Science.gov

Sample records for overexpression increases dopamine

  1. Increased impulsive behavior and risk proneness following lentivirus-mediated dopamine transporter over-expression in rats' nucleus accumbens.

    PubMed

    Adriani, W; Boyer, F; Gioiosa, L; Macrì, S; Dreyer, J-L; Laviola, G

    2009-03-03

    Multiple theories have been proposed for sensation seeking and vulnerability to impulse-control disorders [Zuckerman M, Kuhlman DM (2000) Personality and risk-taking: Common biosocial factors. J Pers 68:999-1029], and many of these rely on a dopamine system deficit. Available animal models reproduce only some behavioral symptoms and seem devoid of construct validity. We used lentivirus tools for over-expressing or silencing the dopamine transporter (DAT) and we evaluated the resulting behavioral profiles in terms of motivation and self-control. Wistar adult rats received stereotaxic inoculation of a lentivirus that allowed localized intra-accumbens delivery of a DAT gene enhancer/silencer, or the green fluorescent protein, GFP. These animals were studied for intolerance to delay, risk proneness and novelty seeking. As expected, controls shifted their demanding from a large reward toward a small one when the delivery of the former was increasingly delayed (or uncertain). Interestingly, in the absence of general locomotor effects, DAT over-expressing rats showed increased impulsivity (i.e. a more marked shift of demanding from the large/delayed toward the small/soon reward), and increased risk proneness (i.e. a less marked shift from the large/uncertain toward the small/sure reward), compared with controls. Rats with enhanced or silenced DAT expression did not show any significant preference for a novel environment. In summary, consistent with literature on comorbidity between attention-deficit/hyperactivity disorder and pathological gambling, we demonstrate that DAT over-expression in rats' nucleus accumbens leads to impulsive and risk prone phenotype. Thus, a reduced dopaminergic tone following altered accumbal DAT function may subserve a sensation-seeker phenotype and the vulnerability to impulse-control disorders.

  2. Elevated tonic extracellular dopamine concentration and altered dopamine modulation of synaptic activity precede dopamine loss in the striatum of mice overexpressing human α-synuclein.

    PubMed

    Lam, Hoa A; Wu, Nanping; Cely, Ingrid; Kelly, Rachel L; Hean, Sindalana; Richter, Franziska; Magen, Iddo; Cepeda, Carlos; Ackerson, Larry C; Walwyn, Wendy; Masliah, Eliezer; Chesselet, Marie-Françoise; Levine, Michael S; Maidment, Nigel T

    2011-07-01

    Overexpression or mutation of α-synuclein (α-Syn), a protein associated with presynaptic vesicles, causes familial forms of Parkinson's disease in humans and is also associated with sporadic forms of the disease. We used in vivo microdialysis, tissue content analysis, behavioral assessment, and whole-cell patch clamp recordings from striatal medium-sized spiny neurons (MSSNs) in slices to examine dopamine transmission and dopaminergic modulation of corticostriatal synaptic function in mice overexpressing human wild-type α-Syn under the Thy1 promoter (α-Syn mice). Tonic striatal extracellular dopamine and 3-methoxytyramine levels were elevated in α-Syn mice at 6 months of age, prior to any reduction in total striatal tissue content, and were accompanied by an increase in open-field activity. Dopamine clearance and amphetamine-induced dopamine efflux were unchanged. The frequency of MSSN spontaneous excitatory postsynaptic currents (sEPSCs) was lower in α-Syn mice. Amphetamine reduced sEPSC frequency in wild types (WTs) but produced no effect in α-Syn mice. Furthermore, whereas quinpirole reduced and sulpiride increased sEPSC frequency in WT mice, they produced the opposite effects in α-Syn mice. These observations indicate that overexpression of α-Syn alters dopamine efflux and D2 receptor modulation of corticostriatal glutamate release at a young age. At 14 months of age, the α-Syn mice presented with significantly lower striatal tissue dopamine and tyrosine hydroxylase content relative to WT littermates, accompanied by an L-DOPA-reversible sensory motor deficit. Together, these data further validate this transgenic mouse line as a slowly progressing model of Parkinson's disease and provide evidence for early dopamine synaptic dysfunction prior to loss of striatal dopamine. Copyright © 2011 Wiley-Liss, Inc.

  3. Selective Overexpression of Dopamine D3 Receptors in the Striatum Disrupts Motivation but not Cognition

    PubMed Central

    Simpson, Eleanor H.; Winiger, Vanessa; Biezonski, Dominik K.; Haq, Iram; Kandel, Eric R.; Kellendonk, Christoph

    2014-01-01

    Background Evidence indicating an increase in dopamine D2 receptor (D2R) density and occupancy in patients with schizophrenia comes from positron emission tomography studies using ligands that bind both D2Rs and dopamine D3 receptors (D3Rs), questioning the role of D3Rs in the pathophysiology of the disease. Dopamine D3 receptor positron emission tomography ligands have recently been developed and antagonists with preferential affinity for D3R versus D2R are undergoing clinical evaluation. To determine if an increase in D3Rs in the striatum could produce phenotypes relevant to schizophrenia, we generated a transgenic model of striatal D3R overexpression. Methods A bi-transgenic system was used to generate mice with increased D3Rs selectively in the striatum. Mice with overexpression of D3R were subjected to an extensive battery of behavioral tests, including several relevant to schizophrenia. Ligand binding and quantitative reverse transcription polymerase chain reaction methods were used to quantify the effect of D3R overexpression on dopamine D1 receptors (D1Rs) in the striatum. Results Mice with overexpression of D3R show no abnormalities in basic behavioral functions or cognitive tests but do display a deficit in incentive motivation. This was associated with a reduction in striatal D1R ligand binding, driven by a downregulation at the level of transcription. Both motivation and D1R expression were rescued by switching off the transgene in adulthood. Conclusions Overexpression of D3Rs in the striatum of mice does not elicit cognitive deficits but disrupts motivation, suggesting that changes in D3Rs may be involved in the negative symptoms of schizophrenia. These data imply that it will be important to evaluate the effects of D3R antagonists on motivational symptoms, which are not improved by currently available antipsychotic medications. PMID:24387821

  4. Increased expression of the dopamine transporter leads to loss of dopamine neurons, oxidative stress and l-DOPA reversible motor deficits.

    PubMed

    Masoud, S T; Vecchio, L M; Bergeron, Y; Hossain, M M; Nguyen, L T; Bermejo, M K; Kile, B; Sotnikova, T D; Siesser, W B; Gainetdinov, R R; Wightman, R M; Caron, M G; Richardson, J R; Miller, G W; Ramsey, A J; Cyr, M; Salahpour, A

    2015-02-01

    The dopamine transporter is a key protein responsible for regulating dopamine homeostasis. Its function is to transport dopamine from the extracellular space into the presynaptic neuron. Studies have suggested that accumulation of dopamine in the cytosol can trigger oxidative stress and neurotoxicity. Previously, ectopic expression of the dopamine transporter was shown to cause damage in non-dopaminergic neurons due to their inability to handle cytosolic dopamine. However, it is unknown whether increasing dopamine transporter activity will be detrimental to dopamine neurons that are inherently capable of storing and degrading dopamine. To address this issue, we characterized transgenic mice that over-express the dopamine transporter selectively in dopamine neurons. We report that dopamine transporter over-expressing (DAT-tg) mice display spontaneous loss of midbrain dopamine neurons that is accompanied by increases in oxidative stress markers, 5-S-cysteinyl-dopamine and 5-S-cysteinyl-DOPAC. In addition, metabolite-to-dopamine ratios are increased and VMAT2 protein expression is decreased in the striatum of these animals. Furthermore, DAT-tg mice also show fine motor deficits on challenging beam traversal that are reversed with l-DOPA treatment. Collectively, our findings demonstrate that even in neurons that routinely handle dopamine, increased uptake of this neurotransmitter through the dopamine transporter results in oxidative damage, neuronal loss and l-DOPA reversible motor deficits. In addition, DAT over-expressing animals are highly sensitive to MPTP-induced neurotoxicity. The effects of increased dopamine uptake in these transgenic mice could shed light on the unique vulnerability of dopamine neurons in Parkinson's disease.

  5. Increased expression of the dopamine transporter leads to loss of dopamine neurons, oxidative stress and L-DOPA reversible motor deficits

    PubMed Central

    Masoud, ST; Vecchio, LM; Bergeron, Y; Hossain, MM; Nguyen, LT; Bermejo, MK; Kile, B; Sotnikova, TD; Siesser, WB; Gainetdinov, RR; Wightman, RM; Caron, MG; Richardson, JR; Miller, GW; Ramsey, AJ; Cyr, M; Salahpour, A

    2015-01-01

    The dopamine transporter is a key protein responsible for regulating dopamine homeostasis. Its function is to transport dopamine from the extracellular space into the presynaptic neuron. Studies have suggested that accumulation of dopamine in the cytosol can trigger oxidative stress and neurotoxicity. Previously, ectopic expression of the dopamine transporter was shown to cause damage in non-dopaminergic neurons due to their inability to handle cytosolic dopamine. However, it is unknown whether increasing dopamine transporter activity will be detrimental to dopamine neurons that are inherently capable of storing and degrading dopamine. To address this issue, we characterized transgenic mice that over-express the dopamine transporter selectively in dopamine neurons. We report that dopamine transporter over-expressing (DAT-tg) mice display spontaneous loss of midbrain dopamine neurons that is accompanied by increases in oxidative stress markers, 5-S-cysteinyl-dopamine and 5-S-cysteinyl-DOPAC. In addition, metabolite-to-dopamine ratios are increased and VMAT2 protein expression is decreased in the striatum of these animals. Furthermore, DAT-tg mice also show fine motor deficits on challenging beam traversal that are reversed with L-DOPA treatment. Collectively, our findings demonstrate that even in neurons that routinely handle dopamine, increased uptake of this neurotransmitter through the dopamine transporter results in oxidative damage, neuronal loss and LDOPA reversible motor deficits. In addition, DAT over-expressing animals are highly sensitive to MPTP-induced neurotoxicity. The effects of increased dopamine uptake in these transgenic mice could shed light on the unique vulnerability of dopamine neurons in Parkinson’s disease. PMID:25447236

  6. Overexpression of parkin in rat nigrostriatal dopamine system protects against methamphetamine neurotoxicity

    PubMed Central

    Liu, Bin; Traini, Roberta; Killinger, Bryan; Schneider, Bernard; Moszczynska, Anna

    2013-01-01

    Methamphetamine (METH) is a central nervous system psychostimulant with a high potential for abuse. At high doses, METH causes a selective degeneration of dopaminergic terminals in the striatum, sparing other striatal terminals and cell bodies. We previously detected a deficit in parkin after binge METH in rat striatal synaptosomes. Parkin is an ubiquitin-protein E3 ligase capable of protecting dopamine neurons from diverse cellular insults. Whether the deficit in parkin mediates the toxicity of METH and whether parkin can protect from toxicity of the drug is unknown. The present study investigated whether overexpression of parkin attenuates degeneration of striatal dopaminergic terminals exposed to binge METH. Parkin overexpression in rat nigrostriatal dopamine system was achieved by microinjection of adeno-associated viral transfer vector 2/6 encoding rat parkin (AAV2/6-parkin) into the substantia nigra pars compacta. The microinjections of AAV2/6-parkin dose-dependently increased parkin levels in both the substantia nigra pars compacta and striatum. The levels of dopamine synthesizing enzyme, tyrosine hydroxylase, remained at the control levels; therefore, tyrosine hydroxylase immunoreactivity was used as an index of dopaminergic terminal integrity. In METH-exposed rats, the increase in parkin levels attenuated METH-induced decreases in striatal tyrosine hydroxylase immunoreactivity in a dose-dependent manner, indicating that parkin can protect striatal dopaminergic terminals against METH neurotoxicity. PMID:23313192

  7. Overexpression of parkin in the rat nigrostriatal dopamine system protects against methamphetamine neurotoxicity.

    PubMed

    Liu, Bin; Traini, Roberta; Killinger, Bryan; Schneider, Bernard; Moszczynska, Anna

    2013-09-01

    Methamphetamine (METH) is a central nervous system psychostimulant with a high potential for abuse. At high doses, METH causes a selective degeneration of dopaminergic terminals in the striatum, sparing other striatal terminals and cell bodies. We previously detected a deficit in parkin after binge METH in rat striatal synaptosomes. Parkin is an ubiquitin-protein E3 ligase capable of protecting dopamine neurons from diverse cellular insults. Whether the deficit in parkin mediates the toxicity of METH and whether parkin can protect from toxicity of the drug is unknown. The present study investigated whether overexpression of parkin attenuates degeneration of striatal dopaminergic terminals exposed to binge METH. Parkin overexpression in rat nigrostriatal dopamine system was achieved by microinjection of adeno-associated viral transfer vector 2/6 encoding rat parkin (AAV2/6-parkin) into the substantia nigra pars compacta. The microinjections of AAV2/6-parkin dose-dependently increased parkin levels in both the substantia nigra pars compacta and striatum. The levels of dopamine synthesizing enzyme, tyrosine hydroxylase, remained at the control levels; therefore, tyrosine hydroxylase immunoreactivity was used as an index of dopaminergic terminal integrity. In METH-exposed rats, the increase in parkin levels attenuated METH-induced decreases in striatal tyrosine hydroxylase immunoreactivity in a dose-dependent manner, indicating that parkin can protect striatal dopaminergic terminals against METH neurotoxicity. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Overexpression of the dopamine D3 receptor in the rat dorsal striatum induces dyskinetic behaviors.

    PubMed

    Cote, Samantha R; Chitravanshi, Vineet C; Bleickardt, Carina; Sapru, Hreday N; Kuzhikandathil, Eldo V

    2014-04-15

    L-DOPA-induced dyskinesias (LID) are motor side effects associated with treatment of Parkinson's disease (PD). The etiology of LID is not clear; however, studies have shown that the dopamine D3 receptor is upregulated in the basal ganglia of mice, rats and non-human primate models of LID. It is not known if the upregulation of D3 receptor is a cause or result of LID. In this paper we tested the hypothesis that overexpression of the dopamine D3 receptor in dorsal striatum, in the absence of dopamine depletion, will elicit LID. Replication-deficient recombinant adeno-associated virus-2 expressing the D3 receptor or enhanced green fluorescent protein (EGFP) were stereotaxically injected, unilaterally, into the dorsal striatum of adult rats. Post-hoc immunohistochemical analysis revealed that ectopic expression of the D3 receptor was limited to neurons near the injection sites in the dorsal striatum. Following a 3-week recovery period, rats were administered saline, 6 mg/kg L-DOPA, 0.1 mg/kg PD128907 or 10 mg/kg ES609, i.p., and motor behaviors scored. Rats overexpressing the D3 receptor specifically exhibited contralateral axial abnormal involuntary movements (AIMs) following administration of L-DOPA and PD128907 but not saline or the novel agonist ES609. Daily injection of 6 mg/kg L-DOPA to the rats overexpressing the D3 receptor also caused increased vacuous chewing behavior. These results suggest that overexpression of the D3 receptor in the dorsal striatum results in the acute expression of agonist-induced axial AIMs and chronic L-DOPA-induced vacuous chewing behavior. Agonists such as ES609 might provide a novel therapeutic approach to treat dyskinesia. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Increased brain dopamine and dopamine receptors in schizophrenia

    SciTech Connect

    Mackay, A.V.; Iversen, L.L.; Rossor, M.; Spokes, E.; Bird, E.; Arregui, A.; Creese, I.; Synder, S.H.

    1982-09-01

    In postmortem samples of caudate nucleus and nucleus accumbens from 48 schizophrenic patients, there were significant increases in both the maximum number of binding sites (Bmax) and the apparent dissociation constant (KD) for tritiated spiperone. The increase in apparent KD probably reflects the presence of residual neuroleptic drugs, but changes in Bmax for tritiated spiperone reflect genuine changes in receptor numbers. The increases in receptors were seen only in patients in whom neuroleptic medication had been maintained until the time of death, indicating that they may be entirely iatrogenic. Dopamine measurements for a larger series of schizophrenic and control cases (n greater than 60) show significantly increased concentrations in both the nucleus accumbens and caudate nucleus. The changes in dopamine were not obviously related to neuroleptic medication and, unlike the receptor changes, were most severe in younger patients.

  10. Increased vesicular monoamine transporter enhances dopamine release and opposes Parkinson disease-related neurodegeneration in vivo.

    PubMed

    Lohr, Kelly M; Bernstein, Alison I; Stout, Kristen A; Dunn, Amy R; Lazo, Carlos R; Alter, Shawn P; Wang, Minzheng; Li, Yingjie; Fan, Xueliang; Hess, Ellen J; Yi, Hong; Vecchio, Laura M; Goldstein, David S; Guillot, Thomas S; Salahpour, Ali; Miller, Gary W

    2014-07-08

    Disruption of neurotransmitter vesicle dynamics (transport, capacity, release) has been implicated in a variety of neurodegenerative and neuropsychiatric conditions. Here, we report a novel mouse model of enhanced vesicular function via bacterial artificial chromosome (BAC)-mediated overexpression of the vesicular monoamine transporter 2 (VMAT2; Slc18a2). A twofold increase in vesicular transport enhances the vesicular capacity for dopamine (56%), dopamine vesicle volume (33%), and basal tissue dopamine levels (21%) in the mouse striatum. The elevated vesicular capacity leads to an increase in stimulated dopamine release (84%) and extracellular dopamine levels (44%). VMAT2-overexpressing mice show improved outcomes on anxiety and depressive-like behaviors and increased basal locomotor activity (41%). Finally, these mice exhibit significant protection from neurotoxic insult by the dopaminergic toxicant 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), as measured by reduced dopamine terminal damage and substantia nigra pars compacta cell loss. The increased release of dopamine and neuroprotection from MPTP toxicity in the VMAT2-overexpressing mice suggest that interventions aimed at enhancing vesicular capacity may be of therapeutic benefit in Parkinson disease.

  11. Increased vesicular monoamine transporter enhances dopamine release and opposes Parkinson disease-related neurodegeneration in vivo

    PubMed Central

    Lohr, Kelly M.; Bernstein, Alison I.; Stout, Kristen A.; Dunn, Amy R.; Lazo, Carlos R.; Alter, Shawn P.; Wang, Minzheng; Li, Yingjie; Fan, Xueliang; Hess, Ellen J.; Yi, Hong; Vecchio, Laura M.; Goldstein, David S.; Guillot, Thomas S.; Salahpour, Ali; Miller, Gary W.

    2014-01-01

    Disruption of neurotransmitter vesicle dynamics (transport, capacity, release) has been implicated in a variety of neurodegenerative and neuropsychiatric conditions. Here, we report a novel mouse model of enhanced vesicular function via bacterial artificial chromosome (BAC)-mediated overexpression of the vesicular monoamine transporter 2 (VMAT2; Slc18a2). A twofold increase in vesicular transport enhances the vesicular capacity for dopamine (56%), dopamine vesicle volume (33%), and basal tissue dopamine levels (21%) in the mouse striatum. The elevated vesicular capacity leads to an increase in stimulated dopamine release (84%) and extracellular dopamine levels (44%). VMAT2-overexpressing mice show improved outcomes on anxiety and depressive-like behaviors and increased basal locomotor activity (41%). Finally, these mice exhibit significant protection from neurotoxic insult by the dopaminergic toxicant 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), as measured by reduced dopamine terminal damage and substantia nigra pars compacta cell loss. The increased release of dopamine and neuroprotection from MPTP toxicity in the VMAT2-overexpressing mice suggest that interventions aimed at enhancing vesicular capacity may be of therapeutic benefit in Parkinson disease. PMID:24979780

  12. Rats overexpressing the dopamine transporter display behavioral and neurobiological abnormalities with relevance to repetitive disorders

    PubMed Central

    Hadar, Ravit; Edemann-Callesen, Henriette; Reinel, Claudia; Wieske, Franziska; Voget, Mareike; Popova, Elena; Sohr, Reinhard; Avchalumov, Yosef; Priller, Josef; van Riesen, Christoph; Puls, Imke; Bader, Michael; Winter, Christine

    2016-01-01

    The dopamine transporter (DAT) plays a pivotal role in maintaining optimal dopamine signaling. DAT-overactivity has been linked to various neuropsychiatric disorders yet so far the direct pathological consequences of it has not been fully assessed. We here generated a transgenic rat model that via pronuclear microinjection overexpresses the DAT gene. Our results demonstrate that DAT-overexpression induces multiple neurobiological effects that exceeded the expected alterations in the corticostriatal dopamine system. Furthermore, transgenic rats specifically exhibited behavioral and pharmaco-therapeutic profiles phenotypic of repetitive disorders. Together our findings suggest that the DAT rat model will constitute a valuable tool for further investigations into the pathological influence of DAT overexpression on neural systems relevant to neuropsychiatric disorders. PMID:27974817

  13. Dysregulated dopamine storage increases the vulnerability to α-synuclein in nigral neurons.

    PubMed

    Ulusoy, Ayse; Björklund, Tomas; Buck, Kerstin; Kirik, Deniz

    2012-09-01

    Impairments in the capacity of dopaminergic neurons to handle cytoplasmic dopamine may be a critical factor underlying the selective vulnerability of midbrain dopamine neurons in Parkinson's disease. Furthermore, toxicity of α-synuclein in dopaminergic neurons has been suggested to be mediated by direct interaction between dopamine and α-synuclein through formation of abnormal α-synuclein species, although direct in vivo evidence to support this hypothesis is lacking. Here, we investigated the role of dopamine availability on α-synuclein mediated neurodegeneration in vivo. We found that overexpression of α-synuclein in nigral dopamine neurons in mice with deficient vesicular storage of dopamine led to a significant increase in dopaminergic neurodegeneration. Importantly, silencing the tyrosine hydroxylase enzyme - thereby reducing dopamine content in the nigral neurons - reversed the increased vulnerability back to the baseline level observed in wild-type littermates, but failed to eliminate it completely. Importantly, TH knockdown was not effective in altering the toxicity in the wild-type animals. Taken together, our data suggest that under normal circumstances, in healthy dopamine neurons, cytoplasmic dopamine is tightly controlled such that it does not contribute significantly to α-synuclein mediated toxicity. Dysregulation of the dopamine machinery in the substantia nigra, on the other hand, could act as a trigger for induction of increased toxicity in these neurons and could explain how these neurons become more vulnerable and die in the disease process.

  14. Dopamine D2 receptor over-expression alters behavior and physiology in Drd2-EGFP mice

    PubMed Central

    Kramer, Paul F.; Christensen, Christine H.; Hazelwood, Lisa A.; Dobi, Alice; Bock, Roland; Sibley, David R.; Mateo, Yolanda; Alvarez, Veronica A.

    2011-01-01

    BAC transgenic mice expressing the fluorescent reporter protein EGFP under the control of the D1 and D2 dopamine receptor promoters (Drd1-EGFP and Drd2-EGFP) have been widely used to study striatal function and have contributed to our understanding of the physiological and pathological function of the basal ganglia. These tools were produced and promptly made available to address questions in a cell-specific manner that has transformed the way we frame hypotheses in neuroscience. However, these mice have not been fully characterized until now. We found that Drd2-EGFP mice display a ~40% increase in membrane expression of the dopamine D2 receptor (D2R) and a two-fold increase in D2R mRNA levels in the striatum when compared to wild-type and Drd1-EGFP mice D2R over-expression was accompanied by behavioral hypersensitivity to D2R-like agonists, as well as enhanced electrophysiological responses to D2R activation in midbrain dopaminergic neurons. DA transients evoked by stimulation in the nucleus accumbens showed slower clearance in Drd2-EGFP mice and cocaine actions on DA clearance were impaired in these mice. Thus, it was not surprising to find that Drd2-EGFP mice were hyperactive when exposed to a novel environment and locomotion was suppressed by acute cocaine administration. All together, this study demonstrates that Drd2-EGFP mice over-express D2R and have altered dopaminergic signaling that fundamentally differentiates them from wild-type and Drd1-EGFP mice. PMID:21209197

  15. A transgenic mouse model of neuroepithelial cell specific inducible overexpression of dopamine D1-receptor

    PubMed Central

    Fujimoto, Kumiko; Araki, Kiyomi; McCarthy, Deirdre M.; Sims, John R.; Ren, Jia-Qian; Zhang, Xuan; Bhide, Pradeep G.

    2010-01-01

    Dopamine and its receptors appear in the brain during early embryonic period suggesting a role for dopamine in brain development. In fact, dopamine receptor imbalance resulting from impaired physiological balance between D1- and D2-receptor activities can perturb brain development and lead to persisting changes in brain structure and function. Dopamine receptor imbalance can be produced experimentally using pharmacological or genetic methods. Pharmacological methods tend to activate or antagonize the receptors in all cell types. In the traditional gene knockout models the receptor imbalance occurs during development and also at maturity. Therefore, assaying the effects of dopamine imbalance on specific cell types (e.g. precursor versus postmitotic cells) or at specific periods of brain development (e.g. pre- or postnatal periods) is not feasible in these models. We describe a novel transgenic mouse model based on the tetracycline dependent inducible gene expression system in which dopamine D1-receptor transgene expression is induced selectively in neuroepithelial cells of the embryonic brain at experimenter-chosen intervals of brain development. In this model, doxycycline-induced expression of the transgene causes significant overexpression of the D1-receptor and significant reductions in the incorporation of the S-phase marker bromodeoxyuridine into neuroepithelial cells of the basal and dorsal telencephalon indicating marked effects on telencephalic neurogenesis. The D1-receptor overexpression occurs at higher levels in the medial ganglionic eminence than the lateral ganglionic eminence or cerebral wall. Moreover, although the transgene is induced selectively in the neuroepithelium, D1-receptor protein overexpression appears to persist in postmitotic cells. The mouse model can be modified for neuroepithelial cell-specific inducible expression of other transgenes or induction of the D1-receptor transgene in other cells in specific brain regions by crossbreeding

  16. Dopamine Receptor Activation Increases HIV Entry into Primary Human Macrophages

    PubMed Central

    Gaskill, Peter J.; Yano, Hideaki H.; Kalpana, Ganjam V.; Javitch, Jonathan A.; Berman, Joan W.

    2014-01-01

    Macrophages are the primary cell type infected with HIV in the central nervous system, and infection of these cells is a major component in the development of neuropathogenesis and HIV-associated neurocognitive disorders. Within the brains of drug abusers, macrophages are exposed to increased levels of dopamine, a neurotransmitter that mediates the addictive and reinforcing effects of drugs of abuse such as cocaine and methamphetamine. In this study we examined the effects of dopamine on HIV entry into primary human macrophages. Exposure to dopamine during infection increased the entry of R5 tropic HIV into macrophages, irrespective of the concentration of the viral inoculum. The entry pathway affected was CCR5 dependent, as antagonizing CCR5 with the small molecule inhibitor TAK779 completely blocked entry. The effect was dose-dependent and had a steep threshold, only occurring above 108 M dopamine. The dopamine-mediated increase in entry required dopamine receptor activation, as it was abrogated by the pan-dopamine receptor antagonist flupenthixol, and could be mediated through both subtypes of dopamine receptors. These findings indicate that the effects of dopamine on macrophages may have a significant impact on HIV pathogenesis. They also suggest that drug-induced increases in CNS dopamine may be a common mechanism by which drugs of abuse with distinct modes of action exacerbate neuroinflammation and contribute to HIV-associated neurocognitive disorders in infected drug abusers. PMID:25268786

  17. Neuronal Depolarization Drives Increased Dopamine Synaptic Vesicle Loading via VGLUT.

    PubMed

    Aguilar, Jenny I; Dunn, Matthew; Mingote, Susana; Karam, Caline S; Farino, Zachary J; Sonders, Mark S; Choi, Se Joon; Grygoruk, Anna; Zhang, Yuchao; Cela, Carolina; Choi, Ben Jiwon; Flores, Jorge; Freyberg, Robin J; McCabe, Brian D; Mosharov, Eugene V; Krantz, David E; Javitch, Jonathan A; Sulzer, David; Sames, Dalibor; Rayport, Stephen; Freyberg, Zachary

    2017-08-30

    The ability of presynaptic dopamine terminals to tune neurotransmitter release to meet the demands of neuronal activity is critical to neurotransmission. Although vesicle content has been assumed to be static, in vitro data increasingly suggest that cell activity modulates vesicle content. Here, we use a coordinated genetic, pharmacological, and imaging approach in Drosophila to study the presynaptic machinery responsible for these vesicular processes in vivo. We show that cell depolarization increases synaptic vesicle dopamine content prior to release via vesicular hyperacidification. This depolarization-induced hyperacidification is mediated by the vesicular glutamate transporter (VGLUT). Remarkably, both depolarization-induced dopamine vesicle hyperacidification and its dependence on VGLUT2 are seen in ventral midbrain dopamine neurons in the mouse. Together, these data suggest that in response to depolarization, dopamine vesicles utilize a cascade of vesicular transporters to dynamically increase the vesicular pH gradient, thereby increasing dopamine vesicle content. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. LRRK2 overexpression alters glutamatergic presynaptic plasticity, striatal dopamine tone, postsynaptic signal transduction, motor activity and memory.

    PubMed

    Beccano-Kelly, Dayne A; Volta, Mattia; Munsie, Lise N; Paschall, Sarah A; Tatarnikov, Igor; Co, Kimberley; Chou, Patrick; Cao, Li-Ping; Bergeron, Sabrina; Mitchell, Emma; Han, Heather; Melrose, Heather L; Tapia, Lucia; Raymond, Lynn A; Farrer, Matthew J; Milnerwood, Austen J

    2015-03-01

    Mutations in leucine-rich repeat kinase 2 (Lrrk2) are the most common genetic cause of Parkinson's disease (PD), a neurodegenerative disorder affecting 1-2% of those >65 years old. The neurophysiology of LRRK2 remains largely elusive, although protein loss suggests a role in glutamatergic synapse transmission and overexpression studies show altered dopamine release in aged mice. We show that glutamate transmission is unaltered onto striatal projection neurons (SPNs) of adult LRRK2 knockout mice and that adult animals exhibit no detectable cognitive or motor deficits. Basal synaptic transmission is also unaltered in SPNs of LRRK2 overexpressing mice, but they do exhibit clear alterations to D2-receptor-mediated short-term synaptic plasticity, behavioral hypoactivity and impaired recognition memory. These phenomena are associated with decreased striatal dopamine tone and abnormal dopamine- and cAMP-regulated phosphoprotein 32 kDa signal integration. The data suggest that LRRK2 acts at the nexus of dopamine and glutamate signaling in the adult striatum, where it regulates dopamine levels, presynaptic glutamate release via D2-dependent synaptic plasticity and dopamine-receptor signal transduction.

  19. A Physical Interaction between the Dopamine Transporter and DJ-1 Facilitates Increased Dopamine Reuptake.

    PubMed

    Luk, Beryl; Mohammed, Mohinuddin; Liu, Fang; Lee, Frank J S

    2015-01-01

    The regulation of the dopamine transporter (DAT) impacts extracellular dopamine levels after release from dopaminergic neurons. Furthermore, a variety of protein partners have been identified that can interact with and modulate DAT function. In this study we show that DJ-1 can potentially modulate DAT function. Co-expression of DAT and DJ-1 in HEK-293T cells leads to an increase in [3H] dopamine uptake that does not appear to be mediated by increased total DAT expression but rather through an increase in DAT cell surface localization. In addition, through a series of GST affinity purifications and co-immunoprecipitations, we provide evidence that the DAT can be found in a complex with DJ-1, which involve distinct regions within both DAT and DJ-1. Using in vitro binding experiments we also show that this complex can be formed in part by a direct interaction between DAT and DJ-1. Co-expression of a mini-gene that can disrupt the DAT/DJ-1 complex appears to block the increase in [3H] dopamine uptake by DJ-1. Mutations in DJ-1 have been linked to familial forms of Parkinson's disease, yet the normal physiological function of DJ-1 remains unclear. Our study suggests that DJ-1 may also play a role in regulating dopamine levels by modifying DAT activity.

  20. A Physical Interaction between the Dopamine Transporter and DJ-1 Facilitates Increased Dopamine Reuptake

    PubMed Central

    Luk, Beryl; Mohammed, Mohinuddin; Liu, Fang; Lee, Frank J. S.

    2015-01-01

    The regulation of the dopamine transporter (DAT) impacts extracellular dopamine levels after release from dopaminergic neurons. Furthermore, a variety of protein partners have been identified that can interact with and modulate DAT function. In this study we show that DJ-1 can potentially modulate DAT function. Co-expression of DAT and DJ-1 in HEK-293T cells leads to an increase in [3H] dopamine uptake that does not appear to be mediated by increased total DAT expression but rather through an increase in DAT cell surface localization. In addition, through a series of GST affinity purifications and co-immunoprecipitations, we provide evidence that the DAT can be found in a complex with DJ-1, which involve distinct regions within both DAT and DJ-1. Using in vitro binding experiments we also show that this complex can be formed in part by a direct interaction between DAT and DJ-1. Co-expression of a mini-gene that can disrupt the DAT/DJ-1 complex appears to block the increase in [3H] dopamine uptake by DJ-1. Mutations in DJ-1 have been linked to familial forms of Parkinson’s disease, yet the normal physiological function of DJ-1 remains unclear. Our study suggests that DJ-1 may also play a role in regulating dopamine levels by modifying DAT activity. PMID:26305376

  1. Overexpression of GRK6 rescues L-DOPA-induced signaling abnormalities in the dopamine-depleted striatum of hemiparkinsonian rats.

    PubMed

    Ahmed, M Rafiuddin; Bychkov, Evgeny; Kook, Seunghyi; Zurkovsky, Lilia; Dalby, Kevin N; Gurevich, Eugenia V

    2015-04-01

    l-DOPA therapy in Parkinson's disease often results in side effects such as l-DOPA-induced dyskinesia (LID). Our previous studies demonstrated that defective desensitization of dopamine receptors caused by decreased expression of G protein-coupled receptor kinases (GRKs) plays a role. Overexpression of GRK6, the isoform regulating dopamine receptors, in parkinsonian rats and monkeys alleviated LID and reduced LID-associated changes in gene expression. Here we show that 2-fold lentivirus-mediated overexpression of GRK6 in the dopamine-depleted striatum in rats unilaterally lesioned with 6-hydroxydopamine ameliorated supersensitive ERK response to l-DOPA challenge caused by loss of dopamine. A somewhat stronger effect of GRK6 was observed in drug-naïve than in chronically l-DOPA-treated animals. GRK6 reduced the responsiveness of p38 MAP kinase to l-DOPA challenge rendered supersensitive by dopamine depletion. The JNK MAP kinase was unaffected by loss of dopamine, chronic or acute l-DOPA, or GRK6. Overexpressed GRK6 suppressed enhanced activity of Akt in the lesioned striatum by reducing elevated phosphorylation at its major activating residue Thr(308). Finally, GRK6 reduced accumulation of ΔFosB in the lesioned striatum, the effect that paralleled a decrease in locomotor sensitization to l-DOPA in GRK6-expressing rats. The results suggest that elevated GRK6 facilitate desensitization of DA receptors, thereby normalizing of the activity of multiple signaling pathways implicated in LID. Thus, improving the regulation of dopamine receptor function via the desensitization mechanism could be an effective way of managing LID.

  2. Methylphenidate amplifies the potency and reinforcing effects of amphetamines by increasing dopamine transporter expression.

    PubMed

    Calipari, Erin S; Ferris, Mark J; Salahpour, Ali; Caron, Marc G; Jones, Sara R

    2013-01-01

    Methylphenidate (MPH) is commonly diverted for recreational use, but the neurobiological consequences of exposure to MPH at high, abused doses are not well defined. Here we show that MPH self-administration in rats increases dopamine transporter (DAT) levels and enhances the potency of MPH and amphetamine on dopamine responses and drug-seeking behaviours, without altering cocaine effects. Genetic overexpression of the DAT in mice mimics these effects, confirming that MPH self-administration-induced increases in DAT levels are sufficient to induce the changes. Further, this work outlines a basic mechanism by which increases in DAT levels, regardless of how they occur, are capable of increasing the rewarding and reinforcing effects of select psychostimulant drugs, and suggests that individuals with elevated DAT levels, such as ADHD sufferers, may be more susceptible to the addictive effects of amphetamine-like drugs.

  3. Increasing dopamine D2 receptor expression in the adult nucleus accumbens enhances motivation

    PubMed Central

    Trifilieff, Pierre; Feng, Bo; Urizar, Eneko; Winiger, Vanessa; Ward, Ryan D.; Taylor, Kathleen M.; Martinez, Diana M.; Moore, Holly; Balsam, Peter D.; Simpson, Eleanor H.; Javitch, Jonathan A.

    2014-01-01

    A decrease in dopamine D2 receptor (D2R) binding in the striatum is one of the most common findings in disorders that involve a dysregulation of motivation, including obesity, addiction, and attention deficit hyperactivity disorder. Since disruption of D2R signaling in the ventral striatum – including the Nucleus Accumbens (NAc) - impairs motivation, we sought to determine whether potentiating postsynaptic D2R-dependent signaling in the NAc would improve motivation. In this study, we used a viral vector strategy to overexpress postsynaptic D2Rs in either the NAc or the dorsal striatum. We investigated the effects of D2R overexpression on instrumental learning, willingness to work, use of reward value representations and modulation of motivation by reward associated cues. Overexpression of postsynaptic D2R in the NAc selectively increased motivation without altering consummatory behavior, the representation of the value of the reinforcer, or the capacity to use reward associated cues in flexible ways. In contrast, D2R overexpression in the dorsal striatum did not alter performance on any of the tasks. Thus, consistent with numerous studies showing that reduced D2R signaling impairs motivated behavior, our data show that post-synaptic D2R overexpression in the NAc specifically increases an animal’s willingness to expend effort to obtain a goal. Taken together, these results provide insight into the potential impact of future therapeutic strategies that enhance D2R signaling in the NAc. PMID:23711983

  4. The neurotropic parasite Toxoplasma gondii increases dopamine metabolism

    USDA-ARS?s Scientific Manuscript database

    The common parasite Toxoplasma gondii induces behavioral alterations in its hosts including phenotypes increasing the likelihood of its transmission in rodents and reports of psychobehavioral alterations in humans. We have found that elevated levels of dopamine are associated with the encysted stage...

  5. Over-expression of dopamine D2 receptor and inwardly rectifying potassium channel genes in drug-naive schizophrenic peripheral blood lymphocytes as potential diagnostic markers.

    PubMed

    Zvara, Agnes; Szekeres, György; Janka, Zoltán; Kelemen, János Z; Cimmer, Csongor; Sántha, Miklós; Puskás, László G

    2005-01-01

    Schizophrenia is one of the most common neuropsychiatric disorders affecting nearly 1% of the human population. Current diagnosis of schizophrenia is based on complex clinical symptoms. The use of easily detectable peripheral molecular markers could substantially help the diagnosis of psychiatric disorders. Recent studies showed that peripheral blood lymphocytes (PBL) express subtypes of D1 and D2 subclasses of dopamine receptors. Recently, dopamine receptor D3 (DRD3) was found to be over-expressed in schizophrenic PBL and proposed to be a diagnostic and follow-up marker for schizophrenia. In this study we screened PBL of 13 drug-naive/drug-free schizophrenic patients to identify additional markers of schizophrenia. One of the benefits of our study is the use of blood samples of non-medicated, drug-naive patients. This excludes the possibility that changes detected in gene expression levels might be attributed to the medication rather than to the disorder itself. Among others, genes for dopamine receptor D2 (DRD2) and the inwardly rectifying potassium channel (Kir2.3) were found to be over-expressed in microarray analysis. Increased mRNA levels were confirmed by quantitative real-time PCR (QRT-PCR) using the SybrGreen method and dual labeled TaqMan probes. The use of both molecular markers allows a more rapid and precise prediction of schizophrenia and might help find the optimal medication for schizophrenic patients.

  6. Dopamine Increases a Value-Independent Gambling Propensity

    PubMed Central

    Rigoli, Francesco; Rutledge, Robb B; Chew, Benjamin; Ousdal, Olga T; Dayan, Peter; Dolan, Raymond J

    2016-01-01

    Although the impact of dopamine on reward learning is well documented, its influence on other aspects of behavior remains the subject of much ongoing work. Dopaminergic drugs are known to increase risk-taking behavior, but the underlying mechanisms for this effect are not clear. We probed dopamine's role by examining the effect of its precursor L-DOPA on the choices of healthy human participants in an experimental paradigm that allowed particular components of risk to be distinguished. We show that choice behavior depended on a baseline (ie, value-independent) gambling propensity, a gambling preference scaling with the amount/variance, and a value normalization factor. Boosting dopamine levels specifically increased just the value-independent baseline gambling propensity, leaving the other components unaffected. Our results indicate that the influence of dopamine on choice behavior involves a specific modulation of the attractiveness of risky options—a finding with implications for understanding a range of reward-related psychopathologies including addiction. PMID:27149935

  7. Hypothyroidism leads to increased dopamine receptor sensitivity and concentration

    SciTech Connect

    Crocker, A.D.; Overstreet, D.H.; Crocker, J.M.

    1986-06-01

    Rats treated with iodine-131 were confirmed to be hypothyroid by their reduced baseline core body temperatures, reduced serum thyroxine concentrations and elevated serum thyroid stimulating hormone concentrations. When hypothyroid rats were compared to euthyroid controls they were more sensitive to the effects of apomorphine (1.0 mumol/kg) on stereotypy, operant responding and body temperature and showed a smaller reduction in locomotor activity after injection of haloperidol (0.25 mumol/kg). Receptor binding studies on striatal homogenates indicated that hypothyroid rats had increased concentrations of D2 dopamine receptors but there was no change in the affinity. It is concluded that hypothyroidism increases dopamine receptor sensitivity by increasing receptor concentration.

  8. β-phenylethylamine Requires the Dopamine Transporter to Increase Extracellular Dopamine in C. elegans Dopaminergic Neurons

    PubMed Central

    Hossain, Murad; Wickramasekara, Rochelle N.; Carvelli, Lucia

    2013-01-01

    β-phenylethylamine (βPEA) is an endogenous amine that has been shown to increase the synaptic levels of dopamine (DA). A number of in vitro and behavioral studies suggest the dopamine transporter (DAT) plays a role in the effects generated by βPEA, however the mechanism through which βPEA affects DAT has not yet been elucidated. Here, we used Caenorhabditis (C.) elegans DAT (DAT-1) expressing LLC-pk1 cells and neuronal cultures to investigate whether the βPEA-induced increase of extracellular DA required DAT-1. Our data show that βPEA increases extracellular dopamine both in DAT-1 transfected cells and cultures of differentiated neurons. RTI-55, a cocaine homologue and DAT inhibitor, completely blocked the βPEA-induced effect in transfected cells. However in neuronal cultures, RTI-55 only partly inhibited the increase of extracellular DA generated by βPEA. These results suggest that βPEA requires DAT-1 and other, not yet identified proteins, to increase extracellular DA when tested in a native system. Furthermore, our results suggest that βPEA-induced increase of extracellular DA does not require functional monoamine vesicles as genetic ablation of the C. elegans homologue vesicular monoamine transporter, cat-1, did not compromise the ability of βPEA to increase extracellular DA. Finally, our electrophysiology data show that βPEA caused fast-rising and self-inactivating amperometric currents in a subset of wild-type DA neurons but not in neurons isolated from dat-1 knockout animals. Taken together, these data demonstrate that in both DA neurons and heterogeneous cultures of differentiated C. elegans neurons, βPEA releases cytoplasmic DA through DAT-1 to ultimately increase the extracellular concentration of DA. PMID:24161617

  9. β-Phenylethylamine requires the dopamine transporter to increase extracellular dopamine in Caenorhabditis elegans dopaminergic neurons.

    PubMed

    Hossain, Murad; Wickramasekara, Rochelle N; Carvelli, Lucia

    2014-07-01

    β-Phenylethylamine (βPEA) is an endogenous amine that has been shown to increase the synaptic levels of dopamine (DA). A number of in vitro and behavioral studies suggest the dopamine transporter (DAT) plays a role in the effects generated by βPEA, however the mechanism through which βPEA affects DAT has not yet been elucidated. Here, we used Caenorhabditis (C.) elegans DAT (DAT-1) expressing LLC-pk1 cells and neuronal cultures to investigate whether the βPEA-induced increase of extracellular DA required DAT-1. Our data show that βPEA increases extracellular dopamine both in DAT-1 transfected cells and cultures of differentiated neurons. RTI-55, a cocaine homologue and DAT inhibitor, completely blocked the βPEA-induced effect in transfected cells. However in neuronal cultures, RTI-55 only partly inhibited the increase of extracellular DA generated by βPEA. These results suggest that βPEA requires DAT-1 and other, not yet identified proteins, to increase extracellular DA when tested in a native system. Furthermore, our results suggest that βPEA-induced increase of extracellular DA does not require functional monoamine vesicles as genetic ablation of the C. elegans homologue vesicular monoamine transporter, cat-1, did not compromise the ability of βPEA to increase extracellular DA. Finally, our electrophysiology data show that βPEA caused fast-rising and self-inactivating amperometric currents in a subset of wild-type DA neurons but not in neurons isolated from dat-1 knockout animals. Taken together, these data demonstrate that in both DA neurons and heterogeneous cultures of differentiated C. elegans neurons, βPEA releases cytoplasmic DA through DAT-1 to ultimately increase the extracellular concentration of DA. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Overexpression of follistatin in trout stimulates increased muscling.

    PubMed

    Medeiros, Erika F; Phelps, Michael P; Fuentes, Fernando D; Bradley, Terence M

    2009-07-01

    Deletion or inhibition of myostatin in mammals has been demonstrated to markedly increase muscle mass by hyperplasia, hypertrophy, or a combination of both. Despite a remarkably high degree of conservation with the mammalian protein, the function of myostatin remains unknown in fish, many species of which continue muscle growth throughout the lifecycle by hyperplasia. Transgenic rainbow trout (Oncorhynchus mykiss) overexpressing follistatin, one of the more efficacious antagonists of myostatin, were produced to investigate the effect of this protein on muscle development and growth. P(1) transgenics overexpressing follistatin in muscle tissue exhibited increased epaxial and hypaxial muscling similar to that observed in double-muscled cattle and myostatin null mice. The hypaxial muscling generated a phenotype reminiscent of well-developed rectus abdominus and intercostal muscles in humans and was dubbed "six pack." Body conformation of the transgenic animals was markedly altered, as measured by condition factor, and total muscle surface area increased. The increased muscling was due almost exclusively to hyperplasia as evidenced by a higher number of fibers per unit area and increases in the percentage of smaller fibers and the number of total fibers. In several individuals, asymmetrical muscling was observed, but no changes in mobility or behavior of follistatin fish were observed. The findings indicate that overexpression of follistatin in trout, a species with indeterminate growth rate, enhances muscle growth. It remains to be determined whether the double muscling in trout is due to inhibition of myostatin, other growth factors, or both.

  11. Endogenous dopamine increases extracellular concentrations of glutamate and GABA in striatum of the freely moving rat: involvement of D1 and D2 dopamine receptors.

    PubMed

    Expósito, I; Del Arco, A; Segovia, G; Mora, F

    1999-07-01

    Interactions between endogenous dopamine, glutamate, GABA, and taurine were investigated in striatum of the freely moving rat by using microdialysis. Intrastriatal infusions of the selective dopamine uptake inhibitor nomifensine (NMF) were used to increase the endogenous extracellular dopamine. NMF produced a dose-related increase in extracellular dopamine and also increased extracellular concentrations of glutamate, GABA, and taurine. Extracellular increases of dopamine were significantly correlated with extracellular increases of glutamate and GABA, but not taurine. To investigate whether the increased extracellular dopamine produced by NMF was responsible for the concomitant increase of glutamate and GABA, D1, and D2 receptor antagonists were used. Dopamine receptor antagonists D1 (SCH23390) and D2 (sulpiride) significantly attenuated the increases of glutamate and GABA produced by NMF. These data suggest that endogenous dopamine, through both D1 and D2 dopamine receptors, plays a role in releasing glutamate and GABA in striatum of the freely moving rat.

  12. PACSIN3 Overexpression Increases Adipocyte Glucose Transport through GLUT1

    PubMed Central

    Roach, William; Plomann, Markus

    2007-01-01

    PACSIN family members regulate intracellular vesicle trafficking via their ability to regulate cytoskeletal rearrangement. These processes are known to be involved in trafficking of GLUT1 and GLUT4 in adipocytes. In this study PACSIN3 was observed to be the only PACSIN isoform that increases in expression during 3T3-L1 adipocyte differentiation. Overexpression of PACSIN3 in 3T3-L1 adipocytes caused an elevation of glucose uptake. Subcellular fractionation revealed that PACSIN3 overexpression elevated GLUT1 plasma membrane localization without effecting GLUT4 distribution. In agreement with this result, examination of GLUT exofacial presentation at the cell surface by photoaffinity labeling revealed significantly increased GLUT1, but not GLUT4, after overexpression of PACSIN3. These results establish a role for PACSIN3 in regulating glucose uptake in adipocytes via its preferential participation in GLUT1 trafficking. They are consistent with the proposal, which is supported by a recent study, that GLUT1, but not GLUT4, is predominantly endocytosed via the coated pit pathway in unstimulated 3T3-L1 adipocytes. PMID:17320047

  13. Dopamine denervation of the prefrontal cortex increases expression of the astrocytic glutamate transporter GLT-1

    PubMed Central

    Vollbrecht, Peter J.; Simmler, Linda D.; Blakely, Randy D.; Deutch, Ariel Y.

    2014-01-01

    Both dopamine and glutamate are critically involved in cognitive processes such as working memory. Astrocytes, which express dopamine receptors, are essential elements in the termination of glutamatergic signaling: the astrocytic glutamate transporter GLT-1 is responsible for >90% of cortical glutamate uptake. The effect of dopamine depletion on glutamate transporters in the prefrontal cortex (PFC) is unknown. In an effort to determine if astrocytes are a locus of cortical dopamine-glutamate interactions, we examined the effects of chronic dopamine denervation on PFC protein and mRNA levels of glutamate transporters. PFC dopamine denervation elicited a marked increase in GLT-1 protein levels, but had no effect on levels of other glutamate transporters; high affinity glutamate transport was positively correlated with the extent of dopamine depletion. GLT-1 gene expression was not altered. Our data suggests that dopamine depletion may lead to post-translational modifications that result in increased expression and activity of GLT-1 in PFC astrocytes. PMID:24611756

  14. Acute fasting increases somatodendritic dopamine release in the ventral tegmental area.

    PubMed

    Roseberry, Aaron G

    2015-08-01

    Fasting and food restriction alter the activity of the mesolimbic dopamine system to affect multiple reward-related behaviors. Food restriction decreases baseline dopamine levels in efferent target sites and enhances dopamine release in response to rewards such as food and drugs. In addition to releasing dopamine from axon terminals, dopamine neurons in the ventral tegmental area (VTA) also release dopamine from their soma and dendrites, and this somatodendritic dopamine release acts as an autoinhibitory signal to inhibit neighboring VTA dopamine neurons. It is unknown whether acute fasting also affects dopamine release, including the local inhibitory somatodendritic dopamine release in the VTA. In these studies, I have tested whether fasting affects the inhibitory somatodendritic dopamine release within the VTA by examining whether an acute 24-h fast affects the inhibitory postsynaptic current mediated by evoked somatodendritic dopamine release (D2R IPSC). Fasting increased the contribution of the first action potential to the overall D2R IPSC and increased the ratio of repeated D2R IPSCs evoked at short intervals. Fasting also reduced the effect of forskolin on the D2R IPSC and led to a significantly bigger decrease in the D2R IPSC in low extracellular calcium. Finally, fasting resulted in an increase in the D2R IPSCs when a more physiologically relevant train of D2R IPSCs was used. Taken together, these results indicate that fasting caused a change in the properties of somatodendritic dopamine release, possibly by increasing dopamine release, and that this increased release can be sustained under conditions where dopamine neurons are highly active. Copyright © 2015 the American Physiological Society.

  15. Acute fasting increases somatodendritic dopamine release in the ventral tegmental area

    PubMed Central

    2015-01-01

    Fasting and food restriction alter the activity of the mesolimbic dopamine system to affect multiple reward-related behaviors. Food restriction decreases baseline dopamine levels in efferent target sites and enhances dopamine release in response to rewards such as food and drugs. In addition to releasing dopamine from axon terminals, dopamine neurons in the ventral tegmental area (VTA) also release dopamine from their soma and dendrites, and this somatodendritic dopamine release acts as an autoinhibitory signal to inhibit neighboring VTA dopamine neurons. It is unknown whether acute fasting also affects dopamine release, including the local inhibitory somatodendritic dopamine release in the VTA. In these studies, I have tested whether fasting affects the inhibitory somatodendritic dopamine release within the VTA by examining whether an acute 24-h fast affects the inhibitory postsynaptic current mediated by evoked somatodendritic dopamine release (D2R IPSC). Fasting increased the contribution of the first action potential to the overall D2R IPSC and increased the ratio of repeated D2R IPSCs evoked at short intervals. Fasting also reduced the effect of forskolin on the D2R IPSC and led to a significantly bigger decrease in the D2R IPSC in low extracellular calcium. Finally, fasting resulted in an increase in the D2R IPSCs when a more physiologically relevant train of D2R IPSCs was used. Taken together, these results indicate that fasting caused a change in the properties of somatodendritic dopamine release, possibly by increasing dopamine release, and that this increased release can be sustained under conditions where dopamine neurons are highly active. PMID:26084913

  16. Nicotine decreases ethanol-induced dopamine signaling and increases self-administration via stress hormones.

    PubMed

    Doyon, William M; Dong, Yu; Ostroumov, Alexey; Thomas, Alyse M; Zhang, Tao A; Dani, John A

    2013-08-07

    Tobacco smoking is a well-known risk factor for subsequent alcohol abuse, but the neural events underlying this risk remain largely unknown. Alcohol and nicotine reinforcement involve common neural circuitry, including the mesolimbic dopamine system. We demonstrate in rodents that pre-exposure to nicotine increases alcohol self-administration and decreases alcohol-induced dopamine responses. The blunted dopamine response was due to increased inhibitory synaptic transmission onto dopamine neurons. Blocking stress hormone receptors prior to nicotine exposure prevented all interactions with alcohol that we measured, including the increased inhibition onto dopamine neurons, the decreased dopamine responses, and the increased alcohol self-administration. These results indicate that nicotine recruits neuroendocrine systems to influence neurotransmission and behavior associated with alcohol reinforcement.

  17. Nicotine Decreases Ethanol-induced Dopamine Signaling and Increases Self-administration via Stress Hormones

    PubMed Central

    Doyon, William M.; Dong, Yu; Ostroumov, Alexey; Thomas, Alyse M.; Zhang, Tao A.; Dani, John A.

    2013-01-01

    SUMMARY Tobacco smoking is a well-known risk factor for subsequent alcohol abuse, but the neural events underlying this risk remain largely unknown. Alcohol and nicotine reinforcement involve common neural circuitry, including the mesolimbic dopamine system. We demonstrate in rodents that pre-exposure to nicotine increases alcohol self-administration and decreases alcohol-induced dopamine responses. The blunted dopamine response was due to increased inhibitory synaptic transmission onto dopamine neurons. Blocking stress hormone receptors prior to nicotine exposure prevented all interactions with alcohol that we measured, including the increased inhibition onto dopamine neurons, the decreased dopamine responses, and the increased alcohol self-administration. These results indicate that nicotine recruits neuroendocrine systems to influence neurotransmission and behavior associated with alcohol reinforcement. PMID:23871233

  18. Dopamine denervation of the prefrontal cortex increases expression of the astrocytic glutamate transporter GLT-1.

    PubMed

    Vollbrecht, Peter J; Simmler, Linda D; Blakely, Randy D; Deutch, Ariel Y

    2014-07-01

    Both dopamine and glutamate are critically involved in cognitive processes such as working memory. Astrocytes, which express dopamine receptors, are essential elements in the termination of glutamatergic signaling: the astrocytic glutamate transporter GLT-1 is responsible for > 90% of cortical glutamate uptake. The effect of dopamine depletion on glutamate transporters in the prefrontal cortex (PFC) remains unknown. In an effort to determine if astrocytes are a locus of cortical dopamine-glutamate interactions, we examined the effects of chronic dopamine denervation on PFC protein and mRNA levels of glutamate transporters. PFC dopamine denervation elicited a marked increase in GLT-1 protein levels, but had no effect on levels of other glutamate transporters; high-affinity glutamate transport was positively correlated with the extent of dopamine depletion. GLT-1 gene expression was not altered. Our data suggest that dopamine depletion may lead to post-translational modifications that result in increased expression and activity of GLT-1 in PFC astrocytes. The glutamate transporter GLT-1 is expressed by astrocytes, which also express dopamine receptors. Regulation of prefrontal cortical (PFC) GLT-1 potentially offers a novel treatment approach to the cognitive deficits of schizophrenia. Partial PFC dopamine deafferentation increased membrane expression of GLT-1 protein and glutamate uptake, but did not alter levels of the other two neocortical glutamate transporters, GLAST and EAAC1.

  19. The dopamine D1 receptor agonist SKF-82958 effectively increases eye blinking count in common marmosets.

    PubMed

    Kotani, Manato; Kiyoshi, Akihiko; Murai, Takeshi; Nakako, Tomokazu; Matsumoto, Kenji; Matsumoto, Atsushi; Ikejiri, Masaru; Ogi, Yuji; Ikeda, Kazuhito

    2016-03-01

    Eye blinking is a spontaneous behavior observed in all mammals, and has been used as a well-established clinical indicator for dopamine production in neuropsychiatric disorders, including Parkinson's disease and Tourette syndrome [1,2]. Pharmacological studies in humans and non-human primates have shown that dopamine agonists/antagonists increase/decrease eye blinking rate. Common marmosets (Callithrix jacchus) have recently attracted a great deal of attention as suitable experimental animals in the psychoneurological field due to their more developed prefrontal cortex than rodents, easy handling compare to other non-human primates, and requirement for small amounts of test drugs. In this study, we evaluated the effects of dopamine D1-4 receptors agonists on eye blinking in common marmosets. Our results show that the dopamine D1 receptor agonist SKF-82958 and the non-selective dopamine receptor agonist apomorphine significantly increased common marmosets eye blinking count, whereas the dopamine D2 agonist (+)-PHNO and the dopamine D3 receptor agonist (+)-PD-128907 produced somnolence in common marmosets resulting in a decrease in eye blinking count. The dopamine D4 receptor agonists PD-168077 and A-41297 had no effect on common marmosets' eye blinking count. Finally, the dopamine D1 receptor antagonist SCH 39166 completely blocked apomorphine-induced increase in eye blinking count. These results indicate that eye blinking in common marmosets may be a useful tool for in vivo screening of novel dopamine D1 receptor agonists as antipsychotics.

  20. Pleiotrophin overexpression regulates amphetamine-induced reward and striatal dopaminergic denervation without changing the expression of dopamine D1 and D2 receptors: Implications for neuroinflammation.

    PubMed

    Vicente-Rodríguez, Marta; Rojo Gonzalez, Loreto; Gramage, Esther; Fernández-Calle, Rosalía; Chen, Ying; Pérez-García, Carmen; Ferrer-Alcón, Marcel; Uribarri, María; Bailey, Alexis; Herradón, Gonzalo

    2016-11-01

    It was previously shown that mice with genetic deletion of the neurotrophic factor pleiotrophin (PTN-/-) show enhanced amphetamine neurotoxicity and impair extinction of amphetamine conditioned place preference (CPP), suggesting a modulatory role of PTN in amphetamine neurotoxicity and reward. We have now studied the effects of amphetamine (10mg/kg, 4 times, every 2h) in the striatum of mice with transgenic PTN overexpression (PTN-Tg) in the brain and in wild type (WT) mice. Amphetamine caused an enhanced loss of striatal dopaminergic terminals, together with a highly significant aggravation of amphetamine-induced increase in the number of GFAP-positive astrocytes, in the striatum of PTN-Tg mice compared to WT mice. Given the known contribution of D1 and D2 dopamine receptors to the neurotoxic effects of amphetamine, we also performed quantitative receptor autoradiography of both receptors in the brains of PTN-Tg and WT mice. D1 and D2 receptors binding in the striatum and other regions of interest was not altered by genotype or treatment. Finally, we found that amphetamine CPP was significantly reduced in PTN-Tg mice. The data demonstrate that PTN overexpression in the brain blocks the conditioning effects of amphetamine and enhances the characteristic striatal dopaminergic denervation caused by this drug. These results indicate for the first time deleterious effects of PTN in vivo by mechanisms that are probably independent of changes in the expression of D1 and D2 dopamine receptors. The data also suggest that PTN-induced neuroinflammation could be involved in the enhanced neurotoxic effects of amphetamine in the striatum of PTN-Tg mice. Copyright © 2016 Elsevier B.V. and ECNP. All rights reserved.

  1. Propentophylline increases striatal dopamine release but dampens methamphetamine-induced dopamine dynamics: A microdialysis study.

    PubMed

    Gough, B; Pereira, F C; Fontes Ribeiro, C A; Ali, S F; Binienda, Z K

    2014-10-01

    While there are currently no medications approved for methamphetamine (METH) addiction, it has been shown that propentofylline (PPF), an atypical methylxanthine, can suppress the rewarding effects of methamphetamine (METH) in mice. This experiment studied the interactions of PPF with METH in striatal dopaminergic transmission. Herein, the impact of PPF (10-40mM, intrastriatally perfused (80min) on the effect of METH (5mg/kg, i.p.) on striatal dopamine (DA) release was evaluated using brain microdialysis in Sprague-Dawley adult rats. METH was injected at the 60min time point of the 80min PPF perfusion. The extracellular levels of DA and its metabolites 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) were determined using high performance liquid chromatography with electrochemical detection (HPLC-ED). PPF induced a concentration-dependent increase in DA release beginning 30min after the onset of PPF perfusion. DA peak levels evoked by 40mM PPF were similar to those induced by 5mg/kg METH i.p. Only the highest concentration of PPF decreased the METH-induced DA peak (circa 70%). The significant decreases in extracellular levels of DOPAC and HVA evoked by METH were partially blocked by 10 and 20mM PPF. Although 40mM of PPF also partially blocked the METH-induced DOPAC decrease, it completely blocked HVA depletion after a transient increase in HVA levels in METH-treated rats. Data indicates for the first time that while PPF increases presynaptic striatal DA dynamics it attenuates METH-induced striatal DA release and metabolism. Published by Elsevier Ltd.

  2. ADAM-10 over-expression increases cortical synaptogenesis.

    PubMed

    Bell, Karen F S; Zheng, Luyu; Fahrenholz, Falk; Cuello, A Claudio

    2008-04-01

    Cortical cholinergic, glutamatergic and GABAergic terminals become upregulated during early stages of the transgenic amyloid pathology. Abundant evidence suggests that sAPP alpha, the product of the non-amyloidogenic alpha-secretase pathway, is neurotrophic both in vitro and when exogenously applied in vivo. The disintegrin metalloprotease ADAM-10 has been shown to have alpha-secretase activity in vivo. To determine whether sAPP alpha has an endogenous biological influence on cortical presynaptic boutons in vivo, we quantified cortical cholinergic, glutamatergic and GABAergic presynaptic bouton densities in either ADAM-10 moderate expressing (ADAM-10 mo) transgenic mice, which moderately overexpress ADAM-10, or age-matched non-transgenic controls. Both early and late ontogenic time points were investigated. ADAM-10 mo transgenic mice display significantly elevated cortical cholinergic, glutamatergic and GABAergic presynaptic bouton densities at the early time point (8 months). Only the cholinergic presynaptic bouton density remains significantly elevated in late-staged ADAM-10 mo transgenic animals (18 months). To confirm that the observed elevations were due to increased levels of endogenous murine sAPP alpha, exogenous human sAPP alpha was infused into the cortex of non-transgenic control animals for 1 week. Exogenous infusion of sAPP alpha led to significant elevations in the cholinergic, glutamatergic and GABAergic cortical presynaptic bouton populations. These results are the first to demonstrate an in vivo influence of ADAM-10 on neurotransmitter-specific cortical synaptic plasticity and further confirm the neurotrophic influence of sAPP alpha on cortical synaptogenesis.

  3. Neural not tubular dopamine increases glomerular filtration rate in perfused rat kidneys.

    PubMed

    Baines, A D; Drangova, R

    1986-04-01

    We examined the effect of endogenous neural and tubular dopamine production on renal function in isolated perfused kidneys. Nerves and proximal tubules in perfused kidneys produce dopamine from endogenous substrates. Surgical denervation 5-14 days before perfusion removed neural dopamine production and decreased dopamine excretion 32% (P less than 0.05), inulin clearance 7% (P less than 0.05), and sodium excretion 57% (P less than 0.01). Carbidopa, which abolished neural and tubular dopamine production, produced similar functional effects. Haloperidol, Sch 23390, and (+)butaclamol, but not (-)butaclamol, added during perfusion increased renovascular resistance 4-5% (P less than 0.001) and decreased inulin clearance 20% (P less than 0.001). Sch 23390 reduced fractional sodium excretion (P less than 0.01), but haloperidol and butaclamol did not. Chronic denervation or carbidopa blocked the reduction of inulin clearance by haloperidol, but alpha- and beta-adrenergic antagonists did not. Fractional sodium excretion increased after adding haloperidol to denervated or adrenergic blocked kidneys. Denervation blocked the effect of Sch 23390 on inulin clearance but not on sodium excretion. Haloperidol inhibited dopamine excretion. Thus dopamine released from acutely severed nerves in perfused kidneys increases glomerular filtration rate (GFR). Dopamine produced by tubules of chronically denervated kidneys did not influence GFR but stimulated sodium excretion by an Sch 23390-sensitive mechanism.

  4. Improvement of Learning and Increase in Dopamine Level in the Frontal Cortex by Methylphenidate in Mice Lacking Dopamine Transporter

    PubMed Central

    Takamatsu, Y.; Hagino, Y.; Sato, A.; Takahashi, T.; Nagasawa, S.Y.; Kubo, Y.; Mizuguchi, M.; Uhl, G.R.; Sora, I.; Ikeda, K.

    2015-01-01

    The symptoms of attention-deficit/hyperactivity disorder (ADHD) are characterized by inattention and hyperactivity-impulsivity. It is a common childhood neurodevelopmental disorder that often persists into adulthood. Improvements in ADHD symptoms using psychostimulants have been recognized as a paradoxical calming effect. The psychostimulant methylphenidate (MPH) is currently used as the first-line medication for the management of ADHD. Recent studies have drawn attention to altered dopamine-mediated neurotransmission in ADHD, particularly reuptake by the dopamine transporter (DAT). This hypothesis is supported by the observation that DAT knockout mice exhibit marked hyperactivity that is responsive to acute MPH treatment. However, other behaviors relevant to ADHD have not been fully clarified. In the present study, we observed learning impairment in shuttle-box avoidance behavior together with hyperactivity in a novel environment in DAT knockout mice. Methylphenidate normalized these behaviors and enhanced escape activity in the tail suspension test. Interestingly, the effective dose of MPH increased extracellular dopamine in the prefrontal cortex but not striatum, suggesting an important role for changes in prefrontal dopamine in ADHD. Research that uses rodent models such as DAT knockout mice may be useful for elucidating the pathophysiology of ADHD. PMID:25817856

  5. Impaired Striatal Akt Signaling Disrupts Dopamine Homeostasis and Increases Feeding

    PubMed Central

    Davis, Adeola R.; Owens, W. Anthony; Matthies, Heinrich J. G.; Saadat, Sanaz; Kennedy, Jack P.; Vaughan, Roxanne A.; Neve, Rachael L.; Lindsley, Craig W.; Russo, Scott J.; Daws, Lynette C.; Niswender1, Kevin D.; Galli, Aurelio

    2011-01-01

    Background The prevalence of obesity has increased dramatically worldwide. The obesity epidemic begs for novel concepts and therapeutic targets that cohesively address “food-abuse” disorders. We demonstrate a molecular link between impairment of a central kinase (Akt) involved in insulin signaling induced by exposure to a high-fat (HF) diet and dysregulation of higher order circuitry involved in feeding. Dopamine (DA) rich brain structures, such as striatum, provide motivation stimuli for feeding. In these central circuitries, DA dysfunction is posited to contribute to obesity pathogenesis. We identified a mechanistic link between metabolic dysregulation and the maladaptive behaviors that potentiate weight gain. Insulin, a hormone in the periphery, also acts centrally to regulate both homeostatic and reward-based HF feeding. It regulates DA homeostasis, in part, by controlling a key element in DA clearance, the DA transporter (DAT). Upon HF feeding, nigro-striatal neurons rapidly develop insulin signaling deficiencies, causing increased HF calorie intake. Methodology/Principal Findings We show that consumption of fat-rich food impairs striatal activation of the insulin-activated signaling kinase, Akt. HF-induced Akt impairment, in turn, reduces DAT cell surface expression and function, thereby decreasing DA homeostasis and amphetamine (AMPH)-induced DA efflux. In addition, HF-mediated dysregulation of Akt signaling impairs DA-related behaviors such as (AMPH)-induced locomotion and increased caloric intake. We restored nigro-striatal Akt phosphorylation using recombinant viral vector expression technology. We observed a rescue of DAT expression in HF fed rats, which was associated with a return of locomotor responses to AMPH and normalization of HF diet-induced hyperphagia. Conclusions/Significance Acquired disruption of brain insulin action may confer risk for and/or underlie “food-abuse” disorders and the recalcitrance of obesity. This molecular model

  6. A53T Human α-Synuclein Overexpression in Transgenic Mice Induces Pervasive Mitochondria Macroautophagy Defects Preceding Dopamine Neuron Degeneration

    PubMed Central

    Xie, Zhiguo; Turkson, Susie

    2015-01-01

    In vitro evidence suggests that the inefficient removal of damaged mitochondria by macroautophagy contributes to Parkinson's disease (PD). Using a tissue-specific gene amplification strategy, we generated a transgenic mouse line with human α-synuclein A53T overexpression specifically in dopamine (DA) neurons. Transgenic mice showed profound early-onset mitochondria abnormalities, characterized by macroautophagy marker-positive cytoplasmic inclusions containing mainly mitochondrial remnants, which preceded the degeneration of DA neurons. Genetic deletion of either parkin or PINK1 in these transgenic mice significantly worsened mitochondrial pathologies, including drastically enlarged inclusions and loss of total mitochondria contents. These data suggest that mitochondria are the main targets of α-synuclein and their defective autophagic clearance plays a significant role during pathogenesis. Moreover, endogenous PINK1 or parkin is indispensable for the proper autophagic removal of damaged mitochondria. Our data for the first time establish an essential link between mitochondria macroautophagy impairments and DA neuron degeneration in an in vivo model based on known PD genetics. The model, its well-defined pathologies, and the demonstration of a main pathogenesis pathway in the present study have set the stage and direction of emphasis for future studies. PMID:25609609

  7. Stimulant-induced dopamine increases are markedly blunted in active cocaine abusers.

    PubMed

    Volkow, N D; Tomasi, D; Wang, G-J; Logan, J; Alexoff, D L; Jayne, M; Fowler, J S; Wong, C; Yin, P; Du, C

    2014-09-01

    Dopamine signaling in nucleus accumbens is essential for cocaine reward. Interestingly, imaging studies have reported blunted dopamine increases in striatum (assessed as reduced binding of [(11)C]raclopride to D2/D3 receptors) in detoxified cocaine abusers. Here, we evaluate whether the blunted dopamine response reflected the effects of detoxification and the lack of cocaine-cues during stimulant exposure. For this purpose we studied 62 participants (43 non-detoxified cocaine abusers and 19 controls) using positron emission tomography and [(11)C]raclopride (radioligand sensitive to endogenous dopamine) to measure dopamine increases induced by intravenous methylphenidate and in 24 of the cocaine abusers, we also compared dopamine increases when methylphenidate was administered concomitantly with a cocaine cue-video versus a neutral-video. In controls, methylphenidate increased dopamine in dorsal (effect size 1.4; P<0.001) and ventral striatum (location of accumbens) (effect size 0.89; P<0.001), but in cocaine abusers methylphenidate's effects did not differ from placebo and were similar whether cocaine-cues were present or not. In cocaine abusers despite the markedly attenuated dopaminergic effects, the methylphenidate-induced changes in ventral striatum were associated with intense drug craving. Our findings are consistent with markedly reduced signaling through D2 receptors during intoxication in active cocaine abusers regardless of cues exposure, which might contribute to compulsive drug use.

  8. Ethanol- and cocaine-induced locomotion are genetically related to increases in accumbal dopamine.

    PubMed

    Meyer, Paul J; Meshul, Charles K; Phillips, Tamara J

    2009-04-01

    Neuroanatomical research suggests that interactions between dopamine and glutamate within the mesolimbic dopamine system are involved in both drug-induced locomotor stimulation and addiction. Therefore, genetically determined differences in the locomotor responses to ethanol and cocaine may be related to differences in the effects of these drugs on this system. To test this, we measured drug-induced changes in dopamine and glutamate within the nucleus accumbens (NAcc), a major target of mesolimbic dopamine neurons, using in vivo microdialysis in selectively bred FAST and SLOW mouse lines, which were bred for extreme sensitivity (FAST) and insensitivity (SLOW) to the locomotor stimulant effects of ethanol. These mice also show a genetically correlated difference in stimulant response to cocaine (FAST > SLOW). Single injections of ethanol (2 g/kg) or cocaine (40 mg/kg) resulted in larger increases in dopamine within the NAcc in FAST compared with SLOW mice. There was no effect of either drug on NAcc glutamate levels. These experiments indicate that response of the mesolimbic dopamine system is genetically correlated with sensitivity to ethanol- and cocaine-induced locomotion. Because increased sensitivity to the stimulating effects of ethanol appears to be associated with greater risk for alcohol abuse, genetically determined differences in the mesolimbic dopamine response to ethanol may represent a critical underlying mechanism for increased genetic risk for alcoholism.

  9. Intrastriatal taurine increases striatal extracellular dopamine in a tetrodotoxin-sensitive manner in rats.

    PubMed

    Ruotsalainen, M; Ahtee, L

    1996-07-19

    In vivo effects of locally administered taurine on striatal dopamine release and metabolism were studied by microdialysis in freely moving rats. Concentrations of dopamine, 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) in striatal dialysates were quantified by high pressure liquid chromatography (HPLC) using electrochemical detection. Infusion of 150 mM taurine into the striatum for 2 h induced a 2.5-fold increase in the extracellular dopamine concentration. Extracellular DOPAC concentration increased nearly 2-fold. Taurine infusion initially decreased HVA to 70% but afterwards increased it to 140% of the control. When taurine was infused simultaneously with 1 microM tetrodotoxin starting 60 min after tetrodotoxin, the output of dopamine did not differ from that in the presence of tetrodotoxin alone. Tetrodotoxin abolished the effects of taurine on dopamine metabolites as well. Tetrodotoxin-sensitivity of the effects of taurine on dopamine and its metabolites suggests that intrastriatal taurine elevates extracellular dopamine by releasing it from neuronal pool.

  10. Levodopa increases memory encoding and dopamine release in the striatum in the elderly

    PubMed Central

    Floel, A.; Garraux, G.; Xu, B.; Breitenstein, C.; Knecht, S.; Herscovitch, P.; Cohen, L.G.

    2008-01-01

    Normal aging is associated with a decrease in dopaminergic function and a reduced ability to form new motor memories with training. This study examined the link between both phenomena. We hypothesized that levodopa would (a) ameliorate aging-dependent deficits in motor memory formation, and (b) increase dopamine availability at the dopamine type 2-like (D2) receptor during training in task-relevant brain structures. The effects of training plus levodopa (100mg, plus 25 mg carbidopa) on motor memory formation and striatal dopamine availability were measured with [11C] raclopride (RAC) positron emission tomography (PET). We found that levodopa did not alter RAC-binding potential at rest but it enhanced training effects on motor memory formation as well as dopamine release in the dorsal caudate nucleus. Motor memory formation during training correlated with the increase of dopamine release in the caudate nucleus. These results demonstrate that levodopa may ameliorate dopamine deficiencies in the elderly by replenishing dopaminergic presynaptic stores, actively engaged in phasic dopamine release during motor training. PMID:17098331

  11. Enhanced striatal dopamine transmission and motor performance with LRRK2 overexpression in mice is eliminated by familial Parkinson's disease mutation G2019S.

    PubMed

    Li, Xianting; Patel, Jyoti C; Wang, Jing; Avshalumov, Marat V; Nicholson, Charles; Buxbaum, Joseph D; Elder, Gregory A; Rice, Margaret E; Yue, Zhenyu

    2010-02-03

    PARK8/LRRK2 (leucine-rich repeat kinase 2) was recently identified as a causative gene for autosomal dominant Parkinson's disease (PD), with LRRK2 mutation G2019S linked to the most frequent familial form of PD. Emerging in vitro evidence indicates that aberrant enzymatic activity of LRRK2 protein carrying this mutation can cause neurotoxicity. However, the physiological and pathophysiological functions of LRRK2 in vivo remain elusive. Here we characterize two bacterial artificial chromosome (BAC) transgenic mouse strains overexpressing LRRK2 wild-type (Wt) or mutant G2019S. Transgenic LRRK2-Wt mice had elevated striatal dopamine (DA) release with unaltered DA uptake or tissue content. Consistent with this result, LRRK2-Wt mice were hyperactive and showed enhanced performance in motor function tests. These results suggest a role for LRRK2 in striatal DA transmission and the consequent motor function. In contrast, LRRK2-G2019S mice showed an age-dependent decrease in striatal DA content, as well as decreased striatal DA release and uptake. Despite increased brain kinase activity, LRRK2-G2019S overexpression was not associated with loss of DAergic neurons in substantia nigra or degeneration of nigrostriatal terminals at 12 months. Our results thus reveal a pivotal role for LRRK2 in regulating striatal DA transmission and consequent control of motor function. The PD-associated mutation G2019S may exert pathogenic effects by impairing these functions of LRRK2. Our LRRK2 BAC transgenic mice, therefore, could provide a useful model for understanding early PD pathological events.

  12. Methylglyoxal increases dopamine level and leads to oxidative stress in SH-SY5Y cells.

    PubMed

    Xie, Bingjie; Lin, Fankai; Peng, Lei; Ullah, Kaleem; Wu, Hanyan; Qing, Hong; Deng, Yulin

    2014-11-01

    More and more studies have suggested that methylglyoxal (MGO) induced by type-2 diabetes is related to Parkinson's disease (PD). However, little is known about the molecular mechanism. In this study, we explored the MGO toxicity in neuroblastoma SH-SY5Y cells. Neurotoxicity of MGO was measured by mitochondrial membrane potential, malondialdehyde, and methylthiazoletetrazolium assays. The levels of dopamine, 3,4-dihydroxyphenylacetic acid (DOPAC), and 1-methyl-4-phenyl-1,2,3,4-tetrahydroisoquinoline (salsolinol) were detected by liquid chromatography-mass spectrometry/mass spectrometry. The expressions of tyrosine hydroxylase (TH) and dopamine transporter (DAT) were detected by reverse transcriptase polymerase chain reaction and western blot analysis. The results showed that MGO induced an increase in TH and DAT expressions in SH-SY5Y neuroblastoma cells, while the levels of dopamine, DOPAC, and endogenous neurotoxin salsolinol also increased. Aminoguanidine (AG) is an inhibitor of MGO. It was found that AG could decrease the reactive oxygen species (ROS) level induced by MGO, but could not inhibit an increase of TH, DAT and dopamine. The increase of dopamine, DOPAC and salsolinol levels could lead to high ROS and mitochondrial damage. This study suggests that ROS caused by dopamine could contribute to the damage of dopaminergic neurons when MGO is increased during the course of diabetes.

  13. Dopamine disruption increases negotiation for cooperative interactions in a fish

    PubMed Central

    Messias, João P. M.; Paula, José R.; Grutter, Alexandra S.; Bshary, Redouan; Soares, Marta C.

    2016-01-01

    Humans and other animals use previous experiences to make behavioural decisions, balancing the probabilities of receiving rewards or punishments with alternative actions. The dopaminergic system plays a key role in this assessment: for instance, a decrease in dopamine transmission, which is signalled by the failure of an expected reward, may elicit a distinct behavioural response. Here, we tested the effect of exogenously administered dopaminergic compounds on a cooperative vertebrate’s decision-making process, in a natural setting. We show, in the Indo-Pacific bluestreak cleaner wrasse Labroides dimidiatus, that blocking dopamine receptors in the wild induces cleaners to initiate more interactions with and to provide greater amounts of physical contact to their client fish partners. This costly form of tactile stimulation using their fins is typically used to prolong interactions and to reconcile with clients after cheating. Interestingly, client jolt rate, a correlate of cheating by cleaners, remained unaffected. Thus, in low effective dopaminergic transmission conditions cleaners may renegotiate the occurrence and duration of the interaction with a costly offer. Our results provide first evidence for a prominent role of the dopaminergic system in decision-making in the context of cooperation in fish. PMID:26853241

  14. Dopamine Transporter Blockade Increases LTP in the CA1 Region of the Rat Hippocampus via Activation of the D3 Dopamine Receptor

    ERIC Educational Resources Information Center

    Swant, Jarod; Wagner, John J.

    2006-01-01

    Dopamine has been demonstrated to be involved in the modulation of long-term potentiation (LTP) in the CA1 region of the hippocampus. As monoamine transporter blockade will increase the actions of endogenous monoamine neurotransmitters, the effect of a dopamine transporter (DAT) antagonist on LTP was assessed using field excitatory postsynaptic…

  15. Dopamine Transporter Blockade Increases LTP in the CA1 Region of the Rat Hippocampus via Activation of the D3 Dopamine Receptor

    ERIC Educational Resources Information Center

    Swant, Jarod; Wagner, John J.

    2006-01-01

    Dopamine has been demonstrated to be involved in the modulation of long-term potentiation (LTP) in the CA1 region of the hippocampus. As monoamine transporter blockade will increase the actions of endogenous monoamine neurotransmitters, the effect of a dopamine transporter (DAT) antagonist on LTP was assessed using field excitatory postsynaptic…

  16. Increased dopamine uptake in striatal synaptosomes after treatment of rats with amantadine.

    PubMed

    Page, G; Peeters, M; Maloteaux, J M; Hermans, E

    2000-09-01

    The aim of the present study was to investigate the effect of short- and long-term treatments with amantadine on the activity of the neuronal dopamine transporter (DAT) in the rat striatum. For this purpose, the [3H]dopamine uptake was measured in striatal synaptosomes prepared from rats treated for 2, 7 and 14 days with amantadine (40 mg/kg; i.p.). After 7 days of treatment, amantadine increased the apparent V(max) by 30% without modification of the apparent K(m) of dopamine uptake whereas no change in these parameters was observed after 2 and 14 days treatment. Binding assays conducted with [3H]GBR-12935 on membranes prepared from animals treated with amantadine revealed no difference in the density and the affinity of striatal DAT binding sites as compared to control. This indicates that the increased dopamine uptake was not reflecting a modification at the level of the DAT expression. The activity of the DAT is regulated by phosphorylation and one may propose that ionotropic glutamate receptors present on presynaptic terminals directly modulate this phosphorylation. An indirect mechanism would involve presynaptic dopamine receptors that control the activity of the DAT in response to the increased dopamine concentration in the synaptic cleft.

