Science.gov

Sample records for overlapping chromosomal regions

  1. Automatic segmentation of overlapping and touching chromosomes

    NASA Astrophysics Data System (ADS)

    Yuan, Zhiqiang; Chen, Xiaohua; Zhang, Renli; Yu, Chang

    2001-09-01

    This paper describes a technique to segment overlapping and touching chromosomes of human metaphase cells. Automated chromosome classification has been an important pattern recognition problem for decades, numerous attempts were made in the past to characterize chromosome band patterns. But successful separation between touching and overlapping chromosomes is vital for correct classification. Since chromosomes are non-rigid objects, common methods for separation between touching chromosomes are not usable. We proposed a method using shape concave and convex information, topology analysis information, and band pale paths for segmentation of touching and overlapping chromosomes. To detect shape concave and convex information, we should first pre-segment the chromosomes and get the edge of overlapping and touching chromosomes. After filtering the original image using edge-preserving filter, we adopt the Otsu's segmentation method and extract the boundary of chromosomes. Hence the boundary can be used for segment the overlapping and touching chromosomes by detecting the concave and convex information based on boundary information. Most of the traditional boundary-based algorithms detect corners based on two steps: the first step is to acquire the smoothed version of curvature at every point along the contour, and the second step is to detect the positions where curvature maximal occur and threshold the curvature as corner points. Recently wavelet transform has been adopted into corner detection algorithms. Since the metaphase overlapping chromosomes has multi-scale corners, we adopt a multi-scale corner detection method based on Hua's method for corner detection. For touching chromosomes, it is convenient to split them using pale paths. Starting from concave corner points, a search algorithm is represented. The searching algorithm traces three pixels into the object in the direction of the normal vector in order to avoid stopping at the initial boundary until it

  2. A novel approach for efficient extrication of overlapping chromosomes in automated karyotyping.

    PubMed

    Munot, Mousami V; Mukherjee, Jayanta; Joshi, Madhuri

    2013-12-01

    Since the introduction of the automated karyotyping systems, segmentation and classification of touching and overlapping chromosomes in the metaphase images are major challenges. The earlier reported techniques for disentangling the chromosome overlaps have limited success and use only color information in case of multispectral imaging. Most of them are restricted to separation of single overlap of two chromosomes. This paper introduces a novel algorithm to extricate overlapping chromosomes in a metaphase image. The proposed technique uses Delaunay triangulation to automatically identify the number of overlaps in a cluster followed by the detection of the appropriate cut-points. The banding information on the overlapped region further resolves the set of overlapping chromosomes with the identified cut-points. The proposed algorithm has been tested with four data sets of 60 overlapping cases, obtained from publically available databases and private genetic labs. The experimental results provide an overall accuracy of 75–100 % for resolving the cluster of 1–6 overlaps.

  3. Genomic and functional overlap between somatic and germline chromosomal rearrangements.

    PubMed

    van Heesch, Sebastiaan; Simonis, Marieke; van Roosmalen, Markus J; Pillalamarri, Vamsee; Brand, Harrison; Kuijk, Ewart W; de Luca, Kim L; Lansu, Nico; Braat, A Koen; Menelaou, Androniki; Hao, Wensi; Korving, Jeroen; Snijder, Simone; van der Veken, Lars T; Hochstenbach, Ron; Knegt, Alida C; Duran, Karen; Renkens, Ivo; Alekozai, Najla; Jager, Myrthe; Vergult, Sarah; Menten, Björn; de Bruijn, Ewart; Boymans, Sander; Ippel, Elly; van Binsbergen, Ellen; Talkowski, Michael E; Lichtenbelt, Klaske; Cuppen, Edwin; Kloosterman, Wigard P

    2014-12-24

    Genomic rearrangements are a common cause of human congenital abnormalities. However, their origin and consequences are poorly understood. We performed molecular analysis of two patients with congenital disease who carried de novo genomic rearrangements. We found that the rearrangements in both patients hit genes that are recurrently rearranged in cancer (ETV1, FOXP1, and microRNA cluster C19MC) and drive formation of fusion genes similar to those described in cancer. Subsequent analysis of a large set of 552 de novo germline genomic rearrangements underlying congenital disorders revealed enrichment for genes rearranged in cancer and overlap with somatic cancer breakpoints. Breakpoints of common (inherited) germline structural variations also overlap with cancer breakpoints but are depleted for cancer genes. We propose that the same genomic positions are prone to genomic rearrangements in germline and soma but that timing and context of breakage determines whether developmental defects or cancer are promoted. PMID:25497101

  4. Detection of amplified or deleted chromosomal regions

    DOEpatents

    Stokke, T.; Pinkel, D.; Gray, J.W.

    1995-12-05

    The present invention relates to in situ hybridization methods for the identification of new chromosomal abnormalities associated with various diseases. In particular, it provides probes which are specific to a region of amplification in chromosome 20. 3 figs.

  5. Detection of amplified or deleted chromosomal regions

    SciTech Connect

    Stokke, Trond; Pinkel, Daniel; Gray, Joe W.

    1995-01-01

    The present invention relates to in situ hybridization methods for the identification of new chromosomal abnormalities associated with various diseases. In particular, it provides probes which are specific to a region of amplification in chromosome 20.

  6. Detection Of Amplified Or Deleted Chromosomal Regions

    SciTech Connect

    Stokke, Trond , Pinkel, Daniel , Gray, Joe W.

    1997-05-27

    The present invention relates to in situ hybridization methods for the identification of new chromosomal abnormalities associated with various diseases. In particular, it provides probes which are specific to a region of amplification in chromosome 20.

  7. Detecting overlapping instances in microscopy images using extremal region trees.

    PubMed

    Arteta, Carlos; Lempitsky, Victor; Noble, J Alison; Zisserman, Andrew

    2016-01-01

    In many microscopy applications the images may contain both regions of low and high cell densities corresponding to different tissues or colonies at different stages of growth. This poses a challenge to most previously developed automated cell detection and counting methods, which are designed to handle either the low-density scenario (through cell detection) or the high-density scenario (through density estimation or texture analysis). The objective of this work is to detect all the instances of an object of interest in microscopy images. The instances may be partially overlapping and clustered. To this end we introduce a tree-structured discrete graphical model that is used to select and label a set of non-overlapping regions in the image by a global optimization of a classification score. Each region is labeled with the number of instances it contains - for example regions can be selected that contain two or three object instances, by defining separate classes for tuples of objects in the detection process. We show that this formulation can be learned within the structured output SVM framework and that the inference in such a model can be accomplished using dynamic programming on a tree structured region graph. Furthermore, the learning only requires weak annotations - a dot on each instance. The candidate regions for the selection are obtained as extremal region of a surface computed from the microscopy image, and we show that the performance of the model can be improved by considering a proxy problem for learning the surface that allows better selection of the extremal regions. Furthermore, we consider a number of variations for the loss function used in the structured output learning. The model is applied and evaluated over six quite disparate data sets of images covering: fluorescence microscopy, weak-fluorescence molecular images, phase contrast microscopy and histopathology images, and is shown to exceed the state of the art in performance. PMID:25980675

  8. Discordant phenotype of two overlapping deletions involving the PAX3 gene in chromosome 2q35.

    PubMed

    Pasteris, N G; Trask, B J; Sheldon, S; Gorski, J L

    1993-07-01

    Waardenburg syndrome (WS), the most common form of inherited congenital deafness, is a pleiotropic, autosomal dominant condition with variable penetrance and expressivity. WS is clinically and genetically heterogeneous. The basis for the phenotypic variability observed among and between WS families is unknown. However, mutations within the paired-box gene, PAX3, have been associated with a subset of WS patients. In this report we use cytogenetic and molecular genetic techniques to study a patient with WS type 3, a form of WS consisting of typical WS type 1 features plus mental retardation, microcephaly, and severe skeletal anomalies. Our results show that the WS3 patient has a de novo paternally derived deletion, del (2)(q35q36), that spans the genetic loci PAX3 and COL4A3. A molecular analysis of a chromosome 2 deletional mapping panel maps the PAX3 locus to 2q35 and suggests the locus order: centromere-(INHA, DES)-PAX3-COL4A3-(ALPI, CHRND)-telomere. Our analyses also show that a patient with a cleft palate and lip pits, but lacking diagnostic WS features, has a deletion, del (2)(q33q35), involving the PAX3 locus. This result suggests that not all PAX3 mutations are associated with a WS phenotype and that additional regional loci may modify or regulate the PAX3 locus and/or the development of a WS phenotype. PMID:8103404

  9. Detection of multiple velocity components in partially overlapping emitting regions

    NASA Astrophysics Data System (ADS)

    Mertens, F.; Lobanov, A. P.

    2016-03-01

    Context. Velocity measurements made from multiple-epoch astronomical images of evolving objects with optically thin continuum emission (e.g. as relativistic jets or expanding supernova shells) may be confused as a result of the overlap of semi-transparent features moving at different speeds. Aims: Multi-scale wavelet decomposition can be effectively applied to identify and track such overlapping features, provided that their respective structural responses can be separated over the spatial scales used for the decomposition. Methods: We developed a new method that combines the stacked cross-correlation with the wavelet-based image segmentation and evaluation (WISE) technique of decomposition of two-dimensional structures, to separate and track dominant spatial responses of overlapping evolving features. Results: The method is tested on a set of simulated images of a stratified relativistic jet, demonstrating the robust detection of both the faster spine and the slower sheath speeds. The method is applied to mutliple-epoch images from the MOJAVE survey, revealing two different superluminal streams inside the jet in 3C 273 and the acceleration of the flow in 3C 120. Conclusions: The method can be applied to densely monitored objects with composite structural evolution such as the parsec-scale jet in M 87 or heavily resolved expanding supernova shells.

  10. Preparative in situ hybridization: Selection of chromosome region-specific libraries on mitotic chromosomes

    SciTech Connect

    Hozier, J.; Graham, R.; Westfall, T.; Davis, L. ); Siebert, P. )

    1994-02-01

    The authors have developed preparative in situ hybridization (Prep-ISH) of complex DNA populations to mitotic chromosomes as a means of generating chromosome region-specific DNA subpopulations. Prep-ISH is a combination of two cytogenetic techniques: in situ hybridization of DNA molecules to mitotic chromosomes and chromosome microdissection. Here, they present test cases demonstrating the feasibility of this approach on mouse and human genomes, using single nuclei, single chromosomes, or single chromosomal subregions to assess sensitivity, specificity, and representation of the Prep-ISH technique. Prep-ISH has a number of applications in studies of gene expression and genome organization, including efficient cytogenetic sorting of tissue-specific cDNAs and genomic DNA libraries. In addition, Prep-ISH is likely to dramatically reduce the number of candidate genes to aid in gene discovery efforts and to improve efficiency of developing transcription maps and YAC and cosmid contigs through defined cytogenetic regions. 34 refs., 4 figs.

  11. A large dispersed chromosomal region required for chromosome segregation in sporulating cells of Bacillus subtilis.

    PubMed

    Wu, Ling Juan; Errington, Jeff

    2002-08-01

    The cis-acting sequences required for chromosome segregation are poorly understood in most organisms, including bacteria. Sporulating cells of Bacillus subtilis undergo an unusual asymmetric cell division during which the origin of DNA replication (oriC) region of the chromosome migrates to an extreme polar position. We have now characterized the sequences required for this migration. We show that the previously characterized soj-spo0J chromosome segregation system is not essential for chromosome movement to the cell pole, so this must be driven by an additional segregation mechanism. Observations on a large set of precisely engineered chromosomal inversions and translocations have identified a polar localization region (PLR), which lies approximately 150-300 kbp to the left of oriC. Surprisingly, oriC itself has no involvement in this chromosome segregation system. Dissection of the PLR showed that it has internal functional redundancy, reminiscent of the large diffuse centromeres of most eukaryotic cells.

  12. Deletion of chromosomal region 13q14.3 in childhood acute lymphoblastic leukemia.

    PubMed

    Cavé, H; Avet-Loiseau, H; Devaux, I; Rondeau, G; Boutard, P; Lebrun, E; Méchinaud, F; Vilmer, E; Grandchamp, B

    2001-03-01

    Deletion of the 13q14 chromosomal region is frequent in B cell chronic lymphocytic leukemia (B-CLL) and is believed to inactivate a tumor supressor gene (TSG) next to RB1. We studied microsatellite markers spanning the 13q14 chromosomal region in 138 children with acute lymphoblastic leukemia (ALL). Allelic loss was demonstrated in six cases (4.3%). Deletion did not include RB1 in two cases. In five patients, the deleted region overlapped that described in B-CLL. A sixth patient harbored a smaller deletion, slightly more telomeric than minimal deleted regions reported in B-CLL. Apparent differences in the delineation of the minimal deleted region could be due to the fact that the putative TSG is a very large gene, with some deletions affecting only a part of it. Our present findings suggest that at least some of its exons lie within a region of less than 100 kb more telomeric that previously thought.

  13. Chromosome 16-specific repetitive DNA sequences that map to chromosomal regions known to undergo breakage/rearrangement in leukemia cells.

    PubMed

    Stallings, R L; Doggett, N A; Okumura, K; Ward, D C

    1992-06-01

    Human chromosome 16-specific low-abundance repetitive (CH16LAR) DNA sequences have been identified during the course of constructing a physical map of this chromosome. At least three CH16LAR sequences exist and they are interspersed, in small clusters, over four regions that constitute more than 5% of the chromosome. CH16LAR sequences were observed in one unusually large cosmid contig (number 55), where the ordering of clones was difficult because these sequences led to false overlaps between noncontiguous clones. Contig 55 contains 78 clones, or approximately 2% of all the clones contained within the present cosmid contig physical map. Fluorescent in situ hybridization of multiple clones, including cosmid and YAC contig 55 clones, mapped the four CH16LAR-rich regions to bands p13, p12, p11, and q22. These regions are of biological interest since the pericentric inversion and the interhomologue translocation breakpoints commonly found in acute nonlymphocytic leukemia (ANLL) subtype M4 fall within these bands. Sequence analysis of a 2.2-kb HindIII fragment from a cosmid containing a CH16LAR sequence indicated that one of the CH16LAR elements is similar to a minisatellite sequence in that the core repeat is only 40 bp in length. Additional characterization of other repetitive elements is in progress.

  14. Regional mapping of loci from human chromosome 2q to sheep chromosome 2q

    SciTech Connect

    Ansari, H.A.; Pearce, P.D.; Maher, D.W.; Malcolm, A.A.; Wood, N.J.; Phua, S.H.; Broad, T.E. )

    1994-03-01

    The human chromosome 2q loci, fibronectin 1 (FN1), the [alpha]1 chain of type III collagen (COL3A1), and the [delta] subunit of the muscle acetylcholine receptor (CHRND) have been regionally assigned to sheep chromosome 2q by in situ hybridization. COL3A1 is pericentromeric (2q12-q21), while FN1 and CHRND are in the subterminal region at 2q41-q44 and 2q42-qter, respectively. The mapping of FN1 assigns the sheep synthenic group U11, which contains FN1, villin 1 (VIL1), isocitrate dehydrogenase 1 (IDH1), and [gamma] subunit of the muscle acetylcholine receptor (CHRNG), to sheep chromosome 2q. Inhibin-[alpha] (INHA) is also assigned to sheep chromosome 2q as FN1 and INHA compose sheep linkage group 3. These seven loci are members of a conserved chromosomal segment in human, mouse, and sheep. 23 refs., 2 figs., 1 tab.

  15. Hypermethylated Chromosome Regions in Nine Fish Species with Heteromorphic Sex Chromosomes.

    PubMed

    Schmid, Michael; Steinlein, Claus; Yano, Cassia F; Cioffi, Marcelo B

    2015-01-01

    Sites and amounts of 5-methylcytosine (5-MeC)-rich chromosome regions were detected in the karyotypes of 9 Brazilian species of Characiformes fishes by indirect immunofluorescence using a monoclonal anti-5-MeC antibody. These species, belonging to the genera Leporinus, Triportheus and Hoplias, are characterized by highly differentiated and heteromorphic ZW and XY sex chromosomes. In all species, the hypermethylated regions are confined to constitutive heterochromatin. The number and chromosome locations of hypermethylated heterochromatic regions in the karyotypes are constant and species-specific. Generally, heterochromatic regions that are darkly stained by the C-banding technique are distinctly hypermethylated, but several of the brightly fluorescing hypermethylated regions merely exhibit moderate or faint C-banding. The ZW and XY sex chromosomes of all 9 analyzed species also show species-specific heterochromatin hypermethylation patterns. The analysis of 5-MeC-rich chromosome regions contributes valuable data for comparative cytogenetics of closely related species and highlights the dynamic process of differentiation operating in the repetitive DNA fraction of sex chromosomes.

  16. The X chromosome of monotremes shares a highly conserved region with the eutherian and marsupial X chromosomes despite the absence of X chromosome inactivation

    SciTech Connect

    Watson, J.M.; Spencer, J.A.; Graves, J.A.M. ); Riggs, A.D. )

    1990-09-01

    Eight genes, located on the long arm of the human X chromosome and present on the marsupial X chromosome, were mapped by in situ hybridization to the chromosomes of the platypus Ornithorhynchus anatinus, one of the three species of monotreme mammals. All were located on the X chromosome. The authors conclude that the long arm of the human X chromosome represents a highly conserved region that formed part of the X chromosome in a mammalian ancestor at least 150 million years ago. Since three of these genes are located on the long arm of the platypus X chromosome, which is G-band homologous to the Y chromosome and apparently exempt from X chromosome inactivation, the conservation of this region has evidently not depended on isolation by X-Y chromosome differentiation and X chromosome inactivation.

  17. The X chromosome of monotremes shares a highly conserved region with the eutherian and marsupial X chromosomes despite the absence of X chromosome inactivation.

    PubMed

    Watson, J M; Spencer, J A; Riggs, A D; Graves, J A

    1990-09-01

    Eight genes, located on the long arm of the human X chromosome and present on the marsupial X chromosome, were mapped by in situ hybridization to the chromosomes of the platypus Ornithorhynchus anatinus, one of the three species of monotreme mammals. All were located on the X chromosome. We conclude that the long arm of the human X chromosome represents a highly conserved region that formed part of the X chromosome in a mammalian ancestor at least 150 million years ago. Since three of these genes are located on the long arm of the platypus X chromosome, which is G-band homologous to the Y chromosome and apparently exempt from X chromosome inactivation, the conservation of this region has evidently not depended on isolation by X-Y chromosome differentiation and X chromosome inactivation.

  18. Isolation and characterization of two overlapping cosmid clones from the 4q35 region, near the facioscapulohumeral muscular dystrophy locus

    SciTech Connect

    Deidda, G.; Grisanti, P.; Vigneti, E.

    1994-09-01

    The gene for facioscapulohumeral muscular dystrophy (FSHD) has been localized by linkage analysis to the 4q35 region. The most telomeric p13E-11 prove has been shown to detect 4q35 DNA rearrangements in both sporadic and familial cases of the disease. With the aim of constructing a detailed physical map of the 4q35 region and searching for the mutant gene, we used p13E-11 probe to isolate cosmid clones from a human genomic library in a pCos-EMBL 2 vector. Two positive clones were isolated, clones 3 and 5, which partially overlap and carry human genomic inserts of 42 and 45 kb, respectively. The cosmids share a common region containing the p13E-11 region and a stretch of KpnI units consisting of 3.2 kb tandemly repeated sequences (about 10). The restriction maps were constructed using the following enzymes: Bam HI, BgIII, Eco RI, EcoRV, KpnI and Sfi I. Clone 3 extends 4 kb upstream of C5 and stops within the Kpn repeats. Clone 5 extends 4 kb downstream from the Kpn repeats and it presents an additional EcoRI site. Clone 5 contains a stretch of Kpn sequences of nearly 32 kb, corresponding to 10 Kpn repeats; clone 3 contains a stretch of 29 kb corresponding to 9 Kpn repeats, as determined by PFGE analysis of partial digestion of the clones. Clone 5 seems to contain the entire Eco RI region prone to rearrangements in FSHD patients. From clone 5 several subclones were obtained, from the Kpn region and from the region spanning from the last Kpn repeat to the cloning site. No single copy sequences were detected. Subclones from the 3{prime} end region contain beta-satellite or Sau3A-like sequences. In situ hybridization with the whole C5 cosmid shows hybridization signals at the tip of chromosome 4 (4q35) and chromosome 10 (10q26), in the pericentromeric region of chromosome 1 (1q12) and in the p12 region of the acrocentric chromosomes (chr. 21, 22, 13, 14, 15).

  19. A Syntenic Region Conserved from Fish to Mammalian X Chromosome

    PubMed Central

    Guan, Guijun; Yi, Meisheng; Kobayashi, Tohru; Hong, Yunhan; Nagahama, Yoshitaka

    2014-01-01

    Sex chromosomes bearing the sex-determining gene initiate development along the male or female pathway, no matter which sex is determined by XY male or ZW female heterogamety. Sex chromosomes originate from ancient autosomes but evolved rapidly after the acquisition of sex-determining factors which are highly divergent between species. In the heterogametic male system (XY system), the X chromosome is relatively evolutionary silent and maintains most of its ancestral genes, in contrast to its Y counterpart that has evolved rapidly and degenerated. Sex in a teleost fish, the Nile tilapia (Oreochromis niloticus), is determined genetically via an XY system, in which an unpaired region is present in the largest chromosome pair. We defined the differences in DNA contents present in this chromosome with a two-color comparative genomic hybridization (CGH) and the random amplified polymorphic DNA (RAPD) approach in XY males. We further identified a syntenic segment within this region that is well conserved in several teleosts. Through comparative genome analysis, this syntenic segment was also shown to be present in mammalian X chromosomes, suggesting a common ancestral origin of vertebrate sex chromosomes. PMID:25506037

  20. Mucinous spindle and tubular renal cell carcinoma: analysis of chromosomal aberration pattern of low-grade, high-grade, and overlapping morphologic variant with papillary renal cell carcinoma.

    PubMed

    Peckova, Kvetoslava; Martinek, Petr; Sperga, Maris; Montiel, Delia Perez; Daum, Ondrej; Rotterova, Pavla; Kalusová, Kristýna; Hora, Milan; Pivovarcikova, Kristýna; Rychly, Boris; Vranic, Semir; Davidson, Whitney; Vodicka, Josef; Dubová, Magdaléna; Michal, Michal; Hes, Ondrej

    2015-08-01

    The chromosomal numerical aberration pattern in mucinous tubular and spindle renal cell carcinoma (MTSRCC) is referred to as variable with frequent gains and losses. The objectives of this study are to map the spectrum of chromosomal aberrations (extent and location) in a large cohort of the cases and relate these findings to the morphologic variants of MTSRCC. Fifty-four MTSRCCs with uniform morphologic pattern were selected (of 133 MTSRCCs available in our registry) and divided into 3 groups: classic low-grade MTSRCC (Fuhrman nucleolar International Society of Urological Pathology grade 2), high-grade MTSRCC (grade 3), and overlapping MTSRCC with papillary renal cell carcinoma (RCC) morphology. Array comparative genomic hybridization analysis was applied to 16 cases in which DNA was well preserved. Four analyzable classic low-grade MTSRCCs showed multiple losses affecting chromosomes 1, 4, 8, 9, 14, 15, and 22. No chromosomal gains were found. Four analyzable cases of MTSRCC showing overlapping morphology with PRCC displayed a more variable pattern including normal chromosomal status; losses of chromosomes 1, 6, 8, 9, 14, 15, and 22; and gains of 3, 7, 16, and 17. The group of 4 high-grade MTSRCCs exhibited a more uniform chromosomal aberration pattern with losses of chromosomes 1, 4, 6, 8, 9, 13, 14, 15, and 22 and without any gains detected. (1) MTSRCC, both low-grade and high-grade, shows chromosomal losses (including 1, 4, 6, 8, 9, 13, 14, 15, and 22) in all analyzable cases; this seems to be the most frequent chromosomal numerical aberration in this type of RCC. (2) Cases with overlapping morphologic features (MTSRCC and PRCC) showed a more variable pattern with multiple losses and gains, including gains of chromosomes 7 and 17 (2 cases). This result is in line with previously published morphologic and immunohistochemical studies that describe the broad morphologic spectrum of MTSRCC, with changes resembling papillary RCC. (3) The diagnosis of MTSRCC in

  1. Comparative analysis of the gene-dense ACHE/TFR2 region on human chromosome 7q22 with the orthologous region on mouse chromosome 5

    PubMed Central

    Wilson, Michael D.; Riemer, Cathy; Martindale, Duane W.; Schnupf, Pamela; Boright, Andrew P.; Cheung, Tony L.; Hardy, Daniel M.; Schwartz, Scott; Scherer, Stephen W.; Tsui, Lap-Chee; Miller, Webb; Koop, Ben F.

    2001-01-01

    Chromosome 7q22 has been the focus of many cytogenetic and molecular studies aimed at delineating regions commonly deleted in myeloid leukemias and myelodysplastic syndromes. We have compared a gene-dense, GC-rich sub-region of 7q22 with the orthologous region on mouse chromosome 5. A physical map of 640 kb of genomic DNA from mouse chromosome 5 was derived from a series of overlapping bacterial artificial chromosomes. A 296 kb segment from the physical map, spanning Ache to Tfr2, was compared with 267 kb of human sequence. We identified a conserved linkage of 12 genes including an open reading frame flanked by Ache and Asr2, a novel cation-chloride cotransporter interacting protein Cip1, Ephb4, Zan and Perq1. While some of these genes have been previously described, in each case we present new data derived from our comparative sequence analysis. Adjacent unfinished sequence data from the mouse contains an orthologous block of 10 additional genes including three novel cDNA sequences that we subsequently mapped to human 7q22. Methods for displaying comparative genomic information, including unfinished sequence data, are becoming increasingly important. We supplement our printed comparative analysis with a new, Web-based program called Laj (local alignments with java). Laj provides interactive access to archived pairwise sequence alignments via the WWW. It displays synchronized views of a dot-plot, a percent identity plot, a nucleotide-level local alignment and a variety of relevant annotations. Our mouse–human comparison can be viewed at http://web.uvic.ca/~bioweb/laj.html. Laj is available at http://bio.cse.psu.edu/, along with online documentation and additional examples of annotated genomic regions. PMID:11239002

  2. Discovery of Eight z ∼ 6 Quasars in the Sloan Digital Sky Survey Overlap Regions

    NASA Astrophysics Data System (ADS)

    Jiang, Linhua; McGreer, Ian D.; Fan, Xiaohui; Bian, Fuyan; Cai, Zheng; Clément, Benjamin; Wang, Ran; Fan, Zhou

    2015-06-01

    We present the discovery of eight quasars at z∼ 6 identified in the Sloan Digital Sky Survey (SDSS) overlap regions. Individual SDSS imaging runs have some overlap with each other, leading to repeat observations over an area spanning >4000 deg2 (more than one-fourth of the total footprint). These overlap regions provide a unique data set that allows us to select high-redshift quasars more than 0.5 mag fainter in the z band than those found with the SDSS single-epoch data. Our quasar candidates were first selected as i-band dropout objects in the SDSS imaging database. We then carried out a series of follow-up observations in the optical and near-IR to improve photometry, remove contaminants, and identify quasars. The eight quasars reported here were discovered in a pilot study utilizing the overlap regions at high galactic latitude (|b|\\gt 30{}^\\circ ). These quasars span a redshift range of 5.86\\lt z\\lt 6.06 and a flux range of 19.3\\lt {{z}AB}\\lt 20.6 mag. Five of them are fainter than {{z}AB}=20 mag, the typical magnitude limit of z∼ 6 quasars used for the SDSS single-epoch images. In addition, we recover eight previously known quasars at z∼ 6 that are located in the overlap regions. These results validate our procedure for selecting quasar candidates from the overlap regions and confirming them with follow-up observations, and they provide guidance to a future systematic survey over all SDSS imaging regions with repeat observations.

  3. Simultaneous Visualization of Covalent and Noncovalent Interactions Using Regions of Density Overlap

    PubMed Central

    2014-01-01

    We introduce a density-dependent bonding descriptor that enables simultaneous visualization of both covalent and noncovalent interactions. The proposed quantity is tailored to reveal the regions of space, where the total electron density results from a strong overlap of shell, atomic, or molecular densities. We show that this approach is successful in describing a variety of bonding patterns as well as nonbonding contacts. The Density Overlap Regions Indicator (DORI) analysis is also exploited to visualize and quantify the concept of electronic compactness in supramolecular chemistry. In particular, the scalar field is used to compare the compactness in molecular crystals, with a special emphasis on quaterthiophene derivatives with enhanced charge mobilities. PMID:25221443

  4. [Fluorescence in situ hybridization with DNA probes derived from individual chromosomes and chromosome regions].

    PubMed

    Bogomolov, A G; Karamysheva, T V; Rubtsov, N B

    2014-01-01

    A significant part of the eukaryotic genomes consists of repetitive DNA, which can form large clusters or distributed along euchromatic chromosome regions. Repeats located in chromosomal regions make a problem in analysis and identification of the chromosomal material with fluorescence in situ hybridization (FISH). In most cases, the identification of chromosome regions using FISH requires detection of the signal produced with unique sequences. The feasibility, advantages and disadvantages of traditional methods of suppression of repetitive DNA hybridization, methods of repeats-free probe construction and methods of chromosome-specific DNA sequences visualization using image processing of multicolor FISH results are considered in the paper. The efficiency of different techniques for DNA probe generation, different FISH protocols, and image processing of obtained microscopic images depends on the genomic size and structure of analyzing species. This problem was discussed and different approaches were considered for the analysis of the species with very large genome, rare species and species which specimens are too small in size to obtain the amount of genomic and Cot-1 DNA required for suppression of repetitive DNA hybridization.

  5. A physical map of the polytenized region (101EF-102F) of chromosome 4 in Drosophila melanogaster.

    PubMed

    Locke, J; Podemski, L; Aippersbach, N; Kemp, H; Hodgetts, R

    2000-07-01

    Chromosome 4, the smallest autosome ( approximately 5 Mb in length) in Drosophila melanogaster contains two major regions. The centromeric domain ( approximately 4 Mb) is heterochromatic and consists primarily of short, satellite repeats. The remaining approximately 1.2 Mb, which constitutes the banded region (101E-102F) on salivary gland polytene chromosomes and contains the identified genes, is the region mapped in this study. Chromosome walking was hindered by the abundance of moderately repeated sequences dispersed along the chromosome, so we used many entry points to recover overlapping cosmid and BAC clones. In situ hybridization of probes from the two ends of the map to polytene chromosomes confirmed that the cloned region had spanned the 101E-102F interval. Our BAC clones comprised three contigs; one gap was positioned distally in 102EF and the other was located proximally at 102B. Twenty-three genes, representing about half of our revised estimate of the total number of genes on chromosome 4, were positioned on the BAC contigs. A minimal tiling set of the clones we have mapped will facilitate both the assembly of the DNA sequence of the chromosome and a functional analysis of its genes.

  6. A YAC-, P1, and cosmid-based physical map of the BRCA1 region on chromosome 17q21

    SciTech Connect

    Couch, F.J.; Castilla, L.H.; Brody, L.C.

    1995-01-01

    A familial early-onset breast cancer gene (BRCA1) has been localized to chromosome 17q21. To characterize this region and to aid in the identification of the BRCA1 gene, a physical map of a region of 1.0-1.5 Mb between the EDH17B1 and the PPY loci on chromosome 17q21 was generated. The physical map is composed of a yeast artificial chromosome (YAC) and P1 phage contig with one gap. The majority of the interval has also been converted to a cosmid contig. Twenty-three PCR-based sequence-tagged sites (STSs) were mapped to these contigs, thereby confirming the order and overlap of individual clones. This complex physical map of the BRCA1 region was used to isolate genes by a number of gene identification techniques and to generate transcript maps of the region. 32 refs., 4 figs.

  7. Chromosome region-specific libraries for human genome analysis

    SciTech Connect

    Kao, Fa-Ten.

    1992-08-01

    During the grant period progress has been made in the successful demonstration of regional mapping of microclones derived from microdissection libraries; successful demonstration of the feasibility of converting microclones with short inserts into yeast artificial chromosome clones with very large inserts for high resolution physical mapping of the dissected region; Successful demonstration of the usefulness of region-specific microclones to isolate region-specific cDNA clones as candidate genes to facilitate search for the crucial genes underlying genetic diseases assigned to the dissected region; and the successful construction of four region-specific microdissection libraries for human chromosome 2, including 2q35-q37, 2q33-q35, 2p23-p25 and 2p2l-p23. The 2q35-q37 library has been characterized in detail. The characterization of the other three libraries is in progress. These region-specific microdissection libraries and the unique sequence microclones derived from the libraries will be valuable resources for investigators engaged in high resolution physical mapping and isolation of disease-related genes residing in these chromosomal regions.

  8. Molecular definition of the smallest region of deletion overlap in the Wolf-Hirschhorn syndrome

    SciTech Connect

    Gandelman, K.Y.; Gibson, L.; Meyn, M.S.; Yang-Feng, T.L. )

    1992-09-01

    Wolf-Hirschhorn syndrome (WHS), associated with a deletion of chromosome 4p, is characterized by mental and growth retardation and typical dysmorphism. A girl with clinical features of WHS was found to carry a subtle deletion of chromosome 4p. Initially suggested by high-resolution chromosome analysis, her deletion was confirmed by fluorescence in situ hybridization (FISH) with cosmid probes, E13, and Y2, of D4S113. To delineate this 4p deletion, the authors performed a series of FISH and pulsed-field gel electrophoresis analysis by using probes from 4p16.3. A deletion of [approximately]2.5 Mb with the breakpoint at [approximately]80 kb distal to D4S43 was defined in this patient and appears to be the smallest WHS deletion so far identified. To further refine the WHS critical region, they have studied three unrelated patients with presumptive 4p deletions, two resulting from unbalanced segregations of parental chromosomal translocations and one resulting from an apparently de novo unbalanced translocation. Larger deletions were identified in two patients with WHS. One patient who did not clinically present with WHS had a smaller deletion that thus eliminates the distal 100-300 kb from the telomere as being part of the WHS region. This study has localized the WHS region to [approximately]2 MB between D4S43 and D4S142. 37 refs., 4 figs., 1 tab.

  9. Factors affecting the perception of luning in monocular regions of partial binocular overlap displays

    NASA Astrophysics Data System (ADS)

    Klymenko, Victor; Verona, Robert W.; Martin, John S.; Beasley, Howard H.; McLean, William E.

    1994-08-01

    Luning is a detrimental visual effect characterized by a subjective darkening of the visual field in the monocular regions of partial binocular overlap displays. The effect of a number of factors on the magnitude of luning was investigated. These factors include: (1) the convergent versus the divergent display modes for presenting a partial binocular overlapping field-of-view; (2) the display luminance level; (3) the placement of either black or white contours versus no (null) contours on the binocular overlap border; and (4) the increasing or decreasing of the luminance of the monocular side regions relative to the binocular overlap region. Eighteen Army student aviators served as subjects in a repeated measures design. The percentage of time luning was seen was the measure of the degree of luning. The results indicated that the divergent display mode systematically induced more luning than the convergent display mode under the null contour condition. Adding black contours reduced luning in both the convergent and divergent display modes, where the convergent mode retained its relatively lower magnitude of luning. The display luminance level had no effect on luning for the null or black contour conditions.

  10. Rapid generation of region-specific probes by chromosome microdissection: Application to the identification of chromosomal rearrangements

    SciTech Connect

    Trent, J.M.; Guan, X.Y.; Zang, J.; Meltzer, P.S. )

    1993-01-01

    The authors present results using a novel strategy for chromosome microdissection and direct in vitro amplification of specific chromosomal regions, to identify cryptic chromosome alterations, and to rapidly generate region-specific genomic probes. First, banded chromosomes are microdissected and directly PCR amplified by a procedure which eliminates microchemistry (Meltzer, et al., Nature Genetics, 1:24, 1992). The resulting PCR product can be used for several applications including direct labeling for fluorescent in situ hybridization (FISH) to normal metaphase chromosomes. A second application of this procedure is the extremely rapid generation of chromosome region-specific probes. This approach has been successfully used to determine the derivation of chromosome segments unidentifiable by standard chromosome banding analysis. In selected instances these probes have also been used on interphase nuclei and provides the potential for assessing chromosome abnormalities in a variety of cell lineages. The microdissection probes (which can be generated in <24 hours) have also been utilized in direct library screening and provide the possibility of acquiring a significant number of region-specific probes for any chromosome band. This procedure extends the limits of conventional cytogenetic analysis by providing an extremely rapid source of numerous band-specific probes, and by enabling the direct analysis of essentially any unknown chromosome region.

  11. Overlapping loss of heterozygosity by mitotic recombination on mouse chromosome 7F1-ter in skin carcinogenesis.

    PubMed Central

    Bianchi, A B; Navone, N M; Aldaz, C M; Conti, C J

    1991-01-01

    tumor suppressor gene linked to the Hbb locus in the 7F1-ter region of mouse chromosome 7, the functional inactivation of which may constitute a critical event in skin tumor progression, possibly during the malignant conversion stage. Images PMID:1909026

  12. Chromosome Rearrangements That Involve the Nucleolus Organizer Region in Neurospora

    PubMed Central

    Perkins, D. D.; Raju, N. B.; Barry, E. G.; Butler, D. K.

