radiosensitive locus in human breast cells

    PubMed Central

    Wade, M A; Sunter, N J; Fordham, S E; Long, A; Masic, D; Russell, L J; Harrison, C J; Rand, V; Elstob, C; Bown, N; Rowe, D; Lowe, C; Cuthbert, G; Bennett, S; Crosier, S; Bacon, C M; Onel, K; Scott, K; Scott, D; Travis, L B; May, F E B; Allan, J M

    2015-01-01

    Ionising radiation is a potent human carcinogen. Epidemiological studies have shown that adolescent and young women are at increased risk of developing breast cancer following exposure to ionising radiation compared with older women, and that risk is dose-dependent. Although it is well understood which individuals are at risk of radiation-induced breast carcinogenesis, the molecular genetic mechanisms that underlie cell transformation are less clear. To identify genetic alterations potentially responsible for driving radiogenic breast transformation, we exposed the human breast epithelial cell line MCF-10A to fractionated doses of X-rays and examined the copy number and cytogenetic alterations. We identified numerous alterations of c-MYC that included high-level focal amplification associated with increased protein expression. c-MYC amplification was also observed in primary human mammary epithelial cells following exposure to radiation. We also demonstrate that the frequency and magnitude of c-MYC amplification and c-MYC protein expression is significantly higher in breast cancer with antecedent radiation exposure compared with breast cancer without a radiation aetiology. Our data also demonstrate extensive intratumor heterogeneity with respect to c-MYC copy number in radiogenic breast cancer, suggesting continuous evolution at this locus during disease development and progression. Taken together, these data identify c-MYC as a radiosensitive locus, implicating this oncogenic transcription factor in the aetiology of radiogenic breast cancer. PMID:25531321

  11. Nicotinamide attenuates aquaporin 3 overexpression induced by retinoic acid through inhibition of EGFR/ERK in cultured human skin keratinocytes.

    PubMed

    Song, Xiuzu; Xu, Aie; Pan, Wei; Wallin, Brittany; Kivlin, Rebecca; Lu, Shan; Cao, Cong; Bi, Zhigang; Wan, Yinsheng

    2008-08-01

    The most common adverse effects that are related to all-trans retinoic acid (atRA) treatment are irritation and dryness of the skin. atRA therapy is reported to impair barrier function as achieved by trans-epidermal water loss (TEWL). Treatment with nicotinamide prior to initiation of atRA therapy provides additional barrier protection and thus reduces susceptibility of retinoic acid. Our previous studies showed that atRA upregulates aquaporin 3 (AQP3) in cultured human skin keratinocytes and fibroblasts. Others have demonstrated that in atopic dermatitis, overexpression of AQP3 is linked to elevated TEWL and that nicotinamide treatment reduces skin TEWL. In this study, we observed that while atRA upregulates AQP3 expression in cultured human skin keratinocytes (HaCaT cells), nicotinamide attenuates the effect of atRA in a concentration-dependent manner. atRA treatment induces EGFR and ERK activation. PD153035, an EGFR inhibitor, and U0126, an ERK inhibitor, inhibit atRA-induced upregulation of AQP3. Nicotinamide also inhibits atRA-induced activation of EGFR/ERK signal transduction and decreases water permeability by downregulating AQP3 expression. Collectively, our results indicate that the effect of atRA on AQP3 expression is at least partly mediated by EGFR/ERK signaling in cultured human skin keratinocytes. Nicotinamide attenuates atRA-induced AQP3 expression through inhibition of EGFR/ERK signal transduction and eventually decreases water permeability and water loss. Our study provides insights into the molecular mechanism through which nicotinamide reverses the side effects of dryness in human skin after treatment with atRA.

  12. Prokaryotic Soluble Overexpression and Purification of Human VEGF165 by Fusion to a Maltose Binding Protein Tag

    PubMed Central

    Nguyen, Minh Tan; Krupa, Martin; Koo, Bon-Kyung; Song, Jung-A; Vu, Thu Trang Thi; Do, Bich Hang; Nguyen, Anh Ngoc; Seo, Taewook; Yoo, Jiwon; Jeong, Boram; Jin, Jonghwa; Lee, Kyung Jin; Oh, Heung-Bum; Choe, Han

