Efficient and Flexible Computation of Many-Electron Wave Function Overlaps.
Plasser, Felix; Ruckenbauer, Matthias; Mai, Sebastian; Oppel, Markus; Marquetand, Philipp; González, Leticia
2016-03-08
A new algorithm for the computation of the overlap between many-electron wave functions is described. This algorithm allows for the extensive use of recurring intermediates and thus provides high computational efficiency. Because of the general formalism employed, overlaps can be computed for varying wave function types, molecular orbitals, basis sets, and molecular geometries. This paves the way for efficiently computing nonadiabatic interaction terms for dynamics simulations. In addition, other application areas can be envisaged, such as the comparison of wave functions constructed at different levels of theory. Aside from explaining the algorithm and evaluating the performance, a detailed analysis of the numerical stability of wave function overlaps is carried out, and strategies for overcoming potential severe pitfalls due to displaced atoms and truncated wave functions are presented.
NASA Technical Reports Server (NTRS)
Berkoff, Timothy A.; Welton, Ellsworth J.; Campbell, James R.; Scott, Vibart S.; Spinhirne, James D.
2003-01-01
The Micro-Pulse Lidar NETwork (MPLNET) is comprised of micro-pulse lidars (MPL) stationed around the globe to provide measurements of aerosol and cloud vertical distribution on a continuous basis. MPLNET sites are co-located with sunphotometers in the AErosol Robotic NETwork (AERONET) to provide joint measurements of aerosol optical depth, size, and other inherent optical properties. The IPCC 2001 report discusses . the importance of obtaining routine measurements of aerosol vertical structure, especially for absorbing aerosols. MPLNET provides exactly this sort of measurement, including calculation of aerosol extinction profiles, in a near real-time basis for all sites in the network. In order to obtain aerosol profiles, near range signal returns (0-6 km) must be accurately measured by the MPL. This measurement is complicated by the instrument s overlap range: Le., the minimum distance at which returning signals are completely in the instrument s field-of-view (FOV). Typical MPL overlap distances are large, between 5 - 6 km, due to the narrow FOV of the MPL receiver. A function describing the MPL overlap must be determined and used to correct signals in this range. Currently, overlap functions for MPLNET are determined using horizontal MPL measurements along a path with 10-1 5 km clear line-of-sight and a homogenous atmosphere. These conditions limit the location and ease in which successful overlaps can be obtained. Furthermore, the current MPLNET process of correcting for overlap increases the uncertainty and bias error for the near range signals and the resulting aerosol extinction profiles. To address these issues, an alternative overlap correction method using a small-diameter, wide FOV receiver is being considered for potential use in MPLNET. The wide FOV receiver has a much shorter overlap distance and will be used to calculate the overlap function of the MPL receiver. This approach has a significant benefit in that overlap corrections could be obtained without the need for horizontal measurements. A review of both overlap methods is presented, including a discussion of the impact on reducing the uncertainty and bias error in MPLNET aerosol profiles.
NASA Astrophysics Data System (ADS)
Bubin, Sergiy; Adamowicz, Ludwik
2008-03-01
In this work we consider explicitly correlated complex Gaussian basis functions for expanding the wave function of an N-particle system with the L =1 total orbital angular momentum. We derive analytical expressions for various matrix elements with these basis functions including the overlap, kinetic energy, and potential energy (Coulomb interaction) matrix elements, as well as matrix elements of other quantities. The derivatives of the overlap, kinetic, and potential energy integrals with respect to the Gaussian exponential parameters are also derived and used to calculate the energy gradient. All the derivations are performed using the formalism of the matrix differential calculus that facilitates a way of expressing the integrals in an elegant matrix form, which is convenient for the theoretical analysis and the computer implementation. The new method is tested in calculations of two systems: the lowest P state of the beryllium atom and the bound P state of the positronium molecule (with the negative parity). Both calculations yielded new, lowest-to-date, variational upper bounds, while the number of basis functions used was significantly smaller than in previous studies. It was possible to accomplish this due to the use of the analytic energy gradient in the minimization of the variational energy.
Bubin, Sergiy; Adamowicz, Ludwik
2008-03-21
In this work we consider explicitly correlated complex Gaussian basis functions for expanding the wave function of an N-particle system with the L=1 total orbital angular momentum. We derive analytical expressions for various matrix elements with these basis functions including the overlap, kinetic energy, and potential energy (Coulomb interaction) matrix elements, as well as matrix elements of other quantities. The derivatives of the overlap, kinetic, and potential energy integrals with respect to the Gaussian exponential parameters are also derived and used to calculate the energy gradient. All the derivations are performed using the formalism of the matrix differential calculus that facilitates a way of expressing the integrals in an elegant matrix form, which is convenient for the theoretical analysis and the computer implementation. The new method is tested in calculations of two systems: the lowest P state of the beryllium atom and the bound P state of the positronium molecule (with the negative parity). Both calculations yielded new, lowest-to-date, variational upper bounds, while the number of basis functions used was significantly smaller than in previous studies. It was possible to accomplish this due to the use of the analytic energy gradient in the minimization of the variational energy.
Brown, James; Carrington, Tucker
2015-07-28
Although phase-space localized Gaussians are themselves poor basis functions, they can be used to effectively contract a discrete variable representation basis [A. Shimshovitz and D. J. Tannor, Phys. Rev. Lett. 109, 070402 (2012)]. This works despite the fact that elements of the Hamiltonian and overlap matrices labelled by discarded Gaussians are not small. By formulating the matrix problem as a regular (i.e., not a generalized) matrix eigenvalue problem, we show that it is possible to use an iterative eigensolver to compute vibrational energy levels in the Gaussian basis.
Naden, Levi N; Shirts, Michael R
2016-04-12
We show how thermodynamic properties of molecular models can be computed over a large, multidimensional parameter space by combining multistate reweighting analysis with a linear basis function approach. This approach reduces the computational cost to estimate thermodynamic properties from molecular simulations for over 130,000 tested parameter combinations from over 1000 CPU years to tens of CPU days. This speed increase is achieved primarily by computing the potential energy as a linear combination of basis functions, computed from either modified simulation code or as the difference of energy between two reference states, which can be done without any simulation code modification. The thermodynamic properties are then estimated with the Multistate Bennett Acceptance Ratio (MBAR) as a function of multiple model parameters without the need to define a priori how the states are connected by a pathway. Instead, we adaptively sample a set of points in parameter space to create mutual configuration space overlap. The existence of regions of poor configuration space overlap are detected by analyzing the eigenvalues of the sampled states' overlap matrix. The configuration space overlap to sampled states is monitored alongside the mean and maximum uncertainty to determine convergence, as neither the uncertainty or the configuration space overlap alone is a sufficient metric of convergence. This adaptive sampling scheme is demonstrated by estimating with high precision the solvation free energies of charged particles of Lennard-Jones plus Coulomb functional form with charges between -2 and +2 and generally physical values of σij and ϵij in TIP3P water. We also compute entropy, enthalpy, and radial distribution functions of arbitrary unsampled parameter combinations using only the data from these sampled states and use the estimates of free energies over the entire space to examine the deviation of atomistic simulations from the Born approximation to the solvation free energy.
Compressive Detection of Highly Overlapped Spectra Using Walsh-Hadamard-Based Filter Functions.
Corcoran, Timothy C
2018-03-01
In the chemometric context in which spectral loadings of the analytes are already known, spectral filter functions may be constructed which allow the scores of mixtures of analytes to be determined in on-the-fly fashion directly, by applying a compressive detection strategy. Rather than collecting the entire spectrum over the relevant region for the mixture, a filter function may be applied within the spectrometer itself so that only the scores are recorded. Consequently, compressive detection shrinks data sets tremendously. The Walsh functions, the binary basis used in Walsh-Hadamard transform spectroscopy, form a complete orthonormal set well suited to compressive detection. A method for constructing filter functions using binary fourfold linear combinations of Walsh functions is detailed using mathematics borrowed from genetic algorithm work, as a means of optimizing said functions for a specific set of analytes. These filter functions can be constructed to automatically strip the baseline from analysis. Monte Carlo simulations were performed with a mixture of four highly overlapped Raman loadings and with ten excitation-emission matrix loadings; both sets showed a very high degree of spectral overlap. Reasonable estimates of the true scores were obtained in both simulations using noisy data sets, proving the linearity of the method.
Telonis-Scott, Marina; Sgrò, Carla M.; Hoffmann, Ary A.; Griffin, Philippa C.
2016-01-01
Repeated attempts to map the genomic basis of complex traits often yield different outcomes because of the influence of genetic background, gene-by-environment interactions, and/or statistical limitations. However, where repeatability is low at the level of individual genes, overlap often occurs in gene ontology categories, genetic pathways, and interaction networks. Here we report on the genomic overlap for natural desiccation resistance from a Pool-genome-wide association study experiment and a selection experiment in flies collected from the same region in southeastern Australia in different years. We identified over 600 single nucleotide polymorphisms associated with desiccation resistance in flies derived from almost 1,000 wild-caught genotypes, a similar number of loci to that observed in our previous genomic study of selected lines, demonstrating the genetic complexity of this ecologically important trait. By harnessing the power of cross-study comparison, we narrowed the candidates from almost 400 genes in each study to a core set of 45 genes, enriched for stimulus, stress, and defense responses. In addition to gene-level overlap, there was higher order congruence at the network and functional levels, suggesting genetic redundancy in key stress sensing, stress response, immunity, signaling, and gene expression pathways. We also identified variants linked to different molecular aspects of desiccation physiology previously verified from functional experiments. Our approach provides insight into the genomic basis of a complex and ecologically important trait and predicts candidate genetic pathways to explore in multiple genetic backgrounds and related species within a functional framework. PMID:26733490
Cognitive Prediction of Reading, Math, and Attention: Shared and Unique Influences.
Peterson, Robin L; Boada, Richard; McGrath, Lauren M; Willcutt, Erik G; Olson, Richard K; Pennington, Bruce F
The current study tested a multiple-cognitive predictor model of word reading, math ability, and attention in a community-based sample of twins ages 8 to 16 years ( N = 636). The objective was to identify cognitive predictors unique to each skill domain as well as cognitive predictors shared among skills that could help explain their overlap and thus help illuminate the basis for comorbidity of related disorders (reading disability, math disability, and attention deficit hyperactivity disorder). Results indicated that processing speed contributes to the overlap between reading and attention as well as math and attention, whereas verbal comprehension contributes to the overlap between reading and math. There was no evidence that executive functioning skills help account for covariation among these skill domains. Instead, specific executive functions differentially related to certain outcomes (i.e., working memory to math and inhibition to attention). We explored whether the model varied in younger versus older children and found only minor differences. Results are interpreted within the context of the multiple deficit framework for neurodevelopmental disorders.
Computational Chemistry Modeling of the Atmospheric Fate of Toxic Industrial Compounds (TICs)
2007-06-01
1+G(3df,2p) number of atoms and number of basis functions) of the (LRG) compounds under study precludes the use of coupled 0 Zero Point Energy ( ZPE ...overlap (NDDO) The extrapolated energy = E(QCI) + E(LRG) - Hamiltonian that is reparameterized to accurately E(SML) + ZPE reproduce coupled cluster
Life in the "old bag" yet: structure of peptidoglycan L,D-carboxypeptidases.
Cadby, Ian T; Lovering, Andrew L
2014-07-08
In this issue of Structure, Hoyland and colleagues describe the structure of a peptidoglycan L,D-carboxypeptidase in both substrate-bound and apoenzyme forms. These studies reveal the basis for enzyme specificity and assist greatly in a field where form and function overlap. Copyright © 2014 Elsevier Ltd. All rights reserved.
Composite fermion basis for two-component Bose gases
NASA Astrophysics Data System (ADS)
Meyer, Marius; Liabotro, Ola
The composite fermion (CF) construction is known to produce wave functions that are not necessarily orthogonal, or even linearly independent, after projection. While usually not a practical issue in the quantum Hall regime, we have previously shown that it presents a technical challenge for rotating Bose gases with low angular momentum. These are systems where the CF approach yield surprisingly good approximations to the exact eigenstates of weak short-range interactions, and so solving the problem of linearly dependent wave functions is of interest. It can also be useful for studying CF excitations for fermions. Here we present several ways of constructing a basis for the space of ``simple CF states'' for two-component rotating Bose gases in the lowest Landau level, and prove that they all give a basis. Using the basis, we study the structure of the lowest-lying state using so-called restricted wave functions. We also examine the scaling of the overlap between the exact and CF wave functions at the maximal possible angular momentum for simple states. This work was financially supported by the Research Council of Norway.
Manzhos, Sergei; Carrington, Tucker
2016-12-14
We demonstrate that it is possible to use basis functions that depend on curvilinear internal coordinates to compute vibrational energy levels without deriving a kinetic energy operator (KEO) and without numerically computing coefficients of a KEO. This is done by using a space-fixed KEO and computing KEO matrix elements numerically. Whenever one has an excellent basis, more accurate solutions to the Schrödinger equation can be obtained by computing the KEO, potential, and overlap matrix elements numerically. Using a Gaussian basis and bond coordinates, we compute vibrational energy levels of formaldehyde. We show, for the first time, that it is possible with a Gaussian basis to solve a six-dimensional vibrational Schrödinger equation. For the zero-point energy (ZPE) and the lowest 50 vibrational transitions of H 2 CO, we obtain a mean absolute error of less than 1 cm -1 ; with 200 000 collocation points and 40 000 basis functions, most errors are less than 0.4 cm -1 .
NASA Astrophysics Data System (ADS)
Manzhos, Sergei; Carrington, Tucker
2016-12-01
We demonstrate that it is possible to use basis functions that depend on curvilinear internal coordinates to compute vibrational energy levels without deriving a kinetic energy operator (KEO) and without numerically computing coefficients of a KEO. This is done by using a space-fixed KEO and computing KEO matrix elements numerically. Whenever one has an excellent basis, more accurate solutions to the Schrödinger equation can be obtained by computing the KEO, potential, and overlap matrix elements numerically. Using a Gaussian basis and bond coordinates, we compute vibrational energy levels of formaldehyde. We show, for the first time, that it is possible with a Gaussian basis to solve a six-dimensional vibrational Schrödinger equation. For the zero-point energy (ZPE) and the lowest 50 vibrational transitions of H2CO, we obtain a mean absolute error of less than 1 cm-1; with 200 000 collocation points and 40 000 basis functions, most errors are less than 0.4 cm-1.
Combined node and link partitions method for finding overlapping communities in complex networks
Jin, Di; Gabrys, Bogdan; Dang, Jianwu
2015-01-01
Community detection in complex networks is a fundamental data analysis task in various domains, and how to effectively find overlapping communities in real applications is still a challenge. In this work, we propose a new unified model and method for finding the best overlapping communities on the basis of the associated node and link partitions derived from the same framework. Specifically, we first describe a unified model that accommodates node and link communities (partitions) together, and then present a nonnegative matrix factorization method to learn the parameters of the model. Thereafter, we infer the overlapping communities based on the derived node and link communities, i.e., determine each overlapped community between the corresponding node and link community with a greedy optimization of a local community function conductance. Finally, we introduce a model selection method based on consensus clustering to determine the number of communities. We have evaluated our method on both synthetic and real-world networks with ground-truths, and compared it with seven state-of-the-art methods. The experimental results demonstrate the superior performance of our method over the competing ones in detecting overlapping communities for all analysed data sets. Improved performance is particularly pronounced in cases of more complicated networked community structures. PMID:25715829
Beta-function B-spline smoothing on triangulations
NASA Astrophysics Data System (ADS)
Dechevsky, Lubomir T.; Zanaty, Peter
2013-03-01
In this work we investigate a novel family of Ck-smooth rational basis functions on triangulations for fitting, smoothing, and denoising geometric data. The introduced basis function is closely related to a recently introduced general method introduced in utilizing generalized expo-rational B-splines, which provides Ck-smooth convex resolutions of unity on very general disjoint partitions and overlapping covers of multidimensional domains with complex geometry. One of the major advantages of this new triangular construction is its locality with respect to the star-1 neighborhood of the vertex on which the said base is providing Hermite interpolation. This locality of the basis functions can be in turn utilized in adaptive methods, where, for instance a local refinement of the underlying triangular mesh affects only the refined domain, whereas, in other method one needs to investigate what changes are occurring outside of the refined domain. Both the triangular and the general smooth constructions have the potential to become a new versatile tool of Computer Aided Geometric Design (CAGD), Finite and Boundary Element Analysis (FEA/BEA) and Iso-geometric Analysis (IGA).
Otto, Benjamin; Misra, Supriya; Prasad, Aditya; McRae, Kateri
2014-09-01
One factor that influences the success of emotion regulation is the manner in which the regulated emotion was generated. Recent research has suggested that reappraisal, a top-down emotion regulation strategy, is more effective in decreasing self-reported negative affect when emotions were generated from the top-down, versus the bottom-up. On the basis of a process overlap framework, we hypothesized that the neural regions active during reappraisal would overlap more with emotions that were generated from the top-down, rather than from the bottom-up. In addition, we hypothesized that increased neural overlap between reappraisal and the history effects of top-down emotion generation would be associated with increased reappraisal success. The results of several analyses suggested that reappraisal and emotions that were generated from the top-down share a core network of prefrontal, temporal, and cingulate regions. This overlap is specific; no such overlap was observed between reappraisal and emotions that were generated in a bottom-up fashion. This network consists of regions previously implicated in linguistic processing, cognitive control, and self-relevant appraisals, which are processes thought to be crucial to both reappraisal and top-down emotion generation. Furthermore, individuals with high reappraisal success demonstrated greater neural overlap between reappraisal and the history of top-down emotion generation than did those with low reappraisal success. The overlap of these key regions, reflecting overlapping processes, provides an initial insight into the mechanism by which generation history may facilitate emotion regulation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krishnapriyan, A.; Yang, P.; Niklasson, A. M. N.
New parametrizations for semiempirical density functional tight binding (DFTB) theory have been developed by the numerical optimization of adjustable parameters to minimize errors in the atomization energy and interatomic forces with respect to ab initio calculated data. Initial guesses for the radial dependences of the Slater- Koster bond integrals and overlap integrals were obtained from minimum basis density functional theory calculations. The radial dependences of the pair potentials and the bond and overlap integrals were represented by simple analytic functions. The adjustable parameters in these functions were optimized by simulated annealing and steepest descent algorithms to minimize the value ofmore » an objective function that quantifies the error between the DFTB model and ab initio calculated data. The accuracy and transferability of the resulting DFTB models for the C, H, N, and O system were assessed by comparing the predicted atomization energies and equilibrium molecular geometries of small molecules that were not included in the training data from DFTB to ab initio data. The DFTB models provide accurate predictions of the properties of hydrocarbons and more complex molecules containing C, H, N, and O.« less
Krishnapriyan, A.; Yang, P.; Niklasson, A. M. N.; ...
2017-10-17
New parametrizations for semiempirical density functional tight binding (DFTB) theory have been developed by the numerical optimization of adjustable parameters to minimize errors in the atomization energy and interatomic forces with respect to ab initio calculated data. Initial guesses for the radial dependences of the Slater- Koster bond integrals and overlap integrals were obtained from minimum basis density functional theory calculations. The radial dependences of the pair potentials and the bond and overlap integrals were represented by simple analytic functions. The adjustable parameters in these functions were optimized by simulated annealing and steepest descent algorithms to minimize the value ofmore » an objective function that quantifies the error between the DFTB model and ab initio calculated data. The accuracy and transferability of the resulting DFTB models for the C, H, N, and O system were assessed by comparing the predicted atomization energies and equilibrium molecular geometries of small molecules that were not included in the training data from DFTB to ab initio data. The DFTB models provide accurate predictions of the properties of hydrocarbons and more complex molecules containing C, H, N, and O.« less
Northoff, Georg
2016-01-01
What is the self? This is a question that has long been discussed in (Western) philosophy where the self is traditionally conceived a higher-order function at the apex or pinnacle of all functions. This tradition has been transferred to recent neuroscience where the self is often considered to be a higher-order cognitive function reflected in memory and other high-level judgements. However, other lines of research demonstrate a close and intimate relationship between self-specificity and more basic functions like perceptions, emotions and reward. This paper focuses on the relationship between self-specificity and other basic functions relating to emotions, reward and perception. I propose the basis model that conceives self-specificity as a fundamental feature of the brain's spontaneous activity. This is supported by recent findings showing rest-self overlap in midline regions as well as findings demonstrating that the resting state can predict subsequent degrees of self-specificity. I conclude that such self-specificity in the brain's spontaneous activity may be central in linking the self to either internal or external stimuli. This may also provide the basis for coding the self as subject in relation to internal (i.e., self-consciousness) or external (i.e., phenomenal consciousness) mental events.
Golze, Dorothea; Benedikter, Niels; Iannuzzi, Marcella; Wilhelm, Jan; Hutter, Jürg
2017-01-21
An integral scheme for the efficient evaluation of two-center integrals over contracted solid harmonic Gaussian functions is presented. Integral expressions are derived for local operators that depend on the position vector of one of the two Gaussian centers. These expressions are then used to derive the formula for three-index overlap integrals where two of the three Gaussians are located at the same center. The efficient evaluation of the latter is essential for local resolution-of-the-identity techniques that employ an overlap metric. We compare the performance of our integral scheme to the widely used Cartesian Gaussian-based method of Obara and Saika (OS). Non-local interaction potentials such as standard Coulomb, modified Coulomb, and Gaussian-type operators, which occur in range-separated hybrid functionals, are also included in the performance tests. The speed-up with respect to the OS scheme is up to three orders of magnitude for both integrals and their derivatives. In particular, our method is increasingly efficient for large angular momenta and highly contracted basis sets.
NASA Astrophysics Data System (ADS)
Golze, Dorothea; Benedikter, Niels; Iannuzzi, Marcella; Wilhelm, Jan; Hutter, Jürg
2017-01-01
An integral scheme for the efficient evaluation of two-center integrals over contracted solid harmonic Gaussian functions is presented. Integral expressions are derived for local operators that depend on the position vector of one of the two Gaussian centers. These expressions are then used to derive the formula for three-index overlap integrals where two of the three Gaussians are located at the same center. The efficient evaluation of the latter is essential for local resolution-of-the-identity techniques that employ an overlap metric. We compare the performance of our integral scheme to the widely used Cartesian Gaussian-based method of Obara and Saika (OS). Non-local interaction potentials such as standard Coulomb, modified Coulomb, and Gaussian-type operators, which occur in range-separated hybrid functionals, are also included in the performance tests. The speed-up with respect to the OS scheme is up to three orders of magnitude for both integrals and their derivatives. In particular, our method is increasingly efficient for large angular momenta and highly contracted basis sets.
Peelen, Marius V; Wiggett, Alison J; Downing, Paul E
2006-03-16
Accurate perception of the actions and intentions of other people is essential for successful interactions in a social environment. Several cortical areas that support this process respond selectively in fMRI to static and dynamic displays of human bodies and faces. Here we apply pattern-analysis techniques to arrive at a new understanding of the neural response to biological motion. Functionally defined body-, face-, and motion-selective visual areas all responded significantly to "point-light" human motion. Strikingly, however, only body selectivity was correlated, on a voxel-by-voxel basis, with biological motion selectivity. We conclude that (1) biological motion, through the process of structure-from-motion, engages areas involved in the analysis of the static human form; (2) body-selective regions in posterior fusiform gyrus and posterior inferior temporal sulcus overlap with, but are distinct from, face- and motion-selective regions; (3) the interpretation of region-of-interest findings may be substantially altered when multiple patterns of selectivity are considered.
NASA Astrophysics Data System (ADS)
Moon, Jiwon; Kim, Minbi; Lim, Jeong Sik; Kim, Joonghan
2018-06-01
Density functional theory (DFT) and time-dependent DFT calculations were performed to elucidate the electronic and optical properties of 2-R-naphthol[2,3-d]oxaphospholes (R-NOPs). On the basis of the calculated results, the poor π overlap between the 3pz orbital of P atom and the 2pz orbitals of other atoms and increasing polarity of P atom result in a reduced energy gap between the highest occupied molecular orbital and the lowest unoccupied molecular orbital. When these two effects are considered simultaneously, the absorption energies obtained for the S1 state can be below 3.00 eV according to replace the P atom of oxaphosphole ring by As atom (increasing the poor π overlap) and change the functional groups (increasing polarity). The origin of these two effects is the inherent size of the 3p orbital of P atom. The role of P atom in the control of the electronic and optical properties of R-NOPs is clearly elucidated.
A phase space approach to imaging from limited data
NASA Astrophysics Data System (ADS)
Testorf, Markus E.
2015-09-01
The optical instrument function is used as the basis to develop optical system theory for imaging applications. The detection of optical signals is conveniently described as the overlap integral of the Wigner distribution functions of instrument and optical signal. Based on this framework various optical imaging systems, including plenoptic cameras, phase-retrieval algorithms, and Shack-Hartman sensors are shown to acquire information about a domain in phase-space, with finite extension and finite resolution. It is demonstrated how phase space optics can be used both to analyze imaging systems, as well as for designing methods for image reconstruction.
Unconscious Imagination and the Mental Imagery Debate
Brogaard, Berit; Gatzia, Dimitria Electra
2017-01-01
Traditionally, philosophers have appealed to the phenomenological similarity between visual experience and visual imagery to support the hypothesis that there is significant overlap between the perceptual and imaginative domains. The current evidence, however, is inconclusive: while evidence from transcranial brain stimulation seems to support this conclusion, neurophysiological evidence from brain lesion studies (e.g., from patients with brain lesions resulting in a loss of mental imagery but not a corresponding loss of perception and vice versa) indicates that there are functional and anatomical dissociations between mental imagery and perception. Assuming that the mental imagery and perception do not overlap, at least, to the extent traditionally assumed, then the question arises as to what exactly mental imagery is and whether it parallels perception by proceeding via several functionally distinct mechanisms. In this review, we argue that even though there may not be a shared mechanism underlying vision for perception and conscious imagery, there is an overlap between the mechanisms underlying vision for action and unconscious visual imagery. On the basis of these findings, we propose a modification of Kosslyn’s model of imagery that accommodates unconscious imagination and explore possible explanations of the quasi-pictorial phenomenology of conscious visual imagery in light of the fact that its underlying neural substrates and mechanisms typically are distinct from those of visual experience. PMID:28588527
NASA Astrophysics Data System (ADS)
Verdebout, S.; Jönsson, P.; Gaigalas, G.; Godefroid, M.; Froese Fischer, C.
2010-04-01
Multiconfiguration expansions frequently target valence correlation and correlation between valence electrons and the outermost core electrons. Correlation within the core is often neglected. A large orbital basis is needed to saturate both the valence and core-valence correlation effects. This in turn leads to huge numbers of configuration state functions (CSFs), many of which are unimportant. To avoid the problems inherent to the use of a single common orthonormal orbital basis for all correlation effects in the multiconfiguration Hartree-Fock (MCHF) method, we propose to optimize independent MCHF pair-correlation functions (PCFs), bringing their own orthonormal one-electron basis. Each PCF is generated by allowing single- and double-excitations from a multireference (MR) function. This computational scheme has the advantage of using targeted and optimally localized orbital sets for each PCF. These pair-correlation functions are coupled together and with each component of the MR space through a low dimension generalized eigenvalue problem. Nonorthogonal orbital sets being involved, the interaction and overlap matrices are built using biorthonormal transformation of the coupled basis sets followed by a counter-transformation of the PCF expansions. Applied to the ground state of beryllium, the new method gives total energies that are lower than the ones from traditional complete active space (CAS)-MCHF calculations using large orbital active sets. It is fair to say that we now have the possibility to account for, in a balanced way, correlation deep down in the atomic core in variational calculations.
One-point functions in defect CFT and integrability
NASA Astrophysics Data System (ADS)
de Leeuw, Marius; Kristjansen, Charlotte; Zarembo, Konstantin
2015-08-01
We calculate planar tree level one-point functions of non-protected operators in the defect conformal field theory dual to the D3-D5 brane system with k units of the world volume flux. Working in the operator basis of Bethe eigenstates of the Heisenberg XXX 1/2 spin chain we express the one-point functions as overlaps of these eigenstates with a matrix product state. For k = 2 we obtain a closed expression of determinant form for any number of excitations, and in the case of half-filling we find a relation with the Néel state. In addition, we present a number of results for the limiting case k → ∞.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kotasidis, Fotis A., E-mail: Fotis.Kotasidis@unige.ch; Zaidi, Habib; Geneva Neuroscience Centre, Geneva University, CH-1205 Geneva
2014-06-15
Purpose: The Ingenuity time-of-flight (TF) PET/MR is a recently developed hybrid scanner combining the molecular imaging capabilities of PET with the excellent soft tissue contrast of MRI. It is becoming common practice to characterize the system's point spread function (PSF) and understand its variation under spatial transformations to guide clinical studies and potentially use it within resolution recovery image reconstruction algorithms. Furthermore, due to the system's utilization of overlapping and spherical symmetric Kaiser-Bessel basis functions during image reconstruction, its image space PSF and reconstructed spatial resolution could be affected by the selection of the basis function parameters. Hence, a detailedmore » investigation into the multidimensional basis function parameter space is needed to evaluate the impact of these parameters on spatial resolution. Methods: Using an array of 12 × 7 printed point sources, along with a custom made phantom, and with the MR magnet on, the system's spatially variant image-based PSF was characterized in detail. Moreover, basis function parameters were systematically varied during reconstruction (list-mode TF OSEM) to evaluate their impact on the reconstructed resolution and the image space PSF. Following the spatial resolution optimization, phantom, and clinical studies were subsequently reconstructed using representative basis function parameters. Results: Based on the analysis and under standard basis function parameters, the axial and tangential components of the PSF were found to be almost invariant under spatial transformations (∼4 mm) while the radial component varied modestly from 4 to 6.7 mm. Using a systematic investigation into the basis function parameter space, the spatial resolution was found to degrade for basis functions with a large radius and small shape parameter. However, it was found that optimizing the spatial resolution in the reconstructed PET images, while having a good basis function superposition and keeping the image representation error to a minimum, is feasible, with the parameter combination range depending upon the scanner's intrinsic resolution characteristics. Conclusions: Using the printed point source array as a MR compatible methodology for experimentally measuring the scanner's PSF, the system's spatially variant resolution properties were successfully evaluated in image space. Overall the PET subsystem exhibits excellent resolution characteristics mainly due to the fact that the raw data are not under-sampled/rebinned, enabling the spatial resolution to be dictated by the scanner's intrinsic resolution and the image reconstruction parameters. Due to the impact of these parameters on the resolution properties of the reconstructed images, the image space PSF varies both under spatial transformations and due to basis function parameter selection. Nonetheless, for a range of basis function parameters, the image space PSF remains unaffected, with the range depending on the scanner's intrinsic resolution properties.« less
Mirone, Alessandro; Brun, Emmanuel; Coan, Paola
2014-01-01
X-ray based Phase-Contrast Imaging (PCI) techniques have been demonstrated to enhance the visualization of soft tissues in comparison to conventional imaging methods. Nevertheless the delivered dose as reported in the literature of biomedical PCI applications often equals or exceeds the limits prescribed in clinical diagnostics. The optimization of new computed tomography strategies which include the development and implementation of advanced image reconstruction procedures is thus a key aspect. In this scenario, we implemented a dictionary learning method with a new form of convex functional. This functional contains in addition to the usual sparsity inducing and fidelity terms, a new term which forces similarity between overlapping patches in the superimposed regions. The functional depends on two free regularization parameters: a coefficient multiplying the sparsity-inducing norm of the patch basis functions coefficients, and a coefficient multiplying the norm of the differences between patches in the overlapping regions. The solution is found by applying the iterative proximal gradient descent method with FISTA acceleration. The gradient is computed by calculating projection of the solution and its error backprojection at each iterative step. We study the quality of the solution, as a function of the regularization parameters and noise, on synthetic data for which the solution is a-priori known. We apply the method on experimental data in the case of Differential Phase Tomography. For this case we use an original approach which consists in using vectorial patches, each patch having two components: one per each gradient component. The resulting algorithm, implemented in the European Synchrotron Radiation Facility tomography reconstruction code PyHST, has proven to be efficient and well-adapted to strongly reduce the required dose and the number of projections in medical tomography. PMID:25531987
Mirone, Alessandro; Brun, Emmanuel; Coan, Paola
2014-01-01
X-ray based Phase-Contrast Imaging (PCI) techniques have been demonstrated to enhance the visualization of soft tissues in comparison to conventional imaging methods. Nevertheless the delivered dose as reported in the literature of biomedical PCI applications often equals or exceeds the limits prescribed in clinical diagnostics. The optimization of new computed tomography strategies which include the development and implementation of advanced image reconstruction procedures is thus a key aspect. In this scenario, we implemented a dictionary learning method with a new form of convex functional. This functional contains in addition to the usual sparsity inducing and fidelity terms, a new term which forces similarity between overlapping patches in the superimposed regions. The functional depends on two free regularization parameters: a coefficient multiplying the sparsity-inducing L1 norm of the patch basis functions coefficients, and a coefficient multiplying the L2 norm of the differences between patches in the overlapping regions. The solution is found by applying the iterative proximal gradient descent method with FISTA acceleration. The gradient is computed by calculating projection of the solution and its error backprojection at each iterative step. We study the quality of the solution, as a function of the regularization parameters and noise, on synthetic data for which the solution is a-priori known. We apply the method on experimental data in the case of Differential Phase Tomography. For this case we use an original approach which consists in using vectorial patches, each patch having two components: one per each gradient component. The resulting algorithm, implemented in the European Synchrotron Radiation Facility tomography reconstruction code PyHST, has proven to be efficient and well-adapted to strongly reduce the required dose and the number of projections in medical tomography.
Oyarzún, Javiera P; Morís, Joaquín; Luque, David; de Diego-Balaguer, Ruth; Fuentemilla, Lluís
2017-08-09
System memory consolidation is conceptualized as an active process whereby newly encoded memory representations are strengthened through selective memory reactivation during sleep. However, our learning experience is highly overlapping in content (i.e., shares common elements), and memories of these events are organized in an intricate network of overlapping associated events. It remains to be explored whether and how selective memory reactivation during sleep has an impact on these overlapping memories acquired during awake time. Here, we test in a group of adult women and men the prediction that selective memory reactivation during sleep entails the reactivation of associated events and that this may lead the brain to adaptively regulate whether these associated memories are strengthened or pruned from memory networks on the basis of their relative associative strength with the shared element. Our findings demonstrate the existence of efficient regulatory neural mechanisms governing how complex memory networks are shaped during sleep as a function of their associative memory strength. SIGNIFICANCE STATEMENT Numerous studies have demonstrated that system memory consolidation is an active, selective, and sleep-dependent process in which only subsets of new memories become stabilized through their reactivation. However, the learning experience is highly overlapping in content and thus events are encoded in an intricate network of related memories. It remains to be explored whether and how memory reactivation has an impact on overlapping memories acquired during awake time. Here, we show that sleep memory reactivation promotes strengthening and weakening of overlapping memories based on their associative memory strength. These results suggest the existence of an efficient regulatory neural mechanism that avoids the formation of cluttered memory representation of multiple events and promotes stabilization of complex memory networks. Copyright © 2017 the authors 0270-6474/17/377748-11$15.00/0.
Grid-free density functional calculations on periodic systems.
Varga, Stefan
2007-09-21
Density fitting scheme is applied to the exchange part of the Kohn-Sham potential matrix in a grid-free local density approximation for infinite systems with translational periodicity. It is shown that within this approach the computational demands for the exchange part scale in the same way as for the Coulomb part. The efficiency of the scheme is demonstrated on a model infinite polymer chain. For simplicity, the implementation with Dirac-Slater Xalpha exchange functional is presented only. Several choices of auxiliary basis set expansion coefficients were tested with both Coulomb and overlap metric. Their effectiveness is discussed also in terms of robustness and norm preservation.
Grid-free density functional calculations on periodic systems
NASA Astrophysics Data System (ADS)
Varga, Štefan
2007-09-01
Density fitting scheme is applied to the exchange part of the Kohn-Sham potential matrix in a grid-free local density approximation for infinite systems with translational periodicity. It is shown that within this approach the computational demands for the exchange part scale in the same way as for the Coulomb part. The efficiency of the scheme is demonstrated on a model infinite polymer chain. For simplicity, the implementation with Dirac-Slater Xα exchange functional is presented only. Several choices of auxiliary basis set expansion coefficients were tested with both Coulomb and overlap metric. Their effectiveness is discussed also in terms of robustness and norm preservation.
Time Domain Propagation of Quantum and Classical Systems using a Wavelet Basis Set Method
NASA Astrophysics Data System (ADS)
Lombardini, Richard; Nowara, Ewa; Johnson, Bruce
2015-03-01
The use of an orthogonal wavelet basis set (Optimized Maximum-N Generalized Coiflets) to effectively model physical systems in the time domain, in particular the electromagnetic (EM) pulse and quantum mechanical (QM) wavefunction, is examined in this work. Although past research has demonstrated the benefits of wavelet basis sets to handle computationally expensive problems due to their multiresolution properties, the overlapping supports of neighboring wavelet basis functions poses problems when dealing with boundary conditions, especially with material interfaces in the EM case. Specifically, this talk addresses this issue using the idea of derivative matching creating fictitious grid points (T.A. Driscoll and B. Fornberg), but replaces the latter element with fictitious wavelet projections in conjunction with wavelet reconstruction filters. Two-dimensional (2D) systems are analyzed, EM pulse incident on silver cylinders and the QM electron wave packet circling the proton in a hydrogen atom system (reduced to 2D), and the new wavelet method is compared to the popular finite-difference time-domain technique.
Relaxation of Actinide Surfaces: An All Electron Study
NASA Astrophysics Data System (ADS)
Atta-Fynn, Raymond; Dholabhai, Pratik; Ray, Asok
2006-10-01
Fully relativistic full potential density functional calculations with a linearized augmented plane wave plus local orbitals basis (LAPW + lo) have been performed to investigate the relaxations of heavy actinide surfaces, namely the (111) surface of fcc δ-Pu and the (0001) surface of dhcp Am using WIEN2k. This code uses the LAPW + lo method with the unit cell divided into non-overlapping atom-centered spheres and an interstitial region. The APW+lo basis is used to describe all s, p, d, and f states and LAPW basis to describe all higher angular momentum states. Each surface was modeled by a three-layer periodic slab separated by 60 Bohr vacuum with four atoms per surface unit cell. In general, we have found a contraction of the interlayer separations for both Pu and Am. We will report, in detail, the electronic and geometric structures of the relaxed surfaces and comparisons with the respective non-relaxed surfaces.
van Ede, Freek; Maris, Eric
2016-01-01
Oscillatory neuronal activity is implicated in many cognitive functions, and its phase coupling between sensors may reflect networks of communicating neuronal populations. Oscillatory activity is often studied using extracranial recordings and compared between experimental conditions. This is challenging, because there is overlap between sensor-level activity generated by different sources, and this can obscure differential experimental modulations of these sources. Additionally, in extracranial data, sensor-level phase coupling not only reflects communicating populations, but can also be generated by a current dipole, whose sensor-level phase coupling does not reflect source-level interactions. We present a novel method, which is capable of separating and characterizing sources on the basis of their phase coupling patterns as a function of space, frequency and time (trials). Importantly, this method depends on a plausible model of a neurobiological rhythm. We present this model and an accompanying analysis pipeline. Next, we demonstrate our approach, using magnetoencephalographic (MEG) recordings during a cued tactile detection task as a case study. We show that the extracted components have overlapping spatial maps and frequency content, which are difficult to resolve using conventional pairwise measures. Because our decomposition also provides trial loadings, components can be readily contrasted between experimental conditions. Strikingly, we observed heterogeneity in alpha and beta sources with respect to whether their activity was suppressed or enhanced as a function of attention and performance, and this happened both in task relevant and irrelevant regions. This heterogeneity contrasts with the common view that alpha and beta amplitude over sensory areas are always negatively related to attention and performance. PMID:27336159
Rowat, S C
1998-01-01
The central nervous, immune, and endocrine systems communicate through multiple common messengers. Over evolutionary time, what may be termed integrated defense system(s) (IDS) have developed to coordinate these communications for specific contexts; these include the stress response, acute-phase response, nonspecific immune response, immune response to antigen, kindling, tolerance, time-dependent sensitization, neurogenic switching, and traumatic dissociation (TD). These IDSs are described and their overlap is examined. Three models of disease production are generated: damage, in which IDSs function incorrectly; inadequate/inappropriate, in which IDS response is outstripped by a changing context; and evolving/learning, in which the IDS learned response to a context is deemed pathologic. Mechanisms of multiple chemical sensitivity (MCS) are developed from several IDS disease models. Model 1A is pesticide damage to the central nervous system, overlapping with body chemical burdens, TD, and chronic zinc deficiency; model 1B is benzene disruption of interleukin-1, overlapping with childhood developmental windows and hapten-antigenic spreading; and model 1C is autoimmunity to immunoglobulin-G (IgG), overlapping with spreading to other IgG-inducers, sudden spreading of inciters, and food-contaminating chemicals. Model 2A is chemical and stress overload, including comparison with the susceptibility/sensitization/triggering/spreading model; model 2B is genetic mercury allergy, overlapping with: heavy metals/zinc displacement and childhood/gestational mercury exposures; and model 3 is MCS as evolution and learning. Remarks are offered on current MCS research. Problems with clinical measurement are suggested on the basis of IDS models. Large-sample patient self-report epidemiology is described as an alternative or addition to clinical biomarker and animal testing. Images Figure 1 Figure 2 Figure 3 Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:9539008
Can Chunk Size Differences Explain Developmental Changes in Lexical Learning?
Smalle, Eleonore H. M.; Bogaerts, Louisa; Simonis, Morgane; Duyck, Wouter; Page, Michael P. A.; Edwards, Martin G.; Szmalec, Arnaud
2016-01-01
In three experiments, we investigated Hebb repetition learning (HRL) differences between children and adults, as a function of the type of item (lexical vs. sub-lexical) and the level of item-overlap between sequences. In a first experiment, it was shown that when non-repeating and repeating (Hebb) sequences of words were all permutations of the same words, HRL was slower than when the sequences shared no words. This item-overlap effect was observed in both children and adults. In a second experiment, we used syllable sequences and we observed reduced HRL due to item-overlap only in children. The findings are explained within a chunking account of the HRL effect on the basis of which we hypothesize that children, compared with adults, chunk syllable sequences in smaller units. By hypothesis, small chunks are more prone to interference from anagram representations included in the filler sequences, potentially explaining the item-overlap effect in children. This hypothesis was tested in a third experiment with adults where we experimentally manipulated the chunk size by embedding pauses in the syllable sequences. Interestingly, we showed that imposing a small chunk size caused adults to show the same behavioral effects as those observed in children. Departing from the analogy between verbal HRL and lexical development, the results are discussed in light of the less-is-more hypothesis of age-related differences in language acquisition. PMID:26779065
Geng, Haijiang; Li, Zhihui; Li, Jiabing; Lu, Tao; Yan, Fangrong
2015-01-01
BACKGROUND Personalized cancer treatments depend on the determination of a patient's genetic status according to known genetic profiles for which targeted treatments exist. Such genetic profiles must be scientifically validated before they is applied to general patient population. Reproducibility of findings that support such genetic profiles is a fundamental challenge in validation studies. The percentage of overlapping genes (POG) criterion and derivative methods produce unstable and misleading results. Furthermore, in a complex disease, comparisons between different tumor subtypes can produce high POG scores that do not capture the consistencies in the functions. RESULTS We focused on the quality rather than the quantity of the overlapping genes. We defined the rank value of each gene according to importance or quality by PageRank on basis of a particular topological structure. Then, we used the p-value of the rank-sum of the overlapping genes (PRSOG) to evaluate the quality of reproducibility. Though the POG scores were low in different studies of the same disease, the PRSOG was statistically significant, which suggests that sets of differentially expressed genes might be highly reproducible. CONCLUSIONS Evaluations of eight datasets from breast cancer, lung cancer and four other disorders indicate that quality-based PRSOG method performs better than a quantity-based method. Our analysis of the components of the sets of overlapping genes supports the utility of the PRSOG method. PMID:26556852
Tuske, Steven; Sarafianos, Stefan G.; Wang, Xinyue; Hudson, Brian; Sineva, Elena; Mukhopadhyay, Jayanta; Birktoft, Jens J.; Leroy, Olivier; Ismail, Sajida; Clark, Arthur D.; Dharia, Chhaya; Napoli, Andrew; Laptenko, Oleg; Lee, Jookyung; Borukhov, Sergei; Ebright, Richard H.; Arnold, Eddy
2009-01-01
We define the target, mechanism, and structural basis of inhibition of bacterial RNA polymerase (RNAP) by the tetramic-acid antibiotic streptolydigin (Stl). Stl binds to a site adjacent to, but not overlapping, the RNAP active center and stabilizes an RNAP-active-center conformational state with a straight bridge helix. The results provide direct support for the proposals that alternative straight-bridge-helix and bent-bridge-helix RNAP-active-center conformations exist, and that cycling between straight-bridge-helix and bent-bridge-helix RNAP-active-center conformations is required for RNAP function. The results set bounds on models for RNAP function and suggest strategies for design of novel antibacterial agents. PMID:16122422
Idiopathic inflammatory myopathies overlapping with systemic diseases
Lepreux, Sébastien; Hainfellner, Johannes A.; Vital, Anne
2018-01-01
A muscle biopsy is currently requested to assess the diagnosis of an idiopathic inflammatory myopathy overlapping with a systemic disease. During the past few years, the classification of inflammatory myopathy subtypes has been revisited progressively on the basis of correlations between clinical phenotypes, autoantibodies and histological data. Several syndromic entities are now more clearly defined, and the aim of the present review is to clarify the contribution of muscle biopsy in a setting of idiopathic inflammatory myopathies overlapping with systemic diseases. PMID:29154752
Dobson, Adam J.; Chaston, John M.; Newell, Peter D.; Donahue, Leanne; Hermann, Sara L.; Sannino, David R.; Westmiller, Stephanie; Wong, Adam C.-N.; Clark, Andrew G.; Lazzaro, Brian P.; Douglas, Angela E.
2015-01-01
Animals bear communities of gut microorganisms with substantial effects on animal nutrition, but the host genetic basis of these effects is unknown. Here, we use Drosophila to demonstrate substantial among-genotype variation in the effects of eliminating the gut microbiota on five host nutritional indices (weight, and protein, lipid, glucose and glycogen contents); this includes variation in both the magnitude and direction of microbiota-dependent effects. Genome-wide associations to identify the genetic basis of the microbiota-dependent variation reveal polymorphisms in largely non-overlapping sets of genes associated with variation in the nutritional traits, including strong representation of conserved genes functioning in signaling. Key genes identified by the GWA study are validated by loss-of-function mutations that altered microbiota-dependent nutritional effects. We conclude that the microbiota interacts with the animal at multiple points in the signaling and regulatory networks that determine animal nutrition. These interactions with the microbiota are likely conserved across animals, including humans. PMID:25692519
Abstraction of complex concepts with a refined partial-area taxonomy of SNOMED
Wang, Yue; Halper, Michael; Wei, Duo; Perl, Yehoshua; Geller, James
2012-01-01
An algorithmically-derived abstraction network, called the partial-area taxonomy, for a SNOMED hierarchy has led to the identification of concepts considered complex. The designation “complex” is arrived at automatically on the basis of structural analyses of overlap among the constituent concept groups of the partial-area taxonomy. Such complex concepts, called overlapping concepts, constitute a tangled portion of a hierarchy and can be obstacles to users trying to gain an understanding of the hierarchy’s content. A new methodology for partitioning the entire collection of overlapping concepts into singly-rooted groups, that are more manageable to work with and comprehend, is presented. Different kinds of overlapping concepts with varying degrees of complexity are identified. This leads to an abstract model of the overlapping concepts called the disjoint partial-area taxonomy, which serves as a vehicle for enhanced, high-level display. The methodology is demonstrated with an application to SNOMED’s Specimen hierarchy. Overall, the resulting disjoint partial-area taxonomy offers a refined view of the hierarchy’s structural organization and conceptual content that can aid users, such as maintenance personnel, working with SNOMED. The utility of the disjoint partial-area taxonomy as the basis for a SNOMED auditing regimen is presented in a companion paper. PMID:21878396
Functional Connectivity Parcellation of the Human Thalamus by Independent Component Analysis.
Zhang, Sheng; Li, Chiang-Shan R
2017-11-01
As a key structure to relay and integrate information, the thalamus supports multiple cognitive and affective functions through the connectivity between its subnuclei and cortical and subcortical regions. Although extant studies have largely described thalamic regional functions in anatomical terms, evidence accumulates to suggest a more complex picture of subareal activities and connectivities of the thalamus. In this study, we aimed to parcellate the thalamus and examine whole-brain connectivity of its functional clusters. With resting state functional magnetic resonance imaging data from 96 adults, we used independent component analysis (ICA) to parcellate the thalamus into 10 components. On the basis of the independence assumption, ICA helps to identify how subclusters overlap spatially. Whole brain functional connectivity of each subdivision was computed for independent component's time course (ICtc), which is a unique time series to represent an IC. For comparison, we computed seed-region-based functional connectivity using the averaged time course across all voxels within a thalamic subdivision. The results showed that, at p < 10 -6 , corrected, 49% of voxels on average overlapped among subdivisions. Compared with seed-region analysis, ICtc analysis revealed patterns of connectivity that were more distinguished between thalamic clusters. ICtc analysis demonstrated thalamic connectivity to the primary motor cortex, which has eluded the analysis as well as previous studies based on averaged time series, and clarified thalamic connectivity to the hippocampus, caudate nucleus, and precuneus. The new findings elucidate functional organization of the thalamus and suggest that ICA clustering in combination with ICtc rather than seed-region analysis better distinguishes whole-brain connectivities among functional clusters of a brain region.
Richter, Karin; Wirta, Valtteri; Dahl, Lina; Bruce, Sara; Lundeberg, Joakim; Carlsson, Leif; Williams, Cecilia
2006-01-01
Background Expression of the LIM-homeobox gene Lhx2 in murine hematopoietic cells allows for the generation of hematopoietic stem cell (HSC)-like cell lines. To address the molecular basis of Lhx2 function, we generated HSC-like cell lines where Lhx2 expression is regulated by a tet-on system and hence dependent on the presence of doxycyclin (dox). These cell lines efficiently down-regulate Lhx2 expression upon dox withdrawal leading to a rapid differentiation into various myeloid cell types. Results Global gene expression of these cell lines cultured in dox was compared to different time points after dox withdrawal using microarray technology. We identified 267 differentially expressed genes. The majority of the genes overlapping with HSC-specific databases were those down-regulated after turning off Lhx2 expression and a majority of the genes overlapping with those defined as late progenitor-specific genes were the up-regulated genes, suggesting that these cell lines represent a relevant model system for normal HSCs also at the level of global gene expression. Moreover, in situ hybridisations of several genes down-regulated after dox withdrawal showed overlapping expression patterns with Lhx2 in various tissues during embryonic development. Conclusion Global gene expression analysis of HSC-like cell lines with inducible Lhx2 expression has identified genes putatively linked to self-renewal / differentiation of HSCs, and function of Lhx2 in organ development and stem / progenitor cells of non-hematopoietic origin. PMID:16600034
Optimization of auxiliary basis sets for the LEDO expansion and a projection technique for LEDO-DFT.
Götz, Andreas W; Kollmar, Christian; Hess, Bernd A
2005-09-01
We present a systematic procedure for the optimization of the expansion basis for the limited expansion of diatomic overlap density functional theory (LEDO-DFT) and report on optimized auxiliary orbitals for the Ahlrichs split valence plus polarization basis set (SVP) for the elements H, Li--F, and Na--Cl. A new method to deal with near-linear dependences in the LEDO expansion basis is introduced, which greatly reduces the computational effort of LEDO-DFT calculations. Numerical results for a test set of small molecules demonstrate the accuracy of electronic energies, structural parameters, dipole moments, and harmonic frequencies. For larger molecular systems the numerical errors introduced by the LEDO approximation can lead to an uncontrollable behavior of the self-consistent field (SCF) process. A projection technique suggested by Löwdin is presented in the framework of LEDO-DFT, which guarantees for SCF convergence. Numerical results on some critical test molecules suggest the general applicability of the auxiliary orbitals presented in combination with this projection technique. Timing results indicate that LEDO-DFT is competitive with conventional density fitting methods. (c) 2005 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, G. Barratt, E-mail: barratt@mit.edu
Franck-Condon vibrational overlap integrals for the A{sup ~1}A{sub u}—X{sup ~1}Σ{sup +}{sub g} transition in acetylene have been calculated in full dimension in the harmonic normal mode basis. The calculation uses the method of generating functions first developed for polyatomic Franck-Condon factors by Sharp and Rosenstock [J. Chem. Phys. 41(11), 3453–3463 (1964)], and previously applied to acetylene by Watson [J. Mol. Spectrosc. 207(2), 276–284 (2001)] in a reduced-dimension calculation. Because the transition involves a large change in the equilibrium geometry of the electronic states, two different types of corrections to the coordinate transformation are considered to first order: corrections for axis-switchingmore » between the Cartesian molecular frames and corrections for the curvilinear nature of the normal modes at large amplitude. The angular factor in the wave function for the out-of-plane component of the trans bending mode, ν{sub 4}{sup ″}, is treated as a rotation, which results in an Eckart constraint on the polar coordinates of the bending modes. To simplify the calculation, the other degenerate bending mode, ν{sub 5}{sup ″}, is integrated in the Cartesian basis and later transformed to the constrained polar coordinate basis, restoring the conventional v and l quantum numbers. An updated A{sup ~}-state harmonic force field obtained recently in the R. W. Field research group is evaluated. The results for transitions involving the gerade vibrational modes are in qualitative agreement with experiment. Calculated results for transitions involving ungerade modes are presented in Paper II of this series [G. B. Park, J. H. Baraban, and R. W. Field, “Full dimensional Franck–Condon factors for the acetylene A{sup ~1}A{sub u}—X{sup ~1}Σ{sup +}{sub g} transition. II. Vibrational overlap factors for levels involving excitation in ungerade modes,” J. Chem. Phys. 141, 134305 (2014)].« less
Reionization of Hydrogen and Helium by Early Stars and Quasars
NASA Astrophysics Data System (ADS)
Wyithe, J. Stuart B.; Loeb, Abraham
2003-04-01
We compute the reionization histories of hydrogen and helium caused by the ionizing radiation fields produced by stars and quasars. For the quasars we use a model based on halo-merger rates that reproduces all known properties of the quasar luminosity function at high redshifts. The less constrained properties of the ionizing radiation produced by stars are modeled with two free parameters: (i) a transition redshift, ztran, above which the stellar population is dominated by massive, zero-metallicity stars and below which it is dominated by a Scalo mass function; and (ii) the product of the escape fraction of stellar ionizing photons from their host galaxies and the star formation efficiency, fescf*. We constrain the allowed range of these free parameters at high redshifts on the basis of the lack of the H I Gunn-Peterson trough at z<~6 and the upper limit on the total intergalactic optical depth for electron scattering, τes<0.18, from recent cosmic microwave background (CMB) experiments. We find that quasars ionize helium by a redshift z~4, but cannot reionize hydrogen by themselves before z~6. A major fraction of the allowed combinations of fescf* and ztran leads to an early peak in the ionized fraction because of the presence of metal-free stars at high redshifts. This sometimes results in two reionization epochs, namely, an early H II or He III overlap phase followed by recombination and a second overlap phase. Even if early overlap is not achieved, the peak in the visibility function for scattering of the CMB often coincides with the early ionization phase rather than with the actual reionization epoch. Consequently, τes does not correspond directly to the reionization redshift. We generically find values of τes>~7%, which should be detectable by the MAP satellite.
Azar, R Julian; Horn, Paul Richard; Sundstrom, Eric Jon; Head-Gordon, Martin
2013-02-28
The problem of describing the energy-lowering associated with polarization of interacting molecules is considered in the overlapping regime for self-consistent field wavefunctions. The existing approach of solving for absolutely localized molecular orbital (ALMO) coefficients that are block-diagonal in the fragments is shown based on formal grounds and practical calculations to often overestimate the strength of polarization effects. A new approach using a minimal basis of polarized orthogonal local MOs (polMOs) is developed as an alternative. The polMO basis is minimal in the sense that one polarization function is provided for each unpolarized orbital that is occupied; such an approach is exact in second-order perturbation theory. Based on formal grounds and practical calculations, the polMO approach is shown to underestimate the strength of polarization effects. In contrast to the ALMO method, however, the polMO approach yields results that are very stable to improvements in the underlying AO basis expansion. Combining the ALMO and polMO approaches allows an estimate of the range of energy-lowering due to polarization. Extensive numerical calculations on the water dimer using a large range of basis sets with Hartree-Fock theory and a variety of different density functionals illustrate the key considerations. Results are also presented for the polarization-dominated Na(+)CH4 complex. Implications for energy decomposition analysis of intermolecular interactions are discussed.
NASA Astrophysics Data System (ADS)
Fan, X. W.; Chen, X. J.; Zhou, S. J.; Zheng, Y.; Brion, C. E.; Frey, R.; Davidson, E. R.
1997-09-01
A newly constructed energy dispersive multichannel electron momentum spectrometer has been used to image the electron density of the outer valence orbitals of CO with high precision. Binding energy spectra are obtained at a coincidence energy resolution of 1.2 eV fwhm. The measured electron density profiles in momentum space for the outer valence orbitals of CO are compared with cross sections calculated using SCF wavefunctions with basis sets of varying complexity up to near-Hartree-Fock limit in quality. The effects of correlation and electronic relaxation on the calculated momentum profiles are investigated using large MRSD-CI calculations of the full ion-neutral overlap distributions, as well as large basis set DFT calculations with local and non-local (gradient corrected) functionals.
Research on Some Bus Transport Networks with Random Overlapping Clique Structure
NASA Astrophysics Data System (ADS)
Yang, Xu-Hua; Wang, Bo; Wang, Wan-Liang; Sun, You-Xian
2008-11-01
On the basis of investigating the statistical data of bus transport networks of three big cities in China, we propose that each bus route is a clique (maximal complete subgraph) and a bus transport network (BTN) consists of a lot of cliques, which intensively connect and overlap with each other. We study the network properties, which include the degree distribution, multiple edges' overlapping time distribution, distribution of the overlap size between any two overlapping cliques, distribution of the number of cliques that a node belongs to. Naturally, the cliques also constitute a network, with the overlapping nodes being their multiple links. We also research its network properties such as degree distribution, clustering, average path length, and so on. We propose that a BTN has the properties of random clique increment and random overlapping clique, at the same time, a BTN is a small-world network with highly clique-clustered and highly clique-overlapped. Finally, we introduce a BTN evolution model, whose simulation results agree well with the statistical laws that emerge in real BTNs.
Mennin, Douglas S.; Heimberg, Richard G.; Fresco, David M.; Ritter, Michael R.
2016-01-01
Generalized anxiety disorder (GAD) and major depressive disorder (MDD) demonstrate a strong relationship to each other at both genotypic and phenotypic levels, and both demonstrate substantial loadings on a higher-order negative affectivity factor. On the basis of these findings, there have been a number of calls to reclassify GAD in the same category as MDD (the “distress disorders”). However, any consideration of the reclassification of GAD should also take into account a number of other factors not only related to GAD and MDD but also to the overlap of these disorders with other anxiety and mood disorders. First, GAD has established reliability and validity in its own right, and specific features (e.g., worry) may become obscured by attempts at reclassification. Second, examination of the nature of the overlap of GAD and MDD with each other and with other disorders suggests a more complex pattern of differences between these conditions than has been suggested (e.g., MDD has strong relationships with other anxiety disorders, and GAD may be more strongly related to fear than it may first appear). Third, although findings suggest that GAD and MDD may have overlapping heritable characteristics, other evidence suggests that the two disorders may be distinguished by both environmental factors and temporal presentations. Finally, although overlap between GAD and MDD is reflected in their relationships to negative affectivity, temporal relationships between these disorders may be demonstrated by functional changes in emotional responsivity. PMID:18412056
Overlap between functional abdominal pain disorders and organic diseases in children.
Langshaw, A H; Rosen, J M; Pensabene, L; Borrelli, O; Salvatore, S; Thapar, N; Concolino, D; Saps, M
2018-04-02
Functional abdominal pain disorders are highly prevalent in children. These disorders can be present in isolation or combined with organic diseases, such as celiac disease and inflammatory bowel diseases. Intestinal inflammation (infectious and non-infectious) predisposes children to the development of visceral hypersensitivity that can manifest as functional abdominal pain disorders, including irritable bowel syndrome. The new onset of irritable bowel syndrome symptoms in a patient with an underlying organic disease, such as inflammatory bowel disease, is clinically challenging, given that the same symptomatology may represent a flare-up of the inflammatory bowel disease or an overlapping functional abdominal pain disorder. Similarly, irritable bowel syndrome symptoms in a child previously diagnosed with celiac disease may occur due to poorly controlled celiac disease or the overlap with a functional abdominal pain disorder. There is little research on the overlap of functional abdominal disorders with organic diseases in children. Studies suggest that the overlap between functional abdominal pain disorders and inflammatory bowel disease is more common in adults than in children. The causes for these differences in prevalence are unknown. Only a handful of studies have been published on the overlap between celiac disease and functional abdominal pain disorders in children. The present article provides a review of the literature on the overlap between celiac disease, inflammatory bowel disease, and functional abdominal pain disorders in children and establish comparisons with studies conducted on adults. Copyright © 2018 Asociación Mexicana de Gastroenterología. Publicado por Masson Doyma México S.A. All rights reserved.
Irritable bowel syndrome and chronic constipation: Fact and fiction
Bellini, Massimo; Gambaccini, Dario; Usai-Satta, Paolo; De Bortoli, Nicola; Bertani, Lorenzo; Marchi, Santino; Stasi, Cristina
2015-01-01
Irritable bowel syndrome (IBS) and functional constipation (FC) are the most common functional gastrointestinal disorders. According to the Rome III Criteria these two disorders should be theoretically separated mainly by the presence of abdominal pain or discomfort relieved by defecation (typical of IBS) and they should be mutually exclusive. However, many gastroenterologists have serious doubts as regards a clear separation. Both IBS-C and FC, often associated with many other functional digestive and non digestive disorders, are responsible for a low quality of life. The impact of the media on patients’ perception of these topics is sometimes disruptive, often suggesting a distorted view of pathophysiology, diagnosis and therapy. These messages frequently overlap with previous subjective opinions and are further processed on the basis of the different culture and the previous experience of the constipated patients, often producing odd, useless or even dangerous behaviors. The aim of this review was to analyze the most common patients’ beliefs about IBS-C and CC, helping physicians to understand where they should focus their attention when communicating with patients, detecting false opinions and misconceptions and correcting them on the basis of scientific evidence. PMID:26523103
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Jeongnim; Reboredo, Fernando A.
The self-healing diffusion Monte Carlo method for complex functions [F. A. Reboredo J. Chem. Phys. {\\bf 136}, 204101 (2012)] and some ideas of the correlation function Monte Carlo approach [D. M. Ceperley and B. Bernu, J. Chem. Phys. {\\bf 89}, 6316 (1988)] are blended to obtain a method for the calculation of thermodynamic properties of many-body systems at low temperatures. In order to allow the evolution in imaginary time to describe the density matrix, we remove the fixed-node restriction using complex antisymmetric trial wave functions. A statistical method is derived for the calculation of finite temperature properties of many-body systemsmore » near the ground state. In the process we also obtain a parallel algorithm that optimizes the many-body basis of a small subspace of the many-body Hilbert space. This small subspace is optimized to have maximum overlap with the one expanded by the lower energy eigenstates of a many-body Hamiltonian. We show in a model system that the Helmholtz free energy is minimized within this subspace as the iteration number increases. We show that the subspace expanded by the small basis systematically converges towards the subspace expanded by the lowest energy eigenstates. Possible applications of this method to calculate the thermodynamic properties of many-body systems near the ground state are discussed. The resulting basis can be also used to accelerate the calculation of the ground or excited states with Quantum Monte Carlo.« less
The anatomy of empathy: Vicarious experience and disorders of social cognition.
Lockwood, Patricia L
2016-09-15
Empathy, the ability to vicariously experience and to understand the affect of other people, is fundamental for successful social-cognitive ability and behaviour. Empathy is thought to be a critical facilitator of prosocial behaviour and is disrupted in a number of psychiatric and neurological disorders. Research has begun to uncover the neural basis of such 'vicarious experience', which has been studied as a proxy measure of empathy. Together, these studies have identified portions of the insula and anterior cingulate cortex as critically involved. A key debate is whether overlapping or non-overlapping brain areas respond to personal and vicarious experience. This review will highlight emerging evidence for both types of brain response. Importantly, animal models have suggested that there are central divisions between the anterior cingulate gyrus and anterior cingulate sulcus that may be crucial for understanding social behaviour. Attention to this specific anatomy of vicarious processing could therefore help shed light on the functional profile of empathy. Studies in individuals with psychopathy and autism spectrum disorders have found that vicarious experience is atypical. However, the precise nature of these atypicalities is mixed. Understanding the mechanisms of vicarious experience can enhance our knowledge of the neural basis of empathy and, ultimately, help those with disorders of social cognition and behaviour. Copyright © 2016 The Author. Published by Elsevier B.V. All rights reserved.
Reboredo, Fernando A; Kim, Jeongnim
2014-02-21
A statistical method is derived for the calculation of thermodynamic properties of many-body systems at low temperatures. This method is based on the self-healing diffusion Monte Carlo method for complex functions [F. A. Reboredo, J. Chem. Phys. 136, 204101 (2012)] and some ideas of the correlation function Monte Carlo approach [D. M. Ceperley and B. Bernu, J. Chem. Phys. 89, 6316 (1988)]. In order to allow the evolution in imaginary time to describe the density matrix, we remove the fixed-node restriction using complex antisymmetric guiding wave functions. In the process we obtain a parallel algorithm that optimizes a small subspace of the many-body Hilbert space to provide maximum overlap with the subspace spanned by the lowest-energy eigenstates of a many-body Hamiltonian. We show in a model system that the partition function is progressively maximized within this subspace. We show that the subspace spanned by the small basis systematically converges towards the subspace spanned by the lowest energy eigenstates. Possible applications of this method for calculating the thermodynamic properties of many-body systems near the ground state are discussed. The resulting basis can also be used to accelerate the calculation of the ground or excited states with quantum Monte Carlo.
NASA Astrophysics Data System (ADS)
Reboredo, Fernando A.; Kim, Jeongnim
2014-02-01
A statistical method is derived for the calculation of thermodynamic properties of many-body systems at low temperatures. This method is based on the self-healing diffusion Monte Carlo method for complex functions [F. A. Reboredo, J. Chem. Phys. 136, 204101 (2012)] and some ideas of the correlation function Monte Carlo approach [D. M. Ceperley and B. Bernu, J. Chem. Phys. 89, 6316 (1988)]. In order to allow the evolution in imaginary time to describe the density matrix, we remove the fixed-node restriction using complex antisymmetric guiding wave functions. In the process we obtain a parallel algorithm that optimizes a small subspace of the many-body Hilbert space to provide maximum overlap with the subspace spanned by the lowest-energy eigenstates of a many-body Hamiltonian. We show in a model system that the partition function is progressively maximized within this subspace. We show that the subspace spanned by the small basis systematically converges towards the subspace spanned by the lowest energy eigenstates. Possible applications of this method for calculating the thermodynamic properties of many-body systems near the ground state are discussed. The resulting basis can also be used to accelerate the calculation of the ground or excited states with quantum Monte Carlo.
Structural Basis of PP2A Inhibition by Small t Antigen
Cho, Uhn Soo; Morrone, Seamus; Sablina, Anna A; Arroyo, Jason D; Hahn, William C; Xu, Wenqing
2007-01-01
The SV40 small t antigen (ST) is a potent oncoprotein that perturbs the function of protein phosphatase 2A (PP2A). ST directly interacts with the PP2A scaffolding A subunit and alters PP2A activity by displacing regulatory B subunits from the A subunit. We have determined the crystal structure of full-length ST in complex with PP2A A subunit at 3.1 Å resolution. ST consists of an N-terminal J domain and a C-terminal unique domain that contains two zinc-binding motifs. Both the J domain and second zinc-binding motif interact with the intra-HEAT-repeat loops of HEAT repeats 3–7 of the A subunit, which overlaps with the binding site of the PP2A B56 subunit. Intriguingly, the first zinc-binding motif is in a position that may allow it to directly interact with and inhibit the phosphatase activity of the PP2A catalytic C subunit. These observations provide a structural basis for understanding the oncogenic functions of ST. PMID:17608567
Acikalin, M Yavuz; Gorgolewski, Krzysztof J; Poldrack, Russell A
2017-01-01
Previous research has provided qualitative evidence for overlap in a number of brain regions across the subjective value network (SVN) and the default mode network (DMN). In order to quantitatively assess this overlap, we conducted a series of coordinate-based meta-analyses (CBMA) of results from 466 functional magnetic resonance imaging experiments on task-negative or subjective value-related activations in the human brain. In these analyses, we first identified significant overlaps and dissociations across activation foci related to SVN and DMN. Second, we investigated whether these overlapping subregions also showed similar patterns of functional connectivity, suggesting a shared functional subnetwork. We find considerable overlap between SVN and DMN in subregions of central ventromedial prefrontal cortex (cVMPFC) and dorsal posterior cingulate cortex (dPCC). Further, our findings show that similar patterns of bidirectional functional connectivity between cVMPFC and dPCC are present in both networks. We discuss ways in which our understanding of how subjective value (SV) is computed and represented in the brain can be synthesized with what we know about the DMN, mind-wandering, and self-referential processing in light of our findings.
Depression, anxiety and somatization in primary care: syndrome overlap and functional impairment.
Löwe, Bernd; Spitzer, Robert L; Williams, Janet B W; Mussell, Monika; Schellberg, Dieter; Kroenke, Kurt
2008-01-01
To determine diagnostic overlap of depression, anxiety and somatization as well as their unique and overlapping contribution to functional impairment. Two thousand ninety-one consecutive primary care clinic patients participated in a multicenter cross-sectional survey in 15 primary care clinics in the United States (participation rate, 92%). Depression, anxiety, somatization and functional impairment were assessed using validated scales from the Patient Health Questionnaire (PHQ) (PHQ-8, eight-item depression module; GAD-7, seven-item Generalized Anxiety Disorder Scale; and PHQ-15, 15-item somatic symptom scale) and the Short-Form General Health Survey (SF-20). Multiple linear regression analyses were used to investigate unique and overlapping associations of depression, anxiety and somatization with functional impairment. In over 50% of cases, comorbidities existed between depression, anxiety and somatization. The contribution of the commonalities of depression, anxiety and somatization to functional impairment substantially exceeded the contribution of their independent parts. Nevertheless, depression, anxiety and somatization did have important and individual effects (i.e., separate from their overlap effect) on certain areas of functional impairment. Given the large syndrome overlap, a potential consideration for future diagnostic classification would be to describe basic diagnostic criteria for a single overarching disorder and to optionally code additional diagnostic features that allow a more detailed classification into specific depressive, anxiety and somatoform subtypes.
Driving into the Sunset: Supporting Cognitive Functioning in Older Drivers
Young, Mark S.; Bunce, David
2011-01-01
The rise in the aging driver population presents society with a significant challenge—how to maintain safety and mobility on the roads. On the one hand, older drivers pose a higher risk of an at-fault accident on a mile-for-mile basis; on the other hand, independent mobility is a significant marker of quality of life in aging. In this paper, we review the respective literatures on cognitive neuropsychology and ergonomics to suggest a previously unexplored synergy between these two fields. We argue that this conceptual overlap can form the basis for future solutions to what has been called “the older driver problem.” Such solutions could be found in a range of emerging driver assistance technologies offered by vehicle manufacturers, which have the potential to compensate for the specific cognitive decrements associated with aging that are related to driving. PMID:21748014
Definition of Drosophila hemocyte subsets by cell-type specific antigens.
Kurucz, Eva; Váczi, B; Márkus, R; Laurinyecz, Barbara; Vilmos, P; Zsámboki, J; Csorba, Kinga; Gateff, Elisabeth; Hultmark, D; Andó, I
2007-01-01
We analyzed the heterogeneity of Drosophila hemocytes on the basis of the expression of cell-type specific antigens. The antigens characterize distinct subsets which partially overlap with those defined by morphological criteria. On the basis of the expression or the lack of expression of blood cell antigens the following hemocyte populations have been defined: crystal cells, plasmatocytes, lamellocytes and precursor cells. The expression of the antigens and thus the different cell types are developmentally regulated. The hemocytes are arranged in four main compartments: the circulating blood cells, the sessile tissue, the lymph glands and the posterior hematopoietic tissue. Each hemocyte compartment has a specific and characteristic composition of the various cell types. The described markers represent the first successful attempt to define hemocyte lineages by immunological markers in Drosophila and help to define morphologically, functionally, spatially and developmentally distinct subsets of hemocytes.
Simultaneous determination of three herbicides by differential pulse voltammetry and chemometrics.
Ni, Yongnian; Wang, Lin; Kokot, Serge
2011-01-01
A novel differential pulse voltammetry method (DPV) was researched and developed for the simultaneous determination of Pendimethalin, Dinoseb and sodium 5-nitroguaiacolate (5NG) with the aid of chemometrics. The voltammograms of these three compounds overlapped significantly, and to facilitate the simultaneous determination of the three analytes, chemometrics methods were applied. These included classical least squares (CLS), principal component regression (PCR), partial least squares (PLS) and radial basis function-artificial neural networks (RBF-ANN). A separately prepared verification data set was used to confirm the calibrations, which were built from the original and first derivative data matrices of the voltammograms. On the basis relative prediction errors and recoveries of the analytes, the RBF-ANN and the DPLS (D - first derivative spectra) models performed best and are particularly recommended for application. The DPLS calibration model was applied satisfactorily for the prediction of the three analytes from market vegetables and lake water samples.
A partitioned correlation function interaction approach for describing electron correlation in atoms
NASA Astrophysics Data System (ADS)
Verdebout, S.; Rynkun, P.; Jönsson, P.; Gaigalas, G.; Froese Fischer, C.; Godefroid, M.
2013-04-01
The traditional multiconfiguration Hartree-Fock (MCHF) and configuration interaction (CI) methods are based on a single orthonormal orbital basis. For atoms with many closed core shells, or complicated shell structures, a large orbital basis is needed to saturate the different electron correlation effects such as valence, core-valence and correlation within the core shells. The large orbital basis leads to massive configuration state function (CSF) expansions that are difficult to handle, even on large computer systems. We show that it is possible to relax the orthonormality restriction on the orbital basis and break down the originally very large calculations into a series of smaller calculations that can be run in parallel. Each calculation determines a partitioned correlation function (PCF) that accounts for a specific correlation effect. The PCFs are built on optimally localized orbital sets and are added to a zero-order multireference (MR) function to form a total wave function. The expansion coefficients of the PCFs are determined from a low dimensional generalized eigenvalue problem. The interaction and overlap matrices are computed using a biorthonormal transformation technique (Verdebout et al 2010 J. Phys. B: At. Mol. Phys. 43 074017). The new method, called partitioned correlation function interaction (PCFI), converges rapidly with respect to the orbital basis and gives total energies that are lower than the ones from ordinary MCHF and CI calculations. The PCFI method is also very flexible when it comes to targeting different electron correlation effects. Focusing our attention on neutral lithium, we show that by dedicating a PCF to the single excitations from the core, spin- and orbital-polarization effects can be captured very efficiently, leading to highly improved convergence patterns for hyperfine parameters compared with MCHF calculations based on a single orthogonal radial orbital basis. By collecting separately optimized PCFs to correct the MR function, the variational degrees of freedom in the relative mixing coefficients of the CSFs building the PCFs are inhibited. The constraints on the mixing coefficients lead to small off-sets in computed properties such as hyperfine structure, isotope shift and transition rates, with respect to the correct values. By (partially) deconstraining the mixing coefficients one converges to the correct limits and keeps the tremendous advantage of improved convergence rates that comes from the use of several orbital sets. Reducing ultimately each PCF to a single CSF with its own orbital basis leads to a non-orthogonal CI approach. Various perspectives of the new method are given.