    1995-01-01

    In ~3% of Neurospora crassa rearrangements, part of a chromosome arm becomes attached to the nucleolus organizer region (NOR) at one end of chromosome 2 (linkage group V). Investigations with one inversion and nine translocations of this type are reported here. They appear genetically to be nonreciprocal and terminal. When a rearrangement is heterozygous, about one-third of viable progeny are segmental aneuploids with the translocated segment present in two copies, one in normal position and one associated with the NOR. Duplications from many of the rearrangements are highly unstable, breaking down by loss of the NOR-attached segment to restore normal chromosome sequence. When most of the rearrangements are homozygous, attenuated strands can be seen extending through the unstained nucleolus at pachytene, joining the translocated distal segment to the remainder of chromosome 2. Although the rearrangements appear genetically to be nonreciprocal, molecular evidence shows that at least several of them are physically reciprocal, with a block of rDNA repeats translocated away from the NOR. Evidence that NOR-associated breakpoints are nonterminal is also provided by intercrosses between pairs of translocations that transfer different-length segments of the same donor-chromosome arm to the NOR. PMID:8582636

  13. “Replicated” genome wide association for dependence on illegal substances: genomic regions identified by overlapping clusters of nominally positive SNPs

    PubMed Central

    Drgon, Tomas; Johnson, Catherine; Nino, Michelle; Drgonova, Jana; Walther, Donna; Uhl, George R

    2010-01-01

    Declaring “replication” from results of genome wide association (GWA) studies is straightforward when major gene effects provide genome-wide significance for association of the same allele of the same SNP in each of multiple independent samples. However, such unambiguous replication may be unlikely when phenotypes display polygenic genetic architecture, allelic heterogeneity, locus heterogeneity and when different samples display linkage disequilibria with different fine structures. We seek chromosomal regions that are tagged by clustered SNPs that display nominally-significant association in each of several independent samples. This approach provides one “nontemplate” approach to identifying overall replication of groups of GWA results in the face of difficult genetic architectures. We apply this strategy to 1M SNP Affymetrix and Illumina GWA results for dependence on illegal substances. This approach provides high confidence in rejecting the null hypothesis that chance alone accounts for the extent to which clustered, nominally-significant SNPs from samples of the same racial/ethnic background identify the same chromosomal regions. There is more modest confidence in: a) identification of individual chromosomal regions and genes and b) overlap between results from samples of different racial/ethnic backgrounds. The strong overlap identified among the samples with similar racial/ethnic backgrounds, together with prior work that identified overlapping results in samples of different racial/ethnic backgrounds, support contributions to individual differences in vulnerability to addictions that come from both relatively older allelic variants that are common in many current human populations and newer allelic variants that are common in fewer current human populations. PMID:21302341

  14. Analysis of tandem gene copies in maize chromosomal regions reconstructed from long sequence reads

    PubMed Central

    Dong, Jiaqiang; Feng, Yaping; Kumar, Dibyendu; Zhang, Wei; Zhu, Tingting; Luo, Ming-Cheng; Messing, Joachim

    2016-01-01

    Haplotype variation not only involves SNPs but also insertions and deletions, in particular gene copy number variations. However, comparisons of individual genomes have been difficult because traditional sequencing methods give too short reads to unambiguously reconstruct chromosomal regions containing repetitive DNA sequences. An example of such a case is the protein gene family in maize that acts as a sink for reduced nitrogen in the seed. Previously, 41–48 gene copies of the alpha zein gene family that spread over six loci spanning between 30- and 500-kb chromosomal regions have been described in two Iowa Stiff Stalk (SS) inbreds. Analyses of those regions were possible because of overlapping BAC clones, generated by an expensive and labor-intensive approach. Here we used single-molecule real-time (Pacific Biosciences) shotgun sequencing to assemble the six chromosomal regions from the Non-Stiff Stalk maize inbred W22 from a single DNA sequence dataset. To validate the reconstructed regions, we developed an optical map (BioNano genome map; BioNano Genomics) of W22 and found agreement between the two datasets. Using the sequences of full-length cDNAs from W22, we found that the error rate of PacBio sequencing seemed to be less than 0.1% after autocorrection and assembly. Expressed genes, some with premature stop codons, are interspersed with nonexpressed genes, giving rise to genotype-specific expression differences. Alignment of these regions with those from the previous analyzed regions of SS lines exhibits in part dramatic differences between these two heterotic groups. PMID:27354512

  15. Construction of a yeast artifical chromosome contig spanning the spinal muscular atrophy disease gene region

    SciTech Connect

    Kleyn, P.W.; Wang, C.H.; Vitale, E.; Pan, J.; Ross, B.M.; Grunn, A.; Palmer, D.A.; Warburton, D.; Brzustowicz, L.M.; Gilliam, T.G. ); Lien, L.L.; Kunkel, L.M. )

    1993-07-15

    The childhood spinal muscular atrophies (SMAs) are the most common, serious neuromuscular disorders of childhood second to Duchenne muscular dystrophy. A single locus for these disorders has been mapped by recombination events to a region of 0.7 centimorgan (range, 0.1-2.1 centimorgans) between loci D5S435 and MAP1B on chromosome 5q11.2-13.3. By using PCR amplification to screen yeast artificial chromosome (YAC) DNA pools and the PCR-vectorette method to amplify YAC ends, a YAC contig was constructed across the disease gene region. Nine walk steps identified 32 YACs, including a minimum of seven overlapping YAC clones (average size, 460 kb) that span the SMA region. The contig is characterized by a collection of 30 YAC-end sequence tag sites together with seven genetic markers. The entire YAC contig spans a minimum of 3.2 Mb; the SMA locus is confined to roughly half of this region. Microsatellite markers generated along the YAC contig segregate with the SMA locus in all families where the flanking markers (D5S435 and MAP1B) recombine. Construction of a YAC contig across the disease gene region is an essential step in isolation of the SMA-encoding gene. 26 refs., 3 figs., 1 tab.

  16. Mapping overlapping functional elements embedded within the protein-coding regions of RNA viruses

    PubMed Central

    Firth, Andrew E.

    2014-01-01

    Identification of the full complement of genes and other functional elements in any virus is crucial to fully understand its molecular biology and guide the development of effective control strategies. RNA viruses have compact multifunctional genomes that frequently contain overlapping genes and non-coding functional elements embedded within protein-coding sequences. Overlapping features often escape detection because it can be difficult to disentangle the multiple roles of the constituent nucleotides via mutational analyses, while high-throughput experimental techniques are often unable to distinguish functional elements from incidental features. However, RNA viruses evolve very rapidly so that, even within a single species, substitutions rapidly accumulate at neutral or near-neutral sites providing great potential for comparative genomics to distinguish the signature of purifying selection. Computationally identified features can then be efficiently targeted for experimental analysis. Here we analyze alignments of protein-coding virus sequences to identify regions where there is a statistically significant reduction in the degree of variability at synonymous sites, a characteristic signature of overlapping functional elements. Having previously tested this technique by experimental verification of discoveries in selected viruses, we now analyze sequence alignments for ∼700 RNA virus species to identify hundreds of such regions, many of which have not been previously described. PMID:25326325

  17. Cytogenetic Analysis of Chromosome Region 73ad of Drosophila Melanogaster

    PubMed Central

    Belote, J. M.; Hoffmann, F. M.; McKeown, M.; Chorsky, R. L.; Baker, B. S.

    1990-01-01

    The 73AD salivary chromosome region of Drosophila melanogaster was subjected to mutational analysis in order to (1) generate a collection of chromosome breakpoints that would allow a correlation between the genetic, cytological and molecular maps of the region and (2) define the number and gross organization of complementation groups within this interval. Eighteen complementation groups were defined and mapped to the 73A2-73B7 region, which is comprised of 17 polytene bands. These complementation groups include the previously known scarlet (st), transformer (tra) and Dominant temperature-sensitive lethal-5 (DTS-5) genes, as well as 13 new recessive lethal complementation groups and one male and female sterile locus. One of the newly identified lethal complementation groups corresponds to the molecularly identified abl locus, and another gene is defined by mutant alleles that exhibit an interaction with with the abl mutants. We also recovered several mutations in the 73C1-D1.2 interval, representing two lethal complementation groups, one new visible mutant, plucked (plk), and a previously known visible, dark body (db). There is no evidence of a complex of sex determination genes in the region near tra. PMID:2118870

  18. [Chromosomal variation in Chironomus plumosus L. (Diptera, Chironomidae) from populations of Bryansk region, Saratov region (Russia), and Gomel region (Belarus)].

    PubMed

    Belyanina, S I

    2015-02-01

    Cytogenetic analysis was performed on samples of Chironomus plumosus L. (Diptera, Chironomidae) taken from waterbodies of various types in Bryansk region (Russia) and Gomel region (Belarus). Karyotypes of specimens taken from stream pools of the Volga were used as reference samples. The populations of Bryansk and Gomel regions (except for a population of Lake Strativa in Starodubskii district, Bryansk region) exhibit broad structural variation, including somatic mosaicism for morphotypes of the salivary gland chromosome set, decondensation of telomeric sites, and the presence of small structural changes, as opposed to populations of Saratov region. As compared with Saratov and Bryansk regions, the Balbiani ring in the B-arm of chromosome I is repressed in populations of Gomel region. It is concluded that the chromosome set of Ch. plumosus in a range of waterbodies of Bryansk and Gomel regions is unstable.

  19. Amplifications of chromosomal region 20q13 as a prognostic indicator breast cancer

    DOEpatents

    Gray, Joe W.; Collins, Colin; Pinkel, Daniel; Kallioniemi, Olli-Pekka; Tanner, Minna M.

    2001-01-01

    The present invention relates to in situ hybridization methods for the identification of new chromosomal abnormalities associated with various diseases. In particular, it provides probes which are specific to a region of amplification in chromosome 20.

  20. Amplifications of chromosomal region 20q13 as a prognostic indicator in breast cancer

    DOEpatents

    Gray, Joe W.; Collins, Colin; Pinkel, Daniel; Kallioniemi, Olli-Pekka; Tanner, Minna M.

    1998-01-01

    The present invention relates to in situ hybridization methods for the identification of new chromosomal abnormalities associated with various diseases. In particular, it provides probes which are specific to a region of amplification in chromosome 20.

  1. Genomic Regions Identified by Overlapping Clusters of Nominally-Positive SNPs from Genome-Wide Studies of Alcohol and Illegal Substance Dependence

    PubMed Central

    Johnson, Catherine; Drgon, Tomas; Walther, Donna; Uhl, George R.

    2011-01-01

    Declaring “replication” from results of genome wide association (GWA) studies is straightforward when major gene effects provide genome-wide significance for association of the same allele of the same SNP in each of multiple independent samples. However, such unambiguous replication is unlikely when phenotypes display polygenic genetic architecture, allelic heterogeneity, locus heterogeneity and when different samples display linkage disequilibria with different fine structures. We seek chromosomal regions that are tagged by clustered SNPs that display nominally-significant association in each of several independent samples. This approach provides one “nontemplate” approach to identifying overall replication of groups of GWA results in the face of difficult genetic architectures. We apply this strategy to 1 M SNP GWA results for dependence on: a) alcohol (including many individuals with dependence on other addictive substances) and b) at least one illegal substance (including many individuals dependent on alcohol). This approach provides high confidence in rejecting the null hypothesis that chance alone accounts for the extent to which clustered, nominally-significant SNPs from samples of the same racial/ethnic background identify the same sets of chromosomal regions. It identifies several genes that are also reported in other independent alcohol-dependence GWA datasets. There is more modest confidence in: a) identification of individual chromosomal regions and genes that are not also identified by data from other independent samples, b) the more modest overlap between results from samples of different racial/ethnic backgrounds and c) the extent to which any gene not identified herein is excluded, since the power of each of these individual samples is modest. Nevertheless, the strong overlap identified among the samples with similar racial/ethnic backgrounds supports contributions to individual differences in vulnerability to addictions that come from newer

  2. Linkage studies for T2D in Chop and C/EBPbeta chromosomal regions in Italians.

    PubMed

    Gragnoli, Claudia; Pierpaoli, Laura; Piumelli, Nunzia; Chiaramonte, Francesco

    2007-11-01

    The genes causing type 2 diabetes (T2D), a complex heterogeneous disorder, differ and/or overlap in various populations. Among others there are two loci in linkage to T2D, the chromosomes 20q12-13.1 and 12q15. These two regions harbor two genes, C/EBPbeta and CHOP, which are excellent candidate genes for T2D. In fact, C/EBPbeta protein cooperates with HNF4alpha (MODY1, monogenic form of diabetes) and 1alpha (MODY3, monogenic form of diabetes). C/EBPbeta mediates suppression of insulin gene transcription in hyperglycemia and may contribute to insulin-resistance. It interacts in a complex pathway with the CHOP protein. CHOP may play a role in altered beta-cell glucose metabolism, in beta-cell apoptosis, and in lack of beta-cell replication. Thus, both C/EBPbeta and CHOP genes may independently and interactively contribute to T2D. The chromosomal regions targeting C/EBPbeta and CHOP genes have never been previously explored in T2D. We planned to identify their potential contribution to T2D in Italians. We have genotyped a group of affected siblings/families with both late- and early-onset T2D around the C/EBPbeta and the CHOP genes. We have performed non-parametric linkage analysis in the total T2D group, in the late-onset and the early-onset group, separately. We have identified a suggestive linkage to T2D in the CHOP gene locus in the early-onset T2D group (P = 0.04). We identified the linkage to T2D in the chromosome 12q15 region in the early-onset T2D families and specifically target the CHOP gene. Our next step will be the identification of CHOP gene variants, which may contribute to the linkage to T2D in Italians. PMID:17620318

  3. ON MAGNETIC ACTIVITY BAND OVERLAP, INTERACTION, AND THE FORMATION OF COMPLEX SOLAR ACTIVE REGIONS

    SciTech Connect

    McIntosh, Scott W.; Leamon, Robert J.

    2014-11-20

    Recent work has revealed a phenomenological picture of the how the ∼11 yr sunspot cycle of the Sun arises. The production and destruction of sunspots is a consequence of the latitudinal-temporal overlap and interaction of the toroidal magnetic flux systems that belong to the 22 yr magnetic activity cycle and are rooted deep in the Sun's convective interior. We present a conceptually simple extension of this work, presenting a hypothesis on how complex active regions can form as a direct consequence of the intra- and extra-hemispheric interaction taking place in the solar interior. Furthermore, during specific portions of the sunspot cycle, we anticipate that those complex active regions may be particularly susceptible to profoundly catastrophic breakdown, producing flares and coronal mass ejections of the most severe magnitude.

  4. Chromosome

    MedlinePlus

    Chromosomes are structures found in the center (nucleus) of cells that carry long pieces of DNA. DNA ... is the building block of the human body. Chromosomes also contain proteins that help DNA exist in ...

  5. Chromosome region-specific libraries for human genome analysis

    SciTech Connect

    Kao, Fa-Ten.

    1991-01-01

    We have made important progress since the beginning of the current grant year. We have further developed the microdissection and PCR- assisted microcloning techniques using the linker-adaptor method. We have critically evaluated the microdissection libraries constructed by this microtechnology and proved that they are of high quality. We further demonstrated that these microdissection clones are useful in identifying corresponding YAC clones for a thousand-fold expansion of the genomic coverage and for contig construction. We are also improving the technique of cloning the dissected fragments in test tube by the TDT method. We are applying both of these PCR cloning technique to human chromosomes 2 and 5 to construct region-specific libraries for physical mapping purposes of LLNL and LANL. Finally, we are exploring efficient procedures to use unique sequence microclones to isolate cDNA clones from defined chromosomal regions as valuable resources for identifying expressed gene sequences in the human genome. We believe that we are making important progress under the auspices of this DOE human genome program grant and we will continue to make significant contributions in the coming year. 4 refs., 4 figs.

  6. Identification of wheat chromosomal regions containing expressed resistance genes.

    PubMed Central

    Dilbirligi, Muharrem; Erayman, Mustafa; Sandhu, Devinder; Sidhu, Deepak; Gill, Kulvinder S

    2004-01-01

    The objectives of this study were to isolate and physically localize expressed resistance (R) genes on wheat chromosomes. Irrespective of the host or pest type, most of the 46 cloned R genes from 12 plant species share a strong sequence similarity, especially for protein domains and motifs. By utilizing this structural similarity to perform modified RNA fingerprinting and data mining, we identified 184 putative expressed R genes of wheat. These include 87 NB/LRR types, 16 receptor-like kinases, and 13 Pto-like kinases. The remaining were seven Hm1 and two Hs1(pro-1) homologs, 17 pathogenicity related, and 42 unique NB/kinases. About 76% of the expressed R-gene candidates were rare transcripts, including 42 novel sequences. Physical mapping of 121 candidate R-gene sequences using 339 deletion lines localized 310 loci to 26 chromosomal regions encompassing approximately 16% of the wheat genome. Five major R-gene clusters that spanned only approximately 3% of the wheat genome but contained approximately 47% of the candidate R genes were observed. Comparative mapping localized 91% (82 of 90) of the phenotypically characterized R genes to 18 regions where 118 of the R-gene sequences mapped. PMID:15020436

  7. Direct selection in the BRCA1 region of human chromosome 17q21

    SciTech Connect

    Osborne-Lawrence, S.L.; Welcsh, P.L.; Gallardo, T.D.

    1994-09-01

    Direct cDNA selection was used to obtain candidate genes within the region of human chromosome 17q21 associated with early onset familial breast and ovarian cancer (BRCA1). Four sets of pooled cosmids (10 to 25 per set) derived from this region were used in the selection of cDNAs from four complex human cDNA pools: placenta, fetal head, HeLa cells, and activated T cells. Two YACs within our contig were also used in a separate selection. A reporter gene, estradiol 17 beta-hydroxysteriod dehydrogenase (EDH17B), located on one of the cosmids in the contig of the region, was monitored to observe the efficiency of the selection. A >10,000-fold enrichment of EDH17B was seen after two rounds of selection based on the number of EDH17B clones found in the resultant selected library. Selected inserts were cloned into lambda gt10, amplified with the PCR using vector primers, and dot blotted. 200 inserts have been hybridized individually to cosmids from the contig and to the cDNA dot blots. Approximately 70% of these map back to specific cosmids or YACs in the region. These PCR products were sequenced directly and analyzed for homology against each other as well as against sequences within GenBank. At least 23 new genes have been identified and isolated from this region based on sequence and hybridization overlaps. Seventeen of these cDNAs appear to be unique, two are known genes previously mapped to the region, one has homology to a known known Drosophilia gene, one is homologous to a human non-histone chromosomal protein HMG-17, and two are new members of gene families. These cDNAs are being used for mutational analyses in affected women from families with multiple cases of breast and ovarian cancer.

  8. Localization of chromosome regions in potoroo nuclei ( Potorous tridactylus Marsupialia: Potoroinae).

    PubMed

    Rens, W; O'Brien, P C M; Graves, J A M; Ferguson-Smith, M A

    2003-08-01

    Chromosome paints of the rat kangaroo ( Aepyprymnus rufuscens, 2 n=32) were used to define chromosome regions in the long nosed potoroo ( Potorous tridactylus, 2 n=12 female, 13 male) karyotype and localize these regions in three-dimensionally preserved nuclei of the potoroo to test the hypothesis that marsupial chromosomes have a radial distribution. In human nuclei chromosomes are distributed in a proposed radial fashion. Gene-rich chromosomes in the human interphase nucleus are preferentially located in the central area while gene-poor chromosomes are found more at the periphery of the nucleus; this feature is conserved in primates and chicken. Chromosome ordering in nuclei of P. tridactylus is related to their size and centromere position. Its relationship with replication patterns in interphase nuclei and metaphase was studied. In addition it was observed that the nucleus was not a smooth entity but had projections occupied by specific chromosome regions.

  9. Evaluation of VIIRS SST fields through the analysis of overlap regions between consecutive orbits

    NASA Astrophysics Data System (ADS)

    Cayula, Jean-François P.; May, Douglas A.; Arnone, Robert A.; Vandermeulen, Ryan A.

    2015-05-01

    Full-swath Sea Surface Temperature (SST) derived from data acquired by the Visible Infrared Imaging Radiometer Suite (VIIRS) sensor on-board the Suomi-National Polar-orbiting Partnership (S-NPP) satellite produces significant overlap between consecutive orbits at all latitudes. In this study, we use those overlap regions to evaluate VIIRS SST, as inconsistencies between SST values from consecutive orbits are indications of likely degraded quality. The studies investigate two sources of inconsistencies: those resulting from the response of the SST equations when observing a scene from differing view angles and those caused by undetected data contamination. This study will present results for two VIIRS SST products: one from the Naval Oceanographic Office (NAVOCEANO), which is assimilated in the Navy Ocean Models, and the Advanced Clear-Sky Processor for Oceans (ACSPO) product from the National Oceanic and Atmospheric Administration (NOAA) Center for Satellite Applications and Research (STAR). Global statistics based on drifting buoys for both NAVOCEANO and NOAA products complete the analysis.

  10. Overlapping Numerical Cognition Impairments in Children with Chromosome 22q11.2 Deletion or Turner Syndromes

    ERIC Educational Resources Information Center

    Simon, T. J.; Takarae, Y.; DeBoer, T.; McDonald-McGinn, D. M.; Zackai, E. H.; Ross, J. L.

    2008-01-01

    Children with one of two genetic disorders (chromosome 22q11.2 deletion syndrome and Turner syndrome) as well typically developing controls, participated in three cognitive processing experiments. Two experiments were designed to test cognitive processes involved in basic aspects numerical cognition. The third was a test of simple manual motor…

  11. Regional association analysis delineates a sequenced chromosome region influencing antinutritive seed meal compounds in oilseed rape.

    PubMed

    Snowdon, R J; Wittkop, B; Rezaidad, A; Hasan, M; Lipsa, F; Stein, A; Friedt, W

    2010-11-01

    This study describes the use of regional association analyses to delineate a sequenced region of a Brassica napus chromosome with a significant effect on antinutritive seed meal compounds in oilseed rape. A major quantitative trait locus (QTL) influencing seed colour, fibre content, and phenolic compounds was mapped to the same position on B. napus chromosome A9 in biparental mapping populations from two different yellow-seeded × black-seeded B. napus crosses. Sequences of markers spanning the QTL region identified synteny to a sequence contig from the corresponding chromosome A9 in Brassica rapa. Remapping of sequence-derived markers originating from the B. rapa sequence contig confirmed their position within the QTL. One of these markers also mapped to a seed colour and fibre QTL on the same chromosome in a black-seeded × black-seeded B. napus cross. Consequently, regional association analysis was performed in a genetically diverse panel of dark-seeded, winter-type oilseed rape accessions. For this we used closely spaced simple sequence repeat (SSR) markers spanning the sequence contig covering the QTL region. Correction for population structure was performed using a set of genome-wide SSR markers. The identification of QTL-derived markers with significant associations to seed colour, fibre content, and phenolic compounds in the association panel enabled the identification of positional and functional candidate genes for B. napus seed meal quality within a small segment of the B. rapa genome sequence.

  12. Sex chromosome system ZZ/ZW in Apareiodon hasemani Eigenmann, 1916 (Characiformes, Parodontidae) and a derived chromosomal region.

    PubMed

    Bellafronte, Elisangela; Schemberger, Michelle Orane; Artoni, Roberto Ferreira; Filho, Orlando Moreira; Vicari, Marcelo Ricardo

    2012-12-01

    Parodontidae fish show few morphological characteristics for the identification of their representatives and chromosomal analyses have provided reliable features for determining the interrelationships in this family. In this study, the chromosomes of Apareiodon hasemani from the São Francisco River basin, Brazil, were analyzed and showed a karyotype with 2n = 54 meta/submetacentric chromosomes, and a ZZ/ZW sex chromosome system. The study revealed active NORs located on pair 11 and additional 18S rDNA sites on pairs 7 and 22. The 5S rDNA locus was found in pair 14. It showed a pericentric inversion regarding the ancestral condition. The satellite DNA pPh2004 was absent in the chromosomes of A. hasemani, a shared condition with most members of Apareiodon. The WAp probe was able to detect the amplification region of the W chromosome, corroborating the common origin of the system within Parodontidae. These chromosomal data corroborate an origin for the ZW system of Parodontidae and aid in the understanding of the differentiation of sex chromosome systems in Neotropical fishes. PMID:23271937

  13. Sex chromosome system ZZ/ZW in Apareiodon hasemani Eigenmann, 1916 (Characiformes, Parodontidae) and a derived chromosomal region.

    PubMed

    Bellafronte, Elisangela; Schemberger, Michelle Orane; Artoni, Roberto Ferreira; Filho, Orlando Moreira; Vicari, Marcelo Ricardo

    2012-12-01

    Parodontidae fish show few morphological characteristics for the identification of their representatives and chromosomal analyses have provided reliable features for determining the interrelationships in this family. In this study, the chromosomes of Apareiodon hasemani from the São Francisco River basin, Brazil, were analyzed and showed a karyotype with 2n = 54 meta/submetacentric chromosomes, and a ZZ/ZW sex chromosome system. The study revealed active NORs located on pair 11 and additional 18S rDNA sites on pairs 7 and 22. The 5S rDNA locus was found in pair 14. It showed a pericentric inversion regarding the ancestral condition. The satellite DNA pPh2004 was absent in the chromosomes of A. hasemani, a shared condition with most members of Apareiodon. The WAp probe was able to detect the amplification region of the W chromosome, corroborating the common origin of the system within Parodontidae. These chromosomal data corroborate an origin for the ZW system of Parodontidae and aid in the understanding of the differentiation of sex chromosome systems in Neotropical fishes.

  14. The subtelomeric region is important for chromosome recognition and pairing during meiosis.

    PubMed

    Calderón, María del Carmen; Rey, María-Dolores; Cabrera, Adoración; Prieto, Pilar

    2014-10-01

    The process of meiosis results in the formation of haploid daughter cells, each of which inherit a half of the diploid parental cells' genetic material. The ordered association of homologues (identical chromosomes) is a critical prerequisite for a successful outcome of meiosis. Homologue recognition and pairing are initiated at the chromosome ends, which comprise the telomere dominated by generic repetitive sequences, and the adjacent subtelomeric region, which harbours chromosome-specific sequences. In many organisms telomeres are responsible for bringing the ends of the chromosomes close together during early meiosis, but little is known regarding the role of the subtelomeric region sequence during meiosis. Here, the observation of homologue pairing between a pair of Hordeum chilense chromosomes lacking the subtelomeric region on one chromosome arm indicates that the subtelomeric region is important for the process of homologous chromosome recognition and pairing.

  15. The subtelomeric region is important for chromosome recognition and pairing during meiosis

    PubMed Central

    Calderón, María del Carmen; Rey, María-Dolores; Cabrera, Adoración; Prieto, Pilar

    2014-01-01

    The process of meiosis results in the formation of haploid daughter cells, each of which inherit a half of the diploid parental cells' genetic material. The ordered association of homologues (identical chromosomes) is a critical prerequisite for a successful outcome of meiosis. Homologue recognition and pairing are initiated at the chromosome ends, which comprise the telomere dominated by generic repetitive sequences, and the adjacent subtelomeric region, which harbours chromosome-specific sequences. In many organisms telomeres are responsible for bringing the ends of the chromosomes close together during early meiosis, but little is known regarding the role of the subtelomeric region sequence during meiosis. Here, the observation of homologue pairing between a pair of Hordeum chilense chromosomes lacking the subtelomeric region on one chromosome arm indicates that the subtelomeric region is important for the process of homologous chromosome recognition and pairing. PMID:25270583

  16. A yeast artificial chromosome (YAC) contig encompassing the critical region of the X-linked lymphoproliferative disease (XLP) locus.

    PubMed

    Lanyi, A; Li, B; Li, S; Talmadge, C B; Brichacek, B; Davis, J R; Kozel, B A; Trask, B; van den Engh, G; Uzvolgyi, E; Stanbridge, E J; Nelson, D L; Chinault, C; Heslop, H; Gross, T G; Seemayer, T A; Klein, G; Purtilo, D T; Sumegi, J

    1997-01-01

    X-linked lymphoproliferative disease (XLP) is characterized by a marked vulnerability to Epstein-Barr virus (EBV) infection. Infection of XLP patients with EBV invariably results in fatal mononucleosis, agammaglobulinemia, or malignant lymphoma. Initially the XLP gene was assigned to a 10-cM region in Xq25 between DXS42 and DXS37. Subsequently, an interstitial, cytogenetically visible deletion in Xq25 was identified in one XLP family, 43. In this study we estimated the deletion in XLP patient 43-004 by dual-laser flow karyotyping to involve 2% of the X chromosome, or approximately 3 Mb of DNA sequence. From a human chromosome Xq25-specific yeast artificial chromosome (YAC) sublibrary, five YACs containing DNA sequences deleted in patient 43-004 have been isolated. Sequence-tagged sites (STSs) from these YACs have been used to identify interstitial deletions in unrelated XLP patients. Three more families with interstitial deletions were found. Two of the patients (63-003 and 73-032) carried an interstitial deletion of 3.0 Mb overlapping the 43-004 deletion. In one XLP patient (30-011) who exhibited the characteristic postinfectious mononucleosis phenotype of XLP with hypogammaglobulinemia and malignant lymphoma, a deletion of approximately 250 kb was detected overlapping the deletion detected in patients 43-004, 63-003, and 73-032. A YAC contig of 2.2 Mb spanning the XLP critical region, whose orientation on chromosome X was determined by double-color fluorescence in situ hybridization and which consists of 15 overlapping YAC clones, has been constructed. A detailed restriction enzyme map of the region has been constructed. YAC insert sizes were determined by counter-clamped homogenous electric field gel electrophoresis. Chimerism of YACs was determined by FISH and restriction mapping. On the basis of lambda subclones, YAC end-derived plasmids, and STSs with an average spacing of 100 kb, a long-range physical map was constructed using 5 rare-cutter restriction

  17. Identification of chromosome regions associated with seedling vigor in rice.

    PubMed

    Huang, Zheng; Yu, Ting; Su, Li; Yu, Si-Bin; Zhang, Zhi-Hong; Zhu, Ying-Guo

    2004-06-01

    Seedling vigor is important for optimum stand establishment in rice cropping. In this paper,a set of 264 F12 recombinant inbred lines (RILs) derived by single seed descent from a cross between Lemont (japonica) and Teqing (indica) was phenotyped for three seedling vigor related traits, including seed germination rate (GR), seedling shoot length and dry weight by the rolled paper towel tests. The phenotype data and a linkage map consisting of 198 DNA markers were combined to map quantitative trait loci (QTL) for seedling vigor by using a computer program QTLMapper1.0. A total of 13 putative main-effect QTL were detected. All of these QTL had much smaller effects on the traits with a mean R2 of 6.2%, ranging from 2.9% to 12.7%. As for digenic interaction, 18 pairs of epistatic loci with R2 > or = 5% were resolved with a mean R2 of 6.9% ,ranging from 5.1% to 11.8%, which was slightly larger than that of the main-effect QTL identified for the traits. The majority of the main-effect and epistatic loci detected for seedling vigor related traits were clustered in a few chromosome regions. Together, seven such chromosome regions (CRs), each with three or more seedling vigor main-effect and epistatic loci, were found to be highly associated with seedling vigor. These CRs can be classified into three types, i.e. M-CRs, E-CRs and ME-CRs. For some CRs just like CR(SV-6), the QTL within one CR were found to interact simultaneously with QTL within more than one other CRs to affect different seedling vigor related traits. The above results revealed that seedling vigor in rice is controlled by many loci, most of which have relatively small effects. Comparatively, epistasis as a genetic factor would be more important than main-effects of QTL for seedling vigor in rice. Nevertheless, the effects of the QTL are still large enough to be detected and in fact several chromosome regions were found to be highly associated with seedling vigor in very different populations as compared with

  18. A nuclease-hypersensitive region forms de novo after chromosome replication.

    PubMed

    Solomon, M J; Varshavsky, A

    1987-10-01

    Regular nucleosome arrays in eucaryotic chromosomes are punctuated at specific locations, such as active promoters and replication origins, by apparently nucleosome-free sites, also called nuclease-hypersensitive, or exposed, regions. The -400-base pair-exposed region within simian virus 40 (SV40) chromosomes is present in approximately 20% of the chromosomes in lytically infected cells and encompasses the replication origin, transcriptional enhancer, and both late and early SV40 promoters. We report that nearly all SV40 chromosomes lacked the exposed region during replication and that newly formed chromosomes acquired the exposed region of the same degree as did bulk SV40 chromosomes within 1 h after replication. Furthermore, a much lower but significant level of exposure was detectable in late SV40 replication intermediates, indicating that formation of the exposed region could start within minutes after passage of the replication fork. PMID:2824998

  19. Crossover Interference on Nucleolus Organizing Region-Bearing Chromosomes in Arabidopsis

    PubMed Central

    Lam, Sandy Y.; Horn, Sarah R.; Radford, Sarah J.; Housworth, Elizabeth A.; Stahl, Franklin W.; Copenhaver, Gregory P.

    2005-01-01

    In most eukaryotes, crossovers are not independently distributed along the length of a chromosome. Instead, they appear to avoid close proximity to one another—a phenomenon known as crossover interference. Previously, for three of the five Arabidopsis chromosomes, we measured the strength of interference and suggested a model wherein some crossovers experience interference while others do not. Here we show, using the same model, that the fraction of interference-insensitive crossovers is significantly smaller on the remaining two chromosomes. Since these two chromosomes bear the Arabidopsis NOR domains, the possibility that these chromosomal regions influence interference is discussed. PMID:15802520

  20. A Genetic and Molecular Analysis of the 46c Chromosomal Region Surrounding the Fmrfamide Neuropeptide Gene in Drosophila Melanogaster

    PubMed Central

    O'Brien, M. A.; Roberts, M. S.; Taghert, P. H.

    1994-01-01

    We have analyzed the FMRFamide neuropeptide gene region of Drosophila melanogaster. This gene maps to the 46C region of chromosome 2R; this interval previously was not well characterized. For this genetic and molecular analysis, we have used X-ray mutagenesis, EMS mutagenesis, and the recently reported local P element transposition method. We identified four overlapping deletions, two of which have proximal breakpoints that define a 50-60-kb region surrounding the FMRFamide gene in 46C. To this small region, we mapped three lethal complementation groups; 10 additional lethal complementation groups were mapped to more distal regions of 46CD. One of these groups corresponds to even-skipped, the other 12 are previously unidentified. Using various lines of evidence we excluded the possibility that FMRFamide corresponds to any of the three lethal complementation groups mapping to its immediate 50-60-kb vicinity. The positions of two of the three lethal complementation groups were identified with P elements using a local transposition scheme. The third lethal complementation group was excluded as being FMRFamide mutants by sequence analysis and by immunocytochemistry with proFMRFamide precursor-specific antibodies. This analysis has (1) provided a genetic map of the 46CD chromosomal region and a detailed molecular map of a portion of the 46C region and (2) provided additional evidence of the utility of local transposition for targeting nearby genes. PMID:8056304

  1. Conservation of Regional Variation in Sex-Specific Sex Chromosome Regulation

    PubMed Central

    Wright, Alison E.; Zimmer, Fabian; Harrison, Peter W.; Mank, Judith E.

    2015-01-01

    Regional variation in sex-specific gene regulation has been observed across sex chromosomes in a range of animals and is often a function of sex chromosome age. The avian Z chromosome exhibits substantial regional variation in sex-specific regulation, where older regions show elevated levels of male-biased expression. Distinct sex-specific regulation also has been observed across the male hypermethylated (MHM) region, which has been suggested to be a region of nascent dosage compensation. Intriguingly, MHM region regulatory features have not been observed in distantly related avian species despite the hypothesis that it is situated within the oldest region of the avian Z chromosome and is therefore orthologous across most birds. This situation contrasts with the conservation of other aspects of regional variation in gene expression observed on the avian sex chromosomes but could be the result of sampling bias. We sampled taxa across the Galloanserae, an avian clade spanning 90 million years, to test whether regional variation in sex-specific gene regulation across the Z chromosome is conserved. We show that the MHM region is conserved across a large portion of the avian phylogeny, together with other sex-specific regulatory features of the avian Z chromosome. Our results from multiple lines of evidence suggest that the sex-specific expression pattern of the MHM region is not consistent with nascent dosage compensation. PMID:26245831

  2. Topological Organization of Multi-chromosomal Regions by Firre

    PubMed Central

    Hacisuleyman, Ezgi; Goff, Loyal A.; Trapnell, Cole; Williams, Adam; Henao-Mejia, Jorge; Sun, Lei; McClanahan, Patrick; Hendrickson, David G.; Sauvageau, Martin; Kelley, David R.; Morse, Michael; Engreitz, Jesse; Lander, Eric S.; Guttman, Mitch; Lodish, Harvey F.; Flavell, Richard; Raj, Arjun; Rinn, John L.

    2014-01-01

    RNA is known to be an abundant and important structural component of the nuclear matrix, including long noncoding RNAs (lncRNA). Yet the molecular identities, functional roles, and localization dynamics of lncRNAs that influence nuclear architecture remain poorly understood. Here, we describe one lncRNA, Firre, that interacts with the nuclear matrix factor hnRNPU, through a 156 bp repeating sequence and Firre localizes across a ~5 Mb domain on the X-chromosome. We further observed Firre localization across at least five distinct trans-chromosomal loci, which reside in spatial proximity to the Firre genomic locus on the X-chromosome. Both genetic deletion of the Firre locus or knockdown of hnRNPU resulted in loss of co-localization of these trans-chromosomal interacting loci. Thus, our data suggest a model in which lncRNAs such as Firre can interface with and modulate nuclear architecture across chromosomes. PMID:24463464

  3. Regions of the polytene chromosomes of Drosophila virilis carrying multiple dispersed p Dv 111 DNA sequences

    SciTech Connect

    Gubenko, I.S.; Evgen'ev, M.B.

    1986-09-01

    The cloned sequences of p Dv 111 DNA hybridized in situ with more than 170 regions of Drosophila virilis salivary gland chromosomes. Comparative autoradiography of in situ hybridization and the nature of pulse /sup 3/H-thymidine and /sup 3/H-deoxycytidine incorporation into the polytene chromosomes of D. virilis at the puparium formation stage showed that the hybridization sites of p Dv 111 are distributed not only in the heterochromatic regions but also in the euchromatic regions of the chromosomes that are not late replicating. Two distinct bands of hybridization of p Dv 111 /sup 3/H-DNA were observed in the region of the heat shock puff 20CD. The regions of the distal end of chromosome 2, in which breaks appeared during radiation-induced chromosomal rearrangements, hybridized with the p Dv 111 DNA.

  4. Overlapping Numerical Cognition Impairments In Children With Chromosome 22q11.2 Deletion Or Turner Syndromes

    PubMed Central

    Simon, T.J.; Takarae, Y.; DeBoer, T.; McDonald-McGinn; Zackai, E.H.; Ross, J.L.