  17. Overexpression of SOD2 increases salt tolerance of Arabidopsis.

    PubMed

    Gao, Xiuhua; Ren, Zhonghai; Zhao, Yanxiu; Zhang, Hui

    2003-12-01

    The yeast (Schizosaccharomyces pombe) SOD2 (Sodium2) gene was introduced into Arabidopsis under the control of the cauliflower mosaic virus 35S promoter. Transformants were selected for their ability to grow on medium containing kanamycin. Southern- and northern-blot analyses confirmed that SOD2 was transferred into the Arabidopsis genome. There were no obvious morphological or developmental differences between the transgenic and wild-type (wt) plants. Several transgenic homozygous lines and wt plants (control) were evaluated for salt tolerance and gene expression. Overexpression of SOD2 in Arabidopsis improved seed germination and seedling salt tolerance. Analysis of Na+ and K+ contents of the symplast and apoplast in the parenchyma cells of the root cortex and mesophyll cells in the spongy tissue of the leaf showed that transgenic lines accumulated less Na+ and more K+ in the symplast than the wt plants did. The photosynthetic rate and the fresh weight of the transgenic lines were distinctly higher than that of wt plants after NaCl treatment. Results from different tests indicated that the expression of the SOD2 gene promoted a higher level of salt tolerance in vivo in transgenic Arabidopsis plants.

  18. Inflammatory nociception diminishes dopamine release and increases dopamine D2 receptor mRNA in the rat's insular cortex

    PubMed Central

    2010-01-01

    Background The insular cortex (IC) receives somatosensory afferent input and has been related to nociceptive input. It has dopaminergic terminals and D1 (D1R) -excitatory- and D2 (D2R) -inhibitory- receptors. D2R activation with a selective agonist, as well as D1R blockade with antagonists in the IC, diminish neuropathic nociception in a nerve transection model. An intraplantar injection of carrageenan and acute thermonociception (plantar test) were performed to measure the response to inflammation (paw withdrawal latency, PWL). Simultaneously, a freely moving microdyalisis technique and HPLC were used to measure the release of dopamine and its metabolites in the IC. Plantar test was applied prior, one and three hours after inflammation. Also, mRNA levels of D1 and D2R's were measured in the IC after three hours of inflammation. Results The results showed a gradual decrease in the release of dopamine, Dopac and HVA after inflammation. The decrease correlates with a decrease in PWL. D2R's increased their mRNA expression compared to the controls. In regard of D1R's, there was a decrease in their mRNA levels compared to the controls. Conclusions Our results showed that the decreased extracellular levels of dopamine induced by inflammation correlated with the level of pain-related behaviour. These results also showed the increase in dopaminergic mediated inhibition by an increase in D2R's and a decrease in D1R's mRNA. There is a possible differential mechanism regarding the regulation of excitatory and inhibitory dopaminergic receptors triggered by inflammation. PMID:21050459

  19. Increased plasma dopamine in patients presenting with the pseudopheochromocytoma quandary: retrospective analysis of 10 years' experience.

    PubMed

    Kuchel, O

    1998-10-01

    A retrospective analysis was made to determine alternative diagnoses in patients with predominantly hypertensive episodes who were suspected of having pheochromocytoma but in whom this diagnosis was eliminated. Analysis of a random university hospital population referred over a period of 10 years. Episodic clinical presentations of pheochromocytoma symptoms combined with a comparison of baseline and episodic radioenzymatically determined levels of plasma free norepinephrine and epinephrine were examined, together with prospective levels of plasma free and sulfated dopamine. Out of 63 patients presenting with episodes of palpitations, headaches, flushing, sweating and hyperventilation (associated with hypertension in 49 patients, with hypotension in six patients and with alternating hyper- and hypotension in eight patients), 14 were diagnosed as having idiopathic hypovolemia, nine as having mastocytosis, nine as having an adrenal tumor, four as having neurogenic hypertension and one each with cocaine abuse and reninoma. Both baseline and symptomatic levels of plasma free norepinephrine and epinephrine remained within physiological limits (exceeding them moderately in baroreceptor dysfunction only), but all subgroups had a mean episodic increase over baseline in plasma dopamine sulfate (mean+/-SEM 16.7+/-5.9 to 53.2+/-19 pmol/ml; P < 0.02), unlike free dopamine. Patients whose symptoms imitated pheochromocytoma in hemodynamic instability and frequent flushing formed a heterogeneous group, with plasma norepinephrine and epinephrine usually within physiological limits but an overall mean threefold increase in dopamine sulfate concentrations. With the various diagnoses of idiopathic hypovolemia, mastocytosis, neurogenic, secondary hypertension and cocaine abuse eliminated as a cause of pheochromocytoma-like symptoms, at least half of these patients still had unexplained, predominantly emotionally or proprioreceptive stimulation-provoked, bouts of hypertension

  20. Drug induced increases in CNS dopamine alter monocyte, macrophage and T cell functions: implications for HAND.

    PubMed

    Gaskill, Peter J; Calderon, Tina M; Coley, Jacqueline S; Berman, Joan W

    2013-06-01

    Central nervous system (CNS) complications resulting from HIV infection remain a major public health problem as individuals live longer due to the success of combined antiretroviral therapy (cART). As many as 70 % of HIV infected people have HIV associated neurocognitive disorders (HAND). Many HIV infected individuals abuse drugs, such as cocaine, heroin or methamphetamine, that may be important cofactors in the development of HIV CNS disease. Despite different mechanisms of action, all drugs of abuse increase extracellular dopamine in the CNS. The effects of dopamine on HIV neuropathogenesis are not well understood, and drug induced increases in CNS dopamine may be a common mechanism by which different types of drugs of abuse impact the development of HAND. Monocytes and macrophages are central to HIV infection of the CNS and to HAND. While T cells have not been shown to be a major factor in HIV-associated neuropathogenesis, studies indicate that T cells may play a larger role in the development of HAND in HIV infected drug abusers. Drug induced increases in CNS dopamine may dysregulate functions of, or increase HIV infection in, monocytes, macrophages and T cells in the brain. Thus, characterizing the effects of dopamine on these cells is important for understanding the mechanisms that mediate the development of HAND in drug abusers.

  1. Increased vulnerability to cocaine in mice lacking dopamine D3 receptors.

    PubMed

    Song, Rui; Zhang, Hai-Ying; Li, Xia; Bi, Guo-Hua; Gardner, Eliot L; Xi, Zheng-Xiong

    2012-10-23

    Neuroimaging studies using positron emission tomography suggest that reduced dopamine D(2) receptor availability in the neostriatum is associated with increased vulnerability to drug addiction in humans and experimental animals. The role of D(3) receptors (D(3)Rs) in the neurobiology of addiction remains unclear, however. Here we report that D(3)R KO (D(3)(-/-)) mice display enhanced cocaine self-administration and enhanced motivation for cocaine-taking and cocaine-seeking behavior. This increased vulnerability to cocaine is accompanied by decreased dopamine response to cocaine secondary to increased basal levels of extracellular dopamine in the nucleus accumbens, suggesting a compensatory response to decreased cocaine reward in D(3)(-/-) mice. In addition, D(3)(-/-) mice also display up-regulation of dopamine transporters in the striatum, suggesting a neuroadaptative attempt to normalize elevated basal extracellular dopamine. These findings suggest that D(3)R deletion increases vulnerability to cocaine, and that reduced D(3)R availability in the brain may constitute a risk factor for the development of cocaine addiction.

  2. Drug induced increases in CNS dopamine alter monocyte, macrophage and T cell functions: implications for HAND

    PubMed Central

    Gaskill, Peter J.; Calderon, Tina M.; Coley, Jacqueline S.; Berman, Joan W.

    2013-01-01

    Central nervous system (CNS) complications resulting from HIV infection remain a major public health problem as individuals live longer due to the success of combined antiretroviral therapy (cART). As many as 70% of HIV infected people have HIV associated neurocognitive disorders (HAND). Many HIV infected individuals abuse drugs, such as cocaine, heroin or methamphetamine, that may be important cofactors in the development of HIV CNS disease. Despite different mechanisms of action, all drugs of abuse increase extracellular dopamine in the CNS. The effects of dopamine on HIV neuropathogenesis are not well understood, and drug induced increases in CNS dopamine may be a common mechanism by which different types of drugs of abuse impact the development of HAND. Monocytes and macrophages are central to HIV infection of the CNS and to HAND. While T cells have not been shown to be a major factor in HIV-associated neuropathogenesis, studies indicate that T cells may play a larger role in the development of HAND in HIV infected drug abusers. Drug induced increases in CNS dopamine may dysregulate functions of, or increase HIV infection in, monocytes, macrophages and T cells in the brain. Thus, characterizing the effects of dopamine on these cells is important for understanding the mechanisms that mediate the development of HAND in drug abusers. PMID:23456305

  3. An increase in renal dopamine does not stimulate natriuresis after fava bean ingestion.

    PubMed

    Garland, Emily M; Cesar, Tericka S; Lonce, Suzanna; Ferguson, Marcus C; Robertson, David

    2013-05-01

    Fava beans (Vicia faba) contain dihydroxyphenylalanine (dopa), and their ingestion may increase dopamine stores. Renal dopamine regulates blood pressure and blood volume via a natriuretic effect. The objective was to determine the relation between dietary fava beans, plasma and urinary catechols, and urinary sodium excretion in 13 healthy volunteers. Catechol and sodium data were compared by using a longitudinal design in which all participants consumed a fixed-sodium study diet on day 1 and the fixed-sodium diet plus fava beans on day 2. Blood was sampled at 1, 2, 4, and 6 h after a meal, and 3 consecutive 4-h urine samples were collected. Mean (±SD) plasma dopa was significantly greater 1 h after fava bean consumption (11,670 ± 5440 compared with 1705 ± 530 pg/mL; P = 0.001) and remained elevated at 6 h. Plasma dopamine increased nearly 15-fold during this period. Fava bean consumption also increased urinary dopamine excretion to 306 ± 116, 360 ± 235, and 159 ± 111 μg/4-h urine sample compared with 45 ± 21, 54 ± 29, and 44 ± 17 μg in the 3 consecutive 4-h samples after the control diet (P ≤ 0.005). These substantial increases in plasma and urinary dopa and dopamine were unexpectedly associated with decreased urinary sodium. The failure of fava bean consumption to provoke natriuresis may indicate that dopa concentrations in commercially available beans do not raise renal dopamine sufficiently to stimulate sodium excretion, at least when beans are added to a moderate-sodium diet in healthy volunteers. This trial was registered at clinicaltrials.gov as NCT01064739.

  4. An increase in renal dopamine does not stimulate natriuresis after fava bean ingestion123

    PubMed Central

    Garland, Emily M; Cesar, Tericka S; Lonce, Suzanna; Ferguson, Marcus C; Robertson, David

    2013-01-01

    Background: Fava beans (Vicia faba) contain dihydroxyphenylalanine (dopa), and their ingestion may increase dopamine stores. Renal dopamine regulates blood pressure and blood volume via a natriuretic effect. Objective: The objective was to determine the relation between dietary fava beans, plasma and urinary catechols, and urinary sodium excretion in 13 healthy volunteers. Design: Catechol and sodium data were compared by using a longitudinal design in which all participants consumed a fixed-sodium study diet on day 1 and the fixed-sodium diet plus fava beans on day 2. Blood was sampled at 1, 2, 4, and 6 h after a meal, and 3 consecutive 4-h urine samples were collected. Results: Mean (±SD) plasma dopa was significantly greater 1 h after fava bean consumption (11,670 ± 5440 compared with 1705 ± 530 pg/mL; P = 0.001) and remained elevated at 6 h. Plasma dopamine increased nearly 15-fold during this period. Fava bean consumption also increased urinary dopamine excretion to 306 ± 116, 360 ± 235, and 159 ± 111 μg/4-h urine sample compared with 45 ± 21, 54 ± 29, and 44 ± 17 μg in the 3 consecutive 4-h samples after the control diet (P ≤ 0.005). These substantial increases in plasma and urinary dopa and dopamine were unexpectedly associated with decreased urinary sodium. Conclusion: The failure of fava bean consumption to provoke natriuresis may indicate that dopa concentrations in commercially available beans do not raise renal dopamine sufficiently to stimulate sodium excretion, at least when beans are added to a moderate-sodium diet in healthy volunteers. This trial was registered at clinicaltrials.gov as NCT01064739. PMID:23553159

  5. Increased isobutanol production in Saccharomyces cerevisiae by overexpression of genes in valine metabolism

    PubMed Central

    2011-01-01

    Background Isobutanol can be a better biofuel than ethanol due to its higher energy density and lower hygroscopicity. Furthermore, the branched-chain structure of isobutanol gives a higher octane number than the isomeric n-butanol. Saccharomyces cerevisiae was chosen as the production host because of its relative tolerance to alcohols, robustness in industrial fermentations, and the possibility for future combination of isobutanol production with fermentation of lignocellulosic materials. Results The yield of isobutanol was improved from 0.16 to 0.97 mg per g glucose by simultaneous overexpression of biosynthetic genes ILV2, ILV3, and ILV5 in valine metabolism in anaerobic fermentation of glucose in mineral medium in S. cerevisiae. Isobutanol yield was further improved by twofold by the additional overexpression of BAT2, encoding the cytoplasmic branched-chain amino-acid aminotransferase. Overexpression of ILV6, encoding the regulatory subunit of Ilv2, in the ILV2 ILV3 ILV5 overexpression strain decreased isobutanol production yield by threefold. In aerobic cultivations in shake flasks in mineral medium, the isobutanol yield of the ILV2 ILV3 ILV5 overexpression strain and the reference strain were 3.86 and 0.28 mg per g glucose, respectively. They increased to 4.12 and 2.4 mg per g glucose in yeast extract/peptone/dextrose (YPD) complex medium under aerobic conditions, respectively. Conclusions Overexpression of genes ILV2, ILV3, ILV5, and BAT2 in valine metabolism led to an increase in isobutanol production in S. cerevisiae. Additional overexpression of ILV6 in the ILV2 ILV3 ILV5 overexpression strain had a negative effect, presumably by increasing the sensitivity of Ilv2 to valine inhibition, thus weakening the positive impact of overexpression of ILV2, ILV3, and ILV5 on isobutanol production. Aerobic cultivations of the ILV2 ILV3 ILV5 overexpression strain and the reference strain showed that supplying amino acids in cultivation media gave a substantial

  6. Increased isobutanol production in Saccharomyces cerevisiae by overexpression of genes in valine metabolism.

    PubMed

    Chen, Xiao; Nielsen, Kristian F; Borodina, Irina; Kielland-Brandt, Morten C; Karhumaa, Kaisa

    2011-07-28

    Isobutanol can be a better biofuel than ethanol due to its higher energy density and lower hygroscopicity. Furthermore, the branched-chain structure of isobutanol gives a higher octane number than the isomeric n-butanol. Saccharomyces cerevisiae was chosen as the production host because of its relative tolerance to alcohols, robustness in industrial fermentations, and the possibility for future combination of isobutanol production with fermentation of lignocellulosic materials. The yield of isobutanol was improved from 0.16 to 0.97 mg per g glucose by simultaneous overexpression of biosynthetic genes ILV2, ILV3, and ILV5 in valine metabolism in anaerobic fermentation of glucose in mineral medium in S. cerevisiae. Isobutanol yield was further improved by twofold by the additional overexpression of BAT2, encoding the cytoplasmic branched-chain amino-acid aminotransferase. Overexpression of ILV6, encoding the regulatory subunit of Ilv2, in the ILV2 ILV3 ILV5 overexpression strain decreased isobutanol production yield by threefold. In aerobic cultivations in shake flasks in mineral medium, the isobutanol yield of the ILV2 ILV3 ILV5 overexpression strain and the reference strain were 3.86 and 0.28 mg per g glucose, respectively. They increased to 4.12 and 2.4 mg per g glucose in yeast extract/peptone/dextrose (YPD) complex medium under aerobic conditions, respectively. Overexpression of genes ILV2, ILV3, ILV5, and BAT2 in valine metabolism led to an increase in isobutanol production in S. cerevisiae. Additional overexpression of ILV6 in the ILV2 ILV3 ILV5 overexpression strain had a negative effect, presumably by increasing the sensitivity of Ilv2 to valine inhibition, thus weakening the positive impact of overexpression of ILV2, ILV3, and ILV5 on isobutanol production. Aerobic cultivations of the ILV2 ILV3 ILV5 overexpression strain and the reference strain showed that supplying amino acids in cultivation media gave a substantial improvement in isobutanol production

  7. Gastrin stimulates renal dopamine production by increasing the renal tubular uptake of l-DOPA.

    PubMed

    Jiang, Xiaoliang; Zhang, Yanrong; Yang, Yu; Yang, Jian; Asico, Laureano D; Chen, Wei; Felder, Robin A; Armando, Ines; Jose, Pedro A; Yang, Zhiwei

    2017-01-01

    Gastrin is a peptide hormone that is involved in the regulation of sodium balance and blood pressure. Dopamine, which is also involved in the regulation of sodium balance and blood pressure, directly or indirectly interacts with other blood pressure-regulating hormones, including gastrin. This study aimed to determine the mechanisms of the interaction between gastrin and dopamine and tested the hypothesis that gastrin produced in the kidney increases renal dopamine production to keep blood pressure within the normal range. We show that in human and mouse renal proximal tubule cells (hRPTCs and mRPTCs, respectively), gastrin stimulates renal dopamine production by increasing the cellular uptake of l-DOPA via the l-type amino acid transporter (LAT) at the plasma membrane. The uptake of l-DOPA in RPTCs from C57Bl/6J mice is lower than in RPTCs from normotensive humans. l-DOPA uptake in renal cortical slices is also lower in salt-sensitive C57Bl/6J than in salt-resistant BALB/c mice. The deficient renal cortical uptake of l-DOPA in C57Bl/6J mice may be due to decreased LAT-1 activity that is related to its decreased expression at the plasma membrane, relative to BALB/c mice. We also show that renal-selective silencing of Gast by the renal subcapsular injection of Gast siRNA in BALB/c mice decreases renal dopamine production and increases blood pressure. These results highlight the importance of renal gastrin in stimulating renal dopamine production, which may give a new perspective in the prevention and treatment of hypertension. Copyright © 2017 the American Physiological Society.

  8. Intrahippocampal Infusions of Anisomycin Produce Amnesia: Contribution of Increased Release of Norepinephrine, Dopamine, and Acetylcholine

    ERIC Educational Resources Information Center

    Qi, Zhenghan; Gold, Paul E.

    2009-01-01

    Intra-amygdala injections of anisomycin produce large increases in the release of norepinephrine (NE), dopamine (DA), and serotonin in the amygdala. Pretreatment with intra-amygdala injections of the beta-adrenergic receptor antagonist propranolol attenuates anisomycin-induced amnesia without reversing the inhibition of protein synthesis, and…

  9. Intrahippocampal Infusions of Anisomycin Produce Amnesia: Contribution of Increased Release of Norepinephrine, Dopamine, and Acetylcholine

    ERIC Educational Resources Information Center

    Qi, Zhenghan; Gold, Paul E.

    2009-01-01

    Intra-amygdala injections of anisomycin produce large increases in the release of norepinephrine (NE), dopamine (DA), and serotonin in the amygdala. Pretreatment with intra-amygdala injections of the beta-adrenergic receptor antagonist propranolol attenuates anisomycin-induced amnesia without reversing the inhibition of protein synthesis, and…

  10. Social isolation rearing increases dopamine uptake and psychostimulant potency in the striatum.

    PubMed

    Yorgason, Jordan T; Calipari, Erin S; Ferris, Mark J; Karkhanis, Anushree N; Fordahl, Steven C; Weiner, Jeffrey L; Jones, Sara R

    2016-02-01

    Social isolation rearing (SI) is a model of early life stress that results in neurobiological alterations leading to increased anxiety-like behaviors. These animals also exhibit an increased propensity to administer psychostimulants, such as cocaine; however, the mechanisms governing this increased addiction vulnerability remain to be elucidated. Long-term stressors have been shown to produce important alterations in nucleus accumbens core (NAc) function. The NAc regulates motivated and goal-directed behaviors, and individual differences in NAc function have been shown to be predictive of addiction vulnerability. Rats were reared in group (GH; 4/cage) or SI (1/cage) conditions from weaning (PD 28) into early adulthood (PD 77) and dopamine release was assessed using voltammetry in brain slices containing the NAc and dorsomedial striatum. SI rats exhibited enhanced dopamine release and uptake in both regions compared to GH rats. In regard to psychostimulant effects directly at the dopamine transporter (DAT), methylphenidate and amphetamine, but not cocaine, inhibited uptake more in SI than GH rats. The increased potencies were positively correlated with uptake rates, suggesting that increased potencies of amphetamine-like compounds are due to changes in DAT function. Cocaine's effects on uptake were similar between rearing conditions, however, cocaine enhanced evoked dopamine release greater in SI than GH rats, suggesting that the enhanced cocaine reinforcement in SI animals involves a DAT independent mechanism. Together, the results provide the first evidence that greater psychostimulant effects in SI compared to GH rats are due to effects on dopamine terminals related to uptake dependent and independent mechanisms.

  11. Social Isolation Rearing Increases Dopamine Uptake and Psychostimulant Potency in the Striatum

    PubMed Central

    Yorgason, Jordan T.; Calipari, Erin S.; Ferris, Mark J.; Karkhanis, Annushree N.; Fordahl, Steven C.; Weiner, Jeffrey L.; Jones, Sara R.

    2015-01-01

    Social isolation rearing (SI) is a model of early life stress that results in neurobiological alterations leading to increased anxiety-like behaviors. These animals also exhibit an increased propensity to administer psychostimulants, such as cocaine; however, the mechanisms governing this increased addiction vulnerability remains to be elucidated. Long-term stressors have been shown to produce important alterations in nucleus accumbens core (NAc) function. The NAc regulates motivated and goal-directed behaviors, and individual differences in NAc function have been shown to be predictive of addiction vulnerability. Rats were reared in group (GH; 4/cage) or SI (1/cage) conditions from weaning (PD 28) into early adulthood (PD 77) and dopamine release was assessed using voltammetry in brain slices containing the NAc and dorsomedial striatum. SI rats exhibited enhanced dopamine release and uptake in both regions compared to GH rats. In regard to psychostimulant effects directly at the dopamine transporter (DAT), methylphenidate and amphetamine, but not cocaine, inhibited uptake more in SI than GH rats. The increased potencies were positively correlated with uptake rates, suggesting that increased potencies of amphetamine-like compounds are due to changes in DAT function. Cocaine’s effects on uptake were similar between rearing conditions, however, cocaine enhanced evoked dopamine release greater in SI than GH rats, suggesting that the enhanced cocaine reinforcement in SI animals involves a DAT independent mechanism. Together, the results provide the first evidence that greater psychostimulant effects in SI compared to GH rats are due to effects on dopamine terminals related to uptake dependent and independent mechanisms. PMID:26525189

  12. Lamin B1 overexpression increases nuclear rigidity in autosomal dominant leukodystrophy fibroblasts

    PubMed Central

    Ferrera, Denise; Canale, Claudio; Marotta, Roberto; Mazzaro, Nadia; Gritti, Marta; Mazzanti, Michele; Capellari, Sabina; Cortelli, Pietro; Gasparini, Laura

    2014-01-01

    The architecture and structural mechanics of the cell nucleus are defined by the nuclear lamina, which is formed by A- and B-type lamins. Recently, gene duplication and protein overexpression of lamin B1 (LB1) have been reported in pedigrees with autosomal dominant leukodystrophy (ADLD). However, how the overexpression of LB1 affects nuclear mechanics and function and how it may result in pathology remain unexplored. Here, we report that in primary human skin fibroblasts derived from ADLD patients, LB1, but not other lamins, is overexpressed at the nuclear lamina and specifically enhances nuclear stiffness. Transient transfection of LB1 in HEK293 and neuronal N2a cells mimics the mechanical phenotype of ADLD nuclei. Notably, in ADLD fibroblasts, reducing LB1 protein levels by shRNA knockdown restores elasticity values to those indistinguishable from control fibroblasts. Moreover, isolated nuclei from ADLD fibroblasts display a reduced nuclear ion channel open probability on voltage-step application, suggesting that biophysical changes induced by LB1 overexpression may alter nuclear signaling cascades in somatic cells. Overall, the overexpression of LB1 in ADLD cells alters nuclear mechanics and is linked to changes in nuclear signaling, which could help explain the pathogenesis of this disease.—Ferrera, D., Canale, C., Marotta, R., Mazzaro, N., Gritti, M., Mazzanti, M., Capellari, S., Cortelli, P., Gasparini, L. Lamin B1 overexpression increases nuclear rigidity in autosomal dominant leukodystrophy fibroblasts. PMID:24858279

  13. Enduring increases in anxiety-like behavior and rapid nucleus accumbens dopamine signaling in socially isolated rats

    PubMed Central

    Yorgason, Jordan T.; España, Rodrigo A.; Konstantopoulos, Joanne K.; Weiner, Jeffrey L.; Jones, Sara R.

    2013-01-01

    Social isolation (SI) rearing, a model of early life stress, results in profound behavioral alterations, including increased anxiety-like behavior, impaired sensorimotor gating and increased self-administration of addictive substances. These changes are accompanied by alterations in mesolimbic dopamine function, such as increased dopamine and metabolite tissue content, increased dopamine responses to cues and psychostimulants, and increased dopamine neuron burst firing. Using voltammetric techniques, we examined the effects of SI rearing on dopamine transporter activity, vesicular release and dopamine D2-type autoreceptor activity in the nucleus accumbens core. Long–Evans rats were housed in group (GH; 4/cage) or SI (1/cage) conditions from weaning into early adulthood [postnatal day (PD) 28–77]. After this initial housing period, rats were assessed on the elevated plus-maze for an anxiety-like phenotype, and then slice voltammetry experiments were performed. To study the enduring effects of SI rearing on anxiety-like behavior and dopamine terminal function, another cohort of similarly reared rats was isolated for an additional 4 months (until PD 174) and then tested. Our findings demonstrate that SI rearing results in lasting increases in anxiety-like behavior, dopamine release and dopamine transporter activity, but not D2 activity. Interestingly, GH-reared rats that were isolated as adults did not develop the anxiety-like behavior or dopamine changes seen in SI-reared rats. Together, our data suggest that early life stress results in an anxiety-like phenotype, with lasting increases in dopamine terminal function. PMID:23294165

  14. Noradrenergic antidepressants increase cortical dopamine: potential use in augmentation strategies.

    PubMed

    Masana, Mercè; Castañé, Anna; Santana, Noemí; Bortolozzi, Analía; Artigas, Francesc

    2012-09-01

    Most antidepressant treatments, based on serotonin (5-HT) and/or norepinephrine (NE) transporter blockade, show limited efficacy and slow onset of action, requiring the use of augmentation strategies. Here we report on a novel antidepressant strategy to selectively increase DA function in prefrontal cortex (PFC) without the potential tolerance problems associated to DA transporter blockade. This approach is based on previous observations indicating that extracellular DA in rat medial PFC (mPFC) - but not in nucleus accumbens (NAc) - arises from noradrenergic terminals and is sensitive to noradrenergic drugs. A low dose of reboxetine (3 mg/kg i.p.; NE reuptake inhibitor) non-significantly increased extracellular DA in mPFC. Interestingly, its combined administration with 5 mg/kg s.c. mirtazapine (non-selective α₂-adrenoceptor antagonist) increased extracellular DA in mPFC (264 ± 28%), but not in NAc. Extracellular NE (but not 5-HT) in mPFC was also enhanced by the combined treatment (472 ± 70%). Repeated (×3) reboxetine + mirtazapine administration produced a moderate additional increase in mPFC DA and markedly reduced the immobility time (-51%) in the forced-swim test. Neurochemical and behavioral effects of the reboxetine + mirtazapine combination persisted in rats pretreated with citalopram (3 mg/kg, s.c.), suggesting its potential usefulness to augment SSRI effects. In situ hybridization c-fos studies were performed to examine the brain areas involved in the above antidepressant-like effects, showing changes in c-fos expression in hippocampal and cortical areas. BDNF expression was also increased in the hippocampal formation. Overall, these results indicate a synergistic effect of the reboxetine + mirtazapine combination to increase DA and NE function in mPFC and to evoke robust antidepressant-like responses.

  15. Overexpression of acetyl-CoA synthetase in Saccharomyces cerevisiae increases acetic acid tolerance.

    PubMed

    Ding, Jun; Holzwarth, Garrett; Penner, Michael H; Patton-Vogt, Jana; Bakalinsky, Alan T

    2015-01-01

    Acetic acid-mediated inhibition of the fermentation of lignocellulose-derived sugars impedes development of plant biomass as a source of renewable ethanol. In order to overcome this inhibition, the capacity of Saccharomyces cerevisiae to synthesize acetyl-CoA from acetic acid was increased by overexpressing ACS2 encoding acetyl-coenzyme A synthetase. Overexpression of ACS2 resulted in higher resistance to acetic acid as measured by an increased growth rate and shorter lag phase relative to a wild-type control strain, suggesting that Acs2-mediated consumption of acetic acid during fermentation contributes to acetic acid detoxification.

  16. Overexpression of acetyl-CoA synthetase in Saccharomyces cerevisiae increases acetic acid tolerance

    PubMed Central

    Ding, Jun; Holzwarth, Garrett; Penner, Michael H.; Patton-Vogt, Jana; Bakalinsky, Alan T.

    2015-01-01

    Acetic acid-mediated inhibition of the fermentation of lignocellulose-derived sugars impedes development of plant biomass as a source of renewable ethanol. In order to overcome this inhibition, the capacity of Saccharomyces cerevisiae to synthesize acetyl-CoA from acetic acid was increased by overexpressing ACS2 encoding acetyl-coenzyme A synthetase. Overexpression of ACS2 resulted in higher resistance to acetic acid as measured by an increased growth rate and shorter lag phase relative to a wild-type control strain, suggesting that Acs2-mediated consumption of acetic acid during fermentation contributes to acetic acid detoxification. PMID:25673654

  17. Overexpression of MMP-7 increases collagen 1A2 in the aging kidney

    PubMed Central

    Ślusarz, Anna; Nichols, LaNita A; Grunz-Borgmann, Elizabeth A; Chen, Gang; Akintola, Adebayo D; Catania, Jeffery M; Burghardt, Robert C; Trzeciakowski, Jerome P; Parrish, Alan R

    2013-01-01

    The percentage of the U.S. population over 65 is rapidly increasing, as is the incidence of chronic kidney disease (CKD). The kidney is susceptible to age-dependent alterations in structure, specifically tubulointerstitial fibrosis that leads to CKD. Matrix metalloproteinases (MMPs) were initially characterized as extracellular matrix (ECM) proteinases; however, it is clear that their biological role is much larger. We have observed increased gene expression of several MMPs in the aging kidney, including MMP-7. MMP-7 overexpression was observed starting at 16 months, with over a 500-fold upregulation in 2-year-old animals. Overexpression of MMP-7 is not observed in age-matched, calorically restricted controls that do not develop fibrosis and renal dysfunction, suggesting a role in the pathogenesis. In order to delineate the contributions of MMP-7 to renal dysfunction, we overexpressed MMP-7 in NRK-52E cells. High-throughput sequencing of the cells revealed that two collagen genes, Col1a2 and Col3a1, were elevated in the MMP-7 overexpressing cells. These two collagen genes were also elevated in aging rat kidneys and temporally correlated with increased MMP-7 expression. Addition of exogenous MMP-7, or conditioned media from MMP-7 overexpressing cells also increased Col1A2 expression. Inhibition of protein kinase A (PKA), src, and MAPK signaling at p38 and ERK was able to attenuate the MMP-7 upregulation of Col1a2. Consistent with this finding, increased phosphorylation of PKA, src, and ERK was seen in MMP-7 overexpressing cells and upon exogenous MMP-7 treatment of NRK-52E cells. These data suggest a novel mechanism by which MMP-7 contributes to the development of fibrosis leading to CKD. PMID:24273653

  18. Increased presynaptic regulation of dopamine neurotransmission in the nucleus accumbens core following chronic ethanol self-administration in female macaques

    PubMed Central

    Siciliano, Cody A.; Calipari, Erin S.; Yorgason, Jordan T.; Lovinger, David M.; Mateo, Yolanda; Jimenez, Vanessa A.; Helms, Christa M.; Grant, Kathleen A.; Jones, Sara R.

    2016-01-01

    Rationale Hypofunction of striatal dopamine neurotransmission, or hypodopaminergia, is a consequence of excessive ethanol use, and is hypothesized to be a critical component of alcoholism, driving alcohol intake in an attempt to restore dopamine levels; however, the neurochemical mechanisms involved in these dopaminergic deficiencies are unknown. Objective Here we examined the specific dopaminergic adaptations that produce hypodopaminergia and contribute to alcohol use disorders using direct, sub-second measurements of dopamine signaling in nonhuman primates following chronic ethanol self-administration. Methods Female rhesus macaques completed one year of daily (22 hr/day) ethanol self-administration. Subsequently, fast-scan cyclic voltammetry was used in nucleus accumbens core brain slices to determine alterations in dopamine terminal function, including release and uptake kinetics, and sensitivity to quinpirole (D2/D3 dopamine receptor agonist) and U50,488 (kappa-opioid receptor agonist) induced inhibition of dopamine release. Results Ethanol drinking greatly increased uptake rates, which were positively correlated with lifetime ethanol intake. Furthermore, the sensitivity of dopamine D2/D3 autoreceptors and kappa-opioid receptors, which both act as negative regulators of presynaptic dopamine release, were moderately and robustly enhanced in ethanol drinkers. Conclusions Greater uptake rates and sensitivity to D2-type autoreceptor and kappa-opioid receptor agonists could converge to drive a hypodopaminergic state, characterized by reduced basal dopamine and an inability to mount appropriate dopaminergic responses to salient stimuli. Together, we outline the specific alterations to dopamine signaling that may drive ethanol-induced hypofunction of the dopamine system, and suggest that the dopamine and dynorphin/kappa-opioid receptor systems may be efficacious pharmcotherapeutic targets in the treatment of alcohol use disorders. PMID:26892380

  19. Increased Impulsivity Retards the Transition to Dorsolateral Striatal Dopamine Control of Cocaine Seeking

    PubMed Central

    Murray, Jennifer E.; Dilleen, Ruth; Pelloux, Yann; Economidou, Daina; Dalley, Jeffrey W.; Belin, David; Everitt, Barry J.

    2014-01-01

    Background Development of maladaptive drug-seeking habits occurs in conjunction with a ventral-to-dorsal striatal shift in dopaminergic control over behavior. Although these habits readily develop as drug use continues, high impulsivity predicts loss of control over drug seeking and taking. However, whether impulsivity facilitates the transition to dorsolateral striatum (DLS) dopamine-dependent cocaine-seeking habits or whether impulsivity and cocaine-induced intrastriatal shifts are additive processes is unknown. Methods High- and low-impulsive rats identified in the five-choice serial reaction-time task were trained to self-administer cocaine (.25 mg/infusion) with infusions occurring in the presence of a cue-light conditioned stimulus. Dopamine transmission was blocked in the DLS after three stages of training: early, transition, and late-stage, by bilateral intracranial infusions of α-flupenthixol (0, 5, 10, or 15 μg/side) during 15-min cocaine-seeking test sessions in which each response was reinforced by a cocaine-associated conditioned stimulus presentation. Results In early-stage tests, neither group was affected by DLS dopamine receptor blockade. In transition-stage tests, low-impulsive rats showed a significant dose-dependent reduction in cocaine seeking, whereas high-impulsive rats were still unaffected by α-flupenthixol infusions. In the final, late-stage seeking test, both groups showed dose-dependent sensitivity to dopamine receptor blockade. Conclusions The results demonstrate that high impulsivity is associated with a delayed transition to DLS-dopamine-dependent control over cocaine seeking. This suggests that, if impulsivity confers an increased propensity to addiction, it is not simply through a more rapid development of habits but instead through interacting corticostriatal and striato-striatal processes that result ultimately in maladaptive drug-seeking habits. PMID:24157338

  20. Methylphenidate-Induced Increases in Vesicular Dopamine Sequestration and Dopamine Release in the Striatum: The Role of Muscarinic and Dopamine D2 Receptors

    PubMed Central

    Volz, Trent J.; Farnsworth, Sarah J.; Rowley, Shane D.; Hanson, Glen R.; Fleckenstein, Annette E.

    2008-01-01

    Methylphenidate (MPD) administration alters the subcellular distribution of vesicular monoamine transporter-2 (VMAT-2)-containing vesicles in rat striatum. This report reveals previously undescribed pharmacological features of MPD by elucidating its receptor-mediated effects on VMAT-2-containing vesicles that co-fractionate with synaptosomal membranes after osmotic lysis (referred to herein as membrane-associated vesicles) and on striatal dopamine (DA) release. MPD administration increased DA transport into, and decreased the VMAT-2 immunoreactivity of, the membrane-associated vesicle subcellular fraction. These effects were mimicked by the D2 receptor agonist, quinpirole, and blocked by the D2 receptor antagonist, eticlopride. Both MPD and quinpirole increased vesicular DA content. However, MPD increased, whereas quinpirole decreased, K+-stimulated DA release from striatal suspensions. Like MPD, the muscarinic receptor agonist, oxotremorine, increased K+-stimulated DA release. Both eticlopride and the muscarinic receptor antagonist, scopolamine, blocked MPD-induced increases in K+-stimulated DA release while the N-methyl-D-aspartate receptor antagonist, MK-801, was without effect. This suggests that D2 receptors mediate both the MPD-induced redistribution of vesicles away from synaptosomal membranes and the MPD-induced upregulation of vesicles remaining at the membrane. This results in a redistribution of DA within the striatum from the cytoplasm into vesicles, leading to increased DA release. However, D2 receptor activation alone is not sufficient to mediate the MPD-induced increases in striatal DA release as muscarinic receptor activation is also required. These novel findings provide insight into the mechanism of action of MPD, regulation of DA sequestration/release, and treatment of disorders affecting DA disposition including attention-deficit hyperactivity disorder, substance abuse, and Parkinson's disease. PMID:18591219

  1. Neonatal overexpression of estrogen receptor-α alters midbrain dopamine neuron development and reverses the effects of low maternal care in female offspring.

    PubMed

    Peña, Catherine Jensen; Champagne, Frances A

    2015-10-01

    Maternal behavior is dependent on estrogen receptor-alpha (ERα; Esr1) and oxytocin receptor (OTR) signaling in the medial preoptic area (MPOA) of the hypothalamus, as well as dopamine signaling from the ventral tegmental area (VTA) to forebrain regions. Previous studies in rats indicate that low levels of maternal care, particularly licking/grooming (LG), lead to reduced levels of MPOA ERα and VTA dopamine neurons in female offspring and predict lower levels of postpartum maternal behavior by these offspring. The aim of this study was to determine the functional impact on maternal behavior of neonatal manipulation of ERα in females that had experienced low versus high levels of postnatal maternal LG. Adenovirus expressing ESR1 was targeted to the MPOA in female pups from low and high LG litters on postnatal day 2-3. Overexpression of ESR1 in low LG offspring elevated the level of ERα-immunoreactive cells in the MPOA and of tyrosine hydroxylase cells in the VTA to that observed in high LG females. Amongst juvenile female low LG offspring, ESR1 overexpression also decreased the latency to engage in maternal behavior toward donor pups. These results show that virally mediated expression of ESR1 in the neonatal rat hypothalamus results in lasting changes in ESR1 expression through the juvenile period, and can "rescue" hormone receptor levels and behavior of offspring reared by low LG dams, potentially mediated by downstream alterations within reward circuitry. Thus, the transmission of maternal behavior from one generation to the next can be augmented by neonatal ERα in the MPOA.

  2. Overexpression of several Arabidopsis histone genes increases Agrobacterium-medicated transformation and transgene expression in plants

    USDA-ARS?s Scientific Manuscript database

    The Arabidopsis histone H2A-1 is important for Agrobacterium-mediated plant transformation. Mutation of HTA1, the gene encoding histone H2A-1, in the rat5 mutant results in decreased T-(transferred) DNA integration into the plant genome, whereas over-expression of HTA1 increases transformation freq...

  3. Evidence that methylphenidate enhances the saliency of a mathematical task by increasing dopamine in the human brain.

    PubMed

    Volkow, Nora D; Wang, Gene-Jack; Fowler, Joanna S; Telang, Frank; Maynard, Laurence; Logan, Jean; Gatley, Samuel J; Pappas, Naomi; Wong, Christopher; Vaska, Paul; Zhu, Wei; Swanson, James M

    2004-07-01

    Methylphenidate is the most commonly prescribed drug for attention deficit hyperactivity disorder (ADHD), yet its therapeutic mechanisms are poorly understood. The objective of this study was to assess if methylphenidate, by increasing dopamine (neurotransmitter involved in motivation) in brain, would enhance the saliency of an academic task, making it more interesting. Healthy subjects (N=16) underwent positron emission tomography with [(11)C]raclopride (dopamine D(2) receptor radioligand that competes with endogenous dopamine for binding) to assess the effects of oral methylphenidate (20 mg) on extracellular dopamine in the striatum. The authors compared the effects of methylphenidate during an academic task (solving mathematical problems with monetary reinforcement) and a neutral task (passively viewing cards with no remuneration). In parallel, the effects of methylphenidate on the interest that the academic task elicited were also evaluated. Methylphenidate, when coupled with the mathematical task, significantly increased extracellular dopamine, but this did not occur when coupled with the neutral task. The mathematical task did not increase dopamine when coupled with placebo. Subjective reports about interest and motivation in the mathematical task were greater with methylphenidate than with placebo and were associated with dopamine increases. The significant association between methylphenidate-induced dopamine increases and the interest and motivation for the task confirms the prediction that methylphenidate enhances the saliency of an event by increasing dopamine. The enhanced interest for the task could increase attention and improve performance and could be one of the mechanisms underlying methylphenidate's therapeutic effects. These findings support educational strategies that make schoolwork more interesting as nonpharmacological interventions to treat ADHD.

  4. Increased α-tocotrienol content in seeds of transgenic rice overexpressing Arabidopsis γ-tocopherol methyltransferase.

    PubMed

    Zhang, Gui-Yun; Liu, Ru-Ru; Xu, Geng; Zhang, Peng; Li, Yin; Tang, Ke-Xuan; Liang, Guo-Hua; Liu, Qiao-Quan

    2013-02-01

    Vitamin E comprises a group of eight lipid soluble antioxidant compounds that are an essential part of the human diet. The α-isomers of both tocopherol and tocotrienol are generally considered to have the highest antioxidant activities. γ-tocopherol methyltransferase (γ-TMT) catalyzes the final step in vitamin E biosynthesis, the methylation of γ- and δ-isomers to α- and β-isomers. In present study, the Arabidopsis γ-TMT (AtTMT) cDNA was overexpressed constitutively or in the endosperm of the elite japonica rice cultivar Wuyujing 3 (WY3) by Agrobacterium-mediated transformation. HPLC analysis showed that, in brown rice of the wild type or transgenic controls with empty vector, the α-/γ-tocotrienol ratio was only 0.7, much lower than that for tocopherol (~19.0). In transgenic rice overexpressing AtTMT driven by the constitutive Ubi promoter, most of the γ-isomers were converted to α-isomers, especially the γ- and δ-tocotrienol levels were dramatically decreased. As a result, the α-tocotrienol content was greatly increased in the transgenic seeds. Similarly, over-expression of AtTMT in the endosperm also resulted in an increase in the α-tocotrienol content. The results showed that the α-/γ-tocopherol ratio also increased in the transgenic seeds, but there was no significant effect on α-tocopherol level, which may reflect the fact that γ-tocopherol is present in very small amounts in wild type rice seeds. AtTMT overexpression had no effect on the absolute total content of either tocopherols or tocotrienols. Taken together, these results are the first demonstration that the overexpression of a foreign γ-TMT significantly shift the tocotrienol synthesis in rice, which is one of the world's most important food crops.

  5. Activation of a D2 receptor increases electrical coupling between retinal horizontal cells by inhibiting dopamine release.

    PubMed Central

    Harsanyi, K; Mangel, S C

    1992-01-01

    In the fish retina, interplexiform cells release dopamine onto cone-driven horizontal cells. Dopamine decreases the electrical coupling between horizontal cells by activating adenylate cyclase through dopamine D1 receptors. Using intracellular recording, we have studied the effect of dopamine D2 receptor activation on horizontal cell electrical coupling in the intact goldfish retina. Superfusion of the D2 agonist LY171555 (quinpirole; 0.2-10 microM) increased horizontal cell coupling, as indicated by a decrease in responses to centered spots or slits of light. The length constant of the horizontal cell network increased an average of 31%. Although dopamine (0.5-20 microM) uncoupled horizontal cells, lower concentrations (e.g., 0.2 microM) initially uncoupled and then subsequently increased coupling beyond initial control levels. The coupling effect of LY171555 (10 microM) was blocked completely by prior application of the D1 agonist SKF 38393 at saturating (20 microM) or nonsaturating (2.5-5.0 microM) doses. Prior treatment of the retinas with 6-hydroxydopamine, which destroyed dopaminergic neurons, eliminated the coupling effect of LY171555 but not the uncoupling effect of SKF 38393. These results suggest that goldfish horizontal cells contain D1, but not D2, receptors and that dopamine activation of D2 autoreceptors on interplexiform cells inhibits dopamine release onto horizontal cells so that the electrical coupling between horizontal cells increases. PMID:1357661

  6. Clavulanic acid increases dopamine release in neuronal cells through a mechanism involving enhanced vesicle trafficking.

    PubMed

    Kost, Gina Chun; Selvaraj, Senthil; Lee, Young Bok; Kim, Deog Joong; Ahn, Chang-Ho; Singh, Brij B

    2011-10-24

    Clavulanic acid is a CNS-modulating compound with exceptional blood-brain barrier permeability and safety profile. Clavulanic acid has been proposed to have anti-depressant activity and is currently entering Phase IIb clinical trials for the treatment of Major Depressive Disorder (MDD). Studies have also shown that clavulanic acid suppresses anxiety and enhances sexual functions in rodent and primate models by a mechanism involving central nervous system (CNS) modulation, although its detailed mechanism of action has yet to be elucidated. To further examine its potential as a CNS modulating agent as well as its mechanism of action, we investigated the effects of clavulanic acid in neuronal cells. Our results indicate that clavulanic acid enhances dopamine release in PC12 and SH-SY5Y cells without affecting dopamine synthesis. Furthermore, using affinity chromatography we were able to identify two proteins, Munc18-1 and Rab4 that potentially bind to clavulanic acid and play a critical role in neurosecretion and the vesicle trafficking process. Consistent with this result, an increase in the translocation of Munc18-1 and Rab4 from the cytoplasm to the plasma membrane was observed in clavulanic acid treated cells. Overall, these data suggest that clavulanic acid enhances dopamine release in a mechanism involving Munc18-1 and Rab4 modulation and warrants further investigation of its therapeutic use in CNS disorders, such as depression. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  7. Parkinson's disease: low-dose haloperidol increases dopamine receptor sensitivity and clinical response.

    PubMed

    Hudson, Craig J; Seeman, Philip; Seeman, Mary V

    2014-01-01

    Background. It is known that ultra-low doses of haloperidol can cause dopamine supersensitivity of dopamine D2 receptors and related behaviour in animals. Objective. The objective was to determine whether a daily ultra-low dose of 40 micrograms of haloperidol could enhance the clinical action of levodopa in Parkinson's disease patients. Method. While continuing their daily treatment with levodopa, 16 patients with Parkinson's disease were followed weekly for six weeks. They received an add-on daily dose of 40 micrograms of haloperidol for the first two weeks only. The SPES/SCOPA scale (short scale for assessment of motor impairments and disabilities in Parkinson's disease) was administered before treatment and weekly throughout the trial. Results. The results showed a mean decrease in SPES/SCOPA scores after one week of the add-on treatment. Conclusion. SCOPA scores decreased after the addition of low-dose haloperidol to the standard daily levodopa dose. This finding is consistent with an increase in sensitivity of dopamine D2 receptors induced by haloperidol. Such treatment for Parkinson's disease may possibly permit the levodopa dose to be reduced and, thus, delay the onset of levodopa side effects.

  8. Progesterone increases dopamine neuron number in differentiating mouse embryonic stem cells

    PubMed Central

    Díaz, Néstor F.; Díaz-Martínez, Néstor E.; Velasco, Iván; Camacho-Arroyo, Ignacio

    2009-01-01

    Progesterone participates in the regulation of several functions in mammals including brain differentiation and dopaminergic transmission but the role of progesterone in dopaminergic cell differentiation is unknown. We investigated the effects of progesterone on dopaminergic differentiation of embryonic stem cells using a 5-stage protocol. Cells were incubated with different progesterone concentrations during the proliferation (stage 4) or differentiation (stage 5) phases. Progesterone added at 1, 10 and 100 nM during stage 4 increased 72, 80 and 62% respectively the number of dopamine neurons at stage 5 as compared to control group. The administration of progesterone at stage 5 did not induce significant changes in the number of dopamine neurons. These actions were not mediated by the activation of intracellular progesterone receptors, because RU 486 did not block the positive effects of progesterone on differentiation to dopaminergic neurons. Our results suggest that progesterone should be useful to produce higher proportions of dopamine neurons from embryonic stem cells aimed for treating Parkinson's disease. PMID:19500215

  9. Progesterone increases dopamine neurone number in differentiating mouse embryonic stem cells.

    PubMed

    Díaz, N F; Díaz-Martínez, N E; Velasco, I; Camacho-Arroyo, I

    2009-08-01

    Progesterone participates in the regulation of several functions in mammals, including brain differentiation and dopaminergic transmission, but the role of progesterone in dopaminergic cell differentiation is unknown. We investigated the effects of progesterone on dopaminergic differentiation of embryonic stem cells using a five-stage protocol. Cells were incubated with different progesterone concentrations during the proliferation (stage 4) or differentiation (stage 5) phases. Progesterone added at 1, 10 and 100 nm during stage 4 increased the number of dopamine neurones at stage 5 by 72%, 80% and 62%, respectively, compared to the control group. The administration of progesterone at stage 5 did not induce significant changes in the number of dopamine neurones. These actions were not mediated by the activation of intracellular progesterone receptors because RU 486 did not block the positive effects of progesterone on differentiation to dopaminergic neurones. The results obtained suggest that progesterone should prove useful with respect to producing higher proportions of dopamine neurones from embryonic stem cells in the treatment of Parkinson's disease.

  10. Cardiac‐specific Hexokinase 2 Overexpression Attenuates Hypertrophy by Increasing Pentose Phosphate Pathway Flux

    PubMed Central

    McCommis, Kyle S.; Douglas, Diana L.; Krenz, Maike; Baines, Christopher P.

    2013-01-01

    Background The enzyme hexokinase‐2 (HK2) phosphorylates glucose, which is the initiating step in virtually all glucose utilization pathways. Cardiac hypertrophy is associated with a switch towards increased glucose metabolism and decreased fatty acid metabolism. Recent evidence suggests that the increased glucose utilization is compensatory to the down‐regulated fatty acid metabolism during hypertrophy and is, in fact, beneficial. Therefore, we hypothesized that increasing glucose utilization by HK2 overexpression would decrease cardiac hypertrophy. Methods and Results Mice with cardiac‐specific HK2 overexpression displayed decreased hypertrophy in response to isoproterenol. Neonatal rat ventricular myocytes (NRVMs) infected with an HK2 adenovirus similarly displayed decreased hypertrophy in response to phenylephrine. Hypertrophy increased reactive oxygen species (ROS) levels, which were attenuated by HK2 overexpression, thereby decreasing NRVM hypertrophy and death. HK2 appears to modulate ROS via the pentose phosphate pathway, as inhibition of glucose‐6‐phosphate dehydrogenase with dehydroepiandrosterone decreased the ability of HK2 to diminish ROS and hypertrophy. Conclusions These results suggest that HK2 attenuates cardiac hypertrophy by decreasing ROS accumulation via increased pentose phosphate pathway flux. PMID:24190878

  11. BDNF over-expression induces striatal serotonin fiber sprouting and increases the susceptibility to l-DOPA-induced dyskinesia in 6-OHDA-lesioned rats.

    PubMed

    Tronci, Elisabetta; Napolitano, Francesco; Muñoz, Ana; Fidalgo, Camino; Rossi, Francesca; Björklund, Anders; Usiello, Alessandro; Carta, Manolo

    2017-11-01

    In addition to its role in neuronal survival, the brain neurotrophic factor (BDNF) has been shown to influence serotonin transmission and synaptic plasticity, events strongly implicated in the appearance of l-DOPA-induced dyskinesia (LID), a motor complication occurring in parkinsonian patients after long-term treatment with the dopamine precursor. In order to evaluate a possible influence of BDNF in the appearance of LID, 6-OHDA-lesioned rats received a striatal injection of different concentrations of an adeno-associated viral (AAV) vector over-expressing either BDNF or GFP, as control vector. Eight weeks later, animals started to receive a daily treatment with l-DOPA (4-6mg/kg plus benserazide 4-6mg/kg, s.c.) or saline, and dyskinesias, as well as l-DOPA-induced rotations, were evaluated at several time-points. Moreover, molecular changes in striatal D1 receptor-dependent cAMP/PKA and ERK/mTORC signaling pathways, as well as, sprouting of striatal serotonin axons, were measured. Results showed that the AAV-BDNF vector injection induced striatal over-expression of BDNF, as well as striatal and pallidal serotonin axon hyperinnervation. Moreover, rats that over-expressed BDNF were more prone to develop LID and l-DOPA-induced rotations, compared to the GFP-treated control group. Finally, rats that over-expressed BDNF showed increased levels of striatal D1R-dependent signaling phospho-proteins in response to l-DOPA administration. This study suggests that BDNF over-expression, by inducing changes in pre-synaptic serotonin axonal trophism, is able to exacerbate maladaptive responses to l-DOPA administration. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Dopamine increases CD14+CD16+ monocyte migration and adhesion in the context of substance abuse and HIV neuropathogenesis.

    PubMed

    Coley, Jacqueline S; Calderon, Tina M; Gaskill, Peter J; Eugenin, Eliseo A; Berman, Joan W

    2015-01-01

    Drug abuse is a major comorbidity of HIV infection and cognitive disorders are often more severe in the drug abusing HIV infected population. CD14+CD16+ monocytes, a mature subpopulation of peripheral blood monocytes, are key mediators of HIV neuropathogenesis. Infected CD14+CD16+ monocyte transmigration across the blood brain barrier mediates HIV entry into the brain and establishes a viral reservoir within the CNS. Despite successful antiretroviral therapy, continued influx of CD14+CD16+ monocytes, both infected and uninfected, contributes to chronic neuroinflammation and the development of HIV associated neurocognitive disorders (HAND). Drug abuse increases extracellular dopamine in the CNS. Once in the brain, CD14+CD16+ monocytes can be exposed to extracellular dopamine due to drug abuse. The direct effects of dopamine on CD14+CD16+ monocytes and their contribution to HIV neuropathogenesis are not known. In this study, we showed that CD14+CD16+ monocytes express mRNA for all five dopamine receptors by qRT-PCR and D1R, D5R and D4R surface protein by flow cytometry. Dopamine and the D1-like dopamine receptor agonist, SKF38393, increased CD14+CD16+ monocyte migration that was characterized as chemokinesis. To determine whether dopamine affected cell motility and adhesion, live cell imaging was used to monitor the accumulation of CD14+CD16+ monocytes on the surface of a tissue culture dish. Dopamine increased the number and the rate at which CD14+CD16+ monocytes in suspension settled to the dish surface. In a spreading assay, dopamine increased the area of CD14+CD16+ monocytes during the early stages of cell adhesion. In addition, adhesion assays showed that the overall total number of adherent CD14+CD16+ monocytes increased in the presence of dopamine. These data suggest that elevated extracellular dopamine in the CNS of HIV infected drug abusers contributes to HIV neuropathogenesis by increasing the accumulation of CD14+CD16+ monocytes in dopamine rich brain

  13. Dopamine Increases CD14+CD16+ Monocyte Migration and Adhesion in the Context of Substance Abuse and HIV Neuropathogenesis

    PubMed Central

    Coley, Jacqueline S.; Calderon, Tina M.; Gaskill, Peter J.; Eugenin, Eliseo A.; Berman, Joan W.

    2015-01-01

    Drug abuse is a major comorbidity of HIV infection and cognitive disorders are often more severe in the drug abusing HIV infected population. CD14+CD16+ monocytes, a mature subpopulation of peripheral blood monocytes, are key mediators of HIV neuropathogenesis. Infected CD14+CD16+ monocyte transmigration across the blood brain barrier mediates HIV entry into the brain and establishes a viral reservoir within the CNS. Despite successful antiretroviral therapy, continued influx of CD14+CD16+ monocytes, both infected and uninfected, contributes to chronic neuroinflammation and the development of HIV associated neurocognitive disorders (HAND). Drug abuse increases extracellular dopamine in the CNS. Once in the brain, CD14+CD16+ monocytes can be exposed to extracellular dopamine due to drug abuse. The direct effects of dopamine on CD14+CD16+ monocytes and their contribution to HIV neuropathogenesis are not known. In this study, we showed that CD14+CD16+ monocytes express mRNA for all five dopamine receptors by qRT-PCR and D1R, D5R and D4R surface protein by flow cytometry. Dopamine and the D1-like dopamine receptor agonist, SKF38393, increased CD14+CD16+ monocyte migration that was characterized as chemokinesis. To determine whether dopamine affected cell motility and adhesion, live cell imaging was used to monitor the accumulation of CD14+CD16+ monocytes on the surface of a tissue culture dish. Dopamine increased the number and the rate at which CD14+CD16+ monocytes in suspension settled to the dish surface. In a spreading assay, dopamine increased the area of CD14+CD16+ monocytes during the early stages of cell adhesion. In addition, adhesion assays showed that the overall total number of adherent CD14+CD16+ monocytes increased in the presence of dopamine. These data suggest that elevated extracellular dopamine in the CNS of HIV infected drug abusers contributes to HIV neuropathogenesis by increasing the accumulation of CD14+CD16+ monocytes in dopamine rich brain

  14. Upregulation of Dopamine D2 Receptors in the Nucleus Accumbens Indirect Pathway Increases Locomotion but Does Not Reduce Alcohol Consumption

    PubMed Central

    Gallo, Eduardo F; Salling, Michael C; Feng, Bo; Morón, Jose A; Harrison, Neil L; Javitch, Jonathan A; Kellendonk, Christoph

    2015-01-01

    Brain imaging studies performed in humans have associated low striatal dopamine release and D2R binding with alcohol dependence. Conversely, high striatal D2R binding has been observed in unaffected members of alcoholic families suggesting that high D2R function may protect against alcohol dependence. A possible protective role of increased D2R levels in the striatum is further supported by preclinical studies in non-human primates and rodents. Here, we determined whether there is a causal relationship between D2R levels and alcohol intake. To this end, we upregulated D2R expression levels in the nucleus accumbens of the adult mouse, but selectively restricted the upregulation to the indirect striatal output pathway, which endogenously expresses D2Rs. After overexpression was established, mice were tested in two models of free-choice alcohol drinking: the continuous and intermittent access two-bottle choice models. As anticipated, we found that D2R upregulation leads to hyperactivity in the open field. Contrary to our expectation, D2R upregulation did not reduce alcohol intake during continuous or intermittent access or when alcohol drinking was tested in the context of aversive outcomes. These data argue against a protective role of accumbal indirect pathway D2Rs in alcohol consumption but emphasize their importance in promoting locomotor activity. PMID:25578797

  15. Overexpression of the RieskeFeS Protein Increases Electron Transport Rates and Biomass Yield.

    PubMed

    Simkin, Andrew J; McAusland, Lorna; Lawson, Tracy; Raines, Christine A

    2017-09-01

    In this study, we generated transgenic Arabidopsis (Arabidopsis thaliana) plants overexpressing the Rieske FeS protein (PetC), a component of the cytochrome b6f (cyt b6f) complex. Increasing the levels of this protein resulted in concomitant increases in the levels of cyt f (PetA) and cyt b6 (PetB), core proteins of the cyt b6f complex. Interestingly, an increase in the levels of proteins in both the photosystem I (PSI) and PSII complexes also was seen in the Rieske FeS overexpression plants. Although the mechanisms leading to these changes remain to be identified, the transgenic plants presented here provide novel tools to explore this. Importantly, overexpression of the Rieske FeS protein resulted in substantial and significant impacts on the quantum efficiency of PSI and PSII, electron transport, biomass, and seed yield in Arabidopsis plants. These results demonstrate the potential for manipulating electron transport processes to increase crop productivity. © 2017 The author(s). All Rights Reserved.

  16. Overexpression of Selenocysteine Methyltransferase in Arabidopsis and Indian Mustard Increases Selenium Tolerance and Accumulation1

    PubMed Central

    LeDuc, Danika L.; Tarun, Alice S.; Montes-Bayon, Maria; Meija, Juris; Malit, Michele F.; Wu, Carol P.; AbdelSamie, Manal; Chiang, Chih-Yuan; Tagmount, Abderrhamane; deSouza, Mark; Neuhierl, Bernhard; Böck, August; Caruso, Joseph; Terry, Norman

    2004-01-01

    A major goal of phytoremediation is to transform fast-growing plants with genes from plant species that hyperaccumulate toxic trace elements. We overexpressed the gene encoding selenocysteine methyltransferase (SMT) from the selenium (Se) hyperaccumulator Astragalus bisulcatus in Arabidopsis and Indian mustard (Brassica juncea). SMT detoxifies selenocysteine by methylating it to methylselenocysteine, a nonprotein amino acid, thereby diminishing the toxic misincorporation of Se into protein. Our Indian mustard transgenic plants accumulated more Se in the form of methylselenocysteine than the wild type. SMT transgenic seedlings tolerated Se, particularly selenite, significantly better than the wild type, producing 3- to 7-fold greater biomass and 3-fold longer root lengths. Moreover, SMT plants had significantly increased Se accumulation and volatilization. This is the first study, to our knowledge, in which a fast-growing plant was genetically engineered to overexpress a gene from a hyperaccumulator in order to increase phytoremediation potential. PMID:14671009

  17. CTT1 overexpression increases life span of calorie-restricted Saccharomyces cerevisiae deficient in Sod1.

    PubMed

    Rona, Germana; Herdeiro, Ricardo; Mathias, Cristiane Juliano; Torres, Fernando Araripe; Pereira, Marcos Dias; Eleutherio, Elis

    2015-06-01

    Studies using different organisms revealed that reducing calorie intake, without malnutrition, known as calorie restriction (CR), increases life span, but its mechanism is still unkown. Using the yeast Saccharomyces cerevisiae as eukaryotic model, we observed that Cu, Zn-superoxide dismutase (Sod1p) is required to increase longevity, as well as to confer protection against lipid and protein oxidation under CR. Old cells of sod1 strain also presented a premature induction of apoptosis. However, when CTT1 (which codes for cytosolic catalase) was overexpressed, sod1 and WT strains showed similar survival rates. Furthermore, CTT1 overexpression decreased lipid peroxidation and delayed the induction of apoptotic process. Superoxide is rapidly converted to hydrogen peroxide by superoxide dismutase, but it also undergoes spontaneous dismutation albeit at a slower rate. However, the quantity of peroxide produced from superoxide in this way is two-fold higher. Peroxide degradation, catalyzed by catalase, is of vital importance, because in the presence of a reducer transition metal peroxide is reduced to the highly reactive hydroxyl radical, which reacts indiscriminately with most cellular constituents. These findings might explain why overexpression of catalase was able to overcome the deficiency of Sod1p, increasing life span in response to CR.

  18. Overexpression of Serpinb1 in Chinese hamster ovary cells increases recombinant IgG productivity.

    PubMed

    Lin, Nan; Brooks, Jeanne; Sealover, Natalie; George, Henry J; Kayser, Kevin J

    2015-01-10

    We report the discovery and validation of a novel CHO cell engineering target for improving IgG expression, serpin peptidase inhibitor, clade B, member 1 (Serpinb1). Transcriptomic studies using microarrays revealed that Serpinb1 was up-regulated in cultures with IgG heavy and light chain transcription transiently repressed compared with cultures treated with non-targeting siRNA. As proof of concept, a lentiviral vector was employed to overexpress the Chinese Hamster Serpinb1 in a CHOZN(®) Glutamine Synthetase (-/-) recombinant IgG producing CHO line. The lentiviral stable pool demonstrated 4.2-fold SERPINB1 overexpression compared with the non-transduced control. The peak viable cell density (VCD) and peak IgG volumetric productivity of the lentiviral stable pool increased 1.3 and 2.0 fold, respectively, compared with the non-transduced control. For host cell engineering, a plasmid encoding SERPINB1 was transfected into the CHOZN(®) GS (-/-) host cell line to create several stable pools. Single-cell clones isolated from the pools were characterized for their SERPINB1 expression levels and growth. The clone (SERPINB1_OE_27) with the highest SERPINB1 expression had decreased peak viable cell density and exponential phase growth rate. Selected SERPINB1 OE clones were subsequently evaluated for their IgG expression capabilities using GS selection. Clone SERPINB1_OE_42 with moderate SERPINB1 overexpression demonstrated increased IgG productivity in "bulk" selection. We conclude that manipulating Serpinb1 expression can lead to increased recombinant IgG productivity, but the effect in host cell lines may vary by clone and by overexpression level. This work represents the ongoing effort in applying "-omics" findings to novel CHO host cell line engineering. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Increased salt tolerance with overexpression of cation/proton antiporter 1 genes: a meta-analysis.

    PubMed

    Ma, Yuan-Chun; Augé, Robert M; Dong, Chao; Cheng, Zong-Ming Max

    2017-02-01

    Cation/proton antiporter 1 (CPA1) genes encode cellular Na(+) /H(+) exchanger proteins, which act to adjust ionic balance. Overexpression of CPA1s can improve plant performance under salt stress. However, the diversified roles of the CPA1 family and the various parameters used in evaluating transgenic plants over-expressing CPA1s make it challenging to assess the complex functions of CPA1s and their physiological mechanisms in salt tolerance. Using meta-analysis, we determined how overexpression of CPA1s has influenced several plant characteristics involved in response and resilience to NaCl stress. We also evaluated experimental variables that favour or reduce CPA1 effects in transgenic plants. Viewed across studies, overexpression of CPA1s has increased the magnitude of 10 of the 19 plant characteristics examined, by 25% or more. Among the ten moderating variables, several had substantial impacts on the extent of CPA1 influence: type of culture media, donor and recipient type and genus, and gene family. Genes from monocotyledonous plants stimulated root K(+) , root K(+) /Na(+) , total chlorophyll, total dry weight and root length much more than genes from dicotyledonous species. Genes transformed to or from Arabidopsis have led to smaller CPA1-induced increases in plant characteristics than genes transferred to or from other genera. Heterogeneous expression of CPA1s led to greater increases in leaf chlorophyll and root length than homologous expression. These findings should help guide future investigations into the function of CPA1s in plant salt tolerance and the use of genetic engineering for breeding of resistance. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  20. Neonatal exposure to estradiol valerate increases dopamine content in nigrostriatal pathway during adulthood in the rat.

    PubMed

    Cruz, G; Riquelme, R; Espinosa, P; Jara, P; Dagnino-Subiabre, A; Renard, G M; Sotomayor-Zárate, R

    2014-05-01

    Research in programming has focused in the study of stimuli that affect sensitive periods of development such as prenatal and neonatal stage. We previously showed that exposure to estradiol valerate to female rats during the first 12 h of life increased catecholamine content in ventromedial-arcuatus hypothalamus of the adult rat. However, changes in others dopaminergic circuits have not been studied. The purpose of this work was to determine the neurotransmitters changes induced by neonatal estradiol valerate (0.1 mg/50 μl s. c. per rat) administration on nigrostriatal pathway of adult female rats. Sesame oil (50 μl s. c. per rat) was administered in a control parallel group. EV-1 adult rats presented effective markers of long-term estrogenization as decreased serum levels of progesterone and a reduction in the size of estrogen-sensitive organs. In the brain, neonatal estradiol valerate administration led to a significant increase in dopamine content in striatum, substantia nigra and ventral tegmental area. With respect to the contents of dopamine metabolites, only 3-methoxytyramine content increased in substantia nigra and ventral tegmental area. In addition, the content of noradrenaline increased only in striatum. Interestingly, estrogenized rats lacked locomotor activity induced by acute dose of amphetamine (1 mg/kg i. p.). Altogether, these results show that neonatal exposure to estradiol valerate permanently modified the content of monoamine neurotransmitters in nigrostriatal pathway and amphetamine-induced locomotor activity of adult female rats. This might imply that estrogenized rats could have changes in the expression of key proteins in dopaminergic regulation, as tyrosine hydroxylase and dopamine transporter. © Georg Thieme Verlag KG Stuttgart · New York.

  1. N-Myc overexpression increases cisplatin resistance in neuroblastoma via deregulation of mitochondrial dynamics

    PubMed Central

    Casinelli, Gabriella; LaRosa, Jeff; Sharma, Manika; Cherok, Edward; Banerjee, Swati; Branca, Maria; Edmunds, Lia; Wang, Yudong; Sims-Lucas, Sunder; Churley, Luke; Kelly, Samantha; Sun, Ming; Stolz, Donna; Graves, J Anthony

    2016-01-01

    N-Myc is a global transcription factor that regulates the expression of genes involved in a number of essential cellular processes including: ribosome biogenesis, cell cycle and apoptosis. Upon deregulation, N-Myc can drive pathologic expression of many of these genes, which ultimately defines its oncogenic potential. Overexpression of N-Myc has been demonstrated to contribute to tumorigenesis, most notably for the pediatric tumor, neuroblastoma. Herein, we provide evidence that deregulated N-Myc alters the expression of proteins involved in mitochondrial dynamics. We found that N-Myc overexpression leads to increased fusion of the mitochondrial reticulum secondary to changes in protein expression due to aberrant transcriptional and post-translational regulation. We believe the structural changes in the mitochondrial network in response to N-Myc amplification in neuroblastoma contributes to two important aspects of tumor development and maintenance—bioenergetic alterations and apoptotic resistance. Specifically, we found that N-Myc overexpressing cells are resistant to programmed cell death in response to exposure to low doses of cisplatin, and demonstrated that this was dependent on increased mitochondrial fusion. We speculate that these changes in mitochondrial structure and function may contribute significantly to the aggressive clinical ph9enotype of N-Myc amplified neuroblastoma. PMID:28028439

  2. Differential regional development of tolerance to increase in dopamine turnover upon repeated neuroleptic administration.

    PubMed

    Scatton, B

    1977-12-15

    Repeated treatment with haloperidol and sulpiride induced tolerance to the increases in homovanillic and dihydroxyphenyl acetic acids in the striatum, nucleus accumbens, tuberculum olfactorium and frontal cortex of the rat. The threshold dose inducing this effect appeared to be lower in the striatum than in the limbic regions. Similar results were found in the frontal cortex by measuring dopamine utilization. Moreover, tolerance developed earlier in the striatum than in the limbic areas. The possible reasons are discussed for the differential development of tolerance in the various DA areas investigated.

  3. Human neural stem cells survive long term in the midbrain of dopamine-depleted monkeys after GDNF overexpression and project neurites toward an appropriate target.

    PubMed

    Wakeman, Dustin R; Redmond, D Eugene; Dodiya, Hemraj B; Sladek, John R; Leranth, Csaba; Teng, Yang D; Samulski, R Jude; Snyder, Evan Y

    2014-06-01

    Transplanted multipotent human fetal neural stem cells (hfNSCs) significantly improved the function of parkinsonian monkeys in a prior study primarily by neuroprotection, with only 3%-5% of cells expressing a dopamine (DA) phenotype. In this paper, we sought to determine whether further manipulation of the neural microenvironment by overexpression of a developmentally critical molecule, glial cell-derived neurotrophic factor (GDNF), in the host striatum could enhance DA differentiation of hfNSCs injected into the substantia nigra and elicit growth of their axons to the GDNF-expressing target. hfNSCs were transplanted into the midbrain of 10 green monkeys exposed to 1-methyl-4-phenyl-1,2,3,6-tetrahydro-pyridine. GDNF was delivered concomitantly to the striatum via an adeno-associated virus serotype 5 vector, and the fate of grafted cells was assessed after 11 months. Donor cells remained predominantly within the midbrain at the injection site and sprouted numerous neurofilament-immunoreactive fibers that appeared to course rostrally toward the striatum in parallel with tyrosine hydroxylase-immunoreactive fibers from the host substantia nigra but did not mature into DA neurons. This work suggests that hfNSCs can generate neurons that project long fibers in the adult primate brain. However, in the absence of region-specific signals and despite GDNF overexpression, hfNSCs did not differentiate into mature DA neurons in large numbers. It is encouraging, however, that the adult primate brain appeared to retain axonal guidance cues. We believe that transplantation of stem cells, specifically instructed ex vivo to yield DA neurons, could lead to reconstruction of some portion of the nigrostriatal pathway and prove beneficial for the parkinsonian condition. ©AlphaMed Press.

  4. Melanocortin 3 Receptor Signaling in Midbrain Dopamine Neurons Increases the Motivation for Food Reward.

    PubMed

    Pandit, Rahul; Omrani, Azar; Luijendijk, Mieneke C M; de Vrind, Véronne A J; Van Rozen, Andrea J; Ophuis, Ralph J A Oude; Garner, Keith; Kallo, Imre; Ghanem, Alexander; Liposits, Zsolt; Conzelmann, Karl-Klaus; Vanderschuren, Louk J M J; la Fleur, Susanne E; Adan, Roger A H

    2016-08-01

    The central melanocortin (MC) system mediates its effects on food intake via MC3 (MC3R) and MC4 receptors (MC4R). Although the role of MC4R in meal size determination, satiation, food preference, and motivation is well established, the involvement of MC3R in the modulation of food intake has been less explored. Here, we investigated the role of MC3R on the incentive motivation for food, which is a crucial component of feeding behavior. Dopaminergic neurons within the ventral tegmental area (VTA) have a crucial role in the motivation for food. We here report that MC3Rs are expressed on VTA dopaminergic neurons and that pro-opiomelanocortinergic (POMC) neurons in the arcuate nucleus of the hypothalamus (Arc) innervate these VTA dopaminergic neurons. Our findings show that intracerebroventricular or intra-VTA infusion of the selective MC3R agonist γMSH increases responding for sucrose under a progressive ratio schedule of reinforcement, but not free sucrose consumption in rats. Furthermore, ex vivo electrophysiological recordings show increased VTA dopaminergic neuronal activity upon γMSH application. Consistent with a dopamine-mediated effect of γMSH, the increased motivation for sucrose after intra-VTA infusion of γMSH was blocked by pretreatment with the dopamine receptor antagonist α-flupenthixol. Taken together, we demonstrate an Arc POMC projection onto VTA dopaminergic neurons that modulates motivation for palatable food via activation of MC3R signaling.

  5. Heme oxygenase-1 overexpression increases liver injury after bile duct ligation in rats.

    PubMed

    Froh, Matthias; Conzelmann, Lars; Walbrun, Peter; Netter, Susanne; Wiest, Reiner; Wheeler, Michael-D; Lehnert, Mark; Uesugi, Takehiko; Scholmerich, Jurgen; Thurman, Ronald G

    2007-07-07

    To investigate the effects of heme oxygenase-1 (HO-1) against oxidant-induced injury caused by bile duct ligation (BDL). Either cobalt protoporphyrin (CoPP), a HO-1 inducer, or saline were injected intraperitoneally in male SD-rats. Three days later, BDL or sham-operations were performed. Rats were sacrificed 3 wk after BDL and livers were harvested for histology. Fibrosis was evaluated by sirius red staining and image analysis. Alpha-smooth muscular actin, which indicates activation of stellate cells, was detected by immunohistochemical staining, and cytokine and collagen-Ialpha (Col-Ialpha) mRNA expression was detected using RNase protection assays. Serum alanine transaminase increased 8-fold above normal levels one day after BDL. Surprisingly, enzyme release was not reduced in rats receiving CoPP. Liver fibrosis was evaluated 3 wk after BDL and the sirius red-positive area was found to be increased to about 7.8%. However, in CoPP pretreated rats sirius red-positive areas were increased to about 11.7% after BDL. Collagen-Ialpha and TGF-beta mRNA increased significantly by BDL. Again, this effect was increased by HO-1 overexpression. Hepatic fibrosis due to BDL is not reduced by the HO-1 inducer CoPP. In contrast, HO-1 overexpression increases liver injury in rats under conditions of experimental chronic cholestasis.

  6. Heme oxygenase-1 overexpression increases liver injury after bile duct ligation in rats

    PubMed Central

    Froh, Matthias; Conzelmann, Lars; Walbrun, Peter; Netter, Susanne; Wiest, Reiner; Wheeler, Michael D; Lehnert, Mark; Uesugi, Takehiko; Scholmerich, Jurgen; Thurman, Ronald G

    2007-01-01

    AIM: To investigate the effects of heme oxygenase-1 (HO-1) against oxidant-induced injury caused by bile duct ligation (BDL). METHODS: Either cobalt protoporphyrin (CoPP), a HO-1 inducer, or saline were injected intraperitoneally in male SD-rats. Three days later, BDL or sham-operations were performed. Rats were sacrificed 3 wk after BDL and livers were harvested for histology. Fibrosis was evaluated by sirius red staining and image analysis. Alpha-smooth muscular actin, which indicates activation of stellate cells, was detected by immunohistochemical staining, and cytokine and collagen-Iα (Col-Iα) mRNA expression was detected using RNase protection assays. RESULTS: Serum alanine transaminase increased 8-fold above normal levels one day after BDL. Surprisingly, enzyme release was not reduced in rats receiving CoPP. Liver fibrosis was evaluated 3 wk after BDL and the sirius red-positive area was found to be increased to about 7.8%. However, in CoPP pretreated rats sirius red-positive areas were increased to about 11.7% after BDL. Collagen-Iα and TGF-β mRNA increased significantly by BDL. Again, this effect was increased by HO-1 overexpression. CONCLUSION: Hepatic fibrosis due to BDL is not reduced by the HO-1 inducer CoPP. In contrast, HO-1 overexpression increases liver injury in rats under conditions of experimental chronic cholestasis. PMID:17659695

  7. Dopamine acts on D2 receptors to increase potassium conductance in neurones of the rat substantia nigra zona compacta.

    PubMed Central

    Lacey, M G; Mercuri, N B; North, R A

    1987-01-01

    1. Intracellular recordings were made from neurones in the substantia nigra zona compacta in slices of rat mesencephalon in vitro. The majority of neurones fired action potentials spontaneously at 0.2-5.6 Hz. Dopamine, applied either by superfusion or from the tip of a pressurized pipette, prevented spontaneous action potential firing and hyperpolarized the membrane. 2. When the membrane potential was held negative to the threshold for action potential firing, the hyperpolarization evoked by dopamine was accompanied by a fall in input resistance. Under voltage clamp, dopamine produced an outward membrane current associated with an increase in membrane conductance. The effects of superfused dopamine on firing rate, membrane potential and membrane current were concentration dependent in the range 1-100 microM. 3. The reversal potential for the hyperpolarizations and the outward currents produced by dopamine was -109.7 +/- 1.7 mV (n = 12) when the potassium concentration was 2.5 mM and -74.0 +/- 5.0 mV (n = 4) when the potassium concentration was 10.5 mM. The change in reversal potentials in these and intermediate potassium concentrations was described by the Nernst equation. 4. The outward current induced by dopamine was reversibly reduced by barium (100-300 microM) and by high concentrations of tetraethylammonium (greater than or equal to 10 mM). Calcium-free solutions with cobalt (0.5-2 mM) did not reduce the current in response to dopamine during the first 5 min of their application. Currents and hyperpolarizations caused by dopamine were unaffected by tetrodotoxin (1 microM). 5. The hyperpolarization produced by dopamine was mimicked by the D2 receptor agonist quinpirole (LY 171555, 0.1-3 microM) and was blocked by the D2 receptor agonists domperidone and (-)-sulpiride. Agonists and antagonists at D1 receptors had no effect. 6. (-)-Sulpiride (30 nM-30 microM) produced a progressive shift to the right in the concentration-response curve to either dopamine or

  8. Music and Methamphetamine: Conditioned Cue-induced Increases in Locomotor Activity and Dopamine Release in Rats

    PubMed Central

    Polston, J.E.; Rubbinaccio, H.Y.; Morra, J.T.; Sell, E.M.; Glick, S.D.

    2011-01-01

    Associations between drugs of abuse and cues facilitate the acquisition and maintenance of addictive behaviors. Although significant research has been done to elucidate the role that simple discriminative or discrete conditioned stimuli (e.g., a tone or a light) play in addiction, less is known about complex environmental cues. The purpose of the present study was to examine the role of a musical conditioned stimulus by assessing locomotor activity and in vivo microdialysis. Two groups of rats were given non-contingent injections of methamphetamine (1.0 mg/kg) or vehicle and placed in standard conditioning chambers. During these conditioning sessions both groups were exposed to a continuous conditioned stimulus, in the form of a musical selection (“Four” by Miles Davis) played repeatedly for ninety minutes. After seven consecutive conditioning days subjects were given one day of rest, and subsequently tested for locomotor activity or dopamine release in the absence of drug while the musical conditioned stimulus was continually present. The brain regions examined included the basolateral amygdala, nucleus accumbens, and prefrontal cortex. The results show that music is an effective contextual conditioned stimulus, significantly increasing locomotor activity after repeated association with methamphetamine. Furthermore, this musical conditioned stimulus significantly increased extracellular dopamine levels in the basolateral amygdala and nucleus accumbens. These findings support other evidence showing the importance of these brain regions in conditioned learning paradigms, and demonstrate that music is an effective conditioned stimulus warranting further investigation. PMID:21145911

  9. Music and methamphetamine: conditioned cue-induced increases in locomotor activity and dopamine release in rats.

    PubMed

    Polston, J E; Rubbinaccio, H Y; Morra, J T; Sell, E M; Glick, S D

    2011-03-01

    Associations between drugs of abuse and cues facilitate the acquisition and maintenance of addictive behaviors. Although significant research has been done to elucidate the role that simple discriminative or discrete conditioned stimuli (e.g., a tone or a light) play in addiction, less is known about complex environmental cues. The purpose of the present study was to examine the role of a musical conditioned stimulus by assessing locomotor activity and in vivo microdialysis. Two groups of rats were given non-contingent injections of methamphetamine (1.0 mg/kg) or vehicle and placed in standard conditioning chambers. During these conditioning sessions both groups were exposed to a continuous conditioned stimulus, in the form of a musical selection ("Four" by Miles Davis) played repeatedly for 90 min. After seven consecutive conditioning days subjects were given one day of rest, and subsequently tested for locomotor activity or dopamine release in the absence of drugs while the musical conditioned stimulus was continually present. The brain regions examined included the basolateral amygdala, nucleus accumbens, and prefrontal cortex. The results show that music is an effective contextual conditioned stimulus, significantly increasing locomotor activity after repeated association with methamphetamine. Furthermore, this musical conditioned stimulus significantly increased extracellular dopamine levels in the basolateral amygdala and nucleus accumbens. These findings support other evidence showing the importance of these brain regions in conditioned learning paradigms, and demonstrate that music is an effective conditioned stimulus warranting further investigation. Copyright © 2010 Elsevier Inc. All rights reserved.