    2016-01-01

    Human vascular endothelial growth factor (VEGF) is a key regulator of angiogenesis and plays a central role in the process of tumor growth and metastatic dissemination. Escherichia coli is one of the most common expression systems used for the production of recombinant proteins; however, expression of human VEGF in E. coli has proven difficult because the E. coli-expressed VEGF tends to be misfolded and forms inclusion bodies, resulting in poor solubility. In this study, we successfully produced semi-preparative amounts of soluble bioactive human VEGF165 (hVEGF). We created seven N-terminal fusion tag constructs with hexahistidine (His6), thioredoxin (Trx), glutathione S-transferase (GST), maltose-binding protein (MBP), N-utilization substance protein A (NusA), human protein disulfide isomerase (PDI), and the b'a' domain of PDI (PDIb'a'), and tested each construct for soluble overexpression in E. coli. We found that at 18°C, 92.8% of the MBP-tagged hVEGF to be soluble and that this tag significantly increased the protein's solubility. We successfully purified 0.8 mg of pure hVEGF per 500 mL cell culture. The purified hVEGF is stable after tag cleavage, contains very low levels of endotoxin, and is 97.6% pure. Using an Flk1+ mesodermal precursor cell (MPC) differentiation assay, we show that the purified hVEGF is not only bioactive but has similar bioactivity to hVEGF produced in mammalian cells. Previous reports on producing hVEGF in E. coli have all been based on refolding of the protein from inclusion bodies. To our knowledge, this is the first report on successfully expressing and purifying soluble hVEGF in E. coli. PMID:27231876

  13. Overexpression of immunoglobulin G prompts cell proliferation and inhibits cell apoptosis in human urothelial carcinoma.

    PubMed

    Liang, Pei-Yu; Li, Hao-Yong; Zhou, Zhi-Yan; Jin, Ying-Xia; Wang, Sheng-Xing; Peng, Xiao-Hui; Ou, Shan-Ji

    2013-06-01

    Only B lymphocytes can express immunoglobulins according to the traditional immunological theories, and the expression of immunoglobulin G (IgG) messenger RNA (mRNA) and protein was found in certain human cancer cells recently. However, the expression pattern of IgG and its possible role in human urothelial carcinoma are still elusive. In this study, we investigated the expression of IgG in two human urothelial carcinoma cell lines, T24 and BIU-87, and in 56 cases of clinical urothelial carcinoma tissues. The mRNA of IgG was positively detected by in situ hybridization and reverse transcription PCR; furthermore, IgG protein was also positively detected by immunohistochemistry and Western blot. Moreover, blockade of tumor-derived IgG by either antihuman IgG antibody or antisense oligonucleotides increased cell apoptosis and inhibited cell growth in bladder cancer cell lines in vitro, and antihuman IgG antibody could suppress the growth of xenotransplant tumor in vivo. In addition, either antihuman IgG antibody or antisense oligonucleotides enhanced the sensitivity to mitomycin C in bladder cancer cell line T24. Furthermore, blockade of IgG in bladder cancer cell T24 resulted in upregulation of cleaved caspase-3 and cleaved poly(ADP-ribose) polymerase. Our results indicated that bladder cancer cells were capable of expressing IgG, and blockade of IgG expression induced cell apoptosis through activation of caspase-dependent pathway. A novel potential targeted therapy for bladder cancer will be possibly developed based on these data.

  14. Tissue specific DNA methylation in normal human breast epithelium and in breast cancer.

    PubMed

    Avraham, Ayelet; Cho, Sean Soonweng; Uhlmann, Ronit; Polak, Mia Leonov; Sandbank, Judith; Karni, Tami; Pappo, Itzhak; Halperin, Ruvit; Vaknin, Zvi; Sella, Avishay; Sukumar, Saraswati; Evron, Ella

    2014-01-01

    Cancer is a heterogeneous and tissue-specific disease. Thus, the tissue of origin reflects on the natural history of the disease and dictates the therapeutic approach. It is suggested that tissue differentiation, mediated mostly by epigenetic modifications, could guide tissue-specific susceptibility and protective mechanisms against cancer. Here we studied breast specific methylation in purified normal epithelium and its reflection in breast cancers. We established genome wide methylation profiles of various normal epithelial tissues and identified 110 genes that were differentially methylated in normal breast epithelium. A number of these genes also showed methylation alterations in breast cancers. We elaborated on one of them, TRIM29 (ATDC), and showed that its promoter was hypo-methylated in normal breast epithelium and heavily methylated in other normal epithelial tissues. Moreover, in breast carcinomas methylation increased and expression decreased whereas the reverse was noted for multiple other carcinomas. Interestingly, TRIM29 regulation in breast tumors clustered according to the PAM50 classification. Thus, it was repressed in the estrogen receptor positive tumors, particularly in the more proliferative luminal B subtype. This goes in line with previous reports indicating tumor suppressive activity of TRIM29 in estrogen receptor positive luminal breast cells in contrast to oncogenic function in pancreatic and lung cancers. Overall, these findings emphasize the linkage between breast specific epigenetic regulation and tissue specificity of cancer.