Cooperative interactions between hippocampal and striatal systems support flexible navigation
Brown, Thackery I; Ross, Robert S; Tobyne, Sean M; Stern, Chantal E
2012-01-01
Research in animals and humans has demonstrated that the hippocampus is critical for retrieving distinct representations of overlapping sequences of information. There is recent evidence that the caudate nucleus and orbitofrontal cortex are also involved in disambiguation of overlapping spatial representations. The hippocampus and caudate are functionally distinct regions, but both have anatomical links with the orbitofrontal cortex. The present study used an fMRI-based functional connectivity analysis in humans to examine the functional relationship between the hippocampus, caudate, and orbitofrontal cortex when participants use contextual information to navigate well-learned spatial routes which share common elements. Participants were trained outside the scanner to navigate virtual mazes from a first-person perspective. Overlapping condition mazes began and ended at distinct locations, but converged in the middle to share some hallways with another maze. Non-overlapping condition mazes did not share any hallways with any other maze. Successful navigation through the overlapping hallways required contextual information identifying the current navigational route to guide the appropriate response for a given trial. Results revealed greater functional connectivity between the hippocampus, caudate, and orbitofrontal cortex for overlapping mazes compared to non-overlapping mazes. The current findings suggest that the hippocampus and caudate interact with prefrontal structures cooperatively for successful contextually-dependent navigation. PMID:22266411
Yunus, Muhammad B
2008-06-01
To discuss the current terminologies used for fibromyalgia syndrome (FMS) and related overlapping conditions, to examine if central sensitivity syndromes (CSS) is the appropriate nosology for these disorders, and to explore the issue of disease versus illness. A literature search was performed through PubMed, Web of Science, and ScienceDirect using a number of keywords, eg, functional somatic syndromes, somatoform disorders, medically unexplained symptoms, organic and nonorganic, and diseases and illness. Relevant articles were then reviewed and representative ones cited. Terminologies currently used for CSS conditions predominantly represent a psychosocial construct and are inappropriate. On the other hand, CSS seems to be the logical nosology based on a biopsychosocial model. Such terms as "medically unexplained symptoms," "somatization," "somatization disorder," and "functional somatic syndromes" in the context of CSS should be abandoned. Given current scientific knowledge, the concept of disease-illness dualism has no rational basis and impedes proper patient-physician communication, resulting in poor patient care. The concept of CSS is likely to promote research, education, and proper patient management. CSS seems to be a useful paradigm and an appropriate terminology for FMS and related conditions. The disease-illness, as well as organic/non-organic dichotomy, should be rejected.
Wang, Dong-Yuan Debbie; Richard, F Dan; Ray, Brittany
2016-01-01
The stimulus-response correspondence (SRC) effect refers to advantages in performance when stimulus and response correspond in dimensions or features, even if the common features are irrelevant to the task. Previous research indicated that the SRC effect depends on the temporal course of stimulus information processing. The current study investigated how the temporal overlap between relevant and irrelevant stimulus processing influences the SRC effect. In this experiment, the irrelevant stimulus (a previously associated tone) preceded the relevant stimulus (a coloured rectangle). The irrelevant and relevant stimuli onset asynchrony was varied to manipulate the temporal overlap between the irrelevant and relevant stimuli processing. Results indicated that the SRC effect size varied as a quadratic function of the temporal overlap between the relevant stimulus and irrelevant stimulus. This finding extends previous experimental observations that the SRC effect size varies in an increasing or decreasing function with reaction time. The current study demonstrated a quadratic function between effect size and the temporal overlap.
NASA Astrophysics Data System (ADS)
Palla, Gergely; Derenyi, Imre; Farkas, Illes J.; Vicsek, Tamas
2006-03-01
Most tasks in a cell are performed not by individual proteins, but by functional groups of proteins (either physically interacting with each other or associated in other ways). In gene (protein) association networks these groups show up as sets of densely connected nodes. In the yeast, Saccharomyces cerevisiae, known physically interacting groups of proteins (called protein complexes) strongly overlap: the total number of proteins contained by these complexes by far underestimates the sum of their sizes (2750 vs. 8932). Thus, most functional groups of proteins, both physically interacting and other, are likely to share many of their members with other groups. However, current algorithms searching for dense groups of nodes in networks usually exclude overlaps. With the aim to discover both novel functions of individual proteins and novel protein functional groups we combine in protein association networks (i) a search for overlapping dense subgraphs based on the Clique Percolation Method (CPM) (Palla, G., et.al. Nature 435, 814-818 (2005), http://angel.elte.hu/clustering), which explicitly allows for overlaps among the groups, and (ii) a verification and characterization of the identified groups of nodes (proteins) with the help of standard annotation databases listing known functions.
Weis, Cleo-Aron; Grießmann, Benedict Walter; Scharff, Christoph; Detzner, Caecilia; Pfister, Eva; Marx, Alexander; Zoellner, Frank Gerrit
2015-09-02
Immunohistochemical analysis of cellular interactions in the bone marrow in situ is demanding, due to its heterogeneous cellular composition, the poor delineation and overlap of functional compartments and highly complex immunophenotypes of several cell populations (e.g. regulatory T-cells) that require immunohistochemical marker sets for unambiguous characterization. To overcome these difficulties, we herein present an approach to describe objects (e.g. cells, bone trabeculae) by a scalar field that can be propagated through registered images of serial histological sections. The transformation of objects within images (e.g. cells) to a scalar field was performed by convolution of the object's centroids with differently formed radial basis function (e.g. for direct or indirect spatial interaction). On the basis of such a scalar field, a summation field described distributed objects within an image. After image registration i) colocalization analysis could be performed on basis scalar field, which is propagated through registered images, and - due to the shape of the field - were barely prone to matching errors and morphological changes by different cutting levels; ii) furthermore, depending on the field shape the colocalization measurements could also quantify spatial interaction (e.g. direct or paracrine cellular contact); ii) the field-overlap, which represents the spatial distance, of different objects (e.g. two cells) could be calculated by the histogram intersection. The description of objects (e.g. cells, cell clusters, bone trabeculae etc.) as a field offers several possibilities: First, co-localization of different markers (e.g. by immunohistochemical staining) in serial sections can be performed in an automatic, objective and quantifiable way. In contrast to multicolour staining (e.g. 10-colour immunofluorescence) the financial and technical requirements are fairly minor. Second, the approach allows searching for different types of spatial interactions (e.g. direct and indirect cellular interaction) between objects by taking field shape into account (e.g. thin vs. broad). Third, by describing spatially distributed groups of objects as summation field, it gives cluster definition that relies rather on the bare object distance than on the modelled spatial cellular interaction.
Przybytek, Michal; Helgaker, Trygve
2013-08-07
We analyze the accuracy of the Coulomb energy calculated using the Gaussian-and-finite-element-Coulomb (GFC) method. In this approach, the electrostatic potential associated with the molecular electronic density is obtained by solving the Poisson equation and then used to calculate matrix elements of the Coulomb operator. The molecular electrostatic potential is expanded in a mixed Gaussian-finite-element (GF) basis set consisting of Gaussian functions of s symmetry centered on the nuclei (with exponents obtained from a full optimization of the atomic potentials generated by the atomic densities from symmetry-averaged restricted open-shell Hartree-Fock theory) and shape functions defined on uniform finite elements. The quality of the GF basis is controlled by means of a small set of parameters; for a given width of the finite elements d, the highest accuracy is achieved at smallest computational cost when tricubic (n = 3) elements are used in combination with two (γ(H) = 2) and eight (γ(1st) = 8) Gaussians on hydrogen and first-row atoms, respectively, with exponents greater than a given threshold (αmin (G)=0.5). The error in the calculated Coulomb energy divided by the number of atoms in the system depends on the system type but is independent of the system size or the orbital basis set, vanishing approximately like d(4) with decreasing d. If the boundary conditions for the Poisson equation are calculated in an approximate way, the GFC method may lose its variational character when the finite elements are too small; with larger elements, it is less sensitive to inaccuracies in the boundary values. As it is possible to obtain accurate boundary conditions in linear time, the overall scaling of the GFC method for large systems is governed by another computational step-namely, the generation of the three-center overlap integrals with three Gaussian orbitals. The most unfavorable (nearly quadratic) scaling is observed for compact, truly three-dimensional systems; however, this scaling can be reduced to linear by introducing more effective techniques for recognizing significant three-center overlap distributions.
NASA Astrophysics Data System (ADS)
Bally, B.; Duguet, T.
2018-02-01
Background: State-of-the-art multi-reference energy density functional calculations require the computation of norm overlaps between different Bogoliubov quasiparticle many-body states. It is only recently that the efficient and unambiguous calculation of such norm kernels has become available under the form of Pfaffians [L. M. Robledo, Phys. Rev. C 79, 021302 (2009), 10.1103/PhysRevC.79.021302]. Recently developed particle-number-restored Bogoliubov coupled-cluster (PNR-BCC) and particle-number-restored Bogoliubov many-body perturbation (PNR-BMBPT) ab initio theories [T. Duguet and A. Signoracci, J. Phys. G 44, 015103 (2017), 10.1088/0954-3899/44/1/015103] make use of generalized norm kernels incorporating explicit many-body correlations. In PNR-BCC and PNR-BMBPT, the Bogoliubov states involved in the norm kernels differ specifically via a global gauge rotation. Purpose: The goal of this work is threefold. We wish (i) to propose and implement an alternative to the Pfaffian method to compute unambiguously the norm overlap between arbitrary Bogoliubov quasiparticle states, (ii) to extend the first point to explicitly correlated norm kernels, and (iii) to scrutinize the analytical content of the correlated norm kernels employed in PNR-BMBPT. Point (i) constitutes the purpose of the present paper while points (ii) and (iii) are addressed in a forthcoming paper. Methods: We generalize the method used in another work [T. Duguet and A. Signoracci, J. Phys. G 44, 015103 (2017), 10.1088/0954-3899/44/1/015103] in such a way that it is applicable to kernels involving arbitrary pairs of Bogoliubov states. The formalism is presently explicated in detail in the case of the uncorrelated overlap between arbitrary Bogoliubov states. The power of the method is numerically illustrated and benchmarked against known results on the basis of toy models of increasing complexity. Results: The norm overlap between arbitrary Bogoliubov product states is obtained under a closed-form expression allowing its computation without any phase ambiguity. The formula is physically intuitive, accurate, and versatile. It equally applies to norm overlaps between Bogoliubov states of even or odd number parity. Numerical applications illustrate these features and provide a transparent representation of the content of the norm overlaps. Conclusions: The complex norm overlap between arbitrary Bogoliubov states is computed, without any phase ambiguity, via elementary linear algebra operations. The method can be used in any configuration mixing of orthogonal and non-orthogonal product states. Furthermore, the closed-form expression extends naturally to correlated overlaps at play in PNR-BCC and PNR-BMBPT. As such, the straight overlap between Bogoliubov states is the zero-order reduction of more involved norm kernels to be studied in a forthcoming paper.
Recent Greenland Thinning from Operation IceBridge ATM and LVIS Data
NASA Astrophysics Data System (ADS)
Sutterley, T. C.; Velicogna, I.
2015-12-01
We investigate regional thinning rates in Greenland using two Operation IceBridge lidar instruments, the Airborne Topographic Mapper (ATM) and the Land, Vegetation and Ice Sensor (LVIS). IceBridge and Pre-IceBridge ATM data are available from 1993 to present and IceBridge and Pre-Icebridge LVIS data are available from 2007 to present. We compare different techniques for combining the two datasets: overlapping footprints, triangulated irregular network meshing and radial basis functions. We validate the combination for periods with near term overlap of the two instruments. By combining the two lidar datasets, we are able to investigate intra-annual, annual, interannual surface elevation change. We investigate both the high melt season of 2012 and the low melt season of 2013. In addition, the major 2015 IceBridge Arctic campaign provides new crucial data for determining seasonal ice sheet thinning rates. We compare our LVIS/ATM results with surface mass balance outputs from two regional climate models: the Regional Atmospheric Climate Model (RACMO) and the Modèle Atmosphérique Régional (MAR). We also investigate the thinning rates of major outlet glaciers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reboredo, Fernando A.; Kim, Jeongnim
A statistical method is derived for the calculation of thermodynamic properties of many-body systems at low temperatures. This method is based on the self-healing diffusion Monte Carlo method for complex functions [F. A. Reboredo, J. Chem. Phys. 136, 204101 (2012)] and some ideas of the correlation function Monte Carlo approach [D. M. Ceperley and B. Bernu, J. Chem. Phys. 89, 6316 (1988)]. In order to allow the evolution in imaginary time to describe the density matrix, we remove the fixed-node restriction using complex antisymmetric guiding wave functions. In the process we obtain a parallel algorithm that optimizes a small subspacemore » of the many-body Hilbert space to provide maximum overlap with the subspace spanned by the lowest-energy eigenstates of a many-body Hamiltonian. We show in a model system that the partition function is progressively maximized within this subspace. We show that the subspace spanned by the small basis systematically converges towards the subspace spanned by the lowest energy eigenstates. Possible applications of this method for calculating the thermodynamic properties of many-body systems near the ground state are discussed. The resulting basis can also be used to accelerate the calculation of the ground or excited states with quantum Monte Carlo.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galeta, Leonardo; Pirjol, Dan; Schat, Carlos
2009-12-01
We show how to match the Isgur-Karl model to the spin-flavor quark operator expansion used in the 1/N{sub c} studies of the nonstrange negative parity L=1 excited baryons. Using the transformation properties of states and interactions under the permutation group S{sub 3} we are able to express the operator coefficients as overlap integrals, without making any assumption on the spatial dependence of the quark wave functions. The general mass operator leads to parameter free mass relations and constraints on the mixing angles that are valid beyond the usual harmonic oscillator approximation. The Isgur-Karl model with harmonic oscillator wave functions providesmore » a simple counterexample that demonstrates explicitly that the alternative operator basis for the 1/N{sub c} expansion for excited baryons recently proposed by Matagne and Stancu is incomplete.« less
A complete active space valence bond method with nonorthogonal orbitals
NASA Astrophysics Data System (ADS)
Hirao, Kimihiko; Nakano, Haruyuki; Nakayama, Kenichi
1997-12-01
A complete active space self-consistent field (SCF) wave function is transformed into a valence bond type representation built from nonorthogonal orbitals, each strongly localized on a single atom. Nonorthogonal complete active space SCF orbitals are constructed by Ruedenberg's projected localization procedure so that they have maximal overlaps with the corresponding minimum basis set of atomic orbitals of the free-atoms. The valence bond structures which are composed of such nonorthogonal quasiatomic orbitals constitute the wave function closest to the concept of the oldest and most simple valence bond method. The method is applied to benzene, butadiene, hydrogen, and methane molecules and compared to the previously proposed complete active space valence bond approach with orthogonal orbitals. The results demonstrate the validity of the method as a powerful tool for describing the electronic structure of various molecules.
Long-range analysis of density fitting in extended systems
NASA Astrophysics Data System (ADS)
Varga, Scarontefan
Density fitting scheme is analyzed for the Coulomb problem in extended systems from the correctness of long-range behavior point of view. We show that for the correct cancellation of divergent long-range Coulomb terms it is crucial for the density fitting scheme to reproduce the overlap matrix exactly. It is demonstrated that from all possible fitting metric choices the Coulomb metric is the only one which inherently preserves the overlap matrix for infinite systems with translational periodicity. Moreover, we show that by a small additional effort any non-Coulomb metric fit can be made overlap-preserving as well. The problem is analyzed for both ordinary and Poisson basis set choices.
Developmentally distinct MYB genes encode functionally equivalent proteins in Arabidopsis.
Lee, M M; Schiefelbein, J
2001-05-01
The duplication and divergence of developmental control genes is thought to have driven morphological diversification during the evolution of multicellular organisms. To examine the molecular basis of this process, we analyzed the functional relationship between two paralogous MYB transcription factor genes, WEREWOLF (WER) and GLABROUS1 (GL1), in Arabidopsis. The WER and GL1 genes specify distinct cell types and exhibit non-overlapping expression patterns during Arabidopsis development. Nevertheless, reciprocal complementation experiments with a series of gene fusions showed that WER and GL1 encode functionally equivalent proteins, and their unique roles in plant development are entirely due to differences in their cis-regulatory sequences. Similar experiments with a distantly related MYB gene (MYB2) showed that its product cannot functionally substitute for WER or GL1. Furthermore, an analysis of the WER and GL1 proteins shows that conserved sequences correspond to specific functional domains. These results provide new insights into the evolution of the MYB gene family in Arabidopsis, and, more generally, they demonstrate that novel developmental gene function may arise solely by the modification of cis-regulatory sequences.
Schärer, Michelle T
2003-06-01
Epibiotic organisms inhabiting non-nesting hawksbill sea turtles, Eretmochelys imbricata (Linnaeus, 1766), are described from Mona and Monito Islands, Puerto Rico. Epibiont samples from 105 turtles of shallow (< 40 m) water foraging habitats were collected and identified to the lowest possible taxon. This epibiotic assemblage consisting of at least 4 algal functional groups and 12 animal phyla represents the greatest phylogenetic diversity for marine turtle epibiota. Six groups are considered new reports for marine turtles. Most epibiont colonization was found on posterior marginal scutes and under overlapping scutes. Ecological attributes of epibiota and their symbiosis with E. imbricata provide a tool to understand basi and epibiont populations.
A combined experimental and DFT investigation of disazo dye having pyrazole skeleton
NASA Astrophysics Data System (ADS)
Şener, Nesrin; Bayrakdar, Alpaslan; Kart, Hasan Hüseyin; Şener, İzzet
2017-02-01
Disazo dye containing pyrazole skeleton has been synthesized. The structure of the dye has been confirmed by using FT-IR, 1H NMR, 13C NMR, HRMS spectral technique and elemental analysis. The molecular geometry and infrared spectrum are also calculated by the Density Functional Theory (DFT) employing B3LYP level with 6-311G (d,p) basis set. The chemical shifts calculation for 1H NMR of the title molecule is done by using by Gauge-Invariant Atomic Orbital (GIAO) method by utilizing the same basis sets. The total density of state, the partial density of state and the overlap population density of state diagram analysis are done via Gauss Sum 3.0 program. Frontier molecular orbitals such as highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) and molecular electrostatic potential surface on the title molecule are predicted for various intramolecular interactions that are responsible for the stabilization of the molecule. The experimental results and theoretical values have been compared.
Zorc, Minja; Kunej, Tanja
2016-05-01
MicroRNAs (miRNAs) are a class of non-coding RNAs involved in posttranscriptional regulation of target genes. Regulation requires complementarity between target mRNA and the mature miRNA seed region, responsible for their recognition and binding. It has been estimated that each miRNA targets approximately 200 genes, and genetic variability of miRNA genes has been reported to affect phenotypic variability and disease susceptibility in humans, livestock species, and model organisms. Polymorphisms in miRNA genes could therefore represent biomarkers for phenotypic traits in livestock animals. In our previous study, we collected polymorphisms within miRNA genes in chicken. In the present study, we identified miRNA-related genomic overlaps to prioritize genomic regions of interest for further functional studies and biomarker discovery. Overlapping genomic regions in chicken were analyzed using the following bioinformatics tools and databases: miRNA SNiPer, Ensembl, miRBase, NCBI Blast, and QTLdb. Out of 740 known pre-miRNA genes, 263 (35.5 %) contain polymorphisms; among them, 35 contain more than three polymorphisms The most polymorphic miRNA genes in chicken are gga-miR-6662, containing 23 single nucleotide polymorphisms (SNPs) within the pre-miRNA region, including five consecutive SNPs, and gga-miR-6688, containing ten polymorphisms including three consecutive polymorphisms. Several miRNA-related genomic hotspots have been revealed in chicken genome; polymorphic miRNA genes are located within protein-coding and/or non-coding transcription units and quantitative trait loci (QTL) associated with production traits. The present study includes the first description of an exonic miRNA in a chicken genome, an overlap between the miRNA gene and the exon of the protein-coding gene (gga-miR-6578/HADHB), and the first report of a missense polymorphism located within a mature miRNA seed region. Identified miRNA-related genomic hotspots in chicken can serve researchers as a starting point for further functional studies and association studies with poultry production and health traits and the basis for systematic screening of exonic miRNAs and missense/miRNA seed polymorphisms in other genomes.
ADHD and autism: differential diagnosis or overlapping traits? A selective review.
Taurines, Regina; Schwenck, Christina; Westerwald, Eva; Sachse, Michael; Siniatchkin, Michael; Freitag, Christine
2012-09-01
According to DSM-IV TR and ICD-10, a diagnosis of autism or Asperger Syndrome precludes a diagnosis of attention-deficit/hyperactivity disorder (ADHD). However, despite the different conceptualization, population-based twin studies reported symptom overlap, and a recent epidemiologically based study reported a high rate of ADHD in autism and autism spectrum disorders (ASD). In the planned revision of the DSM-IV TR, dsm5 (www.dsm5.org), the diagnoses of autistic disorder and ADHD will not be mutually exclusive any longer. This provides the basis of more differentiated studies on overlap and distinction between both disorders. This review presents data on comorbidity rates and symptom overlap and discusses common and disorder-specific risk factors, including recent proteomic studies. Neuropsychological findings in the areas of attention, reward processing, and social cognition are then compared between both disorders, as these cognitive abilities show overlapping as well as specific impairment for one of both disorders. In addition, selective brain imaging findings are reported. Therapeutic options are summarized, and new approaches are discussed. The review concludes with a prospectus on open questions for research and clinical practice.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ioannisian, Ara N.; Kazarian, Narine; Millar, Alexander J.
Axion-photon conversion at dielectric interfaces, immersed in a near-homogeneous magnetic field, is the basis for the dielectric haloscope method to search for axion dark matter. In analogy to transition radiation, this process is possible because the photon wave function is modified by the dielectric layers ('Garibian wave function') and is no longer an eigenstate of momentum. A conventional first-order perturbative calculation of the transition probability between a quantized axion state and these distorted photon states provides the microwave production rate. It agrees with previous results based on solving the classical Maxwell equations for the combined system of axions and electromagneticmore » fields. We argue that in general the average photon production rate is given by our result, independently of the detailed quantum state of the axion field. Moreover, our result provides a new perspective on axion-photon conversion in dielectric haloscopes because the rate is based on an overlap integral between unperturbed axion and photon wave functions, in analogy to the usual treatment of microwave-cavity haloscopes.« less
Pseudopotential plane-wave calculation of the structural properties of yttrium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Y.; Chou, M.Y.
1991-11-01
The structural properties of hexagonal-close-packed yttrium are studied by using the plane-wave basis within the pseudopotential method and local-density-functional approximation. By employing a soft'' pseudopotential proposed by Troullier and Martins, satisfactory convergence is achieved with a plane-wave energy cutoff of 30--40 Ry for this early-transition-metal element. The overall results for the structural properties are in good agreement with experiment. It is found that the charge overlap between core and valence electrons has a substantial effect on the accuracy of the calculated structural properties. Two different calculations are performed with and without the outer-core 4{ital p} orbital included as a valencemore » state. In addition, as found in some other local-density calculations, the uncertainty in the results due to different exchange-correlation energy functionals may not be negligible in transition metals.« less
Neural Basis of Anhedonia and Amotivation in Patients with Schizophrenia: The role of Reward System
Lee, Jung Suk; Jung, Suwon; Park, Il Ho; Kim, Jae-Jin
2015-01-01
Anhedonia, the inability to feel pleasure, and amotivation, the lack of motivation, are two prominent negative symptoms of schizophrenia, which contribute to the poor social and occupational behaviors in the patients. Recently growing evidence shows that anhedonia and amotivation are tied together, but have distinct neural correlates. It is important to note that both of these symptoms may derive from deficient functioning of the reward network. A further analysis into the neuroimaging findings of schizophrenia shows that the neural correlates overlap in the reward network including the ventral striatum, anterior cingulate cortex and orbitofrontal cortex. Other neuroimaging studies have demonstrated the involvement of the default mode network in anhedonia. The identification of a specific deficit in hedonic and motivational capacity may help to elucidate the mechanisms behind social functioning deficits in schizophrenia, and may also lead to more targeted treatment of negative symptoms. PMID:26630955
Neural Basis of Anhedonia and Amotivation in Patients with Schizophrenia: The Role of Reward System.
Lee, Jung Suk; Jung, Suwon; Park, Il Ho; Kim, Jae-Jin
2015-01-01
Anhedonia, the inability to feel pleasure, and amotivation, the lack of motivation, are two prominent negative symptoms of schizophrenia, which contribute to the poor social and occupational behaviors in the patients. Recently growing evidence shows that anhedonia and amotivation are tied together, but have distinct neural correlates. It is important to note that both of these symptoms may derive from deficient functioning of the reward network. A further analysis into the neuroimaging findings of schizophrenia shows that the neural correlates overlap in the reward network including the ventral striatum, anterior cingulate cortex and orbitofrontal cortex. Other neuroimaging studies have demonstrated the involvement of the default mode network in anhedonia. The identification of aspecific deficit in hedonic and motivational capacity may help to elucidate the mechanisms behind social functioning deficits in schizophrenia, and may also lead to more targeted treatment of negative symptoms.
Lattice dynamics of Ru2FeX (X = Si, Ge) Full Heusler alloys
NASA Astrophysics Data System (ADS)
Rizwan, M.; Afaq, A.; Aneeza, A.
2018-05-01
In present work, the lattice dynamics of Ru2FeX (X = Si, Ge) full Heusler alloys are investigated using density functional theory (DFT) within generalized gradient approximation (GGA) in a plane wave basis, with norm-conserving pseudopotentials. Phonon dispersion curves and phonon density of states are obtained using first-principles linear response approach of density functional perturbation theory (DFPT) as implemented in Quantum ESPRESSO code. Phonon dispersion curves indicates for both Heusler alloys that there is no imaginary phonon in whole Brillouin zone, confirming dynamical stability of these alloys in L21 type structure. There is a considerable overlapping between acoustic and optical phonon modes predicting no phonon band gap exists in dispersion curves of alloys. The same result is shown by phonon density of states curves for both Heusler alloys. Reststrahlen band for Ru2FeSi is found smaller than Ru2FeGe.
Kopp, Bruno; Tabeling, Sandra; Moschner, Carsten; Wessel, Karl
2007-08-17
Decision-making is a fundamental capacity which is crucial to many higher-order psychological functions. We recorded event-related potentials (ERPs) during a visual target-identification task that required go-nogo choices. Targets were identified on the basis of cross-dimensional conjunctions of particular colors and forms. Color discriminability was manipulated in three conditions to determine the effects of color distinctiveness on component processes of decision-making. Target identification was accompanied by the emergence of prefrontal P2a and P3b. Selection negativity (SN) revealed that target-compatible features captured attention more than target-incompatible features, suggesting that intra-dimensional attentional capture was goal-contingent. No changes of cross-dimensional selection priorities were measurable when color discriminability was altered. Peak latencies of the color-related SN provided a chronometric measure of the duration of attention-related neural processing. ERPs recorded over the frontocentral scalp (N2c, P3a) revealed that color-overlap distractors, more than form-overlap distractors, required additional late selection. The need for additional response selection induced by color-overlap distractors was severely reduced when color discriminability decreased. We propose a simple model of cross-dimensional perceptual decision-making. The temporal synchrony of separate color-related and form-related choices determines whether or not distractor processing includes post-perceptual stages. ERP measures contribute to a comprehensive explanation of the temporal dynamics of component processes of perceptual decision-making.
A Murine Model of Genetic and Environmental Neurotoxicant Action
2001-09-01
toniatoes (Wilhoit et al., 1999)]. The geographical overlap in has emerged as a putative risk factor on the basis of its structural use patterns and the...terminals. Either of these outcomes couldofurther elevate DA and metabolite levels. Although the striatumT Tcontains serotonergic and cholinergic neurons...foods. Thus, there is clearly a basis brain, because PQ is structurally similar to MPP+. PQ injected to suppose that supramixtures of agricultural
Lorentz symmetry violation in the fermion number anomaly with the chiral overlap operator
NASA Astrophysics Data System (ADS)
Makino, Hiroki; Morikawa, Okuto
2016-12-01
Recently, Grabowska and Kaplan proposed a four-dimensional lattice formulation of chiral gauge theories on the basis of a chiral overlap operator. We compute the classical continuum limit of the fermion number anomaly in this formulation. Unexpectedly, we find that the continuum limit contains a term which is not Lorentz invariant. The term is, however, proportional to the gauge anomaly coefficient, and thus the fermion number anomaly in this lattice formulation automatically restores the Lorentz-invariant form when and only when the anomaly cancellation condition is met.
Aspects and the Overlap Function.
ERIC Educational Resources Information Center
Levine, Marilyn M.; Levine, Leonard P.
1984-01-01
Presents system for automatic handling of ordered sets, states based on these sets, and differing points of view regarding Universe of Discourse. Aspects are represented by new logical "overlap" function with examples taken from Ranganathan's horse and carriage parable and several books involving four main concepts (history, geography,…
Online decoding of object-based attention using real-time fMRI.
Niazi, Adnan M; van den Broek, Philip L C; Klanke, Stefan; Barth, Markus; Poel, Mannes; Desain, Peter; van Gerven, Marcel A J
2014-01-01
Visual attention is used to selectively filter relevant information depending on current task demands and goals. Visual attention is called object-based attention when it is directed to coherent forms or objects in the visual field. This study used real-time functional magnetic resonance imaging for moment-to-moment decoding of attention to spatially overlapped objects belonging to two different object categories. First, a whole-brain classifier was trained on pictures of faces and places. Subjects then saw transparently overlapped pictures of a face and a place, and attended to only one of them while ignoring the other. The category of the attended object, face or place, was decoded on a scan-by-scan basis using the previously trained decoder. The decoder performed at 77.6% accuracy indicating that despite competing bottom-up sensory input, object-based visual attention biased neural patterns towards that of the attended object. Furthermore, a comparison between different classification approaches indicated that the representation of faces and places is distributed rather than focal. This implies that real-time decoding of object-based attention requires a multivariate decoding approach that can detect these distributed patterns of cortical activity. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Individual-based analyses reveal limited functional overlap in a coral reef fish community.
Brandl, Simon J; Bellwood, David R
2014-05-01
Detailed knowledge of a species' functional niche is crucial for the study of ecological communities and processes. The extent of niche overlap, functional redundancy and functional complementarity is of particular importance if we are to understand ecosystem processes and their vulnerability to disturbances. Coral reefs are among the most threatened marine systems, and anthropogenic activity is changing the functional composition of reefs. The loss of herbivorous fishes is particularly concerning as the removal of algae is crucial for the growth and survival of corals. Yet, the foraging patterns of the various herbivorous fish species are poorly understood. Using a multidimensional framework, we present novel individual-based analyses of species' realized functional niches, which we apply to a herbivorous coral reef fish community. In calculating niche volumes for 21 species, based on their microhabitat utilization patterns during foraging, and computing functional overlaps, we provide a measurement of functional redundancy or complementarity. Complementarity is the inverse of redundancy and is defined as less than 50% overlap in niche volumes. The analyses reveal extensive complementarity with an average functional overlap of just 15.2%. Furthermore, the analyses divide herbivorous reef fishes into two broad groups. The first group (predominantly surgeonfishes and parrotfishes) comprises species feeding on exposed surfaces and predominantly open reef matrix or sandy substrata, resulting in small niche volumes and extensive complementarity. In contrast, the second group consists of species (predominantly rabbitfishes) that feed over a wider range of microhabitats, penetrating the reef matrix to exploit concealed surfaces of various substratum types. These species show high variation among individuals, leading to large niche volumes, more overlap and less complementarity. These results may have crucial consequences for our understanding of herbivorous processes on coral reefs, as algal removal appears to depend strongly on species-specific microhabitat utilization patterns of herbivores. Furthermore, the results emphasize the capacity of the individual-based analyses to reveal variation in the functional niches of species, even in high-diversity systems such as coral reefs, demonstrating its potential applicability to other high-diversity ecosystems. © 2013 The Authors. Journal of Animal Ecology © 2013 British Ecological Society.
Cardiorespiratory coupling in health and disease.
Garcia, Alfredo J; Koschnitzky, Jenna E; Dashevskiy, Tatiana; Ramirez, Jan-Marino
2013-04-01
Cardiac and respiratory activities are intricately linked both functionally as well as anatomically through highly overlapping brainstem networks controlling these autonomic physiologies that are essential for survival. Cardiorespiratory coupling (CRC) has many potential benefits creating synergies that promote healthy physiology. However, when such coupling deteriorates autonomic dysautonomia may ensue. Unfortunately there is still an incomplete mechanistic understanding of both normal and pathophysiological interactions that respectively give rise to CRC and cardiorespiratory dysautonomia. Moreover, there is also a need for better quantitative methods to assess CRC. This review addresses the current understanding of CRC by discussing: (1) the neurobiological basis of respiratory sinus arrhythmia (RSA); (2) various disease states involving cardiorespiratory dysautonomia; and (3) methodologies measuring heart rate variability and RSA. Copyright © 2013 Elsevier B.V. All rights reserved.
Cardiorespiratory Coupling in Health and Disease
Garcia, Alfredo J.; Koschnitzky, Jenna E.; Dashevskiy, Tatiana; Ramirez, Jan-Marino
2013-01-01
Cardiac and respiratory activities are intricately linked both functionally as well as anatomically through highly overlapping brainstem networks controlling these autonomic physiologies that are essential for survival. Cardiorespiratory coupling (CRC) has many potential benefits creating synergies that promote healthy physiology. However, when such coupling deteriorates autonomic dysautonomia may ensue. Unfortunately there is still an incomplete mechanistic understanding of both normal and pathophysiological interactions that respectively give rise to CRC and cardiorespiratory dysautonomia. Moreover, there is also a need for better quantitative methods to assess CRC. This review addresses the current understanding of CRC by discussing: (1) the neurobiological basis of respiratory sinus arrhythmia (RSA); (2) various disease states involving cardiorespiratory dysautonomia; and (3) methodologies measuring heart rate variability and RSA. PMID:23497744
NASA Technical Reports Server (NTRS)
McDowell, Mark (Inventor); Glasgow, Thomas K. (Inventor)
1999-01-01
A system and a method for measuring three-dimensional velocities at a plurality of points in a fluid employing at least two cameras positioned approximately perpendicular to one another. The cameras are calibrated to accurately represent image coordinates in world coordinate system. The two-dimensional views of the cameras are recorded for image processing and centroid coordinate determination. Any overlapping particle clusters are decomposed into constituent centroids. The tracer particles are tracked on a two-dimensional basis and then stereo matched to obtain three-dimensional locations of the particles as a function of time so that velocities can be measured therefrom The stereo imaging velocimetry technique of the present invention provides a full-field. quantitative, three-dimensional map of any optically transparent fluid which is seeded with tracer particles.
Szidarovszky, Tamás; Fábri, Csaba; Császár, Attila G
2012-05-07
Approximate rotational characterization of variational rovibrational wave functions via the rigid rotor decomposition (RRD) protocol is developed for Hamiltonians based on arbitrary sets of internal coordinates and axis embeddings. An efficient and general procedure is given that allows employing the Eckart embedding with arbitrary polyatomic Hamiltonians through a fully numerical approach. RRD tables formed by projecting rotational-vibrational wave functions into products of rigid-rotor basis functions and previously determined vibrational eigenstates yield rigid-rotor labels for rovibrational eigenstates by selecting the largest overlap. Embedding-dependent RRD analyses are performed, up to high energies and rotational excitations, for the H(2) (16)O isotopologue of the water molecule. Irrespective of the embedding chosen, the RRD procedure proves effective in providing unambiguous rotational assignments at low energies and J values. Rotational labeling of rovibrational states of H(2) (16)O proves to be increasingly difficult beyond about 10,000 cm(-1), close to the barrier to linearity of the water molecule. For medium energies and excitations the Eckart embedding yields the largest RRD coefficients, thus providing the largest number of unambiguous rotational labels.
NASA Astrophysics Data System (ADS)
Regnier, D.; Dubray, N.; Verrière, M.; Schunck, N.
2018-04-01
The time-dependent generator coordinate method (TDGCM) is a powerful method to study the large amplitude collective motion of quantum many-body systems such as atomic nuclei. Under the Gaussian Overlap Approximation (GOA), the TDGCM leads to a local, time-dependent Schrödinger equation in a multi-dimensional collective space. In this paper, we present the version 2.0 of the code FELIX that solves the collective Schrödinger equation in a finite element basis. This new version features: (i) the ability to solve a generalized TDGCM+GOA equation with a metric term in the collective Hamiltonian, (ii) support for new kinds of finite elements and different types of quadrature to compute the discretized Hamiltonian and overlap matrices, (iii) the possibility to leverage the spectral element scheme, (iv) an explicit Krylov approximation of the time propagator for time integration instead of the implicit Crank-Nicolson method implemented in the first version, (v) an entirely redesigned workflow. We benchmark this release on an analytic problem as well as on realistic two-dimensional calculations of the low-energy fission of 240Pu and 256Fm. Low to moderate numerical precision calculations are most efficiently performed with simplex elements with a degree 2 polynomial basis. Higher precision calculations should instead use the spectral element method with a degree 4 polynomial basis. We emphasize that in a realistic calculation of fission mass distributions of 240Pu, FELIX-2.0 is about 20 times faster than its previous release (within a numerical precision of a few percents).
[Symptom overlaps between functional heartburn, functional dyspepsia, and irritable bowel syndrome].
2014-05-01
To determine symptom overlaps between functional heartburn (FH), functional dyspepsia (FD), and irritable bowel syndrome (IBS). One hundred and ten patients with frequent heartburn but no mucosa breakage under endoscopy were enrolled consecutively. They were required to fill out a questionnaire. The overlapped symptoms of FD and IBS symptoms were screened using Rome ill criteria. The participants were also examined using Hamilton anxiety scale/Hamilton depression scale. All of the participants were followed with 24 h esophageal multichannel intra-luminal impedance monitoring with pH sensor (MII-pH) monitoring and proton pump inhibitor (PPI) trials. The participants were divided into non-erosive reflux disease (NERD) and FH groups. The prevalence of symptom overlaps FD and IBS, between NERD and FH groups was analyzed. Women were more likely to present with FH than with NERD (P < 0.05). The participants with FH had higher prevalence of anxiety and depression than those with NERD (92% vs. 75%, 88% vs. 65% respectively, P < 0.05). Fifty-two (47.3%) patients with heartburn symptom had FD symptoms; 31 (28.2%) had IBS symptoms, and 10 (9.09%) had both FD and IBS symptoms. Patients with FH were more likely to have symptom overlaps of FD and IBS than those with NERD (62% vs. 35%, 48% vs. 11.7%, respectively; P < 0.01). Epigastric pain syndrome (EPS), a subtype of FD, was slightly more likely to have overlapped NERD and FH symptoms than postprandial discomfort symdrome (PDS). But the difference was not significant (29. 1% vs. 18.2%, P > 0.05). IBS-diarrhea was also slightly more likely to have overlapped NERD and FH symptoms than IBS-constipation. Again, the difference was not significant (16.4% vs. 11.8%, P > 0.05). Female, higher prevalence of anxiety and depression, overlapped FD and IBS symptoms are more likely to appear in FH patients than in NERD patients.
NASA Astrophysics Data System (ADS)
Karaca, Caglar; Atac, Ahmet; Karabacak, Mehmet
2015-02-01
In this study, 5-iodosalicylic acid (5-ISA, C7H5IO3) is structurally characterized by FT-IR, FT-Raman, NMR and UV spectroscopies. There are eight conformers, Cn, n = 1-8 for this molecule therefore the molecular geometry for these eight conformers in the ground state are calculated by using the ab-initio density functional theory (DFT) B3LYP method approach with the aug-cc-pVDZ-PP basis set for iodine and the aug-cc-pVDZ basis set for the other elements. The computational results identified that the most stable conformer of 5-ISA is the C1 form. The vibrational spectra are calculated DFT method invoking the same basis sets and fundamental vibrations are assigned on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method with PQS program. Total density of state (TDOS) and partial density of state (PDOS) and also overlap population density of state (COOP or OPDOS) diagrams analysis for C1 conformer were calculated using the same method. The energy and oscillator strength are calculated by time-dependent density functional theory (TD-DFT) results complement with the experimental findings. Besides, charge transfer occurring in the molecule between HOMO and LUMO energies, frontier energy gap, molecular electrostatic potential (MEP) are calculated and presented. The NMR chemical shifts (1H and 13C) spectra are recorded and calculated using the gauge independent atomic orbital (GIAO) method. Mulliken atomic charges of the title molecule are also calculated, interpreted and compared with salicylic acid. The optimized bond lengths, bond angles and calculated NMR and UV, vibrational wavenumbers showed the best agreement with the experimental results.
NASA Astrophysics Data System (ADS)
Hervo, Maxime; Poltera, Yann; Haefele, Alexander
2016-07-01
Imperfections in a lidar's overlap function lead to artefacts in the background, range and overlap-corrected lidar signals. These artefacts can erroneously be interpreted as an aerosol gradient or, in extreme cases, as a cloud base leading to false cloud detection. A correct specification of the overlap function is hence crucial in the use of automatic elastic lidars (ceilometers) for the detection of the planetary boundary layer or of low cloud. In this study, an algorithm is presented to correct such artefacts. It is based on the assumption of a homogeneous boundary layer and a correct specification of the overlap function down to a minimum range, which must be situated within the boundary layer. The strength of the algorithm lies in a sophisticated quality-check scheme which allows the reliable identification of favourable atmospheric conditions. The algorithm was applied to 2 years of data from a CHM15k ceilometer from the company Lufft. Backscatter signals corrected for background, range and overlap were compared using the overlap function provided by the manufacturer and the one corrected with the presented algorithm. Differences between corrected and uncorrected signals reached up to 45 % in the first 300 m above ground. The amplitude of the correction turned out to be temperature dependent and was larger for higher temperatures. A linear model of the correction as a function of the instrument's internal temperature was derived from the experimental data. Case studies and a statistical analysis of the strongest gradient derived from corrected signals reveal that the temperature model is capable of a high-quality correction of overlap artefacts, in particular those due to diurnal variations. The presented correction method has the potential to significantly improve the detection of the boundary layer with gradient-based methods because it removes false candidates and hence simplifies the attribution of the detected gradients to the planetary boundary layer. A particularly significant benefit can be expected for the detection of shallow stable layers typical of night-time situations. The algorithm is completely automatic and does not require any on-site intervention but requires the definition of an adequate instrument-specific configuration. It is therefore suited for use in large ceilometer networks.
NASA Astrophysics Data System (ADS)
Talebpour, Zahra; Tavallaie, Roya; Ahmadi, Seyyed Hamid; Abdollahpour, Assem
2010-09-01
In this study, a new method for the simultaneous determination of penicillin G salts in pharmaceutical mixture via FT-IR spectroscopy combined with chemometrics was investigated. The mixture of penicillin G salts is a complex system due to similar analytical characteristics of components. Partial least squares (PLS) and radial basis function-partial least squares (RBF-PLS) were used to develop the linear and nonlinear relation between spectra and components, respectively. The orthogonal signal correction (OSC) preprocessing method was used to correct unexpected information, such as spectral overlapping and scattering effects. In order to compare the influence of OSC on PLS and RBF-PLS models, the optimal linear (PLS) and nonlinear (RBF-PLS) models based on conventional and OSC preprocessed spectra were established and compared. The obtained results demonstrated that OSC clearly enhanced the performance of both RBF-PLS and PLS calibration models. Also in the case of some nonlinear relation between spectra and component, OSC-RBF-PLS gave satisfactory results than OSC-PLS model which indicated that the OSC was helpful to remove extrinsic deviations from linearity without elimination of nonlinear information related to component. The chemometric models were tested on an external dataset and finally applied to the analysis commercialized injection product of penicillin G salts.
Földes, Noémi; Philipp, Andrea M; Badets, Arnaud; Koch, Iring
2018-05-01
The ideomotor principle states that actions are represented by their anticipated sensory effects. This notion is often tested using the response-effect compatibility (REC) paradigm, where participants' responses are followed either by a compatible or incompatible response effect (e.g., an effect on the right side after a right-hand response is considered R-E compatible due to the spatial overlap, whereas an effect on the left side after the right-hand response is considered incompatible). Shorter reaction times are typically observed in the compatible condition compared to the incompatible condition (i.e., REC effect), suggesting that effect anticipation plays a role in action control. Previous evidence from verbal REC suggested that effect anticipation can be due to conceptual R-E overlap, but there was also phonological overlap (i.e., anticipated reading of a word preceded by the vocal response of saying that very word). To examine the representational basis of REC, in three experiments, we introduced a bilingual R-E mapping to exclude phonological R-E overlap (i.e., in the R-E compatible condition, the translation equivalent of the response word is presented as an effect word in a different language). Our findings show that the REC effect is obtained when presenting the effect word in the same language as the response (i.e., monolingual condition), but the compatibility effect was not found when the semantically same word is presented in a different language, suggesting no conceptually generalized REC in a bilingual setting. (232 words). Copyright © 2018 Elsevier B.V. All rights reserved.
West, Aaron C; Schmidt, Michael W; Gordon, Mark S; Ruedenberg, Klaus
2017-02-09
A general intrinsic energy resolution has been formulated for strongly correlated wave functions in the full molecular valence space and its subspaces. The information regarding the quasi-atomic organization of the molecular electronic structure is extracted from the molecular wave function without introducing any additional postulated model state wave functions. To this end, the molecular wave function is expressed in terms of quasi-atomic molecular orbitals, which maximize the overlap between subspaces of the molecular orbital space and the free-atom orbital spaces. As a result, the molecular wave function becomes the superposition of a wave function representing the juxtaposed nonbonded quasi-atoms and a wave function describing the interatomic electron migrations that create bonds through electron sharing. The juxtaposed nonbonded quasi-atoms are shown to consist of entangled quasi-atomic states from different atoms. The binding energy is resolved as a sum of contributions that are due to quasi-atom formation, quasiclassical electrostatic interactions, and interatomic interferences caused by electron sharing. The contributions are further resolved according to orbital interactions. The various transformations that generate the analysis are determined by criteria that are independent of the working orbital basis used for calculating the molecular wave function. The theoretical formulation of the resolution is quantitatively validated by an application to the C 2 molecule.
A Galerkin formulation of the MIB method for three dimensional elliptic interface problems
Xia, Kelin; Wei, Guo-Wei
2014-01-01
We develop a three dimensional (3D) Galerkin formulation of the matched interface and boundary (MIB) method for solving elliptic partial differential equations (PDEs) with discontinuous coefficients, i.e., the elliptic interface problem. The present approach builds up two sets of elements respectively on two extended subdomains which both include the interface. As a result, two sets of elements overlap each other near the interface. Fictitious solutions are defined on the overlapping part of the elements, so that the differentiation operations of the original PDEs can be discretized as if there was no interface. The extra coefficients of polynomial basis functions, which furnish the overlapping elements and solve the fictitious solutions, are determined by interface jump conditions. Consequently, the interface jump conditions are rigorously enforced on the interface. The present method utilizes Cartesian meshes to avoid the mesh generation in conventional finite element methods (FEMs). We implement the proposed MIB Galerkin method with three different elements, namely, rectangular prism element, five-tetrahedron element and six-tetrahedron element, which tile the Cartesian mesh without introducing any new node. The accuracy, stability and robustness of the proposed 3D MIB Galerkin are extensively validated over three types of elliptic interface problems. In the first type, interfaces are analytically defined by level set functions. These interfaces are relatively simple but admit geometric singularities. In the second type, interfaces are defined by protein surfaces, which are truly arbitrarily complex. The last type of interfaces originates from multiprotein complexes, such as molecular motors. Near second order accuracy has been confirmed for all of these problems. To our knowledge, it is the first time for an FEM to show a near second order convergence in solving the Poisson equation with realistic protein surfaces. Additionally, the present work offers the first known near second order accurate method for C1 continuous or H2 continuous solutions associated with a Lipschitz continuous interface in a 3D setting. PMID:25309038
Southan, Christopher; Várkonyi, Péter; Muresan, Sorel
2009-07-06
Since 2004 public cheminformatic databases and their collective functionality for exploring relationships between compounds, protein sequences, literature and assay data have advanced dramatically. In parallel, commercial sources that extract and curate such relationships from journals and patents have also been expanding. This work updates a previous comparative study of databases chosen because of their bioactive content, availability of downloads and facility to select informative subsets. Where they could be calculated, extracted compounds-per-journal article were in the range of 12 to 19 but compound-per-protein counts increased with document numbers. Chemical structure filtration to facilitate standardised comparisons typically reduced source counts by between 5% and 30%. The pair-wise overlaps between 23 databases and subsets were determined, as well as changes between 2006 and 2008. While all compound sets have increased, PubChem has doubled to 14.2 million. The 2008 comparison matrix shows not only overlap but also unique content across all sources. Many of the detailed differences could be attributed to individual strategies for data selection and extraction. While there was a big increase in patent-derived structures entering PubChem since 2006, GVKBIO contains over 0.8 million unique structures from this source. Venn diagrams showed extensive overlap between compounds extracted by independent expert curation from journals by GVKBIO, WOMBAT (both commercial) and BindingDB (public) but each included unique content. In contrast, the approved drug collections from GVKBIO, MDDR (commercial) and DrugBank (public) showed surprisingly low overlap. Aggregating all commercial sources established that while 1 million compounds overlapped with PubChem 1.2 million did not. On the basis of chemical structure content per se public sources have covered an increasing proportion of commercial databases over the last two years. However, commercial products included in this study provide links between compounds and information from patents and journals at a larger scale than current public efforts. They also continue to capture a significant proportion of unique content. Our results thus demonstrate not only an encouraging overall expansion of data-supported bioactive chemical space but also that both commercial and public sources are complementary for its exploration.
NASA Technical Reports Server (NTRS)
Oreopoulos, Lazaros; Lee, Dongmin; Norris, Peter; Yuan, Tianle
2011-01-01
It has been shown that the details of how cloud fraction overlap is treated in GCMs has substantial impact on shortwave and longwave fluxes. Because cloud condensate is also horizontally heterogeneous at GCM grid scales, another aspect of cloud overlap should in principle also be assessed, namely the vertical overlap of hydrometeor distributions. This type of overlap is usually examined in terms of rank correlations, i.e., linear correlations between hydrometeor amount ranks of the overlapping parts of cloud layers at specific separation distances. The cloud fraction overlap parameter and the rank correlation of hydrometeor amounts can be both expressed as inverse exponential functions of separation distance characterized by their respective decorrelation lengths (e-folding distances). Larger decorrelation lengths mean that hydrometeor fractions and probability distribution functions have high levels of vertical alignment. An analysis of CloudSat and CALIPSO data reveals that the two aspects of cloud overlap are related and their respective decorrelation lengths have a distinct dependence on latitude that can be parameterized and included in a GCM. In our presentation we will contrast the Cloud Radiative Effect (CRE) of the GEOS-5 atmospheric GCM (AGCM) when the observationally-based parameterization of decorrelation lengths is used to represent overlap versus the simpler cases of maximum-random overlap and globally constant decorrelation lengths. The effects of specific overlap representations will be examined for both diagnostic and interactive radiation runs in GEOS-5 and comparisons will be made with observed CREs from CERES and CloudSat (2B-FLXHR product). Since the radiative effects of overlap depend on the cloud property distributions of the AGCM, the availability of two different cloud schemes in GEOS-5 will give us the opportunity to assess a wide range of potential cloud overlap consequences on the model's climate.
Geology and paleontology of the Santa Maria district, California
Woodring, W.P.; Bramlette, M.N.
1950-01-01
Among areas of possible interest, three appear to be favorable for prospecting on the basis of surface geology: an area east of Foxen Canyon, where oil may be trapped in the basal part of the Tinaquaic sandstone member of the Sisquoc formation by westward overlap of successively higher Tinaquaic strata onto the Monterey shale; an area so1tth of the I ... ions Head fault, where oil may be trapped by the fault; and the offshore extension of the north border of Point Sal Ridge, where oil may possibly be trapped in the Monterey by overlap of the Sisquoc formation.
The Overlap between Irritable Bowel Syndrome and Non-Celiac Gluten Sensitivity: A Clinical Dilemma.
Makharia, Archita; Catassi, Carlo; Makharia, Govind K
2015-12-10
The spectrum of gluten-related disorders has widened in recent times and includes celiac disease, non-celiac gluten sensitivity, and wheat allergy. The complex of symptoms associated with these diseases, such as diarrhea, constipation or abdominal pain may overlap for the gluten related diseases, and furthermore they can be similar to those caused by various other intestinal diseases, such as irritable bowel syndrome (IBS). The mechanisms underlying symptom generation are diverse for all these diseases. Some patients with celiac disease may remain asymptomatic or have only mild gastrointestinal symptoms and thus may qualify for the diagnosis of IBS in the general clinical practice. Similarly, the overlap of symptoms between IBS and non-celiac gluten sensitivity (NCGS) often creates a dilemma for clinicians. While the treatment of NCGS is exclusion of gluten from the diet, some, but not all, of the patients with IBS also improve on a gluten-free diet. Both IBS and NCGS are common in the general population and both can coexist with each other independently without necessarily sharing a common pathophysiological basis. Although the pathogenesis of NCGS is not well understood, it is likely to be heterogeneous with possible contributing factors such as low-grade intestinal inflammation, increased intestinal barrier function and changes in the intestinal microbiota. Innate immunity may also play a pivotal role. One possible inducer of innate immune response has recently been reported to be amylase-trypsin inhibitor, a protein present in wheat endosperm and the source of flour, along with the gluten proteins.
The Overlap between Irritable Bowel Syndrome and Non-Celiac Gluten Sensitivity: A Clinical Dilemma
Makharia, Archita; Catassi, Carlo; Makharia, Govind K.
2015-01-01
The spectrum of gluten-related disorders has widened in recent times and includes celiac disease, non-celiac gluten sensitivity, and wheat allergy. The complex of symptoms associated with these diseases, such as diarrhea, constipation or abdominal pain may overlap for the gluten related diseases, and furthermore they can be similar to those caused by various other intestinal diseases, such as irritable bowel syndrome (IBS). The mechanisms underlying symptom generation are diverse for all these diseases. Some patients with celiac disease may remain asymptomatic or have only mild gastrointestinal symptoms and thus may qualify for the diagnosis of IBS in the general clinical practice. Similarly, the overlap of symptoms between IBS and non-celiac gluten sensitivity (NCGS) often creates a dilemma for clinicians. While the treatment of NCGS is exclusion of gluten from the diet, some, but not all, of the patients with IBS also improve on a gluten-free diet. Both IBS and NCGS are common in the general population and both can coexist with each other independently without necessarily sharing a common pathophysiological basis. Although the pathogenesis of NCGS is not well understood, it is likely to be heterogeneous with possible contributing factors such as low-grade intestinal inflammation, increased intestinal barrier function and changes in the intestinal microbiota. Innate immunity may also play a pivotal role. One possible inducer of innate immune response has recently been reported to be amylase-trypsin inhibitor, a protein present in wheat endosperm and the source of flour, along with the gluten proteins. PMID:26690475
Representation of the speech effectors in the human motor cortex: somatotopy or overlap?
Takai, Osamu; Brown, Steven; Liotti, Mario
2010-04-01
Somatotopy within the orofacial region of the human motor cortex has been a central concept in interpreting the results of neuroimaging and transcranial magnetic stimulation studies of normal and disordered speech. Yet, somatotopy has been challenged by studies showing overlap among the effectors within the homunculus. In order to address this dichotomy, we performed four voxel-based meta-analyses of 54 functional neuroimaging studies of non-speech tasks involving respiration, lip movement, tongue movement, and swallowing, respectively. While the centers of mass of the clusters supported the classic homuncular view of the motor cortex, there was significant variability in the locations of the activation-coordinates among studies, resulting in an overlapping arrangement. This "somatotopy with overlap" might reflect the intrinsic functional interconnectedness of the oral effectors for speech production.
Linkersdörfer, Janosch; Lonnemann, Jan; Lindberg, Sven; Hasselhorn, Marcus; Fiebach, Christian J.
2012-01-01
The neural correlates of developmental dyslexia have been investigated intensively over the last two decades and reliable evidence for a dysfunction of left-hemispheric reading systems in dyslexic readers has been found in functional neuroimaging studies. In addition, structural imaging studies using voxel-based morphometry (VBM) demonstrated grey matter reductions in dyslexics in several brain regions. To objectively assess the consistency of these findings, we performed activation likelihood estimation (ALE) meta-analysis on nine published VBM studies reporting 62 foci of grey matter reduction in dyslexic readers. We found six significant clusters of convergence in bilateral temporo-parietal and left occipito-temporal cortical regions and in the cerebellum bilaterally. To identify possible overlaps between structural and functional deviations in dyslexic readers, we conducted additional ALE meta-analyses of imaging studies reporting functional underactivations (125 foci from 24 studies) or overactivations (95 foci from 11 studies ) in dyslexics. Subsequent conjunction analyses revealed overlaps between the results of the VBM meta-analysis and the meta-analysis of functional underactivations in the fusiform and supramarginal gyri of the left hemisphere. An overlap between VBM results and the meta-analysis of functional overactivations was found in the left cerebellum. The results of our study provide evidence for consistent grey matter variations bilaterally in the dyslexic brain and substantial overlap of these structural variations with functional abnormalities in left hemispheric regions. PMID:22916214
Li, Zhenping; Zhang, Xiang-Sun; Wang, Rui-Sheng; Liu, Hongwei; Zhang, Shihua
2013-01-01
Identification of communities in complex networks is an important topic and issue in many fields such as sociology, biology, and computer science. Communities are often defined as groups of related nodes or links that correspond to functional subunits in the corresponding complex systems. While most conventional approaches have focused on discovering communities of nodes, some recent studies start partitioning links to find overlapping communities straightforwardly. In this paper, we propose a new quantity function for link community identification in complex networks. Based on this quantity function we formulate the link community partition problem into an integer programming model which allows us to partition a complex network into overlapping communities. We further propose a genetic algorithm for link community detection which can partition a network into overlapping communities without knowing the number of communities. We test our model and algorithm on both artificial networks and real-world networks. The results demonstrate that the model and algorithm are efficient in detecting overlapping community structure in complex networks. PMID:24386268
A game theoretic algorithm to detect overlapping community structure in networks
NASA Astrophysics Data System (ADS)
Zhou, Xu; Zhao, Xiaohui; Liu, Yanheng; Sun, Geng
2018-04-01
Community detection can be used as an important technique for product and personalized service recommendation. A game theory based approach to detect overlapping community structure is introduced in this paper. The process of the community formation is converted into a game, when all agents (nodes) cannot improve their own utility, the game process will be terminated. The utility function is composed of a gain and a loss function and we present a new gain function in this paper. In addition, different from choosing action randomly among join, quit and switch for each agent to get new label, two new strategies for each agent to update its label are designed during the game, and the strategies are also evaluated and compared for each agent in order to find its best result. The overlapping community structure is naturally presented when the stop criterion is satisfied. The experimental results demonstrate that the proposed algorithm outperforms other similar algorithms for detecting overlapping communities in networks.
The neural basis for category-specific knowledge: an fMRI study.
Grossman, Murray; Koenig, Phyllis; DeVita, Chris; Glosser, Guila; Alsop, David; Detre, John; Gee, James
2002-04-01
Functional neuroimaging studies of healthy adults have associated different categories of knowledge with distinct activation patterns. The basis for these recruitment patterns has been controversial, due in part to the limited range of categories that has been studied. We used fMRI to monitor regional cortical recruitment patterns while subjects were exposed to printed names of Animals, Implements, and Abstract nouns. Both Implements and Abstract nouns were related to recruitment of left posterolateral temporal cortex and left prefrontal cortex, and Abstract nouns additionally recruited posterolateral temporal and prefrontal regions of the right hemisphere. Animals were associated with activation of ventral-medial occipital cortex in the left hemisphere at a level that approaches significance. These findings are not consistent with the "sensory-motor" model proposed to explain the neural representation of word knowledge. We suggest instead a neural model of semantic memory that reflects the processes common to understanding Implements and Abstract nouns and a selective sensitivity, possibly evolving from adaptive pressures, to the overlapping, intercorrelated visual characteristics of Animals. (C)2002 Elsevier Science (USA).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Regnier, D.; Dubray, N.; Verriere, M.
The time-dependent generator coordinate method (TDGCM) is a powerful method to study the large amplitude collective motion of quantum many-body systems such as atomic nuclei. Under the Gaussian Overlap Approximation (GOA), the TDGCM leads to a local, time-dependent Schrödinger equation in a multi-dimensional collective space. In this study, we present the version 2.0 of the code FELIX that solves the collective Schrödinger equation in a finite element basis. This new version features: (i) the ability to solve a generalized TDGCM+GOA equation with a metric term in the collective Hamiltonian, (ii) support for new kinds of finite elements and different typesmore » of quadrature to compute the discretized Hamiltonian and overlap matrices, (iii) the possibility to leverage the spectral element scheme, (iv) an explicit Krylov approximation of the time propagator for time integration instead of the implicit Crank–Nicolson method implemented in the first version, (v) an entirely redesigned workflow. We benchmark this release on an analytic problem as well as on realistic two-dimensional calculations of the low-energy fission of 240Pu and 256Fm. Low to moderate numerical precision calculations are most efficiently performed with simplex elements with a degree 2 polynomial basis. Higher precision calculations should instead use the spectral element method with a degree 4 polynomial basis. Finally, we emphasize that in a realistic calculation of fission mass distributions of 240Pu, FELIX-2.0 is about 20 times faster than its previous release (within a numerical precision of a few percents).« less
Regnier, D.; Dubray, N.; Verriere, M.; ...
2017-12-20
The time-dependent generator coordinate method (TDGCM) is a powerful method to study the large amplitude collective motion of quantum many-body systems such as atomic nuclei. Under the Gaussian Overlap Approximation (GOA), the TDGCM leads to a local, time-dependent Schrödinger equation in a multi-dimensional collective space. In this study, we present the version 2.0 of the code FELIX that solves the collective Schrödinger equation in a finite element basis. This new version features: (i) the ability to solve a generalized TDGCM+GOA equation with a metric term in the collective Hamiltonian, (ii) support for new kinds of finite elements and different typesmore » of quadrature to compute the discretized Hamiltonian and overlap matrices, (iii) the possibility to leverage the spectral element scheme, (iv) an explicit Krylov approximation of the time propagator for time integration instead of the implicit Crank–Nicolson method implemented in the first version, (v) an entirely redesigned workflow. We benchmark this release on an analytic problem as well as on realistic two-dimensional calculations of the low-energy fission of 240Pu and 256Fm. Low to moderate numerical precision calculations are most efficiently performed with simplex elements with a degree 2 polynomial basis. Higher precision calculations should instead use the spectral element method with a degree 4 polynomial basis. Finally, we emphasize that in a realistic calculation of fission mass distributions of 240Pu, FELIX-2.0 is about 20 times faster than its previous release (within a numerical precision of a few percents).« less
Shared genetic basis for migraine and ischemic stroke
Malik, Rainer; Freilinger, Tobias; Winsvold, Bendik S.; Anttila, Verneri; Vander Heiden, Jason; Traylor, Matthew; de Vries, Boukje; Holliday, Elizabeth G.; Terwindt, Gisela M.; Sturm, Jonathan; Bis, Joshua C.; Hopewell, Jemma C.; Ferrari, Michel D.; Rannikmae, Kristiina; Wessman, Maija; Kallela, Mikko; Kubisch, Christian; Fornage, Myriam; Meschia, James F.; Lehtimäki, Terho; Sudlow, Cathie; Clarke, Robert; Chasman, Daniel I.; Mitchell, Braxton D.; Maguire, Jane; Kaprio, Jaakko; Farrall, Martin; Raitakari, Olli T.; Kurth, Tobias; Ikram, M. Arfan; Reiner, Alex P.; Longstreth, W.T.; Rothwell, Peter M.; Strachan, David P.; Sharma, Pankaj; Seshadri, Sudha; Quaye, Lydia; Cherkas, Lynn; Schürks, Markus; Rosand, Jonathan; Ligthart, Lannie; Boncoraglio, Giorgio B.; Davey Smith, George; van Duijn, Cornelia M.; Stefansson, Kari; Worrall, Bradford B.; Nyholt, Dale R.; Markus, Hugh S.; van den Maagdenberg, Arn M.J.M.; Cotsapas, Chris; Zwart, John A.; Palotie, Aarno
2015-01-01
Objective: To quantify genetic overlap between migraine and ischemic stroke (IS) with respect to common genetic variation. Methods: We applied 4 different approaches to large-scale meta-analyses of genome-wide data on migraine (23,285 cases and 95,425 controls) and IS (12,389 cases and 62,004 controls). First, we queried known genome-wide significant loci for both disorders, looking for potential overlap of signals. We then analyzed the overall shared genetic load using polygenic scores and estimated the genetic correlation between disease subtypes using data derived from these models. We further interrogated genomic regions of shared risk using analysis of covariance patterns between the 2 phenotypes using cross-phenotype spatial mapping. Results: We found substantial genetic overlap between migraine and IS using all 4 approaches. Migraine without aura (MO) showed much stronger overlap with IS and its subtypes than migraine with aura (MA). The strongest overlap existed between MO and large artery stroke (LAS; p = 6.4 × 10−28 for the LAS polygenic score in MO) and between MO and cardioembolic stroke (CE; p = 2.7 × 10−20 for the CE score in MO). Conclusions: Our findings indicate shared genetic susceptibility to migraine and IS, with a particularly strong overlap between MO and both LAS and CE pointing towards shared mechanisms. Our observations on MA are consistent with a limited role of common genetic variants in this subtype. PMID:25934857
Chaudhury, Arun
2015-01-01
The pathophysiology of gastrointestinal motility disorders is controversial and largely unresolved. This provokes empiric approaches to patient management of these so-called functional gastrointestinal disorders. Preliminary evidence demonstrates that defects in neuronal nitric oxide synthase (nNOS) expression and function, the enzyme that synthesizes nitric oxide (NO), the key inhibitory neurotransmitter mediating mechano-electrical smooth muscle relaxation, is the major pathophysiological basis for sluggishness of oro-aboral transit of luminal contents. This opinion is an ansatz of the potential of skeletal muscle biopsy and examining sarcolemmal nNOSμ to provide complementary insights regarding nNOSα expression, localization, and function within enteric nerve terminals, the site of stimulated de novo NO synthesis. The main basis of this thesis is twofold: (a) the molecular similarity of the structures of nNOS α and μ, similar mechanisms of localizations to “active zones” of nitrergic synthesis, and same mechanisms of electron transfers during NO synthesis and (b) pragmatic difficulty to routinely obtain full-thickness biopsies of gastrointestinal tract, even in patients presenting with the most recalcitrant manifestations of stasis and delayed transit of luminal contents. This opinion attempts to provoke dialog whether this approach is feasible as a surrogate to predict catalytic potential of nNOSα and defects in nitrergic neurotransmission. This discussion makes an assumption that similar molecular mechanisms of nNOS defects shall be operant in both the enteric nerve terminals and the skeletal muscles. These overlaps of skeletal and gastrointestinal dysfunction are largely unknown, thus meriting that the thesis be validated in future by proof-of-principle experiments. PMID:26284245
Variable optical attenuator and dynamic mode group equalizer for few mode fibers.
Blau, Miri; Weiss, Israel; Gerufi, Jonathan; Sinefeld, David; Bin-Nun, Moran; Lingle, Robert; Grüner-Nielsen, Lars; Marom, Dan M
2014-12-15
Variable optical attenuation (VOA) for three-mode fiber is experimentally presented, utilizing an amplitude spatial light modulator (SLM), achieving up to -28dB uniform attenuation for all modes. Using the ability to spatially vary the attenuation distribution with the SLM, we also achieve up to 10dB differential attenuation between the fiber's two supported mode group (LP₀₁ and LP₁₁). The spatially selective attenuation serves as the basis of a dynamic mode-group equalizer (DME), potentially gain-balancing mode dependent optical amplification. We extend the experimental three mode DME functionality with a performance analysis of a fiber supporting 6 spatial modes in four mode groups. The spatial modes' distribution and overlap limit the available dynamic range and performance of the DME in the higher mode count case.
Goulardins, Juliana B; Rigoli, Daniela; Licari, Melissa; Piek, Jan P; Hasue, Renata H; Oosterlaan, Jaap; Oliveira, Jorge A
2015-10-01
Attention deficit hyperactivity disorder (ADHD) has been described as the most prevalent behavioral disorder in children. Developmental coordination disorder (DCD) is one of the most prevalent childhood movement disorders. The overlap between the two conditions is estimated to be around 50%, with both substantially interfering with functioning and development, and leading to poorer psychosocial outcomes. This review provides an overview of the relationship between ADHD and DCD, discussing the common presenting features, etiology, neural basis, as well as associated deficits in motor functioning, attention and executive functioning. It is currently unclear which specific motor and cognitive difficulties are intrinsic to each disorder as many studies of ADHD have not been screened for DCD and vice-versa. The evidence supporting common brain underpinnings is still very limited, but studies using well defined samples have pointed to non-shared underpinnings for ADHD and DCD. The current paper suggests that ADHD and DCD are separate disorders that may require different treatment approaches. Copyright © 2015 Elsevier B.V. All rights reserved.
Lewis, Scott M.; Christova, Peka; Jerde, Trenton A.; Georgopoulos, Apostolos P.
2012-01-01
We used hierarchical tree clustering to derive a functional organizational chart of 52 human cortical areas (26 per hemisphere) from zero-lag correlations calculated between single-voxel, prewhitened, resting-state BOLD fMRI time series in 18 subjects. No special “resting-state networks” were identified. There were four major features in the resulting tree (dendrogram). First, there was a strong clustering of homotopic, left-right hemispheric areas. Second, cortical areas were concatenated in multiple, partially overlapping clusters. Third, the arrangement of the areas revealed a layout that closely resembled the actual layout of the cerebral cortex, namely an orderly progression from anterior to posterior. And fourth, the layout of the cortical areas in the tree conformed to principles of efficient, compact layout of components proposed by Cherniak. Since the tree was derived on the basis of the strength of neural correlations, these results document an orderly relation between functional interactions and layout, i.e., between structure and function. PMID:22973198
Noncoding RNA Shows Context-Dependent Function | Center for Cancer Research
In addition to well-studied protein coding sequences, it is known that the genomes of higher organisms produce numerous noncoding RNAs (ncRNAs). Important roles for some ncRNAs in cell function have been demonstrated, though usually on a case-by-case basis, leading some scientists to argue that the majority of ncRNA production is just “noise” that results from the imperfect transcription machinery. The fact that many ncRNAs overlap with coding genes has hampered studies of their activities. Thus, a general understanding of whether ncRNA production is functional or not is lacking. To address this issue, Daniel Larson, Ph.D., of CCR’s Laboratory of Receptor Biology and Gene Expression, and his colleagues developed a new approach using single-molecule imaging in living cells. The researchers specifically labeled coding and ncRNAs from the GAL locus in yeast, which regulates the galactose response. Glucose is the preferred source of carbon for yeast, but when it is scarce, genes within the GAL locus, including GAL10 and GAL1, are activated to allow the metabolism of galactose.
Trophic niche width and overlap of two sympatric gulls in the southwestern mediterranean.
González-Solís, Jacob; Oro, Daniel; Jover, Lluis; Ruiz, Xavier; Pedrocchi, Vittorio
1997-09-01
The diets of two potential competitor species, Audouin's Larus audouinii and yellow-legged gulls Larus cachinnans, were examined while they bred at the Chafarinas Islands during 1993, 1994, and 1995. Data were collected during two commercial fishing regimes: (1) trawling and purse seine fisheries, and (2) diurnal trawlers only. Since the food supply for the gulls in this area was heavily reliant on the activity of purse seine fisheries, these contrasting situations allowed us to analyze short-term effects, induced by daily changes in food supply, on niche width, dietary shift, and niche overlap between the two species. Overall, both species relied mainly on fish for food, especially Clupeiforms, in the case of Audouin's gull irrespective of the fishing situation, and in the case of the yellow-legged gull, only when purse seine fishing was in operation. When purse seine boats did not operate (food shortage), yellow-legged gulls broadened their niche, consuming equal amounts of all the feeding resources, and they showed a dietary shift toward a greater consumption of prey from refuse tips. In contrast, Audouin's gulls did not change their niche width, but showed a slight dietary shift away from the consumption of epipelagic fish, compensated by an increase in reliance on benthic-mesopelagic resources. Niche overlap was clearly higher on days when both fishing fleets operated, probably because a superabundant food resource facilitates high overlap without affecting coexistence between the two species. Since our study was developed on the basis of daily variations in food supply, and competition effects are to be expected on a longer-term basis, these changes can be seen as the outcome of the coexistence of two species in stable competitive equilibrium.
Dementia in motor neuron disease: Reviewing the role of MRI in diagnosis
da Rocha, Antonio José; Nunes, Renato Hoffmann; Maia Jr., Antonio Carlos Martins
2015-01-01
The superimposed clinical features of motor neuron disease (MND) and frontotemporal dementia (FTD) comprise a distinct, yet not fully understood, neurological overlap syndrome whose clinicopathological basis has recently been reviewed. Here, we present a review of the clinical, pathological and genetic basis of MND-FTD and the role of MRI in its diagnosis. In doing so, we discuss current techniques that depict the involvement of the selective corticospinal tract (CST) and temporal lobe in MND-FTD. PMID:29213986
New separated polynomial solutions to the Zernike system on the unit disk and interbasis expansion.
Pogosyan, George S; Wolf, Kurt Bernardo; Yakhno, Alexander
2017-10-01
The differential equation proposed by Frits Zernike to obtain a basis of polynomial orthogonal solutions on the unit disk to classify wavefront aberrations in circular pupils is shown to have a set of new orthonormal solution bases involving Legendre and Gegenbauer polynomials in nonorthogonal coordinates, close to Cartesian ones. We find the overlaps between the original Zernike basis and a representative of the new set, which turn out to be Clebsch-Gordan coefficients.
Fotina, I; Lütgendorf-Caucig, C; Stock, M; Pötter, R; Georg, D
2012-02-01
Inter-observer studies represent a valid method for the evaluation of target definition uncertainties and contouring guidelines. However, data from the literature do not yet give clear guidelines for reporting contouring variability. Thus, the purpose of this work was to compare and discuss various methods to determine variability on the basis of clinical cases and a literature review. In this study, 7 prostate and 8 lung cases were contoured on CT images by 8 experienced observers. Analysis of variability included descriptive statistics, calculation of overlap measures, and statistical measures of agreement. Cross tables with ratios and correlations were established for overlap parameters. It was shown that the minimal set of parameters to be reported should include at least one of three volume overlap measures (i.e., generalized conformity index, Jaccard coefficient, or conformation number). High correlation between these parameters and scatter of the results was observed. A combination of descriptive statistics, overlap measure, and statistical measure of agreement or reliability analysis is required to fully report the interrater variability in delineation.
Network neighborhood analysis with the multi-node topological overlap measure.
Li, Ai; Horvath, Steve
2007-01-15
The goal of neighborhood analysis is to find a set of genes (the neighborhood) that is similar to an initial 'seed' set of genes. Neighborhood analysis methods for network data are important in systems biology. If individual network connections are susceptible to noise, it can be advantageous to define neighborhoods on the basis of a robust interconnectedness measure, e.g. the topological overlap measure. Since the use of multiple nodes in the seed set may lead to more informative neighborhoods, it can be advantageous to define multi-node similarity measures. The pairwise topological overlap measure is generalized to multiple network nodes and subsequently used in a recursive neighborhood construction method. A local permutation scheme is used to determine the neighborhood size. Using four network applications and a simulated example, we provide empirical evidence that the resulting neighborhoods are biologically meaningful, e.g. we use neighborhood analysis to identify brain cancer related genes. An executable Windows program and tutorial for multi-node topological overlap measure (MTOM) based analysis can be downloaded from the webpage (http://www.genetics.ucla.edu/labs/horvath/MTOM/).