  10. Arsenic treatment increase Aurora-A overexpression through E2F1 activation in bladder cells.

    PubMed

    Kao, Yu-Ting; Wu, Chin-Han; Wu, Shan-Ying; Lan, Sheng-Hui; Liu, Hsiao-Sheng; Tseng, Ya-Shih

    2017-04-18

    Arsenic is a widely distributed metalloid compound that has biphasic effects on cultured cells. In large doses, arsenic can be toxic enough to trigger cell death. In smaller amounts, non-toxic doses may promote cell proliferation and induces carcinogenesis. Aberration of chromosome is frequently detected in epithelial cells and lymphocytes of individuals from arsenic contaminated areas. Overexpression of Aurora-A, a mitotic kinase, results in chromosomal instability and cell transformation. We have reported that low concentration (≦1 μM) of arsenic treatment increases Aurora-A expression in immortalized bladder urothelial E7 cells. However, how arsenic induces carcinogenesis through Aurora-A activation remaining unclear. Bromodeoxyuridine (BrdU) staining, MTT assay, and flow cytometry assay were conducted to determine cell proliferation. Messenger RNA and protein expression levels of Aurora-A were detected by reverse transcriptional-PCR and Western blotting, respectively. Centrosome of cells was observed by immunofluorescent staining. The transcription factor of Aurora-A was investigated by promoter activity, chromosome immunoprecipitation (ChIP), and small interfering RNA (shRNA) assays. Mouse model was utilized to confirm the relationship between arsenic and Aurora-A. We reveal that low dosage of arsenic treatment increased cell proliferation is associated with accumulated cell population at S phase. We also detected increased Aurora-A expression at mRNA and protein levels in immortalized bladder urothelial E7 cells exposed to low doses of arsenic. Arsenic-treated cells displayed increased multiple centrosome which is resulted from overexpressed Aurora-A. Furthermore, the transcription factor, E2F1, is responsible for Aurora-A overexpression after arsenic treatment. We further disclosed that Aurora-A expression and cell proliferation were increased in bladder and uterus tissues of the BALB/c mice after long-term arsenic (1 mg/L) exposure for 2 months. We

  11. Increase in Cellulose Accumulation and Improvement of Saccharification by Overexpression of Arabinofuranosidase in Rice

    PubMed Central

    Nakamura, Hidemitsu; Hakata, Makoto; Ichikawa, Hiroaki; Hirochika, Hirohiko; Ishii, Tadashi; Satoh, Shinobu; Iwai, Hiroaki

    2013-01-01

    Cellulosic biomass is available for the production of biofuel, with saccharification of the cell wall being a key process. We investigated whether alteration of arabinoxylan, a major hemicellulose in monocots, causes an increase in saccharification efficiency. Arabinoxylans have β-1,4-D-xylopyranosyl backbones and 1,3- or 1,4-α-l-arabinofuranosyl residues linked to O-2 and/or O-3 of xylopyranosyl residues as side chains. Arabinose side chains interrupt the hydrogen bond between arabinoxylan and cellulose and carry an ester-linked feruloyl substituent. Arabinose side chains are the base point for diferuloyl cross-links and lignification. We analyzed rice plants overexpressing arabinofuranosidase (ARAF) to study the role of arabinose residues in the cell wall and their effects on saccharification. Arabinose content in the cell wall of transgenic rice plants overexpressing individual ARAF full-length cDNA (OsARAF1-FOX and OsARAF3-FOX) decreased 25% and 20% compared to the control and the amount of glucose increased by 28.2% and 34.2%, respectively. We studied modifications of cell wall polysaccharides at the cellular level by comparing histochemical cellulose staining patterns and immunolocalization patterns using antibodies raised against α-(1,5)-linked l-Ara (LM6) and β-(1,4)-linked d-Xyl (LM10 and LM11) residues. However, they showed no visible phenotype. Our results suggest that the balance between arabinoxylan and cellulose might maintain the cell wall network. Moreover, ARAF overexpression in rice effectively leads to an increase in cellulose accumulation and saccharification efficiency, which can be used to produce bioethanol. PMID:24223786

  12. Low Dopamine D2 Receptor Increases Vulnerability to Obesity Via Reduced Physical Activity, Not Increased Appetitive Motivation.

    PubMed

    Beeler, Jeff A; Faust, Rudolf P; Turkson, Susie; Ye, Honggang; Zhuang, Xiaoxi

    2016-06-01

    The dopamine D2 receptor (D2R) has received much attention in obesity studies. Data indicate that D2R is reduced in obesity and that the TaqA1 D2R variant may be more prevalent among obese persons. It is often suggested that reduced D2R generates a reward deficiency and altered appetitive motivation that induces compulsive eating and contributes to obesity. Although dopamine is known to regulate physical activity, it is often neglected in these studies, leaving open the question of whether reduced D2R contributes to obesity through alterations in energy expenditure and activity. We generated a D2R knockdown (KD) mouse line and assessed both energy expenditure and appetitive motivation under conditions of diet-induced obesity. The KD mice did not gain more weight or show increased appetitive motivation compared with wild-type mice in a standard environment; however, in an enriched environment with voluntary exercise opportunities, KD mice exhibited dramatically lower activity and became more obese than wild-type mice, obtaining no protective benefit from exercise opportunities. These data suggest the primary contribution of altered D2R signaling to obesity lies in altered energy expenditure rather than the induction of compulsive overeating. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  13. Catalase overexpression reduces the germination time and increases the pathogenicity of the fungus Metarhizium anisopliae.

    PubMed

    Morales Hernandez, Claudia Erika; Padilla Guerrero, Israel Enrique; Gonzalez Hernandez, Gloria Angelica; Salazar Solis, Eduardo; Torres Guzman, Juan Carlos

    2010-07-01

    Catalases and peroxidases are the most important enzymes that degrade hydrogen peroxide into water and oxygen. These enzymes and superoxide dismutase are the first lines of cell defense against reactive oxygen species. Metarhizium anisopliae displays an increase in catalase-peroxidase activity during germination and growth. To determine the importance of catalase during the invasion process of M. anisopliae, we isolated the cat1 gene. cat1 cDNA expression in Escherichia coli and the subsequent purification of the protein confirmed that the cat1 gene codes for a monofunctional catalase. Expression analysis of this gene by RT-PCR from RNA isolated from fungus grown in liquid cultures showed a decrease in the expression level of the cat1 gene during germination and an increase during mycelium growth. The expression of this gene in the fungus during the infection process of the larvae of Plutella xylostella also showed a significant increase during invasive growth. Transgenic strains overexpressing the cat1 gene had twice the catalase activity of the wild-type strain. This increase in catalase activity was accompanied by a higher level of resistance to exogenous hydrogen peroxide and a reduction in the germination time. This improvement was also observed during the infection of P. xylostella larvae. M. anisopliae transgenic strains overexpressing the cat1 gene grew and spread faster in the soft tissue of the insect, reducing the time to death of the insect by 25% and the dose required to kill 50% of the population 14-fold.

  14. Chronic nicotine and smoking treatment increases dopamine transporter mRNA expression in the rat midbrain.

    PubMed

    Li, Shupeng; Kim, Kun Yang; Kim, Jong Hun; Kim, Jin Hoi; Park, Moon Seok; Bahk, Jong Yoon; Kim, Myeong Ok

    2004-06-03

    Previous pharmacokinetics and electrophysiological results indicated an important role of nicotine in the modulation of dopamine transporter (DAT). To elucidate the expression changes of DAT on chronic nicotine and smoke administration, the effects of nicotine and passive cigarette smoke on DAT mRNA expression in the ventral tegmental area (VTA) and the substantia nigra (SN) area were examined using in situ hybridization and RNase protection assay. The results showed that chronic nicotine and smoke exposure highly unregulated DAT mRNA in the VTA and SN areas, including the dorsal part of substantia nigra pars compacta. Smoke for 30 min showed the highest increasing effect, whereas nicotine and smoke for 10 min only had slightly increasing effects. However, smoke for 1 h showed an increasing effect to a lesser extent than 30 min. These results revealed a new aspect of nicotine's modulation on the DAT, and may have important roles in neuropsychological disorders related to the midbrain abnormalities such as drugs addiction.

  15. Transcranial direct-current stimulation increases extracellular dopamine levels in the rat striatum

    PubMed Central

    Tanaka, Tomoko; Takano, Yuji; Tanaka, Satoshi; Hironaka, Naoyuki; Kobayashi, Kazuto; Hanakawa, Takashi; Watanabe, Katsumi; Honda, Manabu

    2013-01-01

    Background: Transcranial direct-current stimulation (tDCS) is a non-invasive procedure that achieves polarity-dependent modulation of neuronal membrane potentials. It has recently been used as a functional intervention technique for the treatment of psychiatric and neurological diseases; however, its neuronal mechanisms have not been fully investigated in vivo. Objective/Hypothesis: To investigate whether the application of cathodal or anodal tDCS affects extracellular dopamine and serotonin levels in the rat striatum. Methods: Stimulation and in vivo microdialysis were carried out under urethane anesthesia, and microdialysis probes were slowly inserted into the striatum. After the collection of baseline fractions in the rat striatum, cathodal or anodal tDCS was applied continuously for 10 min with a current intensity of 800 μA from an electrode placed on the skin of the scalp. Dialysis samples were collected every 10 min until at least 400 min after the onset of stimulation. Results: Following the application of cathodal, but not anodal, tDCS for 10 min, extracellular dopamine levels increased for more than 400 min in the striatum. There were no significant changes in extracellular serotonin levels. Conclusion: These findings suggest that tDCS has a direct and/or indirect effect on the dopaminergic system in the rat basal ganglia. PMID:23596399

  16. Sustained NPY overexpression in the PVN results in obesity via temporarily increasing food intake.

    PubMed

    Tiesjema, Birgitte; la Fleur, Susanne E; Luijendijk, Mieneke C M; Adan, Roger A H

    2009-07-01

    Increasing neuropeptide Y (NPY) signaling in the paraventricular nucleus (PVN) by recombinant adeno-associated virus (rAAV)-mediated overexpression of NPY in rats, results in hyperphagia and obesity in rats. To determine the importance of hyperphagia in the observed obesity phenotype, we pair-fed a group of AAV-NPY-injected rats to AAV-control-injected rats and compared parameters of energy balance to ad libitum fed AAV-NPY-injected rats. For 3 weeks, AAV-NPY-injected rats, received the same amount of food as ad libitum-fed rats injected with control rAAV They did not gain more body weight than these controls. When allowed access to food ad libitum, these AAV-NPY-injected rats increased food intake, which subsequently decreased when rats reached the same body weight as AAV-NPY-injected rats that were fed ad libitum for the entire study. These data indicate that overexpression of NPY in the PVN results in obesity by increasing food intake until a certain body weight is achieved.

  17. Overexpression of a rice TIFY gene increases grain size through enhanced accumulation of carbohydrates in the stem.

    PubMed

    Hakata, Makoto; Kuroda, Masaharu; Ohsumi, Akihiro; Hirose, Tatsuro; Nakamura, Hidemitsu; Muramatsu, Masayuki; Ichikawa, Hiroaki; Yamakawa, Hiromoto

    2012-01-01

    Screening of rice full-length cDNA overexpressing (FOX) lines allowed the identification of a TIFY gene, TIFY11b, as a growth-promoting gene whose overexpression increased plant height and seed size. The grains of TIFY11b-overexpressing plants exceeded those of non-transformants in length, width and thickness, resulting in 9-21% increases in grain weight. The increase was achieved by overexpressing the gene in the whole plant body, but not by seed-restricted expression, indicating that seed enlargement is attributable to overexpression in vegetative organs such as the leaf. The whole-body overexpressing plants developed longer leaves along with higher levels of starch and sucrose in the leaf sheath and culm at the heading stage than the non-transformants. Although overexpression of TIFY11b did not alter the photosynthetic rate per leaf area before and after heading, it caused an accumulation of higher levels of the carbohydrate assimilate, probably due to increased photosynthesis per plant, suggesting that the increase in grain size and weight is attained by enhanced accumulation and translocation of the carbohydrate in the culms and leaf sheaths of the transgenic plants. Thus, TIFY11b is a novel grain-size increasing gene.

  18. Modification of the development of acute opiate tolerance by increased dopamine receptor sensitivity.

    PubMed

    Martin, J R; Takemori, A E

    1987-04-01

    Earlier studies have suggested that the acute administration of an opiate can result in the development of supersensitive dopamine receptors. The present study was undertaken to determine whether the supersensitive dopamine receptors can modify the development of opiate tolerance and dependence. Administration of morphine (100 mg/kg s.c.) 6 or 24 hr before apomorphine (i.p.) potentiated apomorphine-induced climbing behavior in mice. Administration of levorphanol (12 mg/kg s.c.) 3 or 6 hr, but not 24 hr, before apomorphine also potentiated apomorphine-induced climbing behavior. Coadministration of 5 mEq/kg of LiCl with morphine or levorphanol attenuated the increased sensitivity developed to apomorphine after either opiate. Acute tolerance and dependence was induced by administration of 100 mg/kg of morphine or 12 mg/kg of levorphanol. Lithium enhanced the development of acute tolerance when coadministered with morphine 3, 6 or 24 hr before test doses of morphine, or with levorphanol 3 hr before test doses of levorphanol. Administration of apomorphine 5 min before naloxone significantly decreased the naloxone ED50 for inducing withdrawal jumping in mice that had been pretreated with morphine or levorphanol. Although coadministration of lithium with morphine or levorphanol had no significant effect on naloxone-induced withdrawal jumping, it attenuated the ability of apomorphine to decrease naloxone ED50. Morphine (100 mg/kg s.c.) increased the number of whole brain [3H]spiroperidol binding sites 3 and 6 hr after administration of morphine. This increase was no longer present 24 hr after morphine administration. Levorphanol (12 mg/kg s.c.) also increased the number of binding sites 3 hr after administration. Coadministration of lithium with morphine attenuated the increase in [3H]spiroperidol binding sites.(ABSTRACT TRUNCATED AT 250 WORDS)

  19. Over-expression of a putative oxidoreductase (UcpA) for increasing furfural or 5-hydroxymethylfurfural tolerance

    DOEpatents

    Wang, Xuan; Miller, Elliot N.; Yomano, Lorraine P.; Shanmugam, Keelnatham T.; Ingram, Lonnie O'Neal

    2016-05-24

    The subject invention pertains to overexpression of a putative oxidoreductase (ucpA) for increasing furfural tolerance in genetically modified microorganisms. Genetically modified microorganisms capable of overexpressing UcpA are also provided. Increased expression of ucpA was shown to increase furfural tolerance by 50%, and to permit the fermentation of sugars to products in the presence of 15 mM furfural.

  20. Induced overexpression of OCT4A in human embryonic stem cells increases cloning efficiency.

    PubMed

    Tsai, Steven C; Chang, David F; Hong, Chang-Mu; Xia, Ping; Senadheera, Dinithi; Trump, Lisa; Mishra, Suparna; Lutzko, Carolyn

    2014-06-15

    Our knowledge of the molecular mechanisms underlying human embryonic stem cell (hESC) self-renewal and differentiation is incomplete. The level of octamer-binding transcription factor 4 (Oct4), a critical regulator of pluripotency, is precisely controlled in mouse embryonic stem cells. However, studies of human OCT4 are often confounded by the presence of three isoforms and six expressed pseudogenes, which has complicated the interpretation of results. Using an inducible lentiviral overexpression and knockdown system to manipulate OCT4A above or below physiological levels, we specifically examine the functional role of the OCT4A isoform in hESC. (We also designed and generated a comparable series of vectors, which were not functional, for the overexpression and knockdown of OCT4B.) We show that specific knockdown of OCT4A results in hESC differentiation, as indicated by morphology changes, cell surface antigen expression, and upregulation of ectodermal genes. In contrast, inducible overexpression of OCT4A in hESC leads to a transient instability of the hESC phenotype, as indicated by changes in morphology, cell surface antigen expression, and transcriptional profile, that returns to baseline within 5 days. Interestingly, sustained expression of OCT4A past 5 days enhances hESC cloning efficiency, suggesting that higher levels of OCT4A can support self-renewal. Overall, our results indicate that high levels of OCT4A increase hESC cloning efficiency and do not induce differentiation (whereas OCT4B expression cannot be induced in hESC), highlighting the importance of isoform-specific studies in a stable and inducible expression system for human OCT4. Additionally, we demonstrate the utility of an efficient method for conditional gene expression in hESC.

  1. Overexpression of a Chitinase Gene from Trichoderma asperellum Increases Disease Resistance in Transgenic Soybean.

    PubMed

    Zhang, Fuli; Ruan, Xianle; Wang, Xian; Liu, Zhihua; Hu, Lizong; Li, Chengwei

    2016-12-01

    In the present study, a chi gene from Trichoderma asperellum, designated Tachi, was cloned and functionally characterized in soybean. Firstly, the effects of sodium thiosulfate on soybean Agrobacterium-mediated genetic transformation with embryonic tip regeneration system were investigated. The transformation frequency was improved by adding sodium thiosulfate in co-culture medium for three soybean genotypes. Transgenic soybean plants with constitutive expression of Tachi showed increased resistance to Sclerotinia sclerotiorum compared to WT plants. Meanwhile, overexpression of Tachi in soybean exhibited increased reactive oxygen species (ROS) level as well as peroxidase (POD) and catalase (SOD) activities, decreased malondialdehyde (MDA) content, along with diminished electrolytic leakage rate after S. sclerotiorum inoculation. These results suggest that Tachi can improve disease resistance in plants by enhancing ROS accumulation and activities of ROS scavenging enzymes and then diminishing cell death. Therefore, Tachi represents a candidate gene with potential application for increasing disease resistance in plants.

  2. Transgenic overexpression of human lecithin: cholesterol acyltransferase (LCAT) in mice does not increase aortic cholesterol deposition.

    PubMed

    Furbee, James W; Parks, John S

    2002-11-01

    Results from several atherosclerosis studies using morphometric procedures have proven controversial with regard to whether over-expression of human LCAT in transgenic (Tg) mice is atherogenic. The purpose of the present study was to determine the effect of 10-fold over-expression of human LCAT on aortic free and esterified cholesterol (EC) deposition as well as plasma lipoprotein cholesteryl ester (CE) fatty acid composition in mice fed an atherogenic diet containing cholic acid. C57Bl/6 (control) and human LCAT-Tg mice were fed chow or an atherogenic diet (15% of calories from palm oil, 1.0% cholesterol and 0.5% cholic acid) for 24 weeks before measurement of aortic cholesterol content. Compared with the chow diet, control and LCAT-Tg mice fed the atherogenic diet had a 2-fold increase in plasma total, free and EC, a 7-fold increase in plasma apoB lipoprotein cholesterol, and a 40-50-fold increase in hepatic cholesterol content. The aortic EC content was increased in control (0.7 vs. 1.2 mg/g protein) and LCAT-Tg (0.3 vs. 1.5 mg/g protein) mice fed the atherogenic diet compared with those consuming the chow diet; however, there was no difference in aortic free (14.4+/-6.8 vs. 18.5+/-7.7 mg/g protein) or esterified (1.2+/-1.0 vs. 1.5+/-1.2 mg/g protein) cholesterol content between atherogenic diet-fed control and LCAT-Tg mice, respectively. LCAT-Tg mice fed the atherogenic diet had a 2-fold increase in the ratio of saturated+monounsaturated to polyunsaturated CE species in plasma apoB lipoproteins compared with control mice (9.4+/-2.4 vs. 4.9+/-0.7). We conclude that over-expression of human LCAT in Tg mice fed an atherogenic diet containing cholic acid does not result in increased aortic cholesterol deposition compared with control mice, even though the CE fatty acid saturation index of plasma apoB lipoproteins was doubled.

  3. Increased dopamine receptor expression and anti-depressant response following deep brain stimulation of the medial forebrain bundle.

    PubMed

    Dandekar, Manoj P; Luse, Dustin; Hoffmann, Carson; Cotton, Patrick; Peery, Travis; Ruiz, Christian; Hussey, Caroline; Giridharan, Vijayasree V; Soares, Jair C; Quevedo, Joao; Fenoy, Albert J

    2017-08-01

    Among several potential neuroanatomical targets pursued for deep brain stimulation (DBS) for treating those with treatment-resistant depression (TRD), the superolateral-branch of the medial forebrain bundle (MFB) is emerging as a privileged location. We investigated the antidepressant-like phenotypic and chemical changes associated with reward-processing dopaminergic systems in rat brains after MFB-DBS. Male Wistar rats were divided into three groups: sham-operated, DBS-Off, and DBS-On. For DBS, a concentric bipolar electrode was stereotactically implanted into the right MFB. Exploratory activity and depression-like behavior were evaluated using the open-field and forced-swimming test (FST), respectively. MFB-DBS effects on the dopaminergic system were evaluated using immunoblotting for tyrosine hydroxylase (TH), dopamine transporter (DAT), and dopamine receptors (D1-D5), and high-performance liquid chromatography for quantifying dopamine, 3,4-dihydroxyphenylacetic acid (DOPAC), and homovanillic acid (HVA) in brain homogenates of prefrontal cortex (PFC), hippocampus, amygdala, and nucleus accumbens (NAc). Animals receiving MFB-DBS showed a significant increase in swimming time without alterations in locomotor activity, relative to the DBS-Off (p<0.039) and sham-operated groups (p<0.014), indicating an antidepressant-like response. MFB-DBS led to a striking increase in protein levels of dopamine D2 receptors and DAT in the PFC and hippocampus, respectively. However, we did not observe appreciable differences in the expression of other dopamine receptors, TH, or in the concentrations of dopamine, DOPAC, and HVA in PFC, hippocampus, amygdala, and NAc. This study was not performed on an animal model of TRD. MFB-DBS rescues the depression-like phenotypes and selectively activates expression of dopamine receptors in brain regions distant from the target area of stimulation. Copyright © 2017. Published by Elsevier B.V.

  4. ABCA1 overexpression leads to hyperalphalipoproteinemia and increased biliary cholesterol excretion in transgenic mice

    PubMed Central

    Vaisman, Boris L.; Lambert, Gilles; Amar, Marcelo; Joyce, Charles; Ito, Toshimitsu; Shamburek, Robert D.; Cain, William J.; Fruchart-Najib, Jamila; Neufeld, Edward D.; Remaley, Alan T.; Brewer, H. Bryan; Santamarina-Fojo, Silvia

    2001-01-01

    The discovery of the ABCA1 lipid transporter has generated interest in modulating human plasma HDL levels and atherogenic risk by enhancing ABCA1 gene expression. To determine if increased ABCA1 expression modulates HDL metabolism in vivo, we generated transgenic mice that overexpress human ABCA1 (hABCA1-Tg). Hepatic and macrophage expression of hABCA1 enhanced macrophage cholesterol efflux to apoA-I; increased plasma cholesterol, cholesteryl esters (CEs), free cholesterol, phospholipids, HDL cholesterol, and apoA-I and apoB levels; and led to the accumulation of apoE-rich HDL1. ABCA1 transgene expression delayed 125I-apoA-I catabolism in both liver and kidney, leading to increased plasma apoA-I levels, but had no effect on apoB secretion after infusion of Triton WR1339. Although the plasma clearance of HDL-CE was not significantly altered in hABCA1-Tg mice, the net hepatic delivery of exogenous 3H-CEt-HDL, which is dependent on the HDL pool size, was increased 1.5-fold. In addition, the cholesterol and phospholipid concentrations in hABCA1-Tg bile were increased 1.8-fold. These studies show that steady-state overexpression of ABCA1 in vivo (a) raises plasma apoB levels without altering apoB secretion and (b) raises plasma HDL-C and apoA-I levels, facilitating hepatic reverse cholesterol transport and biliary cholesterol excretion. Similar metabolic changes may modify atherogenic risk in humans. PMID:11457883

  5. FGF-2 Overexpression Increases Excitability and Seizure Susceptibility but Decreases Seizure-Induced Cell Loss

    PubMed Central

    Zucchini, Silvia; Buzzi, Andrea; Barbieri, Mario; Rodi, Donata; Paradiso, Beatrice; Binaschi, Anna; Coffin, J. Douglas; Marzola, Andrea; Cifelli, Pierangelo; Belluzzi, Ottorino

    2008-01-01

    Fibroblast growth factor 2 (FGF-2) has multiple, pleiotropic effects on the nervous system that include neurogenesis, neuroprotection and neuroplasticity. Thus, alteration in FGF-2 expression patterns may have a profound impact in brain function, both in normal physiology and in pathology. Here, we used FGF-2 transgenic mice (TgFGF2) to study the effects of endogenous FGF-2 overexpression on susceptibility to seizures and to the pathological consequences of seizures. TgFGF2 mice display increased FGF-2 expression in hippocampal pyramidal neurons and dentate granule cells. Increased density of glutamatergic synaptic vesicles was observed in the hippocampus of TgFGF2 mice, and electrophysiological data (input/output curves and patch-clamp recordings in CA1) confirmed an increase in excitatory inputs in CA1, suggesting the presence of a latent hyperexcitability. Indeed, TgFGF2 mice displayed increased susceptibility to kainate-induced seizures compared with wild-type (WT) littermates, in that latency to generalized seizure onset was reduced, whereas behavioral seizure scores and lethality were increased. Finally, WT and TgFGF2 mice with similar seizure scores were used for examining seizure-induced cellular consequences. Neurogenesis and mossy fiber sprouting were not significantly different between the two groups. In contrast, cell damage (assessed with Fluoro-Jade B, silver impregnation and anti-caspase 3 immunohistochemistry) was significantly lower in TgFGF2 mice, especially in the areas of overexpression (CA1 and CA3), indicating reduction of seizure-induced necrosis and apoptosis. These data suggest that FGF-2 may be implicated in seizure susceptibility and in seizure-induced plasticity, exerting different, and apparently contrasting effects: favoring ictogenesis but reducing seizure-induced cell death. PMID:19052202

  6. Overexpression of StDREB1 transcription factor increases tolerance to salt in transgenic potato plants.

    PubMed

    Bouaziz, Donia; Pirrello, Julien; Charfeddine, Mariam; Hammami, Asma; Jbir, Rania; Dhieb, Amina; Bouzayen, Mondher; Gargouri-Bouzid, Radhia

    2013-07-01

    It has been established that drought-responsive element binding (DREB) proteins correspond to transcription factors which play important regulatory roles in plant response to abiotic and biotic stresses. In this study, a novel cDNA encoding DREB transcription factor, designated StDREB1, was isolated from potato (Solanum tuberosum L.). This protein was classified in the A-4 group of DREB subfamily based on multiple sequence alignments and phylogenetic characterization. Semi-quantitative RT-PCR showed that StDREB1 is expressed in leaves, stems, and roots under stress conditions and it is greatly induced by NaCl, drought, low temperature, and abscisic acid (ABA) treatments. Overexpression of StDREB1 cDNA in transgenic potato plants exhibited an improved salt and drought stress tolerance in comparison to the non-transformed controls. The enhanced stress tolerance may be associated with the increase in P5CS-RNA expression (δ (1)-pyrroline-5-carboxylate synthetase) and the subsequent accumulation of proline osmoprotectant in addition to a better control of water loss. Overexpression of StDREB1 also activated stress-responsive genes, such as those encoding calcium-dependent protein kinases (CDPKs), in transgenic potatoes under standard and high salt conditions. These data suggest that the StDREB1 transcription factor is involved in the regulation of salt stress tolerance in potato by the activation of different downstream gene expression.

  7. Dopamine Increases CD14(+)CD16(+) Monocyte Transmigration across the Blood Brain Barrier: Implications for Substance Abuse and HIV Neuropathogenesis.

    PubMed

    Calderon, Tina M; Williams, Dionna W; Lopez, Lillie; Eugenin, Eliseo A; Cheney, Laura; Gaskill, Peter J; Veenstra, Mike; Anastos, Kathryn; Morgello, Susan; Berman, Joan W

    2017-01-29

    In human immunodeficiency virus-1 (HIV) infected individuals, substance abuse may accelerate the development and/or increase the severity of HIV associated neurocognitive disorders (HAND). It is proposed that CD14(+)CD16(+) monocytes mediate HIV entry into the central nervous system (CNS) and that uninfected and infected CD14(+)CD16(+) monocyte transmigration across the blood brain barrier (BBB) contributes to the establishment and propagation of CNS HIV viral reservoirs and chronic neuroinflammation, important factors in the development of HAND. The effects of substance abuse on the frequency of CD14(+)CD16(+) monocytes in the peripheral circulation and on the entry of these cells into the CNS during HIV neuropathogenesis are not known. PBMC from HIV infected individuals were analyzed by flow cytometry and we demonstrate that the frequency of peripheral blood CD14(+)CD16(+) monocytes in HIV infected substance abusers is increased when compared to those without active substance use. Since drug use elevates extracellular dopamine concentrations in the CNS, we examined the effects of dopamine on CD14(+)CD16(+) monocyte transmigration across our in vitro model of the human BBB. The transmigration of this monocyte subpopulation is increased by dopamine and the dopamine receptor agonist, SKF 38393, implicating D1-like dopamine receptors in the increase in transmigration elicited by this neurotransmitter. Thus, elevated extracellular CNS dopamine may be a novel common mechanism by which active substance use increases uninfected and HIV infected CD14(+)CD16(+) monocyte transmigration across the BBB. The influx of these cells into the CNS may increase viral seeding and neuroinflammation, contributing to the development of HIV associated neurocognitive impairments.

  8. Modafinil enhances extracellular levels of dopamine in the nucleus accumbens and increases wakefulness in rats.

    PubMed

    Murillo-Rodríguez, Eric; Haro, Reyes; Palomero-Rivero, Marcela; Millán-Aldaco, Diana; Drucker-Colín, René

    2007-01-25

    Modafinil (MOD) is a wakefulness-promoting drug that improves the alertness levels in narcolepsy; however, the molecular mechanism of action remains to be elucidated. We found that after a single icv injection of MOD (10 microg/5 microl) the extracellular levels of dopamine (DA) and l-DOPA collected from the nucleus accumbens were increased and decreased, respectively. Separately, the icv administration of MOD (10 microg/5 microl) to rats enhanced wakefulness (W) whereas diminished sleep during 4h. Lastly, the alertness induced by MOD was partially antagonized by the sleep-inducing endocannabinoid anandamide (ANA). We conclude that MOD enhances the extracellular levels of DA, promotes W and its effects on sleep are partially blocked by ANA.

  9. Activation of D2 dopamine receptor-expressing neurons in the nucleus accumbens increases motivation.

    PubMed

    Soares-Cunha, Carina; Coimbra, Barbara; David-Pereira, Ana; Borges, Sonia; Pinto, Luisa; Costa, Patricio; Sousa, Nuno; Rodrigues, Ana J

    2016-06-23

    Striatal dopamine receptor D1-expressing neurons have been classically associated with positive reinforcement and reward, whereas D2 neurons are associated with negative reinforcement and aversion. Here we demonstrate that the pattern of activation of D1 and D2 neurons in the nucleus accumbens (NAc) predicts motivational drive, and that optogenetic activation of either neuronal population enhances motivation in mice. Using a different approach in rats, we further show that activating NAc D2 neurons increases cue-induced motivational drive in control animals and in a model that presents anhedonia and motivational deficits; conversely, optogenetic inhibition of D2 neurons decreases motivation. Our results suggest that the classic view of D1-D2 functional antagonism does not hold true for all dimensions of reward-related behaviours, and that D2 neurons may play a more prominent pro-motivation role than originally anticipated.

  10. Activation of D2 dopamine receptor-expressing neurons in the nucleus accumbens increases motivation

    PubMed Central

    Soares-Cunha, Carina; Coimbra, Barbara; David-Pereira, Ana; Borges, Sonia; Pinto, Luisa; Costa, Patricio; Sousa, Nuno; Rodrigues, Ana J.

    2016-01-01

    Striatal dopamine receptor D1-expressing neurons have been classically associated with positive reinforcement and reward, whereas D2 neurons are associated with negative reinforcement and aversion. Here we demonstrate that the pattern of activation of D1 and D2 neurons in the nucleus accumbens (NAc) predicts motivational drive, and that optogenetic activation of either neuronal population enhances motivation in mice. Using a different approach in rats, we further show that activating NAc D2 neurons increases cue-induced motivational drive in control animals and in a model that presents anhedonia and motivational deficits; conversely, optogenetic inhibition of D2 neurons decreases motivation. Our results suggest that the classic view of D1–D2 functional antagonism does not hold true for all dimensions of reward-related behaviours, and that D2 neurons may play a more prominent pro-motivation role than originally anticipated. PMID:27337658

  11. Tickling increases dopamine release in the nucleus accumbens and 50 kHz ultrasonic vocalizations in adolescent rats.

    PubMed

    Hori, Miyo; Shimoju, Rie; Tokunaga, Ryota; Ohkubo, Masato; Miyabe, Shigeki; Ohnishi, Junji; Murakami, Kazuo; Kurosawa, Mieko

    2013-03-27

    Adolescent rats emit 50 kHz ultrasonic vocalizations, a marker of positive emotion, during rough-and-tumble play or on tickling stimulation. The emission of 50 kHz ultrasonic vocalizations in response to tickling is suggested to be mediated by dopamine release in the nucleus accumbens; however, there is no direct evidence supporting this hypothesis. The present study aimed to elucidate whether play behavior (tickling) in adolescent rats can trigger dopamine release in the nucleus accumbens with hedonic 50 kHz ultrasonic vocalizations. The effect of tickling stimulation was compared with light-touch stimulation, as a discernible stimulus. We examined 35-40-day-old rats, which corresponds to the period of midadolescence. Tickling stimulation for 5 min significantly increased dopamine release in the nucleus accumbens (118±7% of the prestimulus control value). Conversely, light-touch stimulation for 5 min did not significantly change dopamine release. In addition, 50 kHz ultrasonic vocalizations were emitted during tickling stimulation but not during light-touch stimulation. Further, tickling-induced 50 kHz ultrasonic vocalizations were significantly blocked by the direct application of SCH23390 (D1 receptor antagonist) and raclopride (D2/D3 receptor antagonist) into the nucleus accumbens. Our study demonstrates that tickling stimulation in adolescent rats increases dopamine release in the nucleus accumbens, leading to the generation of 50 kHz ultrasonic vocalizations.

  12. Constitutive overexpression of asm18 increases the production and diversity of maytansinoids in Actinosynnema pretiosum.

    PubMed

    Li, Shanren; Lu, Chunhua; Chang, Xiaoyan; Shen, Yuemao

    2016-03-01

    Ansamitocins isolated from Actinosynnema pretiosum, potent antitumor compounds, belong to the family of maytansinoids, and the antibody-maytansinoid conjugates are currently under different phases of clinical trials. The clinical applications of ansamitocins have stimulated extensive studies to improve their production yields. In this study, we investigated the function of a pathway-specific S treptomyces antibiotic regulatory protein (SARP) family regulator, Asm18, and observed that ectopic overexpression of the asm18 gene increased the production of N-demethyl-4,5-desepoxy-maytansinol (2) to 50 mg/L in the HGF052 + pJTU824-asm18 strain, an increase by 4.7-fold compared to that of the control strain HGF052 + pJTU824. Real-time PCR analysis showed that the overexpression of the asm18 gene selectively increased the transcription levels of the genes involved in the biosynthesis of the starter unit (asm43), polyketide assembly (asmA), post-PKS modification (asm21), as well as the transcription levels of the regulatory gene (asm8), which is a specific LAL-type activator in ansamitocin biosynthesis. With the increase of fermentation titre, seven ansamitocin analogs (1-7) including three new ones (1, 5, and 6) and maytansinol (7) were isolated from the HGF052 + pJTU824-asm18 strain. Our results not only pave the way for further improving the production of ansamitocin analogs but also indicate that the post-PKS modifications of ansamitocin biosynthesis are flexible, which brings a potential of producing maytansinol, the most fascinating intermediate for the synthesis of antibody-maytansinoid conjugates, by optimizing the HGF052 and/or HGF052 + pJTU824-asm18 strains.

  13. Phosphoketolase overexpression increases biomass and lipid yield from methane in an obligate methanotrophic biocatalyst

    DOE PAGES

    Henard, Calvin A.; Smith, Holly K.; Guarnieri, Michael T.

    2017-04-02

    Microbial conversion of methane to high-value bio-based chemicals and materials offers a path to mitigate GHG emissions and valorize this abundant-yet -underutilized carbon source. In addition to fermentation optimization strategies, rational methanotrophic bacterial strain engineering offers a means to reach industrially relevant titers, carbon yields, and productivities of target products. The phosphoketolase pathway functions in heterofermentative bacteria where carbon flux through two sugar catabolic pathways to mixed acids (lactic acid and acetic acid) increases cellular ATP production. Importantly, this pathway also serves as an alternative route to produce acetyl-CoA that bypasses the CO2 lost through pyruvate decarboxylation in the Embden-Meyerhof-Parnasmore » pathway. Thus, the phosphoketolase pathway can be leveraged for carbon efficient biocatalysis to acetyl-CoA-derived intermediates and products. Here, we show that the industrially promising methane biocatalyst, Methylomicrobium buryatense, encodes two phosphoketolase isoforms that are expressed in methanol- and methane-grown cells. Overexpression of the PktB isoform led to a 2-fold increase in intracellular acetyl-CoA concentration, and a 2.6-fold yield enhancement from methane to microbial biomass and lipids compared to wild-type, increasing the potential for methanotroph lipid-based fuel production. Off-gas analysis and metabolite profiling indicated that global metabolic rearrangements, including significant increases in post-translational protein acetylation and gene expression of the tetrahydromethanopterin-linked pathway, along with decreases in several excreted products, coincided with the superior biomass and lipid yield observed in the engineered strain. Further, these data suggest that phosphoketolase may play a key regulatory role in methanotrophic bacterial metabolism. As a result, given that acetyl-CoA is a key intermediate in several biosynthetic pathways, phosphoketolase

  14. Phosphoketolase overexpression increases biomass and lipid yield from methane in an obligate methanotrophic biocatalyst.

    PubMed

    Henard, Calvin A; Smith, Holly K; Guarnieri, Michael T

    2017-04-01

    Microbial conversion of methane to high-value bio-based chemicals and materials offers a path to mitigate GHG emissions and valorize this abundant-yet -underutilized carbon source. In addition to fermentation optimization strategies, rational methanotrophic bacterial strain engineering offers a means to reach industrially relevant titers, carbon yields, and productivities of target products. The phosphoketolase pathway functions in heterofermentative bacteria where carbon flux through two sugar catabolic pathways to mixed acids (lactic acid and acetic acid) increases cellular ATP production. Importantly, this pathway also serves as an alternative route to produce acetyl-CoA that bypasses the CO2 lost through pyruvate decarboxylation in the Embden-Meyerhof-Parnas pathway. Thus, the phosphoketolase pathway can be leveraged for carbon efficient biocatalysis to acetyl-CoA-derived intermediates and products. Here, we show that the industrially promising methane biocatalyst, Methylomicrobium buryatense, encodes two phosphoketolase isoforms that are expressed in methanol- and methane-grown cells. Overexpression of the PktB isoform led to a 2-fold increase in intracellular acetyl-CoA concentration, and a 2.6-fold yield enhancement from methane to microbial biomass and lipids compared to wild-type, increasing the potential for methanotroph lipid-based fuel production. Off-gas analysis and metabolite profiling indicated that global metabolic rearrangements, including significant increases in post-translational protein acetylation and gene expression of the tetrahydromethanopterin-linked pathway, along with decreases in several excreted products, coincided with the superior biomass and lipid yield observed in the engineered strain. Further, these data suggest that phosphoketolase may play a key regulatory role in methanotrophic bacterial metabolism. Given that acetyl-CoA is a key intermediate in several biosynthetic pathways, phosphoketolase overexpression offers a viable

  15. Increased lever pressing for amphetamine after pimozide in rats: implications for a dopamine theory of reward.

    PubMed

    Yokel, R A; Wise, R A

    1975-02-14

    Low and high doses of a dopamine blocking agent had effects on lever pressing for intravenous amphetamine reward which resembled the effects of reward reduction and reward termination, respectively. Noradrenaline blockade had no such effects. A role in central mediation of reward perception is suggested for dopamine but not for noradrenaline.

  16. Gamma-vinyl GABA inhibits methamphetamine, heroin, or ethanol-induced increases in nucleus accumbens dopamine.

    PubMed

    Gerasimov, M R; Ashby, C R; Gardner, E L; Mills, M J; Brodie, J D; Dewey, S L

    1999-10-01

    We examined the acute effect of the irreversible GABA-transaminase inhibitor, gamma-vinyl GABA (GVG, Sabril((R)), Vigabatrin((R))) on increases in nucleus accumbens (NAc) dopamine (DA) following acute administration of methamphetamine, heroin, or ethanol. Methamphetamine (2.5 mg/kg) produced a dose-dependent increase (2, 700%) in NAc DA. GVG preadministration (300 or 600 mg/kg), however, inhibited this response by approximately 39 and 61%, respectively. The lower dose of methamphetamine (1.25 mg/kg), increased DA by 1, 700%. This response was inhibited to a similar extent (44%) regardless of the GVG dose preadministered (300 or 600 mg/kg). In addition, heroin-induced increases in NAc DA (0.5 mg/kg, 170%) were inhibited or completely abolished by GVG (150 or 300 mg/kg, 65 and 100%, respectively). Finally, at half the dose necessary for heroin, GVG (150 mg/kg) also completely abolished ethanol-induced increases in NAc DA following a 0.25 g/kg challenge dose (140%). Taken with our previous findings using nicotine or cocaine as the challenge drug, these results indicate that GVG attenuates increases in NAc DA by a mechanism common to many drugs of abuse. However, it appears unlikely that an acute dose of GVG can completely inhibit increases in NAc DA following challenges with a drug whose mechanism of action is mediated primarily through the DA reuptake site.

  17. Overexpression of ORC subunits and increased ORC-chromatin association in transformed mammalian cells.

    PubMed

    McNairn, Adrian J; Gilbert, David M

    2005-12-01

    The origin recognition complex (ORC) is a conserved heterohexamer required for the formation of pre-replication (pre-RC) complexes at origins of DNA replication. Many studies of ORC subunits have been carried out in transformed human cell lines but the properties of ORC in primary cells have not been addressed. Here, we compare the expression levels and chromatin-association of ORC subunits in HeLa cells to the primary human cell line, WI38, and a virally transformed derivative of WI38, VA13. ORC subunits 2 and 4 were highly overexpressed in both HeLa and VA13, whereas ORC1 levels were elevated in VA13 but considerably higher in HeLa cells. Cellular extraction revealed that the proportion of ORC2 and ORC4 subunits bound to chromatin was similar in all three cell lines throughout the cell-cycle. In contrast, very little ORC1 was associated with chromatin after extraction of primary WI38 cells, whereas the majority of overexpressed ORC1 in both HeLa and VA13 co-fractionated with chromatin throughout the cell-cycle. Although none of the cell lines displayed significant changes in the levels or chromatin-association of ORC during the cell-cycle, the chromatin-associated fraction of ORC1 displayed an increase in apparent molecular weight during S-phase. Similar experiments comparing immortalized CHO cells to an isogenic virally transformed derivative revealed no changes in levels of ORC subunits but an increase in the proportion of all three ORC subunits associated with chromatin. These results demonstrate a complex influence of cellular immortalization and transformation properties on the expression and regulation of ORC subunits. These results extend the potential link between cancer and deregulation of pre-RC proteins, and underscore the importance of considering the transformation status of cell lines when working with these proteins. 2005 Wiley-Liss, Inc.

  18. Seed-Specific Overexpression of the Pyruvate Transporter BASS2 Increases Oil Content in Arabidopsis Seeds

    PubMed Central

    Lee, Eun-Jung; Oh, Minwoo; Hwang, Jae-Ung; Li-Beisson, Yonghua; Nishida, Ikuo; Lee, Youngsook

    2017-01-01

    Seed oil is important not only for human and animal nutrition, but also for various industrial applications. Numerous genetic engineering strategies have been attempted to increase the oil content per seed, but few of these strategies have involved manipulating the transporters. Pyruvate is a major source of carbon for de novo fatty acid biosynthesis in plastids, and the embryo's demand for pyruvate is reported to increase during active oil accumulation. In this study, we tested our hypothesis that oil biosynthesis could be boosted by increasing pyruvate flux into plastids. We expressed the known plastid-localized pyruvate transporter BILE ACID:SODIUM SYMPORTER FAMILY PROTEIN 2 (BASS2) under the control of a seed-specific soybean (Glycine max) glycinin-1 promoter in Arabidopsis thaliana. The resultant transgenic Arabidopsis plants (OEs), which expressed high levels of BASS2, produced seeds that were larger and heavier and contained 10–37% more oil than those of the wild type (WT), but were comparable to the WT seeds in terms of protein and carbohydrate contents. The total seed number did not differ significantly between the WT and OEs. Therefore, oil yield per plant was increased by 24–43% in the OE lines compared to WT. Taken together, our results demonstrate that seed-specific overexpression of the pyruvate transporter BASS2 promotes oil production in Arabidopsis seeds. Thus, manipulating the level of specific transporters is a feasible approach for increasing the seed oil content. PMID:28265278

  19. Seed-Specific Overexpression of the Pyruvate Transporter BASS2 Increases Oil Content in Arabidopsis Seeds.

    PubMed

    Lee, Eun-Jung; Oh, Minwoo; Hwang, Jae-Ung; Li-Beisson, Yonghua; Nishida, Ikuo; Lee, Youngsook

    2017-01-01

    Seed oil is important not only for human and animal nutrition, but also for various industrial applications. Numerous genetic engineering strategies have been attempted to increase the oil content per seed, but few of these strategies have involved manipulating the transporters. Pyruvate is a major source of carbon for de novo fatty acid biosynthesis in plastids, and the embryo's demand for pyruvate is reported to increase during active oil accumulation. In this study, we tested our hypothesis that oil biosynthesis could be boosted by increasing pyruvate flux into plastids. We expressed the known plastid-localized pyruvate transporter BILE ACID:SODIUM SYMPORTER FAMILY PROTEIN 2 (BASS2) under the control of a seed-specific soybean (Glycine max) glycinin-1 promoter in Arabidopsis thaliana. The resultant transgenic Arabidopsis plants (OEs), which expressed high levels of BASS2, produced seeds that were larger and heavier and contained 10-37% more oil than those of the wild type (WT), but were comparable to the WT seeds in terms of protein and carbohydrate contents. The total seed number did not differ significantly between the WT and OEs. Therefore, oil yield per plant was increased by 24-43% in the OE lines compared to WT. Taken together, our results demonstrate that seed-specific overexpression of the pyruvate transporter BASS2 promotes oil production in Arabidopsis seeds. Thus, manipulating the level of specific transporters is a feasible approach for increasing the seed oil content.

  20. HIV-1 transgenic rats display an increase in [3H]dopamine uptake in the prefrontal cortex and striatum

    PubMed Central

    Zhu, Jun; Yuan, Yaxia; Midde, Narasimha M.; Gomez, Adrian M.; Sun, Wei-Lun; Quizon, Pamela M.; Zhan, Chang-Guo

    2017-01-01

    HIV viral proteins within the central nervous system are associated with the development of neurocognitive impairments in HIV-infected individuals. Dopamine transporter (DAT)-mediated dopamine transport is critical for normal dopamine homeostasis. Abnormal dopaminergic transmission has been implicated as a risk determinant of HIV-induced neurocognitive impairments. Our published work has demonstrated that Tat-induced inhibition of DAT is mediated by allosteric binding site(s) on DAT, not the interaction with the dopamine uptake site. The present study investigated whether impaired DAT function induced by Tat exposure in vitro can be documented in HIV-1 transgenic (HIV-1Tg) rats. We assessed kinetic analyses of [3H]dopamine uptake into prefrontal and striatal synaptosomes of HIV-1Tg and Fisher 344 rats. Compared with Fisher 344 rats, the capacity of dopamine transport in the prefrontal cortex (PFC) and striatum of HIV-1Tg rats was increased by 34% and 32%, respectively. Assessment of surface biotinylation indicated that DAT expression in the plasma membrane was reduced in PFC and enhanced in striatum, respectively, of HIV-1Tg rats. While the maximal binding sites (Bmax) of [3H]WIN 35,428 was decreased in striatum of HIV-1Tg rats, an increase in DAT turnover proportion was found, relative to Fisher 344 rats. Together, these findings suggest that neuroadaptive changes in DAT function are evidenced in the HIV-1Tg rats, perhaps compensating for viral protein-induced abnormal dopaminergic transmission. Thus, our study provides novel insights into understanding mechanism underlying neurocognitive impairment evident in neuroAIDS. PMID:26501780

  1. Increased sensitivity to Vinca alkaloids in cells overexpressing calmodulin by gene transfection.

    PubMed

    Ido, M; Lagacé, L; Chafouleas, J G

    1990-10-15

    Mouse C127 cells, transfected with the chicken calmodulin (CaM) gene and overexpressing CaM protein, were used to evaluate the effect of elevated levels of CaM on the sensitivity of these cells to various anticancer drugs. Clones C2 and C3 overexpress CaM mRNA by 40- and 80-fold, respectively, and CaM protein 3- and 8-fold, respectively. These cell lines were tested for their sensitivity to vincristine, vinblastine, bleomycin, and Adriamycin by comparing the 50% inhibitory concentration in a 72-h growth inhibition assay. The 50% inhibitory concentration values for vincristine with C2 and C3 cells were 6.27 +/- 0.56 nM and 6.60 +/- 0.96 nM, respectively. These values were significantly lower than 13.9 +/- 0.79 nM for the parental C127 cells and 14.0 +/- 1.55 nM for clone 6.8 (the control cell line for transfection without the chicken CaM gene) at P less than or equal to 0.005. The proliferation of C2 and C3 cells was inhibited at lower concentrations of vinblastine as well. The 50% inhibitory concentration values for the C2 and C3 cell lines were approximately one-half those required for C127 or clone 6.8 cells. However, no significant difference in the sensitivity to the DNA-binding drugs, bleomycin and Adriamycin, was observed between the different cell lines. The uptake of [3H]vinblastine was evaluated and found to be increased 1.6- and 2.8-fold in C2 and C3 cells, respectively, as compared with that value obtained for C127 cells. Moreover, the efflux of [3H]vinblastine from vinblastine-loaded cells was also observed to be decreased in the C2 and C3 cell lines. These data suggest that the increase in CaM expression in the C2 and C3 cell lines might be related to the higher sensitivity of these cells to Vinca alkaloids. This increased sensitivity appears to be due to the increase in intracellular concentration of the Vinca alkaloids as a result of an increase in drug uptake and a decrease in efflux. Moreover, the increased sensitivity of clones C2 and C3 to Vinca

  2. N-methylpurine DNA glycosylase overexpression increases alkylation sensitivity by rapidly removing non-toxic 7-methylguanine adducts

    PubMed Central

    Rinne, M. L.; He, Y.; Pachkowski, B. F.; Nakamura, J.; Kelley, M. R.

    2005-01-01

    Previous studies indicate that overexpression of N-methylpurine DNA glycosylase (MPG) dramatically sensitizes cells to alkylating agent-induced cytotoxicity. We recently demonstrated that this sensitivity is preceded by an increased production of AP sites and strand breaks, confirming that overexpression of MPG disrupts normal base excision repair and causes cell death through overproduction of toxic repair intermediates. Here we establish through site-directed mutagenesis that MPG-induced sensitivity to alkylation is dependent on enzyme glycosylase activity. However, in contrast to the sensitivity seen to heterogeneous alkylating agents, MPG overexpression generates no cellular sensitivity to MeOSO2(CH2)2-lexitropsin, an alkylator which exclusively induces 3-meA lesions. Indeed, MPG overexpression has been shown to increase the toxicity of alkylating agents that produce 7-meG adducts, and here we demonstrate that MPG-overexpressing cells have dramatically increased removal of 7-meG from their DNA. These data suggest that the mechanism of MPG-induced cytotoxicity involves the conversion of non-toxic 7-meG lesions into highly toxic repair intermediates. This study establishes a mechanism by which a benign DNA modification can be made toxic through the overexpression of an otherwise well-tolerated gene product, and the application of this principle could lead to improved chemotherapeutic strategies that reduce the peripheral toxicity of alkylating agents. PMID:15905475

  3. The dopamine antagonist domperidone increases prolactin concentration and enhances milk production in dairy cows.

    PubMed

    Lacasse, P; Ollier, S

    2015-11-01

    In previous studies, our team showed that the inhibition of prolactin (PRL) secretion by the dopamine agonist quinagolide reduces milk production in dairy cows. The objective of this study was to determine the effects of administration of a dopamine antagonist on basal and milking-induced PRL concentrations in blood and on milk production during positive energy balance and feed restriction in dairy cows. Eighteen mid-lactation Holstein cows received daily s.c. injections of either domperidone (300 mg, DOMP, n=9) or the vehicle, canola oil (CTL, n=9), for 5 wk. During wk 5, all cows were fed at 65% of their dry matter intake in the previous week. Blood and milk samples were collected before (for blood) and during (for milk) the a.m. milking thrice weekly from d -9 to 41 (8d after the last injection). In addition, blood samples were collected during the a.m. milking on d -1 (before the first injection), and on d 1, 28, and 34. Basal PRL concentration was similar in both groups before the start of the treatments. Domperidone injections caused a gradual increase in basal PRL concentration. Feed restriction reduced basal PRL concentration in both the CTL and DOMP cows, but PRL concentration remained higher in the DOMP cows. Prolactin concentration remained elevated in the DOMP cows 7d after the last injection. The milk concentration of PRL increased during the DOMP treatment, but the increase was smaller than that observed in serum. In the CTL cows, the milking-induced PRL release above the premilking concentration was similar on d -1, 1, and 28 but was reduced during feed restriction. In the DOMP cows, the milking-induced PRL release was similar on d -1 and 1 but was reduced on d 28 and 34. Milk production was similar for both groups before the treatments started but was greater in the DOMP cows during the treatment period, at 2.9 ± 0.6 and 2.4 ± 0.6 kg/d greater during wk 3 and 4 of treatment, respectively. Milk production declined in both groups during feed

  4. Sertraline increases extracellular levels not only of serotonin, but also of dopamine in the nucleus accumbens and striatum of rats.

    PubMed

    Kitaichi, Yuji; Inoue, Takeshi; Nakagawa, Shin; Boku, Shuken; Kakuta, Aya; Izumi, Takeshi; Koyama, Tsukasa

    2010-11-25

    Selective serotonin reuptake inhibitors (SSRIs) are a first-line treatment for depression. Recent reports in the literature describe differences in antidepressant effects among SSRIs. Although each SSRI apparently has different pharmacological actions aside from serotonin reuptake inhibition, the relations between antidepressant effects and unique pharmacological properties in respective SSRIs remain unclear. This study was designed to compare abilities of three systemically administered SSRIs to increase the extracellular levels of serotonin, dopamine, and noradrenaline acutely in three brain regions of male Sprague-Dawley rats. We examined effects of sertraline, fluvoxamine, and paroxetine on extracellular serotonin, dopamine, and noradrenaline levels in the medial prefrontal cortex, nucleus accumbens and striatum of rats using in vivo microdialysis. Dialysate samples were collected in sample vials every 20 min for 460 min. Extracellular serotonin, dopamine, and noradrenaline levels were determined using high-performance liquid chromatography with electrochemical detection. All SSRI administrations increased extracellular serotonin levels in all regions. Only sertraline administration increased extracellular dopamine concentrations in the nucleus accumbens and striatum. All SSRI administrations increased extracellular noradrenaline levels in the nucleus accumbens, although fluvoxamine was less effective. These results suggest that neurochemical differences account for the differences in clinical antidepressant effects among SSRIs. Copyright © 2010 Elsevier B.V. All rights reserved.

  5. Developmental exposure to the pesticide dieldrin alters the dopamine system and increases neurotoxicity in an animal model of Parkinson's disease.

    PubMed

    Richardson, Jason R; Caudle, W Michael; Wang, Minzheng; Dean, E Danielle; Pennell, Kurt D; Miller, Gary W

    2006-08-01

    Exposure to pesticides has been suggested to increase the risk of Parkinson's disease (PD), but the mechanisms responsible for this association are not clear. Here, we report that perinatal exposure of mice during gestation and lactation to low levels of dieldrin (0.3, 1, or 3 mg/kg every 3 days) alters dopaminergic neurochemistry in their offspring and exacerbates MPTP toxicity. At 12 wk of age, protein and mRNA levels of the dopamine transporter (DAT) and vesicular monoamine transporter 2 (VMAT2) were increased by perinatal dieldrin exposure in a dose-related manner. We then administered MPTP (2 x 10 mg/kg s.c) at 12 wk of age and observed a greater reduction of striatal dopamine in dieldrin-exposed offspring, which was associated with a greater DAT:VMAT2 ratio. Additionally, dieldrin exposure during development potentiated the increase in GFAP and alpha-synuclein levels induced by MPTP, indicating increased neurotoxicity. In all cases there were greater effects observed in the male offspring than the female, similar to that observed in human cases of PD. These data suggest that developmental exposure to dieldrin leads to persistent alterations of the developing dopaminergic system and that these alterations induce a "silent" state of dopamine dysfunction, thereby rendering dopamine neurons more vulnerable later in life.

  6. Caffeine increases striatal dopamine D2/D3 receptor availability in the human brain.

    PubMed

    Volkow, N D; Wang, G-J; Logan, J; Alexoff, D; Fowler, J S; Thanos, P K; Wong, C; Casado, V; Ferre, S; Tomasi, D

    2015-04-14

    Caffeine, the most widely consumed psychoactive substance in the world, is used to promote wakefulness and enhance alertness. Like other wake-promoting drugs (stimulants and modafinil), caffeine enhances dopamine (DA) signaling in the brain, which it does predominantly by antagonizing adenosine A2A receptors (A2AR). However, it is unclear if caffeine, at the doses consumed by humans, increases DA release or whether it modulates the functions of postsynaptic DA receptors through its interaction with adenosine receptors, which modulate them. We used positron emission tomography and [(11)C]raclopride (DA D2/D3 receptor radioligand sensitive to endogenous DA) to assess if caffeine increased DA release in striatum in 20 healthy controls. Caffeine (300 mg p.o.) significantly increased the availability of D2/D3 receptors in putamen and ventral striatum, but not in caudate, when compared with placebo. In addition, caffeine-induced increases in D2/D3 receptor availability in the ventral striatum were associated with caffeine-induced increases in alertness. Our findings indicate that in the human brain, caffeine, at doses typically consumed, increases the availability of DA D2/D3 receptors, which indicates that caffeine does not increase DA in the striatum for this would have decreased D2/D3 receptor availability. Instead, we interpret our findings to reflect an increase in D2/D3 receptor levels in striatum with caffeine (or changes in affinity). The association between increases in D2/D3 receptor availability in ventral striatum and alertness suggests that caffeine might enhance arousal, in part, by upregulating D2/D3 receptors.

  7. Caffeine increases striatal dopamine D2/D3 receptor availability in the human brain

    PubMed Central

    Volkow, N D; Wang, G-J; Logan, J; Alexoff, D; Fowler, J S; Thanos, P K; Wong, C; Casado, V; Ferre, S; Tomasi, D

    2015-01-01

    Caffeine, the most widely consumed psychoactive substance in the world, is used to promote wakefulness and enhance alertness. Like other wake-promoting drugs (stimulants and modafinil), caffeine enhances dopamine (DA) signaling in the brain, which it does predominantly by antagonizing adenosine A2A receptors (A2AR). However, it is unclear if caffeine, at the doses consumed by humans, increases DA release or whether it modulates the functions of postsynaptic DA receptors through its interaction with adenosine receptors, which modulate them. We used positron emission tomography and [11C]raclopride (DA D2/D3 receptor radioligand sensitive to endogenous DA) to assess if caffeine increased DA release in striatum in 20 healthy controls. Caffeine (300 mg p.o.) significantly increased the availability of D2/D3 receptors in putamen and ventral striatum, but not in caudate, when compared with placebo. In addition, caffeine-induced increases in D2/D3 receptor availability in the ventral striatum were associated with caffeine-induced increases in alertness. Our findings indicate that in the human brain, caffeine, at doses typically consumed, increases the availability of DA D2/D3 receptors, which indicates that caffeine does not increase DA in the striatum for this would have decreased D2/D3 receptor availability. Instead, we interpret our findings to reflect an increase in D2/D3 receptor levels in striatum with caffeine (or changes in affinity). The association between increases in D2/D3 receptor availability in ventral striatum and alertness suggests that caffeine might enhance arousal, in part, by upregulating D2/D3 receptors. PMID:25871974

  8. Caffeine increases striatal dopamine D2/D3 receptor availability in the human brain

    DOE PAGES

    Volkow, N. D.; Wang, G. -J.; Logan, J.; ...

    2015-04-14

    Caffeine, the most widely consumed psychoactive substance in the world, is used to promote wakefulness and enhance alertness. Like other wake-promoting drugs (stimulants and modafinil), caffeine enhances dopamine (DA) signaling in the brain, which it does predominantly by antagonizing adenosine A2A receptors (A2AR). However, it is unclear if caffeine, at the doses consumed by humans, increases DA release or whether it modulates the functions of postsynaptic DA receptors through its interaction with adenosine receptors, which modulate them. We used positron emission tomography and [11C]raclopride (DA D2/D3 receptor radioligand sensitive to endogenous DA) to assess if caffeine increased DA release inmore » striatum in 20 healthy controls. Caffeine (300mg p.o.) significantly increased the availability of D2/D3 receptors in putamen and ventral striatum, but not in caudate, when compared with placebo. In addition, caffeine-induced increases in D2/D3 receptor availability in the ventral striatum were associated with caffeine-induced increases in alertness. Our findings indicate that in the human brain, caffeine, at doses typically consumed, increases the availability of DA D2/D3 receptors, which indicates that caffeine does not increase DA in the striatum for this would have decreased D2/D3 receptor availability. Instead, we interpret our findings to reflect an increase in D2/D3 receptor levels in striatum with caffeine (or changes in affinity). Furthermore, the association between increases in D2/D3 receptor availability in ventral striatum and alertness suggests that caffeine might enhance arousal, in part, by upregulating D2/D3 receptors.« less

  9. Increased release of norepinephrine and dopamine from canine kidney during bilateral carotid occlusion

    SciTech Connect

    Bradley, T.; Hjemdahl, P.; DiBona, G.F.

    1987-02-01

    The renal overflow of norepinephrine (NE) and dopamine (DA) to plasma from the innervated kidney was studied at rest and during sympathetic nervous system activation by bilateral carotid artery occlusion (BCO) in vagotomized dogs under barbiturate or barbiturate/nitrous oxide anesthesia. BCO elevated arterial pressure and the arterial plasma concentration of NE, DA, and epinephrine (Epi). Renal vascular resistance (renal arterial pressure kept constant) increased by 15 +/- 7% and the net renal venous outflows (renal veno-arterial concentration difference x renal plasma flow) of NE and DA were enhanced. To obtain more correct estimates of the renal contribution to the renal venous catecholamine outflow, they corrected for the renal extraction of arterial catecholamines, assessed as the extractions of (/sup 3/H)NE, (/sup 3/H)DA, or endogenous Epi. The (/sup 3/H)NE corrected renal NE overflow to plasma increased from 144 +/- 40 to 243 +/- 64 pmol-min/sup -1/ during BCO, which, when compared with a previous study of the (/sup 3/H)NE corrected renal NE overflow to plasma evoked by electrical renal nerve stimulation, corresponds to a 40% increase in nerve impulse frequency from approx. 0.6 Hz. If the renal catecholamine extraction was not taken into account the effect of BCO was underestimated. The renal DA overflow to plasma was about one-fifth of the NE overflow both at rest and during BCO, indicating that there was no preferential activation of noradrenergic or putative dopaminergic nerves by BCO.

  10. Seed-specific overexpression of phytoene synthase: increase in carotenoids and other metabolic effects

    PubMed

    Shewmaker; Sheehy; Daley; Colburn; Ke

    1999-11-01

    A bacterial phytoene synthase (crtB) gene was overexpressed in a seed-specific manner and the protein product targeted to the plastid in Brassica napus (canola). The resultant embryos from these transgenic plants were visibly orange and the mature seed contained up to a 50-fold increase in carotenoids. The predominant carotenoids accumulating in the seeds of the transgenic plants were alpha and beta-carotene. Other precursors such as phytoene were also detected. Lutein, the predominant carotenoid in control seeds, was not substantially increased in the transgenics. The total amount of carotenoids in these seeds is now equivalent to or greater than those seen in the mesocarp of oil palm. Other metabolites in the isoprenoid pathway were examined in these seeds. Sterol levels remained essentially the same, while tocopherol levels decreased significantly as compared to non-transgenic controls. Chlorophyll levels were also reduced in developing transgenic seed. Additionally, the fatty acyl composition was altered with the transgenic seeds having a relatively higher percentage of the 18 : 1 (oleic acid) component and a decreased percentage of the 18 : 2 (linoleic acid) and 18 : 3 (linolenic acid) components. This dramatic increase in flux through the carotenoid pathway and the other metabolic effects are discussed.

  11. Overexpression of amyloid precursor protein increases copper content in HEK293 cells

    SciTech Connect

    Suazo, Miriam; Hodar, Christian; Morgan, Carlos; Cerpa, Waldo; Cambiazo, Veronica; Inestrosa, Nibaldo C.; Gonzalez, Mauricio

    2009-05-15

    Amyloid precursor protein (APP) is a transmembrane glycoprotein widely expressed in mammalian tissues and plays a central role in Alzheimer's disease. However, its physiological function remains elusive. Cu{sup 2+} binding and reduction activities have been described in the extracellular APP135-156 region, which might be relevant for cellular copper uptake and homeostasis. Here, we assessed Cu{sup 2+} reduction and {sup 64}Cu uptake in two human HEK293 cell lines overexpressing APP. Our results indicate that Cu{sup 2+} reduction increased and cells accumulated larger levels of copper, maintaining cell viability at supra-physiological levels of Cu{sup 2+} ions. Moreover, wild-type cells exposed to both Cu{sup 2+} ions and APP135-155 synthetic peptides increased copper reduction and uptake. Complementation of function studies in human APP751 transformed Fre1 defective Saccharomyces cerevisiae cells rescued low Cu{sup 2+} reductase activity and increased {sup 64}Cu uptake. We conclude that Cu{sup 2+} reduction activity of APP facilitates copper uptake and may represent an early step in cellular copper homeostasis.

  12. BDNF over-expression increases olfactory bulb granule cell dendritic spine density in vivo

    PubMed Central

    McDole, Brittnee; Isgor, Ceylan; Pare, Christopher; Guthrie, Kathleen

    2015-01-01

    Olfactory bulb granule cells are axon-less, inhibitory interneurons that regulate the activity of the excitatory output neurons, the mitral and tufted cells, through reciprocal dendrodendritic synapses located on granule cell spines. These contacts are established in the distal apical dendritic compartment, while granule cell basal dendrites and more proximal apical segments bear spines that receive glutamatergic inputs from the olfactory cortices. This synaptic connectivity is vital to olfactory circuit function and is remodeled during development, and in response to changes in sensory activity and lifelong granule cell neurogenesis. Manipulations that alter levels of the neurotrophin brain-derived neurotrophic factor (BDNF) in vivo have significant effects on dendritic spine morphology, maintenance and activity-dependent plasticity for a variety of CNS neurons, yet little is known regarding BDNF effects on bulb granule cell spine maturation or maintenance. Here we show that, in vivo, sustained bulbar over-expression of BDNF produces a marked increase in granule cell spine density that includes an increase in mature spines on their apical dendrites. Morphometric analysis demonstrated that changes in spine density were most notable in the distal and proximal apical domains, indicating that multiple excitatory inputs are potentially modified by BDNF. Our results indicate that increased levels of endogenous BDNF can promote the maturation and/or maintenance of dendritic spines on granule cells, suggesting a role for this factor in modulating granule cell functional connectivity within adult olfactory circuitry. PMID:26211445

  13. BDNF over-expression increases olfactory bulb granule cell dendritic spine density in vivo.

    PubMed

    McDole, B; Isgor, C; Pare, C; Guthrie, K

    2015-09-24

    Olfactory bulb granule cells (GCs) are axon-less, inhibitory interneurons that regulate the activity of the excitatory output neurons, the mitral and tufted cells, through reciprocal dendrodendritic synapses located on GC spines. These contacts are established in the distal apical dendritic compartment, while GC basal dendrites and more proximal apical segments bear spines that receive glutamatergic inputs from the olfactory cortices. This synaptic connectivity is vital to olfactory circuit function and is remodeled during development, and in response to changes in sensory activity and lifelong GC neurogenesis. Manipulations that alter levels of the neurotrophin brain-derived neurotrophic factor (BDNF) in vivo have significant effects on dendritic spine morphology, maintenance and activity-dependent plasticity for a variety of CNS neurons, yet little is known regarding BDNF effects on bulb GC spine maturation or maintenance. Here we show that, in vivo, sustained bulbar over-expression of BDNF in transgenic mice produces a marked increase in GC spine density that includes an increase in mature spines on their apical dendrites. Morphometric analysis demonstrated that changes in spine density were most notable in the distal and proximal apical domains, indicating that multiple excitatory inputs are potentially modified by BDNF. Our results indicate that increased levels of endogenous BDNF can promote the maturation and/or maintenance of dendritic spines on GCs, suggesting a role for this factor in modulating GC functional connectivity within adult olfactory circuitry.

  14. Increasing Endocannabinoid Levels in the Ventral Pallidum Restore Aberrant Dopamine Neuron Activity in the Subchronic PCP Rodent Model of Schizophrenia

    PubMed Central

    Chen, Li; Lodge, Daniel J

    2015-01-01

    Background: Schizophrenia is a debilitating disorder that affects 1% of the US population. While the exogenous administration of cannabinoids such as tetrahydrocannabinol is reported to exacerbate psychosis in schizophrenia patients, augmenting the levels of endogenous cannabinoids has gained attention as a possible alternative therapy to schizophrenia due to clinical and preclinical observations. Thus, patients with schizophrenia demonstrate an inverse relationship between psychotic symptoms and levels of the endocannabinoid anandamide. In addition, increasing endocannabinoid levels (by blockade of enzymatic degradation) has been reported to attenuate social withdrawal in a preclinical model of schizophrenia. Here we examine the effects of increasing endogenous cannabinoids on dopamine neuron activity in the sub-chronic phencyclidine (PCP) model. Aberrant dopamine system function is thought to underlie the positive symptoms of schizophrenia. Methods: Using in vivo extracellular recordings in chloral hydrate–anesthetized rats, we now demonstrate an increase in dopamine neuron population activity in PCP-treated rats. Results: Interestingly, endocannabinoid upregulation, induced by URB-597, was able to normalize this aberrant dopamine neuron activity. Furthermore, we provide evidence that the ventral pallidum is the site where URB-597 acts to restore ventral tegmental area activity. Conclusions: Taken together, we provide preclinical evidence that augmenting endogenous cannabinoids may be an effective therapy for schizophrenia, acting in part to restore ventral pallidal activity. PMID:25539511

  15. A synthetic five amino acid propeptide increases dopamine neuron differentiation and neurochemical function

    PubMed Central

    Littrell, OM; Fuqua, JL; Richardson, AD; Turchan-Cholewo, J.; Hascup, ER; Huettl, P; Pomerleau, F; Bradley, LH; Gash, DM; Gerhardt, GA

    2012-01-01

    A major consequence of Parkinson’s disease (PD) involves the loss of dopaminergic neurons in the substantia nigra (SN) and a subsequent loss of dopamine (DA) in the striatum. We have shown that glial cell line-derived neurotrophic factor (GDNF) shows robust restorative and protective effects for DA neurons in rats, non-human primates and possibly in humans. Despite GDNF’s therapeutic potential, its clinical value has been questioned due to its limited diffusion to target areas from its large size and chemical structure. Several comparatively smaller peptides are thought to be generated from the prosequence. A five amino-acid peptide, dopamine neuron stimulating peptide-5 (DNSP-5), has been proposed to demonstrate biological activity relevant to neurodegenerative disease. We tested the in vitro effects of DNSP-5 in primary dopaminergic neurons dissected from the ventral mesencephalon of E14 Sprague Dawley rat fetuses. Cells were treated with several doses (0.03, 0.1, 1.0, 10.0 ng/mL) of GDNF, DNSP-5, or an equivalent volume of citrate buffer (vehicle). Morphological features of tyrosine hydroxylase positive neurons were quantified for each dose. DNSP-5 significantly increased (p<0.001) all differentiation parameters compared to citrate vehicle (at one or more dose). For in vivo studies, a unilateral DNSP-5 treatment (30 µg) was administered directly to the SN. Microdialysis in the ipsilateral striatum was performed 28 days after treatment to determine extracellular levels of DA and its primary metabolites (3,4-dihydroxyphenylacetic acid and homovanillic acid). A single treatment significantly increased (~66%) extracellular DA levels compared to vehicle, while DA metabolites were unchanged. Finally, the protective effects of DNSP-5 against staurosporine-induced cytotoxicity were investigated in a neuronal cell line showing substantial protection by DNSP-5. Altogether, these studies strongly indicate biological activity of DNSP-5 and suggest that DNSP-5 has

  16. Sexual activity increases dopamine transmission in the nucleus accumbens and striatum of female rats.

    PubMed

    Pfaus, J G; Damsma, G; Wenkstern, D; Fibiger, H C

    1995-09-25

    In vivo microdialysis was used to monitor extracellular concentrations of dopamine (DA), and its metabolites dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) in the nucleus accumbens and dorsal striatum of sexually active female rats during tests of locomotor activity, exposure to a novel chamber, exposure to sex odors, the presentation of a sexually active male rat, and copulation. DA increased slightly but significantly in the nucleus accumbens when a sexually active male was placed behind a wire-mesh screen, and further during copulation. DA also increased significantly in the dorsal striatum during copulation; however, the magnitude of this effect was significantly lower than that observed in the nucleus accumbens. The metabolites DOPAC and HVA generally followed DA with a delay, and increased significantly during copulation in both regions. In contrast, forced locomotion on a rotating drum, exposure to a novel testing chamber, and exposure to sex odors did not increase DA significantly in either region, although forced locomotion increased DOPAC significantly in both regions, and HVA significantly in the nucleus accumbens. The magnitude of DA release in the nucleus accumbens was significantly greater during copulation than running, whereas no significant difference was detected for striatal DA release between these two behavioral conditions. These results indicate that novelty or locomotor activity alone do not account for the increase in DA observed in the nucleus accumbens of female rats during copulation, and suggest that DA transmission in the nucleus accumbens is associated with anticipatory and consummatory aspects of sexual activity, as it is in male rats. In the dorsal striatum, however, DA release during copulation may reflect an increase in locomotor activity associated with active pacing of the male.

  17. Acute dopamine/norepinephrine reuptake inhibition increases brain and core temperature in rats.

    PubMed

    Hasegawa, Hiroshi; Meeusen, Romain; Sarre, Sophie; Diltoer, Marc; Piacentini, Maria Francesca; Michotte, Yvette

    2005-10-01

    The purpose of the present study was to examine the effects of an acute dose of the dual dopamine (DA) and norepinephrine (NE) reuptake inhibitor bupropion (Bup) on brain (T(brain)), body core (T(core)), and tail skin (T(tail)) temperature in freely moving rats and to simultaneously monitor the extracellular neurotransmitter concentrations in the preoptic area and anterior hypothalamus (PO/AH). A microdialysis probe was inserted in the PO/AH, and samples for NE, DA, and serotonin (5-HT) were collected every 20 min before and after the injection of 17 mg/kg of Bup, for a total sampling time of 180 min. T(core) was monitored using a biotelemetry system. T(brain) and T(tail), an index of heat loss response, were also measured. Both NE and DA levels in the PO/AH significantly increased after Bup injection compared with the baseline levels, reaching approximately 450 and 230%, respectively, 40 min after injection. There was no effect on 5-HT release. The neurotransmitter changes were accompanied by a significant decrease in T(tail) and an increase in both T(brain) and T(core) compared with the baseline levels. The present results demonstrate that inhibition of NE and DA reuptake suppresses heat loss mechanisms and elevates T(brain) and T(core) in freely moving rats.

  18. Intrahippocampal infusions of anisomycin produce amnesia: Contribution of increased release of norepinephrine, dopamine, and acetylcholine

    PubMed Central

    Qi, Zhenghan; Gold, Paul E.

    2009-01-01

    Intra-amygdala injections of anisomycin produce large increases in the release of norepinephrine (NE), dopamine (DA), and serotonin in the amygdala. Pretreatment with intra-amygdala injections of the β-adrenergic receptor antagonist propranolol attenuates anisomycin-induced amnesia without reversing the inhibition of protein synthesis, and injections of NE alone produce amnesia. These findings suggest that abnormal neurotransmitter responses may be the basis for amnesia produced by inhibition of protein synthesis. The present experiment extends these findings to the hippocampus and adds acetylcholine (ACh) to the list of neurotransmitters affected by anisomycin. Using in vivo microdialysis at the site of injection, release of NE, DA, and ACh was measured before and after injections of anisomycin into the hippocampus. Anisomycin impaired inhibitory avoidance memory when rats were tested 48 h after training and also produced substantial increases in local release of NE, DA, and ACh. In an additional experiment, pretreatment with intrahippocampal injections of propranolol prior to anisomycin and training significantly attenuated anisomycin-induced amnesia. The disruption of neurotransmitter release patterns at the site of injection appears to contribute significantly to the mechanisms underlying amnesia produced by protein synthesis inhibitors, calling into question the dominant interpretation that the amnesia reflects loss of training-initiated protein synthesis necessary for memory formation. Instead, the findings suggest that proteins needed for memory formation are available prior to an experience, and that post-translational modifications of these proteins may be sufficient to enable the formation of new memories. PMID:19403793

  19. CB1 receptor knockout mice display reduced ethanol-induced conditioned place preference and increased striatal dopamine D2 receptors.

    PubMed

    Houchi, Hakim; Babovic, Daniela; Pierrefiche, Olivier; Ledent, Catherine; Daoust, Martine; Naassila, Mickaël

    2005-02-01

    Cannabinoids and ethanol activate the same reward pathways, and recent advances in the understanding of the neurobiological basis of alcoholism suggest that the CB1 receptor system may play a key role in the reinforcing effects of ethanol and in modulating ethanol intake. In the present study, male CB1 receptors knockout mice generated on a CD1 background displayed decreased ethanol-induced conditioned place preference (CPP) compared to wild-type (CB1(+/+)) mice. Ethanol (0.5, 1.0, 1.5, and 2.0 g/kg) induced significant CPP in CB1(+/+) mice at all doses tested, whereas it induced significant CPP only at the highest dose of ethanol (2.0 g/kg) in CB1(-/-) mice. However, there was no genotypic difference in cocaine (20 mg/kg)-induced CPP. There was also no genotypic difference, neither in cocaine (10-50 mg/kg) nor in D-amphetamine (1.2-5 mg/kg)-induced locomotor effects. In addition, mutant and wild-type mice did not differ in sensitivity to the anxiolytic effects of ethanol (1.5 g/kg) when tested using the elevated plus maze. Interestingly, this decrease in ethanol efficacy to induce CPP in CB1(-/-) mice was correlated with an increase in D2/D3 receptors, as determined by [3H]raclopride binding, whereas there was no difference in D1-like receptors, as determined by [3H]SCH23390 binding, measured in the striatum from drug-naive mice. This increase in D2/D3 binding sites observed in CB1 knockout mice was associated with an altered locomotor response to the D2/D3 agonist quinpirole (low doses 0.02-0.1 mg/kg) but not to an alteration of quinpirole (0.1-1.0 mg/kg)-induced CPP compared to wild-type mice. Altogether, the present results indicate that lifelong deletion of CB1 receptors reduced ethanol-induced CPP and that these reduced rewarding effects of ethanol are correlated to an overexpression of striatal dopamine D2 receptors.

  20. Overexpression of c-fos increases recombination frequency in human osteosarcoma cells.

    PubMed

    van den Berg, S; Rahmsdorf, H J; Herrlich, P; Kaina, B

    1993-05-01

    We have shown previously that overexpression of c-Ha-ras, v-mos or c-fos increases the spontaneous level of chromosomal aberrations and gene mutations in NIH 3T3 cells, and that reduction of the Fos protein level inhibits aberration induction by c-Ha-ras and v-mos and also by irradiation with ultraviolet light (van den Berg et al., Mol. Carcinogenesis, 4, 460-466). In order to examine whether fos is also involved in DNA recombination, thymidine kinase (tk) deficient human osteosarcoma cells containing two versions of the herpes simplex virus tk gene inactivated by base insertion were either transiently or stably transfected with various fos expression plasmids. The frequency of tk+ revertants was significantly enhanced both upon transient transfection with RSV-promoter-fos gene constructs and by stimulation of Fos synthesis in stably transfected cells harbouring an inducible metallothionein promoter-fos construct. No such increases were observed in cells transfected with plasmids containing a truncated version of c-fos. The data indicate that c-fos is involved in generating various types of genetic changes including homologous recombination; a role of c-fos in genetic instability may contribute to its action in tumor promotion and progression.

  1. Overexpression of 12/15-lipoxygenase increases anxiety behavior in female mice.

    PubMed

    Joshi, Yash B; Di Meco, Antonio; Praticò, Domenico

    2014-05-01

    The 12/15-lipoxygenase (12/15-LO) is an enzyme widely distributed in the central nervous system, and it has been involved in the neurobiology of Alzheimer's disease. However, whether this pathway is also involved in neuropsychiatry disorders including anxiety remain to be investigated. In this study we investigated whether genetic over-expression of 12/15-LO (H12/15-LO) modulates some elevated plus maze and Y-maze behaviors. While we observed that H12/15LO mice at the age of 12 months did not differ from wild type in the elevated plus maze paradigm, when they reached the age of 15 months, they manifested an increased anxiety-like behavior compared with controls. By contrast, no differences between the 2 groups at both ages when they were tested for working memory in the Y-maze paradigm. Additionally, we found that the change in anxiety was associated with a reduction in phosphorylation of the transcription factor CREB (cAMP response element-binding protein), and a significant increase in the synaptic protein synaptophysin. Taken together our findings suggest a novel role for 12/15-LO in the pathogenesis of anxiety-like behavior.