  15. Human coronary artery perivascular adipocytes overexpress genes responsible for regulating vascular morphology, inflammation, and hemostasis

    PubMed Central

    Aronow, Bruce J.; Tong, Wilson S.; Manka, David; Tang, Yaoliang; Bogdanov, Vladimir Y.; Unruh, Dusten; Blomkalns, Andra L.; Piegore, Mark G.; Weintraub, Daniel S.; Rudich, Steven M.; Kuhel, David G.; Hui, David Y.; Weintraub, Neal L.

    2013-01-01

    Inflammatory cross talk between perivascular adipose tissue and the blood vessel wall has been proposed to contribute to the pathogenesis of atherosclerosis. We previously reported that human perivascular (PV) adipocytes exhibit a proinflammatory phenotype and less adipogenic differentiation than do subcutaneous (SQ) adipocytes. To gain a global view of the genomic basis of biologic differences between PV and SQ adipocytes, we performed genome-wide expression analyses to identify differentially expressed genes between adipocytes derived from human SQ vs. PV adipose tissues. Although >90% of well-expressed genes were similarly regulated, we identified a signature of 307 differentially expressed genes that were highly enriched for functions associated with the regulation of angiogenesis, vascular morphology, inflammation, and blood clotting. Of the 156 PV upregulated genes, 59 associate with angiogenesis, vascular biology, or inflammation, noteworthy of which include TNFRSF11B (osteoprotegerin), PLAT, TGFB1, THBS2, HIF1A, GATA6, and SERPINE1. Of 166 PV downregulated genes, 21 associated with vascular biology and inflammation, including ANGPT1, ANGPTL1, and VEGFC. Consistent with the emergent hypothesis that PV adipocytes differentially regulate angiogenesis and inflammation, cell culture-derived adipocyte-conditioned media from PV adipocytes strongly enhanced endothelial cell tubulogenesis and monocyte migration compared with media from SQ adipocytes. These findings demonstrate that PV adipocytes have the potential to significantly modulate vascular inflammatory crosstalk in the setting of atherosclerosis by their ability to signal to both endothelial and inflammatory cells. PMID:23737535

  16. Robust RNAi enhancement via human Argonaute-2 overexpression from plasmids, viral vectors and cell lines

    PubMed Central

    Börner, Kathleen; Niopek, Dominik; Cotugno, Gabriella; Kaldenbach, Michaela; Pankert, Teresa; Willemsen, Joschka; Zhang, Xian; Schürmann, Nina; Mockenhaupt, Stefan; Serva, Andrius; Hiet, Marie-Sophie; Wiedtke, Ellen; Castoldi, Mirco; Starkuviene, Vytaute; Erfle, Holger; Gilbert, Daniel F.; Bartenschlager, Ralf; Boutros, Michael; Binder, Marco; Streetz, Konrad; Kräusslich, Hans-Georg; Grimm, Dirk

    2013-01-01

    As the only mammalian Argonaute protein capable of directly cleaving mRNAs in a small RNA-guided manner, Argonaute-2 (Ago2) is a keyplayer in RNA interference (RNAi) silencing via small interfering (si) or short hairpin (sh) RNAs. It is also a rate-limiting factor whose saturation by si/shRNAs limits RNAi efficiency and causes numerous adverse side effects. Here, we report a set of versatile tools and widely applicable strategies for transient or stable Ago2 co-expression, which overcome these concerns. Specifically, we engineered plasmids and viral vectors to co-encode a codon-optimized human Ago2 cDNA along with custom shRNAs. Furthermore, we stably integrated this Ago2 cDNA into a panel of standard human cell lines via plasmid transfection or lentiviral transduction. Using various endo- or exogenous targets, we demonstrate the potential of all three strategies to boost mRNA silencing efficiencies in cell culture by up to 10-fold, and to facilitate combinatorial knockdowns. Importantly, these robust improvements were reflected by augmented RNAi phenotypes and accompanied by reduced off-targeting effects. We moreover show that Ago2/shRNA-co-encoding vectors can enhance and prolong transgene silencing in livers of adult mice, while concurrently alleviating hepatotoxicity. Our customizable reagents and avenues should broadly improve future in vitro and in vivo RNAi experiments in mammalian systems. PMID:24049077

  17. Heregulin-Induced Growth Factor Receptor Signaling and Breast Carcinogenesis.

    DTIC Science & Technology

    1997-07-01

    tumorigenesis by stimulating differentiation. Ectopic treatment of breast tumor cell lines with NRG inhibits their growth and stimulates milk protein synthesis...Furthermore, agonistic anti-ErbB4 antibodies stimulate the differentiation and inhibit the proliferation of human breast tumor cell lines [Chen, et al...1996]. Moreover, ErbB4 overexpression in human mammary tumor samples correlates with markers for a more favorable prognosis, suggesting that ErbB4

  18. Identification of Genes Expressed in Premalignant Breast Disease by Microscopy-Directed Cloning

    NASA Astrophysics Data System (ADS)

    Jensen, Roy A.; Page, David L.; Holt, Jeffrey T.