Overlap Spectrum Fiber Bragg Grating Sensor Based on Light Power Demodulation
Zhang, Hao; Jiang, Junzhen; Liu, Shuang; Chen, Huaixi; Zheng, Xiaoqian; Qiu, Yishen
2018-01-01
Demodulation is a bottleneck for applications involving fiber Bragg gratings (FBGs). An overlap spectrum FBG sensor based on a light power demodulation method is presented in this paper. The demodulation method uses two chirp FBGs (cFBGs) of which the reflection spectra partially overlap each other. The light power variation of the overlap spectrum can be linked to changes in the measurand, and the sensor function can be realized via this relationship. A temperature experiment showed that the relationship between the overlap power spectrum of the FBG sensor and temperature had good linearity and agreed with the theoretical analysis. PMID:29772793
Vesicular perylene dye nanocapsules as supramolecular fluorescent pH sensor systems.
Zhang, Xin; Rehm, Stefanie; Safont-Sempere, Marina M; Würthner, Frank
2009-11-01
Water-soluble, self-assembled nanocapsules composed of a functional bilayer membrane and enclosed guest molecules can provide smart (that is, condition responsive) sensors for a variety of purposes. Owing to their outstanding optical and redox properties, perylene bisimide chromophores are interesting building blocks for a functional bilayer membrane in a water environment. Here, we report water-soluble perylene bisimide vesicles loaded with bispyrene-based energy donors in their aqueous interior. These loaded vesicles are stabilized by in situ photopolymerization to give nanocapsules that are stable over the entire aqueous pH range. On the basis of pH-tunable spectral overlap of donors and acceptors, the donor-loaded polymerized vesicles display pH-dependent fluorescence resonance energy transfer from the encapsulated donors to the bilayer dye membrane, providing ultrasensitive pH information on their aqueous environment with fluorescence colour changes covering the whole visible light range. At pH 9.0, quite exceptional white fluorescence could be observed for such water-soluble donor-loaded perylene vesicles.
Orthogonality catastrophe and fractional exclusion statistics
NASA Astrophysics Data System (ADS)
Ares, Filiberto; Gupta, Kumar S.; de Queiroz, Amilcar R.
2018-02-01
We show that the N -particle Sutherland model with inverse-square and harmonic interactions exhibits orthogonality catastrophe. For a fixed value of the harmonic coupling, the overlap of the N -body ground state wave functions with two different values of the inverse-square interaction term goes to zero in the thermodynamic limit. When the two values of the inverse-square coupling differ by an infinitesimal amount, the wave function overlap shows an exponential suppression. This is qualitatively different from the usual power law suppression observed in the Anderson's orthogonality catastrophe. We also obtain an analytic expression for the wave function overlaps for an arbitrary set of couplings, whose properties are analyzed numerically. The quasiparticles constituting the ground state wave functions of the Sutherland model are known to obey fractional exclusion statistics. Our analysis indicates that the orthogonality catastrophe may be valid in systems with more general kinds of statistics than just the fermionic type.
Orthogonality catastrophe and fractional exclusion statistics.
Ares, Filiberto; Gupta, Kumar S; de Queiroz, Amilcar R
2018-02-01
We show that the N-particle Sutherland model with inverse-square and harmonic interactions exhibits orthogonality catastrophe. For a fixed value of the harmonic coupling, the overlap of the N-body ground state wave functions with two different values of the inverse-square interaction term goes to zero in the thermodynamic limit. When the two values of the inverse-square coupling differ by an infinitesimal amount, the wave function overlap shows an exponential suppression. This is qualitatively different from the usual power law suppression observed in the Anderson's orthogonality catastrophe. We also obtain an analytic expression for the wave function overlaps for an arbitrary set of couplings, whose properties are analyzed numerically. The quasiparticles constituting the ground state wave functions of the Sutherland model are known to obey fractional exclusion statistics. Our analysis indicates that the orthogonality catastrophe may be valid in systems with more general kinds of statistics than just the fermionic type.
Taylor, Mark J; Charman, Tony; Ronald, Angelica
2015-09-01
Autism spectrum conditions (ASC) and attention-deficit/hyperactivity disorder (ADHD) regularly co-occur. Twin studies increasingly indicate that these conditions may have overlapping genetic causes. Less is known about the degree to which specific autistic traits relate to specific behaviours characteristic of ADHD. We hence tested, using the classical twin design, whether specific dimensional autistic traits, including social difficulties, communication atypicalities and repetitive behaviours, would display differential degrees of aetiological overlap with specific traits of ADHD, including hyperactivity/impulsivity and inattention. Parents of approximately 4,000 pairs of 12-year-old twins completed the Childhood Autism Spectrum Test and Conners' Parent Rating Scale. These measures were divided into subscales corresponding to different types of autistic and ADHD behaviours. Twin model fitting suggested that the degree of genetic overlap was particularly strong between communication difficulties and traits of ADHD (genetic correlations = .47-.51), while repetitive behaviours and social difficulties showed moderate (genetic correlations = .12-.33) and modest (.05-.11) genetic overlap respectively. Environmental overlap was low across all subscales (correlations = .01-.23). These patterns were also apparent at the extremes of the general population, with communication difficulties showing the highest genetic overlap with traits of ADHD. These findings indicate that molecular genetic studies seeking to uncover the shared genetic basis of ASC and ADHD would benefit from taking a symptom-specific approach. Furthermore, they could also help to explain why studies of the communication abilities of individuals with ASC and ADHD have produced overlapping findings.
A common neural code for social and monetary rewards in the human striatum
Wake, Stephanie J
2017-01-01
Abstract Although managing social information and decision making on the basis of reward is critical for survival, it remains uncertain whether differing reward type is processed in a uniform manner. Previously, we demonstrated that monetary reward and the social reward of good reputation activated the same striatal regions including the caudate nucleus and putamen. However, it remains unclear whether overlapping activations reflect activities of identical neuronal populations or two overlapping but functionally independent neuronal populations. Here, we re-analyzed the original data and addressed this question using multivariate-pattern-analysis and found evidence that in the left caudate nucleus and bilateral nucleus accumbens, social vs monetary reward were represented similarly. The findings suggest that social and monetary rewards are processed by the same population of neurons within these regions of the striatum. Additional findings demonstrated similar neural patterns when participants experience high social reward compared to viewing others receiving low social reward (potentially inducing schadenfreude). This is possibly an early indication that the same population of neurons may be responsible for processing two different types of social reward (good reputation and schadenfreude). These findings provide a supplementary perspective to previous research, helping to further elucidate the mechanisms behind social vs non-social reward processing. PMID:28985408
A common neural code for social and monetary rewards in the human striatum.
Wake, Stephanie J; Izuma, Keise
2017-10-01
Although managing social information and decision making on the basis of reward is critical for survival, it remains uncertain whether differing reward type is processed in a uniform manner. Previously, we demonstrated that monetary reward and the social reward of good reputation activated the same striatal regions including the caudate nucleus and putamen. However, it remains unclear whether overlapping activations reflect activities of identical neuronal populations or two overlapping but functionally independent neuronal populations. Here, we re-analyzed the original data and addressed this question using multivariate-pattern-analysis and found evidence that in the left caudate nucleus and bilateral nucleus accumbens, social vs monetary reward were represented similarly. The findings suggest that social and monetary rewards are processed by the same population of neurons within these regions of the striatum. Additional findings demonstrated similar neural patterns when participants experience high social reward compared to viewing others receiving low social reward (potentially inducing schadenfreude). This is possibly an early indication that the same population of neurons may be responsible for processing two different types of social reward (good reputation and schadenfreude). These findings provide a supplementary perspective to previous research, helping to further elucidate the mechanisms behind social vs non-social reward processing. © The Author (2017). Published by Oxford University Press.
47 CFR 1.9020 - Spectrum manager leasing arrangements.
Code of Federal Regulations, 2013 CFR
2013-10-01
... geographic overlap with spectrum in any licensed Wireless Radio Service (including the same service), or in... into a spectrum leasing arrangement involving a licensee in the Public Safety Radio Services (see part... Radio Service (PMRS), private, or non-commercial basis. (7) Regulatory fees. The licensee remains...
47 CFR 1.9020 - Spectrum manager leasing arrangements.
Code of Federal Regulations, 2012 CFR
2012-10-01
... geographic overlap with spectrum in any licensed Wireless Radio Service (including the same service), or in... into a spectrum leasing arrangement involving a licensee in the Public Safety Radio Services (see part... Radio Service (PMRS), private, or non-commercial basis. (7) Regulatory fees. The licensee remains...
47 CFR 1.9020 - Spectrum manager leasing arrangements.
Code of Federal Regulations, 2014 CFR
2014-10-01
... geographic overlap with spectrum in any licensed Wireless Radio Service (including the same service), or in... into a spectrum leasing arrangement involving a licensee in the Public Safety Radio Services (see part... Radio Service (PMRS), private, or non-commercial basis. (7) Regulatory fees. The licensee remains...
Futagami, Seiji; Yamawaki, Hiroshi; Shimpuku, Mayumi; Izumi, Nikki; Wakabayashi, Taiga; Kodaka, Yasuhiro; Nagoya, Hiroyuki; Shindo, Tomotaka; Kawagoe, Tetsuro; Sakamoto, Choitsu
2013-01-01
The association between clinical symptoms and sleep disorders in functional dyspepsia (FD)-overlap syndrome has not been studied in detail. The subjects were 139 patients with FD, 14 with irritable bowel syndrome (IBS), 12 with nonerosive reflux disease (NERD), and 41 healthy volunteers. Gastric motility was evaluated with the (13)C-acetate breath test. We used Rome III criteria to evaluate upper abdominal symptoms, and Self-Rating Questionnaire for Depression (SRQ-D) scores to determine depression status. Sleep disorders were evaluated with Pittsburgh Sleep Quality Index (PSQI) scores. There were no significant differences in age, body-mass index, alcohol intake, and smoking rate between patients with FD alone and those with FD-overlap syndrome. The postprandial abdominal fullness score in patients with FD-NERD-IBS was significantly greater than that in patients with FD-NERD overlap syndrome (p<0.001) or FD alone (p<0.001). The score for the feeling of hunger in patients with FD-NERD-IBS was significantly greater than that in patients with FD alone (p=0.0025), FD-NERD overlap syndrome (p=0.0088), or FD-IBS overlap syndrome (p=0.0057). The heartburn score in subjects with FD-NERD-IBS overlap syndrome was significantly greater than that in subjects with FD alone (p=0.0035) or FD-IBS overlap syndrome (p=0.0026). The Tmax in patients with FD-overlap syndrome or FD alone was significantly higher than that in healthy volunteers. The Pittsburgh Sleep Quality Index score in subjects with FD-NERD-IBS overlap syndrome was significantly greater than that in subjects with FD alone. Symptom scores, such as those for postprandial abdominal fullness, heartburn, and the feeling of hunger, in patients with FD-overlap syndromes are significantly greater than those in patients with FD alone. Further studies are necessary to clarify whether various symptoms are related to sleep disorders in patients with FD-NERD-IBS overlap syndrome.
Komjáti, Balázs; Urai, Ákos; Hosztafi, Sándor; Kökösi, József; Kováts, Benjámin; Nagy, József; Horváth, Péter
2016-02-15
B3LYP is one of the most widely used functional for the prediction of electronic circular dichroism spectra, however if the studied molecule contains aromatic nitro group computations may fail to produce reliable results. A test set of molecules of known stereochemistry were synthesized to study this phenomenon in detail. Spectra were computed by B3LYP and CAM-B3LYP functionals with 6-311++G(2d,2p) basis set. It was found that the range separated CAM-B3LYP gives better predictions than B3LYP for all test molecules. Fragment population analysis revealed that the nitro groups form highly localized molecule orbitals but the exact composition depends on the functional. CAM-B3LYP allows sufficient spatial overlap between the nitro group and distant parts of the molecule, which is necessary for the accurate description of excited states especially for charge transfer states. This phenomenon and the synthesized test molecules can be used to benchmark theoretical methods as well as to help the development of new functionals intended for spectroscopical studies. Copyright © 2015 Elsevier B.V. All rights reserved.
Molecular flip–flops formed by overlapping Fis sites
Hengen, Paul N.; Lyakhov, Ilya G.; Stewart, Lisa E.; Schneider, Thomas D.
2003-01-01
The DNA-binding protein Fis frequently uses pairs of sites 7 or 11 base pairs (bp) apart. Two overlapping Fis sites separated by 11 bp are found in the Escherichia coli origin of chromosomal replication. Only one of these sites is bound by Fis at a time, so the structure is a molecular flip–flop that could direct alternative firing of replication complexes in opposite directions. Alternatively, the flip–flop could represent part of an on–off switch for replication. Because they can be used to create precise switched states, molecular flip–flops could be used as the basis of a novel molecular computer. PMID:14602927
Molecular flip-flops formed by overlapping Fis sites.
Hengen, Paul N; Lyakhov, Ilya G; Stewart, Lisa E; Schneider, Thomas D
2003-11-15
The DNA-binding protein Fis frequently uses pairs of sites 7 or 11 base pairs (bp) apart. Two overlapping Fis sites separated by 11 bp are found in the Escherichia coli origin of chromosomal replication. Only one of these sites is bound by Fis at a time, so the structure is a molecular flip-flop that could direct alternative firing of replication complexes in opposite directions. Alternatively, the flip-flop could represent part of an on-off switch for replication. Because they can be used to create precise switched states, molecular flip-flops could be used as the basis of a novel molecular computer.
A common network of functional areas for attention and eye movements
NASA Technical Reports Server (NTRS)
Corbetta, M.; Akbudak, E.; Conturo, T. E.; Snyder, A. Z.; Ollinger, J. M.; Drury, H. A.; Linenweber, M. R.; Petersen, S. E.; Raichle, M. E.; Van Essen, D. C.;
1998-01-01
Functional magnetic resonance imaging (fMRI) and surface-based representations of brain activity were used to compare the functional anatomy of two tasks, one involving covert shifts of attention to peripheral visual stimuli, the other involving both attentional and saccadic shifts to the same stimuli. Overlapping regional networks in parietal, frontal, and temporal lobes were active in both tasks. This anatomical overlap is consistent with the hypothesis that attentional and oculomotor processes are tightly integrated at the neural level.
DOE Office of Scientific and Technical Information (OSTI.GOV)
West, Aaron C.; Schmidt, Michael W.; Gordon, Mark S.
A general intrinsic energy resolution has been formulated for strongly correlated wave functions in the full molecular valence space and its subspaces. The information regarding the quasi-atomic organization of the molecular electronic structure is extracted from the molecular wave function without introducing any additional postulated model state wave functions. To this end, the molecular wave function is expressed in terms of quasi-atomic molecular orbitals, which maximize the overlap between subspaces of the molecular orbital space and the free-atom orbital spaces. As a result, the molecular wave function becomes the superposition of a wave function representing the non-bonded juxtaposed quasi-atoms andmore » a wave function describing the interatomic electron migrations that create bonds through electron sharing. The juxtaposed nonbonded quasi-atoms are shown to consist of entangled quasi-atomic states from different atoms. The binding energy is resolved as a sum of contributions that are due to quasi-atom formation, quasiclassical electrostatic interactions and interatomic interferences caused by electron sharing. The contributions are further resolved according to orbital interactions. The various transformations that generate the analysis are determined by criteria that are independent of the working orbital basis used for calculating the molecular wave function. Lastly, the theoretical formulation of the resolution is quantitatively validated by an application to the C 2 molecule.« less
West, Aaron C.; Schmidt, Michael W.; Gordon, Mark S.; ...
2017-01-30
A general intrinsic energy resolution has been formulated for strongly correlated wave functions in the full molecular valence space and its subspaces. The information regarding the quasi-atomic organization of the molecular electronic structure is extracted from the molecular wave function without introducing any additional postulated model state wave functions. To this end, the molecular wave function is expressed in terms of quasi-atomic molecular orbitals, which maximize the overlap between subspaces of the molecular orbital space and the free-atom orbital spaces. As a result, the molecular wave function becomes the superposition of a wave function representing the non-bonded juxtaposed quasi-atoms andmore » a wave function describing the interatomic electron migrations that create bonds through electron sharing. The juxtaposed nonbonded quasi-atoms are shown to consist of entangled quasi-atomic states from different atoms. The binding energy is resolved as a sum of contributions that are due to quasi-atom formation, quasiclassical electrostatic interactions and interatomic interferences caused by electron sharing. The contributions are further resolved according to orbital interactions. The various transformations that generate the analysis are determined by criteria that are independent of the working orbital basis used for calculating the molecular wave function. Lastly, the theoretical formulation of the resolution is quantitatively validated by an application to the C 2 molecule.« less
NASA Astrophysics Data System (ADS)
Shaker, Ahmed; Ossaimee, Mahmoud; Zekry, A.; Abouelatta, Mohamed
2015-10-01
In this paper, we have investigated the effect of gate overlapping-on-drain on the ambipolar behavior and high frequency performance of tunnel CNTFET (T-CNTFET). It is found that gate overlapping-on-drain suppresses the ambipolar behavior and improves OFF-state current. The simulation results show that there is an optimum choice for the overlapped length. On the other hand, this overlap deteriorates the high frequency performance. The high frequency figure of merit is analyzed in terms of the unit-gain cutoff frequency (fT). Further, we propose two different approaches to improve the high frequency performance of the overlapped T-CNTFET. The first one is based on inserting a high-dielectric constant material below the overlapped part of the gate and the second is based on depositing a different work function gate metal for the overlapped region. The two solutions show very good improvement in the high frequency performance with maintaining the suppression of the ambipolar characteristics.
The shared neural basis of empathy and facial imitation accuracy.
Braadbaart, L; de Grauw, H; Perrett, D I; Waiter, G D; Williams, J H G
2014-01-01
Empathy involves experiencing emotion vicariously, and understanding the reasons for those emotions. It may be served partly by a motor simulation function, and therefore share a neural basis with imitation (as opposed to mimicry), as both involve sensorimotor representations of intentions based on perceptions of others' actions. We recently showed a correlation between imitation accuracy and Empathy Quotient (EQ) using a facial imitation task and hypothesised that this relationship would be mediated by the human mirror neuron system. During functional Magnetic Resonance Imaging (fMRI), 20 adults observed novel 'blends' of facial emotional expressions. According to instruction, they either imitated (i.e. matched) the expressions or executed alternative, pre-prescribed mismatched actions as control. Outside the scanner we replicated the association between imitation accuracy and EQ. During fMRI, activity was greater during mismatch compared to imitation, particularly in the bilateral insula. Activity during imitation correlated with EQ in somatosensory cortex, intraparietal sulcus and premotor cortex. Imitation accuracy correlated with activity in insula and areas serving motor control. Overlapping voxels for the accuracy and EQ correlations occurred in premotor cortex. We suggest that both empathy and facial imitation rely on formation of action plans (or a simulation of others' intentions) in the premotor cortex, in connection with representations of emotional expressions based in the somatosensory cortex. In addition, the insula may play a key role in the social regulation of facial expression. © 2013.
Tewarie, P.; Bright, M.G.; Hillebrand, A.; Robson, S.E.; Gascoyne, L.E.; Morris, P.G.; Meier, J.; Van Mieghem, P.; Brookes, M.J.
2016-01-01
Understanding the electrophysiological basis of resting state networks (RSNs) in the human brain is a critical step towards elucidating how inter-areal connectivity supports healthy brain function. In recent years, the relationship between RSNs (typically measured using haemodynamic signals) and electrophysiology has been explored using functional Magnetic Resonance Imaging (fMRI) and magnetoencephalography (MEG). Significant progress has been made, with similar spatial structure observable in both modalities. However, there is a pressing need to understand this relationship beyond simple visual similarity of RSN patterns. Here, we introduce a mathematical model to predict fMRI-based RSNs using MEG. Our unique model, based upon a multivariate Taylor series, incorporates both phase and amplitude based MEG connectivity metrics, as well as linear and non-linear interactions within and between neural oscillations measured in multiple frequency bands. We show that including non-linear interactions, multiple frequency bands and cross-frequency terms significantly improves fMRI network prediction. This shows that fMRI connectivity is not only the result of direct electrophysiological connections, but is also driven by the overlap of connectivity profiles between separate regions. Our results indicate that a complete understanding of the electrophysiological basis of RSNs goes beyond simple frequency-specific analysis, and further exploration of non-linear and cross-frequency interactions will shed new light on distributed network connectivity, and its perturbation in pathology. PMID:26827811
A TV-constrained decomposition method for spectral CT
NASA Astrophysics Data System (ADS)
Guo, Xiaoyue; Zhang, Li; Xing, Yuxiang
2017-03-01
Spectral CT is attracting more and more attention in medicine, industrial nondestructive testing and security inspection field. Material decomposition is an important issue to a spectral CT to discriminate materials. Because of the spectrum overlap of energy channels, as well as the correlation of basis functions, it is well acknowledged that decomposition step in spectral CT imaging causes noise amplification and artifacts in component coefficient images. In this work, we propose materials decomposition via an optimization method to improve the quality of decomposed coefficient images. On the basis of general optimization problem, total variance minimization is constrained on coefficient images in our overall objective function with adjustable weights. We solve this constrained optimization problem under the framework of ADMM. Validation on both a numerical dental phantom in simulation and a real phantom of pig leg on a practical CT system using dual-energy imaging is executed. Both numerical and physical experiments give visually obvious better reconstructions than a general direct inverse method. SNR and SSIM are adopted to quantitatively evaluate the image quality of decomposed component coefficients. All results demonstrate that the TV-constrained decomposition method performs well in reducing noise without losing spatial resolution so that improving the image quality. The method can be easily incorporated into different types of spectral imaging modalities, as well as for cases with energy channels more than two.
Shared genetic basis for migraine and ischemic stroke: A genome-wide analysis of common variants.
Malik, Rainer; Freilinger, Tobias; Winsvold, Bendik S; Anttila, Verneri; Vander Heiden, Jason; Traylor, Matthew; de Vries, Boukje; Holliday, Elizabeth G; Terwindt, Gisela M; Sturm, Jonathan; Bis, Joshua C; Hopewell, Jemma C; Ferrari, Michel D; Rannikmae, Kristiina; Wessman, Maija; Kallela, Mikko; Kubisch, Christian; Fornage, Myriam; Meschia, James F; Lehtimäki, Terho; Sudlow, Cathie; Clarke, Robert; Chasman, Daniel I; Mitchell, Braxton D; Maguire, Jane; Kaprio, Jaakko; Farrall, Martin; Raitakari, Olli T; Kurth, Tobias; Ikram, M Arfan; Reiner, Alex P; Longstreth, W T; Rothwell, Peter M; Strachan, David P; Sharma, Pankaj; Seshadri, Sudha; Quaye, Lydia; Cherkas, Lynn; Schürks, Markus; Rosand, Jonathan; Ligthart, Lannie; Boncoraglio, Giorgio B; Davey Smith, George; van Duijn, Cornelia M; Stefansson, Kari; Worrall, Bradford B; Nyholt, Dale R; Markus, Hugh S; van den Maagdenberg, Arn M J M; Cotsapas, Chris; Zwart, John A; Palotie, Aarno; Dichgans, Martin
2015-05-26
To quantify genetic overlap between migraine and ischemic stroke (IS) with respect to common genetic variation. We applied 4 different approaches to large-scale meta-analyses of genome-wide data on migraine (23,285 cases and 95,425 controls) and IS (12,389 cases and 62,004 controls). First, we queried known genome-wide significant loci for both disorders, looking for potential overlap of signals. We then analyzed the overall shared genetic load using polygenic scores and estimated the genetic correlation between disease subtypes using data derived from these models. We further interrogated genomic regions of shared risk using analysis of covariance patterns between the 2 phenotypes using cross-phenotype spatial mapping. We found substantial genetic overlap between migraine and IS using all 4 approaches. Migraine without aura (MO) showed much stronger overlap with IS and its subtypes than migraine with aura (MA). The strongest overlap existed between MO and large artery stroke (LAS; p = 6.4 × 10(-28) for the LAS polygenic score in MO) and between MO and cardioembolic stroke (CE; p = 2.7 × 10(-20) for the CE score in MO). Our findings indicate shared genetic susceptibility to migraine and IS, with a particularly strong overlap between MO and both LAS and CE pointing towards shared mechanisms. Our observations on MA are consistent with a limited role of common genetic variants in this subtype. © 2015 American Academy of Neurology.
Detecting community structure via the maximal sub-graphs and belonging degrees in complex networks
NASA Astrophysics Data System (ADS)
Cui, Yaozu; Wang, Xingyuan; Eustace, Justine
2014-12-01
Community structure is a common phenomenon in complex networks, and it has been shown that some communities in complex networks often overlap each other. So in this paper we propose a new algorithm to detect overlapping community structure in complex networks. To identify the overlapping community structure, our algorithm firstly extracts fully connected sub-graphs which are maximal sub-graphs from original networks. Then two maximal sub-graphs having the key pair-vertices can be merged into a new larger sub-graph using some belonging degree functions. Furthermore we extend the modularity function to evaluate the proposed algorithm. In addition, overlapping nodes between communities are founded successfully. Finally we report the comparison between the modularity and the computational complexity of the proposed algorithm with some other existing algorithms. The experimental results show that the proposed algorithm gives satisfactory results.
Radu, Diana; Tomkinson, Birgitta; Zachrisson, Olof; Weber, Günther; de Belleroche, Jacqueline; Hirsch, Steven; Lindefors, Nils
2006-08-09
Tripeptidyl peptidase II (TPPII) is a high molecular weight exopeptidase important in inactivating extracellular cholecystokinin (CCK). Our aims were to study the anatomical localization of TPPII and CCK mRNA in the Cynomolgus monkey brain as a basis for a possible functional anatomical connection between enzyme (TPPII) and substrate (CCK) and examine if indications of changes in substrate availability in the human brain might be reflected in changes of levels of TPPII mRNA. mRNA in situ hybridization on postmortem brain from patients having had a schizophrenia diagnosis as compared to controls and on monkey and rat brain slices. overlapping distribution patterns of mRNAs for TPPII and CCK in rat and monkey. High amounts of TPPII mRNA are seen in the neocortex, especially in the frontal region and the hippocampus. TPPII mRNA is also present in the basal ganglia and cerebellum where CCK immunoreactivity and/or CCK B receptors have been found in earlier studies, suggesting presence of CCK-ergic afferents from other brain regions. Levels of mRNAs for CCK and TPPII show a positive correlation in postmortem human cerebral cortex Brodmann area (BA) 10. TPPII mRNA might be affected following schizophrenia. overall TPPII and CCK mRNA show a similar distribution in rat and monkey brain, confirming and extending earlier studies in rodents. In addition, correlated levels of TPPII and CCK mRNA in human BA 10 corroborate a functional link between CCK and TPPII in the human brain.
Functional Dissection of the Neural Substrates for Sexual Behaviors in Drosophila melanogaster
Meissner, Geoffrey W.; Manoli, Devanand S.; Chavez, Jose F.; Knapp, Jon-Michael; Lin, Tasha L.; Stevens, Robin J.; Mellert, David J.; Tran, David H.; Baker, Bruce S.
2011-01-01
The male-specific Fruitless proteins (FruM) act to establish the potential for male courtship behavior in Drosophila melanogaster and are expressed in small groups of neurons throughout the nervous system. We screened ∼1000 GAL4 lines, using assays for general courtship, male–male interactions, and male fertility to determine the phenotypes resulting from the GAL4-driven inhibition of FruM expression in subsets of these neurons. A battery of secondary assays showed that the phenotypic classes of GAL4 lines could be divided into subgroups on the basis of additional neurobiological and behavioral criteria. For example, in some lines, restoration of FruM expression in cholinergic neurons restores fertility or reduces male–male courtship. Persistent chains of males courting each other in some lines results from males courting both sexes indiscriminately, whereas in other lines this phenotype results from apparent habituation deficits. Inhibition of ectopic FruM expression in females, in populations of neurons where FruM is necessary for male fertility, can rescue female infertility. To identify the neurons responsible for some of the observed behavioral alterations, we determined the overlap between the identified GAL4 lines and endogenous FruM expression in lines with fertility defects. The GAL4 lines causing fertility defects generally had widespread overlap with FruM expression in many regions of the nervous system, suggesting likely redundant FruM-expressing neuronal pathways capable of conferring male fertility. From associations between the screened behaviors, we propose a functional model for courtship initiation. PMID:21705753
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ovchinnikov, Mikhail; Lim, Kyo-Sun Sunny; Larson, Vincent E.
Coarse-resolution climate models increasingly rely on probability density functions (PDFs) to represent subgrid-scale variability of prognostic variables. While PDFs characterize the horizontal variability, a separate treatment is needed to account for the vertical structure of clouds and precipitation. When sub-columns are drawn from these PDFs for microphysics or radiation parameterizations, appropriate vertical correlations must be enforced via PDF overlap specifications. This study evaluates the representation of PDF overlap in the Subgrid Importance Latin Hypercube Sampler (SILHS) employed in the assumed PDF turbulence and cloud scheme called the Cloud Layers Unified By Binormals (CLUBB). PDF overlap in CLUBB-SILHS simulations of continentalmore » and tropical oceanic deep convection is compared with overlap of PDF of various microphysics variables in cloud-resolving model (CRM) simulations of the same cases that explicitly predict the 3D structure of cloud and precipitation fields. CRM results show that PDF overlap varies significantly between different hydrometeor types, as well as between PDFs of mass and number mixing ratios for each species, - a distinction that the current SILHS implementation does not make. In CRM simulations that explicitly resolve cloud and precipitation structures, faster falling species, such as rain and graupel, exhibit significantly higher coherence in their vertical distributions than slow falling cloud liquid and ice. These results suggest that to improve the overlap treatment in the sub-column generator, the PDF correlations need to depend on hydrometeor properties, such as fall speeds, in addition to the currently implemented dependency on the turbulent convective length scale.« less
Yamamoto, Naoki; Ito, Shota; Nakanishi, Masahiro; Chatani, Eri; Inoue, Keiichi; Kandori, Hideki; Tominaga, Keisuke
2018-02-01
To investigate the effects of temperature and hydration on the dynamics of purple membrane (PM), we measured the broadband complex dielectric spectra from 0.5 GHz to 2.3 THz using a vector network analyzer and terahertz time-domain spectroscopy from 233 to 293 K. In the lower temperature region down to 83 K, the complex dielectric spectra in the THz region were also obtained. The complex dielectric spectra were analyzed through curve fitting using several model functions. We found that the hydrated states of one relaxational mode, which was assigned as the coupled motion of water molecules with the PM surface, began to overlap with the THz region at approximately 230 K. On the other hand, the relaxational mode was not observed for the dehydrated state. On the basis of this result, we conclude that the protein-dynamical-transition-like behavior in the THz region is due to the onset of the overlap of the relaxational mode with the THz region. Temperature hysteresis was observed in the dielectric spectrum at 263 K when the hydration level was high. It is suggested that the hydration water behaves similarly to supercooled liquid at that temperature. The third hydration layer may be partly formed to observe such a phenomenon. We also found that the relaxation time is slower than that of a globular protein, lysozyme, and the microscopic environment in the vicinity of the PM surface is suggested to be more heterogeneous than lysozyme. It is proposed that the spectral overlap of the relaxational mode and the low-frequency vibrational mode is necessary for the large conformational change of protein.
NASA Astrophysics Data System (ADS)
Franke, R.
2016-11-01
In many networks discovered in biology, medicine, neuroscience and other disciplines special properties like a certain degree distribution and hierarchical cluster structure (also called communities) can be observed as general organizing principles. Detecting the cluster structure of an unknown network promises to identify functional subdivisions, hierarchy and interactions on a mesoscale. It is not trivial choosing an appropriate detection algorithm because there are multiple network, cluster and algorithmic properties to be considered. Edges can be weighted and/or directed, clusters overlap or build a hierarchy in several ways. Algorithms differ not only in runtime, memory requirements but also in allowed network and cluster properties. They are based on a specific definition of what a cluster is, too. On the one hand, a comprehensive network creation model is needed to build a large variety of benchmark networks with different reasonable structures to compare algorithms. On the other hand, if a cluster structure is already known, it is desirable to separate effects of this structure from other network properties. This can be done with null model networks that mimic an observed cluster structure to improve statistics on other network features. A third important application is the general study of properties in networks with different cluster structures, possibly evolving over time. Currently there are good benchmark and creation models available. But what is left is a precise sandbox model to build hierarchical, overlapping and directed clusters for undirected or directed, binary or weighted complex random networks on basis of a sophisticated blueprint. This gap shall be closed by the model CHIMERA (Cluster Hierarchy Interconnection Model for Evaluation, Research and Analysis) which will be introduced and described here for the first time.
Bauder, Javan M.; Breininger, David R.; Bolt, M. Rebecca; Legare, Michael L.; Jenkins, Christopher L.; Rothermel, Betsie B.; McGarigal, Kevin
2016-01-01
Understanding the factors influencing the degree of spatial overlap among conspecifics is important for understanding multiple ecological processes. Compared to terrestrial carnivores, relatively little is known about the factors influencing conspecific spatial overlap in snakes, although across snake taxa there appears to be substantial variation in conspecific spatial overlap. In this study, we described conspecific spatial overlap of eastern indigo snakes (Drymarchon couperi) in peninsular Florida and examined how conspecific spatial overlap varied by sex and season (breeding season vs. non-breeding season). We calculated multiple indices of spatial overlap using 6- and 3-month utilization distributions (UD) of dyads of simultaneously adjacent telemetered snakes. We also measured conspecific UD density values at each telemetry fix and modeled the distribution of those values as a function of overlap type, sex, and season using generalized Pareto distributions. Home range overlap between males and females was significantly greater than overlap between individuals of the same sex and male home ranges often completely contained female home ranges. Male home ranges overlapped little during both seasons, whereas females had higher levels of overlap during the non-breeding season. The spatial patterns observed in our study are consistent with those seen in many mammalian carnivores, in which low male-male overlap and high inter-sexual overlap provides males with greater access to females. We encourage additional research on the influence of prey availability on conspecific spatial overlap in snakes as well as the behavioral mechanisms responsible for maintaining the low levels of overlap we observed. PMID:27490346
Wilhelm, Jan; Seewald, Patrick; Del Ben, Mauro; Hutter, Jürg
2016-12-13
We present an algorithm for computing the correlation energy in the random phase approximation (RPA) in a Gaussian basis requiring [Formula: see text] operations and [Formula: see text] memory. The method is based on the resolution of the identity (RI) with the overlap metric, a reformulation of RI-RPA in the Gaussian basis, imaginary time, and imaginary frequency integration techniques, and the use of sparse linear algebra. Additional memory reduction without extra computations can be achieved by an iterative scheme that overcomes the memory bottleneck of canonical RPA implementations. We report a massively parallel implementation that is the key for the application to large systems. Finally, cubic-scaling RPA is applied to a thousand water molecules using a correlation-consistent triple-ζ quality basis.
Peripheral functional organisation of vagally evoked gastric motor responses in the ferret.
Andrews, P L; Lawes, I N; Bower, A J
1980-01-01
The aims of the present study were to determine the relative amplitudes of intragastric motor responses evoked by different vagal branches and to establish whether the effects of acute or chronic vagotomy could be predicted from these data. Intragastric pressure responses to electrical stimulation of the vagus were measured in urethane-anaesthetised ferrets and acute or chronic vagotomies were performed. The results show that the left and right cervical vagi were equipotential and fully overlaped each other. Their contributions to the dorsal trunk were equipotential and fully overlapping and so were their contributions to the ventral trunk. The dorsal trunk was more effective than the ventral trunk and there was total functional overlap between these two trunks. Vagal evoked gastric motor responses of the ferret are apparently organised in a different way from vagally induced acid secretion or hormone release in the cat. Acute removal of a trunk led to a reduction in evoked responses that was not linear function of the effect of stimulation of that trunk. In contrast, chronic removal caused a relative increase in evoked responses that ws inversely related to the decrease caused by acute removal. The implications of total functional overlap and neuromuscular reorganisation after chronic vagotomy are discussed. PMID:7439800
Overlap of functional heartburn and gastroesophageal reflux disease with irritable bowel syndrome
de Bortoli, Nicola; Martinucci, Irene; Bellini, Massimo; Savarino, Edoardo; Savarino, Vincenzo; Blandizzi, Corrado; Marchi, Santino
2013-01-01
Several studies indicate a significant degree of overlap between irritable bowel syndrome (IBS) and gastroesophageal reflux disease (GERD). Likewise, both functional heartburn (FH) and IBS are functional digestive disorders that may occur in the same patients. However, data establishing a solid link between FH and IBS are lacking, mainly because the clinical definition of FH has undergone substantial changes over the years. The available literature on the overlap between GERD or FH and IBS highlights considerable heterogeneity in terms of the criteria and diagnostic procedures used to assess heartburn and IBS. In particular, several epidemiological studies included patients with concomitant IBS and GERD without any attempt to distinguish FH (as defined by the Rome III criteria) from GERD via pathophysiological investigations. Independent of these critical issues, there is preliminary evidence supporting a significant degree of FH-IBS overlap. This underscores the need for studies based on updated diagnostic criteria and accurate pathophysiological classifications, particularly to distinguish FH from GERD. This distinction would represent an essential starting point to achieving a better understanding of pathophysiology in the subclasses of patients with GERD and FH and properly assessing the different degrees of overlap between IBS and the subcategories of heartburn.The present review article intends to appraise and critically discuss current evidence supporting a possible concomitance of GERD or FH with IBS in the same patients and to highlight the pathophysiological relationships between these disorders. PMID:24124323
Overlap of functional heartburn and gastroesophageal reflux disease with irritable bowel syndrome.
de Bortoli, Nicola; Martinucci, Irene; Bellini, Massimo; Savarino, Edoardo; Savarino, Vincenzo; Blandizzi, Corrado; Marchi, Santino
2013-09-21
Several studies indicate a significant degree of overlap between irritable bowel syndrome (IBS) and gastroesophageal reflux disease (GERD). Likewise, both functional heartburn (FH) and IBS are functional digestive disorders that may occur in the same patients. However, data establishing a solid link between FH and IBS are lacking, mainly because the clinical definition of FH has undergone substantial changes over the years. The available literature on the overlap between GERD or FH and IBS highlights considerable heterogeneity in terms of the criteria and diagnostic procedures used to assess heartburn and IBS. In particular, several epidemiological studies included patients with concomitant IBS and GERD without any attempt to distinguish FH (as defined by the Rome III criteria) from GERD via pathophysiological investigations. Independent of these critical issues, there is preliminary evidence supporting a significant degree of FH-IBS overlap. This underscores the need for studies based on updated diagnostic criteria and accurate pathophysiological classifications, particularly to distinguish FH from GERD. This distinction would represent an essential starting point to achieving a better understanding of pathophysiology in the subclasses of patients with GERD and FH and properly assessing the different degrees of overlap between IBS and the subcategories of heartburn.The present review article intends to appraise and critically discuss current evidence supporting a possible concomitance of GERD or FH with IBS in the same patients and to highlight the pathophysiological relationships between these disorders.
Raboanatahiry, Nadia; Chao, Hongbo; Guo, Liangxing; Gan, Jianping; Xiang, Jun; Yan, Mingli; Zhang, Libin; Yu, Longjiang; Li, Maoteng
2017-10-12
Deciphering the genetic architecture of a species is a good way to understand its evolutionary history, but also to tailor its profile for breeding elite cultivars with desirable traits. Aligning QTLs from diverse population in one map and utilizing it for comparison, but also as a basis for multiple analyses assure a stronger evidence to understand the genetic system related to a given phenotype. In this study, 439 genes involved in fatty acid (FA) and triacylglycerol (TAG) biosyntheses were identified in Brassica napus. B. napus genome showed mixed gene loss and insertion compared to B. rapa and B. oleracea, and C genome had more inserted genes. Identified QTLs for oil (OC-QTLs) and fatty acids (FA-QTLs) from nine reported populations were projected on the physical map of the reference genome "Darmor-bzh" to generate a map. Thus, 335 FA-QTLs and OC-QTLs could be highlighted and 82 QTLs were overlapping. Chromosome C3 contained 22 overlapping QTLs with all trait studied except for C18:3. In total, 218 candidate genes which were potentially involved in FA and TAG were identified in 162 QTLs confidence intervals and some of them might affect many traits. Also, 76 among these candidate genes were found inside 57 overlapping QTLs, and candidate genes for oil content were in majority (61/76 genes). Then, sixteen genes were found in overlapping QTLs involving three populations, and the remaining 60 genes were found in overlapping QTLs of two populations. Interaction network and pathway analysis of these candidate genes indicated ten genes that might have strong influence over the other genes that control fatty acids and oil formation. The present results provided new information for genetic basis of FA and TAG formation in B. napus. A map including QTLs from numerous populations was built, which could serve as reference to study the genome profile of B. napus, and new potential genes emerged which might affect seed oil. New useful tracks were showed for the selection of population or/and selection of interesting genes for breeding improvement purpose.
[Clinical-psychological components in the consideration of functional dysphonia--a review].
Kiese-Himmel, C
2015-03-01
The etiopathogenesis of functional dysphonia is complex; it is not sufficient to look solely at vocal behavior aspects. The predisposing basis for functional dysphonia can lie in the constitution of an individual, his/her professional speaking and speech behavior and/or may be personality-based. (Prolonged) psychosocial stress, vocal overstressing, unfavorable speaking habits, infection of the upper respiratory tract, inflammatory processes in the larynx, emotional life events and COSO events are considered as possible triggers. The interaction of predisposed and causal factors is unknown. Stress, overall fatigue, anxiety, depression and/or certain personality traits (which complicate or hamper coping) are considered as perpetuating factors. In any case, overlaps between voice symptoms and reactive psychic as well as social problems have to be kept in mind (e. g. the burden of suffering, depressive processing, speaking anxiety, socially withdrawal). Because the association of multiple psychosocial factors with functional dysphonia is not distinct--such are always existent in organ medically unexplained symptoms--functional dysphonia has to be diagnostically differentiated. For the purpose of the article, a psycho-diagnostic path following the ICD-10 chapter V along general lines is presented. Until now, it is unknown which psychosocial factors discriminate a psychogenic dysphonia from muscle tension dysphonia. © Georg Thieme Verlag KG Stuttgart · New York.
An initial comparative map of copy number variations in the goat (Capra hircus) genome
2010-01-01
Background The goat (Capra hircus) represents one of the most important farm animal species. It is reared in all continents with an estimated world population of about 800 million of animals. Despite its importance, studies on the goat genome are still in their infancy compared to those in other farm animal species. Comparative mapping between cattle and goat showed only a few rearrangements in agreement with the similarity of chromosome banding. We carried out a cross species cattle-goat array comparative genome hybridization (aCGH) experiment in order to identify copy number variations (CNVs) in the goat genome analysing animals of different breeds (Saanen, Camosciata delle Alpi, Girgentana, and Murciano-Granadina) using a tiling oligonucleotide array with ~385,000 probes designed on the bovine genome. Results We identified a total of 161 CNVs (an average of 17.9 CNVs per goat), with the largest number in the Saanen breed and the lowest in the Camosciata delle Alpi goat. By aggregating overlapping CNVs identified in different animals we determined CNV regions (CNVRs): on the whole, we identified 127 CNVRs covering about 11.47 Mb of the virtual goat genome referred to the bovine genome (0.435% of the latter genome). These 127 CNVRs included 86 loss and 41 gain and ranged from about 24 kb to about 1.07 Mb with a mean and median equal to 90,292 bp and 49,530 bp, respectively. To evaluate whether the identified goat CNVRs overlap with those reported in the cattle genome, we compared our results with those obtained in four independent cattle experiments. Overlapping between goat and cattle CNVRs was highly significant (P < 0.0001) suggesting that several chromosome regions might contain recurrent interspecies CNVRs. Genes with environmental functions were over-represented in goat CNVRs as reported in other mammals. Conclusions We describe a first map of goat CNVRs. This provides information on a comparative basis with the cattle genome by identifying putative recurrent interspecies CNVs between these two ruminant species. Several goat CNVs affect genes with important biological functions. Further studies are needed to evaluate the functional relevance of these CNVs and their effects on behavior, production, and disease resistance traits in goats. PMID:21083884
Integration of color, orientation, and size functional domains in the ventral pathway
Ghose, Geoffrey M.; Ts’o, Daniel Y.
2017-01-01
Abstract. Functional specialization within the extrastriate areas of the ventral pathway associated with visual form analysis is poorly understood. Studies comparing the functional selectivities of neurons within the early visual areas have found that there are more similar than different between the areas. We simultaneously imaged visually evoked activation over regions of V2 and V4 and parametrically varied three visual attributes for which selectivity exists in both areas: color, orientation, and size. We found that color selective regions were observed in both areas and were of similar size and spatial distribution. However, two major areal distinctions were observed: V4 contained a greater number and diversity of color-specific regions than V2 and exhibited a higher degree of overlap between domains for different functional attributes. In V2, size and color regions were largely segregated from orientation domains, whereas in V4 both color and size regions overlapped considerably with orientation regions. Our results suggest that higher-order composite selectivities in the extrastriate cortex may arise organically from the interactions afforded by an overlap of functional domains for lower order selectivities. PMID:28573155
47 CFR 1.9020 - Spectrum manager leasing arrangements.
Code of Federal Regulations, 2011 CFR
2011-10-01
... geographic overlap with spectrum in any licensed Wireless Radio Service (including the same service), or in... Safety Radio Services (see part 90, subpart B and § 90.311(a)(1)(i) of this chapter) is not required to... Radio Service (PMRS), private, or non-commercial basis. (7) Regulatory fees. The licensee remains...
Kawano, Yasuhiro; Neeley, Shane; Adachi, Kei; Nakai, Hiroyuki
2013-01-01
Overlapping open reading frames (ORFs) in viral genomes undergo co-evolution; however, how individual amino acids coded by overlapping ORFs are structurally, functionally, and co-evolutionarily constrained remains difficult to address by conventional homologous sequence alignment approaches. We report here a new experimental and computational evolution-based methodology to address this question and report its preliminary application to elucidating a mode of co-evolution of the frame-shifted overlapping ORFs in the adeno-associated virus (AAV) serotype 2 viral genome. These ORFs encode both capsid VP protein and non-structural assembly-activating protein (AAP). To show proof of principle of the new method, we focused on the evolutionarily conserved QVKEVTQ and KSKRSRR motifs, a pair of overlapping heptapeptides in VP and AAP, respectively. In the new method, we first identified a large number of capsid-forming VP3 mutants and functionally competent AAP mutants of these motifs from mutant libraries by experimental directed evolution under no co-evolutionary constraints. We used Illumina sequencing to obtain a large dataset and then statistically assessed the viability of VP and AAP heptapeptide mutants. The obtained heptapeptide information was then integrated into an evolutionary algorithm, with which VP and AAP were co-evolved from random or native nucleotide sequences in silico. As a result, we demonstrate that these two heptapeptide motifs could exhibit high degeneracy if coded by separate nucleotide sequences, and elucidate how overlap-evoked co-evolutionary constraints play a role in making the VP and AAP heptapeptide sequences into the present shape. Specifically, we demonstrate that two valine (V) residues and β-strand propensity in QVKEVTQ are structurally important, the strongly negative and hydrophilic nature of KSKRSRR is functionally important, and overlap-evoked co-evolution imposes strong constraints on serine (S) residues in KSKRSRR, despite high degeneracy of the motifs in the absence of co-evolutionary constraints.
Advances in Sequencing Technologies for Understanding Hereditary Ataxias A Review
Didonna, Alessandro; Opal, Puneet
2017-01-01
IMPORTANCE The hereditary progressive ataxias comprise genetic disorders that affect the cerebellum and its connections. Even though these diseases historically have been among the first familial disorders of the nervous system to have been recognized, progress in the field has been challenging because of the large number of ataxic genetic syndromes, many of which overlap in their clinical features. OBSERVATIONS We have taken a historical approach to demonstrate how our knowledge of the genetic basis of ataxic disorders has come about by novel techniques in gene sequencing and bioinformatics. Furthermore, we show that the genes implicated in ataxia, although seemingly unrelated, appear to encode for proteins that interact with each other in connected functional modules. CONCLUSIONS AND RELEVANCE It has taken approximately 150 years for neurologists to comprehensively unravel the genetic diversity of ataxias. There has been an explosion in our understanding of their molecular basis with the arrival of next-generation sequencing and computer-driven bioinformatics; this in turn has made hereditary ataxias an especially well-developed model group of diseases for gaining insights at a systems level into genes and cellular pathways that result in neurodegeneration. PMID:27749953
Specific surface area of overlapping spheres in the presence of obstructions
NASA Astrophysics Data System (ADS)
Jenkins, D. R.
2013-02-01
This study considers the random placement of uniform sized spheres, which may overlap, in the presence of another set of randomly placed (hard) spheres, which do not overlap. The overlapping spheres do not intersect the hard spheres. It is shown that the specific surface area of the collection of overlapping spheres is affected by the hard spheres, such that there is a minimum in the specific surface area as a function of the relative size of the two sets of spheres. The occurrence of the minimum is explained in terms of the break-up of pore connectivity. The configuration can be considered to be a simple model of the structure of a porous composite material. In particular, the overlapping particles represent voids while the hard particles represent fillers. Example materials are pervious concrete, metallurgical coke, ice cream, and polymer composites. We also show how the material properties of such composites are affected by the void structure.
Specific surface area of overlapping spheres in the presence of obstructions.
Jenkins, D R
2013-02-21
This study considers the random placement of uniform sized spheres, which may overlap, in the presence of another set of randomly placed (hard) spheres, which do not overlap. The overlapping spheres do not intersect the hard spheres. It is shown that the specific surface area of the collection of overlapping spheres is affected by the hard spheres, such that there is a minimum in the specific surface area as a function of the relative size of the two sets of spheres. The occurrence of the minimum is explained in terms of the break-up of pore connectivity. The configuration can be considered to be a simple model of the structure of a porous composite material. In particular, the overlapping particles represent voids while the hard particles represent fillers. Example materials are pervious concrete, metallurgical coke, ice cream, and polymer composites. We also show how the material properties of such composites are affected by the void structure.
Auditing complex concepts of SNOMED using a refined hierarchical abstraction network.
Wang, Yue; Halper, Michael; Wei, Duo; Gu, Huanying; Perl, Yehoshua; Xu, Junchuan; Elhanan, Gai; Chen, Yan; Spackman, Kent A; Case, James T; Hripcsak, George
2012-02-01
Auditors of a large terminology, such as SNOMED CT, face a daunting challenge. To aid them in their efforts, it is essential to devise techniques that can automatically identify concepts warranting special attention. "Complex" concepts, which by their very nature are more difficult to model, fall neatly into this category. A special kind of grouping, called a partial-area, is utilized in the characterization of complex concepts. In particular, the complex concepts that are the focus of this work are those appearing in intersections of multiple partial-areas and are thus referred to as overlapping concepts. In a companion paper, an automatic methodology for identifying and partitioning the entire collection of overlapping concepts into disjoint, singly-rooted groups, that are more manageable to work with and comprehend, has been presented. The partitioning methodology formed the foundation for the development of an abstraction network for the overlapping concepts called a disjoint partial-area taxonomy. This new disjoint partial-area taxonomy offers a collection of semantically uniform partial-areas and is exploited herein as the basis for a novel auditing methodology. The review of the overlapping concepts is done in a top-down order within semantically uniform groups. These groups are themselves reviewed in a top-down order, which proceeds from the less complex to the more complex overlapping concepts. The results of applying the methodology to SNOMED's Specimen hierarchy are presented. Hypotheses regarding error ratios for overlapping concepts and between different kinds of overlapping concepts are formulated. Two phases of auditing the Specimen hierarchy for two releases of SNOMED are reported on. With the use of the double bootstrap and Fisher's exact test (two-tailed), the auditing of concepts and especially roots of overlapping partial-areas is shown to yield a statistically significant higher proportion of errors. Copyright © 2011 Elsevier Inc. All rights reserved.
Auditing Complex Concepts of SNOMED using a Refined Hierarchical Abstraction Network
Wang, Yue; Halper, Michael; Wei, Duo; Gu, Huanying; Perl, Yehoshua; Xu, Junchuan; Elhanan, Gai; Chen, Yan; Spackman, Kent A.; Case, James T.; Hripcsak, George
2012-01-01
Auditors of a large terminology, such as SNOMED CT, face a daunting challenge. To aid them in their efforts, it is essential to devise techniques that can automatically identify concepts warranting special attention. “Complex” concepts, which by their very nature are more difficult to model, fall neatly into this category. A special kind of grouping, called a partial-area, is utilized in the characterization of complex concepts. In particular, the complex concepts that are the focus of this work are those appearing in intersections of multiple partial-areas and are thus referred to as overlapping concepts. In a companion paper, an automatic methodology for identifying and partitioning the entire collection of overlapping concepts into disjoint, singly-rooted groups, that are more manageable to work with and comprehend, has been presented. The partitioning methodology formed the foundation for the development of an abstraction network for the overlapping concepts called a disjoint partial-area taxonomy. This new disjoint partial-area taxonomy offers a collection of semantically uniform partial-areas and is exploited herein as the basis for a novel auditing methodology. The review of the overlapping concepts is done in a top-down order within semantically uniform groups. These groups are themselves reviewed in a top-down order, which proceeds from the less complex to the more complex overlapping concepts. The results of applying the methodology to SNOMED’s Specimen hierarchy are presented. Hypotheses regarding error ratios for overlapping concepts and between different kinds of overlapping concepts are formulated. Two phases of auditing the Specimen hierarchy for two releases of SNOMED are reported on. With the use of the double bootstrap and Fisher’s exact test (two-tailed), the auditing of concepts and especially roots of overlapping partial-areas is shown to yield a statistically significant higher proportion of errors. PMID:21907827
Abraham, Joanna; Kannampallil, Thomas G; Srinivasan, Vignesh; Galanter, William L; Tagney, Gail; Cohen, Trevor
2017-01-01
We develop and evaluate a methodological approach to measure the degree and nature of overlap in handoff communication content within and across clinical professions. This extensible, exploratory approach relies on combining techniques from conversational analysis and distributional semantics. We audio-recorded handoff communication of residents and nurses on the General Medicine floor of a large academic hospital (n=120 resident and n=120 nurse handoffs). We measured semantic similarity, a proxy for content overlap, between resident-resident and nurse-nurse communication using multiple steps: a qualitative conversational content analysis; an automated semantic similarity analysis using Reflective Random Indexing (RRI); and comparing semantic similarity generated by RRI analysis with human ratings of semantic similarity. There was significant association between the semantic similarity as computed by the RRI method and human rating (ρ=0.88). Based on the semantic similarity scores, content overlap was relatively higher for content related to patient active problems, assessment of active problems, patient-identifying information, past medical history, and medications/treatments. In contrast, content overlap was limited on content related to allergies, family-related information, code status, and anticipatory guidance. Our approach using RRI analysis provides new opportunities for characterizing the nature and degree of overlap in handoff communication. Although exploratory, this method provides a basis for identifying content that can be used for determining shared understanding across clinical professions. Additionally, this approach can inform the development of flexibly standardized handoff tools that reflect clinical content that are most appropriate for fostering shared understanding during transitions of care. Copyright © 2016 Elsevier Inc. All rights reserved.
Visualising inter-subject variability in fMRI using threshold-weighted overlap maps
NASA Astrophysics Data System (ADS)
Seghier, Mohamed L.; Price, Cathy J.
2016-02-01
Functional neuroimaging studies are revealing the neural systems sustaining many sensory, motor and cognitive abilities. A proper understanding of these systems requires an appreciation of the degree to which they vary across subjects. Some sources of inter-subject variability might be easy to measure (demographics, behavioural scores, or experimental factors), while others are more difficult (cognitive strategies, learning effects, and other hidden sources). Here, we introduce a simple way of visualising whole-brain consistency and variability in brain responses across subjects using threshold-weighted voxel-based overlap maps. The output quantifies the proportion of subjects activating a particular voxel or region over a wide range of statistical thresholds. The sensitivity of our approach was assessed in 30 healthy adults performing a matching task with their dominant hand. We show how overlap maps revealed many effects that were only present in a subsample of our group; we discuss how overlap maps can provide information that may be missed or misrepresented by standard group analysis, and how this information can help users to understand their data. In particular, we emphasize that functional overlap maps can be particularly useful when it comes to explaining typical (or atypical) compensatory mechanisms used by patients following brain damage.
On the ground state of Yang-Mills theory
NASA Astrophysics Data System (ADS)
Bakry, Ahmed S.; Leinweber, Derek B.; Williams, Anthony G.
2011-08-01
We investigate the overlap of the ground state meson potential with sets of mesonic-trial wave functions corresponding to different gluonic distributions. We probe the transverse structure of the flux tube through the creation of non-uniform smearing profiles for the string of glue connecting two color sources in Wilson loop operator. The non-uniformly UV-regulated flux-tube operators are found to optimize the overlap with the ground state and display interesting features in the ground state overlap.
An improved game-theoretic approach to uncover overlapping communities
NASA Astrophysics Data System (ADS)
Sun, Hong-Liang; Ch'Ng, Eugene; Yong, Xi; Garibaldi, Jonathan M.; See, Simon; Chen, Duan-Bing
How can we uncover overlapping communities from complex networks to understand the inherent structures and functions? Chen et al. firstly proposed a community game (Game) to study this problem, and the overlapping communities have been discovered when the game is convergent. It is based on the assumption that each vertex of the underlying network is a rational game player to maximize its utility. In this paper, we investigate how similar vertices affect the formation of community game. The Adamic-Adar Index (AA Index) has been employed to define the new utility function. This novel method has been evaluated on both synthetic and real-world networks. Experimental study shows that it has significant improvement of accuracy (from 4.8% to 37.6%) compared with the Game on 10 real networks. It is more efficient on Facebook networks (FN) and Amazon co-purchasing networks than on other networks. This result implicates that “friend circles of friends” of Facebook are valuable to understand the overlapping community division.
Venables, Noah C.; Patrick, Christopher J.; Hall, Jason R.; Bernat, Edward M.
2011-01-01
Impulsive-aggressive individuals exhibit deficits in amplitude of the P3 brain potential response, however, it remains unclear how separable dispositional traits account for this association. The current study sought to clarify the basis of this association by examining contributions of trait impulsiveness and stress reactivity to the observed relationship between dispositional aggression and amplitude of the P3 brain potential response in a visual novelty-oddball procedure. A significant negative association was found between aggressiveness and amplitude of P3 response to both target and novel stimuli over frontal-central scalp sites. Impulsivity showed a parallel inverse relationship with P3 amplitude, attributable to its overlap with dispositional aggression. In contrast, stress reactivity did not exhibit a zero-order association with P3 amplitude, but modestly predicted P3 in a positive direction after accounting for its overlap with aggression. Results are discussed in terms of their implications for individual difference variables and brain processes underlying impulsive-aggressive behavior. PMID:21262318
Gene network interconnectedness and the generalized topological overlap measure
Yip, Andy M; Horvath, Steve
2007-01-01
Background Network methods are increasingly used to represent the interactions of genes and/or proteins. Genes or proteins that are directly linked may have a similar biological function or may be part of the same biological pathway. Since the information on the connection (adjacency) between 2 nodes may be noisy or incomplete, it can be desirable to consider alternative measures of pairwise interconnectedness. Here we study a class of measures that are proportional to the number of neighbors that a pair of nodes share in common. For example, the topological overlap measure by Ravasz et al. [1] can be interpreted as a measure of agreement between the m = 1 step neighborhoods of 2 nodes. Several studies have shown that two proteins having a higher topological overlap are more likely to belong to the same functional class than proteins having a lower topological overlap. Here we address the question whether a measure of topological overlap based on higher-order neighborhoods could give rise to a more robust and sensitive measure of interconnectedness. Results We generalize the topological overlap measure from m = 1 step neighborhoods to m ≥ 2 step neighborhoods. This allows us to define the m-th order generalized topological overlap measure (GTOM) by (i) counting the number of m-step neighbors that a pair of nodes share and (ii) normalizing it to take a value between 0 and 1. Using theoretical arguments, a yeast co-expression network application, and a fly protein network application, we illustrate the usefulness of the proposed measure for module detection and gene neighborhood analysis. Conclusion Topological overlap can serve as an important filter to counter the effects of spurious or missing connections between network nodes. The m-th order topological overlap measure allows one to trade-off sensitivity versus specificity when it comes to defining pairwise interconnectedness and network modules. PMID:17250769
Cielecka-Piontek, J; Lewandowska, K; Barszcz, B; Paczkowska, M
2013-02-15
The application of ultraviolet, FT-IR and Raman spectra was proposed for identification studies of the newest penem analogs (doripenem, biapenem and faropenem). An identification of the newest penem analogs based on their separation from related substances was achieved after the application of first derivative of direct spectra in ultraviolet which permitted elimination of overlapping effects. A combination of experimental and theoretical studies was performed for analyzing the structure and vibrational spectra (FT-IR and Raman spectra) of doripenem, biapenem and faropenem. The calculations were conducted using the density functional theory with the B3LYP hybrid functional and 6-31G(d,p) basis set. The confirmation of the applicability of the DFT methodology for interpretation of vibrational IR and Raman spectra of the newest penem analogs contributed to determination of changes of vibrations in the area of the most labile bonds. By employing the theoretical approach it was possible to eliminate necessity of using reference standards which - considering the instability of penem analogs - require that correction coefficients are factored in. Copyright © 2012 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orgel, J.P.; Antipova, O.; Sagi, I.
Fibrillar collagens form the structural basis of organs and tissues including the vasculature, bone, and tendon. They are also dynamic, organizational scaffolds that present binding and recognition sites for ligands, cells, and platelets. We interpret recently published X-ray diffraction findings and use atomic force microscopy data to illustrate the significance of new insights into the functional organization of the collagen fibril. These data indicate that collagen's most crucial functional domains localize primarily to the overlap region, comprising a constellation of sites we call the 'master control region.' Moreover, the collagen's most exposed aspect contains its most stable part - themore » C-terminal region that controls collagen assembly, cross-linking, and blood clotting. Hidden beneath the fibril surface exists a constellation of 'cryptic' sequences poised to promote hemostasis and cell - collagen interactions in tissue injury and regeneration. These findings begin to address several important, and previously unresolved, questions: How functional domains are organized in the fibril, which domains are accessible, and which require proteolysis or structural trauma to become exposed? Here we speculate as to how collagen fibrillar organization impacts molecular processes relating to tissue growth, development, and repair.« less
Li, Yao; Dwivedi, Gaurav; Huang, Wen; Yi, Yingfei
2012-01-01
There is an evolutionary advantage in having multiple components with overlapping functionality (i.e degeneracy) in organisms. While theoretical considerations of degeneracy have been well established in neural networks using information theory, the same concepts have not been developed for differential systems, which form the basis of many biochemical reaction network descriptions in systems biology. Here we establish mathematical definitions of degeneracy, complexity and robustness that allow for the quantification of these properties in a system. By exciting a dynamical system with noise, the mutual information associated with a selected observable output and the interacting subspaces of input components can be used to define both complexity and degeneracy. The calculation of degeneracy in a biological network is a useful metric for evaluating features such as the sensitivity of a biological network to environmental evolutionary pressure. Using a two-receptor signal transduction network, we find that redundant components will not yield high degeneracy whereas compensatory mechanisms established by pathway crosstalk will. This form of analysis permits interrogation of large-scale differential systems for non-identical, functionally equivalent features that have evolved to maintain homeostasis during disruption of individual components. PMID:22619750
Kikhno, Irina
2014-01-01
Highly homologous sequences 154–157 bp in length grouped under the name of “conserved non-protein-coding element” (CNE) were revealed in all of the sequenced genomes of baculoviruses belonging to the genus Alphabaculovirus. A CNE alignment led to the detection of a set of highly conserved nucleotide clusters that occupy strictly conserved positions in the CNE sequence. The significant length of the CNE and conservation of both its length and cluster architecture were identified as a combination of characteristics that make this CNE different from known viral non-coding functional sequences. The essential role of the CNE in the Alphabaculovirus life cycle was demonstrated through the use of a CNE-knockout Autographa californica multiple nucleopolyhedrovirus (AcMNPV) bacmid. It was shown that the essential function of the CNE was not mediated by the presumed expression activities of the protein- and non-protein-coding genes that overlap the AcMNPV CNE. On the basis of the presented data, the AcMNPV CNE was categorized as a complex-structured, polyfunctional genomic element involved in an essential DNA transaction that is associated with an undefined function of the baculovirus genome. PMID:24740153
Development of Novel p16INK4a Mimetics as Anticancer Therapy
2015-10-01
peptide (or substituted peptide) or the crystal structure of the relevant sequence from p16INK4 ( PDB 1BI7) was used as the starting structure . Model...small peptides that interact with CDK4/6. The specific aims are as follows. (1) Determine structure -function relationships of overlapping peptides...Determine structure -function relationships of overlapping peptides derived from p16 INK4a that inhibit the activity of CDK4/6 and identify stabilized
Van Rheenen, Tamsyn E; Bryce, Shayden; Tan, Eric J; Neill, Erica; Gurvich, Caroline; Louise, Stephanie; Rossell, Susan L
2016-03-01
Despite known overlaps in the pattern of cognitive impairments in individuals with bipolar disorder (BD), schizophrenia (SZ) and schizoaffective disorder (SZA), few studies have examined the extent to which cognitive performance validates traditional diagnostic boundaries in these groups. Individuals with SZ (n=49), schizoaffective disorder (n=33) and BD (n=35) completed a battery of cognitive tests measuring the domains of processing speed, immediate memory, semantic memory, learning, working memory, executive function and sustained attention. A discriminant functions analysis revealed a significant function comprising semantic memory, immediate memory and processing speed that maximally separated patients with SZ from those with BD. Initial classification scores on the basis of this function showed modest diagnostic accuracy, owing in part to the misclassification of SZA patients as having SZ. When SZA patients were removed from the model, a second cross-validated classifier yielded slightly improved diagnostic accuracy and a single function solution, of which semantic memory loaded most heavily. A cluster of non-executive cognitive processes appears to have some validity in mapping onto traditional nosological boundaries. However, since semantic memory performance was the primary driver of the discrimination between BD and SZ, it is possible that performance differences between the disorders in this cognitive domain in particular, index separate underlying aetiologies. Copyright © 2015 Elsevier B.V. All rights reserved.
Reference-Free Removal of EEG-fMRI Ballistocardiogram Artifacts with Harmonic Regression
Krishnaswamy, Pavitra; Bonmassar, Giorgio; Poulsen, Catherine; Pierce, Eric T; Purdon, Patrick L.; Brown, Emery N.
2016-01-01
Combining electroencephalogram (EEG) recording and functional magnetic resonance imaging (fMRI) offers the potential for imaging brain activity with high spatial and temporal resolution. This potential remains limited by the significant ballistocardiogram (BCG) artifacts induced in the EEG by cardiac pulsation-related head movement within the magnetic field. We model the BCG artifact using a harmonic basis, pose the artifact removal problem as a local harmonic regression analysis, and develop an efficient maximum likelihood algorithm to estimate and remove BCG artifacts. Our analysis paradigm accounts for time-frequency overlap between the BCG artifacts and neurophysiologic EEG signals, and tracks the spatiotemporal variations in both the artifact and the signal. We evaluate performance on: simulated oscillatory and evoked responses constructed with realistic artifacts; actual anesthesia-induced oscillatory recordings; and actual visual evoked potential recordings. In each case, the local harmonic regression analysis effectively removes the BCG artifacts, and recovers the neurophysiologic EEG signals. We further show that our algorithm outperforms commonly used reference-based and component analysis techniques, particularly in low SNR conditions, the presence of significant time-frequency overlap between the artifact and the signal, and/or large spatiotemporal variations in the BCG. Because our algorithm does not require reference signals and has low computational complexity, it offers a practical tool for removing BCG artifacts from EEG data recorded in combination with fMRI. PMID:26151100
Zhuang, Xu; Guo, Jun-Xia; Zhang, Cheng-Wu; Zheng, Yu
2003-11-01
Observations on medullary ischemia region, the morphology of neurons and changes of respiration and blood pressure were made, in order to give evidences on how medullary ischemia affects respiration and circulation and give some advices on how to protect from it. Using cats as the experimental animals, the different parts of the basilar artery trunk were ligated. The changes in the density of blood vessels, the morphology of neurons in the brainstem, the electromyogram (EMG) of the diaphragm and the blood pressure of the femoral artery were investigated. The density of blood vessels notably decreased in the medulla after ligating the basilar artery trunk. The ischemic range induced by ligation of the different parts of the basilar artery trunk overlapped, mainly locating in the medulla rostral to the obex. The soma were swelled and the Nissl bodies decreased in some of neurons in the ischemic region of medulla. The duration of inspiration (T1) and expiration (TE) shortened, respiratory frequency (RF) increased, and mean blood pressure (MBP) decreased in the experimental groups (P < 0.05). There is an obvious overlap of the areas in which blood supplied by different parts of the basilar artery trunk. Medullary ischemia can involve in changes of respiration and blood pressure. The ischemic damage of neurons in the medulla might be the structural basis of the changes in the respiratory and circulatory functions.
Samim, Masood; Sandkuijl, Daaf; Tretyakov, Ian; Cisek, Richard; Barzda, Virginijus
2013-09-09
Differential polarization nonlinear optical microscopy has the potential to become an indispensable tool for structural investigations of ordered biological assemblies and microcrystalline aggregates. Their microscopic organization can be probed through fast and sensitive measurements of nonlinear optical signal anisotropy, which can be achieved with microscopic spatial resolution by using time-multiplexed pulsed laser beams with perpendicular polarization orientations and photon-counting detection electronics for signal demultiplexing. In addition, deformable membrane mirrors can be used to correct for optical aberrations in the microscope and simultaneously optimize beam overlap using a genetic algorithm. The beam overlap can be achieved with better accuracy than diffraction limited point-spread function, which allows to perform polarization-resolved measurements on the pixel-by-pixel basis. We describe a newly developed differential polarization microscope and present applications of the differential microscopy technique for structural studies of collagen and cellulose. Both, second harmonic generation, and fluorescence-detected nonlinear absorption anisotropy are used in these investigations. It is shown that the orientation and structural properties of the fibers in biological tissue can be deduced and that the orientation of fluorescent molecules (Congo Red), which label the fibers, can be determined. Differential polarization microscopy sidesteps common issues such as photobleaching and sample movement. Due to tens of megahertz alternating polarization of excitation pulses fast data acquisition can be conveniently applied to measure changes in the nonlinear signal anisotropy in dynamically changing in vivo structures.
Reproductive habitat selection in alien and native populations of the genus Discoglossus
NASA Astrophysics Data System (ADS)
Escoriza, Daniel; Boix, Dani
2014-08-01
The existence of suitable breeding habitats is an important factor explaining the regional presence of an anuran species. This study examined patterns of habitat selection in populations of three species of the genus Discoglossus: Discoglossusgalganoi (south-western Iberian Peninsula), Discoglossusscovazzi (Morocco) and Discoglossuspictus (three different areas were included in the study: Sicily, Tunisia and north-eastern Iberian Peninsula). The populations of D. pictus on the Iberian Peninsula are allochthonous, and analysis of these patterns may provide insights into the processes that regulate the invasion phase. The hypotheses tested were: (i) congeneric species show the same patterns of habitat selection, and alien species have been established following these patterns; (ii) there are differences in species associations between assemblages structured deterministically and by chance, i.e. native versus invaded assemblages. The larval habitats of three species of this genus were characterized by measuring physical and chemical parameters of the water bodies. We examined the covariation between the presence of Discoglossus species and the species richness of sympatric anurans, and investigated a possible relationship between morphological similarity (as a proxy of functional group) and overlap in habitat use. The results showed that congeneric species are morphologically conservative and also select very similar types of aquatic habitat. The alien population and other sympatric species showed a high degree of overlap in habitat use, which was greater than that observed in the native assemblage with a similar functional richness. Species associations were not structured on the basis of morphological similarity in any of the assemblages. Among native populations, the presence of Discoglossus was either negatively correlated or not significantly correlated with species richness. Only the alien population showed a positive correlation between its presence and species richness, which suggests a loss of assemblage structure.
Th-2 signature in chronic airway diseases: towards the extinction of asthma-COPD overlap syndrome?
Cosío, Borja G; Pérez de Llano, Luis; Lopez Viña, Antolin; Torrego, Alfons; Lopez-Campos, Jose Luis; Soriano, Joan B; Martinez Moragon, Eva; Izquierdo, Jose Luis; Bobolea, Irina; Callejas, Javier; Plaza, Vicente; Miravitlles, Marc; Soler-Catalunya, Juan Jose
2017-05-01
We aimed to describe the differences and similarities between patients with chronic obstructive airway disease classified on the basis of classical diagnostic labels (asthma, chronic obstructive pulmonary disease (COPD), or asthma-COPD overlap (ACOS)) or according to the underlying inflammatory pattern (Th-2 signature, either Th-2-high or Th-2-low).We performed a cross-sectional study of patients aged ≥40 years and with a post-bronchodilator forced expiratory volume in 1 s to forced vital capacity ratio ≤0.7 with a previous diagnosis of asthma (non-smoking asthmatics (NSA)), COPD or ACOS, the latter including both smoking asthmatics (SA) and patients with eosinophilic COPD (COPD-e). Clinical, functional and inflammatory parameters (blood eosinophil count, IgE and exhaled nitric oxide fraction ( F eNO )) were compared between groups. Th-2 signature was defined by a blood eosinophil count ≥300 cells·μL -1 and/or a sputum eosinophil count ≥3%.Overall, 292 patients were included in the study: 89 with COPD, 94 NSA and 109 with ACOS (44 SA and 65 with COPD-e). No differences in symptoms or exacerbation rate were found between the three groups. With regards the underlying inflammatory pattern, 94 patients (32.2%) were characterised as Th-2-high and 198 (67.8%) as Th-2-low. The Th-2 signature was found in 49% of NSA, 3.3% of patients with COPD, 30% of SA and 49.3% of patients with COPD-e. This classification yielded significant differences in demographic, functional and inflammatory characteristics.We conclude that a classification based upon the inflammatory profile, irrespective of the taxonomy, provides a more clear distinction of patients with chronic obstructive airway disease. Copyright ©ERS 2017.
ERIC Educational Resources Information Center
Van Norman, Ethan R.
2016-01-01
Curriculum-based measurement of oral reading (CBM-R) progress monitoring data is used to measure student response to instruction. Federal legislation permits educators to use CBM-R progress monitoring data as a basis for determining the presence of specific learning disabilities. However, decision making frameworks originally developed for CBM-R…
NASA Astrophysics Data System (ADS)
Kose, Etem; Atac, Ahmet; Karabacak, Mehmet; Karaca, Caglar; Eskici, Mustafa; Karanfil, Abdullah
2012-11-01
The synthesis and characterization of a novel compound (S)-N-benzyl-1-phenyl-5-(pyridin-2-yl)-pent-4-yn-2-amine (abbreviated as BPPPYA) was presented in this study. The spectroscopic properties of the compound were investigated by FT-IR, NMR and UV spectroscopy experimentally and theoretically. The molecular geometry and vibrational frequencies of the BPPPYA in the ground state were calculated by using density functional theory (DFT) B3LYP method invoking 6-311++G(d,p) basis set. The geometry of the BPPPYA was fully optimized, vibrational spectra were calculated and fundamental vibrations were assigned on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method and PQS program. The results of the energy and oscillator strength calculated by time-dependent density functional theory (TD-DFT) and CIS approach complement with the experimental findings. Total and partial density of state (TDOS and PDOS) and also overlap population density of state (COOP or OPDOS) diagrams analysis were presented. The theoretical NMR chemical shifts (1H and 13C) complement with experimentally measured ones. The dipole moment, linear polarizability and first hyperpolarizability values were also computed. The linear polarizabilities and first hyper polarizabilities of the studied molecule indicate that the compound is a good candidate of nonlinear optical materials. The calculated vibrational wavenumbers, absorption wavelengths and chemical shifts showed the best agreement with the experimental results.
Theoretical study of NMR, infrared and Raman spectra on triple-decker phthalocyanines
NASA Astrophysics Data System (ADS)
Suzuki, Atsushi; Oku, Takeo
2016-02-01
Electronic structures and magnetic properties of multi-decker phthalocyanines were studied by theoretical calculation. Electronic structures, excited processes at multi-states, isotropic chemical shifts of 13C, 14N and 1H-nuclear magnetic resonance (NMR), principle V-tensor in electronic field gradient (EFG) tensor and asymmetry parameters (η), vibration mode in infrared (IR) and Raman spectra of triple-decker phthalocyanines were calculated by density functional theory (DFT) and time-dependent DFT using B3LYP as basis function. Electron density distribution was delocalized on the phthalocyanine rings with electron static potential. Considerable separation of chemical shifts in 13C, 14N and 1H-NMR was originated from nuclear spin interaction between nitrogen and carbon atoms, nuclear quadrupole interaction based on EFG and η of central metal under crystal field. Calculated optical absorption at multi-excited process was derived from overlapping π-orbital on the phthalocyanine rings. The vibration modes in IR and Raman spectra were based on in-plane deformation and stretching vibrations of metal-ligand coordination bond on the deformed structure.