    2008-01-01

    Children with one of two genetic disorders (chromosome 22q11.2 deletion syndrome and Turner syndrome) as well typically developing controls, participated in three cognitive processing experiments. Two experiments were designed to test cognitive processes involved in basic aspects numerical cognition. The third was a test of simple manual motor reaction time. Despite significant differences in global intellectual abilities, as measured by IQ tests, performance on the two numerical cognition tasks differed little between the two groups of children with genetic disorders. However, both performed significantly more poorly than did controls. The pattern of results are consistent with the hypothesis that impairments were not due to global intellectual ability but arose in specific cognitive functions required by different conditions within the tasks. The fact that no group differences were found in the reaction time task, despite significant differences in the standardized processing speed measure, further supports the interpretation that specific cognitive processing impairments and not global intellectual or processing speed impairments explain the pattern of results. The similarity in performance on these tasks of children with unrelated genetic disorders counters the view that numerical cognition is under any direct genetic control. Instead, our findings are consistent with the view that disturbances in foundational spatiotemporal cognitive functions contribute to the development of atypical representations and processes in the domains of basic magnitude comparison and simple numerical enumeration. PMID:17920087

  5. [The role of chromosomal regions anchored to the nuclear envelope in the functional organization of chromosomes].

    PubMed

    Shabarina, A N; Shostak, N G; Glazkov, M V

    2010-09-01

    The functional characteristics of the DNA fragments responsible for chromosome attachment to the nuclear envelope during the interphase (neDNAs) have been studied. The neDNAs flanking the transgene have been found to promote a steadily high rate of its expression, irrespective of the site of its insertion into the host chromosomes. At the same time, neDNAs themselves have no transcription regulatory functions. PMID:21061611

  6. Bovine chromosomal regions affecting rheological traits in acid-induced skim milk gels.

    PubMed

    Glantz, M; Gustavsson, F; Bertelsen, H P; Stålhammar, H; Lindmark-Månsson, H; Paulsson, M; Bendixen, C; Gregersen, V R

    2015-02-01

    The production of fermented milk products has increased worldwide during the last decade and is expected to continue to increase during the coming decade. The quality of these products may be optimized through breeding practices; however, the relations between cow genetics and technological properties of acid milk gels are not fully known. Therefore, the aim of this study was to identify chromosomal regions affecting acid-induced coagulation properties and possible candidate genes. Skim milk samples from 377 Swedish Red cows were rheologically analyzed for acid-induced coagulation properties using low-amplitude oscillation measurements. The resulting traits, including gel strength, coagulation time, and yield stress, were used to conduct a genome-wide association study. Single nucleotide polymorphisms (SNP) were identified using the BovineHD SNPChip (Illumina Inc., San Diego, CA), resulting in almost 621,000 segregating markers. The genome was scanned for putative quantitative trait loci (QTL) regions, haplotypes based on highly associated SNP were inferred, and the additive genetic effects of haplotypes within each QTL region were analyzed using mixed models. A total of 8 genomic regions were identified, with large effects of the significant haplotype explaining between 4.8 and 9.8% of the phenotypic variance of the studied traits. One major QTL was identified to overlap between gel strength and yield stress, the QTL identified with the most significant SNP closest to the gene coding for κ-casein (CSN3). In addition, a chromosome-wide significant region affecting yield stress on BTA 11 was identified to be colocated with PAEP, coding for β-lactoglobulin. Furthermore, the coagulation properties of the genetic variants within the 2 genes were compared with the coagulation properties identified by the patterns of the haplotypes within the regions, and it was discovered that the haplotypes were more diverse and in one case slightly better at explaining the

  7. Isolation and refined regional mapping of expressed sequences from human chromosome 21

    SciTech Connect

    Kao, F.T.; Yu, J.; Patterson, D.

    1994-10-01

    To increase candidate genes from human chromosome 21 for the analysis of Down syndrome and other genetic diseases localized on this chromosome, we have isolated and studied 9 cDNA clones encoded by chromosome 21. For isolating cDNAs, single-copy microclones from a chromosome 21 microdissection library were used in direct screening of various cDNA libraries. Seven of the cDNA clones have been regionally mapped on chromosome 21 using a comprehensive hybrid mapping panel comprising 24 cell hybrids that divide the chromosome into 33 subregions. These cDNA clones with refined mapping positions should be useful for identification and cloning of genes responsible for the specific component phenotypes of Down syndrome and other diseases on chromosome 21, including progressive myoclonus epilepsy in 21q22.3. 12 refs., 2 figs., 1 tab.

  8. Multiple blood pressure loci with opposing blood pressure effects on rat chromosome 1 in a homologous region linked to hypertension on human chromosome 15.

    PubMed

    Mell, Blair; Abdul-Majeed, Shakila; Kumarasamy, Sivarajan; Waghulde, Harshal; Pillai, Resmi; Nie, Ying; Joe, Bina

    2015-01-01

    Genetic dissection of blood pressure (BP) quantitative trait loci (QTLs) in rats has facilitated the fine-mapping of regions linked to the inheritance of hypertension. The goal of the current study was to further fine-map one such genomic region on rat chromosome 1 (BPQTL1b1), the homologous region of which on human chromosome 15 harbors BP QTLs, as reported by four independent studies. Of the six substrains constructed and studied, the systolic BP of two of the congenic strains were significantly lower by 36 and 27 mm Hg than that of the salt-sensitive (S) rat (P < 0.0001, P = 0.0003, respectively). The congenic segments of these two strains overlapped between 135.12 and 138.78 Mb and contained eight genes and two predicted miRNAs. None of the annotations had variants within expressed sequences. These data taken together with the previous localization resolved QTL1b1 with a 70% improvement from the original 7.39 Mb to the current 2.247 Mb interval. Furthermore, the systolic BP of one of the congenic substrains was significantly higher by 20 mm Hg (P < 0.0001) than the BP of the S rat. The limits of this newly identified QTL with a BP increasing effect (QTL1b1a) were between 134.12 and 135.76 Mb, spanning 1.64 Mb, containing two protein-coding genes, Mctp2 and Rgma, and a predicted miRNA. There were four synonymous variants within Mctp2. These data provide evidence for two independent BP QTLs with opposing BP effects within the previously identified BP QTL1b1 region. Additionally, these findings illustrate the complexity underlying the genetic mechanisms of BP regulation, wherein inherited elements beyond protein-coding sequences or known regulatory regions could be operational. PMID:25231251

  9. Loss of the Y chromosome PAR2 region and additional rearrangements in two familial cases of satellited Y chromosomes: cytogenetic and molecular analysis.

    PubMed

    Velissariou, V; Sismani, C; Christopoulou, S; Kaminopetros, P; Hatzaki, A; Evangelidou, P; Koumbaris, G; Bartsocas, C S; Stylianidou, G; Skordis, N; Diakoumakos, A; Patsalis, P C

    2007-01-01

    Two cases of rare structural aberrations of the Y chromosome were detected: a del(Y) (q12) chromosome in a child with mild dysmorphic features, obesity and psychomotor delay, and two identical satellited Y chromosomes (Yqs) in a normal twin, which were originally observed during routine prenatal diagnosis. In both cases a Yqs chromosome was detected in the father which had arisen from a reciprocal translocation involving the short arm of chromosome 15 and the heterochromatin of the long arm of the Y chromosome (Yqh). Cytogenetic and molecular studies demonstrated that in the reciprocal product of chromosomes 15 and Y PAR2 could not be detected, showing that PAR2 had been deleted. It is discussed whether the translocation of the short arm of an acrocentric chromosome to the heterochromatin of the long arm of the Y chromosome causes instability of this region which results either in loss of genetic material or interference with the normal mechanism of disjunction.

  10. Genetic and Molecular Mapping of Chromosome Region 85a in Drosophila Melanogaster

    PubMed Central

    Jones, W. K.; Rawls-Jr., J. M.

    1988-01-01

    Chromosome region 85A contains at least 12 genetic complementation groups, including the genes dhod, pink and hunchback. In order to better understand the organization of this chromosomal segment and to permit molecular studies of these genes, we have carried out a genetic analysis coupled with a chromosome walk to isolate the DNA containing these genes. Complementation tests with chromosomal deficiencies permitted unambiguous ordering of most of the complementation groups identified within the 85A region. Recombinant bacteriophage clones were isolated that collectively span over 120 kb of 85A DNA and these were used to produce a molecular map of the region. The breakpoint sites of a number of 85A chromosome rearrangements were localized on the molecular map, thereby delimiting regions of the DNA that contain the various genetic complementation groups. PMID:2852138

  11. Construction of a chromosome specific library of human MARs and mapping of matrix attachment regions on human chromosome 19.

    PubMed

    Nikolaev, L G; Tsevegiyn, T; Akopov, S B; Ashworth, L K; Sverdlov, E D

    1996-04-01

    Using a novel procedure a representative human chromosome 19-specific library was constructed of short sequences, which bind preferentially to the nuclear matrix (matrix attachment regions, or MARs). Judging by 20 clones sequenced so far, the library contains > 50% of human inserts, about 90% of which are matrix-binding by the in vitro test. Computer analysis of sequences of eight human MARs did not reveal any significant homologies with the EMBL Nucleotide Data Base entries as well as between MARs themselves. Eight MARs were assigned to individual positions on the chromosome 19 physical map. The library constructed can serve as a good source of MAR sequences for comparative analysis and classification and for further chromosome mapping of MARs as well.

  12. Construction of a chromosome specific library of human MARs and mapping of matrix attachment regions on human chromosome 19.

    PubMed Central

    Nikolaev, L G; Tsevegiyn, T; Akopov, S B; Ashworth, L K; Sverdlov, E D

    1996-01-01

    Using a novel procedure a representative human chromosome 19-specific library was constructed of short sequences, which bind preferentially to the nuclear matrix (matrix attachment regions, or MARs). Judging by 20 clones sequenced so far, the library contains > 50% of human inserts, about 90% of which are matrix-binding by the in vitro test. Computer analysis of sequences of eight human MARs did not reveal any significant homologies with the EMBL Nucleotide Data Base entries as well as between MARs themselves. Eight MARs were assigned to individual positions on the chromosome 19 physical map. The library constructed can serve as a good source of MAR sequences for comparative analysis and classification and for further chromosome mapping of MARs as well. PMID:8614638

  13. Identification of critical regions and candidate genes for cardiovascular malformations and cardiomyopathy associated with deletions of chromosome 1p36.

    PubMed

    Zaveri, Hitisha P; Beck, Tyler F; Hernández-García, Andrés; Shelly, Katharine E; Montgomery, Tara; van Haeringen, Arie; Anderlid, Britt-Marie; Patel, Chirag; Goel, Himanshu; Houge, Gunnar; Morrow, Bernice E; Cheung, Sau Wai; Lalani, Seema R; Scott, Daryl A

    2014-01-01

    Cardiovascular malformations and cardiomyopathy are among the most common phenotypes caused by deletions of chromosome 1p36 which affect approximately 1 in 5000 newborns. Although these cardiac-related abnormalities are a significant source of morbidity and mortality associated with 1p36 deletions, most of the individual genes that contribute to these conditions have yet to be identified. In this paper, we use a combination of clinical and molecular cytogenetic data to define five critical regions for cardiovascular malformations and two critical regions for cardiomyopathy on chromosome 1p36. Positional candidate genes which may contribute to the development of cardiovascular malformations associated with 1p36 deletions include DVL1, SKI, RERE, PDPN, SPEN, CLCNKA, ECE1, HSPG2, LUZP1, and WASF2. Similarly, haploinsufficiency of PRDM16-a gene which was recently shown to be sufficient to cause the left ventricular noncompaction-SKI, PRKCZ, RERE, UBE4B and MASP2 may contribute to the development of cardiomyopathy. When treating individuals with 1p36 deletions, or providing prognostic information to their families, physicians should take into account that 1p36 deletions which overlie these cardiac critical regions may portend to cardiovascular complications. Since several of these cardiac critical regions contain more than one positional candidate gene-and large terminal and interstitial 1p36 deletions often overlap more than one cardiac critical region-it is likely that haploinsufficiency of two or more genes contributes to the cardiac phenotypes associated with many 1p36 deletions.

  14. A region of consistent deletion in neuroblastoma maps within human chromosome 1p36.2-36.3

    SciTech Connect

    White, P.S.; Maris, J.M.; Beltinger, C.

    1995-06-06

    Deletion of the short arm of human chromosome 1 is the most common cytogenetic abnormality observed in neuroblastoma. To characterize the region of consistent deletion, we performed loss of heterozygosity (LOH) studies on 122 neuroblastoma tumor samples with 30 distal chromosome 1p polymorphisms. LOH was detected in 32 of the 122 tumors (26%). A single region of LOH, marked distally by D1Z2 and proximally by D1S228, was detected in all tumors demonstrating loss. Also, cells from a patient with a constitutional deletion of 1p36, and from a neuroblastoma cell line with a small 1p36 deletion, were analyzed by fluorescence in situ hybridization. Cells from both sources had interstitial deletions of 1p36.2-36.3 which overlapped the consensus region of LOH defined by the tumors. Interstitial deletion in the constitutional case was confirmed by allelic loss studies using the panel of polymorphic markers. Four proposed candidate genes-DAN, ID3 (heir-1), CDC2L1 (p58), and TNFR2-were shown to lie outside of the consensus region of allelic loss, as defined by the above deletions. These results more precisely define the location of a neuroblastoma suppressor gene within 1p36.2-36.3, eliminating 33 centimorgans of proximal 1p36 from consideration. Furthermore, a consensus region of loss, which excludes the four leading candidate genes, was found in all tumors with 1p36 LOH. 31 refs., 4 figs.

  15. Physical map of mouse Chromosome 17 in the region relevant for positional cloning of the hybrid sterility 1 gene

    SciTech Connect

    Trachtulec, Z.; Vincek, V.; Hamvas, R.M.J.

    1994-09-01

    Hybrid sterility 1 (Hst1) is the major gene responsible for sterility of male hybrids between Mus musculus and certain laboratory strains. Thus, Hst1 is of importance in studying both postreproductive isolation of closely related species and male fertility. It has been mapped to mouse chromosome 17 in the region corresponding to the third inversion of the t haplotypes. The aim of the present study was to construct a physical map of the Hst1 region as the first step in an effort to clone the gene. Three yeast artificial chromosome (YAC) libraries (Princeton, Whitehead, and ICRF) were screened with polymerase chain reaction (PCR) oligonucleotide primers and DNA probes specific for loci previously mapped into the region of the third inversion. The isolated YAC clones were restriction mapped and arranged into contigs. Sixteen YAC clones were arranged into a single contig encompassing a region approximately 2000 kb long based on restriction mapping of highly overlapping but independently derived YAC clones. Five new loci in the region of the third inversion were mappd and the order and approximate physical distances of 12 loci established in this contig. The Hst1 gene maps approximately 0.2 cM proximal to the D17Ph1 locus encompassed by the YAC contig. Since the contig extends at least 1200 kb proximal to D17Ph1, it should contain the Hst1 gene.

  16. Impacts of cloud overlap assumptions on radiative budgets and heating fields in convective regions

    NASA Astrophysics Data System (ADS)

    Wang, XiaoCong; Liu, YiMin; Bao, Qing

    2016-01-01

    Impacts of cloud overlap assumptions on radiative budgets and heating fields are explored with the aid of a cloud-resolving model (CRM), which provided cloud geometry as well as cloud micro and macro properties. Large-scale forcing data to drive the CRM are from TRMM Kwajalein Experiment and the Global Atmospheric Research Program's Atlantic Tropical Experiment field campaigns during which abundant convective systems were observed. The investigated overlap assumptions include those that were traditional and widely used in the past and the one that was recently addressed by Hogan and Illingworth (2000), in which the vertically projected cloud fraction is expressed by a linear combination of maximum and random overlap, with the weighting coefficient depending on the so-called decorrelation length Lcf. Results show that both shortwave and longwave cloud radiative forcings (SWCF/LWCF) are significantly underestimated under maximum (MO) and maximum-random (MRO) overlap assumptions, whereas remarkably overestimated under the random overlap (RO) assumption in comparison with that using CRM inherent cloud geometry. These biases can reach as high as 100 Wm- 2 for SWCF and 60 Wm- 2 for LWCF. By its very nature, the general overlap (GenO) assumption exhibits an encouraging performance on both SWCF and LWCF simulations, with the biases almost reduced by 3-fold compared with traditional overlap assumptions. The superiority of GenO assumption is also manifested in the simulation of shortwave and longwave radiative heating fields, which are either significantly overestimated or underestimated under traditional overlap assumptions. The study also pointed out the deficiency of constant assumption on Lcf in GenO assumption. Further examinations indicate that the CRM diagnostic Lcf varies among different cloud types and tends to be stratified in the vertical. The new parameterization that takes into account variation of Lcf in the vertical well reproduces such a relationship and

  17. Genetic divergence in domesticated and non-domesticated gene regions of barley chromosomes.

    PubMed

    Yan, Songxian; Sun, Dongfa; Sun, Genlou

    2015-01-01

    Little is known about the genetic divergence in the chromosomal regions with domesticated and non-domesticated genes. The objective of our study is to examine the effect of natural selection on shaping genetic diversity of chromosome region with domesticated and non-domesticated genes in barley using 110 SSR markers. Comparison of the genetic diversity loss between wild and cultivated barley for each chromosome showed that chromosome 5H had the highest divergence of 35.29%, followed by 3H, 7H, 4H, 2H, 6H. Diversity ratio was calculated as (diversity of wild type - diversity of cultivated type)/diversity of wild type×100%. It was found that diversity ratios of the domesticated regions on 5H, 1H and 7H were higher than those of non-domesticated regions. Diversity ratio of the domesticated region on 2H and 4H is similar to that of non-domesticated region. However, diversity ratio of the domesticated region on 3H is lower than that of non-domesticated region. Averaged diversity among six chromosomes in domesticated region was 33.73% difference between wild and cultivated barley, and was 27.56% difference in the non-domesticated region. The outcome of this study advances our understanding of the evolution of crop chromosomes. PMID:25812037

  18. DNA repair and crossing over favor similar chromosome regions as discovered in radiation hybrid of Triticum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The uneven distribution of recombination across the length of chromosomes results in inaccurate estimates of genetic to physical distances. In wheat (Triticum aestivum L.) chromosome 3B, it has been estimated that 90% of the cross over occurs in distal sub-telomeric regions representing 40% of the...

  19. Chromosome Fragile Sites in Arabidopsis Harbor Matrix Attachment Regions That May Be Associated with Ancestral Chromosome Rearrangement Events

    PubMed Central

    dela Paz, Joelle S.; Stronghill, Patti E.; Douglas, Scott J.; Saravia, Sandy; Hasenkampf, Clare A.; Riggs, C. Daniel

    2012-01-01

    Mutations in the BREVIPEDICELLUS (BP) gene of Arabidopsis thaliana condition a pleiotropic phenotype featuring defects in internode elongation, the homeotic conversion of internode to node tissue, and downward pointing flowers and pedicels. We have characterized five mutant alleles of BP, generated by EMS, fast neutrons, x-rays, and aberrant T–DNA insertion events. Curiously, all of these mutagens resulted in large deletions that range from 140 kbp to over 900 kbp just south of the centromere of chromosome 4. The breakpoints of these mutants were identified by employing inverse PCR and DNA sequencing. The south breakpoints of all alleles cluster in BAC T12G13, while the north breakpoint locations are scattered. With the exception of a microhomology at the bp-5 breakpoint, there is no homology in the junction regions, suggesting that double-stranded breaks are repaired via non-homologous end joining. Southwestern blotting demonstrated the presence of nuclear matrix binding sites in the south breakpoint cluster (SBC), which is A/T rich and possesses a variety of repeat sequences. In situ hybridization on pachytene chromosome spreads complemented the molecular analyses and revealed heretofore unrecognized structural variation between the Columbia and Landsberg erecta genomes. Data mining was employed to localize other large deletions around the HY4 locus to the SBC region and to show that chromatin modifications in the region shift from a heterochromatic to euchromatic profile. Comparisons between the BP/HY4 regions of A. lyrata and A. thaliana revealed that several chromosome rearrangement events have occurred during the evolution of these two genomes. Collectively, the features of the region are strikingly similar to the features of characterized metazoan chromosome fragile sites, some of which are associated with karyotype evolution. PMID:23284301

  20. Assembly and analysis of cosmid contigs in the CEA-gene family region of human chromosome 19.

    PubMed Central

    Tynan, K; Olsen, A; Trask, B; de Jong, P; Thompson, J; Zimmermann, W; Carrano, A; Mohrenweiser, H

    1992-01-01

    The carcinoembryonic antigen (CEA)-like genes are members of a large gene family which is part of the immunoglobulin superfamily. The CEA family is divided into two major subgroups, the CEA-subgroup and the pregnancy-specific glycoprotein (PSG)-subgroup. In the course of an effort to develop a set of overlapping cosmids spanning human chromosome 19, we identified 245 cosmids in a human chromosome 19 cosmid library (6-7X redundant) by hybridization with an IgC-like domain fragment of the CEA gene. A fluorescence-based restriction enzyme digest fingerprinting strategy was used to assemble 212 probe-positive cosmids, along with 115 additional cosmids from a collection of approximately 8,000 randomly selected cosmids, into five contigs. Two of the contigs contain CEA-subgroup genes while the remaining three contigs contain PSG-subgroup genes. These five contigs range in size from 100 kb to over 300 kb and span an estimated 1 Mb. The CEA-like gene family was determined by fluorescence in situ hybridization to map in the q13.1-q13.2 region of human chromosome 19. Analysis of the two CEA-subgroup contigs provided verification of the contig assembly strategy and insight into the organization of 9 CEA-subgroup genes. PMID:1579453

  1. Cytogenetic and molecular delineation of the smallest commonly deleted region of chromosome 5 in malignant myeloid diseases.

    PubMed Central

    Le Beau, M M; Espinosa, R; Neuman, W L; Stock, W; Roulston, D; Larson, R A; Keinanen, M; Westbrook, C A

    1993-01-01

    Loss of a whole chromosome 5 or a deletion of its long arm (5q) is a recurring abnormality in malignant myeloid neoplasms. To determine the location of genes on 5q that may be involved in leukemogenesis, we examined the deleted chromosome 5 homologs in a series of 135 patients with malignant myeloid diseases. By comparing the breakpoints, we identified a small segment of 5q, consisting of band 5q31, that was deleted in each patient. This segment has been termed the critical region. Distal 5q contains a number of genes encoding growth factors, hormone receptors, and proteins involved in signal transduction or transcriptional regulation. These include several genes that are good candidates for a tumor-suppressor gene, as well as the genes encoding five hematopoietic growth factors (CSF2, IL3, IL4, IL5, and IL9). By using fluorescence in situ hybridization, we have refined the localization of these genes to 5q31.1 and have determined the order of these genes and of other markers within 5q31. By hybridizing probes to metaphase cells with overlapping deletions involving 5q31, we have narrowed the critical region to a small segment of 5q31 containing the EGR1 gene. The five hematopoietic growth factor genes and seven other genes are excluded from this region. The EGR1 gene was not deleted in nine other patients with acute myeloid leukemia who did not have abnormalities of chromosome 5. By physical mapping, the minimum size of the critical region was estimated to be 2.8 megabases. This cytogenetic map of 5q31, together with the molecular characterization of the critical region, will facilitate the identification of a putative tumor-suppressor gene in this band. PMID:8516290

  2. Constructing chromosome- and region-specific cosmid maps of the human genome.

    PubMed

    Carrano, A V; de Jong, P J; Branscomb, E; Slezak, T; Watkins, B W

    1989-01-01

    A chromosome-specific ordered set of cosmids would be a significant contribution toward understanding human chromosome structure and function. We are developing two parallel approaches for creating an ordered cosmid library of human chromosome 19 and other selected subregions of the human genome. The "bottom up" approach is used to establish sets of overlapping cosmids as islands or "contigs" along the chromosome, while the "top down" approach, using pulsed-field gel electrophoresis and yeast cloning, will establish a large-fragment map and close the inevitable gaps remaining from the "bottom up" approach. Source DNA consists of a single homolog of chromosome 19 from a hamster--human hybrid cell and human fragments cloned in yeast artificial chromosomes. We have constructed cosmid libraries in a vector that facilitates cloning small amounts of DNA, allows transcription of the insert termini, and contains unique sites for partial-digest mapping. Computer simulations of cosmid contig building suggest that near-optimal efficiency can be achieved with high-density restriction fragment digest schemes that can detect 20-30% overlap between cosmids. We developed the chemistry and data analysis tools to compare the ordering efficiencies of several cosmid restriction digest fingerprinting strategies. Restriction fragments from a four-cutter digest are labeled with a fluorochrome, separated by polyacrylamide gel electrophoresis, and detected after laser excitation as they traverse a fixed point in the gel. We have also developed the software to rapidly process the output signal to define and analyze the fragment peaks. Up to three cosmids (or three different digests of the same cosmid) plus a size standard are analyzed simultaneously in a single gel lane.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2698823

  3. Regional localization of the gene for thyroid peroxidase to human chromosome 2p25 and mouse chromosome 12C

    SciTech Connect

    Endo, Yuichi; Onogi, Satoshi; Fujita, Teizo

    1995-02-10

    Thyroid peroxidase (TPO) plays a central role in thyroid gland function. The enzyme catalyzes two important reactions of thyroid hormone synthesis, i.e., the iodination of tyrosine residues in thyroglobulin and phenoxy-ester formation between pairs of iodinated tyrosines to generate the thyroid hormones, thyroxine and triiodothyronine. Previously, we isolated the cDNAs encoding human and mouse TPOs and assigned the human TPO gene to the short arm of chromosome 2 by somatic cell hybrid mapping. By a similar analysis of DNA from somatic cell hybrids, the human TPO gene was mapped to 2pter-p12. The mouse TPO gene was localized to chromosome 12 using a rat TPO cDNA as a probe to hybridize with mouse-hamster somatic cell hybrids. In this study, we used fluorescence in situ hybridization (FISH) to confirm the localization of human and mouse TPO genes to human chromosome 2 and mouse chromosome 12 and to assign them regionally to 2p25 and 12C, respectively. 7 refs., 1 fig.

  4. Detailed comparative mapping of cereal chromosome regions corresponding to the Ph1 locus in wheat

    SciTech Connect

    Foote, T.; Roberts, M.; Kurata, N.

    1997-10-01

    Detailed physical mapping of markers from rich chromosome 9, and from syntenous (at the genetic level) regions of other cereal genomes, has resulted in rice yeast artificial chromosome (YAC) contigs spanning parts of rice 9. This physical mapping, together with comparative genetic mapping, has demonstrated that synteny has been largely maintained between the genomes of several cereals at the level of contiged YACs. Markers located in one region of rice chromosome 9 encompassed by the YAC contigs have exhibited restriction fragment length polymorphism (RFLP) using deletion lines for the Ph1 locus. This has allowed demarcation of the region of rice chromosome 9 syntenous with the phlb and phlc deletions in wheat chromosome 5B. A group of probes located in wheat homoeologous group 5 and barley chromosome 5H, however, have synteny with rice chromosomes other than 9. This suggests that the usefulness of comparative trait analysis and of the rice genome as a tool to facilitate gene isolation will differ from one region to the next, and implies that the rice genome is more ancestral in structure than those of the Triticeae. 38 refs., 2 figs., 1 tab.

  5. High-resolution G-banding and nucleolus-organizer regions of chromosomes of vole Microtus kirgisorum

    SciTech Connect

    Mazurok, N.A.; Rubtsov, N.B.; Ovechkina, Y.Y.

    1995-08-01

    The use of G-banding of chromosomes in combination with the pipette method of chromosome preparation at the early metaphase made it possible to distinguish about 520 segments in the haploid chromosome set of vole Microtus kirgisorum. The idiogram of M. kirgisorum chromosomes was obtained on the basis of detailed investigation of chromosomes at different condensation levels. Data of the localization and the number of nucleolus-organizer regions are given. 16 refs., 3 figs.

  6. Nucleolus organizer regions and B-chromosomes of wood mice (mammalia, rodentia, Apodemus)

    SciTech Connect

    Boeskorov, G.G.; Kartavtseva, I.V.; Zagorodnyuk, I.V.; Belyanin, A.N.; Lyapunova, E.A.

    1995-02-01

    Distribution of nucleolus organizer regions (NORs) in karyotypes was studied in 10 species of wood mice, including Apodemus flavicollis, A. sylvaticus, A. uralensis (=A. microps), A. fulvipectus (=A. falzfeini), A. ponticus, A. hyrcanicus, A. mystacinus, A. agrarius, A. peninsulae, and A. speciosus. Peculiarities of NOR location in karyotypes can be used in interspecific diagnostics of wood mice. Intraspecific polymorphism of A. sylvaticus, A. agrarius, and A. peninsulae in terms of the number of NORs and their localization in chromosomes can serve as evidence for karyological differentiation in certain populations of these species. The minimum number of active NORs in mice of the genus Apodemus is two to four. Two A. flavicollis wood mice with karyotypes containing one small acrocentric B-chromosome (2n = 49) were identified among animals captured in Estonia. In A. peninsulae, B-chromosomes were found among animals captured in the following regions: the vicinity of Kyzyl (one mouse with 17 microchromosomes, 2n = 65); the vicinity of Birakan (two mice with one metacentric chromosome each, 2n = 49); and in the Ussuri Nature Reserve (one mouse with five B-chromosomes, including three metacentric and two dotlike chromosomes; 2n = 53). In the latter animal, the presence of NORs on two metacentric B-chromosomes was revealed; this is the first case of identification of active NORs on extra chromosomes of mammals. 29 refs., 4 figs., 1 tab.

  7. Narrowing the genetic interval and yeast artificial chromosome map in the branchio-oto-renal region on chromosome 8q

    SciTech Connect

    Kumar, Shrawan; Kimberling, W.J.; Pinnt, J.

    1996-01-01

    Branchio-oto-renal (BOR) syndrome is an autosomal dominant disorder characterized by branchial abnormality, hearing loss, and renal anomalies. Recently, the disease gene has been localized to chromosome 8q. Here, we report genetic studies that further refine the disease gene region to a smaller interval and identify several YACs from the critical region. We studied two large, clinically well-characterized BOR families with a set of 13 polymorphic markers spanning the D8S165-D8S275 interval from the chromosome 8q region. Based on multipoint analysis, the highest likelihood for the location of the BOR gene is between markers D8S543 and D8S530, a distance of about 2 cM. YACs that map in the BOR critical region have been identified and characterized by fluorescence in situ hybridization and pulsed-field gel electrophoresis. A YAC contig, based on the STS content map, that covers a minimum of 4 Mb of human DNA in the critical region of BOR is assembled. This lays the groundwork for the construction of a transcriptional map of this region and the eventual identification of genes involved in BOR syndrome. 40 refs., 4 figs., 1 tab.

  8. Region-specific cosmids and STRPs identified by chromosome microdissection and FISH

    SciTech Connect

    Flejter, W.L.; Bennett-Baker, P.; Barcroft, C.L.

    1995-01-20

    A strategy for identifying short tandem repeat (STR)-containing cosmid clones from a specific chromosomal region is described. The approach is based an the use of uncloned, PCR-amplified DNA derived from chromosome microdissection and pooled groups of STR sequences as hybridization probes to screen a cosmid library. Cosmid clones that display a positive signal common to both hybridizations are then characterized for repeat length polymorphisms. This method has been applied to chromosome bands 17q12-q21, a region that includes a gene (BRCA1) involved in early onset familial breast and ovarian cancer. Of 1536 chromosome 17-specific cosmid clones tested, 38 were identified by the dual screening procedure. Fluorescence in situ hybridization revealed that 19 cosmids originated from the microdissected target region. Thirteen of the 19 cosmids were mapped between markers flanking the BRCA1 region and selected for further characterization. Tetranucleotide repeats were identified in 10 of these 13 cosmids. Primers designed for each marker were tested on a panel of 80 CEPH parents for allele sizes, frequencies, and observed heterozygosities. From these studies six polymorphic and one nonpolymorphic STRs were identified. A similar approach should be applicable for screening whole genomic or chromosome-specific cosmid libraries in efforts to isolate new polymorphic markers from any chromosomal region of interest. 32 refs., 3 figs., 2 tabs.

  9. A new region of conservation is defined between human and mouse X chromosomes

    SciTech Connect

    Dinulos, M.B.; Disteche, C.M.; Bassi, M.T.

    1996-07-01

    Comparative mapping of the X chromosome in eutherian mammals have revealed distinct regions of conservation as well as evolutionary rearrangements between human and mouse. Recently, we and others mapped the murine homologue of CLCN4 (Chloride channel 4) to band F4 of the X chromosome in Mus spretus but to chromosome 7 in laboratory strains. We now report the mapping of the murine homologues of APXL (Apical protein Xenopus laevis-like) and OA1 (Ocular albinism type I), two genes that are located on the human X chromosome at band p22.3 and in close proximity to CLCN4. Interestingly, Oa1 and Apxl map to bands F2-F3 in both M. spretus and the laboratory strain C57BL/6J, defining a new rearrangement between human and mouse X chromosomes. 17 refs., 2 figs., 1 tab.

  10. Identification of chromosome 7 inversion breakpoints in an autistic family narrows candidate region for autism susceptibility.

    PubMed

    Cukier, Holly N; Skaar, David A; Rayner-Evans, Melissa Y; Konidari, Ioanna; Whitehead, Patrice L; Jaworski, James M; Cuccaro, Michael L; Pericak-Vance, Margaret A; Gilbert, John R

    2009-10-01

    Chromosomal breaks and rearrangements have been observed in conjunction with autism and autistic spectrum disorders. A chromosomal inversion has been previously reported in autistic siblings, spanning the region from approximately 7q22.1 to 7q31. This family is distinguished by having multiple individuals with autism and associated disabilities. The region containing the inversion has been strongly implicated in autism by multiple linkage studies, and has been particularly associated with language defects in autism as well as in other disorders with language components. Mapping of the inversion breakpoints by FISH has localized the inversion to the region spanning approximately 99-108.75 Mb of chromosome 7. The proximal breakpoint has the potential to disrupt either the coding sequence or regulatory regions of a number of cytochrome P450 genes while the distal region falls in a relative gene desert. Copy number variant analysis of the breakpoint regions detected no duplication or deletion that could clearly be associated with disease status. Association analysis in our autism data set using single nucleotide polymorphisms located near the breakpoints showed no significant association with proximal breakpoint markers, but has identified markers near the distal breakpoint ( approximately 108-110 Mb) with significant associations to autism. The chromosomal abnormality in this family strengthens the case for an autism susceptibility gene in the chromosome 7q22-31 region and targets a candidate region for further investigation.

  11. 4p16.3 microdeletions and microduplications detected by chromosomal microarray analysis: New insights into mechanisms and critical regions.

    PubMed

    Bi, Weimin; Cheung, Sau-Wai; Breman, Amy M; Bacino, Carlos A

    2016-10-01

    Deletions in the 4p16.3 region cause Wolf-Hirschhorn syndrome, a well known contiguous microdeletion syndrome with the critical region for common phenotype mapped in WHSCR2. Recently, duplications in 4p16.3 were reported in three patients with developmental delay and dysmorphic features. Through chromosomal microarray analysis, we identified 156 patients with a deletion (n = 109) or duplication (n = 47) in 4p16.3 out of approximately 60,000 patients analyzed by Baylor Miraca Genetics Laboratories. Seventy-five of the postnatally detected deletions encompassed the entire critical region, 32 (43%) of which were associated with other chromosome rearrangements, including six patients (8%) that had a duplication adjacent to the terminal deletion. Our data indicate that Wolf-Hirschhorn syndrome deletions with an adjacent duplication occur at a higher frequency than previously appreciated. Pure deletions (n = 14) or duplications (n = 15) without other copy number changes distal to or inside the WHSCR2 were identified for mapping of critical regions. Our data suggest that deletion of the segment from 0.6 to 0.9 Mb from the terminus of 4p causes a seizure phenotype and duplications of a region distal to the previously defined smallest region of overlap for 4p16.3 microduplication syndrome are associated with neurodevelopmental problems. We detected seven Wolf-Hirschhorn syndrome deletions and one 4p16.3 duplication prenatally; all of the seven are either >8 Mb in size and/or associated with large duplications. In conclusion, our study provides deeper insight into the molecular mechanisms, the critical regions and effective prenatal diagnosis for 4p16.3 deletions/ duplications. © 2016 Wiley Periodicals, Inc.

  12. Fine mapping of variants associated with endometriosis in the WNT4 region on chromosome 1p36.

    PubMed

    Luong, Hien Tt; Painter, Jodie N; Shakhbazov, Konstantin; Chapman, Brett; Henders, Anjali K; Powell, Joseph E; Nyholt, Dale R; Montgomery, Grant W

    2013-01-01

    Genome-wide association studies show strong evidence of association with endometriosis for markers on chromosome 1p36 spanning the potential candidate genes WNT4, CDC42 and LINC00339. WNT4 is involved in development of the uterus, and the expression of CDC42 and LINC00339 are altered in women with endometriosis. We conducted fine mapping to examine the role of coding variants in WNT4 and CDC42 and determine the key SNPs with strongest evidence of association in this region. We identified rare coding variants in WNT4 and CDC42 present only in endometriosis cases. The frequencies were low and cannot account for the common signal associated with increased risk of endometriosis. Genotypes for five common SNPs in the region of chromosome 1p36 show stronger association signals when compared with rs7521902 reported in published genome scans. Of these, three SNPs rs12404660, rs3820282, and rs55938609 were located in DNA sequences with potential functional roles including overlap with transcription factor binding sites for FOXA1, FOXA2, ESR1, and ESR2. Functional studies will be required to identify the gene or genes implicated in endometriosis risk.