    1994-09-01

    Histopathologic study of human breast biopsy samples has identified specific lesions which are associated with a high risk of development of invasive breast cancer. Presumably, these lesions (collectively termed premalignant breast disease) represent the earliest recognizable morphologic expression of fundamental molecular events that lead to the development of invasive breast cancer. To study molecular events underlying premalignant breast disease, we have developed a method for isolating RNA from histologically identified lesions from frozen human breast tissue. This method specifically obtains mRNA from breast epithelial cells and has identified three genes which are differentially expressed in premalignant breast epithelial lesions. One gene identified by this method is overexpressed in four of five noncomedo ductal carcinoma in situ lesions and appears to be the human homologue of the gene encoding the M2 subunit of ribonucleotide reductase, an enzyme involved in DNA synthesis.

  19. Targeted Overexpression of EZH2 in the Mammary Gland Disrupts Ductal Morphogenesis and Causes Epithelial Hyperplasia

    PubMed Central

    Li, Xin; Gonzalez, Maria E.; Toy, Katherine; Filzen, Tracey; Merajver, Sofia D.; Kleer, Celina G.

    2009-01-01

    The Polycomb group protein enhancer of zeste homolog 2 (EZH2), which has roles during development of numerous tissues, is a critical regulator of cell type identity. Overexpression of EZH2 has been detected in invasive breast carcinoma tissue samples and is observed in human breast tissue samples of morphologically normal lobules up to 12 years before the development of breast cancer. The function of EZH2 during preneoplastic progression in the mammary gland is unknown. To investigate the role of EZH2 in the mammary gland, we targeted the expression of EZH2 to mammary epithelial cells using the mouse mammary tumor virus long terminal repeat. EZH2 overexpression resulted in aberrant terminal end bud architecture. By the age of 4 months, 100% of female mouse mammary tumor virus-EZH2 virgin mice developed intraductal epithelial hyperplasia resembling the human counterpart accompanied by premature differentiation of ductal epithelial cells and up-regulation of the luminal marker GATA-3. In addition, remodeling of the mammary gland after parturition was impaired and EZH2 overexpression caused delayed involution. Mechanistically, we found that EZH2 physically interacts with β-catenin, inducing β-catenin nuclear accumulation in mammary epithelial cells and activating Wnt/β-catenin signaling. The biological significance of these data to human hyperplasias is demonstrated by EZH2 up-regulation and colocalization with β-catenin in human intraductal epithelial hyperplasia, the earliest histologically identifiable precursor of breast carcinoma. PMID:19661437

  20. Human breast cancer cells contain a phosphoramidon-sensitive metalloproteinase which can process exogenous big endothelin-1 to endothelin-1: a proposed mitogen for human breast fibroblasts.

    PubMed Central

    Patel, K. V.; Schrey, M. P.

    1995-01-01

    Endothelin-1 (ET-1) levels are elevated in human breast tumours compared with normal and benign tissues, and in the presence of insulin-like growth factor 1 (IGF-I) ET-1 is a potent mitogen for human breast fibroblasts. In this study we have examined the ability of intact human breast cancer cell lines to process exogenously added big ET-1 (1-38) to the active mature ET-1 peptide by using a specific radioimmunometric assay. In both hormome-dependent (MCF-7, T47-D) and hormone-independent (MDA-MB-231) breast cancer cell lines the putative endothelin-converting enzyme (ECE) exhibited apparent Michaelis-Menten kinetics when converting added big ET-1 to ET-1. Both basal ET-1 production and exogenously added big ET-1 to ET-1 conversion were greatly reduced in all three cell lines in response to the metalloproteinase inhibitor phosphoramidon but were insensitive to other classes of protease inhibitors. Inhibition was also observed when cells were incubated in the presence of the divalent cation chelators 1,10-phenanthroline and EDTA. In MCF-7 cells the optimal pH for the ECE activity using a saponin cell permeabilisation procedure was found to residue within a narrow range of 6.2-7.26. Our results indicate that human breast cancer cells contain a neutral phosphoramidon-sensitive metalloproteinase which can process big ET-1 to ET-1. In the breast this conversion could contribute substantially to the local extracellular levels of this proposed paracrine breast fibroblast mitogen. PMID:7880721