  2. Overexpression of Arabidopsis VIT1 increases accumulation of iron in cassava roots and stems.

    PubMed

    Narayanan, Narayanan; Beyene, Getu; Chauhan, Raj Deepika; Gaitán-Solis, Eliana; Grusak, Michael A; Taylor, Nigel; Anderson, Paul

    2015-11-01

    Iron is extremely abundant in the soil, but its uptake in plants is limited due to low solubility in neutral or alkaline soils. Plants can rely on rhizosphere acidification to increase iron solubility. AtVIT1 was previously found to be involved in mediating vacuolar sequestration of iron, which indicates a potential application for iron biofortification in crop plants. Here, we have overexpressed AtVIT1 in the starchy root crop cassava using a patatin promoter. Under greenhouse conditions, iron levels in mature cassava storage roots showed 3-4 times higher values when compared with wild-type plants. Significantly, the expression of AtVIT1 showed a positive correlation with the increase in iron concentration of storage roots. Conversely, young leaves of AtVIT1 transgenic plants exhibit characteristics of iron deficiency such as interveinal chlorosis of leaves (yellowing) and lower iron concentration when compared with the wild type plants. Interestingly, the AtVIT1 transgenic plants showed 4 and 16 times higher values of iron concentration in the young stem and stem base tissues, respectively. AtVIT1 transgenic plants also showed 2-4 times higher values of iron content when compared with wild-type plants, with altered partitioning of iron between source and sink tissues. These results demonstrate vacuolar iron sequestration as a viable transgenic strategy to biofortify crops and to help eliminate micronutrient malnutrition in at-risk human populations.

  3. Gremlin is Overexpressed in Lung Adenocarcinoma and Increases Cell Growth and Proliferation in Normal Lung Cells

    PubMed Central

    Lee, Sharon; Fang, Li Tai; Choi, Helen; Ray, Roshni; Kang, Hio Chung; Mao, Jian-Hua; Jablons, David; Kim, Il-Jin

    2012-01-01

    Background Gremlin, a member of the Dan family of BMP antagonists, is a glycosylated extracellular protein. Previously Gremlin has been shown to play a role in dorsal-ventral patterning, in tissue remodeling, and recently in angiogenesis. Evidence has previously been presented showing both over- and under-expression of Gremlin in different tumor tissues. Here, we sought to quantify expression of Gremlin in cancers of the lung and performed in vitro experiments to check whether Gremlin promotes cell growth and proliferation. Methodology/Principal Findings Expression of Gremlin in 161 matched tumor and normal lung cancer specimens is quantified by quantitative real-time PCR and protein level is measured by immunohistochemistry. GREM1 was transfected into lung fibroblast and epithelial cell lines to assess the impact of overexpression of Gremlin in vitro. Results Lung adenocarcinoma but not squamous cell carcinoma shows a significant increase in Gremlin expression by mRNA and protein level. Lung fibroblast and epithelial cell lines transfected with GREM1 show significantly increased cell proliferation. Conclusions/Significance Our data suggest that Gremlin acts in an oncogenic manner in lung adenocarcinoma and could hold promise as a new diagnostic marker or potential therapeutic target in lung AD or general thoracic malignancies. PMID:22870311

  4. Inhibition of neuronal mitochondrial complex I or lysosomal glucocerebrosidase is associated with increased dopamine and serotonin turnover.

    PubMed

    de la Fuente, Carmen; Burke, Derek G; Eaton, Simon; Heales, Simon J R

    2017-02-24

    Parkinson's disease (PD) is a neurodegenerative disorder caused by loss of dopaminergic and serotoninergic signalling. A number of pathogenic mechanisms have been implicated including loss of mitochondrial function at the level of complex I, and lysosomal metabolism at the level of lysosomal glucocerebrosidase (GBA1). In order to investigate further the potential involvement of complex I and GBA1 in PD, we assessed the impact of loss of respective enzyme activities upon dopamine and serotonin turnover. Using SH-SY5Y cells, complex I deficiency was modelled by using rotenone whilst GBA1 deficiency was modelled by the use of conduritol B epoxide (CBE). Dopamine, its principal metabolites, and the serotonin metabolite 5-hydroxyindoleacetic acid (5-HIAA) in the extracellular medium were quantified by HPLC. Inhibition of complex I significantly increased extracellular concentrations of 3,4-dihydroxyphenylacetic acid (DOPAC) and 5-HIAA. Comparable results were observed with CBE. These results suggest increased monoamine oxidase activity and provide evidence for involvement of impaired complex I or GBA1 activity in the dopamine/serotonin deficiency seen in PD. Use of extracellular media may also permit relatively rapid assessment of dopamine/serotonin metabolism and permit screening of novel therapeutic agents. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Deep brain stimulation of the nucleus accumbens shell increases impulsive behavior and tissue levels of dopamine and serotonin.

    PubMed

    Sesia, Thibaut; Bulthuis, Vincent; Tan, Sonny; Lim, Lee Wei; Vlamings, Rinske; Blokland, Arjan; Steinbusch, Harry W M; Sharp, Trevor; Visser-Vandewalle, Veerle; Temel, Yasin

    2010-10-01

    The nucleus accumbens (NAc) is gaining interest as a target for deep brain stimulation (DBS) in refractory neuropsychiatric disorders with impulsivity as core symptom. The nucleus accumbens is composed of two subterritories, core and shell, which have different anatomical connections. In animal models, it has been shown that DBS of the NAc changes impulsive action. Here, we tested the hypothesis that a change in impulsive action by DBS of the NAc is associated with changes in dopamine levels. Rats received stimulating electrodes either in the NAc core or shell, and underwent behavioral testing in a reaction time task. In addition, in a second experiment, the effect of DBS of the NAc core and shell on extracellular dopamine and serotonin levels was assessed in the NAc and medial prefrontal cortex. Control subjects received sham surgery. We have found that DBS of the NAc shell stimulation induced more impulsive action but less perseverative checking. These effects were associated with increased levels of dopamine and serotonin in the NAc, but not in the medial prefrontal cortex. DBS of the NAc core had no effect on impulsive action, but decreased perseverative responses indicative of a better impulse control. In these subjects, no effects were found on neurotransmitter levels. Our data point out that DBS of the NAc shell has negative effects on impulsive action which is accompanied by increases of dopamine and serotonin levels in the NAc, whereas DBS of the NAc core has beneficial behavioral effects.

  6. Over-expression of Dof-type transcription factor increases lipid production in Chlamydomonas reinhardtii.

    PubMed

    Ibáñez-Salazar, Alejandro; Rosales-Mendoza, Sergio; Rocha-Uribe, Alejandro; Ramírez-Alonso, Jocelín Itzel; Lara-Hernández, Ignacio; Hernández-Torres, Araceli; Paz-Maldonado, Luz María Teresita; Silva-Ramírez, Ana Sonia; Bañuelos-Hernández, Bernardo; Martínez-Salgado, José Luis; Soria-Guerra, Ruth Elena

    2014-08-20

    The high demand for less polluting, newer, and cheaper fuel resources has increased the search of the most innovative options for the production of the so-called biofuels. Chlamydomonas reinhardtii is a photosynthetic unicellular algae with multiple biotechnological advantages such as easy handling in the laboratory, a simple scale-up to industrial levels, as well as a feasible genetic modification at nuclear and chloroplast levels. Besides, its fatty acids can be used to produce biofuels. Previous studies in plants have found that the over expression of DOF-type transcription factor genes increases the synthesis and the accumulation of total lipids in seeds. In this context, the over-expression of a DOF-type transcription factor in C. reinhardtii was applied as approach to increase the amount of lipids. The results indicate higher amounts (around 2-fold) of total lipids, which are mainly fatty acids, in the genetically C. reinhardtii modified strains when compared with the non-genetically modified strain. In order to elucidate the possible function of the introduced Dof-type transcription factor, we performed a transcription profile of 8 genes involved in fatty acid biosynthesis and 6 genes involved in glycerolipid biosynthesis, by quantitative real time (qRT-PCR). Differential expression profile was observed, which can explain the increase in lipid accumulation. However, these strains did not show notable changes in the fatty acid profile. This work represents an early effort in generating a strategy to increase fatty acids production in C. reinhardtii and their use in biofuel synthesis.

  7. Increased biomass production of industrial bakers' yeasts by overexpression of Hap4 gene.

    PubMed

    Dueñas-Sánchez, Rafael; Codón, Antonio C; Rincón, Ana M; Benítez, Tahía

    2010-10-15

    HAP4 encodes a transcriptional activator of respiration-related genes and so, redirection from fermentation to respiration flux should give rise to an increase in biomass production in Saccharomyces cerevisiae transformants that overexpress HAP4. With this aim, three bakers' yeasts, that is, V1 used for lean doughs, its 2-deoxy-D-glucose resistant derivative DOG21, and V3 employed for sweet doughs, were transformed with integrative cassettes that carried HAP4 gene under the control of constitutive promoter pTEF2; in addition VTH, DTH and 3TH transformants were selected and characterized. Transformants showed increased expression of HAP4 and respiration-related genes such as QCR7 and QCR8 with regard to parental, and similar expression of SUC2 and MAL12; these genes are relevant in bakers' industry. Invertase (Suc2p) and maltase (Mal12p) activities, growth and sugar consumption rates in laboratory (YPD) or industrial media (MAB) were also comparable in bakers' strains and their transformants, but VTH, DTH and 3TH increased their final biomass production by 9.5, 5.0 and 5.0% respectively as compared to their parentals in MAB. Furthermore, V1 and its transformant VTH had comparable capacity to ferment lean doughs (volume increase rate and final volume) while V3 and its transformant 3TH fermented sweet doughs in a similar manner. Therefore transformants possessed increased biomass yield and appropriate characteristics to be employed in bakers' industry because they lacked drug resistant markers and bacterial DNA, and were genetically stable. Copyright © 2010 Elsevier B.V. All rights reserved.

  8. Harsh Corporal Punishment Is Associated With Increased T2 Relaxation Time in Dopamine-Rich Regions

    PubMed Central

    Sheu, Yi-Shin; Polcari, Ann; Anderson, Carl M.; Teicher, Martin H.

    2010-01-01

    Harsh corporal punishment (HCP) was defined as frequent parental administration of corporal punishment (CP) for discipline, with occasional use of objects such as straps, or paddles. CP is linked to increased risk for depression and substance abuse. We examine whether long-term exposure to HCP acts as sub-traumatic stressor that contributes to brain alterations, particularly in dopaminergic pathways, which may mediate their increased vulnerability to drug and alcohol abuse. Nineteen young adults who experienced early HCP but no other forms of maltreatment and twenty-three comparable controls were studied. T2 relaxation time (T2-RT) measurements were performed with an echo planar imaging TE stepping technique and T2 maps were calculated and analyzed voxel-by-voxel to locate regional T2-RT differences between groups. Previous studies indicated that T2-RT provides an indirect index of resting cerebral blood volume. Region of interest (ROI) analyses were also conducted in caudate, putamen, nucleus accumbens, anterior cingulate cortex, dorsolateral prefrontal cortex, thalamus, globus pallidus and cerebellar hemispheres. Voxel-based relaxometry showed that HCP was associated with increased T2-RT in right caudate and putamen. ROI analyses also revealed increased T2-RT in dorsolateral prefrontal cortex, substantia nigra, thalamus and accumbens but not globus pallidus or cerebellum. There were significant associations between T2-RT measures in dopamine target regions and use of drugs and alcohol, and memory performance. Alteration in the paramagnetic or hemodynamic properties of dopaminergic cell body and projection regions were observed in subjects with HCP, and these findings may relate to their increased risk for drug and alcohol abuse. PMID:20600981

  9. Harsh corporal punishment is associated with increased T2 relaxation time in dopamine-rich regions.

    PubMed

    Sheu, Yi-Shin; Polcari, Ann; Anderson, Carl M; Teicher, Martin H

    2010-11-01

    Harsh corporal punishment (HCP) was defined as frequent parental administration of corporal punishment (CP) for discipline, with occasional use of objects such as straps, or paddles. CP is linked to increased risk for depression and substance abuse. We examine whether long-term exposure to HCP acts as sub-traumatic stressor that contributes to brain alterations, particularly in dopaminergic pathways, which may mediate their increased vulnerability to drug and alcohol abuse. Nineteen young adults who experienced early HCP but no other forms of maltreatment and twenty-three comparable controls were studied. T2 relaxation time (T2-RT) measurements were performed with an echo planar imaging TE stepping technique and T2 maps were calculated and analyzed voxel-by-voxel to locate regional T2-RT differences between groups. Previous studies indicated that T2-RT provides an indirect index of resting cerebral blood volume. Region of interest (ROI) analyses were also conducted in caudate, putamen, nucleus accumbens, anterior cingulate cortex, dorsolateral prefrontal cortex, thalamus, globus pallidus and cerebellar hemispheres. Voxel-based relaxometry showed that HCP was associated with increased T2-RT in right caudate and putamen. ROI analyses also revealed increased T2-RT in dorsolateral prefrontal cortex, substantia nigra, thalamus and accumbens but not globus pallidus or cerebellum. There were significant associations between T2-RT measures in dopamine target regions and use of drugs and alcohol, and memory performance. Alteration in the paramagnetic or hemodynamic properties of dopaminergic cell body and projection regions were observed in subjects with HCP, and these findings may relate to their increased risk for drug and alcohol abuse.

  10. Methylphenidate-Elicited Dopamine Increases in Ventral Striatum Are Associated with Long-Term Symptom Improvement in Adults with Attention Deficit Hyperactivity Disorder

    SciTech Connect

    Volkow N. D.; Wang G.; Volkow, N.D.; Wang, G.-J.; Tomasi, D.; Kollins, S.H.; Wigal, T.L.; Newcorn, J.H.; Telang, F.W.; Fowler, J.S.; Logan, J.; Wong, C.T.; Swanson, J.M.

    2012-01-18

    Stimulant medications, such as methylphenidate, which are effective treatments for attention deficit hyperactivity disorder (ADHD), enhance brain dopamine signaling. However, the relationship between regional brain dopamine enhancement and treatment response has not been evaluated. Here, we assessed whether the dopamine increases elicited by methylphenidate are associated with long-term clinical response. We used a prospective design to study 20 treatment-naive adults with ADHD who were evaluated before treatment initiation and after 12 months of clinical treatment with a titrated regimen of oral methylphenidate. Methylphenidate-induced dopamine changes were evaluated with positron emission tomography and [{sup 11}C]raclopride (D{sub 2}/D{sub 3} receptor radioligand sensitive to competition with endogenous dopamine). Clinical responses were assessed using the Conners Adult ADHD Rating Scale and revealed a significant reduction in symptoms of inattention and hyperactivity with long-term methylphenidate treatment. A challenge dose of 0.5 mg/kg intravenous methylphenidate significantly increased dopamine in striatum (assessed as decreases in D{sub 2}/D{sub 3} receptor availability). In the ventral striatum, these dopamine increases were associated with the reductions in ratings of symptoms of inattention with clinical treatment. Statistical parametric mapping additionally showed dopamine increases in prefrontal and temporal cortices with intravenous methylphenidate that were also associated with decreases in symptoms of inattention. Our findings indicate that dopamine enhancement in ventral striatum (the brain region involved with reward and motivation) was associated with therapeutic response to methylphenidate, further corroborating the relevance of the dopamine reward/motivation circuitry in ADHD. It also provides preliminary evidence that methylphenidate-elicited dopamine increases in prefrontal and temporal cortices may also contribute to the clinical response.

  11. Methylphenidate-elicited dopamine increases in ventral striatum are associated with long-term symptom improvement in adults with attention deficit hyperactivity disorder.

    PubMed

    Volkow, Nora D; Wang, Gene-Jack; Tomasi, Dardo; Kollins, Scott H; Wigal, Tim L; Newcorn, Jeffrey H; Telang, Frank W; Fowler, Joanna S; Logan, Jean; Wong, Christopher T; Swanson, James M

    2012-01-18

    Stimulant medications, such as methylphenidate, which are effective treatments for attention deficit hyperactivity disorder (ADHD), enhance brain dopamine signaling. However, the relationship between regional brain dopamine enhancement and treatment response has not been evaluated. Here, we assessed whether the dopamine increases elicited by methylphenidate are associated with long-term clinical response. We used a prospective design to study 20 treatment-naive adults with ADHD who were evaluated before treatment initiation and after 12 months of clinical treatment with a titrated regimen of oral methylphenidate. Methylphenidate-induced dopamine changes were evaluated with positron emission tomography and [(11)C]raclopride (D(2)/D(3) receptor radioligand sensitive to competition with endogenous dopamine). Clinical responses were assessed using the Conners' Adult ADHD Rating Scale and revealed a significant reduction in symptoms of inattention and hyperactivity with long-term methylphenidate treatment. A challenge dose of 0.5 mg/kg intravenous methylphenidate significantly increased dopamine in striatum (assessed as decreases in D(2)/D(3) receptor availability). In the ventral striatum, these dopamine increases were associated with the reductions in ratings of symptoms of inattention with clinical treatment. Statistical parametric mapping additionally showed dopamine increases in prefrontal and temporal cortices with intravenous methylphenidate that were also associated with decreases in symptoms of inattention. Our findings indicate that dopamine enhancement in ventral striatum (the brain region involved with reward and motivation) was associated with therapeutic response to methylphenidate, further corroborating the relevance of the dopamine reward/motivation circuitry in ADHD. It also provides preliminary evidence that methylphenidate-elicited dopamine increases in prefrontal and temporal cortices may also contribute to the clinical response.

  12. Methylphenidate-Elicited Dopamine Increases in Ventral Striatum Are Associated with Long-Term Symptom Improvement in Adults with Attention Deficit Hyperactivity Disorder

    PubMed Central

    Volkow, Nora D.; Wang, Gene-Jack; Tomasi, Dardo; Kollins, Scott H.; Wigal, Tim L.; Newcorn, Jeffrey H.; Telang, Frank W.; Fowler, Joanna S.; Logan, Jean; Wong, Christopher T.; Swanson, James M.

    2012-01-01

    Stimulant medications, such as methylphenidate, which are effective treatments for attention deficit hyperactivity disorder (ADHD), enhance brain dopamine signaling. However, the relationship between regional brain dopamine enhancement and treatment response has not been evaluated. Here, we assessed whether the dopamine increases elicited by methylphenidate are associated with long-term clinical response. We used a prospective design to study 20 treatment-naive adults with ADHD who were evaluated before treatment initiation and after 12 months of clinical treatment with a titrated regimen of oral methylphenidate. Methylphenidate-induced dopamine changes were evaluated with positron emission tomography and [11C]raclopride (D2/D3 receptor radioligand sensitive to competition with endogenous dopamine). Clinical responses were assessed using the Conners' Adult ADHD Rating Scale and revealed a significant reduction in symptoms of inattention and hyperactivity with long-term methylphenidate treatment. A challenge dose of 0.5 mg/kg intravenous methylphenidate significantly increased dopamine in striatum (assessed as decreases in D2/D3 receptor availability). In the ventral striatum, these dopamine increases were associated with the reductions in ratings of symptoms of inattention with clinical treatment. Statistical parametric mapping additionally showed dopamine increases in prefrontal and temporal cortices with intravenous methylphenidate that were also associated with decreases in symptoms of inattention. Our findings indicate that dopamine enhancement in ventral striatum (the brain region involved with reward and motivation) was associated with therapeutic response to methylphenidate, further corroborating the relevance of the dopamine reward/motivation circuitry in ADHD. It also provides preliminary evidence that methylphenidate-elicited dopamine increases in prefrontal and temporal cortices may also contribute to the clinical response. PMID:22262882

  13. Overexpression of CREB in the nucleus accumbens shell increases cocaine reinforcement in self-administering rats.

    PubMed

    Larson, Erin B; Graham, Danielle L; Arzaga, Rose R; Buzin, Nicole; Webb, Joseph; Green, Thomas A; Bass, Caroline E; Neve, Rachael L; Terwilliger, Ernest F; Nestler, Eric J; Self, David W

    2011-11-09

    Chronic exposure to addictive drugs enhances cAMP response element binding protein (CREB)-regulated gene expression in nucleus accumbens (NAc), and these effects are thought to reduce the positive hedonic effects of passive cocaine administration. Here, we used viral-mediated gene transfer to produce short- and long-term regulation of CREB activity in NAc shell of rats engaging in volitional cocaine self-administration. Increasing CREB expression in NAc shell markedly enhanced cocaine reinforcement of self-administration behavior, as indicated by leftward (long-term) and upward (short-term) shifts in fixed ratio dose-response curves. CREB also increased the effort exerted by rats to obtain cocaine on more demanding progressive ratio schedules, an effect highly correlated with viral-induced modulation of BDNF protein in the NAc shell. CREB enhanced cocaine reinforcement when expressed either throughout acquisition of self-administration or when expression was limited to postacquisition tests, indicating a direct effect of CREB independent of reinforcement-related learning. Downregulating endogenous CREB in NAc shell by expressing a short hairpin RNA reduced cocaine reinforcement in similar tests, while overexpression of a dominant-negative CREB(S133A) mutant had no significant effect on cocaine self-administration. Finally, increasing CREB expression after withdrawal from self-administration enhanced cocaine-primed relapse, while reducing CREB levels facilitated extinction of cocaine seeking, but neither altered relapse induced by cocaine cues or footshock stress. Together, these findings indicate that CREB activity in NAc shell increases the motivation for cocaine during active self-administration or after withdrawal from cocaine. Our results also highlight that volitional and passive drug administration can lead to substantially different behavioral outcomes.

  14. Chronic mild stress increases alcohol intake in mice with low dopamine D2 receptor levels.

    PubMed

    Delis, Foteini; Thanos, Panayotis K; Rombola, Christina; Rosko, Lauren; Grandy, David; Wang, Gene-Jack; Volkow, Nora D

    2013-02-01

    Alcohol use disorders emerge from a complex interaction between environmental and genetic factors. Stress and dopamine D2 receptor levels (DRD2) have been shown to play a central role in alcoholism. To better understand the interactions between DRD2 and stress in ethanol intake behavior, we subjected Drd2 wild-type (+/+), heterozygous (+/-), and knockout (-/-) mice to 4 weeks of chronic mild stress (CMS) and to an ethanol two-bottle choice during CMS weeks 2-4. Prior to and at the end of the experiment, the animals were tested in the forced swim and open field tests. We measured ethanol intake and preference, immobility in the force swim test, and activity in the open field. We show that under no CMS, Drd2+/- and Drd2-/- mice had lower ethanol intake and preference compared with Drd2+/+. Exposure to CMS decreased ethanol intake and preference in Drd2+/+ and increased them in Drd2+/- and Drd2-/- mice. At baseline, Drd2+/- and Drd2-/- mice had significantly lower activity in the open field than Drd2+/+, whereas no genotype differences were observed in the forced swim test. Exposure to CMS increased immobility during the forced swim test in Drd2+/- mice, but not in Drd2+/+ or Drd2-/- mice, and ethanol intake reversed this behavior. No changes were observed in open field test measures. These findings suggest that in the presence of a stressful environment, low DRD2 levels are associated with increased ethanol intake and preference and that under this condition, increased ethanol consumption could be used as a strategy to alleviate negative mood.

  15. Epigallocatechin Gallate Remodels Overexpressed Functional Amyloids in Pseudomonas aeruginosa and Increases Biofilm Susceptibility to Antibiotic Treatment.

    PubMed

    Stenvang, Marcel; Dueholm, Morten S; Vad, Brian S; Seviour, Thomas; Zeng, Guanghong; Geifman-Shochat, Susana; Søndergaard, Mads T; Christiansen, Gunna; Meyer, Rikke Louise; Kjelleberg, Staffan; Nielsen, Per Halkjær; Otzen, Daniel E

    2016-12-16

    Epigallocatechin-3-gallate (EGCG) is the major polyphenol in green tea. It has antimicrobial properties and disrupts the ordered structure of amyloid fibrils involved in human disease. The antimicrobial effect of EGCG against the opportunistic pathogen Pseudomonas aeruginosa has been shown to involve disruption of quorum sensing (QS). Functional amyloid fibrils in P. aeruginosa (Fap) are able to bind and retain quorum-sensing molecules, suggesting that EGCG interferes with QS through structural remodeling of amyloid fibrils. Here we show that EGCG inhibits the ability of Fap to form fibrils; instead, EGCG stabilizes protein oligomers. Existing fibrils are remodeled by EGCG into non-amyloid aggregates. This fibril remodeling increases the binding of pyocyanin, demonstrating a mechanism by which EGCG can affect the QS function of functional amyloid. EGCG reduced the amyloid-specific fluorescent thioflavin T signal in P. aeruginosa biofilms at concentrations known to exert an antimicrobial effect. Nanoindentation studies showed that EGCG reduced the stiffness of biofilm containing Fap fibrils but not in biofilm with little Fap. In a combination treatment with EGCG and tobramycin, EGCG had a moderate effect on the minimum bactericidal eradication concentration against wild-type P. aeruginosa biofilms, whereas EGCG had a more pronounced effect when Fap was overexpressed. Our results provide a direct molecular explanation for the ability of EGCG to disrupt P. aeruginosa QS and modify its biofilm and strengthens the case for EGCG as a candidate in multidrug treatment of persistent biofilm infections.

  16. Overexpression of UDP-glucose pyrophosphorylase gene could increase cellulose content in Jute (Corchorus capsularis L.).

    PubMed

    Zhang, Gaoyang; Qi, Jianmin; Xu, Jiantang; Niu, Xiaoping; Zhang, Yujia; Tao, Aifen; Zhang, Liwu; Fang, Pingping; Lin, Lihui

    2013-12-13

    In this study, the full-length cDNA of the UDP-glucose pyrophosphorylase gene was isolated from jute by homologous cloning (primers were designed according to the sequence of UGPase gene of other plants) and modified RACE techniques; the cloned gene was designated CcUGPase. Using bioinformatic analysis, the gene was identified as a member of the UGPase gene family. Real-time PCR analysis revealed differential spatial and temporal expression of the CcUGPase gene, with the highest expression levels at 40 and 120d. PCR and Southern hybridization results indicate that the gene was integrated into the jute genome. Overexpression of CcUGPase gene in jute revealed increased height and cellulose content compared with control lines, although the lignin content remained unchanged. The results indicate that the jute UGPase gene participates in cellulose biosynthesis. These data provide an important basis for the application of the CcUGPase gene in the improvement of jute fiber quality.

  17. In1-ghrelin splicing variant is overexpressed in pituitary adenomas and increases their aggressive features

    PubMed Central

    Ibáñez-Costa, Alejandro; Gahete, Manuel D.; Rivero-Cortés, Esther; Rincón-Fernández, David; Nelson, Richard; Beltrán, Manuel; de la Riva, Andrés; Japón, Miguel A.; Venegas-Moreno, Eva; Gálvez, Ma Ángeles; García-Arnés, Juan A.; Soto-Moreno, Alfonso; Morgan, Jennifer; Tsomaia, Natia; Culler, Michael D.; Dieguez, Carlos; Castaño, Justo P.; Luque, Raúl M.

    2015-01-01

    Pituitary adenomas comprise a heterogeneous subset of pathologies causing serious comorbidities, which would benefit from identification of novel, common molecular/cellular biomarkers and therapeutic targets. The ghrelin system has been linked to development of certain endocrine-related cancers. Systematic analysis of the presence and functional implications of some components of the ghrelin system, including native ghrelin, receptors and the recently discovered splicing variant In1-ghrelin, in human normal pituitaries (n = 11) and pituitary adenomas (n = 169) revealed that expression pattern of ghrelin system suffers a clear alteration in pituitary adenomasas comparedwith normal pituitary, where In1-ghrelin is markedly overexpressed. Interestingly, in cultured pituitary adenoma cells In1-ghrelin treatment (acylated peptides at 100 nM; 24–72 h) increased GH and ACTH secretion, Ca2+ and ERK1/2 signaling and cell viability, whereas In1-ghrelin silencing (using a specific siRNA; 100 nM) reduced cell viability. These results indicate that an alteration of the ghrelin system, specially its In1-ghrelin variant, could contribute to pathogenesis of different pituitary adenomas types, and suggest that this variant and its related ghrelin system could provide new tools to identify novel, more general diagnostic, prognostic and potential therapeutic targets in pituitary tumors. PMID:25737012

  18. In1-ghrelin splicing variant is overexpressed in pituitary adenomas and increases their aggressive features.

    PubMed

    Ibáñez-Costa, Alejandro; Gahete, Manuel D; Rivero-Cortés, Esther; Rincón-Fernández, David; Nelson, Richard; Beltrán, Manuel; de la Riva, Andrés; Japón, Miguel A; Venegas-Moreno, Eva; Gálvez, Ma Ángeles; García-Arnés, Juan A; Soto-Moreno, Alfonso; Morgan, Jennifer; Tsomaia, Natia; Culler, Michael D; Dieguez, Carlos; Castaño, Justo P; Luque, Raúl M

    2015-03-04

    Pituitary adenomas comprise a heterogeneous subset of pathologies causing serious comorbidities, which would benefit from identification of novel, common molecular/cellular biomarkers and therapeutic targets. The ghrelin system has been linked to development of certain endocrine-related cancers. Systematic analysis of the presence and functional implications of some components of the ghrelin system, including native ghrelin, receptors and the recently discovered splicing variant In1-ghrelin, in human normal pituitaries (n = 11) and pituitary adenomas (n = 169) revealed that expression pattern of ghrelin system suffers a clear alteration in pituitary adenomasas compared with normal pituitary, where In1-ghrelin is markedly overexpressed. Interestingly, in cultured pituitary adenoma cells In1-ghrelin treatment (acylated peptides at 100 nM; 24-72 h) increased GH and ACTH secretion, Ca(2+) and ERK1/2 signaling and cell viability, whereas In1-ghrelin silencing (using a specific siRNA; 100 nM) reduced cell viability. These results indicate that an alteration of the ghrelin system, specially its In1-ghrelin variant, could contribute to pathogenesis of different pituitary adenomas types, and suggest that this variant and its related ghrelin system could provide new tools to identify novel, more general diagnostic, prognostic and potential therapeutic targets in pituitary tumors.

  19. Homologous overexpression of xylanase in Fusarium oxysporum increases ethanol productivity during consolidated bioprocessing (CBP) of lignocellulosics.

    PubMed

    Anasontzis, George E; Zerva, Anastasia; Stathopoulou, Panagiota M; Haralampidis, Kosmas; Diallinas, George; Karagouni, Amalia D; Hatzinikolaou, Dimitris G

    2011-03-10

    In an effort to increase ethanol productivity during the consolidated bioprocessing (CBP) of lignocellulosics by Fusarium oxysporum, we attempted the constitutive homologous overexpression of one of the key process enzymes, namely an endo-xylanase. The endo-β-1,4-xylanase 2 gene was incorporated into the F. oxysporum genome under the regulation of the gpdA promoter of Aspergillus nidulans. The transformation was effected through Agrobacterium tumefaciens and resulted in 12 transformants, two of which were selected for further study due to their high extracellular xylanase activities under normally repressing conditions (glucose as sole carbon source). During natural induction conditions (growth on xylan) though, the extracellular enzyme levels of the transformants were only marginally higher (5-10%) compared to the wild type despite the significantly stronger xylanase 2 mRNA signals. SDS-PAGE verified enzyme assay results that there was no intracellular xylanase 2 accumulation in the transformants, suggesting the potential regulation in a post transcriptional or translational level. The fermentative performance of the transformants was evaluated and compared to that of the wild type in simple CBP systems using either corn cob or wheat bran as sole carbon sources. Both transformants produced approximately 60% more ethanol compared to the wild type on corn cob, while for wheat bran this picture was repeated for only one of them. This result is attributed to the high extracellular xylanase activities in the transformants' fermentation broths that were maintained 2-2.5-fold higher compared to the wild type.

  20. Increased dopamine D2 receptor activity in the striatum alters the firing pattern of dopamine neurons in the ventral tegmental area

    PubMed Central

    Krabbe, Sabine; Duda, Johanna; Schiemann, Julia; Poetschke, Christina; Schneider, Gaby; Kandel, Eric R.; Liss, Birgit; Roeper, Jochen; Simpson, Eleanor H.

    2015-01-01

    There is strong evidence that the core deficits of schizophrenia result from dysfunction of the dopamine (DA) system, but details of this dysfunction remain unclear. We previously reported a model of transgenic mice that selectively and reversibly overexpress DA D2 receptors (D2Rs) in the striatum (D2R-OE mice). D2R-OE mice display deficits in cognition and motivation that are strikingly similar to the deficits in cognition and motivation observed in patients with schizophrenia. Here, we show that in vivo, both the firing rate (tonic activity) and burst firing (phasic activity) of identified midbrain DA neurons are impaired in the ventral tegmental area (VTA), but not in the substantia nigra (SN), of D2R-OE mice. Normalizing striatal D2R activity by switching off the transgene in adulthood recovered the reduction in tonic activity of VTA DA neurons, which is concordant with the rescue in motivation that we previously reported in our model. On the other hand, the reduction in burst activity was not rescued, which may be reflected in the observed persistence of cognitive deficits in D2R-OE mice. We have identified a potential molecular mechanism for the altered activity of DA VTA neurons in D2R-OE mice: a reduction in the expression of distinct NMDA receptor subunits selectively in identified mesolimbic DA VTA, but not nigrostriatal DA SN, neurons. These results suggest that functional deficits relevant for schizophrenia symptoms may involve differential regulation of selective DA pathways. PMID:25675529

  1. Increased dopamine transporter function as a mechanism for dopamine hypoactivity in the adult infralimbic medial prefrontal cortex following adolescent social stress.

    PubMed

    Novick, Andrew M; Forster, Gina L; Hassell, James E; Davies, Daniel R; Scholl, Jamie L; Renner, Kenneth J; Watt, Michael J

    2015-10-01

    Being bullied during adolescence is associated with later mental illnesses characterized by deficits in cognitive tasks mediated by prefrontal cortex (PFC) dopamine (DA). Social defeat of adolescent male rats, as a model of teenage bullying victimization, results in medial PFC (mPFC) dopamine (DA) hypofunction in adulthood that is associated with increased drug seeking and working memory deficits. Increased expression of the DA transporter (DAT) is also seen in the adult infralimbic mPFC following adolescent defeat. We propose the functional consequence of this increased DAT expression is enhanced DA clearance and subsequently decreased infralimbic mPFC DA availability. To test this, in vivo chronoamperometry was used to measure changes in accumulation of the DA signal following DAT blockade, with increased DAT-mediated clearance being reflected by lower DA signal accumulation. Previously defeated rats and controls were pre-treated with the norepinephrine transporter (NET) inhibitor desipramine (20 mg/kg, ip.) to isolate infralimbic mPFC DA clearance to DAT, then administered the selective DAT inhibitor GBR-12909 (20 or 40 mg/kg, sc.). Sole NET inhibition with desipramine produced no differences in DA signal accumulation between defeated rats and controls. However, rats exposed to adolescent social defeat demonstrated decreased DA signal accumulation compared to controls in response to both doses of GBR-12909, indicating greater DAT-mediated clearance of infralimbic mPFC DA. These results suggest that protracted increases in infralimbic mPFC DAT function represent a mechanism by which adolescent social defeat stress produces deficits in adult mPFC DA activity and corresponding behavioral and cognitive dysfunction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Increased dopamine transporter function as a mechanism for dopamine hypoactivity in the adult infralimbic medial prefrontal cortex following adolescent social stress

    PubMed Central

    Novick, Andrew M.; Forster, Gina L.; Hassell, James E.; Davies, Daniel R.; Scholl, Jamie L.; Renner, Kenneth J.; Watt, Michael J.

    2015-01-01

    Being bullied during adolescence is associated with later mental illnesses characterized by deficits in cognitive tasks mediated by prefrontal cortex (PFC) dopamine (DA). Social defeat of adolescent male rats, as a model of teenage bullying victimization, results in medial PFC (mPFC) dopamine (DA) hypofunction in adulthood that is associated with increased drug seeking and working memory deficits. Increased expression of the DA transporter (DAT) is also seen in the adult infralimbic mPFC following adolescent defeat. We propose the functional consequence of this increased DAT expression is enhanced DA clearance and subsequently decreased infralimbic mPFC DA availability. To test this, in vivo chronoamperometry was used to measure changes in accumulation of the DA signal following DAT blockade, with increased DAT-mediated clearance being reflected by lower DA signal accumulation. Previously defeated rats and controls were pre-treated with the norepinephrine transporter (NET) inhibitor desipramine (20mg/kg, ip.) to isolate infralimbic mPFC DA clearance to DAT, then administered the selective DAT inhibitor GBR-12909 (20 or 40mg/kg, sc.). Sole NET inhibition with desipramine produced no differences in DA signal accumulation between defeated rats and controls. However, rats exposed to adolescent social defeat demonstrated decreased DA signal accumulation compared to controls in response to both doses of GBR-12909, indicating greater DAT-mediated clearance of infralimbic mPFC DA. These results suggest that protracted increases in infralimbic mPFC DAT function represent a mechanism by which adolescent social defeat stress produces deficits in adult mPFC DA activity and corresponding behavioral and cognitive dysfunction. PMID:26056032

  3. Overexpression of a citrus NDR1 ortholog increases disease resistance in Arabidopsis

    PubMed Central

    Lu, Hua; Zhang, Chong; Albrecht, Ute; Shimizu, Rena; Wang, Guanfeng; Bowman, Kim D.

    2013-01-01

    Emerging devastating diseases, such as Huanglongbing (HLB) and citrus canker, have caused tremendous losses to the citrus industry worldwide. Genetic engineering is a powerful approach that could allow us to increase citrus resistance against these diseases. The key to the success of this approach relies on a thorough understanding of defense mechanisms of citrus. Studies of Arabidopsis and other plants have provided a framework for us to better understand defense mechanisms of citrus. Salicylic acid (SA) is a key signaling molecule involved in basal defense and resistance (R) gene-mediated defense against broad-spectrum pathogens. The Arabidopsis gene NDR1 (NON-RACE-SPECIFIC DISEASE RESISTANCE 1) is a positive regulator of SA accumulation and is specifically required for signaling mediated by a subset of R genes upon recognition of their cognate pathogen effectors. Our bioinformatic analysis identified an ortholog of NDR1 from citrus, CsNDR1. Overexpression of CsNDR1 complemented susceptibility conferred by the Arabidopsis ndr1-1 mutant to Pseudomonas syringae strains and also led to enhanced resistance to an oomycete pathogen Hyaloperonospora arabidopsidis. Such heightened resistance is associated with increased SA production and expression of the defense marker gene PATHOGENESIS RELATED 1 (PR1). In addition, we found that expression of PR1 and accumulation of SA were induced to modest levels in citrus infected with Candidatus Liberibacter asiaticus, the bacterial pathogen associated with HLB disease. Thus, our data suggest that CsNDR1 is a functional ortholog of Arabidopsis NDR1. Since Ca. L. asiaticus infection only activates modest levels of defense responses in citrus, we propose that genetically increasing SA/NDR1-mediated pathways could potentially lead to enhanced resistance against HLB, citrus canker, and other destructive diseases challenging global citrus production. PMID:23761797

  4. Overexpression of a citrus NDR1 ortholog increases disease resistance in Arabidopsis.

    PubMed

    Lu, Hua; Zhang, Chong; Albrecht, Ute; Shimizu, Rena; Wang, Guanfeng; Bowman, Kim D

    2013-01-01

    Emerging devastating diseases, such as Huanglongbing (HLB) and citrus canker, have caused tremendous losses to the citrus industry worldwide. Genetic engineering is a powerful approach that could allow us to increase citrus resistance against these diseases. The key to the success of this approach relies on a thorough understanding of defense mechanisms of citrus. Studies of Arabidopsis and other plants have provided a framework for us to better understand defense mechanisms of citrus. Salicylic acid (SA) is a key signaling molecule involved in basal defense and resistance (R) gene-mediated defense against broad-spectrum pathogens. The Arabidopsis gene NDR1 (NON-RACE-SPECIFIC DISEASE RESISTANCE 1) is a positive regulator of SA accumulation and is specifically required for signaling mediated by a subset of R genes upon recognition of their cognate pathogen effectors. Our bioinformatic analysis identified an ortholog of NDR1 from citrus, CsNDR1. Overexpression of CsNDR1 complemented susceptibility conferred by the Arabidopsis ndr1-1 mutant to Pseudomonas syringae strains and also led to enhanced resistance to an oomycete pathogen Hyaloperonospora arabidopsidis. Such heightened resistance is associated with increased SA production and expression of the defense marker gene PATHOGENESIS RELATED 1 (PR1). In addition, we found that expression of PR1 and accumulation of SA were induced to modest levels in citrus infected with Candidatus Liberibacter asiaticus, the bacterial pathogen associated with HLB disease. Thus, our data suggest that CsNDR1 is a functional ortholog of Arabidopsis NDR1. Since Ca. L. asiaticus infection only activates modest levels of defense responses in citrus, we propose that genetically increasing SA/NDR1-mediated pathways could potentially lead to enhanced resistance against HLB, citrus canker, and other destructive diseases challenging global citrus production.

  5. Contralateral retinal dopamine decrease and melatonin increase in progression of hemiparkinsonium rat.

    PubMed

    Meng, Tao; Zheng, Zhi-Hong; Liu, Ting-Ting; Lin, Ling

    2012-05-01

    Both dopamine (DA) and melatonin (MLT) are abundant neuromodulators located in vertebrate retina. The retinal DA deficiency and variations in MLT levels have been linked to Parkinson's disease (PD). No studies have investigated the ipsilateral and contralateral DA and MLT in retina and their relationships in 6-hydroxydopamine (6-OHDA) induced hemiparkinsonian rats. We established PD rat model by unilateral injection of 6-OHDA into the right substantia nigra and the right medial forebrain bundle. Eye tissue was collected and the levels of MLT and DA were measured twice daily at 10:00 and 22:00. The concentrations of DA and its metabolites, 3,4-dihydroxyphenylacetic (DOPAC) and homovanillic acid (HVA), as well as MLT were determined by HPLC. The results show that DA levels in the eye contralateral to the side of a unilateral intracerebral 6-OHDA lesion significantly decreased (P < 0.001). Both the ratios of DOPAC/DA and HVA/DA were increased in comparison with the vehicle groups after 3 weeks post-lesion. The concentrations of MLT at 10:00 and 22:00 in both eyes were distinctly increased compared with the vehicle groups (P < 0.05). The change of DA and its metabolites, as well as MLT appeared to correlate well with the rotation behavior of rats. These findings suggest that rats receive a unilateral intracerebral injection of 6-OHDA that mainly causes the contralateral eye destruction of DA-containing neurons. Increased retinal MLT level probably is associated with the progression of PD.

  6. Norepinephrine and dopamine increase motility, biofilm formation, and virulence of Vibrio harveyi

    PubMed Central

    Yang, Qian; Anh, Nguyen D. Q.; Bossier, Peter; Defoirdt, Tom

    2014-01-01

    Vibrio harveyi is one of the major pathogens of aquatic organisms, affecting both vertebrates and invertebrates, and causes important losses in the aquaculture industry. In order to develop novel methods to control disease caused by this pathogen, we need to obtain a better understanding of pathogenicity mechanisms. Sensing of catecholamines increases both growth and production of virulence-related factors in pathogens of terrestrial animals and humans. However, at this moment, knowledge on the impact of catecholamines on the virulence of pathogens of aquatic organisms is lacking. In the present study, we report that in V. harveyi, norepinephrine (NE) and dopamine (Dopa) increased growth in serum-supplemented medium, siderophore production, swimming motility, and expression of genes involved in flagellar motility, biofilm formation, and exopolysaccharide production. Consistent with this, pretreatment of V. harveyi with catecholamines prior to inoculation into the rearing water resulted in significantly decreased survival of gnotobiotic brine shrimp larvae, when compared to larvae challenged with untreated V. harveyi. Further, NE-induced effects could be neutralized by α-adrenergic antagonists or by the bacterial catecholamine receptor antagonist LED209, but not by β-adrenergic or dopaminergic antagonists. Dopa-induced effects could be neutralized by dopaminergic antagonists or LED209, but not by adrenergic antagonists. Together, our results indicate that catecholamine sensing increases the success of transmission of V. harveyi and that interfering with catecholamine sensing might be an interesting strategy to control vibriosis in aquaculture. We hypothesize that upon tissue and/or hemocyte damage during infection, pathogens come into contact with elevated catecholamine levels, and that this stimulates the expression of virulence factors that are required to colonize a new host. PMID:25414697

  7. Increasing Dopamine Levels in the Brain Improves Feedback-Based Procedural Learning in Healthy Participants: An Artificial-Grammar-Learning Experiment

    ERIC Educational Resources Information Center

    de Vries, Meinou H.; Ulte, Catrin; Zwitserlood, Pienie; Szymanski, Barbara; Knecht, Stefan

    2010-01-01

    Recently, an increasing number of studies have suggested a role for the basal ganglia and related dopamine inputs in procedural learning, specifically when learning occurs through trial-by-trial feedback (Shohamy, Myers, Kalanithi, & Gluck. (2008). "Basal ganglia and dopamine contributions to probabilistic category learning." "Neuroscience and…

  8. Increasing Dopamine Levels in the Brain Improves Feedback-Based Procedural Learning in Healthy Participants: An Artificial-Grammar-Learning Experiment

    ERIC Educational Resources Information Center

    de Vries, Meinou H.; Ulte, Catrin; Zwitserlood, Pienie; Szymanski, Barbara; Knecht, Stefan

    2010-01-01

    Recently, an increasing number of studies have suggested a role for the basal ganglia and related dopamine inputs in procedural learning, specifically when learning occurs through trial-by-trial feedback (Shohamy, Myers, Kalanithi, & Gluck. (2008). "Basal ganglia and dopamine contributions to probabilistic category learning." "Neuroscience and…

  9. Increased Dopamine Receptor Activity in the Nucleus Accumbens Shell Ameliorates Anxiety during Drug Withdrawal

    PubMed Central

    Radke, Anna K; Gewirtz, Jonathan C

    2012-01-01

    A number of lines of evidence suggest that negative emotional symptoms of withdrawal involve reduced activity in the mesolimbic dopamine system. This study examined the contribution of dopaminergic signaling in structures downstream of the ventral tegmental area to withdrawal from acute morphine exposure, measured as potentiation of the acoustic startle reflex. Systemic administration of the general dopamine receptor agonist apomorphine or a cocktail of the D1-like receptor agonist SKF82958 and the D2-like receptor agonist quinpirole attenuated potentiated startle during morphine withdrawal. This effect was replicated by apomorphine infusion into the nucleus accumbens shell. Finally, apomorphine injection was shown to relieve startle potentiation during nicotine withdrawal and conditioned place aversion to morphine withdrawal. These results suggest that transient activation of the ventral tegmental area mesolimbic dopamine system triggers the expression of anxiety and aversion during withdrawal from multiple classes of abused drugs. PMID:22692565

  10. Overexpression of CtCHS1 Increases Accumulation of Quinochalcone in Safflower

    PubMed Central

    Guo, Dandan; Xue, Yingru; Li, Dongqiao; He, Beixuan; Jia, Xinlei; Dong, Xin; Guo, Meili

    2017-01-01

    Carthami flos, the dried petal of safflower (Carthamus tinctorius L.) has been widely used in traditional Chinese medicine to treat cardiovascular and cerebrovascular diseases, in which quinochalcone glucosides such as hydrosafflower yellow A (HSYA), carthamin are uniquely present and have been identified as active compounds. In the present study, through sequencing of a safflower floret cDNA library and subsequent microarray analysis, we found 23 unigenes (5 PALs, 1 C4Hs, 5 4CLs, 6 CHSs, 2 CHIs, 2 DFRs, 2 FLSs) involved in flavonoid pathway, of which 4 were up-regulated differentially during quinochalcone glucosides accumulation with the floret developing stage. The up-regulated genes were verified by PCR methods. Considering chalcone synthase are entry enzyme in flavonoid biosynthesis, CHS1 was focused on target gene to verify its function furtherly. Bioinformation analysis showed that CHS1 shared 86.94% conserved residues with CHS from other plants. Subcellular localization showed that CtCHS1 was localized in cytoplasm in onion epidermal cells. The transgenic safflower plant with overexpression CtCHS1 by Agrobacterium-mediated pollen-tube pathway method was firstly generated. The results present that expression of PAL2, PAL3, CHS1, CHS4, CHS6 increased and expression of CHI1 and CHI2 decreased in the transgenic plant floret. Meanwhile, the accumulation of quinochalcone glucosides increased by ∼20–30% and accumulation of quercetin-3-β-D-glucoside and quercetin decreased by 48 and 63% in the transgenic plant floret. These results suggested that CtCHS1 played an important role in quinochalcone glucosides biosynthesis rather than flavonol biosynthesis. These results also demonstrated that the pollen-tube pathway method was an efficient method for gene transformation in safflower. Our study will provide a deep understanding of potential synthetic genes involved in quinochalcone biosynthetic pathway. PMID:28861095

  11. Overexpression of CtCHS1 Increases Accumulation of Quinochalcone in Safflower.

    PubMed

    Guo, Dandan; Xue, Yingru; Li, Dongqiao; He, Beixuan; Jia, Xinlei; Dong, Xin; Guo, Meili

    2017-01-01

    Carthami flos, the dried petal of safflower (Carthamus tinctorius L.) has been widely used in traditional Chinese medicine to treat cardiovascular and cerebrovascular diseases, in which quinochalcone glucosides such as hydrosafflower yellow A (HSYA), carthamin are uniquely present and have been identified as active compounds. In the present study, through sequencing of a safflower floret cDNA library and subsequent microarray analysis, we found 23 unigenes (5 PALs, 1 C4Hs, 5 4CLs, 6 CHSs, 2 CHIs, 2 DFRs, 2 FLSs) involved in flavonoid pathway, of which 4 were up-regulated differentially during quinochalcone glucosides accumulation with the floret developing stage. The up-regulated genes were verified by PCR methods. Considering chalcone synthase are entry enzyme in flavonoid biosynthesis, CHS1 was focused on target gene to verify its function furtherly. Bioinformation analysis showed that CHS1 shared 86.94% conserved residues with CHS from other plants. Subcellular localization showed that CtCHS1 was localized in cytoplasm in onion epidermal cells. The transgenic safflower plant with overexpression CtCHS1 by Agrobacterium-mediated pollen-tube pathway method was firstly generated. The results present that expression of PAL2, PAL3, CHS1, CHS4, CHS6 increased and expression of CHI1 and CHI2 decreased in the transgenic plant floret. Meanwhile, the accumulation of quinochalcone glucosides increased by ∼20-30% and accumulation of quercetin-3-β-D-glucoside and quercetin decreased by 48 and 63% in the transgenic plant floret. These results suggested that CtCHS1 played an important role in quinochalcone glucosides biosynthesis rather than flavonol biosynthesis. These results also demonstrated that the pollen-tube pathway method was an efficient method for gene transformation in safflower. Our study will provide a deep understanding of potential synthetic genes involved in quinochalcone biosynthetic pathway.

  12. Administration of URB597, oleoylethanolamide or palmitoylethanolamide increases waking and dopamine in rats.

    PubMed

    Murillo-Rodríguez, Eric; Palomero-Rivero, Marcela; Millán-Aldaco, Diana; Arias-Carrión, Oscar; Drucker-Colín, René

    2011-01-01

    Oleoylethanolamide (OEA) and palmitoylethanolamide (PEA) are amides of fatty acids and ethanolamine named N-acylethanolamines or acylethanolamides. The hydrolysis of OEA and PEA is catalyzed by the fatty acid amide hydrolase (FAAH). A number of FAAH inhibitors that increase the levels of OEA and PEA in the brain have been developed, including URB597. In the present report, we examined whether URB597, OEA or PEA injected into wake-related brain areas, such as lateral hypothalamus (LH) or dorsal raphe nuclei (DRN) would promote wakefulness (W) in rats. Male Wistar rats (250-300 g) were implanted for sleep studies with electrodes to record the electroencephalogram and electromyogram as well as a cannulae aimed either into LH or into DRN. Sleep stages were scored to determine W, slow wave sleep (SWS) and rapid eye movement sleep (REMS). Power spectra bands underly neurophysiological mechanisms of the sleep-wake cycle and provide information about quality rather than quantity of sleep, thus fast Fourier transformation analysis was collected after the pharmacological trials for alpha (for W; α = 8-12 Hz), delta (for SWS; δ = 0.5-4.0 Hz) and theta (for REMS; θ = 6.0-12.0 Hz). Finally, microdialysis samples were collected from a cannula placed into the nucleus accumbens (AcbC) and the levels of dopamine (DA) were determined by HPLC means after the injection of URB597, OEA or PEA. We found that microinjection of compounds (10, 20, 30 µg/1 µL; each) into LH or DRN during the lights-on period increased W and decreased SWS as well as REMS and enhanced DA extracellular levels. URB597, OEA or PEA promoted waking and enhanced DA if injected into LH or DRN. The wake-promoting effects of these compounds could be linked with the enhancement in levels of DA and indirectly mediated by anandamide.

  13. Increased consumption of ethanol and sugar water in mice lacking the dopamine D2 long receptor

    PubMed Central

    Bulwa, Zachary B.; Sharlin, Jordan A.; Clark, Peter J.; Bhattacharya, Tushar K.; Kilby, Chessa N.; Wang, Yanyan; Rhodes, Justin S.

    2011-01-01

    Individual differences in dopamine D2 receptor (D2R) expression in the brain are thought to influence motivation and reinforcement for ethanol and other rewards. D2R exists in two isoforms, D2 long (D2LR) and D2 short (D2SR), produced by alternative splicing of the same gene. The relative contributions of D2LR versus D2SR to ethanol and sugar water drinking are not known. Genetic engineering was used to produce a line of knockout (KO) mice that lack D2LR and consequently have increased expression of D2SR. KO and wild-type (WT) mice of both sexes were tested for intake of 20% ethanol, 10% sugar water and plain tap water using established drinking-in-the-dark procedures. Mice were also tested for effects of the D2 antagonist eticlopride on intake of ethanol to determine whether KO responses were caused by lack of D2LR or over-representation of D2SR. Locomotor activity on running wheels and in cages without wheels was also measured for comparison. D2L KO mice drank significantly more ethanol than WT in both sexes. KO mice drank more sugar water than WT in females but not in males. Eticlopride dose- dependently decreased ethanol intake in all groups except male KO. KO mice were less physically active than WT in cages with or without running wheels. Results suggest that over-representation of D2SR contributes to increased intake of ethanol in the KO mice. Decreasing wheel running and general levels of physical activity in the KO mice rules out the possibility that higher intake results from higher motor activity. Results extend the literature implicating altered expression of D2R in risk for addiction by delineating the contribution of individual D2R isoforms. These findings suggest that D2LR and D2SR play differential roles in consumption of alcohol and sugar rewards. PMID:21803530

  14. Increases in cytoplasmic dopamine compromise the normal resistance of the nucleus accumbens to methamphetamine neurotoxicity.

    PubMed

    Thomas, David M; Francescutti-Verbeem, Dina M; Kuhn, Donald M

    2009-06-01

    Methamphetamine (METH) is a neurotoxic drug of abuse that damages the dopamine (DA) neuronal system in a highly delimited manner. The brain structure most affected by METH is the caudate-putamen (CPu) where long-term DA depletion and microglial activation are most evident. Even damage within the CPu is remarkably heterogenous with lateral and ventral aspects showing the greatest deficits. The nucleus accumbens (NAc) is largely spared of the damage that accompanies binge METH intoxication. Increases in cytoplasmic DA produced by reserpine, L-DOPA or clorgyline prior to METH uncover damage in the NAc as evidenced by microglial activation and depletion of DA, tyrosine hydroxylase (TH), and the DA transporter. These effects do not occur in the NAc after treatment with METH alone. In contrast to the CPu where DA, TH, and DA transporter levels remain depleted chronically, DA nerve ending alterations in the NAc show a partial recovery over time. None of the treatments that enhance METH toxicity in the NAc and CPu lead to losses of TH protein or DA cell bodies in the substantia nigra or the ventral tegmentum. These data show that increases in cytoplasmic DA dramatically broaden the neurotoxic profile of METH to include brain structures not normally targeted for damage by METH alone. The resistance of the NAc to METH-induced neurotoxicity and its ability to recover reveal a fundamentally different neuroplasticity by comparison to the CPu. Recruitment of the NAc as a target of METH neurotoxicity by alterations in DA homeostasis is significant in light of the important roles played by this brain structure.

  15. Increased consumption of ethanol and sugar water in mice lacking the dopamine D2 long receptor.

    PubMed

    Bulwa, Zachary B; Sharlin, Jordan A; Clark, Peter J; Bhattacharya, Tushar K; Kilby, Chessa N; Wang, Yanyan; Rhodes, Justin S

    2011-11-01

    Individual differences in dopamine D2 receptor (D2R) expression in the brain are thought to influence motivation and reinforcement for ethanol and other rewards. D2R exists in two isoforms, D2 long (D2LR) and D2 short (D2SR), produced by alternative splicing of the same gene. The relative contributions of D2LR versus D2SR to ethanol and sugar water drinking are not known. Genetic engineering was used to produce a line of knockout (KO) mice that lack D2LR and consequently have increased expression of D2SR. KO and wild-type (WT) mice of both sexes were tested for intake of 20% ethanol, 10% sugar water and plain tap water using established drinking-in-the-dark procedures. Mice were also tested for effects of the D2 antagonist eticlopride on intake of ethanol to determine whether KO responses were caused by lack of D2LR or overrepresentation of D2SR. Locomotor activity on running wheels and in cages without wheels was also measured for comparison. D2L KO mice drank significantly more ethanol than WT in both sexes. KO mice drank more sugar water than WT in females but not in males. Eticlopride dose dependently decreased ethanol intake in all groups except male KO. KO mice were less physically active than WT in cages with or without running wheels. Results suggest that overrepresentation of D2SR contributes to increased intake of ethanol in the KO mice. Decreasing wheel running and general levels of physical activity in the KO mice rules out the possibility that higher intake results from higher motor activity. Results extend the literature implicating altered expression of D2R in risk for addiction by delineating the contribution of individual D2R isoforms. These findings suggest that D2LR and D2SR play differential roles in consumption of alcohol and sugar rewards.

  16. Overexpression of PGC-1α Increases Peroxisomal and Mitochondrial Fatty Acid Oxidation in Human Primary Myotubes.

    PubMed

    Huang, Tai-Yu; Zheng, Donghai; Houmard, Joseph A; Brault, Jeffrey J; Hickner, Robert C; Cortright, Ronald N

    2017-01-10

    Peroxisomes are indispensable organelles for lipid metabolism in humans and their biogenesis has been assumed to be under regulation by peroxisome proliferator-activated receptors (PPARs). However, recent studies in hepatocytes suggest that the mitochondrial proliferator PGC-1α (peroxisome proliferator-activated receptor gamma coactivator-1 alpha) also acts as an upstream transcriptional regulator for enhancing peroxisomal abundance and associated activity. It is unknown whether the regulatory mechanism(s) for enhancing peroxisomal function is through the same node as mitochondrial biogenesis in human skeletal muscle (HSkM) and whether fatty acid oxidation (FAO) is affected. Primary myotubes from vastus lateralis biopsies from lean donors (BMI =24.0 ± 0.6 kg/m(2), N = 6) were exposed to adenovirus encoding human PGC-1α or GFP control. Peroxisomal biogenesis proteins (Peroxins) and genes (PEXs) responsible for proliferation and functions were assessed by western blotting and real-time qRT-PCR respectively. 1-(14)C palmitic acid and 1-(14)C lignoceric acid (exclusive peroxisomal specific substrate) were used to assess mitochondrial oxidation of peroxisomal derived metabolites. Following overexpression of PGC-1α, 1) Peroxisomal membrane protein 70kD (PMP70), PEX19, and mitochondrial citrate synthetase protein content were significantly elevated (P<0.05) 2) PGC-1α, PMP70, key PEXs, and peroxisomal β-oxidation mRNA expression levels were significantly upregulated (P<0.05) and 3) A concomitant increase in lignoceric acid oxidation by both peroxisomal and mitochondrial activity was observed (P<0.05). These novel findings demonstrate that, in addition to the proliferative effect on mitochondria, PGC-1α can induce peroxisomes and accompanying elevations in long-chain and very-long-chain fatty acid oxidation by a peroxisomal-mitochondrial functional cooperation as observed in HSkM cells.

  17. α-SMA overexpression associated with increased liver fibrosis in infants with biliary atresia.

    PubMed

    Dong, Rui; Luo, Yi; Zheng, Shan

    2012-12-01

    The mechanisms responsible for increased collagen production and hepatic fibrosis in biliary atresia (BA) remain largely unknown. We evaluated α-smooth muscle actin (α-SMA) expression in liver and the porta hepatis in infants with BA. Immunohistochemical staining for α-SMA and CD68 in the BA liver and porta hepatis was performed. A semiquantitative 3-grade staging system was employed to estimate liver fibrosis. The densities of CD68 in BA liver and the levels of direct bilirubin were assessed in relation to α-SMA expression. α-SMA was found to be overexpressed in epithelial cells and in periductular collagen fibers. The expression in infants with BA was higher than that in the control group (P < 0.05). The amount of α-SMA in BA was positively correlated with liver fibrosis scores (r = 0.549, P = 0.022). The levels of α-SMA in the liver of BA were negatively related with improvements in direct bilirubin levels, 3 months postoperatively (r = -0.653, P = 0.029). The correlation between the α-SMA and CD-68 expression was not significantly different (r = 0.444, P = 0.057). The expression of α-SMA in BA liver is higher than that in contro1 group. α-SMA expression is negatively correlated with the reduction of direct bilirubin, 3 months postoperatively, probably due to fibrosis or cirrhosis affecting the entire biliary system.

  18. Loss of Dopamine D2 Receptors Increases Parvalbumin-Positive Interneurons in the Anterior Cingulate Cortex

    PubMed Central

    2015-01-01

    Disruption to dopamine homeostasis during brain development has been implicated in a variety of neuropsychiatric disorders, including depression and schizophrenia. Inappropriate expression or activity of GABAergic interneurons are common features of many of these disorders. We discovered a persistent upregulation of GAD67+ and parvalbumin+ neurons within the anterior cingulate cortex of dopamine D2 receptor knockout mice, while other GABAergic interneuron markers were unaffected. Interneuron distribution and number were not altered in the striatum or in the dopamine-poor somatosensory cortex. The changes were already present by postnatal day 14, indicating a developmental etiology. D2eGFP BAC transgenic mice demonstrated the presence of D2 receptor expression within a subset of parvalbumin-expressing cortical interneurons, suggesting the possibility of a direct cellular mechanism through which D2 receptor stimulation regulates interneuron differentiation or survival. D2 receptor knockout mice also exhibited decreased depressive-like behavior compared with wild-type controls in the tail suspension test. These data indicate that dopamine signaling modulates interneuron number and emotional behavior and that developmental D2 receptor loss or blockade could reveal a potential mechanism for the prodromal basis of neuropsychiatric disorders. PMID:25393953

  19. Loss of dopamine D2 receptors increases parvalbumin-positive interneurons in the anterior cingulate cortex.

    PubMed

    Graham, Devon L; Durai, Heather H; Garden, Jamie D; Cohen, Evan L; Echevarria, Franklin D; Stanwood, Gregg D

    2015-02-18

    Disruption to dopamine homeostasis during brain development has been implicated in a variety of neuropsychiatric disorders, including depression and schizophrenia. Inappropriate expression or activity of GABAergic interneurons are common features of many of these disorders. We discovered a persistent upregulation of GAD67+ and parvalbumin+ neurons within the anterior cingulate cortex of dopamine D2 receptor knockout mice, while other GABAergic interneuron markers were unaffected. Interneuron distribution and number were not altered in the striatum or in the dopamine-poor somatosensory cortex. The changes were already present by postnatal day 14, indicating a developmental etiology. D2eGFP BAC transgenic mice demonstrated the presence of D2 receptor expression within a subset of parvalbumin-expressing cortical interneurons, suggesting the possibility of a direct cellular mechanism through which D2 receptor stimulation regulates interneuron differentiation or survival. D2 receptor knockout mice also exhibited decreased depressive-like behavior compared with wild-type controls in the tail suspension test. These data indicate that dopamine signaling modulates interneuron number and emotional behavior and that developmental D2 receptor loss or blockade could reveal a potential mechanism for the prodromal basis of neuropsychiatric disorders.

  20. Overexpression of {alpha}-catenin increases osteoblastic differentiation in mouse mesenchymal C3H10T1/2 cells

    SciTech Connect

    Kim, Dohee; Yang, Jae-Yeon; Shin, Chan Soo

    2009-05-15

    {alpha}- and {beta}-Catenin link cadherins to the actin-based cytoskeleton at adherens junctions and regulate cell-cell adhesion. Although roles of cadherins and canonical Wnt-/{beta}-catenin-signaling in osteoblastic differentiation have been extensively studied, the role of {alpha}-catenin is not known. Murine embryonic mesenchymal stem cells, C3H10T1/2 cells, were transduced with retrovirus encoding {alpha}-catenin (MSCV-{alpha}-catenin-HA-GFP). In the presence of Wnt-3A conditioned medium or osteogenic medium ({beta}-glycerol phosphate and ascorbic acid), cells overexpressing {alpha}-catenin showed enhanced osteoblastic differentiation as measured by alkaline phosphatase (ALP) staining and ALP activity assay compared to cells transduced with empty virus (MSCV-GFP). In addition, mRNA expression of osteocalcin and Runx2 was significantly increased compared to control. Cell aggregation assay revealed that {alpha}-catenin overexpression has significantly increased cell-cell aggregation. However, cellular {beta}-catenin levels (total, cytoplasmic-nuclear ratio) and {beta}-catenin-TCF/LEF transcriptional activity did not change by overexpression of {alpha}-catenin. Knock-down of {alpha}-catenin using siRNA decreased osteoblastic differentiation as measured by ALP assay. These results suggest that {alpha}-catenin overexpression increases osteoblastic differentiation by increasing cell-cell adhesion rather than Wnt-/{beta}-catenin-signaling.

  1. Overexpression of Forebrain CRH During Early Life Increases Trauma Susceptibility in Adulthood

    PubMed Central

    Toth, Mate; Flandreau, Elizabeth I; Deslauriers, Jessica; Geyer, Mark A; Mansuy, Isabelle M; Merlo Pich, Emilio; Risbrough, Victoria B

    2016-01-01

    Although early-life stress is a significant risk factor for developing anxiety disorders, including posttraumatic stress disorder (PTSD), the underlying mechanisms are unclear. Corticotropin releasing hormone (CRH) is disrupted in individuals with PTSD and early-life stress and hence may mediate the effects of early-life stress on PTSD risk. We hypothesized that CRH hyper-signaling in the forebrain during early development is sufficient to increase response to trauma in adulthood. To test this hypothesis, we induced transient, forebrain-specific, CRH overexpression during early-life (pre-puberty, CRHOEdev) in double-mutant mice (Camk2a-rtta2 × tetO-Crh) and tested their behavioral and gene expression responses to the predator stress model of PTSD in adulthood. In one cohort of CRHOEdev exposed and unexposed mice, avoidance and arousal behaviors were examined 7–15 days after exposure to predator stress. In another cohort, gene expression changes in Crhr1, Crhr2, and Fkbp51 in forebrain of CRHOEdev exposed and unexposed mice were examined 7 days after predator stress. CRHOEdev induced robust increases in startle reactivity and reductions in startle inhibition independently of predator stress in both male and female mice. Avoidance behaviors after predator stress were highly dependent on sex and CRHOEdev exposure. Whereas stressed females exhibited robust avoidance responses that were not altered by CRHOEdev, males developed significant avoidance only when exposed to both CRHOEdev and stress. Quantitative real-time-PCR analysis indicated that CRHOEdev unexposed males exhibit significant changes in Crhr2 expression in the amygdala and bed nucleus stria terminalis in response to stress, whereas males exposed to CRHOEdev did not. Similar to CRHOEdev males, females exhibited no significant Crhr2 gene expression changes in response to stress. Cortical Fkbp51 expression was also significantly reduced by stress and CRHOEdev exposure in males, but not in females. These

  2. Working Memory Deficits, Increased Anxiety-Like Traits, and Seizure Susceptibility in BDNF Overexpressing Mice

    ERIC Educational Resources Information Center

    Papaleo, Francesco; Silverman, Jill L.; Aney, Jordan; Tian, Qingjun; Barkan, Charlotte L.; Chadman, Kathryn K.; Crawley, Jacqueline N.

    2011-01-01

    BDNF regulates components of cognitive processes and has been implicated in psychiatric disorders. Here we report that genetic overexpression of the BDNF mature isoform (BDNF-tg) in female mice impaired working memory functions while sparing components of fear conditioning. BDNF-tg mice also displayed reduced breeding efficiency, higher…

  3. Working Memory Deficits, Increased Anxiety-Like Traits, and Seizure Susceptibility in BDNF Overexpressing Mice

    ERIC Educational Resources Information Center

    Papaleo, Francesco; Silverman, Jill L.; Aney, Jordan; Tian, Qingjun; Barkan, Charlotte L.; Chadman, Kathryn K.; Crawley, Jacqueline N.

    2011-01-01

    BDNF regulates components of cognitive processes and has been implicated in psychiatric disorders. Here we report that genetic overexpression of the BDNF mature isoform (BDNF-tg) in female mice impaired working memory functions while sparing components of fear conditioning. BDNF-tg mice also displayed reduced breeding efficiency, higher…

  4. OVEREXPRESSION OF ANTIOXIDANT ENZYMES UPREGULATES ARYL HYDROCARBON RECEPTOR EXPRESSION VIA INCREASED SP1 DNA-BINDING ACTIVITY

    PubMed Central

    Tang, Tian; Lin, Xinghua; Yang, Hong; Zhou, LiChun; Wang, Zefen; Shan, Guang; Guo, ZhongMao

    2010-01-01

    We previously reported up-regulation of aryl hydrocarbon receptor (AhR) expression as a mechanism by which overexpression of Cu/Zn-superoxide dismutase (SOD) and/or catalase accelerates benzo(a)pyrene (BaP) detoxification in mouse aorta endothelial cells (MAECs). The objective of this study was to investigate the regulatory role of specificity protein-1 (Sp1) in AhR expression in MAECs that overexpress Cu/Zn-SOD and/or catalase. Our data demonstrated comparable levels of nuclear Sp1 protein in the transgenic and wild-type MAECs; however, binding of Sp1 protein to the AhR promoter region was more than 2-fold higher in MAECs overexpressing Cu/Zn-SOD and/or catalase than in wild-type cells. Inhibition of Sp1 binding to the AhR promoter by mithramycin A reduced AhR expression and eliminated the differences between wild-type MAECs, and three lines of transgenic cells. Functional promoter analysis indicated that AhR promoter activity was significantly higher in MAECs overexpressing catalase than in wild-type cells. Mutation of an AhR promoter Sp1-binding site or addition of hydrogen peroxide to the culture medium reduced AhR promoter activity, and decreased the differences between wild-type MAECs and transgenic cells overexpressing catalase. These results suggest that increased Sp1 binding to the AhR promoter region is an underlying mechanism for up-regulation of AhR expression in MAECs that overexpress Cu/Zn-SOD and/or catalase. PMID:20478378

  5. CYP2J2 Overexpression Ameliorates Hyperlipidemia via Increased Fatty Acid Oxidation Mediated by the AMPK Pathway

    PubMed Central

    Zhang, Shasha; Chen, Guangzhi; Li, Ning; Dai, Meiyan; Chen, Chen; Wang, Peihua; Tang, Huiru; Hoopes, Samantha L.; Zeldin, Darryl C.; Wang, Dao Wen; Xu, Xizhen

    2015-01-01

    Objective The study aims to investigate the effect of Cytochrome P450 2J2 (CYP2J2) overexpression on hyperlipidemia in mice and further to explore their effect on fatty acid oxidation in vivo and in vitro. Methods The effects and mechanisms of endothelial-specific CYP2J2 transgene (Tie2-CYP2J2-Tr) on lipid and fatty acids metabolism were investigated in high fat diet (HFD)-treated mice. HepG2, LO2 cells and HUVECs were exposed to 0.4 mM free fatty acid (FFA) for 24h and used as a model to investigate the roles of CYP2J2 overexpression and epoxyeicosatrienoic acids (EETs) on fatty acid β oxidation in vitro. Results Tie2-CYP2J2-Tr mice had significantly lower plasma and liver triglycerides, lower liver cholesterol and fatty acids, and the reduction in HFD-induced lipid accumulation. CYP2J2 overexpression resulted in activation of the hepatic and endothelial AMPKα, increased ACC phosphorylation, increased expression of CPT-1 and PPARα, which were all reduced by HFD treatment. In FFA-treated HepG2, LO2 and HUVECs, both CYP2J2 overexpression and EETs significantly decreased lipid accumulation and increased fatty acid oxidation via activating the AMPK and PPARα pathway. Conclusions Endothelial specific CYP2J2 overexpression alleviates HFD–induced hyperlipidemia in vivo. CYP2J2 ameliorates FFA-induced dyslipidemia via increased fatty acid oxidation mediated by the AMPK and PPARα pathway. PMID:26053032

  6. Dopaminergic pharmacology and antioxidant properties of pukateine, a natural product lead for the design of agents increasing dopamine neurotransmission.

    PubMed

    Dajas-Bailador, F A; Asencio, M; Bonilla, C; Scorza, M C; Echeverry, C; Reyes-Parada, M; Silveira, R; Protais, P; Russell, G; Cassels, B K; Dajas, F

    1999-03-01

    The dopaminergic and antioxidant properties of pukateine [(R)-11-hydroxy-1,2-methylenedioxyaporphine, PUK], a natural aporphine derivative, were analyzed in the rat central nervous system. At dopamine (DA) D1 ([3H]-SCH 23390) and D2 ([3H]-raclopride) binding sites, PUK showed IC50 values in the submicromolar range (0.4 and 0.6 microM, respectively). When the uptake of tritiated dopamine was assayed by using a synaptosomal preparation, PUK showed an IC50 = 46 microM. In 6-hydroxydopamine unilaterally denervated rats, PUK (8 mg/kg but not 4 mg/kg) elicited a significant contralateral circling, a behavior classically associated with a dopaminergic agonist action. When perfused through a microdialysis probe inserted into the striatum, PUK (340 microM) induced a significant increase in dopamine levels. In vitro experiments with a crude rat brain mitochondrial suspension showed that PUK did not affect monoamine oxidase activities, at concentrations as high as 100 microM. PUK potently (IC50 = 15 microM) and dose-dependently inhibited the basal lipid peroxidation of a rat brain membrane preparation. As a whole, PUK showed a unique profile of action, comprising an increase in extracellular DA, an agonist-like interaction with DA receptors, and antioxidant activity. Thus, PUK may be taken as a lead compound for the development of novel therapeutic strategies for Parkinson disease.

  7. Chronic social defeat stress increases dopamine D2 receptor dimerization in the prefrontal cortex of adult mice.

    PubMed

    Bagalkot, T R; Jin, H-M; Prabhu, V V; Muna, S S; Cui, Y; Yadav, B K; Chae, H-J; Chung, Y-C

    2015-12-17

    The present study aimed to examine the effects of chronic social defeat stress on the dopamine receptors and proteins involved in post-endocytic trafficking pathways. Adult mice were divided into susceptible and unsusceptible groups after 10 days of social defeat stress. Western blot analysis was used to measure the protein expression levels of dopamine D2 receptors (D2Rs), a short (D2S) and a long form (D2L) and, D2R monomers and dimers, dopamine D1 receptors (D1Rs), neuronal calcium sensor-1 (NCS-1) and G protein-coupled receptor-associated sorting protein-1 (GASP-1), and reverse transcription-polymerase chain reaction (RT-PCR) was used to measure the mRNA expression levels of D2S, D2L, D2R monomers and dimers, and D1Rs in different brain areas. We observed increased expression of D2S, D2L and D2Rs dimers in the prefrontal cortex (PFC) of susceptible and/or unsusceptible mice compared with controls. The only significant findings with regard to mRNA expression levels were lower expression of D2S mRNA in the amygdala (AMYG) of susceptible and unsusceptible mice compared with controls. The present study demonstrated that chronic social defeat stress induced increased expression of D2S, D2L, and D2R dimers in the PFC of susceptible and/or unsusceptible mice.

  8. Administration of URB597, Oleoylethanolamide or Palmitoylethanolamide Increases Waking and Dopamine in Rats

    PubMed Central

    Murillo-Rodríguez, Eric; Palomero-Rivero, Marcela; Millán-Aldaco, Diana; Arias-Carrión, Oscar; Drucker-Colín, René

    2011-01-01

    Background Oleoylethanolamide (OEA) and palmitoylethanolamide (PEA) are amides of fatty acids and ethanolamine named N-acylethanolamines or acylethanolamides. The hydrolysis of OEA and PEA is catalyzed by the fatty acid amide hydrolase (FAAH). A number of FAAH inhibitors that increase the levels of OEA and PEA in the brain have been developed, including URB597. In the present report, we examined whether URB597, OEA or PEA injected into wake-related brain areas, such as lateral hypothalamus (LH) or dorsal raphe nuclei (DRN) would promote wakefulness (W) in rats. Methodology and Principal Findings Male Wistar rats (250–300 g) were implanted for sleep studies with electrodes to record the electroencephalogram and electromyogram as well as a cannulae aimed either into LH or into DRN. Sleep stages were scored to determine W, slow wave sleep (SWS) and rapid eye movement sleep (REMS). Power spectra bands underly neurophysiological mechanisms of the sleep-wake cycle and provide information about quality rather than quantity of sleep, thus fast Fourier transformation analysis was collected after the pharmacological trials for alpha (for W; α = 8–12 Hz), delta (for SWS; δ = 0.5–4.0 Hz) and theta (for REMS; θ = 6.0–12.0 Hz). Finally, microdialysis samples were collected from a cannula placed into the nucleus accumbens (AcbC) and the levels of dopamine (DA) were determined by HPLC means after the injection of URB597, OEA or PEA. We found that microinjection of compounds (10, 20, 30 µg/1 µL; each) into LH or DRN during the lights-on period increased W and decreased SWS as well as REMS and enhanced DA extracellular levels. Conclusions URB597, OEA or PEA promoted waking and enhanced DA if injected into LH or DRN. The wake-promoting effects of these compounds could be linked with the enhancement in levels of DA and indirectly mediated by anandamide. PMID:21779318

  9. Cocaine sensitization increases subthreshold activity in dopamine neurons from the ventral tegmental area.

    PubMed

    Arencibia-Albite, Francisco; Vázquez-Torres, Rafael; Jiménez-Rivera, Carlos A

    2017-02-01

    The progressive escalation of psychomotor responses that results from repeated cocaine administration is termed sensitization. This phenomenon alters the intrinsic properties of dopamine (DA) neurons from the ventral tegmental area (VTA), leading to enhanced dopaminergic transmission in the mesocorticolimbic network. The mechanisms underlying this augmented excitation are nonetheless poorly understood. DA neurons display the hyperpolarization-activated, nonselective cation current, dubbed Ih We recently demonstrated that Ih and membrane capacitance are substantially reduced in VTA DA cells from cocaine-sensitized rats. The present study shows that 7 days of cocaine withdrawal did not normalize Ih and capacitance. In cells from cocaine-sensitized animals, the amplitude of excitatory synaptic potentials, at -70 mV, was ∼39% larger in contrast to controls. Raise and decay phases of the synaptic signal were faster under cocaine, a result associated with a reduced membrane time constant. Synaptic summation was paradoxically elevated by cocaine exposure, as it consisted of a significantly reduced summation indexed but a considerably increased depolarization. These effects are at least a consequence of the reduced capacitance. Ih attenuation is unlikely to explain such observations, since at -70 mV, no statistical differences exist in Ih or input resistance. The neuronal shrinkage associated with a diminished capacitance may help to understand two fundamental elements of drug addiction: incentive sensitization and negative emotional states. A reduced cell size may lead to substantial enhancement of cue-triggered bursting, which underlies drug craving and reward anticipation, whereas it could also result in DA depletion, as smaller neurons might express low levels of tyrosine hydroxylase. This work uses a new approach that directly extracts important biophysical parameters from alpha function-evoked synaptic potentials. Two of these parameters are the cell membrane

  10. Transgenic overexpression of Hdac3 in the heart produces increased postnatal cardiac myocyte proliferation but does not induce hypertrophy.

    PubMed

    Trivedi, Chinmay M; Lu, Min Min; Wang, Qiaohong; Epstein, Jonathan A

    2008-09-26

    Class I and II histone deacetylases (HDACs) play vital roles in regulating cardiac development, morphogenesis, and hypertrophic responses. Although the roles of Hdac1 and Hdac2, class I HDACs, in cardiac hyperplasia, growth, and hypertrophic responsiveness have been reported, the role in the heart of Hdac3, another class I HDAC, has been less well explored. Here we report that myocyte-specific overexpression of Hdac3 in mice results in cardiac abnormalities at birth. Hdac3 overexpression produces thickening of ventricular myocardium, especially the interventricular septum, and reduction of both ventricular cavities in newborn hearts. Our data suggest that increased thickness of myocardium in Hdac3-transgenic (Hdac3-Tg) mice is due to increased cardiomyocyte hyperplasia without hypertrophy. Hdac3 overexpression inhibits several cyclin-dependent kinase inhibitors, including Cdkn1a, Cdkn1b, Cdkn1c, Cdkn2b, and Cdkn2c. Hdac3-Tg mice did not develop cardiac hypertrophy at 3 months of age, unlike previously reported Hdac2-Tg mice. Further, Hdac3 overexpression did not augment isoproterenol-induced cardiac hypertrophy when compared with wild-type littermates. These findings identify Hdac3 as a novel regulator of cardiac myocyte proliferation during cardiac development.

  11. Endothelial-specific Nox2 overexpression increases vascular superoxide and macrophage recruitment in ApoE−/− mice

    PubMed Central

    Douglas, Gillian; Bendall, Jennifer K.; Crabtree, Mark J.; Tatham, Amy L.; Carter, Emma E.; Hale, Ashley B.; Channon, Keith M.

    2012-01-01

    Aims Vascular disease states are associated with endothelial dysfunction and increased production of reactive oxygen species derived from NADPH oxidases. However, it remains unclear whether a primary increase in superoxide production specifically in the endothelium alters the initiation or progression of atherosclerosis. Methods and results Mice overexpressing Nox2 specifically in the endothelium (Nox2-Tg) were crossed with ApoE−/− mice to produce Nox2-Tg ApoE−/− mice and ApoE−/− littermates. Endothelial overexpression of Nox2 in ApoE−/− mice did not alter blood pressure, but significantly increased vascular superoxide production compared with ApoE−/− littermates, measured using both lucigenin chemiluminescence and 2-hydroxyethidium production (ApoE−/−, 19.9 ± 6.3 vs. Nox2-Tg ApoE−/−, 47.0 ± 7.0 nmol 2-hydroxyethidium/aorta, P< 0.05). Increased endothelial superoxide production increased endothelial levels of vascular cell adhesion protein 1 and enhanced macrophage recruitment in early lesions in the aortic roots of 9-week-old mice, indicating increased atherosclerotic plaque initiation. However, endothelial-specific Nox2 overexpression did not alter native or angiotensin II-driven atherosclerosis in either the aortic root or the descending aorta. Conclusion Endothelial-targeted Nox2 overexpression in ApoE−/− mice is sufficient to increase vascular superoxide production and increase macrophage recruitment possible via activation of endothelial cells. However, this initial increase in macrophage recruitment did not alter the progression of atherosclerosis. These results indicate that Nox-mediated reactive oxygen species signalling has important cell-specific and distinct temporal roles in the initiation and progression of atherosclerosis. PMID:22287576

  12. Over-Expression of SlSHN1 Gene Improves Drought Tolerance by Increasing Cuticular Wax Accumulation in Tomato

    PubMed Central

    Al-Abdallat, Ayed M.; Al-Debei, Hmoud S.; Ayad, Jamal Y.; Hasan, Shireen

    2014-01-01

    Increasing cuticular wax accumulation in plants has been associated with improving drought tolerance in plants. In this study, a cDNA clone encoding the SlSHN1 transcription factor, the closest ortholog to WIN/SHN1 gene in Arabidopsis, was isolated from tomato plant. Expression analysis of SlSHN1 indicated that it is induced in response to drought conditions. The over-expression of SlSHN1 in tomato under the control of the constitutive CaMV 35S promoter produced plants that showed mild growth retardation phenotype with shiny and dark green leaves. Scanning electron microscopy showed that the over-expression of SlSHN1 in tomato resulted in higher cuticular wax deposition on leaf epidermial tissue when compared to non-transformed plants. Expression analysis in transgenic lines over-expressing SlSHN1 indicated that several wax-related synthesis genes were induced. Transgenic tomato plants over-expressing SlSHN1 showed higher drought tolerance when compared with wild type plants; this was reflected in delayed wilting of transgenic lines, improved water status and reduced water loss rate when compared with wild type plants. In conclusion, the SlSHN1 gene can modulate wax accumulation and could be utilized to enhance drought tolerance in tomato plant. PMID:25350113

  13. Overexpression of the trichodiene synthase gene tri5 increases trichodermin production and antimicrobial activity in Trichoderma brevicompactum.