NASA Astrophysics Data System (ADS)
Wang, Audrey; Price, David T.
2007-03-01
A simple integrated algorithm was developed to relate global climatology to distributions of tree plant functional types (PFT). Multivariate cluster analysis was performed to analyze the statistical homogeneity of the climate space occupied by individual tree PFTs. Forested regions identified from the satellite-based GLC2000 classification were separated into tropical, temperate, and boreal sub-PFTs for use in the Canadian Terrestrial Ecosystem Model (CTEM). Global data sets of monthly minimum temperature, growing degree days, an index of climatic moisture, and estimated PFT cover fractions were then used as variables in the cluster analysis. The statistical results for individual PFT clusters were found consistent with other global-scale classifications of dominant vegetation. As an improvement of the quantification of the climatic limitations on PFT distributions, the results also demonstrated overlapping of PFT cluster boundaries that reflected vegetation transitions, for example, between tropical and temperate biomes. The resulting global database should provide a better basis for simulating the interaction of climate change and terrestrial ecosystem dynamics using global vegetation models.
Energy spectrum and electrical conductivity of graphene with a nitrogen impurity
NASA Astrophysics Data System (ADS)
Repetskii, S. P.; Vyshivanaya, I. G.; Skotnikov, V. A.; Yatsenyuk, A. A.
2015-04-01
The electronic structure of graphene with a nitrogen impurity has been studied based on the model of tight binding using exchange-correlation potentials in the density-functional theory. Wave functions of 2 s and 2 p states of neutral noninteracting carbon atoms have been chosen as the basis. When studying the matrix elements of the Hamiltonian, the first three coordination shells have been taken into account. It has been established that the hybridization of electron-energy bands leads to the splitting of the electron energy spectrum near the Fermi level. Due to the overlap of the energy bands, the arising gap behaves as a quasi-gap, in which the density of the electron levels is much lower than in the rest of the spectrum. It has been established that the conductivity of graphene decreases with increasing nitrogen concentration. Since the increase in the nitrogen concentration leads to an increase in the density of states at the Fermi level, the decrease in the conductivity is due to a sharper decrease in the time of relaxation of the electron sates.
Deconvolution of seed and RNA-binding protein crosstalk in RNAi-based functional genomics.
Suzuki, Hiroshi I; Spengler, Ryan M; Grigelioniene, Giedre; Kobayashi, Tatsuya; Sharp, Phillip A
2018-05-01
RNA interference (RNAi) is a major, powerful platform for gene perturbations, but is restricted by off-target mechanisms. Communication between RNAs, small RNAs, and RNA-binding proteins (RBPs) is a pervasive feature of cellular RNA networks. We present a crosstalk scenario, designated as crosstalk with endogenous RBPs' (ceRBP), in which small interfering RNAs or microRNAs with seed sequences that overlap RBP motifs have extended biological effects by perturbing endogenous RBP activity. Systematic analysis of small interfering RNA (siRNA) off-target data and genome-wide RNAi cancer lethality screens using 501 human cancer cell lines, a cancer dependency map, identified that seed-to-RBP crosstalk is widespread, contributes to off-target activity, and affects RNAi performance. Specifically, deconvolution of the interactions between gene knockdown and seed-mediated silencing effects in the cancer dependency map showed widespread contributions of seed-to-RBP crosstalk to growth-phenotype modulation. These findings suggest a novel aspect of microRNA biology and offer a basis for improvement of RNAi agents and RNAi-based functional genomics.
[Clinical examination of the hip joint in adults].
Grifka, J; Keshmiri, A; Maderbacher, G; Craiovan, B
2014-12-01
Complaints in the region of the hips and pelvis are often difficult to classify. This is due to the fact that pain projection and overlapping can occur; therefore, the complete region of the lumbar spine, pelvis and hips must be considered as a single entity in which alterations can result in radiation throughout the whole region. There are many different anatomical structures within the pelvic region so that the function of various muscle components can be impaired and cause pathological alterations to positional relationships of bony structures or even alterations to other soft tissues, such as ligaments, tendons and labra. In terms of differential diagnostics the groin must be seen as the weak point of the peritoneum and vascular system and taken into consideration. Therefore, a detailed and targeted medical history, functional testing and specific examinations and tests are necessary to narrow down the pathology in question and reach a definitive diagnosis. Orthopedic surgeons must know which conspicuous features can lead to which problems and which anatomical structures are likely to be affected by irritation. The results of the clinical examination are the basis for targeted imaging diagnostics and subsequent therapy.
[Clinical examination of the hip joint in adults].
Grifka, J; Keshmiri, A; Maderbacher, G; Craiovan, B
2015-07-01
Complaints in the region of the hips and pelvis are often difficult to classify. This is due to the fact that pain projection and overlapping can occur; therefore, the complete region of the lumbar spine, pelvis and hips must be considered as a single entity in which alterations can result in radiation throughout the whole region. There are many different anatomical structures within the pelvic region so that the function of various muscle components can be impaired and cause pathological alterations to positional relationships of bony structures or even alterations to other soft tissues, such as ligaments, tendons and labra. In terms of differential diagnostics the groin must be seen as the weak point of the peritoneum and vascular system and taken into consideration. Therefore, a detailed and targeted medical history, functional testing and specific examinations and tests are necessary to narrow down the pathology in question and reach a definitive diagnosis. Orthopedic surgeons must know which conspicuous features can lead to which problems and which anatomical structures are likely to be affected by irritation. The results of the clinical examination are the basis for targeted imaging diagnostics and subsequent therapy.
An ant colony based algorithm for overlapping community detection in complex networks
NASA Astrophysics Data System (ADS)
Zhou, Xu; Liu, Yanheng; Zhang, Jindong; Liu, Tuming; Zhang, Di
2015-06-01
Community detection is of great importance to understand the structures and functions of networks. Overlap is a significant feature of networks and overlapping community detection has attracted an increasing attention. Many algorithms have been presented to detect overlapping communities. In this paper, we present an ant colony based overlapping community detection algorithm which mainly includes ants' location initialization, ants' movement and post processing phases. An ants' location initialization strategy is designed to identify initial location of ants and initialize label list stored in each node. During the ants' movement phase, the entire ants move according to the transition probability matrix, and a new heuristic information computation approach is redefined to measure similarity between two nodes. Every node keeps a label list through the cooperation made by ants until a termination criterion is reached. A post processing phase is executed on the label list to get final overlapping community structure naturally. We illustrate the capability of our algorithm by making experiments on both synthetic networks and real world networks. The results demonstrate that our algorithm will have better performance in finding overlapping communities and overlapping nodes in synthetic datasets and real world datasets comparing with state-of-the-art algorithms.
Convergence to equilibrium under a random Hamiltonian.
Brandão, Fernando G S L; Ćwikliński, Piotr; Horodecki, Michał; Horodecki, Paweł; Korbicz, Jarosław K; Mozrzymas, Marek
2012-09-01
We analyze equilibration times of subsystems of a larger system under a random total Hamiltonian, in which the basis of the Hamiltonian is drawn from the Haar measure. We obtain that the time of equilibration is of the order of the inverse of the arithmetic average of the Bohr frequencies. To compute the average over a random basis, we compute the inverse of a matrix of overlaps of operators which permute four systems. We first obtain results on such a matrix for a representation of an arbitrary finite group and then apply it to the particular representation of the permutation group under consideration.
Convergence to equilibrium under a random Hamiltonian
NASA Astrophysics Data System (ADS)
Brandão, Fernando G. S. L.; Ćwikliński, Piotr; Horodecki, Michał; Horodecki, Paweł; Korbicz, Jarosław K.; Mozrzymas, Marek
2012-09-01
We analyze equilibration times of subsystems of a larger system under a random total Hamiltonian, in which the basis of the Hamiltonian is drawn from the Haar measure. We obtain that the time of equilibration is of the order of the inverse of the arithmetic average of the Bohr frequencies. To compute the average over a random basis, we compute the inverse of a matrix of overlaps of operators which permute four systems. We first obtain results on such a matrix for a representation of an arbitrary finite group and then apply it to the particular representation of the permutation group under consideration.
The Effects of Locus Coeruleus and Norepinephrine in Methamphetamine Toxicity
Ferrucci, Michela; Giorgi, Filippo S; Bartalucci, Alessia; Busceti, Carla L; Fornai, Francesco
2013-01-01
The activity of locus coeruleus (LC) neurons has been extensively investigated in a variety of behavioural states. In fact this norepinephrine (NE)-containing nucleus modulates many physiological and pathological conditions including the sleep-waking cycle, movement disorders, mood alterations, convulsive seizures, and the effects of drugs such as psychostimulants and opioids. This review focuses on the modulation exerted by central NE pathways on the behavioural and neurotoxic effects produced by the psychostimulant methamphetamine, essentially the modulation of the activity of mesencephalic dopamine (DA) neurons. In fact, although NE in itself mediates some behavioural effects induced by methamphetamine, NE modulation of DA release is pivotal for methamphetamine-induced behavioural states and neurotoxicity. These interactions are discussed on the basis of the state of the art of the functional neuroanatomy of central NE- and DA systems. Emphasis is given to those brain sites possessing a remarkable overlapping of both neurotransmitters. PMID:23814540
Processing of social and monetary rewards in the human striatum.
Izuma, Keise; Saito, Daisuke N; Sadato, Norihiro
2008-04-24
Despite an increasing focus on the neural basis of human decision making in neuroscience, relatively little attention has been paid to decision making in social settings. Moreover, although human social decision making has been explored in a social psychology context, few neural explanations for the observed findings have been considered. To bridge this gap and improve models of human social decision making, we investigated whether acquiring a good reputation, which is an important incentive in human social behaviors, activates the same reward circuitry as monetary rewards. In total, 19 subjects participated in functional magnetic resonance imaging (fMRI) experiments involving monetary and social rewards. The acquisition of one's good reputation robustly activated reward-related brain areas, notably the striatum, and these overlapped with the areas activated by monetary rewards. Our findings support the idea of a "common neural currency" for rewards and represent an important first step toward a neural explanation for complex human social behaviors.
Ab-initio atomic level stress and role of d-orbitals in CuZr, CuZn and CuY
NASA Astrophysics Data System (ADS)
Ojha, Madhusudan; Nicholson, Don M.; Egami, Takeshi
2015-03-01
Atomic level stress offers a new tool to characterize materials within the local approximation to density functional theory (DFT). Ab-initio atomic level stresses in B2 structures of CuZr, CuZn and CuY are calculated and results are explained on the basis of d-orbital contributions to Density of States (DOS). The overlap of d-orbital DOS plays an important role in the relative magnitude of atomic level stresses in these structures. The trends in atomic level stresses that we observed in these simple B2 structures are also seen in complex structures such as liquids, glasses and solid solutions. The stresses are however modified by the different coordination and relaxed separation distances in these complex structures. We used the Locally Self-Consistent Multiple Scattering (LSMS) code and Vienna Ab-initio Simulation Package (VASP) for ab-initio calculations.
FUNCTIONAL OVERLAP OF ROOT SYSTEMS IN AN OLD-GROWTH FOREST INFERRED FROM TRACER 15N UPTAKE
Belowground competition for nutrients and water is considered a key factor affecting spatial organization and productivity of individual stems within forest stands, yet there are few data describing the lateral extent and overlap of competing root systems. We quantified the func...
Functional Heterogeneity and Convergence in the Right Temporoparietal Junction
Lee, Su Mei; McCarthy, Gregory
2016-01-01
The right temporoparietal junction (rTPJ) is engaged by tasks that manipulate biological motion processing, Theory of Mind attributions, and attention reorienting. The proximity of activations elicited by these tasks raises the question of whether these tasks share common cognitive component processes that are subserved by common neural substrates. Here, we used high-resolution whole-brain functional magnetic resonance imaging in a within-subjects design to determine whether these tasks activate common regions of the rTPJ. Each participant was presented with the 3 tasks in the same imaging session. In a whole-brain analysis, we found that only the right and left TPJs were activated by all 3 tasks. Multivoxel pattern analysis revealed that the regions of overlap could still discriminate the 3 tasks. Notably, we found significant cross-task classification in the right TPJ, which suggests a shared neural process between the 3 tasks. Taken together, these results support prior studies that have indicated functional heterogeneity within the rTPJ but also suggest a convergence of function within a region of overlap. These results also call for further investigation into the nature of the function subserved in this overlap region. PMID:25477367
Intelligence, personality, and interests: evidence for overlapping traits.
Ackerman, P L; Heggestad, E D
1997-03-01
The authors review the development of the modern paradigm for intelligence assessment and application and consider the differentiation between intelligence-as-maximal performance and intelligence-as-typical performance. They review theories of intelligence, personality, and interest as a means to establish potential overlap. Consideration of intelligence-as-typical performance provides a basis for evaluation of intelligence-personality and intelligence-interest relations. Evaluation of relations among personality constructs, vocational interests, and intellectual abilities provides evidence for communality across the domains of personality of J. L. Holland's (1959) model of vocational interests. The authors provide an extensive meta-analysis of personality-intellectual ability correlations, and a review of interest-intellectual ability associations. They identify 4 trait complexes: social, clerical/conventional, science/math, and intellectual/cultural.
Epilepsy, autism, and neurodevelopment: kindling a shared vulnerability?
Gilby, Krista L; O'Brien, Terence J
2013-03-01
Epilepsy and autism spectrum disorder (ASD) share many primary and comorbid symptoms. The degree of clinical overlap is believed to signify a 'spectrum of vulnerability' that arises out of an early common dysfunction in central nervous system development. However, research into the underlying, and potentially shared, etiopathological mechanisms is challenging given the extensive comorbidity profiles. Adding to the degree of difficulty is the frequently evolving recompartmentalization of diagnostic criteria within each disorder. This review discusses potential preclinical strategies that, through the use of animal models, are designed to gain insight into the biological basis of the overlap between epilepsy and autism and to foster a rapid clinical translation of the insights gained. Copyright © 2012 Elsevier Inc. All rights reserved.
Asada, Naoya; Fedorov, Dmitri G.; Kitaura, Kazuo; Nakanishi, Isao; Merz, Kenneth M.
2012-01-01
We propose an approach based on the overlapping multicenter ONIOM to evaluate intermolecular interaction energies in large systems and demonstrate its accuracy on several representative systems in the complete basis set limit at the MP2 and CCSD(T) level of theory. In the application to the intermolecular interaction energy between insulin dimer and 4′-hydroxyacetanilide at the MP2/CBS level, we use the fragment molecular orbital method for the calculation of the entire complex assigned to the lowest layer in three-layer ONIOM. The developed method is shown to be efficient and accurate in the evaluation of the protein-ligand interaction energies. PMID:23050059
TAKAHASHI, Fumitaka; HAKOZAKI, Takaharu; KOUNO, Shigenori; SUZUKI, Shuji; SATO, Asaka; KANNO, Nobuo; HARADA, Yasuji; YAMAGUCHI, Shinya; HARA, Yasushi
2018-01-01
We compared clinical outcomes after ventral fixation in dogs with atlantoaxial instability (AAI) on the basis of the presence or absence of atlantooccipital overlapping (AOO). Of 41 dogs diagnosed with AAI and treated ventral fixation, 12 exhibited AOO (AOO group), whereas 29 did not (non-AOO group). The AOO group had significantly higher neurological scores before (P=0.024) and 1 month after (P=0.033) surgery compared with the non-AOO group; however, no significant differences were observed between the groups 2 months after surgery. The presence of complicating AOO affected the clinical signs for dogs with AAI, but did not directly affect the outcome of surgical stabilization of AAI. PMID:29398673
Böhm, Kati; Meyer, Fabian; Rhomberg, Agata; Kalinowski, Jörn; Donovan, Catriona
2017-01-01
ABSTRACT Bacteria regulate chromosome replication and segregation tightly with cell division to ensure faithful segregation of DNA to daughter generations. The underlying mechanisms have been addressed in several model species. It became apparent that bacteria have evolved quite different strategies to regulate DNA segregation and chromosomal organization. We have investigated here how the actinobacterium Corynebacterium glutamicum organizes chromosome segregation and DNA replication. Unexpectedly, we found that C. glutamicum cells are at least diploid under all of the conditions tested and that these organisms have overlapping C periods during replication, with both origins initiating replication simultaneously. On the basis of experimental data, we propose growth rate-dependent cell cycle models for C. glutamicum. PMID:28588128
One-loop perturbative coupling of A and A? through the chiral overlap operator
NASA Astrophysics Data System (ADS)
Makino, Hiroki; Morikawa, Okuto; Suzuki, Hiroshi
2018-03-01
Recently, Grabowska and Kaplan constructed a four-dimensional lattice formulation of chiral gauge theories on the basis of the chiral overlap operator. At least in the tree-level approximation, the left-handed fermion is coupled only to the original gauge field A, while the right-handed one is coupled only to the gauge field A*, a deformation of A by the gradient flow with infinite flow time. In this paper, we study the fermion one-loop effective action in their formulation. We show that the continuum limit of this effective action contains local interaction terms between A and A*, even if the anomaly cancellation condition is met. These non-vanishing terms would lead an undesired perturbative spectrum in the formulation.
Estimation of πd-Interactions in Organic Conductors Including Magnetic Anions
NASA Astrophysics Data System (ADS)
Mori, Takehiko; Katsuhara, Mao
2002-03-01
Magnetic interactions in organic conductors including magnetic anions, such as λ-(BETS)2FeCl4 and κ-(BETS)2FeX4 [X = Cl and Br], are estimated from intermolecular overlap integrals; the overlaps between anions afford Jdd, and those between anions and donors give Jπ d. From this, the most stable spin alignments are decided, and such quantities as the Néel and Weiss temperatures, as well as the magnitude of spin polarization on the π-molecules are evaluated on the basis of the mean-field theory of πd-systems. The calculation is extended to several other πd-conductors, which are classified depending on the relative magnitudes of the direct dd- and indirect πd-interactions.
Design considerations for near-infrared filter photometry: effects of noise sources and selectivity.
Tarumi, Toshiyasu; Amerov, Airat K; Arnold, Mark A; Small, Gary W
2009-06-01
Optimal filter design of two-channel near-infrared filter photometers is investigated for simulated two-component systems consisting of an analyte and a spectrally overlapping interferent. The degree of overlap between the analyte and interferent bands is varied over three levels. The optimal design is obtained for three cases: a source or background flicker noise limited case, a shot noise limited case, and a detector noise limited case. Conventional photometers consist of narrow-band optical filters with their bands located at discrete wavelengths. However, the use of broadband optical filters with overlapping responses has been proposed to obtain as much signal as possible from a weak and broad analyte band typical of near-infrared absorptions. One question regarding the use of broadband optical filters with overlapping responses is the selectivity achieved by such filters. The selectivity of two-channel photometers is evaluated on the basis of the angle between the analyte and interferent vectors in the space spanned by the relative change recorded for each of the two detector channels. This study shows that for the shot noise limited or detector noise limited cases, the slight decrease in selectivity with the use of broadband optical filters can be compensated by the higher signal-to-noise ratio afforded by the use of such filters. For the source noise limited case, the best quantitative results are obtained with the use of narrow-band non-overlapping optical filters.
The E1784K mutation in SCN5A is associated with mixed clinical phenotype of type 3 long QT syndrome
Makita, Naomasa; Behr, Elijah; Shimizu, Wataru; Horie, Minoru; Sunami, Akihiko; Crotti, Lia; Schulze-Bahr, Eric; Fukuhara, Shigetomo; Mochizuki, Naoki; Makiyama, Takeru; Itoh, Hideki; Christiansen, Michael; McKeown, Pascal; Miyamoto, Koji; Kamakura, Shiro; Tsutsui, Hiroyuki; Schwartz, Peter J.; George, Alfred L.; Roden, Dan M.
2008-01-01
Phenotypic overlap of type 3 long QT syndrome (LQT3) with Brugada syndrome (BrS) is observed in some carriers of mutations in the Na channel SCN5A. While this overlap is important for patient management, the clinical features, prevalence, and mechanisms underlying such overlap have not been fully elucidated. To investigate the basis for this overlap, we genotyped a cohort of 44 LQT3 families of multiple ethnicities from 7 referral centers and found a high prevalence of the E1784K mutation in SCN5A. Of 41 E1784K carriers, 93% had LQT3, 22% had BrS, and 39% had sinus node dysfunction. Heterologously expressed E1784K channels showed a 15.0-mV negative shift in the voltage dependence of Na channel inactivation and a 7.5-fold increase in flecainide affinity for resting-state channels, properties also seen with other LQT3 mutations associated with a mixed clinical phenotype. Furthermore, these properties were absent in Na channels harboring the T1304M mutation, which is associated with LQT3 without a mixed clinical phenotype. These results suggest that a negative shift of steady-state Na channel inactivation and enhanced tonic block by class IC drugs represent common biophysical mechanisms underlying the phenotypic overlap of LQT3 and BrS and further indicate that class IC drugs should be avoided in patients with Na channels displaying these behaviors. PMID:18451998
Dact genes are chordate specific regulators at the intersection of Wnt and Tgf-β signaling pathways.
Schubert, Frank Richard; Sobreira, Débora Rodrigues; Janousek, Ricardo Guerreiro; Alvares, Lúcia Elvira; Dietrich, Susanne
2014-08-06
Dacts are multi-domain adaptor proteins. They have been implicated in Wnt and Tgfβ signaling and serve as a nodal point in regulating many cellular activities. Dact genes have so far only been identified in bony vertebrates. Also, the number of Dact genes in a given species, the number and roles of protein motifs and functional domains, and the overlap of gene expression domains are all not clear. To address these problems, we have taken an evolutionary approach, screening for Dact genes in the animal kingdom and establishing their phylogeny and the synteny of Dact loci. Furthermore, we performed a deep analysis of the various Dact protein motifs and compared the expression patterns of different Dacts. Our study identified previously not recognized dact genes and showed that they evolved late in the deuterostome lineage. In gnathostomes, four Dact genes were generated by the two rounds of whole genome duplication in the vertebrate ancestor, with Dact1/3 and Dact2/4, respectively, arising from the two genes generated during the first genome duplication. In actinopterygians, a further dact4r gene arose from retrotranscription. The third genome duplication in the teleost ancestor, and subsequent gene loss in most gnathostome lineages left extant species with a subset of Dact genes. The distribution of functional domains suggests that the ancestral Dact function lied with Wnt signaling, and a role in Tgfβ signaling may have emerged with the Dact2/4 ancestor. Motif reduction, in particular in Dact4, suggests that this protein may counteract the function of the other Dacts. Dact genes were expressed in both distinct and overlapping domains, suggesting possible combinatorial function. The gnathostome Dact gene family comprises four members, derived from a chordate-specific ancestor. The ability to control Wnt signaling seems to be part of the ancestral repertoire of Dact functions, while the ability to inhibit Tgfβ signaling and to carry out specialized, ortholog-specific roles may have evolved later. The complement of Dact genes coexpressed in a tissue provides a complex way to fine-tune Wnt and Tgfβ signaling. Our work provides the basis for future structural and functional studies aimed at unraveling intracellular regulatory networks.
Marlétaz, Ferdinand; Maeso, Ignacio; Faas, Laura; Isaacs, Harry V; Holland, Peter W H
2015-08-01
The functional consequences of whole genome duplications in vertebrate evolution are not fully understood. It remains unclear, for instance, why paralogues were retained in some gene families but extensively lost in others. Cdx homeobox genes encode conserved transcription factors controlling posterior development across diverse bilaterians. These genes are part of the ParaHox gene cluster. Multiple Cdx copies were retained after genome duplication, raising questions about how functional divergence, overlap, and redundancy respectively contributed to their retention and evolutionary fate. We examined the degree of regulatory and functional overlap between the three vertebrate Cdx genes using single and triple morpholino knock-down in Xenopus tropicalis followed by RNA-seq. We found that one paralogue, Cdx4, has a much stronger effect on gene expression than the others, including a strong regulatory effect on FGF and Wnt genes. Functional annotation revealed distinct and overlapping roles and subtly different temporal windows of action for each gene. The data also reveal a colinear-like effect of Cdx genes on Hox genes, with repression of Hox paralogy groups 1 and 2, and activation increasing from Hox group 5 to 11. We also highlight cases in which duplicated genes regulate distinct paralogous targets revealing pathway elaboration after whole genome duplication. Despite shared core pathways, Cdx paralogues have acquired distinct regulatory roles during development. This implies that the degree of functional overlap between paralogues is relatively low and that gene expression pattern alone should be used with caution when investigating the functional evolution of duplicated genes. We therefore suggest that developmental programmes were extensively rewired after whole genome duplication in the early evolution of vertebrates.
Prediction of CpG-island function: CpG clustering vs. sliding-window methods
2010-01-01
Background Unmethylated stretches of CpG dinucleotides (CpG islands) are an outstanding property of mammal genomes. Conventionally, these regions are detected by sliding window approaches using %G + C, CpG observed/expected ratio and length thresholds as main parameters. Recently, clustering methods directly detect clusters of CpG dinucleotides as a statistical property of the genome sequence. Results We compare sliding-window to clustering (i.e. CpGcluster) predictions by applying new ways to detect putative functionality of CpG islands. Analyzing the co-localization with several genomic regions as a function of window size vs. statistical significance (p-value), CpGcluster shows a higher overlap with promoter regions and highly conserved elements, at the same time showing less overlap with Alu retrotransposons. The major difference in the prediction was found for short islands (CpG islets), often exclusively predicted by CpGcluster. Many of these islets seem to be functional, as they are unmethylated, highly conserved and/or located within the promoter region. Finally, we show that window-based islands can spuriously overlap several, differentially regulated promoters as well as different methylation domains, which might indicate a wrong merge of several CpG islands into a single, very long island. The shorter CpGcluster islands seem to be much more specific when concerning the overlap with alternative transcription start sites or the detection of homogenous methylation domains. Conclusions The main difference between sliding-window approaches and clustering methods is the length of the predicted islands. Short islands, often differentially methylated, are almost exclusively predicted by CpGcluster. This suggests that CpGcluster may be the algorithm of choice to explore the function of these short, but putatively functional CpG islands. PMID:20500903
Ettinger, Ulrich; Meyhöfer, Inga; Steffens, Maria; Wagner, Michael; Koutsouleris, Nikolaos
2013-01-01
Schizotypy refers to a set of temporally stable traits that are observed in the general population and that resemble the signs and symptoms of schizophrenia. Here, we review evidence from studies on genetics, cognition, perception, motor and oculomotor control, brain structure, brain function, and psychopharmacology in schizotypy. We specifically focused on identifying areas of overlap between schizotypy and schizophrenia. Evidence was corroborated that significant overlap exists between the two, covering the behavioral brain structural and functional as well molecular levels. In particular, several studies showed that individuals with high levels of schizotypal traits exhibit alterations in neurocognitive task performance and underlying brain function similar to the deficits seen in patients with schizophrenia. Studies of brain structure have shown both volume reductions and increase in schizotypy, pointing to schizophrenia-like deficits as well as possible protective or compensatory mechanisms. Experimental pharmacological studies have shown that high levels of schizotypy are associated with (i) enhanced dopaminergic response in striatum following administration of amphetamine and (ii) improvement of cognitive performance following administration of antipsychotic compounds. Together, this body of work suggests that schizotypy shows overlap with schizophrenia across multiple behavioral and neurobiological domains, suggesting that the study of schizotypal traits may be useful in improving our understanding of the etiology of schizophrenia. PMID:24600411
Li, Zhiguang; Kwekel, Joshua C; Chen, Tao
2012-01-01
Functional comparison across microarray platforms is used to assess the comparability or similarity of the biological relevance associated with the gene expression data generated by multiple microarray platforms. Comparisons at the functional level are very important considering that the ultimate purpose of microarray technology is to determine the biological meaning behind the gene expression changes under a specific condition, not just to generate a list of genes. Herein, we present a method named percentage of overlapping functions (POF) and illustrate how it is used to perform the functional comparison of microarray data generated across multiple platforms. This method facilitates the determination of functional differences or similarities in microarray data generated from multiple array platforms across all the functions that are presented on these platforms. This method can also be used to compare the functional differences or similarities between experiments, projects, or laboratories.
NASA Astrophysics Data System (ADS)
Zhai, Liang-Jun; Wang, Huai-Yu; Yin, Shuai
2018-04-01
The conventional Kibble-Zurek scaling describes the scaling behavior in the driven dynamics across a single critical region. In this paper, we study the driven dynamics across an overlapping critical region, in which a critical region (Region A) is overlaid by another critical region (Region B). We develop a hybridized Kibble-Zurek scaling (HKZS) to characterize the scaling behavior in the driven process. According to the HKZS, the driven dynamics in the overlapping region can be described by the critical theories for both Region A and Region B simultaneously. This results in a constraint on the scaling function in the overlapping critical region. We take the quantum Ising chain in an imaginary longitudinal field as an example. In this model, the critical region of the Yang-Lee edge singularity and the critical region of the ferromagnetic-paramagnetic phase transition overlap with each other. We numerically confirm the HKZS by simulating the driven dynamics in this overlapping critical region. The HKZSs in other models are also discussed.
Interleaved neuromuscular electrical stimulation: Motor unit recruitment overlap.
Wiest, Matheus J; Bergquist, Austin J; Schimidt, Helen L; Jones, Kelvin E; Collins, David F
2017-04-01
In this study, we quantified the "overlap" between motor units recruited by single pulses of neuromuscular electrical stimulation (NMES) delivered over the tibialis anterior muscle (mNMES) and the common peroneal nerve (nNMES). We then quantified the torque produced when pulses were alternated between the mNMES and nNMES sites at 40 Hz ("interleaved" NMES; iNMES). Overlap was assessed by comparing torque produced by twitches evoked by mNMES, nNMES, and both delivered together, over a range of stimulus intensities. Trains of iNMES were delivered at the intensity that produced the lowest overlap. Overlap was lowest (5%) when twitches evoked by both mNMES and nNMES produced 10% peak twitch torque. iNMES delivered at this intensity generated 25% of maximal voluntary dorsiflexion torque (11 Nm). Low intensity iNMES leads to low overlap and produces torque that is functionally relevant to evoke dorsiflexion during walking. Muscle Nerve 55: 490-499, 2017. © 2016 Wiley Periodicals, Inc.
Martínez-Rivera, Carlos César; Gerhardt, H. Carl
2009-01-01
Senders and receivers influence dynamic characteristics of the signals used for mate attraction over different time scales. On a moment-to-moment basis, interactions among senders competing for a mate influence dynamic characteristics, whereas the preferences of receivers of the opposite gender exert an influence over evolutionary time. We observed and recorded the calling patterns of the bird-voiced treefrog Hyla avivoca, to assess how the dynamic characters of calls vary during interactions among groups of males in a chorus. This question was also addressed using playback experiments with males. Playback experiments with females showed how changes in dynamic call properties are likely to affect male mating success. Frogs calling in pairs, groups, or in response to playbacks produced longer calls than did isolated males. During call overlap, males often increased the duration of the silent interval (gaps) between the pulses of their calls so that the pulses of the calls of two neighbors interdigitated. This change resulted in increased variability of pulse rate, a traditionally static acoustic property; however, males also produced high proportions of non-overlapped calls in which variability in pulse rate was low and had species-typical values. Females preferred long calls to short and average-duration calls, and non-overlapped calls to overlapped calls. Given a choice between pairs of overlapped calls, females preferred pairs in which the proportion of overlap was low and pairs in which the pulses of such calls interdigitated completely. The observed patterns of vocal competition thus reflect the preferences of conspecific females, which have influenced the evolution of the calling behavior of H. avivoca. PMID:19789730
Estimates of projection overlap and zones of convergence within frontal-striatal circuits.
Averbeck, Bruno B; Lehman, Julia; Jacobson, Moriah; Haber, Suzanne N
2014-07-16
Frontal-striatal circuits underlie important decision processes, and pathology in these circuits is implicated in many psychiatric disorders. Studies have shown a topographic organization of cortical projections into the striatum. However, work has also shown that there is considerable overlap in the striatal projection zones of nearby cortical regions. To characterize this in detail, we quantified the complete striatal projection zones from 34 cortical injection locations in rhesus monkeys. We first fit a statistical model that showed that the projection zone of a cortical injection site could be predicted with considerable accuracy using a cross-validated model estimated on only the other injection sites. We then examined the fraction of overlap in striatal projection zones as a function of distance between cortical injection sites, and found that there was a highly regular relationship. Specifically, nearby cortical locations had as much as 80% overlap, and the amount of overlap decayed exponentially as a function of distance between the cortical injection sites. Finally, we found that some portions of the striatum received inputs from all the prefrontal regions, making these striatal zones candidates as information-processing hubs. Thus, the striatum is a site of convergence that allows integration of information spread across diverse prefrontal cortical areas. Copyright © 2014 the authors 0270-6474/14/339497-09$15.00/0.
Zou, Yaqun; Zwolanek, Daniela; Izu, Yayoi; Gandhy, Shreya; Schreiber, Gudrun; Brockmann, Knut; Devoto, Marcella; Tian, Zuozhen; Hu, Ying; Veit, Guido; Meier, Markus; Stetefeld, Jörg; Hicks, Debbie; Straub, Volker; Voermans, Nicol C.; Birk, David E.; Barton, Elisabeth R.; Koch, Manuel; Bönnemann, Carsten G.
2014-01-01
Collagen VI-related myopathies are disorders of connective tissue presenting with an overlap phenotype combining clinical involvement from the muscle and from the connective tissue. Not all patients displaying related overlap phenotypes between muscle and connective tissue have mutations in collagen VI. Here, we report a homozygous recessive loss of function mutation and a de novo dominant mutation in collagen XII (COL12A1) as underlying a novel overlap syndrome involving muscle and connective tissue. Two siblings homozygous for a loss of function mutation showed widespread joint hyperlaxity combined with weakness precluding independent ambulation, while the patient with the de novo missense mutation was more mildly affected, showing improvement including the acquisition of walking. A mouse model with inactivation of the Col12a1 gene showed decreased grip strength, a delay in fiber-type transition and a deficiency in passive force generation while the muscle seems more resistant to eccentric contraction induced force drop, indicating a role for a matrix-based passive force-transducing elastic element in the generation of the weakness. This new muscle connective tissue overlap syndrome expands on the emerging importance of the muscle extracellular matrix in the pathogenesis of muscle disease. PMID:24334604
Lancaster, Matthew E; Shelhamer, Ryan; Homa, Donald
2013-04-01
Two experiments investigated category inference when categories were composed of correlated or uncorrelated dimensions and the categories overlapped minimally or moderately. When the categories minimally overlapped, the dimensions were strongly correlated with the category label. Following a classification learning phase, subsequent transfer required the selection of either a category label or a feature when one, two, or three features were missing. Experiments 1 and 2 differed primarily in the number of learning blocks prior to transfer. In each experiment, the inference of the category label or category feature was influenced by both dimensional and category correlations, as well as their interaction. The number of cues available at test impacted performance more when the dimensional correlations were zero and category overlap was high. However, a minimal number of cues were sufficient to produce high levels of inference when the dimensions were highly correlated; additional cues had a positive but reduced impact, even when overlap was high. Subjects were generally more accurate in inferring the category label than a category feature regardless of dimensional correlation, category overlap, or number of cues available at test. Whether the category label functioned as a special feature or not was critically dependent upon these embedded correlations, with feature inference driven more strongly by dimensional correlations.
Cai, Shun Tian; Wang, Li Ying; Sun, Gang; Peng, Li Hua; Guo, Xu; Wang, Wei Feng; Yang, Yun Sheng
2015-07-01
This study aimed to investigate the prevalence of the overlap between gastroesophageal reflux disease (GERD) and functional bowel disorders (FBD) in the general population in rural areas in China. A population-based cross-sectional study was conducted in six villages in Nanmazhuang area in Lankao County (Henan Province, China) from December 2010 to October 2011. The GERD questionnaire (GerdQ) and Rome III criteria were used for the diagnosis of GERD and FBD and to determine the prevalence of GERD-FBD overlap. The response rate to the questionnaires of the patients was 91.5%. In all, 2950 of 3700 residents with a mean age of 42.4 ± 16.8 years were included. Among them, 4.8% were diagnosed with GERD and 4.6% with FBD. The proportion of respondents with FBD was significantly higher in the GERD group than that in the non-GERD group (25.53% vs 3.60%, P < 0.05). The prevalence of GERD in the FBD group was significantly higher than that in the non-FBD group (26.28% vs 3.73%, P < 0.05). The prevalence of GERD-FBD overlap in the general rural population was 1.22%. Logistic regression analysis indicated that anxiety was an independent predictor for the GERD-FBD overlap in GERD and FBD (odds ratio [OR] 1.05, 95% confidence interval [CI] 1.02-1.09 and OR 1.06, 95% CI 1.02-1.10, respectively). GERD-FBD overlap is more common than expected by chance in the general rural population, and anxiety is significantly related to the overlap. © 2015 Chinese Medical Association Shanghai Branch, Chinese Society of Gastroenterology, Renji Hospital Affiliated to Shanghai Jiaotong University School of Medicine and Wiley Publishing Asia Pty Ltd.
Dvořák, Martin; Svobodová, Jana; Dubský, Pavel; Riesová, Martina; Vigh, Gyula; Gaš, Bohuslav
2015-03-01
Although the classical formula of peak resolution was derived to characterize the extent of separation only for Gaussian peaks of equal areas, it is often used even when the peaks follow non-Gaussian distributions and/or have unequal areas. This practice can result in misleading information about the extent of separation in terms of the severity of peak overlap. We propose here the use of the equivalent peak resolution value, a term based on relative peak overlap, to characterize the extent of separation that had been achieved. The definition of equivalent peak resolution is not constrained either by the form(s) of the concentration distribution function(s) of the peaks (Gaussian or non-Gaussian) or the relative area of the peaks. The equivalent peak resolution value and the classically defined peak resolution value are numerically identical when the separated peaks are Gaussian and have identical areas and SDs. Using our new freeware program, Resolution Analyzer, one can calculate both the classically defined and the equivalent peak resolution values. With the help of this tool, we demonstrate here that the classical peak resolution values mischaracterize the extent of peak overlap even when the peaks are Gaussian but have different areas. We show that under ideal conditions of the separation process, the relative peak overlap value is easily accessible by fitting the overall peak profile as the sum of two Gaussian functions. The applicability of the new approach is demonstrated on real separations. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Jiang, Xi; Li, Xiang; Lv, Jinglei; Zhao, Shijie; Zhang, Shu; Zhang, Wei; Zhang, Tuo; Han, Junwei; Guo, Lei; Liu, Tianming
2018-06-01
Various studies in the brain mapping field have demonstrated that there exist multiple concurrent functional networks that are spatially overlapped and interacting with each other during specific task performance to jointly realize the total brain function. Assessing such spatial overlap patterns of functional networks (SOPFNs) based on functional magnetic resonance imaging (fMRI) has thus received increasing interest for brain function studies. However, there are still two crucial issues to be addressed. First, the SOPFNs are assessed over the entire fMRI scan assuming the temporal stationarity, while possibly time-dependent dynamics of the SOPFNs is not sufficiently explored. Second, the SOPFNs are assessed within individual subjects, while group-wise consistency of the SOPFNs is largely unknown. To address the two issues, we propose a novel computational framework of group-wise sparse representation of whole-brain fMRI temporal segments to assess the temporal dynamic spatial patterns of SOPFNs that are consistent across different subjects. Experimental results based on the recently publicly released Human Connectome Project grayordinate task fMRI data demonstrate that meaningful SOPFNs exhibiting dynamic spatial patterns across different time periods are effectively and robustly identified based on the reconstructed concurrent functional networks via the proposed framework. Specifically, those SOPFNs locate significantly more on gyral regions than on sulcal regions across different time periods. These results reveal novel functional architecture of cortical gyri and sulci. Moreover, these results help better understand functional dynamics mechanisms of cerebral cortex in the future.
Weiner, Kevin S.; Grill-Spector, Kalanit
2011-01-01
The prevailing view of human lateral occipitotemporal cortex (LOTC) organization suggests a single area selective for images of the human body (extrastriate body area, EBA) that highly overlaps with the human motion-selective complex (hMT+). Using functional magnetic resonance imaging with higher resolution (1.5mm voxels) than past studies (3–4mm voxels), we examined the fine-scale spatial organization of these activations relative to each other, as well as to visual field maps in LOTC. Rather than one contiguous EBA highly overlapping hMT+, results indicate three limb-selective activations organized in a crescent surrounding hMT+: (1) an activation posterior to hMT+ on the lateral occipital sulcus/middle occipital gyrus (LOS/MOG) overlapping the lower vertical meridian shared between visual field maps LO-2 and TO-1, (2) an activation anterior to hMT+ on the middle temporal gyrus (MTG) consistently overlapping the lower vertical meridian of TO-2 and extending outside presently defined visual field maps, and (3) an activation inferior to hMT+ on the inferotemporal gyrus (ITG) overlapping the parafoveal representation of the TO cluster. This crescent organization of limb-selective activations surrounding hMT+ is reproducible over a span of three years and is consistent across different image types used for localization. Further, these regions exhibit differential position properties: preference for contralateral image presentation decreases and preference for foveal presentation increases from the limb-selective LOS to the MTG. Finally, the relationship between limb-selective activations and visual field maps extends to the dorsal stream where a posterior IPS activation overlaps V7. Overall, our measurements demonstrate a series of LOTC limb-selective activations that 1) have separate anatomical and functional boundaries, 2) overlap distinct visual field maps, and 3) illustrate differential position properties. These findings indicate that category selectivity alone is an insufficient organization principle for defining brain areas. Instead, multiple properties are necessary in order to parcellate and understand the functional organization of high-level visual cortex. PMID:21439386
Holdo, Ricardo M; Nippert, Jesse B; Mack, Michelle C
2018-01-01
A significant fraction of the terrestrial biosphere comprises biomes containing tree-grass mixtures. Forecasting vegetation dynamics in these environments requires a thorough understanding of how trees and grasses use and compete for key belowground resources. There is disagreement about the extent to which tree-grass vertical root separation occurs in these ecosystems, how this overlap varies across large-scale environmental gradients, and what these rooting differences imply for water resource availability and tree-grass competition and coexistence. To assess the extent of tree-grass rooting overlap and how tree and grass rooting patterns vary across resource gradients, we examined landscape-level patterns of tree and grass functional rooting depth along a mean annual precipitation (MAP) gradient extending from ~ 450 to ~ 750 mm year -1 in Kruger National Park, South Africa. We used stable isotopes from soil and stem water to make inferences about relative differences in rooting depth between these two functional groups. We found clear differences in rooting depth between grasses and trees across the MAP gradient, with grasses generally exhibiting shallower rooting profiles than trees. We also found that trees tended to become more shallow-rooted as a function of MAP, to the point that trees and grasses largely overlapped in terms of rooting depth at the wettest sites. Our results reconcile previously conflicting evidence for rooting overlap in this system, and have important implications for understanding tree-grass dynamics under altered precipitation scenarios.
Characteristics and self-rated health of overlap syndrome.
Chung, Jung Wha; Kong, Kyoung Ae; Lee, Jin Hwa; Lee, Seok Jeong; Ryu, Yon Ju; Chang, Jung Hyun
2014-01-01
Overlap syndrome shares features of both asthma and chronic obstructive pulmonary disease (COPD). The aim of this study was to investigate characteristics of overlap syndrome and their effect on self-rated health (SRH). We analyzed data from the Fourth Korea National Health and Nutrition Examination Survey of 2007-2009. Subjects with acceptable spirometry and available wheezing history were included. Subjects were classified into four groups based on forced expiratory volume in one second (FEV1)/forced vital capacity (FVC) results and the presence or absence of self-reported wheezing for the previous 12 months: 1) COPD group, defined as having FEV1/FVC <0.7 without self-reported wheezing history; 2) asthma group, defined as having self-reported wheezing history without FEV1/FVC <0.7; 3) overlap syndrome group, having both FEV1/FVC <0.7 and wheezing history; and 4) non-obstructive disease (NOD) group, having neither FEV1/FVC <0.7 nor self-reported wheezing. SRH was categorized as better or lower based on responses to a questionnaire. From a total 9,104 subjects, 700 were assigned to the COPD group, 560 to the asthma group, 210 to the overlap syndrome group, and 7,634 to the NOD group. Compared to the other groups, subjects in the overlap syndrome group were more likely to have low lung function, a high proportion of smokers, low socioeconomic status, short education duration, lower SRH, and past diagnosis of pulmonary tuberculosis or bronchiectasis. Multiple logistic regression analysis revealed that both overlap syndrome and asthma groups were independently associated with lower SRH after adjustment for age, sex, socioeconomic status, education level, smoking status, comorbidities, and lung function. Female, old age, low education level, low economic status, smoker and other comorbidities were also associated with lower SRH. Overlap syndrome was accompanied by high morbidity and was associated with lower SRH, which needs more appropriate care.
The Energy of Substituted Ethanes. Asymmetry Orbitals
Salem, Lionel; Hoffmann, Roald; Otto, Peter
1973-01-01
The leading terms in the energy of a general substituted ethane are derived in explicit form as a function of the torsional angle θ, the substituent electronegativities, and their mutual overlaps. The energy is found to be the sum of all four overlaps between pairs of asymmetry orbitals, and satisfies the requisite symmetry properties. PMID:16592060
Autism and Schizophrenia in High Functioning Adults: Behavioral Differences and Overlap
ERIC Educational Resources Information Center
Spek, Annelies A.; Wouters, Saskia G. M.
2010-01-01
Several recent studies have demonstrated a genetical overlap between autism and schizophrenia. However, at a behavioral level it remains unclear which features can validly distinguish adults with autism from an adult schizophrenia group. To this end, the present study compared 21 individuals with the autistic disorder and 21 individuals with…
Saccadic Eye Movements in Adults with High-Functioning Autism Spectrum Disorder
ERIC Educational Resources Information Center
Zalla, Tiziana; Seassau, Magali; Cazalis, Fabienne; Gras, Doriane; Leboyer, Marion
2018-01-01
In this study, we examined the accuracy and dynamics of visually guided saccades in 20 adults with autism spectrum disorder, as compared to 20 typically developed adults using the Step/Overlap/Gap paradigms. Performances in participants with autistic spectrum disorder were characterized by preserved Gap/Overlap effect, but reduced gain and peak…
Shakeel, Samina N.; Wang, Xiaomin; Binder, Brad M.; Schaller, G. Eric
2013-01-01
The plant hormone ethylene regulates growth and development as well as responses to biotic and abiotic stresses. Over the last few decades, key elements involved in ethylene signal transduction have been identified through genetic approaches, these elements defining a pathway that extends from initial ethylene perception at the endoplasmic reticulum to changes in transcriptional regulation within the nucleus. Here, we present our current understanding of ethylene signal transduction, focusing on recent developments that support a model with overlapping and non-overlapping roles for members of the ethylene receptor family. We consider the evidence supporting this model for sub-functionalization within the receptor family, and then discuss mechanisms by which such a sub-functionalization may occur. To this end, we consider the importance of receptor interactions in modulating their signal output and how such interactions vary in the receptor family. In addition, we consider evidence indicating that ethylene signal output by the receptors involves both phosphorylation-dependent and phosphorylation-independent mechanisms. We conclude with a current model for signalling by the ethylene receptors placed within the overall context of ethylene signal transduction. PMID:23543258
Kovács, István A.; Palotai, Robin; Szalay, Máté S.; Csermely, Peter
2010-01-01
Background Network communities help the functional organization and evolution of complex networks. However, the development of a method, which is both fast and accurate, provides modular overlaps and partitions of a heterogeneous network, has proven to be rather difficult. Methodology/Principal Findings Here we introduce the novel concept of ModuLand, an integrative method family determining overlapping network modules as hills of an influence function-based, centrality-type community landscape, and including several widely used modularization methods as special cases. As various adaptations of the method family, we developed several algorithms, which provide an efficient analysis of weighted and directed networks, and (1) determine pervasively overlapping modules with high resolution; (2) uncover a detailed hierarchical network structure allowing an efficient, zoom-in analysis of large networks; (3) allow the determination of key network nodes and (4) help to predict network dynamics. Conclusions/Significance The concept opens a wide range of possibilities to develop new approaches and applications including network routing, classification, comparison and prediction. PMID:20824084
Molecular basis of atopic dermatitis.
Bonness, Sonja; Bieber, Thomas
2007-10-01
Atopic dermatitis is a common chronic inflammatory skin disease and there are numerous publications on this topic. This review will focus on developments in understanding the molecular basis of atopic dermatitis while considering the genetic background, skin barrier impairment, immune system deviation and microbial superinfections. Atopic dermatitis is a complex genetic disease in which gene-gene and gene-environment interactions play a key role. Surprisingly some genetic regions of interest were found to be overlapping with loci identified to play a role in another very common inflammatory skin disease, psoriasis, while no overlap has so far been observed with asthma. Impairment of the skin barrier followed by antigens trespassing seems to play an important role, favouring sensitization via transepidermal penetration which is the focus of current investigations. Superinfections by pathogens such as Staphylococcus aureus due to a weak innate defence seem to be significant in atopic dermatitis as they elicit a strong inflammatory response. Atopic dermatitis is a chronic inflammatory skin disease with a high incidence in school children and adults. Disease pathogenesis is complex and the background is multifactorial, making the underlying predispositions elusive. Understanding new pathogenic pathways may lead to the development of new drugs with enhanced benefit for the patient.
Covariant extension of the GPD overlap representation at low Fock states
Chouika, N.; Mezrag, C.; Moutarde, H.; ...
2017-12-26
Here, we present a novel approach to compute generalized parton distributions within the lightfront wave function overlap framework. We show how to systematically extend generalized parton distributions computed within the DGLAP region to the ERBL one, fulfilling at the same time both the polynomiality and positivity conditions. We exemplify our method using pion lightfront wave functions inspired by recent results of non-perturbative continuum techniques and algebraic nucleon lightfront wave functions. We also test the robustness of our algorithm on reggeized phenomenological parameterizations. This approach paves the way to a better understanding of the nucleon structure from non-perturbative techniques and tomore » a unification of generalized parton distributions and transverse momentum dependent parton distribution functions phenomenology through lightfront wave functions.« less
Peng, De-Li; Song, Bo; Yang, Yang; Niu, Yang; Sun, Hang
2016-01-01
Extrafloral structures are supposed to have evolved to protect flowers from harsh physical environments but might have effects on pollination. Overlapping leaves cover flowers in Eriophyton wallichii, an alpine perennial endemic to the Himalaya-Hengduan Mountains. In previous study, it has showed that these extrafloral leaves can protect interior flowers from temperature fluctuations caused by drastic solar radiation fluctuations, but these leaves may also protect interior flowers from rain wash and UVB damage, and we do not know which one is the main function. In this study, we investigated whether rain and UVB protection are the main functions of overlapping leaves covering flowers and their potential impact on pollination. We first measured the intensities of UVB radiation in open air, beneath leaves and corollas, and then examined pollen susceptibility to different intensities of UVB and rain in the laboratory to estimate whether corollas per se protect interior pollen from UVB and rain damage. We also carried out pollination treatments and observed pollinator visitation of flowers with and without leaves in the field to assess whether the overlapping leaves covering flowers impair pollinator attraction. Our results showed that (1) water and strong UVB significantly decreased pollen germinability, but corollas per se could protect pollen from UVB and rain damage; (2) no autonomous self-pollination and apomixis occurred, and pollinators were essential for the reproduction of E. wallichii; however, flower coverage by overlapping leaves did not limit pollination. We suggested that rain and UVB protection was not the main function of overlapping leaves covered flowers, given that this protection can be provided by corollas per se. Alternatively, this extrafloral structure in E. wallichii may have evolved in response to extreme high temperatures associated with the strong solar radiation fluctuations. This indicates that, even in alpine plants, extreme high temperature may affect the evolution of plant extrafloral structures.
Peng, De-Li; Song, Bo; Yang, Yang; Niu, Yang; Sun, Hang
2016-01-01
Extrafloral structures are supposed to have evolved to protect flowers from harsh physical environments but might have effects on pollination. Overlapping leaves cover flowers in Eriophyton wallichii, an alpine perennial endemic to the Himalaya-Hengduan Mountains. In previous study, it has showed that these extrafloral leaves can protect interior flowers from temperature fluctuations caused by drastic solar radiation fluctuations, but these leaves may also protect interior flowers from rain wash and UVB damage, and we do not know which one is the main function. In this study, we investigated whether rain and UVB protection are the main functions of overlapping leaves covering flowers and their potential impact on pollination. We first measured the intensities of UVB radiation in open air, beneath leaves and corollas, and then examined pollen susceptibility to different intensities of UVB and rain in the laboratory to estimate whether corollas per se protect interior pollen from UVB and rain damage. We also carried out pollination treatments and observed pollinator visitation of flowers with and without leaves in the field to assess whether the overlapping leaves covering flowers impair pollinator attraction. Our results showed that (1) water and strong UVB significantly decreased pollen germinability, but corollas per se could protect pollen from UVB and rain damage; (2) no autonomous self-pollination and apomixis occurred, and pollinators were essential for the reproduction of E. wallichii; however, flower coverage by overlapping leaves did not limit pollination. We suggested that rain and UVB protection was not the main function of overlapping leaves covered flowers, given that this protection can be provided by corollas per se. Alternatively, this extrafloral structure in E. wallichii may have evolved in response to extreme high temperatures associated with the strong solar radiation fluctuations. This indicates that, even in alpine plants, extreme high temperature may affect the evolution of plant extrafloral structures. PMID:27716786
NASA Astrophysics Data System (ADS)
Li, Jiming; Lv, Qiaoyi; Jian, Bida; Zhang, Min; Zhao, Chuanfeng; Fu, Qiang; Kawamoto, Kazuaki; Zhang, Hua
2018-05-01
Studies have shown that changes in cloud cover are responsible for the rapid climate warming over the Tibetan Plateau (TP) in the past 3 decades. To simulate the total cloud cover, atmospheric models have to reasonably represent the characteristics of vertical overlap between cloud layers. Until now, however, this subject has received little attention due to the limited availability of observations, especially over the TP. Based on the above information, the main aim of this study is to examine the properties of cloud overlaps over the TP region and to build an empirical relationship between cloud overlap properties and large-scale atmospheric dynamics using 4 years (2007-2010) of data from the CloudSat cloud product and collocated ERA-Interim reanalysis data. To do this, the cloud overlap parameter α, which is an inverse exponential function of the cloud layer separation D and decorrelation length scale L, is calculated using CloudSat and is discussed. The parameters α and L are both widely used to characterize the transition from the maximum to random overlap assumption with increasing layer separations. For those non-adjacent layers without clear sky between them (that is, contiguous cloud layers), it is found that the overlap parameter α is sensitive to the unique thermodynamic and dynamic environment over the TP, i.e., the unstable atmospheric stratification and corresponding weak wind shear, which leads to maximum overlap (that is, greater α values). This finding agrees well with the previous studies. Finally, we parameterize the decorrelation length scale L as a function of the wind shear and atmospheric stability based on a multiple linear regression. Compared with previous parameterizations, this new scheme can improve the simulation of total cloud cover over the TP when the separations between cloud layers are greater than 1 km. This study thus suggests that the effects of both wind shear and atmospheric stability on cloud overlap should be taken into account in the parameterization of decorrelation length scale L in order to further improve the calculation of the radiative budget and the prediction of climate change over the TP in the atmospheric models.
Accounting for epistatic interactions improves the functional analysis of protein structures.
Wilkins, Angela D; Venner, Eric; Marciano, David C; Erdin, Serkan; Atri, Benu; Lua, Rhonald C; Lichtarge, Olivier
2013-11-01
The constraints under which sequence, structure and function coevolve are not fully understood. Bringing this mutual relationship to light can reveal the molecular basis of binding, catalysis and allostery, thereby identifying function and rationally guiding protein redesign. Underlying these relationships are the epistatic interactions that occur when the consequences of a mutation to a protein are determined by the genetic background in which it occurs. Based on prior data, we hypothesize that epistatic forces operate most strongly between residues nearby in the structure, resulting in smooth evolutionary importance across the structure. We find that when residue scores of evolutionary importance are distributed smoothly between nearby residues, functional site prediction accuracy improves. Accordingly, we designed a novel measure of evolutionary importance that focuses on the interaction between pairs of structurally neighboring residues. This measure that we term pair-interaction Evolutionary Trace yields greater functional site overlap and better structure-based proteome-wide functional predictions. Our data show that the structural smoothness of evolutionary importance is a fundamental feature of the coevolution of sequence, structure and function. Mutations operate on individual residues, but selective pressure depends in part on the extent to which a mutation perturbs interactions with neighboring residues. In practice, this principle led us to redefine the importance of a residue in terms of the importance of its epistatic interactions with neighbors, yielding better annotation of functional residues, motivating experimental validation of a novel functional site in LexA and refining protein function prediction. lichtarge@bcm.edu. Supplementary data are available at Bioinformatics online.
Accounting for epistatic interactions improves the functional analysis of protein structures
Wilkins, Angela D.; Venner, Eric; Marciano, David C.; Erdin, Serkan; Atri, Benu; Lua, Rhonald C.; Lichtarge, Olivier
2013-01-01
Motivation: The constraints under which sequence, structure and function coevolve are not fully understood. Bringing this mutual relationship to light can reveal the molecular basis of binding, catalysis and allostery, thereby identifying function and rationally guiding protein redesign. Underlying these relationships are the epistatic interactions that occur when the consequences of a mutation to a protein are determined by the genetic background in which it occurs. Based on prior data, we hypothesize that epistatic forces operate most strongly between residues nearby in the structure, resulting in smooth evolutionary importance across the structure. Methods and Results: We find that when residue scores of evolutionary importance are distributed smoothly between nearby residues, functional site prediction accuracy improves. Accordingly, we designed a novel measure of evolutionary importance that focuses on the interaction between pairs of structurally neighboring residues. This measure that we term pair-interaction Evolutionary Trace yields greater functional site overlap and better structure-based proteome-wide functional predictions. Conclusions: Our data show that the structural smoothness of evolutionary importance is a fundamental feature of the coevolution of sequence, structure and function. Mutations operate on individual residues, but selective pressure depends in part on the extent to which a mutation perturbs interactions with neighboring residues. In practice, this principle led us to redefine the importance of a residue in terms of the importance of its epistatic interactions with neighbors, yielding better annotation of functional residues, motivating experimental validation of a novel functional site in LexA and refining protein function prediction. Contact: lichtarge@bcm.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:24021383
Sugisaki, Kenji; Yamamoto, Satoru; Nakazawa, Shigeaki; Toyota, Kazuo; Sato, Kazunobu; Shiomi, Daisuke; Takui, Takeji
2016-08-18
Quantum computers are capable to efficiently perform full configuration interaction (FCI) calculations of atoms and molecules by using the quantum phase estimation (QPE) algorithm. Because the success probability of the QPE depends on the overlap between approximate and exact wave functions, efficient methods to prepare accurate initial guess wave functions enough to have sufficiently large overlap with the exact ones are highly desired. Here, we propose a quantum algorithm to construct the wave function consisting of one configuration state function, which is suitable for the initial guess wave function in QPE-based FCI calculations of open-shell molecules, based on the addition theorem of angular momentum. The proposed quantum algorithm enables us to prepare the wave function consisting of an exponential number of Slater determinants only by a polynomial number of quantum operations.
Venables, Noah C; Patrick, Christopher J; Hall, Jason R; Bernat, Edward M
2011-03-01
Impulsive-aggressive individuals exhibit deficits in amplitude of the P3 brain potential response, however, it remains unclear how separable dispositional traits account for this association. The current study sought to clarify the basis of this association by examining contributions of trait impulsiveness and stress reactivity to the observed relationship between dispositional aggression and amplitude of the P3 brain potential response in a visual novelty-oddball procedure. A significant negative association was found between aggressiveness and amplitude of P3 response to both target and novel stimuli over frontal-central scalp sites. Impulsivity showed a parallel inverse relationship with P3 amplitude, attributable to its overlap with dispositional aggression. In contrast, stress reactivity did not exhibit a zero-order association with P3 amplitude, but modestly predicted P3 in a positive direction after accounting for its overlap with aggression. Results are discussed in terms of their implications for individual difference variables and brain processes underlying impulsive-aggressive behavior. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Karaca, Caglar; Atac, Ahmet; Karabacak, Mehmet
2015-04-01
In this work, the molecular conformation, vibrational and electronic analysis of isonicotinic acid N-oxide (iso-NANO) were presented in the ground state using experimental techniques (FT-IR, FT-Raman and UV) and density functional theory (DFT) employing B3LYP exchange correlation with the 6-311++G(d,p) basis set. The geometry optimization and energies associated possible two conformers (Rot-I and Rot-II) were computed. The vibrational spectra were calculated and fundamental vibrations were assigned on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method and PQS program. The obtained structures were analyzed with the Atoms in Molecules (AIMs) methodology. The computational results diagnose the most stable conformer of iso-NANO as the Rot-I form. Total density of state (TDOS) and partial density of state (PDOS) and also overlap population density of state (OPDOS) diagrams analysis for the most stable conformer (Rot-I) were calculated using the same method. Thermodynamic properties (heat capacity, entropy and enthalpy) of the title compound at different temperatures were calculated. As a result, the optimized geometry and calculated spectroscopic data show a good agreement with the experimental results.
Sex differences in the neural basis of emotional memories.
Canli, Turhan; Desmond, John E; Zhao, Zuo; Gabrieli, John D E
2002-08-06
Psychological studies have found better memory in women than men for emotional events, but the neural basis for this difference is unknown. We used event-related functional MRI to assess whether sex differences in memory for emotional stimuli is associated with activation of different neural systems in men and women. Brain activation in 12 men and 12 women was recorded while they rated their experience of emotional arousal in response to neutral and emotionally negative pictures. In a recognition memory test 3 weeks after scanning, highly emotional pictures were remembered best, and remembered better by women than by men. Men and women activated different neural circuits to encode stimuli effectively into memory even when the analysis was restricted to pictures rated equally arousing by both groups. Men activated significantly more structures than women in a network that included the right amygdala, whereas women activated significantly fewer structures in a network that included the left amygdala. Women had significantly more brain regions where activation correlated with both ongoing evaluation of emotional experience and with subsequent memory for the most emotionally arousing pictures. Greater overlap in brain regions sensitive to current emotion and contributing to subsequent memory may be a neural mechanism for emotions to enhance memory more powerfully in women than in men.
Beyond human intentions and emotions
Juan, Elsa; Frum, Chris; Bianchi-Demicheli, Francesco; Wang, Yi-Wen; Lewis, James W.; Cacioppo, Stephanie
2013-01-01
Although significant advances have been made in our understanding of the neural basis of action observation and intention understanding in the last few decades by studies demonstrating the involvement of a specific brain network (action observation network; AON), these have been largely based on experimental studies in which people have been considered as strictly isolated entities. However, we, as social species, spend much more of our time performing actions interacting with others. Research shows that a person's position along the continuum of perceived social isolation/bonding to others is associated with a variety of physical and mental health effects. Thus, there is a crucial need to better understand the neural basis of intention understanding performed in interpersonal and emotional contexts. To address this issue, we performed a meta-analysis using of functional magnetic resonance imaging (fMRI) studies over the past decade that examined brain and cortical network processing associated with understanding the intention of others actions vs. those associated with passionate love for others. Both overlapping and distinct cortical and subcortical regions were identified for intention and love, respectively. These findings provide scientists and clinicians with a set of brain regions that can be targeted for future neuroscientific studies on intention understanding, and help develop neurocognitive models of pair-bonding. PMID:23543838
Common and distinct neural mechanisms of the fundamental dimensions of social cognition.
Han, Mengfei; Bi, Chongzeng; Ybarra, Oscar
2016-01-01
In the present study, we used a valence classification task to investigate the common and distinct neural basis of the two fundamental dimensions of social cognition (agency and communion) using functional magnetic resonance imaging (fMRI). The results showed that several brain areas associated with mentalizing, along with the inferior parietal gyrus in the mirror system, showed overlap in response to both agentic and communal words. These findings suggest that both content categories are related to the neural basis of social cognition; further, several areas in the default mode network (DMN) showed similar deactivations between agency and communion, reflecting task-induced deactivation (TID). In terms of distinct activations, the findings indicated greater deactivations for communal than agentic content in the ventral anterior cingulate (vACC) and medial orbitofrontal cortex (mOFC). Communion also showed greater activation in some visual areas compared to agentic content, including occipital gyrus, lingual gyrus, and fusiform gyrus. These activations may reflect greater allocation of attentional resources to visual areas when processing communal content, or inhibition of cognitive activity irrelevant to task performance. If so, this suggests greater attention and engagement with communion-related content. The present research thus suggests common and differential activations for agency- versus communion-related content.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Albright, Seth; Chen Bin; Holbrook, Kristen
CD14 functions as a key pattern recognition receptor for a diverse array of Gram-negative and Gram-positive cell-wall components in the host innate immune response by binding to pathogen-associated molecular patterns (PAMPs) at partially overlapping binding site(s). To determine the potential contribution of CD14 residues in this pattern recognition, we have examined using solution NMR spectroscopy, the binding of three different endotoxin ligands, lipopolysaccharide, lipoteichoic acid, and a PGN-derived compound, muramyl dipeptide to a {sup 15}N isotopically labeled 152-residue N-terminal fragment of sCD14 expressed in Pichia pastoris. Mapping of NMR spectral changes upon addition of ligands revealed that the pattern ofmore » residues affected by binding of each ligand is partially similar and partially different. This first direct structural observation of the ability of specific residue combinations of CD14 to differentially affect endotoxin binding may help explain the broad specificity of CD14 in ligand recognition and provide a structural basis for pattern recognition. Another interesting finding from the observed spectral changes is that the mode of binding may be dynamically modulated and could provide a mechanism for binding endotoxins with structural diversity through a common binding site.« less
Colom, Roberto; Burgaleta, Miguel; Román, Francisco J; Karama, Sherif; Alvarez-Linera, Juan; Abad, Francisco J; Martínez, Kenia; Quiroga, Ma Ángeles; Haier, Richard J
2013-05-15
Evidence from neuroimaging studies suggests that intelligence differences may be supported by a parieto-frontal network. Research shows that this network is also relevant for cognitive functions such as working memory and attention. However, previous studies have not explicitly analyzed the commonality of brain areas between a broad array of intelligence factors and cognitive functions tested in the same sample. Here fluid, crystallized, and spatial intelligence, along with working memory, executive updating, attention, and processing speed were each measured by three diverse tests or tasks. These twenty-one measures were completed by a group of one hundred and four healthy young adults. Three cortical measures (cortical gray matter volume, cortical surface area, and cortical thickness) were regressed against psychological latent scores obtained from a confirmatory factor analysis for removing test and task specific variance. For cortical gray matter volume and cortical surface area, the main overlapping clusters were observed in the middle frontal gyrus and involved fluid intelligence and working memory. Crystallized intelligence showed an overlapping cluster with fluid intelligence and working memory in the middle frontal gyrus. The inferior frontal gyrus showed overlap for crystallized intelligence, spatial intelligence, attention, and processing speed. The fusiform gyrus in temporal cortex showed overlap for spatial intelligence and attention. Parietal and occipital areas did not show any overlap across intelligence and cognitive factors. Taken together, these findings underscore that structural features of gray matter in the frontal lobes support those aspects of intelligence related to basic cognitive processes. Copyright © 2013 Elsevier Inc. All rights reserved.
Li, Hanjie; Ye, Congting; Ji, Guoli; Wu, Xiaohui; Xiang, Zhe; Li, Yuanyue; Cao, Yonghao; Liu, Xiaolong; Douek, Daniel C; Price, David A; Han, Jiahuai
2012-09-01
Overlap of TCR repertoires among individuals provides the molecular basis for public T cell responses. By deep-sequencing the TCRβ repertoires of CD4+CD8+ thymocytes from three individual mice, we observed that a substantial degree of TCRβ overlap, comprising ∼10-15% of all unique amino acid sequences and ∼5-10% of all unique nucleotide sequences across any two individuals, is already present at this early stage of T cell development. The majority of TCRβ sharing between individual thymocyte repertoires could be attributed to the process of convergent recombination, with additional contributions likely arising from recombinatorial biases; the role of selection during intrathymic development was negligible. These results indicate that the process of TCR gene recombination is the major determinant of clonotype sharing between individuals.
Tochino, Yoshihiro; Asai, Kazuhisa; Shuto, Taichi; Hirata, Kazuto
2017-03-01
Japan is an aging society, and the number of elderly patients with asthma and chronic obstructive pulmonary disease (COPD) is consequently increasing, with an estimated incidence of approximately 5 million. In 2014, asthma-COPD overlap syndrome (ACOS) was defined by a joint project of Global Initiative for Asthma (GINA) committee and the Global Initiative for Chronic Obstructive Lung Disease (GOLD) committee. The main aims of this consensus-based document are to assist clinicians, especially those in primary care or nonpulmonary specialties. In this article, we discussed parameters to differentiate asthma and COPD in elderly patients and showed prevalence, clinical features and treatment of ACOS on the basis of the guidelines of GINA and GOLD. Furthermore, we showed also referral for specialized investigations.
Detecting independent and recurrent copy number aberrations using interval graphs.
Wu, Hsin-Ta; Hajirasouliha, Iman; Raphael, Benjamin J
2014-06-15
Somatic copy number aberrations SCNAS: are frequent in cancer genomes, but many of these are random, passenger events. A common strategy to distinguish functional aberrations from passengers is to identify those aberrations that are recurrent across multiple samples. However, the extensive variability in the length and position of SCNA: s makes the problem of identifying recurrent aberrations notoriously difficult. We introduce a combinatorial approach to the problem of identifying independent and recurrent SCNA: s, focusing on the key challenging of separating the overlaps in aberrations across individuals into independent events. We derive independent and recurrent SCNA: s as maximal cliques in an interval graph constructed from overlaps between aberrations. We efficiently enumerate all such cliques, and derive a dynamic programming algorithm to find an optimal selection of non-overlapping cliques, resulting in a very fast algorithm, which we call RAIG (Recurrent Aberrations from Interval Graphs). We show that RAIG outperforms other methods on simulated data and also performs well on data from three cancer types from The Cancer Genome Atlas (TCGA). In contrast to existing approaches that employ various heuristics to select independent aberrations, RAIG optimizes a well-defined objective function. We show that this allows RAIG to identify rare aberrations that are likely functional, but are obscured by overlaps with larger passenger aberrations. http://compbio.cs.brown.edu/software. © The Author 2014. Published by Oxford University Press.
Habitat preferences of baleen whales in a mid-latitude habitat
NASA Astrophysics Data System (ADS)
Prieto, Rui; Tobeña, Marta; Silva, Mónica A.
2017-07-01
Understanding the dynamics of baleen whale distribution is essential to predict how environmental changes can affect their ecology and, in turn, ecosystem functioning. Recent work showed that mid-latitude habitats along migratory routes may play an important role on the feeding ecology of baleen whales. This study aimed to investigate the function of a mid-latitude habitat for blue (Balaenoptera musculus), fin (Balaenoptera physalus) and sei (Balaenoptera borealis) whales occurring in sympatry during spring and summer months and to what extent their environmental niches overlap. We addressed those questions by developing environmental niche models (ENM) for each species and then making pairwise comparisons of niche overlap and relative habitat patch importance among the three species. ENMs were created using sightings from the Azorean Fisheries Observer Program from May to November, between 2004 and 2009, and a set of 18 predictor environmental variables. We then assessed monthly (April-July) overlap among ENMs using a modified Hellinger's distance metric (I). Results show that the habitat niches of blue and fin whales are strongly influenced by primary productivity and sea surface temperature and are highly dynamic both spatially and temporally due to the oceanography of the region. Niche overlap analyses show that blue and fin whale environmental niches are similar and that the suitable habitats for the two species have high degree of spatial coincidence. These results in combination suggest that this habitat may function as a mid-latitude feeding ground to both species while conditions are adequate. The sei whale model, on the other hand, did not include variables considered to be proxies for prey distribution and little environmental niche overlap was found between this species and the other two. We argue that these results suggest that the region holds little importance as a foraging habitat for the sei whale.
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacArthur, Stewart; Li, Xiao-Yong; Li, Jingyi
2009-05-15
BACKGROUND: We previously established that six sequence-specific transcription factors that initiate anterior/posterior patterning in Drosophila bind to overlapping sets of thousands of genomic regions in blastoderm embryos. While regions bound at high levels include known and probable functional targets, more poorly bound regions are preferentially associated with housekeeping genes and/or genes not transcribed in the blastoderm, and are frequently found in protein coding sequences or in less conserved non-coding DNA, suggesting that many are likely non-functional. RESULTS: Here we show that an additional 15 transcription factors that regulate other aspects of embryo patterning show a similar quantitative continuum of functionmore » and binding to thousands of genomic regions in vivo. Collectively, the 21 regulators show a surprisingly high overlap in the regions they bind given that they belong to 11 DNA binding domain families, specify distinct developmental fates, and can act via different cis-regulatory modules. We demonstrate, however, that quantitative differences in relative levels of binding to shared targets correlate with the known biological and transcriptional regulatory specificities of these factors. CONCLUSIONS: It is likely that the overlap in binding of biochemically and functionally unrelated transcription factors arises from the high concentrations of these proteins in nuclei, which, coupled with their broad DNA binding specificities, directs them to regions of open chromatin. We suggest that most animal transcription factors will be found to show a similar broad overlapping pattern of binding in vivo, with specificity achieved by modulating the amount, rather than the identity, of bound factor.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pinski, Peter; Riplinger, Christoph; Neese, Frank, E-mail: evaleev@vt.edu, E-mail: frank.neese@cec.mpg.de
2015-07-21
In this work, a systematic infrastructure is described that formalizes concepts implicit in previous work and greatly simplifies computer implementation of reduced-scaling electronic structure methods. The key concept is sparse representation of tensors using chains of sparse maps between two index sets. Sparse map representation can be viewed as a generalization of compressed sparse row, a common representation of a sparse matrix, to tensor data. By combining few elementary operations on sparse maps (inversion, chaining, intersection, etc.), complex algorithms can be developed, illustrated here by a linear-scaling transformation of three-center Coulomb integrals based on our compact code library that implementsmore » sparse maps and operations on them. The sparsity of the three-center integrals arises from spatial locality of the basis functions and domain density fitting approximation. A novel feature of our approach is the use of differential overlap integrals computed in linear-scaling fashion for screening products of basis functions. Finally, a robust linear scaling domain based local pair natural orbital second-order Möller-Plesset (DLPNO-MP2) method is described based on the sparse map infrastructure that only depends on a minimal number of cutoff parameters that can be systematically tightened to approach 100% of the canonical MP2 correlation energy. With default truncation thresholds, DLPNO-MP2 recovers more than 99.9% of the canonical resolution of the identity MP2 (RI-MP2) energy while still showing a very early crossover with respect to the computational effort. Based on extensive benchmark calculations, relative energies are reproduced with an error of typically <0.2 kcal/mol. The efficiency of the local MP2 (LMP2) method can be drastically improved by carrying out the LMP2 iterations in a basis of pair natural orbitals. While the present work focuses on local electron correlation, it is of much broader applicability to computation with sparse tensors in quantum chemistry and beyond.« less
Pinski, Peter; Riplinger, Christoph; Valeev, Edward F; Neese, Frank
2015-07-21
In this work, a systematic infrastructure is described that formalizes concepts implicit in previous work and greatly simplifies computer implementation of reduced-scaling electronic structure methods. The key concept is sparse representation of tensors using chains of sparse maps between two index sets. Sparse map representation can be viewed as a generalization of compressed sparse row, a common representation of a sparse matrix, to tensor data. By combining few elementary operations on sparse maps (inversion, chaining, intersection, etc.), complex algorithms can be developed, illustrated here by a linear-scaling transformation of three-center Coulomb integrals based on our compact code library that implements sparse maps and operations on them. The sparsity of the three-center integrals arises from spatial locality of the basis functions and domain density fitting approximation. A novel feature of our approach is the use of differential overlap integrals computed in linear-scaling fashion for screening products of basis functions. Finally, a robust linear scaling domain based local pair natural orbital second-order Möller-Plesset (DLPNO-MP2) method is described based on the sparse map infrastructure that only depends on a minimal number of cutoff parameters that can be systematically tightened to approach 100% of the canonical MP2 correlation energy. With default truncation thresholds, DLPNO-MP2 recovers more than 99.9% of the canonical resolution of the identity MP2 (RI-MP2) energy while still showing a very early crossover with respect to the computational effort. Based on extensive benchmark calculations, relative energies are reproduced with an error of typically <0.2 kcal/mol. The efficiency of the local MP2 (LMP2) method can be drastically improved by carrying out the LMP2 iterations in a basis of pair natural orbitals. While the present work focuses on local electron correlation, it is of much broader applicability to computation with sparse tensors in quantum chemistry and beyond.