  13. Delineation of a deletion region critical for corpus callosal abnormalities in chromosome 1q43–q44

    PubMed Central

    Nagamani, Sandesh C Sreenath; Erez, Ayelet; Bay, Carolyn; Pettigrew, Anjana; Lalani, Seema R; Herman, Kristin; Graham, Brett H; Nowaczyk, Malgorzata JM; Proud, Monica; Craigen, William J; Hopkins, Bobbi; Kozel, Beth; Plunkett, Katie; Hixson, Patricia; Stankiewicz, Pawel; Patel, Ankita; Cheung, Sau Wai

    2012-01-01

    Submicroscopic deletions involving chromosome 1q43–q44 result in cognitive impairment, microcephaly, growth restriction, dysmorphic features, and variable involvement of other organ systems. A consistently observed feature in patients with this deletion are the corpus callosal abnormalities (CCAs), ranging from thinning and hypoplasia to complete agenesis. Previous studies attempting to delineate the critical region for CCAs have yielded inconsistent results. We conducted a detailed clinical and molecular characterization of seven patients with deletions of chromosome 1q43–q44. Using array comparative genomic hybridization, we mapped the size, extent, and genomic content of these deletions. Four patients had CCAs, and shared the smallest region of overlap that contains only three protein coding genes, CEP170, SDCCAG8, and ZNF238. One patient with a small deletion involving SDCCAG8 and AKT3, and another patient with an intragenic deletion of AKT3 did not have any CCA, implying that the loss of these two genes is unlikely to be the cause of CCA. CEP170 is expressed extensively in the brain, and encodes for a protein that is a component of the centrosomal complex. ZNF238 is involved in control of neuronal progenitor cells and survival of cortical neurons. Our results rule out the involvement of AKT3, and implicate CEP170 and/or ZNF238 as novel genes causative for CCA in patients with a terminal 1q deletion. PMID:21934713

  14. Isolation, characterization, and regional mapping of microclones from a human chromosome 21 microdissection library

    SciTech Connect

    Yu, J.; Hartz, J.; Yisheng Xu; Gemmill, R.M.; Patterson, D.; Kao, Faten ); Gemmill, R.M.; Patterson, D.; Kao, Fa-Ten ); Korenberg, J.R. )

    1992-08-01

    Thirty-four unique-sequence microclones were isolated from a previously described microdissection library of human chromosome 21 and were regionally mapped using a cell hybrid mapping panel which consists of six cell hybrids and divides chromosome 21 into eight regions. The mapping results showed that the microclones were unevenly distributed along chromosome 21, with the majority of microclones located in the distal half portion of the long arm, between 21q21.3 and 21qter. The number of unique-sequence clones began to decrease significantly from 21q21.2 to centromere and extending to the short arm. This finding is consistent with those reported in other chromosome 21 libraries. Thus, it may be inferred that the proximal portion of the long arm of chromosome 21 contains higher proportions of repetitive sequences, rather than unique sequences of genes. The microclones were also characterized for insert size and were used to identify the corresponding genomic fragments generated by HindIII. In addition, the authors demonstrated that the microclones with short inserts can be efficiently used to identify YAC (yeast artificial chromosome) clones with large inserts, for increased genomic coverage for high-resolution physical mapping. They also used 200 unique-sequence microclones to screen a human liver cDNA library and identified two cDNA clones which were regionally assigned to the 21q21.3-q22.1 region. Thus, generation of unique-sequence microclones from chromosome 21 appears to be useful to isolate and regionally map many cDNA clones, among which will be candidate genes for important diseases on chromosome 21, including Down syndrome, Alzheimer disease, amyotrophic lateral sclerosis, and one form of epilepsy.

  15. 3. 6-Mb genomic and YAC physical map of the Down syndrome chromosome region on chromosome 21

    SciTech Connect

    Dufresne-Zacharia, M.C.; Dahmane, N.; Theophile, D.; Orti, R.; Chettouh, Z.; Sinet, P.M.; Delabar, J.M. )

    1994-02-01

    The Down syndrome chromosome region (DCR) on chromosome 21 has been shown to contain a gene(s) important in the pathogenesis of Down syndrome. The authors constructed a long-range restriction map of the D21S55-D21S65 region covering the proximal part of the DCR. Pulsed-field gel electrophoresis of lymphocyte DNA digested with three rare cutting enzymes, NotI, NruI, and Mlu1, was used to establish two physical linkage groups of 5 and 7 markers, respectively, spanning 4.6 Mb on the NotI map. Mapping analysis of 40 YACs allowed the selection of 13 YACs covering 95% of the D21S55-D21S65 region and spanning 3.6 Mb. The restriction maps of these YACs and their positioning on the genomic map allowed 19 markers to be ordered, including 4 NotI linking clones, 9 polymorphic markers, the CBR gene, and the AML1 gene. The distances between markers could also be estimated. This physical map and the location of eight NotI sites between D21S55 and D21S17 should facilitate the isolation of previously unidentified genes in this region. 34 refs., 2 figs., 2 tabs.

  16. Delineation of the critical deletion region for congenital heart defects, on chromosome 8p23.1.

    PubMed Central

    Devriendt, K; Matthijs, G; Van Dael, R; Gewillig, M; Eyskens, B; Hjalgrim, H; Dolmer, B; McGaughran, J; Bröndum-Nielsen, K; Marynen, P; Fryns, J P; Vermeesch, J R

    1999-01-01

    Deletions in the distal region of chromosome 8p (del8p) are associated with congenital heart malformations. Other major manifestations include microcephaly, intrauterine growth retardation, mental retardation, and a characteristic hyperactive, impulsive behavior. We studied genotype-phenotype correlations in nine unrelated patients with a de novo del8p, by using the combination of classic cytogenetics, FISH, and the analysis of polymorphic DNA markers. With the exception of one large terminal deletion, all deletions were interstitial. In five patients, a commonly deleted region of approximately 6 Mb was present, with breakpoints clustering in the same regions. One patient without a heart defect or microcephaly but with mild mental retardation and characteristic behavior had a smaller deletion within this commonly deleted region. Two patients without a heart defect had a more proximal interstitial deletion that did not overlap with the commonly deleted region. Taken together, these data allowed us to define the critical deletion regions for the major features of a del8p. PMID:10090897

  17. Tissue-specific differences in the spatial interposition of X-chromosome and 3R chromosome regions in the malaria mosquito Anopheles messeae Fall.

    PubMed

    Artemov, Gleb; Bondarenko, Semen; Sapunov, Gleb; Stegniy, Vladimir

    2015-01-01

    Spatial organization of a chromosome in a nucleus is very important in biology but many aspects of it are still generally unresolved. We focused on tissue-specific features of chromosome architecture in closely related malaria mosquitoes, which have essential inter-specific differences in polytene chromosome attachments in nurse cells. We showed that the region responsible for X-chromosome attachment interacts with nuclear lamina stronger in nurse cells, then in salivary glands cells in Anopheles messeae Fall. The inter-tissue differences were demonstrated more convincingly in an experiment of two distinct chromosomes interposition in the nucleus space of cells from four tissues. Microdissected DNA-probes from nurse cells X-chromosome (2BC) and 3R chromosomes (32D) attachment regions were hybridized with intact nuclei of nurse cells, salivary gland cells, follicle epithelium cells and imaginal disсs cells in 3D-FISH experiments. We showed that only salivary gland cells and follicle epithelium cells have no statistical differences in the interposition of 2BC and 32D. Generally, the X-chromosome and 3R chromosome are located closer to each other in cells of the somatic system in comparison with nurse cells on average. The imaginal disсs cell nuclei have an intermediate arrangement of chromosome interposition, similar to other somatic cells and nurse cells. In spite of species-specific chromosome attachments there are no differences in interposition of nurse cells chromosomes in An. messeae and An. atroparvus Thiel. Nurse cells have an unusual chromosome arrangement without a chromocenter, which could be due to the special mission of generative system cells in ontogenesis and evolution.

  18. The mouse and human excitatory amino acid transporter gene (EAAT1) maps to mouse chromosome 15 and a region of syntenic homology on human chromosome 5

    SciTech Connect

    Kirschner, M.A.; Arriza, J.L.; Amara, S.G.

    1994-08-01

    The gene for human excitatory amino acid transporter (EAAT1) was localized to the distal region of human chromosome 5p13 by in situ hybridization of metaphase chromosome spreads. Interspecific backcross analysis identified the mouse Eaat1 locus in a region of 5p13 homology on mouse chromosome 15. Markers that are linked with EAAT1 on both human and mouse chromosomes include the receptors for leukemia inhibitory factor, interleukin-7, and prolactin. The Eaat1 locus appears not be linked to the epilepsy mutant stg locus, which is also on chromosome 15. The EAAT1 locus is located in a region of 5p deletions that have been associated with mental retardation and microcephaly. 22 refs., 2 figs.

  19. DNA methylation and heterochromatinization in the male-specific region of the primitive Y chromosome of papaya

    PubMed Central

    Zhang, Wenli; Wang, Xiue; Yu, Qingyi; Ming, Ray; Jiang, Jiming

    2008-01-01

    Sex chromosomes evolved from autosomes. Recombination suppression in the sex-determining region and accumulation of deleterious mutations lead to degeneration of the Y chromosomes in many species with heteromorphic X/Y chromosomes. However, how the recombination suppressed domain expands from the sex-determining locus to the entire Y chromosome remains elusive. The Y chromosome of papaya (Carica papaya) diverged from the X chromosome approximately 2–3 million years ago and represents one of the most recently emerged Y chromosomes. Here, we report that the male-specific region of the Y chromosome (MSY) spans ∼13% of the papaya Y chromosome. Interestingly, the centromere of the Y chromosome is embedded in the MSY. The centromeric domain within the MSY has accumulated significantly more DNA than the corresponding X chromosomal domain, which leads to abnormal chromosome pairing. We observed four knob-like heterochromatin structures specific to the MSY. Fluorescence in situ hybridization and immunofluorescence assay revealed that the DNA sequences associated with the heterochromatic knobs are highly divergent and heavily methylated compared with the sequences in the corresponding X chromosomal domains. These results suggest that DNA methylation and heterochromatinization play an important role in the early stage of sex chromosome evolution. PMID:18593814

  20. DNA methylation and heterochromatinization in the male-specific region of the primitive Y chromosome of papaya.

    PubMed

    Zhang, Wenli; Wang, Xiue; Yu, Qingyi; Ming, Ray; Jiang, Jiming

    2008-12-01

    Sex chromosomes evolved from autosomes. Recombination suppression in the sex-determining region and accumulation of deleterious mutations lead to degeneration of the Y chromosomes in many species with heteromorphic X/Y chromosomes. However, how the recombination suppressed domain expands from the sex-determining locus to the entire Y chromosome remains elusive. The Y chromosome of papaya (Carica papaya) diverged from the X chromosome approximately 2-3 million years ago and represents one of the most recently emerged Y chromosomes. Here, we report that the male-specific region of the Y chromosome (MSY) spans approximately 13% of the papaya Y chromosome. Interestingly, the centromere of the Y chromosome is embedded in the MSY. The centromeric domain within the MSY has accumulated significantly more DNA than the corresponding X chromosomal domain, which leads to abnormal chromosome pairing. We observed four knob-like heterochromatin structures specific to the MSY. Fluorescence in situ hybridization and immunofluorescence assay revealed that the DNA sequences associated with the heterochromatic knobs are highly divergent and heavily methylated compared with the sequences in the corresponding X chromosomal domains. These results suggest that DNA methylation and heterochromatinization play an important role in the early stage of sex chromosome evolution.

  1. Corepressor-dependent silencing of chromosomal regions encoding neuronal genes.

    PubMed

    Lunyak, Victoria V; Burgess, Robert; Prefontaine, Gratien G; Nelson, Charles; Sze, Sing-Hoi; Chenoweth, Josh; Schwartz, Phillip; Pevzner, Pavel A; Glass, Christopher; Mandel, Gail; Rosenfeld, Michael G

    2002-11-29

    The molecular mechanisms by which central nervous system-specific genes are expressed only in the nervous system and repressed in other tissues remain a central issue in developmental and regulatory biology. Here, we report that the zinc-finger gene-specific repressor element RE-1 silencing transcription factor/neuronal restricted silencing factor (REST/NRSF) can mediate extraneuronal restriction by imposing either active repression via histone deacetylase recruitment or long-term gene silencing using a distinct functional complex. Silencing of neuronal-specific genes requires the recruitment of an associated corepressor, CoREST, that serves as a functional molecular beacon for the recruitment of molecular machinery that imposes silencing across a chromosomal interval, including transcriptional units that do not themselves contain REST/NRSF response elements.

  2. Erratum: Letter to the Editor: Exclusion of primary congenital glaucoma (buphthalmos) from two candidate regions of chromosome arm 6p and chromosome 11

    SciTech Connect

    1996-03-01

    This {open_quotes}Letter to the Editor{close_quotes} is the reprint of a corrected table from a previous paper about the exclusion of primary congenital glaucoma from two candidate regions of chromosome arm 6p and chromosome 11.

  3. Molecular dissection of a contiguous gene syndrome: Frequent submicroscopic deletions, evolutionarily conserved sequences, and a hypomethylated island in the Miller-Dieker chromosome region

    SciTech Connect

    Ledbetter, D.H.; Ledbetter, S.A.; vanTuinen, P.; Summers, K.M.; Robinson, T.J.; Nakamura, Yusuke; Wolff, R.; White, R.; Barker, D.F.; Wallace, M.R.; Collins, F.S.; Dobyns, W.B. )

    1989-07-01

    The Miller-Dieker syndrome (MDS), composed of characteristic facial abnormalities and a severe neuronal migration disorder affecting the cerebral cortex, is caused by visible or submicroscopic deletions of chromosome band 17p13. Twelve anonymous DNA markers were tested against a panel of somatic cell hybrids containing 17p deletions from seven MDS patients. All patients, including three with normal karyotypes, are deleted for a variable set of 5-12 markers. Two highly polymorphic VNTR (variable number of tandem repeats) probes, YNZ22 and YNH37, are codeleted in all patients tested and make molecular diagnosis for this disorder feasible. By pulsed-field gel electrophoresis, YNZ22 and YNH37 were shown to be within 30 kilobases (kb) of each other. Cosmid clones containing both VNTR sequences were identified, and restriction mapping showed them to be <15 kb apart. Three overlapping cosmids spanning >100 kb were completely deleted in all patients, providing a minimum estimate of the size of the MDS critical region. A hypomethylated island and evolutionarily conserved sequences were identified within this 100-kb region, indications of the presence of one or more expressed sequences potentially involved in the pathophysiology of this disorder. The conserved sequences were mapped to mouse chromosome 11 by using mouse-rat somatic cell hybrids, extending the remarkable homology between human chromosome 17 and mouse chromosome 11 by 30 centimorgans, into the 17p telomere region.

  4. [Chromosomal polymorphism and cytotypes Endochironomus tendens F. (Diptera, Chironomidae) from reservoirs in the Saratov and Samara Regions].

    PubMed

    Durnova, N A

    2009-01-01

    Chromosomal polymorphism of phytophilous chironomidae, Endochironomus tendens F., from reservoirs in the Saratov and Samara Regions has been studied. Cytophotomaps of polytene chromosomes of the species have been worked out in details, and the found chromosomal sequences cadastre has been established. E. tendens F. cytotypes (karyomorphs I and II) have been analyzed. PMID:19764651

  5. A yeast artificial chromosome contig that spans the RB1-D13S31 interval on human chromosome 13 and encompasses the frequently deleted region in B-cell chronic lymphocytic leukemia

    SciTech Connect

    Hawthorn, L.; Roberts, T.; Cowell, J.K.

    1995-12-10

    Abnormalities involving chromosome 13 have been a reported as the only cytogenetic change in B-cell chronic lymphocytic leukemia (BCLL). Deletions are the most common cytogenetic abnormality and always involve 13q14, but when translocations are seen, the consistent breakpoint is always in 13q14. It is now established that deletions, distal to the RB1 gene in 13q14, are invariably associated with these translocations. We have recently described the smallest such deletion from a series of rearrangements from these tumors isolated in somatic cell hybrids, which spans approximately 1 Mb. In this report, we present the results of a series of a chromosome walking experiments using YACs and have been able to span this small deletion, which must contain the gene that is frequently deleted in BCLL. Four probes from 13q14 (RB1-mgg15-D13S25-D13S31) were used to isolate corresponding YACs for each of the markers. The chromosomal location of these YACs was verified using FISH, which also demonstrated their nonchimeric nature. Vectorette end rescue was then used to demonstrate the overlap of the YACs and to isolate new clones to complete the contig. The extremes of the contig were shown to cross the chromosome 13 translocation breakpoints isolated in somatic cell hybrids that carry the derivatives of chromosome 13 involved in the smallest BCLL deletion. This YAC contig covers the entire deletion and will prove a valuable resource to begin isolating genes from this region. In addition, we have isolated YACs corresponding to the RB1 locus, which extends the contig over a 3.8-cM distance on the chromosome. 25 refs., 1 fig., 1 tab.

  6. Overlapping genes in the human and mouse genomes

    PubMed Central

    Sanna, Chaitanya R; Li, Wen-Hsiung; Zhang, Liqing

    2008-01-01

    Background Increasing evidence suggests that overlapping genes are much more common in eukaryotic genomes than previously thought. In this study we identified and characterized the overlapping genes in a set of 13,484 pairs of human-mouse orthologous genes. Results About 10% of the genes under study are overlapping genes, the majority of which are different-strand overlaps. The majority of the same-strand overlaps are embedded forms, whereas most different-strand overlaps are not embedded and in the convergent transcription orientation. Most of the same-strand overlapping gene pairs show at least a tenfold difference in length, much larger than the length difference between non-overlapping neighboring gene pairs. The length difference between the two different-strand overlapping genes is less dramatic. Over 27% of the different-strand-overlap relationships are shared between human and mouse, compared to only ~8% conservation for same-strand-overlap relationships. More than 96% of the same-strand and different-strand overlaps that are not shared between human and mouse have both genes located on the same chromosomes in the species that does not show the overlap. We examined the causes of transition between the overlapping and non-overlapping states in the two species and found that 3' UTR change plays an important role in the transition. Conclusion Our study contributes to the understanding of the evolutionary transition between overlapping genes and non-overlapping genes and demonstrates the high rates of evolutionary changes in the un-translated regions. PMID:18410680

  7. Partial monosomy of chromosome 1p36.3: Characterization of the critical region and delineation of a syndrome

    SciTech Connect

    Reish, O.; Berry, S.A.; Hirsch, B.

    1995-12-04

    We describe 5 patients ranging in age from 3 to 47 years, with karyotypic abnormalities resulting in monosomy for portion of 1p36.3, microcephaly, mental retardation, prominent forehead, deep-set eyes, depressed nasal bridge, flat midface, relative prognathism, and abnormal ears. Four patients have small hands and feet. All exhibited selfabusive behavior. Additional findings in some of the patients include brain anomalies, optic atrophy, hearing loss and skeletal deformities. The breakpoints within chromosome 1 were designated at 1p36.31 (3 cases), 1p36.32 (1 case) and 1p36.33 (1 case). Thus, the smallest region of deletion overlap is 1p36.33{r_arrow}pter. Detection of the abnormal 1 relied on high resolution G-band analysis. Fluorescence in situ hybridization (FISH) utilizing a DNA probe (Oncor D1Z2) containing the repetitive sequences in distal 1p36, confirmed a deletion of one 1 homologue in all 5 cases. The abnormal 1 resulted from a de novo deletion in only one patient. The remaining patients were either confirmed (3 cases) or suspected (1 case) to have unbalanced translocations. Despite the additional genetic imbalance present in these four cases, monosomy of 1p36.33 appears to be responsible for a specific clinical phenotype. Characterization of this phenotype should assist in the clinical diagnosis of this chromosome abnormality. 26 refs., 4 figs., 2 tabs.

  8. Potential siRNA Molecules for Nucleoprotein and M2/L Overlapping Region of Respiratory Syncytial Virus: In Silico Design

    PubMed Central

    Shatizadeh Malekshahi, Somayeh; Arefian, Ehsan; Salimi, Vahid; Mokhtari Azad, Talat; Yavarian, Jila

    2016-01-01

    Background Human respiratory syncytial virus (RSV) is a leading cause of severe lower respiratory tract disease in the pediatric population, elderly and in immunosuppressed individuals. Respiratory syncytial virus is also responsible for bronchiolitis, pneumonia, and chronic obstructive pulmonary infections in all age groups. With this high disease burden and the lack of an effective RSV treatment and vaccine, there is a clear need for discovery and development of novel, effective and safe drugs to prevent and treat RSV disease. The most innovative approach is the use of small interfering RNAs (siRNAs) which represent a revolutionary new concept in human therapeutics. The nucleoprotein gene of RSV which is known as the most conserved gene and the M2/L mRNA, which encompass sixty-eight overlapping nucleotides, were selected as suitable targets for siRNA design. Objectives The present study is aimed to design potential siRNAs for silencing nucleoprotein and an overlapping region of M2-L coding mRNAs by computational analysis. Materials and Methods Various computational methods (target alignment, similarity search, secondary structure prediction, and RNA interaction calculation) have been used for siRNA designing against different strains of RSV. Results In this study, seven siRNA molecules were rationally designed against the nucleoprotein gene and validated using various computational methods for silencing different strains of RSV. Additionally, three effective siRNA molecules targeting the overlapping region of M2/L mRNA were designed. Conclusions This approach provides insight and a validated strategy for chemical synthesis of an antiviral RNA molecule which meets many sequence features for efficient silencing and treatment at the genomic level. PMID:27303618

  9. Molecular mapping of the Edwards syndrome phenotype to two noncontiguous regions on chromosome 18.

    PubMed Central

    Boghosian-Sell, L.; Mewar, R.; Harrison, W.; Shapiro, R. M.; Zackai, E. H.; Carey, J.; Davis-Keppen, L.; Hudgins, L.; Overhauser, J.

    1994-01-01

    In an effort to identify regions on chromosome 18 that may be critical in the appearance of the Edwards syndrome phenotype, we have analyzed six patients with partial duplication of chromosome 18. Four of the patients have duplications involving the distal half of 18q (18q21.1-qter) and are very mildly affected. The remaining two patients have most of 18q (18q12.1-qter) duplicated, are severely affected, and have been diagnosed with Edwards syndrome. We have employed FISH, using DNA probes from a chromosome 18-specific library, for the precise determination of the duplicated material in each of these patients. The clinical features and the extent of the chromosomal duplication in these patients were compared with four previously reported partial trisomy 18 patients, to identify regions of chromosome 18 that may be responsible for certain clinical features of trisomy 18. The comparative analysis confirmed that there is no single region on 18q that is sufficient to produce the trisomy 18 phenotype and identified two regions on 18q that may work in conjunction to produce the Edwards syndrome phenotype. In addition, correlative analysis indicates that duplication of 18q12.3-q22.1 may be associated with more severe mental retardation in trisomy 18 individuals. Images Figure 1 Figure 3 PMID:8079991

  10. YAC contigs of the Rab1 and wobbler (wr) spinal muscular atrophy gene region on proximal mouse chromosome 11 and of the homologous region on human chromosome 2p

    SciTech Connect

    Wedemeyer, N.; Lengeling, A.; Ronsiek, M.

    1996-03-05

    Despite rapid progress in the physical characterization of murine and human genomes, little molecular information is available on certain regions, e.g., proximal mouse chromosome 11 (Chr 11) and human chromosome 2p (Chr2p). We have localized the wobbler spinal atrophy gene wr to proximal mouse Chr 11, tightly linked to Rab1, a gene coding for a small GTP-binding protein, and Glns-ps1, an intronless pseudogene of the glutamine synthetase gene. We have not used these markers to construct a 1.3-Mb yeast artificial chromosome (YAC) contig of the Rab1 region on mouse Chr 11. Four YAC clones isolated from two independent YAC libraries were characterized by rare-cutting analysis, fluorescence in situ hybridization (FISH), and sequence-tagged site (STS) isolation and mapping. Rab1 and Glns-ps1 were found to be only 200 kb apart. A potential CpG island near a methylated NarI site and a trapped exon, ETG1.1, were found over 250 kb from Rab1. Two overlapping YACs were identified that contained a 150-kb region of human Chr 2p, comprising the RAB1 locus, AHY1.1, and the human homologue of ETG1.1, indicating a high degree of conservation of this region in the two species. We mapped AHY1.1 and thus human RAB1 on Chr 2p13.4-p14 using somatic cell hybrids and a radiation hybrid panel, thus extending a known region of conserved synteny between mouse Chr 11 and human Chr 2p. Recently, the gene LMGMD2B for a human recessive neuromuscular disease, limb girdle muscular dystrophy type 2B, has been mapped to 2p13-p16. The conservation between the mouse Rab1 and human RAB1 regions will be helpful in identifying candidate genes for the wobbler spinal muscular atrophy and in clarifying a possible relationship between wr and LMGMD2B. 33 refs., 7 figs., 3 tabs.

  11. Localization of the tight junction protein gene TJP1 to human chromosome 15q13, distal to the Prader-Willi/Angelman region, and to mouse chromosome 7

    SciTech Connect

    Mohandas, T.K.; Chen, X.N.; Korenberg, J.R.

    1995-12-10

    The gene encoding the tight junction (zonula occludens) protein, TJP1, was mapped to human chromosome 15q13 by fluorescence in situ hybridization (FISH) using a cDNA probe. The Jackson Laboratory backcross DNA panel derived from the cross (C57BL/6JEi X SPRET/Ei) F1 females X SPRET/Ei males was used to map the mouse Tjp1 to chromosome 7 near position 30 on the Chromosome Committee Map, a region with conserved homology to human chromosome 15q13. FISH studies on metaphases from patients with the Prader-Willi (PWS) or the Angelman syndrome (AS) showed that TJP1 maps close but distal to the PWS/AS chromosome region. 13 refs., 2 figs.

  12. Organization of the und R chromosome region in maize

    SciTech Connect

    Kermicle, J.

    1989-07-01

    Maize is highly polymorphic in pattern of anthocyanin pigmentation. That portion of the total variation which is attributable to one gene is revealed when alleles from various sources are incorporated into a standard line by backcrossing before comparison under uniform environments. The variation associated with such collections of {und R} alleles is discontinuous, suggesting the presence of discrete units of function. Alleles comprising more than one such element constitute an allelic complex or gene family. An objective of the early years of investigation under this grant was to work out the arrangement of genic elements in such allelic complexes. Elements in a complex are identified by independent mutation and separability by recombination, the latter serving also to order them in the chromosome. Alleles having from one to three elements each were represented among five accessions of the colored-seed, colored-plant class ({und R-r}). Nine different genic elements were identified. This line of inquiry has been de-emphasized in recent years in deference to investigating the organization of individual genic elements. We have focused on a set of readily distinguished elements that were identified or produced in the analysis of allelic complexes. 7 refs., 1 tab.

  13. A yeast artificial chromosome contig of the critical region for cri-du-chat syndrome

    SciTech Connect

    Goodart, S.A.; Rojas, K.; Overhauser, J.

    1994-11-01

    Cri-du-chat is a chromosomal deletion syndrome characterized by partial deletion of the short arm of chromosome 5. The clinical symptoms include growth and mental retardation, microcephaly, hypertelorism, epicanthal folds, hyptonia, and a high-pitched monochromatic cry that is usually considered diagnostic for the syndrome. Recently, a correlation between clinical features and the extent of the chromosome 5 deletions has identified two regions of the short arm that appear to be critical for the abnormal development manifested in this syndrome. Loss of a small region in 5p15.2 correlates with all of the clinical features of cri-du-chat with the exception of the cat-like cry, which maps to 5p15.3. Here the authors report the construction of a YAC contig that spans the chromosomal region in 5p15.2 that plays a major role in the etiology of the cri-du-chat syndrome. YACs that span the 2-Mb cri-du-chat critical region have been identified and characterized. This YAC contig lays the groundwork for the construction of a transcriptional map of this region and the eventual identification of genes involved in the clinical features associated with the cri-du-chat syndrome. It also provides a new diagnostic tool for cri-du-chat in the shape of a YAC clone that may span the entire critical region. 24 refs., 4 figs., 2 tabs.

  14. Detection of chromosomal regions showing differential gene expression in human skeletal muscle and in alveolar rhabdomyosarcoma

    PubMed Central

    Bisognin, Andrea; Bortoluzzi, Stefania; Danieli, Gian Antonio

    2004-01-01

    Background Rhabdomyosarcoma is a relatively common tumour of the soft tissue, probably due to regulatory disruption of growth and differentiation of skeletal muscle stem cells. Identification of genes differentially expressed in normal skeletal muscle and in rhabdomyosarcoma may help in understanding mechanisms of tumour development, in discovering diagnostic and prognostic markers and in identifying novel targets for drug therapy. Results A Perl-code web client was developed to automatically obtain genome map positions of large sets of genes. The software, based on automatic search on Human Genome Browser by sequence alignment, only requires availability of a single transcribed sequence for each gene. In this way, we obtained tissue-specific chromosomal maps of genes expressed in rhabdomyosarcoma or skeletal muscle. Subsequently, Perl software was developed to calculate gene density along chromosomes, by using a sliding window. Thirty-three chromosomal regions harbouring genes mostly expressed in rhabdomyosarcoma were identified. Similarly, 48 chromosomal regions were detected including genes possibly related to function of differentiated skeletal muscle, but silenced in rhabdomyosarcoma. Conclusion In this study we developed a method and the associated software for the comparative analysis of genomic expression in tissues and we identified chromosomal segments showing differential gene expression in human skeletal muscle and in alveolar rhabdomyosarcoma, appearing as candidate regions for harbouring genes involved in origin of alveolar rhabdomyosarcoma representing possible targets for drug treatment and/or development of tumor markers. PMID:15176974

  15. Genetic mapping of the Mx influenza virus resistance gene within the region of mouse chromosome 16 that is homologous to human chromosome 21

    SciTech Connect

    Reeves, R.H.; O'Hara, B.F.; Pavan, W.J.; Gearhart, J.D.; Haller, O.

    1988-11-01

    A total of 318 progeny from four backcrosses involving different laboratory strains and subspecies of Mus musculus were analyzed to map the Mx gene to the region of mouse chromosome 16 (MMU 16) which is homologous to human chromosome 21 (HSA 21). This result suggests that Mx will be found in the region of HSA 21 which has been implicated in Down syndrome when inherited in three copies.

  16. Comparative mapping of DNA markers from the familial Alzheimer disease and Down syndrome regions of human chromosome 21 to mouse chromosomes 16 and 17

    SciTech Connect

    Cheng, S.V.; Nadeau, J.H.; Tanzi, R.E.; Watkins, P.C.; Jagadesh, J.; Taylor, B.A.; Haines, J.L.; Sacchi, N.; Gusella, J.F. )

    1988-08-01

    Mouse trisomy 16 has been proposed as an animal model of Down syndrome (DS), since this chromosome contains homologues of several loci from the q22 band of human chromosome 21. The recent mapping of the defect causing familial Alzheimer disease (FAD) and the locus encoding the Alzheimer amyloid {beta} precursor protein (APP) to human chromosome 21 has prompted a more detailed examination of the extent of conservation of this linkage group between the two species. Using anonymous DNA probes and cloned genes from human chromosome 21 in a combination of recombinant inbred and interspecific mouse backcross analyses, the authors have established that the linkage group shared by mouse chromosome 16 includes not only the critical DS region of human chromosome 21 but also the APP gene and FAD-linked markers. Extending from the anonymous DNA locus D21S52 to ETS2, the linkage map of six loci spans 39% recombination in man but only 6.4% recombination in the mouse. A break in synteny occurs distal to ETS2, with the homologue of the human marker D21S56 mapping to mouse chromosome 17. Conservation of the linkage relationships of markers in the FAD region suggests that the murine homologue of the FAD locus probably maps to chromosome 16 and that detailed comparison of the corresponding region in both species could facilitate identification of the primary defect in this disorder. The break in synteny between the terminal portion of human chromosome 21 and mouse chromosome 16 indicates, however, that mouse trisomy 16 may not represent a complete model of DS.

  17. A radiation hybrid map of the BRCA1 region of chromosome 17q12-q21

    SciTech Connect

    Abel, K.J.; Boehnke, M.; Prahalad, M.; Flejter, W.L.; Watkins, M.; Chandrasekharappa, S.C.; Glover, T.W. Howard Hughes Medical Institute, Ann Arbor, MI ); Ho, P.; VanderStoep, J.; Weber, B.L. ); Collins, F.S. Michigan Human Genome Center, Ann Arbor, MI Howard Hughes Medical Institute, Ann Arbor, MI )

    1993-09-01

    The chromosomal region 17q12-q21 contains a gene (BRCA1) conferring susceptibility to early-onset familial breast and ovarian cancer. An 8000-rad radiation-reduced hybrid (RH) panel was constructed to provide a resource for long-range mapping of this region. A large fraction of the hybrids ([approximately]90%) retained detectable human chromosome 17 sequences. The complete panel of 76 hybrids was scored for the presence or absence of 22 markers from this chromosomal region, including 14 cloned genes, seven microsatellite repeats, and one anonymous DNA segment. Statistical analysis of the marker retention data employing multipoint methods provided both comprehensive and framework maps of this chromosomal region, including distance estimates between adjacent markers. The comprehensive RH map includes 17 loci and spans 179 cRays[sub (8000)]. Likelihood ratios of at least 1000:1 support the 10-locus framework order: cen-D17S250-ERBB2-(THRA1, TOP2A)-D17S855-PPY-D17S190-MTBT1-GP3A-BTR-D17S588-tel. The order obtained from RH mapping, when used in conjunction with other methods, will be useful in linkage analysis of breast cancer families and will facilitate the development of a physical map of this region. 42 refs., 3 figs., 2 tabs.

  18. Variations of chromosomal structures in Caluromys philander (Didelphimorphia: Didelphidae) from the Amazon region.

    PubMed

    Souza, Erica Martinha Silva de; Faresin e Silva, Carlos Eduardo; Eler, Eduardo Schmidt; Silva, Maria Nazareth F da; Feldberg, Eliana

    2013-03-01

    Caluromys is considered to be one of the most ancient genera of extant marsupials and is positioned among the basal taxa of the family Didelphidae. At least two species occur in Brazil, C. philander and C. lanatus, both of which have 2n = 14 chromosomes. For the first time, we present evidence of an intrapopulation polymorphism of the sexual chromosome pair in C. philander females from the Central Amazon region. Detailed cytogenetic results of animals from three localities on the Amazon region were analyzed using classical cytogenetics (NOR, C-Band and G-Band) and molecular techniques (18S rDNA and telomere probes). Similar to other conspecific individuals, the diploid number of these animals is 2n = 14, and their fundamental number is 24, with NOR present on the 6th autosomal pair. The X chromosome presented variation detectable by G banding, suggesting a pericentric inversion.

  19. Characterization of a panel of somatic cell hybrids for regional mapping of the mouse X chromosome

    SciTech Connect

    Avner, P.; Arnaud, D.; Amar, L.; Cambrou, J.; Winking, H.; Russell, L.B.

    1987-08-01

    A panel of five hybrid cell lines containing mouse X chromosomes with various deletions has been obtained by fusing splenocytes from male mice carrying one of a series of reciprocal X-autosome translocations with the azaguanine-resistant Chinese hamster cell line CH3g. These hybrids have been extensively characterized by using the allozymes hypoxanthine/guanine phosphoribosyltransferase (encoded by the Hprt locus) and ..cap alpha..-galactosidase (Ags) and a series of 11 X-chromosome-specific DNA probes whose localization had been previously established by linkage studies. Such studies have established the genetic breakpoints of the T(X;12)13R1 and T(X;2)14R1 X-autosome translocations on the X chromosome and provided additional information as to the X-chromosome genetic breakpoints of the T(X;16)16H, T(X;4)7R1, and T(X;7)6R1 translocations. The data establish clearly that both the T(X;7)5RI and T(X;12)13R1 X-chromosome breakpoints are proximal to Hprt, the breakpoint of the former being more centromeric, lying as it does in the 9-centimorgan interval between the ornithine transcarbamoylase (Otc) and DXPas7 (M2C) loci. These five hybrid cell lines provide, with the previously characterized EBS4 hybrid cell line, a nested series of seven mapping intervals distributed along the length of the mouse X chromosome. Their characterization not only allows further correlation of the genetic and cytological X-chromosome maps but also should permit the rapid identification of DNA probes specific for particular regions of the mouse X chromosome.

  20. Differentially methylated regions in maternal and paternal uniparental disomy for chromosome 7

    PubMed Central

    Hannula-Jouppi, Katariina; Muurinen, Mari; Lipsanen-Nyman, Marita; Reinius, Lovisa E; Ezer, Sini; Greco, Dario; Kere, Juha

    2014-01-01

    DNA methylation is a hallmark of genomic imprinting and differentially methylated regions (DMRs) are found near and in imprinted genes. Imprinted genes are expressed only from the maternal or paternal allele and their normal balance can be disrupted by uniparental disomy (UPD), the inheritance of both chromosomes of a chromosome pair exclusively from only either the mother or the father. Maternal UPD for chromosome 7 (matUPD7) results in Silver-Russell syndrome (SRS) with typical features and growth retardation, but no gene has been conclusively implicated in SRS. In order to identify novel DMRs and putative imprinted genes on chromosome 7, we analyzed eight matUPD7 patients, a segmental matUPD7q31-qter, a rare patUPD7 case and ten controls on the Infinium HumanMethylation450K BeadChip with 30 017 CpG methylation probes for chromosome 7. Genome-scale analysis showed highly significant clustering of DMRs only on chromosome 7, including the known imprinted loci GRB10, SGCE/PEG10, and PEG/MEST. We found ten novel DMRs on chromosome 7, two DMRs for the predicted imprinted genes HOXA4 and GLI3 and one for the disputed imprinted gene PON1. Quantitative RT-PCR on blood RNA samples comparing matUPD7, patUPD7, and controls showed differential expression for three genes with novel DMRs, HOXA4, GLI3, and SVOPL. Allele specific expression analysis confirmed maternal only expression of SVOPL and imprinting of HOXA4 was supported by monoallelic expression. These results present the first comprehensive map of parent-of-origin specific DMRs on human chromosome 7, suggesting many new imprinted sites. PMID:24247273

  1. Exclusion of primary congenital glaucoma (buphthalmos) from two candidate regions of chromosome arm 6p and chromosome 11

    SciTech Connect

    Akarsu, A.N.; Hossain, A.; Sarfarazi, M.

    1996-01-22

    Primary congenital glaucoma (gene symbol: GLC3) is characterized by an improper development of the aqueous outflow system. The reduced outflow of fluid results in an increased intraocular pressure leading to buphthalmos, optic nerve damage, and eventual visual impairment. GLC3 is a heterogeneous condition with an estimated incidence of 1:2,500 in Middle Eastern and 1:10,000 in Western countries. In many families, GLC3 is an autosomal recessive trait with presentation of an earlier age-of-onset, high intraocular pressure, enlarged cloudy cornea, buphthalmos, and a more aggressive course. The pathogenesis of GLC3 remains elusive despite extensive histologic efforts to identify a single anatomic defect. Recent advances in positional mapping and cloning of human disorders provided an opportunity to identify chromosome locations of the GLC3 phenotype. Our laboratory is currently involved in the mapping of this condition by using a combination of candidate chromosome regions associated with the GLC3 phenotype and by a general positional mapping strategy. 16 refs., 3 tabs.