    PubMed

    Tijerino, Anamariela; Cardoza, R Elena; Moraga, Javier; Malmierca, Mónica G; Vicente, Francisca; Aleu, Josefina; Collado, Isidro G; Gutiérrez, Santiago; Monte, Enrique; Hermosa, Rosa

    2011-03-01

    Trichoderma brevicompactum produces trichodermin, a simple trichothecene-type toxin that shares the first steps of the sesquiterpene biosynthetic pathway with other phytotoxic trichothecenes from Fusarium spp. Trichodiene synthase catalyses the conversion of farnesyl pyrophosphate to trichodiene and it is encoded by the tri5 gene that was cloned and analysed functionally by homologous overexpression in T. brevicompactum. tri5 expression was up-regulated in media with glucose, H(2)O(2) or glycerol. tri5 repression was observed in cultures supplemented with the antioxidants ferulic acid and tyrosol. Acetone extracts of tri5-overexpressing transformants displayed higher antifungal activity than those from the wild-type. Chromatographic and spectroscopic analyses revealed that tri5 overexpression led to an increased production of trichodermin and tyrosol. Agar diffusion assays with these two purified metabolites from the tri5-overexpressing transformant T. brevicompactum Tb41tri5 showed that only trichodermin had antifungal activity against Saccharomyces cerevisiae, Kluyveromyces marxianus, Candida albicans, Candida glabrata, Candida tropicalis and Aspergillus fumigatus, in most cases such activity being higher than that observed for amphotericin B and hygromycin. Our results point to the significant role of tri5 in the production of trichodermin and in the antifungal activity of T. brevicompactum.

  14. Overexpression of a CYP94 family gene CYP94C2b increases internode length and plant height in rice

    PubMed Central

    Kurotani, Ken-Ich; Hattori, Tsukaho; Takeda, Shin

    2015-01-01

    Plant growth is controlled by intrinsic developmental programmes and environmental cues. Jasmonate (JA) has important roles in both processes, by regulating cell division and differentiation, as well as in defense responses and senescence. We report an increase in rice plant height caused by overexpression of a gene encoding a cytochrome P450 enzyme, CYP94C2b, which promoted deactivation of JA-Ile. The height increase occurred through enhanced elongation of internodes in the absence of concomitant cell elongation, unlike previous findings with coi1 knock-down plants. Thus, modulating JA metabolism can increase the number of elongated cells in an internode. Based on these and previous findings, we discuss the difference in the effects of CYP94C2b overexpression vs. coi1 knock-down. PMID:26251886

  15. Transgenic switchgrass (Panicum virgatum L.) biomass is increased by overexpression of switchgrass sucrose synthase (PvSUS1).

    PubMed

    Poovaiah, Charleson R; Mazarei, Mitra; Decker, Stephen R; Turner, Geoffrey B; Sykes, Robert W; Davis, Mark F; Stewart, C Neal

    2015-04-01

    Sucrose synthase (SUS) converts sucrose and uridine di-phosphate (UDP) into UDP-glucose and fructose. UDP-glucose is used by the cellulose synthase to produce cellulose for cell wall biosynthesis. For lignocellulosic feedstocks such as switchgrass, the manipulation of cell walls to decrease lignin content is needed to reduce recalcitrance of conversion of biomass into biofuels. Of perhaps equal importance for bioenergy feedstocks is increasing biomass. Four SUS genes were identified in switchgrass. Each gene contained 14 or 15 introns. PvSUS1 was expressed ubiquitously in the tissues tested. PvSUS2 and PvSUS6 were highly expressed in internodes and roots, respectively. PvSUS4 was expressed in low levels in the tissues tested. Transgenic switchgrass plants overexpressing PvSUS1 had increases in plant height by up to 37%, biomass by up to 13.6%, and tiller number by up to 79% compared to control plants. The lignin content was increased in all lines, while the sugar release efficiency was decreased in PvSUS1-overexpressing transgenic switchgrass plants. For switchgrass and other bioenergy feedstocks, the overexpression of SUS1 genes might be a feasible strategy to increase both plant biomass and cellulose content, and to stack with other genes to increase biofuel production per land area cultivated.

  16. Transgenic tobacco plants overexpressing glyoxalase enzymes resist an increase in methylglyoxal and maintain higher reduced glutathione levels under salinity stress.

    PubMed

    Yadav, Sudesh Kumar; Singla-Pareek, Sneh L; Reddy, M K; Sopory, S K

    2005-11-07

    The mechanism behind enhanced salt tolerance conferred by the overexpression of glyoxalase pathway enzymes was studied in transgenic vis-à-vis wild-type (WT) plants. We have recently documented that salinity stress induces higher level accumulation of methylglyoxal (MG), a potent cytotoxin and primary substrate for glyoxalase pathway, in various plant species [Yadav, S.K., Singla-Pareek, S.L., Ray, M., Reddy, M.K. and Sopory, S.K. (2005) MG levels in plants under salinity stress are dependent on glyoxalase I and glutathione. Biochem. Biophys. Res. Commun. 337, 61-67]. The transgenic tobacco plants overexpressing glyoxalase pathway enzymes, resist an increase in the level of MG that increased to over 70% in WT plants under salinity stress. These plants showed enhanced basal activity of various glutathione related antioxidative enzymes that increased further upon salinity stress. These plants suffered minimal salinity stress induced oxidative damage measured in terms of the lipid peroxidation. The reduced glutathione (GSH) content was high in these transgenic plants and also maintained a higher reduced to oxidized glutathione (GSH:GSSG) ratio under salinity. Manipulation of glutathione ratio by exogenous application of GSSG retarded the growth of non-transgenic plants whereas transgenic plants sustained their growth. These results suggest that resisting an increase in MG together with maintaining higher reduced glutathione levels can be efficiently achieved by the overexpression of glyoxalase pathway enzymes towards developing salinity stress tolerant plants.

  17. Increased Drought Tolerance through the Suppression of ESKMO1 Gene and Overexpression of CBF-Related Genes in Arabidopsis

    PubMed Central

    Xu, Fuhui; Liu, Zhixue; Xie, Hongyan; Zhu, Jian; Zhang, Juren; Kraus, Josef; Blaschnig, Tasja; Nehls, Reinhard; Wang, Hong

    2014-01-01

    Improved drought tolerance is always a highly desired trait for agricultural plants. Significantly increased drought tolerance in Arabidopsis thaliana (Columbia-0) has been achieved in our work through the suppression of ESKMO1 (ESK1) gene expression with small-interfering RNA (siRNA) and overexpression of CBF genes with constitutive gene expression. ESK1 has been identified as a gene linked to normal development of the plant vascular system, which is assumed directly related to plant drought response. By using siRNA that specifically targets ESK1, the gene expression has been reduced and drought tolerance of the plant has been enhanced dramatically in the work. However, the plant response to external abscisic acid application has not been changed. ICE1, CBF1, and CBF3 are genes involved in a well-characterized plant stress response pathway, overexpression of them in the plant has demonstrated capable to increase drought tolerance. By overexpression of these genes combining together with suppression of ESK1 gene, the significant increase of plant drought tolerance has been achieved in comparison to single gene manipulation, although the effect is not in an additive way. Accompanying the increase of drought tolerance via suppression of ESK1 gene expression, the negative effect has been observed in seeds yield of transgenic plants in normal watering conditions comparing with wide type plant. PMID:25184213

  18. Over-expression of cytosolic glutamine synthetase increases photosynthesis and growth at low nitrogen concentrations.

    PubMed

    Fuentes, S I; Allen, D J; Ortiz-Lopez, A; Hernández, G

    2001-05-01

    Nitrogen, which is a major limiting nutrient for plant growth, is assimilated as ammonium by the concerted action of glutamine synthetase (GS) and glutamate synthase (GOGAT). GS catalyses the critical incorporation of inorganic ammonium into the amino acid glutamine. Two types of GS isozymes, located in the cytosol (GS1) and in the chloroplast (GS2) have been identified in plants. Tobacco (Nicotiana tabacum) transformants, over-expressing GS1 driven by the constitutive CaMV 35S promoter were analysed. GS in leaves of GS-5 and GS-8 plants was up-regulated, at the level of RNA and proteins. These transgenic plants had six times higher leaf GS activity than controls. Under optimum nitrogen fertilization conditions there was no effect of GS over-expression on photosynthesis or growth. However, under nitrogen starvation the GS transgenics had c. 70% higher shoot and c. 100% greater root dry weight as well as 50% more leaf area than low nitrogen controls. This was achieved by the maintenance of photosynthesis at rates indistinguishable from plants under high nitrogen, while photosynthesis in control plants was inhibited by 40-50% by nitrogen deprivation. It was demonstrated that manipulation of GS activity has the potential to maintain crop photosynthetic productivity while reducing nitrogen fertilization and the concomitant pollution.

  19. SLC7A11 Overexpression in Glioblastoma Is Associated with Increased Cancer Stem Cell-Like Properties.

    PubMed

    Polewski, Monika D; Reveron-Thornton, Rosyli F; Cherryholmes, Gregory A; Marinov, Georgi K; Aboody, Karen S

    2017-09-01

    System xc(-) is a sodium-independent electroneutral transporter, comprising a catalytic subunit xCT (SLC7A11), which is involved in importing cystine. Certain cancers such as gliomas upregulate the expression of system xc(-), which confers a survival advantage against the detrimental effects of reactive oxygen species (ROS) by increasing generation of the antioxidant glutathione. However, ROS have also been shown to function as targeted, intracellular second messengers in an array of physiological processes such as proliferation. Several studies have implicated ROS in important cancer features such as migration, invasion, and contribution to a cancer stem cell (CSC)-like phenotype. The role of system xc(-) in regulating these ROS-sensitive processes in glioblastoma multiforme (GBM), the most aggressive malignant primary brain tumor in adults, remains unknown. Stable SLC7A11 knockdown and overexpressing U251 glioma cells were generated and characterized to understand the role of redox and system xc(-) in glioma progression. SLC7A11 knockdown resulted in higher endogenous ROS levels and enhanced invasive properties. On the contrary, overexpression of SLC7A11 resulted in decreased endogenous ROS levels as well as decreased migration and invasion. However, SLC7A11-overexpressing cells displayed actin cytoskeleton changes reminiscent of epithelial-like cells and exhibited an increased CSC-like phenotype. The enhanced CSC-like phenotype may contribute to increased chemoresistance and suggests that overexpression of SLC7A11 in the context of GBM may contribute to tumor progression. These findings have important implications for cancer management where targeting system xC(-) in combination with other chemotherapeutics can reduce cancer resistance and recurrence and improve GBM patient survival.

  20. Over-expression of Trxo1 increases the viability of tobacco BY-2 cells under H2O2 treatment

    PubMed Central

    Ortiz-Espín, Ana; Locato, Vittoria; Camejo, Daymi; Schiermeyer, Andreas; De Gara, Laura; Sevilla, Francisca; Jiménez, Ana

    2015-01-01

    Background and Aims Reactive oxygen species (ROS), especially hydrogen peroxide, play a critical role in the regulation of plant development and in the induction of plant defence responses during stress adaptation, as well as in plant cell death. The antioxidant system is responsible for controlling ROS levels in these processes but redox homeostasis is also a key factor in plant cell metabolism under normal and stress situations. Thioredoxins (Trxs) are ubiquitous small proteins found in different cell compartments, including mitochondria and nuclei (Trxo1), and are involved in the regulation of target proteins through reduction of disulphide bonds, although their role under oxidative stress has been less well studied. This study describes over-expression of a Trxo1 for the first time, using a cell-culture model subjected to an oxidative treatment provoked by H2O2. Methods Control and over-expressing PsTrxo1 tobacco (Nicotiana tabacum) BY-2 cells were treated with 35 mm H2O2 and the effects were analysed by studying the growth dynamics of the cultures together with oxidative stress parameters, as well as several components of the antioxidant systems involved in the metabolism of H2O2. Analysis of different hallmarks of programmed cell death was also carried out. Key Results Over-expression of PsTrxo1 caused significant differences in the response of TBY-2 cells to high concentrations of H2O2, namely higher and maintained viability in over-expressing cells, whilst the control line presented a severe decrease in viability and marked indications of oxidative stress, with generalized cell death after 3 d of treatment. In over-expressing cells, an increase in catalase activity, decreases in H2O2 and nitric oxide contents and maintenance of the glutathione redox state were observed. Conclusions A decreased content of endogenous H2O2 may be responsible in part for the delayed cell death found in over-expressing cells, in which changes in oxidative parameters and

  1. Widespread Increases in Malondialdehyde Immunoreactivity in Dopamine-Rich and Dopamine-Poor Regions of Rat Brain Following Multiple, High Doses of Methamphetamine

    PubMed Central

    Horner, Kristen A.; Gilbert, Yamiece E.; Cline, Susan D.

    2011-01-01

    Treatment with multiple high doses of methamphetamine (METH) can induce oxidative damage, including dopamine (DA)-mediated reactive oxygen species (ROS) formation, which may contribute to the neurotoxic damage of monoamine neurons and long-term depletion of DA in the caudate putamen (CPu) and substantia nigra pars compacta (SNpc). Malondialdehyde (MDA), a product of lipid peroxidation by ROS, is commonly used as a marker of oxidative damage and treatment with multiple high doses of METH increases MDA reactivity in the CPu of humans and experimental animals. Recent data indicate that MDA itself may contribute to the destruction of DA neurons, as MDA causes the accumulation of toxic intermediates of DA metabolism via its chemical modification of the enzymes necessary for the breakdown of DA. However, it has been shown that in human METH abusers there is also increased MDA reactivity in the frontal cortex, which receives relatively fewer DA afferents than the CPu. These data suggest that METH may induce neuronal damage regardless of the regional density of DA or origin of DA input. The goal of the current study was to examine the modification of proteins by MDA in the DA-rich nigrostriatal and mesoaccumbal systems, as well as the less DA-dense cortex and hippocampus following a neurotoxic regimen of METH treatment. Animals were treated with METH (10 mg/kg) every 2 h for 6 h, sacrificed 1 week later, and examined using immunocytochemistry for changes in MDA-adducted proteins. Multiple, high doses of METH significantly increased MDA immunoreactivity (MDA-ir) in the CPu, SNpc, cortex, and hippocampus. Multiple METH administration also increased MDA-ir in the ventral tegmental area and nucleus accumbens. Our data indicate that multiple METH treatment can induce persistent and widespread neuronal damage that may not necessarily be limited to the nigrostriatal DA system. PMID:21602916

  2. Increasing dopamine levels in the brain improves feedback-based procedural learning in healthy participants: an artificial-grammar-learning experiment.

    PubMed

    de Vries, Meinou H; Ulte, Catrin; Zwitserlood, Pienie; Szymanski, Barbara; Knecht, Stefan

    2010-09-01

    Recently, an increasing number of studies have suggested a role for the basal ganglia and related dopamine inputs in procedural learning, specifically when learning occurs through trial-by-trial feedback (Shohamy, Myers, Kalanithi, & Gluck. (2008). Basal ganglia and dopamine contributions to probabilistic category learning. Neuroscience and Biobehavioral Reviews, 32, 219-236). A necessary relationship has however only been demonstrated in patient studies. In the present study, we show for the first time that increasing dopamine levels in the brain improves the gradual acquisition of complex information in healthy participants. We implemented two artificial-grammar-learning tasks, one with and one without performance feedback. Learning was improved after levodopa intake for the feedback-based learning task only, suggesting that dopamine plays a specific role in trial-by-trial feedback-based learning. This provides promising directions for future studies on dopaminergic modulation of cognitive functioning. Copyright 2010 Elsevier Ltd. All rights reserved.

  3. Overexpression of Transcription Factor Sp2 Inhibits Epidermal Differentiation and Increases Susceptibility to Wound and Carcinogen-Induced Tumorigenesis

    PubMed Central

    Kim, Tae-Hyung; Chiera, Shannon L.; Linder, Keith E.; Trempus, Carol S.; Smart, Robert C.; Horowitz, Jonathan M.

    2010-01-01

    Sp proteins are evolutionarily-conserved transcription factors required for the expression of a wide variety of genes that are critical for development and cell-cycle progression. De-regulated expression of certain Sp proteins is associated with the formation of a variety of human tumors, however direct evidence that any given Sp protein is oncogenic has been lacking. Here we report that Sp2 protein abundance in mice increases in concert with the progression of carcinogen-induced murine squamous cell carcinomas. Transgenic mice specifically overexpressing murine Sp2 in epidermal basal keratinocytes were highly susceptible to wound- and carcinogen-induced papillomagenesis. Transgenic animals that were homozygous rather than hemizygous for the Sp2 transgene exhibited a striking arrest in the epidermal differentiation program, perishing within two weeks of birth. Our results directly support the likelihood that Sp2 overexpression occurring in various human cancers has significant functional impact. PMID:20959487

  4. [Overexpression of NHE1 suppresses ABCA1 protein expression via increasing calpain activity in RAW264.7 cells].

    PubMed

    Mo, Xiangang; Wang, Lan; Guo, Jing; Hong, Wei; Long, Shiqi; Zhang, Li; Xiang, Ning; Yang, Juan

    2017-01-01

    Objective To investigate the effect of over-expressed Na(+)/H(+) exchanger 1 (NHE1) on the protein expression of adenosine three phosphate binding cassette transporter A1 (ABCA1) in RAW264.7 cells. Methods RAW264.7 cells were infected with the adenoviral vector encoding NHE1-EGFP (AdNHE1). The infected RAW264.7 cells were subjected to Western blot analysis for NHE1-EGFP fusion protein. The subcellular localization of NHE1-EGFP fusion protein was observed by confocal laser scanning microscopy. NHE1 activity was measured by the method of pH recovery in response to an acute acid pulse. Furthermore, Western blotting was performed to determine ABCA1 protein levels and calpain activity in NHE1-overexpressing RAW264.7 cells. The effect of calpain inhibitor N-acetyl-L-leucyl-L-leucyl-L-norleucinal (ALLN) on ABCA1 protein levels in the presence of TO-901317 was examined by Western blotting. Results NHE1-EGFP fusion protein was highly expressed and localized in cytoplasm and cell membrane of RAW264.7 cells infected with AdNHE1. NHE1-EGFP fusion protein reduced ABCA1 protein expression and increased calpain activity. The calpain inhibitor ALLN blocked the decrease of ABCA1 protein expression. Conclusion Overexpressed NHE1 suppresses the expression of ABCA1 protein via increasing the calpain activity in RAW264.7 cells.

  5. Increased Motor Activity During REM Sleep Is Linked with Dopamine Function in Idiopathic REM Sleep Behavior Disorder and Parkinson Disease

    PubMed Central

    Zoetmulder, Marielle; Nikolic, Miki; Biernat, Heidi; Korbo, Lise; Friberg, Lars; Jennum, Poul

    2016-01-01

    Study Objectives: Rapid eye movement (REM) sleep behavior disorder (RBD) is a parasomnia characterized by impaired motor inhibition during REM sleep, and dream-enacting behavior. RBD is especially associated with α-synucleinopathies, such as Parkinson disease (PD). Follow-up studies have shown that patients with idiopathic RBD (iRBD) have an increased risk of developing an α-synucleinopathy in later life. Although abundant studies have shown that degeneration of the nigrostriatal dopaminergic system is associated with daytime motor function in Parkinson disease, only few studies have investigated the relation between this system and electromyographic (EMG) activity during sleep. The objective of this study was to investigate the relationship between the nigrostriatal dopamine system and muscle activity during sleep in iRBD and PD. Methods: 10 iRBD patients, 10 PD patients with PD, 10 PD patients without RBD, and 10 healthy controls were included and assessed with (123)I-N-omega-fluoropropyl-2-beta-carboxymethoxy-3beta-(4-iodophenyl) nortropane ((123)I-FP-CIT) Single-photon emission computed tomography (SPECT) scanning (123I-FP-CIT SPECT), neurological examination, and polysomnography. Results: iRBD patients and PD patients with RBD had increased EMG-activity compared to healthy controls. 123I-FP-CIT uptake in the putamen-region was highest in controls, followed by iRBD patients, and lowest in PD patients. In iRBD patients, EMG-activity in the mentalis muscle was correlated to 123I-FP-CIT uptake in the putamen. In PD patients, EMG-activity was correlated to anti-Parkinson medication. Conclusions: Our results support the hypothesis that increased EMG-activity during REM sleep is at least partly linked to the nigrostriatal dopamine system in iRBD, and with dopamine function in PD. Citation: Zoetmulder M, Nikolic M, Biernat H, Korbo L, Friberg L, Jennum P. Increased motor activity during rem sleep is linked with dopamine function in idiopathic REM sleep behavior

  6. Overexpression of polyphosphate kinase gene (ppk) increases bioinsecticide production by Bacillus thuringiensis.

    PubMed

    Doruk, Tugrul; Avican, Ummehan; Camci, Irem Yalim; Gedik, Sedef Tunca

    2013-05-06

    Polyphosphate (polyP), synthesized by polyP kinase (PPK) using the terminal phosphate of ATP as substrate, performs important functions in every living cell. The present work reports on the relationship between polyP metabolism and bioinsecticide production in Bacillus thuringiensis subsp. israelensis (Bti). The ppk gene of Bti was cloned into vector pHT315 and the effect of its overexpression on endotoxin production was determined. Endotoxin production by the recombinant strain was found to be consistently higher than that by the wild type strain and the strain that carried the empty plasmid. The toxicity of the recombinant mutant strain (LC50 5.8±0.6ngml(-1)) against late 2nd instar Culex quinquefasciatus was about 7.7 times higher than that of Bti (LC50 44.9±7ngml(-1)). To our knowledge this is the first reported study which relates polyP metabolism with bioinsecticide biosynthesis.

  7. The catecholamine stress hormones norepinephrine and dopamine increase the virulence of pathogenic Vibrio anguillarum and Vibrio campbellii.

    PubMed

    Pande, Gde Sasmita J; Suong, Nguyen Thao; Bossier, Peter; Defoirdt, Tom

    2014-12-01

    Obtaining a better understanding of mechanisms involved in bacterial infections is of paramount importance for the development of novel agents to control disease caused by (antibiotic resistant) pathogens in aquaculture. In this study, we investigated the impact of catecholamine stress hormones on growth and virulence factor production of pathogenic vibrios (i.e. two Vibrio campbellii strains and two Vibrio anguillarum strains). Both norepinephrine and dopamine (at 100 μM) significantly induced growth in media containing serum. The compounds also increased swimming motility of the tested strains, whereas they had no effect on caseinase, chitinase, and hemolysin activities. Further, antagonists for eukaryotic catecholamine receptors were able to neutralize some of the effects of the catecholamines. Indeed, the dopaminergic receptor antagonist chlorpromazine neutralized the effect of dopamine, and the α-adrenergic receptor antagonists phentolamine and phenoxybenzamine neutralized the effect of norepinephrine, whereas the β-adrenergic receptor antagonist propranolol had limited to no effect. Finally, pretreatment of pathogenic V. campbellii with catecholamines significantly increased its virulence toward giant freshwater prawn larvae. However, the impact of catecholamine receptor antagonists on in vivo virulence was less clear-cut when compared to the in vitro experiments. In summary, our results show that—similar to enteric pathogens—catecholamines also increase the virulence of vibrios that are pathogenic to aquatic organisms by increasing motility and growth in media containing serum.

  8. Long-term administration of the dopamine D3/2 receptor agonist pramipexole increases dopamine and serotonin neurotransmission in the male rat forebrain

    PubMed Central

    Chernoloz, Olga; El Mansari, Mostafa; Blier, Pierre

    2012-01-01

    Background Long-term administration of the dopamine (DA) D2-like (D3/2) receptor agonist pramipexole (PPX) has been previously found to desensitize D2 autoreceptors, thereby allowing a normalization of the firing of DA neurons and serotonin (5-HT)1A autoreceptors, permitting an enhancement of the spontaneous firing of 5-HT neurons. We hypothesized that PPX would increase overall DA and 5-HT neurotransmission in the forebrain as a result of these changes at the presynaptic level. Methods Osmotic minipumps were implanted subcutaneously in male Sprague-Dawley rats, delivering PPX at a dose of 1 mg/kg/d for 14 days. The in vivo electrophysiologic microiontophoretic experiments were carried out in anesthetized rats. Results The sensitivity of postsynaptic D2 receptors in the prefrontal cortex (PFC) remained unaltered following PPX administration, as indicated by the unchanged responsiveness to the microiontophoretic application of DA. Their tonic activation was, however, significantly increased by 104% compared with the control level. The sensitivity of postsynaptic 5-HT1A receptors was not altered, as indicated by the unchanged responsiveness to the microiontophoretic application of 5-HT. Similar to other antidepressant treatments, long-term PPX administration enhanced the tonic activation of 5-HT1A receptors on CA3 pyramidal neurons by 142% compared with the control level. Limitations The assessment of DA and 5-HT neuronal tone was restricted to the PFC and the hippocampus, respectively. Conclusion Chronic PPX administration led to a net enhancement in DA and 5-HT neurotransmission, as indicated by the increased tonic activation of postsynaptic D2 and 5-HT1A receptors in forebrain structures. PMID:22023785

  9. Stable overexpression of pregnane X receptor in HepG2 cells increases its potential for bioartificial liver application.

    PubMed

    Nibourg, Geert A A; Huisman, Maarten T; van der Hoeven, Tessa V; van Gulik, Thomas M; Chamuleau, Robert A F M; Hoekstra, Ruurdtje

    2010-09-01

    To bridge patients with acute liver failure to transplantation or liver regeneration, a bioartificial liver (BAL) is urgently needed. A BAL consists of an extracorporeal bioreactor loaded with a bioactive mass that would preferably be of human origin and display high hepatic functionality, including detoxification. The human hepatoma cell line HepG2 exhibits many hepatic functions, but its detoxification function is low. In this study, we investigated whether stable overexpression of pregnane X receptor (PXR), a master regulator of diverse detoxification functions in the liver [eg, cytochrome P450 3A (CYP3A) activity], would increase the potential of HepG2 for BAL application. Stable overexpression was achieved by lentiviral expression of the human PXR gene, which yielded cell line cBAL119. In monolayer cultures of cBAL119 cells, PXR transcript levels increased 29-fold versus HepG2 cells. Upon activation of PXR by rifampicin, the messenger RNA levels of CYP3A4, CYP3A5, and CYP3A7 increased 49- to 213-fold versus HepG2 cells. According to reporter gene assays with different inducers, the highest increase in CYP3A4 promoter activity (131-fold) was observed upon induction with rifampicin. Inside BALs, the proliferation rates, as measured by the DNA content, were comparable between the 2 cell lines. The rate of testosterone 6beta-hydroxylation, a measure of CYP3A function inside BALs, increased 4-fold in cBAL119 BALs versus HepG2 BALs. Other functions, such as apolipoprotein A1 synthesis, urea synthesis, glucose consumption, and lactate production, remained unchanged or increased. Thus, stable PXR overexpression markedly increases the potential of HepG2 for BAL application. (c) 2010 AASLD.

  10. Overexpression of rice serotonin N-acetyltransferase 1 in transgenic rice plants confers resistance to cadmium and senescence and increases grain yield.

    PubMed

    Lee, Kyungjin; Back, Kyoungwhan

    2017-04-01

    While ectopic overexpression of serotonin N-acetyltransferase (SNAT) in plants has been accomplished using animal SNAT genes, ectopic overexpression of plant SNAT genes in plants has not been investigated. Because the plant SNAT protein differs from that of animals in its subcellular localization and enzyme kinetics, its ectopic overexpression in plants would be expected to give outcomes distinct from those observed from overexpression of animal SNAT genes in transgenic plants. Consistent with our expectations, we found that transgenic rice plants overexpressing rice (Oryza sativa) SNAT1 (OsSNAT1) did not show enhanced seedling growth like that observed in ovine SNAT-overexpressing transgenic rice plants, although both types of plants exhibited increased melatonin levels. OsSNAT1-overexpressing rice plants did show significant resistance to cadmium and senescence stresses relative to wild-type controls. In contrast to tomato, melatonin synthesis in rice seedlings was not induced by selenium and OsSNAT1 transgenic rice plants did not show tolerance to selenium. T2 homozygous OsSNAT1 transgenic rice plants exhibited increased grain yield due to increased panicle number per plant under paddy field conditions. These benefits conferred by ectopic overexpression of OsSNAT1 had not been observed in transgenic rice plants overexpressing ovine SNAT, suggesting that plant SNAT functions differently from animal SNAT in plants. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Nicotine enhancement of dopamine release by a calcium-dependent increase in the size of the readily releasable pool of synaptic vesicles.

    PubMed

    Turner, Timothy J

    2004-12-15

    A major factor underlying compulsive tobacco use is nicotine-induced modulation of dopamine release in the mesolimbic reward pathway (Wise and Rompre, 1989). An established biochemical mechanism for nicotine-enhanced dopamine release is by activating presynaptic nicotinic acetylcholine receptors (nAChRs) (Wonnacott, 1997). Prolonged application of 10(-7) to 10(-5) m nicotine to striatal synaptosomes promoted a sustained efflux of [3H]dopamine. This nicotine effect was mediated by non-alpha7 nAChRs, because it was blocked by 5 mum mecamylamine but was resistant to 100 nm alpha-bungarotoxin (alphaBgTx). Dopamine release was diminished by omitting Na+ or by applying peptide calcium channel blockers, indicating that nAChRs trigger release by depolarizing the nerve terminals. However, because alpha7 receptors rapidly desensitize in the continuous presence of agonists, a repetitive stimulation protocol was used to evaluate the possible significance of desensitization. This protocol produced a transient increase in [3H]dopamine released by depolarization and a significant increase in the response to hypertonic solutions that measure the size of the readily releasable pool (RRP) of synaptic vesicles. The nicotine-induced increase in the size of the readily releasable pool was blocked by alphaBgTx and by the calmodulin antagonist calmidazolium, suggesting that Ca2+ entry through alpha7 nAChRs specifically enhances synaptic vesicle mobilization at dopamine terminals. Thus, nicotine enhances dopamine release by two complementary actions mediated by discrete nAChR subtypes and suggest that the alpha7 nAChR-mediated pathway is tightly and specifically coupled to refilling of the RRP of vesicles in dopamine terminals.

  12. Insulin-like Growth Factor 2 Overexpression Induces β-Cell Dysfunction and Increases Beta-cell Susceptibility to Damage*

    PubMed Central

    Casellas, Alba; Mallol, Cristina; Salavert, Ariana; Jimenez, Veronica; Garcia, Miquel; Agudo, Judith; Obach, Mercè; Haurigot, Virginia; Vilà, Laia; Molas, Maria; Lage, Ricardo; Morró, Meritxell; Casana, Estefania; Ruberte, Jesús; Bosch, Fatima

    2015-01-01

    The human insulin-like growth factor 2 (IGF2) and insulin genes are located within the same genomic region. Although human genomic studies have demonstrated associations between diabetes and the insulin/IGF2 locus or the IGF2 mRNA-binding protein 2 (IGF2BP2), the role of IGF2 in diabetes pathogenesis is not fully understood. We previously described that transgenic mice overexpressing IGF2 specifically in β-cells (Tg-IGF2) develop a pre-diabetic state. Here, we characterized the effects of IGF2 on β-cell functionality. Overexpression of IGF2 led to β-cell dedifferentiation and endoplasmic reticulum stress causing islet dysfunction in vivo. Both adenovirus-mediated overexpression of IGF2 and treatment of adult wild-type islets with recombinant IGF2 in vitro further confirmed the direct implication of IGF2 on β-cell dysfunction. Treatment of Tg-IGF2 mice with subdiabetogenic doses of streptozotocin or crossing these mice with a transgenic model of islet lymphocytic infiltration promoted the development of overt diabetes, suggesting that IGF2 makes islets more susceptible to β-cell damage and immune attack. These results indicate that increased local levels of IGF2 in pancreatic islets may predispose to the onset of diabetes. This study unravels an unprecedented role of IGF2 on β-cells function. PMID:25971976

  13. Insulin-like Growth Factor 2 Overexpression Induces β-Cell Dysfunction and Increases Beta-cell Susceptibility to Damage.

    PubMed

    Casellas, Alba; Mallol, Cristina; Salavert, Ariana; Jimenez, Veronica; Garcia, Miquel; Agudo, Judith; Obach, Mercè; Haurigot, Virginia; Vilà, Laia; Molas, Maria; Lage, Ricardo; Morró, Meritxell; Casana, Estefania; Ruberte, Jesús; Bosch, Fatima

    2015-07-03

    The human insulin-like growth factor 2 (IGF2) and insulin genes are located within the same genomic region. Although human genomic studies have demonstrated associations between diabetes and the insulin/IGF2 locus or the IGF2 mRNA-binding protein 2 (IGF2BP2), the role of IGF2 in diabetes pathogenesis is not fully understood. We previously described that transgenic mice overexpressing IGF2 specifically in β-cells (Tg-IGF2) develop a pre-diabetic state. Here, we characterized the effects of IGF2 on β-cell functionality. Overexpression of IGF2 led to β-cell dedifferentiation and endoplasmic reticulum stress causing islet dysfunction in vivo. Both adenovirus-mediated overexpression of IGF2 and treatment of adult wild-type islets with recombinant IGF2 in vitro further confirmed the direct implication of IGF2 on β-cell dysfunction. Treatment of Tg-IGF2 mice with subdiabetogenic doses of streptozotocin or crossing these mice with a transgenic model of islet lymphocytic infiltration promoted the development of overt diabetes, suggesting that IGF2 makes islets more susceptible to β-cell damage and immune attack. These results indicate that increased local levels of IGF2 in pancreatic islets may predispose to the onset of diabetes. This study unravels an unprecedented role of IGF2 on β-cells function. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Overexpression of the laeA gene leads to increased production of cyclopiazonic acid in Aspergillus fumisynnematus.

    PubMed

    Hong, Eun Jin; Kim, Na Kyeong; Lee, Doyup; Kim, Won Gon; Lee, Inhyung

    2015-11-01

    To explore novel bioactive compounds produced via activation of secondary metabolite (SM) gene clusters, we overexpressed an ortholog of laeA, a gene that encodes a global positive regulator of secondary metabolism in Aspergillus fumisynnematus F746. Overexpression of the laeA gene under the alcA promoter resulted in the production of less pigment, shorter conidial head chains, and fewer conidia. Thin-layer chromatography (TLC) and high-performance liquid chromatography (HPLC) analysis revealed that SM production in OE::laeA was significantly increased, and included new metabolites that were not detected in the wild type. Among them, a compound named F1 was selected on the basis of its high production levels and antibacterial effects. F1 was purified by column chromatography and preparative TLC and identified as cyclopiazonic acid (CPA) by LC/MS, which had been previously known as mycotoxin. As A. fumisynnematus was not known to produce CPA, these results suggest that overexpression of the laeA gene can be used to explore the synthesis of useful bioactive compounds, even in a fungus for which the genome sequence is unavailable. Copyright © 2015 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  15. Overexpressing the Sedum alfredii Cu/Zn Superoxide Dismutase Increased Resistance to Oxidative Stress in Transgenic Arabidopsis

    PubMed Central

    Li, Zhen; Han, Xiaojiao; Song, Xixi; Zhang, Yunxing; Jiang, Jing; Han, Qiang; Liu, Mingying; Qiao, Guirong; Zhuo, Renying

    2017-01-01

    Superoxide dismutase (SOD) is a very important reactive oxygen species (ROS)-scavenging enzyme. In this study, the functions of a Cu/Zn SOD gene (SaCu/Zn SOD), from Sedum alfredii, a cadmium (Cd)/zinc/lead co-hyperaccumulator of the Crassulaceae, was characterized. The expression of SaCu/Zn SOD was induced by Cd stress. Compared with wild-type (WT) plants, overexpression of SaCu/Zn SOD gene in transgenic Arabidopsis plants enhanced the antioxidative defense capacity, including SOD and peroxidase activities. Additionally, it reduced the damage associated with the overproduction of hydrogen peroxide (H2O2) and superoxide radicals (O2•-). The influence of Cd stress on ion flux across the root surface showed that overexpressing SaCu/Zn SOD in transgenic Arabidopsis plants has greater Cd uptake capacity existed in roots. A co-expression network based on microarray data showed possible oxidative regulation in Arabidopsis after Cd-induced oxidative stress, suggesting that SaCu/Zn SOD may participate in this network and enhance ROS-scavenging capability under Cd stress. Taken together, these results suggest that overexpressing SaCu/Zn SOD increased oxidative stress resistance in transgenic Arabidopsis and provide useful information for understanding the role of SaCu/Zn SOD in response to abiotic stress. PMID:28659953

  16. Over-expression of a novel JAZ family gene from Glycine soja, increases salt and alkali stress tolerance

    SciTech Connect

    Zhu, Dan; Cai, Hua; Luo, Xiao; Bai, Xi; Deyholos, Michael K.; Chen, Qin; Chen, Chao; Ji, Wei; Zhu, Yanming

    2012-09-21

    Highlights: Black-Right-Pointing-Pointer We isolated and characterized a novel JAZ family gene, GsJAZ2, from Glycine soja. Black-Right-Pointing-Pointer Overexpression of GsJAZ2 enhanced plant tolerance to salt and alkali stress. Black-Right-Pointing-Pointer The transcriptions of stress marker genes were higher in GsJAZ2 overexpression lines. Black-Right-Pointing-Pointer GsJAZ2 was localized to nucleus. -- Abstract: Salt and alkali stress are two of the main environmental factors limiting crop production. Recent discoveries show that the JAZ family encodes plant-specific genes involved in jasmonate signaling. However, there is only limited information about this gene family in abiotic stress response, and in wild soybean (Glycine soja), which is a species noted for its tolerance to alkali and salinity. Here, we isolated and characterized a novel JAZ family gene, GsJAZ2, from G. soja. Transcript abundance of GsJAZ2 increased following exposure to salt, alkali, cold and drought. Over-expression of GsJAZ2 in Arabidopsis resulted in enhanced plant tolerance to salt and alkali stress. The expression levels of some alkali stress response and stress-inducible marker genes were significantly higher in the GsJAZ2 overexpression lines as compared to wild-type plants. Subcellular localization studies using a GFP fusion protein showed that GsJAZ2 was localized to the nucleus. These results suggest that the newly isolated wild soybean GsJAZ2 is a positive regulator of plant salt and alkali stress tolerance.

  17. Exposure to nicotine increases dopamine receptor content in the mesocorticolimbic pathway of rat dams and offspring during lactation.

    PubMed

    Pinheiro, C R; Oliveira, E; Manhães, A C; Fraga, M C; Claudio-Neto, S; Younes-Rapozo, V; Lotufo, B M; Moura, E G; Lisboa, P C

    2015-09-01

    Nicotine exposure causes the release of dopamine from the ventral tegmental area (VTA) to the nucleus accumbens (NAc). We have previously shown that maternal exposure to nicotine during lactation causes hyperleptinemia in dams and pups, and leptin is known to decrease dopamine release from the VTA. Here we evaluated whether maternal exposure to nicotine during lactation causes changes in dopamine and leptin signaling pathways at the end of exposure and after 5days of withdrawal in the: VTA, NAc, arcuate nucleus (ARC) and dorsal striatum (DS). On postnatal day (PN) 2, lactating Wistar rats were implanted with minipumps releasing nicotine (NIC; 6mg/kg/day, s.c.) or saline (C) for 14days. Offspring were tested in the elevated plus maze (EPM) and open field on PN14 or PN20, and euthanized on PN15 or PN21. Entries into the open arms and head dips in the EPM were reduced in NIC pups at P20. At weaning (PN21), NIC dams had: lower tyrosine hydroxylase (TH), higher OBRb and SOCS3 contents in VTA; lower TH, higher D1R, D2R and DAT contents in NAc; higher TH content in DS; and higher D2R and SOCS3 contents in ARC. On PN15, NIC offspring had higher D1R, D2R and lower DAT contents in NAc, while on PN21, they had lower DAT in DS, and lower pSTAT3 content in ARC. We evidenced that postnatal nicotine exposure induces relevant changes in the brain reward system of dams and pups, possibly associated with changes in leptinemia and increased offspring anxiety-like behavior.

  18. Beta-endorphin-induced increases in plasma epinephrine, norepinephrine and dopamine in rats: inhibition of adrenomedullary response by intracerebral somatostatin.

    PubMed

    Van Loon, G R; Appel, N M; Ho, D

    1981-05-11

    Synthetic human beta-endorphin, 7.25 nmol intracisternally, in unanesthetized, freely moving, chronically cannulated, adult male rats increased plasma concentrations of all 3 catecholamines: epinephrine, norepinephrine and dopamine, for the 2 h period studied. Blockade of these endorphin effects by the prior systemic administration of naloxone supports mediation of the effects at opioid receptors. Acute systemic administration of guanethidine, which decreases norepinephrine release induced by sympathetic nerve stimulation, blunted the plasma norepinephrine response to intracerebral beta-endorphin. Thus, it seems likely that in addition to secretion by adrenal medulla a considerable portion of the beta-endorphin-induced increase in norepinephrine is derived from sympathetic nerve endings. Simultaneous intracisternal administration of another neuropeptide, somatostatin, together with beta-endorphin markedly inhibited the plasma epinephrine response to beta-endorphin, while decreasing the dopamine and norepinephrine responses to a much lesser degree. The dats suggest that beta-endorphin stimulates central sympathetic outflow to both adrenal medulla and sympathetic nerve endings, and further that somatostatin inhibits the effect of endorphin to stimulate outflow to adrenal medulla but does not affect outflow to sympathetic nerve endings.

  19. Increased Penicillin Production in Penicillium chrysogenum Production Strains via Balanced Overexpression of Isopenicillin N Acyltransferase

    PubMed Central

    Weber, Stefan S.; Polli, Fabiola; Boer, Rémon; Bovenberg, Roel A. L.

    2012-01-01

    Intense classical strain improvement has yielded industrial Penicillium chrysogenum strains that produce high titers of penicillin. These strains contain multiple copies of the penicillin biosynthesis cluster encoding the three key enzymes: δ-(l-α-aminoadipyl)-l-cysteinyl-d-valine synthetase (ACVS), isopenicillin N synthase (IPNS), and isopenicillin N acyltransferase (IAT). The phenylacetic acid coenzyme A (CoA) ligase (PCL) gene encoding the enzyme responsible for the activation of the side chain precursor phenylacetic acid is localized elsewhere in the genome in a single copy. Since the protein level of IAT already saturates at low cluster copy numbers, IAT might catalyze a limiting step in high-yielding strains. Here, we show that penicillin production in high-yielding strains can be further improved by the overexpression of IAT while at very high levels of IAT the precursor 6-aminopenicillic acid (6-APA) accumulates. Overproduction of PCL only marginally stimulates penicillin production. These data demonstrate that in high-yielding strains IAT is the limiting factor and that this limitation can be alleviated by a balanced overproduction of this enzyme. PMID:22865068

  20. Increased penicillin production in Penicillium chrysogenum production strains via balanced overexpression of isopenicillin N acyltransferase.

    PubMed

    Weber, Stefan S; Polli, Fabiola; Boer, Rémon; Bovenberg, Roel A L; Driessen, Arnold J M

    2012-10-01

    Intense classical strain improvement has yielded industrial Penicillium chrysogenum strains that produce high titers of penicillin. These strains contain multiple copies of the penicillin biosynthesis cluster encoding the three key enzymes: δ-(l-α-aminoadipyl)-L-cysteinyl-D-valine synthetase (ACVS), isopenicillin N synthase (IPNS), and isopenicillin N acyltransferase (IAT). The phenylacetic acid coenzyme A (CoA) ligase (PCL) gene encoding the enzyme responsible for the activation of the side chain precursor phenylacetic acid is localized elsewhere in the genome in a single copy. Since the protein level of IAT already saturates at low cluster copy numbers, IAT might catalyze a limiting step in high-yielding strains. Here, we show that penicillin production in high-yielding strains can be further improved by the overexpression of IAT while at very high levels of IAT the precursor 6-aminopenicillic acid (6-APA) accumulates. Overproduction of PCL only marginally stimulates penicillin production. These data demonstrate that in high-yielding strains IAT is the limiting factor and that this limitation can be alleviated by a balanced overproduction of this enzyme.

  1. Raclopride and chlorpromazine, but not clozapine, increase muscle rigidity in the rat: relationship with D2 dopamine receptor occupancy.

    PubMed

    Hemsley, K M; Crocker, A D

    1999-07-01

    The aim of the present study was to investigate the relationship between effects on muscle tone and D2 receptor occupancy of two typical antipsychotic drugs, raclopride and chlorpromazine, and the atypical drug, clozapine. Increased muscle tone (i.e., muscle rigidity), was measured as increases in tonic electromyographic (EMG) activity of the antagonistic muscles of the rat hind limb. D2 dopamine receptor occupancy was assessed in the striatum and substantia nigra, areas involved in the regulation of muscle tone. Raclopride and chlorpromazine produced dose-dependent increases in EMG activity associated with D2 occupancy of 68%-80% in the striatum and 67%-76% in the nigra. No significant increases in EMG were observed with clozapine which showed low D2 occupancy. The results are consistent with those from human studies showing extrapyramidal side effects were associated with striatal D2 occupancy of > 70%.

  2. Enhanced selectivity of boron doped diamond electrodes for the detection of dopamine and ascorbic acid by increasing the film thickness

    NASA Astrophysics Data System (ADS)

    Qi, Yao; Long, Hangyu; Ma, Li; Wei, Quiping; Li, Site; Yu, Zhiming; Hu, Jingyuan; Liu, Peizhi; Wang, Yijia; Meng, Lingcong

    2016-12-01

    In this paper, boron doped diamond (BDD) with different thickness were prepared by hot filament chemical vapor deposition. The performance of BDD electrodes for detecting dopamine (DA) and ascorbic acid (AA) were investigated. Scanning electron microscopy and Raman spectra reveal the grain size increases and the film quality improves with the increase of film thickness. Electrochemical test show that the transfer coefficient in [Fe3 (CN) 6]3-/4- redox system increases with the increase of the film thickness. The results of selectivity and sensitivity for DA mixed with AA detection show that 8h-BDD and 12h-BDD electrodes possess well selective separated oxidation peaks of DA and AA, and the 12h-BDD electrode exhibits optimal sensitivity until the DA concentration drops to 1 μ M.

  3. Increased incorporation of gaseous CO2 into succinate by Escherichia coli overexpressing carbonic anhydrase and phosphoenolpyruvate carboxylase genes.

    PubMed

    Park, Soohyun; Lee, Jae-Ung; Cho, Sukhyeong; Kim, Hyeonsoo; Oh, Han Bin; Pack, Seung Pil; Lee, Jinwon

    2017-01-10

    Carbon dioxide (CO2) is an abundant and cheap carbon source that is partly responsible for global warming in the atmosphere. The objective of this study was to construct a recombinant E. coli strain that can show enhanced production of succinate derived from CO2. In this study, we confirmed the enhancement of utilization by analyzing succinate containing one carbon-13 ((13)C) derived from (13)CO2. Firstly, the carbonic anhydrase gene (SP(-)HCCA) derived from Hahella chejuensis KCTC 2396 was over-expressed to enhance carbon flux toward bicarbonate ion (HCO3(-)) synthesis in E. coli. The phosphoenolpyruvate carboxylase gene (ppc) was over-expressed to enhance the production of oxaloacetate by enhancing the carbon flux. Compared with the control strain, the percentage of the succinate containing one (13)C (succinate(119)) to total succinate was enhanced by approximately 2.80-fold and the amount of succinate(119) also increased by approximately 4.09-fold in SGJS120. Secondly, the lactate dehydrogenase gene (ldhA) was deleted to re-direct the utilization of the carbon source from glucose to enhance succinate production in SGJS120. However, ldhA deletion did not increase CO2 utilization in SJGS120. Finally, the phosphotransferase system gene (ptsG) and pyruvate kinase F gene (pykF) were deleted to increase the amount of phosphoenolpyruvate (PEP). SGJS126 (pykF deletion strain) showed the highest increase, which was 6.05-fold higher than the control strain. From the results, SP(-)HCCA overexpression and pykF deletion may be useful for enhancing CO2 utilization in E. coli. Additionally, engineered strains showed the potential to reduce the cost of succinate production by using an industrially cheaper carbon source such as CO2 and converting CO2 to a valuable chemical. Copyright © 2016. Published by Elsevier B.V.

  4. Dopamine D2 receptors mediate the increase in reinstatement of the conditioned rewarding effects of cocaine induced by acute social defeat.

    PubMed

    Reguilón, Marina Daiana; Montagud-Romero, Sandra; Ferrer-Pérez, Carmen; Roger-Sánchez, Concepción; Aguilar, María Asunción; Miñarro, José; Rodríguez-Arias, Marta

    2017-03-15

    Social stress modifies the activity of brain areas involved in the rewarding effects of psychostimulants, inducing neuroadaptations in the dopaminergic mesolimbic system and modifying the sensitivity of dopamine receptors. In the present study we evaluated the effect of the dopamine D1- and D2-like receptor antagonists (SCH23390 and raclopride, respectively) on the short-time effects of acute social defeat (ASD). Male OF1 mice were socially defeated before each conditioning session of the conditioned place preference (CPP) induced by 1mg/kg or 25mg/kg of cocaine plus the corresponding dopamine antagonist. A final experiment was designed to evaluate the effect of the dopamine antagonists on the CPP induced by 3mg/kg of cocaine with or without a stress experience. Mice exposed to ASD showed an increase in reinstatement of the conditioned reinforcing effects of cocaine that was blocked by all of the dopamine receptor antagonists. Blockade of dopamine D2-like receptors with raclopride specifically prevented the effects of stress without affecting the rewarding properties of cocaine. However, SCH23390 inhibited cocaine-induced preference in the control groups and even induced aversion in defeated mice conditioned with the lower dose of cocaine. Moreover, the lowest dose of SCH23390 blocked the rewarding effects of 3mg/kg of cocaine-induced CPP. Our results confirm that the dopamine D2 receptor is involved in the short-term effects of ASD on the rewarding effects of cocaine. The dopamine D1 receptor is clearly involved in the rewarding effects of cocaine, but its role in the effects of ASD remains to be demonstrated.

  5. Overexpression of a Gene Involved in Phytic Acid Biosynthesis Substantially Increases Phytic Acid and Total Phosphorus in Rice Seeds.

    PubMed

    Tagashira, Yusuke; Shimizu, Tomoe; Miyamoto, Masanobu; Nishida, Sho; Yoshida, Kaoru T

    2015-04-24

    The manipulation of seed phosphorus is important for seedling growth and environmental P sustainability in agriculture. The mechanism of regulating P content in seed, however, is poorly understood. To study regulation of total P, we focused on phytic acid (inositol hexakisphosphate; InsP₆) biosynthesis-related genes, as InsP₆ is a major storage form of P in seeds. The rice (Oryza sativa L.) low phytic acid mutant lpa1-1 has been identified as a homolog of archael 2-phosphoglycerate kinase. The homolog might act as an inositol monophosphate kinase, which catalyzes a key step in InsP₆ biosynthesis. Overexpression of the homolog in transgenic rice resulted in a significant increase in total P content in seed, due to increases in InsP₆ and inorganic phosphates. On the other hand, overexpression of genes that catalyze the first and last steps of InsP₆ biosynthesis could not increase total P levels. From the experiments using developing seeds, it is suggested that the activation of InsP₆ biosynthesis in both very early and very late periods of seed development increases the influx of P from vegetative organs into seeds. This is the first report from a study attempting to elevate the P levels of seed through a transgenic approach.

  6. Retrodialysis of N/OFQ into the nucleus accumbens shell blocks cocaine-induced increases in extracellular dopamine and locomotor activity.

    PubMed

    Vazquez-DeRose, Jacqueline; Stauber, Gregory; Khroyan, Taline V; Xie, Xinmin Simon; Zaveri, Nurulain T; Toll, Lawrence

    2013-01-15

    Nociceptin (N/OFQ) has been implicated in a variety of neurological disorders, most notably in reward processes and drug abuse. N/OFQ suppresses extracellular dopamine in the nucleus accumbens (NAc) after intracerebroventricular injection. This study sought to examine the effects of retrodialyzed N/OFQ on the cocaine-induced increase in extracellular dopamine levels in the NAc, as well as locomotor activity, in freely moving rats. 1.0μM, 10μM, and 1mM N/OFQ, in the NAc shell, significantly suppressed the cocaine-induced dopamine increase in the NAc, while N/OFQ alone had no significant effect on dopamine levels. Co-delivery of the selective NOP receptor antagonist SB612111 ([(-)-cis-1-Methyl-7-[[4-(2,6-dichlorophenyl)piperidin-1-yl]methyl]-6,7,8,9-tetrahydro-5H-benzocyclohepten-5-ol] reversed the N/OFQ suppression of cocaine-induced dopamine in the NAc, suggesting that this is an NOP receptor-mediated effect. Using a novel system to assess locomotion, we measured various motor activities of the animals with simultaneous microdialysis from the home cage. Cocaine produced an expected increase in total activity, including horizontal movement and rearing behavior. Retrodialysis of N/OFQ with cocaine administration affected all motor activities, initially showing no effect on behavior, but over time inhibiting cocaine-induced motor behaviors. These results suggest that N/OFQ can act directly in the NAc shell to block cocaine-induced increases in extracellular dopamine levels. Extracellular dopamine and locomotor activity can be dissociated within the NAc and may reflect motor output differences in shell versus core regions of the NAc. These studies confirm the widespread involvement of NOP receptors in drug addiction and further validate the utility of an NOP receptor agonist as a medication for treatment of drug addiction.

  7. Overexpression of CaDSR6 increases tolerance to drought and salt stresses in transgenic Arabidopsis plants.

    PubMed

    Kim, Eun Yu; Seo, Young Sam; Park, Ki Youl; Kim, Soo Jin; Kim, Woo Taek

    2014-11-15

    The partial CaDSR6 (Capsicum annuum Drought Stress Responsive 6) cDNA was previously identified as a drought-induced gene in hot pepper root tissues. However, the cellular role of CaDSR6 with regard to drought stress tolerance was unknown. In this report, full-length CaDSR6 cDNA was isolated. The deduced CaDSR6 protein was composed of 234 amino acids and contained an approximately 30 amino acid-long Asp-rich domain in its central region. This Asp-rich domain was highly conserved in all plant DSR6 homologs identified and shared a sequence identity with the N-terminal regions of yeast p23(fyp) and human hTCTP, which contain Rab protein binding sites. Transgenic Arabidopsis plants overexpressing CaDSR6 (35S:CaDSR6-sGFP) were tolerant to high salinity, as identified by more vigorous root growth and higher levels of total chlorophyll than wild type plants. CaDSR6-overexpressors were also more tolerant to drought stress compared to wild type plants. The 35S:CaDSR6-sGFP leaves retained their water content and chlorophyll more efficiently than wild type leaves in response to dehydration stress. The expression of drought-induced marker genes, such as RD20, RD22, RD26, RD29A, RD29B, RAB18, KIN2, ABF3, and ABI5, was markedly increased in CaDSR6-overexpressing plants relative to wild type plants under both normal and drought conditions. These results suggest that overexpression of CaDSR6 is associated with increased levels of stress-induced genes, which, in turn, conferred a drought tolerant phenotype in transgenic Arabidopsis plants. Overall, our data suggest that CaDSR6 plays a positive role in the response to drought and salt stresses.

  8. α-Synuclein Over-Expression Induces Increased Iron Accumulation and Redistribution in Iron-Exposed Neurons.

    PubMed

    Ortega, Richard; Carmona, Asuncion; Roudeau, Stéphane; Perrin, Laura; Dučić, Tanja; Carboni, Eleonora; Bohic, Sylvain; Cloetens, Peter; Lingor, Paul

    2016-04-01

    Parkinson's disease is the most common α-synucleinopathy, and increased levels of iron are found in the substantia nigra of Parkinson's disease patients, but the potential interlink between both molecular changes has not been fully understood. Metal to protein binding assays have shown that α-synuclein can bind iron in vitro; therefore, we hypothesized that iron content and iron distribution could be modified in cellulo, in cells over-expressing α-synuclein. Owing to particle-induced X-ray emission and synchrotron X-ray fluorescence chemical nano-imaging, we were able to quantify and describe the iron distribution at the subcellular level. We show that, in neurons exposed to excess iron, the mere over-expression of human α-synuclein results in increased levels of intracellular iron and in iron redistribution from the cytoplasm to the perinuclear region within α-synuclein-rich inclusions. Reproducible results were obtained in two distinct recombinant expression systems, in primary rat midbrain neurons and in a rat neuroblastic cell line (PC12), both infected with viral vectors expressing human α-synuclein. Our results link two characteristic molecular features found in Parkinson's disease, the accumulation of α-synuclein and the increased levels of iron in the substantia nigra.

  9. Blockade of NMDA receptors in the prefrontal cortex increases dopamine and acetylcholine release in the nucleus accumbens and motor activity.

    PubMed

    Del Arco, Alberto; Segovia, Gregorio; Mora, Francisco

    2008-12-01

    The present study investigates the effects of injections of a specific N-methyl-D-aspartic acid (NMDA) antagonist 3-[(R)-2-carboxypiperazin-4-yl]-propyl-1-phophonic acid (CPP) into the prefrontal cortex (PFC) on the extracellular concentrations of dopamine and acetylcholine in the nucleus accumbens (NAc) and on motor activity in the freely moving rat. Sprague-Dawley male rats were implanted with guide cannulas into the medial PFC and NAc to perform bilateral microinjections and microdialysis experiments. Spontaneous motor activity was monitored in the open field. Injections of CPP (1 microg/0.5 microL) into the PFC produced a significant increase of the baseline extracellular concentrations of dopamine (up to 130%), dihydroxyphenylacetic acid (DOPAC; up to 120%), homovanillic acid (HVA; up to 130%), and acetylcholine (up to 190%) in the NAc as well as motor hyperactivity. In the NAc, perfusion of the NMDA and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) glutamate antagonists CPP (50 microM)+6,7-dinitroquinoxaline-2,3-dione (DNQX; 50 microM) through the microdialysis probe blocked acetylcholine release, but not DOPAC and HVA increases produced by CPP injections into the PFC. Also, increases in motor activity produced by prefrontal injections of CPP were significantly reduced by bilateral injections into the NAc of a mixed D1/D2 antagonist, flupenthixol (5 and 25 microg/0.5 microL). Injections into the NAc of the muscarinic antagonist scopolamine (1 and 10 microg/0.5 microL) further increased, and of the nicotinic antagonist mecamylamine (1 and 10 microg/0.5 microL) did not change, the increases in motor activity produced by prefrontal CPP injections. These results suggest that the dysfunction of NMDA receptors in the PFC could be a key factor in the neurochemical and motor effects associated with corticolimbic hyperactivity.

  10. Repeated exposure of the posterior ventral tegmental area to nicotine increases the sensitivity of local dopamine neurons to the stimulating effects of ethanol.

    PubMed

    Ding, Zheng-Ming; Katner, Simon N; Rodd, Zachary A; Truitt, William; Hauser, Sheketha R; Deehan, Gerald A; Engleman, Eric A; McBride, William J

    2012-05-01

    Clinical evidence indicates a frequent co-morbidity of nicotine and alcohol abuse and dependence. The posterior ventral tegmental area (pVTA) appears to support the reinforcing and dopamine-stimulating effects of both drugs. The current study tested the hypothesis that repeated exposure of the pVTA to one drug would increase the sensitivity of local dopamine neurons to the stimulating effects of the other drug. Female Wistar rats received repeated daily microinjections of either 100 μM nicotine or vehicle directly into the pVTA for 7 days. On the 8th day, rats received microinjections of either vehicle or ethanol (100 or 200 mg%) into the pVTA while extracellular dopamine samples were collected from the ipsilateral nucleus accumbens shell (NACsh) with microdialysis. Another experiment tested the effects of challenge microinjections of 200 μM nicotine in the pVTA on extracellular dopamine levels in the NACsh following 7 daily pretreatments with 200 mg% ethanol in the pVTA. Nicotine pretreatments increased the dopamine-stimulating effects of ethanol in the pVTA (100 mg% ethanol: 115% vs 160% of baseline in the vehicle and nicotine groups, respectively, p < 0.05; 200 mg% ethanol: 145% vs 190% of baseline in the vehicle and nicotine groups, respectively, p < 0.05). In contrast, ethanol pretreatments did not alter the stimulating effects of nicotine in the pVTA. The results suggest that repeated exposure of the pVTA to nicotine increased the response of local dopamine neurons to the stimulating effects of ethanol, whereas repeated exposure of the pVTA to ethanol did not alter the responses of pVTA dopamine neurons to nicotine.

  11. Amantadine increases L-DOPA-derived extracellular dopamine in the striatum of 6-hydroxydopamine-lesioned rats.

    PubMed

    Arai, Akira; Kannari, Kazuya; Shen, Huo; Maeda, Tetsuya; Suda, Toshihiro; Matsunaga, Muneo

    2003-05-16

    We investigated the effect of amantadine on L-DOPA-derived extracellular dopamine (DA) levels and aromatic L-amino acid decarboxylase (AADC) activity in the striatum of rats with nigrostriatal dopaminergic denervation by 6-hydroxydopamine (6-OHDA). Pretreatment with 30 mg/kg amantadine increased the cumulative amount of extracellular DA in the striatum of 6-OHDA-lesioned rats treated with 10 mg/kg benserazide and 50 mg/kg L-DOPA to 250% of that without amantadine (P<0.01). Under pretreatment with 10 mg/kg benserazide, AADC activity after 30 mg/kg amantadine administration was reduced to 43% of controls (P<0.01). Amantadine-induced increase in L-DOPA-derived extracellular DA provides the basis for the clinical usefulness of amantadine in combination with L-DOPA. However, the effect of amantadine on L-DOPA-derived extracellular DA may not be caused by changes in AADC activity.

  12. Differential behavioral reinforcement effects of dopamine receptor agonists in the rat with bilateral lesion of the posterior ventral tegmental area.

    PubMed

    Ouachikh, Omar; Dieb, Wisam; Durif, Franck; Hafidi, Aziz

    2013-09-01

    Dopamine dysregulation syndrome in Parkinson's disease has been attributed to dopamine replacement therapies and/or a lesion of the dopaminergic system. The dopaminergic neuronal loss targets the substantia nigra and the ventral tegmental area (VTA). We hypothesize that dopamine replacement therapy is responsible for the potential reinforcement effect in Parkinson's disease by acting on the neuronal reward circuitry. Therefore this study was designed to explore the potential motivational effect of dopamine replacement therapy in bilateral VTA-lesioned animals. The posterior (p)VTA, which project to the nucleus accumbens (NAc) constitutes the major dopamine neuronal circuitry implicated in addictive disorders. Using the conditioned place preference (CPP) behavioral paradigm, we investigated the motivational effects of dopamine receptor agonists, and cocaine in rat with a 6-OHDA bilateral lesion of the pVTA. Amongst the dopamine receptor agonists used in this study only the D2R and D3R agonists (bromocriptine, PD128907 and pramipexole), induced a significant CPP in pVTA-lesioned animals. Dopamine receptor agonists did not induce behavioral sensitization in sham animals. Moreover, confocal D2R immunostaining analysis showed a significant increase in the number of D2R per cell body in the NAc shell of pVTA lesioned rats compared to sham. This result correlated, for the first time, the dopamine receptor agonists effect with DR2 overexpression in the NAc shell of pVTA-lesioned rats. In addition, cocaine, which is known to increase dopamine release, induced behavioral sensitization in sham group but not in dopamine deprived group. Thus, the later result highlighted the importance of pVTA-NAc dopaminergic pathway in positive reinforcements. Altogether these data suggested that the implication of the dopamine replacement therapy in the appearance of dopamine dysregulation syndrome in Parkinson's disease is probably due to both neuronal degeneration in the posterior VTA and

  13. Lack of Gαi2 leads to dilative cardiomyopathy and increased mortality in β1-adrenoceptor overexpressing mice

    PubMed Central

    Keller, Kirsten; Maass, Martina; Dizayee, Sara; Leiss, Veronika; Annala, Suvi; Köth, Jessica; Seemann, Wiebke K.; Müller-Ehmsen, Jochen; Mohr, Klaus; Nürnberg, Bernd; Engelhardt, Stefan; Herzig, Stefan; Birnbaumer, Lutz; Matthes, Jan

    2015-01-01

    Aims Inhibitory G (Gi) proteins have been proposed to be cardioprotective. We investigated effects of Gαi2 knockout on cardiac function and survival in a murine heart failure model of cardiac β1-adrenoceptor overexpression. Methods and results β1-transgenic mice lacking Gαi2 (β1-tg/Gαi2−/−) were compared with wild-type mice and littermates either overexpressing cardiac β1-adrenoceptors (β1-tg) or lacking Gαi2 (Gαi2−/−). At 300 days, mortality of mice only lacking Gαi2 was already higher compared with wild-type or β1-tg, but similar to β1-tg/Gαi2−/−, mice. Beyond 300 days, mortality of β1-tg/Gαi2−/− mice was enhanced compared with all other genotypes (mean survival time: 363 ± 21 days). At 300 days of age, echocardiography revealed similar cardiac function of wild-type, β1-tg, and Gαi2−/− mice, but significant impairment for β1-tg/Gαi2−/− mice (e.g. ejection fraction 14 ± 2 vs. 40 ± 4% in wild-type mice). Significantly increased ventricle-to-body weight ratio (0.71 ± 0.06 vs. 0.48 ± 0.02% in wild-type mice), left ventricular size (length 0.82 ± 0.04 vs. 0.66 ± 0.03 cm in wild types), and atrial natriuretic peptide and brain natriuretic peptide expression (mRNA: 2819 and 495% of wild-type mice, respectively) indicated hypertrophy. Gαi3 was significantly up-regulated in Gαi2 knockout mice (protein compared with wild type: 340 ± 90% in Gαi2−/− and 394 ± 80% in β1-tg/Gαi2−/−, respectively). Conclusions Gαi2 deficiency combined with cardiac β1-adrenoceptor overexpression strongly impaired survival and cardiac function. At 300 days of age, β1-adrenoceptor overexpression alone had not induced cardiac hypertrophy or dysfunction while there was overt cardiomyopathy in mice additionally lacking Gαi2. We propose an enhanced effect of increased β1-adrenergic drive by the lack of protection via Gαi2. Gαi3 up-regulation was not sufficient to compensate for Gαi2 deficiency, suggesting an isoform-specific or

  14. Overexpression of S-adenosyl-L-methionine synthetase increased tomato tolerance to alkali stress through polyamine metabolism.

    PubMed

    Gong, Biao; Li, Xiu; VandenLangenberg, Kyle M; Wen, Dan; Sun, Shasha; Wei, Min; Li, Yan; Yang, Fengjuan; Shi, Qinghua; Wang, Xiufeng

    2014-08-01

    S-adenosyl-L-methionine (SAM) synthetase is the key enzyme involved in the biosynthesis of SAM, which serves as a common precursor for polyamines (PAs) and ethylene. A SAM synthetase cDNA (SlSAMS1) was introduced into the tomato genome using the Agrobacterium tumefaciens transformation method. Transgenic plants overexpressing SlSAMS1 exhibited a significant increase in tolerance to alkali stress and maintained nutrient balance, higher photosynthetic capacity and lower oxidative stress compared with WT lines. Both in vivo and in vitro experiments indicated that the function of SlSAMS1 mainly depended on the accumulation of Spd and Spm in the transgenic lines. A grafting experiment showed that rootstocks from SlSAMS1-overexpressing plants provided a stronger root system, increased PAs accumulation, essential elements absorption, and decreased Na(+) absorption in the scions under alkali stress. As a result, fruit set and yield were significantly enhanced. To our knowledge, this is the first report to provide evidence that SlSAMS1 positively regulates tomato tolerance to alkali stress and plays a major role in modulating polyamine metabolism, resulting in maintainability of nutrient and ROS balance.

  15. Overexpression of Striated Muscle Activator of Rho Signaling (STARS) Increases C2C12 Skeletal Muscle Cell Differentiation

    PubMed Central

    Wallace, Marita A.; Della Gatta, Paul A.; Ahmad Mir, Bilal; Kowalski, Greg M.; Kloehn, Joachim; McConville, Malcom J.; Russell, Aaron P.; Lamon, Séverine

    2016-01-01

    Background: Skeletal muscle growth and regeneration depend on the activation of satellite cells, which leads to myocyte proliferation, differentiation and fusion with existing muscle fibers. Skeletal muscle cell proliferation and differentiation are tightly coordinated by a continuum of molecular signaling pathways. The striated muscle activator of Rho signaling (STARS) is an actin binding protein that regulates the transcription of genes involved in muscle cell growth, structure and function via the stimulation of actin polymerization and activation of serum-response factor (SRF) signaling. STARS mediates cell proliferation in smooth and cardiac muscle models; however, whether STARS overexpression enhances cell proliferation and differentiation has not been investigated in skeletal muscle cells. Results: We demonstrate for the first time that STARS overexpression enhances differentiation but not proliferation in C2C12 mouse skeletal muscle cells. Increased differentiation was associated with an increase in the gene levels of the myogenic differentiation markers Ckm, Ckmt2 and Myh4, the differentiation factor Igf2 and the myogenic regulatory factors (MRFs) Myf5 and Myf6. Exposing C2C12 cells to CCG-1423, a pharmacological inhibitor of SRF preventing the nuclear translocation of its co-factor MRTF-A, had no effect on myotube differentiation rate, suggesting that STARS regulates differentiation via a MRTF-A independent mechanism. Conclusion: These findings position STARS as an important regulator of skeletal muscle growth and regeneration. PMID:26903873

  16. Anosmin-1 over-expression increases adult neurogenesis in the subventricular zone and neuroblast migration to the olfactory bulb.

    PubMed

    García-González, Diego; Murcia-Belmonte, Verónica; Esteban, Pedro F; Ortega, Felipe; Díaz, David; Sánchez-Vera, Irene; Lebrón-Galán, Rafael; Escobar-Castañondo, Laura; Martínez-Millán, Luis; Weruaga, Eduardo; García-Verdugo, José Manuel; Berninger, Benedikt; de Castro, Fernando

    2016-01-01

    New subventricular zone (SVZ)-derived neuroblasts that migrate via the rostral migratory stream are continuously added to the olfactory bulb (OB) of the adult rodent brain. Anosmin-1 (A1) is an extracellular matrix protein that binds to FGF receptor 1 (FGFR1) to exert its biological effects. When mutated as in Kallmann syndrome patients, A1 is associated with severe OB morphogenesis defects leading to anosmia and hypogonadotropic hypogonadism. Here, we show that A1 over-expression in adult mice strongly increases proliferation in the SVZ, mainly with symmetrical divisions, and produces substantial morphological changes in the normal SVZ architecture, where we also report the presence of FGFR1 in almost all SVZ cells. Interestingly, for the first time we show FGFR1 expression in the basal body of primary cilia in neural progenitor cells. Additionally, we have found that A1 over-expression also enhances neuroblast motility, mainly through FGFR1 activity. Together, these changes lead to a selective increase in several GABAergic interneuron populations in different OB layers. These specific alterations in the OB would be sufficient to disrupt the normal processing of sensory information and consequently alter olfactory memory. In summary, this work shows that FGFR1-mediated A1 activity plays a crucial role in the continuous remodelling of the adult OB.

  17. Overexpression of Striated Muscle Activator of Rho Signaling (STARS) Increases C2C12 Skeletal Muscle Cell Differentiation.

    PubMed

    Wallace, Marita A; Della Gatta, Paul A; Ahmad Mir, Bilal; Kowalski, Greg M; Kloehn, Joachim; McConville, Malcom J; Russell, Aaron P; Lamon, Séverine

    2016-01-01

    Skeletal muscle growth and regeneration depend on the activation of satellite cells, which leads to myocyte proliferation, differentiation and fusion with existing muscle fibers. Skeletal muscle cell proliferation and differentiation are tightly coordinated by a continuum of molecular signaling pathways. The striated muscle activator of Rho signaling (STARS) is an actin binding protein that regulates the transcription of genes involved in muscle cell growth, structure and function via the stimulation of actin polymerization and activation of serum-response factor (SRF) signaling. STARS mediates cell proliferation in smooth and cardiac muscle models; however, whether STARS overexpression enhances cell proliferation and differentiation has not been investigated in skeletal muscle cells. We demonstrate for the first time that STARS overexpression enhances differentiation but not proliferation in C2C12 mouse skeletal muscle cells. Increased differentiation was associated with an increase in the gene levels of the myogenic differentiation markers Ckm, Ckmt2 and Myh4, the differentiation factor Igf2 and the myogenic regulatory factors (MRFs) Myf5 and Myf6. Exposing C2C12 cells to CCG-1423, a pharmacological inhibitor of SRF preventing the nuclear translocation of its co-factor MRTF-A, had no effect on myotube differentiation rate, suggesting that STARS regulates differentiation via a MRTF-A independent mechanism. These findings position STARS as an important regulator of skeletal muscle growth and regeneration.

  18. Hypothalamic over-expression of VGF in the Siberian hamster increases energy expenditure and reduces body weight gain

    PubMed Central

    Brameld, John M.; Hill, Phil; Cocco, Cristina; Noli, Barbara; Ferri, Gian-Luca; Barrett, Perry; Ebling, Francis J. P.; Jethwa, Preeti H.

    2017-01-01

    VGF (non-acronymic) was first highlighted to have a role in energy homeostasis through experiments involving dietary manipulation in mice. Fasting increased VGF mRNA in the Arc and levels were subsequently reduced upon refeeding. This anabolic role for VGF was supported by observations in a VGF null (VGF-/-) mouse and in the diet-induced and gold-thioglucose obese mice. However, this anabolic role for VGF has not been supported by a number of subsequent studies investigating the physiological effects of VGF-derived peptides. Intracerebroventricular (ICV) infusion of TLQP-21 increased resting energy expenditure and rectal temperature in mice and protected against diet-induced obesity. Similarly, ICV infusion of TLQP-21 into Siberian hamsters significantly reduced body weight, but this was due to a decrease in food intake, with no effect on energy expenditure. Subsequently NERP-2 was shown to increase food intake in rats via the orexin system, suggesting opposing roles for these VGF-derived peptides. Thus to further elucidate the role of hypothalamic VGF in the regulation of energy homeostasis we utilised a recombinant adeno-associated viral vector to over-express VGF in adult male Siberian hamsters, thus avoiding any developmental effects or associated functional compensation. Initially, hypothalamic over-expression of VGF in adult Siberian hamsters produced no effect on metabolic parameters, but by 12 weeks post-infusion hamsters had increased oxygen consumption and a tendency to increased carbon dioxide production; this attenuated body weight gain, reduced interscapular white adipose tissue and resulted in a compensatory increase in food intake. These observed changes in energy expenditure and food intake were associated with an increase in the hypothalamic contents of the VGF-derived peptides AQEE, TLQP and NERP-2. The complex phenotype of the VGF-/- mice is a likely consequence of global ablation of the gene and its derived peptides during development, as well

  19. Hypothalamic over-expression of VGF in the Siberian hamster increases energy expenditure and reduces body weight gain.

    PubMed

    Lewis, Jo E; Brameld, John M; Hill, Phil; Cocco, Cristina; Noli, Barbara; Ferri, Gian-Luca; Barrett, Perry; Ebling, Francis J P; Jethwa, Preeti H

    2017-01-01

    VGF (non-acronymic) was first highlighted to have a role in energy homeostasis through experiments involving dietary manipulation in mice. Fasting increased VGF mRNA in the Arc and levels were subsequently reduced upon refeeding. This anabolic role for VGF was supported by observations in a VGF null (VGF-/-) mouse and in the diet-induced and gold-thioglucose obese mice. However, this anabolic role for VGF has not been supported by a number of subsequent studies investigating the physiological effects of VGF-derived peptides. Intracerebroventricular (ICV) infusion of TLQP-21 increased resting energy expenditure and rectal temperature in mice and protected against diet-induced obesity. Similarly, ICV infusion of TLQP-21 into Siberian hamsters significantly reduced body weight, but this was due to a decrease in food intake, with no effect on energy expenditure. Subsequently NERP-2 was shown to increase food intake in rats via the orexin system, suggesting opposing roles for these VGF-derived peptides. Thus to further elucidate the role of hypothalamic VGF in the regulation of energy homeostasis we utilised a recombinant adeno-associated viral vector to over-express VGF in adult male Siberian hamsters, thus avoiding any developmental effects or associated functional compensation. Initially, hypothalamic over-expression of VGF in adult Siberian hamsters produced no effect on metabolic parameters, but by 12 weeks post-infusion hamsters had increased oxygen consumption and a tendency to increased carbon dioxide production; this attenuated body weight gain, reduced interscapular white adipose tissue and resulted in a compensatory increase in food intake. These observed changes in energy expenditure and food intake were associated with an increase in the hypothalamic contents of the VGF-derived peptides AQEE, TLQP and NERP-2. The complex phenotype of the VGF-/- mice is a likely consequence of global ablation of the gene and its derived peptides during development, as well

  20. Erythropoietin over-expression protects against diet-induced obesity in mice through increased fat oxidation in muscles.

    PubMed

    Hojman, Pernille; Brolin, Camilla; Gissel, Hanne; Brandt, Claus; Zerahn, Bo; Pedersen, Bente Klarlund; Gehl, Julie

    2009-06-12

    Erythropoietin can be over-expressed in skeletal muscles by gene electrotransfer, resulting in 100-fold increase in serum EPO and significant increases in haemoglobin levels. Earlier studies have suggested that EPO improves several metabolic parameters when administered to chronically ill kidney patients. Thus we applied the EPO over-expression model to investigate the metabolic effect of EPO in vivo.At 12 weeks, EPO expression resulted in a 23% weight reduction (P<0.01) in EPO transfected obese mice; thus the mice weighed 21.9+/-0.8 g (control, normal diet,) 21.9+/-1.4 g (EPO, normal diet), 35.3+/-3.3 g (control, high-fat diet) and 28.8+/-2.6 g (EPO, high-fat diet). Correspondingly, DXA scanning revealed that this was due to a 28% reduction in adipose tissue mass.The decrease in adipose tissue mass was accompanied by a complete normalisation of fasting insulin levels and glucose tolerance in the high-fat fed mice. EPO expression also induced a 14% increase in muscle volume and a 25% increase in vascularisation of the EPO transfected muscle. Muscle force and stamina were not affected by EPO expression. PCR array analysis revealed that genes involved in lipid metabolism, thermogenesis and inflammation were increased in muscles in response to EPO expression, while genes involved in glucose metabolism were down-regulated. In addition, muscular fat oxidation was increased 1.8-fold in both the EPO transfected and contralateral muscles.In conclusion, we have shown that EPO when expressed in supra-physiological levels has substantial metabolic effects including protection against diet-induced obesity and normalisation of glucose sensitivity associated with a shift to increased fat metabolism in the muscles.

  1. Erythropoietin Over-Expression Protects against Diet-Induced Obesity in Mice through Increased Fat Oxidation in Muscles

    PubMed Central

    Hojman, Pernille; Brolin, Camilla; Gissel, Hanne; Brandt, Claus; Zerahn, Bo; Pedersen, Bente Klarlund; Gehl, Julie

    2009-01-01

    Erythropoietin can be over-expressed in skeletal muscles by gene electrotransfer, resulting in 100-fold increase in serum EPO and significant increases in haemoglobin levels. Earlier studies have suggested that EPO improves several metabolic parameters when administered to chronically ill kidney patients. Thus we applied the EPO over-expression model to investigate the metabolic effect of EPO in vivo. At 12 weeks, EPO expression resulted in a 23% weight reduction (P<0.01) in EPO transfected obese mice; thus the mice weighed 21.9±0.8 g (control, normal diet,) 21.9±1.4 g (EPO, normal diet), 35.3±3.3 g (control, high-fat diet) and 28.8±2.6 g (EPO, high-fat diet). Correspondingly, DXA scanning revealed that this was due to a 28% reduction in adipose tissue mass. The decrease in adipose tissue mass was accompanied by a complete normalisation of fasting insulin levels and glucose tolerance in the high-fat fed mice. EPO expression also induced a 14% increase in muscle volume and a 25% increase in vascularisation of the EPO transfected muscle. Muscle force and stamina were not affected by EPO expression. PCR array analysis revealed that genes involved in lipid metabolism, thermogenesis and inflammation were increased in muscles in response to EPO expression, while genes involved in glucose metabolism were down-regulated. In addition, muscular fat oxidation was increased 1.8-fold in both the EPO transfected and contralateral muscles. In conclusion, we have shown that EPO when expressed in supra-physiological levels has substantial metabolic effects including protection against diet-induced obesity and normalisation of glucose sensitivity associated with a shift to increased fat metabolism in the muscles. PMID:19521513

  2. fadD deletion and fadL overexpression in Escherichia coli increase hydroxy long-chain fatty acid productivity.

    PubMed

    Bae, Jin H; Park, Beom Gi; Jung, Eunok; Lee, Pyung-Gang; Kim, Byung-Gee

    2014-11-01

    A major problem of long-chain fatty acid (LCFA) hydroxylation using Escherichia coli is that FadD (long-chain fatty acyl-CoA synthetase), which is necessary for exogenous LCFA transport, also initiates cellular consumption of LCFA. In this study, an effective method to prevent the cellular consumption of LCFA without impairing its transport is proposed. The main idea is that a heterologous enzyme which consumes LCFA can replace FadD in LCFA transport. For the model heterologous enzyme, CYP153A from Marinobacter aquaeolei, which converts palmitic acid into ω-hydroxy palmitic acid, was expressed in E. coli. When fadD was deleted from an E. coli strain, CYP153A indeed maintained the ability to transport LCFA. A disadvantage of fadD deletion mutant is the fact that FadD deficiency downregulates the transcription of fadL (outer membrane LCFA transporter) via FadR (fatty acid metabolism regulator protein), was solved by fadL overexpression from a plasmid. In addition, the overexpression of fadL was able to offset catabolite repression on fadL, allowing glucose to be used as the primary carbon source. In conclusion, the strain with fadD deletion and fadL overexpression showed 5.5-fold increase in productivity compared to the wild-type strain, converting 2.6 g/L (10.0 mM) of palmitic acid into 2.4 g/L (8.8 mM) of ω-hydroxy palmitic acid in a shake flask. This simple genetic manipulation can be applied to any LCFA hydroxylation using E. coli.