Ross, Robert S.; LoPresti, Matthew L.; Schon, Karin; Stern, Chantal E.
2013-01-01
Human social interactions are complex behaviors requiring the concerted effort of multiple neural systems to track and monitor the individuals around us. Cognitively, adjusting our behavior based on changing social cues such as facial expressions relies on working memory and the ability to disambiguate, or separate, representations of overlapping stimuli resulting from viewing the same individual with different facial expressions. We conducted an fMRI experiment examining brain regions contributing to the encoding, maintenance and retrieval of overlapping identity information during working memory using a delayed match-to-sample (DMS) task. In the overlapping condition, two faces from the same individual with different facial expressions were presented at sample. In the non-overlapping condition, the two sample faces were from two different individuals with different expressions. fMRI activity was assessed by contrasting the overlapping and non-overlapping condition at sample, delay, and test. The lateral orbitofrontal cortex showed increased fMRI signal in the overlapping condition in all three phases of the DMS task and increased functional connectivity with the hippocampus when encoding overlapping stimuli. The hippocampus showed increased fMRI signal at test. These data suggest lateral orbitofrontal cortex helps encode and maintain representations of overlapping stimuli in working memory while the orbitofrontal cortex and hippocampus contribute to the successful retrieval of overlapping stimuli. We suggest the lateral orbitofrontal cortex and hippocampus play a role in encoding, maintaining, and retrieving social cues, especially when multiple interactions with an individual need to be disambiguated in a rapidly changing social context in order to make appropriate social responses. PMID:23640112
The Middle Cambrian fossil Pikaia and the evolution of chordate swimming.
Lacalli, Thurston
2012-07-06
Conway Morris and Caron (2012) have recently published an account of virtually all the available information on Pikaia gracilens, a well-known Cambrian fossil and supposed basal chordate, and propose on this basis some new ideas about Pikaia's anatomy and evolutionary significance. Chief among its chordate-like features are the putative myomeres, a regular series of vertical bands that extends the length of the body. These differ from the myomeres of living chordates in that boundaries between them (the myosepta) are gently curved, with minimal overlap, whereas amphioxus and vertebrates have strongly overlapping V- and W-shaped myomeres. The implication, on biomechanical grounds, is that myomeres in Pikaia exerted much less tension on the myosepta, so the animal would have been incapable of swimming as rapidly as living chordates operating in the fast-twitch mode used for escape and attack. Pikaia either lacked the fast-twitch fibers necessary for such speeds, having instead only slow-twitch fibers, or it had an ancestral fiber type with functional capabilities more like modern slow fibers than fast ones. The first option is supported by the sequence of development in zebrafish, where both myoseptum formation and fast fiber deployment show a dependence on slow fibers, which develop first. For Pikaia, the absence of fast fibers has both behavioral and anatomical implications, which are discussed. Among the latter is the possibility that a notochord may not have been needed as a primary stiffening device if other structures (for example, the dorsal organ) could perform that role.
Yoshimura, Yuko; Ido, Akifumi; Matsumoto, Teruyuki; Yamato, Masahide
2013-01-01
We investigated communities of arbuscular mycorrhizal fungi (AMF) in the fine roots of Pyrus pyrifolia var. culta, and Plantago asiatica to consider the relationship between orchard trees and herbaceous plants in AMF symbioses. The AMF communities were analyzed on the basis of the partial fungal DNA sequences of the nuclear small subunit ribosomal RNA gene (SSU rDNA), which were amplified using the AMF-specific primers AML1 and AML2. Phylogenetic analysis showed that the obtained AMF sequences were divided into 23 phylotypes. Among them, 12 phylotypes included AMF from both host plants, and most of the obtained sequences (689/811) were affiliated to them. Canonical correspondence analysis showed that the host plant species did not have a significant effect on the distribution of AMF phylotypes, whereas the effects of sampling site, soil total C, soil total N and soil-available P were significant. It was also found that the mean observed overlaps of AMF phylotypes between the paired host plants in the same soil cores (27.1% of phylotypes shared) were significantly higher than the mean 1,000 simulated overlaps (14.2%). Furthermore, the same AMF sequences (100% sequence identity) were detected from both host plants in 8/12 soil cores having both roots. Accordingly, we concluded that Py. pyrifolia and Pl. asiatica examined shared some AMF communities, which suggested that understory herbaceous plants may function as AMF inoculum sources for orchard trees.
Yoshimura, Yuko; Ido, Akifumi; Matsumoto, Teruyuki; Yamato, Masahide
2013-01-01
We investigated communities of arbuscular mycorrhizal fungi (AMF) in the fine roots of Pyrus pyrifolia var. culta, and Plantago asiatica to consider the relationship between orchard trees and herbaceous plants in AMF symbioses. The AMF communities were analyzed on the basis of the partial fungal DNA sequences of the nuclear small subunit ribosomal RNA gene (SSU rDNA), which were amplified using the AMF-specific primers AML1 and AML2. Phylogenetic analysis showed that the obtained AMF sequences were divided into 23 phylotypes. Among them, 12 phylotypes included AMF from both host plants, and most of the obtained sequences (689/811) were affiliated to them. Canonical correspondence analysis showed that the host plant species did not have a significant effect on the distribution of AMF phylotypes, whereas the effects of sampling site, soil total C, soil total N and soil-available P were significant. It was also found that the mean observed overlaps of AMF phylotypes between the paired host plants in the same soil cores (27.1% of phylotypes shared) were significantly higher than the mean 1,000 simulated overlaps (14.2%). Furthermore, the same AMF sequences (100% sequence identity) were detected from both host plants in 8/12 soil cores having both roots. Accordingly, we concluded that Py. pyrifolia and Pl. asiatica examined shared some AMF communities, which suggested that understory herbaceous plants may function as AMF inoculum sources for orchard trees. PMID:23614902
Automated image segmentation using support vector machines
NASA Astrophysics Data System (ADS)
Powell, Stephanie; Magnotta, Vincent A.; Andreasen, Nancy C.
2007-03-01
Neurodegenerative and neurodevelopmental diseases demonstrate problems associated with brain maturation and aging. Automated methods to delineate brain structures of interest are required to analyze large amounts of imaging data like that being collected in several on going multi-center studies. We have previously reported on using artificial neural networks (ANN) to define subcortical brain structures including the thalamus (0.88), caudate (0.85) and the putamen (0.81). In this work, apriori probability information was generated using Thirion's demons registration algorithm. The input vector consisted of apriori probability, spherical coordinates, and an iris of surrounding signal intensity values. We have applied the support vector machine (SVM) machine learning algorithm to automatically segment subcortical and cerebellar regions using the same input vector information. SVM architecture was derived from the ANN framework. Training was completed using a radial-basis function kernel with gamma equal to 5.5. Training was performed using 15,000 vectors collected from 15 training images in approximately 10 minutes. The resulting support vectors were applied to delineate 10 images not part of the training set. Relative overlap calculated for the subcortical structures was 0.87 for the thalamus, 0.84 for the caudate, 0.84 for the putamen, and 0.72 for the hippocampus. Relative overlap for the cerebellar lobes ranged from 0.76 to 0.86. The reliability of the SVM based algorithm was similar to the inter-rater reliability between manual raters and can be achieved without rater intervention.
Semantic integration to identify overlapping functional modules in protein interaction networks
Cho, Young-Rae; Hwang, Woochang; Ramanathan, Murali; Zhang, Aidong
2007-01-01
Background The systematic analysis of protein-protein interactions can enable a better understanding of cellular organization, processes and functions. Functional modules can be identified from the protein interaction networks derived from experimental data sets. However, these analyses are challenging because of the presence of unreliable interactions and the complex connectivity of the network. The integration of protein-protein interactions with the data from other sources can be leveraged for improving the effectiveness of functional module detection algorithms. Results We have developed novel metrics, called semantic similarity and semantic interactivity, which use Gene Ontology (GO) annotations to measure the reliability of protein-protein interactions. The protein interaction networks can be converted into a weighted graph representation by assigning the reliability values to each interaction as a weight. We presented a flow-based modularization algorithm to efficiently identify overlapping modules in the weighted interaction networks. The experimental results show that the semantic similarity and semantic interactivity of interacting pairs were positively correlated with functional co-occurrence. The effectiveness of the algorithm for identifying modules was evaluated using functional categories from the MIPS database. We demonstrated that our algorithm had higher accuracy compared to other competing approaches. Conclusion The integration of protein interaction networks with GO annotation data and the capability of detecting overlapping modules substantially improve the accuracy of module identification. PMID:17650343
Findeisen, Felix; Minor, Daniel L
2010-12-08
Calcium-binding protein 1 (CaBP1), a calmodulin (CaM) homolog, endows certain voltage-gated calcium channels (Ca(V)s) with unusual properties. CaBP1 inhibits Ca(V)1.2 calcium-dependent inactivation (CDI) and introduces calcium-dependent facilitation (CDF). Here, we show that the ability of CaBP1 to inhibit Ca(V)1.2 CDI and induce CDF arises from interaction between the CaBP1 N-lobe and interlobe linker residue Glu94. Unlike CaM, where functional EF hands are essential for channel modulation, CDI inhibition does not require functional CaBP1 EF hands. Furthermore, CaBP1-mediated CDF has different molecular requirements than CaM-mediated CDF. Overall, the data show that CaBP1 comprises two structural modules having separate functions: similar to CaM, the CaBP1 C-lobe serves as a high-affinity anchor that binds the Ca(V)1.2 IQ domain at a site that overlaps with the Ca²+/CaM C-lobe site, whereas the N-lobe/linker module houses the elements required for channel modulation. Discovery of this division provides the framework for understanding how CaBP1 regulates Ca(V)s. Copyright © 2010 Elsevier Ltd. All rights reserved.
Findeisen, Felix; Minor, Daniel L.
2010-01-01
Calcium-binding protein 1 (CaBP1), a calmodulin (CaM) homolog, endows certain voltage-gated calcium channels (CaVs) with unusual properties. CaBP1 inhibits CaV1.2 calcium-dependent inactivation (CDI) and introduces calcium-dependent facilitation (CDF). Here, we show that the ability of CaBP1 to inhibit CaV1.2 CDI and induce CDF arises from interaction between the CaBP1 N-lobe and interlobe linker residue Glu94. Unlike CaM, where functional EF hands are essential for channel modulation, CDI inhibition does not require functional CaBP1 EF-hands. Furthermore, CaBP1-mediated CDF has different molecular requirements than CaM-mediated CDF. Overall, the data show that CaBP1 comprises two structural modules having separate functions: similar to CaM, the CaBP1 C-lobe serves as a high-affinity anchor that binds the CaV1.2 IQ domain at a site that overlaps with the Ca2+/CaM C-lobe site, whereas the N-lobe/linker module houses the elements required for channel modulation. Discovery of this division provides the framework for understanding how CaBP1 regulates CaVs. PMID:21134641
Functional mechanisms of probabilistic inference in feature- and space-based attentional systems.
Dombert, Pascasie L; Kuhns, Anna; Mengotti, Paola; Fink, Gereon R; Vossel, Simone
2016-11-15
Humans flexibly attend to features or locations and these processes are influenced by the probability of sensory events. We combined computational modeling of response times with fMRI to compare the functional correlates of (re-)orienting, and the modulation by probabilistic inference in spatial and feature-based attention systems. Twenty-four volunteers performed two task versions with spatial or color cues. Percentage of cue validity changed unpredictably. A hierarchical Bayesian model was used to derive trial-wise estimates of probability-dependent attention, entering the fMRI analysis as parametric regressors. Attentional orienting activated a dorsal frontoparietal network in both tasks, without significant parametric modulation. Spatially invalid trials activated a bilateral frontoparietal network and the precuneus, while invalid feature trials activated the left intraparietal sulcus (IPS). Probability-dependent attention modulated activity in the precuneus, left posterior IPS, middle occipital gyrus, and right temporoparietal junction for spatial attention, and in the left anterior IPS for feature-based and spatial attention. These findings provide novel insights into the generality and specificity of the functional basis of attentional control. They suggest that probabilistic inference can distinctively affect each attentional subsystem, but that there is an overlap in the left IPS, which responds to both spatial and feature-based expectancy violations. Copyright © 2016 Elsevier Inc. All rights reserved.
Toward a more embedded/extended perspective on the cognitive function of gestures
Pouw, Wim T. J. L.; de Nooijer, Jacqueline A.; van Gog, Tamara; Zwaan, Rolf A.; Paas, Fred
2014-01-01
Gestures are often considered to be demonstrative of the embodied nature of the mind (Hostetter and Alibali, 2008). In this article, we review current theories and research targeted at the intra-cognitive role of gestures. We ask the question how can gestures support internal cognitive processes of the gesturer? We suggest that extant theories are in a sense disembodied, because they focus solely on embodiment in terms of the sensorimotor neural precursors of gestures. As a result, current theories on the intra-cognitive role of gestures are lacking in explanatory scope to address how gestures-as-bodily-acts fulfill a cognitive function. On the basis of recent theoretical appeals that focus on the possibly embedded/extended cognitive role of gestures (Clark, 2013), we suggest that gestures are external physical tools of the cognitive system that replace and support otherwise solely internal cognitive processes. That is gestures provide the cognitive system with a stable external physical and visual presence that can provide means to think with. We show that there is a considerable amount of overlap between the way the human cognitive system has been found to use its environment, and how gestures are used during cognitive processes. Lastly, we provide several suggestions of how to investigate the embedded/extended perspective of the cognitive function of gestures. PMID:24795687
Transcriptomic basis for drought-resistance in Brassica napus L.
NASA Astrophysics Data System (ADS)
Wang, Pei; Yang, Cuiling; Chen, Hao; Song, Chunpeng; Zhang, Xiao; Wang, Daojie
2017-01-01
Based on transcriptomic data from four experimental settings with drought-resistant and drought-sensitive cultivars under drought and well-watered conditions, statistical analysis revealed three categories encompassing 169 highly differentially expressed genes (DEGs) in response to drought in Brassica napus L., including 37 drought-resistant cultivar-related genes, 35 drought-sensitive cultivar-related genes and 97 cultivar non-specific ones. We provide evidence that the identified DEGs were fairly uniformly distributed on different chromosomes and their expression patterns are variety specific. Except commonly enriched in response to various stimuli or stresses, different categories of DEGs show specific enrichment in certain biological processes or pathways, which indicated the possibility of functional differences among the three categories. Network analysis revealed relationships among the 169 DEGs, annotated biological processes and pathways. The 169 DEGs can be classified into different functional categories via preferred pathways or biological processes. Some pathways might simultaneously involve a large number of shared DEGs, and these pathways are likely to cross-talk and have overlapping biological functions. Several members of the identified DEGs fit to drought stress signal transduction pathway in Arabidopsis thaliana. Finally, quantitative real-time PCR validations confirmed the reproducibility of the RNA-seq data. These investigations are profitable for the improvement of crop varieties through transgenic engineering.
Complexity and diversity of gastroesophageal reflux disease phenotypes.
Zentilin, Patrizia; Marabotto, Elisa; Pellegatta, Gaia; Coppo, Claudia; Furnari, Manuele; Savarino, Edoardo; Savarino, Vincenzo
2017-09-01
Gastroesophageal reflux disease (GERD) is defined as a condition which develops when the reflux of gastric contents causes troublesome symptoms, impairs quality of life, or leads to mucosal damage or complications. There are two main phenotypic presentations of GERD, the erosive (ERD) and non-erosive reflux disease (NERD), with the latter one representing up to 70% of GERD spectrum. Moreover, patients with GERD can be clinically subdivided into two distinct syndromes: patients with esophageal and extraesophageal symptoms. The diagnosis of NERD should be supported by the evidence that symptoms are due to reflux episodes on the basis of an excess of acid into the esophagus or a positive correlation between symptoms and acid and/or weakly acidic reflux episodes as evidenced by 24-hour impedance-pH monitoring. Patients with normal esophageal acid exposure and no correlation between heartburn and any kind of chemical reflux are considered affected by functional heartburn and do not pertain to the realm of NERD. They do not usually respond to PPI therapy as further empirical criterion and are included in the large group of functional digestive disorders with the expression of altered generation or perception of symptoms at the esophageal level and can often overlap with functional dyspepsia and irritable bowel syndrome.
ERIC Educational Resources Information Center
Nijmeijer, Judith S.; Arias-Vasquez, Alejandro; Rommelse, Nanda N. J.; Altink, Marieke E.; Anney, Richard J. L.; Asherson, Philip; Banaschewski, Tobias; Buschgens, Cathelijne J. M.; Fliers, Ellen A.; Gill, Michael; Minderaa, Ruud B.; Poustka, Luise; Sergeant, Joseph A.; Buitelaar, Jan K.; Franke, Barbara; Ebstein, Richard P.; Miranda, Ana; Mulas, Fernando; Oades, Robert D.; Roeyers, Herbert; Rothenberger, Aribert; Sonuga-Barke, Edmund J. S.; Steinhausen, Hans-Christoph; Faraone, Stephen V.; Hartman, Catharina A.; Hoekstra, Pieter J.
2010-01-01
Objective: The genetic basis for autism spectrum disorder (ASD) symptoms in children with attention-deficit/hyperactivity disorder (ADHD) was addressed using a genome-wide linkage approach. Method: Participants of the International Multi-Center ADHD Genetics study comprising 1,143 probands with ADHD and 1,453 siblings were analyzed. The total and…
ERIC Educational Resources Information Center
Hartley, Sigan L.; Sikora, Darryn M.
2010-01-01
The diagnosis of autism spectrum disorders (ASDs) in older children with intellectual disabilities (IDs) is challenging because of overlap in symptomatology and the high comorbidity of these disorders. On the basis of a sample of 89 older children with IDs (aged 6-15 years) referred to an ASD clinic, semistructured parent interviews were used to…
Bourauel, C; Vardimon, A D; Drescher, D; Schmuth, G P
1995-09-01
The functional magnetic system (FMS) is a removable functional appliance which induces mandibular advance by means of mandibular and maxillary magnets in an attracting configuration. The maxillary and mandibular plates are each equipped with 2 cylindrically shaped cobalt-samarium magnets, 4 mm in diameter and 3 mm in height, which are welded into stainless steel housings. The force system of this magnetic configuration was analyzed using the orthodontic measurement and simulation system (OMSS). OMSS simulated the mandibular jaw movements by separating the installed magnets vertically, corresponding to a mouth opening of X = -10 mm, transversally (right excursion, +/left excursion, -) at Y = +/- 10 mm and sagittally (anterior displacement, +/posterior displacement, -) at Z = +/- 10 mm. The resulting 2D and 3D force/displacement diagrams elucidate the outstanding centripetal-spatial orientation characteristics of the functional magnetic appliance in reference to the full overlap brought about by the attraction of the mandibular magnet by the maxillary magnet. The maximum centripetal forces reached a value of approximately FY, max = 0.65 N for the vertical attracting force at full overlap of the mandibular and maxillary magnets (X = 0.55 mm, Y = Z = 0 mm), a value of FY, max = 0.65 N for the medial shearing force at a partial transversal overlap Z = 0, Y = +/- 2 mm and Y = +/- 6 mm), and for the sagittal shearing force a value of FZ, max = 1.2 N at a partial sagittal overlap of the magnets (Y = 0 mm, Z = +/- 2 mm).(ABSTRACT TRUNCATED AT 250 WORDS)
What can the occult do for you?
NASA Astrophysics Data System (ADS)
Holwerda, B. W.; Keel, W. C.
2017-03-01
Interstellar dust is still a dominant uncertainty in Astronomy, limiting precision in e.g., cosmological distance estimates and models of how light is re-processed within a galaxy. When a foreground galaxy serendipitously overlaps a more distant one, the latter backlights the dusty structures in the nearer foreground galaxy. Such an overlapping or occulting galaxy pair can be used to measure the distribution of dust in the closest galaxy with great accuracy. The STARSMOG program uses Hubble to map the distribution of dust in foreground galaxies in fine (<100 pc) detail. Integral Field Unit (IFU) observations will map the effective extinction curve, disentangling the role of fine-scale geometry and grain composition on the path of light through a galaxy. The overlapping galaxy technique promises to deliver a clear understanding of the dust in galaxies: geometry, a probability function of dimming as a function of galaxy mass and radius, and its dependence on wavelength.
Mathes, Tim; Walgenbach, Maren; Antoine, Sunya-Lee; Pieper, Dawid; Eikermann, Michaela
2014-10-01
The quality of systematic reviews of health economic evaluations (SR-HE) is often limited because of methodological shortcomings. One reason for this poor quality is that there are no established standards for the preparation of SR-HE. The objective of this study is to compare existing methods and suggest best practices for the preparation of SR-HE. To identify the relevant methodological literature on SR-HE, a systematic literature search was performed in Embase, Medline, the National Health System Economic Evaluation Database, the Health Technology Assessment Database, and the Cochrane methodology register, and webpages of international health technology assessment agencies were searched. The study selection was performed independently by 2 reviewers. Data were extracted by one reviewer and verified by a second reviewer. On the basis of the overlaps in the recommendations for the methods of SR-HE in the included papers, suggestions for best practices for the preparation of SR-HE were developed. Nineteen relevant publications were identified. The recommendations within them often differed. However, for most process steps there was some overlap between recommendations for the methods of preparation. The overlaps were taken as basis on which to develop suggestions for the following process steps of preparation: defining the research question, developing eligibility criteria, conducting a literature search, selecting studies, assessing the methodological study quality, assessing transferability, and synthesizing data. The differences in the proposed recommendations are not always explainable by the focus on certain evaluation types, target audiences, or integration in the decision process. Currently, there seem to be no standard methods for the preparation of SR-HE. The suggestions presented here can contribute to the harmonization of methods for the preparation of SR-HE. © The Author(s) 2014.
Recombination in liquid-filled ionization chambers beyond the Boag limit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brualla-González, L.; Roselló, J.
Purpose: The high mass density and low mobilities of charge carriers can cause important recombination in liquid-filled ionization chambers (LICs). Saturation correction methods have been proposed for LICs. Correction methods for pulsed irradiation are based on Boag equation. However, Boag equation assumes that the charge ionized by one pulse is fully collected before the arrival of the next pulse. This condition does not hold in many clinical beams where the pulse repetition period may be shorter than the charge collection time, causing overlapping between charge carriers ionized by different pulses, and Boag equation is not applicable there. In this work,more » the authors present an experimental and numerical characterization of collection efficiencies in LICs beyond the Boag limit, with overlapping between charge carriers ionized by different pulses. Methods: The authors have studied recombination in a LIC array for different dose-per-pulse, pulse repetition frequency, and polarization voltage values. Measurements were performed in a Truebeam Linac using FF and FFF modalities. Dose-per-pulse and pulse repetition frequency have been obtained by monitoring the target current with an oscilloscope. Experimental collection efficiencies have been obtained by using a combination of the two-dose-rate method and ratios to the readout of a reference chamber (CC13, IBA). The authors have also used numerical simulation to complement the experimental data. Results: The authors have found that overlap significantly increases recombination in LICs, as expected. However, the functional dependence of collection efficiencies on the dose-per-pulse does not change (a linear dependence has been observed in the near-saturation region for different degrees of overlapping, the same dependence observed in the nonoverlapping scenario). On the other hand, the dependence of collection efficiencies on the polarization voltage changes in the overlapping scenario and does not follow that of Boag equation, the reason being that changing the polarization voltage also affects the charge collection time, thus changing the amount of overlapping. Conclusions: These results have important consequences for saturation correction methods for LICs. On one hand, the two-dose-rate method, which relies on the functional dependence of the collection efficiencies on dose-per-pulse, can also be used in the overlapping situation, provided that the two measurements needed to feed the method are performed at the same pulse repetition frequency (monitor unit rate). This result opens the door to computing collection efficiencies in LICs in many clinical setups where charge overlap in the LIC exists. On the other hand, correction methods based on the voltage-dependence of Boag equation like the three-voltage method or the modified two-voltage method will not work in the overlapping scenario due to the different functional dependence of collection efficiencies on the polarization voltage.« less
Molecular Basis of Chemokine CXCL5-Glycosaminoglycan Interactions*
2016-01-01
Chemokines, a large family of highly versatile small soluble proteins, play crucial roles in defining innate and adaptive immune responses by regulating the trafficking of leukocytes, and also play a key role in various aspects of human physiology. Chemokines share the characteristic feature of reversibly existing as monomers and dimers, and their functional response is intimately coupled to interaction with glycosaminoglycans (GAGs). Currently, nothing is known regarding the structural basis or molecular mechanisms underlying CXCL5-GAG interactions. To address this missing knowledge, we characterized the interaction of a panel of heparin oligosaccharides to CXCL5 using solution NMR, isothermal titration calorimetry, and molecular dynamics simulations. NMR studies indicated that the dimer is the high-affinity GAG binding ligand and that lysine residues from the N-loop, 40s turn, β3 strand, and C-terminal helix mediate binding. Isothermal titration calorimetry indicated a stoichiometry of two oligosaccharides per CXCL5 dimer. NMR-based structural models reveal that these residues form a contiguous surface within a monomer and, interestingly, that the GAG-binding domain overlaps with the receptor-binding domain, indicating that a GAG-bound chemokine cannot activate the receptor. Molecular dynamics simulations indicate that the roles of the individual lysines are not equivalent and that helical lysines play a more prominent role in determining binding geometry and affinity. Further, binding interactions and GAG geometry in CXCL5 are novel and distinctly different compared with the related chemokines CXCL1 and CXCL8. We conclude that a finely tuned balance between the GAG-bound dimer and free soluble monomer regulates CXCL5-mediated receptor signaling and function. PMID:27471273
NASA Astrophysics Data System (ADS)
Bajaj, Pushp; Wang, Xiao-Gang; Carrington, Tucker; Paesani, Francesco
2018-03-01
Full-dimensional vibrational spectra are calculated for both X-(H2O) and X-(D2O) dimers (X = F, Cl, Br, I) at the quantum-mechanical level. The calculations are carried out on two sets of recently developed potential energy functions (PEFs), namely, Thole-type model energy (TTM-nrg) and many-body energy (MB-nrg), using the symmetry-adapted Lanczos algorithm with a product basis set including all six vibrational coordinates. Although both TTM-nrg and MB-nrg PEFs are derived from coupled-cluster single double triple-F12 data obtained in the complete basis set limit, they differ in how many-body effects are represented at short range. Specifically, while both models describe long-range interactions through the combination of two-body dispersion and many-body classical electrostatics, the relatively simple Born-Mayer functions employed in the TTM-nrg PEFs to represent short-range interactions are replaced in the MB-nrg PEFs by permutationally invariant polynomials to achieve chemical accuracy. For all dimers, the MB-nrg vibrational spectra are in close agreement with the available experimental data, correctly reproducing anharmonic and nuclear quantum effects. In contrast, the vibrational frequencies calculated with the TTM-nrg PEFs exhibit significant deviations from the experimental values. The comparison between the TTM-nrg and MB-nrg results thus reinforces the notion that an accurate representation of both short-range interactions associated with electron density overlap and long-range many-body electrostatic interactions is necessary for a correct description of hydration phenomena at the molecular level.
Ulbrich, Philipp; Gail, Alexander
2017-01-01
When deciding between alternative options, a rational agent chooses on the basis of the desirability of each outcome, including associated costs. As different options typically result in different actions, the effort associated with each action is an essential cost parameter. How do humans discount physical effort when deciding between movements? We used an action-selection task to characterize how subjective effort depends on the parameters of arm transport movements and controlled for potential confounding factors such as delay discounting and performance. First, by repeatedly asking subjects to choose between 2 arm movements of different amplitudes or durations, performed against different levels of force, we identified parameter combinations that subjects experienced as identical in effort (isoeffort curves). Movements with a long duration were judged more effortful than short-duration movements against the same force, while movement amplitudes did not influence effort. Biomechanics of the movements also affected effort, as movements towards the body midline were preferred to movements away from it. Second, by introducing movement repetitions, we further determined that the cost function for choosing between effortful movements had a quadratic relationship with force, while choices were made on the basis of the logarithm of these costs. Our results show that effort-based action selection during reaching cannot easily be explained by metabolic costs. Instead, force-loaded reaches, a widely occurring natural behavior, imposed an effort cost for decision making similar to cost functions in motor control. Our results thereby support the idea that motor control and economic choice are governed by partly overlapping optimization principles. PMID:28586347
NASA Astrophysics Data System (ADS)
Ni, Yongnian; Wang, Yong; Kokot, Serge
2008-10-01
A spectrophotometric method for the simultaneous determination of the important pharmaceuticals, pefloxacin and its structurally similar metabolite, norfloxacin, is described for the first time. The analysis is based on the monitoring of a kinetic spectrophotometric reaction of the two analytes with potassium permanganate as the oxidant. The measurement of the reaction process followed the absorbance decrease of potassium permanganate at 526 nm, and the accompanying increase of the product, potassium manganate, at 608 nm. It was essential to use multivariate calibrations to overcome severe spectral overlaps and similarities in reaction kinetics. Calibration curves for the individual analytes showed linear relationships over the concentration ranges of 1.0-11.5 mg L -1 at 526 and 608 nm for pefloxacin, and 0.15-1.8 mg L -1 at 526 and 608 nm for norfloxacin. Various multivariate calibration models were applied, at the two analytical wavelengths, for the simultaneous prediction of the two analytes including classical least squares (CLS), principal component regression (PCR), partial least squares (PLS), radial basis function-artificial neural network (RBF-ANN) and principal component-radial basis function-artificial neural network (PC-RBF-ANN). PLS and PC-RBF-ANN calibrations with the data collected at 526 nm, were the preferred methods—%RPE T ˜ 5, and LODs for pefloxacin and norfloxacin of 0.36 and 0.06 mg L -1, respectively. Then, the proposed method was applied successfully for the simultaneous determination of pefloxacin and norfloxacin present in pharmaceutical and human plasma samples. The results compared well with those from the alternative analysis by HPLC.
Remington, David L.; Leinonen, Päivi H.; Leppälä, Johanna; Savolainen, Outi
2013-01-01
Costs of reproduction due to resource allocation trade-offs have long been recognized as key forces in life history evolution, but little is known about their functional or genetic basis. Arabidopsis lyrata, a perennial relative of the annual model plant A. thaliana with a wide climatic distribution, has populations that are strongly diverged in resource allocation. In this study, we evaluated the genetic and functional basis for variation in resource allocation in a reciprocal transplant experiment, using four A. lyrata populations and F2 progeny from a cross between North Carolina (NC) and Norway parents, which had the most divergent resource allocation patterns. Local alleles at quantitative trait loci (QTL) at a North Carolina field site increased reproductive output while reducing vegetative growth. These QTL had little overlap with flowering date QTL. Structural equation models incorporating QTL genotypes and traits indicated that resource allocation differences result primarily from QTL effects on early vegetative growth patterns, with cascading effects on later vegetative and reproductive development. At a Norway field site, North Carolina alleles at some of the same QTL regions reduced survival and reproductive output components, but these effects were not associated with resource allocation trade-offs in the Norway environment. Our results indicate that resource allocation in perennial plants may involve important adaptive mechanisms largely independent of flowering time. Moreover, the contributions of resource allocation QTL to local adaptation appear to result from their effects on developmental timing and its interaction with environmental constraints, and not from simple models of reproductive costs. PMID:23979581
The ecological and genetic basis of convergent thick-lipped phenotypes in cichlid fishes.
Colombo, Marco; Diepeveen, Eveline T; Muschick, Moritz; Santos, M Emilia; Indermaur, Adrian; Boileau, Nicolas; Barluenga, Marta; Salzburger, Walter
2013-02-01
The evolution of convergent phenotypes is one of the most interesting outcomes of replicate adaptive radiations. Remarkable cases of convergence involve the thick-lipped phenotype found across cichlid species flocks in the East African Great Lakes. Unlike most other convergent forms in cichlids, which are restricted to East Africa, the thick-lipped phenotype also occurs elsewhere, for example in the Central American Midas Cichlid assemblage. Here, we use an ecological genomic approach to study the function, the evolution and the genetic basis of this phenotype in two independent cichlid adaptive radiations on two continents. We applied phylogenetic, demographic, geometric morphometric and stomach content analyses to an African (Lobochilotes labiatus) and a Central American (Amphilophus labiatus) thick-lipped species. We found that similar morphological adaptations occur in both thick-lipped species and that the 'fleshy' lips are associated with hard-shelled prey in the form of molluscs and invertebrates. We then used comparative Illumina RNA sequencing of thick vs. normal lip tissue in East African cichlids and identified a set of 141 candidate genes that appear to be involved in the morphogenesis of this trait. A more detailed analysis of six of these genes led to three strong candidates: Actb, Cldn7 and Copb. The function of these genes can be linked to the loose connective tissue constituting the fleshy lips. Similar trends in gene expression between African and Central American thick-lipped species appear to indicate that an overlapping set of genes was independently recruited to build this particular phenotype in both lineages. © 2012 Blackwell Publishing Ltd.
NASA Technical Reports Server (NTRS)
Tseng, Yiider; Kole, Thomas P.; Lee, Jerry S H.; Fedorov, Elena; Almo, Steven C.; Schafer, Benjamin W.; Wirtz, Denis
2005-01-01
Actin-crosslinking proteins organize actin filaments into dynamic and complex subcellular scaffolds that orchestrate important mechanical functions, including cell motility and adhesion. Recent mutation studies have shown that individual crosslinking proteins often play seemingly non-essential roles, leading to the hypothesis that they have considerable redundancy in function. We report live-cell, in vitro, and theoretical studies testing the mechanical role of the two ubiquitous actin-crosslinking proteins, alpha-actinin and fascin, which co-localize to stress fibers and the basis of filopodia. Using live-cell particle tracking microrheology, we show that the addition of alpha-actinin and fascin elicits a cell mechanical response that is significantly greater than that originated by alpha-actinin or fascin alone. These live-cell measurements are supported by quantitative rheological measurements with reconstituted actin filament networks containing pure proteins that show that alpha-actinin and fascin can work in concert to generate enhanced cell stiffness. Computational simulations using finite element modeling qualitatively reproduce and explain the functional synergy of alpha-actinin and fascin. These findings highlight the cooperative activity of fascin and alpha-actinin and provide a strong rationale that an evolutionary advantage might be conferred by the cooperative action of multiple actin-crosslinking proteins with overlapping but non-identical biochemical properties. Thus the combination of structural proteins with similar function can provide the cell with unique properties that are required for biologically optimal responses.
Hobbs, Brian D; de Jong, Kim; Lamontagne, Maxime; Bossé, Yohan; Shrine, Nick; Artigas, María Soler; Wain, Louise V; Hall, Ian P; Jackson, Victoria E; Wyss, Annah B; London, Stephanie J; North, Kari E; Franceschini, Nora; Strachan, David P; Beaty, Terri H; Hokanson, John E; Crapo, James D; Castaldi, Peter J; Chase, Robert P; Bartz, Traci M; Heckbert, Susan R; Psaty, Bruce M; Gharib, Sina A; Zanen, Pieter; Lammers, Jan W; Oudkerk, Matthijs; Groen, H J; Locantore, Nicholas; Tal-Singer, Ruth; Rennard, Stephen I; Vestbo, Jørgen; Timens, Wim; Paré, Peter D; Latourelle, Jeanne C; Dupuis, Josée; O'Connor, George T; Wilk, Jemma B; Kim, Woo Jin; Lee, Mi Kyeong; Oh, Yeon-Mok; Vonk, Judith M; de Koning, Harry J; Leng, Shuguang; Belinsky, Steven A; Tesfaigzi, Yohannes; Manichaikul, Ani; Wang, Xin-Qun; Rich, Stephen S; Barr, R Graham; Sparrow, David; Litonjua, Augusto A; Bakke, Per; Gulsvik, Amund; Lahousse, Lies; Brusselle, Guy G; Stricker, Bruno H; Uitterlinden, André G; Ampleford, Elizabeth J; Bleecker, Eugene R; Woodruff, Prescott G; Meyers, Deborah A; Qiao, Dandi; Lomas, David A; Yim, Jae-Joon; Kim, Deog Kyeom; Hawrylkiewicz, Iwona; Sliwinski, Pawel; Hardin, Megan; Fingerlin, Tasha E; Schwartz, David A; Postma, Dirkje S; MacNee, William; Tobin, Martin D; Silverman, Edwin K; Boezen, H Marike; Cho, Michael H
2017-03-01
Chronic obstructive pulmonary disease (COPD) is a leading cause of mortality worldwide. We performed a genetic association study in 15,256 cases and 47,936 controls, with replication of select top results (P < 5 × 10 -6 ) in 9,498 cases and 9,748 controls. In the combined meta-analysis, we identified 22 loci associated at genome-wide significance, including 13 new associations with COPD. Nine of these 13 loci have been associated with lung function in general population samples, while 4 (EEFSEC, DSP, MTCL1, and SFTPD) are new. We noted two loci shared with pulmonary fibrosis (FAM13A and DSP) but that had opposite risk alleles for COPD. None of our loci overlapped with genome-wide associations for asthma, although one locus has been implicated in joint susceptibility to asthma and obesity. We also identified genetic correlation between COPD and asthma. Our findings highlight new loci associated with COPD, demonstrate the importance of specific loci associated with lung function to COPD, and identify potential regions of genetic overlap between COPD and other respiratory diseases.
Prosody as an interactional resource: turn-projection and overlap.
Wells, B; Macfarlane, S
1998-01-01
One aim of current research into talk-in-interaction is to identify the resources that enable recipients to monitor the course of a turn in progress in order to project its upcoming completion. This issue is addressed through analysis of instances of overlapping talk, focusing on their design--that is, their particular prosodic and other linguistic characteristics; their placement--in other words, where precisely they occur in relation to the turn being overlapped; and the subsequent behavior of the coparticipants. Phonetic analysis is combined with interactional techniques developed within Conversation Analysis, to warrant the relevance of categories by reference to the behavior of the participants themselves. As French and Local (1983) found, for an incoming to be treated as turn-competitive, it has to be designed with relatively high pitch and loud volume. These turn-competitive incomings are positioned within the turn in progress, and before the final major accent. By contrast, overlapping incomings positioned after the major accent are not designed as or treated as turn-competitive. On the basis of this analysis, we can define transition relevance place (TRP) as the space between the TRP-projecting accent of the current turn and the onset of the next turn. TRP-projecting accents are identifiable on independent grounds, being phonetically distinct from non-TRP-projecting accents. They thus provide a robust resource for participants to monitor the upcoming completion of the turn.
ERIC Educational Resources Information Center
Crippa, Alessandro; Forti, Sara; Perego, Paolo; Molteni, Massimo
2013-01-01
We investigated eye-hand coordination in children with autism spectrum disorders (ASD) in comparison with age-matched normally developing peers. The eye-hand correlation was measured by putting fixation latencies in relation with pointing and key pressing responses in visual detection tasks where a gap-overlap paradigm was used and compared to…
Chromatogram simulation by area reproduction.
Boe, Bjarne
2007-01-12
A modified Poisson function has been developed for the simulation of chromatographic peaks. The proposed model is shown to have the property of exactly recreating the experimentally determined peak area. Model parameters are obtained directly from the experimental peak, and overlapping peaks are deconvoluted such that the area sum of overlapping peaks is kept unchanged. The method was applied to real, complex chromatograms.
NASA Astrophysics Data System (ADS)
Heumann, Holger; Rapetti, Francesca
2017-04-01
Existing finite element implementations for the computation of free-boundary axisymmetric plasma equilibria approximate the unknown poloidal flux function by standard lowest order continuous finite elements with discontinuous gradients. As a consequence, the location of critical points of the poloidal flux, that are of paramount importance in tokamak engineering, is constrained to nodes of the mesh leading to undesired jumps in transient problems. Moreover, recent numerical results for the self-consistent coupling of equilibrium with resistive diffusion and transport suggest the necessity of higher regularity when approximating the flux map. In this work we propose a mortar element method that employs two overlapping meshes. One mesh with Cartesian quadrilaterals covers the vacuum chamber domain accessible by the plasma and one mesh with triangles discretizes the region outside. The two meshes overlap in a narrow region. This approach gives the flexibility to achieve easily and at low cost higher order regularity for the approximation of the flux function in the domain covered by the plasma, while preserving accurate meshing of the geometric details outside this region. The continuity of the numerical solution in the region of overlap is weakly enforced by a mortar-like mapping.
Özdem, Ceylan; Brass, Marcel; Van der Cruyssen, Laurens; Van Overwalle, Frank
2017-04-01
Neuroimaging research has demonstrated that the temporo-parietal junction (TPJ) is activated when unexpected stimuli appear in spatial reorientation tasks as well as during thinking about the beliefs of other people triggered by verbal scenarios. While the role of potential common component processes subserved by the TPJ has been extensively studied to explain this common activation, the potential confounding role of input modality (spatial vs. verbal) has been largely ignored. To investigate the role of input modality apart from task processes, we developed a novel spatial false belief task based on moving shapes. We explored the overlap in TPJ activation across this novel task and traditional tasks of spatial reorientation (Posner) and verbal belief (False Belief vs. Photo stories). The results show substantial overlap across the same spatial input modality (both reorientation and false belief) as well as across the common task process (verbal and spatial belief), but no triple overlap. This suggests the potential for an overarching function of the TPJ, with some degree of specialization in different subregions due to modality, function and connectivity. The results are discussed with respect to recent theoretical models of the TPJ.
Brown, Thackery I.; Hasselmo, Michael E.; Stern, Chantal E.
2015-01-01
When navigating our world we often first plan or retrieve an ideal route to our goal, avoiding alternative paths that lead to other destinations. The medial temporal lobe (MTL) has been implicated in processing contextual information, sequence memory, and uniquely retrieving routes that overlap or “cross paths.” However, the identity of subregions of the hippocampus and neighboring cortex that support these functions in humans remains unclear. The present study used high-resolution functional magnetic resonance imaging (hr-fMRI) in humans to test whether the CA3/DG hippocampal subfield and para-hippocampal cortex are important for processing spatial context and route retrieval, and whether the CA1 subfield facilitates prospective planning of mazes that must be distinguished from alternative overlapping routes. During hr-fMRI scanning, participants navigated virtual mazes that were well-learned from prior training while also learning new mazes. Some routes learned during scanning shared hallways with those learned during pre-scan training, requiring participants to select between alternative paths. Critically, each maze began with a distinct spatial contextual Cue period. Our analysis targeted activity from the Cue period, during which participants identified the current navigational episode, facilitating retrieval of upcoming route components and distinguishing mazes that overlap. Results demonstrated that multiple MTL regions were predominantly active for the contextual Cue period of the task, with specific regions of CA3/DG, parahippocampal cortex, and perirhinal cortex being consistently recruited across trials for Cue periods of both novel and familiar mazes. During early trials of the task, both CA3/DG and CA1 were more active for overlapping than non-overlapping Cue periods. Trial-by-trial Cue period responses in CA1 tracked subsequent overlapping maze performance across runs. Together, our findings provide novel insight into the contributions of MTL subfields to processing spatial context and route retrieval, and support a prominent role for CA1 in distinguishing overlapping episodes during navigational “look-ahead” periods. PMID:24659134
Chatterjee, Paulami; Roy, Debjani; Rathi, Nitin
2018-01-01
Epigenetics has emerged as an important field in drug discovery. Alzheimer's disease (AD), the leading neurodegenerative disorder throughout the world, is shown to have an epigenetic basis. Currently, there are very few effective epigenetic drugs available for AD. In this work, for the first time we have proposed 14 AD repositioning epigenetic drugs and identified their targets from extensive human interactome. Interacting partners of the AD epigenetic proteins were identified from the extensive human interactome to construct Epigenetic Protein-Protein Interaction Network (EP-PPIN). Epigenetic Drug-Target Network (EP-DTN) was constructed with the drugs associated with the proteins of EP-PPIN. Regulation of non-coding RNAs associated with the target proteins of these drugs was also studied. AD related target proteins, epigenetic targets, enriched pathways, and functional categories of the proposed repositioning drugs were also studied. The proposed 14 AD epigenetic repositioning drugs have overlapping targets and miRs with known AD epigenetic targets and miRs. Furthermore, several shared functional categories and enriched pathways were obtained for these drugs with FDA approved epigenetic drugs and known AD drugs. The findings of our work might provide insight into future AD epigenetic-therapeutics.
Scanning silence: mental imagery of complex sounds.
Bunzeck, Nico; Wuestenberg, Torsten; Lutz, Kai; Heinze, Hans-Jochen; Jancke, Lutz
2005-07-15
In this functional magnetic resonance imaging (fMRI) study, we investigated the neural basis of mental auditory imagery of familiar complex sounds that did not contain language or music. In the first condition (perception), the subjects watched familiar scenes and listened to the corresponding sounds that were presented simultaneously. In the second condition (imagery), the same scenes were presented silently and the subjects had to mentally imagine the appropriate sounds. During the third condition (control), the participants watched a scrambled version of the scenes without sound. To overcome the disadvantages of the stray acoustic scanner noise in auditory fMRI experiments, we applied sparse temporal sampling technique with five functional clusters that were acquired at the end of each movie presentation. Compared to the control condition, we found bilateral activations in the primary and secondary auditory cortices (including Heschl's gyrus and planum temporale) during perception of complex sounds. In contrast, the imagery condition elicited bilateral hemodynamic responses only in the secondary auditory cortex (including the planum temporale). No significant activity was observed in the primary auditory cortex. The results show that imagery and perception of complex sounds that do not contain language or music rely on overlapping neural correlates of the secondary but not primary auditory cortex.
Altobelli, Gioia; Bogdarina, Irina G; Stupka, Elia; Clark, Adrian J L; Langley-Evans, Simon
2013-01-01
A large body of evidence from human and animal studies demonstrates that the maternal diet during pregnancy can programme physiological and metabolic functions in the developing fetus, effectively determining susceptibility to later disease. The mechanistic basis of such programming is unclear but may involve resetting of epigenetic marks and fetal gene expression. The aim of this study was to evaluate genome-wide DNA methylation and gene expression in the livers of newborn rats exposed to maternal protein restriction. On day one postnatally, there were 618 differentially expressed genes and 1183 differentially methylated regions (FDR 5%). The functional analysis of differentially expressed genes indicated a significant effect on DNA repair/cycle/maintenance functions and of lipid, amino acid metabolism and circadian functions. Enrichment for known biological functions was found to be associated with differentially methylated regions. Moreover, these epigenetically altered regions overlapped genetic loci associated with metabolic and cardiovascular diseases. Both expression changes and DNA methylation changes were largely reversed by supplementing the protein restricted diet with folic acid. Although the epigenetic and gene expression signatures appeared to underpin largely different biological processes, the gene expression profile of DNA methyl transferases was altered, providing a potential link between the two molecular signatures. The data showed that maternal protein restriction is associated with widespread differential gene expression and DNA methylation across the genome, and that folic acid is able to reset both molecular signatures.
Luenser, Arne; Schurkus, Henry F; Ochsenfeld, Christian
2017-04-11
A reformulation of the random phase approximation within the resolution-of-the-identity (RI) scheme is presented, that is competitive to canonical molecular orbital RI-RPA already for small- to medium-sized molecules. For electronically sparse systems drastic speedups due to the reduced scaling behavior compared to the molecular orbital formulation are demonstrated. Our reformulation is based on two ideas, which are independently useful: First, a Cholesky decomposition of density matrices that reduces the scaling with basis set size for a fixed-size molecule by one order, leading to massive performance improvements. Second, replacement of the overlap RI metric used in the original AO-RPA by an attenuated Coulomb metric. Accuracy is significantly improved compared to the overlap metric, while locality and sparsity of the integrals are retained, as is the effective linear scaling behavior.
Aspect in Past Tenses in English and French.
ERIC Educational Resources Information Center
Andrews, Barry
1992-01-01
Aspectual functions performed by the various past tense forms do not overlap in French and English. Difficulties compounded by inaccurate and oversimplified explanations are noted, and different functions are discussed. (LB)
DOD Information Technology Standard Guidance (ITSG) Version 3.1
1997-04-07
from NGSBs later (e.g., OSFs Motif specification became the basis for IEEE 1295 . 1). Most consortia specifications are available now, do not overlap...Illumination) CIM Center for Information Management (DISA) CINC Conumnder in Chief CIS CASE Integration Services CJCS Chairman of the Joint Chiefs of...Compound Text Encoding CUA Common User Access DAC Discretionary Access Controls DAD Draft Addendum (ISO) DAM Draft Amendment (ISO) DAP Document
NASA Astrophysics Data System (ADS)
Arnone, Robert; Vandermeulen, Ryan; Ignatov, Alexander; Cayula, Jean François
2015-05-01
The uncertainty of the Advanced Clear-Sky Processor for Oceans (ACSPO) Sea Surface Temperature (SST) products from the Visible Infrared Imaging Radiometer Suite (VIIRS) satellite is examined using consecutive orbital overlaps in coastal waters of the Gulf of Mexico. The overlapping region on the left and right side of the VIIRS swath at 23-35 degree latitude covers approximately 500 pixels, which occur within 100 minutes and can provide a total of 4 SST products (2 day and 2 night) per day. By assuming the ocean SST should be similar on each side of the swath in this short time period, diel changes are examined and the uncertainty of SST retrieval is determined by comparing with buoy-derived SST. The VIIRS ACSPO product from NOAA STAR was used to determine the difference in SST within the overlapping regions. These SST changes are evaluated between consecutive orbits to validate the accuracy of SST algorithms on each side of the swath at high sensor angles. The SST product differences across the swath can result from surface glint, sensor angular impacts and sensor characteristics such as half angle mirror side (HAM) and calibration. The absolute diurnal SST changes that can occur within 100 minutes are evaluated with the buoy and VIIRS-derived SST. Sensitivity of the SST to water types is evaluated by measuring diurnal differences for open ocean, shelf and coastal waters. The 100 minute VIIRS SST overlap shows the capability to monitor the diurnal ocean heating and cooling which are associated with water mass optical absorption. The seasonal trends of the difference in SST at the overlaps for these water masses were tracked on a monthly basis. The unique capability of using the same VIIRS sensor for self-characterization can provide a method to define the uncertainty of ocean products and characterize the diurnal changes for different water types.
Diagnosis and treatment of chronic acquired demyelinating polyneuropathies.
Latov, Norman
2014-08-01
Chronic neuropathies are operationally classified as primarily demyelinating or axonal, on the basis of electrodiagnostic or pathological criteria. Demyelinating neuropathies are further classified as hereditary or acquired-this distinction is important, because the acquired neuropathies are immune-mediated and, thus, amenable to treatment. The acquired chronic demyelinating neuropathies include chronic inflammatory demyelinating polyneuropathy (CIDP), neuropathy associated with monoclonal IgM antibodies to myelin-associated glycoprotein (MAG; anti-MAG neuropathy), multifocal motor neuropathy (MMN), and POEMS syndrome. They have characteristic--though overlapping--clinical presentations, are mediated by distinct immune mechanisms, and respond to different therapies. CIDP is the default diagnosis if the neuropathy is demyelinating and no other cause is found. Anti-MAG neuropathy is diagnosed on the basis of the presence of anti-MAG antibodies, MMN is characterized by multifocal weakness and motor conduction blocks, and POEMS syndrome is associated with IgG or IgA λ-type monoclonal gammopathy and osteosclerotic myeloma. The correct diagnosis, however, can be difficult to make in patients with atypical or overlapping presentations, or nondefinitive laboratory studies. First-line treatments include intravenous immunoglobulin (IVIg), corticosteroids or plasmapheresis for CIDP; IVIg for MMN; rituximab for anti-MAG neuropathy; and irradiation or chemotherapy for POEMS syndrome. A correct diagnosis is required for choosing the appropriate treatment, with the aim of preventing progressive neuropathy.
Metcalfe, Arron W. S.; Ashkenazi, Sarit; Rosenberg-Lee, Miriam; Menon, Vinod
2013-01-01
Baddeley and Hitch’s multi-component working memory (WM) model has played an enduring and influential role in our understanding of cognitive abilities. Very little is known, however, about the neural basis of this multi-component WM model and the differential role each component plays in mediating arithmetic problem solving abilities in children. Here, we investigate the neural basis of the central executive (CE), phonological (PL) and visuo-spatial (VS) components of WM during a demanding mental arithmetic task in 7–9 year old children (N=74). The VS component was the strongest predictor of math ability in children and was associated with increased arithmetic complexity-related responses in left dorsolateral and right ventrolateral prefrontal cortices as well as bilateral intra-parietal sulcus and supramarginal gyrus in posterior parietal cortex. Critically, VS, CE and PL abilities were associated with largely distinct patterns of brain response. Overlap between VS and CE components was observed in left supramarginal gyrus and no overlap was observed between VS and PL components. Our findings point to a central role of visuo-spatial WM during arithmetic problem-solving in young grade-school children and highlight the usefulness of the multi-component Baddeley and Hitch WM model in fractionating the neural correlates of arithmetic problem solving during development. PMID:24212504
Herteleer, L; Zwarts, L; Hens, K; Forero, D; Del-Favero, J; Callaerts, P
2016-05-01
Lithium and valproate (VPA) are drugs used in the management of bipolar disorder. Even though they reportedly act on various pathways, the transcriptional targets relevant for disease mechanism and therapeutic effect remain unclear. Furthermore, multiple studies used lymphoblasts of bipolar patients as a cellular proxy, but it remains unclear whether peripheral cells provide a good readout for the effects of these drugs in the brain. We used Drosophila culture cells and adult flies to analyze the transcriptional effects of lithium and VPA and define mechanistic pathways. Transcriptional profiles were determined for Drosophila S2-cells and adult fly heads following lithium or VPA treatment. Gene ontology categories were identified using the DAVID functional annotation tool with a cut-off of p < 0.05. Significantly enriched GO terms were clustered using REVIGO and DAVID functional annotation clustering. Significance of overlap between transcript lists was determined with a Fisher's exact hypergeometric test. Treatment of cultured cells and adult flies with lithium and VPA induces transcriptional responses in genes with similar ontology, with as most prominent immune response, neuronal development, neuronal function, and metabolism. (i) Transcriptional effects of lithium and VPA in Drosophila S2 cells and heads show significant overlap. (ii) The overlap between transcriptional alterations in peripheral versus neuronal cells at the single gene level is negligible, but at the gene ontology and pathway level considerable overlap can be found. (iii) Lithium and VPA act on evolutionarily conserved pathways in Drosophila and mammalian models.
Seymour, Karen E.; Reinblatt, Shauna P.; Benson, Leora; Carnell, Susan
2015-01-01
Attention-deficit/hyperactivity disorder (ADHD) and conditions involving excessive eating (e.g. obesity, binge / loss of control eating) are increasingly prevalent within pediatric populations, and correlational and some longitudinal studies have suggested inter-relationships between these disorders. In addition, a number of common neural correlates are emerging across conditions, e.g. functional abnormalities within circuits subserving reward processing and executive functioning. To explore this potential cross-condition overlap in neurobehavioral underpinnings, we selectively review relevant functional neuroimaging literature, specifically focusing on studies probing i) reward processing, ii) response inhibition, and iii) emotional processing and regulation, and outline three specific shared neurobehavioral circuits. Based on our review, we also identify gaps within the literature that would benefit from further research. PMID:26098969
Single-particle strength from nucleon transfer in oxygen isotopes: Sensitivity to model parameters
NASA Astrophysics Data System (ADS)
Flavigny, F.; Keeley, N.; Gillibert, A.; Obertelli, A.
2018-03-01
In the analysis of transfer reaction data to extract nuclear structure information the choice of input parameters to the reaction model such as distorting potentials and overlap functions has a significant impact. In this paper we consider a set of data for the (d ,t ) and (d ,3He ) reactions on 14,16,18O as a well-delimited subject for a study of the sensitivity of such analyses to different choices of distorting potentials and overlap functions with particular reference to a previous investigation of the variation of valence nucleon correlations as a function of the difference in nucleon separation energy Δ S =| Sp-Sn| [Phys. Rev. Lett. 110, 122503 (2013), 10.1103/PhysRevLett.110.122503].
Overlaps with arbitrary two-site states in the XXZ spin chain
NASA Astrophysics Data System (ADS)
Pozsgay, B.
2018-05-01
We present a conjectured exact formula for overlaps between the Bethe states of the spin-1/2 XXZ chain and generic two-site states. The result takes the same form as in the previously known cases: it involves the same ratio of two Gaudin-like determinants, and a product of single-particle overlap functions, which can be fixed using a combination of the quench action and quantum transfer matrix methods. Our conjecture is confirmed by numerical data from exact diagonalization. For one-site states, the formula is found to be correct even in chains with odd length. It is also pointed out that the ratio of the Gaudin-like determinants plays a crucial role in the overlap sum rule: it guarantees that in the thermodynamic limit there remains no term in the quench action.
Pan, Aifei; Wang, Wenjun; Mei, Xuesong; Wang, Kedian; Yang, Xianbin
2017-09-26
We report on the formation of rutile TiO 2 flocculent laser-induced periodic surface structures (LIPSSs) with high antireflectivity and superhydrophobicity on the surface of titanium under 10 ns 1064 nm laser irradiation without focusing. The center part of the Gaussian laser beam is used to deposit flocculent structure and the edge part used to produce LIPSSs. The melt and modification thresholds of titanium were determined first, and then, the melt and modification spot-overlap numbers, several responsible for the formation of flocculent structure and LIPSSs, were introduced. It is found that both the melt and modification spot-overlap numbers increase with an increase in laser fluence and spot-overlap number, contributing to the production of flocculent LIPSSs. LIPSSs are obtained with the modification spot-overlap number above 300, and the amount of flocculent structures increases with an increase in the peak laser fluence and spot-overlap number. Then, considering that the fine adjustment of the melt and modification spot-overlop numbers in one-time line scanning is quite difficult, the composite structure, of which both LIPSSs and flocculent structures are distinct, was optimized using laser line scanning twice. On this basis, a characterization test shows the sample full of the flocculent LIPSSs represents best antireflectivity with the value around 10% in the waveband between 260 and 2600 nm (advance 5 times in infrared wavelengths compared to the initial titanium surface), and shows the no-stick hydrophobicity with the contact angle of 160° and roll-off angle of 25° because of the pure rutile phase of TiO 2 .
Strong Unitary and Overlap Uncertainty Relations: Theory and Experiment
NASA Astrophysics Data System (ADS)
Bong, Kok-Wei; Tischler, Nora; Patel, Raj B.; Wollmann, Sabine; Pryde, Geoff J.; Hall, Michael J. W.
2018-06-01
We derive and experimentally investigate a strong uncertainty relation valid for any n unitary operators, which implies the standard uncertainty relation and others as special cases, and which can be written in terms of geometric phases. It is saturated by every pure state of any n -dimensional quantum system, generates a tight overlap uncertainty relation for the transition probabilities of any n +1 pure states, and gives an upper bound for the out-of-time-order correlation function. We test these uncertainty relations experimentally for photonic polarization qubits, including the minimum uncertainty states of the overlap uncertainty relation, via interferometric measurements of generalized geometric phases.
Epigenomics and the concept of degeneracy in biological systems
Mason, Paul H.; Barron, Andrew B.
2014-01-01
Researchers in the field of epigenomics are developing more nuanced understandings of biological complexity, and exploring the multiple pathways that lead to phenotypic expression. The concept of degeneracy—referring to the multiple pathways that a system recruits to achieve functional plasticity—is an important conceptual accompaniment to the growing body of knowledge in epigenomics. Distinct from degradation, redundancy and dilapidation; degeneracy refers to the plasticity of traits whose function overlaps in some environments, but diverges in others. While a redundant system is composed of repeated identical elements performing the same function, a degenerate system is composed of different elements performing similar or overlapping functions. Here, we describe the degenerate structure of gene regulatory systems from the basic genetic code to flexible epigenomic modifications, and discuss how these structural features have contributed to organism complexity, robustness, plasticity and evolvability. PMID:24335757
NASA Astrophysics Data System (ADS)
Brambilla, A.; Gorecki, A.; Potop, A.; Paulus, C.; Verger, L.
2017-08-01
Energy sensitive photon counting X-ray detectors provide energy dependent information which can be exploited for material identification. The attenuation of an X-ray beam as a function of energy depends on the effective atomic number Zeff and the density. However, the measured attenuation is degraded by the imperfections of the detector response such as charge sharing or pile-up. These imperfections lead to non-linearities that limit the benefits of energy resolved imaging. This work aims to implement a basis material decomposition method which overcomes these problems. Basis material decomposition is based on the fact that the attenuation of any material or complex object can be accurately reproduced by a combination of equivalent thicknesses of basis materials. Our method is based on a calibration phase to learn the response of the detector for different combinations of thicknesses of the basis materials. The decomposition algorithm finds the thicknesses of basis material whose spectrum is closest to the measurement, using a maximum likelihood criterion assuming a Poisson law distribution of photon counts for each energy bin. The method was used with a ME100 linear array spectrometric X-ray imager to decompose different plastic materials on a Polyethylene and Polyvinyl Chloride base. The resulting equivalent thicknesses were used to estimate the effective atomic number Zeff. The results are in good agreement with the theoretical Zeff, regardless of the plastic sample thickness. The linear behaviour of the equivalent lengths makes it possible to process overlapped materials. Moreover, the method was tested with a 3 materials base by adding gadolinium, whose K-edge is not taken into account by the other two materials. The proposed method has the advantage that it can be used with any number of energy channels, taking full advantage of the high energy resolution of the ME100 detector. Although in principle two channels are sufficient, experimental measurements show that the use of a high number of channels significantly improves the accuracy of decomposition by reducing noise and systematic bias.
Aziz, Imran; Palsson, Olafur S; Törnblom, Hans; Sperber, Ami D; Whitehead, William E; Simrén, Magnus
2018-04-01
The population prevalence, clinical characteristics, and associations for Rome IV functional dyspepsia are not known. Following the publication of the Rome IV criteria for functional gastrointestinal disorders, we aimed to assess the prevalence, characteristics, and associations for symptom-based Rome IV functional dyspepsia in adults across the USA, Canada, and the UK. We sent an internet-based cross-sectional health survey to adults in the general population of three English-speaking countries: the USA, Canada, and the UK. We used quota-based sampling to generate demographically balanced and population-representative samples. Individuals were invited to complete an online questionnaire on general health, without mention that the purpose of this survey was to examine gastrointestinal symptoms. We excluded participants who failed two attention-test questions or were excessively inconsistent on the three gastrointestinal questions that were presented twice in the survey for this particular purpose. The survey enquired about demographics, health-care visits, medications, somatisation, quality of life, and symptom-based criteria for Rome IV functional dyspepsia as well as for irritable bowel syndrome (IBS) and functional heartburn. We made subsequent comparisons between participants with Rome IV functional dyspepsia and controls without dyspepsia. The primary objective was to identify participants who fulfilled symptom-based criteria for Rome IV functional dyspepsia and categorise them into postprandial distress syndrome, epigastric pain syndrome, or overlapping subtypes. 6300 general population adults completed the health survey; 2100 each from the USA, Canada, and the UK. 369 responses were deemed inconsistent, leaving data for 5931 adults. Rome IV functional dyspepsia was significantly more prevalent in the USA (232 [12%] of 1949) than in Canada (167 [8%] of 1988) and the UK (152 [8%] of 1994; p<0·0001). The subtype distribution was 61% postprandial distress syndrome, 18% epigastric pain syndrome, and 21% overlapping variant with both syndromes; this pattern was similar across the countries. Participants with functional dyspepsia had significantly greater health impairment and health-care usage than those without dyspepsia. Participants with the overlapping variant showed greater somatisation and poorer quality-of-life scores than did individuals with either postprandial distress syndrome or epigastric pain syndrome alone. In multivariate analysis, independent factors associated with all functional dyspepsia subtypes included worsening quality of life and the presence of symptoms compatible with functional heartburn and IBS, with functional heartburn and IBS having the strongest association with overlapping postprandial distress syndrome and epigastric pain syndrome. Notably, somatisation showed a positive association with postprandial distress syndrome and the overlapping variant, and use of antidepressants showed a negative association with postprandial distress syndrome. Approximately 10% of the adult population fulfils symptom-based criteria for Rome IV functional dyspepsia and incurs considerable associated health impairment. The functional dyspepsia subtypes show differing associations, suggesting differences in pathophysiological processes or influences. The Rome Foundation, the US National Institute of Diabetes and Digestive and Kidney Diseases, the Swedish Medical Research Council, AFA Insurance, Ferring Pharmaceuticals, and the Faculty of Medicine, University of Gothenburg, Gothenburg, Sweden. Copyright © 2018 Elsevier Ltd. All rights reserved.
Positional cloning of disease genes on chromosome 16
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doggett, N.; Bruening, M.; Callen, D.
1996-04-01
The project seeks to elucidate the molecular basis of an important genetic disease (Batten`s disease) by molecular cloning of the affected gene by utilizing an overlapping clone map of chromosome 16. Batten disease (also known as juvenile neuronal ceroid lipofuscinosis) is a recessively inherited neurodegenerative disorder of childhood characterized by progressive loss of vision, seizures, and psychomoter disturbances. The Batten disease gene was genetically mapped to the chromosome region 16p 12.1 in close linkage with the genetic markers D16S299 and D16S298. Exon amplification of a cosmid containing D16S298 yielded a candidate gene that was disrupted by a 1 kb genomicmore » deletion in all patients containing the most common haplotype for the disease. Two separate deletions and a point mutation altering a splice site in three unrelated families have confirmed the gene as the Batten disease gene. The disease gene encodes a novel 438 amino acid membrane binding protein of unknown function.« less
Cockayne syndrome: Clinical features, model systems and pathways
Karikkineth, Ajoy C.; Scheibye-Knudsen, Morten; Fivenson, Elayne; Croteau, Deborah L.; Bohr, Vilhelm A.
2016-01-01
Cockayne syndrome (CS) is a disorder characterized by a variety of clinical features including cachectic dwarfism, severe neurological manifestations including microcephaly and cognitive deficits, pigmentary retinopathy, cataracts, sensorineural deafness, and ambulatory and feeding difficulties, leading to death by 12 years of age on average. It is an autosomal recessive disorder, with a prevalence of approximately 2.5 per million. There are several phenotypes (1, 2 and 3) and complementation groups (CSA and CSB), and overlaps with xeroderma pigmentosum (XP). It has been considered a progeria, and many of the clinical features resemble accelerated aging. As such, the study of CS affords an opportunity to better understand the underlying mechanisms of aging. The molecular basis of CS has traditionally been considered to be due to defects in transcription and transcription-coupled nucleotide excision repair (TC-NER). However, recent work suggests that defects in base excision DNA repair and mitochondrial functions may also play key roles. This opens up the possibility of molecular interventions in CS, and by extrapolation, possibly in aging. PMID:27507608
Approaching the resolution limit of W-C nano-gaps using focused ion beam chemical vapour deposition
NASA Astrophysics Data System (ADS)
Dai, Jun; Chang, Hui; Maeda, Etsuo; Warisawa, Shin'ichi; Kometani, Reo
2018-01-01
Nano-gaps are fundamental building blocks for nanochannels, plasmonic nanostructures and superconducting Josephson junctions. We present a systematic study on the formation mechanism and resolution limit of W-C nano-gaps fabricated using focused-ion-beam chemical vapour deposition (FIB-CVD). First, the deposition size of the nanostructures is evaluated. The size averaged over 100 dots is 32 nm at FWHM. Line and space are also fabricated with the smallest size, having a spacing of only 5 nm at FWHM. Then, a model is developed to study the formation mechanism and provides the design basis for W-C nano-gaps. Both experimental and simulation results reveal that the shrinkage of W-C nano-gaps is accelerated as the Gaussian parts of the nano-wire profiles overlap. A Nano-gap with a length of 5 nm and height difference as high as 42 nm is synthesized. We believe that FIB-CVD opens avenues for novel functional nanodevices that can be potentially used for biosensing, photodetecting, or quantum computing.
McGuinness, B; Herron, B; Passmore, AP
2015-01-01
Dementia is a clinical diagnosis requiring new functional dependence on the basis of progressive cognitive decline. It is estimated that 1.3% of the entire UK population, or 7.1% of those aged 65 or over, have dementia. Applying these to 2013 population estimates gives an estimated number of 19,765 people living with dementia in Northern Ireland. The clinical syndrome of dementia can be due to a variety of underlying pathophysiological processes. The most common of these is Alzheimer's disease (50-75%) followed by vascular dementia (20%), dementia with Lewy bodies (5%) and frontotemporal lobar dementia (5%). The clinical symptoms and pathophysiological processes of these diseases overlap significantly. Biomarkers to aid diagnosis and prognosis are emerging. Acetylcholinesterase inhibitors and memantine are the only medications currently licensed for the treatment of dementia. The nature of symptoms mean people with dementia are more dependent and vulnerable, both socially and in terms of physical and mental health, presenting evolving challenges to society and to our healthcare systems. PMID:26170481
Accurate Morphology Preserving Segmentation of Overlapping Cells based on Active Contours
Molnar, Csaba; Jermyn, Ian H.; Kato, Zoltan; Rahkama, Vesa; Östling, Päivi; Mikkonen, Piia; Pietiäinen, Vilja; Horvath, Peter
2016-01-01
The identification of fluorescently stained cell nuclei is the basis of cell detection, segmentation, and feature extraction in high content microscopy experiments. The nuclear morphology of single cells is also one of the essential indicators of phenotypic variation. However, the cells used in experiments can lose their contact inhibition, and can therefore pile up on top of each other, making the detection of single cells extremely challenging using current segmentation methods. The model we present here can detect cell nuclei and their morphology even in high-confluency cell cultures with many overlapping cell nuclei. We combine the “gas of near circles” active contour model, which favors circular shapes but allows slight variations around them, with a new data model. This captures a common property of many microscopic imaging techniques: the intensities from superposed nuclei are additive, so that two overlapping nuclei, for example, have a total intensity that is approximately double the intensity of a single nucleus. We demonstrate the power of our method on microscopic images of cells, comparing the results with those obtained from a widely used approach, and with manual image segmentations by experts. PMID:27561654
Ulrich-Lai, Yvonne M.; Ryan, Karen K.
2014-01-01
Significant co-morbidities between obesity-related metabolic disease and stress-related psychological disorders suggest important functional interactions between energy balance and brain stress integration. Largely overlapping neural circuits control these systems, and this anatomical arrangement optimizes opportunities for mutual influence. Here we first review the current literature identifying effects of metabolic neuroendocrine signals on stress regulation, and vice versa. Next, the contributions of reward driven food intake to these metabolic and stress interactions are discussed. Lastly, we consider the inter-relationships among metabolism, stress and reward in light of their important implications in the development of therapies for metabolism- or stress-related disease. PMID:24630812
Yang, Laurence; Tan, Justin; O'Brien, Edward J; Monk, Jonathan M; Kim, Donghyuk; Li, Howard J; Charusanti, Pep; Ebrahim, Ali; Lloyd, Colton J; Yurkovich, James T; Du, Bin; Dräger, Andreas; Thomas, Alex; Sun, Yuekai; Saunders, Michael A; Palsson, Bernhard O
2015-08-25
Finding the minimal set of gene functions needed to sustain life is of both fundamental and practical importance. Minimal gene lists have been proposed by using comparative genomics-based core proteome definitions. A definition of a core proteome that is supported by empirical data, is understood at the systems-level, and provides a basis for computing essential cell functions is lacking. Here, we use a systems biology-based genome-scale model of metabolism and expression to define a functional core proteome consisting of 356 gene products, accounting for 44% of the Escherichia coli proteome by mass based on proteomics data. This systems biology core proteome includes 212 genes not found in previous comparative genomics-based core proteome definitions, accounts for 65% of known essential genes in E. coli, and has 78% gene function overlap with minimal genomes (Buchnera aphidicola and Mycoplasma genitalium). Based on transcriptomics data across environmental and genetic backgrounds, the systems biology core proteome is significantly enriched in nondifferentially expressed genes and depleted in differentially expressed genes. Compared with the noncore, core gene expression levels are also similar across genetic backgrounds (two times higher Spearman rank correlation) and exhibit significantly more complex transcriptional and posttranscriptional regulatory features (40% more transcription start sites per gene, 22% longer 5'UTR). Thus, genome-scale systems biology approaches rigorously identify a functional core proteome needed to support growth. This framework, validated by using high-throughput datasets, facilitates a mechanistic understanding of systems-level core proteome function through in silico models; it de facto defines a paleome.
Why does the sign problem occur in evaluating the overlap of HFB wave functions?
NASA Astrophysics Data System (ADS)
Mizusaki, Takahiro; Oi, Makito; Shimizu, Noritaka
2018-04-01
For the overlap matrix element between Hartree-Fock-Bogoliubov states, there are two analytically different formulae: one with the square root of the determinant (the Onishi formula) and the other with the Pfaffian (Robledo's Pfaffian formula). The former formula is two-valued as a complex function, hence it leaves the sign of the norm overlap undetermined (i.e., the so-called sign problem of the Onishi formula). On the other hand, the latter formula does not suffer from the sign problem. The derivations for these two formulae are so different that the reasons are obscured why the resultant formulae possess different analytical properties. In this paper, we discuss the reason why the difference occurs by means of the consistent framework, which is based on the linked cluster theorem and the product-sum identity for the Pfaffian. Through this discussion, we elucidate the source of the sign problem in the Onishi formula. We also point out that different summation methods of series expansions may result in analytically different formulae.
Plachi, Franciele; Balzan, Fernanda M; Sanseverino, Renata A; Palombini, Dora V; Marques, Renata D; Clausell, Nadine O; Knorst, Marli M; Neder, J Alberto; Berton, Danilo C
2018-02-21
Aim To investigate if cardiac/pulmonary functional tests and variables obtained from clinical practice (body mass index, dyspnea, functional class, clinical judgment of disability to perform an exercise test and previous hospitalization rate) are related to mortality in patients with overlap chronic obstructive pulmonary disease (COPD) and chronic heart failure (CHF). Although the coexistence of COPD and CHF has been growingly reported, description of survival predictors considering the presence of both conditions is still scarce. Using a cohort design, outpatients with the previous diagnosis of COPD and/or CHF that performed both spirometry and echocardiography in the same year were followed-up during a mean of 20.9±8.5 months. Findings Of the 550 patients initially evaluated, 301 had both spirometry and echocardiography: 160 (53%) with COPD on isolation; 100 (33%) with CHF on isolation; and 41 (14%) with overlap. All groups presented similar mortality: COPD 17/160 (11%); CHF 12/100 (12%); and overlap 7/41 (17%) (P=0.73). In the overlap group (n=41), inability to exercise and hospitalization rate were the unique parameters associated with higher mortality (seven events) in univariate analyses. In conclusion, inability to exercise and hospitalization rate emerged as the unique parameters associated with mortality in our sample.