  2. Silver-Russell syndrome: a dissection of the genetic aetiology and candidate chromosomal regions

    PubMed Central

    Hitchins, M.; Stanier, P.; Preece, M.; Moore, G.

    2001-01-01

    The main features of Silver-Russell syndrome (SRS) are pre- and postnatal growth restriction and a characteristic small, triangular face. SRS is also accompanied by other dysmorphic features including fifth finger clinodactyly and skeletal asymmetry. The disorder is clinically and genetically heterogeneous, and various modes of inheritance and abnormalities involving chromosomes 7, 8, 15, 17, and 18 have been associated with SRS and SRS-like cases. However, only chromosomes 7 and 17 have been consistently implicated in patients with a strict clinical diagnosis of SRS. Two cases of balanced translocations with breakpoints in 17q23.3-q25 and two cases with a hemizygous deletion of the chorionic somatomammatropin gene (CSH1) on 17q24.1 have been associated with SRS, strongly implicating this region. Maternal uniparental disomy for chromosome 7 (mUPD(7)) occurs in up to 10% of SRS patients, with disruption of genomic imprinting underlying the disease status in these cases. Recently, two SRS patients with a maternal duplication of 7p11.2-p13, and a single proband with segmental mUPD for the region 7q31-qter, were described. These key patients define two separate candidate regions for SRS on both the p and q arms of chromosome 7. Both the 7p11.2-p13 and 7q31-qter regions are subject to genomic imprinting and the homologous regions in the mouse are associated with imprinted growth phenotypes. This review provides an overview of the genetics of SRS, and focuses on the newly defined candidate regions on chromosome 7. The analyses of imprinted candidate genes within 7p11.2-p13 and 7q31-qter, and gene candidates on distal 17q, are discussed.


Keywords: Silver-Russell syndrome; imprinting; mUPD(7); candidates PMID:11748303

  3. Fine Mapping and Evolution of a QTL Region on Cattle Chromosome 3

    ERIC Educational Resources Information Center

    Donthu, Ravikiran

    2009-01-01

    The goal of my dissertation was to fine map the milk yield and composition quantitative trait loci (QTL) mapped to cattle chromosome 3 (BTA3) by Heyen et al. (1999) and to identify candidate genes affecting these traits. To accomplish this, the region between "BL41" and "TGLA263" was mapped to the cattle genome sequence assembly Btau 3.1 and a…

  4. Gene recovery microdissection (GRM) a process for producing chromosome region-specific libraries of expressed genes

    SciTech Connect

    Christian, A T; Coleman, M A; Tucker, J D

    2001-02-08

    Gene Recovery Microdissection (GRM) is a unique and cost-effective process for producing chromosome region-specific libraries of expressed genes. It accelerates the pace, reduces the cost, and extends the capabilities of functional genomic research, the means by which scientists will put to life-saving, life-enhancing use their knowledge of any plant or animal genome.

  5. Definition of a Critical Region on Chromosome 18 for Congenital Aural Atresia by ArrayCGH

    PubMed Central

    Veltman, Joris A.; Jonkers, Yvonne; Nuijten, Inge; Janssen, Irene; van der Vliet, Walter; Huys, Erik; Vermeesch, Joris; Van Buggenhout, Griet; Fryns, Jean-Pierre; Admiraal, Ronald; Terhal, Paulien; Lacombe, Didier; van Kessel, Ad Geurts; Smeets, Dominique; Schoenmakers, Eric F. P. M.; van Ravenswaaij-Arts, Conny M.

    2003-01-01

    Deletions of the long arm of chromosome 18 occur in ∼1 in 10,000 live births. Congenital aural atresia (CAA), or narrow external auditory canals, occurs in ∼66% of all patients who have a terminal deletion 18q. The present report describes a series of 20 patients with CAA, of whom 18 had microscopically visible 18q deletions. The extent and nature of the chromosome-18 deletions were studied in detail by array-based comparative genomic hybridization (arrayCGH). High-resolution chromosome-18 profiles were obtained for all patients, and a critical region of 5 Mb that was deleted in all patients with CAA could be defined on 18q22.3-18q23. Therefore, this region can be considered as a candidate region for aural atresia. The array-based high-resolution copy-number screening enabled a refined cytogenetic diagnosis in 12 patients. Our approach appeared to be applicable to the detection of genetic mosaicisms and, in particular, to a detailed delineation of ring chromosomes. This study clearly demonstrates the power of the arrayCGH technology in high-resolution molecular karyotyping. Deletion and amplification mapping can now be performed at the submicroscopic level and will allow high-throughput definition of genomic regions harboring disease genes. PMID:12740760

  6. High-resolution comparative mapping of the proximal region of the mouse X chromosome

    SciTech Connect

    Blair, H.J.; Boyd, Y.; Ho, M.; Monaco, A.P.

    1995-07-20

    The murine homologues of the loci for McLeod syndrome (XK), Dent`s disease (ClCN5), and synaptophysin (SYP) have been mapped to the proximal region of the mouse X chromosome and positioned with respect to other conserved loci in this region using a total of 948 progeny from two separate Mus musculus x Mus spretus backcrosses. In the mouse, the order of loci and evolutionary breakpoints (EB) has been established as centromere-(DXWas70, DXHXF34h)-EB-Clen5-(Syp, DXMit55, DXMit26)-Tfe3-Gata1-EB-Xk-Cybb-telomere. In the proximal region of the human X chromosome short arm, the position of evolutionary breakpoints with respect to key loci has been established as DMD-EB-XK-PFC-EB-GATA1-C1CN5-EB-DXS1272E-ALAS2-EB-DXF34-centromere. These data have enabled us to construct a high-resolution genetic map for the {approximately}3-cM interval between DXWas70 and Cybb on the mouse X chromosome, which encompasses 10 loci. This detailed map demonstrates the power of high-resolution genetic mapping in the mouse as a means of determining locus order in a small chromosomal region and of providing an accurate framework for the construction of physical maps. 31 refs., 4 figs., 1 tab.

  7. Algorithm and implementation of muon trigger and data transmission system for barrel-endcap overlap region of the CMS detector

    NASA Astrophysics Data System (ADS)

    Zabolotny, W. M.; Byszuk, A.

    2016-03-01

    The CMS experiment Level-1 trigger system is undergoing an upgrade. In the barrel-endcap transition region, it is necessary to merge data from 3 types of muon detectors—RPC, DT and CSC. The Overlap Muon Track Finder (OMTF) uses the novel approach to concentrate and process those data in a uniform manner to identify muons and their transversal momentum. The paper presents the algorithm and FPGA firmware implementation of the OMTF and its data transmission system in CMS. It is foreseen that the OMTF will be subject to significant changes resulting from optimization which will be done with the aid of physics simulations. Therefore, a special, high-level, parameterized HDL implementation is necessary.

  8. XY chromosome nondisjunction in man is associated with diminished recombination in the pseudoautosomal region.

    PubMed Central

    Hassold, T J; Sherman, S L; Pettay, D; Page, D C; Jacobs, P A

    1991-01-01

    To assess the possible association between aberrant recombination and XY chromosome nondisjunction, we compared pseudoautosomal region recombination rates in male meiosis resulting in 47,XXY offspring with those resulting in 46,XY and 46,XX offspring. Forty-one paternally derived 47,XXYs and their parents were tested at six polymorphic loci spanning the pseudoautosomal region. We were able to detect crossing-over in only six of 39 cases informative for the telomeric DXYS14/DXYS20 locus. Subsequently, we used the data to generate a genetic linkage map of the pseudoautosomal region and found it to be significantly shorter than the normal male map of the region. From these analyses we conclude that most paternally derived 47,XXYs result from meiosis in which the X and Y chromosomes did not recombine. Images Figure 1 PMID:1867189

  9. The Drosophila suppressor of underreplication protein binds to late-replicating regions of polytene chromosomes.

    PubMed Central

    Makunin, I V; Volkova, E I; Belyaeva, E S; Nabirochkina, E N; Pirrotta, V; Zhimulev, I F

    2002-01-01

    In many late-replicating euchromatic regions of salivary gland polytene chromosomes, DNA is underrepresented. A mutation in the SuUR gene suppresses underreplication and leads to normal levels of DNA polytenization in these regions. We identified the SuUR gene and determined its structure. In the SuUR mutant stock a 6-kb insertion was found in the fourth exon of the gene. A single SuUR transcript is present at all stages of Drosophila development and is most abundant in adult females and embryos. The SuUR gene encodes a protein of 962 amino acids whose putative sequence is similar to the N-terminal part of SNF2/SWI2 proteins. Staining of salivary gland polytene chromosomes with antibodies directed against the SuUR protein shows that the protein is localized mainly in late-replicating regions and in regions of intercalary and pericentric heterochromatin. PMID:11901119

  10. Identification and uniparental expression of a novel gene from the Prader-Willi region of chromosome 15

    SciTech Connect

    Wevrick, R.; Kerns, J.A.; Francke, U.

    1994-09-01

    The Prader-Willi syndrome (PWS) is a neurobehavioral disorder which occurs at a frequency of about 1/25,000. Most patients ({approximately}70%) have a cytogentic deletion of their paternal 15q11-q13 region, while {approximately}30% have uniparental maternal disomy. The parent of origin dependence of the phenotype is thought to be reflective of the uniparental pattern of expression of genes in the region, a phenomenon known as genomic imprinting. A small subset of PWS patient with a typical cytogenetic rearrangements has defined a critical region for genes involved in PWS. We have used STSs from the region to construct a YAC contig including the entire PWS critical region, which is about 350 kb considering presently characterized deletions. We are now using these YACs to isolate and characterize novel genes potentially involved in PWS. Overlapping YACs from the critical region were subjected to the technique of cDNA selection. Gel-purified YAC DNA was biotinylated during PCR amplification and annealed in solution to amplified cDNA. cDNAs remaining after hybridization washing, and denaturation of the hybrids were tested for localization within the YAC contig. One such cDNA mapped back to the YAC contig and was further analyzed. A full length cDNA clone was isolated from a fetal brain library and sequenced. The pattern of expression was determined in cell lines derived from Prader-Willi and Angelman patients and in normal individuals. The gene was found to have monoallelic, paternal expression in normal individuals and is marginally or not expressed in cell lines derived form Prader-Willi individuals. Expression in cell lines from Angelman patients, who are deleted for the same region on the maternal chromosome 15, was normal. Thus this apparently maternally imprinted gene is a candidate for involvement in the Prader-Willi phenotype.

  11. Evolution of the DAZ gene and the AZFc region on primate Y chromosomes

    PubMed Central

    2008-01-01

    Background The Azoospermia Factor c (AZFc) region of the human Y chromosome is a unique product of segmental duplication. It consists almost entirely of very long amplicons, represented by different colors, and is frequently deleted in subfertile men. Most of the AZFc amplicons have high sequence similarity with autosomal segments, indicating recent duplication and transposition to the Y chromosome. The Deleted in Azoospermia (DAZ) gene within the red-amplicon arose from an ancestral autosomal DAZ-like (DAZL) gene. It varies significantly between different men regarding to its copy number and the numbers of RNA recognition motif and DAZ repeat it encodes. We used Southern analyses to study the evolution of DAZ and AZFc amplicons on the Y chromosomes of primates. Results The Old World monkey rhesus macaque has only one DAZ gene. In contrast, the great apes have multiple copies of DAZ, ranging from 2 copies in bonobos and gorillas to at least 6 copies in orangutans, and these DAZ genes have polymorphic structures similar to those of their human counterparts. Sequences homologous to the various AZFc amplicons are present on the Y chromosomes of some but not all primates, indicating that they arrived on the Y chromosome at different times during primate evolution. Conclusion The duplication and transposition of AZFc amplicons to the human Y chromosome occurred in three waves, i.e., after the branching of the New World monkey, the gorilla, and the chimpanzee/bonobo lineages, respectively. The red-amplicon, one of the first to arrive on the Y chromosome, amplified by inverted duplication followed by direct duplication after the separation of the Old World monkey and the great ape lineages. Subsequent duplication/deletion in the various lineages gave rise to a spectrum of DAZ gene structure and copy number found in today's great apes. PMID:18366765

  12. The organisation of repetitive sequences in the pericentromeric region of human chromosome 10.

    PubMed

    Jackson, M S; Slijepcevic, P; Ponder, B A

    1993-12-25

    Three satellite DNA families are present in the pericentromeric region of chromosome 10; the alpha satellite and two 5 bp satellite families defined here as satellites 2 and 3. Pulsed field gel electrophoresis (PFGE) demonstrates that these sequences are organised into five discrete arrays which are linked within a region of approximately 5.3 Megabases (Mb) of DNA. The alpha satellite is largely confined to a 2.2 Mb array which is flanked on its p arm side by two 100-150 kb satellite 3 arrays and on its q arm side by a 900 kb satellite 2 array and a further 320 kb satellite 3 array. This linear order is corroborated by fluorescent in situ hybridisation analyses. In total, these arrays account for 3.6 Mb of DNA in the pericentromeric region of chromosome 10. These data provide both physical information on sequences which may be involved in centromere function and a map across the centromere which has the potential to link yeast artificial chromosome (YAC) contigs currently being developed on both arms of this chromosome.

  13. Identification and Validation of Novel Chromosomal Integration and Expression Loci in Escherichia coli Flagellar Region 1

    PubMed Central

    Juhas, Mario; Ajioka, James W.

    2015-01-01

    Escherichia coli is used as a chassis for a number of Synthetic Biology applications. The lack of suitable chromosomal integration and expression loci is among the main hurdles of the E. coli engineering efforts. We identified and validated chromosomal integration and expression target sites within E. coli K12 MG1655 flagellar region 1. We analyzed five open reading frames of the flagellar region 1, flgA, flgF, flgG, flgI, and flgJ, that are well-conserved among commonly-used E. coli strains, such as MG1655, W3110, DH10B and BL21-DE3. The efficiency of the integration into the E. coli chromosome and the expression of the introduced genetic circuit at the investigated loci varied significantly. The integrations did not have a negative impact on growth; however, they completely abolished motility. From the investigated E. coli K12 MG1655 flagellar region 1, flgA and flgG are the most suitable chromosomal integration and expression loci. PMID:25816013

  14. Linkage disequilibrium patterns vary with chromosomal location: A case study from the von Willebrand factor region

    SciTech Connect

    Watkins, W.S.; Zenger, R.; O'Brien, E.; Jorde, L.B. ); Nyman, D. ); Eriksson, A.W. ); Renlund, M.

    1994-08-01

    Linkage disequilibrium analysis has been used as a tool for analyzing marker order and locating disease genes. Under appropriate circumstances, disequilibrium patterns reflect recombination events that have occurred throughput a population's history. As a result, disequilibrium mapping may be useful in genomic regions of <1 cM where the number of informative meioses needed to detect recombinant individuals within pedigrees is exceptionally high. Its utility for refining target areas for candidate disease genes before initiating chromosomal walks and cloning experiments will be enhanced as the relationship between linkage disequilibrium and physical distance is better understood. To address this issue, the authors have characterized linkage disequilibrium in a 144-kb region of the von Willebrand factor gene on chromosome 12. Sixty CEPH and 12 von Willebrand disease families were genotypes for five PCR-based markers, which include two microsatellite repeats and three single-base-pair substitutions. Linkage disequilibrium and physical distance between polymorphisms are highly correlated (r[sub m] = -.76; P<.05) within this region. None of the five markers showed significant disequilibrium with the von Willebrand disease phenotype. The linkage disequilibrium/physical distance relationship was also analyzed as a function of chromosomal location for this and eight previously characterized regions. This analysis revealed a general trend in which linkage disequilibrium dissipates more rapidly with physical distance in telomeric regions than in centromeric regions. This trend is consistent with higher recombination rates near telomeres. 52 refs., 3 figs., 4 tabs.

  15. Nucleoporin translocated promoter region (Tpr) associates with dynein complex, preventing chromosome lagging formation during mitosis.

    PubMed

    Nakano, Hiroshi; Funasaka, Tatsuyoshi; Hashizume, Chieko; Wong, Richard W

    2010-04-01

    Gain or loss of whole chromosomes is often observed in cancer cells and is thought to be due to aberrant chromosome segregation during mitosis. Proper chromosome segregation depends on a faithful interaction between spindle microtubules and kinetochores. Several components of the nuclear pore complex/nucleoporins play critical roles in orchestrating the rapid remodeling events that occur during mitosis. Our recent studies revealed that the nucleoporin, Rae1, plays critical roles in maintaining spindle bipolarity. Here, we show association of another nucleoporin, termed Tpr (translocated promoter region), with the molecular motors dynein and dynactin, which both orchestrate with the spindle checkpoints Mad1 and Mad2 during cell division. Overexpression of Tpr enhanced multinucleated cell formation. RNA interference-mediated knockdown of Tpr caused a severe lagging chromosome phenotype and disrupted spindle checkpoint proteins expression and localization. Next, we performed a series of rescue and dominant negative experiments to confirm that Tpr orchestrates proper chromosome segregation through interaction with dynein light chain. Our data indicate that Tpr functions as a spatial and temporal regulator of spindle checkpoints, ensuring the efficient recruitment of checkpoint proteins to the molecular motor dynein to promote proper anaphase formation.

  16. Prenatal diagnosis of chromosome 15 abnormalities in the Prader-Willi/Angelman syndrome region by traditional and molecular cytogenetics

    SciTech Connect

    Toth-Fejel, S.; Magenis, R.E.; Leff, S.

    1995-02-13

    With improvements in culturing and banding techniques, amniotic fluid studies now achieve a level of resolution at which the Prader-Willi syndrome (PWS) and Angelman syndrome (AS) region may be questioned. Chromosome 15 heteromorphisms, detected with Q- and R-banding and used in conjunction with PWS/AS region-specific probes, can confirm a chromosome deletion and establish origin to predict the clinical outcome. We report four de novo cases of an abnormal-appearing chromosome 15 in amniotic fluid samples referred for advanced maternal age or a history of a previous chromosomally abnormal child. The chromosomes were characterized using G-, Q-, and R-banding, as well as isotopic and fluorescent in situ hybridization of DNA probes specific for the proximal chromosome 15 long arm. In two cases, one chromosome 15 homolog showed a consistent deletion of the ONCOR PWS/AS region A and B. In the other two cases, one of which involved an inversion with one breakpoint in the PWS/AS region, all of the proximal chromosome 15 long arm DNA probes used in the in situ hybridization were present on both homologs. Clinical follow-up was not available on these samples, as in all cases the parents chose to terminate the pregnancies. These cases demonstrate the ability to prenatally diagnose chromosome 15 abnormalities associated with PWS/AS. In addition, they highlight the need for a better understanding of this region for accurate prenatal diagnosis. 41 refs., 5 figs.

  17. A 2-Mb YAC contig and physical map covering the chromosome 8q12 breakpoint cluster region in pleomorphic adenomas of the salivary glands.

    PubMed

    Kas, K; Röijer, E; Voz, M; Meyen, E; Stenman, G; Van de Ven, W J

    1997-08-01

    Pleomorphic adenomas are benign epithelial tumors originating from the major and minor salivary glands. Extensive cytogenetic studies have demonstrated that they frequently show chromosome abnormalities involving chromosome 8, with consistent breakpoints at 8q12. In previous studies, we have shown that these breakpoints are located in a 9-cM interval between MOS/D8S285 and D8S260. Here, we describe directional chromosome walking studies starting from D8S260 as well as D8S285. Using the CEPH and ICRF YAC libraries, these studies resulted in the construction of two nonoverlapping YAC contigs of about 2 and 5 Mb, respectively. Initial fluorescence in situ hybridization (FISH) analysis suggested that the majority of 8q12 breakpoints clustered within the 2-Mb contig, which was mapped to the centromeric part of chromosome band 8q12. This contig has at least double coverage and consists of 34 overlapping YAC clones. The localization of the YACs was confirmed by FISH analysis. On the basis of mapping data of landmarks with an average spacing of 65 kb as well as restriction enzyme analysis, a long-range physical map was established for the chromosome region spanned by the 2-Mb contig. The relative positions of various known genes and expressed sequence tags within this contig were also determined. Subsequent FISH analyses of pleomorphic adenomas using YACs as well as cosmids revealed that all but two of the 8q12 breakpoints in the primary tumors tested mapped within a 300-kb interval between the MOS proto-oncogene and STS EM156. The target gene affected by the chromosome aberrations mapping within this interval was recently shown to be the PLAG1 gene, which encodes a novel zinc finger protein.

  18. Differential Management of the Replication Terminus Regions of the Two Vibrio cholerae Chromosomes during Cell Division

    PubMed Central

    Demarre, Gaëlle; Galli, Elisa; Muresan, Leila; Paly, Evelyne; David, Ariane; Possoz, Christophe; Barre, François-Xavier

    2014-01-01

    The replication terminus region (Ter) of the unique chromosome of most bacteria locates at mid-cell at the time of cell division. In several species, this localization participates in the necessary coordination between chromosome segregation and cell division, notably for the selection of the division site, the licensing of the division machinery assembly and the correct alignment of chromosome dimer resolution sites. The genome of Vibrio cholerae, the agent of the deadly human disease cholera, is divided into two chromosomes, chrI and chrII. Previous fluorescent microscopy observations suggested that although the Ter regions of chrI and chrII replicate at the same time, chrII sister termini separated before cell division whereas chrI sister termini were maintained together at mid-cell, which raised questions on the management of the two chromosomes during cell division. Here, we simultaneously visualized the location of the dimer resolution locus of each of the two chromosomes. Our results confirm the late and early separation of chrI and chrII Ter sisters, respectively. They further suggest that the MatP/matS macrodomain organization system specifically delays chrI Ter sister separation. However, TerI loci remain in the vicinity of the cell centre in the absence of MatP and a genetic assay specifically designed to monitor the relative frequency of sister chromatid contacts during constriction suggest that they keep colliding together until the very end of cell division. In contrast, we found that even though it is not able to impede the separation of chrII Ter sisters before septation, the MatP/matS macrodomain organization system restricts their movement within the cell and permits their frequent interaction during septum constriction. PMID:25255436

  19. Comparative mapping in the beige-satin region of mouse chromosome 13

    SciTech Connect

    Perou, C.M.; Pryor, R.; Kaplan, J.

    1997-01-15

    The proximal end of mouse chromosome (Chr) 13 contains regions conserved on human chromosomes 1q42-q44, 6p23-p21, and 7p22-p13. This region also contains mutations that may be models for human disease, including beige (human Chediak-Higashi syndrome). An interspecific backcross of SB/Le and Mus spretus mice was used to generate a molecular genetic linkage map of mouse chromosome 13 with an emphasis on the proximal region including beige (bg) and satin (sa). This map provides the gene order of the two phenotypic markers bg and sa relative to restriction fragment length polymorphisms and simple sequence length polymorphisms in 131 backcross animals. In parallel, we have created a physical map of the region using Nidogen (Nid) as a molecular starting point for cloning a YAC contig that was used to identify the beige gene. The physical map provides the fine-structure order of genes and anonymous DNA fragments that was not resolved by the genetic linkage mapping. The results show that the bg region of mouse Chr 13 is highly conserved on human Chr 1q42-q44 and provide a starting point for a complete functional analysis of the entire bg-sa interval. 37 refs., 4 figs., 1 tab.

  20. Characterization of the OmyY1 region on the rainbow trout Y chromosome

    USGS Publications Warehouse

    Phillips, Ruth B.; DeKoning, Jenefer J.; Brunelli, Joseph P.; Faber-Hammond, Joshua J.; Hansen, John D.; Christensen, Kris A.; Renn, Suzy C.P.; Thorgaard, Gary H.

    2013-01-01

    We characterized the male-specific region on the Y chromosome of rainbow trout, which contains both sdY (the sex-determining gene) and the male-specific genetic marker, OmyY1. Several clones containing the OmyY1 marker were screened from a BAC library from a YY clonal line and found to be part of an 800 kb BAC contig. Using fluorescence in situ hybridization (FISH), these clones were localized to the end of the short arm of the Y chromosome in rainbow trout, with an additional signal on the end of the X chromosome in many cells. We sequenced a minimum tiling path of these clones using Illumina and 454 pyrosequencing. The region is rich in transposons and rDNA, but also appears to contain several single-copy protein-coding genes. Most of these genes are also found on the X chromosome; and in several cases sex-specific SNPs in these genes were identified between the male (YY) and female (XX) homozygous clonal lines. Additional genes were identified by hybridization of the BACs to the cGRASP salmonid 4x44K oligo microarray. By BLASTn evaluations using hypothetical transcripts of OmyY1-linked candidate genes as query against several EST databases, we conclude at least 12 of these candidate genes are likely functional, and expressed.

  1. Characterization of the OmyY1 Region on the Rainbow Trout Y Chromosome

    PubMed Central

    Phillips, Ruth B.; DeKoning, Jenefer J.; Brunelli, Joseph P.; Faber-Hammond, Joshua J.; Hansen, John D.; Christensen, Kris A.; Renn, Suzy C. P.; Thorgaard, Gary H.

    2013-01-01

    We characterized the male-specific region on the Y chromosome of rainbow trout, which contains both sdY (the sex-determining gene) and the male-specific genetic marker, OmyY1. Several clones containing the OmyY1 marker were screened from a BAC library from a YY clonal line and found to be part of an 800 kb BAC contig. Using fluorescence in situ hybridization (FISH), these clones were localized to the end of the short arm of the Y chromosome in rainbow trout, with an additional signal on the end of the X chromosome in many cells. We sequenced a minimum tiling path of these clones using Illumina and 454 pyrosequencing. The region is rich in transposons and rDNA, but also appears to contain several single-copy protein-coding genes. Most of these genes are also found on the X chromosome; and in several cases sex-specific SNPs in these genes were identified between the male (YY) and female (XX) homozygous clonal lines. Additional genes were identified by hybridization of the BACs to the cGRASP salmonid 4x44K oligo microarray. By BLASTn evaluations using hypothetical transcripts of OmyY1-linked candidate genes as query against several EST databases, we conclude at least 12 of these candidate genes are likely functional, and expressed. PMID:23671840

  2. Fine mapping of the human pentraxin gene region on chromosome 1q23

    SciTech Connect

    Walsh, M.T.; Whitehead, A.S.; Divane, A.

    1996-12-31

    The 1q21 to 25 region of human chromosome 1 contains genes which encode proteins with immune- and inflammation-associated functions. These include the pentraxin genes, for C-reactive protein (CRP), serum amyloid P(SAP) protein (APCS), and a CRP pseudogene (CRPP1). The region of chromosome 1 containing this cluster is syntenic with distal mouse chromosome 1. We constructed an approximately 1.4 megabase yeast artificial chromosome (YAC) contig with the pentraxin genes at its core. This four-YAC contig includes other genes with immune functions including the FCER1A gene, which encodes the {alpha}-subunit of the IgE high-affinity Fc receptor and the 1F1-16 gene, an interferon-{gamma}-induced gene. In addition, it contains the histone H3F2 and H4F2 genes and the gene for erythroid {alpha}-spectrin (SPTA1). The gene order is cen.-SPTA1-H4F2-H3F2-1F1-16-CRP-CRPP1-APCS-FCERIA-tel. The contig thus consists of a cluster of genes whose products either have immunological importance, bind DNA, or both. 68 refs., 3 figs., 2 tabs.

  3. Physical mapping in the Cri du Chat region on human chromosome 5

    SciTech Connect

    Church, D.M.; Bengtsson, U.; Niebuhr, E.

    1994-09-01

    The Cri du Chat syndrome is a segmental aneusomy associated with deletions in the short arm of human chromosome 5. More specifically, the cytogenetic band 5p15.2 must be deleted in order to manifest the typical phenotypic signs. We have studied several cell lines from individuals who have chromosomal abnormalities within this cytogenetic band but who do not have typical Cri du Chat syndrome. In fact, several individual studied have no discernible features of this syndrome. Using fluorescent in situ hybridization (FISH) analysis and PCR analysis on somatic cell hybrids we have mapped the breakpoints relative to each other within this band. There is a great degree of phenotypic heterogeneity between several of the patients, even those which share common breakpoints. This heterogeneity makes it very difficult to narrow the region of interest to a very small (<1 Mb) region. In order to more thoroughly analyze this region, we have assembled a yeast artificial chromosome (YAC) contig of part of this region. This contig has been analyzed for STS content and covers approximately a 1.5-2.0 Mb region within 5p15.2. In addition, we have constructed a radiation hybrid map of the region. The YACs contained within the minimal contig have been used as hybridization probes to isolate corresponding cosmid clones within the region of interest. These cosmids, in turn, are being utilized to obtain potential exons using exon amplification. Several cosmids within this region have been isolated by STS content and potential exons have been isolated from them. These exons have been used as probes to isolate cDNA clones from the region. It is our hope that isolation of genes throughout the region of interest will allow a better understanding of the etiology of Cri du Chat.

  4. Physical and transcription map of a 25 Mb region on human chromosome 7 (region q21-q22)

    SciTech Connect

    Scherer, S. |; Little, S.; Vandenberg, A.

    1994-09-01

    We are interested in the q21-q22 region of chromosome 7 because of its implication in a number of diseases. This region of about 25 Mb appears to be involved in ectrodactyly/ectodermal dysplasia/cleft plate (EEC) and split hand/split foot deformity (SHFD1), as well as myelodysplastic syndrome and acute non-lymphocyte leukemia. In order to identify the genes responsible for these and other diseases, we have constructed a physical map of this region. The proximal and distal boundaries of the region were operationally defined by the microsatellite markers D7S660 and D7S692, which are about 35 cM apart. This region between these two markers could be divided into 13 intervals on the basis of chromosome breakpoints contained in somatic cell hybrids. The map positions for 43 additional microsatellite markers and 25 cloned genes were determined with respect to these intervals. A physical map based on contigs of over 250 YACs has also been assembled. While the contigs encompass all of the known genetic markers mapped to the region and almost cover the entire 25-Mb region, there are 3 gaps on the map. One of these gaps spans a set of DNA markers for which no corresponding YAC clones could be identified. To connect the two adjacent contigs we have initiated cosmid walking with a chromosome 7-specific library (Lawrence Livermore Laboratory). A tiling path of 60 contiguous YAC clones has been assembled and used for direct cDNA selection. Over 300 cDNA clones have been isolated and characterized. They are being grouped into transcription units by Northern blot analysis and screening of full-length cDNA libraries. Further, exon amplification and direct cDNA library screening with evolutionarily conserved sequences are being performed for a 1-Mb region spanning the SHFD1 locus to ensure detection of all transcribed sequences.

  5. Localization of the human mitochondrial citrate transporter protein gene to chromosome 22q11 in the DiGeorge syndrome critical region

    SciTech Connect

    Heisterkamp, N.; Hoeve, J.T.; Groffen, J.

    1995-09-20

    A high percentage of patients with DiGeorge syndrome and velo-cardio-facial syndrome have interstitial deletions on chromosome 22q11. The shortest region of overlap is currently estimated to be around 500 kb. Two segments of DNA from chromosome 22q11, located 160 kb apart, were cloned because they contained NotI restriction enzyme sites. In the current study we demonstrate that these segments are absent from chromosomes 22 carrying microdeletions of two different DiGeorge patients. Fluorescence in situ and Southern blot hybridization was further used to show that this locus is within the DiGeorge critical region. Phylogenetically conserved sequences adjacent to one of the two NotI sites hybridized to mRNAs in different human cell lines. cDNAs isolated with a probe from this segment showed it to contain the gene for the human mitochondrial citrate transporter protein. Deletion of this gene in DiGeorge may contribute to the mental deficiency seen in the patients. 35 refs., 5 figs.

  6. Overlap of Juvenile polyposis syndrome and Cowden syndrome due to de novo chromosome 10 deletion involving BMPR1A and PTEN: implications for treatment and surveillance.

    PubMed

    Alimi, Adebisi; Weeth-Feinstein, Lauren A; Stettner, Amy; Caldera, Freddy; Weiss, Jennifer M

    2015-06-01

    We describe a patient with a severe juvenile polyposis phenotype, due to a de novo deletion of chromosome 10q22.3-q24.1. He was initially diagnosed with Juvenile polyposis syndrome (JPS) at age four after presenting with hematochezia due to multiple colonic juvenile polyps. He then re-presented at 23 years with recurrent hematochezia from juvenile polyps in his ileoanal pouch. He is one of the earliest reported cases of JPS associated with a large deletion of chromosome 10. Since his initial diagnosis of JPS further studies have confirmed an association between JPS and mutations in BMPR1A in chromosome band 10q23.2, which is in close proximity to PTEN. Mutations in PTEN cause Cowden syndrome (CS) and other PTEN hamartoma tumor syndromes. Due to the chromosome 10 deletion involving contiguous portions of BMPR1A and PTEN in our patient, he may be at risk for CS associated cancers and features, in addition to the polyps associated with JPS. This case presents new challenges in developing appropriate surveillance algorithms to account for the risks associated with each syndrome and highlights the importance of longitudinal follow-up and transitional care between pediatric and adult gastroenterology for patients with hereditary polyposis syndromes.

  7. Genomewide Scan for Anal Atresia in Swine Identifies Linkage and Association With a Chromosome Region on Sus scrofa Chromosome 1

    PubMed Central

    Wiedemann, Sabine; Fries, Ruedi; Thaller, Georg

    2005-01-01

    Anal atresia is a rare and severe disorder in swine occurring with an incidence of 0.1–1.0%. A whole-genome scan based on affected half-sibs was performed to identify susceptibility loci for anal atresia. The analysis included 27 families with a total of 95 animals and 65 affected piglets among them. Animals were genotyped for 126 microsatellite markers distributed across the 18 autosomal porcine chromosomes and the X chromosome, covering an estimated 2080 cM. Single-point and multipoint nonparametric linkage scores were calculated using the computer package ALLEGRO 1.0. Significant linkage results were obtained for chromosomes 1, 3, and 12. Markers on these chromosomes and additionally on chromosomes for which candidate genes have been postulated in previous studies were subjected to the transmission disequilibrium test (TDT). The test statistic exceeded the genomewide significance level for adjacent markers SW1621 (P = 7 × 10−7) and SW1902 (P = 3 × 10−3) on chromosome 1, supporting the results of the linkage analysis. A specific haplotype associated with anal atresia that could prove useful for selection against the disorder was revealed. Suggestive linkage and association were also found for markers S0081 on chromosome 9 and SW957 on chromosome 12. PMID:16020797

  8. Molecular cloning of the breakpoints of a complex Philadelphia chromosome translocation: identification of a repeated region on chromosome 17.

    PubMed Central

    McKeithan, T W; Warshawsky, L; Espinosa, R; LeBeau, M M

    1992-01-01

    Complex translocations in chronic myelogenous leukemia involve various chromosomes, in addition to chromosomes 9 and 22, in a nonrandom fashion. We have analyzed the DNA from leukemia cells characterized by a complex translocation, t(9;22;10;17)(q34;q11;p13;q21), by using the techniques of Southern blot hybridization, in situ hybridization, and molecular cloning; one of the breakpoints is at 17q21, a band that is frequently involved in complex 9;22 translocations. All of the breakpoint junctions and the corresponding normal sequences from the four involved chromosomes have been molecularly cloned. Restriction mapping is consistent with a simple concerted exchange of chromosomal material among the four chromosomes, except that additional changes appeared to have occurred within the chromosome 17 sequences. The cloned sequences on chromosome 17 at band q21 were found to be repeated in normal cells. By fluorescence in situ hybridization, a strong signal is seen at 17q21, but a weaker signal is also present at 17q23. By comparison with other primate species, an inversion in chromosome 17 during evolution appears to be responsible for the splitting of the cluster of repeat units in normal human cells. Images PMID:1594595

  9. Fluorescent in situ hybridization shows DIPLOSPOROUS located on one of the NOR chromosomes in apomictic dandelions (Taraxacum) in the absence of a large hemizygous chromosomal region.

    PubMed

    Vašut, Radim J; Vijverberg, Kitty; van Dijk, Peter J; de Jong, Hans

    2014-11-01

    Apomixis in dandelions (Taraxacum: Asteraceae) is encoded by two unlinked dominant loci and a third yet undefined genetic factor: diplosporous omission of meiosis (DIPLOSPOROUS, DIP), parthenogenetic embryo development (PARTHENOGENESIS, PAR), and autonomous endosperm formation, respectively. In this study, we determined the chromosomal position of the DIP locus in Taraxacum by using fluorescent in situ hybridization (FISH) with bacterial artificial chromosomes (BACs) that genetically map within 1.2-0.2 cM of DIP. The BACs showed dispersed fluorescent signals, except for S4-BAC 83 that displayed strong unique signals as well. Under stringent blocking of repeats by C0t-DNA fragments, only a few fluorescent foci restricted to defined chromosome regions remained, including one on the nucleolus organizer region (NOR) chromosomes that contains the 45S rDNAs. FISH with S4-BAC 83 alone and optimal blocking showed discrete foci in the middle of the long arm of one of the NOR chromosomes only in triploid and tetraploid diplosporous dandelions, while signals in sexual diploids were lacking. This agrees with the genetic model of a single dose, dominant DIP allele, absent in sexuals. The length of the DIP region is estimated to cover a region of 1-10 Mb. FISH in various accessions of Taraxacum and the apomictic sister species Chondrilla juncea, confirmed the chromosomal position of DIP within Taraxacum but not outside the genus. Our results endorse that, compared to other model apomictic species, expressing either diplospory or apospory, the genome of Taraxacum shows a more similar and less diverged chromosome structure at the DIP locus. The different levels of allele sequence divergence at apomeiosis loci may reflect different terms of asexual reproduction. The association of apomeiosis loci with repetitiveness, dispersed repeats, and retrotransposons commonly observed in apomictic species may imply a functional role of these shared features in apomictic reproduction, as is

  10. Fluorescent in situ hybridization shows DIPLOSPOROUS located on one of the NOR chromosomes in apomictic dandelions (Taraxacum) in the absence of a large hemizygous chromosomal region.