  3. 3,4-Dihydroxyphenylethanol (Hydroxytyrosol) Mitigates the Increase in Spontaneous Oxidation of Dopamine During Monoamine Oxidase Inhibition in PC12 Cells.

    PubMed

    Goldstein, David S; Jinsmaa, Yunden; Sullivan, Patti; Holmes, Courtney; Kopin, Irwin J; Sharabi, Yehonatan

    2016-09-01

    The catecholaldehyde hypothesis predicts that monoamine oxidase (MAO) inhibition should slow the progression of Parkinson's disease, by decreasing production of the autotoxic dopamine metabolite 3,4-dihydroxyphenylacetaldehyde (DOPAL). Inhibiting MAO, however, diverts the fate of cytoplasmic dopamine toward potentially harmful spontaneous oxidation products, indicated by increased 5-S-cysteinyl-dopamine (Cys-DA) levels. 3,4-Dihydroxyphenylethanol (hydroxytyrosol) is an abundant anti-oxidant phenol in constituents of the Mediterranean diet. Whether hydroxytyrosol alters enzymatic or spontaneous oxidation of dopamine has been unknown. Rat pheochromocytoma PC12 cells were incubated with hydroxytyrosol (10 µM, 180 min) alone or with the MAO-A inhibitor clorgyline (1 nM) or the MAO-B inhibitors rasagiline or selegiline (0.5 µM). Hydroxytyrosol decreased levels of DOPAL by 30 % and Cys-DA by 49 % (p < 0.0001 each). Co-incubation with hydroxytyrosol prevented the increases in Cys-DA seen with all 3 MAO inhibitors. Hydroxytyrosol therefore inhibits both enzymatic and spontaneous oxidation of endogenous dopamine and mitigates the increase in spontaneous oxidation during MAO inhibition.

  4. Dopamine and opioid gene variants are associated with increased smoking reward and reinforcement owing to negative mood.

    PubMed

    Perkins, Kenneth A; Lerman, Caryn; Grottenthaler, Amy; Ciccocioppo, Melinda M; Milanak, Melissa; Conklin, Cynthia A; Bergen, Andrew W; Benowitz, Neal L

    2008-09-01

    Negative mood increases smoking reinforcement and risk of relapse. We explored associations of gene variants in the dopamine, opioid, and serotonin pathways with smoking reward ('liking') and reinforcement (latency to first puff and total puffs) as a function of negative mood and expected versus actual nicotine content of the cigarette. Smokers of European ancestry (n=72) were randomized to one of four groups in a 2x2 balanced placebo design, corresponding with manipulation of actual (0.6 vs. 0.05 mg) and expected (told nicotine and told denicotinized) nicotine 'dose' in cigarettes during each of two sessions (negative vs. positive mood induction). Following mood induction and expectancy instructions, they sampled and rated the assigned cigarette, and then smoked additional cigarettes ad lib during continued mood induction. The increase in smoking amount owing to negative mood was associated with: dopamine D2 receptor (DRD2) C957T (CC>TT or CT), SLC6A3 (presence of 9 repeat>absence of 9), and among those given a nicotine cigarette, DRD4 (presence of 7 repeat>absence of 7) and DRD2/ANKK1 TaqIA (TT or CT>CC). SLC6A3, and DRD2/ANKK1 TaqIA were also associated with smoking reward and smoking latency. OPRM1 (AA>AG or GG) was associated with smoking reward, but SLC6A4 variable number tandem repeat was unrelated to any of these measures. These results warrant replication but provide the first evidence for genetic associations with the acute increase in smoking reward and reinforcement owing to negative mood.

  5. Overexpression of a phosphatidic acid phosphatase type 2 leads to an increase in triacylglycerol production in oleaginous Rhodococcus strains.

    PubMed

    Hernández, Martín A; Comba, Santiago; Arabolaza, Ana; Gramajo, Hugo; Alvarez, Héctor M

    2015-03-01

    Oleaginous Rhodococcus strains are able to accumulate large amounts of triacylglycerol (TAG). Phosphatidic acid phosphatase (PAP) enzyme catalyzes the dephosphorylation of phosphatidic acid (PA) to yield diacylglycerol (DAG), a key precursor for TAG biosynthesis. Studies to establish its role in lipid metabolism have been mainly focused in eukaryotes but not in bacteria. In this work, we identified and characterized a putative PAP type 2 (PAP2) encoded by the ro00075 gene in Rhodococcus jostii RHA1. Heterologous expression of ro00075 in Escherichia coli resulted in a fourfold increase in PAP activity and twofold in DAG content. The conditional deletion of ro00075 in RHA1 led to a decrease in the content of DAG and TAG, whereas its overexpression in both RHA1 and Rhodococcus opacus PD630 promoted an increase up to 10 to 15 % by cellular dry weight in TAG content. On the other hand, expression of ro00075 in the non-oleaginous strain Rhodococcus fascians F7 promoted an increase in total fatty acid content up to 7 % at the expense of free fatty acid (FFA), DAG, and TAG fractions. Moreover, co-expression of ro00075/atf2 genes resulted in a fourfold increase in total fatty acid content by a further increase of the FFA and TAG fractions. The results of this study suggest that ro00075 encodes for a PAP2 enzyme actively involved in TAG biosynthesis. Overexpression of this gene, as single one or with an atf gene, provides an alternative approach to increase the biosynthesis and accumulation of bacterial oils as a potential source of raw material for biofuel production.

  6. Religion priming differentially increases prosocial behavior among variants of the dopamine D4 receptor (DRD4) gene.

    PubMed

    Sasaki, Joni Y; Kim, Heejung S; Mojaverian, Taraneh; Kelley, Lauren D S; Park, In Young; Janusonis, Skirmantas

    2013-02-01

    Building on gene-environment interaction (G × E) research, this study examines how the dopamine D4 receptor (DRD4) gene interacts with a situational prime of religion to influence prosocial behavior. Some DRD4 variants tend to be more susceptible to environmental influences, whereas other variants are less susceptible. Thus, certain life environments may be associated with acts of prosociality for some DRD4 variants but not others. Given that religion can act as an environmental influence that increases prosocial behavior, environmental input in the form of religion priming may have G × E effects. Results showed that participants with DRD4 susceptibility variants were more prosocial when implicitly primed with religion than not primed with religion, whereas participants without DRD4 susceptibility variants were not impacted by priming. This research has implications for understanding why different people may behave prosocially for different reasons and also integrates G × E research with experimental psychology.

  7. Over-expression of a novel JAZ family gene from Glycine soja, increases salt and alkali stress tolerance.

    PubMed

    Zhu, Dan; Cai, Hua; Luo, Xiao; Bai, Xi; Deyholos, Michael K; Chen, Qin; Chen, Chao; Ji, Wei; Zhu, Yanming

    2012-09-21

    Salt and alkali stress are two of the main environmental factors limiting crop production. Recent discoveries show that the JAZ family encodes plant-specific genes involved in jasmonate signaling. However, there is only limited information about this gene family in abiotic stress response, and in wild soybean (Glycine soja), which is a species noted for its tolerance to alkali and salinity. Here, we isolated and characterized a novel JAZ family gene, GsJAZ2, from G. soja. Transcript abundance of GsJAZ2 increased following exposure to salt, alkali, cold and drought. Over-expression of GsJAZ2 in Arabidopsis resulted in enhanced plant tolerance to salt and alkali stress. The expression levels of some alkali stress response and stress-inducible marker genes were significantly higher in the GsJAZ2 overexpression lines as compared to wild-type plants. Subcellular localization studies using a GFP fusion protein showed that GsJAZ2 was localized to the nucleus. These results suggest that the newly isolated wild soybean GsJAZ2 is a positive regulator of plant salt and alkali stress tolerance.

  8. Kappa Opioid Receptor Activation Potentiates the Cocaine-Induced Increase in Evoked Dopamine Release Recorded In Vivo in the Mouse Nucleus Accumbens

    PubMed Central

    Ehrich, Jonathan M; Phillips, Paul E M; Chavkin, Charles

    2014-01-01

    Behavioral stressors increase addiction risk in humans and increase the rewarding valence of drugs of abuse including cocaine, nicotine and ethanol in animal models. Prior studies have established that this potentiation of drug reward was mediated by stress-induced release of the endogenous dynorphin opioids and subsequent kappa opioid receptor (KOR) activation. In this study, we used in vivo fast scan cyclic voltammetry to test the hypothesis that KOR activation before cocaine administration might potentiate the evoked release of dopamine from ventral tegmental (VTA) synaptic inputs to the nucleus accumbens (NAc) and thereby increase the rewarding valence of cocaine. The KOR agonist U50488 inhibited dopamine release evoked by either medial forebrain bundle (MFB) or pedunculopontine tegmental nucleus (PPTg) activation of VTA inputs to the shell or core of the mouse NAc. Cocaine administration increased the dopamine response recorded in either the shell or core evoked by either MFB or PPTg stimulation. Administration of U50488 15 min before cocaine blocked the conditioned place preference (CPP) to cocaine, but only significantly reduced the effect of cocaine on the dopamine response evoked by PPTg stimulation to NAc core. In contrast, administration of U50488 60 min before cocaine significantly potentiated cocaine CPP and significantly increased the effects of cocaine on the dopamine response evoked by either MFB or PPTg stimulation, recorded in either NAc shell or core. Results of this study support the concept that stress-induced activation of KOR by endogenous dynorphin opioids may enhance the rewarding valence of drugs of abuse by potentiating the evoked dopamine response. PMID:24971603

  9. Increase in furfural tolerance by combinatorial overexpression of NAD salvage pathway enzymes in engineered isobutanol-producing E. coli.

    PubMed

    Song, Hun-Suk; Jeon, Jong-Min; Kim, Hyun-Joong; Bhatia, Shashi Kant; Sathiyanarayanan, Ganesan; Kim, Junyoung; Won Hong, Ju; Gi Hong, Yoon; Young Choi, Kwon; Kim, Yun-Gon; Kim, Wooseong; Yang, Yung-Hun

    2017-06-01

    To reduce the furfural toxicity for biochemical production in E. coli, a new strategy was successfully applied by supplying NAD(P)H through the nicotine amide salvage pathway. To alleviate the toxicity, nicotinamide salvage pathway genes were overexpressed in recombinant, isobutanol-producing E. coli. Gene expression of pncB and nadE respectively showed increased tolerance to furfural among these pathways. The combined expression of pncB and nadE was the most effective in increasing the tolerance of the cells to toxic aldehydes. By comparing noxE- and fdh-harbouring strains, the form of NADH, rather than NAD(+), was the major effector of furfural tolerance. Overall, this study is the application of the salvage pathway to isobutanol production in the presence of furfural, and this system seems to be applicable to alleviate furfural toxicity in the production of other biochemical. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Mas receptor overexpression increased Ang-(1-7) relaxation response in renovascular hypertensive rat carotid.

    PubMed

    Olivon, V C; Aires, R D; Santiago, L B; Ramalho, L Z N; Cortes, S F; Lemos, V S

    2015-09-01

    Renin-angiotensin system (RAS) is an important factor in the pathophysiology of hypertension. Mas receptor, Angiotensin-(1-7) [Ang-(1-7)]-activated receptor, is an important RAS component and exerts protective effects in the vasculature. Ang-(1-7) vascular effects and Mas receptor expression in carotid from renovascular hypertensive (2K-1C) rats is not clear. In the present study we investigated Mas receptor vasodilator response activated by Ang-(1-7) in the carotid rings from sham and 2K-1C rats. Changes in isometric tension were recorded on organ chamber. Mas receptors expression was investigated in carotid by Western blot. Nitric oxide production was evaluated by 2,3-diaminonaphthalene (DAN) and eNOS expression and activity by immunofluoresce and western blot, respectively. Ang-(1-7) induced concentration-dependent vasodilator effect in carotid rings from sham and 2K-1C, which the hypertension increased vasodilatation response. In the 2K-1C carotid rings, A-779 (Mas receptor antagonist) reduced but not abolish the vasodilator effect of Ang-(1-7). Corroborating, Mas receptor protein expression was significantly increased in the 2K-1C rats. L-NAME and ibuprofen decreased Ang-(1-7) vasodilator response and L-NAME plus ibuprofen practically abolish the remaining vasodilatation response. Nitric oxide production is increased due increased of eNOS expression and pSer(1177) activity. Our results demonstrated that renovascular hypertension increased Mas receptors expression and nitric oxide production in the rats carotid which, consequently increased Ang-(1-7)-vasorelaxant response. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Overexpression of a citrus NDR1 ortholog increases disease resistance in Arabidopsis

    USDA-ARS?s Scientific Manuscript database

    Emerging devastating diseases, such as Huanglongbing (HLB) and citrus canker, have caused tremendous losses to the citrus industry worldwide. Genetic engineering is a powerful approach that could allow us to increase citrus resistance against these diseases. The key to the success of this approach r...

  12. Overexpression of Arabidopsis VIT1 increases accumulation of iron in cassava roots and stems

    USDA-ARS?s Scientific Manuscript database

    Iron is extremely abundant in the soil, but its uptake in plants is limited due to low solubility in neutral or alkaline soils. Plants can rely on rhizosphere acidification to increase iron solubility. AtVIT1 was previously found to be involved in mediating vacuolar sequestration of iron, which indi...

  13. Transgenic tobacco overexpressing Brassica juncea HMG-CoA synthase 1 shows increased plant growth, pod size and seed yield.

    PubMed

    Liao, Pan; Wang, Hui; Wang, Mingfu; Hsiao, An-Shan; Bach, Thomas J; Chye, Mee-Len

    2014-01-01

    Seeds are very important not only in the life cycle of the plant but they represent food sources for man and animals. We report herein a mutant of 3-hydroxy-3-methylglutaryl-coenzyme A synthase (HMGS), the second enzyme in the mevalonate (MVA) pathway that can improve seed yield when overexpressed in a phylogenetically distant species. In Brassica juncea, the characterisation of four isogenes encoding HMGS has been previously reported. Enzyme kinetics on recombinant wild-type (wt) and mutant BjHMGS1 had revealed that S359A displayed a 10-fold higher enzyme activity. The overexpression of wt and mutant (S359A) BjHMGS1 in Arabidopsis had up-regulated several genes in sterol biosynthesis, increasing sterol content. To quickly assess the effects of BjHMGS1 overexpression in a phylogenetically more distant species beyond the Brassicaceae, wt and mutant (S359A) BjHMGS1 were expressed in tobacco (Nicotiana tabacum L. cv. Xanthi) of the family Solanaceae. New observations on tobacco OEs not previously reported for Arabidopsis OEs included: (i) phenotypic changes in enhanced plant growth, pod size and seed yield (more significant in OE-S359A than OE-wtBjHMGS1) in comparison to vector-transformed tobacco, (ii) higher NtSQS expression and sterol content in OE-S359A than OE-wtBjHMGS1 corresponding to greater increase in growth and seed yield, and (iii) induction of NtIPPI2 and NtGGPPS2 and downregulation of NtIPPI1, NtGGPPS1, NtGGPPS3 and NtGGPPS4. Resembling Arabidopsis HMGS-OEs, tobacco HMGS-OEs displayed an enhanced expression of NtHMGR1, NtSMT1-2, NtSMT2-1, NtSMT2-2 and NtCYP85A1. Overall, increased growth, pod size and seed yield in tobacco HMGS-OEs were attributed to the up-regulation of native NtHMGR1, NtIPPI2, NtSQS, NtSMT1-2, NtSMT2-1, NtSMT2-2 and NtCYP85A1. Hence, S359A has potential in agriculture not only in improving phytosterol content but also seed yield, which may be desirable in food crops. This work further demonstrates HMGS function in plant reproduction

  14. Transgenic Tobacco Overexpressing Brassica juncea HMG-CoA Synthase 1 Shows Increased Plant Growth, Pod Size and Seed Yield

    PubMed Central

    Liao, Pan; Wang, Hui; Wang, Mingfu; Hsiao, An-Shan; Bach, Thomas J.; Chye, Mee-Len

    2014-01-01

    Seeds are very important not only in the life cycle of the plant but they represent food sources for man and animals. We report herein a mutant of 3-hydroxy-3-methylglutaryl-coenzyme A synthase (HMGS), the second enzyme in the mevalonate (MVA) pathway that can improve seed yield when overexpressed in a phylogenetically distant species. In Brassica juncea, the characterisation of four isogenes encoding HMGS has been previously reported. Enzyme kinetics on recombinant wild-type (wt) and mutant BjHMGS1 had revealed that S359A displayed a 10-fold higher enzyme activity. The overexpression of wt and mutant (S359A) BjHMGS1 in Arabidopsis had up-regulated several genes in sterol biosynthesis, increasing sterol content. To quickly assess the effects of BjHMGS1 overexpression in a phylogenetically more distant species beyond the Brassicaceae, wt and mutant (S359A) BjHMGS1 were expressed in tobacco (Nicotiana tabacum L. cv. Xanthi) of the family Solanaceae. New observations on tobacco OEs not previously reported for Arabidopsis OEs included: (i) phenotypic changes in enhanced plant growth, pod size and seed yield (more significant in OE-S359A than OE-wtBjHMGS1) in comparison to vector-transformed tobacco, (ii) higher NtSQS expression and sterol content in OE-S359A than OE-wtBjHMGS1 corresponding to greater increase in growth and seed yield, and (iii) induction of NtIPPI2 and NtGGPPS2 and downregulation of NtIPPI1, NtGGPPS1, NtGGPPS3 and NtGGPPS4. Resembling Arabidopsis HMGS-OEs, tobacco HMGS-OEs displayed an enhanced expression of NtHMGR1, NtSMT1-2, NtSMT2-1, NtSMT2-2 and NtCYP85A1. Overall, increased growth, pod size and seed yield in tobacco HMGS-OEs were attributed to the up-regulation of native NtHMGR1, NtIPPI2, NtSQS, NtSMT1-2, NtSMT2-1, NtSMT2-2 and NtCYP85A1. Hence, S359A has potential in agriculture not only in improving phytosterol content but also seed yield, which may be desirable in food crops. This work further demonstrates HMGS function in plant reproduction

  15. Overexpression of poplar xylem sucrose synthase in tobacco leads to a thickened cell wall and increased height.

    PubMed

    Wei, Zhigang; Qu, Zanshuang; Zhang, Lijie; Zhao, Shuanjing; Bi, Zhihong; Ji, Xiaohui; Wang, Xiaowen; Wei, Hairong

    2015-01-01

    Sucrose synthase (SuSy) is considered the first key enzyme for secondary growth because it is a highly regulated cytosolic enzyme that catalyzes the reversible conversion of sucrose and UDP into UDP-glucose and fructose. Although SuSy enzymes preferentially functions in the direction of sucrose cleavage at most cellular condition, they also catalyze the synthetic reaction. We isolated a gene that encodes a SuSy from Populus simonii×Populus nigra and named it PsnSuSy2 because it shares high similarity to SuSy2 in Populus trichocarpa. RT-PCR revealed that PsnSuSy2 was highly expressed in xylem, but lowly expressed in young leaves. To characterize its functions in secondary growth, multiple tobacco overexpression transgenic lines of PnsSuSy2 were generated via Agrobacterium-mediated transformation. The PsnSuSy2 expression levels and altered wood properties in stem segments from the different transgenic lines were carefully characterized. The results demonstrated that the levels of PsnSuSy2 enzyme activity, chlorophyll content, total soluble sugars, fructose and glucose increased significantly, while the sucrose level decreased significantly. Consequently, the cellulose content and fiber length increased, whereas the lignin content decreased, suggesting that PsnSuSy2 plays a significant role in cleaving sucrose into UDP-glucose and fructose to facilitate cellulose biosynthesis and that promotion of cellulose biosynthesis suppresses lignin biosynthesis. Additionally, the noticeable increase in the lodging resistance in transgenic tobacco stem suggested that the cell wall characteristics were altered by PsnSuSy2 overexpression. Scanning electron microscopy was performed to study the cell wall morphology of stem, and surprisingly, we found that the secondary cell wall was significantly thicker in transgenic tobacco. However, the thickened secondary cell wall did not negatively affect the height of the plants because the PsnSuSy2- overexpressing lines grew taller than the

  16. Overexpression of Poplar Xylem Sucrose Synthase in Tobacco Leads to a Thickened Cell Wall and Increased Height

    PubMed Central

    Wei, Zhigang; Qu, Zanshuang; Zhang, Lijie; Zhao, Shuanjing; Bi, Zhihong; Ji, Xiaohui; Wang, Xiaowen; Wei, Hairong

    2015-01-01

    Sucrose synthase (SuSy) is considered the first key enzyme for secondary growth because it is a highly regulated cytosolic enzyme that catalyzes the reversible conversion of sucrose and UDP into UDP-glucose and fructose. Although SuSy enzymes preferentially functions in the direction of sucrose cleavage at most cellular condition, they also catalyze the synthetic reaction. We isolated a gene that encodes a SuSy from Populus simonii×Populus nigra and named it PsnSuSy2 because it shares high similarity to SuSy2 in Populus trichocarpa. RT-PCR revealed that PsnSuSy2 was highly expressed in xylem, but lowly expressed in young leaves. To characterize its functions in secondary growth, multiple tobacco overexpression transgenic lines of PnsSuSy2 were generated via Agrobacterium-mediated transformation. The PsnSuSy2 expression levels and altered wood properties in stem segments from the different transgenic lines were carefully characterized. The results demonstrated that the levels of PsnSuSy2 enzyme activity, chlorophyll content, total soluble sugars, fructose and glucose increased significantly, while the sucrose level decreased significantly. Consequently, the cellulose content and fiber length increased, whereas the lignin content decreased, suggesting that PsnSuSy2 plays a significant role in cleaving sucrose into UDP-glucose and fructose to facilitate cellulose biosynthesis and that promotion of cellulose biosynthesis suppresses lignin biosynthesis. Additionally, the noticeable increase in the lodging resistance in transgenic tobacco stem suggested that the cell wall characteristics were altered by PsnSuSy2 overexpression. Scanning electron microscopy was performed to study the cell wall morphology of stem, and surprisingly, we found that the secondary cell wall was significantly thicker in transgenic tobacco. However, the thickened secondary cell wall did not negatively affect the height of the plants because the PsnSuSy2- overexpressing lines grew taller than the

  17. Increased insulin translation from an insulin splice-variant overexpressed in diabetes, obesity, and insulin resistance.

    PubMed

    Minn, Alexandra H; Lan, Hong; Rabaglia, Mary E; Harlan, David M; Peculis, Brenda A; Attie, Alan D; Shalev, Anath

    2005-03-01

    Type 2 diabetes occurs when pancreatic beta-cells become unable to compensate for the underlying insulin resistance. Insulin secretion requires beta-cell insulin stores to be replenished by insulin biosynthesis, which is mainly regulated at the translational level. Such translational regulation often involves the 5'-untranslated region. Recently, we identified a human insulin splice-variant (SPV) altering only the 5'-untranslated region and conferring increased translation efficiency. We now describe a mouse SPV (mSPV) that is found in the cytoplasm and exhibits increased translation efficiency resulting in more normal (prepro)insulin protein per RNA. The RNA stability of mSPV is not increased, but the predicted secondary RNA structure is altered, which may facilitate translation. To determine the role of mSPV in insulin resistance and diabetes, mSPV expression was measured by quantitative real-time RT-PCR in islets from three diabetic and/or insulin-resistant, obese and nonobese, mouse models (BTBRob/ob, C57BL/6ob/ob, and C57BL/6azip). Interestingly, mSPV expression was significantly higher in all diabetic/insulin-resistant mice compared with wild-type littermates and was dramatically induced in primary mouse islets incubated at high glucose. This raises the possibility that the mSPV may represent a compensatory beta-cell mechanism to enhance insulin biosynthesis when insulin requirements are elevated by hyperglycemia/insulin resistance.

  18. S100B overexpression increases behavioral and neural plasticity in response to the social environment during adolescence.

    PubMed

    Buschert, Jens; Hohoff, Christa; Touma, Chadi; Palme, Rupert; Rothermundt, Matthias; Arolt, Volker; Zhang, Weiqi; Ambrée, Oliver

    2013-11-01

    Genetic variants as well as increased serum levels of the neurotrophic factor S100B are associated with different psychiatric disorders. However, elevated S100B levels are also related to a better therapeutic outcome in psychiatric patients. The functional role of elevated S100B in psychiatric disorders is still unclear. Hence, this study was designed in order to elucidate the differential effects of S100B overexpression in interaction with chronic social stress during adolescence on emotional behavior and adult neurogenesis. S100B transgenic and wild-type mice were housed either in socially stable or unstable environments during adolescence, between postnatal days 28 and 77. In adulthood, anxiety-related behavior in the open field, dark-light, and novelty-induced suppression of feeding test as well as survival of proliferating hippocampal progenitor cells were assessed. S100B transgenic mice revealed significantly reduced anxiety-related behavior in the open field compared to wild-types when reared in stable social conditions. In contrast, when transgenic mice grew up in unstable social conditions, their level of anxiety-related behavior was comparable to the levels of wild-type mice. In addition, S100B overexpressing mice from unstable housing conditions displayed higher numbers of surviving newborn cells in the adult hippocampus which developed into mature neurons. In conclusion, elevated S100B levels increase the susceptibility to environmental stimuli during adolescence resulting in more variable behavioral and neural phenotypes in adulthood. In humans, this increased plasticity might lead to both, enhanced risk for psychiatric disorders in negative environments and improved therapeutic outcome in positive environments.

  19. Bone marrow mesenchymal stem cells overexpressing human basic fibroblast growth factor increase vasculogenesis in ischemic rats

    PubMed Central

    Zhang, J.C.; Zheng, G.F.; Wu, L.; Ou Yang, L.Y.; Li, W.X.

    2014-01-01

    Administration or expression of growth factors, as well as implantation of autologous bone marrow cells, promote in vivo angiogenesis. This study investigated the angiogenic potential of combining both approaches through the allogenic transplantation of bone marrow-derived mesenchymal stem cells (MSCs) expressing human basic fibroblast growth factor (hbFGF). After establishing a hind limb ischemia model in Sprague Dawley rats, the animals were randomly divided into four treatment groups: MSCs expressing green fluorescent protein (GFP-MSC), MSCs expressing hbFGF (hbFGF-MSC), MSC controls, and phosphate-buffered saline (PBS) controls. After 2 weeks, MSC survival and differentiation, hbFGF and vascular endothelial growth factor (VEGF) expression, and microvessel density of ischemic muscles were determined. Stable hbFGF expression was observed in the hbFGF-MSC group after 2 weeks. More hbFGF-MSCs than GFP-MSCs survived and differentiated into vascular endothelial cells (P<0.001); however, their differentiation rates were similar. Moreover, allogenic transplantation of hbFGF-MSCs increased VEGF expression (P=0.008) and microvessel density (P<0.001). Transplantation of hbFGF-expressing MSCs promoted angiogenesis in an in vivo hind limb ischemia model by increasing the survival of transplanted cells that subsequently differentiated into vascular endothelial cells. This study showed the therapeutic potential of combining cell-based therapy with gene therapy to treat ischemic disease. PMID:25118628

  20. Overexpression of a pH-sensitive nitrate transporter in rice increases crop yields.

    PubMed

    Fan, Xiaorong; Tang, Zhong; Tan, Yawen; Zhang, Yong; Luo, Bingbing; Yang, Meng; Lian, Xingming; Shen, Qirong; Miller, Anthony John; Xu, Guohua

    2016-06-28

    Cellular pH homeostasis is fundamental for life, and all cells adapt to maintain this balance. In plants, the chemical form of nitrogen supply, nitrate and ammonium, is one of the cellular pH dominators. We report that the rice nitrate transporter OsNRT2.3 is transcribed into two spliced isoforms with a natural variation in expression ratio. One splice form, OsNRT2.3b is located on the plasma membrane, is expressed mainly in the phloem, and has a regulatory motif on the cytosolic side that acts to switch nitrate transport activity on or off by a pH-sensing mechanism. High OsNRT2.3b expression in rice enhances the pH-buffering capacity of the plant, increasing N, Fe, and P uptake. In field trials, increased expression of OsNRT2.3b improved grain yield and nitrogen use efficiency (NUE) by 40%. These results indicate that pH sensing by the rice nitrate transporter OsNRT2.3b is important for plant adaption to varied N supply forms and can provide a target for improving NUE.

  1. Overexpression of a pH-sensitive nitrate transporter in rice increases crop yields

    PubMed Central

    Fan, Xiaorong; Tang, Zhong; Tan, Yawen; Zhang, Yong; Luo, Bingbing; Yang, Meng; Lian, Xingming; Shen, Qirong; Miller, Anthony John; Xu, Guohua

    2016-01-01

    Cellular pH homeostasis is fundamental for life, and all cells adapt to maintain this balance. In plants, the chemical form of nitrogen supply, nitrate and ammonium, is one of the cellular pH dominators. We report that the rice nitrate transporter OsNRT2.3 is transcribed into two spliced isoforms with a natural variation in expression ratio. One splice form, OsNRT2.3b is located on the plasma membrane, is expressed mainly in the phloem, and has a regulatory motif on the cytosolic side that acts to switch nitrate transport activity on or off by a pH-sensing mechanism. High OsNRT2.3b expression in rice enhances the pH-buffering capacity of the plant, increasing N, Fe, and P uptake. In field trials, increased expression of OsNRT2.3b improved grain yield and nitrogen use efficiency (NUE) by 40%. These results indicate that pH sensing by the rice nitrate transporter OsNRT2.3b is important for plant adaption to varied N supply forms and can provide a target for improving NUE. PMID:27274069

  2. Increasing morphinan alkaloid production by over-expressing codeinone reductase in transgenic Papaver somniferum.

    PubMed

    Larkin, Philip J; Miller, James A C; Allen, Robert S; Chitty, Julie A; Gerlach, Wayne L; Frick, Susanne; Kutchan, Toni M; Fist, Anthony J

    2007-01-01

    Only plants of the Papaver genus (poppies) are able to synthesize morphinan alkaloids, and cultivation of P. somniferum, opium poppy, remains critical for the production and supply of morphine, codeine and various semi-synthetic analgesics. Opium poppy was transformed with constitutively expressed cDNA of codeinone reductase (PsCor1.1), the penultimate step in morphine synthesis. Most transgenic lines showed significant increases in capsule alkaloid content in replicated glasshouse and field trials over 4 years. The morphinan alkaloid contents on a dry weight basis were between 15% and 30% greater than those in control high-yielding genotypes and control non-transgenic segregants. Transgenic leaves had approximately 10-fold greater levels of Cor transcript compared with non-transgenic controls. Two cycles of crossing of the best transgenic line into an elite high-morphine genotype resulted in significant increases in morphine and total alkaloids relative to the elite recurrent parent. No significant changes in alkaloid profiles or quantities were observed in leaf, roots, pollen and seed.

  3. Overexpression of AtCPS and AtKS in Arabidopsis confers increased ent-kaurene production but no increase in bioactive gibberellins.

    PubMed

    Fleet, Christine M; Yamaguchi, Shinjiro; Hanada, Atsushi; Kawaide, Hiroshi; David, Charles J; Kamiya, Yuji; Sun, Tai-Ping

    2003-06-01

    The plant growth hormone gibberellin (GA) is important for many aspects of plant growth and development. Although most genes encoding enzymes at each step of the GA biosynthetic pathway have been cloned, their regulation is less well understood. To assess how up-regulation of early steps affects the biosynthetic pathway overall, we have examined transgenic Arabidopsis plants that overexpress either AtCPS or AtKS or both. These genes encode the enzymes ent-copalyl diphosphate synthase (CPS) and ent-kaurene synthase, which catalyze the first two committed steps in GA biosynthesis. We find that both CPS and CPS/ent-kaurene synthase overexpressors have greatly increased levels of the early intermediates ent-kaurene and ent-kaurenoic acid, but a lesser increase of later metabolites. These overexpression lines do not exhibit any GA overdose morphology and have wild-type levels of bioactive GAs. Our data show that CPS is limiting for ent-kaurene production and suggest that conversion of ent-kaurenoic acid to GA12 by ent-kaurenoic acid oxidase may be an important rate-limiting step for production of bioactive GA. These results demonstrate the ability of plants to maintain GA homeostasis despite large changes in accumulation of early intermediates in the biosynthetic pathway.

  4. Transient overexpression of adh8a increases allyl alcohol toxicity in zebrafish embryos.

    PubMed

    Klüver, Nils; Ortmann, Julia; Paschke, Heidrun; Renner, Patrick; Ritter, Axel P; Scholz, Stefan

    2014-01-01

    Fish embryos are widely used as an alternative model to study toxicity in vertebrates. Due to their complexity, embryos are believed to more resemble an adult organism than in vitro cellular models. However, concerns have been raised with respect to the embryo's metabolic capacity. We recently identified allyl alcohol, an industrial chemical, to be several orders of magnitude less toxic to zebrafish embryo than to adult zebrafish (embryo LC50 = 478 mg/L vs. fish LC50 = 0.28 mg/L). Reports on mammals have indicated that allyl alcohol requires activation by alcohol dehydrogenases (Adh) to form the highly reactive and toxic metabolite acrolein, which shows similar toxicity in zebrafish embryos and adults. To identify if a limited metabolic capacity of embryos indeed can explain the low allyl alcohol sensitivity of zebrafish embryos, we compared the mRNA expression levels of Adh isoenzymes (adh5, adh8a, adh8b and adhfe1) during embryo development to that in adult fish. The greatest difference between embryo and adult fish was found for adh8a and adh8b expression. Therefore, we hypothesized that these genes might be required for allyl alcohol activation. Microinjection of adh8a, but not adh8b mRNA led to a significant increase of allyl alcohol toxicity in embryos similar to levels reported for adults (LC50 = 0.42 mg/L in adh8a mRNA-injected embryos). Furthermore, GC/MS analysis of adh8a-injected embryos indicated a significant decline of internal allyl alcohol concentrations from 0.23-58 ng/embryo to levels below the limit of detection (< 4.6 µg/L). Injection of neither adh8b nor gfp mRNA had an impact on internal allyl alcohol levels supporting that the increased allyl alcohol toxicity was mediated by an increase in its metabolization. These results underline the necessity to critically consider metabolic activation in the zebrafish embryo. As demonstrated here, mRNA injection is one useful approach to study the role of candidate enzymes involved in

  5. Overexpression of OsPAP10a, a root-associated acid phosphatase, increased extracellular organic phosphorus utilization in rice.

    PubMed

    Tian, Jingluan; Wang, Chuang; Zhang, Qian; He, Xiaowei; Whelan, James; Shou, Huixia

    2012-09-01

    Phosphorus (P) deficiency is a major limitation for plant growth and development. Among the wide set of responses to cope with low soil P, plants increase their level of intracellular and secreted acid phosphatases (APases), which helps to catalyze inorganic phosphate (Pi) hydrolysis from organo-phosphates. In this study we characterized the rice (Oryza sativa) purple acid phosphatase 10a (OsPAP10a). OsPAP10a belongs to group Ia of purple acid phosphatases (PAPs), and clusters with the principal secreted PAPs in a variety of plant species including Arabidopsis. The transcript abundance of OsPAP10a is specifically induced by Pi deficiency and is controlled by OsPHR2, the central transcription factor controlling Pi homeostasis. In gel activity assays of root and shoot protein extracts, it was revealed that OsPAP10a is a major acid phosphatase isoform induced by Pi starvation. Constitutive overexpression of OsPAP10a results in a significant increase of phosphatase activity in both shoot and root protein extracts. In vivo root 5-bromo-4-chloro-3-indolyl-phosphate (BCIP) assays and activity measurements on external media showed that OsPAP10a is a root-associated APase. Furthermore, overexpression of OsPAP10a significantly improved ATP hydrolysis and utilization compared with wild type plants. These results indicate that OsPAP10a can potentially be used for crop breeding to improve the efficiency of P use. © 2012 Institute of Botany, Chinese Academy of Sciences.

  6. Apolipoprotein CIII Overexpression-Induced Hypertriglyceridemia Increases Nonalcoholic Fatty Liver Disease in Association with Inflammation and Cell Death

    PubMed Central

    Paiva, Adriene A.; Raposo, Helena F.; Wanschel, Amarylis C. B. A.; Nardelli, Tarlliza R.

    2017-01-01

    Nonalcoholic fatty liver disease (NAFLD) is the principal manifestation of liver disease in obesity and metabolic syndrome. By comparing hypertriglyceridemic transgenic mice expressing apolipoprotein (apo) CIII with control nontransgenic (NTg) littermates, we demonstrated that overexpression of apoCIII, independent of a high-fat diet (HFD), produces NAFLD-like features, including increased liver lipid content; decreased antioxidant power; increased expression of TNFα, TNFα receptor, cleaved caspase-1, and interleukin-1β; decreased expression of adiponectin receptor-2; and increased cell death. This phenotype is aggravated and additional NAFLD features are differentially induced in apoCIII mice fed a HFD. HFD induced glucose intolerance together with increased gluconeogenesis, indicating hepatic insulin resistance. Additionally, the HFD led to marked increases in plasma TNFα (8-fold) and IL-6 (60%) in apoCIII mice. Cell death signaling (Bax/Bcl2), effector (caspase-3), and apoptosis were augmented in apoCIII mice regardless of whether a HFD or a low-fat diet was provided. Fenofibrate treatment reversed several of the effects associated with diet and apoCIII expression but did not normalize inflammatory traits even when liver lipid content was fully corrected. These results indicate that apoCIII and/or hypertriglyceridemia plays a major role in liver inflammation and cell death, which in turn increases susceptibility to and the severity of diet-induced NAFLD. PMID:28163820

  7. Overexpression of squalene synthase in Eleutherococcus senticosus increases phytosterol and triterpene accumulation.

    PubMed

    Seo, Jin-Wook; Jeong, Jae-Hun; Shin, Cha-Gyun; Lo, Seog-Cho; Han, Seong-Soo; Yu, Ki-Won; Harada, Emiko; Han, Jeong-Yeon; Choi, Yong-Eui

    2005-04-01

    Squalene synthase (SS) catalyzes the first committed step in sterol and triterpenoid biosynthesis. Transgenic Eleutherococcus senticosus Rupr. and Maxim. plants were generated by introducing an SS-encoding gene derived from Panax ginseng (PgSS1) together with genes expressing hygromycin phosphotransferase and green fluorescent protein (GFP) through Agrobacterium-mediated transformation. Early globular embryo clusters developing from the embryogenic callus were used for Agrobacterium-mediated transformation. Transformants were selected on Murashige Skoog medium containing 25 mg/L hygromycin. Hygromycin-resistant somatic embryos developed into plants after the cotyledonary embryos were treated with 14.4 microM gibberellic acid. Transformation was confirmed by polymerase chain reaction, Southern, and GFP analyses. The SS enzyme activity of the transgenic plants was up to 3-fold higher than that of wild-type plants. In addition, GC-MS and HPLC analysis revealed that phytosterols (beta-sitosterol and stigmasterol) as well as triterpene saponins (ciwujianosides B (1), C(1) (2), C(2) (3), C(3) (4), C(4) (5), D(1) (6) and D(2) (7)) levels in transgenic E. senticosus were increased by 2- to 2.5-fold. These results suggest that the metabolic engineering of E. senticosus to enhance production of phytosterols and triterpenoids by introducing the PgSS1 gene was successfully achieved by Agrobacterium-mediated genetic transformation.

  8. Comparison of the MK-801-induced increase in non-rewarded appetitive responding with dopamine agonists and locomotor activity in rats.

    PubMed

    Davis-MacNevin, Parnell L; Dekraker, Jordan; LaDouceur, Liane; Holahan, Matthew R

    2013-09-01

    Systemic administration of the noncompetitive N-methyl-D-aspartate (NMDA)- receptor antagonist, MK-801, has been proposed to model cognitive deficits similar to those seen in patients with schizophrenia. Evidence has shown that MK-801 increases the probability of operant responding during extinction, possibly modeling perseveration, as would be seen in patients with schizophrenia. This MK-801-induced behavioral perseveration is reversed by dopamine receptor antagonism. To further explore the role of dopamine in this behavioral change, the current study sought to determine if the MK-801-induced increase in non-rewarded operant responding could be mimicked by dopamine agonism and determine how it was related to locomotor activity. Male Long Evans rats were treated systemically with MK-801, cocaine, GBR12909 or apomorphine (APO) and given a single trial operant extinction session, followed by a separate assessment of locomotor activity. Both MK-801 (0.05 mg/kg) and cocaine (10 mg/kg) significantly increased responding during the extinction session and both increased horizontal locomotor activity. No dose of GBR-12909 (5, 10 or 20 mg/kg) was found to effect non-rewarded operant responding or locomotor activity. APO (0.05, 0.5, 2 or 5 mg/kg) treatment produced a dose-dependent decrease in both operant responding and locomotor activity. These results suggest the possibility that, rather than a primary influence of increased dopamine concentration on elevating bar-pressing responses during extinction, other neurotransmitter systems may be involved.

  9. The absence of VGLUT3 predisposes to cocaine abuse by increasing dopamine and glutamate signaling in the nucleus accumbens.

    PubMed

    Sakae, D Y; Marti, F; Lecca, S; Vorspan, F; Martín-García, E; Morel, L J; Henrion, A; Gutiérrez-Cuesta, J; Besnard, A; Heck, N; Herzog, E; Bolte, S; Prado, V F; Prado, M A M; Bellivier, F; Eap, C B; Crettol, S; Vanhoutte, P; Caboche, J; Gratton, A; Moquin, L; Giros, B; Maldonado, R; Daumas, S; Mameli, M; Jamain, S; El Mestikawy, S

    2015-11-01

    Tonically active cholinergic interneurons (TANs) from the nucleus accumbens (NAc) are centrally involved in reward behavior. TANs express a vesicular glutamate transporter referred to as VGLUT3 and thus use both acetylcholine and glutamate as neurotransmitters. The respective roles of each transmitter in the regulation of reward and addiction are still unknown. In this study, we showed that disruption of the gene that encodes VGLUT3 (Slc17a8) markedly increased cocaine self-administration in mice. Concomitantly, the amount of dopamine (DA) release was strongly augmented in the NAc of VGLUT3(-/-) mice because of a lack of signaling by metabotropic glutamate receptors. Furthermore, dendritic spines and glutamatergic synaptic transmission on medium spiny neurons were increased in the NAc of VGLUT3(-/-) mice. Increased DA and glutamate signaling in the NAc are hallmarks of addiction. Our study shows that TANs use glutamate to reduce DA release and decrease reinforcing properties of cocaine in mice. Interestingly, we also observed an increased frequency of rare variations in SLC17A8 in a cohort of severe drug abusers compared with controls. Our findings identify VGLUT3 as an unexpected regulator of drug abuse.

  10. Acamprosate blocks the increase in dopamine extracellular levels in nucleus accumbens evoked by chemical stimulation of the ventral hippocampus.

    PubMed

    Cano-Cebrián, M J; Zornoza-Sabina, T; Guerri, C; Polache, A; Granero, L

    2003-10-01

    Recently, we have shown that acamprosate is able to modulate extracellular dopamine (DA) levels in the nucleus accumbens (NAc) and may act as an antagonist of N-methyl-D-aspartate (NMDA) receptors. Neurochemical studies show that chemical stimulation (using NMDA) of the ventral subiculum (vSub) of the hippocampus produces robust and sustained increases in extracellular DA levels in the NAc, an effect mediated through ionotropic glutamate (iGlu) receptors. The present study examines whether acamprosate locally infused in the NAc of rats could block or attenuate the increase in NAc extracellular DA elicited by chemical stimulation (with 5 mM NMDA) of the ventral subiculum of the hippocampus. The stimulation of the vSub during perfusion of artificial cerebrospinal fluid in NAc induced a significant and persistent increase in NAc DA levels. Reverse dialysis of 0.05 mM acamprosate in NAc blocked the increase in DA evoked by the chemical stimulation of the vSub. These data support the possibility that the antagonism at the NMDA receptors in NAc can explain, at least in part, the mechanism of action of this drug.

  11. Genetic variation in COMT activity impacts learning and dopamine release capacity in the striatum.

    PubMed

    Simpson, Eleanor H; Morud, Julia; Winiger, Vanessa; Biezonski, Dominik; Zhu, Judy P; Bach, Mary Elizabeth; Malleret, Gael; Polan, H Jonathan; Ng-Evans, Scott; Phillips, Paul E M; Kellendonk, Christoph; Kandel, Eric R

    2014-03-17

    A common genetic polymorphism that results in increased activity of the dopamine regulating enzyme COMT (the COMT Val(158) allele) has been found to associate with poorer cognitive performance and increased susceptibility to develop psychiatric disorders. It is generally assumed that this increase in COMT activity influences cognitive function and psychiatric disease risk by increasing dopamine turnover in cortical synapses, though this cannot be directly measured in humans. Here we explore a novel transgenic mouse model of increased COMT activity, equivalent to the relative increase in activity observed with the human COMT Val(158) allele. By performing an extensive battery of behavioral tests, we found that COMT overexpressing mice (COMT-OE mice) exhibit cognitive deficits selectively in the domains that are affected by the COMT Val(158) allele, stimulus-response learning and working memory, functionally validating our model of increased COMT activity. Although we detected no changes in the level of markers for dopamine synthesis and dopamine transport, we found that COMT-OE mice display an increase in dopamine release capacity in the striatum. This result suggests that increased COMT activity may not only affect dopamine signaling by enhancing synaptic clearance in the cortex, but may also cause changes in presynaptic dopamine function in the striatum. These changes may underlie the behavioral deficits observed in the mice and might also play a role in the cognitive deficits and increased psychiatric disease risk associated with genetic variation in COMT activity in humans.

  12. Genetic variation in COMT activity impacts learning and dopamine release capacity in the striatum

    PubMed Central

    Simpson, Eleanor H.; Morud, Julia; Winiger, Vanessa; Biezonski, Dominik; Zhu, Judy P.; Bach, Mary Elizabeth; Malleret, Gael; Polan, H. Jonathan; Ng-Evans, Scott; Phillips, Paul E.M.; Kellendonk, Christoph; Kandel, Eric R.

    2014-01-01

    A common genetic polymorphism that results in increased activity of the dopamine regulating enzyme COMT (the COMT Val158 allele) has been found to associate with poorer cognitive performance and increased susceptibility to develop psychiatric disorders. It is generally assumed that this increase in COMT activity influences cognitive function and psychiatric disease risk by increasing dopamine turnover in cortical synapses, though this cannot be directly measured in humans. Here we explore a novel transgenic mouse model of increased COMT activity, equivalent to the relative increase in activity observed with the human COMT Val158 allele. By performing an extensive battery of behavioral tests, we found that COMT overexpressing mice (COMT-OE mice) exhibit cognitive deficits selectively in the domains that are affected by the COMT Val158 allele, stimulus–response learning and working memory, functionally validating our model of increased COMT activity. Although we detected no changes in the level of markers for dopamine synthesis and dopamine transport, we found that COMT-OE mice display an increase in dopamine release capacity in the striatum. This result suggests that increased COMT activity may not only affect dopamine signaling by enhancing synaptic clearance in the cortex, but may also cause changes in presynaptic dopamine function in the striatum. These changes may underlie the behavioral deficits observed in the mice and might also play a role in the cognitive deficits and increased psychiatric disease risk associated with genetic variation in COMT activity in humans. PMID:24639487

  13. Caffeine increases striatal dopamine D2/D3 receptor availability in the human brain

    SciTech Connect

    Volkow, N. D.; Wang, G. -J.; Logan, J.; Alexoff, D.; Fowler, J. S.; Thanos, P. K.; Wong, C.; Casado, V.; Ferre, S.; Tomasi, D.

    2015-04-14

    Caffeine, the most widely consumed psychoactive substance in the world, is used to promote wakefulness and enhance alertness. Like other wake-promoting drugs (stimulants and modafinil), caffeine enhances dopamine (DA) signaling in the brain, which it does predominantly by antagonizing adenosine A2A receptors (A2AR). However, it is unclear if caffeine, at the doses consumed by humans, increases DA release or whether it modulates the functions of postsynaptic DA receptors through its interaction with adenosine receptors, which modulate them. We used positron emission tomography and [11C]raclopride (DA D2/D3 receptor radioligand sensitive to endogenous DA) to assess if caffeine increased DA release in striatum in 20 healthy controls. Caffeine (300mg p.o.) significantly increased the availability of D2/D3 receptors in putamen and ventral striatum, but not in caudate, when compared with placebo. In addition, caffeine-induced increases in D2/D3 receptor availability in the ventral striatum were associated with caffeine-induced increases in alertness. Our findings indicate that in the human brain, caffeine, at doses typically consumed, increases the availability of DA D2/D3 receptors, which indicates that caffeine does not increase DA in the striatum for this would have decreased D2/D3 receptor availability. Instead, we interpret our findings to reflect an increase in D2/D3 receptor levels in striatum with caffeine (or changes in affinity). Furthermore, the association between increases in D2/D3 receptor availability in ventral striatum and alertness suggests that caffeine might enhance arousal, in part, by upregulating D2/D3 receptors.

  14. Characteristics of the ambulation-increasing effect of GBR-12909, a selective dopamine uptake inhibitor, in mice.

    PubMed

    Hirate, K; Kuribara, H

    1991-04-01

    Behavioral effects of a dopamine uptake inhibitor, GBR-12909 (GBR), were evaluated by ambulatory activity in mice. The single administration of over 10 mg/kg of GBR, i.p. and p.o., significantly increased the ambulatory activity. The repeated administration of GBR, at only 10 mg/kg, produced a reverse tolerance to its ambulation-increasing effect. However, a cross-reverse tolerance was induced between GBR (10 and 20 mg/kg) and methamphetamine (2 mg/kg) in both directions. Furthermore, 5 mg/kg of GBR significantly enhanced the effects of methamphetamine, cocaine, imipramine, morphine, scopolamine and caffeine. R-THBP, a coenzyme of tyrosine hydroxylase, also enhanced the effect of GBR. In contrast, the ambulation-increasing effect of 10 mg/kg of GBR was markedly reduced by haloperidol, chlorpromazine, tetrabenazine, oxypertine, reserpine and alpha-methyl-p-tyrosine. On the other hand, the effect of GBR was only slightly and/or scarcely modified by apomorphine, caerulein, physostigmine, pilocarpine, N6-(L-2-phenylisopropyl)-adenosine and naloxone. The neurochemical experiment in rats, not in mice, revealed that GBR possessed more dominant action on dopaminergic systems than noradrenergic or serotonergic systems. However, the behavioral characteristics of GBR are similar to those of methamphetamine and cocaine, which possess less selective action than GBR on dopaminergic and noradrenergic systems.

  15. Dopamine D1-like receptors agonist SKF 38393 increases cFOS expression in the paraventricular nucleus of the hypothalamus--impact of acute and chronic cocaine.

    PubMed

    Chocyk, A; Czyrak, A; Wedzony, K

    2008-09-01

    The present study indicates that activation of dopamine D1-like receptors by administration of SKF 38393 leads to dose-dependent (doses: 5, 10 and 20 mg/kg) increases in the expression of cFos proteins in the rat paraventricular nucleus of the hypothalamus (PVN). This effect was abolished by administration of SCH 23390, a dopamine D1-like receptor antagonist (0.5 and 1 mg/kg, given 30 min before SKF 38393--10 mg/kg), suggesting that the apparent effect is specific for activation of dopamine D1-like receptors. Expression of cFos after SKF 38393 (10 mg/kg) was observed in some, but not all, CRF-immunoreactive neurons, as well as in small portion of oxytocin- but not vasopressin-immunoreactive neurons (double-immunofluorescence experiments). There were also certain populations of nuclei that showed expression of cFos but did not co-localize with the above markers. We also found that both acute and repeated (once daily for 5 consecutive days) exposure to cocaine (25 mg/kg) attenuated the induction of cFos expression triggered by SKF 38393 when administered 24 hours after single or the last dose of cocaine (25 mg/kg). Attenuation was observed at the same level after single and chronic exposure to cocaine, indicating a rapid functional down-regulation of dopamine D1-like receptors that are resistant to subsequent doses of cocaine. These data provide evidence for the functional role of dopamine D1-like receptors in the PVN and indicate a functional adaptation of dopamine D1-like receptors following a single dose of cocaine without further progression of adaptation or resistance of D1-like receptor-mediated genomic function in the course of repeated cocaine intake.

  16. Increasing seed mass and oil content in transgenic Arabidopsis by the overexpression of wri1-like gene from Brassica napus.

    PubMed

    Liu, Jing; Hua, Wei; Zhan, Gaomiao; Wei, Fang; Wang, Xinfa; Liu, Guihua; Wang, Hanzhong

    2010-01-01

    Rapeseed (Brassica napus) is one of the most important edible oilseed crops in the world and is increasingly used globally to produce bio-diesel. Therefore, increasing oil content of oilseed corps is of importance economically in both food and oil industries. The wri1 genes are differentially expressed in B. napus lines with different oil content. To investigate the effects of B. napus WRI1 (BnWRI1) on oil content, two Bnwri1 genes with different lengths, Bnwri1-1 and Bnwri1-2, were identified and sequenced. Homology analysis shows 80% amino acids of Bnwri1s are homologous to Arabidopsis thaliana WRI1 (AtWRI1). Overexpression of Bnwri1 cDNAs driven by cauliflower mosaic virus 35S-promoter in 51 transgenic A. thaliana lines resulted in 10-40% increased seed oil content and enlarged seed size and mass. Detailed analysis on transgenic embryos indicates an increased cell size other than cell number. In addition, Bnwri1 sequence polymorphism is highly related to oil content (p < 0.001). Taking together, Bnwri1 has potential applications in food and oil industries and in rapeseed breeding. Copyright 2009 Elsevier Masson SAS. All rights reserved.

  17. Overexpression of microRNA OsmiR397 improves rice yield by increasing grain size and promoting panicle branching.

    PubMed

    Zhang, Yu-Chan; Yu, Yang; Wang, Cong-Ying; Li, Ze-Yuan; Liu, Qing; Xu, Jie; Liao, Jian-You; Wang, Xiao-Jing; Qu, Liang-Hu; Chen, Fan; Xin, Peiyong; Yan, Cunyu; Chu, Jinfang; Li, Hong-Qing; Chen, Yue-Qin

    2013-09-01

    Increasing grain yields is a major focus of crop breeders around the world. Here we report that overexpression of the rice microRNA (miRNA) OsmiR397, which is naturally highly expressed in young panicles and grains, enlarges grain size and promotes panicle branching, leading to an increase in overall grain yield of up to 25% in a field trial. To our knowledge, no previous report has shown a positive regulatory role of miRNA in the control of plant seed size and grain yield. We determined that OsmiR397 increases grain yield by downregulating its target, OsLAC, whose product is a laccase-like protein that we found to be involved in the sensitivity of plants to brassinosteroids. As miR397 is highly conserved across different species, our results suggest that manipulating miR397 may be useful for increasing grain yield not only in rice but also in other cereal crops.

  18. Overexpression of patatin-related phospholipase AIIIδ altered plant growth and increased seed oil content in camelina.

    PubMed

    Li, Maoyin; Wei, Fang; Tawfall, Amanda; Tang, Michelle; Saettele, Allison; Wang, Xuemin

    2015-08-01

    Camelina sativa is a Brassicaceae oilseed species being explored as a biofuel and industrial oil crop. A growing number of studies have indicated that the turnover of phosphatidylcholine plays an important role in the synthesis and modification of triacylglycerols. This study manipulated the expression of a patatin-related phospholipase AIIIδ (pPLAIIIδ) in camelina to determine its effect on seed oil content and plant growth. Constitutive overexpression of pPLAIIIδ under the control of the constitutive cauliflower mosaic 35S promoter resulted in a significant increase in seed oil content and a decrease in cellulose content. In addition, the content of major membrane phospholipids, phosphatidylcholine and phosphatidylethanolamine, in 35S::pPLAIIIδ plants was increased. However, these changes in 35S::pPLAIIIδ camelina were associated with shorter cell length, leaves, stems, and seed pods and a decrease in overall seed production. When pPLAIIIδ was expressed under the control of the seed specific, β-conglycinin promoter, the seed oil content was increased without compromising plant growth. The results suggest that pPLAIIIδ alters the carbon partitioning by decreasing cellulose content and increasing oil content in camelina. © 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  19. Overexpression of the brassinosteroid biosynthetic gene DWF4 in Brassica napus simultaneously increases seed yield and stress tolerance

    PubMed Central

    Sahni, Sangita; Prasad, Bishun D.; Liu, Qing; Grbic, Vojislava; Sharpe, Andrew; Singh, Surinder P.; Krishna, Priti

    2016-01-01

    As a resource allocation strategy, plant growth and defense responses are generally mutually antagonistic. Brassinosteroid (BR) regulates many aspects of plant development and stress responses, however, genetic evidence of its integrated effects on plant growth and stress tolerance is lacking. We overexpressed the Arabidopsis BR biosynthetic gene AtDWF4 in the oilseed plant Brassica napus and scored growth and stress response phenotypes. The transgenic B. napus plants, in comparison to wild type, displayed increased seed yield leading to increased overall oil content per plant, higher root biomass and root length, significantly better tolerance to dehydration and heat stress, and enhanced resistance to necrotrophic fungal pathogens Leptosphaeria maculans and Sclerotinia sclerotiorum. Transcriptome analysis supported the integrated effects of BR on growth and stress responses; in addition to BR responses associated with growth, a predominant plant defense signature, likely mediated by BES1/BZR1, was evident in the transgenic plants. These results establish that BR can interactively and simultaneously enhance abiotic and biotic stress tolerance and plant productivity. The ability to confer pleiotropic beneficial effects that are associated with different agronomic traits suggests that BR–related genes may be important targets for simultaneously increasing plant productivity and performance under stress conditions. PMID:27324083

  20. Overexpression of the brassinosteroid biosynthetic gene DWF4 in Brassica napus simultaneously increases seed yield and stress tolerance.

    PubMed

    Sahni, Sangita; Prasad, Bishun D; Liu, Qing; Grbic, Vojislava; Sharpe, Andrew; Singh, Surinder P; Krishna, Priti

    2016-06-21

    As a resource allocation strategy, plant growth and defense responses are generally mutually antagonistic. Brassinosteroid (BR) regulates many aspects of plant development and stress responses, however, genetic evidence of its integrated effects on plant growth and stress tolerance is lacking. We overexpressed the Arabidopsis BR biosynthetic gene AtDWF4 in the oilseed plant Brassica napus and scored growth and stress response phenotypes. The transgenic B. napus plants, in comparison to wild type, displayed increased seed yield leading to increased overall oil content per plant, higher root biomass and root length, significantly better tolerance to dehydration and heat stress, and enhanced resistance to necrotrophic fungal pathogens Leptosphaeria maculans and Sclerotinia sclerotiorum. Transcriptome analysis supported the integrated effects of BR on growth and stress responses; in addition to BR responses associated with growth, a predominant plant defense signature, likely mediated by BES1/BZR1, was evident in the transgenic plants. These results establish that BR can interactively and simultaneously enhance abiotic and biotic stress tolerance and plant productivity. The ability to confer pleiotropic beneficial effects that are associated with different agronomic traits suggests that BR-related genes may be important targets for simultaneously increasing plant productivity and performance under stress conditions.

  1. Leptin Increases Striatal Dopamine D2 Receptor Binding in Leptin-Deficient Obese (ob/ob) Mice

    SciTech Connect

    Pfaffly, J.; Michaelides, M.; Wang, G-J.; Pessin, J.E.; Volkow, N.D.; Thanos, P.K.

    2010-06-01

    Peripheral and central leptin administration have been shown to mediate central dopamine (DA) signaling. Leptin-receptor deficient rodents show decreased DA D2 receptor (D2R) binding in striatum and unique DA profiles compared to controls. Leptin-deficient mice show increased DA activity in reward-related brain regions. The objective of this study was to examine whether basal D2R-binding differences contribute to the phenotypic behaviors of leptin-deficient ob/ob mice, and whether D2R binding is altered in response to peripheral leptin treatment in these mice. Leptin decreased body weight, food intake, and plasma insulin concentration in ob/ob mice but not in wild-type mice. Basal striatal D2R binding (measured with autoradiography [{sup 3}H] spiperone) did not differ between ob/ob and wild-type mice but the response to leptin did. In wild-type mice, leptin decreased striatal D2R binding, whereas, in ob/ob mice, leptin increased D2R binding. Our findings provide further evidence that leptin modulates D2R expression in striatum and that these effects are genotype/phenotype dependent.

  2. Dopamine and executive function: Increased spontaneous eye blink rates correlate with better set-shifting and inhibition, but poorer updating.

    PubMed

    Zhang, Ting; Mou, Di; Wang, Cuicui; Tan, Fengping; Jiang, Yan; Lijun, Zheng; Li, Hong

    2015-06-01

    The central dopamine system (DA) has a significant role in the executive function (EF). The spontaneous eye blink rate (EBR) is an effective clinical and non-invasive measure, which is strongly related to the activity of the central dopaminergic system. Previous studies show significant relationships between the two main dimensions of EF (i.e., shifting and inhibition) and the central DA system as measured by EBR. However, most of these studies involve only one EF task for shifting or inhibition; whether or not these relationships are replicated by other EF tasks remains unclear. Besides, the relationship between EBR and another important EF dimension-updating-also remains unknown. The present study examined the correlation between EBR and several EF tasks that captured all the three EF dimensions: shifting, inhibition, and updating. A total of 61 healthy participants were subjected to EBR testing and EF tasks. Results showed that EBR had a different relationship with each of the three tested EF dimensions. An increase in EBR levels was related to an increase in accuracy in shifting and inhibition tasks, a decrease in shifting and inhibition cost, and a decrease in accuracy in updating tasks. These results imply that the role of the central DA system in shifting and inhibition differs from its role in updating. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Increased risk-taking behavior in dopamine transporter knockdown mice: further support for a mouse model of mania

    PubMed Central

    Young, Jared W; van Enkhuizen, Jordy; Winstanley, Catharine A; Geyer, Mark A

    2013-01-01

    Reduced functioning of the dopamine transporter (DAT) has been linked to bipolar disorder (BD). Mice with reduced DAT functioning (knockdown, KD) exhibit a behavioral profile in the mouse Behavioral Pattern Monitor (BPM) consistent with patients with BD mania in the human BPM. Patients with BD also exhibit increased risk taking, which can be quantified using the Iowa Gambling Task (IGT). We hypothesized that DAT KD mice would exhibit increased risk-taking behavior in a novel mouse version of the IGT. DAT KD and wildtype (WT) littermates were trained in the mouse IGT. In session 1, KD mice initially made riskier choices, but later performed comparably to WT mice. Once trained to stable choice performance, DAT KD mice continued to exhibit a trend to choose the riskier options more than WT mice. Finally, we confirmed that these DAT KD mice also exhibited an exploratory profile in the BPM consistent with patients with BD mania, where risky choice behavior modestly correlated with specific exploration. These data demonstrate that DAT KD mice chose the riskier options more than WT mice, providing further support for the use of DAT KD mice as a model of BD mania. PMID:21421642

  4. Electrical stimulation of reward sites in the ventral tegmental area increases dopamine transmission in the nucleus accumbens of the rat.

    PubMed

    Fiorino, D F; Coury, A; Fibiger, H C; Phillips, A G

    1993-06-30

    In vivo microdialysis with HPLC-ED was used to measure dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA) and 5-hydroxyindoleacetic acid (5-HIAA) in the nucleus accumbens of the rat, prior, during, and after 15-min periods of electrical brain stimulation at sites in the ventral tegmental area (VTA) that supported intracranial self-stimulation (ICSS). In the first experiment, both ICSS and yoked stimulation of the VTA evoked significant increases in extracellular concentrations of DA, its metabolites, and 5-HIAA. Comparable results from ICSS and yoked groups were interpreted as evidence that the rewarding properties of VTA stimulation were a causal factor in the elevated DA transmission in the nucleus accumbens, rather than intense operant behavior. Further evidence for this hypothesis came from a second set of data in which changes in extracellular DA levels during the measurement of rate/intensity functions for ICSS were positively correlated. 5-HIAA concentrations also increased during ICSS but these changes were not correlated with either ICSS rate or current intensity, suggesting that changes in serotonin metabolism were unlikely to subserve brain stimulation reward in the VTA. These results add to the growing body of evidence linking changes in extracellular DA in the mesolimbic DA system with both brain stimulation reward and the conditioned and unconditioned rewarding effects of biologically relevant stimuli.

  5. Neuronal overexpression of insulin receptor substrate 2 leads to increased fat mass, insulin resistance, and glucose intolerance during aging.

    PubMed

    Zemva, J; Udelhoven, M; Moll, L; Freude, S; Stöhr, O; Brönneke, H S; Drake, R B; Krone, W; Schubert, M

    2013-10-01

    The insulin receptor substrates (IRS) are adapter proteins mediating insulin's and IGF1's intracellular effects. Recent data suggest that IRS2 in the central nervous system (CNS) is involved in regulating fuel metabolism as well as memory formation. The present study aims to specifically define the role of chronically increased IRS2-mediated signal transduction in the CNS. We generated transgenic mice overexpressing IRS2 specifically in neurons (nIRS2 (tg)) and analyzed these in respect to energy metabolism, learning, and memory. Western blot (WB) analysis of nIRS2 (tg) brain lysates revealed increased IRS2 downstream signaling. Histopathological investigation of nIRS2 (tg) mice proved unaltered brain development and structure. Interestingly, nIRS2 (tg) mice showed decreased voluntary locomotoric activity during dark phase accompanied with decreased energy expenditure (EE) leading to increased fat mass. Accordingly, nIRS2 (tg) mice develop insulin resistance and glucose intolerance during aging. Exploratory behavior, motor function as well as food and water intake were unchanged in nIRS2 (tg) mice. Surprisingly, increased IRS2-mediated signals did not change spatial working memory in the T-maze task. Since FoxO1 is a key mediator of IRS2-transmitted signals, we additionally generated mice expressing a dominant negative mutant of FoxO1 (FoxO1DN) specifically in neurons. This mutant mimics the effect of increased IRS2 signaling on FoxO-mediated transcription. Interestingly, the phenotype observed in nIRS2 (tg) mice was not present in FoxO1DN mice. Therefore, increased neuronal IRS2 signaling causes decreased locomotoric activity in the presence of unaltered exploratory behavior and motor coordination that might lead to increased fat mass, insulin resistance, and glucose intolerance during aging independent of FoxO1-mediated transcription.

  6. Over-Expression of Leptin Receptors in Hypothalamic POMC Neurons Increases Susceptibility to Diet-Induced Obesity

    PubMed Central

    Gamber, Kevin M.; Huo, Lihong; Ha, Sangdeuk; Hairston, Joyce E.; Greeley, Sarah; Bjørbæk, Christian

    2012-01-01

    Diet-induced obesity (DIO) in rodents is characterized by impaired activation of signal-transducer and activator of transcription 3 (STAT3) by leptin receptors (LepRb) within the hypothalamic arcuate nucleus. This signaling defect likely plays an important role in development of DIO. However, the neuro-chemical identity of the leptin-STAT3 resistant arcuate neurons has not been determined and the underlying mechanisms responsible for development of cellular leptin resistance remain unclear. To investigate this, we first measured arcuate gene expression of known key signaling components of the LepRb signaling pathway and tested whether specifically the critical arcuate pro-opiomelanocortin (POMC) neurons are resistant to LepRb-STAT3 signaling in mice given a high-fat-diet (HFD) compared to mice provided a low-fat control diet (LFD). We found that leptin-dependent STAT3 phosphorylation was decreased within POMC neurons of HFD mice. In addition, Leprb mRNA and suppressor of cytokine signaling 3 (Socs3) mRNA were elevated in the arcuate of HFD mice. To investigate whether increased LepRb expression per se in POMC neurons can influence development of DIO and Socs3 expression, we created mice that over-express LepRb selectively in POMC neurons (POMC-LepRb). No differences in body weight, fat mass or food intake were found between LFD POMC-LepRb mice and LFD controls. Surprisingly, body weight, fat mass and caloric intake of HFD POMC-LepRb mice was markedly higher than HFD control mice. In addition, arcuate Socs3 mRNA was increased in HFD POMC-LepRb mice compared to HFD controls. These data show that specifically POMC neurons of DIO mice are resistant to STAT3 activation by leptin, indicating that those cells might play a role in development of DIO. Furthermore, over-expression of LepRb selectively in POMC neurons increases susceptibility to the development of DIO. We propose a model where over-reactivity of the leptin-LepRb signaling system in arcuate neurons may play

  7. Exposure to repeated immobilization stress inhibits cocaine-induced increase in dopamine extracellular levels in the rat ventral tegmental area.

    PubMed

    Sotomayor-Zárate, Ramón; Abarca, Jorge; Araya, Katherine A; Renard, Georgina M; Andrés, María E; Gysling, Katia

    2015-11-01

    A higher vulnerability to drug abuse has been observed in human studies of individuals exposed to chronic or persistent stress, as well as in animal models of drug abuse. Here, we explored the effect of repeated immobilization stress on cocaine-induced increase in dopamine extracellular levels in VTA and its regulation by corticotropin-releasing factor (CRF) and GABA systems. Cocaine (10mg/Kg i.p.) induced an increase of VTA DA extracellular levels in control rats. However, this effect was not observed in repeated stress rats. Considering the evidence relating stress with CRF, we decided to perfuse CRF and CP-154526 (selective antagonist of CRF1 receptor) in the VTA of control and repeated stress rats, respectively. We observed that perfusion of 20μM CRF inhibited the increase of VTA DA extracellular levels induced by cocaine in control rats. Interestingly, we observed that in the presence of 10μM CP-154526, cocaine induced a significant increase of VTA DA extracellular levels in repeated stress rats. Regarding the role of VTA GABA neurotransmission, cocaine administration induced a significant increase in VTA GABA extracellular levels only in repeated stress rats. Consistently, cocaine was able to increase VTA DA extracellular levels in repeated stress rats when 100μM bicuculline, an antagonist of GABAA receptor, was perfused intra VTA. Thus, both CRF and GABA systems are involved in the lack of response to cocaine in the VTA of repeated stress rats. It is tempting to suggest that the loss of response in VTA dopaminergic neurons to cocaine, after repeated stress, is due to an interaction between CRF and GABA systems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Brief intermittent cocaine self-administration and abstinence sensitizes cocaine effects on the dopamine transporter and increases drug seeking.

    PubMed

    Calipari, Erin S; Siciliano, Cody A; Zimmer, Benjamin A; Jones, Sara R

    2015-02-01

    Although traditional sensitization paradigms, which result in an augmentation of cocaine-induced locomotor behavior and dopamine (DA) overflow following repeated experimenter-delivered cocaine injections, are often used as a model to study drug addiction, similar effects have been difficult to demonstrate following cocaine self-administration. We have recently shown that intermittent access (IntA) to cocaine can result in increased cocaine potency at the DA transporter (DAT); however, traditional sensitization paradigms often show enhanced effects following withdrawal/abstinence periods. Therefore, we determined a time course of IntA-induced sensitization by examining the effects of 1 or 3 days of IntA, as well as a 7-day abstinence period on DA function, cocaine potency, and reinforcement. Here we show that cocaine potency is increased following as little as 3 days of IntA and further augmented following an abstinence period. In addition, IntA plus abstinence produced greater evoked DA release in the presence of cocaine as compared with all other groups, demonstrating that following abstinence, both cocaine's ability to increase DA release and inhibit uptake at the DAT, two separate mechanisms for increasing DA levels, are enhanced. Finally, we found that IntA-induced sensitization of the DA system resulted in an increased reinforcing efficacy of cocaine, an effect that was augmented after the 7-day abstinence period. These results suggest that sensitization of the DA system may have an important role in the early stages of drug abuse and may drive the increased drug seeking and taking that characterize the transition to uncontrolled drug use. Human data suggest that intermittency, sensitization, and periods of abstinence have an integral role in the process of addiction, highlighting the importance of utilizing pre-clinical models that integrate these phenomena, and suggesting that IntA paradigms may serve as novel models of human addiction.

  9. Brief Intermittent Cocaine Self-Administration and Abstinence Sensitizes Cocaine Effects on the Dopamine Transporter and Increases Drug Seeking

    PubMed Central

    Calipari, Erin S; Siciliano, Cody A; Zimmer, Benjamin A; Jones, Sara R

    2015-01-01

    Although traditional sensitization paradigms, which result in an augmentation of cocaine-induced locomotor behavior and dopamine (DA) overflow following repeated experimenter-delivered cocaine injections, are often used as a model to study drug addiction, similar effects have been difficult to demonstrate following cocaine self-administration. We have recently shown that intermittent access (IntA) to cocaine can result in increased cocaine potency at the DA transporter (DAT); however, traditional sensitization paradigms often show enhanced effects following withdrawal/abstinence periods. Therefore, we determined a time course of IntA-induced sensitization by examining the effects of 1 or 3 days of IntA, as well as a 7-day abstinence period on DA function, cocaine potency, and reinforcement. Here we show that cocaine potency is increased following as little as 3 days of IntA and further augmented following an abstinence period. In addition, IntA plus abstinence produced greater evoked DA release in the presence of cocaine as compared with all other groups, demonstrating that following abstinence, both cocaine's ability to increase DA release and inhibit uptake at the DAT, two separate mechanisms for increasing DA levels, are enhanced. Finally, we found that IntA-induced sensitization of the DA system resulted in an increased reinforcing efficacy of cocaine, an effect that was augmented after the 7-day abstinence period. These results suggest that sensitization of the DA system may have an important role in the early stages of drug abuse and may drive the increased drug seeking and taking that characterize the transition to uncontrolled drug use. Human data suggest that intermittency, sensitization, and periods of abstinence have an integral role in the process of addiction, highlighting the importance of utilizing pre-clinical models that integrate these phenomena, and suggesting that IntA paradigms may serve as novel models of human addiction. PMID:25212486

  10. Overexpression of SerpinE2/protease nexin-1 Contribute to Pathological Cardiac Fibrosis via increasing Collagen Deposition

    PubMed Central

    Li, Xuelian; Zhao, Dandan; Guo, Zhenfeng; Li, Tianshi; Qili, Muge; Xu, Bozhi; Qian, Ming; Liang, Haihai; E, Xiaoqiang; Chege Gitau, Samuel; Wang, Lu; Huangfu, Longtao; Wu, Qiuxia; Xu, Chaoqian; Shan, Hongli

    2016-01-01

    Although increases in cardiovascular load (pressure overload) are known to elicit ventricular remodeling including cardiomyocyte hypertrophy and interstitial fibrosis, the molecular mechanisms of pressure overload or AngII -induced cardiac interstitial fibrosis remain elusive. In this study, serpinE2/protease nexin-1 was over-expressed in a cardiac fibrosis model induced by pressure-overloaded via transverse aortic constriction (TAC) in mouse. Knockdown of serpinE2 attenuates cardiac fibrosis in a mouse model of TAC. At meantime, the results showed that serpinE2 significantly were increased with collagen accumulations induced by AngII or TGF-β stimulation in vitro. Intriguingly, extracellular collagen in myocardial fibroblast was reduced by knockdown of serpinE2 compared with the control in vitro. In stark contrast, the addition of exogenous PN-1 up-regulated the content of collagen in myocardial fibroblast. The MEK1/2- ERK1/2 signaling probably promoted the expression of serpinE2 via transcription factors Elk1 in myocardial fibroblast. In conclusion, stress-induced the ERK1/2 signaling pathway activation up-regulated serpinE2 expression, consequently led accumulation of collagen protein, and contributed to cardiac fibrosis. PMID:27876880

  11. Overexpression of the Brassica napus BnLAS gene in Arabidopsis affects plant development and increases drought tolerance.

    PubMed

    Yang, Minggui; Yang, Qingyong; Fu, Tingdong; Zhou, Yongming

    2011-03-01

    The GRAS proteins are a family of transcription regulators found in plants and play diverse roles in plant growth and development. To study the biological roles of GRAS family genes in Brassica napus, an Arabidopsis LAS homologous gene, BnLAS and its two homologs were cloned from B. napus and its two progenitor species, Brassica rapa and Brassica oleracea. Relatively high levels of BnLAS were observed in roots, shoot tips, lateral meristems and flower organs based on the analysis of the transcripts by quantitative RT-PCR and promoter-reporter assays. Constitutive overexpression of BnLAS in Arabidopsis resulted in inhibition of growth, and delays in leaf senescence and flowering time. A large portion of transgenic lines had darker leaf color and higher chlorophyll content than in wild type plants. Interestingly, water lose rates in transgenic leaves were reduced, and transgenic plants exhibited enhanced drought tolerance and increased recovery after exposed to dehydration treatment. The stomatal density on leaves of the transgenic plants increased significantly due to the smaller cell size. However, the stomatal aperture on the leaves of the transgenic plants reduced significantly compared with wild type plants. More epidermal wax deposition on transgenic leaves was observed. Furthermore, several genes involved in wax synthesis and regulation, including CER1, CER2, KCS1 and KCS2, were upregulated in the transgenic plants. Our results indicate a potential to utilize BnLAS in the improvement of drought tolerance in plants.

  12. Selective disruption of dopamine D2 receptors in pituitary lactotropes increases body weight and adiposity in female mice.

    PubMed

    Perez Millan, Maria Ines; Luque, Guillermina Maria; Ramirez, Maria Cecilia; Noain, Daniela; Ornstein, Ana Maria; Rubinstein, Marcelo; Becu-Villalobos, Damasia

    2014-03-01

    Prolactin, a pleiotropic hormone secreted by lactotropes, has reproductive and metabolic functions. Chronically elevated prolactin levels increase food intake, but in some hyperprolactinemic states such as in the global dopamine D2 receptor (D2R) knockout mouse, food intake is not increased. Here, we conduct a cell-specific genetic dissection study using conditional mutant mice that selectively lack D2Rs from pituitary lactotropes (lacDrd2KO) to evaluate the role of elevated prolactin levels without any confounding effect of central D2Rs on motor and reward mechanisms related to food intake. LacDrd2KO female mice exhibited chronic hyperprolactinemia, pituitary hyperplasia, and a preserved GH axis. In addition, lacDrd2KO female but not male mice showed increased food intake by 3 months of age, and from 5 months onward their body weights were heavier. Marked increments in fat depots, adipocyte size, serum triglycerides, and nonesterified fatty acid levels and a decrease in lipolytic enzymes in adipose tissue were seen. Furthermore, lacDrd2KO female mice had glucose intolerance but a preserved response to insulin. In the hypothalamus, Npy mRNA expression was increased, and Pomc and Ppo mRNA levels were unaltered (in contrast to results in global D2R knockout mice). Thus, the orexigenic effect of prolactin and its action on hypothalamic Npy expression were fully evidenced, leading to increased food intake and adiposity. Our results highlight the metabolic role of prolactin and illustrate the value of studying cell-specific mutant mice to disentangle the pathophysiological mechanisms otherwise masked in null allele mutants or in animals treated with pervasive pharmacological agents.

  13. Fetal Alcohol Exposure Reduces Dopamine Receptor D2 and Increases Pituitary Weight and Prolactin Production via Epigenetic Mechanisms

    PubMed Central

    Gangisetty, Omkaram; Wynne, Olivia; Jabbar, Shaima; Nasello, Cara; Sarkar, Dipak K.

    2015-01-01

    Recent evidence indicated that alcohol exposure during the fetal period increases the susceptibility to tumor development in mammary and prostate tissues. Whether fetal alcohol exposure increases the susceptibility to prolactin-producing tumor (prolactinoma) development in the pituitary was studied by employing the animal model of estradiol-induced prolactinomas in Fischer 344 female rats. We employed an animal model of fetal alcohol exposure that simulates binge alcohol drinking during the first two trimesters of human pregnancy and involves feeding pregnant rats with a liquid diet containing 6.7% alcohol during gestational day 7 to day 21. Control rats were pair-fed with isocaloric liquid diet or fed ad libitum with rat chow diet. Adult alcohol exposed and control female offspring rats were used in this study on the day of estrus or after estrogen treatment. Results show that fetal alcohol-exposed rats had increased levels of pituitary weight, pituitary prolactin (PRL) protein and mRNA, and plasma PRL. However, these rats show decreased pituitary levels of dopamine D2 receptor (D2R) mRNA and protein and increased pituitary levels of D2R promoter methylation. Also, they show elevated pituitary mRNA levels of DNA methylating genes (DNMT1, DNMT3b, MeCP2) and histone modifying genes (HDAC2, HDAC4, G9a). When fetal alcohol exposed rats were treated neonatally with a DNA methylation inhibitor 5-Aza deoxycytidine and/or a HDAC inhibitor trichostatin-A their pituitary D2R mRNA, pituitary weights and plasma PRL levels were normalized. These data suggest that fetal alcohol exposure programs the pituitary to increase the susceptibility to the development of prolactinomas possibly by enhancing the methylation of the D2R gene promoter and repressing the synthesis and control of D2R on PRL-producing cells. PMID:26509893

  14. Methamphetamine-induced short-term increase and long-term decrease in spatial working memory affects protein Kinase M zeta (PKMζ), dopamine, and glutamate receptors

    PubMed Central

    Braren, Stephen H.; Drapala, Damian; Tulloch, Ingrid K.; Serrano, Peter A.

    2014-01-01

    Methamphetamine (MA) is a toxic, addictive drug shown to modulate learning and memory, yet the neural mechanisms are not fully understood. We investigated the effects of 2 weekly injections of MA (30 mg/kg) on working memory using the radial 8-arm maze (RAM) across 5 weeks in adolescent-age mice. MA-treated mice show a significant improvement in working memory performance 1 week following the first MA injection compared to saline-injected controls. Following 5 weeks of MA abstinence mice were re-trained on a reference and working memory version of the RAM to assess cognitive flexibility. MA-treated mice show significantly more working memory errors without effects on reference memory performance. The hippocampus and dorsal striatum were assessed for expression of glutamate receptors subunits, GluA2 and GluN2B; dopamine markers, dopamine 1 receptor (D1), dopamine transporter (DAT) and tyrosine hydroxylase (TH); and memory markers, protein kinase M zeta (PKMζ) and protein kinase C zeta (PKCζ). Within the hippocampus, PKMζ and GluA2 are both significantly reduced after MA supporting the poor memory performance. Additionally, a significant increase in GluN2B and decrease in D1 identifies dysregulated synaptic function. In the striatum, MA treatment increased cytosolic DAT and TH levels associated with dopamine hyperfunction. MA treatment significantly reduced GluN2B while increasing both PKMζ and PKCζ within the striatum. We discuss the potential role of PKMζ/PKCζ in modulating dopamine and glutamate receptors after MA treatment. These results identify potential underlying mechanisms for working memory deficits induced by MA. PMID:25566006

  15. Overexpression of wild-type aspartokinase increases L-lysine production in the thermotolerant methylotrophic bacterium Bacillus methanolicus.