  1. The antiepileptic drug lamotrigine is a substrate of mouse and human breast cancer resistance protein (ABCG2).

    PubMed

    Römermann, Kerstin; Helmer, Renate; Löscher, Wolfgang

    2015-06-01

    Resistance to antiepileptic drugs (AEDs) is the major problem in the treatment of epilepsy. One hypothesis to explain AED resistance suggests that seizure-induced overexpression of efflux transporters at the blood-brain barrier (BBB) restricts AEDs to reach their brain targets. Various studies examined whether AEDs are substrates of P-glycoprotein (Pgp; MDR1; ABCB1), whereas information about the potential role of breast cancer resistance protein (BCRP; ABCG2) is scanty. We used a highly sensitive in vitro assay (concentration equilibrium transport assay; CETA) with MDCKII cells transduced with murine Bcrp1 or human BCRP to evaluate whether AEDs are substrates of this major efflux transporter. Six of 7 AEDs examined, namely phenytoin, phenobarbital, carbamazepine, levetiracetam, topiramate, and valproate, were not transported by Bcrp at therapeutic concentrations, whereas lamotrigine exhibited a marked asymmetric, Bcrp-mediated transport in the CETA, which could be almost completely inhibited with the Bcrp inhibitor Ko143. Significant but less marked transport of lamotrigine was determined in MDCK cells transfected with human BCRP. Lamotrigine is also a substrate of human Pgp, so that this drug is the first AED that has been identified as a dual substrate of the two major human efflux transporters at the BBB. Previous in vivo studies have demonstrated a synergistic or cooperative role of Pgp and Bcrp in the efflux of dual substrates at the BBB, so that transport of lamotrigine by Pgp and BCRP may be an important mechanism of pharmacoresistance in epilepsy patients in whom both transporters are overexpressed.

  2. Differential transfer of dietary flavour compounds into human breast milk.

    PubMed

    Hausner, Helene; Bredie, Wender L P; Mølgaard, Christian; Petersen, Mikael Agerlin; Møller, Per

    2008-09-03

    Transfer of dietary flavour compounds into human milk is believed to constitute the infant's early flavour experiences. This study reports on the time-dependent transfer of flavour compounds from the mother's diet to her breast milk using a within-subject design. Eighteen lactating mothers completed three test days on which they provided a baseline milk sample prior to ingestion of capsules containing 100 mg d-carvone, l-menthol, 3-methylbutyl acetate and trans-anethole. Milk samples were collected 2, 4, 6 and 8 h post-ingestion and analysed by a dynamic headspace method and gas chromatography-mass spectroscopy. The recovery quantities were adjusted for variations in milk fat content. Concentration-time profiles for d-carvone and trans-anethole revealed a maximum around 2 h post-ingestion, whereas the profile for l-menthol showed a plateau pattern. The ester 3-methylbutyl acetate could not be detected in the milk, but a single determination showed traces (<0.4 ppb) in a 1 h milk collection. Flavour compounds appeared to be transmitted differentially from the mother's diet to her milk. The results imply that human milk provides a reservoir for time-dependent chemosensory experiences to the infant; however, volatiles from the diet are transferred selectively and in relatively low amounts.

  3. Human breast milk and antiretrovirals dramatically reduce oral HIV-1 transmission in BLT humanized mice.

    PubMed

    Wahl, Angela; Swanson, Michael D; Nochi, Tomonori; Olesen, Rikke; Denton, Paul W; Chateau, Morgan; Garcia, J Victor

    2012-01-01

    Currently, over 15% of new HIV infections occur in children. Breastfeeding is a major contributor to HIV infections in infants. This represents a major paradox in the field because in vitro, breast milk has been shown to have a strong inhibitory effect on HIV infectivity. However, this inhibitory effect has never been demonstrated in vivo. Here, we address this important paradox using the first humanized mouse model of oral HIV transmission. We established that reconstitution of the oral cavity and upper gastrointestinal (GI) tract of humanized bone marrow/liver/thymus (BLT) mice with human leukocytes, including the human cell types important for mucosal HIV transmission (i.e. dendritic cells, macrophages and CD4⁺ T cells), renders them susceptible to oral transmission of cell-free and cell-associated HIV. Oral transmission of HIV resulted in systemic infection of lymphoid and non-lymphoid tissues that is characterized by the presence of HIV RNA in plasma and a gradual decline of CD4⁺ T cells in peripheral blood. Consistent with infection of the oral cavity, we observed virus shedding into saliva. We then evaluated the role of human breast milk on oral HIV transmission. Our in vivo results demonstrate that breast milk has a strong inhibitory effect on oral transmission of both cell-free and cell-associated HIV. Finally, we evaluated the effect of antiretrovirals on oral transmission of HIV. Our results show that systemic antiretrovirals administered prior to exposure can efficiently prevent oral HIV transmission in BLT mice.