Sheikh, Ishfaq A; Tayubi, Iftikhar A; Ahmad, Ejaz; Ganaie, Majid A; Bajouh, Osama S; AlBasri, Samera F; Abdulkarim, Ibtihal M J; Beg, Mohd A
2017-01-01
Environmental contamination has been one of the major drawbacks of the industrial revolution. Several man-made chemicals are constantly released into the environment during the manufacturing process and by leaching from the industrial products. As a result, human and animal populations are exposed to these synthetic chemicals on a regular basis. Many of these chemicals have adverse effects on the physiological functions, particularly on the hormone systems in human and animals and are called endocrine disrupting chemicals (EDCs). Bisphenol A (BPA), 4-tert-octylphenol (OP), and 4-nonylphenol (NP) are three high volume production EDCs that are widely used for industrial purposes and are present ubiquitously in the environment. Bisphenol A is metabolized in the human body to a more potent compound (MBP: 4-Methyl-2, 4-bis (4-hydroxyphenyl) pent-1-ene). Epidemiological and experimental studies have shown the three EDCs to be associated with adverse effects on reproductive system in human and animals. Sex hormone-binding globulin (SHBG) is a circulatory protein that binds sex steroids and is a potential target for endocrine disruptors in the human body. The current study was done in order to understand the binding mechanism of OP, BPA, NP, and MBP with human SHBG using in silico approaches. All four compounds showed high binding affinity with SHBG, however, the binding affinity values were higher (more negative) for MBP and NP than for OP and BPA. The four ligands interacted with 19-23 residues of SHBG and a consistent overlapping of the interacting residues for the four ligands with the residues for the natural ligand, dihydrotestosterone (DHT; 82-91% commonality) was shown. The overlapping SHBG interacting residues among DHT and the four endocrine disruptors suggested that these compounds have potential for interference and disruption in the steroid binding function. Copyright © 2016 Elsevier Inc. All rights reserved.
Gortmaker, Valerie J; Daly, Edward J; McCurdy, Merilee; Persampieri, Michael J; Hergenrader, Melanie
2007-01-01
The present study assessed the effects of summer parent tutoring on 3 children with learning disabilities using empirically derived reading interventions. Brief experimental analyses were used to identify customized reading fluency interventions. Parents were trained to use the intervention strategies with their children. Parents implemented the procedures during parent-tutoring sessions at home and results were measured continuously in high-word-overlap and low-word-overlap passages to determine whether generalization occurred. Parent and child satisfaction with the procedures was assessed. Results demonstrated generalized increases in reading fluency in both high-word-overlap and low-word-overlap passages as a function of parent tutoring. Also, acceptability ratings by children and their parents indicated that they viewed the interventions as acceptable and effective. Results are discussed in terms of structuring reading fluency interventions that promote generalization and maintenance of treatment effects. PMID:17624063
Automated lung sound analysis for detecting pulmonary abnormalities.
Datta, Shreyasi; Dutta Choudhury, Anirban; Deshpande, Parijat; Bhattacharya, Sakyajit; Pal, Arpan
2017-07-01
Identification of pulmonary diseases comprises of accurate auscultation as well as elaborate and expensive pulmonary function tests. Prior arts have shown that pulmonary diseases lead to abnormal lung sounds such as wheezes and crackles. This paper introduces novel spectral and spectrogram features, which are further refined by Maximal Information Coefficient, leading to the classification of healthy and abnormal lung sounds. A balanced lung sound dataset, consisting of publicly available data and data collected with a low-cost in-house digital stethoscope are used. The performance of the classifier is validated over several randomly selected non-overlapping training and validation samples and tested on separate subjects for two separate test cases: (a) overlapping and (b) non-overlapping data sources in training and testing. The results reveal that the proposed method sustains an accuracy of 80% even for non-overlapping data sources in training and testing.
Zhang, Xiao-Tai; Wang, Shu; Xing, Guo-Wen
2017-02-01
Ginsenoside is a large family of triterpenoid saponins from Panax ginseng, which possesses various important biological functions. Due to the very similar structures of these complex glycoconjugates, it is crucial to develop a powerful analytic method to identify ginsenosides qualitatively or quantitatively. We herein report an eight-channel fluorescent sensor array as artificial tongue to achieve the discriminative sensing of ginsenosides. The fluorescent cross-responsive array was constructed by four boronlectins bearing flexible boronic acid moieties (FBAs) with multiple reactive sites and two linear poly(phenylene-ethynylene) (PPEs). An "on-off-on" response pattern was afforded on the basis of superquenching of fluorescent indicator PPEs and an analyte-induced allosteric indicator displacement (AID) process. Most importantly, it was found that the canonical distribution of ginsenoside data points analyzed by linear discriminant analysis (LDA) was highly correlated with the inherent molecular structures of the analytes, and the absence of overlaps among the five point groups reflected the effectiveness of the sensor array in the discrimination process. Almost all of the unknown ginsenoside samples at different concentrations were correctly identified on the basis of the established mathematical model. Our current work provided a general and constructive method to improve the quality assessment and control of ginseng and its extracts, which are useful and helpful for further discriminating other complex glycoconjugate families.
Park, Young Ha; Um, Si Hyeon; Song, Saemee; Seok, Yeong Jae; Ha, Nam Chul
2015-10-01
Histidine-containing phosphocarrier protein (HPr) is a general component of the bacterial phosphoenolpyruvate:sugar phosphotransferase system (PTS) involved in the phosphorylation-coupled transport of numerous sugars called PTS sugars. HPr mainly exists in a dephosphorylated form in the presence of PTS sugars in the medium, while its phosphorylation increases in the absence of PTS sugars. A recent study revealed that the dephosphorylated form of HPr binds and antagonizes the function of the antisigma factor Rsd. This anti-sigma factor sequesters the housekeeping sigma factor σ(70) to facilitate switching of the sigma subunit on RNA polymerase from σ(70) to the stress-responsive sigma factor σ(S) in stationary-phase cells. In this study, the structure of the complex of Rsd and HPr was determined at 2.1 Å resolution and revealed that the binding site for HPr on the surface of Rsd partly overlaps with that for σ(70). The localization of the phosphorylation site on HPr at the binding interface for Rsd explains why phosphorylation of HPr abolishes its binding to Rsd. The mutation of crucial residues involved in the HPr-Rsd interaction significantly influenced the competition between HPr and σ(70) for binding to Rsd both in vitro and in vivo. The results provide a structural basis for the linkage of global gene regulation to nutrient availability in the external environment.
A 3D Kinematic Measurement of Knee Prosthesis Using X-ray Projection Images
NASA Astrophysics Data System (ADS)
Hirokawa, Shunji; Ariyoshi, Shogo; Hossain, Mohammad Abrar
We have developed a technique for estimating 3D motion of knee prosthesis from its 2D perspective projections. As Fourier descriptors were used for compact representation of library templates and contours extracted from the prosthetic X-ray images, the entire silhouette contour of each prosthetic component was required. This caused such a problem as our algorithm did not function when the silhouettes of tibio and femoral components overlapped with each other. Here we planned a novel method to overcome it; which was processed in two steps. First, the missing part of silhouette contour due to overlap was interpolated using a free-formed curvature such as Bezier. Then the first step position/orientation estimation was performed. In the next step, a clipping window was set in the projective coordinate so as to separate the overlapped silhouette drawn using the first step estimates. After that the localized library whose templates were clipped in shape was prepared and the second step estimation was performed. Computer model simulation demonstrated sufficient accuracies of position/orientation estimation even for overlapped silhouettes; equivalent to those without overlap.
Overlapping Networks Engaged during Spoken Language Production and Its Cognitive Control
Wise, Richard J.S.; Mehta, Amrish; Leech, Robert
2014-01-01
Spoken language production is a complex brain function that relies on large-scale networks. These include domain-specific networks that mediate language-specific processes, as well as domain-general networks mediating top-down and bottom-up attentional control. Language control is thought to involve a left-lateralized fronto-temporal-parietal (FTP) system. However, these regions do not always activate for language tasks and similar regions have been implicated in nonlinguistic cognitive processes. These inconsistent findings suggest that either the left FTP is involved in multidomain cognitive control or that there are multiple spatially overlapping FTP systems. We present evidence from an fMRI study using multivariate analysis to identify spatiotemporal networks involved in spoken language production in humans. We compared spoken language production (Speech) with multiple baselines, counting (Count), nonverbal decision (Decision), and “rest,” to pull apart the multiple partially overlapping networks that are involved in speech production. A left-lateralized FTP network was activated during Speech and deactivated during Count and nonverbal Decision trials, implicating it in cognitive control specific to sentential spoken language production. A mirror right-lateralized FTP network was activated in the Count and Decision trials, but not Speech. Importantly, a second overlapping left FTP network showed relative deactivation in Speech. These three networks, with distinct time courses, overlapped in the left parietal lobe. Contrary to the standard model of the left FTP as being dominant for speech, we revealed a more complex pattern within the left FTP, including at least two left FTP networks with competing functional roles, only one of which was activated in speech production. PMID:24966373
Overlapping networks engaged during spoken language production and its cognitive control.
Geranmayeh, Fatemeh; Wise, Richard J S; Mehta, Amrish; Leech, Robert
2014-06-25
Spoken language production is a complex brain function that relies on large-scale networks. These include domain-specific networks that mediate language-specific processes, as well as domain-general networks mediating top-down and bottom-up attentional control. Language control is thought to involve a left-lateralized fronto-temporal-parietal (FTP) system. However, these regions do not always activate for language tasks and similar regions have been implicated in nonlinguistic cognitive processes. These inconsistent findings suggest that either the left FTP is involved in multidomain cognitive control or that there are multiple spatially overlapping FTP systems. We present evidence from an fMRI study using multivariate analysis to identify spatiotemporal networks involved in spoken language production in humans. We compared spoken language production (Speech) with multiple baselines, counting (Count), nonverbal decision (Decision), and "rest," to pull apart the multiple partially overlapping networks that are involved in speech production. A left-lateralized FTP network was activated during Speech and deactivated during Count and nonverbal Decision trials, implicating it in cognitive control specific to sentential spoken language production. A mirror right-lateralized FTP network was activated in the Count and Decision trials, but not Speech. Importantly, a second overlapping left FTP network showed relative deactivation in Speech. These three networks, with distinct time courses, overlapped in the left parietal lobe. Contrary to the standard model of the left FTP as being dominant for speech, we revealed a more complex pattern within the left FTP, including at least two left FTP networks with competing functional roles, only one of which was activated in speech production. Copyright © 2014 Geranmayeh et al.
Pezzulo, Giovanni; Iodice, Pierpaolo; Ferraina, Stefano; Kessler, Klaus
2013-01-01
The article explores the possibilities of formalizing and explaining the mechanisms that support spatial and social perspective alignment sustained over the duration of a social interaction. The basic proposed principle is that in social contexts the mechanisms for sensorimotor transformations and multisensory integration (learn to) incorporate information relative to the other actor(s), similar to the “re-calibration” of visual receptive fields in response to repeated tool use. This process aligns or merges the co-actors’ spatial representations and creates a “Shared Action Space” (SAS) supporting key computations of social interactions and joint actions; for example, the remapping between the coordinate systems and frames of reference of the co-actors, including perspective taking, the sensorimotor transformations required for lifting jointly an object, and the predictions of the sensory effects of such joint action. The social re-calibration is proposed to be based on common basis function maps (BFMs) and could constitute an optimal solution to sensorimotor transformation and multisensory integration in joint action or more in general social interaction contexts. However, certain situations such as discrepant postural and viewpoint alignment and associated differences in perspectives between the co-actors could constrain the process quite differently. We discuss how alignment is achieved in the first place, and how it is maintained over time, providing a taxonomy of various forms and mechanisms of space alignment and overlap based, for instance, on automaticity vs. control of the transformations between the two agents. Finally, we discuss the link between low-level mechanisms for the sharing of space and high-level mechanisms for the sharing of cognitive representations. PMID:24324425
2015-01-01
Retinal fundus images are widely used in diagnosing and providing treatment for several eye diseases. Prior works using retinal fundus images detected the presence of exudation with the aid of publicly available dataset using extensive segmentation process. Though it was proved to be computationally efficient, it failed to create a diabetic retinopathy feature selection system for transparently diagnosing the disease state. Also the diagnosis of diseases did not employ machine learning methods to categorize candidate fundus images into true positive and true negative ratio. Several candidate fundus images did not include more detailed feature selection technique for diabetic retinopathy. To apply machine learning methods and classify the candidate fundus images on the basis of sliding window a method called, Diabetic Fundus Image Recuperation (DFIR) is designed in this paper. The initial phase of DFIR method select the feature of optic cup in digital retinal fundus images based on Sliding Window Approach. With this, the disease state for diabetic retinopathy is assessed. The feature selection in DFIR method uses collection of sliding windows to obtain the features based on the histogram value. The histogram based feature selection with the aid of Group Sparsity Non-overlapping function provides more detailed information of features. Using Support Vector Model in the second phase, the DFIR method based on Spiral Basis Function effectively ranks the diabetic retinopathy diseases. The ranking of disease level for each candidate set provides a much promising result for developing practically automated diabetic retinopathy diagnosis system. Experimental work on digital fundus images using the DFIR method performs research on the factors such as sensitivity, specificity rate, ranking efficiency and feature selection time. PMID:25974230
Edwards, Trent; Friesen, Craig; Schurman, Jennifer V
2018-03-17
The primary purpose of this study was to compare Rome III and IV evaluation criteria for irritable bowel syndrome (IBS), functional dyspepsia (FD), and an overlap syndrome consisting of both IBS and FD by assessing the frequency of each diagnosis in a population of children with chronic abdominal pain. Frequencies of Rome IV FD subtypes of postprandial distress syndrome (PDS) and epigastric pain syndrome (EPS) were determined and FD/IBS overlap symptom associations were also assessed. We conducted a cross-sectional retrospective chart review of 106 pediatric patients who had completed standardized medical histories as part of their evaluation for chronic abdominal pain. The patients ranged from eight to 17 years of age and reported having abdominal pain at least weekly for 8 weeks. Patients whose evaluation revealed gastrointestinal disease were excluded. The patients' diagnoses were determined by a single pediatric gastroenterologist utilizing the specific criteria for Rome III and IV, respectively. Patients were significantly more likely to be diagnosed with FD (84.9% vs. 52.8%), IBS (69.8% vs. 34%), and FD/IBS overlap (58.5% vs. 17.9%) by Rome IV criteria, as compared to Rome III criteria. With regard to Rome IV FD subtypes, 81.1% fulfilled criteria for PDS, 11.1% fulfilled criteria for EPS, 6.7% fulfilled criteria for both, and 1.1% did not fulfill criteria for either. Finally, we found an increased frequency of diarrhea and pain with eating in the overlap group compared to the non-overlap group of Rome III, while only an increased frequency of diarrhea was found in the overlap group compared to the non-overlap group of Rome IV. Our data demonstrate that utilizing Rome IV criteria, as compared to Rome III, results in an increase in the diagnosis of FD, a two-fold increase in the diagnosis of IBS, and a three-fold increase in the diagnosis of FD/IBS overlap. Rome IV criteria appears to result in greater heterogeneity within diagnostic categories. It is important to determine whether Rome IV diagnoses are predictive of treatment response, and if so, whether assessing symptom variability within a diagnosis will enhance the ability to select patients for a particular treatment.
Brenig, Julian; de Boor, Susanne; Knyphausen, Philipp; Kuhlmann, Nora; Wroblowski, Sarah; Baldus, Linda; Scislowski, Lukas; Artz, Oliver; Trauschies, Philip; Baumann, Ulrich; Neundorf, Ines; Lammers, Michael
2015-01-01
Diaphanous-related formins are eukaryotic actin nucleation factors regulated by an autoinhibitory interaction between the N-terminal RhoGTPase-binding domain (mDiaN) and the C-terminal Diaphanous-autoregulatory domain (DAD). Although the activation of formins by Rho proteins is well characterized, its inactivation is only marginally understood. Recently, liprin-α3 was shown to interact with mDia1. Overexpression of liprin-α3 resulted in a reduction of the cellular actin filament content. The molecular mechanisms of how liprin-α3 exerts this effect and counteracts mDia1 activation by RhoA are unknown. Here, we functionally and structurally define a minimal liprin-α3 core region, sufficient to recapitulate the liprin-α3 determined mDia1-respective cellular functions. We show that liprin-α3 alters the interaction kinetics and thermodynamics of mDiaN with RhoA·GTP and DAD. RhoA displaces liprin-α3 allosterically, whereas DAD competes with liprin-α3 for a highly overlapping binding site on mDiaN. Liprin-α3 regulates actin polymerization by lowering the regulatory potency of RhoA and DAD on mDiaN. We present a model of a mechanistically unexplored and new aspect of mDiaN regulation by liprin-α3. PMID:25911102
Zielonka, Matthias; Xia, Jingjing; Friedel, Roland H; Offermanns, Stefan; Worzfeld, Thomas
2010-09-10
Plexins serve as receptors for semaphorins and play important roles in the developing nervous system. Plexin-B2 controls decisive developmental programs in the neural tube and cerebellum. However, whether Plexin-B2 also regulates biological functions in adult nonneuronal tissues is unknown. Here we show by two methodologically independent approaches that Plexin-B2 is expressed in discrete cell types of several nonneuronal tissues in the adult mouse. In the vasculature, Plexin-B2 is selectively expressed in functionally specialized endothelial cells. In endocrine organs, Plexin-B2 localizes to the pancreatic islets of Langerhans and to both cortex and medulla of the adrenal gland. Plexin-B2 expression is also detected in certain types of immune and epithelial cells. In addition, we report on a systematic comparison of the expression patterns of Plexin-B2 and its ligand Sema4C, which show complementarity or overlap in some but not all tissues. Furthermore, we demonstrate that Plexin-B2 and its family member Plexin-B1 display largely nonredundant expression patterns. This work establishes Plexin-B2 and Sema4C as potential regulators of the vascular and endocrine system and provides an anatomical basis to understand the biological functions of this ligand-receptor pair. Copyright 2010 Elsevier Inc. All rights reserved.
Structural basis of empathy and the domain general region in the anterior insular cortex
Mutschler, Isabella; Reinbold, Céline; Wankerl, Johanna; Seifritz, Erich; Ball, Tonio
2013-01-01
Empathy is key for healthy social functioning and individual differences in empathy have strong implications for manifold domains of social behavior. Empathy comprises of emotional and cognitive components and may also be closely linked to sensorimotor processes, which go along with the motivation and behavior to respond compassionately to another person's feelings. There is growing evidence for local plastic change in the structure of the healthy adult human brain in response to environmental demands or intrinsic factors. Here we have investigated changes in brain structure resulting from or predisposing to empathy. Structural MRI data of 101 healthy adult females was analyzed. Empathy in fictitious as well as real-life situations was assessed using a validated self-evaluation measure. Furthermore, empathy-related structural effects were also put into the context of a functional map of the anterior insular cortex (AIC) determined by activation likelihood estimate (ALE) meta-analysis of previous functional imaging studies. We found that gray matter (GM) density in the left dorsal AIC correlates with empathy and that this area overlaps with the domain general region (DGR) of the anterior insula that is situated in-between functional systems involved in emotion–cognition, pain, and motor tasks as determined by our meta-analysis. Thus, we propose that this insular region where we find structural differences depending on individual empathy may play a crucial role in modulating the efficiency of neural integration underlying emotional, cognitive, and sensorimotor information which is essential for global empathy. PMID:23675334
Disruptions in Functional Network Connectivity during Alcohol Intoxicated Driving
Rzepecki-Smith, Catherine I.; Meda, Shashwath A.; Calhoun, Vince D.; Stevens, Michael C.; Jafri, Madiha J.; Astur, Robert S.; Pearlson, Godfrey D.
2009-01-01
Background: Driving while under the influence of alcohol is a major public health problem whose neural basis is not well understood. In a recently published fMRI study (Meda et al, 2009), our group identified five, independent critical driving-associated brain circuits whose inter-regional connectivity was disrupted by alcohol intoxication. However, the functional connectivity between these circuits has not yet been explored in order to determine how these networks communicate with each other during sober and alcohol-intoxicated states. Methods: In the current study, we explored such differences in connections between the above brain circuits and driving behavior, under the influence of alcohol versus placebo. Forty social drinkers who drove regularly underwent fMRI scans during virtual reality driving simulations following two alcohol doses, placebo and an individualized dose producing blood alcohol concentrations (BACs) of 0.10%. Results: At the active dose, we found specific disruptions of functional network connectivity between the frontal-temporal-basal ganglia and the cerebellar circuits. The temporal connectivity between these two circuits was found to be less correlated (p <0.05) when driving under the influence of alcohol. This disconnection was also associated with an abnormal driving behavior (unstable motor vehicle steering). Conclusions: Connections between frontal-temporal-basal ganglia and cerebellum have recently been explored; these may be responsible in part for maintaining normal motor behavior by integrating their overlapping motor control functions. These connections appear to be disrupted by alcohol intoxication, in turn associated with an explicit type of impaired driving behavior. PMID:20028354
Brown, Thackery I.; Stern, Chantal E.
2014-01-01
Many life experiences share information with other memories. In order to make decisions based on overlapping memories, we need to distinguish between experiences to determine the appropriate behavior for the current situation. Previous work suggests that the medial temporal lobe (MTL) and medial caudate interact to support the retrieval of overlapping navigational memories in different contexts. The present study used functional magnetic resonance imaging (fMRI) in humans to test the prediction that the MTL and medial caudate play complementary roles in learning novel mazes that cross paths with, and must be distinguished from, previously learned routes. During fMRI scanning, participants navigated virtual routes that were well learned from prior training while also learning new mazes. Critically, some routes learned during scanning shared hallways with those learned during pre-scan training. Overlap between mazes required participants to use contextual cues to select between alternative behaviors. Results demonstrated parahippocampal cortex activity specific for novel spatial cues that distinguish between overlapping routes. The hippocampus and medial caudate were active for learning overlapping spatial memories, and increased their activity for previously learned routes when they became context dependent. Our findings provide novel evidence that the MTL and medial caudate play complementary roles in the learning, updating, and execution of context-dependent navigational behaviors. PMID:23448868
NASA Astrophysics Data System (ADS)
Kinkingnehun, Serge R. J.; du Boisgueheneuc, Foucaud; Golmard, Jean-Louis; Zhang, Sandy X.; Levy, Richard; Dubois, Bruno
2004-04-01
We have developed a new technique to analyze correlations between brain anatomy and its neurological functions. The technique is based on the anatomic MRI of patients with brain lesions who are administered neuropsychological tests. Brain lesions of the MRI scans are first manually segmented. The MRI volumes are then normalized to a reference map, using the segmented area as a mask. After normalization, the brain lesions of the MRI are segmented again in order to redefine the border of the lesions in the context of the normalized brain. Once the MRI is segmented, the patient's score on the neuropsychological test is assigned to each voxel in the lesioned area, while the rest of the voxels of the image are set to 0. Subsequently, the individual patient's MRI images are superimposed, and each voxel is reassigned the average score of the patients who have a lesion at that voxel. A threshold is applied to remove regions having less than three overlaps. This process leads to an anatomo-functional map that links brain areas to functional loss. Other maps can be created to aid in analyzing the functional maps, such as one that indicates the 95% confidence interval of the averaged scores for each area. This anatomo-clinical overlapping map (AnaCOM) method was used to obtain functional maps from patients with lesions in the superior frontal gyrus. By finding particular subregions more responsible for a particular deficit, this method can generate new hypotheses to be tested by conventional group methods.
NASA Technical Reports Server (NTRS)
Singh, R. K.; Sahu, S. N.; Singh, V. A.; Corbett, J. W.
1985-01-01
MNDO (modified neglect of diatomic overlap) calculations have been carried out for substitutional oxygen and sulfur impurities in silicon. The calculations of the gap levels reveal a reversal of trend with atomic ionization energies in agreement with self-consistent Green function results, and analysis of the MNDO charge distribution supports the view that the electronegativity difference between oxygen and sulfur gives rise to this shallower energy level.
On the genealogy of branching random walks and of directed polymers
NASA Astrophysics Data System (ADS)
Derrida, Bernard; Mottishaw, Peter
2016-08-01
It is well known that the mean-field theory of directed polymers in a random medium exhibits replica symmetry breaking with a distribution of overlaps which consists of two delta functions. Here we show that the leading finite-size correction to this distribution of overlaps has a universal character which can be computed explicitly. Our results can also be interpreted as genealogical properties of branching Brownian motion or of branching random walks.
Cosentino, James; Zhao, Huaqing; Hardin, Megan; Hersh, Craig P; Crapo, James; Kim, Victor; Criner, Gerard J
2016-09-01
Despite the increasing recognition of asthma-chronic obstructive pulmonary disease overlap syndrome (ACOS) as a clinical entity, it remains poorly characterized due to a lack of agreement on its definition and diagnostic criteria. The aim of this study was to use spirometry and computed tomography (CT) to help better define ACOS as well as to classify subjects with ACOS based on Global Initiative for Chronic Obstructive Lung Disease (GOLD) letter grade. We analyzed 10,192 subjects enrolled in the COPDGene Study. Subjects were non-Hispanic white or African American current or former smokers aged 45-80 years with at least a 10-pack-year smoking history. Subjects were categorized as having either ACOS with a bronchodilator response or chronic obstructive pulmonary disease with emphysema on the basis of spirometry, high-resolution CT, and a history of asthma or hay fever. Subjects with ACOS were younger (60.6 vs. 65.9 years old; P < 0.0001), more likely to be African American (26.8% vs. 14.4%; P < 0.0001), had a higher body mass index (29.6 vs. 25.1 kg/m(2); P < 0.0001), and were more likely to be current smokers (50.9% vs. 20.7%; P < 0.0001). The majority of subjects with ACOS were categorized as GOLD grade B. Despite less severe spirometry and CT findings in subjects with ACOS, there was no significant difference in severe or frequent exacerbations. Bronchodilator responsiveness and degree of emphysema can help define ACOS. When defined on the basis of bronchodilator responsiveness and degree of emphysema, patients with ACOS represent a unique and high-risk group with distinct clinical features.
Overlap Properties of Clouds Generated by a Cloud Resolving Model
NASA Technical Reports Server (NTRS)
Oreopoulos, L.; Khairoutdinov, M.
2002-01-01
In order for General Circulation Models (GCMs), one of our most important tools to predict future climate, to correctly describe the propagation of solar and thermal radiation through the cloudy atmosphere a realistic description of the vertical distribution of cloud amount is needed. Actually, one needs not only the cloud amounts at different levels of the atmosphere, but also how these cloud amounts are related, in other words, how they overlap. Currently GCMs make some idealized assumptions about cloud overlap, for example that contiguous cloud layers overlap maximally and non-contiguous cloud layers overlap in a random fashion. Since there are difficulties in obtaining the vertical profile of cloud amount from observations, the realism of the overlap assumptions made in GCMs has not been yet rigorously investigated. Recently however, cloud observations from a relatively new type of ground radar have been used to examine the vertical distribution of cloudiness. These observations suggest that the GCM overlap assumptions are dubious. Our study uses cloud fields from sophisticated models dedicated to simulate cloud formation, maintenance, and dissipation called Cloud Resolving Models . These models are generally considered capable of producing realistic three-dimensional representation of cloudiness. Using numerous cloud fields produced by such a CRM we show that the degree of overlap between cloud layers is a function of their separation distance, and is in general described by a combination of the maximum and random overlap assumption, with random overlap dominating as separation distances increase. We show that it is possible to parameterize this behavior in a way that can eventually be incorporated in GCMs. Our results seem to have a significant resemblance to the results from the radar observations despite the completely different nature of the datasets. This consistency is encouraging and will promote development of new radiative transfer codes that will estimate the radiation effects of multi-layer cloud fields more accurately.
Fernández-Coello, Alejandro; Havas, Viktória; Juncadella, Montserrat; Sierpowska, Joanna; Rodríguez-Fornells, Antoni; Gabarrós, Andreu
2017-06-01
OBJECTIVE Most knowledge regarding the anatomical organization of multilingualism is based on aphasiology and functional imaging studies. However, the results have still to be validated by the gold standard approach, namely electrical stimulation mapping (ESM) during awake neurosurgical procedures. In this ESM study the authors describe language representation in a highly specific group of 13 multilingual individuals, focusing on how age of acquisition may influence the cortical organization of language. METHODS Thirteen patients who had a high degree of proficiency in multiple languages and were harboring lesions within the dominant, left hemisphere underwent ESM while being operated on under awake conditions. Demographic and language data were recorded in relation to age of language acquisition (for native languages and early- and late-acquired languages), neuropsychological pre- and postoperative language testing, the number and location of language sites, and overlapping distribution in terms of language acquisition time. Lesion growth patterns and histopathological characteristics, location, and size were also recorded. The distribution of language sites was analyzed with respect to age of acquisition and overlap. RESULTS The functional language-related sites were distributed in the frontal (55%), temporal (29%), and parietal lobes (16%). The total number of native language sites was 47. Early-acquired languages (including native languages) were represented in 97 sites (55 overlapped) and late-acquired languages in 70 sites (45 overlapped). The overlapping distribution was 20% for early-early, 71% for early-late, and 9% for late-late. The average lesion size (maximum diameter) was 3.3 cm. There were 5 fast-growing and 7 slow-growing lesions. CONCLUSIONS Cortical language distribution in multilingual patients is not homogeneous, and it is influenced by age of acquisition. Early-acquired languages have a greater cortical representation than languages acquired later. The prevalent native and early-acquired languages are largely represented within the perisylvian left hemisphere frontoparietotemporal areas, and the less prevalent late-acquired languages are mostly overlapped with them.
Sharma, Bhavneesh; Neilan, Tomas G; Kwong, Raymond Y; Mandry, Damien; Owens, Robert L; McSharry, David; Bakker, Jessie P; Malhotra, Atul
2013-02-01
Untreated chronic obstructive pulmonary disease (COPD) co-existing with obstructive sleep apnea (OSA), also known as overlap syndrome, has higher cardiovascular mortality than COPD alone but its underlying mechanism remains unclear. We hypothesize that the presence of overlap syndrome is associated with more extensive right ventricular (RV) remodeling compared to patients with COPD alone. Adult COPD patients (GOLD stage 2 or higher) with at least 10 pack-years of smoking history were included. Overnight laboratory-based polysomnography was performed to test for OSA. Subjects with an apnea-hypopnea index (AHI) >10/h were classified as having overlap syndrome (n = 7), else classified as having COPD-only (n = 11). A cardiac MRI was performed to assess right and left cardiac chambers sizes, ventricular masses, and cine function. RV mass index (RVMI) was markedly higher in the overlap group than the COPD-only group (19 ± 6 versus 11 ± 6; p = 0.02). Overlap syndrome subjects had a reduced RV remodeling index (defined as the ratio between RVMI and RV end-diastolic volume index) compared to the COPD-only group (0.27 ± 0.06 versus 0.18 ± 0.08; p = 0.02). In the overlap syndrome subjects, the extent of RV remodeling was associated with severity of oxygen desaturation (R(2) = 0.65, p = 0.03). Our pilot results suggest that untreated overlap syndrome may cause more extensive RV remodeling than COPD alone.
Song matching, overlapping, and switching in the banded wren: the sender’s perspective
Vehrencamp, Sandra L.; Hall, Michelle L.; Bohman, Erin R.; Depeine, Catherine D.; Dalziell, Anastasia H.
2008-01-01
Interpreting receiver responses to on-territory playback of aggressive signals is problematic. One solution is to combine such receiver-perspective experiments with a sender-perspective experiment that allows subjects to demonstrate how their choice of singing strategies is associated with their approach behavior. Here we report the results of a sender-perspective study on the banded wren (Thryothorus pleurostictus), and combine information on context and results of previous receiver-perspective experiments to clarify function. Territorial males were presented with a 5-min playback consisting of song types present in their repertoire. We assessed the degree to which the subjects’ song matching rate, overlapping rate, and song-type versatility were correlated with their approach latency, closeness of approach, latency to first retreat, and time spent close to the speaker. Male age, breeding stage, and features of the playback stimuli were also considered. Song matching was associated with rapid and close approach, consistent with the receiver-perspective interpretation of type matching as a conventional signal of aggressive motivation. Overlapping was associated with earlier retreat, and together with the aversive receiver response to our previous overlapping playback experiment suggests that overlapping is a defensive withdrawal signal. High versatility was associated with slower first retreat from the speaker and high levels of reciprocal matching between subject and playback. Males with fledglings sang with particularly low versatility and approached the speaker aggressively, whereas males with nestlings overlapped more and retreated quickly. Finally, older males matched more but overlapped less. PMID:18392112
Christensen, Anders S.; Elstner, Marcus; Cui, Qiang
2015-01-01
Semi-empirical quantum mechanical methods traditionally expand the electron density in a minimal, valence-only electron basis set. The minimal-basis approximation causes molecular polarization to be underestimated, and hence intermolecular interaction energies are also underestimated, especially for intermolecular interactions involving charged species. In this work, the third-order self-consistent charge density functional tight-binding method (DFTB3) is augmented with an auxiliary response density using the chemical-potential equalization (CPE) method and an empirical dispersion correction (D3). The parameters in the CPE and D3 models are fitted to high-level CCSD(T) reference interaction energies for a broad range of chemical species, as well as dipole moments calculated at the DFT level; the impact of including polarizabilities of molecules in the parameterization is also considered. Parameters for the elements H, C, N, O, and S are presented. The Root Mean Square Deviation (RMSD) interaction energy is improved from 6.07 kcal/mol to 1.49 kcal/mol for interactions with one charged species, whereas the RMSD is improved from 5.60 kcal/mol to 1.73 for a set of 9 salt bridges, compared to uncorrected DFTB3. For large water clusters and complexes that are dominated by dispersion interactions, the already satisfactory performance of the DFTB3-D3 model is retained; polarizabilities of neutral molecules are also notably improved. Overall, the CPE extension of DFTB3-D3 provides a more balanced description of different types of non-covalent interactions than Neglect of Diatomic Differential Overlap type of semi-empirical methods (e.g., PM6-D3H4) and PBE-D3 with modest basis sets. PMID:26328834
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christensen, Anders S., E-mail: andersx@chem.wisc.edu, E-mail: cui@chem.wisc.edu; Cui, Qiang, E-mail: andersx@chem.wisc.edu, E-mail: cui@chem.wisc.edu; Elstner, Marcus
Semi-empirical quantum mechanical methods traditionally expand the electron density in a minimal, valence-only electron basis set. The minimal-basis approximation causes molecular polarization to be underestimated, and hence intermolecular interaction energies are also underestimated, especially for intermolecular interactions involving charged species. In this work, the third-order self-consistent charge density functional tight-binding method (DFTB3) is augmented with an auxiliary response density using the chemical-potential equalization (CPE) method and an empirical dispersion correction (D3). The parameters in the CPE and D3 models are fitted to high-level CCSD(T) reference interaction energies for a broad range of chemical species, as well as dipole moments calculatedmore » at the DFT level; the impact of including polarizabilities of molecules in the parameterization is also considered. Parameters for the elements H, C, N, O, and S are presented. The Root Mean Square Deviation (RMSD) interaction energy is improved from 6.07 kcal/mol to 1.49 kcal/mol for interactions with one charged species, whereas the RMSD is improved from 5.60 kcal/mol to 1.73 for a set of 9 salt bridges, compared to uncorrected DFTB3. For large water clusters and complexes that are dominated by dispersion interactions, the already satisfactory performance of the DFTB3-D3 model is retained; polarizabilities of neutral molecules are also notably improved. Overall, the CPE extension of DFTB3-D3 provides a more balanced description of different types of non-covalent interactions than Neglect of Diatomic Differential Overlap type of semi-empirical methods (e.g., PM6-D3H4) and PBE-D3 with modest basis sets.« less
Watanabe, Toshiki
2017-03-02
Adult T-cell leukemia (ATL) is an aggressive T-cell malignancy caused by human T-cell leukemia virus type 1 (HTLV-1) that develops through a multistep carcinogenesis process involving 5 or more genetic events. We provide a comprehensive overview of recently uncovered information on the molecular basis of leukemogenesis in ATL. Broadly, the landscape of genetic abnormalities in ATL that include alterations highly enriched in genes for T-cell receptor-NF-κB signaling such as PLCG1 , PRKCB , and CARD11 and gain-of function mutations in CCR4 and CCR7 Conversely, the epigenetic landscape of ATL can be summarized as polycomb repressive complex 2 hyperactivation with genome-wide H3K27 me3 accumulation as the basis of the unique transcriptome of ATL cells. Expression of H3K27 methyltransferase enhancer of zeste 2 was shown to be induced by HTLV-1 Tax and NF-κB. Furthermore, provirus integration site analysis with high-throughput sequencing enabled the analysis of clonal composition and cell number of each clone in vivo, whereas multicolor flow cytometric analysis with CD7 and cell adhesion molecule 1 enabled the identification of HTLV-1-infected CD4 + T cells in vivo. Sorted immortalized but untransformed cells displayed epigenetic changes closely overlapping those observed in terminally transformed ATL cells, suggesting that epigenetic abnormalities are likely earlier events in leukemogenesis. These new findings broaden the scope of conceptualization of the molecular mechanisms of leukemogenesis, dissecting them into immortalization and clonal progression. These recent findings also open a new direction of drug development for ATL prevention and treatment because epigenetic marks can be reprogrammed. Mechanisms underlying initial immortalization and progressive accumulation of these abnormalities remain to be elucidated. © 2017 by The American Society of Hematology.
Perry, Jennifer L.; Joseph, Jane E.; Jiang, Yang; Zimmerman, Rick S.; Kelly, Thomas H.; Darna, Mahesh; Huettl, Peter; Dwoskin, Linda P.; Bardo, Michael T.
2010-01-01
Vulnerability to drug abuse is related to both reward seeking and impulsivity, two constructs thought to have a biological basis in the prefrontal cortex (PFC). This review addresses similarities and differences in neuroanatomy, neurochemistry and behavior associated with PFC function in rodents and primates. Emphasis is placed on monoamine and amino acid neurotransmitter systems located in anatomically distinct subregions: medial prefrontal cortex (mPFC); lateral prefrontal cortex (lPFC); anterior cingulate cortex (ACC); and orbitofrontal cortex (OFC). While there are complex interconnections and overlapping functions among these regions, each is thought to be involved in various functions related to health-related risk behaviors and drug abuse vulnerability. Among the various functions implicated, evidence suggests that mPFC is involved in reward processing, attention and drug reinstatement; lPFC is involved in decision-making, behavioral inhibition and attentional gating; ACC is involved in attention, emotional processing and self-monitoring; and OFC is involved in behavioral inhibition, signaling of expected outcomes and reward/punishment sensitivity. Individual differences factors (e.g., age and sex) influence functioning of these regions, which, in turn, impacts drug abuse vulnerability. Implications for the development of drug abuse prevention and treatment strategies aimed at engaging PFC inhibitory processes that may reduce risk-related behaviors are discussed, including the design of effective public service announcements, cognitive exercises, physical activity, direct current stimulation, feedback control training and pharmacotherapies. A major challenge in drug abuse prevention and treatment rests with improving intervention strategies aimed at strengthening PFC inhibitory systems among at-risk individuals. PMID:20837060
The impact of perceived quality on online buying decisions: an event-related potentials perspective.
Wang, Jing; Han, Weiwei
2014-10-01
Consumer neuroscience can provide useful insights into the neural foundations of consumer decisions, such as perceived quality. One of the applications is to guide attribute configuration of products to fit consumers' expectations on the basis of individual preferences. In this study, we required 20 participants to decide whether to buy the product provided in the stimuli and to respond as soon as possible. According to their reports of expectations after the experiment, we subdivided the stimuli into two conditions. Condition 1 contained the stimuli that fit individual preferences, whereas Condition 2 contained the other stimuli. An essential component of event-related potentials (ERPs), the P300, was elicited in the two conditions and distributed over almost all parietal and occipital regions. Products in Condition 1 induced a higher P300 amplitude than those in Condition 2. The results show that evaluating product attributes is a cognitive process that modulates attention in the aforementioned regions. When participants evaluate the alternatives, categorical processing occurred on the basis of similarity judgment. The situation in Condition 1 produced a similarity overlap between the product and the expectation and resulted in a higher P300. Otherwise, there was no overlap, leading to a smaller P300. Hence, the P300 may be a useful neural endogenous indicator for measuring consumers' evaluations of products in marketing research.
Metcalfe, Arron W S; Ashkenazi, Sarit; Rosenberg-Lee, Miriam; Menon, Vinod
2013-10-01
Baddeley and Hitch's multi-component working memory (WM) model has played an enduring and influential role in our understanding of cognitive abilities. Very little is known, however, about the neural basis of this multi-component WM model and the differential role each component plays in mediating arithmetic problem solving abilities in children. Here, we investigate the neural basis of the central executive (CE), phonological (PL) and visuo-spatial (VS) components of WM during a demanding mental arithmetic task in 7-9 year old children (N=74). The VS component was the strongest predictor of math ability in children and was associated with increased arithmetic complexity-related responses in left dorsolateral and right ventrolateral prefrontal cortices as well as bilateral intra-parietal sulcus and supramarginal gyrus in posterior parietal cortex. Critically, VS, CE and PL abilities were associated with largely distinct patterns of brain response. Overlap between VS and CE components was observed in left supramarginal gyrus and no overlap was observed between VS and PL components. Our findings point to a central role of visuo-spatial WM during arithmetic problem-solving in young grade-school children and highlight the usefulness of the multi-component Baddeley and Hitch WM model in fractionating the neural correlates of arithmetic problem solving during development. Copyright © 2013 Elsevier Ltd. All rights reserved.
Network localization of neurological symptoms from focal brain lesions
Prasad, Sashank; Liu, Hesheng; Liu, Qi; Pascual-Leone, Alvaro; Caviness, Verne S.; Fox, Michael D.
2015-01-01
A traditional and widely used approach for linking neurological symptoms to specific brain regions involves identifying overlap in lesion location across patients with similar symptoms, termed lesion mapping. This approach is powerful and broadly applicable, but has limitations when symptoms do not localize to a single region or stem from dysfunction in regions connected to the lesion site rather than the site itself. A newer approach sensitive to such network effects involves functional neuroimaging of patients, but this requires specialized brain scans beyond routine clinical data, making it less versatile and difficult to apply when symptoms are rare or transient. In this article we show that the traditional approach to lesion mapping can be expanded to incorporate network effects into symptom localization without the need for specialized neuroimaging of patients. Our approach involves three steps: (i) transferring the three-dimensional volume of a brain lesion onto a reference brain; (ii) assessing the intrinsic functional connectivity of the lesion volume with the rest of the brain using normative connectome data; and (iii) overlapping lesion-associated networks to identify regions common to a clinical syndrome. We first tested our approach in peduncular hallucinosis, a syndrome of visual hallucinations following subcortical lesions long hypothesized to be due to network effects on extrastriate visual cortex. While the lesions themselves were heterogeneously distributed with little overlap in lesion location, 22 of 23 lesions were negatively correlated with extrastriate visual cortex. This network overlap was specific compared to other subcortical lesions (P < 10−5) and relative to other cortical regions (P < 0.01). Next, we tested for generalizability of our technique by applying it to three additional lesion syndromes: central post-stroke pain, auditory hallucinosis, and subcortical aphasia. In each syndrome, heterogeneous lesions that themselves had little overlap showed significant network overlap in cortical areas previously implicated in symptom expression (P < 10−4). These results suggest that (i) heterogeneous lesions producing similar symptoms share functional connectivity to specific brain regions involved in symptom expression; and (ii) publically available human connectome data can be used to incorporate these network effects into traditional lesion mapping approaches. Because the current technique requires no specialized imaging of patients it may prove a versatile and broadly applicable approach for localizing neurological symptoms in the setting of brain lesions. PMID:26264514
Quantum Dynamics with Short-Time Trajectories and Minimal Adaptive Basis Sets.
Saller, Maximilian A C; Habershon, Scott
2017-07-11
Methods for solving the time-dependent Schrödinger equation via basis set expansion of the wave function can generally be categorized as having either static (time-independent) or dynamic (time-dependent) basis functions. We have recently introduced an alternative simulation approach which represents a middle road between these two extremes, employing dynamic (classical-like) trajectories to create a static basis set of Gaussian wavepackets in regions of phase-space relevant to future propagation of the wave function [J. Chem. Theory Comput., 11, 8 (2015)]. Here, we propose and test a modification of our methodology which aims to reduce the size of basis sets generated in our original scheme. In particular, we employ short-time classical trajectories to continuously generate new basis functions for short-time quantum propagation of the wave function; to avoid the continued growth of the basis set describing the time-dependent wave function, we employ Matching Pursuit to periodically minimize the number of basis functions required to accurately describe the wave function. Overall, this approach generates a basis set which is adapted to evolution of the wave function while also being as small as possible. In applications to challenging benchmark problems, namely a 4-dimensional model of photoexcited pyrazine and three different double-well tunnelling problems, we find that our new scheme enables accurate wave function propagation with basis sets which are around an order-of-magnitude smaller than our original trajectory-guided basis set methodology, highlighting the benefits of adaptive strategies for wave function propagation.
NASA Technical Reports Server (NTRS)
Ioup, J. W.; Ioup, G. E.; Rayborn, G. H., Jr.; Wood, G. M., Jr.; Upchurch, B. T.
1984-01-01
Mass spectrometer data in the form of ion current versus mass-to-charge ratio often include overlapping mass peaks, especially in low- and medium-resolution instruments. Numerical deconvolution of such data effectively enhances the resolution by decreasing the overlap of mass peaks. In this paper two approaches to deconvolution are presented: a function-domain iterative technique and a Fourier transform method which uses transform-domain function-continuation. Both techniques include data smoothing to reduce the sensitivity of the deconvolution to noise. The efficacy of these methods is demonstrated through application to representative mass spectrometer data and the deconvolved results are discussed and compared to data obtained from a spectrometer with sufficient resolution to achieve separation of the mass peaks studied. A case for which the deconvolution is seriously affected by Gibbs oscillations is analyzed.
Foot Disorders, Foot Posture, and Foot Function: The Framingham Foot Study
Hagedorn, Thomas J.; Dufour, Alyssa B.; Riskowski, Jody L.; Hillstrom, Howard J.; Menz, Hylton B.; Casey, Virginia A.; Hannan, Marian T.
2013-01-01
Introduction Foot disorders are common among older adults and may lead to outcomes such as falls and functional limitation. However, the associations of foot posture and foot function to specific foot disorders at the population level remain poorly understood. The purpose of this study was to assess the relation between specific foot disorders, foot posture, and foot function. Methods Participants were from the population-based Framingham Foot Study. Quintiles of the modified arch index and center of pressure excursion index from plantar pressure scans were used to create foot posture and function subgroups. Adjusted odds ratios of having each specific disorder were calculated for foot posture and function subgroups relative to a referent 3 quintiles. Results Pes planus foot posture was associated with increased odds of hammer toes and overlapping toes. Cavus foot posture was not associated with the foot disorders evaluated. Odds of having hallux valgus and overlapping toes were significantly increased in those with pronated foot function, while odds of hallux valgus and hallux rigidus were significantly decreased in those with supinated function. Conclusions Foot posture and foot function were associated with the presence of specific foot disorders. PMID:24040231
Gao, Xin; Zhang, Wenjing; Yao, Li; Xiao, Yuan; Liu, Lu; Liu, Jieke; Li, Siyi; Tao, Bo; Shah, Chandan; Gong, Qiyong; Sweeney, John; Lui, Su
2017-12-05
Neuroimaging studies have shown both structural and functional abnormalities in patients with schizophrenia. Recently, studies have begun to explore the association between structural and functional grey matter abnormalities. By conducting a meta-analysis on morphometric and functional imaging studies of grey matter alterations in drug-free patients, the present study aims to examine the degree of overlap between brain regions with anatomic and functional changes in patients with schizophrenia. We performed a systematic search of PubMed, Embase, Web of Science and the Cochrane Library to identify relevant publications. A multimodal analysis was then conducted using Seed-based d Mapping software. Exploratory analyses included jackknife, subgroup and meta-regression analyses. We included 15 structural MRI studies comprising 486 drug-free patients and 485 healthy controls, and 16 functional MRI studies comprising 403 drug-free patients and 428 controls in our meta-analysis. Drug-free patients were examined to reduce pharmacological effects on the imaging data. Multimodal analysis showed considerable overlap between anatomic and functional changes, mainly in frontotemporal regions, bilateral medial posterior cingulate/paracingulate gyrus, bilateral insula, basal ganglia and left cerebellum. There were also brain regions showing only anatomic changes in the right superior frontal gyrus, left supramarginal gyrus, right lingual gyrus and functional alternations involving the right angular gyrus. The methodological aspects, patient characteristics and clinical variables of the included studies were heterogeneous, and we cannot exclude medication effects. The present study showed overlapping anatomic and functional brain abnormalities mainly in the default mode (DMN) and auditory networks (AN) in drug-free patients with schizophrenia. However, the pattern of changes differed in these networks. Decreased grey matter was associated with decreased activation within the DMN, whereas it was associated with increased activation within the AN. These discrete patterns suggest different pathophysiological changes impacting structural and functional associations within different neural networks in patients with schizophrenia. 2017 Joule Inc., or its licensors
Gao, Xin; Zhang, Wenjing; Yao, Li; Xiao, Yuan; Liu, Lu; Liu, Jieke; Li, Siyi; Tao, Bo; Shah, Chandan; Gong, Qiyong; Sweeney, John A; Lui, Su
2018-03-01
Neuroimaging studies have shown both structural and functional abnormalities in patients with schizophrenia. Recently, studies have begun to explore the association between structural and functional grey matter abnormalities. By conducting a meta-analysis on morphometric and functional imaging studies of grey matter alterations in drug-free patients, the present study aims to examine the degree of overlap between brain regions with anatomic and functional changes in patients with schizophrenia. We performed a systematic search of PubMed, Embase, Web of Science and the Cochrane Library to identify relevant publications. A multimodal analysis was then conducted using Seed-based d Mapping software. Exploratory analyses included jackknife, subgroup and meta-regression analyses. We included 15 structural MRI studies comprising 486 drug-free patients and 485 healthy controls, and 16 functional MRI studies comprising 403 drug-free patients and 428 controls in our meta-analysis. Drug-free patients were examined to reduce pharmacological effects on the imaging data. Multimodal analysis showed considerable overlap between anatomic and functional changes, mainly in frontotemporal regions, bilateral medial posterior cingulate/paracingulate gyrus, bilateral insula, basal ganglia and left cerebellum. There were also brain regions showing only anatomic changes in the right superior frontal gyrus, left supramarginal gyrus, right lingual gyrus and functional alternations involving the right angular gyrus. The methodological aspects, patient characteristics and clinical variables of the included studies were heterogeneous, and we cannot exclude medication effects. The present study showed overlapping anatomic and functional brain abnormalities mainly in the default mode (DMN) and auditory networks (AN) in drug-free patients with schizophrenia. However, the pattern of changes differed in these networks. Decreased grey matter was associated with decreased activation within the DMN, whereas it was associated with increased activation within the AN. These discrete patterns suggest different pathophysiological changes impacting structural and functional associations within different neural networks in patients with schizophrenia.
Gao, Xin; Zhang, Wenjing; Yao, Li; Xiao, Yuan; Liu, Lu; Liu, Jieke; Li, Siyi; Tao, Bo; Shah, Chandan; Gong, Qiyong; Sweeney, John A; Lui, Su
2017-12-15
Neuroimaging studies have shown both structural and functional abnormalities in patients with schizophrenia. Recently, studies have begun to explore the association between structural and functional grey matter abnormalities. By conducting a meta-analysis on morphometric and functional imaging studies of grey matter alterations in drug-free patients, the present study aims to examine the degree of overlap between brain regions with anatomic and functional changes in patients with schizophrenia. We performed a systematic search of PubMed, Embase, Web of Science and the Cochrane Library to identify relevant publications. A multimodal analysis was then conducted using Seed-based d Mapping software. Exploratory analyses included jackknife, subgroup and meta-regression analyses. We included 15 structural MRI studies comprising 486 drug-free patients and 485 healthy controls, and 16 functional MRI studies comprising 403 drug-free patients and 428 controls in our meta-analysis. Drug-free patients were examined to reduce pharmacological effects on the imaging data. Multimodal analysis showed considerable overlap between anatomic and functional changes, mainly in frontotemporal regions, bilateral medial posterior cingulate/paracingulate gyrus, bilateral insula, basal ganglia and left cerebellum. There were also brain regions showing only anatomic changes in the right superior frontal gyrus, left supramarginal gyrus, right lingual gyrus and functional alternations involving the right angular gyrus. The methodological aspects, patient characteristics and clinical variables of the included studies were heterogeneous, and we cannot exclude medication effects. The present study showed overlapping anatomic and functional brain abnormalities mainly in the default mode (DMN) and auditory networks (AN) in drug-free patients with schizophrenia. However, the pattern of changes differed in these networks. Decreased grey matter was associated with decreased activation within the DMN, whereas it was associated with increased activation within the AN. These discrete patterns suggest different pathophysiological changes impacting structural and functional associations within different neural networks in patients with schizophrenia.
Carpentry and Masonry Career Ladders, AFSCs 552X0/552X1/55273.
1985-01-01
he follows numerous safety practices in operating machines and Using tools and equipment. Some of the protective devices the wood craftsman uses may...performance. Overlap was found only in -he tool repair independent job type. AFR 39-1 Specialty Description. The AFR 39-1 Specialty Descriptions for...between Carpentry and Masonry Personnel, with the exception of Shop Personnel, and here overlap was found as a function of those tasks common to tool
Strong Genetic Overlap Between Executive Functions and Intelligence
Engelhardt, Laura E.; Mann, Frank D.; Briley, Daniel A.; Church, Jessica A.; Harden, K. Paige; Tucker-Drob, Elliot M.
2016-01-01
Executive functions (EFs) are cognitive processes that control, monitor, and coordinate more basic cognitive processes. EFs play instrumental roles in models of complex reasoning, learning, and decision-making, and individual differences in EFs have been consistently linked with individual differences in intelligence. By middle childhood, genetic factors account for a moderate proportion of the variance in intelligence, and these effects increase in magnitude through adolescence. Genetic influences on EFs are very high, even in middle childhood, but the extent to which these genetic influences overlap with those on intelligence is unclear. We examined genetic and environmental overlap between EFs and intelligence in a racially and socioeconomically diverse sample of 811 twins ages 7-15 years (M = 10.91, SD = 1.74) from the Texas Twin Project. A general EF factor representing variance common to inhibition, switching, working memory, and updating domains accounted for substantial proportions of variance in intelligence, primarily via a genetic pathway. General EF continued to have a strong, genetically-mediated association with intelligence even after controlling for processing speed. Residual variation in general intelligence was influenced only by shared and nonshared environmental factors, and there remained no genetic variance in general intelligence that was unique of EF. Genetic variance independent of EF did remain, however, in a more specific perceptual reasoning ability. These results provide evidence that genetic influences on general intelligence are highly overlapping with those on EF. PMID:27359131
A Scalable O(N) Algorithm for Large-Scale Parallel First-Principles Molecular Dynamics Simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osei-Kuffuor, Daniel; Fattebert, Jean-Luc
2014-01-01
Traditional algorithms for first-principles molecular dynamics (FPMD) simulations only gain a modest capability increase from current petascale computers, due to their O(N 3) complexity and their heavy use of global communications. To address this issue, we are developing a truly scalable O(N) complexity FPMD algorithm, based on density functional theory (DFT), which avoids global communications. The computational model uses a general nonorthogonal orbital formulation for the DFT energy functional, which requires knowledge of selected elements of the inverse of the associated overlap matrix. We present a scalable algorithm for approximately computing selected entries of the inverse of the overlap matrix,more » based on an approximate inverse technique, by inverting local blocks corresponding to principal submatrices of the global overlap matrix. The new FPMD algorithm exploits sparsity and uses nearest neighbor communication to provide a computational scheme capable of extreme scalability. Accuracy is controlled by the mesh spacing of the finite difference discretization, the size of the localization regions in which the electronic orbitals are confined, and a cutoff beyond which the entries of the overlap matrix can be omitted when computing selected entries of its inverse. We demonstrate the algorithm's excellent parallel scaling for up to O(100K) atoms on O(100K) processors, with a wall-clock time of O(1) minute per molecular dynamics time step.« less
Modeling of chromosome intermingling by partially overlapping uniform random polygons.
Blackstone, T; Scharein, R; Borgo, B; Varela, R; Diao, Y; Arsuaga, J
2011-03-01
During the early phase of the cell cycle the eukaryotic genome is organized into chromosome territories. The geometry of the interface between any two chromosomes remains a matter of debate and may have important functional consequences. The Interchromosomal Network model (introduced by Branco and Pombo) proposes that territories intermingle along their periphery. In order to partially quantify this concept we here investigate the probability that two chromosomes form an unsplittable link. We use the uniform random polygon as a crude model for chromosome territories and we model the interchromosomal network as the common spatial region of two overlapping uniform random polygons. This simple model allows us to derive some rigorous mathematical results as well as to perform computer simulations easily. We find that the probability that one uniform random polygon of length n that partially overlaps a fixed polygon is bounded below by 1 − O(1/√n). We use numerical simulations to estimate the dependence of the linking probability of two uniform random polygons (of lengths n and m, respectively) on the amount of overlapping. The degree of overlapping is parametrized by a parameter [Formula: see text] such that [Formula: see text] indicates no overlapping and [Formula: see text] indicates total overlapping. We propose that this dependence relation may be modeled as f (ε, m, n) = [Formula: see text]. Numerical evidence shows that this model works well when [Formula: see text] is relatively large (ε ≥ 0.5). We then use these results to model the data published by Branco and Pombo and observe that for the amount of overlapping observed experimentally the URPs have a non-zero probability of forming an unsplittable link.
Menezes, Ana Maria B; Montes de Oca, Maria; Pérez-Padilla, Rogelio; Nadeau, Gilbert; Wehrmeister, Fernando César; Lopez-Varela, Maria Victorina; Muiño, Adriana; Jardim, José Roberto B; Valdivia, Gonzalo; Tálamo, Carlos
2014-02-01
Several COPD phenotypes have been described; the COPD-asthma overlap is one of the most recognized. The aim of this study was to evaluate the prevalence of three subgroups (asthma, COPD, and COPD-asthma overlap) in the Latin American Project for the Investigation of Obstructive Lung Disease (PLATINO) study population, to describe their main characteristics, and to determine the association of the COPD-asthma overlap group with exacerbations, hospitalizations, limitations due to physical health, and perception of general health status (GHS). The PLATINO study is a multicenter population-based survey carried out in five Latin American cities. Outcomes were self-reported exacerbations (defined by deterioration of breathing symptoms that affected usual daily activities or caused missed work), hospitalizations due to exacerbations, physical health limitations, and patients' perception of their GHS obtained by questionnaire. Subjects were classified in three specific groups: COPD--a postbronchodilator (post-BD) FEV₁/FVC ratio of < 0.70; asthma--presence of wheezing in the last year and a minimum post-BD increase in FEV₁ or FVC of 12% and 200 mL; and overlap COPD-asthma--the combination of the two. Out of 5,044 subjects, 767 were classified as having COPD (12%), asthma (1.7%), and COPD-asthma overlap (1.8%). Subjects with COPD-asthma overlap had more respiratory symptoms, had worse lung function, used more respiratory medication, had more hospitalization and exacerbations, and had worse GHS. After adjusting for confounders, the COPD-asthma overlap was associated with higher risks for exacerbations (prevalence ratio [PR], 2.11; 95% CI, 1.08-4.12), hospitalizations (PR, 4.11; 95% CI, 1.45-11.67), and worse GHS (PR, 1.47; 95% CI, 1.18-1.85) compared with those with COPD. The coexisting COPD-asthma phenotype is possibly associated with increased disease severity.
The functional unit of Japanese word naming: evidence from masked priming.
Verdonschot, Rinus G; Kiyama, Sachiko; Tamaoka, Katsuo; Kinoshita, Sachiko; Heij, Wido La; Schiller, Niels O
2011-11-01
Theories of language production generally describe the segment as the basic unit in phonological encoding (e.g., Dell, 1988; Levelt, Roelofs, & Meyer, 1999). However, there is also evidence that such a unit might be language specific. Chen, Chen, and Dell (2002), for instance, found no effect of single segments when using a preparation paradigm. To shed more light on the functional unit of phonological encoding in Japanese, a language often described as being mora based, we report the results of 4 experiments using word reading tasks and masked priming. Experiment 1 demonstrated using Japanese kana script that primes, which overlapped in the whole mora with target words, sped up word reading latencies but not when just the onset overlapped. Experiments 2 and 3 investigated a possible role of script by using combinations of romaji (Romanized Japanese) and hiragana; again, facilitation effects were found only when the whole mora and not the onset segment overlapped. Experiment 4 distinguished mora priming from syllable priming and revealed that the mora priming effects obtained in the first 3 experiments are also obtained when a mora is part of a syllable. Again, no priming effect was found for single segments. Our findings suggest that the mora and not the segment (phoneme) is the basic functional phonological unit in Japanese language production planning.
Measuring droplet size distributions from overlapping interferometric particle images.
Bocanegra Evans, Humberto; Dam, Nico; van der Voort, Dennis; Bertens, Guus; van de Water, Willem
2015-02-01
Interferometric particle imaging provides a simple way to measure the probability density function (PDF) of droplet sizes from out-focus images. The optical setup is straightforward, but the interpretation of the data is a problem when particle images overlap. We propose a new way to analyze the images. The emphasis is not on a precise identification of droplets, but on obtaining a good estimate of the PDF of droplet sizes in the case of overlapping particle images. The algorithm is tested using synthetic and experimental data. We next use these methods to measure the PDF of droplet sizes produced by spinning disk aerosol generators. The mean primary droplet diameter agrees with predictions from the literature, but we find a broad distribution of satellite droplet sizes.
MOLECULAR DYNAMICS OF CASCADES OVERLAP IN TUNGSTEN WITH 20-KEV PRIMARY KNOCK-ON ATOMS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Setyawan, Wahyu; Nandipati, Giridhar; Roche, Kenneth J.
2015-04-16
Molecular dynamics simulations are performed to investigate the mutual influence of two subsequent cascades in tungsten. The influence is studied using 20-keV primary knock-on atoms, to induce one cascade after another separated by 15 ps, in a lattice temperature of 1025 K (i.e. 0.25 of the melting temperature of the interatomic potential). The center of mass of the vacancies at the peak damage during the cascade is taken as the location of the cascade. The distance between this location to that of the next cascade is taken as the overlap parameter. Empirical fits describing the number of surviving vacancies andmore » interstitial atoms as a function of overlap are presented.« less
Omura, Hiroki; Oikawa, Daisuke; Nakane, Takanori; Kato, Megumi; Ishii, Ryohei; Ishitani, Ryuichiro; Tokunaga, Fuminori; Nureki, Osamu
2016-01-01
In the innate immune system, pattern recognition receptors (PRRs) specifically recognize ligands derived from bacteria or viruses, to trigger the responsible downstream pathways. DEAD box protein 41 (DDX41) is an intracellular PRR that triggers the downstream pathway involving the adapter STING, the kinase TBK1, and the transcription factor IRF3, to activate the type I interferon response. DDX41 is unique in that it recognizes two different ligands; i.e., double-stranded DNA (dsDNA) and cyclic dinucleotides (CDN), via its DEAD domain. However, the structural basis for the ligand recognition by the DDX41 DEAD domain has remained elusive. Here, we report two crystal structures of the DDX41 DEAD domain in apo forms, at 1.5 and 2.2 Å resolutions. A comparison of the two crystal structures revealed the flexibility in the ATP binding site, suggesting its formation upon ATP binding. Structure-guided functional analyses in vitro and in vivo demonstrated the overlapped binding surface for dsDNA and CDN, which is distinct from the ATP-binding site. We propose that the structural rearrangement of the ATP binding site is crucial for the release of ADP, enabling the fast turnover of DDX41 for the dsDNA/CDN-induced STING activation pathway. PMID:27721487
Neural Correlates of Explicit Social Judgments on Vocal Stimuli
Hensel, Lukas; Bzdok, Danilo; Müller, Veronika I.; Zilles, Karl; Eickhoff, Simon B.
2015-01-01
Functional neuroimaging research on the neural basis of social evaluation has traditionally focused on face perception paradigms. Thus, little is known about the neurobiology of social evaluation processes based on auditory cues, such as voices. To investigate the top-down effects of social trait judgments on voices, hemodynamic responses of 44 healthy participants were measured during social trait (trustworthiness [TR] and attractiveness [AT]), emotional (happiness, HA), and cognitive (age, AG) voice judgments. Relative to HA and AG judgments, TR and AT judgments both engaged the bilateral inferior parietal cortex (IPC; area PGa) and the dorsomedial prefrontal cortex (dmPFC) extending into the perigenual anterior cingulate cortex. This dmPFC activation overlapped with previously reported areas specifically involved in social judgments on ‘faces.’ Moreover, social trait judgments were expected to share neural correlates with emotional HA and cognitive AG judgments. Comparison of effects pertaining to social, social–emotional, and social–cognitive appraisal processes revealed a dissociation of the left IPC into 3 functional subregions assigned to distinct cytoarchitectonic subdivisions. In total, the dmPFC is proposed to assume a central role in social attribution processes across sensory qualities. In social judgments on voices, IPC activity shifts from rostral processing of more emotional judgment facets to caudal processing of more cognitive judgment facets. PMID:24243619
Mocz, G.
1995-01-01
Fuzzy cluster analysis has been applied to the 20 amino acids by using 65 physicochemical properties as a basis for classification. The clustering products, the fuzzy sets (i.e., classical sets with associated membership functions), have provided a new measure of amino acid similarities for use in protein folding studies. This work demonstrates that fuzzy sets of simple molecular attributes, when assigned to amino acid residues in a protein's sequence, can predict the secondary structure of the sequence with reasonable accuracy. An approach is presented for discriminating standard folding states, using near-optimum information splitting in half-overlapping segments of the sequence of assigned membership functions. The method is applied to a nonredundant set of 252 proteins and yields approximately 73% matching for correctly predicted and correctly rejected residues with approximately 60% overall success rate for the correctly recognized ones in three folding states: alpha-helix, beta-strand, and coil. The most useful attributes for discriminating these states appear to be related to size, polarity, and thermodynamic factors. Van der Waals volume, apparent average thickness of surrounding molecular free volume, and a measure of dimensionless surface electron density can explain approximately 95% of prediction results. hydrogen bonding and hydrophobicity induces do not yet enable clear clustering and prediction. PMID:7549882
WormQTLHD—a web database for linking human disease to natural variation data in C. elegans
van der Velde, K. Joeri; de Haan, Mark; Zych, Konrad; Arends, Danny; Snoek, L. Basten; Kammenga, Jan E.; Jansen, Ritsert C.; Swertz, Morris A.; Li, Yang
2014-01-01
Interactions between proteins are highly conserved across species. As a result, the molecular basis of multiple diseases affecting humans can be studied in model organisms that offer many alternative experimental opportunities. One such organism—Caenorhabditis elegans—has been used to produce much molecular quantitative genetics and systems biology data over the past decade. We present WormQTLHD (Human Disease), a database that quantitatively and systematically links expression Quantitative Trait Loci (eQTL) findings in C. elegans to gene–disease associations in man. WormQTLHD, available online at http://www.wormqtl-hd.org, is a user-friendly set of tools to reveal functionally coherent, evolutionary conserved gene networks. These can be used to predict novel gene-to-gene associations and the functions of genes underlying the disease of interest. We created a new database that links C. elegans eQTL data sets to human diseases (34 337 gene–disease associations from OMIM, DGA, GWAS Central and NHGRI GWAS Catalogue) based on overlapping sets of orthologous genes associated to phenotypes in these two species. We utilized QTL results, high-throughput molecular phenotypes, classical phenotypes and genotype data covering different developmental stages and environments from WormQTL database. All software is available as open source, built on MOLGENIS and xQTL workbench. PMID:24217915
WormQTLHD--a web database for linking human disease to natural variation data in C. elegans.
van der Velde, K Joeri; de Haan, Mark; Zych, Konrad; Arends, Danny; Snoek, L Basten; Kammenga, Jan E; Jansen, Ritsert C; Swertz, Morris A; Li, Yang
2014-01-01
Interactions between proteins are highly conserved across species. As a result, the molecular basis of multiple diseases affecting humans can be studied in model organisms that offer many alternative experimental opportunities. One such organism-Caenorhabditis elegans-has been used to produce much molecular quantitative genetics and systems biology data over the past decade. We present WormQTL(HD) (Human Disease), a database that quantitatively and systematically links expression Quantitative Trait Loci (eQTL) findings in C. elegans to gene-disease associations in man. WormQTL(HD), available online at http://www.wormqtl-hd.org, is a user-friendly set of tools to reveal functionally coherent, evolutionary conserved gene networks. These can be used to predict novel gene-to-gene associations and the functions of genes underlying the disease of interest. We created a new database that links C. elegans eQTL data sets to human diseases (34 337 gene-disease associations from OMIM, DGA, GWAS Central and NHGRI GWAS Catalogue) based on overlapping sets of orthologous genes associated to phenotypes in these two species. We utilized QTL results, high-throughput molecular phenotypes, classical phenotypes and genotype data covering different developmental stages and environments from WormQTL database. All software is available as open source, built on MOLGENIS and xQTL workbench.
Brain system for mental orientation in space, time, and person.
Peer, Michael; Salomon, Roy; Goldberg, Ilan; Blanke, Olaf; Arzy, Shahar
2015-09-01
Orientation is a fundamental mental function that processes the relations between the behaving self to space (places), time (events), and person (people). Behavioral and neuroimaging studies have hinted at interrelations between processing of these three domains. To unravel the neurocognitive basis of orientation, we used high-resolution 7T functional MRI as 16 subjects compared their subjective distance to different places, events, or people. Analysis at the individual-subject level revealed cortical activation related to orientation in space, time, and person in a precisely localized set of structures in the precuneus, inferior parietal, and medial frontal cortex. Comparison of orientation domains revealed a consistent order of cortical activity inside the precuneus and inferior parietal lobes, with space orientation activating posterior regions, followed anteriorly by person and then time. Core regions at the precuneus and inferior parietal lobe were activated for multiple orientation domains, suggesting also common processing for orientation across domains. The medial prefrontal cortex showed a posterior activation for time and anterior for person. Finally, the default-mode network, identified in a separate resting-state scan, was active for all orientation domains and overlapped mostly with person-orientation regions. These findings suggest that mental orientation in space, time, and person is managed by a specific brain system with a highly ordered internal organization, closely related to the default-mode network.
Langberg, Kurt; Phillips, Matthew; Rueppell, Olav
2018-04-01
The rate of genomic recombination displays evolutionary plasticity and can even vary in response to environmental factors. The western honey bee (Apis mellifera L.) has an extremely high genomic recombination rate but the mechanistic basis for this genome-wide upregulation is not understood. Based on the hypothesis that meiotic recombination and DNA damage repair share common mechanisms in honey bees as in other organisms, we predicted that oxidative stress leads to an increase in recombination rate in honey bees. To test this prediction, we subjected honey bee queens to oxidative stress by paraquat injection and measured the rates of genomic recombination in select genome intervals of offspring produced before and after injection. The evaluation of 26 genome intervals in a total of over 1750 offspring of 11 queens by microsatellite genotyping revealed several significant effects but no overall evidence for a mechanistic link between oxidative stress and increased recombination was found. The results weaken the notion that DNA repair enzymes have a regulatory function in the high rate of meiotic recombination of honey bees, but they do not provide evidence against functional overlap between meiotic recombination and DNA damage repair in honey bees and more mechanistic studies are needed.
NASA Astrophysics Data System (ADS)
Le Bourg, B.; Bănaru, D.; Saraux, C.; Nowaczyk, A.; Le Luherne, E.; Jadaud, A.; Bigot, J. L.; Richard, P.
2015-09-01
Increasing abundance of non-commercial sprats and decreasing biomass and landings of commercial anchovies and sardines justify the need to study the feeding ecology and trophic niche overlap of these planktivorous species in the Gulf of Lions. Their diet has been investigated on the basis of stomach content and stable isotope analyses in 2011 and 2012 according to different depths and regions in the study area. The main prey were Corycaeidae copepods, Clauso/Paracalanus, Euterpina acutifrons and Microsetella, for sprats and small copepods, such as Microsetella, Oncaea and Corycaeidae, for anchovies and sardines. This is the first time that the diet of sprats is described in the Gulf of Lions. Sprats fed on a larger size spectrum of prey and seem to be more generalist feeders compared to anchovies and sardines. Ontogenetic changes as well as spatial and temporal variations of the diet occurred in the three species. Stable isotope analysis revealed mobility of sardines and sprats among feeding areas while anchovies exhibited preferred feeding areas. Sprats showed a higher relative condition assessed by C/N ratios than sardines and anchovies. Our results showed an overlap of the trophic niches for the three species, indicating a potential trophic competition in the Gulf of Lions.
Cross-correlating 2D and 3D galaxy surveys
Passaglia, Samuel; Manzotti, Alessandro; Dodelson, Scott
2017-06-08
Galaxy surveys probe both structure formation and the expansion rate, making them promising avenues for understanding the dark universe. Photometric surveys accurately map the 2D distribution of galaxy positions and shapes in a given redshift range, while spectroscopic surveys provide sparser 3D maps of the galaxy distribution. We present a way to analyse overlapping 2D and 3D maps jointly and without loss of information. We represent 3D maps using spherical Fourier-Bessel (sFB) modes, which preserve radial coverage while accounting for the spherical sky geometry, and we decompose 2D maps in a spherical harmonic basis. In these bases, a simple expression exists for the cross-correlation of the two fields. One very powerful application is the ability to simultaneously constrain the redshift distribution of the photometric sample, the sample biases, and cosmological parameters. We use our framework to show that combined analysis of DESI and LSST can improve cosmological constraints by factors ofmore » $${\\sim}1.2$$ to $${\\sim}1.8$$ on the region where they overlap relative to identically sized disjoint regions. We also show that in the overlap of DES and SDSS-III in Stripe 82, cross-correlating improves photo-$z$ parameter constraints by factors of $${\\sim}2$$ to $${\\sim}12$$ over internal photo-$z$ reconstructions.« less
Woodruff, Prescott G; van den Berge, Maarten; Boucher, Richard C; Brightling, Christopher; Burchard, Esteban G; Christenson, Stephanie A; Han, MeiLan K; Holtzman, Michael J; Kraft, Monica; Lynch, David A; Martinez, Fernando D; Reddel, Helen K; Sin, Don D; Washko, George R; Wenzel, Sally E; Punturieri, Antonello; Freemer, Michelle M; Wise, Robert A
2017-08-01
Asthma and chronic obstructive pulmonary disease (COPD) are highly prevalent chronic obstructive lung diseases with an associated high burden of disease. Asthma, which is often allergic in origin, frequently begins in infancy or childhood with variable airflow obstruction and intermittent wheezing, cough, and dyspnea. Patients with COPD, in contrast, are usually current or former smokers who present after the age of 40 years with symptoms (often persistent) including dyspnea and a productive cough. On the basis of age and smoking history, it is often easy to distinguish between asthma and COPD. However, some patients have features compatible with both diseases. Because clinical studies typically exclude these patients, their underlying disease mechanisms and appropriate treatment remain largely uncertain. To explore the status of and opportunities for research in this area, the NHLBI, in partnership with the American Thoracic Society, convened a workshop of investigators in San Francisco, California on May 14, 2016. At the workshop, current understanding of asthma-COPD overlap was discussed among clinicians, pathologists, radiologists, epidemiologists, and investigators with expertise in asthma and COPD. They considered knowledge gaps in our understanding of asthma-COPD overlap and identified strategies and research priorities that will advance its understanding. This report summarizes those discussions.
NASA Technical Reports Server (NTRS)
Lecar, Myron; Franklin, Fred A.; Holman, Matthew J.; Murray, Norman J.
2001-01-01
The physical basis of chaos in the solar system is now better understood: In all cases investigated so far, chaotic orbits result from overlapping resonances. Perhaps the clearest examples are found in the asteroid belt. Overlapping resonances account for its kirkwood gaps and were used to predict and find evidence for very narrow gaps in the outer belt. Further afield, about one new "short-peroid" comet is discovered each year. They are believed to come from the "Kuiper Belt" (at 40 AU or more) via chaotic orbits produced by mean-motion and secular resonances with Neptune. Finally, the planetary system itself is not immune from chaos. In the inner solar system, overlapping secular resonances have been identified as the possible source of chaos. For example, Mercury in 1012 years, may suffer a close encounter with Venus or plunge into the Sun. In the outer solar system, three-body resonances have been identified as a source of chaos, but on an even longer time scale of 109 times the age of the solar system. On the human time scale, the planets do follow their orbits in a stately procession, and we can predict their trajectories for hundreds of thousands of years. That is because the mavericks, with shorter instability times, have long since been ejected. The solar system is not stable; it is just old!