    PubMed

    Vašut, Radim J; Vijverberg, Kitty; van Dijk, Peter J; de Jong, Hans

    2014-11-01

    Apomixis in dandelions (Taraxacum: Asteraceae) is encoded by two unlinked dominant loci and a third yet undefined genetic factor: diplosporous omission of meiosis (DIPLOSPOROUS, DIP), parthenogenetic embryo development (PARTHENOGENESIS, PAR), and autonomous endosperm formation, respectively. In this study, we determined the chromosomal position of the DIP locus in Taraxacum by using fluorescent in situ hybridization (FISH) with bacterial artificial chromosomes (BACs) that genetically map within 1.2-0.2 cM of DIP. The BACs showed dispersed fluorescent signals, except for S4-BAC 83 that displayed strong unique signals as well. Under stringent blocking of repeats by C0t-DNA fragments, only a few fluorescent foci restricted to defined chromosome regions remained, including one on the nucleolus organizer region (NOR) chromosomes that contains the 45S rDNAs. FISH with S4-BAC 83 alone and optimal blocking showed discrete foci in the middle of the long arm of one of the NOR chromosomes only in triploid and tetraploid diplosporous dandelions, while signals in sexual diploids were lacking. This agrees with the genetic model of a single dose, dominant DIP allele, absent in sexuals. The length of the DIP region is estimated to cover a region of 1-10 Mb. FISH in various accessions of Taraxacum and the apomictic sister species Chondrilla juncea, confirmed the chromosomal position of DIP within Taraxacum but not outside the genus. Our results endorse that, compared to other model apomictic species, expressing either diplospory or apospory, the genome of Taraxacum shows a more similar and less diverged chromosome structure at the DIP locus. The different levels of allele sequence divergence at apomeiosis loci may reflect different terms of asexual reproduction. The association of apomeiosis loci with repetitiveness, dispersed repeats, and retrotransposons commonly observed in apomictic species may imply a functional role of these shared features in apomictic reproduction, as is

  11. Genetic mapping of the BRCA1 region on chromosome 17q21

    SciTech Connect

    Albertson, H.; Plaetke, R.; Ballard, L.; Fujimoto, E.; Connolly, J.; Lawrence, E.; Rodriquez, P.; Robertson, M.; Bradley, P.; Milner, B. )

    1994-03-01

    Chromosome 17q21 harbors a gene (BRCA1) associated with a hereditary form of breast cancer. As a step toward identification of this gene itself the authors developed a number of simple-sequence-repeat (SSR) markers for chromosome 17 and constructed a high-resolution genetic map of a 40-cM region around 17q21. As part of this effort they captured genotypes from five of the markers by using an ABI sequencing instrument and stored them in a locally developed database, as a step toward automated genotyping. In addition, YACs that physically link some of the SSR markers were identified. The results provided by this study should facilitate physical mapping of the BRCA1 region and isolation of the BRCA1 gene. 31 refs., 3 figs., 21 tabs.

  12. Nucleolar organizer regions in Sittasomus griseicapillus and Lepidocolaptes angustirostris (Aves, Dendrocolaptidae): Evidence of a chromosome inversion.

    PubMed

    de Oliveira Barbosa, Marcelo; da Silva, Rubens Rodrigues; de Sena Correia, Vanessa Carolina; Dos Santos, Luana Pereira; Garnero, Analía Del Valle; Gunski, Ricardo José

    2013-03-01

    Cytogenetic studies in birds are still scarce compared to other vertebrates. Woodcreepers (Dendrocolaptidae) are part of a highly specialized group within the Suboscines of the New World. They are forest birds exclusive to the Neotropical region and similar to woodpeckers, at a comparable evolutionary stage. This paper describes for the first time the karyotypes of the Olivaceous and the Narrow-billed Woodcreeper using conventional staining with Giemsa and silver nitrate staining of the nucleolar organizer regions (Ag-NORs). Metaphases were obtained by fibular bone marrow culture. The chromosome number of the Olivaceous Woodcreeper was 2n = 82 and of the Narrow-billed Woodcreeper, 2n = 82. Ag-NORs in the largest macrochromosome pair and evidence of a chromosome inversion are described herein for the first time for this group.

  13. Towards the cloning of imprinted genes in the Prader-Willi/Angelman region of chromosome 15q11-q13

    SciTech Connect

    Nakao, M.; Sutcliffe, J.S.; Beaudet, A.L.

    1994-09-01

    Prader-Willi syndrome (PWS) and Angelman syndrome (AS) are distinct clinical phenotypes resulting from paternal and maternal deficiencies respectively in human chromosome 15q11-q13. The data suggest the presence of oppositely imprinted genes in the region, and the gene for small nuclear ribonucleoprotein-associated polypeptide N (SNRPN) has been identified as a candidate gene for PWS. Previous strategies for positional cloning identified a number of transcripts from the PWS/AS region, and two of them, PAR-5 (D15S226E) and PAR-1 (D15S227E), are paternally expressed in cultured human cells from patients deleted for 15q11-q13 as is SNRPN. Cosmid contig maps have been developed from the following YACs (contained loci in parentheses): 307A12 (D15S13), 457B4 (SNRPN), 132D4 (D15S10), A229A2, and 378A12 (D15S113), to facilitate molecular studies of PWS and AS. Exon trapping has been employed to isolate putative exons from these overlapping cosmids. Two trapped fragments from the D15S113 region and one fragment from the SNRPN region has been isolated. Sequence information is available for all of the fragments. In addition to imprinting analysis in cultured human cells, we have developed a method to detect imprinting in mouse and human using a GC-clamped denaturing gradient gel electrophoresis strategy, in combination with reverse transcription-polymerase chain reaction. The imprinting analyses of putative exons are in progress to investigate their possible candidacy for involvement in PWS or AS phenotypes.

  14. Modular sequence elements associated with origin regions in eukaryotic chromosomal DNA.

    PubMed Central

    Dobbs, D L; Shaiu, W L; Benbow, R M

    1994-01-01

    We have postulated that chromosomal replication origin regions in eukaryotes have in common clusters of certain modular sequence elements (Benbow, Zhao, and Larson, BioEssays 14, 661-670, 1992). In this study, computer analyses of DNA sequences from six origin regions showed that each contained one or more potential initiation regions consisting of a putative DUE (DNA unwinding element) aligned with clusters of SAR (scaffold associated region), and ARS (autonomously replicating sequence) consensus sequences, and pyrimidine tracts. The replication origins analyzed were from the following loci: Tetrahymena thermophila macronuclear rDNA gene, Chinese hamster ovary dihydrofolate reductase amplicon, human c-myc proto-oncogene, chicken histone H5 gene, Drosophila melanogaster chorion gene cluster on the third chromosome, and Chinese hamster ovary rhodopsin gene. The locations of putative initiation regions identified by the computer analyses were compared with published data obtained using diverse methods to map initiation sites. For at least four loci, the potential initiation regions identified by sequence analysis aligned with previously mapped initiation events. A consensus DNA sequence, WAWTTDDWWWDHWGWHMAWTT, was found within the potential initiation regions in every case. An additional 35 kb of combined flanking sequences from the six loci were also analyzed, but no additional copies of this consensus sequence were found. Images PMID:8041609

  15. Y chromosome azoospermia factor region microdeletions and transmission characteristics in azoospermic and severe oligozoospermic patients

    PubMed Central

    Yu, Xiao-Wei; Wei, Zhen-Tong; Jiang, Yu-Ting; Zhang, Song-Ling

    2015-01-01

    Spermatogenesis is an essential reproductive process that is regulated by many Y chromosome specific genes. Most of these genes are located in a specific region known as the azoospermia factor region (AZF) in the long arm of the human Y chromosome. AZF microdeletions are recognized as the most frequent structural chromosomal abnormalities and are the major cause of male infertility. Assisted reproductive techniques (ART) such as intra-cytoplasmic sperm injection (ICSI) and testicular sperm extraction (TESE) can overcome natural fertilization barriers and help a proportion of infertile couples produce children; however, these techniques increase the transmission risk of genetic defects. AZF microdeletions and their associated phenotypes in infertile males have been extensively studied, and different AZF microdeletion types have been identified by sequence-tagged site polymerase chain reaction (STS-PCR), suspension array technology (SAT) and array-comparative genomic hybridization (aCGH); however, each of these approaches has limitations that need to be overcome. Even though the transmission of AZF microdeletions has been reported worldwide, arguments correlating ART and the incidence of AZF microdeletions and explaining the occurrence of de novo deletions and expansion have not been resolved. Using the newest findings in the field, this review presents a systematic update concerning progress in understanding the functions of AZF regions and their associated genes, AZF microdeletions and their phenotypes and novel approaches for screening AZF microdeletions. Moreover, the transmission characteristics of AZF microdeletions and the future direction of research in the field will be specifically discussed. PMID:26628946

  16. Minute supernumerary ring chromosome 22 associated with cat eye syndrome: Further delineation of the critical region

    SciTech Connect

    Mears, A.J.; McDermid, H.E.; El-Shanti, H.

    1995-09-01

    Cat eye syndrome (CES) is typically associated with a supernumerary bisatellited marker chromosome (inv dup 22pter-22q11.2) resulting in four copies of this region. We describe an individual showing the inheritance of a minute supernumerary double ring chromosome 22, which resulted in expression of all cardinal features of CES. The size of the ring was determined by DNA dosage analysis and FISH analysis for five loci mapping to 22q11.2. The probes to the loci D22S9, D22S43, and ATP6E were present in four copies, whereas D22S57 and D22S181 were present in two copies. This finding further delineates the distal boundary of the critical region of CES, with ATP6E being the most distal duplicated locus identified. The phenotypically normal father and grandfather of the patient each had a small supernumerary ring chromosome and demonstrated three copies for the loci D22S9, D22S43, and ATP6E. Although three copies of this region have been reported in other cases with CES features, it is possible that the presence of four copies leads to greater susceptibility. 35 refs., 4 figs., 2 tabs.

  17. Exclusion of primary congenital glaucoma (PCG) from two candidate regions of chromosomes 1 and 6

    SciTech Connect

    Sarfarazi, M.; Akarsu, A.N.; Barsoum-Homsy, M.

    1994-09-01

    PCG is a genetically heterogeneous condition in which a significant proportion of families inherit in an autosomally recessive fashion. Although association of PCG with chromosomal abnormalities has been repeatedly reported in the literature, the chromosomal location of this condition is still unknown. Therefore, this study is designed to identify the chromosomal location of the PCG locus by positional mapping. We have identified 80 PCG families with a total of 261 potential informative meiosis. A group of 19 pedigrees with a minimum of 2 affected children in each pedigree and consanguinity in most of the parental generation were selected as our initial screening panel. This panel consists of a total of 44 affected and 93 unaffected individuals giving a total of 99 informative meiosis, including 5 phase-known. We used polymerase chain reaction (PCR), denaturing polyacrylamide gels and silver staining to genotype our families. We first screened for markers on 1q21-q31, the reported location for juvenile primary open-angle glaucoma and excluded a region of 30 cM as the likely site for the PCG locus. Association of PCG with both ring chromosome 6 and HLA-B8 has also been reported. Therefore, we genotyped our PCG panel with PCR applicable markers from 6p21. Significant negative lod scores were obtained for D6S105 (Z = -18.70) and D6S306 (Z = -5.99) at {theta}=0.001. HLA class 1 region has also contained one of the tubulin genes (TUBB) which is an obvious candidate for PCG. Study of this gene revealed a significant negative lod score with PCG (Z = -16.74, {theta}=0.001). A multipoint linkage analysis of markers in this and other regions containing the candidate genes will be presented.

  18. Chromosomal protein HMG-14 gene maps to the Down syndrome region of human chromosome 21 and is overexpressed in mouse trisomy 16

    SciTech Connect

    Pash, J.; Popescu, N.; Matocha, M.; Rapoport, S.; Bustin, M. )

    1990-05-01

    The gene for human high-mobility-group (HMG) chromosomal protein HMG-14 is located in region 21q22.3, a region associated with the pathogenesis of Down syndrome, one of the most prevalent human birth defects. The expression of this gene is analyzed in mouse embryos that are trisomic in chromosome 16 and are considered to be an animal model for Down syndrome. RNA blot-hybridization analysis and detailed analysis of HMG-14 protein levels indicate that mouse trisomy 16 embryos have approximately 1.5 times more HMG-14 mRNA and protein than their normal littermates, suggesting a direct gene dosage effect. The HMG-14 gene may be an additional marker for the Down syndrome. Chromosomal protein HMG-14 is a nucleosomal binding protein that may confer distinct properties to the chromatin structure of transcriptionally active genes and therefore may be a contributing factor in the etiology of the syndrome.

  19. Genetic mapping of the branchio-oto-renal syndrome and construction of YAC contig spanning the BOR region on chromosome 8q

    SciTech Connect

    Kumar, S.; Kimberling, W.J.; Bumegi, J.

    1994-09-01

    Branchio-oto-renal syndrome (BOR) is an autosomal dominant disorder which consists of external, middle and inner ear malformations, branchial cleft sinuses, cervical fistulas, mixed hearing loss and renal anomalies. The prevalence of BOR syndrome is approximately 1:40,000, and it has been reported to occur in about 2% of profoundly deaf children. The BOR syndrome has been localized to chromosome 8q. Initial localization results indicated a distance of about 15 cM between the flanking markers D8S87 and PENK for the BOR gene. This localization has been further refined, using new markers, to a distance of about 7 cM. The multipoint analysis was carried out using markers D8S285, PENK, D8S166, D8S260, D8S510, D8S553, D8S543, D8S530, D8S279, D8S164, D8S286 and D8S275. For cloning the BOR gene, an overlapping Yeast Artificial Chromosome (YAC) contig map of the critical region is being constructed. We have isolated eight YACs from the CEPH Mega YAC library and their size and quality are being characterized by PFGE and FISH analysis. Additional STSs and polymorphic markers developed from the region will be used to further refine the region and close the contig. The availability of this contig will be a useful resource for the systematic search for identifying transcribed sequences from this region.

  20. Characterization of an autonomously replicating region from the Streptomyces lividans chromosome.

    PubMed Central

    Zakrzewska-Czerwińska, J; Schrempf, H

    1992-01-01

    The chromosomal replication origin of the plasmidless derivative (TK21) from Streptomyces lividans 66 has been cloned as an autonomously replicating minichromosome (pSOR1) by using the thiostrepton resistance gene as a selectable marker. pSOR1 could be recovered as a closed circular plasmid which shows high segregational instability. pSOR1 was shown to replicate in Streptomyces coelicolor A3(2) and in S. lividans 66 and hybridized with DNA from several different Streptomyces strains. Physical mapping revealed that oriC is located on a 330-kb AseI fragment of the S. coelicolor A3(2) chromosome. DNA sequence analyses showed that the cloned chromosomal oriC region contains numerous DnaA boxes which are arranged in two clusters. The preferred sequence identified in the oriC region of Escherichia coli and several other bacteria is TTATCCACA. In contrast, in S. lividans, which has a high GC content, the preferred sequence for DnaA boxes appears to be TTGTCCACA. Images PMID:1556087

  1. Physical map and functional studies of the juxtacentromeric region of chromosome 13

    SciTech Connect

    Dupont, J.M.; Dode, C.; Piccolo, F.

    1994-09-01

    The structure of the juxtacentromeric region of chromosome 13 has been analyzed in order to investigate a putative position effect of the centromeric heterochromatin and to provide a physical landmark needed in the positional cloning of the autosomal recessive muscular dystrophy gene (SCARMD1). A genomic fragment corresponding to the insertion of a L1 sequence in juxtacentromeric block of satellite 3 has been cloned after PCR amplification of a somatic hybrid containing human chromosome 13 only. The sequence defines a new family of satellite 3 DNA and belongs to the heterochromatin region of chromosome 13. Human satellite 2 and 3 sequences are methylated in every cell except in the germ cell line and extra-embryonic tissues. In ICF syndrome, the alteration of the chromatin structure is associated with a deficit or complete absence of methylation of satellite 2 and 3 sequences. Cloning junctional euchromatic sequences immediately adjacent to heterochromatin will help to characterize the methylation pattern of non-satellite heterochromatized sequences in normal cells and methylation-deficient patients.

  2. Cytogenetic mapping with centromeric bacterial artificial chromosomes contigs shows that this recombination-poor region comprises more than half of barley chromosome 3H.

    PubMed

    Aliyeva-Schnorr, Lala; Beier, Sebastian; Karafiátová, Miroslava; Schmutzer, Thomas; Scholz, Uwe; Doležel, Jaroslav; Stein, Nils; Houben, Andreas

    2015-10-01

    Genetic maps are based on the frequency of recombination and often show different positions of molecular markers in comparison to physical maps, particularly in the centromere that is generally poor in meiotic recombinations. To decipher the position and order of DNA sequences genetically mapped to the centromere of barley (Hordeum vulgare) chromosome 3H, fluorescence in situ hybridization with mitotic metaphase and meiotic pachytene chromosomes was performed with 70 genomic single-copy probes derived from 65 fingerprinted bacterial artificial chromosomes (BAC) contigs genetically assigned to this recombination cold spot. The total physical distribution of the centromeric 5.5 cM bin of 3H comprises 58% of the mitotic metaphase chromosome length. Mitotic and meiotic chromatin of this recombination-poor region is preferentially marked by a heterochromatin-typical histone mark (H3K9me2), while recombination enriched subterminal chromosome regions are enriched in euchromatin-typical histone marks (H3K4me2, H3K4me3, H3K27me3) suggesting that the meiotic recombination rate could be influenced by the chromatin landscape.

  3. A second gene for cerulean cataracts maps to the {beta} crystallin region on chromosome 22

    SciTech Connect

    Kramer, P.; Yount, J.; Lovrien, E.

    1996-08-01

    Cogenital cataracts are one of the most common major eye abnormalities and often lead to blindness in infants. At least a third of all cases are familial. Within this group, highly penetrant, autosomal dominant forms of congenital cataracts (ADCC) are most common. ADCC is a genetically heterogeneous group of disorders, in which at least eight different loci have been identified for nine clinically distinct forms. Among these, Armitage et al. mapped a gene for cerulean blue cataracts to chromosome 17q24. Bodker et al. described a large family with cerulean blue cataracts, in which the affected daughter of affected first cousins was presumed to be homozygous for the purported gene. We report linkage in this family to the region on chromosome 22q that includes two {beta} crystallin genes (CRYBB2, CRYBB3) and one pseudogene (CRYBB2P1). The affected female in question is homozygous at all markers. 25 refs., 1 fig., 1 tab.

  4. Physical mapping of the congenital chloride diarrhea gene region in human chromosome 7

    SciTech Connect

    Kere, J.; Hoeglund, P.; Haila, S.

    1994-09-01

    The gene for congenital chloride diarrhea (CLD; MIM 214700) has been mapped to human chromosome 7 by a linkage study in Finnish families. The markers closest to the gene are D7S496 and D7S501, both with zero recombination fraction. In order to physically map the region and facilitate positional cloning, altogether 25 YAC clones have been isolated from the Washington University chromosome 7 collection of YACs. The clones form 2 contigs, 700 to 900 kb in size, around D7S496 and D7SS01. One YAC from the CEPH collection that bridges these contigs has been identified, but the link remains unconfirmed. Rare-cutter restriction mapping has identified as least 3 CpG islands within 50 to 200 kb of D7S496, supposed to map closest to CLD on the basis of linkage disequilibrium studies. Isolation of candidate cDNAs is in progress.

  5. Genetic linkage of mild pseudoachondroplasia (PSACH) to markers in the pericentromeric region of chromosome 19

    SciTech Connect

    Briggs, M.D.; Rasmussen, M.; Garber, P.; Rimoin, D.L.; Cohn, D.H. ); Weber, J.L. ); Yuen, J.; Reinker, K. )

    1993-12-01

    Pseudoachondroplasia (PSACH) is a dominantly inherited form of short-limb dwarfism characterized by dysplastic changes in the spine, epiphyses, and metaphyses and early onset osteoarthropathy. Chondrocytes from affected individuals accumulate an unusual appearing material in the rough endoplasmic reticulum, which has led to the hypothesis that a structural abnormality in a cartilage-specific protein produces the phenotype. The authors recently identified a large family with a mild form of pseudoachondroplasia. By genetic linkage to a dinucleotide repeat polymorphic marker (D19S199), they have localized the disease gene to chromosome 19 (maximum lod score of 7.09 at a recombination fraction of 0.03). Analysis of additional markers and recombinations between the linked markers and the phenotype suggests that the disease gene resides within a 6.3-cM interval in the immediate pericentromeric region of the chromosome. 39 refs., 2 figs., 1 tab.

  6. Cytokinesis breaks dicentric chromosomes preferentially at pericentromeric regions and telomere fusions

    PubMed Central

    Lopez, Virginia; Barinova, Natalja; Onishi, Masayuki; Pobiega, Sabrina; Pringle, John R.; Dubrana, Karine

    2015-01-01

    Dicentric chromosomes are unstable products of erroneous DNA repair events that can lead to further genome rearrangements and extended gene copy number variations. During mitosis, they form anaphase bridges, resulting in chromosome breakage by an unknown mechanism. In budding yeast, dicentrics generated by telomere fusion break at the fusion, a process that restores the parental karyotype and protects cells from rare accidental telomere fusion. Here, we observed that dicentrics lacking telomere fusion preferentially break within a 25- to 30-kb-long region next to the centromeres. In all cases, dicentric breakage requires anaphase exit, ruling out stretching by the elongated mitotic spindle as the cause of breakage. Instead, breakage requires cytokinesis. In the presence of dicentrics, the cytokinetic septa pinch the nucleus, suggesting that dicentrics are severed after actomyosin ring contraction. At this time, centromeres and spindle pole bodies relocate to the bud neck, explaining how cytokinesis can sever dicentrics near centromeres. PMID:25644606

  7. Determination and regional assignment of grouped sets of microclones in chromosome 1pter-p35

    SciTech Connect

    Barnas, C.M.; Onyango, P.; Ellmeier, W.

    1995-10-10

    In an approach to mapping physically the most distal 30 Mb of human chromosome 1p, region-specific clone libraries were generated by microdissection and microcloning, PFGE blot hybridization of single or low-copy microclones against rare-cutter digests of genomic DNA revealed physical linkage for groups of markers. Supplementary PFGE analysis of 31 1p36-p35-specific probes for genetically mapped loci established a total of 15 grouped sets, consisting of altogether 69 markers. Twelve of the grouped sets were located in 1pter-p36.12, as revealed by microcell hybrid mapping; the remaining three were localized proximal to 1p36.12. Regional assignment and ordering of most grouped sets was achieved either by evaluating the included genetic markers or by fluorescence in situ hybridization of representative probes. The genomic extent of individual grouped sets encompassed between 1100 and 2100 kb, covering a total of approximately 22 Mb of the distal chromosome 1p region. One particular grouped set was shown to contain seven polymorphic marker loci that were previously suggested to be distributed across the entire 1pter-p35 region. The increase in the number of hybridization marker probes in 1p36 and their physical mapping is expected to facilitate positional cloning experiments in this region; in particular, the construction of clone contigs may be greatly facilitated. 44 refs., 3 figs., 3 tabs.

  8. Randomly picked cosmid clones overlap the pyrB and oriC gap in the physical map of the E. coli chromosome.

    PubMed Central

    Knott, V; Rees, D J; Cheng, Z; Brownlee, G G

    1988-01-01

    Sets of overlapping cosmid clones generated by random sampling and fingerprinting methods complement data at pyrB (96.5') and oriC (84') in the published physical map of E. coli. A new cloning strategy using sheared DNA, and a low copy, inducible cosmid vector were used in order to reduce bias in libraries, in conjunction with micro-methods for preparing cosmid DNA from a large number of clones. Our results are relevant to the design of the best approach to the physical mapping of large genomes. PMID:2834694

  9. Physical mapping of DNA markers in the q13-q22 region of the human X chromosome

    SciTech Connect

    Philippe, C.; Chery, M.; Abbadi, N.; Gilgenkrantz, S. ); Cremers, F.P.M.; Bach, I.; Ropers, H.H. )

    1993-07-01

    DNA probe screening of somatic cell hybrids derived from females with X; autosome translocations has enabled definition of eight new breakpoints within the Xq13-q22 region. Together with other X-chromosome rearrangements that have been described earlier, these breakpoints subdivide the Xq21-q22 region into 20 intervals. This panel refines the physical assignment of 40 probes in the Xq21-q22 segment. Thus, these X-chromosome rearrangements are useful tools for ordering X-linked markers and genes on the proximal long arm of the human X chromosome. 26 refs., 3 figs., 3 tabs.

  10. A complete YAC contig of the Prader-Willi/Angelman chromosome region (15q11-q13) and refined localization of the SNRPN gene

    SciTech Connect

    Mutirangura, A.; Jayakumar, A.; Sutcliffe, J.S.; Nakao, M.; McKinney, M.J.; Beaudet, A.L.; Chinault, A.C.; Ledbetter, D.H. ); Buiting, K.; Horsthemke, B. )

    1993-12-01

    Since a previous report of a partial YAC contig of the Prader-Willi/Angelman chromosome region (15q11-q13), a complete contig spanning approximately 3.5 Mb has been developed. YACs were isolated from two human genomic libraries by PCR and hybridization screening methods. Twenty-three sequence-tagged sites (STSs) were mapped within the contig, a density of [approximately]1 per 200 kb. Overlaps between YAC clones were identified by Alu-PCR dot-blot analysis and confirmed by STS mapping or hybridization with ends of YAC inserts. The gene encoding small nuclear ribonucleoprotein-associated peptide N (SNRPN), recently identified as a candidate gene for Prader-Willi syndrome, was localized within this contig between markers PW71 and TD3-21. Loci mapped within and immediately flanking the Prader-Willi/Angelman chromosome region contig are ordered as follows: cen-IR39-ML34-IR4-3R-TD189-1-PW71-SNRPN-TD3-21-LS6-1-GABRB3,D15S97-GABRA5-IR10-1-CMW1-tel. This YAC contig will be a useful resource for more detailed physical mapping of the region, for generation of new DNA markers, and for mapping or cloning candidate genes for the Prader-Willi and Angelman syndromes. 36 refs., 2 figs., 2 tabs.

  11. Specific features in linear and spatial organizations of pericentromeric heterochromatin regions in polytene chromosomes of the closely related species Drosophila virilis and D. kanekoi (Diptera: Drosophilidae).

    PubMed

    Wasserlauf, Irina; Usov, Konstantin; Artemov, Gleb; Anan'ina, Tatyana; Stegniy, Vladimir

    2015-06-01

    Heterochromatin plays an important role in the spatial arrangement and evolution of the eukaryotic genetic apparatus. The closely related species Drosophila virilis (phyla virilis) and D. kanekoi (phyla montana) differ in the amount of heterochromatin along the chromosomes as well as by the presence of the metacentric chromosome 2, which emerged as a result of a pericentric inversion during speciation, in the D. kanekoi karyotype. The purpose of this study was to establish if chromosome rearrangements have any influence on the linear redistribution of centromeric heterochromatin in polytene chromosomes and the spatial organization of chromosomes in the nuclei of nurse cell. We have microdissected the chromocenter of D. virilis salivary gland polytene chromosomes; obtained a DNA library of this region (DvirIII); and hybridized (FISH) DvirIII to the salivary gland and nurse cell polytene chromosomes of D. virilis and D. kanekoi. We demonstrated that DvirIII localizes to the pericentromeric heterochromatin regions of all chromosomes and peritelomeric region of chromosome 5 in both species. Unlike D. virilis, the DvirIII signal in D. kanekoi chromosomes is detectable in the telomeric region of chromosome 2. We have also conducted a 3D FISH of DvirIII probe to the D. virilis and D. kanekoi nurse cell chromosomes. In particular, the DvirIII signal in D. virilis was observed in the local chromocenter at one pole of the nucleus, while the signal belonging to the telomeric region of chromosome 5 was detectable at the other pole. In contrast, in D. kanekoi there exist two separate DvirIII-positive regions. One of these regions belongs to the pericentromeric region of chromosome 2 and the other, to pericentromeric regions of the remaining chromosomes. These results suggest that chromosome rearrangements play an important role in the redistribution of heterochromatin DNA sequences in the genome, representing a speciation mechanism, which, in general, could also affect the

  12. Transgenic mouse model of hemifacial microsomia: Cloning and characterization of insertional mutation region on chromosome 10

    SciTech Connect

    Naora, Hiroyuki; Otani, Hiroki; Tanaka, Osamu

    1994-10-01

    The 643 transgenic mouse line carries an autosomal dominant insertional mutation that results in hemifacial microsomia (HFM), including microtia and/or abnormal biting. In this paper, we characterize the transgene integration site in transgenic mice and preintegration site of wildtype mice. The locus, designated Hfm (hemifacial microsomia-associated locus), was mapped to chromosome 10, B1-3, by chromosome in situ hybridization. We cloned the transgene insertion site from the transgenic DNA library. By using the 5{prime} and 3{prime} flanking sequences, the preintegration region was isolated. The analysis of these regions showed that a deletion of at least 23 kb DNA occurred in association with the transgene integration. Evolutionarily conserved regions were detected within and beside the deleted region. The result of mating between hemizygotes suggests that the phenotype of the homozygote is lethality in the prenatal period. These results suggests that the Hfm locus is necessary for prenatal development and that this strain is a useful animal model for investigating the genetic predisposition to HFM in humans.

  13. Dynamics of rye chromosome 1R regions with high or low crossover frequency in homology search and synapsis development.

    PubMed

    Valenzuela, Nohelia T; Perera, Esther; Naranjo, Tomás

    2012-01-01

    In many organisms, homologous pairing and synapsis depend on the meiotic recombination machinery that repairs double-strand DNA breaks (DSBs) produced at the onset of meiosis. The culmination of recombination via crossover gives rise to chiasmata, which locate distally in many plant species such as rye, Secale cereale. Although, synapsis initiates close to the chromosome ends, a direct effect of regions with high crossover frequency on partner identification and synapsis initiation has not been demonstrated. Here, we analyze the dynamics of distal and proximal regions of a rye chromosome introgressed into wheat to define their role on meiotic homology search and synapsis. We have used lines with a pair of two-armed chromosome 1R of rye, or a pair of telocentrics of its long arm (1RL), which were homozygous for the standard 1RL structure, homozygous for an inversion of 1RL that changes chiasma location from distal to proximal, or heterozygous for the inversion. Physical mapping of recombination produced in the ditelocentric heterozygote (1RL/1RL(inv)) showed that 70% of crossovers in the arm were confined to a terminal segment representing 10% of the 1RL length. The dynamics of the arms 1RL and 1RL(inv) during zygotene demonstrates that crossover-rich regions are more active in recognizing the homologous partner and developing synapsis than crossover-poor regions. When the crossover-rich regions are positioned in the vicinity of chromosome ends, their association is facilitated by telomere clustering; when they are positioned centrally in one of the two-armed chromosomes and distally in the homolog, their association is probably derived from chromosome elongation. On the other hand, chromosome movements that disassemble the bouquet may facilitate chromosome pairing correction by dissolution of improper chromosome associations. Taken together, these data support that repair of DSBs via crossover is essential in both the search of the homologous partner and

  14. Nerve growth factor receptor gene is at human chromosome region 17q12-17q22, distal to the chromosome 17 breakpoint in acute leukemias

    SciTech Connect

    Huebner, K.; Isobe, M.; Chao, M.; Bothwell, M.; Ross, A.H.; Finan, J.; Hoxie, J.A.; Sehgal, A.; Buck, C.R.; Lanahan, A.

    1986-03-01

    Genomic and cDNA clones for the human nerve growth factor receptor have been used in conjunction with somatic cell hybrid analysis and in situ hybridization to localize the nerve growth factor receptor locus to human chromosome region 17q12-q22. Additionally, part, if not all, of the nerve growth factor receptor locus is present on the translocated portion of 17q (17q21-qter) from a poorly differential acute leukemia in which the chromosome 17 breakpoint was indistinguishable cytogenetically from the 17 breakpoint observed in the t(15;17)(q22;q21) translocation associated with acute promyelocytic leukemia. Thus the nerve growth factor receptor locus may be closely distal to the acute promyelocytic leukemia-associated chromosome 17 breakpoint at 17q21.

  15. Size and location of radish chromosome regions carrying the fertility restorer Rfk1 gene in spring turnip rape.

    PubMed

    Niemelä, Tarja; Seppänen, Mervi; Badakshi, Farah; Rokka, Veli-Matti; Heslop-Harrison, J S Pat

    2012-04-01

    In spring turnip rape (Brassica rapa L. spp. oleifera), the most promising F1 hybrid system would be the Ogu-INRA CMS/Rf system. A Kosena fertility restorer gene Rfk1, homolog of the Ogura restorer gene Rfo, was successfully transferred from oilseed rape into turnip rape and that restored the fertility in female lines carrying Ogura cms. The trait was, however, unstable in subsequent generations. The physical localization of the radish chromosomal region carrying the Rfk1 gene was investigated using genomic in situ hybridization (GISH) and bacterial artificial chromosome-fluorescence in situ hybridization (BAC-FISH) methods. The metaphase chromosomes were hybridized using radish DNA as the genomic probe and BAC64 probe, which is linked with Rfo gene. Both probes showed a signal in the chromosome spreads of the restorer line 4021-2 Rfk of turnip rape but not in the negative control line 4021B. The GISH analyses clearly showed that the turnip rape restorer plants were either monosomic (2n=2x=20+1R) or disomic (2n=2x=20+2R) addition lines with one or two copies of a single alien chromosome region originating from radish. In the BAC-FISH analysis, double dot signals were detected in subterminal parts of the radish chromosome arms showing that the fertility restorer gene Rfk1 was located in this additional radish chromosome. Detected disomic addition lines were found to be unstable for turnip rape hybrid production. Using the BAC-FISH analysis, weak signals were sometimes visible in two chromosomes of turnip rape and a homologous region of Rfk1 in chromosome 9 of the B. rapa A genome was verified with BLAST analysis. In the future, this homologous area in A genome could be substituted with radish chromosome area carrying the Rfk1 gene.

  16. Polymorphisms and genomic organization of repetitive DNA from centromeric regions of Arabidopsis chromosomes.

    PubMed Central

    Heslop-Harrison, J S; Murata, M; Ogura, Y; Schwarzacher, T; Motoyoshi, F

    1999-01-01

    A highly abundant repetitive DNA sequence family of Arabidopsis, AtCon, is composed of 178-bp tandemly repeated units and is located at the centromeres of all five chromosome pairs. Analysis of multiple copies of AtCon showed 95% conservation of nucleotides, with some alternative bases, and revealed two boxes, 30 and 24 bp long, that are 99% conserved. Sequences at the 3' end of these boxes showed similarity to yeast CDEI and human CENP-B DNA-protein binding motifs. When oligonucleotides from less conserved regions of AtCon were hybridized in situ and visualized by using primer extension, they were detected on specific chromosomes. When used for polymerase chain reaction with genomic DNA, single primers or primer pairs oriented in the same direction showed negligible amplification, indicating a head-to-tail repeat unit organization. Most primer pairs facing in opposite directions gave several strong bands corresponding to their positions within AtCon. However, consistent with the primer extension results, some primer pairs showed no amplification, indicating that there are chromosome-specific variants of AtCon. The results are significant because they elucidate the organization, mode of amplification, dispersion, and evolution of one of the major repeated sequence families of Arabidopsis. The evidence presented here suggests that AtCon, like human alpha satellites, plays a role in Arabidopsis centromere organization and function. PMID:9878630

  17. A distinct type of heterochromatin at the telomeric region of the Drosophila melanogaster Y chromosome.

    PubMed

    Wang, Sidney H; Nan, Ruth; Accardo, Maria C; Sentmanat, Monica; Dimitri, Patrizio; Elgin, Sarah C R

    2014-01-01

    Heterochromatin assembly and its associated phenotype, position effect variegation (PEV), provide an informative system to study chromatin structure and genome packaging. In the fruit fly Drosophila melanogaster, the Y chromosome is entirely heterochromatic in all cell types except the male germline; as such, Y chromosome dosage is a potent modifier of PEV. However, neither Y heterochromatin composition, nor its assembly, has been carefully studied. Here, we report the mapping and characterization of eight reporter lines that show male-specific PEV. In all eight cases, the reporter insertion sites lie in the telomeric transposon array (HeT-A and TART-B2 homologous repeats) of the Y chromosome short arm (Ys). Investigations of the impact on the PEV phenotype of mutations in known heterochromatin proteins (i.e., modifiers of PEV) show that this Ys telomeric region is a unique heterochromatin domain: it displays sensitivity to mutations in HP1a, EGG and SU(VAR)3-9, but no sensitivity to Su(z)2 mutations. It appears that the endo-siRNA pathway plays a major targeting role for this domain. Interestingly, an ectopic copy of 1360 is sufficient to induce a piRNA targeting mechanism to further enhance silencing of a reporter cytologically localized to the Ys telomere. These results demonstrate the diversity of heterochromatin domains, and the corresponding variation in potential targeting mechanisms.

  18. Regional assignment of the human homebox-containing gene EN1 to chromosome 2q13-q21

    SciTech Connect

    Koehler, A.; Muenke, M. ); Logan, C. ); Joyner, A.L. Samuel Lunenfeld Research Institute, Toronto )

    1993-01-01

    The human homeobox-containing genes EN1 and EN2 are closely related to the Drosophila pattern formation gene engrailed (en), which may be important in brain development, as shown by gene expression studies during mouse embryogenesis. Here, we have refined the localization of EN1 to human chromosome 2q13-q21 using a mapping panel of rodent/human cell hybrids containing different regions of chromosome 2 and a lymphoblastoid cell line with an interstitial deletion, del(2) (q21-q23.2). This regional assignment of EN1 increases to 22 the number of currently known genes on human chromosome 2q that have homologs on the proximal region of mouse chromosome 1. 15 refs., 2 figs.