  4. Polyamine Analogues as Novel Anti-HER Family Agents in Human Breast Cancer

    DTIC Science & Technology

    2007-09-01

    is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining...protein in multiple human breast cancer cell lines. This suppression is both time and dose dependent. A relationship between oligoamine structure, growth...EGFR and HER2 protein in several human breast cancer cell lines as documented by Western blot analysis. These studies were extended to evaluate the time

  5. Ultra-small volume interdigital sensors for the measurement of human breast milk

    NASA Astrophysics Data System (ADS)

    Keating, A.; Pang, W. W.; Lai, C. T.; Hartmann, P.

    2007-12-01

    A palm-size interdigital impedance sensor incorporating a 10 μL sample reservoir, temperature sensor and hybrid heater was fabricated to determine the feasibility of measuring macronutrients in ultra-small volumes of human breast milk. Comparisons with previous measurements of homogenized cows milk show excellent agreement with fat measurement. Human breast milk however shows no correlation with fat but a surprising correlation with protein. Our investigations and proposed methods to improve the correlation and measurement accuracy are discussed.

  6. From The Cover: Reconstruction of functionally normal and malignant human breast tissues in mice

    NASA Astrophysics Data System (ADS)

    Kuperwasser, Charlotte; Chavarria, Tony; Wu, Min; Magrane, Greg; Gray, Joe W.; Carey, Loucinda; Richardson, Andrea; Weinberg, Robert A.

    2004-04-01

    The study of normal breast epithelial morphogenesis and carcinogenesis in vivo has largely used rodent models. Efforts at studying mammary morphogenesis and cancer with xenotransplanted human epithelial cells have failed to recapitulate the full extent of development seen in the human breast. We have developed an orthotopic xenograft model in which both the stromal and epithelial components of the reconstructed mammary gland are of human origin. Genetic modification of human stromal cells before the implantation of ostensibly normal human mammary epithelial cells resulted in the outgrowth of benign and malignant lesions. This experimental model allows for studies of human epithelial morphogenesis and differentiation in vivo and underscores the critical role of heterotypic interactions in human breast development and carcinogenesis.

  7. Establishment of a human cell line stably overexpressing mouse Nip45 and characterization of Nip45 subcellular localization

    SciTech Connect

    Hashiguchi, Kohtaro; Ozaki, Masumi; Kuraoka, Isao; Saitoh, Hisato

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer A human cell line expressing a mouse Nip45 has facilitated Nip45 analysis. Black-Right-Pointing-Pointer Nip45 does not effectively inhibit polySUMOylation in vivo. Black-Right-Pointing-Pointer Nip45 interacts directly with SUMO and SUMO chains. Black-Right-Pointing-Pointer Nip45 accumulates at PML bodies in response to proteasome inhibition. -- Abstract: The nuclear factor of activated T cells, cytoplasmic, calcineurin dependent 2 interacting protein, Nfatc2ip (Nip45), has been implicated as a crucial coordinator of the immune response and of cellular differentiation in humans and mice, and contains SUMO-like domains in its C-terminal region. However, the significance of its N-terminal region and its correlation to the SUMO modification pathway remain largely uncharacterized. In this study, a human cultured cell line was established, in which FLAG-tagged mouse Nip45 (FLAG-mNip45) was stably overexpressed. Under standard, non-stressful conditions, we detected FLAG-mNip45 diffusely distributed in the nucleus. Intriguingly, proteasome inhibition by MG132 caused FLAG-mNip45, together with SUMOylated proteins, to localize in nuclear domains associated with promyelocytic leukemia protein. Finally, using an in vitro binding assay, we showed interaction of the N-terminal region of mNip45 with both free SUMO-3 and SUMO-3 chains, indicating that Nip45 may, in part, exert its function via interaction with SUMO/SUMOylated proteins. Taken together, our study provides novel information on a poorly characterized mammalian protein and suggests that our newly established cell line will be useful for elucidating the physiological role of Nip45.

  8. Human granulocyte colony stimulating factor (hG-CSF): cloning, overexpression, purification and characterization

    PubMed Central

    Vanz, Ana LS; Renard, Gaby; Palma, Mario S; Chies, Jocelei M; Dalmora, Sérgio L; Basso, Luiz A; Santos, Diógenes S