Coelho, Rui; Fernandez-Carvalho, Joana; Santos, Miguel N
2015-12-01
Pelagic longliners targeting swordfish and tunas in oceanic waters regularly capture sharks as bycatch, including currently protected species as the bigeye thresher, Alopias superciliosus. Fifteen bigeye threshers were tagged with pop-up satellite archival tags (PSATs) in 2012-2014 in the tropical northeast Atlantic, with successful transmissions received from 12 tags for a total of 907 tracking days. Marked diel vertical movements were recorded on all specimens, with most of the daytime spent in deeper colder water (mean depth = 353 m, SD = 73; mean temperature = 10.7 °C, SD = 1.8) and nighttime spent in warmer water closer to the surface (mean depth = 72 m, SD = 54; mean temperature = 21.9 °C, SD = 3.7). The operating depth of the pelagic longline gear was measured with Minilog Temperature and Depth Recorders (TDRs), and the overlap with habitat utilization was calculated. Overlap is taking place mainly during the night and is higher for juveniles. The results presented herein can be used as inputs for Ecological Risk Assessments for bigeye threshers captured in oceanic tuna fisheries, and serve as a basis for efficient management and conservation of this vulnerable shark species. Copyright © 2015 Elsevier Ltd. All rights reserved.
Burkett, James P; Young, Larry J
2012-11-01
Love has long been referred to as an addiction in literature and poetry. Scientists have often made comparisons between social attachment processes and drug addiction, and it has been suggested that the two may share a common neurobiological mechanism. Brain systems that evolved to govern attachments between parents and children and between monogamous partners may be the targets of drugs of abuse and serve as the basis for addiction processes. Here, we review research on drug addiction in parallel with research on social attachments, including parent-offspring attachments and social bonds between mating partners. This review focuses on the brain regions and neurochemicals with the greatest overlap between addiction and attachment and, in particular, the mesolimbic dopamine (DA) pathway. Significant overlap exists between these two behavioral processes. In addition to conceptual overlap in symptomatology, there is a strong commonality between the two domains regarding the roles and sites of action of DA, opioids, and corticotropin-releasing factor. The neuropeptides oxytocin and vasopressin are hypothesized to integrate social information into attachment processes that is not present in drug addiction. Social attachment may be understood as a behavioral addiction, whereby the subject becomes addicted to another individual and the cues that predict social reward. Understandings from both fields may enlighten future research on addiction and attachment processes.
Cross-correlating 2D and 3D galaxy surveys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Passaglia, Samuel; Manzotti, Alessandro; Dodelson, Scott
Galaxy surveys probe both structure formation and the expansion rate, making them promising avenues for understanding the dark universe. Photometric surveys accurately map the 2D distribution of galaxy positions and shapes in a given redshift range, while spectroscopic surveys provide sparser 3D maps of the galaxy distribution. We present a way to analyse overlapping 2D and 3D maps jointly and without loss of information. We represent 3D maps using spherical Fourier-Bessel (sFB) modes, which preserve radial coverage while accounting for the spherical sky geometry, and we decompose 2D maps in a spherical harmonic basis. In these bases, a simple expression exists for the cross-correlation of the two fields. One very powerful application is the ability to simultaneously constrain the redshift distribution of the photometric sample, the sample biases, and cosmological parameters. We use our framework to show that combined analysis of DESI and LSST can improve cosmological constraints by factors ofmore » $${\\sim}1.2$$ to $${\\sim}1.8$$ on the region where they overlap relative to identically sized disjoint regions. We also show that in the overlap of DES and SDSS-III in Stripe 82, cross-correlating improves photo-$z$ parameter constraints by factors of $${\\sim}2$$ to $${\\sim}12$$ over internal photo-$z$ reconstructions.« less
Spike sorting of synchronous spikes from local neuron ensembles
Pröpper, Robert; Alle, Henrik; Meier, Philipp; Geiger, Jörg R. P.; Obermayer, Klaus; Munk, Matthias H. J.
2015-01-01
Synchronous spike discharge of cortical neurons is thought to be a fingerprint of neuronal cooperativity. Because neighboring neurons are more densely connected to one another than neurons that are located further apart, near-synchronous spike discharge can be expected to be prevalent and it might provide an important basis for cortical computations. Using microelectrodes to record local groups of neurons does not allow for the reliable separation of synchronous spikes from different cells, because available spike sorting algorithms cannot correctly resolve the temporally overlapping waveforms. We show that high spike sorting performance of in vivo recordings, including overlapping spikes, can be achieved with a recently developed filter-based template matching procedure. Using tetrodes with a three-dimensional structure, we demonstrate with simulated data and ground truth in vitro data, obtained by dual intracellular recording of two neurons located next to a tetrode, that the spike sorting of synchronous spikes can be as successful as the spike sorting of nonoverlapping spikes and that the spatial information provided by multielectrodes greatly reduces the error rates. We apply the method to tetrode recordings from the prefrontal cortex of behaving primates, and we show that overlapping spikes can be identified and assigned to individual neurons to study synchronous activity in local groups of neurons. PMID:26289473
Classified and clustered data constellation: An efficient approach of 3D urban data management
NASA Astrophysics Data System (ADS)
Azri, Suhaibah; Ujang, Uznir; Castro, Francesc Antón; Rahman, Alias Abdul; Mioc, Darka
2016-03-01
The growth of urban areas has resulted in massive urban datasets and difficulties handling and managing issues related to urban areas. Huge and massive datasets can degrade data retrieval and information analysis performance. In addition, the urban environment is very difficult to manage because it involves various types of data, such as multiple types of zoning themes in the case of urban mixed-use development. Thus, a special technique for efficient handling and management of urban data is necessary. This paper proposes a structure called Classified and Clustered Data Constellation (CCDC) for urban data management. CCDC operates on the basis of two filters: classification and clustering. To boost up the performance of information retrieval, CCDC offers a minimal percentage of overlap among nodes and coverage area to avoid repetitive data entry and multipath query. The results of tests conducted on several urban mixed-use development datasets using CCDC verify that it efficiently retrieves their semantic and spatial information. Further, comparisons conducted between CCDC and existing clustering and data constellation techniques, from the aspect of preservation of minimal overlap and coverage, confirm that the proposed structure is capable of preserving the minimum overlap and coverage area among nodes. Our overall results indicate that CCDC is efficient in handling and managing urban data, especially urban mixed-use development applications.
Böhm, Kati; Meyer, Fabian; Rhomberg, Agata; Kalinowski, Jörn; Donovan, Catriona; Bramkamp, Marc
2017-06-06
Bacteria regulate chromosome replication and segregation tightly with cell division to ensure faithful segregation of DNA to daughter generations. The underlying mechanisms have been addressed in several model species. It became apparent that bacteria have evolved quite different strategies to regulate DNA segregation and chromosomal organization. We have investigated here how the actinobacterium Corynebacterium glutamicum organizes chromosome segregation and DNA replication. Unexpectedly, we found that C. glutamicum cells are at least diploid under all of the conditions tested and that these organisms have overlapping C periods during replication, with both origins initiating replication simultaneously. On the basis of experimental data, we propose growth rate-dependent cell cycle models for C. glutamicum IMPORTANCE Bacterial cell cycles are known for few model organisms and can vary significantly between species. Here, we studied the cell cycle of Corynebacterium glutamicum , an emerging cell biological model organism for mycolic acid-containing bacteria, including mycobacteria. Our data suggest that C. glutamicum carries two pole-attached chromosomes that replicate with overlapping C periods, thus initiating a new round of DNA replication before the previous one is terminated. The newly replicated origins segregate to midcell positions, where cell division occurs between the two new origins. Even after long starvation or under extremely slow-growth conditions, C. glutamicum cells are at least diploid, likely as an adaptation to environmental stress that may cause DNA damage. The cell cycle of C. glutamicum combines features of slow-growing organisms, such as polar origin localization, and fast-growing organisms, such as overlapping C periods. Copyright © 2017 Böhm et al.
Kozhuharova, Ana; Sharma, Harshita; Ohyama, Takako; Fasolo, Francesca; Yamazaki, Toshio; Cotella, Diego; Santoro, Claudio; Zucchelli, Silvia; Gustincich, Stefano; Carninci, Piero
2018-01-01
SINEUPs are antisense long noncoding RNAs, in which an embedded SINE B2 element UP-regulates translation of partially overlapping target sense mRNAs. SINEUPs contain two functional domains. First, the binding domain (BD) is located in the region antisense to the target, providing specific targeting to the overlapping mRNA. Second, the inverted SINE B2 represents the effector domain (ED) and enhances translation. To adapt SINEUP technology to a broader number of targets, we took advantage of a high-throughput, semi-automated imaging system to optimize synthetic SINEUP BD and ED design in HEK293T cell lines. Using SINEUP-GFP as a model SINEUP, we extensively screened variants of the BD to map features needed for optimal design. We found that most active SINEUPs overlap an AUG-Kozak sequence. Moreover, we report our screening of the inverted SINE B2 sequence to identify active sub-domains and map the length of the minimal active ED. Our synthetic SINEUP-GFP screening of both BDs and EDs constitutes a broad test with flexible applications to any target gene of interest. PMID:29414979
Shen, Wei; Qu, Qingqing; Tong, Xiuhong
2018-05-01
The aim of this study was to investigate the extent to which phonological information mediates the visual attention shift to printed Chinese words in spoken word recognition by using an eye-movement technique with a printed-word paradigm. In this paradigm, participants are visually presented with four printed words on a computer screen, which include a target word, a phonological competitor, and two distractors. Participants are then required to select the target word using a computer mouse, and the eye movements are recorded. In Experiment 1, phonological information was manipulated at the full-phonological overlap; in Experiment 2, phonological information at the partial-phonological overlap was manipulated; and in Experiment 3, the phonological competitors were manipulated to share either fulloverlap or partial-overlap with targets directly. Results of the three experiments showed that the phonological competitor effects were observed at both the full-phonological overlap and partial-phonological overlap conditions. That is, phonological competitors attracted more fixations than distractors, which suggested that phonological information mediates the visual attention shift during spoken word recognition. More importantly, we found that the mediating role of phonological information varies as a function of the phonological similarity between target words and phonological competitors.
Chemometric Data Analysis for Deconvolution of Overlapped Ion Mobility Profiles
NASA Astrophysics Data System (ADS)
Zekavat, Behrooz; Solouki, Touradj
2012-11-01
We present the details of a data analysis approach for deconvolution of the ion mobility (IM) overlapped or unresolved species. This approach takes advantage of the ion fragmentation variations as a function of the IM arrival time. The data analysis involves the use of an in-house developed data preprocessing platform for the conversion of the original post-IM/collision-induced dissociation mass spectrometry (post-IM/CID MS) data to a Matlab compatible format for chemometric analysis. We show that principle component analysis (PCA) can be used to examine the post-IM/CID MS profiles for the presence of mobility-overlapped species. Subsequently, using an interactive self-modeling mixture analysis technique, we show how to calculate the total IM spectrum (TIMS) and CID mass spectrum for each component of the IM overlapped mixtures. Moreover, we show that PCA and IM deconvolution techniques provide complementary results to evaluate the validity of the calculated TIMS profiles. We use two binary mixtures with overlapping IM profiles, including (1) a mixture of two non-isobaric peptides (neurotensin (RRPYIL) and a hexapeptide (WHWLQL)), and (2) an isobaric sugar isomer mixture of raffinose and maltotriose, to demonstrate the applicability of the IM deconvolution.
Westerbom, Mats; Lappalainen, Antti; Mustonen, Olli; Norkko, Alf
2018-05-21
Climate change is predicted to cause a freshening of the Baltic Sea, facilitating range expansions of freshwater species and contractions of marine. Resident marine flounders (Platichthys flesus) and expansive freshwater roach (Rutilus rutilus) are dominant consumers in the Baltic Sea sublittoral where they occur in partial sympatry. By comparing patterns of resource use by flounders and roach along a declining resource gradient of blue mussels (Mytilus trossulus) our aim was to explore predator functional responses and the degree of trophic overlap. Understanding the nature of density-dependent prey acquisition has important implications for predicting population dynamics of both predators and their shared prey. Results showed a highly specialized diet for both species, high reliance on blue mussels throughout the range, similar prey size preference and high trophic overlap. Highest overlap occurred where blue mussels were abundant but overlap was also high where they were scarce. Our results highlight the importance of a single food item - the blue mussel - for both species, likely promoting high population size and range expansion of roach. Findings also suggest that range expansion of roach may have a top-down structuring force on mussels that differ in severity and location from that originating from resident flounders.
Heisig, Julia; Weber, David; Englberger, Eva; Winkler, Anja; Kneitz, Susanne; Sung, Wing-Kin; Wolf, Elmar; Eilers, Martin; Wei, Chia-Lin; Gessler, Manfred
2012-01-01
HEY bHLH transcription factors have been shown to regulate multiple key steps in cardiovascular development. They can be induced by activated NOTCH receptors, but other upstream stimuli mediated by TGFß and BMP receptors may elicit a similar response. While the basic and helix-loop-helix domains exhibit strong similarity, large parts of the proteins are still unique and may serve divergent functions. The striking overlap of cardiac defects in HEY2 and combined HEY1/HEYL knockout mice suggested that all three HEY genes fulfill overlapping function in target cells. We therefore sought to identify target genes for HEY proteins by microarray expression and ChIPseq analyses in HEK293 cells, cardiomyocytes, and murine hearts. HEY proteins were found to modulate expression of their target gene to a rather limited extent, but with striking functional interchangeability between HEY factors. Chromatin immunoprecipitation revealed a much greater number of potential binding sites that again largely overlap between HEY factors. Binding sites are clustered in the proximal promoter region especially of transcriptional regulators or developmental control genes. Multiple lines of evidence suggest that HEY proteins primarily act as direct transcriptional repressors, while gene activation seems to be due to secondary or indirect effects. Mutagenesis of putative DNA binding residues supports the notion of direct DNA binding. While class B E-box sequences (CACGYG) clearly represent preferred target sequences, there must be additional and more loosely defined modes of DNA binding since many of the target promoters that are efficiently bound by HEY proteins do not contain an E-box motif. These data clearly establish the three HEY bHLH factors as highly redundant transcriptional repressors in vitro and in vivo, which explains the combinatorial action observed in different tissues with overlapping expression.
Englberger, Eva; Winkler, Anja; Kneitz, Susanne; Sung, Wing-Kin; Wolf, Elmar; Eilers, Martin; Wei, Chia-Lin; Gessler, Manfred
2012-01-01
HEY bHLH transcription factors have been shown to regulate multiple key steps in cardiovascular development. They can be induced by activated NOTCH receptors, but other upstream stimuli mediated by TGFß and BMP receptors may elicit a similar response. While the basic and helix-loop-helix domains exhibit strong similarity, large parts of the proteins are still unique and may serve divergent functions. The striking overlap of cardiac defects in HEY2 and combined HEY1/HEYL knockout mice suggested that all three HEY genes fulfill overlapping function in target cells. We therefore sought to identify target genes for HEY proteins by microarray expression and ChIPseq analyses in HEK293 cells, cardiomyocytes, and murine hearts. HEY proteins were found to modulate expression of their target gene to a rather limited extent, but with striking functional interchangeability between HEY factors. Chromatin immunoprecipitation revealed a much greater number of potential binding sites that again largely overlap between HEY factors. Binding sites are clustered in the proximal promoter region especially of transcriptional regulators or developmental control genes. Multiple lines of evidence suggest that HEY proteins primarily act as direct transcriptional repressors, while gene activation seems to be due to secondary or indirect effects. Mutagenesis of putative DNA binding residues supports the notion of direct DNA binding. While class B E-box sequences (CACGYG) clearly represent preferred target sequences, there must be additional and more loosely defined modes of DNA binding since many of the target promoters that are efficiently bound by HEY proteins do not contain an E-box motif. These data clearly establish the three HEY bHLH factors as highly redundant transcriptional repressors in vitro and in vivo, which explains the combinatorial action observed in different tissues with overlapping expression. PMID:22615585
Xu, Jiansong; Potenza, Marc N.; Calhoun, Vince D.; Zhang, Rubin; Yip, Sarah W.; Wall, John T.; Pearlson, Godfrey D.; Worhunsky, Patrick D.; Garrison, Kathleen A.; Moran, Joseph M.
2016-01-01
Functional magnetic resonance imaging (fMRI) studies regularly use univariate general-linear-model-based analyses (GLM). Their findings are often inconsistent across different studies, perhaps because of several fundamental brain properties including functional heterogeneity, balanced excitation and inhibition (E/I), and sparseness of neuronal activities. These properties stipulate heterogeneous neuronal activities in the same voxels and likely limit the sensitivity and specificity of GLM. This paper selectively reviews findings of histological and electrophysiological studies and fMRI spatial independent component analysis (sICA) and reports new findings by applying sICA to two existing datasets. The extant and new findings consistently demonstrate several novel features of brain functional organization not revealed by GLM. They include overlap of large-scale functional networks (FNs) and their concurrent opposite modulations, and no significant modulations in activity of most FNs across the whole brain during any task conditions. These novel features of brain functional organization are highly consistent with the brain’s properties of functional heterogeneity, balanced E/I, and sparseness of neuronal activity, and may help reconcile inconsistent GLM findings. PMID:27592153
NASA Astrophysics Data System (ADS)
Mandal, Sudhansu S.; Mukherjee, Sutirtha; Ray, Koushik
2018-03-01
A method for determining the ground state of a planar interacting many-electron system in a magnetic field perpendicular to the plane is described. The ground state wave-function is expressed as a linear combination of a set of basis functions. Given only the flux and the number of electrons describing an incompressible state, we use the combinatorics of partitioning the flux among the electrons to derive the basis wave-functions as linear combinations of Schur polynomials. The procedure ensures that the basis wave-functions form representations of the angular momentum algebra. We exemplify the method by deriving the basis functions for the 5/2 quantum Hall state with a few particles. We find that one of the basis functions is precisely the Moore-Read Pfaffian wave function.
Meshless Local Petrov-Galerkin Euler-Bernoulli Beam Problems: A Radial Basis Function Approach
NASA Technical Reports Server (NTRS)
Raju, I. S.; Phillips, D. R.; Krishnamurthy, T.
2003-01-01
A radial basis function implementation of the meshless local Petrov-Galerkin (MLPG) method is presented to study Euler-Bernoulli beam problems. Radial basis functions, rather than generalized moving least squares (GMLS) interpolations, are used to develop the trial functions. This choice yields a computationally simpler method as fewer matrix inversions and multiplications are required than when GMLS interpolations are used. Test functions are chosen as simple weight functions as in the conventional MLPG method. Compactly and noncompactly supported radial basis functions are considered. The non-compactly supported cubic radial basis function is found to perform very well. Results obtained from the radial basis MLPG method are comparable to those obtained using the conventional MLPG method for mixed boundary value problems and problems with discontinuous loading conditions.
Pyviko: an automated Python tool to design gene knockouts in complex viruses with overlapping genes.
Taylor, Louis J; Strebel, Klaus
2017-01-07
Gene knockouts are a common tool used to study gene function in various organisms. However, designing gene knockouts is complicated in viruses, which frequently contain sequences that code for multiple overlapping genes. Designing mutants that can be traced by the creation of new or elimination of existing restriction sites further compounds the difficulty in experimental design of knockouts of overlapping genes. While software is available to rapidly identify restriction sites in a given nucleotide sequence, no existing software addresses experimental design of mutations involving multiple overlapping amino acid sequences in generating gene knockouts. Pyviko performed well on a test set of over 240,000 gene pairs collected from viral genomes deposited in the National Center for Biotechnology Information Nucleotide database, identifying a point mutation which added a premature stop codon within the first 20 codons of the target gene in 93.2% of all tested gene-overprinted gene pairs. This shows that Pyviko can be used successfully in a wide variety of contexts to facilitate the molecular cloning and study of viral overprinted genes. Pyviko is an extensible and intuitive Python tool for designing knockouts of overlapping genes. Freely available as both a Python package and a web-based interface ( http://louiejtaylor.github.io/pyViKO/ ), Pyviko simplifies the experimental design of gene knockouts in complex viruses with overlapping genes.
Bouts, Mark J R J; Möller, Christiane; Hafkemeijer, Anne; van Swieten, John C; Dopper, Elise; van der Flier, Wiesje M; Vrenken, Hugo; Wink, Alle Meije; Pijnenburg, Yolande A L; Scheltens, Philip; Barkhof, Frederik; Schouten, Tijn M; de Vos, Frank; Feis, Rogier A; van der Grond, Jeroen; de Rooij, Mark; Rombouts, Serge A R B
2018-01-01
Overlapping clinical symptoms often complicate differential diagnosis between patients with Alzheimer's disease (AD) and behavioral variant frontotemporal dementia (bvFTD). Magnetic resonance imaging (MRI) reveals disease specific structural and functional differences that aid in differentiating AD from bvFTD patients. However, the benefit of combining structural and functional connectivity measures to-on a subject-basis-differentiate these dementia-types is not yet known. Anatomical, diffusion tensor (DTI), and resting-state functional MRI (rs-fMRI) of 30 patients with early stage AD, 23 with bvFTD, and 35 control subjects were collected and used to calculate measures of structural and functional tissue status. All measures were used separately or selectively combined as predictors for training an elastic net regression classifier. Each classifier's ability to accurately distinguish dementia-types was quantified by calculating the area under the receiver operating characteristic curves (AUC). Highest AUC values for AD and bvFTD discrimination were obtained when mean diffusivity, full correlations between rs-fMRI-derived independent components, and fractional anisotropy (FA) were combined (0.811). Similarly, combining gray matter density (GMD), FA, and rs-fMRI correlations resulted in highest AUC of 0.922 for control and bvFTD classifications. This, however, was not observed for control and AD differentiations. Classifications with GMD (0.940) and a GMD and DTI combination (0.941) resulted in similar AUC values (p = 0.41). Combining functional and structural connectivity measures improve dementia-type differentiations and may contribute to more accurate and substantiated differential diagnosis of AD and bvFTD patients. Imaging protocols for differential diagnosis may benefit from also including DTI and rs-fMRI.
Hasan, S. Saif; Cramer, William A.
2012-01-01
Lipid-binding sites and properties were compared in the hetero-oligomeric cytochrome (cyt) b6f and the yeast bc1 complexes that function, respectively, in photosynthetic and respiratory electron transport. Seven lipid-binding sites in the monomeric unit of the dimeric cyanobacterial b6f complex overlap four sites in the Chlamydomonas reinhardtii algal b6f complex and four in the yeast bc1 complex. The proposed lipid functions include: (i) interfacial–interhelix mediation between (a) the two 8-subunit monomers of the dimeric complex, (b) between the core domain (cyt b, subunit IV) and the six trans membrane helices of the peripheral domain (cyt f, iron–sulphur protein (ISP), and four small subunits in the boundary ‘picket fence’); (ii) stabilization of the ISP domain-swapped trans-membrane helix; (iii) neutralization of basic residues in the single helix of cyt f and of the ISP; (iv) a ‘latch’ to photosystem I provided by the β-carotene chain protruding through the ‘picket fence’; (v) presence of a lipid and chlorophyll a chlorin ring in b6f in place of the eighth helix in the bc1 cyt b polypeptide. The question is posed of the function of the lipid substitution in relation to the evolutionary change between the eight and seven helix structures of the cyt b polypeptide. On the basis of the known n-side activation of light harvesting complex II (LHCII) kinase by the p-side level of plastoquinol, one possibility is that the change was directed by the selective advantage of p- to n-side trans membrane signalling functions in b6f, with the lipid either mediating this function or substituting for the trans membrane helix of a signalling protein lost in crystallization. PMID:23148267
A radial basis function Galerkin method for inhomogeneous nonlocal diffusion
Lehoucq, Richard B.; Rowe, Stephen T.
2016-02-01
We introduce a discretization for a nonlocal diffusion problem using a localized basis of radial basis functions. The stiffness matrix entries are assembled by a special quadrature routine unique to the localized basis. Combining the quadrature method with the localized basis produces a well-conditioned, sparse, symmetric positive definite stiffness matrix. We demonstrate that both the continuum and discrete problems are well-posed and present numerical results for the convergence behavior of the radial basis function method. As a result, we explore approximating the solution to anisotropic differential equations by solving anisotropic nonlocal integral equations using the radial basis function method.
Photometric measurements of solar irradiance variations due to sunspots
NASA Technical Reports Server (NTRS)
Chapman, G. A.; Herzog, A. D.; Laico, D. E.; Lawrence, J. K.; Templer, M. S.
1989-01-01
A photometric telescope constructed to obtain photometric sunspot areas and deficits on a daily basis is described. Data from this Cartesian full disk telescope (CFDT) are analyzed with attention given to the period between June 4 and June 17, 1985 because of the availability of overlapping sunspot area and irradiance deficit data from high-resolution digital spectroheliograms made with the San Fernando Observatory 28 cm vacuum solar telescope and spectroheliograph. The CFDT sunspot deficits suggest a substantial irradiance contribution from faculae and active region plage.
Inclusion body myositis – pathomechanism and lessons from genetics
Murnyák, Balázs; Bodoki, Levente; Vincze, Melinda; Griger, Zoltán; Csonka, Tamás; Szepesi, Rita; Kurucz, Andrea; Dankó, Katalin
2015-01-01
Inclusion body myositis is a rare, late-onset myopathy. Both inflammatory and myodegenerative features play an important role in their pathogenesis. Overlapping clinicopathological entities are the familial inclusion body myopathies with or without dementia. These myopathies share several clinical and pathological features with the sporadic inflammatory disease. Therefore, better understanding of the genetic basis and pathomechanism of these rare familial cases may advance our knowledge and enable more effective treatment options in sporadic IBM, which is currently considered a relentlessly progressive incurable disease. PMID:28352694
1994-06-01
the peaceful settlement of international disputes. Although peacekeeping was not explicitly provided for in the Charter, it has evolved since 1945...Prior to 1919, the justifications for resort to war had evolved from moral grounds to a legal basis. 3 The emergence of the state as a political structure...course overlapping and, importantly, as Professor Scheffer has noted, they are " evolving and reflect, with respect to the use of force under UN
Astefanoaei, Corina; Daye, Pierre M.; FitzGibbon, Edmond J.; Creanga, Dorina-Emilia; Rufa, Alessandra; Optican, Lance M.
2015-01-01
We move our eyes to explore the world, but visual areas determining where to look next (action) are different from those determining what we are seeing (perception). Whether, or how, action and perception are temporally coordinated is not known. The preparation time course of an action (e.g., a saccade) has been widely studied with the gap/overlap paradigm with temporal asynchronies (TA) between peripheral target onset and fixation point offset (gap, synchronous, or overlap). However, whether the subjects perceive the gap or overlap, and when they perceive it, has not been studied. We adapted the gap/overlap paradigm to study the temporal coupling of action and perception. Human subjects made saccades to targets with different TAs with respect to fixation point offset and reported whether they perceived the stimuli as separated by a gap or overlapped in time. Both saccadic and perceptual report reaction times changed in the same way as a function of TA. The TA dependencies of the time change for action and perception were very similar, suggesting a common neural substrate. Unexpectedly, in the perceptual task, subjects misperceived lights overlapping by less than ∼100 ms as separated in time (overlap seen as gap). We present an attention-perception model with a map of prominence in the superior colliculus that modulates the stimulus signal's effectiveness in the action and perception pathways. This common source of modulation determines how competition between stimuli is resolved, causes the TA dependence of action and perception to be the same, and causes the misperception. PMID:25632126
Hagenaars, Saskia P; Radaković, Ratko; Crockford, Christopher; Fawns-Ritchie, Chloe; Harris, Sarah E; Gale, Catharine R; Deary, Ian J
2018-01-01
Neurodegenerative disorders are associated with impaired cognitive function and worse physical health outcomes. This study aims to test whether polygenic risk for Alzheimer's disease, Amyotrophic Lateral Sclerosis (ALS), or frontotemporal dementia (FTD) is associated with cognitive function and physical health in the UK Biobank, a cohort of healthy individuals. Group-based analyses were then performed to compare the top and bottom 10% for the three neurodegenerative polygenic risk scores; these groups were compared on the cognitive and physical health variables. Higher polygenic risk for AD, ALS, and FTD was associated with lower cognitive performance. Higher polygenic risk for FTD was also associated with increased forced expiratory volume in 1s and peak expiratory flow. A significant group difference was observed on the symbol digit substitution task between individuals with high polygenic risk for FTD and high polygenic risk for ALS. The results suggest some overlap between polygenic risk for neurodegenerative disorders, cognitive function and physical health.
Barnes, Ralston M.; Firulli, Beth A.; VanDusen, Nathan J.; Morikawa, Yuka; Conway, Simon J.; Cserjesi, Peter; Vincentz, Joshua W.; Firulli, Anthony B.
2011-01-01
Rationale The bHLH transcription factors Hand1 and Hand2 are essential for embryonic development. Given their requirement for cardiogenesis, it is imperative to determine their impact on cardiovascular function. Objective Deduce the role of Hand2 within the epicardium. Method & Results We engineered a Hand1 allele expressing Cre recombinase. Cardiac Hand1 expression is largely limited to cells of the primary heart field, overlapping little with Hand2 expression. Hand1 is expressed within the septum transversum (ST) and the Hand1-lineage marks the proepicardial organ and epicardium. To examine Hand factor functional overlap, we conditionally deleted Hand2 from Hand1-expressing cells. Hand2 mutants display defective epicardialization and fail to form coronary arteries, coincident with altered ECM deposition and Pdgfr expression. Conclusion These data demonstrate a hierarchal relationship whereby transient Hand1 ST expression defines epicardial precursors that are subsequently dependent upon Hand2 function. PMID:21350214
Carbone, F; Holvoet, L; Tack, J
2015-08-01
The Rome III consensus proposed to subdivide functional dyspepsia (FD) into two groups: meal-related dyspepsia or postprandial distress syndrome (PDS), and meal-unrelated dyspepsia or epigastric pain syndrome (EPS). However, in clinical practice, overlap between both has been reported to be as high as 50%, thereby hampering clinical applicability. Although EPS is referred to as meal-unrelated dyspepsia, relationship of symptoms to meal ingestion in this category is not formally addressed in the Rome III criteria. The aim of our study was to investigate whether taking into account the relationship of epigastric pain and nausea to meal ingestion may help to improve separation between EPS and PDS. Consecutive ambulatory tertiary-care patients with epigastric symptoms filled out Rome III gastro-duodenal questionnaires with supplementary questions. Those fulfilling Rome III FD criteria and a negative endoscopy were identified and subdivided into 'pure' PDS patients (i.e., meeting criteria for PDS without EPS symptoms), 'pure' EPS (i.e., meeting criteria for EPS without PDS symptoms), and overlapping PDS-EPS (i.e., symptoms of both PDS and EPS). Out of 1029 patients coming to endoscopy, 199 patients (73% females, 45.9 ± 1.0 years, BMI: 23.7 ± 0.35) fulfilled Rome III FD diagnostic criteria, and could be subdivided into pure PDS (69% females, 49 ± 2 years, BMI: 24.2 ± 0.61), pure EPS (59% females, 47.4 ± 2 years, BMI: 23.2 ± 0.97) and overlapping PDS-EPS (64% females, age 43 ± 5 years, BMI: 26 ± 0.46). Compared with pure EPS patients, the overlap PDS-EPS patients were characterized by a higher occurrence of postprandial epigastric pain (70% vs 31%, p < 0.0001), while the occurrence of epigastric pain in between meals was borderline (48% vs 38%, p = 0.05). In addition, the overlap PDS-EPS patients reported a higher occurrence of postprandial nausea (23% vs 0%, p < 0.0001), and bloating (79% vs 28%, p = 0.0001). When postprandial epigastric pain and postprandial nausea were considered as PDS symptoms, the 'adapted' subdivision identified 48% pure PDS, 16% pure EPS, and 36% overlapping PDS-EPS patients. EPS and PDS symptoms frequently coexist in FD patients, with postprandial symptoms substantially contributing to the overlap. A more rigorous linking of postprandially occurring symptoms to PDS, regardless of their qualitative nature, may improve the separation between PDS and EPS. © 2015 John Wiley & Sons Ltd.
Non-overlapping Neural Networks in Hydra vulgaris.
Dupre, Christophe; Yuste, Rafael
2017-04-24
To understand the emergent properties of neural circuits, it would be ideal to record the activity of every neuron in a behaving animal and decode how it relates to behavior. We have achieved this with the cnidarian Hydra vulgaris, using calcium imaging of genetically engineered animals to measure the activity of essentially all of its neurons. Although the nervous system of Hydra is traditionally described as a simple nerve net, we surprisingly find instead a series of functional networks that are anatomically non-overlapping and are associated with specific behaviors. Three major functional networks extend through the entire animal and are activated selectively during longitudinal contractions, elongations in response to light, and radial contractions, whereas an additional network is located near the hypostome and is active during nodding. These results demonstrate the functional sophistication of apparently simple nerve nets, and the potential of Hydra and other basal metazoans as a model system for neural circuit studies. Published by Elsevier Ltd.
MiT family translocation renal cell carcinoma.
Argani, Pedram
2015-03-01
The MiT subfamily of transcription factors includes TFE3, TFEB, TFC, and MiTF. Gene fusions involving two of these transcription factors have been identified in renal cell carcinoma (RCC). The Xp11 translocation RCCs were first officially recognized in the 2004 WHO renal tumor classification, and harbor gene fusions involving TFE3. The t(6;11) RCCs harbor a specific Alpha-TFEB gene fusion and were first officially recognized in the 2013 International Society of Urologic Pathology (ISUP) Vancouver classification of renal neoplasia. These two subtypes of translocation RCC have many similarities. Both were initially described in and disproportionately involve young patients, though adult translocation RCC may overall outnumber pediatric cases. Both often have unusual and distinctive morphologies; the Xp11 translocation RCCs frequently have clear cells with papillary architecture and abundant psammomatous bodies, while the t(6;11) RCCs frequently have a biphasic appearance with both large and small epithelioid cells and nodules of basement membrane material. However, the morphology of these two neoplasms can overlap, with one mimicking the other. Both of these RCCs underexpress epithelial immunohistochemical markers like cytokeratin and epithelial membrane antigen (EMA) relative to most other RCCs. Unlike other RCCs, both frequently express the cysteine protease cathepsin k and often express melanocytic markers like HMB45 and Melan A. Finally, TFE3 and TFEB have overlapping functional activity as these two transcription factors frequently heterodimerize and bind to the same targets. Therefore, on the basis of clinical, morphologic, immunohistochemical, and genetic similarities, the 2013 ISUP Vancouver classification of renal neoplasia grouped these two neoplasms together under the heading of "MiT family translocation RCC." This review summarizes our current knowledge of these recently described RCCs. Copyright © 2015 Elsevier Inc. All rights reserved.
Blokland, Gabriëlla A M; Mesholam-Gately, Raquelle I; Toulopoulou, Timothea; Del Re, Elisabetta C; Lam, Max; DeLisi, Lynn E; Donohoe, Gary; Walters, James T R; Seidman, Larry J; Petryshen, Tracey L
2017-07-01
Schizophrenia is characterized by neuropsychological deficits across many cognitive domains. Cognitive phenotypes with high heritability and genetic overlap with schizophrenia liability can help elucidate the mechanisms leading from genes to psychopathology. We performed a meta-analysis of 170 published twin and family heritability studies of >800 000 nonpsychiatric and schizophrenia subjects to accurately estimate heritability across many neuropsychological tests and cognitive domains. The proportion of total variance of each phenotype due to additive genetic effects (A), shared environment (C), and unshared environment and error (E), was calculated by averaging A, C, and E estimates across studies and weighting by sample size. Heritability ranged across phenotypes, likely due to differences in genetic and environmental effects, with the highest heritability for General Cognitive Ability (32%-67%), Verbal Ability (43%-72%), Visuospatial Ability (20%-80%), and Attention/Processing Speed (28%-74%), while the lowest heritability was observed for Executive Function (20%-40%). These results confirm that many cognitive phenotypes are under strong genetic influences. Heritability estimates were comparable in nonpsychiatric and schizophrenia samples, suggesting that environmental factors and illness-related moderators (eg, medication) do not substantially decrease heritability in schizophrenia samples, and that genetic studies in schizophrenia samples are informative for elucidating the genetic basis of cognitive deficits. Substantial genetic overlap between cognitive phenotypes and schizophrenia liability (average rg = -.58) in twin studies supports partially shared genetic etiology. It will be important to conduct comparative studies in well-powered samples to determine whether the same or different genes and genetic variants influence cognition in schizophrenia patients and the general population. © The Author 2016. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Openings between Defective Endothelial Cells Explain Tumor Vessel Leakiness
Hashizume, Hiroya; Baluk, Peter; Morikawa, Shunichi; McLean, John W.; Thurston, Gavin; Roberge, Sylvie; Jain, Rakesh K.; McDonald, Donald M.
2000-01-01
Leakiness of blood vessels in tumors may contribute to disease progression and is key to certain forms of cancer therapy, but the structural basis of the leakiness is unclear. We sought to determine whether endothelial gaps or transcellular holes, similar to those found in leaky vessels in inflammation, could explain the leakiness of tumor vessels. Blood vessels in MCa-IV mouse mammary carcinomas, which are known to be unusually leaky (functional pore size 1.2–2 μm), were compared to vessels in three less leaky tumors and normal mammary glands. Vessels were identified by their binding of intravascularly injected fluorescent cationic liposomes and Lycopersicon esculentum lectin and by CD31 (PECAM) immunoreactivity. The luminal surface of vessels in all four tumors had a defective endothelial monolayer as revealed by scanning electron microscopy. In MCa-IV tumors, 14% of the vessel surface was lined by poorly connected, overlapping cells. The most superficial lining cells, like endothelial cells, had CD31 immunoreactivity and fenestrae with diaphragms, but they had a branched phenotype with cytoplasmic projections as long as 50 μm. Some branched cells were separated by intercellular openings (mean diameter 1.7 μm; range, 0.3–4.7 μm). Transcellular holes (mean diameter 0.6 μm) were also present but were only 8% as numerous as intercellular openings. Some CD31-positive cells protruded into the vessel lumen; others sprouted into perivascular tumor tissue. Tumors in RIP-Tag2 mice had, in addition, tumor cell-lined lakes of extravasated erythrocytes. We conclude that some tumor vessels have a defective cellular lining composed of disorganized, loosely connected, branched, overlapping or sprouting endothelial cells. Openings between these cells contribute to tumor vessel leakiness and may permit access of macromolecular therapeutic agents to tumor cells. PMID:10751361
QTL Mapping of Kernel Number-Related Traits and Validation of One Major QTL for Ear Length in Maize.
Huo, Dongao; Ning, Qiang; Shen, Xiaomeng; Liu, Lei; Zhang, Zuxin
2016-01-01
The kernel number is a grain yield component and an important maize breeding goal. Ear length, kernel number per row and ear row number are highly correlated with the kernel number per ear, which eventually determines the ear weight and grain yield. In this study, two sets of F2:3 families developed from two bi-parental crosses sharing one inbred line were used to identify quantitative trait loci (QTL) for four kernel number-related traits: ear length, kernel number per row, ear row number and ear weight. A total of 39 QTLs for the four traits were identified in the two populations. The phenotypic variance explained by a single QTL ranged from 0.4% to 29.5%. Additionally, 14 overlapping QTLs formed 5 QTL clusters on chromosomes 1, 4, 5, 7, and 10. Intriguingly, six QTLs for ear length and kernel number per row overlapped in a region on chromosome 1. This region was designated qEL1.10 and was validated as being simultaneously responsible for ear length, kernel number per row and ear weight in a near isogenic line-derived population, suggesting that qEL1.10 was a pleiotropic QTL with large effects. Furthermore, the performance of hybrids generated by crossing 6 elite inbred lines with two near isogenic lines at qEL1.10 showed the breeding value of qEL1.10 for the improvement of the kernel number and grain yield of maize hybrids. This study provides a basis for further fine mapping, molecular marker-aided breeding and functional studies of kernel number-related traits in maize.
Design criteria for synthetic riboswitches acting on transcription
Wachsmuth, Manja; Domin, Gesine; Lorenz, Ronny; Serfling, Robert; Findeiß, Sven; Stadler, Peter F; Mörl, Mario
2015-01-01
Riboswitches are RNA-based regulators of gene expression composed of a ligand-sensing aptamer domain followed by an overlapping expression platform. The regulation occurs at either the level of transcription (by formation of terminator or antiterminator structures) or translation (by presentation or sequestering of the ribosomal binding site). Due to a modular composition, these elements can be manipulated by combining different aptamers and expression platforms and therefore represent useful tools to regulate gene expression in synthetic biology. Using computationally designed theophylline-dependent riboswitches we show that 2 parameters, terminator hairpin stability and folding traps, have a major impact on the functionality of the designed constructs. These have to be considered very carefully during design phase. Furthermore, a combination of several copies of individual riboswitches leads to a much improved activation ratio between induced and uninduced gene activity and to a linear dose-dependent increase in reporter gene expression. Such serial arrangements of synthetic riboswitches closely resemble their natural counterparts and may form the basis for simple quantitative read out systems for the detection of specific target molecules in the cell. PMID:25826571
Gait recognition based on Gabor wavelets and modified gait energy image for human identification
NASA Astrophysics Data System (ADS)
Huang, Deng-Yuan; Lin, Ta-Wei; Hu, Wu-Chih; Cheng, Chih-Hsiang
2013-10-01
This paper proposes a method for recognizing human identity using gait features based on Gabor wavelets and modified gait energy images (GEIs). Identity recognition by gait generally involves gait representation, extraction, and classification. In this work, a modified GEI convolved with an ensemble of Gabor wavelets is proposed as a gait feature. Principal component analysis is then used to project the Gabor-wavelet-based gait features into a lower-dimension feature space for subsequent classification. Finally, support vector machine classifiers based on a radial basis function kernel are trained and utilized to recognize human identity. The major contributions of this paper are as follows: (1) the consideration of the shadow effect to yield a more complete segmentation of gait silhouettes; (2) the utilization of motion estimation to track people when walkers overlap; and (3) the derivation of modified GEIs to extract more useful gait information. Extensive performance evaluation shows a great improvement of recognition accuracy due to the use of shadow removal, motion estimation, and gait representation using the modified GEIs and Gabor wavelets.
Coloc-stats: a unified web interface to perform colocalization analysis of genomic features.
Simovski, Boris; Kanduri, Chakravarthi; Gundersen, Sveinung; Titov, Dmytro; Domanska, Diana; Bock, Christoph; Bossini-Castillo, Lara; Chikina, Maria; Favorov, Alexander; Layer, Ryan M; Mironov, Andrey A; Quinlan, Aaron R; Sheffield, Nathan C; Trynka, Gosia; Sandve, Geir K
2018-06-05
Functional genomics assays produce sets of genomic regions as one of their main outputs. To biologically interpret such region-sets, researchers often use colocalization analysis, where the statistical significance of colocalization (overlap, spatial proximity) between two or more region-sets is tested. Existing colocalization analysis tools vary in the statistical methodology and analysis approaches, thus potentially providing different conclusions for the same research question. As the findings of colocalization analysis are often the basis for follow-up experiments, it is helpful to use several tools in parallel and to compare the results. We developed the Coloc-stats web service to facilitate such analyses. Coloc-stats provides a unified interface to perform colocalization analysis across various analytical methods and method-specific options (e.g. colocalization measures, resolution, null models). Coloc-stats helps the user to find a method that supports their experimental requirements and allows for a straightforward comparison across methods. Coloc-stats is implemented as a web server with a graphical user interface that assists users with configuring their colocalization analyses. Coloc-stats is freely available at https://hyperbrowser.uio.no/coloc-stats/.
The clinical and cellular basis of contact lens-related corneal infections
Robertson, Danielle M; Cavanagh, H Dwight
2008-01-01
Microbial keratitis (MK) is the most visually devastating complication associated with contact lens wear. Pseudomonas aeruginosa (PA) is highly invasive in the corneal epithelium and is responsible for more than half of the reported cases of contact lens-related MK. To protect against Pseudomonas-mediated MK, the corneal epithelium has evolved overlapping defense mechanisms that function to protect the ocular surface from microbial invasion. Research has shown that contact lens wear disrupts these protective mechanisms through breakdown of normal homeostatic surface renewal as well as damaging the corneal surface, exposing underlying cell membrane receptors that bind and internalize PA through the formation of lipid rafts. Human clinical trials have shown that initial adherence of PA with resulting increased risk for microbial infection is mediated in part by contact lens oxygen transmissibility. Recently, chemical preserved multipurpose solutions (MPS) have been implicated in increasing PA adherence to corneal epithelial cells, in addition to inducing significant levels of toxic staining when used in conjunction with specific silicone hydrogel lenses. This review summarizes what is currently known about the relationship between contact lenses, the corneal epithelium, MPS, and infection. PMID:19277209
NASA Astrophysics Data System (ADS)
Castro, J.; Martin-Rojas, I.; Medina-Cascales, I.; García-Tortosa, F. J.; Alfaro, P.; Insua-Arévalo, J. M.
2018-06-01
This paper on the Baza Fault provides the first palaeoseismic data from trenches in the central sector of the Betic Cordillera (S Spain), one of the most tectonically active areas of the Iberian Peninsula. With the palaeoseismological data we constructed time-stratigraphic OxCal models that yield probability density functions (PDFs) of individual palaeoseismic event timing. We analysed PDF overlap to quantitatively correlate the walls and site events into a single earthquake chronology. We assembled a surface-rupturing history of the Baza Fault for the last ca. 45,000 years. We postulated six alternative surface rupturing histories including 8-9 fault-wide earthquakes. We calculated fault-wide earthquake recurrence intervals using Monte Carlo. This analysis yielded a 4750-5150 yr recurrence interval. Finally, compared our results with the results from empirical relationships. Our results will provide a basis for future analyses of more of other active normal faults in this region. Moreover, our results will be essential for improving earthquake-probability assessments in Spain, where palaeoseismic data are scarce.
Electrical modulation of the complex refractive index in mid-infrared quantum cascade lasers.
Teissier, J; Laurent, S; Manquest, C; Sirtori, C; Bousseksou, A; Coudevylle, J R; Colombelli, R; Beaudoin, G; Sagnes, I
2012-01-16
We have demonstrated an integrated three terminal device for the modulation of the complex refractive index of a distributed feedback quantum cascade laser (QCL). The device comprises an active region to produce optical gain vertically stacked with a control region made of asymmetric coupled quantum wells (ACQW). The optical mode, centered on the gain region, has a small overlap also with the control region. Owing to the three terminals an electrical bias can be applied independently on both regions: on the laser for producing optical gain and on the ACQW for tuning the energy of the intersubband transition. This allows the control of the optical losses at the laser frequency as the absorption peak associated to the intersubband transition can be electrically brought in and out the laser transition. By using this function a laser modulation depth of about 400 mW can be achieved by injecting less than 1 mW in the control region. This is four orders of magnitude less than the electrical power needed using direct current modulation and set the basis for the realisation of electrical to optical transducers.
NASA Astrophysics Data System (ADS)
Piccinini, M.; Ambrosini, F.; Ampollini, A.; Picardi, L.; Ronsivalle, C.; Bonfigli, F.; Libera, S.; Nichelatti, E.; Vincenti, M. A.; Montereali, R. M.
2015-06-01
Systematic irradiation of thermally evaporated 0.8 μm thick polycrystalline lithium fluoride films on glass was performed by proton beams of 3 and 7 MeV energies, produced by a linear accelerator, in a fluence range from 1011 to 1015 protons/cm2. The visible photoluminescence spectra of radiation-induced F2 and F3+ laser active color centers, which possess almost overlapping absorption bands at about 450 nm, were measured under laser pumping at 458 nm. On the basis of simulations of the linear energy transfer with proton penetration depth in LiF, it was possible to obtain the behavior of the measured integrated photoluminescence intensity of proton irradiated LiF films as a function of the deposited dose. The photoluminescence signal is linearly dependent on the deposited dose in the interval from 103 to about 106 Gy, independently from the used proton energies. This behavior is very encouraging for the development of advanced solid state radiation detectors based on optically transparent LiF thin films for proton beam diagnostics and two-dimensional dose mapping.
DOE Office of Scientific and Technical Information (OSTI.GOV)
De La Pierre, Marco, E-mail: cedric.carteret@univ-lorraine.fr, E-mail: marco.delapierre@unito.it; Maschio, Lorenzo; Orlando, Roberto
Powder and single crystal Raman spectra of the two most common phases of calcium carbonate are calculated with ab initio techniques (using a “hybrid” functional and a Gaussian-type basis set) and measured both at 80 K and room temperature. Frequencies of the Raman modes are in very good agreement between calculations and experiments: the mean absolute deviation at 80 K is 4 and 8 cm{sup −1} for calcite and aragonite, respectively. As regards intensities, the agreement is in general good, although the computed values overestimate the measured ones in many cases. The combined analysis permits to identify almost all themore » fundamental experimental Raman peaks of the two compounds, with the exception of either modes with zero computed intensity or modes overlapping with more intense peaks. Additional peaks have been identified in both calcite and aragonite, which have been assigned to {sup 18}O satellite modes or overtones. The agreement between the computed and measured spectra is quite satisfactory; in particular, simulation permits to clearly distinguish between calcite and aragonite in the case of powder spectra, and among different polarization directions of each compound in the case of single crystal spectra.« less
NASA Astrophysics Data System (ADS)
Bauer, Thilo; Jäger, Christof M.; Jordan, Meredith J. T.; Clark, Timothy
2015-07-01
We have developed a multi-agent quantum Monte Carlo model to describe the spatial dynamics of multiple majority charge carriers during conduction of electric current in the channel of organic field-effect transistors. The charge carriers are treated by a neglect of diatomic differential overlap Hamiltonian using a lattice of hydrogen-like basis functions. The local ionization energy and local electron affinity defined previously map the bulk structure of the transistor channel to external potentials for the simulations of electron- and hole-conduction, respectively. The model is designed without a specific charge-transport mechanism like hopping- or band-transport in mind and does not arbitrarily localize charge. An electrode model allows dynamic injection and depletion of charge carriers according to source-drain voltage. The field-effect is modeled by using the source-gate voltage in a Metropolis-like acceptance criterion. Although the current cannot be calculated because the simulations have no time axis, using the number of Monte Carlo moves as pseudo-time gives results that resemble experimental I/V curves.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bauer, Thilo; Jäger, Christof M.; Jordan, Meredith J. T.
2015-07-28
We have developed a multi-agent quantum Monte Carlo model to describe the spatial dynamics of multiple majority charge carriers during conduction of electric current in the channel of organic field-effect transistors. The charge carriers are treated by a neglect of diatomic differential overlap Hamiltonian using a lattice of hydrogen-like basis functions. The local ionization energy and local electron affinity defined previously map the bulk structure of the transistor channel to external potentials for the simulations of electron- and hole-conduction, respectively. The model is designed without a specific charge-transport mechanism like hopping- or band-transport in mind and does not arbitrarily localizemore » charge. An electrode model allows dynamic injection and depletion of charge carriers according to source-drain voltage. The field-effect is modeled by using the source-gate voltage in a Metropolis-like acceptance criterion. Although the current cannot be calculated because the simulations have no time axis, using the number of Monte Carlo moves as pseudo-time gives results that resemble experimental I/V curves.« less
Spreadsheet-based program for alignment of overlapping DNA sequences.
Anbazhagan, R; Gabrielson, E
1999-06-01
Molecular biology laboratories frequently face the challenge of aligning small overlapping DNA sequences derived from a long DNA segment. Here, we present a short program that can be used to adapt Excel spreadsheets as a tool for aligning DNA sequences, regardless of their orientation. The program runs on any Windows or Macintosh operating system computer with Excel 97 or Excel 98. The program is available for use as an Excel file, which can be downloaded from the BioTechniques Web site. Upon execution, the program opens a specially designed customized workbook and is capable of identifying overlapping regions between two sequence fragments and displaying the sequence alignment. It also performs a number of specialized functions such as recognition of restriction enzyme cutting sites and CpG island mapping without costly specialized software.
Sumner, Emma; Leonard, Hayley C; Hill, Elisabeth L
2016-08-01
Motor and social difficulties are often found in children with an autism spectrum disorder (ASD) and with developmental coordination disorder (DCD), to varying degrees. This study investigated the extent of overlap of these problems in children aged 7-10 years who had a diagnosis of either ASD or DCD, compared to typically-developing controls. Children completed motor and face processing assessments. Parents completed questionnaires concerning their child's early motor and current motor and social skills. There was considerable overlap between the ASD and DCD groups on the motor and social assessments, with both groups more impaired than controls. Furthermore, motor skill predicted social functioning for both groups. Future research should consider the relationships between core symptoms and their consequences in other domains.
Number-squeezed and fragmented states of strongly interacting bosons in a double well
NASA Astrophysics Data System (ADS)
Corbo, Joel C.; DuBois, Jonathan L.; Whaley, K. Birgitta
2017-11-01
We present a systematic study of the phenomena of number squeezing and fragmentation for a repulsive Bose-Einstein condensate (BEC) in a three-dimensional double-well potential over a range of interaction strengths and barrier heights, including geometries that exhibit appreciable overlap in the one-body wave functions localized in the left and right wells. We compute the properties of the condensate with numerically exact, full-dimensional path-integral ground-state (PIGS) quantum Monte Carlo simulations and compare with results obtained from using two- and eight-mode truncated basis models. The truncated basis models are found to agree with the numerically exact PIGS simulations for weak interactions, but fail to correctly predict the amount of number squeezing and fragmentation exhibited by the PIGS simulations for strong interactions. We find that both number squeezing and fragmentation of the BEC show nonmonotonic behavior at large values of interaction strength a . The number squeezing shows a universal scaling with the product of number of particles and interaction strength (N a ), but no such universal behavior is found for fragmentation. Detailed analysis shows that the introduction of repulsive interactions not only suppresses number fluctuations to enhance number squeezing, but can also enhance delocalization across wells and tunneling between wells, each of which may suppress number squeezing. This results in a dynamical competition whose resolution shows a complex dependence on all three physical parameters defining the system: interaction strength, number of particles, and barrier height.
Neural Systems for Speech and Song in Autism
ERIC Educational Resources Information Center
Lai, Grace; Pantazatos, Spiro P.; Schneider, Harry; Hirsch, Joy
2012-01-01
Despite language disabilities in autism, music abilities are frequently preserved. Paradoxically, brain regions associated with these functions typically overlap, enabling investigation of neural organization supporting speech and song in autism. Neural systems sensitive to speech and song were compared in low-functioning autistic and age-matched…
Huang, Ching-Yuan; Weng, Rhay-Hung; Chen, Yi-Ting
2016-08-01
This study aims to ascertain the relationship between transformational leadership, interpersonal interaction and mentoring functions among new staff nurses. Mentoring functions could improve the job performance of new nurses, provide them with support and thus reduce their turnover rate. A cross-sectional study was employed. A questionnaire survey was carried out to collect data among a sample of new nurses from three hospitals in Taiwan. After gathering a total of 306 valid surveys, multiple regression analysis was applied to test the hypothesis. Inspirational motivation, idealised influence and individualised consideration had positive correlations with the overall mentoring function, but intellectual stimulation showed a positive association only with career development function. Perceived similarity and interaction frequency also had positive correlations with mentoring functions. When the shift overlap rate exceeded 80%, mentoring function showed a negative result. The transformational leadership of mentors would improve the mentoring functions among new staff nurses. Perceived similarity and interaction frequency between mentees and mentors also had positive correlations with mentoring functions. It is crucial for hospitals to redesign their leadership training and motivation programmes to enhance the transformational leadership of mentors. Furthermore, nursing managers should promote interaction between new staff nurses and their mentors; however, the shift overlap rate should not be too high. © 2016 John Wiley & Sons Ltd.
Lugtenberg, Dorien; Reijnders, Margot R F; Fenckova, Michaela; Bijlsma, Emilia K; Bernier, Raphael; van Bon, Bregje W M; Smeets, Eric; Vulto-van Silfhout, Anneke T; Bosch, Danielle; Eichler, Evan E; Mefford, Heather C; Carvill, Gemma L; Bongers, Ernie M H F; Schuurs-Hoeijmakers, Janneke HM; Ruivenkamp, Claudia A; Santen, Gijs W E; van den Maagdenberg, Arn M J M; Peeters-Scholte, Cacha M P C D; Kuenen, Sabine; Verstreken, Patrik; Pfundt, Rolph; Yntema, Helger G; de Vries, Petra F; Veltman, Joris A; Hoischen, Alexander; Gilissen, Christian; de Vries, Bert B A; Schenck, Annette; Kleefstra, Tjitske; Vissers, Lisenka E L M
2016-01-01
Recently WAC was reported as a candidate gene for intellectual disability (ID) based on the identification of a de novo mutation in an individual with severe ID. WAC regulates transcription-coupled histone H2B ubiquitination and has previously been implicated in the 10p12p11 contiguous gene deletion syndrome. In this study, we report on 10 individuals with de novo WAC mutations which we identified through routine (diagnostic) exome sequencing and targeted resequencing of WAC in 2326 individuals with unexplained ID. All but one mutation was expected to lead to a loss-of-function of WAC. Clinical evaluation of all individuals revealed phenotypic overlap for mild ID, hypotonia, behavioral problems and distinctive facial dysmorphisms, including a square-shaped face, deep set eyes, long palpebral fissures, and a broad mouth and chin. These clinical features were also previously reported in individuals with 10p12p11 microdeletion syndrome. To investigate the role of WAC in ID, we studied the importance of the Drosophila WAC orthologue (CG8949) in habituation, a non-associative learning paradigm. Neuronal knockdown of Drosophila CG8949 resulted in impaired learning, suggesting that WAC is required in neurons for normal cognitive performance. In conclusion, we defined a clinically recognizable ID syndrome, caused by de novo loss-of-function mutations in WAC. Independent functional evidence in Drosophila further supported the role of WAC in ID. On the basis of our data WAC can be added to the list of ID genes with a role in transcription regulation through histone modification. PMID:26757981
Muszalik, Marta; Dijkstra, Ate; Kędziora-Kornatowska, Kornelia; Zielińska-Więczkowska, Halina
2012-01-01
Elderly population is characterized by larger need for social welfare and medical treatment than other age groups. Along with aging, there is a number of emerging health, nursing, caring, psychological and social problems. Complexity of these problems results from overlapping and advancing involutional changes, multi-illness, decreased functional efficiency and other factors. The aim of the study was the assessment of health problems in geriatric patients as well as bio-psycho-social need deficiencies in a view of selected parameters of functional efficiency. The research group consisted of the Chair and Clinic of Geriatrics, 186 women and 114 men, 300 persons in total. The research was carried out using a diagnostic poll method with the application of the Activities of Daily Living (ADL) questionnaire of assessment of daily efficiency on the basis of the Katz Scale; the Care Dependency Scale (CDS) questionnaire used to measure the level of the care dependency and human needs, Norton's bed sores risk assessment scale, the Nursing Care Category (NCC) questionnaire applied to assess the need for nursing care. In most patients the results unveiled manifestations of three or more illnesses. Functional efficiency was at low and average level. Half of the subjects were endangered by risk of bed sores as well as showed high need fulfillment deficiency. The highest level of the deficiency was observed in patients in the eldest age group as well as suffering from multi-illness. Material status, education, place of residence or gender showed no significant influence on the level of need fulfillment. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Lugtenberg, Dorien; Reijnders, Margot R F; Fenckova, Michaela; Bijlsma, Emilia K; Bernier, Raphael; van Bon, Bregje W M; Smeets, Eric; Vulto-van Silfhout, Anneke T; Bosch, Danielle; Eichler, Evan E; Mefford, Heather C; Carvill, Gemma L; Bongers, Ernie M H F; Schuurs-Hoeijmakers, Janneke Hm; Ruivenkamp, Claudia A; Santen, Gijs W E; van den Maagdenberg, Arn M J M; Peeters-Scholte, Cacha M P C D; Kuenen, Sabine; Verstreken, Patrik; Pfundt, Rolph; Yntema, Helger G; de Vries, Petra F; Veltman, Joris A; Hoischen, Alexander; Gilissen, Christian; de Vries, Bert B A; Schenck, Annette; Kleefstra, Tjitske; Vissers, Lisenka E L M
2016-08-01
Recently WAC was reported as a candidate gene for intellectual disability (ID) based on the identification of a de novo mutation in an individual with severe ID. WAC regulates transcription-coupled histone H2B ubiquitination and has previously been implicated in the 10p12p11 contiguous gene deletion syndrome. In this study, we report on 10 individuals with de novo WAC mutations which we identified through routine (diagnostic) exome sequencing and targeted resequencing of WAC in 2326 individuals with unexplained ID. All but one mutation was expected to lead to a loss-of-function of WAC. Clinical evaluation of all individuals revealed phenotypic overlap for mild ID, hypotonia, behavioral problems and distinctive facial dysmorphisms, including a square-shaped face, deep set eyes, long palpebral fissures, and a broad mouth and chin. These clinical features were also previously reported in individuals with 10p12p11 microdeletion syndrome. To investigate the role of WAC in ID, we studied the importance of the Drosophila WAC orthologue (CG8949) in habituation, a non-associative learning paradigm. Neuronal knockdown of Drosophila CG8949 resulted in impaired learning, suggesting that WAC is required in neurons for normal cognitive performance. In conclusion, we defined a clinically recognizable ID syndrome, caused by de novo loss-of-function mutations in WAC. Independent functional evidence in Drosophila further supported the role of WAC in ID. On the basis of our data WAC can be added to the list of ID genes with a role in transcription regulation through histone modification.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mao, Yuezhi; Horn, Paul R.; Mardirossian, Narbe
2016-07-28
Recently developed density functionals have good accuracy for both thermochemistry (TC) and non-covalent interactions (NC) if very large atomic orbital basis sets are used. To approach the basis set limit with potentially lower computational cost, a new self-consistent field (SCF) scheme is presented that employs minimal adaptive basis (MAB) functions. The MAB functions are optimized on each atomic site by minimizing a surrogate function. High accuracy is obtained by applying a perturbative correction (PC) to the MAB calculation, similar to dual basis approaches. Compared to exact SCF results, using this MAB-SCF (PC) approach with the same large target basis set producesmore » <0.15 kcal/mol root-mean-square deviations for most of the tested TC datasets, and <0.1 kcal/mol for most of the NC datasets. The performance of density functionals near the basis set limit can be even better reproduced. With further improvement to its implementation, MAB-SCF (PC) is a promising lower-cost substitute for conventional large-basis calculations as a method to approach the basis set limit of modern density functionals.« less
Strong genetic overlap between executive functions and intelligence.
Engelhardt, Laura E; Mann, Frank D; Briley, Daniel A; Church, Jessica A; Harden, K Paige; Tucker-Drob, Elliot M
2016-09-01
Executive functions (EFs) are cognitive processes that control, monitor, and coordinate more basic cognitive processes. EFs play instrumental roles in models of complex reasoning, learning, and decision making, and individual differences in EFs have been consistently linked with individual differences in intelligence. By middle childhood, genetic factors account for a moderate proportion of the variance in intelligence, and these effects increase in magnitude through adolescence. Genetic influences on EFs are very high, even in middle childhood, but the extent to which these genetic influences overlap with those on intelligence is unclear. We examined genetic and environmental overlap between EFs and intelligence in a racially and socioeconomically diverse sample of 811 twins ages 7 to 15 years (M = 10.91, SD = 1.74) from the Texas Twin Project. A general EF factor representing variance common to inhibition, switching, working memory, and updating domains accounted for substantial proportions of variance in intelligence, primarily via a genetic pathway. General EF continued to have a strong, genetically mediated association with intelligence even after controlling for processing speed. Residual variation in general intelligence was influenced only by shared and nonshared environmental factors, and there remained no genetic variance in general intelligence that was unique of EF. Genetic variance independent of EF did remain, however, in a more specific perceptual reasoning ability. These results provide evidence that genetic influences on general intelligence are highly overlapping with those on EF. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Liu, Ching-Ti; Raghavan, Sridharan; Maruthur, Nisa; Kabagambe, Edmond Kato; Hong, Jaeyoung; Ng, Maggie C Y; Hivert, Marie-France; Lu, Yingchang; An, Ping; Bentley, Amy R; Drolet, Anne M; Gaulton, Kyle J; Guo, Xiuqing; Armstrong, Loren L; Irvin, Marguerite R; Li, Man; Lipovich, Leonard; Rybin, Denis V; Taylor, Kent D; Agyemang, Charles; Palmer, Nicholette D; Cade, Brian E; Chen, Wei-Min; Dauriz, Marco; Delaney, Joseph A C; Edwards, Todd L; Evans, Daniel S; Evans, Michele K; Lange, Leslie A; Leong, Aaron; Liu, Jingmin; Liu, Yongmei; Nayak, Uma; Patel, Sanjay R; Porneala, Bianca C; Rasmussen-Torvik, Laura J; Snijder, Marieke B; Stallings, Sarah C; Tanaka, Toshiko; Yanek, Lisa R; Zhao, Wei; Becker, Diane M; Bielak, Lawrence F; Biggs, Mary L; Bottinger, Erwin P; Bowden, Donald W; Chen, Guanjie; Correa, Adolfo; Couper, David J; Crawford, Dana C; Cushman, Mary; Eicher, John D; Fornage, Myriam; Franceschini, Nora; Fu, Yi-Ping; Goodarzi, Mark O; Gottesman, Omri; Hara, Kazuo; Harris, Tamara B; Jensen, Richard A; Johnson, Andrew D; Jhun, Min A; Karter, Andrew J; Keller, Margaux F; Kho, Abel N; Kizer, Jorge R; Krauss, Ronald M; Langefeld, Carl D; Li, Xiaohui; Liang, Jingling; Liu, Simin; Lowe, William L; Mosley, Thomas H; North, Kari E; Pacheco, Jennifer A; Peyser, Patricia A; Patrick, Alan L; Rice, Kenneth M; Selvin, Elizabeth; Sims, Mario; Smith, Jennifer A; Tajuddin, Salman M; Vaidya, Dhananjay; Wren, Mary P; Yao, Jie; Zhu, Xiaofeng; Ziegler, Julie T; Zmuda, Joseph M; Zonderman, Alan B; Zwinderman, Aeilko H; Adeyemo, Adebowale; Boerwinkle, Eric; Ferrucci, Luigi; Hayes, M Geoffrey; Kardia, Sharon L R; Miljkovic, Iva; Pankow, James S; Rotimi, Charles N; Sale, Michele M; Wagenknecht, Lynne E; Arnett, Donna K; Chen, Yii-Der Ida; Nalls, Michael A; Province, Michael A; Kao, W H Linda; Siscovick, David S; Psaty, Bruce M; Wilson, James G; Loos, Ruth J F; Dupuis, Josée; Rich, Stephen S; Florez, Jose C; Rotter, Jerome I; Morris, Andrew P; Meigs, James B
2016-07-07
Knowledge of the genetic basis of the type 2 diabetes (T2D)-related quantitative traits fasting glucose (FG) and insulin (FI) in African ancestry (AA) individuals has been limited. In non-diabetic subjects of AA (n = 20,209) and European ancestry (EA; n = 57,292), we performed trans-ethnic (AA+EA) fine-mapping of 54 established EA FG or FI loci with detailed functional annotation, assessed their relevance in AA individuals, and sought previously undescribed loci through trans-ethnic (AA+EA) meta-analysis. We narrowed credible sets of variants driving association signals for 22/54 EA-associated loci; 18/22 credible sets overlapped with active islet-specific enhancers or transcription factor (TF) binding sites, and 21/22 contained at least one TF motif. Of the 54 EA-associated loci, 23 were shared between EA and AA. Replication with an additional 10,096 AA individuals identified two previously undescribed FI loci, chrX FAM133A (rs213676) and chr5 PELO (rs6450057). Trans-ethnic analyses with regulatory annotation illuminate the genetic architecture of glycemic traits and suggest gene regulation as a target to advance precision medicine for T2D. Our approach to utilize state-of-the-art functional annotation and implement trans-ethnic association analysis for discovery and fine-mapping offers a framework for further follow-up and characterization of GWAS signals of complex trait loci. Copyright © 2016 American Society of Human Genetics. All rights reserved.
NASA Astrophysics Data System (ADS)
Klinting, Emil Lund; Thomsen, Bo; Godtliebsen, Ian Heide; Christiansen, Ove
2018-02-01
We present an approach to treat sets of general fit-basis functions in a single uniform framework, where the functional form is supplied on input, i.e., the use of different functions does not require new code to be written. The fit-basis functions can be used to carry out linear fits to the grid of single points, which are generated with an adaptive density-guided approach (ADGA). A non-linear conjugate gradient method is used to optimize non-linear parameters if such are present in the fit-basis functions. This means that a set of fit-basis functions with the same inherent shape as the potential cuts can be requested and no other choices with regards to the fit-basis functions need to be taken. The general fit-basis framework is explored in relation to anharmonic potentials for model systems, diatomic molecules, water, and imidazole. The behaviour and performance of Morse and double-well fit-basis functions are compared to that of polynomial fit-basis functions for unsymmetrical single-minimum and symmetrical double-well potentials. Furthermore, calculations for water and imidazole were carried out using both normal coordinates and hybrid optimized and localized coordinates (HOLCs). Our results suggest that choosing a suitable set of fit-basis functions can improve the stability of the fitting routine and the overall efficiency of potential construction by lowering the number of single point calculations required for the ADGA. It is possible to reduce the number of terms in the potential by choosing the Morse and double-well fit-basis functions. These effects are substantial for normal coordinates but become even more pronounced if HOLCs are used.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wittekind, M.; Klevit, R.E.; Reizer, J.
1990-08-07
On the basis of an analysis of two-dimensional {sup 1}H NMR spectra, the complete sequence-specific {sup 1}H NMR assignments are presented for the phosphocarrier protein HPr from the Gram-positive bacterium Bacillus subtilis. During the assignment procedure, extensive use was made of spectra obtained from point mutants of HPr in order to resolve spectral overlap and to provide verification of assignments. Regions of regular secondary structure were identified by characteristic patterns of sequential backbone proton NOEs and slowly exchanging amide protons. B subtilis HPr contains four {beta}-strands that form a single antiparallel {beta}-sheet and two well-defined {alpha}-helices. There are two stretchesmore » of extended backbone structure, one of which contains the active site His{sub 15}. The overall fold of the protein is very similar to that of Escherichia coli HPr determined by NMR studies.« less
Agreli, Heloise F; Peduzzi, Marina; Bailey, Christopher
2017-11-01
The concept of team climate is widely used to understand and evaluate working environments. It shares some important features with Interprofessional Collaboration (IPC). The four-factor theory of climate for work group innovation, which underpins team climate, could provide a better basis for understanding both teamwork and IPC. This article examines in detail the common ground between team climate and IPC, and assesses the relevance of team climate as a theoretical approach to understanding IPC. There are important potential areas of overlap between team climate and IPC that we have grouped under four headings: (1) interaction and communication between team members; (2) common objectives around which collective work is organised; (3) responsibility for performing work to a high standard; and (4) promoting innovation in working practices. These overlapping areas suggest common characteristics that could provide elements of a framework for considering the contribution of team climate to collaborative working, both from a conceptual perspective and, potentially, in operational terms as, for example, a diagnostic tool.
Topologies for three-phase wound-field salient rotor switched-flux machines for HEV applications
NASA Astrophysics Data System (ADS)
Khan, Faisal; Sulaiman, Erwan; Ahmad, Md Zarafi; Husin, Zhafir Aizat; Mazlan, Mohamed Mubin Aizat
2015-05-01
Wound-field switched-flux machines (WFSFM) have an intrinsic simplicity and high speed that make them well suited to many hybrid electric vehicle (HEV) applications. However, overlap armature and field windings raised the copper losses in these machines. Furthermore, in previous design segmented-rotor is used which made the rotor less robust. To overcome these problems, this paper presents novel topologies for three-phase wound-field switched-flux machines. Both armature and field winding are located on the stator and rotor is composed of only stack of iron. Non-overlap armature and field windings and toothed-rotor are the clear advantages of these topologies as the copper losses gets reduce and rotor becomes more robust. Design feasibility and performance analysis of 12 slots and different rotor pole numbers are examined on the basis of coil arrangement test, peak armature flux linkage, back emf, cogging torque and average torque by using Finite Element Analysis(FEA).
Aboud, Katherine S.; Bailey, Stephen K.; Petrill, Stephen A.; Cutting, Laurie E.
2016-01-01
Skilled reading depends on recognizing words efficiently in isolation (word-level processing; WL) and extracting meaning from text (discourse-level processing; DL); deficiencies in either result in poor reading. FMRI has revealed consistent overlapping networks in word and passage reading, as well as unique regions for DL processing, however less is known about how WL and DL processes interact. Here we examined functional connectivity from seed regions derived from where BOLD signal overlapped during word and passage reading in 38 adolescents ranging in reading ability, hypothesizing that even though certain regions support word- and higher-level language, connectivity patterns from overlapping regions would be task modulated. Results indeed revealed that the left-lateralized semantic and working memory (WM) seed regions showed task-dependent functional connectivity patterns: during DL processes, semantic and WM nodes all correlated with the left angular gyrus, a region implicated in semantic memory/coherence building. In contrast, during WL, these nodes coordinated with a traditional WL area (left occipitotemporal region). Additionally, these WL and DL findings were modulated by decoding and comprehension abilities, respectively, with poorer abilities correlating with decreased connectivity. Findings indicate that key regions may uniquely contribute to multiple levels of reading; we speculate that these connectivity patterns may be especially salient for reading outcomes and intervention response. PMID:27147257
Localized-overlap approach to calculations of intermolecular interactions
NASA Astrophysics Data System (ADS)
Rob, Fazle
Symmetry-adapted perturbation theory (SAPT) based on the density functional theory (DFT) description of the monomers [SAPT(DFT)] is one of the most robust tools for computing intermolecular interaction energies. Currently, one can use the SAPT(DFT) method to calculate interaction energies of dimers consisting of about a hundred atoms. To remove the methodological and technical limits and extend the size of the systems that can be calculated with the method, a novel approach has been proposed that redefines the electron densities and polarizabilities in a localized way. In the new method, accurate but computationally expensive quantum-chemical calculations are only applied for the regions where it is necessary and for other regions, where overlap effects of the wave functions are negligible, inexpensive asymptotic techniques are used. Unlike other hybrid methods, this new approach is mathematically rigorous. The main benefit of this method is that with the increasing size of the system the calculation scales linearly and, therefore, this approach will be denoted as local-overlap SAPT(DFT) or LSAPT(DFT). As a byproduct of developing LSAPT(DFT), some important problems concerning distributed molecular response, in particular, the unphysical charge-flow terms were eliminated. Additionally, to illustrate the capabilities of SAPT(DFT), a potential energy function has been developed for an energetic molecular crystal of 1,1-diamino-2,2-dinitroethylene (FOX-7), where an excellent agreement with the experimental data has been found.
Network localization of neurological symptoms from focal brain lesions.
Boes, Aaron D; Prasad, Sashank; Liu, Hesheng; Liu, Qi; Pascual-Leone, Alvaro; Caviness, Verne S; Fox, Michael D
2015-10-01
A traditional and widely used approach for linking neurological symptoms to specific brain regions involves identifying overlap in lesion location across patients with similar symptoms, termed lesion mapping. This approach is powerful and broadly applicable, but has limitations when symptoms do not localize to a single region or stem from dysfunction in regions connected to the lesion site rather than the site itself. A newer approach sensitive to such network effects involves functional neuroimaging of patients, but this requires specialized brain scans beyond routine clinical data, making it less versatile and difficult to apply when symptoms are rare or transient. In this article we show that the traditional approach to lesion mapping can be expanded to incorporate network effects into symptom localization without the need for specialized neuroimaging of patients. Our approach involves three steps: (i) transferring the three-dimensional volume of a brain lesion onto a reference brain; (ii) assessing the intrinsic functional connectivity of the lesion volume with the rest of the brain using normative connectome data; and (iii) overlapping lesion-associated networks to identify regions common to a clinical syndrome. We first tested our approach in peduncular hallucinosis, a syndrome of visual hallucinations following subcortical lesions long hypothesized to be due to network effects on extrastriate visual cortex. While the lesions themselves were heterogeneously distributed with little overlap in lesion location, 22 of 23 lesions were negatively correlated with extrastriate visual cortex. This network overlap was specific compared to other subcortical lesions (P < 10(-5)) and relative to other cortical regions (P < 0.01). Next, we tested for generalizability of our technique by applying it to three additional lesion syndromes: central post-stroke pain, auditory hallucinosis, and subcortical aphasia. In each syndrome, heterogeneous lesions that themselves had little overlap showed significant network overlap in cortical areas previously implicated in symptom expression (P < 10(-4)). These results suggest that (i) heterogeneous lesions producing similar symptoms share functional connectivity to specific brain regions involved in symptom expression; and (ii) publically available human connectome data can be used to incorporate these network effects into traditional lesion mapping approaches. Because the current technique requires no specialized imaging of patients it may prove a versatile and broadly applicable approach for localizing neurological symptoms in the setting of brain lesions. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Imagery: Paintings in the Mind.