    PubMed

    Jakobsen, Oyvind M; Brautaset, Trygve; Degnes, Kristin F; Heggeset, Tonje M B; Balzer, Simone; Flickinger, Michael C; Valla, Svein; Ellingsen, Trond E

    2009-02-01

    Aspartokinase (AK) controls the carbon flow into the aspartate pathway for the biosynthesis of the amino acids l-methionine, l-threonine, l-isoleucine, and l-lysine. We report here the cloning of four genes (asd, encoding aspartate semialdehyde dehydrogenase; dapA, encoding dihydrodipicolinate synthase; dapG, encoding AKI; and yclM, encoding AKIII) of the aspartate pathway in Bacillus methanolicus MGA3. Together with the known AKII gene lysC, dapG and yclM form a set of three AK genes in this organism. Overexpression of dapG, lysC, and yclM increased l-lysine production in wild-type B. methanolicus strain MGA3 2-, 10-, and 60-fold (corresponding to 11 g/liter), respectively, without negatively affecting the specific growth rate. The production levels of l-methionine (less than 0.5 g/liter) and l-threonine (less than 0.1 g/liter) were low in all recombinant strains. The AK proteins were purified, and biochemical analyses demonstrated that they have similar V(max) values (between 47 and 58 micromol/min/mg protein) and K(m) values for l-aspartate (between 1.9 and 5.0 mM). AKI and AKII were allosterically inhibited by meso-diaminopimelate (50% inhibitory concentration [IC(50)], 0.1 mM) and by l-lysine (IC(50), 0.3 mM), respectively. AKIII was inhibited by l-threonine (IC(50), 4 mM) and by l-lysine (IC(50), 5 mM), and this enzyme was synergistically inhibited in the presence of both of these amino acids at low concentrations. The correlation between the impact on l-lysine production in vivo and the biochemical properties in vitro of the individual AK proteins is discussed. This is the first example of improving l-lysine production by metabolic engineering of B. methanolicus and also the first documentation of considerably increasing l-lysine production by overexpression of a wild-type AK.

  16. Religion priming differentially increases prosocial behavior among variants of the dopamine D4 receptor (DRD4) gene

    PubMed Central

    Kim, Heejung S.; Mojaverian, Taraneh; Kelley, Lauren D. S.; Park, In Young; Janušonis, Skirmantas

    2013-01-01

    Building on gene–environment interaction (G × E) research, this study examines how the dopamine D4 receptor (DRD4) gene interacts with a situational prime of religion to influence prosocial behavior. Some DRD4 variants tend to be more susceptible to environmental influences, whereas other variants are less susceptible. Thus, certain life environments may be associated with acts of prosociality for some DRD4 variants but not others. Given that religion can act as an environmental influence that increases prosocial behavior, environmental input in the form of religion priming may have G × E effects. Results showed that participants with DRD4 susceptibility variants were more prosocial when implicitly primed with religion than not primed with religion, whereas participants without DRD4 susceptibility variants were not impacted by priming. This research has implications for understanding why different people may behave prosocially for different reasons and also integrates G × E research with experimental psychology. PMID:22198971

  17. Acute intraperitoneal injection of caffeine improves endurance exercise performance in association with increasing brain dopamine release during exercise.

    PubMed

    Zheng, Xinyan; Takatsu, Satomi; Wang, Hongli; Hasegawa, Hiroshi

    2014-07-01

    The purpose of this study was to examine changes of thermoregulation, neurotransmitters in the preoptic area and anterior hypothalamus (PO/AH), which is the thermoregulatory center, and endurance exercise performance after the intraperitoneal injection of caffeine in rats. Core body temperature (Tcore), oxygen consumption (VO₂) and tail skin temperature (Ttail) were measured. A microdialysis probe was inserted in the PO/AH, and samples for the measurements of extracellular dopamine (DA), noradrenaline (NA) and serotonin (5-HT) levels were collected. During the rest experiment, 1 h after baseline collections in the chamber (23 °C), the rats were intraperitoneally injected with saline, or 3 mg kg(-1) or 10 mg kg(-1) caffeine. The duration of the test was 4 h. During the exercise experiment, baseline collections on the treadmill were obtained for 1 h. One hour before the start of exercise, rats were intraperitoneally injected with either 10 mg kg(-1) caffeine (CAF) or saline (SAL). Animals ran until fatigue at a speed of 18 m min(-1), at a 5% grade, on the treadmill in a normal environment (23 °C). At rest, 3 mg kg(-1) caffeine did not influence Tcore, Ttail, VO₂, extracellular DA, NA and 5-HT. 10 mg kg(-1) caffeine caused significant increases in Tcore, VO₂, Ttail and extracellular DA in the PO/AH. In addition, 10 mg kg(-1) caffeine increased the run time to fatigue (SAL: 104.4 ± 30.9 min, CAF: 134.0 ± 31.1 min, p<0.05). The combination of caffeine and exercise increased Tcore, VO₂, Ttail and extracellular DA in the PO/AH. NA increased during exercise, while neither caffeine nor exercise changed 5-HT. These results indicate that caffeine has ergogenic and hyperthermic effects, and these effects may be related to changes of DA release in the brain.

  18. Early Paradoxical Increase of Dopamine: A Neurochemical Study of Olfactory Bulb in Asymptomatic and Symptomatic MPTP Treated Monkeys.

    PubMed

    Pifl, Christian; Reither, Harald; Del Rey, Natalia Lopez-Gonzalez; Cavada, Carmen; Obeso, Jose A; Blesa, Javier

    2017-01-01

    Parkinson's disease (PD) is a neurodegenerative disease with both motor and non-motor manifestations. Hyposmia is one of the early non-motor symptoms, which can precede motor symptoms by several years. The relationship between hyposmia and PD remains elusive. Olfactory bulb (OB) pathology shows an increased number of olfactory dopaminergic cells, protein aggregates and dysfunction of neurotransmitter systems. In this study we examined tissue levels of dopamine (DA) and serotonin (5-hydroxytryptamine, 5-HT) and their metabolites, of noradrenaline (NA) and of the amino acid neurotransmitters aspartate, glutamate, taurine and γ-aminobutyric acid in OBs of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) treated Macaca fascicularis in different stages, including monkeys who were always asymptomatic, monkeys who recovered from mild parkinsonian signs, and monkeys with stable moderate or severe parkinsonism. DA was increased compared to controls, while neither NA and 5-HT nor the amino acid neurotransmitters were significantly changed. Furthermore, DA increased before stable motor deficits appear with +51% in asymptomatic and +96% in recovered monkeys. Unchanged DA metabolites suggest a special metabolic profile of the newly formed DA neurons. Significant correlation of homovanillic acid (HVA) with taurine single values within the four MPTP groups and of aspartate with taurine within the asymptomatic and recovered MPTP groups, but not within the controls suggest interactions in the OB between taurine and the DA system and taurine and the excitatory neurotransmitter triggered by MPTP. This first investigation of OB in various stages after MPTP administration suggests that the DA increase seems to be an early phenomenon, not requiring profound nigrostriatal neurodegeneration or PD symptoms.

  19. Early Paradoxical Increase of Dopamine: A Neurochemical Study of Olfactory Bulb in Asymptomatic and Symptomatic MPTP Treated Monkeys

    PubMed Central

    Pifl, Christian; Reither, Harald; del Rey, Natalia Lopez-Gonzalez; Cavada, Carmen; Obeso, Jose A.; Blesa, Javier

    2017-01-01

    Parkinson’s disease (PD) is a neurodegenerative disease with both motor and non-motor manifestations. Hyposmia is one of the early non-motor symptoms, which can precede motor symptoms by several years. The relationship between hyposmia and PD remains elusive. Olfactory bulb (OB) pathology shows an increased number of olfactory dopaminergic cells, protein aggregates and dysfunction of neurotransmitter systems. In this study we examined tissue levels of dopamine (DA) and serotonin (5-hydroxytryptamine, 5-HT) and their metabolites, of noradrenaline (NA) and of the amino acid neurotransmitters aspartate, glutamate, taurine and γ-aminobutyric acid in OBs of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) treated Macaca fascicularis in different stages, including monkeys who were always asymptomatic, monkeys who recovered from mild parkinsonian signs, and monkeys with stable moderate or severe parkinsonism. DA was increased compared to controls, while neither NA and 5-HT nor the amino acid neurotransmitters were significantly changed. Furthermore, DA increased before stable motor deficits appear with +51% in asymptomatic and +96% in recovered monkeys. Unchanged DA metabolites suggest a special metabolic profile of the newly formed DA neurons. Significant correlation of homovanillic acid (HVA) with taurine single values within the four MPTP groups and of aspartate with taurine within the asymptomatic and recovered MPTP groups, but not within the controls suggest interactions in the OB between taurine and the DA system and taurine and the excitatory neurotransmitter triggered by MPTP. This first investigation of OB in various stages after MPTP administration suggests that the DA increase seems to be an early phenomenon, not requiring profound nigrostriatal neurodegeneration or PD symptoms. PMID:28611598

  20. Dopamine D1 receptor activity is involved in the increased anxiety levels observed in STZ-induced diabetes in rats.

    PubMed

    Rebolledo-Solleiro, Daniela; Araiza, Luis Fernando Ontiveros; Broccoli, Laura; Hansson, Anita C; Rocha-Arrieta, Luisa Lilia; Aguilar-Roblero, Raúl; Crespo-Ramírez, Minerva; Fuxe, Kjell; Pérez de la Mora, Miguel

    2016-10-15

    Epidemiological surveys have indicated that anxiety disorders are more frequent in diabetic patients than in the general population. Similar results have been shown in animal studies using the streptozotocin (STZ)-induced diabetes model. The mechanisms underlying this relationship are not clearly understood, but it has been suggested that alterations in the dopaminergic neurotransmission, which plays an important role in the amygdaloid modulation of fear and anxiety, may be involved. The aim of this study was to ascertain whether or not the amygdaloid DA D1 receptors are involved in the increase of anxiety-like behavior observed in "diabetic" animals. Adult Wistar male rats were injected with STZ (50mg/kg, i.p.) in two consecutive days and subjected to the Shock-Probe Burying Test 10days after the beginning of treatment. STZ-treated rats showed a significant increase in immobility/freezing behavior whereas no effects were elicited in latency to bury, burying behavior itself and the number of shocks received during testing as compared with non-diabetic controls. These results suggest the triggering of a passive coping response in the STZ-treated rats. Interestingly, immobility/freezing behavior was reversed following the intra-amygdaloid dopamine D1 receptor blockade by the local microinfusion of SCH23390 (100ng/side). Autoradiographic experiments showed a selective increase of [(3)H]-SCH23390 binding in the ventral intercalated paracapsular islands of STZ-treated rats when compared to the non-treated control group. Our results suggest that a hyperdopaminergic state involving DA D1 receptors within the amygdala may have a role in the increase of anxiety observed in diabetic rats. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Cooperative activation of dopamine D1 and D2 receptors increases spike firing of nucleus accumbens neurons via G-protein betagamma subunits.

    PubMed

    Hopf, F Woodward; Cascini, Maria Grazia; Gordon, Adrienne S; Diamond, Ivan; Bonci, Antonello

    2003-06-15

    Dopamine in the nucleus accumbens modulates both motivational and addictive behaviors. Dopamine D1 and D2 receptors are generally considered to exert opposite effects at the cellular level, but many behavioral studies find an apparent cooperative effect of D1 and D2 receptors in the nucleus accumbens. Here, we show that a dopamine-induced enhancement of spike firing in nucleus accumbens neurons in brain slices required both D1 and D2 receptors. One intracellular mechanism that might underlie cooperativity of D1 and D2 receptors is activation of specific subtypes of adenylyl cyclases by G-protein betagamma subunits (Gbetagamma) released from the Gi/o-linked D2 receptor in combination with Galpha(s)-like subunits from the D1 receptor. In this regard, dopaminergic enhancement of spike firing was prevented by inhibitors of protein kinase A or Gbetagamma. Furthermore, intracellular perfusion with Gbetagamma enabled D1 receptor activation but not D2 receptor activation to enhance spike firing. Finally, our data suggest that these pathways may increase spike firing by inhibition of a slow A-type potassium current. These results provide evidence for a novel cellular mechanism through which cooperative action of D1 and D2 receptors in the nucleus accumbens could mediate dopamine-dependent behaviors.

  2. Prolactin secretory surge during estrus coincides with increased dopamine activity in the hypothalamus and preoptic area and is not altered by ovariectomy on proestrus.

    PubMed

    Szawka, Raphael E; Rodovalho, Gisele V; Helena, Cleyde V V; Franci, Celso R; Anselmo-Franci, Janete A

    2007-06-15

    Prolactin (PRL) secretory surges have been reported on the afternoons of both proestrus and estrous in cycling rats. As neuroendocrine regulation of estrous PRL surge is poorly understood, the present study aimed to investigate the involvement of hypothalamic dopamine and serotonin as well as of plasma ovarian steroids in this hormonal surge generation. For that, we determined the concentrations of dopamine, serotonin and their respective metabolites 3,4-dihydroxyphenylacetic acid (DOPAC) and 5-hydroxyindole-3-acetic acid (5-HIAA) in the mediobasal hypothalamus (MBH) and medial preoptic area (MPOA) throughout the day of estrus and correlated them with plasma PRL levels. In a second study, we evaluated the effect of ovariectomy on the morning of proestrus on PRL surges of both proestrus and estrus. Dopamine turnover, as determined by DOPAC/dopamine ratio, increased in both the MBH and MPOA coinciding with the afternoon PRL surge on estrus. In contrast, both the concentration and turnover (5-HIAA/serotonin) of serotonin within these areas were unaltered during estrus. In addition, ovariectomy reduced plasma estradiol and progesterone levels but did not alter the PRL surges on proestrus and estrus. Considering that dopamine is the main inhibitor of PRL release and that PRL auto-regulates its secretion through a short-loop feedback mechanism, our present results suggest that PRL may suppress its own secretion during the estrus surge through the activation of the dopaminergic neurons in the MBH and MPOA. In addition, the PRL surge on estrus seems do not depend on either the activity of hypothalamic serotonin or the increased secretion of ovarian steroids on proestrus.

  3. Overexpression of wild-type PKD2 leads to increased proliferation and invasion of BON endocrine cells

    SciTech Connect

    Jackson, Lindsey N.; Li Jing; Chen, L. Andy; Townsend, Courtney M.; Evers, B. Mark . E-mail: mevers@utmb.edu

    2006-09-29

    Carcinoid tumors are rare neuroendocrine tumors with a predilection for the gastrointestinal tract. Protein kinase D (PKD), a novel serine/threonine protein kinase, has been implicated in the regulation of transport processes in certain cell types. We have reported an important role for PKD in stimulated peptide secretion from a human (BON) carcinoid cell line; however, the role of PKD isoforms, including PKD2, in the proliferation and invasion of carcinoid tumors remains unclear. In the present study, we found that overexpression of PKD2 by stable transfection of BON cells with PKD2-wild type (PKD2{sub WT}) significantly increased proliferation and invasion compared to cells transfected with PKD2-kinase dead (PKD2{sub KD}) or pcDNA3 (control). Similarly, inhibition of PKD2 activity with small interfering RNA (siRNA) significantly decreased proliferation and invasion compared to cells transfected with non-targeting control (NTC) siRNA. These data support an important role for PKD2 in carcinoid tumor progression. Targeted inhibition of the PKD family may prove to be a novel treatment option for patients with carcinoid tumors.

  4. Modeling bipolar disorder in mice by increasing acetylcholine or dopamine: Chronic lithium treats most, but not all features

    PubMed Central

    van Enkhuizen, Jordy; Milienne-Petiot, Morgane; Geyer, Mark A.; Young, Jared W.

    2015-01-01

    Rationale Bipolar disorder (BD) is a disabling and life-threatening disease characterized by states of depression and mania. New and efficacious treatments have not been forthcoming partly due to a lack of well-validated models representing both facets of BD. Objectives We hypothesized that cholinergic- and dopaminergic-pharmacological manipulations would model depression and mania respectively, each attenuated by lithium treatment. Methods C57BL/6J mice received the acetylcholinesterase inhibitor physostigmine or saline before testing for ‘behavioral despair’ (immobility) in the tail-suspension test (TST) and forced-swim test (FST). Physostigmine effects on exploration and sensorimotor gating were assessed using the cross-species behavioral pattern monitor (BPM) and prepulse inhibition (PPI) paradigms. Other C57BL/6J mice received chronic lithium drinking water (300, 600, or 1200 mg/l) before assessing their effects alone in the BPM or with physostigmine on FST performance. Another group was tested with acute GBR12909 (dopamine transporter inhibitor) and chronic lithium (1000 mg/l) in the BPM. Results Physostigmine (0.03 mg/kg) increased immobility in the TST and FST without affecting activity, exploration, or PPI. Lithium (600 mg/l) resulted in low therapeutic serum concentrations and normalized the physostigmine-increased immobility in the FST. GBR12909 induced mania-like behavior in the BPM of which hyper-exploration was attenuated, though not reversed, after chronic lithium (1000 mg/ml). Conclusions Increased cholinergic levels induced depression-like behavior and hyperdopaminergia induced mania-like behavior in mice, while chronic lithium treated some, but not all, facets of these effects. These data support a cholinergic-monoaminergic mechanism for modeling BD aspects and provide a way to assess novel therapeutics. PMID:26141192

  5. Does dopamine connect the dots in ADPKD?

    PubMed

    Chapman, Arlene B

    2015-02-01

    Healthy autosomal dominant polycystic kidney disease (ADPKD) patients with normal kidney function demonstrate reduced endothelial-dependent vasodilation that improves with increasing local dopamine levels. Dopamine regulates renal sodium excretion, and dopamine receptors are located on primary cilia in both vascular and renal tubular epithelial cells. The study by Lorthioir and colleagues links endothelial function and dopamine availability in ADPKD patients.

  6. Overexpression of GhSusA1 increases plant biomass and improves cotton fiber yield and quality.

    PubMed

    Jiang, Yanjie; Guo, Wangzhen; Zhu, Huayu; Ruan, Yong-Ling; Zhang, Tianzhen

    2012-04-01

    Cotton (Gossypium spp.) is an important economic crop and the largest source of textile fiber in the world. However, to date, only a few genes have been identified that exhibit critical roles in fiber development, and few has shown positive effects on fiber yield and quality in transgenic cotton. Here, we report the characterization of a novel sucrose synthase (SusA1) gene from a superior quality fiber germplasm line 7235 in Gossypium hirsutum. By association analysis, GhSusA1 was highly correlated with fiber qualities in (7235× TM-1) recombinant inbred lines based on polymorphism of GhSusA1 between 7235 and TM-1. Subsequently, based on an interspecific population of 141 BC₁ individuals generated from the cross between TM-1 and Gossypium barbadense line, Hai7124, we further mapped GhSusA1 genes on homeologous chromosomes A8 (chro.8) and D8 (chro.24). Suppression of GhSusA1 in transgenic cotton reduced fiber quality and decreased the boll size and seed weight. Importantly, overexpression of this gene increased fiber length and strength, with the latter indicated by the enhanced thickening of cell wall during secondary wall formation stage. Moreover, increasing GhSusA1 transcript abundance in vegetative tissues led to elevated seedling biomass. Together, these findings identified GhSusA1 as a key regulator of sink strength in cotton, which is tightly associated with productivity, and hence a promising candidate gene that can be developed to increase cotton fiber yield and quality.

  7. SREBP-1c overexpression induces triglycerides accumulation through increasing lipid synthesis and decreasing lipid oxidation and VLDL assembly in bovine hepatocytes.

    PubMed

    Li, Xinwei; Li, Yu; Yang, Wentao; Xiao, Chong; Fu, Shixin; Deng, Qinghua; Ding, Hongyan; Wang, Zhe; Liu, Guowen; Li, Xiaobing

    2014-09-01

    The natural incidence of fatty liver in ruminants is significantly higher than in monogastric animals. Fatty liver is associated with sterol regulatory element-binding protein 1c (SREBP-1c). The aim of this study was to investigate the regulatory network effects of SREBP-1c on the lipid metabolic genes involved in fatty acid uptake, activation, oxidation, synthesis, and very low-density lipoprotein (VLDL) assembly in bovine hepatocytes. In vitro, bovine hepatocytes were transfected with an adenovirus-mediated SREBP-1c overexpression vector. SREBP-1c overexpression significantly up-regulated the expression and activity of the fatty acid uptake, activation, and synthesis enzymes: liver fatty acid binding protein, fatty acid translocase, acyl-CoA synthetase long-chain 1, acetyl-CoA carboxylase 1, and fatty acid synthase, increasing triglyceride (TG) synthesis and accumulation. SREBP-1c overexpression down-regulated the expression and activity of the lipid oxidation enzymes: carnitine palmitoyltransferase 1 and carnitine palmitoyltransferase 2. Furthermore, the apolipoprotein B100 expression and microsomal triglyceride transfer protein activity were significantly decreased. SREBP-1c overexpression reduced lipid oxidation and VLDL synthesis, thereby decreasing TG disposal and export. Therefore, large amounts of TG accumulated in the bovine hepatocytes. Taken together, these results indicate that SREBP-1c overexpression increases lipid synthesis and decreases lipid oxidation and VLDL export, thereby inducing TG accumulation in bovine hepatocytes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Striatal dopamine D2/3 receptor availability increases after long-term bariatric surgery-induced weight loss.

    PubMed

    van der Zwaal, Esther M; de Weijer, Barbara A; van de Giessen, Elsmarieke M; Janssen, Ignace; Berends, Frits J; van de Laar, Arnold; Ackermans, Mariette T; Fliers, Eric; la Fleur, Susanne E; Booij, Jan; Serlie, Mireille J

    2016-07-01

    In several studies reduced striatal dopamine D2/3 receptor (D2/3R) availability was reported in obese subjects compared to lean controls. Whether this is a reversible phenomenon remained uncertain. We previously determined the short-term effect of Roux-en-Y gastric bypass surgery (RYGB) on striatal D2/3R availability (using [(123)I]IBZM SPECT) in 20 morbidly obese women. Striatal D2/3R availability was lower compared to controls at baseline, and remained unaltered after 6 weeks, despite significant weight loss. To determine whether long-term bariatric surgery-induced weight loss normalizes striatal D2/3R binding, we repeated striatal D2/3R binding measurements at least 2 years after RYGB in 14 subjects of the original cohort. In addition, we assessed long-term changes in body composition, eating behavior and fasting plasma levels of leptin, ghrelin, insulin and glucose. Mean body mass index declined from 46±7kg/m(2) to 32±6kg/m(2), which was accompanied by a significant increase in striatal D2/3R availability (p=0.031). Striatal D2/3R availability remained significantly reduced compared to the age-matched controls (BMI 22±2kg/m(2); p=0.01). Changes in striatal D2/3R availability did not correlate with changes in body weight/fat, insulin sensitivity, ghrelin or leptin levels. Scores on eating behavior questionnaires improved and changes in the General Food Craving Questionnaire-State showed a borderline significant correlation with changes in striatal D2/3R availability. These findings show that striatal D2/3R availability increases after long-term bariatric-surgery induced weight loss, suggesting that reduced D2/3R availability in obesity is a reversible phenomenon. Copyright © 2016 Elsevier B.V. and ECNP. All rights reserved.

  9. Dopamine increases in cat carotid body during excitation by carbon monoxide: implications for a chromophore theory of chemoreception.

    PubMed

    Buerk, D G; Chugh, D K; Osanai, S; Mokashi, A; Lahiri, S

    1997-12-11

    Studies of dopamine (DA) release were conducted with 10 perfused/superfused cat carotid bodies using shallow recessed Nafion polymer-coated microsensors (tips approximately 5 microns). Simultaneous measurements of tissue DA and neuronal discharge (ND) from the sinus nerve were made after switching from normoxic, normocapnic control perfusate (20% O2, 5% CO2, balance N2) to a normoxic, normocapnic perfusate equilibrated with a high tension (> 550 Torr) of carbon monoxide (CO). When high PCO perfusate was delivered in the dark, ND increased from a baseline of 89 +/- 24 (SE) impulses/s, to a peak excitation of 374 +/- 44 impulses/s within 15-30 s. Excitation then diminished to a plateau of 281 +/- 36 impulses/s within 1-2 min. Both peak and plateau ND were significantly above baseline (P < 0.05). Average tissue DA values increased above basal levels by +7.2 +/- 1.0 and +5.6 +/- 0.6 microns, respectively, during the peak and plateau ND phases (P < 0.05). Bright light restored the chemosensory activity to baseline, but had no effect on DA. Both chemosensory excitation and tissue DA responses to high CO in the dark were diminished in 3 carotid bodies perfused with Ca(2+)-free solutions. Responses were reduced even further with Ca2+ chelator (EGTA) in the perfusate. The results suggest that the effect of high PCO on DA release and chemosensory excitation are dependent on Ca2+ in the media, but the two events are not coupled.

  10. Increased extracellular dopamine and 5-hydroxytryptamine levels contribute to enhanced subthalamic nucleus neural activity during exhausting exercise

    PubMed Central

    Hu, Y; Liu, X

    2015-01-01

    The purpose of the study was to explore the mechanism underlying the enhanced subthalamic nucleus (STN) neural activity during exhausting exercise from the perspective of monoamine neurotransmitters and changes of their corresponding receptors. Rats were randomly divided into microdialysis and immunohistochemistry study groups. For microdialysis study, extracellular fluid of the STN was continuously collected with a microdialysis probe before, during and 90 min after one bout of exhausting exercise. Dopamine (DA) and 5-hydroxytryptamine (5-HT) levels were subsequently detected with high-performance liquid chromatography (HPLC). For immunohistochemistry study, the expression of DRD2 and HT2C receptors in the STN, before, immediately after and 90 min after exhaustion was detected through immunohistochemistry technique. Microdialysis study results showed that the extracellular DA and 5-HT neurotransmitters increased significantly throughout the procedure of exhausting exercise and the recovery period (P<0.05 or P<0.01). Immunohistochemistry study results showed that the expression levels of DRD2 and HT2C in the rat STN immediately after exhausting exercise and at the time point of 90 min after exhaustion were both higher than those of the rest condition, but the difference was not significant (P>0.05). Our results suggest that the increased extracellular DA and 5-HT in the STN might be one important factor leading to the enhanced STN neural activity and the development of fatigue during exhausting exercise. This study may essentially offer useful evidence for better understanding of the mechanism of the central type of exercise-induced fatigue. PMID:26424920

  11. Increased sensitivity to antidepressants of D3 dopamine receptor-deficient mice in the forced swim test (FST).

    PubMed

    Leggio, Gian Marco; Micale, Vincenzo; Drago, Filippo

    2008-04-01

    Evidence exists for a dopaminergic system dysregulation in mood disorders. In particular, depression may be accompanied by a relative fall of brain dopamine (DA) availability, while the increase of dopamine D2/D3 receptors (D2R/D3R) binding may reflect a compensatory change following primary reduction of mesolimbic DA levels. It is well established that D3Rs, acting as autoreceptors, inhibit DA synthesis and release, although lack of selective compounds have limited the progress in understanding D3Rs role in mood disorders. Aim of this study was to assess the behavioral responses of D3R-deficient (D3(-/-)) mice tested in the forced swim test (FST) and to evaluate their sensitivity to the treatment with different antidepressant drugs. Different groups of mice received one injection of the tricyclic compound, clomipramine (1, 5 and 10 mg/kg) or of one the selective serotonin reuptake inhibitors (SSRIs), paroxetine, sertraline or citalopram (1, 4 and 16 mg/kg), 30 min prior the behavioral test. Vehicle-injected wild type (WT) mice and D3(-/-) animals were used as controls and submitted to the same experimental procedure. In a preliminary experiment, vehicle-injected D3(-/-) mice, but not their littermates, failed to show an increased immobility time in FST as compared to intact controls, suggesting an increased resistance to injection-induced stress in the former. Clomipramine 1 mg/kg failed to affect behavioral responses of both D3(-/-) mice and WT animals. After the 5 mg/kg dose, D3(-/-) and WT mice showed a better performance in FST than vehicle-injected controls, with a lower immobility time exhibited by D3(-/-) mice than that shown by WT animals. No difference was found between WT mice treated with the highest dose of clomipramine (10 mg/kg) and the respective controls, although D3(-/-) mice exhibited a decreased immobility time as compared to vehicle-injected controls. In contrast to WT animals, when treated with 1 mg/kg sertraline and the 4 mg/kg dose of every

  12. Overexpression of sweetpotato swpa4 peroxidase results in increased hydrogen peroxide production and enhances stress tolerance in tobacco.

    PubMed

    Kim, Yun-Hee; Kim, Cha Young; Song, Wan-Keun; Park, Doo-Sang; Kwon, Suk-Yoon; Lee, Haeng-Soon; Bang, Jae-Wook; Kwak, Sang-Soo

    2008-03-01

    Plant peroxidases (POD) reduce hydrogen peroxide (H(2)O(2)) in the presence of an electron donor. Extracellular POD can also induce H(2)O(2) production and may perform a significant function in responses to environmental stresses via the regulation of H(2)O(2) in plants. We previously described the isolation of 10 POD cDNA clones from cell cultures of sweetpotato (Ipomoea batatas). Among them, the expression of the swpa4 gene was profoundly induced by a variety of abiotic stresses and pathogenic infections (Park et al. in Mol Gen Genome 269:542-552 2003; Jang et al. in Plant Physiol Biochem 42:451-455 2004). In the present study, transgenic tobacco (Nicotiana tabacum) plants overexpressing the swpa4 gene under the control of the CaMV 35S promoter were generated in order to assess the function of swpa4 in planta. The transgenic plants exhibited an approximately 50-fold higher POD specific activity than was observed in control plants. Both transient expression analysis with the swpa4-GFP fusion protein and POD activity assays in the apoplastic washing fluid revealed that the swpa4 protein is secreted into the apoplastic space. In addition, a significantly enhanced tolerance to a variety of abiotic and biotic stresses occurred in the transgenic plants. These plants harbored increased lignin and phenolic content, and H(2)O(2 )was also generated under normal conditions. Furthermore, they showed an increased expression level of a variety of apoplastic acidic pathogenesis-related (PR) genes following enhanced H(2)O(2) production. These results suggest that the expression of swpa4 in the apoplastic space may function as a positive defense signal in the H(2)O(2)-regulated stress response signaling pathway.

  13. Increased ethanol production from glycerol by Saccharomyces cerevisiae strains with enhanced stress tolerance from the overexpression of SAGA complex components.

    PubMed

    Yu, Kyung Ok; Jung, Ju; Ramzi, Ahmad Bazli; Choe, Se Hoon; Kim, Seung Wook; Park, Chulhwan; Han, Sung Ok

    2012-09-10

    During the industrial production of ethanol using yeast, the cells are exposed to stresses that affect their growth and productivity; therefore, stress-tolerant yeast strains are highly desirable. To increase ethanol production from glycerol, a greater tolerance to osmotic and ethanol stress was engineered in yeast strains that were impaired in endogenous glycerol production by the overexpression of both SPT3 and SPT15, components of the SAGA (Spt-Ada-Gcn5-acetyltransferase) complex. The engineered strain YPH499fps1Δgpd2Δ (pGcyaDak, pGupSpt3.15Cas) formed significantly more biomass compared to the strain YPH499fps1Δgpd2Δ (pGcyaDak, pGupCas), and both engineered strains displayed increased biomass when compared to the control YPH499 fps1Δgpd2Δ (pESC-TRP) strain. The trehalose accumulation and ergosterol content of these strains were 2.3-fold and 1.6-fold higher, respectively, than the parent strains, suggesting that levels of cellular membrane components were correlated with the enhanced stress tolerance of the engineered strains. Consequently, the ethanol production of the engineered strain YPH499fps1Δgpd2Δ (pGcyaDak, pGupSpt3.15Cas) was 1.8-fold more than that of strain YPH499fps1Δgpd2Δ (pGcyaDak, pGupCas), with about 8.1g/L ethanol produced. In conclusion, we successfully established that the co-expression of SPT3 and SPT15 that improved the fermentation performance of the engineered yeast strains which produced higher ethanol yields than stress-sensitive yeast strains. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Overexpression of Heat Shock Factor Gene HsfA3 Increases Galactinol Levels and Oxidative Stress Tolerance in Arabidopsis

    PubMed Central

    Song, Chieun; Chung, Woo Sik; Lim, Chae Oh

    2016-01-01

    Heat shock factors (Hsfs) are central regulators of abiotic stress responses, especially heat stress responses, in plants. In the current study, we characterized the activity of the Hsf gene HsfA3 in Arabidopsis under oxidative stress conditions. HsfA3 transcription in seedlings was induced by reactive oxygen species (ROS), exogenous hydrogen peroxide (H2O2), and an endogenous H2O2 propagator, 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB). HsfA3-overexpressing transgenic plants exhibited increased oxidative stress tolerance compared to untransformed wild-type plants (WT), as revealed by changes in fresh weight, chlorophyll fluorescence, and ion leakage under light conditions. The expression of several genes encoding galactinol synthase (GolS), a key enzyme in the biosynthesis of raffinose family oligosaccharides (RFOs), which function as antioxidants in plant cells, was induced in HsfA3 overexpressors. In addition, galactinol levels were higher in HsfA3 overexpressors than in WT under unstressed conditions. In transient transactivation assays using Arabidopsis leaf protoplasts, HsfA3 activated the transcription of a reporter gene driven by the GolS1 or GolS2 promoter. Electrophoretic mobility shift assays showed that GolS1 and GolS2 are directly regulated by HsfA3. Taken together, these findings provide evidence that GolS1 and GolS2 are directly regulated by HsfA3 and that GolS enzymes play an important role in improving oxidative stress tolerance by increasing galactinol biosynthesis in Arabidopsis. PMID:27109422

  15. C-kit overexpression correlates with KIT gene copy numbers increases in phyllodes tumors of the breast.

    PubMed

    Liu, Junjun; Liu, Xiaozhen; Feng, Xiaolong; Liu, Jian; Lv, Shuhua; Zhang, Wei; Niu, Yun

    2015-01-01

    We determined c-kit expression in the stroma and epithelia of benign, borderline, and malignant phyllodes tumors (PTs), respectively, as well as the relationship between c-kit expression in stromal elements and KIT gene copy number variations (CNVs). To assess c-kit expression and KIT CNVs, 348 PT cases were studied: 120 (34.4 %) benign cases, 115 (33.1 %) borderline cases, and 113 (32.5 %) malignant cases. All of these cases were evaluated for c-kit (CD117) expression using immunohistochemistry. Forty-two cases (29 c-kit-positive in the stromal cells cases and 13 negative cases) were investigated for KIT gene CNVs via genomic polymerase chain reaction (PCR). The overall rate of c-kit positivity in the stroma was 46.8 %, as well as 24.2, 53.1, and 64.6 %, respectively, in PTs of three different grades. However, in the majority of cases, the epithelia were c-kit positive (98.2 %), and the positivity was 100, 99.1, and 95 % in PTs of three different grades, respectively. There was a significant change in the expression of c-kit in the stroma and epithelia according to grade (P < 0.001, P = 0.014). From the genomic PCR results, we can confirm that c-kit positivity in the stroma is directly correlated with KIT gene copy numbers increases (P = 0.003, P = 0.041). We demonstrated that c-kit expression in the stroma of PTs is positively associated with malignancy. c-Kit epithelial positivity was inversely correlated with PTs malignancy. c-Kit overexpression in the stroma was related to KIT gene copy numbers increases.

  16. Further increased production of free fatty acids by overexpressing a predicted transketolase gene of the pentose phosphate pathway in Aspergillus oryzae faaA disruptant.

    PubMed

    Tamano, Koichi; Miura, Ai

    2016-09-01

    Free fatty acids are useful as source materials for the production of biodiesel fuel and various chemicals such as pharmaceuticals and dietary supplements. Previously, we attained a 9.2-fold increase in free fatty acid productivity by disrupting a predicted acyl-CoA synthetase gene (faaA, AO090011000642) in Aspergillus oryzae. In this study, we achieved further increase in the productivity by overexpressing a predicted transketolase gene of the pentose phosphate pathway in the faaA disruptant. The A. oryzae genome is predicted to have three transketolase genes and overexpression of AO090023000345, one of the three genes, resulted in phenotypic change and further increase (corresponding to an increased production of 0.38 mmol/g dry cell weight) in free fatty acids at 1.4-fold compared to the faaA disruptant. Additionally, the biomass of hyphae increased at 1.2-fold by the overexpression. As a result, free fatty acid production yield per liter of liquid culture increased at 1.7-fold by the overexpression.

  17. Increased excitability of spinal pain reflexes and altered frequency-dependent modulation in the dopamine D3-receptor knockout mouse.

    PubMed

    Keeler, Benjamin E; Baran, Christine A; Brewer, Kori L; Clemens, Stefan

    2012-12-01

    Frequency-dependent modulation and dopamine (DA) receptors strongly modulate neural circuits in the spinal cord. Of the five known DA receptor subtypes, the D3 receptor has the highest affinity to DA, and D3-mediated actions are mainly inhibitory. Using an animal model of spinal sensorimotor dysfunction, the D3 receptor knockout mouse (D3KO), we investigated the physiological consequences of D3 receptor dysfunction on pain-associated signaling pathways in the spinal cord, the initial integration site for the processing of pain signaling. In the D3KO spinal cord, inhibitory actions of DA on the proprioceptive monosynaptic stretch reflex are converted from depression to facilitation, but its effects on longer-latency and pain-associated reflex responses and the effects of FM have not been studied. Using behavioral approaches in vivo, we found that D3KO animals exhibit reduced paw withdrawal latencies to thermal pain stimulation (Hargreaves' test) over wild type (WT) controls. Electrophysiological and pharmacological approaches in the isolated spinal cord in vitro showed that constant current stimulation of dorsal roots at a pain-associated frequency was associated with a significant reduction in the frequency-dependent modulation of longer-latency reflex (LLRs) responses but not monosynaptic stretch reflexes (MSRs) in D3KO. Application of the D1 and D2 receptor agonists and the voltage-gated calcium-channel ligand, pregabalin, but not DA, was able to restore the frequency-dependent modulation of the LLR in D3KO to WT levels. Thus we demonstrate that nociception-associated LLRs and proprioceptive MSRs are differentially modulated by frequency, dopaminergics and the Ca(2+) channel ligand, pregabalin. Our data suggest a role for the DA D3 receptor in pain modulation and identify the D3KO as a possible model for increased nociception. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Hoxb4 Overexpression in CD4 Memory Phenotype T Cells Increases the Central Memory Population upon Homeostatic Proliferation

    PubMed Central

    Fournier, Marilaine; Labrecque, Nathalie; Bijl, Janet J.

    2013-01-01

    Memory T cell populations allow a rapid immune response to pathogens that have been previously encountered and thus form the basis of success in vaccinations. However, the molecular pathways underlying the development and maintenance of these cells are only starting to be unveiled. Memory T cells have the capacity to self renew as do hematopoietic stem cells, and overlapping gene expression profiles suggested that these cells might use the same self-renewal pathways. The transcription factor Hoxb4 has been shown to promote self-renewal divisions of hematopoietic stem cells resulting in an expansion of these cells. In this study we investigated whether overexpression of Hoxb4 could provide an advantage to CD4 memory phenotype T cells in engrafting the niche of T cell deficient mice following adoptive transfer. Competitive transplantation experiments demonstrated that CD4 memory phenotype T cells derived from mice transgenic for Hoxb4 contributed overall less to the repopulation of the lymphoid organs than wild type CD4 memory phenotype T cells after two months. These proportions were relatively maintained following serial transplantation in secondary and tertiary mice. Interestingly, a significantly higher percentage of the Hoxb4 CD4 memory phenotype T cell population expressed the CD62L and Ly6C surface markers, characteristic for central memory T cells, after homeostatic proliferation. Thus Hoxb4 favours the maintenance and increase of the CD4 central memory phenotype T cell population. These cells are more stem cell like and might eventually lead to an advantage of Hoxb4 T cells after subjecting the cells to additional rounds of proliferation. PMID:24324706

  19. An increase in AMPA and a decrease in SK conductance increase burst firing by different mechanisms in a model of a dopamine neuron in vivo

    PubMed Central

    Canavier, C.C.; Landry, R.S.

    2007-01-01

    A stylized, symmetric, compartmental model of a dopamine neuron in vivo shows how rate and pattern can be modulated either concurrently or differentially. If two or more parameters in the model are varied concurrently, the baseline firing rate and the extent of bursting become de-correlated, which provides an explanation for the lack of a tight correlation in vivo, and is consistent with some independence of the mechanisms that generate baseline firing rates versus bursts. We hypothesize that most bursts are triggered by a barrage of synaptic input, and that particularly meaningful stimuli recruit larger numbers of synapses in a more synchronous way. An example of concurrent modulation is that increasing the short-lived AMPA current evokes additional spikes without regard to pattern, producing comparable increases in spike frequency and fraction fired in bursts. On the other hand, blocking the SK current evokes additional bursts by allowing a depolarization that previously produced only a single spike to elicit two or more, and elongates existing bursts by the same principle, resulting in a greater effect on pattern than rate. A probabilistic algorithm for the random insertion of spikes into the firing pattern produces a good approximation to the pattern changes induced by increasing the AMPA conductance, but not by blocking the SK current, consistent with a differential modulation in the latter case. Furthermore, blocking SK produced a longer burst with a greater intra-burst frequency in response to a simulated meaningful input, suggesting that reduction of this current may augment reward-related responses. PMID:16885519

  20. Overexpression of SAMDC1 gene in Arabidopsis thaliana increases expression of defense-related genes as well as resistance to Pseudomonas syringae and Hyaloperonospora arabidopsidis

    PubMed Central

    Marco, Francisco; Busó, Enrique; Carrasco, Pedro

    2014-01-01

    It has been previously described that elevation of endogenous spermine levels in Arabidopsis could be achieved by transgenic overexpression of S-Adenosylmethionine decarboxylase (SAMDC) or Spermine synthase (SPMS). In both cases, spermine accumulation had an impact on the plant transcriptome, with up-regulation of a set of genes enriched in functional categories involved in defense-related processes against both biotic and abiotic stresses. In this work, the response of SAMDC1-overexpressing plants against bacterial and oomycete pathogens has been tested. The expression of several pathogen defense-related genes was induced in these plants as well as in wild type plants exposed to an exogenous supply of spermine. SAMDC1-overexpressing plants showed an increased tolerance to infection by Pseudomonas syringae and by Hyaloperonospora arabidopsidis. Both results add more evidence to the hypothesis that spermine plays a key role in plant resistance to biotic stress. PMID:24734036

  1. SR141716A reduces the reinforcing properties of heroin but not heroin-induced increases in nucleus accumbens dopamine in rats.

    PubMed

    Caillé, Stéphanie; Parsons, Loren H

    2003-12-01

    The present experiments tested the hypothesis that the selective CB1 receptor antagonist SR141716A alters heroin self-administration by attenuating heroin-induced increases in nucleus accumbens dopamine levels. SR141716A pretreatment dose-dependently (0.3-3 mg/kg, i.p.) reduced operant heroin self-administration by male Wistar rats under a fixed ratio schedule of reinforcement, and significantly lowered the breaking point of responding for heroin under a progressive ratio schedule of reinforcement. These observations are consistent with recent reports that CB1 receptor inactivation reduces the rewarding properties of opiates. Operant responding for water reinforcement by water-restricted rats was unaltered by these SR141716A doses. Microdialysis tests revealed that heroin self-administration significantly increases interstitial dopamine levels in the nucleus accumbens shell of vehicle-pretreated control rats. However, whereas SR141716A pretreatment dose-dependently reduced heroin self-administration, it did not alter the heroin-associated increase in nucleus accumbens dopamine. These findings suggest that the CB1 antagonist-induced attenuation of heroin reward does not involve dopaminergic mechanisms in the nucleus accumbens shell.

  2. Intranasal administration of the dopaminergic agonists L-DOPA, amphetamine, and cocaine increases dopamine activity in the neostriatum: a microdialysis study in the rat.

    PubMed

    De Souza Silva, M A; Mattern, C; Häcker, R; Nogueira, P J; Huston, J P; Schwarting, R K

    1997-01-01

    The effectiveness of intranasal drug administration to stimulate central neuronal systems is well known from drug addiction and has also been considered as an alternative pharmacokinetic approach to treat brain disorders such as Parkinson's disease. In the present study, the possible neurochemical effects of intranasal administration of the psychostimulants cocaine and amphetamine and of the antiparkinsonian drug L-DOPA were analyzed. By using in vivo microdialysis in the urethane-anesthetized rat, it was found that unilateral intranasal administration of either of the psychostimulants led to huge and rapid increases of extracellular dopamine levels in the neostriatum followed by decreases of its metabolites dihydroxyphenylacetic acid and homovanillic acid. Furthermore, intranasal administration of L-DOPA, but not of the saline vehicle, also led to increased extracellular levels of neostriatal dopamine and to increases of its metabolites. Because the effect of intranasal L-DOPA on neostriatal dopamine was observed only ipsilaterally but not contralaterally to the side of intranasal drug administration, it can be hypothesized that L-DOPA was not effective via passage through the circulation but may have acted through a neuronal or an extraneuronal route. These data provide neurochemical evidence that the intranasal route may not only be efficient in drug abuse, but may also be useful to target the brain therapeutically, as in the case of neurodegenerative brain disorders.

  3. Overexpression of alpha-synuclein at non-toxic levels increases dopaminergic cell death induced by copper exposure via modulation of protein degradation pathways.

    PubMed

    Anandhan, Annadurai; Rodriguez-Rocha, Humberto; Bohovych, Iryna; Griggs, Amy M; Zavala-Flores, Laura; Reyes-Reyes, Elsa M; Seravalli, Javier; Stanciu, Lia A; Lee, Jaekwon; Rochet, Jean-Christophe; Khalimonchuk, Oleh; Franco, Rodrigo

    2015-09-01

    Gene multiplications or point mutations in alpha (α)-synuclein are associated with familial and sporadic Parkinson's disease (PD). An increase in copper (Cu) levels has been reported in the cerebrospinal fluid and blood of PD patients, while occupational exposure to Cu has been suggested to augment the risk to develop PD. We aimed to elucidate the mechanisms by which α-synuclein and Cu regulate dopaminergic cell death. Short-term overexpression of wild type (WT) or mutant A53T α-synuclein had no toxic effect in human dopaminergic cells and primary midbrain cultures, but it exerted a synergistic effect on Cu-induced cell death. Cell death induced by Cu was potentiated by overexpression of the Cu transporter protein 1 (Ctr1) and depletion of intracellular glutathione (GSH) indicating that the toxic effects of Cu are linked to alterations in its intracellular homeostasis. Using the redox sensor roGFP, we demonstrated that Cu-induced oxidative stress was primarily localized in the cytosol and not in the mitochondria. However, α-synuclein overexpression had no effect on Cu-induced oxidative stress. WT or A53T α-synuclein overexpression exacerbated Cu toxicity in dopaminergic and yeast cells in the absence of α-synuclein aggregation. Cu increased autophagic flux and protein ubiquitination. Impairment of autophagy by overexpression of a dominant negative Atg5 form or inhibition of the ubiquitin/proteasome system (UPS) with MG132 enhanced Cu-induced cell death. However, only inhibition of the UPS stimulated the synergistic toxic effects of Cu and α-synuclein overexpression. Our results demonstrate that α-synuclein stimulates Cu toxicity in dopaminergic cells independent from its aggregation via modulation of protein degradation pathways.

  4. Overexpression of alpha-synuclein at non-toxic levels increases dopaminergic cell death induced by copper exposure via modulation of protein degradation pathways

    PubMed Central

    Anandhan, Annadurai; Rodriguez-Rocha, Humberto; Bohovych, Iryna; Griggs, Amy M.; Zavala-Flores, Laura; Reyes-Reyes, Elsa M.; Seravalli, Javier; Stanciu, Lia A.; Lee, Jaekwon; Rochet, Jean-Christophe; Khalimonchuk, Oleh; Franco, Rodrigo

    2014-01-01

    Gene multiplications or point mutations in alpha (α)-synuclein are associated with familial and sporadic Parkinson’s disease (PD). An increase in copper (Cu) levels has been reported in the cerebrospinal fluid and blood of PD patients, while occupational exposure to Cu has been suggested to augment the risk to develop PD. We aimed to elucidate the mechanisms by which α-synuclein and Cu regulate dopaminergic cell death. Short-term overexpression of WT or A53T α-synuclein had no toxic effect in human dopaminergic cells and primary midbrain cultures, but it exerted a synergistic effect on Cu-induced cell death. Cell death induced by Cu was potentiated by overexpression of the Cu transporter protein 1 (Ctr1) and depletion of intracellular glutathione (GSH) indicating that the toxic effects of Cu are linked to alterations in its intracellular homeostasis. Using the redox sensor roGFP, we demonstrated that Cu-induced oxidative stress was primarily localized in the cytosol and not in the mitochondria. However, α-synuclein overexpression had no effect on Cu-induced oxidative stress. WT or A53T α-synuclein overexpression exacerbated Cu toxicity in dopaminergic cells and yeast in the absence of α-synuclein aggregation. Cu increased autophagic flux and protein ubiquitination. Impairment of autophagy by overexpression of a dominant negative Atg5 form or inhibition of the ubiquitin/proteasome system (UPS) with MG132 enhanced Cu-induced cell death. However, only inhibition of the UPS stimulated the synergistic toxic effects of Cu and α-synuclein overexpression. Our results demonstrate that α-synuclein stimulates Cu toxicity in dopaminergic cells independent from its aggregation via modulation of protein degradation pathways. PMID:25497688

  5. Overexpression of COUP-TF1 in murine embryonic stem cells reduces retinoic acid-associated growth arrest and increases extraembryonic endoderm gene expression.

    PubMed

    Zhuang, Yong; Gudas, Lorraine J

    2008-09-01

    Vitamin A (retinol [Rol]) and its metabolites are essential for embryonic development. The Rol metabolite all-trans retinoic acid (RA) is a biologically active form of Rol. The orphan nuclear receptor chicken ovalbumin upstream promoter-transcription-factors (COUP-TF) proteins have been implicated in the regulation of several important biological processes, such as embryonic development and neuronal cell differentiation. Because there is evidence that COUP-TFs function in the retinoid signaling network during development and differentiation, we generated murine embryonic stem (ES) cell lines which stably and constitutively overexpress COUP-TF1 (NR2F1) and we analyzed RA-induced differentiation. COUP-TF1 overexpression resulted in reduced RA-associated growth arrest. A 2.4+/-0.17-fold higher Nanog mRNA level was seen in COUP-TF1 overexpressing lines, as compared with wild-type (WT) ES cells, after a 72 hr RA treatment. We also showed that COUP-TF1 overexpression enhanced RA-induced extraembryonic endoderm gene expression. Specifically, COUP-TF1 overexpression increased mRNA levels of GATA6 by 3.3+/-0.3-fold, GATA4 by 3.6+/-0.1-fold, laminin B1 (LAMB1) by 3.4+/-0.1-fold, LAMC1 by 3.4+/-0.2-fold, Dab2 by 2.4+0.1-fold, and SOX17 by 2.5-fold at 72 hr after RA treatment plus LIF, as compared with the increases seen in WT ES cells. However, RA-induced neurogenesis was unaffected by COUP-TF1 overexpression, as shown by the equivalent levels of expression of NeuroD1, nestin, GAP43 and other neuronal markers. Our results revealed for the first time that COUP-TF1 is an important signaling molecule during vitamin A (Rol)-mediated very early stage of embryonic development.

  6. Overexpression of the Malus hupehensis MhNPR1 gene increased tolerance to salt and osmotic stress in transgenic tobacco.

    PubMed

    Zhang, Ji-Yu; Qu, Shen-Chun; Qiao, Yu-Shan; Zhang, Zhen; Guo, Zhong-Ren

    2014-03-01

    Earlier, we have reported that overexpression of Malus hupehensis Non-expressor of pathogenesis related gene 1 (MhNPR1) gene in tobacco could induce the expression of pathogenesis-related genes and enhance resistance to fungus Botrytis cinerea. In this study, we showed that MhNPR1 can be induced by NaCl, PEG6000, low temperature (4 °C), abscisic acid and apple aphids' treatments in M. hupehensis. Heterogonous expression of MhNPR1 gene in tobacco conferred enhanced resistance to NaCl at the stage of seed germination, and conferred resistance to mannitol at the stage of seed germination and to PEG6000 at the stage of seedlings. Furthermore, overexpression of MhNPR1 in transgenic tobacco led to higher expression levels of osmotic-stress related genes compared with wild-type plants. This was the first report of a novel function of NPR1 that overexpression of MhNPR1 gene has a positive effect on salt and osmotic stress in tobacco, which differs from the function that overexpressing of AtNPR1 gene has a negative effect on dehydration and salt stress in rice.

  7. An Allosteric Potentiator of the Dopamine D1 Receptor Increases Locomotor Activity in Human D1 Knock-In Mice without Causing Stereotypy or Tachyphylaxis

    PubMed Central

    Heinz, Beverly A.; Schaus, John M.; Beck, James P.; Hao, Junliang; Krushinski, Joseph H.; Reinhard, Matthew R.; Cohen, Michael P.; Hellman, Sarah L.; Getman, Brian G.; Wang, Xushan; Menezes, Michelle M.; Maren, Deanna L.; Falcone, Julie F.; Anderson, Wesley H.; Wright, Rebecca A.; Morin, S. Michelle; Knopp, Kelly L.; Adams, Benjamin L.; Rogovoy, Borys; Okun, Ilya; Suter, Todd M.; Statnick, Michael A.; Gehlert, Donald R.; Nelson, David L.; Lucaites, Virginia L.; Emkey, Renee; DeLapp, Neil W.; Wiernicki, Todd R.; Cramer, Jeffrey W.; Yang, Charles R.; Bruns, Robert F.

    2017-01-01

    Allosteric potentiators amplify the sensitivity of physiologic control circuits, a mode of action that could provide therapeutic advantages. This hypothesis was tested with the dopamine D1 receptor potentiator DETQ [2-(2,6-dichlorophenyl)-1-((1S,3R)-3-(hydroxymethyl)-5-(2-hydroxypropan-2-yl)-1-methyl-3,4-dihydroisoquinolin-2(1H)-yl)ethan-1-one]. In human embryonic kidney 293 (HEK293) cells expressing the human D1 receptor, DETQ induced a 21-fold leftward shift in the cAMP response to dopamine, with a Kb of 26 nM. The maximum response to DETQ alone was ∼12% of the maximum response to dopamine, suggesting weak allosteric agonist activity. DETQ was ∼30-fold less potent at rat and mouse D1 receptors and was inactive at the human D5 receptor. To enable studies in rodents, an hD1 knock-in mouse was generated. DETQ (3–20 mg/kg orally) caused a robust (∼10-fold) increase in locomotor activity (LMA) in habituated hD1 mice but was inactive in wild-type mice. The LMA response to DETQ was blocked by the D1 antagonist SCH39166 and was dependent on endogenous dopamine. LMA reached a plateau at higher doses (30–240 mg/kg) even though free brain levels of DETQ continued to increase over the entire dose range. In contrast, the D1 agonists SKF 82958, A-77636, and dihydrexidine showed bell-shaped dose-response curves with a profound reduction in LMA at higher doses; video-tracking confirmed that the reduction in LMA caused by SKF 82958 was due to competing stereotyped behaviors. When dosed daily for 4 days, DETQ continued to elicit an increase in LMA, whereas the D1 agonist A-77636 showed complete tachyphylaxis by day 2. These results confirm that allosteric potentiators may have advantages compared with direct-acting agonists. PMID:27811173

  8. Amphetamine Paradoxically Augments Exocytotic Dopamine Release and Phasic Dopamine Signals

    PubMed Central

    Daberkow, DP; Brown, HD; Bunner, KD; Kraniotis, SA; Doellman, MA; Ragozzino, ME; Garris, PA; Roitman, MF

    2013-01-01

    Drugs of abuse hijack brain reward circuitry during the addiction process by augmenting action potential-dependent phasic dopamine release events associated with learning and goal-directed behavior. One prominent exception to this notion would appear to be amphetamine (AMPH) and related analogs, which are proposed instead to disrupt normal patterns of dopamine neurotransmission by depleting vesicular stores and promoting non-exocytotic dopamine efflux via reverse transport. This mechanism of AMPH action, though, is inconsistent with its therapeutic effects and addictive properties - which are thought to be reliant on phasic dopamine signaling. Here we used fast-scan cyclic voltammetry in freely moving rats to interrogate principal neurochemical responses to AMPH in the striatum and relate these changes to behavior. First, we showed that AMPH dose-dependently enhanced evoked dopamine responses to phasic-like current pulse trains for up to two hours. Modeling the data revealed that AMPH inhibited dopamine uptake but also unexpectedly potentiated vesicular dopamine release. Second, we found that AMPH increased the amplitude, duration and frequency of spontaneous dopamine transients, the naturally occurring, non-electrically evoked, phasic increases in extracellular dopamine. Finally, using an operant sucrose reward paradigm, we showed that low-dose AMPH augmented dopamine transients elicited by sucrose-predictive cues. However, operant behavior failed at high-dose AMPH, which was due to phasic dopamine hyperactivity and the decoupling of dopamine transients from the reward predictive cue. These findings identify up-regulation of exocytotic dopamine release as a key AMPH action in behaving animals and support a unified mechanism of abused drugs to activate phasic dopamine signaling. PMID:23303926

  9. Enhanced apomorphine sensitivity and increased binding of dopamine D2 receptors in nucleus accumbens in prepubertal rats after neonatal blockade of the dopamine D3 receptors by (+)-S14297.

    PubMed

    Flores-Tochihuitl, Julia; Vargas, Guillermo; Morales-Medina, Julio Cesar; Rivera, Gustavo; De La Cruz, Fidel; Zamudio, Sergio; Flores, Gonzalo

    2008-01-01

    The role of dopamine (DA) D3 receptors is controversial in early developmental stages of specially locomotor activity. Past studies have only tested behavioral changes induced by neonatal administration of nonselective dopamine antagonist such as haloperidol or sulpiride in adult rats. We investigated the role of neonatal blockade of DA D3 receptors at (postnatal day, P1 to P12) using the DA D3 receptor antagonist (+)-S14297 on paradigms related to DA behaviors including locomotor activity in novel environment and after administration of the DA nonspecific agonists d-amphetamine, and apomorphine. Additionally, autoradiographic studies were performed to correlate behavioral alterations with DA D1-like, D2-like, and D3 receptors. All studies were performed at two critical ages, prepubertal (P35) and postpubertal (P60). The quantitative autoradiogaphic study revealed increases in the expression of DA D2-like receptor expression in the nucleus accumbens (NAcc) in prepubertal animals that received the DA D3 antagonist (+)-S14297 at neonatal age. In addition, novel environment and apomorphine administration (0.5 mg/kg, s.c.), induced increases of locomotor activity in prepubertal animals that received the DA D3 antagonist (+)-S14297. Autoradiographic and behavioral results suggest that blockade of DA D3 receptors after birth may mediate different neurodevelopmental aspects of the dopaminergic pathway before and after puberty. (c) 2007 Wiley-Liss, Inc.

  10. Early social isolation disrupts latent inhibition and increases dopamine D2 receptor expression in the medial prefrontal cortex and nucleus accumbens of adult rats.

    PubMed

    Han, Xiao; Li, Nanxin; Xue, Xiaofang; Shao, Feng; Wang, Weiwen

    2012-04-04

    Adolescence is a critical period for neurodevelopment. In the present study, we investigated the effects of peri-adolescent social isolation on latent inhibition (LI) and dopamine D2 receptor expression in the medial prefrontal cortex (mPFC) and nucleus accumbens (NAc) of young adult rats. Male Sprague-Dawley rats were randomly divided into adolescent isolation (ISO; isolated housing, 21-34 days of age) and social housing (SOC) groups. LI was tested at postnatal day 56. After behavioral testing, the number of dopamine D2 receptor-expressing cells was determined using immunohistochemistry. Adolescent social isolation impaired LI and increased the number of cells expressing the D2 receptor in the mPFC and NAc. The results suggest that adolescent social isolation produces profound effects on cognitive and dopaminergic function in adult rats, and could be used as an animal model of various neurodevelopmental disorders.

  11. CPT1{alpha} over-expression increases long-chain fatty acid oxidation and reduces cell viability with incremental palmitic acid concentration in 293T cells

    SciTech Connect

    Jambor de Sousa, Ulrike L.; Koss, Michael D.; Fillies, Marion; Gahl, Anja; Scheeder, Martin R.L.; Cardoso, M. Cristina; Leonhardt, Heinrich; Geary, Nori; Langhans, Wolfgang; Leonhardt, Monika . E-mail: monika.leonhardt@inw.agrl.ethz.ch

    2005-12-16

    To test the cellular response to an increased fatty acid oxidation, we generated a vector for an inducible expression of the rate-limiting enzyme carnitine palmitoyl-transferase 1{alpha} (CPT1{alpha}). Human embryonic 293T kidney cells were transiently transfected and expression of the CPT1{alpha} transgene in the tet-on vector was activated with doxycycline. Fatty acid oxidation was measured by determining the conversion of supplemented, synthetic cis-10-heptadecenoic acid (C17:1n-7) to C15:ln-7. CPT1{alpha} over-expression increased mitochondrial long-chain fatty acid oxidation about 6-fold. Addition of palmitic acid (PA) decreased viability of CPT1{alpha} over-expressing cells in a concentration-dependent manner. Both, PA and CPT1{alpha} over-expression increased cell death. Interestingly, PA reduced total cell number only in cells over-expressing CPT1{alpha}, suggesting an effect on cell proliferation that requires PA translocation across the mitochondrial inner membrane. This inducible expression system should be well suited to study the roles of CPT1 and fatty acid oxidation in lipotoxicity and metabolism in vivo.

  12. Overexpression of the PP2A-C5 gene confers increased salt tolerance in Arabidopsis thaliana

    PubMed Central

    Hu, Rongbin; Zhu, Yinfeng; Shen, Guoxin; Zhang, Hong

    2017-01-01

    ABSTRACT Protein phosphatase 2A (PP2A) was shown to play important roles in biotic and abiotic stress signaling pathways in plants. PP2A is made of 3 subunits: a scaffolding subunit A, a regulatory subunit B, and a catalytic subunit C. It is believed that the B subunit recognizes specific substrates and the C subunit directly acts on the selected substrates, whereas the A subunit brings a B subunit and a C subunit together to form a specific PP2A holoenzyme. Because there are multiple isoforms for each PP2A subunit, there could be hundreds of novel PP2A holoenzymes in plants. For an example, there are 3 A subunits, 17 B subunits, and 5 C subunits in Arabidopsis, which could form 255 different PP2A holoenzymes. Understanding the roles of these PP2A holoenzymes in various signaling pathways is a challenging task. In a recent study,1 we discovered that PP2A-C5, the catalytic subunit 5 of PP2A, plays an important role in salt tolerance in Arabidopsis. We found that a knockout mutant of PP2A-C5 (i.e. pp2a-c5–1) was very sensitive to salt treatments, whereas PP2A-C5-overexpressing plants were more tolerant to salt stresses. Genetic analyses between pp2a-c5–1 and Salt-Overly-Sensitive (SOS) mutants indicated that PP2A-C5 does not function in the same pathway as SOS genes. Using yeast 2-hybrid analysis, we found that PP2A-C5 interacts with several vacuolar membrane bound chloride channel proteins. We hypothesize that these vacuolar chloride channel proteins might be PP2A-C5's substrates in vivo, and the action of PP2A-C5 on these channel proteins could increase or activate their activities, thereby result in accumulation of the chloride and sodium contents in vacuoles, leading to increased salt tolerance in plants. PMID:28045581

  13. Dynamic Changes in Dopamine Neuron Function after DNSP-11 Treatment: Effects in vivo and Increased ERK 1/2 Phosphorylation in vitro

    PubMed Central

    Fuqua, Joshua L.; Littrell, Ofelia M.; Lundblad, Martin; Turchan-Cholewo, Jadwiga; Abdelmoti, Lina G.; Galperin, Emilia; Bradley, Luke H.; Cass, Wayne A.; Gash, Don M.; Gerhardt, Greg A.

    2014-01-01

    Glial cell-line derived neurotrophic factor (GDNF) has demonstrated robust effects on dopamine (DA) neuron function and survival. A post-translational processing model of the human GDNF proprotein theorizes the formation of smaller, amidated peptide(s) from the proregion that exhibit neurobiological function, including an 11-amino-acid peptide named dopamine neuron stimulating peptide - 11 (DNSP-11). A single treatment of DNSP-11 was delivered to the substantia nigra in the rat to investigate effects on DA-neuron function. Four weeks after treatment, potassium (K+) and d-amphetamine evoked DA release were studied in the striatum using microdialysis. There were no significant changes in DA-release after DNSP-11 treatment determined by microdialysis. Dopamine release was further examined in discrete regions of the striatum using high-speed chronoamperometry at 1-, 2-, and 4-weeks after DNSP-11 treatment. Two weeks after DNSP-11 treatment, potassium-evoked DA release was increased in specific subregions of the striatum. However, spontaneous locomotor activity was unchanged by DNSP-11 treatment. In addition, we show that a single treatment of DNSP-11 in the MN9D dopaminergic neuronal cell line results in phosphorylation of ERK1/2, which suggests a novel cellular mechanism responsible for increases in DA function. PMID:24406899

  14. Dynamic changes in dopamine neuron function after DNSP-11 treatment: effects in vivo and increased ERK 1/2 phosphorylation in vitro.

    PubMed

    Fuqua, Joshua L; Littrell, Ofelia M; Lundblad, Martin; Turchan-Cholewo, Jadwiga; Abdelmoti, Lina G; Galperin, Emilia; Bradley, Luke H; Cass, Wayne A; Gash, Don M; Gerhardt, Greg A

    2014-04-01

    Glial cell-line derived neurotrophic factor (GDNF) has demonstrated robust effects on dopamine (DA) neuron function and survival. A post-translational processing model of the human GDNF proprotein theorizes the formation of smaller, amidated peptide(s) from the proregion that exhibit neurobiological function, including an 11-amino-acid peptide named dopamine neuron stimulating peptide-11 (DNSP-11). A single treatment of DNSP-11 was delivered to the substantia nigra in the rat to investigate effects on DA-neuron function. Four weeks after treatment, potassium (K+) and D-amphetamine evoked DA release were studied in the striatum using microdialysis. There were no significant changes in DA-release after DNSP-11 treatment determined by microdialysis. Dopamine release was further examined in discrete regions of the striatum using high-speed chronoamperometry at 1-, 2-, and 4-weeks after DNSP-11 treatment. Two weeks after DNSP-11 treatment, potassium-evoked DA release was increased in specific subregions of the striatum. However, spontaneous locomotor activity was unchanged by DNSP-11 treatment. In addition, we show that a single treatment of DNSP-11 in the MN9D dopaminergic neuronal cell line results in phosphorylation of ERK1/2, which suggests a novel cellular mechanism responsible for increases in DA function. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. L-DOPA induced extracellular dopamine increases in the ventromedial hypothalamus affects food intake by chickens on a lysine-free diet.

    PubMed

    Alam, Mohammad Rashedul; Yoshizawa, Fumiaki; Sugahara, Kunio

    2011-05-16

    Previous work from our laboratory suggests that ventromedial hypothalamic (VMH) dopamine levels were associated with decreased in food intake by chicken on a lysine-free diet. Dopamine in the VMH started to decrease from its baseline after presenting a lysine-free diet and subsequently food intake decreased. In the present study, the dopamine levels were manipulated by perfusing L-3-4-dihydroxyphenylalanine (L-DOPA) into the VMH of chicken using the in vivo microdialysis technique and food intake was concomitantly measured when chickens received an experimental lysine-free diet. A microdialysis probe was implanted into the VMH. L-DOPA was then administered locally at 2 μg/ml through the dialysis probe into the VMH of free moving chicken for 15 min and the extracellular levels of dopamine (DA), norepinephrine (NE) and serotonin (5-HT) were measured. Hourly food intake was also measured simultaneously both for control and experimental groups. Microdialysates collected from the VMH were analyzed using high performance liquid chromatography with electrochemical detection. Local administration of L-DOPA in chicken VMH increased extracellular levels of DA, which was observed at 1-2.5h. There were no differences of NE and 5-HT levels from baseline in either group. Food intake was higher in L-DOPA treated chickens than controls at 2h. Chickens received the lysine-free diet ate as much of their diet as the controls in the subsequent 2h when the DA level was kept higher than the baseline. The findings suggest that L-DOPA induced extracellular DA increased in the VMH which was temporarily followed by the restoration of food intake in the lysine-free group. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  16. Over-expressed copper/zinc superoxide dismutase localizes to mitochondria in neurons inhibiting the angiotensin II-mediated increase in mitochondrial superoxide.

    PubMed

    Li, Shumin; Case, Adam J; Yang, Rui-Fang; Schultz, Harold D; Zimmerman, Matthew C

    2013-01-01

    Angiotensin II (AngII) is the main effector peptide of the renin-angiotensin system (RAS), and contributes to the pathogenesis of cardiovascular disease by exerting its effects on an array of different cell types, including central neurons. AngII intra-neuronal signaling is mediated, at least in part, by reactive oxygen species, particularly superoxide (O2 (•-)). Recently, it has been discovered that mitochondria are a major subcellular source of AngII-induced O2 (•-). We have previously reported that over-expression of manganese superoxide dismutase (MnSOD), a mitochondrial matrix-localized O2 (•-) scavenging enzyme, inhibits AngII intra-neuronal signaling. Interestingly, over-expression of copper/zinc superoxide dismutase (CuZnSOD), which is believed to be primarily localized to the cytoplasm, similarly inhibits AngII intra-neuronal signaling and provides protection against AngII-mediated neurogenic hypertension. Herein, we tested the hypothesis that CuZnSOD over-expression in central neurons localizes to mitochondria and inhibits AngII intra-neuronal signaling by scavenging mitochondrial O2 (•-). Using a neuronal cell culture model (CATH.a neurons), we demonstrate that both endogenous and adenovirus-mediated over-expressed CuZnSOD (AdCuZnSOD) are present in mitochondria. Furthermore, we show that over-expression of CuZnSOD attenuates the AngII-mediated increase in mitochondrial O2 (•-) levels and the AngII-induced inhibition of neuronal potassium current. Taken together, these data clearly show that over-expressed CuZnSOD in neurons localizes in mitochondria, scavenges AngII-induced mitochondrial O2 (•-), and inhibits AngII intra-neuronal signaling.

  17. Overexpressing Ferredoxins in Chlamydomonas reinhardtii Increase Starch and Oil Yields and Enhance Electric Power Production in a Photo Microbial Fuel Cell.

    PubMed

    Huang, Li-Fen; Lin, Ji-Yu; Pan, Kui-You; Huang, Chun-Kai; Chu, Ying-Kai

    2015-08-14

    Ferredoxins (FDX) are final electron carrier proteins in the plant photosynthetic pathway, and function as major electron donors in diverse redox-driven metabolic pathways. We previously showed that overexpression of a major constitutively expressed ferredoxin gene PETF in Chlamydomonas decreased the reactive oxygen species (ROS) level and enhanced tolerance to heat stress. In addition to PETF, an endogenous anaerobic induced FDX5 was overexpressed in transgenic Chlamydomonas lines here to address the possible functions of FDX5. All the independent FDX transgenic lines showed decreased cellular ROS levels and enhanced tolerance to heat and salt stresses. The transgenic Chlamydomonas lines accumulated more starch than the wild-type line and this effect increased almost three-fold in conditions of nitrogen depletion. Furthermore, the lipid content was higher in the transgenic lines than in the wild-type line, both with and without nitrogen depletion. Two FDX-overexpressing Chlamydomonas lines were assessed in a photo microbial fuel cell (PMFC); power density production by the transgenic lines was higher than that of the wild-type cells. These findings suggest that overexpression of either PETF or FDX5 can confer tolerance against heat and salt stresses, increase starch and oil production, and raise electric power density in a PMFC.

  18. Overexpressing Ferredoxins in Chlamydomonas reinhardtii Increase Starch and Oil Yields and Enhance Electric Power Production in a Photo Microbial Fuel Cell

    PubMed Central

    Huang, Li-Fen; Lin, Ji-Yu; Pan, Kui-You; Huang, Chun-Kai; Chu, Ying-Kai

    2015-01-01

    Ferredoxins (FDX) are final electron carrier proteins in the plant photosynthetic pathway, and function as major electron donors in diverse redox-driven metabolic pathways. We previously showed that overexpression of a major constitutively expressed ferredoxin gene PETF in Chlamydomonas decreased the reactive oxygen species (ROS) level and enhanced tolerance to heat stress. In addition to PETF, an endogenous anaerobic induced FDX5 was overexpressed in transgenic Chlamydomonas lines here to address the possible functions of FDX5. All the independent FDX transgenic lines showed decreased cellular ROS levels and enhanced tolerance to heat and salt stresses. The transgenic Chlamydomonas lines accumulated more starch than the wild-type line and this effect increased almost three-fold in conditions of nitrogen depletion. Furthermore, the lipid content was higher in the transgenic lines than in the wild-type line, both with and without nitrogen depletion. Two FDX-overexpressing Chlamydomonas lines were assessed in a photo microbial fuel cell (PMFC); power density production by the transgenic lines was higher than that of the wild-type cells. These findings suggest that overexpression of either PETF or FDX5 can confer tolerance against heat and salt stresses, increase starch and oil production, and raise electric power density in a PMFC. PMID:26287179

  19. Erianthus arundinaceus HSP70 (EaHSP70) overexpression increases drought and salinity tolerance in sugarcane (Saccharum spp. hybrid).

    PubMed

    Augustine, Sruthy Maria; Narayan, J Ashwin; Syamaladevi, Divya P; Appunu, C; Chakravarthi, M; Ravichandran, V; Subramonian, N

    2015-03-01

    Heat shock proteins (HSPs) have a major role in stress tolerance mechanisms in plants. Our studies have shown that the expression of HSP70 is enhanced under water stress in Erianthus arundinaceus. In this paper, we evaluate the effects of overexpression of EaHSP70 driven by Port Ubi 2.3 promoter in sugarcane. The transgenic events exhibit significantly higher gene expression, cell membrane thermostability, relative water content, gas exchange parameters, chlorophyll content and photosynthetic efficiency. The overexpression of EaHSP70 transgenic sugarcane led to the upregulation of stress-related genes. The transformed sugarcane plants had better chlorophyll retention and higher germination ability than control plants under salinity stress. Our results suggest that EaHSP70 plays an important role in sugarcane acclimation to drought and salinity stresses and its potential for genetic engineering of sugarcane for drought and salt tolerance. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  20. Human melanomas and ovarian cancers overexpressing mechanical barrier molecule genes lack immune signatures and have increased patient mortality risk

    PubMed Central

    Salerno, Elise P.; Bedognetti, Davide; Mauldin, Ileana S.; Deacon, Donna H.; Shea, Sofia M.; Obeid, Joseph M.; Coukos, George; Gajewski, Thomas F.; Marincola, Francesco M.; Slingluff, Craig L.

    2016-01-01

    ABSTRACT We have identified eight genes whose expression in human melanoma metastases and ovarian cancers is associated with a lack of Th1 immune signatures. They encode molecules with mechanical barrier function in the skin and other normal tissues and include filaggrin (FLG), tumor-associated calcium signal transducer 2 (TACSTD2), and six desmosomal proteins (DST, DSC3, DSP, PPL, PKP3, and JUP). This association has been validated in an independent series of 114 melanoma metastases. In these, DST expression alone is sufficient to identify melanomas without immune signatures, while FLG and the other six putative barrier molecules are overexpressed in a different subset of melanomas lacking immune signatures. Similar associations have been identified in a set of 186 ovarian cancers. RNA-seq data from 471 melanomas and 307 ovarian cancers in the TCGA database further support these findings and also reveal that overexpression of barrier molecules is strongly associated with early patient mortality for melanoma (p = 0.0002) and for ovarian cancer (p < 0.01). Interestingly, this association persists for FLG for melanoma (p = 0.012) and ovarian cancer (p = 0.006), whereas DST overexpression is negatively associated with CD8+ gene expression, but not with patient survival. Thus, overexpression of FLG or DST identifies two distinct patient populations with low immune cell infiltration in these cancers, but with different prognostic implications for each. These data raise the possibility that molecules with mechanical barrier function in skin and other tissues may be used by cancer cells to protect them from immune cell infiltration and immune-mediated destruction. PMID:28123876

  1. Overexpression of the yeast transcription activator Msn2 confers furfural resistance and increases the initial fermentation rate in ethanol production.

    PubMed

    Sasano, Yu; Watanabe, Daisuke; Ukibe, Ken; Inai, Tomomi; Ohtsu, Iwao; Shimoi, Hitoshi; Takagi, Hiroshi

    2012-04-01

    Lignocellulosic biomass is a promising source for bioethanol production, because it is abundant worldwide and has few competing uses. However, the treatment of lignocelllulosic biomass with weak acid to release cellulose and hemicellulose generates many kinds of byproducts including furfural and 5-hydroxymethylfurfural, which inhibit fermentation by yeast, because they generate reactive oxygen species (ROS) in cells. In order to acquire high tolerance to oxidative stress in bioethanol yeast strains, we focused on the transcription activator Msn2 of Saccharomyces cerevisiae, which regulates numerous genes involved in antioxidative stress responses, and constructed bioethanol yeast strains that overexpress Msn2 constitutively. The Msn2-overexpressing bioethanol strains showed tolerance to oxidative stress, probably due to the high-level expression of various antioxidant enzyme genes. Unexpectedly, these strains showed ethanol sensitivity compared with the control strain, probably due to imbalance of the expression level between Msn2 and Msn4. In the presence of furfural, the engineered strains exhibited reduced intracellular ROS levels, and showed rapid growth compared with the control strain. The fermentation test in the presence of furfural revealed that the Msn2-overexpressing strains showed improvement of the initial rate of fermentation. Our results indicate that overexpression of the transcription activator Msn2 in bioethanol yeast strains confers furfural tolerance by reducing the intracellular ROS levels and enhances the initial rate of fermentation in the presence of furfural, suggesting that these strains are capable of adapting rapidly to various compounds that inhibit fermentation by inducing ROS accumulation. Our results not only promise to improve bioethanol production from lignocellulosic biomass, but also provide novel insights for molecular breeding of industrial yeast strains.

  2. D1-like dopamine receptors downregulate Na+-K+-ATPase activity and increase cAMP production in the posterior gills of the blue crab Callinectes sapidus.

    PubMed

    Arnaldo, Francis B; Villar, Van Anthony M; Konkalmatt, Prasad R; Owens, Shaun A; Asico, Laureano D; Jones, John E; Yang, Jian; Lovett, Donald L; Armando, Ines; Jose, Pedro A; Concepcion, Gisela P

    2014-09-15

    Dopamine-mediated regulation of Na(+)-K(+)-ATPase activity in the posterior gills of some crustaceans has been reported to be involved in osmoregulation. The dopamine receptors of invertebrates are classified into three groups based on their structure and pharmacology: D1- and D2-like receptors and a distinct invertebrate receptor subtype (INDR). We tested the hypothesis that a D1-like receptor is expressed in the blue crab Callinectes sapidus and regulates Na(+)-K(+)-ATPase activity. RT-PCR, using degenerate primers, showed the presence of D1βR mRNA in the posterior gill. The blue crab posterior gills showed positive immunostaining for a dopamine D5 receptor (D5R or D1βR) antibody in the basolateral membrane and cytoplasm. Confocal microscopy showed colocalization of Na(+)-K(+)-ATPase and D1βR in the basolateral membrane. To determine the effect of D1-like receptor stimulation on Na(+)-K(+)-ATPase activity, intact crabs acclimated to low salinity for 6 days were given an intracardiac infusion of the D1-like receptor agonist fenoldopam, with or without the D1-like receptor antagonist SCH23390. Fenoldopam increased cAMP production twofold and decreased Na(+)-K(+)-ATPase activity by 50% in the posterior gills. This effect was blocked by coinfusion with SCH23390, which had no effect on Na(+)-K(+)-ATPase activity by itself. Fenoldopam minimally decreased D1βR protein expression (10%) but did not affect Na(+)-K(+)-ATPase α-subunit protein expression. This study shows the presence of functional D1βR in the posterior gills of euryhaline crabs chronically exposed to low salinity and highlights the evolutionarily conserved function of the dopamine receptors on sodium homeostasis.

  3. D1-like dopamine receptors downregulate Na+-K+-ATPase activity and increase cAMP production in the posterior gills of the blue crab Callinectes sapidus

    PubMed Central

    Arnaldo, Francis B.; Villar, Van Anthony M.; Konkalmatt, Prasad R.; Owens, Shaun A.; Asico, Laureano D.; Jones, John E.; Yang, Jian; Lovett, Donald L.; Armando, Ines; Concepcion, Gisela P.

    2014-01-01

    Dopamine-mediated regulation of Na+-K+-ATPase activity in the posterior gills of some crustaceans has been reported to be involved in osmoregulation. The dopamine receptors of invertebrates are classified into three groups based on their structure and pharmacology: D1- and D2-like receptors and a distinct invertebrate receptor subtype (INDR). We tested the hypothesis that a D1-like receptor is expressed in the blue crab Callinectes sapidus and regulates Na+-K+-ATPase activity. RT-PCR, using degenerate primers, showed the presence of D1βR mRNA in the posterior gill. The blue crab posterior gills showed positive immunostaining for a dopamine D5 receptor (D5R or D1βR) antibody in the basolateral membrane and cytoplasm. Confocal microscopy showed colocalization of Na+-K+-ATPase and D1βR in the basolateral membrane. To determine the effect of D1-like receptor stimulation on Na+-K+-ATPase activity, intact crabs acclimated to low salinity for 6 days were given an intracardiac infusion of the D1-like receptor agonist fenoldopam, with or without the D1-like receptor antagonist SCH23390. Fenoldopam increased cAMP production twofold and decreased Na+-K+-ATPase activity by 50% in the posterior gills. This effect was blocked by coinfusion with SCH23390, which had no effect on Na+-K+-ATPase activity by itself. Fenoldopam minimally decreased D1βR protein expression (10%) but did not affect Na+-K+-ATPase α-subunit protein expression. This study shows the presence of functional D1βR in the posterior gills of euryhaline crabs chronically exposed to low salinity and highlights the evolutionarily conserved function of the dopamine receptors on sodium homeostasis. PMID:25080496

  4. SOD1 Overexpression Preserves Baroreflex Control of Heart Rate with an Increase of Aortic Depressor Nerve Function

    PubMed Central

    Hatcher, Jeffrey; Gu, He; Cheng, Zixi (Jack)

    2016-01-01

    Overproduction of reactive oxygen species (ROS), such as the superoxide radical (O2 ∙−), is associated with diseases which compromise cardiac autonomic function. Overexpression of SOD1 may offer protection against ROS damage to the cardiac autonomic nervous system, but reductions of O2 ∙− may interfere with normal cellular functions. We have selected the C57B6SJL-Tg (SOD1)2 Gur/J mouse as a model to determine whether SOD1 overexpression alters cardiac autonomic function, as measured by baroreflex sensitivity (BRS) and aortic depressor nerve (ADN) recordings, as well as evaluation of baseline heart rate (HR) and mean arterial pressure (MAP). Under isoflurane anesthesia, C57 wild-type and SOD1 mice were catheterized with an arterial pressure transducer and measurements of HR and MAP were taken. After establishing a baseline, hypotension and hypertension were induced by injection of sodium nitroprusside (SNP) and phenylephrine (PE), respectively, and ΔHR versus ΔMAP were recorded as a measure of baroreflex sensitivity (BRS). SNP and PE treatment were administered sequentially after a recovery period to measure arterial baroreceptor activation by recording aortic depressor nerve activity. Our findings show that overexpression of SOD1 in C57B6SJL-Tg (SOD1)2 Gur/J mouse preserved the normal HR, MAP, and BRS but enhanced aortic depressor nerve function. PMID:26823951

  5. SHP-1 overexpression increases the radioresistance of NPC cells by enhancing DSB repair, increasing S phase arrest and decreasing cell apoptosis.