  19. Breakpoint regions and homologous synteny blocks in chromosomes have different evolutionary histories.

    PubMed

    Larkin, Denis M; Pape, Greg; Donthu, Ravikiran; Auvil, Loretta; Welge, Michael; Lewin, Harris A

    2009-05-01

    The persistence of large blocks of homologous synteny and a high frequency of breakpoint reuse are distinctive features of mammalian chromosomes that are not well understood in evolutionary terms. To gain a better understanding of the evolutionary forces that affect genome architecture, synteny relationships among 10 amniotes (human, chimp, macaque, rat, mouse, pig, cattle, dog, opossum, and chicken) were compared at <1 human-Mbp resolution. Homologous synteny blocks (HSBs; N = 2233) and chromosome evolutionary breakpoint regions (EBRs; N = 1064) were identified from pairwise comparisons of all genomes. Analysis of the size distribution of HSBs shared in all 10 species' chromosomes (msHSBs) identified three (>20 Mbp) that are larger than expected by chance. Gene network analysis of msHSBs >3 human-Mbp and EBRs <1 Mbp demonstrated that msHSBs are significantly enriched for genes involved in development of the central nervous and other organ systems, whereas EBRs are enriched for genes associated with adaptive functions. In addition, we found EBRs are significantly enriched for structural variations (segmental duplications, copy number variants, and indels), retrotransposed and zinc finger genes, and single nucleotide polymorphisms. These results demonstrate that chromosome breakage in evolution is nonrandom and that HSBs and EBRs are evolving in distinctly different ways. We suggest that natural selection acts on the genome to maintain combinations of genes and their regulatory elements that are essential to fundamental processes of amniote development and biological organization. Furthermore, EBRs may be used extensively to generate new genetic variation and novel combinations of genes and regulatory elements that contribute to adaptive phenotypes.

  20. Marker development for the EPM1 region of human chromosome 21, q22.3

    SciTech Connect

    Warrington, I.A.; O`Connor, K.; Hebert, S.

    1994-09-01

    New STSs have been developed for a 0.9 Mb region of chromosome 21 that is not represented in existing YAC libraries using an efficient method that is generally applicable to any region of the genome. The region, 21q22.3, is of particular interest because the gene for progressive myoclonic epilepsy of the Unverricht-Lundborg type (EPM1) maps to this region. Until recently there were only three probes for the 1.3 Mb surrounding the EPM1 gene (D21S141,LJ112, LB2T). This very limited number of probes is problematic for obtaining clone coverage and for confirming map position of newly developed markers in the EPM1 region. To develop new markers, a somatic cell hybrid containing chromosome 21 as its only human complement (GMO8854) was digested with NOT1 and hybridized with D21S141. The fragment hybridizing with D21S141 was excised, amplified by Alu-PCR and the amplification products were cloned and sequenced. Of the fifteen clones sequenced, four were duplicates and one consisted entirely of repeat sequences. STSs were developed for the remaining ten unique clones. To determine the map position of the new STSs, quantitive PCR was used in conjunction with whole genome radiation hybrid (RH) mapping. Quantitative PCR confirmed that the STSs mapped to appropriately sized PFGE fragments and whole genome RH mapping showed that the makers were linked and gave order and distance information. Three of the new STSs are in the EPM1 region, providing additional starting points for obtaining clone coverage and gene isolation. This combination of techniques for developing markers and confirming map position is an effective approach for obtaining probes and has general applicability for regions of the genome not represented in YAC or cosmid libraries.

  1. Identifying crossover-rich regions and their effect on meiotic homologous interactions by partitioning chromosome arms of wheat and rye.

    PubMed

    Valenzuela, Nohelia T; Perera, Esther; Naranjo, Tomás

    2013-08-01

    Chiasmata are usually formed in the distal half of cereal chromosomes. Previous studies showed that the crossover-rich region displays a more active role in homologous recognition at early meiosis than crossover-poor regions in the long arm of rye chromosome 1R, but not in the long arm of chromosome 5R. In order to determine what happens in other chromosomes of rye and wheat, we have partitioned, by wheat-rye translocations of variable-size, the distal fourth part of chromosome arms 1BS and 2BL of wheat and 1RS and 2RL of rye. Synapsis and chiasma formation in chromosome pairs with homologous (wheat-wheat or rye-rye) and homoeologous (wheat-rye) stretches, positioned distally and proximally, respectively, or vice versa, have been studied by rye chromatin labelling using fluorescence in situ hybridisation. Chromosome arm partitioning showed that the distal 12 % of 1BS form one crossover in 50 % of the cells, while the distal 6.7 % of 2RL and the distal 10.5 % of 2BL account for 94 % and 81 % of chiasmata formed in these arms. Distal homoeologous segments reduce the frequency of chiasmata and the possibility of interaction between the intercalary/proximal homologous segments. Such a reduction is related to the size of the homoeologous (translocated) segment. The effect on synapsis and chiasma formation was much lower in chromosome constructions with distal homology and proximal homoeology. All of these data support that among wheat and rye chromosomes, recombining regions are more often involved in homologous recognition and pairing than crossover-poor regions.

  2. Genome-wide association analysis to identify chromosomal regions determining components of earliness in wheat.

    PubMed

    Le Gouis, J; Bordes, J; Ravel, C; Heumez, E; Faure, S; Praud, S; Galic, N; Remoué, C; Balfourier, F; Allard, V; Rousset, M

    2012-02-01

    The modification of flowering date is considered an important way to escape the current or future climatic constraints that affect wheat crops. A better understanding of its genetic bases would enable a more efficient and rapid modification through breeding. The objective of this study was to identify chromosomal regions associated with earliness in wheat. A 227-wheat core collection chosen to be highly contrasted for earliness was characterized for heading date. Experiments were conducted in controlled conditions and in the field for 3 years to break down earliness in the component traits: photoperiod sensitivity, vernalization requirement and narrow-sense earliness. Whole-genome association mapping was carried out using 760 molecular markers and taking into account the five ancestral group structure. We identified 62 markers individually associated to earliness components corresponding to 33 chromosomal regions. In addition, we identified 15 other significant markers and seven more regions by testing marker pair interactions. Co-localizations were observed with the Ppd-1, Vrn-1 and Rht-1 candidate genes. Using an independent set of lines to validate the model built for heading date, we were able to explain 34% of the variation using the structure and the significant markers. Results were compared with already published data using bi-parental populations giving an insight into the genetic architecture of flowering time in wheat.

  3. A high-resolution map in the chromosomal region surrounding the Lps locus

    SciTech Connect

    Qureshi, S.T.; Lariviere, L.; Gros, P.

    1996-02-01

    The Lps locus on mouse chromosome 4 controls host responsiveness to lipopolysaccharide, a major component of the outer membrane of Gram-negative bacteria. The C3H/HeJ inbred mouse strain is characterized by a mutant Lps allele (Lps{sup d}) that renders it hyporesponsive to LPS and naturally tolerant of its lethal effects. To identify the Lps gene by a positional cloning strategy, we have analyzed a total of 1604 backcross mice from a preexisting interspecific backcross panel of 259 (Mus spretus x C57BL/6J)F1 x C57BL/6J and two novel panels of 597 (DBA/2J x C3H/HeJ)F1 x C3H/HeJ and 748 (C57BL/6J x C3H/HeJ)F1 x C3H/HeJ segregating at Lps. A total of 50 DNA markers have been mapped in a 11.8-cM span overlapping the Lps locus. This positions the Lps locus within a 1.1-cM interval, flanked proximally by a large cluster of markers, including three known genes (Cd30l, Hxb, and Ambp), and distally by two microsatellite markers (D4Mit7/D4Mit178). The localization of the Lps locus is several centimorgans proximal to that previously assigned. 52 refs., 5 figs., 2 tabs.

  4. Developmental roles of 21 Drosophila transcription factors are determined by quantitative differences in binding to an overlapping set of thousands of genomic regions

    SciTech Connect

    MacArthur, Stewart; Li, Xiao-Yong; Li, Jingyi; Brown, James B.; Chu, Hou Cheng; Zeng, Lucy; Grondona, Brandi P.; Hechmer, Aaron; Simirenko, Lisa; Keranen, Soile V.E.; Knowles, David W.; Stapleton, Mark; Bickel, Peter; Biggin, Mark D.; Eisen, Michael B.

    2009-05-15

    BACKGROUND: We previously established that six sequence-specific transcription factors that initiate anterior/posterior patterning in Drosophila bind to overlapping sets of thousands of genomic regions in blastoderm embryos. While regions bound at high levels include known and probable functional targets, more poorly bound regions are preferentially associated with housekeeping genes and/or genes not transcribed in the blastoderm, and are frequently found in protein coding sequences or in less conserved non-coding DNA, suggesting that many are likely non-functional. RESULTS: Here we show that an additional 15 transcription factors that regulate other aspects of embryo patterning show a similar quantitative continuum of function and binding to thousands of genomic regions in vivo. Collectively, the 21 regulators show a surprisingly high overlap in the regions they bind given that they belong to 11 DNA binding domain families, specify distinct developmental fates, and can act via different cis-regulatory modules. We demonstrate, however, that quantitative differences in relative levels of binding to shared targets correlate with the known biological and transcriptional regulatory specificities of these factors. CONCLUSIONS: It is likely that the overlap in binding of biochemically and functionally unrelated transcription factors arises from the high concentrations of these proteins in nuclei, which, coupled with their broad DNA binding specificities, directs them to regions of open chromatin. We suggest that most animal transcription factors will be found to show a similar broad overlapping pattern of binding in vivo, with specificity achieved by modulating the amount, rather than the identity, of bound factor.

  5. Chromosome analysis of Endochironomus albipennis Meigen, 1830 and morphologically similar Endochironomus sp. (Diptera, Chironomidae) from water bodies of the Volga region, Russia.

    PubMed

    Durnova, Natalya; Sigareva, Ludmila; Sinichkina, Olga

    2015-01-01

    Based upon the detailed chromosome map of polytene chromosomes of the eurybiont species Endochironomus albipennis Meigen, 1830, the localization of the centromere regions using a C-banding technique is defined. Chromosomal polymorphism in populations from two water bodies in the Volga region has been studied, 17 sequences are described. Polytene chromosomes of Endochironomus sp. (2n=6), having larvae morphologically similar to those of Endochironomus albipennis Meigen, 1830 (2n=6) are described for the first time. PMID:26752268

  6. Chromosome analysis of Endochironomus albipennis Meigen, 1830 and morphologically similar Endochironomus sp. (Diptera, Chironomidae) from water bodies of the Volga region, Russia

    PubMed Central

    Durnova, Natalya; Sigareva, Ludmila; Sinichkina, Olga

    2015-01-01

    Abstract Based upon the detailed chromosome map of polytene chromosomes of the eurybiont species Endochironomus albipennis Meigen, 1830, the localization of the centromere regions using a C-banding technique is defined. Chromosomal polymorphism in populations from two water bodies in the Volga region has been studied, 17 sequences are described. Polytene chromosomes of Endochironomus sp. (2n=6), having larvae morphologically similar to those of Endochironomus albipennis Meigen, 1830 (2n=6) are described for the first time. PMID:26752268

  7. Evidence for a chromosomal breakage hotspot in a 3 Mb region of Xp11.21

    SciTech Connect

    Wolff, D.J.; Willard, H.F.; Miller, A.P. |

    1994-09-01

    In order to evaluate the molecular basis for X chromosomal rearrangements, we have analyzed a series of i(Xq)s, small mar (X)s, and X;autosome translocations using fluorescence in situ hybridization (FISH). The breakpoints of 5 of 8 cytogenetically monocentric i(Xq)s and 5 of 9 Xp breakpoints resulting in mar(X)s were initially localized to Xp11.21 using cosmids for the genes ZXDA and DXS423E. In order to more precisely define the breakpoints of these abnormal Xs, as well as a series of translocated Xs, we have used yeast artificial chromosomes (YACs) derived from a contig spanning 5 Mb of DNA in Xp11.21-Xp11.22 which contains 112 YACs mapped with 51 markers, including 10 genes. Based on the FISH results, the chromosomal breakpoints could be assigned to 5 different intervals in Xp11.21. One i(Xq) has a breakpoint in the most proximal interval which is located 1 Mb from the centromere. A 300 kb region just distal to the duplicated gene ZXDB contains breakpoints for a mar(X) and a t(X;19). A third interval, which lies {approximately}300 kb further distal, contains breakpoints for 2 Incontinentia Pigmenti type 1 (IPI) translocations, 2 i(Xq)s, and 1 mar(X). One mar(X) breakpoint is localized to <200 kb of DNA proximal to DXS991, and the most distal interval, containing 2 i(Xq) breakpoints, is defined by <500 kb of DNA at the ALAS2 locus. Thus all of the breakpoints examined map to the region between ZXDA and ALAS2, which contains only 3 Mb of DNA, indicating that there is a hotspot for chromosomal breakage in proximal Xp11.21. We hypothesize that this high frequency of aberrations (representing a mutation frequency of >10{sup 5} based on the frequency of i(Xq) and mar(X)s in surveys of liveborn) may result from misalignment and/or exchanges due to the presence of inverted repeat sequences, directly duplicated gene sequences, or one or more inversion polymorphisms in the pericentromeric region.

  8. High-resolution physical mapping in Pennisetum squamulatum reveals extensive chromosomal heteromorphism of the genomic region associated with apomixis.

    PubMed

    Akiyama, Yukio; Conner, Joann A; Goel, Shailendra; Morishige, Daryl T; Mullet, John E; Hanna, Wayne W; Ozias-Akins, Peggy

    2004-04-01

    Gametophytic apomixis is asexual reproduction as a consequence of parthenogenetic development of a chromosomally unreduced egg. The trait leads to the production of embryos with a maternal genotype, i.e. progeny are clones of the maternal plant. The application of the trait in agriculture could be a tremendous tool for crop improvement through conventional and nonconventional breeding methods. Unfortunately, there are no major crops that reproduce by apomixis, and interspecific hybridization with wild relatives has not yet resulted in commercially viable germplasm. Pennisetum squamulatum is an aposporous apomict from which the gene(s) for apomixis has been transferred to sexual pearl millet by backcrossing. Twelve molecular markers that are linked with apomixis coexist in a tight linkage block called the apospory-specific genomic region (ASGR), and several of these markers have been shown to be hemizygous in the polyploid genome of P. squamulatum. High resolution genetic mapping of these markers has not been possible because of low recombination in this region of the genome. We now show the physical arrangement of bacterial artificial chromosomes containing apomixis-linked molecular markers by high resolution fluorescence in situ hybridization on pachytene chromosomes. The size of the ASGR, currently defined as the entire hemizygous region that hybridizes with apomixis-linked bacterial artificial chromosomes, was estimated on pachytene and mitotic chromosomes to be approximately 50 Mbp (a quarter of the chromosome). The ASGR includes highly repetitive sequences from an Opie-2-like retrotransposon family that are particularly abundant in this region of the genome.

  9. Transcriptionally Active Regions Are the Preferred Targets for Chromosomal HPV Integration in Cervical Carcinogenesis

    PubMed Central

    Christiansen, Irene Kraus; Sandve, Geir Kjetil; Schmitz, Martina; Dürst, Matthias; Hovig, Eivind

    2015-01-01

    Integration of human papillomavirus (HPV) into the host genome is regarded as a determining event in cervical carcinogenesis. However, the exact mechanism for integration, and the role of integration in stimulating cancer progression, is not fully characterized. Although integration sites are reported to appear randomly distributed over all chromosomes, fragile sites, translocation break points and transcriptionally active regions have all been suggested as being preferred sites for integration. In addition, more recent studies have reported integration events occurring within or surrounding essential cancer-related genes, raising the question whether these may reflect key events in the molecular genesis of HPV induced carcinomas. In a search for possible common denominators of the integration sites, we utilized the chromosomal coordinates of 121 viral-cellular fusion transcripts, and examined for statistical overrepresentation of integration sites with various features of ENCODE chromatin information data, using the Genomic HyperBrowser. We find that integration sites coincide with DNA that is transcriptionally active in mucosal epithelium, as judged by the relationship of integration sites to DNase hypersensitivity and H3K4me3 methylation data. Finding an association between integration and transcription is highly informative with regard to the spatio-temporal characteristics of the integration process. These results suggest that integration is an early event in carcinogenesis, more than a late product of chromosomal instability. If the viral integrations were more likely to occur in destabilized regions of the DNA, a completely random distribution of the integration sites would be expected. As a by-product of integration in actively transcribing DNA, a tendency of integration in or close to genes is likely to be observed. This increases the possibility of viral signals to modulate the expression of these genes, potentially contributing to the progression towards

  10. Genome-Wide Association Study Identified a Narrow Chromosome 1 Region Associated with Chicken Growth Traits

    PubMed Central

    Zhang, Chengguang; Zhang, Rong; Tang, Jun; Nie, Qinghua; Ma, Li; Hu, Xiaoxiang; Li, Ning; Da, Yang; Zhang, Xiquan

    2012-01-01

    Chicken growth traits are important economic traits in broilers. A large number of studies are available on finding genetic factors affecting chicken growth. However, most of these studies identified chromosome regions containing putative quantitative trait loci and finding causal mutations is still a challenge. In this genome-wide association study (GWAS), we identified a narrow 1.5 Mb region (173.5–175 Mb) of chicken (Gallus gallus) chromosome (GGA) 1 to be strongly associated with chicken growth using 47,678 SNPs and 489 F2 chickens. The growth traits included aggregate body weight (BW) at 0–90 d of age measured weekly, biweekly average daily gains (ADG) derived from weekly body weight, and breast muscle weight (BMW), leg muscle weight (LMW) and wing weight (WW) at 90 d of age. Five SNPs in the 1.5 Mb KPNA3-FOXO1A region at GGA1 had the highest significant effects for all growth traits in this study, including a SNP at 8.9 Kb upstream of FOXO1A for BW at 22–48 d and 70 d, a SNP at 1.9 Kb downstream of FOXO1A for WW, a SNP at 20.9 Kb downstream of ENSGALG00000022732 for ADG at 29–42 d, a SNP in INTS6 for BW at 90 d, and a SNP in KPNA3 for BMW and LMW. The 1.5 Mb KPNA3-FOXO1A region contained two microRNA genes that could bind to messenger ribonucleic acid (mRNA) of IGF1, FOXO1A and KPNA3. It was further indicated that the 1.5 Mb GGA1 region had the strongest effects on chicken growth during 22–42 d. PMID:22359555

  11. A Family-Based Paradigm to Identify Candidate Chromosomal Regions for Isolated Congenital Diaphragmatic Hernia

    PubMed Central

    Arrington, Cammon B.; Bleyl, Steven B.; Matsunami, Nori; Bowles, Neil E.; Leppert, Tami I.; Demarest, Bradley L.; Osborne, Karen; Yoder, Bradley A.; Byrne, Janice L.; Schiffman, Joshua D.; Null, Donald M.; DiGeronimo, Robert; Rollins, Michael; Faix, Roger; Comstock, Jessica; Camp, Nicola J.; Leppert, Mark F.; Yost, H. Joseph; Brunelli, Luca

    2012-01-01

    Congenital diaphragmatic hernia (CDH) is a developmental defect of the diaphragm that causes high newborn mortality. Isolated or non-syndromic CDH is considered a multifactorial disease, with strong evidence implicating genetic factors. As low heritability has been reported in isolated CDH, family-based genetic methods have yet to identify the genetic factors associated with the defect. Using the Utah Population Database, we identified distantly related patients from several extended families with a high incidence of isolated CDH. Using high-density genotyping, seven patients were analyzed by homozygosity exclusion rare allele mapping (HERAM) and phased haplotype sharing (HapShare), two methods we developed to map shared chromosome regions. Our patient cohort shared three regions not previously associated with CDH, i.e. 2q11.2-q12.1, 4p13 and 7q11.2, and two regions previously involved in CDH, i.e. 8p23.1 and 15q26.2. The latter regions contain GATA4 and NR2F2, two genes implicated in diaphragm formation in mice. Interestingly, three patients shared the 8p23.1 locus and one of them also harbored the 15q26.2 segment. No coding variants were identified in GATA4 or NR2F2, but a rare shared variant was found in intron 1 of GATA4. This work shows the role of heritability in isolated CDH. Our family-based strategy uncovers new chromosomal regions possibly associated with disease, and suggests that non-coding variants of GATA4 and NR2F2 may contribute to the development of isolated CDH. This approach could speed up the discovery of the genes and regulatory elements causing multifactorial diseases, such as isolated CDH. PMID:23165927

  12. Haplotype Kernel Association Test as a Powerful Method to Identify Chromosomal Regions Harboring Uncommon Causal Variants

    PubMed Central

    Lin, Wan-Yu; Yi, Nengjun; Lou, Xiang-Yang; Zhi, Degui; Zhang, Kui; Gao, Guimin; Tiwari, Hemant K.; Liu, Nianjun

    2014-01-01

    For most complex diseases, the fraction of heritability that can be explained by the variants discovered from genome-wide association studies is minor. Although the so-called ‘rare variants’ (minor allele frequency [MAF] < 1%) have attracted increasing attention, they are unlikely to account for much of the ‘missing heritability’ because very few people may carry these rare variants. The genetic variants that are likely to fill in the ‘missing heritability’ include uncommon causal variants (MAF < 5%), which are generally untyped in association studies using tagging single-nucleotide polymorphisms (SNPs) or commercial SNP arrays. Developing powerful statistical methods can help to identify chromosomal regions harboring uncommon causal variants, while bypassing the genome-wide or exome-wide next-generation sequencing. In this work, we propose a haplotype kernel association test (HKAT) that is equivalent to testing the variance component of random effects for distinct haplotypes. With an appropriate weighting scheme given to haplotypes, we can further enhance the ability of HKAT to detect uncommon causal variants. With scenarios simulated according to the population genetics theory, HKAT is shown to be a powerful method for detecting chromosomal regions harboring uncommon causal variants. PMID:23740760

  13. Wattles in goats are associated with the FMN1/GREM1 region on chromosome 10.

    PubMed

    Reber, I; Keller, I; Becker, D; Flury, C; Welle, M; Drögemüller, C

    2015-06-01

    The presence of congenital appendages (wattles) on the throat of goats is supposed to be under genetic control with a dominant mode of inheritance. Wattles contain a cartilaginous core covered with normal skin resembling early stages of extremities. To map the dominant caprine wattles (W) locus, we collected samples of 174 goats with wattles and 167 goats without wattles from nine different Swiss goat breeds. The samples were genotyped with the 53k goat SNP chip for a subsequent genome-wide association study. We obtained a single strong association signal on chromosome 10 in a region containing functional candidate genes for limb development and outgrowth. We sequenced the whole genomes of an informative family trio containing an offspring without wattles and its heterozygous parents with wattles. In the associated goat chromosome 10 region, a total of 1055 SNPs and short indels perfectly co-segregate with the W allele. None of the variants were perfectly associated with the phenotype after analyzing the genome sequences of eight additional goats. We speculate that the causative mutation is located in one of the numerous gaps in the current version of the goat reference sequence and/or represents a larger structural variant which influences the expression of the FMN1 and/or GREM1 genes. Also, we cannot rule out possible genetic or allelic heterogeneity. Our genetic findings support earlier assumptions that wattles are rudimentary developed extremities.

  14. Chromosome region-specific libraries for human genome analysis. Final progress report, 1 March 1991--28 February 1994

    SciTech Connect

    Kao, F.T.

    1994-04-01

    The objectives of this grant proposal include (1) development of a chromosome microdissection and PCR-mediated microcloning technology, (2) application of this microtechnology to the construction of region-specific libraries for human genome analysis. During this grant period, the authors have successfully developed this microtechnology and have applied it to the construction of microdissection libraries for the following chromosome regions: a whole chromosome 21 (21E), 2 region-specific libraries for the long arm of chromosome 2, 2q35-q37 (2Q1) and 2q33-q35 (2Q2), and 4 region-specific libraries for the entire short arm of chromosome 2, 2p23-p25 (2P1), 2p21-p23 (2P2), 2p14-p16 (wP3) and 2p11-p13 (2P4). In addition, 20--40 unique sequence microclones have been isolated and characterized for genomic studies. These region-specific libraries and the single-copy microclones from the library have been used as valuable resources for (1) isolating microsatellite probes in linkage analysis to further refine the disease locus; (2) isolating corresponding clones with large inserts, e.g. YAC, BAC, P1, cosmid and phage, to facilitate construction of contigs for high resolution physical mapping; and (3) isolating region-specific cDNA clones for use as candidate genes. These libraries are being deposited in the American Type Culture Collection (ATCC) for general distribution.

  15. Matrix attachment regions and transcribed sequences within a long chromosomal continuum containing maize Adh1.

    PubMed Central

    Avramova, Z; SanMiguel, P; Georgieva, E; Bennetzen, J L

    1995-01-01

    We provide evidence for the location of matrix attachment sites along a contiguous region of 280 kb on maize chromosome 1. We define nine potential loops that vary in length from 6 kb to > 75 kb. The distribution of the different classes of DNA within this continuum with respect to the predicted structural loops reveals an interesting correlation: the long stretches of mixed classes of highly repetitive DNAs are often segregated into topologically sequestered units, whereas low-copy-number DNAs (including the alcohol dehydrogenase1 [adh1] gene) are positioned in separate loops. Contrary to expectations, several classes of highly repeated elements with representatives in this region were found to be transcribed, and some of these exhibited tissue-specific patterns of expression. PMID:7580257

  16. Characterization of the breakpoint regions of a pericentric inversion on chromosome 6

    SciTech Connect

    Gastier, J.M.; Brody, T.; Charfat, O.

    1994-09-01

    We are attempting to clone the breakpoints of a pericentric inversion [inv(6)(p23q23.1)] which segregates in a three generation family. Phenotypic abnormalities associated with this chromosome anomaly include senori-neural hearing loss, eye (anterior segment) abnormalities, dental anomalies, and mild mental retardation. The breakpoints have been microdissected and a small insert library was created. More than 100 sequence tagged sites (STSs) have been developed from these clones for screening of the CEPH mega-YAC library. This work will yield a high density physical map of the breakpoint regions for further characterization of the loci. YACs from the region are being screened by fluorescence in situ hybridization (FISH) to obtain a YAC which crosses the breakpoint as an initial step in defining the molecular basis of the disease phenotype. Progress towards cloning of the breakpoints will be described.

  17. Characterization of a gene from the EDM1-PSACH region of human chromosome 19p

    SciTech Connect

    Lennon, G.G.; Giorgi, D.; Martin, J.R.

    1994-09-01

    Genetic linkage mapping has indicated that both multiple epiphyseal dysplasia (EDM1), a dominantly inherited chondrodysplasia, and pseudoachondroplasia (PSACH), a skeletal disorder associated with dwarfism, map to a 2-3 Mb region of human chromosome 19p. We have isolated a partial cDNA from this region using hybrid selection, and report on progress towards the characterization of the genomic structure and transcription of the corresponding gene. Sequence analysis of the cDNA to date indicates that this gene is likely to be expressed within extracellular matrix tissues. Defects in this gene or neighboring gene family members may therefore lead to EDM1, PSACH, or other connective tissue and skeletal disorders.

  18. Illusion induced overlapped optics.

    PubMed

    Zang, XiaoFei; Shi, Cheng; Li, Zhou; Chen, Lin; Cai, Bin; Zhu, YiMing; Zhu, HaiBin

    2014-01-13

    The traditional transformation-based cloak seems like it can only hide objects by bending the incident electromagnetic waves around the hidden region. In this paper, we prove that invisible cloaks can be applied to realize the overlapped optics. No matter how many in-phase point sources are located in the hidden region, all of them can overlap each other (this can be considered as illusion effect), leading to the perfect optical interference effect. In addition, a singular parameter-independent cloak is also designed to obtain quasi-overlapped optics. Even more amazing of overlapped optics is that if N identical separated in-phase point sources covered with the illusion media, the total power outside the transformation region is N2I0 (not NI0) (I0 is the power of just one point source, and N is the number point sources), which seems violating the law of conservation of energy. A theoretical model based on interference effect is proposed to interpret the total power of these two kinds of overlapped optics effects. Our investigation may have wide applications in high power coherent laser beams, and multiple laser diodes, and so on.

  19. Illusion induced overlapped optics.

    PubMed

    Zang, XiaoFei; Shi, Cheng; Li, Zhou; Chen, Lin; Cai, Bin; Zhu, YiMing; Zhu, HaiBin

    2014-01-13

    The traditional transformation-based cloak seems like it can only hide objects by bending the incident electromagnetic waves around the hidden region. In this paper, we prove that invisible cloaks can be applied to realize the overlapped optics. No matter how many in-phase point sources are located in the hidden region, all of them can overlap each other (this can be considered as illusion effect), leading to the perfect optical interference effect. In addition, a singular parameter-independent cloak is also designed to obtain quasi-overlapped optics. Even more amazing of overlapped optics is that if N identical separated in-phase point sources covered with the illusion media, the total power outside the transformation region is N2I0 (not NI0) (I0 is the power of just one point source, and N is the number point sources), which seems violating the law of conservation of energy. A theoretical model based on interference effect is proposed to interpret the total power of these two kinds of overlapped optics effects. Our investigation may have wide applications in high power coherent laser beams, and multiple laser diodes, and so on. PMID:24515019

  20. A melanocyte-specific gene, Pmel 17, maps near the silver coat color locus on mouse chromosome 10 and is in a syntenic region on human chromosome 12

    SciTech Connect

    Kwon, B.S.; Chintamaneni, C.; Kobayashi, Y.; Kim, K.K. ); Kozak, C.A. ); Copeland, N.G.; Gilbert, D.J.; Jenkins, N. ); Barton, D.; Francke, U. )

    1991-10-15

    Melanocytes preferentially express an mRNA species, Pmel 17, whose protein product cross-reacts with anti-tyrosinase antibodies and whose expression correlates with the melanin content. The authors have now analyzed the deduced protein structure and mapped its chromosomal location in mouse and human. The amino acid sequence deduced from the nucleotide sequence of the Pmel 17 cDNA showed that the protein is composed of 645 amino acids with a molecular weight of 68,600. The Pmel 17 protein contains a putative leader sequence and a potential membrane anchor segment, which indicates that this may be a membrane-associated protein in melanocytes. The deduced protein contains five potential N-glycosylation sites and relatively high levels of serine and threonine. Three repeats of a 26-amino acid motif appear in the middle of the molecule. The human Pmel 17 gene, designated D12S53E, maps to chromosome 12, region 12pter-q21; and the mouse homologue, designated D12S53Eh, maps to the distal region of mouse chromosome 10, a region also known to carry the coat color locus si (silver).

  1. Characterization of FRA7B, a human common fragile site mapped at the 7p chromosome terminal region.

    PubMed

    Bosco, Nazario; Pelliccia, Franca; Rocchi, Angela

    2010-10-01

    Common fragile sites (CFS) are specific regions of the mammalian chromosomes that are particularly prone to gaps and breaks. They are a cause of genome instability, and the location of many CFS correlates with breakpoints of aberrations recurrent in some cancers. The molecular characterization of some CFS has not clarified the causes of their fragility. In this work, by using fluorescence in situ hybridization analysis with BAC and PAC clones, we determined the DNA sequence of the CFS FRA7B. The FRA7B sequence was then analyzed to identify coding sequences and some structural features possibly involved in fragility. FRA7B spans about 12.2 megabases, and is therefore one of the largest CFS analyzed. It maps at the 7p21.3-22.3 chromosome bands, therefore at the interface of G- and R-band regions that are probably difficult to replicate. A 90-kilobase long sequence that presents very high flexibility values was identified at the very beginning of the more fragile CFS region. Three large genes (THSD7A, SDK1, and MAD1L1) and two miRNA genes (MIRN589 and MIRN339) map in the fragile region. The chromosome band 7p22 is a recurrent breakpoint in chromosome abnormalities in different types of neoplasm. FRA7B is the first characterized CFS located in a chromosome terminal region.

  2. High-resolution restriction map for a 240-kilobase region spanning 91 to 96 minutes on the Salmonella typhimurium LT2 chromosome.

    PubMed Central

    Wong, K K; Wong, R M; Rudd, K E; McClelland, M

    1994-01-01

    A hierarchical approach allows the completion of contiguous sets of overlapping clones for small regions of a genome, one at a time rather than tackling the whole genome at once. On the basis of the BlnI restriction map for Salmonella typhimurium LT2, we dissected the chromosome into 21 different fragments by using a Tn5 transposon carrying a BlnI site. Dissected chromosomal fragments were purified by pulsed-field gel electrophoresis and used as probes for sorting a lambda DASHII genomic library of 2,304 primary clones. A total of 129 clones identified as spanning the region from 91 min to 98 min were partly ordered on the basis of the intensity of hybridization with mitomycin-induced Mud-P22 phage DNAs from insertions with pac sites in opposite orientations at 93 min used as probes. Decreased signal intensity with the Mud-P22 probes corresponded to the increased distance of the clone from the site of Mud-P22 insertion and allowed the clones to be placed in two groups from 91 min to 93 min and from 93 min to 98 min and into four intensity categories within the two groups. A member of each category was used to generate a riboprobe from the T3 promoter flanking the insert. This probe identified overlapping clones among the 129 clones. This subchromosomal library was then screened again with riboprobes from nonoverlapping clones. After four cycles of this strategy, a minimal contiguous sequence of 19 partly overlapping clones was selected for restriction mapping. A detailed map of 378 sites for eight restriction enzymes is presented for a region of about 240 kb. Working clockwise, the following genes were placed on this physical map on the basis of their restriction maps: malFEK, lamB, malM, lexA, qor, dnaB, alr, uvrA, proP, pmrB, pmrA, melA, melB, phoN, amiB, mutL, and miaA. Images PMID:8083165

  3. Molecular topography of the secondary constriction region (qh) of human chromosome 9 with an unusual euchromatic band

    SciTech Connect

    Verma, R.S.; Luk, S.; Brennan, J.P.; Mathews, T.; Conte, R.A.; Macera, M.J. )

    1993-05-01

    Heterochromatin confined to pericentromeric (c) and secondary constriction (qh) regions plays a major role in morphological variation of chromosome 9, because of its size and affinity for pericentric inversion. Consequently, pairing at pachytene may lead to some disturbances between homologous chromosomes having such extreme variations and may result in abnormalities involving bands adjacent to the qh region. The authors encountered such a case, where a G-positive band has originated de nova, suggesting a maternal origin from the chromosome 9 that has had a complete pericentric inversion. In previously reported cases, the presence of an extra G-positive band within the 9qh region has been familial, and in the majority of those cases it was not associated with any clinical consequences. Therefore, this anomaly has been referred to as a [open quotes]rare[close quotes] variant. The qh region consists of a mixture of various tandemly repeated DNA sequences, and routine banding techniques have failed to characterize the origin of this extra genetic material. By the chromosome in situ suppression hybridization technique using whole chromosome paint, the probe annealed with the extra G-band, suggesting a euchromatic origin from chromosome 9, presumably band p12. By the fluorescence in situ hybridization technique using alpha- and beta-satellite probes, the dicentric nature was further revealed, supporting the concept of unequal crossing-over during maternal meiosis I, which could account for a duplication of the h region. The G-positive band most likely became genetically inert when it was sandwiched between two blocks of heterochromatin, resulting in a phenotypically normal child. Therefore, an earlier hypothesis, suggesting its origin from heterochromatin through so-called euchromatinization, is refuted here. If the proband's progeny inherit this chromosome, it shall be envisaged as a rare familial variant whose clinical consequences remain obscure. 52 refs., 3 figs.

  4. Natural Variation in a Subtelomeric Region of Arabidopsis: Implications for the Genomic Dynamics of a Chromosome End

    PubMed Central

    Kuo, Hui-Fen; Olsen, Kenneth M.; Richards, Eric J.

    2006-01-01

    We investigated genome dynamics at a chromosome end in the model plant Arabidopsis thaliana through a study of natural variation in 35 wild accessions. We focused on the single-copy subtelomeric region of chromosome 1 north (∼3.5 kb), which represents the relatively simple organization of subtelomeric regions in this species. PCR fragment-length variation across the subtelomeric region indicated that the 1.4-kb distal region showed elevated structural variation relative to the centromere-proximal region. Examination of nucleotide sequences from this 1.4-kb region revealed diverse DNA rearrangements, including an inversion, several deletions, and an insertion of a retrotransposon LTR. The structures at the deletion and inversion breakpoints are characteristic of simple deletion-associated nonhomologous end-joining (NHEJ) events. There was strong linkage disequilibrium between the distal subtelomeric region and the proximal telomere, which contains degenerate and variant telomeric repeats. Variation in the proximal telomere was characterized by the expansion and deletion of blocks of repeats. Our sample of accessions documented two independent chromosome-healing events associated with terminal deletions of the subtelomeric region as well as the capture of a scrambled mitochondrial DNA segment in the proximal telomeric array. This natural variation study highlights the variety of genomic events that drive the fluidity of chromosome termini. PMID:16547105

  5. Physical localization of eed: A region of mouse chromosome 7 required for gastrulation

    SciTech Connect

    Holdener, B.C.; Thomas, J.W.; Schumacher, A.

    1995-06-10

    In the mouse, the embryonic ectoderm development (eed) region is defined by deletions encompassing the albino (c) locus of chromosome 7. The region is located 1-2 cM distal to the c locus and was of undetermined size. Embryos homozygous for deletions removing eed display defects in axial organization during gastrulation. Two loci, identified by chemical mutagenesis, are known to map within the eed interval. One, {ell}7Rn5, probably represents the gene required for gastrulation. The second, {ell}7Rn6, is required for survival after birth. fit1, a third locus identified by chemical mutagenesis, maps distal to the eed interval and is also required for survival after birth. A 900-kb YAC contig has been constructed, and deletion breakpoints defining the limits of the regions containing these loci have been localized. Their positions place the eed region within a maximum 150-kb interval at the proximal end of the contig, while fit1 maps to a 360-kb interval within the middle of the contig. Several clusters of rare-cutting restriction sites map within these regions and represent potential locations of candidate genes. 26 refs., 6 figs., 2 tabs.