    2008-01-01

    Background Biopharmaceutical drugs are mainly recombinant proteins produced by biotechnological tools. The patents of many biopharmaceuticals have expired, and biosimilars are thus currently being developed. Human granulocyte colony stimulating factor (hG-CSF) is a hematopoietic cytokine that acts on cells of the neutrophil lineage causing proliferation and differentiation of committed precursor cells and activation of mature neutrophils. Recombinant hG-CSF has been produced in genetically engineered Escherichia coli (Filgrastim) and successfully used to treat cancer patients suffering from chemotherapy-induced neutropenia. Filgrastim is a 175 amino acid protein, containing an extra N-terminal methionine, which is needed for expression in E. coli. Here we describe a simple and low-cost process that is amenable to scaling-up for the production and purification of homogeneous and active recombinant hG-CSF expressed in E. coli cells. Results Here we describe cloning of the human granulocyte colony-stimulating factor coding DNA sequence, protein expression in E. coli BL21(DE3) host cells in the absence of isopropyl-β-D-thiogalactopyranoside (IPTG) induction, efficient isolation and solubilization of inclusion bodies by a multi-step washing procedure, and a purification protocol using a single cationic exchange column. Characterization of homogeneous rhG-CSF by size exclusion and reverse phase chromatography showed similar yields to the standard. The immunoassay and N-terminal sequencing confirmed the identity of rhG-CSF. The biological activity assay, in vivo, showed an equivalent biological effect (109.4%) to the standard reference rhG-CSF. The homogeneous rhG-CSF protein yield was 3.2 mg of bioactive protein per liter of cell culture. Conclusion The recombinant protein expression in the absence of IPTG induction is advantageous since cost is reduced, and the protein purification protocol using a single chromatographic step should reduce cost even further for large

  9. Targeting HER2 Positive Breast Cancer with Chemopreventive Agents

    PubMed Central

    Wahler, Joseph; Suh, Nanjoo

    2015-01-01

    Human epidermal growth factor receptor 2-positive (HER2+) breast cancer is a subtype of breast cancer that is exhibited in approximately 20-30% of breast cancer cases. The overexpression of HER2 is typically associated with a more aggressive disease and poor prognosis. Currently, the therapeutic drugs trastuzumab and lapatinib are the most commonly used to combat HER2+ breast cancer. However, tumors can develop resistance to these drugs. A better understanding of the mechanism of how HER2+ breast cancer works will help aid the development for new therapeutic approaches which more closely target the source of the signaling dysfunction. This review summarizes four major points in the context of HER2 over-expressing breast cancer (i) HER2 as a molecular target in breast cancer therapy, (ii) current treatment options as well as ongoing clinical studies, (iii) animal and cellular models for the study of HER2 over-expressing breast cancer, and (iv) future therapies and chemopreventive agents used to target HER2+ breast cancer. PMID:26442201

  10. Breast-milk infectivity in human immunodeficiency virus type 1-infected mothers.

    PubMed

    Richardson, Barbra A; John-Stewart, Grace C; Hughes, James P; Nduati, Ruth; Mbori-Ngacha, Dorothy; Overbaugh, Julie; Kreiss, Joan K

    2003-03-01

    Human immunodeficiency virus type 1 (HIV-1) is transmitted through blood, genital secretions, and breast milk. The probability of heterosexual transmission of HIV-1 per sex act is.0003-.0015, but little is known regarding the risk of transmission per breast-milk exposure. We evaluated the probability of breast-milk transmission of HIV-1 per liter of breast milk ingested and per day of breast-feeding in a study of children born to HIV-1-infected mothers. The probability of breast-milk transmission of HIV-1 was.00064 per liter ingested and.00028 per day of breast-feeding. Breast-milk infectivity was significantly higher for mothers with more-advanced disease, as measured by prenatal HIV-1 RNA plasma levels and CD4 cell counts. The probability of HIV-1 infection per liter of breast milk ingested by an infant is similar in magnitude to the probability of heterosexual transmission of HIV-1 per unprotected sex act in adults.

  11. Overexpression of LASP-1 mediates migration and proliferation of human ovarian cancer cells and influences zyxin localisation

    PubMed Central

    Grunewald, T G P; Kammerer, U; Winkler, C; Schindler, D; Sickmann, A; Honig, A; Butt, E

    2007-01-01

    LIM and SH3 protein 1 (LASP-1), initially identified from human breast cancer, is a specific focal adhesion protein involved in cell proliferation and migration. In the present work, we analysed the effect of LASP-1 on biology and function of human ovarian cancer cell line SKOV-3 using small interfering RNA technique (siRNA).Transfection with LASP-1-specific siRNA resulted in a reduced protein level of LASP-1 in SKOV-3 cells. The siRNA-treated cells were arrested in G2/M phase of the cell cycle and proliferation of the tumour cells was suppressed by 60–90% corresponding to around 70% of the cells being transfected successfully as seen by immunofluorescence. Moreover, transfected tumour cells showed a 40% reduced migration. LASP-1 silencing is accompanied by a reduced binding of the LASP-1-binding partner zyxin to focal contacts without changes in actin stress fibre and microtubule organisation or focal adhesion morphology as observed by immunofluorescence. In contrast, silencing of zyxin is not influencing cell migration and had neither influence on LASP-1 expression nor actin cytoskeleton and focal contact morphology suggesting that LASP-1 is necessary and sufficient for recruiting zyxin to focal contacts.The data provide evidence for an essential role of LASP-1 in tumour cell growth and migration, possibly through influencing zyxin localization. PMID:17211471