    PubMed

    Pan, Xiaofen; Mou, Jingjing; Liu, Sha; Sun, Ziyi; Meng, Rui; Zhou, Zhenwei; Wu, Gang; Peng, Gang

    2015-06-01

    The present study aimed to investigate the influence of SHP-1 on the radioresistance of the nasopharyngeal carcinoma (NPC) cell line CNE-2 and the relevant underlying mechanisms. The human NPC cell line CNE-2 was transfected with a lentivirus that contained the SHP-1 gene or a nonsense sequence (referred to as LP-H1802Lv201 and LP-NegLv201 cells, respectively). Cells were irradiated with different ionizing radiation (IR) doses. Cell survival, DNA double-strand breaks (DSBs), apoptosis, cell cycle distribution, and the expression of related proteins were assessed using colony formation assay, immunofluorescent assays (IFAs), flow cytometry (FCM) and western blot analyses, respectively. Compared with the control (CNE-2 cells) and LP-NegLv201 cells, LP-H1802Lv201 cells were more resistant to IR. IFAs showed that IR caused less histone H2AX phosphorylation (γH2AX) and RAD51 foci in the LP-H1802Lv201 cells. Compared with the control and LP-NegLv201 cells, LP-H1802Lv201 cells showed increased S phase arrest. After IR, the apoptotic rate of the LP-H1802Lv201 cells was lower in contrast to the control and LP-NegLv201 cells. Western blot analyses showed that IR increased the phosphorylation of ataxia telangiectasia mutated (ATM) kinase, checkpoint kinase 2 (CHK2), ataxia telangiectasia and Rad3-related (ATR) protein, checkpoint kinase 1 (CHK1) and p53. In LP-H1802Lv201 cells, the phosphorylation levels of ATM and CHK2 were significantly increased while the p53 phosphorylation level was decreased compared to these levels in the control and LP-NegLv201 cells. Phosphorylation of ATR and CHK1 did not show significant differences in the three cell groups. Overexpression of SHP-1 in the CNE-2 cells led to radioresistance and the radioresistance was related to enhanced DNA DSB repair, increased S phase arrest and decreased cell apoptosis.

  6. Dopamine in the nucleus accumbens core, but not shell, increases during signaled food reward and decreases during delayed extinction.

    PubMed

    Biesdorf, C; Wang, A-L; Topic, B; Petri, D; Milani, H; Huston, J P; de Souza Silva, M A

    2015-09-01

    Microdialysis studies in rat have generally shown that appetitive stimuli release dopamine (DA) in the nucleus accumbens (NAc) shell and core. Here we examined the release of DA in the NAc during delivery of reward (food) and during extinction of food reward in the freely moving animal by use of in vivo microdialysis and HPLC. Fifty-two male Wistar rats were trained to receive food reward associated with appearance of cue-lights in a Skinner-box during in vivo microdialysis. Different behavioral protocols were used to assess the effects of extinction on DA and its metabolites. Results Exp. 1: (a) During a 20-min period of cued reward delivery, DA increased significantly in the NAc core, but not shell subregion; (b) for the next 60min period half of the rats underwent immediate extinction (with the CS light presented during non-reward) and the other half did not undergo extinction to the cue lights (CS was not presented during non-reward). DA remained significantly increased in both groups, providing no evidence for a decrease in DA during extinction in either NAc core or shell regions. (c) In half of the animals of the group that was not subjected to extinction, the cue lights were turned on for 30min, thus, initiating extinction to cue CS at a 1h delay from the period of reward. In this group DA in the NAc core, but not shell, significantly decreased. Behavioral analysis showed that while grooming is an indicator of extinction-induced behavior, glances toward the cue-lights (sign tracking) are an index of resistance to extinction. Results Exp. 2: (a) As in Exp. 1, during a 30-min period of cued reward delivery, DA levels again increased significantly in the NAc core but not in the NAc shell. (b) When extinction (the absence of reward with the cue lights presented) was administered 24h after the last reward session, DA again significantly decreased in the NAc core, but not in the NAc shell. (a) These results confirm the importance of DA release in the NAc for

  7. Overexpression of PREP-1 in F9 teratocarcinoma cells leads to a functionally relevant increase of PBX-2 by preventing its degradation.

    PubMed

    Longobardi, Elena; Blasi, Francesco

    2003-10-03

    To bind DNA and to be retained in the nucleus, PBX proteins must form heterodimeric complexes with members of the MEINOX family. Therefore the balance between PBX and MEINOX must be an important regulatory feature. We show that overexpression of PREP-1 influences the level of PBX-2 protein maintaining the PREP-1-PBX balance. This effect has important functional consequences. F9 teratocarcinoma cells stably transfected with PREP-1 had an increased DNA binding activity to a PREP-PBX-responsive element. Because PREP-1 binds DNA efficiently only when dimerized to PBX, the increased DNA binding activity suggests that the level of PBX might also have increased. Indeed PREP-1-overexpressing cells had a higher level of PBX-2 and PBX-1b proteins. PBX-2 increase did not depend on increased mRNA level or a higher rate of translation but rather because of a protein stabilization process. Indeed, PBX-2 level drastically decreased after 3 h of cycloheximide treatment in control but not in PREP-1-overexpressing cells and the proteasome inhibitor MG132 prevented PBX-2 decay in control cells. Hence, dimerization with PREP-1 appears to decrease proteasomal degradation of PBX-2. Retinoic acid induces differentiation of F9 teratocarcinoma cells with a cascade synthesis of HOX proteins. In PREP-1-overexpressing cells, HOXb1 induction was more sustained (3 days versus 1 day) and the induced level of MEIS-1b, another TALE (three amino acid loop extension) protein involved in embryonal development, was higher. Thus an increase in PREP-1 leads to changes in the fate-determining HOXb1 and has therefore important functional consequences.

  8. Human COMT over-expression confers a heightened susceptibility to dyskinesia in mice.

    PubMed

    Solís, Oscar; García-Montes, Jose-Rubén; Garcia-Sanz, Patricia; Herranz, Antonio S; Asensio, Maria-José; Kang, Gina; Hiroi, Noboru; Moratalla, Rosario

    2017-06-01

    Catechol-O-methyltransferase (COMT) degrades dopamine and its precursor l-DOPA and plays a critical role in regulating synaptic dopamine actions. We investigated the effects of heightened levels of COMT on dopamine-regulated motor behaviors and molecular alterations in a mouse model of dyskinesia. Transgenic mice overexpressing human COMT (TG) and their wildtype (WT) littermates received unilateral 6-OHDA lesions in the dorsal striatum and were treated chronically with l-DOPA for two weeks. l-DOPA-induced dyskinesia was exacerbated in TG mice without altering l-DOPA motor efficacy as determined by contralateral rotations or motor coordination. Inductions of FosB and phospho-acetylated histone 3 (molecular correlates of dyskinesia) were potentiated in the lesioned striatum of TG mice compared with their WT littermates. The TG mice had lower basal levels of dopamine in the striatum. In mice with lesions, l-DOPA induces a greater increase in the dopamine metabolite 3-methoxytyramine in the lesioned striatum of dyskinetic TG mice than in WT mice. The levels of serotonin and its metabolite were similar in TG and WT mice. Our results demonstrate that human COMT overexpression confers a heightened susceptibility to l-DOPA-induced dyskinesia and alters molecular and neurochemical responses in the lesioned striatum of mice. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Hydrogen peroxide overload increases adriamycin-induced apoptosis of SaOS(2)FM, a manganese superoxide dismutase-overexpressing human osteosarcoma cell line.

    PubMed

    Wang, Yadi; Kuroda, Masahiro; Gao, Xian-Shu; Asaumi, Jun-Ichi; Shibuya, Kohichi; Kawasaki, Shoji; Akaki, Shiro; St Clair, Daret; Hiraki, Yoshio; Kanazawa, Susumu

    2005-05-01

    We previously developed a new microscopic observation system that enables time-lapse quantitative analysis of apoptosis and necrosis. With this system we quantitatively analyzed adriamycin (ADR)-induced cell death using manganese superoxide dismutase (MnSOD)- and wild-type p53-gene transfectants on SaOS(2), a p53-deficient human osteosarcoma cell line. A highly MnSOD-overexpressing cell line, SaOS(2)FM(H), acquired ADR-tolerance compared to the parent cell line SaOS(2). The ADR-tolerance of SaOS(2)FM(H) diminished by L-buthionine-[S,R]-sulfoximine (BSO), which did not change ADR-sensitivity of SaOS(2), to the similar ADR-sensitivity of SaOS(2). A wild-type p53-expressing cell line, SaOS(2)wtp53, significantly increased in ADR-sensitivity compared to SaOS(2). This ADR-sensitivity of SaOS(2)wtp53 was enhanced by BSO. When isosorbide 5-mononitrate was combined with BSO, isosorbide 5-mononitrate increased ADR sensitivity of a moderately MnSOD-overexpressing cell line, SaOS(2)FM(L), decreased that of SaOS(2) FM(H), and did not change those of SaOS(2) and SaOS(2)wtp53 compared to BSO alone. Time-lapse microscopic observations during ADR treatment for 24 h indicated that the most cells of each cell line underwent apoptosis, and a few cells (less than 11%) died by necrosis. When cells were treated with iso-concentration of ADR, apoptosis of SaOS(2)FM(H) was less than that of SaOS(2). BSO, which did not change ADR-sensitivity of SaOS(2), increased appearance rate of ADR-induced apoptosis, but not necrosis of MnSOD-overexpressing cell lines. When iso-survival dose of ADR, which reduced surviving fraction to 0.01, was given for each cell line, no difference was observed in appearance of either apoptosis or necrosis between SaOS(2) and MnSOD-overexpressing cell lines. On the other hands, appearance of both apoptosis and the following secondary necrosis of SaOS(2) wtp53 was significantly accelerated compared to those of SaOS(2). These findings indicate that hydrogen peroxide

  10. Increased abscisic acid levels in transgenic maize overexpressing AtLOS5 mediated root ion fluxes and leaf water status under salt stress.

    PubMed

    Zhang, Juan; Yu, Haiyue; Zhang, Yushi; Wang, Yubing; Li, Maoying; Zhang, Jiachang; Duan, Liusheng; Zhang, Mingcai; Li, Zhaohu

    2016-03-01

    Abscisic acid (ABA) is a vital cellular signal in plants, and effective ABA signalling is pivotal for stress tolerance. AtLOS5 encoding molybdenum cofactor sulphurase is a key regulator of ABA biosynthesis. Here, transgenic AtLOS5 plants were generated to explore the role of AtLOS5 in salt tolerance in maize. AtLOS5 overexpression significantly up-regulated the expression of ZmVp14-2, ZmAO, and ZmMOCO, and increased aldehyde oxidase activities, which enhanced ABA accumulation in transgenic plants under salt stress. Concurrently, AtLOS5 overexpression induced the expression of ZmNHX1, ZmCBL4, and ZmCIPK16, and enhanced the root net Na(+) efflux and H(+) influx, but decreased net K(+) efflux, which maintained a high cytosolic K(+)/Na(+) ratio in transgenic plants under salt stress. However, amiloride or sodium orthovanadate could significantly elevate K(+) effluxes and decrease Na(+) efflux and H(+) influx in salt-treated transgenic roots, but the K(+) effluxes were inhibited by TEA, suggesting that ion fluxes regulated by AtLOS5 overexpression were possibly due to activation of Na(+)/H(+) antiport and K(+) channels across the plasma membrane. Moreover, AtLOS5 overexpression could up-regulate the transcripts of ZmPIP1:1, ZmPIP1:5, and ZmPIP2:4, and enhance root hydraulic conductivity. Thus transgenic plants had higher leaf water potential and turgor, which was correlated with greater biomass accumulation under salt stress. Thus AtLOS5 overexpression induced the expression of ABA biosynthetic genes to promote ABA accumulation, which activated ion transporter and PIP aquaporin gene expression to regulate root ion fluxes and water uptake, thus maintaining high cytosolic K(+) and Na(+) homeostasis and better water status in maize exposed to salt stress.

  11. Increased abscisic acid levels in transgenic maize overexpressing AtLOS5 mediated root ion fluxes and leaf water status under salt stress

    PubMed Central

    Zhang, Juan; Yu, Haiyue; Zhang, Yushi; Wang, Yubing; Li, Maoying; Zhang, Jiachang; Duan, Liusheng; Zhang, Mingcai; Li, Zhaohu

    2016-01-01

    Abscisic acid (ABA) is a vital cellular signal in plants, and effective ABA signalling is pivotal for stress tolerance. AtLOS5 encoding molybdenum cofactor sulphurase is a key regulator of ABA biosynthesis. Here, transgenic AtLOS5 plants were generated to explore the role of AtLOS5 in salt tolerance in maize. AtLOS5 overexpression significantly up-regulated the expression of ZmVp14-2, ZmAO, and ZmMOCO, and increased aldehyde oxidase activities, which enhanced ABA accumulation in transgenic plants under salt stress. Concurrently, AtLOS5 overexpression induced the expression of ZmNHX1, ZmCBL4, and ZmCIPK16, and enhanced the root net Na+ efflux and H+ influx, but decreased net K+ efflux, which maintained a high cytosolic K+/Na+ ratio in transgenic plants under salt stress. However, amiloride or sodium orthovanadate could significantly elevate K+ effluxes and decrease Na+ efflux and H+ influx in salt-treated transgenic roots, but the K+ effluxes were inhibited by TEA, suggesting that ion fluxes regulated by AtLOS5 overexpression were possibly due to activation of Na+/H+ antiport and K+ channels across the plasma membrane. Moreover, AtLOS5 overexpression could up-regulate the transcripts of ZmPIP1:1, ZmPIP1:5, and ZmPIP2:4, and enhance root hydraulic conductivity. Thus transgenic plants had higher leaf water potential and turgor, which was correlated with greater biomass accumulation under salt stress. Thus AtLOS5 overexpression induced the expression of ABA biosynthetic genes to promote ABA accumulation, which activated ion transporter and PIP aquaporin gene expression to regulate root ion fluxes and water uptake, thus maintaining high cytosolic K+ and Na+ homeostasis and better water status in maize exposed to salt stress. PMID:26743432

  12. Dopamine and binge eating behaviors

    PubMed Central

    Bello, Nicholas T.; Hajnal, Andras

    2010-01-01

    Central dopaminergic mechanisms are involved in the motivational aspects of eating and food choices. This review focuses on human and animal data examining the importance of dopamine on binge eating behaviors. Early works examining dopamine metabolites in the cerebrospinal fluid and plasma of bulimic individuals suggested decreased dopamine turnover during the active phase of the illness. While neuroimaging studies of dopamine mechanisms in bulimia nervosa (BN) and binge eating disorder (BED) are limited, genetic studies in humans have implicated an increased frequency of dopamine transporter and associated D2 receptor polymorphisms with binge pathology. Recent examinations of rodent models of dietary-induced binge eating (DIBE) have investigated plausible dopamine mechanisms involved in sustaining binge eating behaviors. In DIBE models, highly palatable foods (fats, sugars and their combination), as well as restricted access conditions appear to promote ingestive responses and result in sustained dopamine stimulation within the nucleus accumbens. Taken together with studies examining the comorbidity of illicit drug use and eating disorders, the data reviewed here support a role for dopamine in perpetuating the compulsive feeding patterns of BN and BED. As such, we propose that sustained stimulation of the dopamine systems by bingeing promoted by preexisting conditions (e.g., genetic traits, dietary restraint, stress, etc.) results in progressive impairments of dopamine signaling. To disrupt this vicious cycle, novel research-based treatment options aiming at the neural substrates of compulsive eating patterns are necessary. PMID:20417658

  13. Role of NADPH oxidases in inducing a selective increase of oxidant stress and cyclin D1 and checkpoint 1 over-expression during progression to human gastric adenocarcinoma.

    PubMed

    Montalvo-Javé, Eduardo E; Olguín-Martínez, Marisela; Hernández-Espinosa, Diego R; Sánchez-Sevilla, Lourdes; Mendieta-Condado, Edgar; Contreras-Zentella, Martha L; Oñate-Ocaña, Luis F; Escalante-Tatersfield, Tomás; Echegaray-Donde, Agustín; Ruiz-Molina, Juan M; Herrera, Miguel F; Morán, Julio; Hernández-Muñoz, Rolando

    2016-04-01

    Gastric cancer is one of the main causes of global mortality. Here, reactive oxygen species (ROS) could largely contribute to gastric carcinogenesis. Hence, the present work was aimed to assess the role of ROS, oxidant status, NADPH oxidases (NOXs) expression, during human gastric adenocarcinoma. We obtained subcellular fraction from samples of gastric mucosa taken from control subjects (n = 20), and from 40 patients with gastric adenocarcinoma, as well as samples of distant areas (tumour-free gastric mucosa). Parameters indicative of lipid peroxidation and cell proliferation were selectively increased in both tumour-free and in cancerous gastric mucosa, despite of glutathione (GSH) content, glutathione reductase (GR) and superoxide dismutase (SOD) activities were increased in the adenocarcinoma. These high levels of antioxidant defences inversely correlated with down-regulated expression for NOX2 and 4; however, over-expression of NOX1 occurred with increased caspase-3 activity and overexpressed checkpoint 1 (MDC1) and cyclin D1 proteins. In the tumour-free mucosa an oxidant stress took place, without changing total GSH but with decreased activities for GR and mitochondrial SOD; moreover, over-expression of checkpoint 1 (MDC1) correlated with lower NOX2 and 4 expression in this mucosa. Chronically injured gastric mucosa increases lipoperoxidative events and cell proliferation. In the adenocarcinoma, cell proliferation was further enhanced, oxidant stress decreased which seemed to be linked to NOX1, MDC1 and cyclin D1 over-expression, but with a lower NOXs activity leading a 'low tone' of ROS formation. Therefore, our results could be useful for early detection and treatment of gastric adenocarcinoma. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Over-expression of OsPTR6 in rice increased plant growth at different nitrogen supplies but decreased nitrogen use efficiency at high ammonium supply.

    PubMed

    Fan, Xiaorong; Xie, Dan; Chen, Jingguang; Lu, Haiyan; Xu, Yanling; Ma, Cui; Xu, Guohua

    2014-10-01

    Nitrogen (N) plays a critical role in plant growth and productivity and PTR/NRT1 transporters are critical for rice growth. In this study, OsPTR6, a PTR/NRT1 transporter, was over-expressed in the Nipponbare rice cultivar by Agrobacterium tumefaciens transformation using the ubiquitin (Ubi) promoter. Three single-copy T2 generation transgenic lines, named OE1, OE5 and OE6, were produced and subjected to hydroponic growth experiments in different nitrogen treatments. The results showed the plant height and biomass of the over-expression lines were increased, and plant N accumulation and glutamine synthetase (GS) activities were enhanced at 5.0mmol/L NH4(+) and 2.5mmol/L NH4NO3. The expression of OsATM1 genes in over-expression lines showed that the OsPTR6 over expression increased OsAMT1.1, OsATM1.2 and OsAMT1.3 expression at 0.2 and 5.0mmol/L NH4(+) and 2.5mmol/L NH4NO3. However, nitrogen utilisation efficiency (NUE) was decreased at 5.0mmol/LNH4(+). These data suggest that over-expression of the OsPTR6 gene could increase rice growth through increasing ammonium transporter expression and glutamine synthetase activity (GSA), but decreases nitrogen use efficiency under conditions of high ammonium supply. Copyright © 2014 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  15. Overexpression of Rosa rugosa anthocyanidin reductase enhances tobacco tolerance to abiotic stress through increased ROS scavenging and modulation of ABA signaling.

    PubMed

    Luo, Ping; Shen, Yuxiao; Jin, Shuangxia; Huang, Shasha; Cheng, Xu; Wang, Zhen; Li, Penghui; Zhao, Jian; Bao, Manzhu; Ning, Guogui

    2016-04-01

    Anthocyanidin reductase (ANR) is a key enzyme involved in the biosynthesis of proanthocyanidins (PAs) and plays a role in the plant stress response. However, the mechanism by which ANR confers stress tolerance in plants is not understood. Here, we report the isolation of RrANR, the homologous gene from rose, and NtABF, an ABA-response related transcription factor gene from tobacco. These genes were characterized regarding their functions in stress responses through the use of transgenic, transcriptomic and physiological analyses. Over-expression of RrANR in tobacco resulted in an increased accumulation of both PAs and abscisic acid (ABA), and also enhanced stress tolerance. Transcriptomic analysis of these transgenic tobacco lines indicated that RrANR overexpression induced global transcriptomic changes, including these involved in oxidation/reduction, hormone response and secondary metabolism. Genes related to ABA biosynthesis and reactive oxygen species (ROS)-scavenging were up-regulated in RrANR transgenic lines, and these effects were phenocopied by the direct treatment of tobacco plants with PAs and ABA. Transcriptomic data from each of these treatments identified the upregulation of a putative NtABF. Furthermore, the up-regulation of NtABF in RrANR transformants or in PAs- and ABA-treated tobacco plants was associated with enhanced stress tolerance. Overexpression of NtABF in transgenic tobacco mimicked the effects of RrANR-transgenic plants with regard to the up-regulation of ROS-scavenging genes and an increase in oxidative tolerance. Taken together, our findings indicate that overexpression of RrANR results in an increase in plant tolerance to oxidative stress via increased scavenging of ROS and modulation of the ABA signaling pathway.

  16. Enhanced NMDA receptor tyrosine phosphorylation and increased brain injury following neonatal hypoxia–ischemia in mice with neuronal Fyn overexpression

    PubMed Central

    Knox, Renatta; Zhao, Chong; Miguel-Perez, Dario; Wang, Steven; Yuan, Jinwei; Ferriero, Donna; Jiang, Xiangning

    2013-01-01

    The Src family kinases (SFKs) Src and Fyn are implicated in hypoxic–ischemic (HI) injury in the developing brain. However, it is unclear how these particular SFKs contribute to brain injury. Using neuron-specific Fyn overexpressing (OE) mice, we investigated the role of neuronal Fyn in neonatal brain HI. Wild type (WT) and Fyn OE mice were subjected to HI using the Vannucci model at postnatal day 7. Brains were scored five days later for evaluation of damage using cresyl violet and iron staining. Western blotting with postsynaptic density (PSD)-associated synaptic membrane proteins and co-immunoprecipitation with cortical lysates were performed at various time points after HI to determine NMDA receptor tyrosine phosphorylation and Fyn kinase activity. Fyn OE mice had significantly higher mortality and brain injury compared to their WT littermates. Neuronal Fyn overexpression led to sustained NR2A and NR2B tyrosine phosphorylation and enhanced NR2B phosphorylation at tyrosine (Y) 1472 and Y1252 in synaptic membranes. These early changes correlated with higher calpain activity 24 h after HI in Fyn OE mice relative to WT animals. Our findings suggest a role for Fyn kinase in neuronal death after neonatal HI, possibly via up-regulation of NMDA receptor tyrosine phosphorylation. PMID:23127881

  17. Increased gibberellin contents contribute to accelerated growth and development of transgenic tobacco overexpressing a wheat ubiquitin gene.

    PubMed

    Wang, Guo-Kun; Zhang, Meng; Gong, Jiang-Feng; Guo, Qi-Fang; Feng, Ya-Nan; Wang, Wei

    2012-12-01

    Overexpressing TaUb2 promoted stem growth and resulted in early flowering in transgenic tobacco plants. Ubiquitin are involved in the production, metabolism and proper function of gibberellin. The ubiquitin-26S proteasome system (UPS), in which ubiquitin (Ub) functions as a marker, is a post-translational regulatory system that plays a prominent role in various biological processes. To investigate the impact of different Ub levels on plant growth and development, transgenic tobacco (Nicotiana tabacum L.) plants were engineered to express an Ub gene (TaUb2) from wheat (Triticum aestivum L.) under the control of cauliflower mosaic virus 35S promoter. Transgenic tobacco plants overexpressing TaUb2 demonstrated an accelerated growth rate at early stage and an early flowering phenotype in development. The preceding expression of MADS-box genes also corresponded to the accelerated developmental phenotypes of the transgenic tobacco plants compared to that of wild-type (WT). Total gibberellin (GA) and active GA contents in transgenic tobacco plants were higher than those in WT at the corresponding developmental stages, and some GA metabolism genes were upregulated. Treatment with GA(3) conferred a similarly accelerated grown rate in WT plants to that of transgenic tobacco plants, while growth was inhibited when transgenic tobacco plants were treated with a GA biosynthesis inhibitor. Thus, the results suggest that Ub are involved in the production, metabolism and proper function of GA, which is important in the regulation of plant growth and development.

  18. SOS1 gene overexpression increased salt tolerance in transgenic tobacco by maintaining a higher K(+)/Na(+) ratio.

    PubMed

    Yue, Yuesen; Zhang, Mingcai; Zhang, Jiachang; Duan, Liusheng; Li, Zhaohu

    2012-02-15

    Crop productivity is greatly affected by soil salinity, so improvement in salinity tolerance of crops is a major objective of many studies. We overexpressed the Arabidopsis thaliana SOS1 gene, which encodes a plasma membrane Na(+)/H(+) antiporter, in tobacco (Nicotiana tabacum cv. Xanthi-nc). Compared with nontransgenic plants, seeds from transgenic tobacco had better germination under 120 mM (mmol L(-1)) NaCl stress; chlorophyll loss in the transgenic seedlings treated with 360 mM NaCl was less; transgenic tobacco showed superior growth after irrigation with NaCl solutions; and transgenic seedlings with 150 mM NaCl stress accumulated less Na(+) and more K(+). In addition, roots of SOS1-overexpressing seedlings lost less K(+) instantaneously in response to 50 mM NaCl than control plants. These results showed that the A. thaliana SOS1 gene potentially can improve the salt tolerance of other plant species. Copyright © 2011 Elsevier GmbH. All rights reserved.

  19. COPS5 protein overexpression increases amyloid plaque burden, decreases spinophilin-immunoreactive puncta, and exacerbates learning and memory deficits in the mouse brain.

    PubMed

    Wang, Ruizhi; Wang, Hongjie; Carrera, Ivan; Xu, Shaohua; Lakshmana, Madepalli K

    2015-04-03

    Brain accumulation of neurotoxic amyloid β (Aβ) peptide because of increased processing of amyloid precursor protein (APP), resulting in loss of synapses and neurodegeneration, is central to the pathogenesis of Alzheimer disease (AD). Therefore, the identification of molecules that regulate Aβ generation and those that cause synaptic damage is crucial for future therapeutic approaches for AD. We demonstrated previously that COPS5 regulates Aβ generation in neuronal cell lines in a RanBP9-dependent manner. Consistent with the data from cell lines, even by 6 months, COPS5 overexpression in APΔE9 mice (APΔE9/COPS5-Tg) significantly increased Aβ40 levels by 32% (p < 0.01) in the cortex and by 28% (p < 0.01) in the hippocampus, whereas the increases for Aβ42 were 37% (p < 0.05) and 34% (p < 0.05), respectively. By 12 months, the increase was even more robust. Aβ40 levels increased by 63% (p < 0.001) in the cortex and by 65% (p < 0.001) in the hippocampus. Similarly, Aβ42 levels were increased by 69% (p < 0.001) in the cortex and by 71% (p < 0.011) in the hippocampus. Increased Aβ levels were translated into an increased amyloid plaque burden both in the cortex (54%, p < 0.01) and hippocampus (64%, p < 0.01). Interestingly, COPS5 overexpression increased RanBP9 levels in the brain, which, in turn, led to increased amyloidogenic processing of APP, as reflected by increased levels of sAPPβ and decreased levels of sAPPα. Furthermore, COPS5 overexpression reduced spinophilin in both the cortex (19%, p < 0.05) and the hippocampus (20%, p < 0.05), leading to significant deficits in learning and memory skills. Therefore, like RanBP9, COPS5 also plays a pivotal role in amyloid pathology in vivo. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. L-DOPA Reverses the Increased Free Amino Acids Tissue Levels Induced by Dopamine Depletion and Rises GABA and Tyrosine in the Striatum.

    PubMed

    Solís, Oscar; García-Sanz, Patricia; Herranz, Antonio S; Asensio, María-José; Moratalla, Rosario

    2016-07-01

    Perturbations in the cerebral levels of various amino acids are associated with neurological disorders, and previous studies have suggested that such alterations have a role in the motor and non-motor symptoms of Parkinson's disease. However, the direct effects of chronic L-DOPA treatment, that produces dyskinesia, on neural tissue amino acid concentrations have not been explored in detail. To evaluate whether striatal amino acid concentrations are altered in peak dose dyskinesia, 6-hydroxydopamine (6-OHDA)-lesioned hemiparkinsonian mice were treated chronically with L-DOPA and tissue amino acid concentrations were assessed by HPLC analysis. These experiments revealed that neither 6-OHDA nor L-DOPA treatment are able to alter glutamate in the striatum. However, glutamine increases after 6-OHDA and returns back to normal levels with L-DOPA treatment, suggesting increased striatal glutamatergic transmission with lack of dopamine. In addition, glycine and taurine levels are increased following dopamine denervation and restored to normal levels by L-DOPA. Interestingly, dyskinetic animals showed increased levels of GABA and tyrosine, while aspartate striatal tissue levels are not altered. Overall, our results indicate that chronic L-DOPA treatment, besides normalizing the altered levels of some amino acids after 6-OHDA, robustly increases striatal GABA and tyrosine levels which may in turn contribute to the development of L-DOPA-induced dyskinesia.

  1. Overexpressing enzymes of the Ehrlich pathway and deleting genes of the competing pathway in Saccharomyces cerevisiae for increasing 2-phenylethanol production from glucose.

    PubMed

    Shen, Li; Nishimura, Yuya; Matsuda, Fumio; Ishii, Jun; Kondo, Akihiko

    2016-07-01

    2-Phenylethanol (2-PE) is a higher aromatic alcohol that is used in the cosmetics and food industries. The budding yeast Saccharomyces cerevisiae is considered to be a suitable host for the industrial production of higher alcohols, including 2-PE. To produce 2-PE from glucose in S. cerevisiae, we searched for suitable 2-keto acid decarboxylase (KDC) and alcohol dehydrogenase (ADH) enzymes of the Ehrlich pathway for overexpression in strain YPH499, and found that overexpression of the ARO10 and/or ADH1 genes increased 2-PE production from glucose. Further, we screened ten BY4741 single-deletion mutants of genes involved in the competing pathways for 2-PE production, and found that strains aro8Δ and aat2Δ displayed increased 2-PE production. Based on these results, we engineered a BY4741 strain that overexpressed ARO10 and contained an aro8Δ deletion, and demonstrated that the strain produced 96 mg/L 2-PE from glucose as the sole carbon source. As this engineered S. cerevisiae strain showed a significant increase in 2-PE production from glucose without the addition of an intermediate carbon substrate, it is a promising candidate for the large-scale production of 2-PE. Copyright © 2016. Published by Elsevier B.V.

  2. Over-expression of ascorbate oxidase in the apoplast of transgenic tobacco results in altered ascorbate and glutathione redox states and increased sensitivity to ozone.

    PubMed

    Sanmartin, Maite; Drogoudi, Pavlina A M D; Lyons, Tom; Pateraki, Irene; Barnes, Jeremy; Kanellis, Angelos K

    2003-04-01

    Transgenic tobacco ( Nicotiana tabacum L. cv. Xanthi) plants expressing cucumber ascorbate oxidase (EC.1.10.3.3) were used to examine the role of extracellular ascorbic acid in mediating tolerance to the ubiquitous air pollutant, ozone (O(3)). Three homozygous transgenic lines, chosen on the basis of a preliminary screen of AO activity in the leaves of 29 lines, revealed up to a 380-fold increase in AO activity, with expression predominantly associated with leaf cell walls. Over-expression of AO resulted in no change in the total ascorbate content recovered in apoplast washing fluid, but the redox state of ascorbate was reduced from 30% in wild-type leaves to below the threshold for detection in transgenic plants. Levels of ascorbic acid and glutathione in the symplast were not affected by AO over-expression, but the redox state of ascorbate was reduced, while that of glutathione was increased. AO over-expressing plants exposed to 100 nmol mol(-1) ozone for 7 h day(-1) exhibited a substantial increase in foliar injury, and a greater pollutant-induced reduction in both the light-saturated rate of CO(2) assimilation and the maximum in vivo rate of ribulose-1,5-bisphosphate carboxylase/oxygenase carboxylation, compared with wild-type plants. Transgenic plants also exhibited a greater decline in CO(2) assimilation rate when exposed to a brief ozone episode (300 nmol mol(-1) for 8 h). Stomatal conductance, hence O(3) uptake, was unaffected by AO over-expression. Our findings illustrate the important role played by ascorbate redox state and sub-cellular compartmentation in mediating the tolerance of plants to ozone-induced oxidative stress.

  3. The overexpression of the pine transcription factor PpDof5 in Arabidopsis leads to increased lignin content and affects carbon and nitrogen metabolism.

    PubMed

    Rueda-López, Marina; Cañas, Rafael A; Canales, Javier; Cánovas, Francisco M; Ávila, Concepción

    2015-12-01

    PpDof 5 is a regulator of the expression of glutamine synthetase (GS; EC 6.3.1.2) genes in photosynthetic and non-photosynthetic tissues of maritime pine. We have used Arabidopsis thaliana as a model system to study PpDof 5 function in planta, generating transgenic lines overexpressing the pine transcription factor. The overexpression of PpDof 5 resulted in a substantial increase of lignin content with a simultaneous regulation of carbon and nitrogen key genes. In addition, partitioning in carbon and nitrogen compounds was spread via various secondary metabolic pathways. These results suggest pleiotropic effects of PpDof 5 expression on various metabolic pathways of carbon and nitrogen metabolism. Plants overexpressing PpDof 5 exhibited upregulation of genes encoding enzymes for sucrose and starch biosynthesis, with a parallel increase in the content of soluble sugars. When the plants were grown under nitrate as the sole nitrogen source, they exhibited a significant regulation of the expression of genes involved mainly in signaling, but similar growth rates to wild-type plants. However, plants grown under ammonium exhibited major induction of the expression of photosynthetic genes and differential expression of ammonium and nitrate transporters. All these data suggest that in addition to controlling ammonium assimilation, PpDof 5 could be also involved in the regulation of other pathways in carbon and nitrogen metabolism in pine trees.

  4. Genetic modification of mesenchymal stem cells overexpressing CCR1 increases cell viability, migration, engraftment, and capillary density in the injured myocardium.

    PubMed

    Huang, Jing; Zhang, Zhiping; Guo, Jian; Ni, Aiguo; Deb, Arjun; Zhang, Lunan; Mirotsou, Maria; Pratt, Richard E; Dzau, Victor J

    2010-06-11

    Although mesenchymal stem cell (MSC) transplantation has been shown to promote cardiac repair in acute myocardial injury in vivo, its overall restorative capacity appears to be restricted mainly because of poor cell viability and low engraftment in the ischemic myocardium. Specific chemokines are upregulated in the infarcted myocardium. However the expression levels of the corresponding chemokine receptors (eg, CCR1, CXCR2) in MSCs are very low. We hypothesized that this discordance may account for the poor MSC engraftment and survival. To determine whether overexpression of CCR1 or CXCR2 chemokine receptors in MSCs augments their cell survival, migration and engraftment after injection in the infarcted myocardium. Overexpression of CCR1, but not CXCR2, dramatically increased chemokine-induced murine MSC migration and protected MSC from apoptosis in vitro. Moreover, when MSCs were injected intramyocardially one hour after coronary artery ligation, CCR1-MSCs accumulated in the infarcted myocardium at significantly higher levels than control-MSCs or CXCR2-MSCs 3 days postmyocardial infarction (MI). CCR1-MSC-injected hearts exhibited a significant reduction in infarct size, reduced cardiomyocytes apoptosis and increased capillary density in injured myocardium 3 days after MI. Furthermore, intramyocardial injection of CCR1-MSCs prevented cardiac remodeling and restored cardiac function 4 weeks after MI. Our results demonstrate the in vitro and in vivo salutary effects of genetic modification of stem cells. Specifically, overexpression of chemokine receptor enhances the migration, survival and engraftment of MSCs, and may provide a new therapeutic strategy for the injured myocardium.

  5. Mice overexpressing 70-kDa heat shock protein show increased resistance to malonate and 3-nitropropionic acid.

    PubMed

    Dedeoglu, Alpaslan; Ferrante, Robert J; Andreassen, Ole A; Dillmann, Wolfgang H; Beal, M Flint

    2002-07-01

    Heat shock proteins (HSPs) are induced in response to oxidative stress, hypoxia-ischemia, and neuronal injury and play a protective role. Malonate and 3-nitropropionic acid (3-NP) are well-characterized animal models of Huntington's Disease (HD). They inhibit succinate dehydrogenase, inducing mitochondrial dysfunction, which triggers the generation of superoxide radicals, secondary excitotoxicity, and apoptosis. In this study, we examined whether the 70-kDa heat shock protein (HSP-70) is protective against neurotoxicity induced by malonate and 3-NP. Homozygous and heterozygous HSP-70 overexpressing mice (HSP-70+/+, HSP-70+/-) and wild-type controls received 3-NP or malonate and striatal lesion sizes were evaluated by stereology. Compared to HSP-70+/+ and HSP-70+/-, wild-type controls showed significantly larger striatal lesions following 3-NP or malonate injections. These findings support the idea that HSP-70 has a neuroprotective role that may be useful in the treatment of neurodegenerative diseases.

  6. Overexpression of cationic amino acid transporter-1 increases nitric oxide production in hypoxic human pulmonary microvascular endothelial cells.

    PubMed

    Cui, Hongmei; Chen, Bernadette; Chicoine, Louis G; Nelin, Leif D

    2011-12-01

    1. The endogenous production of and/or the bioavailability of nitric oxide (NO) is decreased in pulmonary hypertensive diseases. L-arginine (L-arg) is the substrate for NO synthase (NOS). L-arg is transported into cells via the cationic amino acid transporters (CAT), of which there are two isoforms in endothelial cells, CAT-1 and CAT-2. 2. To test the hypothesis that hypoxia will decrease CAT expression and L-arg uptake resulting in decreased NO production in human pulmonary microvascular endothelial cells (hPMVEC), cells were incubated in either normoxia (21% O(2), 5% CO(2), balance N(2)) or hypoxia (1% O(2), 5% CO(2), balance N(2)). 3. The hPMVEC incubated in hypoxia had 80% less NO production than cells incubated in normoxia (P < 0.01). The hPMVEC incubated in hypoxia had significantly lower CAT-2 mRNA levels than normoxic hPMVEC (P < 0.005), and the transport of L-arg was 40% lower in hypoxic than in normoxic hPMVEC (P < 0.01). In hypoxic cells, overexpression of CAT-1 resulted in significantly greater L-arg transport and NO production (P < 0.05). 4. These results demonstrate that in hPMVEC, hypoxia decreased CAT-2 expression, L-arg uptake and NO production. Furthermore, the hypoxia-induced decrease in NO production in hPMVEC can be attenuated by overexpressing CAT in these cells. We speculate that the CAT may represent a novel therapeutic target for treating pulmonary hypertensive disorders. © 2011 The Authors. Clinical and Experimental Pharmacology and Physiology © 2011 Blackwell Publishing Asia Pty Ltd.

  7. Overexpression of heat shock protein 27 (HSP27) increases gemcitabine sensitivity in pancreatic cancer cells through S-phase arrest and apoptosis

    PubMed Central

    Guo, Yang; Ziesch, Andreas; Hocke, Sandra; Kampmann, Eric; Ochs, Stephanie; De Toni, Enrico N; Göke, Burkhard; Gallmeier, Eike

    2015-01-01

    We previously established a role for HSP27 as a predictive marker for therapeutic response towards gemcitabine in pancreatic cancer. Here, we investigate the underlying mechanisms of HSP27-mediated gemcitabine sensitivity. Utilizing a pancreatic cancer cell model with stable HSP27 overexpression, cell cycle arrest and apoptosis induction were analysed by flow cytometry, nuclear staining, immunoblotting and mitochondrial staining. Drug sensitivity studies were performed by proliferation assays. Hyperthermia was simulated using mild heat shock at 41.8°C. Upon gemcitabine treatment, HSP27-overexpressing cells displayed an early S-phase arrest subsequently followed by a strongly increased sub-G1 fraction. Apoptosis was characterized by PARP-, CASPASE 3-, CASPASE 8-, CASPASE 9- and BIM- activation along with a mitochondrial membrane potential loss. It was reversible through chemical caspase inhibition. Importantly, gemcitabine sensitivity and PARP cleavage were also elicited by heat shock-induced HSP27 overexpression, although to a smaller extent, in a panel of pancreatic cancer cell lines. Finally, HSP27-overexpressing pancreatic cancer cells displayed an increased sensitivity also towards death receptor-targeting agents, suggesting another pro-apoptotic role of HSP27 along the extrinsic apoptosis pathway. Taken together, in contrast to the well-established anti-apoptotic properties of HSP27 in cancer, our study reveals novel pro-apoptotic functions of HSP27—mediated through both the intrinsic and the extrinsic apoptotic pathways—at least in pancreatic cancer cells. HSP27 could represent a predictive marker of therapeutic response towards specific drug classes in pancreatic cancer and provides a novel molecular rationale for current clinical trials applying the combination of gemcitabine with regional hyperthermia in pancreatic cancer patients. PMID:25331547

  8. Overexpression of artemin in the tongue increases expression of TRPV1 and TRPA1 in trigeminal afferents and causes oral sensitivity to capsaicin and mustard oil.

    PubMed

    Elitt, Christopher M; Malin, Sacha A; Koerber, H Richard; Davis, Brian M; Albers, Kathryn M

    2008-09-16

    Artemin, a member of the glial cell line-derived neurotrophic factor (GDNF) family, supports a subpopulation of trigeminal sensory neurons through activation of the Ret/GFRalpha3 receptor tyrosine kinase complex. In a previous study we showed that artemin is increased in inflamed skin of wildtype mice and that transgenic overexpression of artemin in skin increases TRPV1 and TRPA1 expression in dorsal root ganglia neurons. In this study we examined how transgenic overexpression of artemin in tongue epithelium affects the anatomy, gene expression and calcium handling properties of trigeminal sensory afferents. At the RNA level, trigeminal ganglia of artemin overexpresser mice (ART-OEs) had an 81% increase in GFRalpha3, a 190% increase in TRPV1 and a 403% increase in TRPA1 compared to wildtype (WT) controls. Myelinated and unmyelinated fibers of the lingual nerve were increased in diameter, as was the density of GFRalpha3 and TRPV1-positive innervation to the dorsal anterior tongue and fungiform papilla. Retrograde labeling of trigeminal afferents by WGA injection into the tip of the tongue showed an increased percentage of GFRalpha3, TRPV1 and isolectin B4 afferents in ART-OE mice. ART-OE afferents had larger calcium transients in response to ligands of TRPV1 (capsaicin) and TRPA1 (mustard oil). Behavioral sensitivity was also exhibited by ART-OE mice to capsaicin and mustard oil, measured using a two-choice drinking test. These results suggest a potential role for artemin-responsive GFRalpha3/TRPV1/TRPA1 sensory afferents in mediating sensitivity associated with tissue injury, chemical sensitivity or disease states such as burning mouth syndrome.

  9. Dcc haploinsufficiency regulates dopamine receptor expression across postnatal lifespan.

    PubMed

    Pokinko, Matthew; Grant, Alanna; Shahabi, Florence; Dumont, Yvan; Manitt, Colleen; Flores, Cecilia

    2017-03-27

    Adolescence is a period during which the medial prefrontal cortex (mPFC) undergoes significant remodeling. The netrin-1 receptor, deleted in colorectal cancer (DCC), controls the extent and organization of mPFC dopamine connectivity during adolescence and in turn directs mPFC functional and structural maturation. Dcc haploinsufficiency leads to increased mPFC dopamine input, which causes improved cognitive processing and resilience to behavioral effects of stimulant drugs of abuse. Here we examine the effects of Dcc haploinsufficiency on the dynamic expression of dopamine receptors in forebrain targets of C57BL6 mice. We conducted quantitative receptor autoradiography experiments with [(3)H]SCH-23390 or [(3)H]raclopride to characterize D1 and D2 receptor expression in mPFC and striatal regions in male Dcc haploinsufficient and wild-type mice. We generated autoradiograms at early adolescence (PND21±1), mid-adolescence (PND35±2), and adulthood (PND75±15). C57BL6 mice exhibit overexpression and pruning of D1, but not D2, receptors in striatal regions, and a lack of dopamine receptor pruning in the mPFC. We observed age- and region-specific differences in D1 and D2 receptor density between Dcc haploinsufficient and wild-type mice. Notably, neither group shows the typical pattern of mPFC dopamine receptor pruning in adolescence, but adult haploinsufficient mice show increased D2 receptor density in the mPFC. These results show that DCC receptors contribute to the dynamic refinement of D1 and D2 receptor expression in striatal regions across adolescence. The age-dependent expression of dopamine receptor in C57BL6 mice shows marked differences from previous characterizations in rats.

  10. Targeted Overexpression of Inducible 6-Phosphofructo-2-kinase in Adipose Tissue Increases Fat Deposition but Protects against Diet-induced Insulin Resistance and Inflammatory Responses*

    PubMed Central

    Huo, Yuqing; Guo, Xin; Li, Honggui; Xu, Hang; Halim, Vera; Zhang, Weiyu; Wang, Huan; Fan, Yang-Yi; Ong, Kuok Teong; Woo, Shih-Lung; Chapkin, Robert S.; Mashek, Douglas G.; Chen, Yanming; Dong, Hui; Lu, Fuer; Wei, Lai; Wu, Chaodong

    2012-01-01

    Increasing evidence demonstrates the dissociation of fat deposition, the inflammatory response, and insulin resistance in the development of obesity-related metabolic diseases. As a regulatory enzyme of glycolysis, inducible 6-phosphofructo-2-kinase (iPFK2, encoded by PFKFB3) protects against diet-induced adipose tissue inflammatory response and systemic insulin resistance independently of adiposity. Using aP2-PFKFB3 transgenic (Tg) mice, we explored the ability of targeted adipocyte PFKFB3/iPFK2 overexpression to modulate diet-induced inflammatory responses and insulin resistance arising from fat deposition in both adipose and liver tissues. Compared with wild-type littermates (controls) on a high fat diet (HFD), Tg mice exhibited increased adiposity, decreased adipose inflammatory response, and improved insulin sensitivity. In a parallel pattern, HFD-fed Tg mice showed increased hepatic steatosis, decreased liver inflammatory response, and improved liver insulin sensitivity compared with controls. In both adipose and liver tissues, increased fat deposition was associated with lipid profile alterations characterized by an increase in palmitoleate. Additionally, plasma lipid profiles also displayed an increase in palmitoleate in HFD-Tg mice compared with controls. In cultured 3T3-L1 adipocytes, overexpression of PFKFB3/iPFK2 recapitulated metabolic and inflammatory changes observed in adipose tissue of Tg mice. Upon treatment with conditioned medium from iPFK2-overexpressing adipocytes, mouse primary hepatocytes displayed metabolic and inflammatory responses that were similar to those observed in livers of Tg mice. Together, these data demonstrate a unique role for PFKFB3/iPFK2 in adipocytes with regard to diet-induced inflammatory responses in both adipose and liver tissues. PMID:22556414

  11. Overexpression of a Weed (Solanum americanum) Proteinase Inhibitor in Transgenic Tobacco Results in Increased Glandular Trichome Density and Enhanced Resistance to Helicoverpa armigera and Spodoptera litura

    PubMed Central

    Luo, Ming; Wang, Zhaoyu; Li, Huapeng; Xia, Kuai-Fei; Cai, Yinpeng; Xu, Zeng-Fu

    2009-01-01

    In this study we produced transgenic tobacco plants by overexpressing a serine proteinase inhibitor gene, SaPIN2a, from the American black nightshade Solanum americanum under the control of the CaMV 35S promoter using Agrobacterium tumefaciens-mediated transformation. SaPIN2a was properly transcribed and translated as indicated by Northern blot and Western blot analyses. Functional integrity of SaPIN2a in transgenic plants was confirmed by proteinase inhibitory activity assay. Bioassays for insect resistance showed that SaPIN2a-overexpressing transgenic tobacco plants were more resistant to cotton bollworm (Helicoverpa armigera) and tobacco cutworm (Spodoptera litura) larvae, two devastating pests of important crop plants, than the control plants. Interestingly, overexpression of SaPIN2a in transgenic tobacco plants resulted in a significant increase in glandular trichome density and a promotion of trichome branching, which could also provide an additional resistance mechanism in transgenic plants against insect pests. Therefore, SaPIN2a could be used as an alternative proteinase inhibitor for the production of insect-resistant transgenic plants. PMID:19468345

  12. Lactational exposure to hydroxylated polychlorinated biphenyl (OH-PCB 106) causes hyperactivity in male rat pups by aberrant increase in dopamine and its receptor.

    PubMed

    Lesmana, Ronny; Shimokawa, Noriaki; Takatsuru, Yusuke; Iwasaki, Toshiharu; Koibuchi, Noriyuki

    2014-08-01

    Polychlorinated biphenyls (PCBs) are recognized as persistent environmental pollutants that may cause adverse health problems. Despite extensive investigations of PCB in neural function, little is known about behavioral traits by PCB exposure and its neurochemical mechanism. Here, we report the behavioral study of a rat pup that was exposed to hydroxylated-PCB 106 (OH-PCB 106; 4-hydroxy-2',3,3',4',5'-pentachlorobiphenyl) through maternal milk. The different groups of mothers received via gavage corn oil vehicle, 0.5, 5, or 50 mg/kg body weight of OH-PCB 106 every second day from day 3 to 13 after delivery. The exposure did not affect the body weight of the dams or the physical development of the newborn pups in both sexes. Male rats exposed to OH-PCB 106 showed hyperactivity that was characterized by increased locomotor activity in novel environment and circadian period. Interestingly, OH-PCB 106-exposed rat pups displayed abnormally high levels of dopamine and D2 dopamine receptor (D2DR), but not D1DR and D5DR, in the striatum, an important center for the coordination of behavior. These findings indicate that OH-PCB 106 has a significant neurotoxic effect on rat behavior, which may be associated with increased D2DR mediated signals. Copyright © 2012 Wiley Periodicals, Inc., a Wiley company.

  13. Simultaneous Voltammetric Measurements of Glucose and Dopamine Demonstrate the Coupling of Glucose Availability with Increased Metabolic Demand in the Rat Striatum.

    PubMed

    Smith, Samantha K; Lee, Christie A; Dausch, Matthew E; Horman, Brian M; Patisaul, Heather B; McCarty, Gregory S; Sombers, Leslie A

    2017-02-15

    Cerebral blood flow ensures delivery of nutrients, such as glucose, to brain sites with increased metabolic demand. However, little is known about rapid glucose dynamics at discrete locations during neuronal activation in vivo. Acute exposure to many substances of abuse elicits dopamine release and neuronal activation in the striatum; however, the concomitant changes in striatal glucose remain largely unknown. Recent developments have combined fast-scan cyclic voltammetry with glucose oxidase enzyme modified carbon-fiber microelectrodes to enable the measurement of glucose dynamics with subsecond temporal resolution in the mammalian brain. This work evaluates several waveforms to enable the first simultaneous detection of endogenous glucose and dopamine at single recording sites. These molecules, one electroactive and one nonelectroactive, were found to fluctuate in the dorsal striatum in response to electrical stimulation of the midbrain and systemic infusion of cocaine/raclopride. The data reveal the second-by-second dynamics of these species in a striatal microenvironment, and directly demonstrate the coupling of glucose availability with increased metabolic demand. This work provides a foundation that will enable detailed investigation of local mechanisms that regulate the coupling of cerebral blood flow with metabolic demand under normal conditions, and in animal studies of drug abuse and addiction.

  14. Chronic restraint stress causes a delayed increase in responding for palatable food cues during forced abstinence via a dopamine D1-like receptor-mediated mechanism.

    PubMed

    Ball, Kevin T; Best, Olivia; Luo, Jonathan; Miller, Leah R

    2017-02-15

    Relapse to unhealthy eating habits in dieters is often triggered by stress. Animal models, moreover, have confirmed a causal role for acute stress in relapse. The role of chronic stress in relapse vulnerability, however, has received relatively little attention. Therefore, in the present study, we used an abstinence-based relapse model in rats to test the hypothesis that exposure to chronic stress increases subsequent relapse vulnerability. Rats were trained to press a lever for highly palatable food reinforcers in daily 3-h sessions and then tested for food seeking (i.e., responding for food associated cues) both before and after an acute or chronic restraint stress procedure (3h/day×1day or 10days, respectively) or control procedure (unstressed). The second food seeking test was conducted either 1day or 7days after the last restraint. Because chronic stress causes dopamine D1-like receptor-mediated alterations in prefrontal cortex (a relapse node), we also assessed dopaminergic involvement by administering either SCH-23390 (10.0μg/kg; i.p.), a dopamine D1-like receptor antagonist, or vehicle prior to daily treatments. Results showed that chronically, but not acutely, stressed rats displayed increased food seeking 7days, but not 1day, after the last restraint. Importantly, SCH-23390 combined with chronic stress reversed this effect. These results suggest that drugs targeting D1-like receptors during chronic stress may help to prevent future relapse in dieters.

  15. Increased fatty acid unsaturation and production of arachidonic acid by homologous over-expression of the mitochondrial malic enzyme in Mortierella alpina.

    PubMed

    Hao, Guangfei; Chen, Haiqin; Du, Kai; Huang, Xiaoyun; Song, Yuanda; Gu, Zhennan; Wang, Lei; Zhang, Hao; Chen, Wei; Chen, Yong Q

    2014-09-01

    Malic enzyme (ME) catalyses the oxidative decarboxylation of L-malate to pyruvate and provides NADPH for intracellular metabolism, such as fatty acid synthesis. Here, the mitochondrial ME (mME) gene from Mortierella alpina was homologously over-expressed. Compared with controls, fungal arachidonic acid (ARA; 20:4 n-6) content increased by 60 % without affecting the total fatty acid content. Our results suggest that enhancing mME activity may be an effective mean to increase industrial production of ARA in M. alpina.

  16. Alterations in plasma membrane promote overexpression and increase of sodium influx through epithelial sodium channel in hypertensive platelets.

    PubMed

    Cerecedo, D; Martínez-Vieyra, Ivette; Sosa-Peinado, Alejandro; Cornejo-Garrido, Jorge; Ordaz-Pichardo, Cynthia; Benítez-Cardoza, Claudia

    2016-08-01

    Platelets are small, anucleated cell fragments that activate in response to a wide variety of stimuli, triggering a complex series of intracellular pathways leading to a hemostatic thrombus formation at vascular injury sites. However, in essential hypertension, platelet activation contributes to causing myocardial infarction and ischemic stroke. Reported abnormalities in platelet functions, such as platelet hyperactivity and hyperaggregability to several agonists, contribute to the pathogenesis and complications of thrombotic events associated with hypertension. Platelet membrane lipid composition and fluidity are determining for protein site accessibility, structural arrangement of platelet surface, and response to appropriate stimuli. The present study aimed to demonstrate whether structural and biochemical abnormalities in lipid membrane composition and fluidity characteristic of platelets from hypertensive patients influence the expression of the Epithelial Sodium Channel (ENaC), fundamental for sodium influx during collagen activation. Wb, cytometry and quantitative Reverse Transcription-Polymerase Chain Reaction (qRT-PCR) assays demonstrated ENaC overexpression in platelets from hypertensive subjects and in relation to control subjects. Additionally, our results strongly suggest a key role of β-dystroglycan as a scaffold for the organization of ENaC and associated proteins. Understanding of the mechanisms of platelet alterations in hypertension should provide valuable information for the pathophysiology of hypertension. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Overexpression of angiopoietin-1 increases CD133+/c-kit+ cells and reduces myocardial apoptosis in db/db mouse infarcted hearts.

    PubMed

    Zeng, Heng; Li, Lanfang; Chen, Jian-Xiong

    2012-01-01

    Hematopoietic progenitor CD133(+)/c-kit(+) cells have been shown to be involved in myocardial healing following myocardial infarction (MI). Previously we demonstrated that angiopoietin-1(Ang-1) is beneficial in the repair of diabetic infarcted hearts. We now investigate whether Ang-1 affects CD133(+)/c-kit(+) cell recruitment to the infarcted myocardium thereby mediating cardiac repair in type II (db/db) diabetic mice. db/db mice were administered either adenovirus Ang-1 (Ad-Ang-1) or Ad-β-gal systemically immediately after ligation of the left anterior descending coronary artery (LAD). Overexpression of Ang-1 resulted in a significant increase in CXCR-4/SDF-1α expression and promoted CD133(+)/c-kit(+), CD133(+)/CXCR-4(+) and CD133(+)/SDF-1α(+) cell recruitment into ischemic hearts. Overexpression of Ang-1 led to significant increases in number of CD31(+) and smooth muscle-like cells and VEGF expression in bone marrow (BM). This was accompanied by significant decreases in cardiac apoptosis and fibrosis and an increase in myocardial capillary density. Ang-1 also upregulated Jagged-1, Notch3 and apelin expression followed by increases in arteriole formation in the infarcted myocardium. Furthermore, overexpression of Ang-1 resulted in a significant improvement of cardiac functional recovery after 14 days of ischemia. Our data strongly suggest that Ang-1 attenuates cardiac apoptosis and promotes cardiac repair by a mechanism involving in promoting CD133(+)/c-kit(+) cells and angiogenesis in diabetic db/db mouse infarcted hearts.

  18. Repeated immobilization stress increases the binding of c-Fos-like proteins to a rat dopamine beta-hydroxylase promoter enhancer sequence.

    PubMed

    Nankova, B; Devlin, D; Kvetnanský, R; Kopin, I J; Sabban, E L

    1993-08-01

    Repeated immobilization stress elicits a large elevation in adrenal dopamine beta-hydroxylase (DBH) mRNA levels. This study attempts to analyze the molecular mechanism of increased DBH gene expression in stress. Adrenomedullary nuclear proteins were prepared from controls and rats exposed to various intervals of immobilization stress. Electrophoretic mobility shift assays showed that repeated stress led to increased binding of adrenomedullary nuclear factors to a cis-acting regulatory element in the rat DBH promoter (DBH-1). One of the partners in the DNA-protein complex is c-Fos or a Fos-related protein. There was a correlation between promoter binding activity and elevated steady-state levels of DBH mRNA. Our data indicate that this cis regulatory element in the rat DBH promoter is functional in vivo, and increased binding of AP1-like transcription factors to this motif is induced by immobilization stress.

  19. Iron chelation down-regulates dopamine transporter expression by decreasing mRNA stability and increasing endocytosis in N2a cells.

    PubMed

    Hegde, Narasimha V; Jensen, Gordon L; Unger, Erica L

    2011-02-15

    Cell surface expression of the dopamine transporter (DAT) is determined by the relative rates of its internalization and recycling. Changes in the cellular labile iron pool (LIP) affect many cellular mechanisms including those that regulate DAT trafficking. In this study, we analyzed DAT expression and posttranslational modifications in response to changes in cellular iron in transfected neuroblastoma cells (N2a). Iron chelation by desferrioxamine (DFO) altered DAT protein levels by decreasing the stability of DAT mRNA. Increased phosphorylation and ubiquitination of this transporter protein following DFO treatment were also observed. Cellular iron depletion elevated protein levels of the early endosomal marker Rab5. Moreover, confocal microscopy studies showed increased localization of DAT into the endosomal compartment in DFO-treated cells compared to control. Together, these findings suggest that cellular iron depletion regulates DAT expression through reducing mRNA stability as well as an increasing in endocytosis.

  20. Dopamine and paraquat enhance α-synuclein-induced alterations in membrane conductance

    PubMed Central

    Feng, Li Rebekah; Maguire-Zeiss, Kathleen A.

    2011-01-01

    We have previously demonstrated that α-synuclein overexpression increases the membrane conductance of dopaminergic-like cells. Although α-synuclein is thought to play a central role in the pathogenesis of several neurodegenerative diseases including Parkinson’s disease, multiple system atrophy and diffuse Lewy body disease the mechanism of action is not completely understood. In this study we sought to determine whether multiple factors act together with α-synuclein to engender cell vulnerability through an augmentation of membrane conductance. Here we employed a cell model that mimics dopaminergic neurons coupled with α-synuclein overexpression and oxidative stressors. We demonstrate an enhancement of α-synuclein-induced toxicity in the presence of combined treatment with dopamine and paraquat, two molecules known to incite oxidative stress. In addition we show that combined dopamine and paraquat treatment increases the expression of heme oxygenase-1, an antioxidant response protein. Finally, we demonstrate for the first time that combined treatment of dopaminergic cells with paraquat and dopamine enhances α-synuclein-induced leak channel properties resulting in increased membrane conductance. Importantly, these increases are most robust when both paraquat and dopamine are present suggesting the need for multiple oxidative insults to augment α-synuclein-induced disruption of membrane integrity. PMID:21735318

  1. Overexpression of the oncostatin M receptor in cervical squamous cell carcinoma cells is associated with a pro-angiogenic phenotype and increased cell motility and invasiveness.

    PubMed

    Winder, David M; Chattopadhyay, Anasuya; Muralidhar, Balaji; Bauer, Julien; English, William R; Zhang, Xiao; Karagavriilidou, Konstantina; Roberts, Ian; Pett, Mark R; Murphy, Gillian; Coleman, Nicholas

    2011-11-01

    Oncostatin M receptor (OSMR) shows frequent copy number gain and overexpression in advanced cervical squamous cell carcinoma (SCC). We used cell-based in vitro assays, RNA interference, and integrative gene expression profiling to investigate the functional significance of this observation. CaSki and SW756 were selected as representative cervical SCC cells that overexpressed OSMR, and ME180 and MS751 as cells that did not. The STAT-dependent pro-angiogenic factors VEGF-A and ID1 were rapidly induced by OSM in CaSki/SW756 but not in ME180/MS751. However, rapid induction did occur in MS751 following forced OSMR overexpression, while depleting OSMR in CaSki abrogated VEGF-A expression. Conditioned medium from both CaSki and SW756 stimulated endothelial tube formation in vitro, effects that were inhibited by depleting OSMR in the SCC cells. For both CaSki and SW756, migration in a wound healing assay and invasion through Matrigel were stimulated by OSM and consistently inhibited by OSMR depletion. The phenotype was rescued by transfection with OSMR containing a silent mutation that provided specific siRNA resistance. Overall, there was a positive correlation between OSMR levels and invasiveness. We used gene expression profiling to identify genes induced by OSM in CaSki/SW756 but not in ME180/MS751. The most prominent gene ontology category groups for the differentially expressed genes were cell motility/invasion, angiogenesis, signal transduction, and apoptosis. We also profiled 23 cervical SCC samples, identifying genes that were differentially expressed in cases with OSMR overexpression versus those without. Integration of the datasets identified 15 genes that showed consistent differential expression in association with OSMR levels in vitro and in vivo. We conclude that OSMR overexpression in cervical SCC cells provides increased sensitivity to OSM, which induces pro-malignant changes. OSMR is a potential prognostic and therapeutic target in cervical SCC. The genes

  2. Postsynaptic D2 dopamine receptor supersensitivity in the striatum of mice lacking TAAR1.

    PubMed

    Espinoza, Stefano; Ghisi, Valentina; Emanuele, Marco; Leo, Damiana; Sukhanov, Ilya; Sotnikova, Tatiana D; Chieregatti, Evelina; Gainetdinov, Raul R

    2015-06-01

    Trace Amine-Associated Receptor 1 (TAAR1) is a G protein-coupled receptor (GPCR) known to modulate dopaminergic system through several mechanisms. Mice lacking this receptor show a higher sensitivity to dopaminergic stimuli, such as amphetamine; however, it is not clear whether D1 or D2 dopamine receptors and which associated intracellular signaling events are involved in this modulation. In the striatum of TAAR1 knock out (TAAR1-KO mice) we found that D2, but not D1, dopamine receptors were over-expressed, both in terms of mRNA and protein levels. Moreover, the D2 dopamine receptor-related G protein-independent AKT/GSK3 signaling pathway was selectively activated, as indicated by the decrease of phosphorylation of AKT and GSK3β. The decrease in phospho-AKT levels, suggesting an increase in D2 dopamine receptor activity in basal conditions, was associated with an increase of AKT/PP2A complex, as revealed by co-immunoprecipitation experiments. Finally, we found that the locomotor activation induced by the D2 dopamine receptor agonist quinpirole, but not by the full D1 dopamine receptor agonist SKF-82958, was increased in TAAR1-KO mice. These data demonstrate pronounced supersensitivity of postsynaptic D2 dopamine receptors in the striatum of TAAR1-KO mice and indicate that a close interaction of TAAR1 and D2 dopamine receptors at the level of postsynaptic structures has important functional consequences. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Metallothionein disulfides are present in metallothionein-overexpressing transgenic mouse heart and increase under conditions of oxidative stress.

    PubMed

    Feng, Wenke; Benz, Frederick W; Cai, Jian; Pierce, William M; Kang, Y James

    2006-01-13

    Metallothionein (MT) releases zinc under oxidative stress conditions in cultured cells. The change in the MT molecule after zinc release in vivo is unknown although in vitro studies have identified MT disulfide bond formation. The present study was undertaken to test the hypothesis that MT disulfide bond formation occurs in vivo. A cardiac-specific MT-overexpressing transgenic mouse model was used. Mice were administered saline as a control or doxorubicin (20 mg/kg), which is an effective anticancer drug but with severe cardiac toxicity at least partially because of the generation of reactive oxygen species. A differential alkylation of cysteine residues in MT of the heart extracts was performed. Free and metal-bound cysteines were first trapped by N-ethylmaleimide and the disulfide bonds were reduced by dithiothreitol followed by alkylation with radiolabeled iodoacetamide. Analyses of the differentially alkylated MTs in the heart extract by high performance liquid chromatography, SDS-PAGE, Western blot, and mass spectrometry revealed that disulfide bonds were present in MT in vivo under both physiological and oxidative stress conditions. More disulfide bonds were found in MT under the oxidative stress conditions. The MT disulfide bonds were likely intramolecular and both alpha- and beta-domains were involved in the disulfide bond formation, although the alpha-domain appeared to be more easily oxidized than the beta-domain. The results suggest that under physiological conditions, the formation of MT disulfide bonds is involved in the regulation of zinc homeostasis. Additional zinc release from MT under oxidative stress conditions is accompanied by more MT disulfide bond formation.

  4. Overexpression of an Apocynum venetum DEAD-Box Helicase Gene (AvDH1) in Cotton Confers Salinity Tolerance and Increases Yield in a Saline Field

    PubMed Central

    Chen, Jie; Wan, Sibao; Liu, Huaihua; Fan, Shuli; Zhang, Yujuan; Wang, Wei; Xia, Minxuan; Yuan, Rui; Deng, Fenni; Shen, Fafu

    2016-01-01

    Soil salinity is a major environmental stress limiting plant growth and productivity. We have reported previously the isolation of an Apocynum venetum DEAD-box helicase 1 (AvDH1) that is expressed in response to salt exposure. Here, we report that the overexpression of AvDH1 driven by a constitutive cauliflower mosaic virus-35S promoter in cotton plants confers salinity tolerance. Southern and Northern blotting analyses showed that the AvDH1 gene was integrated into the cotton genome and expressed. In this study, the growth of transgenic cotton expressing AvDH1 was evaluated under saline conditions in a growth chamber and in a saline field trial. Transgenic cotton overexpressing AvDH1 was much more resistant to salt than the wild-type plants when grown in a growth chamber. The lower membrane ion leakage, along with increased activity of superoxide dismutase, in AvDH1 transgenic lines suggested that these characteristics may prevent membrane damage, which increases plant survival rates. In a saline field, the transgenic cotton lines expressing AvDH1 showed increased boll numbers, boll weights and seed cotton yields compared with wild-type plants, especially at high soil salinity levels. This study indicates that transgenic cotton expressing AvDH1 is a promising option for increasing crop productivity in saline fields. PMID:26779246

  5. Parvalbumin overexpression alters immune-mediated increases in intracellular calcium, and delays disease onset in a transgenic model of familial amyotrophic lateral sclerosis

    NASA Technical Reports Server (NTRS)

    Beers, D. R.; Ho, B. K.; Siklos, L.; Alexianu, M. E.; Mosier, D. R.; Mohamed, A. H.; Otsuka, Y.; Kozovska, M. E.; McAlhany, R. E.; Smith, R. G.; hide

    2001-01-01

    Intracellular calcium is increased in vulnerable spinal motoneurons in immune-mediated as well as transgenic models of amyotrophic lateral sclerosis (ALS). To determine whether intracellular calcium levels are influenced by the calcium-binding protein parvalbumin, we developed transgenic mice overexpressing parvalbumin in spinal motoneurons. ALS immunoglobulins increased intracellular calcium and spontaneous transmitter release at motoneuron terminals in control animals, but not in parvalbumin overexpressing transgenic mice. Parvalbumin transgenic mice interbred with mutant SOD1 (mSOD1) transgenic mice, an animal model of familial ALS, had significantly reduced motoneuron loss, and had delayed disease onset (17%) and prolonged survival (11%) when compared with mice with only the mSOD1 transgene. These results affirm the importance of the calcium binding protein parvalbumin in altering calcium homeostasis in motoneurons. The increased motoneuron parvalbumin can significantly attenuate the immune-mediated increases in calcium and to a lesser extent compensate for the mSOD1-mediated 'toxic-gain-of-function' in transgenic mice.

  6. Parvalbumin overexpression alters immune-mediated increases in intracellular calcium, and delays disease onset in a transgenic model of familial amyotrophic lateral sclerosis

    NASA Technical Reports Server (NTRS)

    Beers, D. R.; Ho, B. K.; Siklos, L.; Alexianu, M. E.; Mosier, D. R.; Mohamed, A. H.; Otsuka, Y.; Kozovska, M. E.; McAlhany, R. E.; Smith, R. G.; Appel, S. H.

    2001-01-01

    Intracellular calcium is increased in vulnerable spinal motoneurons in immune-mediated as well as transgenic models of amyotrophic lateral sclerosis (ALS). To determine whether intracellular calcium levels are influenced by the calcium-binding protein parvalbumin, we developed transgenic mice overexpressing parvalbumin in spinal motoneurons. ALS immunoglobulins increased intracellular calcium and spontaneous transmitter release at motoneuron terminals in control animals, but not in parvalbumin overexpressing transgenic mice. Parvalbumin transgenic mice interbred with mutant SOD1 (mSOD1) transgenic mice, an animal model of familial ALS, had significantly reduced motoneuron loss, and had delayed disease onset (17%) and prolonged survival (11%) when compared with mice with only the mSOD1 transgene. These results affirm the importance of the calcium binding protein parvalbumin in altering calcium homeostasis in motoneurons. The increased motoneuron parvalbumin can significantly attenuate the immune-mediated increases in calcium and to a lesser extent compensate for the mSOD1-mediated 'toxic-gain-of-function' in transgenic mice.

  7. TFEB Overexpression in the P301S Model of Tauopathy Mitigates Increased PHF1 Levels and Lipofuscin Puncta and Rescues Memory Deficits12

    PubMed Central

    Wang, Hongjie; Wang, Ruizhi; Carrera, Ivan; Xu, Shaohua

    2016-01-01

    Abstract Transcription factor EB (TFEB) was recently shown to be a master regulator of autophagy lysosome pathway. Here, we successfully generated and characterized transgenic mice overexpressing flag-TFEB. Enhanced autophagy in the flag-TFEB transgenic mice was confirmed by an increase in the cellular autophagy markers, as determined by both immunoblots and transmission electron microscopy. Surprisingly, in the flag-TFEB mice we observed increased activity of senescence-associated β-galactosidase by ∼66% of neurons in the cortex (p < 0.001) and 73% of neurons in the hippocampus (p < 0.001). More importantly, flag-TFEB expression remarkably reduced the levels of paired-helical filament (PHF)-tau from 372% in the P301S model of tauopathy to 171% (p < 0.001) in the cortex, and from 436% to 212% (p < 0.001) in the hippocampus. Significantly, reduced levels of NeuN in the cortex (38%, p < 0.001) and hippocampus (25%, p < 0.05) of P301S mice were almost completely restored to WT levels in the P301S/flag-TFEB double-transgenic mice. Also, levels of spinophilin in both the cortex (p < 0.001) and hippocampus (p < 0.001) were restored almost to WT levels. Most importantly, the age-associated lipofuscin granules, which are generally presumed to be nondegradable, were reduced by 57% (p < 0.001) in the cortex and by 55% (p < 0.001) in the hippocampus in the double-transgenic mice. Finally, TFEB overexpression in the P301S mice markedly reversed learning deficits in terms of spatial memory (Barnes maze), as well as working and reference memories (T maze). These data suggest that the overexpression of TFEB can reliably enhance autophagy in vivo, reduce levels of PHF-tau, and thereby reverse the deposition of lipofuscin granules and memory deficits. PMID:27257626

  8. Chloroplast overexpression of rice caffeic acid O-methyltransferase increases melatonin production in chloroplasts via the 5-methoxytryptamine pathway in transgenic rice plants.

    PubMed

    Choi, Geun-Hee; Lee, Hyoung Yool; Back, Kyoungwhan

    2017-08-01

    Recent analyses of the enzymatic features of various melatonin biosynthetic genes from bacteria, animals, and plants have led to the hypothesis that melatonin could be synthesized via the 5-methoxytryptamine (5-MT) pathway. 5-MT is known to be synthesized in vitro from serotonin by the enzymatic action of O-methyltransferases, including N-acetylserotonin methyltransferase (ASMT) and caffeic acid O-methyltransferase (COMT), leading to melatonin synthesis by the subsequent enzymatic reaction with serotonin N-acetyltransferase (SNAT). Here, we show that 5-MT was produced and served as a precursor for melatonin synthesis in plants. When rice seedlings were challenged with senescence treatment, 5-MT levels and melatonin production were increased in transgenic rice seedlings overexpressing the rice COMT in chloroplasts, while no such increases were observed in wild-type or transgenic seedlings overexpressing the rice COMT in the cytosol, suggesting a 5-MT transport limitation from the cytosol to chloroplasts. In contrast, cadmium treatment led to results different from those in senescence. The enhanced melatonin production was not observed in the chloroplast COMT lines relative over the cytosol COMT lines although 5-MT levels were equally induced in all genotypes upon cadmium treatment. The transgenic seedlings with enhanced melatonin in their chloroplasts exhibited improved seedling growth vs the wild type under continuous light conditions. This is the first report describing enhanced melatonin production in chloroplasts via the 5-MT pathway with the ectopic overexpression of COMT in chloroplasts in plants. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Osteoblast-Specific Overexpression of Human WNT16 Increases Both Cortical and Trabecular Bone Mass and Structure in Mice

    PubMed Central

    Alkhouli, Mohammed; Gerard-O'Riley, Rita L.; Wright, Weston B.; Acton, Dena; Gray, Amie K.; Patel, Bhavmik; Reilly, Austin M.; Lim, Kyung-Eun; Robling, Alexander G.; Econs, Michael J.

    2016-01-01

    Previous genome-wide association studies have identified common variants in genes associated with bone mineral density (BMD) and risk of fracture. Recently, we identified single nucleotide polymorphisms (SNPs) in Wingless-type mouse mammary tumor virus integration site (WNT)16 that were associated with peak BMD in premenopausal women. To further identify the role of Wnt16 in bone mass regulation, we created transgenic (TG) mice overexpressing human WNT16 in osteoblasts. We compared bone phenotypes, serum biochemistry, gene expression, and dynamic bone histomorphometry between TG and wild-type (WT) mice. Compared with WT mice, WNT16-TG mice exhibited significantly higher whole-body areal BMD and bone mineral content (BMC) at 6 and 12 weeks of age in both male and female. Microcomputer tomography analysis of trabecular bone at distal femur revealed 3-fold (male) and 14-fold (female) higher bone volume/tissue volume (BV/TV), and significantly higher trabecular number and trabecular thickness but lower trabecular separation in TG mice compared with WT littermates in both sexes. The cortical bone at femur midshaft also displayed significantly greater bone area/total area and cortical thickness in the TG mice in both sexes. Serum biochemistry analysis showed that male TG mice had higher serum alkaline phosphatase, osteocalcin, osteoprotegerin (OPG), OPG to receptor activator of NF-kB ligand (tumor necrosis family ligand superfamily, number 11; RANKL) ratio as compared with WT mice. Also, lower carboxy-terminal collagen cross-link (CTX) to tartrate-resistant acid phosphatase 5, isoform b (TRAPc5b) ratio was observed in TG mice compared with WT littermates in both male and female. Histomorphometry data demonstrated that both male and female TG mice had significantly higher cortical and trabecular mineralizing surface/bone surface and bone formation rate compared with sex-matched WT mice. Gene expression analysis demonstrated higher expression of Alp, OC, Opg, and Opg to

  10. Over-expression of Arabidopsis thaliana SFD1/GLY1, the gene encoding plastid localized glycerol-3-phosphate dehydrogenase, increases plastidic lipid content in transgenic rice plants

    PubMed Central

    Siddiqui, Adnan; Singh, Subaran; Banday, Zeeshan Zahoor; Nandi, Ashis Kumar

    2016-01-01

    Lipids are the major constituents of all membranous structures in plants. Plants possess two pathways for lipid biosynthesis: the prokaryotic pathway (i.e., plastidic pathway) and the eukaryotic pathway (i.e., endoplasmic-reticulum (ER) pathway). Whereas some plants synthesize galactolipids from diacylglycerol assembled in the plastid, others, including rice, derive their galactolipids from diacylglycerols assembled by the eukaryotic pathway. Arabidopsis thaliana glycerol-3-phosphate dehydrogenase (G3pDH), coded by SUPPRESSOR OF FATTY ACID DESATURASE 1 (SFD1; alias GLY1) gene, catalyzes the formation of glycerol 3-phosphate (G3p), the backbone of many membrane lipids. Here SFD1 was introduced to rice as a transgene. Arabidopsis SFD1 localizes in rice plastids and its over-expression increases plastidic membrane lipid content in transgenic rice plants without any major impact on ER lipids. The results suggest that over-expression of plastidic G3pDH enhances biosynthesis of plastid-localized lipids in rice. Lipid composition in the transgenic plants is consistent with increased phosphatidylglycerol synthesis in the plastid and increased galactolipid synthesis from diacylglycerol produced via the ER pathway. The transgenic plants show a higher photosynthetic assimilation rate, suggesting a possible application of this finding in crop improvement. PMID:26747130

  11. Molecular cloning and characterization of a vacuolar H+ -pyrophosphatase gene, SsVP, from the halophyte Suaeda salsa and its overexpression increases salt and drought tolerance of Arabidopsis.

    PubMed

    Guo, Shanli; Yin, Haibo; Zhang, Xia; Zhao, Fengyun; Li, Pinghua; Chen, Shihua; Zhao, Yanxiu; Zhang, Hui

    2006-01-01

    The chenopodiaceae Suaeda salsa L. is a leaf succulent euhalophyte. Shoots of the S. salsa are larger and more succulent when grown in highly saline environments. This increased growth and water uptake has been correlated with a large and specific cellular accumulation of sodium. S. salsa does not have salt glands or salt bladders on its leaves. Thus, this plant must compartmentalize the toxic Na(+) in the vacuoles. The ability to compartmentalize sodium may result from a stimulation of the proton pumps that provide the driving force for increased sodium transport into the vacuole. In this work, we isolated the cDNA of the vacuolar membrane proton-translocating inorganic pyrophosphatase (H(+) -PPase) from S. salsa. The SsVP cDNA contains an uninterrupted open reading frame of 2292 bp, coding for a polypeptide of 764 amino acids. Northern blotting analysis showed that SsVP was induced in salinity treated leaves. The activities of both the V-ATPase and the V-PPase in Arabidopsis overexpressing SsVP-2 is higher markedly than in wild-type plant under 200 mM NaCl and drought stresses. The Overexpression of SsVP can increase salt and drought tolerance of transgenic Arabidopsis.

  12. FTO Is Increased in Muscle During Type 2 Diabetes, and Its Overexpression in Myotubes Alters Insulin Signaling, Enhances Lipogenesis and ROS Production, and Induces Mitochondrial Dysfunction

    PubMed Central

    Bravard, Amélie; Lefai, Etienne; Meugnier, Emmanuelle; Pesenti, Sandra; Disse, Emmanuel; Vouillarmet, Julien; Peretti, Nöel; Rabasa-Lhoret, Rémi; Laville, Martine; Vidal, Hubert; Rieusset, Jennifer

    2011-01-01

    OBJECTIVE A strong association between genetic variants and obesity was found for the fat mass and obesity-associated gene (FTO). However, few details are known concerning the expression and function of FTO in skeletal muscle of patients with metabolic diseases. RESEARCH DESIGN AND METHODS We investigated basal FTO expression in skeletal muscle from obese nondiabetic subjects and type 1 and type 2 diabetic patients, compared with age-matched control subjects, and its regulation in vivo by insulin, glucose, or rosiglitazone. The function of FTO was further studied in myotubes by overexpression experiments. RESULTS We found a significant increase of FTO mRNA and protein levels in muscle from type 2 diabetic patients, whereas its expression was unchanged in obese or type 1 diabetic patients. Moreover, insulin or glucose infusion during specific clamps did not regulate FTO expression in skeletal muscle from control or type 2 diabetic patients. Interestingly, rosiglitazone treatment improved insulin sensitivity and reduced FTO expression in muscle from type 2 diabetic patients. In myotubes, adenoviral FTO overexpression increased basal protein kinase B phosphorylation, enhanced lipogenesis and oxidative stress, and reduced mitochondrial oxidative function, a cluster of metabolic defects associated with type 2 diabetes. CONCLUSIONS This study demonstrates increased FTO expression in skeletal muscle from type 2 diabetic patients, which can be normalized by thiazolidinedione treatment. Furthermore, in vitro data support a potential implication of FTO in oxidative metabolism, lipogenesis and oxidative stress in muscle, suggesting that it could be involved in the muscle defects that characterize type 2 diabetes. PMID:20943749

  13. Over-expression of Arabidopsis thaliana SFD1/GLY1, the gene encoding plastid localized glycerol-3-phosphate dehydrogenase, increases plastidic lipid content in transgenic rice plants.

    PubMed

    Singh, Vijayata; Singh, Praveen Kumar; Siddiqui, Adnan; Singh, Subaran; Banday, Zeeshan Zahoor; Nandi, Ashis Kumar

    2016-03-01

    Lipids are the major