ERIC Educational Resources Information Center
Carey, Albert R.
1986-01-01
Describes using the overlapping areas of relaxation, meditation, hypnosis, and imagery as a counseling technique. Explains the methods in terms of right brain functioning, a capability children use naturally. (ABB)
Guo, Yiqun; Chen, Zhiyi; Feng, Tingyong
2017-07-28
Although several previous studies have shown that individuals' attitude towards time could affect their intertemporal preference, little is known about the neural basis of the relation between time perspective (TP) and delay discounting. In the present study, we quantified the gray matter (GM) cortical volume using voxel-based morphometry (VBM) methods to investigate the effect of TP on delay discounting (DD) across two independent samples. For group 1 (102 healthy college students; 46 male; 20.40 ± 1.87 years), behavioral results showed that only Future TP was a significant predictor of DD, and higher scores on Future TP were related to lower discounting rates. Whole-brain analysis revealed that steeper discounting correlated with greater GM volume in the ventromedial prefrontal cortex (vmPFC) and ventral part of posterior cingulate cortex (vPCC). Also, GM volume of a cluster in the vmPFC was correlated with Future TP. Interestingly, there was an overlapping region in vmPFC that was correlated with both DD and Future TP. Region-of-interest analysis further indicated that the overlapping region of vmPFC played a partially mediating role in the relation between Future TP and DD in the other independent dataset (Group 2, 36 healthy college students; 14 male; 20.18±1.80 years). Taken together, our results provide a new perspective from neural basis for explaining the relation between DD and future TP. Copyright © 2017 Elsevier Ltd. All rights reserved.
Overlapping parietal activity in memory and perception: evidence for the attention to memory model.
Cabeza, Roberto; Mazuz, Yonatan S; Stokes, Jared; Kragel, James E; Woldorff, Marty G; Ciaramelli, Elisa; Olson, Ingrid R; Moscovitch, Morris
2011-11-01
The specific role of different parietal regions to episodic retrieval is a topic of intense debate. According to the Attention to Memory (AtoM) model, dorsal parietal cortex (DPC) mediates top-down attention processes guided by retrieval goals, whereas ventral parietal cortex (VPC) mediates bottom-up attention processes captured by the retrieval output or the retrieval cue. This model also hypothesizes that the attentional functions of DPC and VPC are similar for memory and perception. To investigate this last hypothesis, we scanned participants with event-related fMRI whereas they performed memory and perception tasks, each comprising an orienting phase (top-down attention) and a detection phase (bottom-up attention). The study yielded two main findings. First, consistent with the AtoM model, orienting-related activity for memory and perception overlapped in DPC, whereas detection-related activity for memory and perception overlapped in VPC. The DPC overlap was greater in the left intraparietal sulcus, and the VPC overlap in the left TPJ. Around overlapping areas, there were differences in the spatial distribution of memory and perception activations, which were consistent with trends reported in the literature. Second, both DPC and VPC showed stronger connectivity with medial-temporal lobe during the memory task and with visual cortex during the perception task. These findings suggest that, during memory tasks, some parietal regions mediate similar attentional control processes to those involved in perception tasks (orienting in DPC vs. detection in VPC), although on different types of information (mnemonic vs. sensory).
Nam, Soon Woo; Bae, Si Hyun; Lee, Seung Woo; Kim, Yeon Soo; Kang, Sang Bum; Choi, Jong Young; Cho, Se Hyun; Yoon, Seung Kew; Han, Joon-Yeol; Yang, Jin Mo; Lee, Young Suk
2008-01-01
AIM: To evaluate the efficacy of short-term overlap lamivudine therapy with adefovir in patients with lamivudine-resistant and naïve chronic hepatitis B, we compared patients receiving overlap therapy with those receiving adefovir alone. METHODS: Eighty patients who had received lamivudine treatment for various periods and had a lamivudine-resistant liver function abnormality were enrolled. Forty of these patients received adefovir treatment combined with lamivudine treatment for ≥ 2 mo, while the other 40 received adefovir alone. We assessed the levels of hepatitis B virus (HBV) DNA at 0, 12 and 48 wk and serum alanine aminotransferase (ALT) levels after 0, 12, 24 and 48 wk of adefovir treatment in each group. RESULTS: We found serum ALT became normalized in 72 (87.5%) of the 80 patients, and HBV DNA decreased by ≥ 2 log10 copies/mL in 60 (75%) of the 80 patients at the end of a 48-wk treatment. HBV DNA levels were not significantly different between the groups. The improvements in serum ALT were also not significantly different between the two groups. CONCLUSION: These findings suggest short-term overlap lamivudine treatment results in no better virological and biological outcomes than non-overlap adefovir monotherapy. PMID:18350610
Differentiating High-Functioning Autism and Social Phobia
ERIC Educational Resources Information Center
Tyson, Katherine E.; Cruess, Dean G.
2012-01-01
Both high-functioning autism (HFA) and social phobia (SP) involve profound social interaction deficits. Although these disorders share some similar symptoms, they are conceptualized as distinct. Because both HFA and SP are defined behaviorally, the degree of overlap between the two disorders may result in misinterpretation of symptoms. However,…
Magnetic Stimulation Studies of Foveal Representation
ERIC Educational Resources Information Center
Lavidor, Michal; Walsh, Vincent
2004-01-01
The right and left visual fields each project to the contralateral cerebral hemispheres, but the extent of the functional overlap of the two hemifields along the vertical meridian is still under debate. After presenting the spatial, temporal, and functional specifications of Transcranial Magnetic Stimulation (TMS), we show that TMS is particularly…
Windows in direct dissociative recombination cross sections
NASA Technical Reports Server (NTRS)
Guberman, Steven L.
1986-01-01
Model potential curves are used to show that large windows are present in direct dissociative-recombination cross sections from excited molecular-ion vibrational levels. The windows are due to the overlap of vibrational wave functions of the repulsive neutral states with the nodes of the ion vibrational wave function.
Functional Communication Training in Children with Autism Spectrum Disorder
ERIC Educational Resources Information Center
Battaglia, Dana
2017-01-01
This article explicitly addresses the correlation between communication and behavior, and describes how to provide intervention addressing these two overlapping domains using an intervention called functional communication training (FCT; E. G. Carr & Durand, 1985) in individuals with ASD. A step-by-step process is outlined with supporting…
The familial co-aggregation of ASD and ADHD: a register-based cohort study.
Ghirardi, L; Brikell, I; Kuja-Halkola, R; Freitag, C M; Franke, B; Asherson, P; Lichtenstein, P; Larsson, H
2018-02-01
Autism spectrum disorders (ASD) and attention-deficit/hyperactivity disorder (ADHD) frequently co-occur. The presence of a genetic link between ASD and ADHD symptoms is supported by twin studies, but the genetic overlap between clinically ascertained ASD and ADHD remains largely unclear. We therefore investigated how ASD and ADHD co-aggregate in individuals and in families to test for the presence of a shared genetic liability and examined potential differences between low- and high-functioning ASD in the link with ADHD. We studied 1 899 654 individuals born in Sweden between 1987 and 2006. Logistic regression was used to estimate the association between clinically ascertained ASD and ADHD in individuals and in families. Stratified estimates were obtained for ASD with (low-functioning) and without (high-functioning) intellectual disability. Individuals with ASD were at higher risk of having ADHD compared with individuals who did not have ASD (odds ratio (OR)=22.33, 95% confidence interval (CI): 21.77-22.92). The association was stronger for high-functioning than for low-functioning ASD. Relatives of individuals with ASD were at higher risk of ADHD compared with relatives of individuals without ASD. The association was stronger in monozygotic twins (OR=17.77, 95% CI: 9.80-32.22) than in dizygotic twins (OR=4.33, 95% CI: 3.21-5.85) and full siblings (OR=4.59, 95% CI: 4.39-4.80). Individuals with ASD and their relatives are at increased risk of ADHD. The pattern of association across different types of relatives supports the existence of genetic overlap between clinically ascertained ASD and ADHD, suggesting that genomic studies might have underestimated this overlap.
Follin, Elna; Karlsson, Maria; Lundegaard, Claus; Nielsen, Morten; Wallin, Stefan; Paulsson, Kajsa; Westerdahl, Helena
2013-04-01
The major histocompatibility complex (MHC) genes are the most polymorphic genes found in the vertebrate genome, and they encode proteins that play an essential role in the adaptive immune response. Many songbirds (passerines) have been shown to have a large number of transcribed MHC class I genes compared to most mammals. To elucidate the reason for this large number of genes, we compared 14 MHC class I alleles (α1-α3 domains), from great reed warbler, house sparrow and tree sparrow, via phylogenetic analysis, homology modelling and in silico peptide-binding predictions to investigate their functional and genetic relationships. We found more pronounced clustering of the MHC class I allomorphs (allele specific proteins) in regards to their function (peptide-binding specificities) compared to their genetic relationships (amino acid sequences), indicating that the high number of alleles is of functional significance. The MHC class I allomorphs from house sparrow and tree sparrow, species that diverged 10 million years ago (MYA), had overlapping peptide-binding specificities, and these similarities across species were also confirmed in phylogenetic analyses based on amino acid sequences. Notably, there were also overlapping peptide-binding specificities in the allomorphs from house sparrow and great reed warbler, although these species diverged 30 MYA. This overlap was not found in a tree based on amino acid sequences. Our interpretation is that convergent evolution on the level of the protein function, possibly driven by selection from shared pathogens, has resulted in allomorphs with similar peptide-binding repertoires, although trans-species evolution in combination with gene conversion cannot be ruled out.
He, Mengyang; Qi, Changzhu; Lu, Yang; Song, Amanda; Hayat, Saba Z; Xu, Xia
2018-05-21
Extensive studies have shown that a sports expert is superior to a sports novice in visually perceptual-cognitive processes of sports scene information, however the attentional and neural basis of it has not been thoroughly explored. The present study examined whether a sport expert has the attentional superiority on scene information relevant to his/her sport skill, and explored what factor drives this superiority. To address this problem, EEGs were recorded as participants passively viewed sport scenes (tennis vs. non-tennis) and negative emotional faces in the context of a visual attention task, where the pictures of sport scenes or of negative emotional faces randomly followed the pictures with overlapping sport scenes and negative emotional faces. ERP results showed that for experts, the evoked potential of attentional competition elicited by the overlap of tennis scene was significantly larger than that evoked by the overlap of non-tennis scene, while this effect was absent for novices. The LORETA showed that the experts' left medial frontal gyrus (MFG) cortex was significantly more active as compared to the right MFG when processing the overlap of tennis scene, but the lateralization effect was not significant in novices. Those results indicate that experts have attentional superiority on skill-related scene information, despite intruding the scene through negative emotional faces that are prone to cause negativity bias toward their visual field as a strong distractor. This superiority is actuated by the activation of left MFG cortex and probably due to self-reference. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Aberrant cerebellar connectivity in motor and association networks in schizophrenia
Shinn, Ann K.; Baker, Justin T.; Lewandowski, Kathryn E.; Öngür, Dost; Cohen, Bruce M.
2015-01-01
Schizophrenia is a devastating illness characterized by disturbances in multiple domains. The cerebellum is involved in both motor and non-motor functions, and the “cognitive dysmetria” and “dysmetria of thought” models propose that abnormalities of the cerebellum may contribute to schizophrenia signs and symptoms. The cerebellum and cerebral cortex are reciprocally connected via a modular, closed-loop network architecture, but few schizophrenia neuroimaging studies have taken into account the topographical and functional heterogeneity of the cerebellum. In this study, using a previously defined 17-network cerebral cortical parcellation system as the basis for our functional connectivity seeds, we systematically investigated connectivity abnormalities within the cerebellum of 44 schizophrenia patients and 28 healthy control participants. We found selective alterations in cerebro-cerebellar functional connectivity. Specifically, schizophrenia patients showed decreased cerebro-cerebellar functional connectivity in higher level association networks (ventral attention, salience, control, and default mode networks) relative to healthy control participants. Schizophrenia patients also showed increased cerebro-cerebellar connectivity in somatomotor and default mode networks, with the latter showing no overlap with the regions found to be hypoconnected within the same default mode network. Finally, we found evidence to suggest that somatomotor and default mode networks may be inappropriately linked in schizophrenia. The relationship of these dysconnectivities to schizophrenia symptoms, such as neurological soft signs and altered sense of agency, is discussed. We conclude that the cerebellum ought to be considered for analysis in all future studies of network abnormalities in SZ, and further suggest the cerebellum as a potential target for further elucidation, and possibly treatment, of the underlying mechanisms and network abnormalities producing symptoms of schizophrenia. PMID:25852520
Yokoyama, Jennifer S.; Karch, Celeste M.; Fan, Chun C.; Bonham, Luke W.; Kouri, Naomi; Ross, Owen A.; Rademakers, Rosa; Kim, Jungsu; Wang, Yunpeng; Höglinger, Günter U.; Muller, Ulrich; Ferrari, Raffaele; Hardy, John; Momeni, Parastoo; Sugrue, Leo P.; Hess, Christopher P.; Barkovich, A. James; Boxer, Adam L.; Seeley, William W.; Rabinovici, Gil D.; Rosen, Howard J.; Miller, Bruce L.; Schmansky, Nicholas J.; Fischl, Bruce; Hyman, Bradley T.; Dickson, Dennis W.; Schellenberg, Gerard D.; Andreassen, Ole A.; Dale, Anders M.; Desikan, Rahul S.
2017-01-01
Corticobasal degeneration (CBD), progressive supranuclear palsy (PSP) and a subset of frontotemporal dementia (FTD) are neurodegenerative disorders characterized by tau inclusions in neurons and glia (tauopathies). Although clinical, pathological and genetic evidence suggests overlapping pathobiology between CBD, PSP, and FTD, the relationship between these disorders is still not well understood. Using summary statistics (odds ratios and p-values) from large genome-wide association studies (total n = 14,286 cases and controls) and recently established genetic methods, we investigated the genetic overlap between CBD and PSP and CBD and FTD. We found up to 800-fold enrichment of genetic risk in CBD across different levels of significance for PSP or FTD. In addition to NSF (tagging the MAPT H1 haplotype), we observed that SNPs in or near MOBP, CXCR4, EGFR, and GLDC showed significant genetic overlap between CBD and PSP, whereas only SNPs tagging the MAPT haplotype overlapped between CBD and FTD. The risk alleles of the shared SNPs were associated with expression changes in cis-genes. Evaluating transcriptome levels across adult human brains, we found a unique neuroanatomic gene expression signature for each of the five overlapping gene loci (omnibus ANOVA p < 2.0 × 10−16). Functionally, we found that these shared risk genes were associated with protein interaction and gene co-expression networks and showed enrichment for several neurodevelopmental pathways. Our findings suggest: i) novel genetic overlap between CBD and PSP beyond the MAPT locus; ii) strong ties between CBD and FTD through the MAPT clade, and; iii) unique combinations of overlapping genes that may, in part, influence selective regional or neuronal vulnerability observed in specific tauopathies. PMID:28271184
NASA Technical Reports Server (NTRS)
Mackenzie, Anne I.; Baginski, Michael E.; Rao, Sadasiva M.
2007-01-01
In this work, we present a new set of basis functions, de ned over a pair of planar triangular patches, for the solution of electromagnetic scattering and radiation problems associated with arbitrarily-shaped surfaces using the method of moments solution procedure. The basis functions are constant over the function subdomain and resemble pulse functions for one and two dimensional problems. Further, another set of basis functions, point-wise orthogonal to the first set, is also de ned over the same function space. The primary objective of developing these basis functions is to utilize them for the electromagnetic solution involving conducting, dielectric, and composite bodies. However, in the present work, only the conducting body solution is presented and compared with other data.
NASA Technical Reports Server (NTRS)
Mackenzie, Anne I.; Baginski, Michael E.; Rao, Sadasiva M.
2008-01-01
In this work, we present a new set of basis functions, defined over a pair of planar triangular patches, for the solution of electromagnetic scattering and radiation problems associated with arbitrarily-shaped surfaces using the method of moments solution procedure. The basis functions are constant over the function subdomain and resemble pulse functions for one and two dimensional problems. Further, another set of basis functions, point-wise orthogonal to the first set, is also defined over the same function space. The primary objective of developing these basis functions is to utilize them for the electromagnetic solution involving conducting, dielectric, and composite bodies. However, in the present work, only the conducting body solution is presented and compared with other data.
Ewen-Campen, Ben; Mohr, Stephanie E; Hu, Yanhui; Perrimon, Norbert
2017-10-09
Single-gene knockout experiments can fail to reveal function in the context of redundancy, which is frequently observed among duplicated genes (paralogs) with overlapping functions. We discuss the complexity associated with studying paralogs and outline how recent advances in CRISPR will help address the "phenotype gap" and impact biomedical research. Copyright © 2017 Elsevier Inc. All rights reserved.
Nee, Derek Evan; Kastner, Sabine; Brown, Joshua W
2011-01-01
The last decade has seen considerable discussion regarding a theoretical account of medial prefrontal cortex (mPFC) function with particular focus on the anterior cingulate cortex. The proposed theories have included conflict detection, error likelihood prediction, volatility monitoring, and several distinct theories of error detection. Arguments for and against particular theories often treat mPFC as functionally homogeneous, or at least nearly so, despite some evidence for distinct functional subregions. Here we used functional magnetic resonance imaging (fMRI) to simultaneously contrast multiple effects of error, conflict, and task-switching that have been individually construed in support of various theories. We found overlapping yet functionally distinct subregions of mPFC, with activations related to dominant error, conflict, and task-switching effects successively found along a rostral-ventral to caudal-dorsal gradient within medial prefrontal cortex. Activations in the rostral cingulate zone (RCZ) were strongly correlated with the unexpectedness of outcomes suggesting a role in outcome prediction and preparing control systems to deal with anticipated outcomes. The results as a whole support a resolution of some ongoing debates in that distinct theories may each pertain to corresponding distinct yet overlapping subregions of mPFC. Copyright © 2010 Elsevier Inc. All rights reserved.
A Cubic Radial Basis Function in the MLPG Method for Beam Problems
NASA Technical Reports Server (NTRS)
Raju, I. S.; Phillips, D. R.
2002-01-01
A non-compactly supported cubic radial basis function implementation of the MLPG method for beam problems is presented. The evaluation of the derivatives of the shape functions obtained from the radial basis function interpolation is much simpler than the evaluation of the moving least squares shape function derivatives. The radial basis MLPG yields results as accurate or better than those obtained by the conventional MLPG method for problems with discontinuous and other complex loading conditions.
Schmithorst, Vincent J
2005-04-01
Music perception is a quite complex cognitive task, involving the perception and integration of various elements including melody, harmony, pitch, rhythm, and timbre. A preliminary functional MRI investigation of music perception was performed, using a simplified passive listening task. Group independent component analysis (ICA) was used to separate out various components involved in music processing, as the hemodynamic responses are not known a priori. Various components consistent with auditory processing, expressive language, syntactic processing, and visual association were found. The results are discussed in light of various hypotheses regarding modularity of music processing and its overlap with language processing. The results suggest that, while some networks overlap with ones used for language processing, music processing may involve its own domain-specific processing subsystems.
Hinke, Jefferson T; Cossio, Anthony M; Goebel, Michael E; Reiss, Christian S; Trivelpiece, Wayne Z; Watters, George M
2017-01-01
Mitigating direct and indirect interactions between marine predators and fisheries is a motivating factor for ecosystem-based fisheries management (EBFM), especially where predators and fisheries compete for a shared resource. One difficulty in advancing EBFM is parameterizing clear functional responses of predators to indices of prey availability. Alternative characterizations of fishery-predator interactions may therefore benefit the implementation of EBFM. Telemetry data identify foraging areas used by predators and, therefore, represent critical information to mitigate potential competition between predators and fisheries. We analyzed six years (2009-2014) of telemetry data collected at Cape Shirreff, Livingston Island and Admiralty Bay, King George Island, Antarctica, on three species of Pygoscelid penguins and female Antarctic fur seals. In this region, all four species are primarily dependent on Antarctic krill. The tracking data demonstrate local movements near breeding colonies during the austral summer and dispersal from breeding colonies during the winter. We then assessed overlap between predators and the Antarctic krill fishery on a suite of spatiotemporal scales to examine how different data aggregations affect the extent and location of overlap. Concurrent overlap was observed on all spatiotemporal scales considered throughout the Antarctic Peninsula and South Orkney Islands region, including near tagging locations and in distant areas where recent fishing activity has concentrated. Overlap occurred at depths where mean krill densities were relatively high. Our results demonstrate that direct overlap of krill-dependent predators with the krill fishery on small spatiotemporal scales is relatively common throughout the Antarctic Peninsula region. As the krill fishery continues to develop and efforts to implement ecosystem-based management mature, indices of overlap may provide a useful metric for indicating where the risks of fishing are highest. A precautionary approach to allocating krill catches in space would be to avoid large increases in catch where overlap on small spatiotemporal scales is common.
Hinke, Jefferson T.
2017-01-01
Mitigating direct and indirect interactions between marine predators and fisheries is a motivating factor for ecosystem-based fisheries management (EBFM), especially where predators and fisheries compete for a shared resource. One difficulty in advancing EBFM is parameterizing clear functional responses of predators to indices of prey availability. Alternative characterizations of fishery-predator interactions may therefore benefit the implementation of EBFM. Telemetry data identify foraging areas used by predators and, therefore, represent critical information to mitigate potential competition between predators and fisheries. We analyzed six years (2009–2014) of telemetry data collected at Cape Shirreff, Livingston Island and Admiralty Bay, King George Island, Antarctica, on three species of Pygoscelid penguins and female Antarctic fur seals. In this region, all four species are primarily dependent on Antarctic krill. The tracking data demonstrate local movements near breeding colonies during the austral summer and dispersal from breeding colonies during the winter. We then assessed overlap between predators and the Antarctic krill fishery on a suite of spatiotemporal scales to examine how different data aggregations affect the extent and location of overlap. Concurrent overlap was observed on all spatiotemporal scales considered throughout the Antarctic Peninsula and South Orkney Islands region, including near tagging locations and in distant areas where recent fishing activity has concentrated. Overlap occurred at depths where mean krill densities were relatively high. Our results demonstrate that direct overlap of krill-dependent predators with the krill fishery on small spatiotemporal scales is relatively common throughout the Antarctic Peninsula region. As the krill fishery continues to develop and efforts to implement ecosystem-based management mature, indices of overlap may provide a useful metric for indicating where the risks of fishing are highest. A precautionary approach to allocating krill catches in space would be to avoid large increases in catch where overlap on small spatiotemporal scales is common. PMID:28085943
Efficiency-enhanced photon sieve using Gaussian/overlapping distribution of pinholes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sabatyan, A.; Mirzaie, S.
2011-04-10
A class of photon sieve is introduced whose structure is based on the overlapping pinholes in the innermost zones. This kind of distribution is produced by, for example, a particular form of Gaussian function. The focusing property of the proposed model was examined theoretically and experimentally. It is shown that under He-Ne laser and white light illumination, the focal spot size of this novel structure has considerably smaller FWHM than a photon sieve with randomly distributed pinholes and a Fresnel zone plate. In addition, secondary maxima have been suppressed effectively.
Improving Representation of Tropical Cloud Overlap in GCMs Based on Cloud-Resolving Model Data
NASA Astrophysics Data System (ADS)
Jing, Xianwen; Zhang, Hua; Satoh, Masaki; Zhao, Shuyun
2018-04-01
The decorrelation length ( L cf) has been widely used to describe the behavior of vertical overlap of clouds in general circulation models (GCMs); however, it has been a challenge to associate L cf with the large-scale meteorological conditions during cloud evolution. This study explored the relationship between L cf and the strength of atmospheric convection in the tropics based on output from a global cloud-resolving model. L cf tends to increase with vertical velocity in the mid-troposphere ( w 500) at locations of ascent, but shows little or no dependency on w 500 at locations of descent. A representation of L cf as a function of vertical velocity is obtained, with a linear regression in ascending regions and a constant value in descending regions. This simple and dynamic-related representation of L cf leads to a significant improvement in simulation of both cloud cover and radiation fields compared with traditional overlap treatments. This work presents a physically justifiable approach to depicting cloud overlap in the tropics in GCMs.
NASA Technical Reports Server (NTRS)
Kato, Seiji; Sun-Mack, Sunny; Miller, Walter F.; Rose, Fred G.; Chen, Yan; Minnis, Patrick; Wielicki, Bruce A.
2009-01-01
A cloud frequency of occurrence matrix is generated using merged cloud vertical profile derived from Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) and Cloud Profiling Radar (CPR). The matrix contains vertical profiles of cloud occurrence frequency as a function of the uppermost cloud top. It is shown that the cloud fraction and uppermost cloud top vertical pro les can be related by a set of equations when the correlation distance of cloud occurrence, which is interpreted as an effective cloud thickness, is introduced. The underlying assumption in establishing the above relation is that cloud overlap approaches the random overlap with increasing distance separating cloud layers and that the probability of deviating from the random overlap decreases exponentially with distance. One month of CALIPSO and CloudSat data support these assumptions. However, the correlation distance sometimes becomes large, which might be an indication of precipitation. The cloud correlation distance is equivalent to the de-correlation distance introduced by Hogan and Illingworth [2000] when cloud fractions of both layers in a two-cloud layer system are the same.
Burkett, James P.; Young, Larry J.
2012-01-01
Rationale Love has long been referred to as an addiction in literature and poetry. Scientists have often made comparisons between social attachment processes and drug addiction, and it has been suggested that the two may share a common neurobiological mechanism. Brain systems that evolved to govern attachments between parents and children, and between monogamous partners, may be the targets of drugs of abuse and serve as the basis for addiction processes. Objectives Here, we review research on drug addiction in parallel with research on social attachments, including parent-offspring attachments and social bonds between mating partners. This review focuses on the brain regions and neurochemicals with the greatest overlap between addiction and attachment, and in particular the mesolimbic dopamine pathway. Results Significant overlap exists between these two behavioral processes. In addition to conceptual overlap in symptomatology, there is a strong commonality between the two domains regarding the roles and sites of action of dopamine, opioids, and corticotrophin-releasing factor (CRF). The neuropeptides oxytocin and vasopressin are hypothesized to integrate social information into attachment processes that is not present in drug addiction. Conclusions Social attachment may be understood as a behavioral addiction, whereby the subject becomes addicted to another individual and the cues that predict social reward. Understandings from both fields may enlighten future research on addiction and attachment processes. PMID:22885871
The role of character displacement in the molarization of hominin mandibular premolars.
Schroer, Kes; Wood, Bernard
2015-06-01
Closely related species are likely to experience resource competition in areas where their ranges overlap. Fossil evidence suggests that hominins in East Africa c. 2-1.5 million years ago may have lived synchronically and sympatrically, and that competition may have contributed to the different tooth sizes observed in Homo and Paranthropus. To assess the likelihood that these taxa overlapped, we applied a character displacement model to the postcanine tooth size of fossil hominins and validated this model in populations of living primates. Mandibular fourth premolar (P4 ) crown size was measured from fossil taxa and from living primate species where dietary overlap is established. Dimensions of the P4 crown were fitted to a character matrix and described as the response variables of a generalized linear model that took taxon and location as input variables. The model recovered significant divergence in samples of closely related, living primates. When applied to fossil hominins the same model detected strong indications of character displacement between early Homo and Paranthropus (P = 0.002) on the basis of their P4 crown size. Our study is an example of how ecologically informed morphologies measured in appropriate extant referents can provide a comparative context for assessing community and ecological evolution in the fossil record. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.
Spreng, R Nathan; Mar, Raymond A
2012-01-05
Remembering events from the personal past (autobiographical memory) and inferring the thoughts and feelings of other people (mentalizing) share a neural substrate. The shared functional neuroanatomy of these processes has been demonstrated in a meta-analysis of independent task domains (Spreng, Mar & Kim, 2009) and within subjects performing both tasks (Rabin, Gilboa, Stuss, Mar, & Rosenbaum, 2010; Spreng & Grady, 2010). Here, we examine spontaneous low-frequency fluctuations in fMRI BOLD signal during rest from two separate regions key to memory and mentalizing, the left hippocampus and right temporal parietal junction, respectively. Activity in these two regions was then correlated with the entire brain in a resting-state functional connectivity analysis. Although the left hippocampus and right temporal parietal junction were not correlated with each other, both were correlated with a distributed network of brain regions. These regions were consistent with the previously observed overlap between autobiographical memory and mentalizing evoked brain activity found in past studies. Reliable patterns of overlap included the superior temporal sulcus, anterior temporal lobe, lateral inferior parietal cortex (angular gyrus), posterior cingulate cortex, dorsomedial and ventral prefrontal cortex, inferior frontal gyrus, and the amygdala. We propose that the functional overlap facilitates the integration of personal and interpersonal information and provides a means for personal experiences to become social conceptual knowledge. This knowledge, in turn, informs strategic social behavior in support of personal goals. In closing, we argue for a new perspective within social cognitive neuroscience, emphasizing the importance of memory in social cognition. Copyright © 2010 Elsevier B.V. All rights reserved.
Spreng, R. Nathan; Mar, Raymond A.
2011-01-01
Remembering events from the personal past (autobiographical memory) and inferring the thoughts and feelings of other people (mentalizing) share a neural substrate. The shared functional neuroanatomy of these processes has been demonstrated in a meta-analysis of independent task domains (Spreng, Mar & Kim, 2009) and within subjects performing both tasks (Rabin, Gilboa, Stuss, Mar, & Rosenbaum, 2010; Spreng & Grady, 2010). Here, we examine spontaneous low-frequency fluctuations in fMRI BOLD signal during rest from two separate regions key to memory and mentalizing, the left hippocampus and right temporal parietal junction, respectively. Activity in these two regions was then correlated with the entire brain in a resting-state functional connectivity analysis. Although the left hippocampus and right temporal parietal junction were not correlated with each other, both were correlated with a distributed network of brain regions. These regions were consistent with the previously observed overlap between autobiographical memory and mentalizing evoked brain activity found in past studies. Reliable patterns of overlap included the superior temporal sulcus, anterior temporal lobe, lateral inferior parietal cortex (angular gyrus), posterior cingulate cortex, dorsomedial and ventral prefrontal cortex, inferior frontal gyrus, and the amygdala. We propose that the functional overlap facilitates the integration of personal and interpersonal information and provides a means for personal experiences to become social conceptual knowledge. This knowledge, in turn, informs strategic social behavior in support of personal goals. In closing, we argue for a new perspective within social cognitive neuroscience, emphasizing the importance of memory in social cognition. PMID:21172325
Helgeland, Helene; Flagstad, Gro; Grøtta, Jon; Vandvik, Per Olav; Kristensen, Hanne; Markestad, Trond
2009-09-01
To determine the proportion of referred children with nonorganic abdominal pain who meet the criteria for 1 or more diagnoses of functional gastrointestinal disorders (FGID), explore the distribution of diagnoses according to the revised pediatric Rome III criteria (PRC-III), and to investigate reasons for failure to meet these criteria. We recruited children (4-15 years) consecutively referred by general practitioners to 4 general pediatric outpatient clinics for the evaluation of recurrent abdominal pain. FGID diagnoses were based on the Questionnaire on Pediatric Gastrointestinal Symptoms-Rome III version, completed by parents. To exclude organic disease, all patients underwent medical investigations and were reevaluated at follow-up after 6 to 9 months. Of the 152 patients included, 142 (93%) had functional abdominal pain. Of these, 124 (87%) met the criteria for 1 or more diagnoses according to the PRC-III: 66% met the criteria for 1, 29% for 2, and 5% for 3 diagnoses. Irritable bowel syndrome was the most common diagnosis (43%) and overlapped with aerophagia in 16 children (38% of the children with overlapping diagnoses) and with abdominal migraine in 14 (33%). In the 18 patients (13%) not fulfilling the PRC-III for any FGID diagnosis, the main reason was insufficient pain frequency (83%). Of the referred children with functional abdominal pain, 87% met the PRC-III for specific diagnoses. This supports the use of these criteria as a diagnostic tool. The significant overlap between different FGIDs, however, makes it unclear whether some of the diagnoses represent distinct disorders or artificial categories.
NASA Technical Reports Server (NTRS)
Forestieri, A. F.; Ratajczak, A. F.; Sidorak, L. G. (Inventor)
1977-01-01
A solar cell shingle was made of an array of solar cells on a lower portion of a substantially rectangular shingle substrate made of fiberglass cloth or the like. The solar cells may be encapsulated in flourinated ethylene propylene or some other weatherproof translucent or transparent encapsulant to form a combined electrical module and a roof shingle. The interconnected solar cells were connected to connectors at the edge of the substrate through a connection to a common electrical bus or busses. An overlap area was arranged to receive the overlap of a cooperating similar shingle so that the cell portion of the cooperating shingle may overlie the overlap area of the roof shingle. Accordingly, the same shingle serves the double function of an ordinary roof shingle which may be applied in the usual way and an array of cooperating solar cells from which electrical energy may be collected.
Line overlap and self-shielding of molecular hydrogen in galaxies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gnedin, Nickolay Y.; Draine, Bruce T., E-mail: gnedin@fnal.gov, E-mail: andrey@oddjob.uchicago.edu, E-mail: draine@astro.princeton.edu
2014-11-01
The effect of line overlap in the Lyman and Werner bands, often ignored in galactic studies of the atomic-to-molecular transition, greatly enhances molecular hydrogen self-shielding in low metallicity environments and dominates over dust shielding for metallicities below about 10% solar. We implement that effect in cosmological hydrodynamics simulations with an empirical model, calibrated against the observational data, and provide fitting formulae for the molecular hydrogen fraction as a function of gas density on various spatial scales and in environments with varied dust abundance and interstellar radiation field. We find that line overlap, while important for detailed radiative transfer in themore » Lyman and Werner bands, has only a minor effect on star formation on galactic scales, which, to a much larger degree, is regulated by stellar feedback.« less
High-Precision Registration of Point Clouds Based on Sphere Feature Constraints.
Huang, Junhui; Wang, Zhao; Gao, Jianmin; Huang, Youping; Towers, David Peter
2016-12-30
Point cloud registration is a key process in multi-view 3D measurements. Its precision affects the measurement precision directly. However, in the case of the point clouds with non-overlapping areas or curvature invariant surface, it is difficult to achieve a high precision. A high precision registration method based on sphere feature constraint is presented to overcome the difficulty in the paper. Some known sphere features with constraints are used to construct virtual overlapping areas. The virtual overlapping areas provide more accurate corresponding point pairs and reduce the influence of noise. Then the transformation parameters between the registered point clouds are solved by an optimization method with weight function. In that case, the impact of large noise in point clouds can be reduced and a high precision registration is achieved. Simulation and experiments validate the proposed method.
High-Precision Registration of Point Clouds Based on Sphere Feature Constraints
Huang, Junhui; Wang, Zhao; Gao, Jianmin; Huang, Youping; Towers, David Peter
2016-01-01
Point cloud registration is a key process in multi-view 3D measurements. Its precision affects the measurement precision directly. However, in the case of the point clouds with non-overlapping areas or curvature invariant surface, it is difficult to achieve a high precision. A high precision registration method based on sphere feature constraint is presented to overcome the difficulty in the paper. Some known sphere features with constraints are used to construct virtual overlapping areas. The virtual overlapping areas provide more accurate corresponding point pairs and reduce the influence of noise. Then the transformation parameters between the registered point clouds are solved by an optimization method with weight function. In that case, the impact of large noise in point clouds can be reduced and a high precision registration is achieved. Simulation and experiments validate the proposed method. PMID:28042846
A new basis set for molecular bending degrees of freedom.
Jutier, Laurent
2010-07-21
We present a new basis set as an alternative to Legendre polynomials for the variational treatment of bending vibrational degrees of freedom in order to highly reduce the number of basis functions. This basis set is inspired from the harmonic oscillator eigenfunctions but is defined for a bending angle in the range theta in [0:pi]. The aim is to bring the basis functions closer to the final (ro)vibronic wave functions nature. Our methodology is extended to complicated potential energy surfaces, such as quasilinearity or multiequilibrium geometries, by using several free parameters in the basis functions. These parameters allow several density maxima, linear or not, around which the basis functions will be mainly located. Divergences at linearity in integral computations are resolved as generalized Legendre polynomials. All integral computations required for the evaluation of molecular Hamiltonian matrix elements are given for both discrete variable representation and finite basis representation. Convergence tests for the low energy vibronic states of HCCH(++), HCCH(+), and HCCS are presented.
Zhao, Tian; Villéger, Sébastien; Lek, Sovan; Cucherousset, Julien
2014-01-01
Investigations on the functional niche of organisms have primarily focused on differences among species and tended to neglect the potential effects of intraspecific variability despite the fact that its potential ecological and evolutionary importance is now widely recognized. In this study, we measured the distribution of functional traits in an entire population of largemouth bass (Micropterus salmoides) to quantify the magnitude of intraspecific variability in functional traits and niche (size, position, and overlap) between age classes. Stable isotope analyses (δ13C and δ15N) were also used to determine the association between individual trophic ecology and intraspecific functional trait variability. We observed that functional traits were highly variable within the population (mean coefficient variation: 15.62% ± 1.78% SE) and predominantly different between age classes. In addition, functional and trophic niche overlap between age classes was extremely low. Differences in functional niche between age classes were associated with strong changes in trophic niche occurring during ontogeny while, within age classes, differences among individuals were likely driven by trophic specialization. Each age class filled only a small portion of the total functional niche of the population and age classes occupied distinct portions in the functional space, indicating the existence of ontogenetic specialists with different functional roles within the population. The high amplitude of intraspecific variability in functional traits and differences in functional niche position among individuals reported here supports the recent claims for an individual-based approach in functional ecology. PMID:25558359
DOE Office of Scientific and Technical Information (OSTI.GOV)
Papajak, Ewa; Truhlar, Donald G.
We present sets of convergent, partially augmented basis set levels corresponding to subsets of the augmented “aug-cc-pV(n+d)Z” basis sets of Dunning and co-workers. We show that for many molecular properties a basis set fully augmented with diffuse functions is computationally expensive and almost always unnecessary. On the other hand, unaugmented cc-pV(n+d)Z basis sets are insufficient for many properties that require diffuse functions. Therefore, we propose using intermediate basis sets. We developed an efficient strategy for partial augmentation, and in this article, we test it and validate it. Sequentially deleting diffuse basis functions from the “aug” basis sets yields the “jul”,more » “jun”, “may”, “apr”, etc. basis sets. Tests of these basis sets for Møller-Plesset second-order perturbation theory (MP2) show the advantages of using these partially augmented basis sets and allow us to recommend which basis sets offer the best accuracy for a given number of basis functions for calculations on large systems. Similar truncations in the diffuse space can be performed for the aug-cc-pVxZ, aug-cc-pCVxZ, etc. basis sets.« less
NASA Astrophysics Data System (ADS)
Cachera, M.; Ernande, B.; Villanueva, M. C.; Lefebvre, S.
2017-02-01
Individual diet variation (i.e. diet variation among individuals) impacts intra- and inter-specific interactions. Investigating its sources and relationship with species trophic niche organization is important for understanding community structure and dynamics. Individual diet variation may increase with intra-specific phenotypic (or "individual state") variation and habitat variability, according to Optimal Foraging Theory (OFT), and with species trophic niche width, according to the Niche Variation Hypothesis (NVH). OFT proposes "proximate sources" of individual diet variation such as variations in habitat or size whereas NVH relies on "ultimate sources" related to the competitive balance between intra- and inter-specific competitions. The latter implies as a corollary that species trophic niche overlap, taken as inter-specific competition measure, decreases as species niche width and individual niche variation increase. We tested the complementary predictions of OFT and NVH in a marine fish assemblage using stomach content data and associated trophic niche metrics. The NVH predictions were tested between species of the assemblage and decomposed into a between- and a within-functional group component to assess the potential influence of species' ecological function. For most species, individual diet variation and niche overlap were consistently larger than expected. Individual diet variation increased with intra-specific variability in individual state and habitat, as expected from OFT. It also increased with species niche width but in compliance with the null expectation, thus not supporting the NVH. In contrast, species niche overlap increased significantly less than null expectation with both species niche width and individual diet variation, supporting NVH corollary. The between- and within-functional group components of the NVH relationships were consistent with those between species at the assemblage level. Changing the number of prey categories used to describe diet (from 16 to 41) did not change the results qualitatively. These results suggest that, besides proximate sources, intra-specific competition favors higher individual diet variation than expected while inter-specific competition limits the increase of individual diet variation and of species niche overlap with species niche expansion. This reveals partial trophic resource partitioning between species. Various niche metrics used in combination allow inferring competition effects on trophic niches' organization within communities.
Bioinformatic analysis suggests that the Orbivirus VP6 cistron encodes an overlapping gene
Firth, Andrew E
2008-01-01
Background The genus Orbivirus includes several species that infect livestock – including Bluetongue virus (BTV) and African horse sickness virus (AHSV). These viruses have linear dsRNA genomes divided into ten segments, all of which have previously been assumed to be monocistronic. Results Bioinformatic evidence is presented for a short overlapping coding sequence (CDS) in the Orbivirus genome segment 9, overlapping the VP6 cistron in the +1 reading frame. In BTV, a 77–79 codon AUG-initiated open reading frame (hereafter ORFX) is present in all 48 segment 9 sequences analysed. The pattern of base variations across the 48-sequence alignment indicates that ORFX is subject to functional constraints at the amino acid level (even when the constraints due to coding in the overlapping VP6 reading frame are taken into account; MLOGD software). In fact the translated ORFX shows greater amino acid conservation than the overlapping region of VP6. The ORFX AUG codon has a strong Kozak context in all 48 sequences. Each has only one or two upstream AUG codons, always in the VP6 reading frame, and (with a single exception) always with weak or medium Kozak context. Thus, in BTV, ORFX may be translated via leaky scanning. A long (83–169 codon) ORF is present in a corresponding location and reading frame in all other Orbivirus species analysed except Saint Croix River virus (SCRV; the most divergent). Again, the pattern of base variations across sequence alignments indicates multiple coding in the VP6 and ORFX reading frames. Conclusion At ~9.5 kDa, the putative ORFX product in BTV is too small to appear on most published protein gels. Nonetheless, a review of past literature reveals a number of possible detections. We hope that presentation of this bioinformatic analysis will stimulate an attempt to experimentally verify the expression and functional role of ORFX, and hence lead to a greater understanding of the molecular biology of these important pathogens. PMID:18489030
Tousseyn, Simon; Dupont, Patrick; Goffin, Karolien; Sunaert, Stefan; Van Paesschen, Wim
2015-03-01
Epilepsy is increasingly recognized as a network disorder, but the spatial relationship between ictal and interictal networks is still largely unexplored. In this work, we compared hemodynamic changes related to seizures and interictal spikes on a whole brain scale. Twenty-eight patients with refractory focal epilepsy (14 temporal and 14 extratemporal lobe) underwent both subtraction ictal single photon emission computed tomography (SPECT) coregistered to magnetic resonance imaging (MRI) (SISCOM) and spike-related electroencephalography (EEG-functional MRI (fMRI). SISCOM visualized relative perfusion changes during seizures, whereas EEG-fMRI mapped blood oxygen level-dependent (BOLD) changes related to spikes. Similarity between statistical maps of both modalities was analyzed per patient using the following two measures: (1) correlation between unthresholded statistical maps (Pearson's correlation coefficient) and (2) overlap between thresholded images (Dice coefficient). Overlap was evaluated at a regional level, for hyperperfusions and activations and for hypoperfusions and deactivations separately, using different thresholds. Nonparametric permutation tests were applied to assess statistical significance (p ≤ 0.05). We found significant and positive correlations between hemodynamic changes related to seizures and spikes in 27 (96%) of 28 cases (median correlation coefficient 0.29 [range -0.12 to 0.62]). In 20 (71%) of 28 cases, spatial overlap between hyperperfusion on SISCOM and activation on EEG-fMRI was significantly larger than expected by chance. Congruent changes were not restricted to the territory of the presumed epileptogenic zone, but could be seen at distant sites (e.g., cerebellum and basal ganglia). Overlap between ictal hypoperfusion and interictal deactivation was statistically significant in 22 (79%) of 28 patients. Despite the high rate of congruence, discrepancies were observed for both modalities. We conclude that hemodynamic changes related to seizures and spikes varied spatially with the same sign and within a common network. Overlap was present in regions nearby and distant from discharge origin. Wiley Periodicals, Inc. © 2015 International League Against Epilepsy.
Andreopoulos, Bill; Winter, Christof; Labudde, Dirk; Schroeder, Michael
2009-06-27
A lot of high-throughput studies produce protein-protein interaction networks (PPINs) with many errors and missing information. Even for genome-wide approaches, there is often a low overlap between PPINs produced by different studies. Second-level neighbors separated by two protein-protein interactions (PPIs) were previously used for predicting protein function and finding complexes in high-error PPINs. We retrieve second level neighbors in PPINs, and complement these with structural domain-domain interactions (SDDIs) representing binding evidence on proteins, forming PPI-SDDI-PPI triangles. We find low overlap between PPINs, SDDIs and known complexes, all well below 10%. We evaluate the overlap of PPI-SDDI-PPI triangles with known complexes from Munich Information center for Protein Sequences (MIPS). PPI-SDDI-PPI triangles have ~20 times higher overlap with MIPS complexes than using second-level neighbors in PPINs without SDDIs. The biological interpretation for triangles is that a SDDI causes two proteins to be observed with common interaction partners in high-throughput experiments. The relatively few SDDIs overlapping with PPINs are part of highly connected SDDI components, and are more likely to be detected in experimental studies. We demonstrate the utility of PPI-SDDI-PPI triangles by reconstructing myosin-actin processes in the nucleus, cytoplasm, and cytoskeleton, which were not obvious in the original PPIN. Using other complementary datatypes in place of SDDIs to form triangles, such as PubMed co-occurrences or threading information, results in a similar ability to find protein complexes. Given high-error PPINs with missing information, triangles of mixed datatypes are a promising direction for finding protein complexes. Integrating PPINs with SDDIs improves finding complexes. Structural SDDIs partially explain the high functional similarity of second-level neighbors in PPINs. We estimate that relatively little structural information would be sufficient for finding complexes involving most of the proteins and interactions in a typical PPIN.
Andreopoulos, Bill; Winter, Christof; Labudde, Dirk; Schroeder, Michael
2009-01-01
Background A lot of high-throughput studies produce protein-protein interaction networks (PPINs) with many errors and missing information. Even for genome-wide approaches, there is often a low overlap between PPINs produced by different studies. Second-level neighbors separated by two protein-protein interactions (PPIs) were previously used for predicting protein function and finding complexes in high-error PPINs. We retrieve second level neighbors in PPINs, and complement these with structural domain-domain interactions (SDDIs) representing binding evidence on proteins, forming PPI-SDDI-PPI triangles. Results We find low overlap between PPINs, SDDIs and known complexes, all well below 10%. We evaluate the overlap of PPI-SDDI-PPI triangles with known complexes from Munich Information center for Protein Sequences (MIPS). PPI-SDDI-PPI triangles have ~20 times higher overlap with MIPS complexes than using second-level neighbors in PPINs without SDDIs. The biological interpretation for triangles is that a SDDI causes two proteins to be observed with common interaction partners in high-throughput experiments. The relatively few SDDIs overlapping with PPINs are part of highly connected SDDI components, and are more likely to be detected in experimental studies. We demonstrate the utility of PPI-SDDI-PPI triangles by reconstructing myosin-actin processes in the nucleus, cytoplasm, and cytoskeleton, which were not obvious in the original PPIN. Using other complementary datatypes in place of SDDIs to form triangles, such as PubMed co-occurrences or threading information, results in a similar ability to find protein complexes. Conclusion Given high-error PPINs with missing information, triangles of mixed datatypes are a promising direction for finding protein complexes. Integrating PPINs with SDDIs improves finding complexes. Structural SDDIs partially explain the high functional similarity of second-level neighbors in PPINs. We estimate that relatively little structural information would be sufficient for finding complexes involving most of the proteins and interactions in a typical PPIN. PMID:19558694
AIS radiometry and the problem of contamination from mixed spectral orders
NASA Technical Reports Server (NTRS)
Conel, J. E.; Adams, S.; Alley, R. E.; Hoover, G.; Schultz, S.
1988-01-01
The spectral radiance of test areas under solar illumination is ascertained in view of Airborne Imaging Spectrometer (AIS) data from Mono Lake, CA, establishing an atmospheric correction method for major absorbers on the basis of the spectrometric data themselves. The apparent low contrast of all atmospheric absorption bands leads to a study of contamination from overlapping spectral orders in the AIS data; this contamination is found unambiguously above 1500 nm with a magnitude that is a factor of 1.5-2.0 greater than the expected uncontaminated signal alone.
Enman, Nicole M.; Zhang, Yong; Unterwald, Ellen M.
2014-01-01
Posttraumatic stress disorder (PTSD) co-occurs highly with substance use disorders (SUD), yet the neurobiological basis for this comorbid relationship remains unclear. PTSD and SUDs result in similar pathological states including impulsive behavior, reward deficiency, and heightened stress sensitivity. Hence, PTSD and SUD may depend on overlapping dysfunctional neurocircuitry. Here we provide a short overview of the relationship between comorbid PTSD and SUD, as well as the potential role of select neurotransmitter systems that may underlie enhanced vulnerability to drug abuse in the context of PTSD. PMID:24333548
Intelligence moderates reinforcement learning: a mini-review of the neural evidence
2014-01-01
Our understanding of the neural basis of reinforcement learning and intelligence, two key factors contributing to human strivings, has progressed significantly recently. However, the overlap of these two lines of research, namely, how intelligence affects neural responses during reinforcement learning, remains uninvestigated. A mini-review of three existing studies suggests that higher IQ (especially fluid IQ) may enhance the neural signal of positive prediction error in dorsolateral prefrontal cortex, dorsal anterior cingulate cortex, and striatum, several brain substrates of reinforcement learning or intelligence. PMID:25185818
Intelligence moderates reinforcement learning: a mini-review of the neural evidence.
Chen, Chong
2015-06-01
Our understanding of the neural basis of reinforcement learning and intelligence, two key factors contributing to human strivings, has progressed significantly recently. However, the overlap of these two lines of research, namely, how intelligence affects neural responses during reinforcement learning, remains uninvestigated. A mini-review of three existing studies suggests that higher IQ (especially fluid IQ) may enhance the neural signal of positive prediction error in dorsolateral prefrontal cortex, dorsal anterior cingulate cortex, and striatum, several brain substrates of reinforcement learning or intelligence. Copyright © 2015 the American Physiological Society.
Hruszkewycz, Stephan O; Holt, Martin V; Tripathi, Ash; Maser, Jörg; Fuoss, Paul H
2011-06-15
We present the framework for convergent beam Bragg ptychography, and, using simulations, we demonstrate that nanocrystals can be ptychographically reconstructed from highly convergent x-ray Bragg diffraction. The ptychographic iterative engine is extended to three dimensions and shown to successfully reconstruct a simulated nanocrystal using overlapping raster scans with a defocused curved beam, the diameter of which matches the crystal size. This object reconstruction strategy can serve as the basis for coherent diffraction imaging experiments at coherent scanning nanoprobe x-ray sources.
ERIC Educational Resources Information Center
Warren, Michael T.; Wray-Lake, Laura; Rote, Wendy M.; Shubert, Jennifer
2016-01-01
Recent advances in positive youth development theory and research explicate complex associations between adaptive functioning and risk behavior, acknowledging that high levels of both co-occur in the lives of some adolescents. However, evidence on nuanced overlapping developmental trajectories of adaptive functioning and risk has been limited to 1…
Who's in Charge Here? Sources of Leadership for Change in Eight Schools.
ERIC Educational Resources Information Center
Heller, Marjorie F.; Firestone, William A.
1995-01-01
Identifies a set of change leadership functions including sustaining a vision for change, encouraging staff, modifying standard operating procedures, and monitoring progress. Suggests that these functions do contribute to change, but are also performed redundantly by persons in a variety of overlapping roles, including central office personnel,…
On the Delusiveness of Adopting a Common Space for Modeling IR Objects: Are Queries Documents?
ERIC Educational Resources Information Center
Bollmann-Sdorra, Peter; Raghavan, Vjay V.
1993-01-01
Proposes that document space and query space have different structures in information retrieval and discusses similarity measures, term independence, and linear structure. Examples are given using the retrieval functions of dot-product, the cosine measure, the coefficient of Jaccard, and the overlap function. (Contains 28 references.) (LRW)
McKenna, Benjamin S; Eyler, Lisa T
2013-01-01
Prefrontal cortex (PFC) mediated cognitive and emotional processing deficits in bipolar disorder lead to functional limitations even during periods of mood stability. Alterations of sleep and circadian functioning are well-documented in bipolar disorder, but there is little research directly examining the mechanistic role of sleep and/or circadian rhythms in the observed cognitive and emotional processing deficits. We systematically review the cognitive and emotional processing deficits reliant upon PFC functioning of euthymic patients with bipolar disorder and in healthy individuals deprived of sleep. The evidence from two parallel lines of investigation suggests that sleep and circadian rhythms may be involved in the cognitive and emotional processing deficits seen in bipolar disorder through overlapping neurobiological systems. We discuss current models of bipolar highlighting the PFC-limbic connections and discuss inclusion of sleep-related mechanisms. Sleep and circadian dysfunction is a core feature of bipolar disorder and models of neurobiological abnormalities should incorporate chronobiological measures. Further research into the role of sleep and circadian rhythms in cognition and emotional processing in bipolar disorder is warranted. PMID:22926687
Localized overlap algorithm for unexpanded dispersion energies
NASA Astrophysics Data System (ADS)
Rob, Fazle; Misquitta, Alston J.; Podeszwa, Rafał; Szalewicz, Krzysztof
2014-03-01
First-principles-based, linearly scaling algorithm has been developed for calculations of dispersion energies from frequency-dependent density susceptibility (FDDS) functions with account of charge-overlap effects. The transition densities in FDDSs are fitted by a set of auxiliary atom-centered functions. The terms in the dispersion energy expression involving products of such functions are computed using either the unexpanded (exact) formula or from inexpensive asymptotic expansions, depending on the location of these functions relative to the dimer configuration. This approach leads to significant savings of computational resources. In particular, for a dimer consisting of two elongated monomers with 81 atoms each in a head-to-head configuration, the most favorable case for our algorithm, a 43-fold speedup has been achieved while the approximate dispersion energy differs by less than 1% from that computed using the standard unexpanded approach. In contrast, the dispersion energy computed from the distributed asymptotic expansion differs by dozens of percent in the van der Waals minimum region. A further increase of the size of each monomer would result in only small increased costs since all the additional terms would be computed from the asymptotic expansion.
Face Patch Resting State Networks Link Face Processing to Social Cognition
Schwiedrzik, Caspar M.; Zarco, Wilbert; Everling, Stefan; Freiwald, Winrich A.
2015-01-01
Faces transmit a wealth of social information. How this information is exchanged between face-processing centers and brain areas supporting social cognition remains largely unclear. Here we identify these routes using resting state functional magnetic resonance imaging in macaque monkeys. We find that face areas functionally connect to specific regions within frontal, temporal, and parietal cortices, as well as subcortical structures supporting emotive, mnemonic, and cognitive functions. This establishes the existence of an extended face-recognition system in the macaque. Furthermore, the face patch resting state networks and the default mode network in monkeys show a pattern of overlap akin to that between the social brain and the default mode network in humans: this overlap specifically includes the posterior superior temporal sulcus, medial parietal, and dorsomedial prefrontal cortex, areas supporting high-level social cognition in humans. Together, these results reveal the embedding of face areas into larger brain networks and suggest that the resting state networks of the face patch system offer a new, easily accessible venue into the functional organization of the social brain and into the evolution of possibly uniquely human social skills. PMID:26348613
Modeling the Proton Radiation Belt With Van Allen Probes Relativistic Electron-Proton Telescope Data
NASA Technical Reports Server (NTRS)
Kanekal, S. G.; Li, X.; Baker, D. N.; Selesnick, R. S.; Hoxie, V. C.
2018-01-01
An empirical model of the proton radiation belt is constructed from data taken during 2013-2017 by the Relativistic Electron-Proton Telescopes on the Van Allen Probes satellites. The model intensity is a function of time, kinetic energy in the range 18-600 megaelectronvolts, equatorial pitch angle, and L shell of proton guiding centers. Data are selected, on the basis of energy deposits in each of the nine silicon detectors, to reduce background caused by hard proton energy spectra at low L. Instrument response functions are computed by Monte Carlo integration, using simulated proton paths through a simplified structural model, to account for energy loss in shielding material for protons outside the nominal field of view. Overlap of energy channels, their wide angular response, and changing satellite orientation require the model dependencies on all three independent variables be determined simultaneously. This is done by least squares minimization with a customized steepest descent algorithm. Model uncertainty accounts for statistical data error and systematic error in the simulated instrument response. A proton energy spectrum is also computed from data taken during the 8 January 2014 solar event, to illustrate methods for the simpler case of an isotropic and homogeneous model distribution. Radiation belt and solar proton results are compared to intensities computed with a simplified, on-axis response that can provide a good approximation under limited circumstances.
Courses of Action to Optimize Heavy Bearings Cages
NASA Astrophysics Data System (ADS)
Szekely, V. G.
2016-11-01
The global expansion in the industrial, economically and technological context determines the need to develop products, technologies, processes and methods which ensure increased performance, lower manufacturing costs and synchronization of the main costs reported to the elementary values which correspond to utilization”. The development trend of the heavy bearing industry and the wide use of bearings determines the necessity of choosing the most appropriate material for a given application in order to meet the cumulative requirements of durability, reliability, strength, etc. Evaluation of commonly known or new materials represents a fundamental criterion, in order to choose the materials based on the cost, machinability and the technological process. In order to ensure the most effective basis for the decision, regarding the heavy bearing cage, in the first stage the functions of the product are established and in a further step a comparative analysis of the materials is made in order to establish the best materials which satisfy the product functions. The decision for selecting the most appropriate material is based largely on the overlapping of the material costs and manufacturing process during which the half-finished material becomes a finished product. The study is orientated towards a creative approach, especially towards innovation and reengineering by using specific techniques and methods applied in inventics. The main target is to find new efficient and reliable constructive and/or technological solutions which are consistent with the concept of sustainable development.
Enhanced activity of human serotonin transporter variants associated with autism.
Prasad, Harish C; Steiner, Jennifer A; Sutcliffe, James S; Blakely, Randy D
2009-01-27
Rare, functional, non-synonymous variants in the human serotonin (5-hydroxytryptamine, 5-HT) transporter (hSERT) gene (SLC6A4) have been identified in both autism and obsessive-compulsive disorder (OCD). Within autism, rare hSERT coding variants associate with rigid-compulsive traits, suggesting both phenotypic overlap with OCD and a shared relationship with disrupted 5-HT signalling. Here, we document functional perturbations of three of these variants: Ile425Leu; Phe465Leu; and Leu550Val. In transiently transfected HeLa cells, the three variants confer a gain of 5-HT transport phenotype. Specifically, enhanced SERT activity was also observed in lymphoblastoid lines derived from mutation carriers. In contrast to previously characterized Gly56Ala, where increased transport activity derives from catalytic activation, the three novel variants exhibit elevated surface density as revealed through both surface antagonist-binding and biotinylation studies. Unlike Gly56Ala, mutants Ile425Leu, Phe465Leu and Leu550Val retain a capacity for acute PKG and p38 MAPK regulation. However, both Gly56Ala and Ile425Leu demonstrate markedly reduced sensitivity to PP2A antagonists, suggesting that deficits in trafficking and catalytic modulation may derive from a common basis in perturbed phosphatase regulation. When expressed stably from the same genomic locus in CHO cells, both Gly56Ala and Ile425Leu display catalytic activation, accompanied by a striking loss of SERT protein.
Brain system for mental orientation in space, time, and person
Peer, Michael; Salomon, Roy; Goldberg, Ilan; Blanke, Olaf; Arzy, Shahar
2015-01-01
Orientation is a fundamental mental function that processes the relations between the behaving self to space (places), time (events), and person (people). Behavioral and neuroimaging studies have hinted at interrelations between processing of these three domains. To unravel the neurocognitive basis of orientation, we used high-resolution 7T functional MRI as 16 subjects compared their subjective distance to different places, events, or people. Analysis at the individual-subject level revealed cortical activation related to orientation in space, time, and person in a precisely localized set of structures in the precuneus, inferior parietal, and medial frontal cortex. Comparison of orientation domains revealed a consistent order of cortical activity inside the precuneus and inferior parietal lobes, with space orientation activating posterior regions, followed anteriorly by person and then time. Core regions at the precuneus and inferior parietal lobe were activated for multiple orientation domains, suggesting also common processing for orientation across domains. The medial prefrontal cortex showed a posterior activation for time and anterior for person. Finally, the default-mode network, identified in a separate resting-state scan, was active for all orientation domains and overlapped mostly with person-orientation regions. These findings suggest that mental orientation in space, time, and person is managed by a specific brain system with a highly ordered internal organization, closely related to the default-mode network. PMID:26283353
Modeling the Proton Radiation Belt With Van Allen Probes Relativistic Electron-Proton Telescope Data
NASA Astrophysics Data System (ADS)
Selesnick, R. S.; Baker, D. N.; Kanekal, S. G.; Hoxie, V. C.; Li, X.
2018-01-01
An empirical model of the proton radiation belt is constructed from data taken during 2013-2017 by the Relativistic Electron-Proton Telescopes on the Van Allen Probes satellites. The model intensity is a function of time, kinetic energy in the range 18-600 MeV, equatorial pitch angle, and L shell of proton guiding centers. Data are selected, on the basis of energy deposits in each of the nine silicon detectors, to reduce background caused by hard proton energy spectra at low L. Instrument response functions are computed by Monte Carlo integration, using simulated proton paths through a simplified structural model, to account for energy loss in shielding material for protons outside the nominal field of view. Overlap of energy channels, their wide angular response, and changing satellite orientation require the model dependencies on all three independent variables be determined simultaneously. This is done by least squares minimization with a customized steepest descent algorithm. Model uncertainty accounts for statistical data error and systematic error in the simulated instrument response. A proton energy spectrum is also computed from data taken during the 8 January 2014 solar event, to illustrate methods for the simpler case of an isotropic and homogeneous model distribution. Radiation belt and solar proton results are compared to intensities computed with a simplified, on-axis response that can provide a good approximation under limited circumstances.
Malešević, Jovana; Štrbac, Matija; Isaković, Milica; Kojić, Vladimir; Konstantinović, Ljubica; Vidaković, Aleksandra; Dedijer Dujović, Suzana; Kostić, Miloš; Keller, Thierry
2017-11-01
The goal of this study was to investigate surface motor activation zones and their temporal variability using an advanced multi-pad functional electrical stimulation system. With this system motor responses are elicited through concurrent activation of electrode matrix pads collectively termed "virtual electrodes" (VEs) with appropriate stimulation parameters. We observed VEs used to produce selective wrist, finger, and thumb extension movements in 20 therapy sessions of 12 hemiplegic stroke patients. The VEs which produce these three selective movements were created manually on the ergonomic multi-pad electrode by experienced clinicians based on visual inspection of the muscle responses. Individual results indicated that changes in VE configuration were required each session for all patients and that overlap in joint movements was evident between some VEs. However, by analyzing group data, we defined the probability distribution over the electrode surface for the three VEs of interest. Furthermore, through Bayesian logic we obtained preferred stimulation zones that are in accordance with our previously reported heuristically obtained results. We have also analyzed the number of active pads and stimulation amplitudes for these three VEs. Presented results provide a basis for an automated electrode calibration algorithm built on a priori knowledge or the starting point for manual selection of stimulation points. © 2017 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Umino, Satoru; Takahashi, Hideaki, E-mail: hideaki@m.tohoku.ac.jp; Morita, Akihiro
In a recent work, we developed a method [H. Takahashi et al., J. Chem. Phys. 143, 084104 (2015)] referred to as exchange-core function (ECF) approach, to compute exchange repulsion E{sub ex} between solute and solvent in the framework of the quantum mechanical (QM)/molecular mechanical (MM) method. The ECF, represented with a Slater function, plays an essential role in determining E{sub ex} on the basis of the overlap model. In the work of Takahashi et al. [J. Chem. Phys. 143, 084104 (2015)], it was demonstrated that our approach is successful in computing the hydrogen bond energies of minimal QM/MM systems includingmore » a cationic QM solute. We provide in this paper the extension of the ECF approach to the free energy calculation in condensed phase QM/MM systems by combining the ECF and the QM/MM-ER approach [H. Takahashi et al., J. Chem. Phys. 121, 3989 (2004)]. By virtue of the theory of solutions in energy representation, the free energy contribution δμ{sub ex} from the exchange repulsion was naturally formulated. We found that the ECF approach in combination with QM/MM-ER gives a substantial improvement on the calculation of the hydration free energy of a hydronium ion. This can be attributed to the fact that the ECF reasonably realizes the contraction of the electron density of the cation due to the deficit of an electron.« less
PDQ-8 reference manual (LWBR development program)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pfiefer, C J; Spitz, C J
1978-05-01
The PDQ-8 program is designed to solve the neutron diffusion, depletion problem in one, two, or three dimensions on the CDC-6600 and CDC-7600 computers. The three dimensional spatial calculation may be either explicit or discontinuous trial function synthesis. Up to five lethargy groups are permitted. The fast group treatment may be simplified P(3), and the thermal neutrons may be represented by a single group or a pair of overlapping groups. Adjoint, fixed source, one iteration, additive fixed source, eigenvalue, and boundary value calculations may be performed. The HARMONY system is used for cross section variation and generalized depletion chain solutions.more » The depletion is a combination gross block depletion for all nuclides as well as a fine block depletion for a specified subset of the nuclides. The geometries available include rectangular, cylindrical, spherical, hexagonal, and a very general quadrilateral geometry with diagonal interfaces. All geometries allow variable mesh in all dimensions. Various control searches as well as temperature and xenon feedbacks are provided. The synthesis spatial solution time is dependent on the number of trial functions used and the number of gross blocks. The PDQ-8 program is used at Bettis on a production basis for solving diffusion--depletion problems. The report describes the various features of the program and then separately describes the input required to utilize these features.« less
Tillett, Richard L.; Wheatley, Matthew D.; Tattersall, Elizabeth A.R.; Schlauch, Karen A.; Cramer, Grant R.; Cushman, John C.
2014-01-01
Summary Chilling and freezing can reduce significantly vine survival and fruit set in Vitis vinifera wine grape. To overcome such production losses, a recently identified grapevine C-repeat binding factor (CBF) gene, VvCBF4, was overexpressed in grape vine cv. “Freedom” and found to improve freezing survival and reduced freezing-induced electrolyte leakage by up to 2°C in non-cold-acclimated vines. In addition, overexpression of this transgene caused a reduced growth phenotype similar to that observed for CBF overexpression in Arabidopsis and other species. Both freezing tolerance and reduced growth phenotypes were manifested in a transgene dose-dependent manner. To understand the mechanistic basis of VvCBF4 transgene action, one transgenic line (9–12) was genotyped using microarray-based mRNA expression profiling. Forty-seven and 12 genes were identified in unstressed transgenic shoots with either a greater than 1.5-fold increase or decrease in mRNA abundance, respectively. Comparison of mRNA changes with characterized CBF regulons in woody and herbaceous species revealed partial overlaps suggesting that CBF-mediated cold acclimation responses are widely conserved. Putative VvCBF4-regulon targets included genes with functions in cell wall structure, lipid metabolism, epicuticular wax formation, and stress-responses suggesting that the observed cold tolerance and dwarf phenotypes are the result of a complex network of diverse functional determinants. PMID:21914113
CA1 subfield contributions to memory integration and inference
Schlichting, Margaret L.; Zeithamova, Dagmar; Preston, Alison R.
2014-01-01
The ability to combine information acquired at different times to make novel inferences is a powerful function of episodic memory. One perspective suggests that by retrieving related knowledge during new experiences, existing memories can be linked to the new, overlapping information as it is encoded. The resulting memory traces would thus incorporate content across event boundaries, representing important relationships among items encountered during separate experiences. While prior work suggests that the hippocampus is involved in linking memories experienced at different times, the involvement of specific subfields in this process remains unknown. Using both univariate and multivariate analyses of high-resolution functional magnetic resonance imaging (fMRI) data, we localized this specialized encoding mechanism to human CA1. Specifically, right CA1 responses during encoding of events that overlapped with prior experience predicted subsequent success on a test requiring inferences about the relationships among events. Furthermore, we employed neural pattern similarity analysis to show that patterns of activation evoked during overlapping event encoding were later reinstated in CA1 during successful inference. The reinstatement of CA1 patterns during inference was specific to those trials that were performed quickly and accurately, consistent with the notion that linking memories during learning facilitates novel judgments. These analyses provide converging evidence that CA1 plays a unique role in encoding overlapping events and highlight the dynamic interactions between hippocampal-mediated encoding and retrieval processes. More broadly, our data reflect the adaptive nature of episodic memories, in which representations are derived across events in anticipation of future judgments. PMID:24888442
The basis function approach for modeling autocorrelation in ecological data
Hefley, Trevor J.; Broms, Kristin M.; Brost, Brian M.; Buderman, Frances E.; Kay, Shannon L.; Scharf, Henry; Tipton, John; Williams, Perry J.; Hooten, Mevin B.
2017-01-01
Analyzing ecological data often requires modeling the autocorrelation created by spatial and temporal processes. Many seemingly disparate statistical methods used to account for autocorrelation can be expressed as regression models that include basis functions. Basis functions also enable ecologists to modify a wide range of existing ecological models in order to account for autocorrelation, which can improve inference and predictive accuracy. Furthermore, understanding the properties of basis functions is essential for evaluating the fit of spatial or time-series models, detecting a hidden form of collinearity, and analyzing large data sets. We present important concepts and properties related to basis functions and illustrate several tools and techniques ecologists can use when modeling autocorrelation in ecological data.
Sojoudi, Alireza; Goodyear, Bradley G
2016-12-01
Spontaneous fluctuations of blood-oxygenation level-dependent functional magnetic resonance imaging (BOLD fMRI) signals are highly synchronous between brain regions that serve similar functions. This provides a means to investigate functional networks; however, most analysis techniques assume functional connections are constant over time. This may be problematic in the case of neurological disease, where functional connections may be highly variable. Recently, several methods have been proposed to determine moment-to-moment changes in the strength of functional connections over an imaging session (so called dynamic connectivity). Here a novel analysis framework based on a hierarchical observation modeling approach was proposed, to permit statistical inference of the presence of dynamic connectivity. A two-level linear model composed of overlapping sliding windows of fMRI signals, incorporating the fact that overlapping windows are not independent was described. To test this approach, datasets were synthesized whereby functional connectivity was either constant (significant or insignificant) or modulated by an external input. The method successfully determines the statistical significance of a functional connection in phase with the modulation, and it exhibits greater sensitivity and specificity in detecting regions with variable connectivity, when compared with sliding-window correlation analysis. For real data, this technique possesses greater reproducibility and provides a more discriminative estimate of dynamic connectivity than sliding-window correlation analysis. Hum Brain Mapp 37:4566-4580, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Specialization and integration of functional thalamocortical connectivity in the human infant.
Toulmin, Hilary; Beckmann, Christian F; O'Muircheartaigh, Jonathan; Ball, Gareth; Nongena, Pumza; Makropoulos, Antonios; Ederies, Ashraf; Counsell, Serena J; Kennea, Nigel; Arichi, Tomoki; Tusor, Nora; Rutherford, Mary A; Azzopardi, Denis; Gonzalez-Cinca, Nuria; Hajnal, Joseph V; Edwards, A David
2015-05-19
Connections between the thalamus and cortex develop rapidly before birth, and aberrant cerebral maturation during this period may underlie a number of neurodevelopmental disorders. To define functional thalamocortical connectivity at the normal time of birth, we used functional MRI (fMRI) to measure blood oxygen level-dependent (BOLD) signals in 66 infants, 47 of whom were at high risk of neurocognitive impairment because of birth before 33 wk of gestation and 19 of whom were term infants. We segmented the thalamus based on correlation with functionally defined cortical components using independent component analysis (ICA) and seed-based correlations. After parcellating the cortex using ICA and segmenting the thalamus based on dominant connections with cortical parcellations, we observed a near-facsimile of the adult functional parcellation. Additional analysis revealed that BOLD signal in heteromodal association cortex typically had more widespread and overlapping thalamic representations than primary sensory cortex. Notably, more extreme prematurity was associated with increased functional connectivity between thalamus and lateral primary sensory cortex but reduced connectivity between thalamus and cortex in the prefrontal, insular and anterior cingulate regions. This work suggests that, in early infancy, functional integration through thalamocortical connections depends on significant functional overlap in the topographic organization of the thalamus and that the experience of premature extrauterine life modulates network development, altering the maturation of networks thought to support salience, executive, integrative, and cognitive functions.
Specialization and integration of functional thalamocortical connectivity in the human infant
Toulmin, Hilary; Beckmann, Christian F.; O'Muircheartaigh, Jonathan; Ball, Gareth; Nongena, Pumza; Makropoulos, Antonios; Ederies, Ashraf; Counsell, Serena J.; Kennea, Nigel; Arichi, Tomoki; Tusor, Nora; Rutherford, Mary A.; Azzopardi, Denis; Gonzalez-Cinca, Nuria; Hajnal, Joseph V.; Edwards, A. David
2015-01-01
Connections between the thalamus and cortex develop rapidly before birth, and aberrant cerebral maturation during this period may underlie a number of neurodevelopmental disorders. To define functional thalamocortical connectivity at the normal time of birth, we used functional MRI (fMRI) to measure blood oxygen level-dependent (BOLD) signals in 66 infants, 47 of whom were at high risk of neurocognitive impairment because of birth before 33 wk of gestation and 19 of whom were term infants. We segmented the thalamus based on correlation with functionally defined cortical components using independent component analysis (ICA) and seed-based correlations. After parcellating the cortex using ICA and segmenting the thalamus based on dominant connections with cortical parcellations, we observed a near-facsimile of the adult functional parcellation. Additional analysis revealed that BOLD signal in heteromodal association cortex typically had more widespread and overlapping thalamic representations than primary sensory cortex. Notably, more extreme prematurity was associated with increased functional connectivity between thalamus and lateral primary sensory cortex but reduced connectivity between thalamus and cortex in the prefrontal, insular and anterior cingulate regions. This work suggests that, in early infancy, functional integration through thalamocortical connections depends on significant functional overlap in the topographic organization of the thalamus and that the experience of premature extrauterine life modulates network development, altering the maturation of networks thought to support salience, executive, integrative, and cognitive functions. PMID:25941391
Leclerc, Arnaud; Carrington, Tucker
2014-05-07
We propose an iterative method for computing vibrational spectra that significantly reduces the memory cost of calculations. It uses a direct product primitive basis, but does not require storing vectors with as many components as there are product basis functions. Wavefunctions are represented in a basis each of whose functions is a sum of products (SOP) and the factorizable structure of the Hamiltonian is exploited. If the factors of the SOP basis functions are properly chosen, wavefunctions are linear combinations of a small number of SOP basis functions. The SOP basis functions are generated using a shifted block power method. The factors are refined with a rank reduction algorithm to cap the number of terms in a SOP basis function. The ideas are tested on a 20-D model Hamiltonian and a realistic CH3CN (12 dimensional) potential. For the 20-D problem, to use a standard direct product iterative approach one would need to store vectors with about 10(20) components and would hence require about 8 × 10(11) GB. With the approach of this paper only 1 GB of memory is necessary. Results for CH3CN agree well with those of a previous calculation on the same potential.