  12. CAP1 is overexpressed in human epithelial ovarian cancer and promotes cell proliferation.

    PubMed

    Hua, Minhui; Yan, Sujuan; Deng, Yan; Xi, Qinghua; Liu, Rong; Yang, Shuyun; Liu, Jian; Tang, Chunhui; Wang, Yingying; Zhong, Jianxin

    2015-04-01

    Adenylate cyclase-associated protein 1 (CAP1) regulates both actin filaments and the Ras/cAMP pathway in yeast, and has been found play a role in cell motility and in the development of certain types of cancer. In the present study, we investigated CAP1 gene expression in human epithelial ovarian cancer (EOC). Western blot analysis and immunohistochemistry were performed using EOC tissue samples and the results revealed that CAP1 expression increased with the increasing grade of EOC. In the normal ovarian tissue samples however, CAP1 expression was barely detected. Using Pearson's χ2 test, it was demonstrated that CAP1 expression was associated with the histological grade and Ki-67 expression. Kaplan-Meier analysis revealed that a higher CAP1 expression in patients with EOC was associated with a poorer prognosis. In in vitro experiments using HO-8910 EOC cells, the expression of CAP1 was knocked down using siRNA. The proliferation of the HO-8910 cells was then determined by cell cycle analysis and cell proliferation assay using the cell counting kit-8 and flow cytometry. The results revealed that the loss of CAP1 expression inhibited cell cycle progression. These findings suggest that a high expression of CAP1 is involved in the pathogenesis of EOC, and that the downregulation of CAP1 in tumor cells may be a therapeutic target for the treatment of patients with EOC.

  13. Connective tissue growth factor is overexpressed in muscles of human muscular dystrophy.

    PubMed

    Sun, Guilian; Haginoya, Kazuhiro; Wu, Yanling; Chiba, Yoko; Nakanishi, Tohru; Onuma, Akira; Sato, Yuko; Takigawa, Masaharu; Iinuma, Kazuie; Tsuchiya, Shigeru

    2008-04-15

    The detailed process of how dystrophic muscles are replaced by fibrotic tissues is unknown. In the present study, the immunolocalization and mRNA expression of connective tissue growth factor (CTGF) in muscles from normal and dystrophic human muscles were examined with the goal of elucidating the pathophysiological function of CTGF in muscular dystrophy. Biopsies of frozen muscle from patients with Duchenne muscular dystrophy (DMD), Becker muscular dystrophy, congenital muscular dystrophy, spinal muscular atrophy, congenital myopathy were analyzed using anti-CTGF polyclonal antibody. Reverse transcription-polymerase chain reaction (RT-PCR) was also performed to evaluate the expression of CTGF mRNA in dystrophic muscles. In normal muscle, neuromuscular junctions and vessels were CTGF-immunopositive, which suggests a physiological role for CTGF in these sites. In dystrophic muscle, CTGF immunoreactivity was localized to muscle fiber basal lamina, regenerating fibers, and the interstitium. Triple immunolabeling revealed that activated fibroblasts were immunopositive for CTGF and transforming growth factor-beta1 (TGF-beta1). RT-PCR analysis revealed increased levels of CTGF mRNA in the muscles of DMD patients. Co-localization of TGF-beta1 and CTGF in activated fibroblasts suggests that CTGF expression is regulated by TGF-beta1 through a paracrine/autocrine mechanism. In conclusion, TGF-beta1-CTGF pathway may play a role in the fibrosis that is commonly observed in muscular dystrophy.

  14. Antigen binding of human IgG Fabs mediate ERK-associated proliferation of human breast cancer cells.

    PubMed

    Wen, Yue-Jin; Mancino, Anne; Pashov, Anastas; Whitehead, Tracy; Stanley, Joseph; Kieber-Emmons, Thomas

    2005-02-01

    Serum-circulating antibody can be linked to poor outcomes in some cancer patients. To investigate the role of human antibodies in regulating tumor cell growth, we constructed a recombinant cDNA expression library of human IgG Fab from a patient with breast cancer. Clones were screened from the library with breast tumor cell lysate. Sequence analysis of the clones showed somatic hypermutations when compared to their closest VH/VL germ-line genes. Initial characterizations focused on five clones. All tested clones displayed stronger binding to antigen derived from primary breast cancers and established breast cancer cell lines than to normal breast tissues. In vitro functional studies showed that four out of five tested clones could stimulate the growth of MDA-MB-231 breast cancer cell lines, and one out of five was able to promote MCF-7 cell growth as well. Involvement of ERK2 pathway was observed. By 1H-NMR spectra and