  6. Molecular evolution of the Escherichia coli chromosome. VI. Two regions of high effective recombination.

    PubMed Central

    Milkman, Roger; Jaeger, Erich; McBride, Ryan D

    2003-01-01

    Two 6- to 8-min regions, centered respectively near 45 min (O-antigen region) and 99 min (restriction-modification region) on the Escherichia coli chromosome, display unusually high variability among 11 otherwise very similar strains. This variation, revealed by restriction fragment length polymorphism (RFLP) and nucleotide sequence comparisons, appears to be due to a great local increase in the retention frequency of recombinant replacements. We infer a two-step mechanism. The first step is the acquisition of a small stretch of DNA from a phylogenetically distant source. The second is the successful retransmission of the imported DNA, together with flanking native DNA, to other strains of E. coli. Each cell containing the newly transferred DNA has a very high selective advantage until it reaches a high frequency and (in the O-antigen case) is recognized by the new host's immune system. A high selective advantage increases the probability of retention greatly; the effective recombination rate is the product of the basic recombination rate and the probability of retention. Nearby nucleotide sequences clockwise from the O-antigen (rfb) region are correlated with specific O antigens, confirming local hitchhiking. Comparable selection involving imported restriction endonuclease genes is proposed for the region near 99 min. PMID:12618387

  7. Genetic linkage mapping of multiple epiphyseal dysplasia to the pericentromeric region of chromosome 19

    SciTech Connect

    Oehlmann, R.; Summerville, G.P.; Yeh, G.; Weaver, E.J.; Jimenez, S.A.; Knowlton, R.G. )

    1994-01-01

    Multiple epiphyseal dysplasia (MED) is an inherited chondrodystrophy that results in deformity of articular surfaces and in subsequent degenerative joint disease. The disease is inherited as an autosomal dominant trait with high penetrance. An MED mutation has been mapped by genetic linkage analysis of DNA polymorphisms in a single large pedigree. Close linkage of MED to 130 tested chromosomal markers was ruled out by discordant inheritance patterns. However, strong evidence for linkage of MED to markers in the pericentromeric region of chromosome 19 was obtained. The most closely linked marker was D19S215, with a maximum LOD score of 6.37 at [theta] = .05. Multipoint linkage analysis indicated that MED is located between D19S212 and D19S215, a map interval of 1.7 cM. Discovery of the map location of MED in this family will facilitate identification of the mutant gene. The closely linked DNA polymorphisms will also provide the means to determine whether other inherited chondrodystrophies have underlying defects in the same gene. 29 refs., 3 figs., 1 tab.

  8. Binding Sites Analyser (BiSA): Software for Genomic Binding Sites Archiving and Overlap Analysis

    PubMed Central

    Khushi, Matloob; Liddle, Christopher; Clarke, Christine L.; Graham, J. Dinny

    2014-01-01

    Genome-wide mapping of transcription factor binding and histone modification reveals complex patterns of interactions. Identifying overlaps in binding patterns by different factors is a major objective of genomic studies, but existing methods to archive large numbers of datasets in a personalised database lack sophistication and utility. Therefore we have developed transcription factor DNA binding site analyser software (BiSA), for archiving of binding regions and easy identification of overlap with or proximity to other regions of interest. Analysis results can be restricted by chromosome or base pair overlap between regions or maximum distance between binding peaks. BiSA is capable of reporting overlapping regions that share common base pairs; regions that are nearby; regions that are not overlapping; and average region sizes. BiSA can identify genes located near binding regions of interest, genomic features near a gene or locus of interest and statistical significance of overlapping regions can also be reported. Overlapping results can be visualized as Venn diagrams. A major strength of BiSA is that it is supported by a comprehensive database of publicly available transcription factor binding sites and histone modifications, which can be directly compared to user data. The documentation and source code are available on http://bisa.sourceforge.net PMID:24533055

  9. A predictive model to guide management of the overlap region between target volume and organs at risk in prostate cancer volumetric modulated arc therapy

    PubMed Central

    Lee, Jennifer C.; Elnaiem, Sara; Guirguis, Adel; Ikoro, N. C.; Ashamalla, Hani

    2014-01-01

    Purpose The goal of this study is to determine whether the magnitude of overlap between planning target volume (PTV) and rectum (Rectumoverlap) or PTV and bladder (Bladderoverlap) in prostate cancer volumetric-modulated arc therapy (VMAT) is predictive of the dose-volume relationships achieved after optimization, and to identify predictive equations and cutoff values using these overlap volumes beyond which the Quantitative Analyses of Normal Tissue Effects in the Clinic (QUANTEC) dose-volume constraints are unlikely to be met. Materials and Methods Fifty-seven patients with prostate cancer underwent VMAT planning using identical optimization conditions and normalization. The PTV (for the 50.4 Gy primary plan and 30.6 Gy boost plan) included 5 to 10 mm margins around the prostate and seminal vesicles. Pearson correlations, linear regression analyses, and receiver operating characteristic (ROC) curves were used to correlate the percentage overlap with dose-volume parameters. Results The percentage Rectumoverlap and Bladderoverlap correlated with sparing of that organ but minimally impacted other dose-volume parameters, predicted the primary plan rectum V45 and bladder V50 with R2 = 0.78 and R2 = 0.83, respectively, and predicted the boost plan rectum V30 and bladder V30 with R2 = 0.53 and R2 = 0.81, respectively. The optimal cutoff value of boost Rectumoverlap to predict rectum V75 >15% was 3.5% (sensitivity 100%, specificity 94%, p < 0.01), and the optimal cutoff value of boost Bladderoverlap to predict bladder V80 >10% was 5.0% (sensitivity 83%, specificity 100%, p < 0.01). Conclusion The degree of overlap between PTV and bladder or rectum can be used to accurately guide physicians on the use of interventions to limit the extent of the overlap region prior to optimization. PMID:24724048

  10. Association between simple sequence repeat-rich chromosome regions and intergenomic translocation breakpoints in natural populations of allopolyploid wild wheats

    PubMed Central

    Molnár, István; Cifuentes, Marta; Schneider, Annamária; Benavente, Elena; Molnár-Láng, Márta

    2011-01-01

    Background and Aims Repetitive DNA sequences are thought to be involved in the formation of chromosomal rearrangements. The aim of this study was to analyse the distribution of microsatellite clusters in Aegilops biuncialis and Aegilops geniculata, and its relationship with the intergenomic translocations in these allotetraploid species, wild genetic resources for wheat improvement. Methods The chromosomal localization of (ACG)n and (GAA)n microsatellite sequences in Ae. biuncialis and Ae. geniculata and in their diploid progenitors Aegilops comosa and Aegilops umbellulata was investigated by sequential in situ hybridization with simple sequence repeat (SSR) probes and repeated DNA probes (pSc119·2, Afa family and pTa71) and by dual-colour genomic in situ hybridization (GISH). Thirty-two Ae. biuncialis and 19 Ae. geniculata accessions were screened by GISH for intergenomic translocations, which were further characterized by fluorescence in situ hybridization and GISH. Key Results Single pericentromeric (ACG)n signals were localized on most U and on some M genome chromosomes, whereas strong pericentromeric and several intercalary and telomeric (GAA)n sites were observed on the Aegilops chromosomes. Three Ae. biuncialis accessions carried 7Ub–7Mb reciprocal translocations and one had a 7Ub–1Mb rearrangement, while two Ae. geniculata accessions carried 7Ug–1Mg or 5Ug–5Mg translocations. Conspicuous (ACG)n and/or (GAA)n clusters were located near the translocation breakpoints in eight of the ten translocated chromosomes analysed, SSR bands and breakpoints being statistically located at the same chromosomal site in six of them. Conclusions Intergenomic translocation breakpoints are frequently mapped to SSR-rich chromosomal regions in the allopolyploid species examined, suggesting that microsatellite repeated DNA sequences might facilitate the formation of those chromosomal rearrangements. The (ACG)n and (GAA)n SSR motifs serve as additional chromosome markers

  11. Identification and High-Density Mapping of Gene-Rich Regions in Chromosome Group 5 of Wheat

    PubMed Central

    Gill, K. S.; Gill, B. S.; Endo, T. R.; Boyko, E. V.

    1996-01-01

    The distribution of genes and recombination in the wheat genome was studied by comparing physical maps with the genetic linkage maps. The physical maps were generated by mapping 80 DNA and two phenotypic markers on an array of 65 deletion lines for homoeologous group 5 chromosomes. The genetic maps were constructed for chromosome 5B in wheat and 5D in Triticum tauschii. No marker mapped in the proximal 20% chromosome region surrounding the centromere. More than 60% of the long arm markers were present in three major clusters that physically encompassed <18% of the arm. Because 48% of the markers were cDNA clones and the distributions of the cDNA and genomic clones were similar, the marker distribution may represent the distribution of genes. The gene clusters were identified and allocated to very small chromosome regions because of a higher number of deletions in their surrounding regions. The recombination was suppressed in the centromeric regions and mainly occurred in the gene-rich regions. The bp/cM estimates varied from 118 kb for gene-rich regions to 22 Mb for gene-poor regions. The wheat genes present in these clusters are, therefore, amenable to molecular manipulations parallel to the plants with smaller genomes like rice. PMID:8725245

  12. Homologous Recombination within Large Chromosomal Regions Facilitates Acquisition of β-Lactam and Vancomycin Resistance in Enterococcus faecium

    PubMed Central

    Lebreton, Francois; McLaughlin, Robert E.; Whiteaker, James D.; Gilmore, Michael S.; Rice, Louis B.

    2016-01-01

    The transfer of DNA between Enterococcus faecium strains has been characterized both by the movement of well-defined genetic elements and by the large-scale transfer of genomic DNA fragments. In this work, we report on the whole-genome analysis of transconjugants resulting from mating events between the vancomycin-resistant E. faecium C68 strain and the vancomycin-susceptible D344RRF strain to discern the mechanism by which the transferred regions enter the recipient chromosome. Vancomycin-resistant transconjugants from five independent matings were analyzed by whole-genome sequencing. In all cases but one, the penicillin binding protein 5 (pbp5) gene and the Tn5382 vancomycin resistance transposon were transferred together and replaced the corresponding pbp5 region of D344RRF. In one instance, Tn5382 inserted independently downstream of the D344RRF pbp5 gene. Single nucleotide variant (SNV) analysis suggested that entry of donor DNA into the recipient chromosome occurred by recombination across regions of homology between donor and recipient chromosomes, rather than through insertion sequence-mediated transposition. The transfer of genomic DNA was also associated with the transfer of C68 plasmid pLRM23 and another putative plasmid. Our data are consistent with the initiation of transfer by cointegration of a transferable plasmid with the donor chromosome, with subsequent circularization of the plasmid-chromosome cointegrant in the donor prior to transfer. Entry into the recipient chromosome most commonly occurred across regions of homology between donor and recipient chromosomes. PMID:27431230

  13. Investigation of the Chromosome Regions with Significant Affinity for the Nuclear Envelope in Fruit Fly – A Model Based Approach

    PubMed Central

    Kinney, Nicholas Allen; Sharakhov, Igor V.; Onufriev, Alexey V.

    2014-01-01

    Three dimensional nuclear architecture is important for genome function, but is still poorly understood. In particular, little is known about the role of the “boundary conditions” – points of attachment between chromosomes and the nuclear envelope. We describe a method for modeling the 3D organization of the interphase nucleus, and its application to analysis of chromosome-nuclear envelope (Chr-NE) attachments of polytene (giant) chromosomes in Drosophila melanogaster salivary glands. The model represents chromosomes as self-avoiding polymer chains confined within the nucleus; parameters of the model are taken directly from experiment, no fitting parameters are introduced. Methods are developed to objectively quantify chromosome territories and intertwining, which are discussed in the context of corresponding experimental observations. In particular, a mathematically rigorous definition of a territory based on convex hull is proposed. The self-avoiding polymer model is used to re-analyze previous experimental data; the analysis suggests 33 additional Chr-NE attachments in addition to the 15 already explored Chr-NE attachments. Most of these new Chr-NE attachments correspond to intercalary heterochromatin – gene poor, dark staining, late replicating regions of the genome; however, three correspond to euchromatin – gene rich, light staining, early replicating regions of the genome. The analysis also suggests 5 regions of anti-contact, characterized by aversion for the NE, only two of these correspond to euchromatin. This composition of chromatin suggests that heterochromatin may not be necessary or sufficient for the formation of a Chr-NE attachment. To the extent that the proposed model represents reality, the confinement of the polytene chromosomes in a spherical nucleus alone does not favor the positioning of specific chromosome regions at the NE as seen in experiment; consequently, the 15 experimentally known Chr-NE attachment positions do not appear to

  14. [Comparative Analysis of DNA Sequences of Regions of X-Chromosome Attachment to the Nuclear Envelope of Nurse Cells Anopheles messeae Fall].

    PubMed

    Artemov, G N; Vasil'eva, O Yu; Stegniy, V N

    2015-07-01

    Polytene chromosomes of ovarian nurse cells of Anopheles mosquitoes form strong contacts with the nuclear envelope. The presence of contacts, their position at nurse cell chromosomes, and their morphological features are species-specific in malaria mosquitoes. It is important to determine the nature of these interspecies differences in the nuclear architecture, both to understand the function of the nucleus and to assess the role of the spatial organization of chromosomes in evolution. Using dot-blot hybridization, we compared DNA sequences of the clone library from the X-chromosome attachment region to the nuclear envelope of ovarian nurse cells of Anopheles messeae with DNA-probes: (1) of the X-chromosome attachment region of An. atroparvus, (2) of the 3R chromosome attachment region ofAn. messeae, and (3) of the chromosome 2 pericentromeric region of An. messeae, without expressed contacts with the nuclear envelope. It has been shown that the chromosome attachment regions have a significantly higher number of homologous DNA sequences as compared with the pericentromeric region of chromosome 2. Sequences that are common for attachment regions are largely potentially able to participate in the formation of chromatin loop domains and to interact with some nucleus frameworks, according to the analysis in the ChrClass program. The obtained results support the important role of DNA in the formation of strong chromosomal attachments to the nuclear envelope in nurse cells of Anopheles mosquitoes.

  15. Localisation of the gene for achondroplasia to the telomeric region of chromosome 4p

    SciTech Connect

    Stoilov, I.; Velinov, M.; Kilpatrick, M.W.

    1994-09-01

    Achondroplasia (ACH), the most common type of genetic dwarfism, is characterized by a variety of skeletal anomalies including disproportionate short stature and rhizomelic shortening of the extremities. The disorder is inherited as an autosomal dominant trait, with a prevalence of 1-15 per 100,000 live births. The etiology of ACH remains unknown, although evidence points to a defect in the maturation of the chondrocytes in the growth plate of the cartilage. To determine the location of the gene responsible for ACH, a panel of 14 families with a total of 43 meioses was genotyped for 40 polymorphic markers for loci randomly distributed throughout the genome. The first significant positive Lod score was obtained for the locus D4S127 (Zmax=3.65 at {theta}=0.03). A series of 20 markers for chromosome 4p16.3 loci were then used to determine the most likely position of the ACH gene. Two additional loci, D4S412 and IDUA, showed strong linkage to the disease (Zmax=3.34 at {theta}=0.03 and Zmax=3.35 at {theta}=0.0, respectively). Multipoint analysis and direct counting of recombinants places the ACH gene in a 2.5 cM region between the marker D4S43 and the chromosome 4p telomere. No evidence was found for genetic heterogeneity. The ACH region contains a number of genes, including that for the fibroblast growth factor receptor FGFR3, which are being evaluated as candidates for the ACH gene. This identification of tightly linked polymorphic markers, as well as being the first step in the characterization of the ACH gene, offers the possibility of DNA based prenatal diagnosis of this disorder.

  16. Evolution of the vertebrate genome as reflected in paralogous chromosomal regions in man and the house mouse

    SciTech Connect

    Lundin, L.G. )

    1993-04-01

    Gene constellations on several human chromosomes are interpreted as indications of large regional duplications that took place during evolution of the vertebrate genome. Four groups of paralogous chromosomal regions in man and the house mouse are suggested and are believed to be conserved remnants of the two or three rounds of tetraploidization that are likely to have occurred during evolution of the vertebrates. The phenomenon of differential silencing of genes is described. The importance of conservation of linkage of particular genes is discussed in relation to genetic regulation and cell differentiation. 120 refs., 5 tabs.

  17. Mapping and cloning of the critical region for the spineocerebellar ataxia Type 1 gene (SCA1) in a yeast artificial chromosome contig spanning 1. 2 Mb

    SciTech Connect

    Banfi, S.; McCall, A.E.; Zoghbi, H.Y.; Kwiatkowski, T.J. Jr.; Chinault, A.C. ); Ranum, L.P.W.; Orr, H.T. )

    1993-12-01

    The gene responsible for spinocerebellar ataxia type 1 (SCA1) has been localized to a 6.7-cM region between the centromeric marker D6S109 and the telomeric marker D6S89. The authors screened two yeast artificial chromosome (YAC) libraries using sequence-tagged sites at D6S89 and at newly identified markers in 6p22-p23. Fifty YAC clones were identified and 34 insert termini were isolated from some of these YACs for detailed overlap mapping and long-range restriction analysis. A large YAC contig estimated to span 2.5 Mb was developed and genetic analysis in five large SCA1 kindreds using highly informative dinucleotide repeat polymorphisms mapped to this contig allowed the identification of D6S274 as the closest centromeric flanking marker for SCA1. Long-range restriction analysis determined the size for the critical SCA1 region, as defined by the two flanking markers D6S274 and D6S89, to be 1.2 Mb. This region is spanned by a minimum set of four nonchimeric YAC clones. The development of a 2.5-Mb YAC contig in 6p22-p23 provides valuable reagents for characterization of this genomic region and for the cloning of the SCA1 gene. 34 refs., 4 figs., 2 tabs.

  18. Forensic analysis of polymorphism and regional stratification of Y-chromosomal microsatellites in Belarus.

    PubMed

    Rebała, Krzysztof; Tsybovsky, Iosif S; Bogacheva, Anna V; Kotova, Svetlana A; Mikulich, Alexei I; Szczerkowska, Zofia

    2011-01-01

    Nine loci defining minimal haplotypes and four other Y-chromosomal short tandem repeats (Y-STRs) DYS437, DYS438, DYS439 and GATA H4.1 were analysed in 414 unrelated males residing in four regions of Belarus. Haplotypes of 328 males were further extended by 7 additional Y-STRs: DYS388, DYS426, DYS448, DYS456, DYS458, DYS460 and DYS635. The 13-locus haplotype diversity was 0.9978 and discrimination capacity was 78.7%, indicating presence of identical haplotypes among unrelated males. Seven additional Y-STRs enabled almost complete discrimination of undifferentiated 13-locus haplotypes, increasing haplotype diversity to 0.9998 and discrimination capacity to 97.9%. Analysis of molecular variance of minimal haplotypes excluded the use of a Y-STR database for Belarusians residing in northeastern Poland as representative for the Belarusian population in forensic practice, and revealed regional stratification within the country. However, four additional markers (DYS437, DYS438, DYS439 and GATA H4.1) were shown to eliminate the observed geographical substructure among Belarusian males. The results imply that in case of minimal and PowerPlex Y haplotypes, a separate frequency database should be used for northern Belarus to estimate Y-STR profile frequencies in forensic casework. In case of Yfiler haplotypes, regional stratification within Belarus may be neglected.

  19. Yeast artificial chromosome cloning in the glycerol kinase and adrenal hypoplasia congenita region of Xp21

    SciTech Connect

    Worley, K.C.; Ellison, K.A.; Zhang, Y.H.; Wang, D.F.; Mason, J.; Roth, E.J.; Adams, V.; Fogt, D.D.; Zhu, X.M.; Towbin, J.A.

    1993-05-01

    The adrenal hypoplasia congenita (AHC) and glycerol kinase (GK) loci are telomeric to the Duchenne muscular dystrophy locus in Xp21. The authors developed a pair of yeast artificial chromosome (YAC) contigs spanning at least 1.2 Mb and encompassing the region from the telomeric end of the Duchenne muscular dystrophy (DMD) locus to beyond YHX39 (DXS727), including the genes for AHC and GK. The centromeric contig consists of 13 YACs reaching more than 600 kb from DMD through GK. The telomeric contig group consists of 8 YACs containing more than 600 kb including the markers YHX39 (DXS727) and QST-59 (DXS319). Patient deletion breakpoints in the region of the two YAC contigs define at least eight intervals, and seven deletion breakpoints are contained within these contigs. In addition to the probes developed from YAC ends, they have mapped eight Alu-PCR probes amplified from a radiation-reduced somatic cell hybrid, two anonymous DNA probes, and one Alu-PCR product amplified from a cosmid end, for a total of 26 new markers within this region of 2 Mb or less. One YAC in the centromeric contig contains an insert encompassing the minimum interval for GK deficiency defined by patient deletion breakpoints, and this clone includes all or part of the GK gene. 33 refs., 3 figs., 5 tabs.

  20. The MaoP/maoS Site-Specific System Organizes the Ori Region of the E. coli Chromosome into a Macrodomain.

    PubMed

    Valens, Michèle; Thiel, Axel; Boccard, Frédéric

    2016-09-01

    The Ori region of bacterial genomes is segregated early in the replication cycle of bacterial chromosomes. Consequently, Ori region positioning plays a pivotal role in chromosome dynamics. The Ori region of the E. coli chromosome is organized as a macrodomain with specific properties concerning DNA mobility, segregation of loci and long distance DNA interactions. Here, by using strains with chromosome rearrangements and DNA mobility as a read-out, we have identified the MaoP/maoS system responsible for constraining DNA mobility in the Ori region and limiting long distance DNA interactions with other regions of the chromosome. MaoP belongs to a group of proteins conserved in the Enterobacteria that coevolved with Dam methylase including SeqA, MukBEF and MatP that are all involved in the control of chromosome conformation and segregation. Analysis of DNA rings excised from the chromosome demonstrated that the single maoS site is required in cis on the chromosome to exert its effect while MaoP can act both in cis and in trans. The position of markers in the Ori region was affected by inactivating maoP. However, the MaoP/maoS system was not sufficient for positioning the Ori region at the ¼-¾ regions of the cell. We also demonstrate that the replication and the resulting expansion of bulk DNA are localized centrally in the cell. Implications of these results for chromosome positioning and segregation in E. coli are discussed. PMID:27627105

  1. The MaoP/maoS Site-Specific System Organizes the Ori Region of the E. coli Chromosome into a Macrodomain

    PubMed Central

    Valens, Michèle; Thiel, Axel

    2016-01-01

    The Ori region of bacterial genomes is segregated early in the replication cycle of bacterial chromosomes. Consequently, Ori region positioning plays a pivotal role in chromosome dynamics. The Ori region of the E. coli chromosome is organized as a macrodomain with specific properties concerning DNA mobility, segregation of loci and long distance DNA interactions. Here, by using strains with chromosome rearrangements and DNA mobility as a read-out, we have identified the MaoP/maoS system responsible for constraining DNA mobility in the Ori region and limiting long distance DNA interactions with other regions of the chromosome. MaoP belongs to a group of proteins conserved in the Enterobacteria that coevolved with Dam methylase including SeqA, MukBEF and MatP that are all involved in the control of chromosome conformation and segregation. Analysis of DNA rings excised from the chromosome demonstrated that the single maoS site is required in cis on the chromosome to exert its effect while MaoP can act both in cis and in trans. The position of markers in the Ori region was affected by inactivating maoP. However, the MaoP/maoS system was not sufficient for positioning the Ori region at the ¼–¾ regions of the cell. We also demonstrate that the replication and the resulting expansion of bulk DNA are localized centrally in the cell. Implications of these results for chromosome positioning and segregation in E. coli are discussed. PMID:27627105

  2. Genetic linkage studies in familial partial epilepsy: Exclusion of the human chromosome regions syntenic to the El-1 mouse locus

    SciTech Connect

    Lopes-Cendes, I.; Mulley, J.C.; Andermann, E.

    1994-09-01

    Recently, six families with a familial form of partial epilepsy were described. All pedigrees showed autosomal dominant inheritance with incomplete penetrance. Affected individuals present with predominantly nocturnal seizures with frontal lobe semiology. In 1959, a genetic mouse model for partial epilepsy, the El mouse, was reported. In the El mouse, a major seizure susceptibility gene, El-1, segregates in an autosomal dominant fashion and has been localized to a region distal to the centromere of mouse chromosome 9. Comparative genetic maps between man and mouse have been used for prediction of localization of several human disease genes. Because the region of mouse chromosome 9 that is the most likely to contain the El-1 locus is syntenic to regions on human chromosomes 3q21-p22, 3q21-q23.3, 6q12 and 15q24, we adopted the candidate gene approach as an initial linkage strategy. Twenty-two polymorphic microsatellite markers covering these regions were used for genotyping individuals in the three larger families ascertained, two of which are Australian and one French-Canadian. Negative two-point lod scores were obtained separately for each family. The analysis of all three families combined significantly excludes the candidate regions on chromosomes 3, 6 and 15.

  3. Follow-Up Association Studies of Chromosome Region 9q and Nonsyndromic Cleft Lip/Palate

    PubMed Central

    Letra, Ariadne; Menezes, Renato; Govil, Manika; Fonseca, Renata F.; McHenry, Toby; Granjeiro, José M.; Castilla, Eduardo E.; Orioli, Iêda M.; Marazita, Mary L.; Vieira, Alexandre R.

    2010-01-01

    Cleft lip/palate comprises a large fraction of all human birth defects, and is notable for its significant lifelong morbidity and complex etiology. Several studies have shown that genetic factors appear to play a significant role in the etiology of cleft lip/palate. Human chromosomal region 9q21 has been suggested in previous reports to contain putative cleft loci. Moreover, a specific region (9q22.3-34.1) was suggested to present a ∼45% probability of harboring a cleft susceptibility gene. Fine mapping of fifty SNPs across the 9q22.3-34.11 region was performed to test for association with cleft lip/palate in families from United States, Spain, Turkey, Guatemala, and China. We performed family-based analysis and found evidence of association of cleft lip/palate with STOM (rs306796) in Guatemalan families (P=0.004) and in all multiplex families pooled together (P=0.002). This same SNP also showed borderline association in the US families (P=0.04). Under a nominal value of 0.05, other SNPs also showed association with cleft lip/palate and cleft subgroups. SNPs in STOM and PTCH genes and nearby FOXE1 were further associated with cleft phenotypes in Guatemalan and Chinese families. Gene prioritization analysis revealed PTCH and STOM ranking among the top fourteen candidates for cleft lip/palate among 339 genes present in the region. Our results support the hypothesis that the 9q22.32-34.1 region harbors cleft susceptibility genes. Additional studies with other populations should focus on these loci to further investigate the participation of these genes in human clefting. PMID:20583170

  4. Chromosomal Flexibility

    ERIC Educational Resources Information Center

    Journal of College Science Teaching, 2005

    2005-01-01

    Scientists have shown that a genetic element on one chromosome may direct gene activity on another. Howard Hughes Medical Institute (HHMI) researchers report that a multitasking master-control region appears to over-see both a set of its own genes and a related gene on a nearby chromosome. The findings reinforce the growing importance of location…

  5. DDX3Y, a Male-Specific Region of Y Chromosome Gene, May Modulate Neuronal Differentiation.

    PubMed

    Vakilian, Haghighat; Mirzaei, Mehdi; Sharifi Tabar, Mehdi; Pooyan, Paria; Habibi Rezaee, Lida; Parker, Lindsay; Haynes, Paul A; Gourabi, Hamid; Baharvand, Hossein; Salekdeh, Ghasem Hosseini

    2015-09-01

    Although it is apparent that chromosome complement mediates sexually dimorphic expression patterns of some proteins that lead to functional differences, there has been insufficient evidence following the manipulation of the male-specific region of the Y chromosome (MSY) gene expression during neural development. In this study, we profiled the expression of 23 MSY genes and 15 of their X-linked homologues during neural cell differentiation of NTERA-2 human embryonal carcinoma cell line (NT2) cells in three different developmental stages using qRT-PCR, Western blotting, and immunofluorescence. The expression level of 12 Y-linked genes significantly increased over neural differentiation, including RBMY1, EIF1AY, DDX3Y, HSFY1, BPY2, PCDH11Y, UTY, RPS4Y1, USP9Y, SRY, PRY, and ZFY. We showed that siRNA-mediated knockdown of DDX3Y, a DEAD box RNA helicase enzyme, in neural progenitor cells impaired cell cycle progression and increased apoptosis, consequently interrupting differentiation. Label-free quantitative shotgun proteomics based on a spectral counting approach was then used to characterize the proteomic profile of the cells after DDX3Y knockdown. Among 917 reproducibly identified proteins detected, 71 proteins were differentially expressed following DDX3Y siRNA treatment compared with mock treated cells. Functional grouping indicated that these proteins were involved in cell cycle, RNA splicing, and apoptosis, among other biological functions. Our results suggest that MSY genes may play an important role in neural differentiation and demonstrate that DDX3Y could play a multifunctional role in neural cell development, probably in a sexually dimorphic manner.

  6. Loss of heterozygosity for defined regions on chromosomes 3, 11 and 17 in carcinomas of the uterine cervix.

    PubMed Central

    Kersemaekers, A. M.; Hermans, J.; Fleuren, G. J.; van de Vijver, M. J.

    1998-01-01

    Loss of heterozygosity (LOH) frequently occurs in squamous cell carcinomas of the uterine cervix and indicates the probable sites of tumour-suppressor genes that play a role in the development of this tumour. To define the localization of these tumour-suppressor genes, we studied loss of heterozygosity in 64 invasive cervical carcinomas (stage IB and IIA) using the polymerase chain reaction with 24 primers for polymorphic repeats of known chromosomal localization. Chromosomes 3, 11, 13, 16 and 17, in particular, were studied. LOH was frequently found on chromosome 11, in particular at 11q22 (46%) and 11q23.3 (43%). LOH on chromosome 11p was not frequent. On chromosome 17p13.3, a marker (D17S513) distal to p53 showed 38% LOH, whereas p53 itself showed only 20% LOH. On the short arm of chromosome 3, LOH was frequently found (41%) at 3p21.1. The beta-catenin gene is located in this chromosomal region. Therefore, expression of beta-catenin protein was studied in 39 cases using immunohistochemistry. Staining of beta-catenin at the plasma membrane of tumour cells was present in 38 cases and completely absent in only one case. The tumour-suppressor gene on chromosome 3p21.1 may be beta-catenin in this one case, but (an)other tumour-suppressor gene(s) must also be present in this region. For the other chromosomes studied, 13q (BRCA-2) and 16q (E-cadherin), only sporadic losses (< 15% of cases) were found. Expression of E-cadherin was found in all of 37 cases but in six cases the staining was very weak. No correlation was found between clinical and histological parameters and losses on chromosome 3p, 11q and 17p. In addition to LOH, microsatellite instability was found in one tumour for almost all loci and in eight tumours for one to three loci. In conclusion, we have identified three loci with frequent LOH, which may harbour new tumour-suppressor genes, and found microsatellite instability in 14% of cervical carcinomas. Images Figure 1 Figure 4 Figure 5 PMID:9460988

  7. Maternal uniparental meroisodisomy in the LAMB3 region of chromosome 1 results in lethal junctional epidermolysis bullosa.

    PubMed

    Takizawa, Y; Pulkkinen, L; Shimizu, H; Lin, L; Hagiwara, S; Nishikawa, T; Uitto, J

    1998-05-01

    Herlitz junctional epidermolysis bullosa (OMIM#226700) is a lethal, autosomal recessive blistering disorder caused by mutations in one of the three genes LAMA3, LAMB3, or LAMC2, encoding the constitutive polypeptide subunits of laminin 5. In this study, we describe a patient homozygous for a novel nonsense mutation Q936X in exon 19 of LAMB3, which has been mapped to chromosome 1q32. The patient was born with extensive blistering and demonstrated negative immunofluorescence staining for laminin 5, and transmission electron microscopy revealed tissue separation within lamina lucida of the dermal-epidermal junction, diagnostic of Herlitz junctional epidermolysis bullosa. The mother of the proband was found to be a heterozygous carrier for this mutation, whereas the father demonstrated the wild-type LAMB3 allele only. Nonpaternity was excluded by 13 microsatellite markers in six different chromosomes. Genotype analysis using 28 microsatellite markers spanning chromosome 1 revealed that the patient had maternal primary heterodisomy, as well as meroisodisomy within two regions of chromosome 1, one on 1p and the other one on 1q, the latter region containing the maternal LAMB3 mutation. These results suggest that Herlitz junctional epidermolysis bullosa in this patient developed as a result of reduction to homozygosity of the maternal LAMB3 mutation on chromosome 1q32. PMID:9579554

  8. Identification and regional localization of DNA markers on chromosome 7 for the cloning of the cystic fibrosis gene

    PubMed Central

    Rommens, Johanna M.; Zengerling, Stefanie; Burns, Julie; Melmer, Georg; Kerem, Bat-sheva; Plavsic, Natasa; Zsiga, Martha; Kennedy, Dara; Markiewicz, Danuta; Rozmahel, Richard; Riordan, Jack R.; Buchwald, Manuel; Tsui, Lap-chee

    1988-01-01

    To facilitate mapping of the cystic fibrosis locus (CF) and to isolate the corresponding gene, we have screened a flow-sorted chromosome 7–specific library for additional DNA markers in the 7q31-q32 region. Unique (“single-copy”) DNA segments were selected from the library and used in hybridization analysis with a panel of somatic cell hybrids containing various portions of human chromosome 7 and patient cell lines with deletion of this chromosome. A total of 258 chromosome 7–specific single-copy DNA segments were identified, and most of them localized to subregions. Fifty three of these corresponded to DNA sequences in the 7q31-q32 region. Family and physical mapping studies showed that two of the DNA markers, D7S122 and D7S340, are in close linkage with CF. The data also showed that D7S122 and D7S340 map between MET and D7S8, the two genetic markers known to be on opposite sides of CF. The study thus reaffirms the general strategy in approaching a disease locus on the basis of chromosome location. ImagesFigure 2Figure 5 PMID:2903665

  9. Homomorphic ZW chromosomes in a wild strawberry show distinctive recombination heterogeneity but a small sex-determining region.

    PubMed

    Tennessen, Jacob A; Govindarajulu, Rajanikanth; Liston, Aaron; Ashman, Tia-Lynn

    2016-09-01

    Recombination in ancient, heteromorphic sex chromosomes is typically suppressed at the sex-determining region (SDR) and proportionally elevated in the pseudoautosomal region (PAR). However, little is known about recombination dynamics of young, homomorphic plant sex chromosomes. We examine male and female function in crosses and unrelated samples of the dioecious octoploid strawberry Fragaria chiloensis in order to map the small and recently evolved SDR controlling both traits and to examine recombination patterns on the incipient ZW chromosome. The SDR of this ZW system is located within a 280 kb window, in which the maternal recombination rate is lower than the paternal one. In contrast to the SDR, the maternal PAR recombination rate is much higher than the rates of the paternal PAR or autosomes, culminating in an elevated chromosome-wide rate. W-specific divergence is elevated within the SDR and a single polymorphism is observed in high species-wide linkage disequilibrium with sex. Selection for recombination suppression within the small SDR may be weak, but fluctuating sex ratios could favor elevated recombination in the PAR to remove deleterious mutations on the W. The recombination dynamics of this nascent sex chromosome with a modestly diverged SDR may be typical of other dioecious plants.

  10. Incompatibility Between X Chromosome Factor and Pericentric Heterochromatic Region Causes Lethality in Hybrids Between Drosophila melanogaster and Its Sibling Species

    PubMed Central

    Cattani, M. Victoria; Presgraves, Daven C.

    2012-01-01

    The Dobzhansky–Muller model posits that postzygotic reproductive isolation results from the evolution of incompatible epistatic interactions between species: alleles that function in the genetic background of one species can cause sterility or lethality in the genetic background of another species. Progress in identifying and characterizing factors involved in postzygotic isolation in Drosophila has remained slow, mainly because Drosophila melanogaster, with all of its genetic tools, forms dead or sterile hybrids when crossed to its sister species, D. simulans, D. sechellia, and D. mauritiana. To circumvent this problem, we used chromosome deletions and duplications from D. melanogaster to map two hybrid incompatibility loci in F1 hybrids with its sister species. We mapped a recessive factor to the pericentromeric heterochromatin of the X chromosome in D. simulans and D. mauritiana, which we call heterochromatin hybrid lethal (hhl), which causes lethality in F1 hybrid females with D. melanogaster. As F1 hybrid males hemizygous for a D. mauritiana (or D. simulans) X chromosome are viable, the lethality of deficiency hybrid females implies that a dominant incompatible partner locus exists on the D. melanogaster X. Using small segments of the D. melanogaster X chromosome duplicated onto the Y chromosome, we mapped a dominant factor that causes hybrid lethality to a small 24-gene region of the D. melanogaster X. We provide evidence suggesting that it interacts with hhlmau. The location of hhl is consistent with the emerging theme that hybrid incompatibilities in Drosophila involve heterochromatic regions and factors that interact with the heterochromatin. PMID:22446316

  11. Chromosome region-specific libraries for human genome analysis. Progress report, September 1, 1991--August 31, 1992

    SciTech Connect

    Kao, Fa-Ten

    1992-08-01

    During the grant period progress has been made in the successful demonstration of regional mapping of microclones derived from microdissection libraries; successful demonstration of the feasibility of converting microclones with short inserts into yeast artificial chromosome clones with very large inserts for high resolution physical mapping of the dissected region; Successful demonstration of the usefulness of region-specific microclones to isolate region-specific cDNA clones as candidate genes to facilitate search for the crucial genes underlying genetic diseases assigned to the dissected region; and the successful construction of four region-specific microdissection libraries for human chromosome 2, including 2q35-q37, 2q33-q35, 2p23-p25 and 2p2l-p23. The 2q35-q37 library has been characterized in detail. The characterization of the other three libraries is in progress. These region-specific microdissection libraries and the unique sequence microclones derived from the libraries will be valuable resources for investigators engaged in high resolution physical mapping and isolation of disease-related genes residing in these chromosomal regions.

  12. Genetic and physical analyses of the centromeric and pericentromeric regions of human chromosome 5: recombination across 5cen.

    PubMed

    Puechberty, J; Laurent, A M; Gimenez, S; Billault, A; Brun-Laurent, M E; Calenda, A; Marçais, B; Prades, C; Ioannou, P; Yurov, Y; Roizès, G

    1999-03-15

    Human centromeres are poorly understood at both the genetic and the physical level. In this paper, we have been able to distinguish the alphoid centromeric sequences of chromosome 5 from those of chromosome 19. This result was obtained by pulsed-field gel electrophoresis after cutting genomic DNA with restriction endonucleases NcoI (chromosome 5) and BamHI (chromosome 19). We could thus define a highly polymorphic marker, representing length variations of the D5Z1 domain located at the q arm boundary of the chromosome 5 centromere. The centromeric region of chromosome 5 was then analyzed in full detail. We established an approximately 4.6-Mb physical map of the whole region with five rare-cutting enzymes by using nonchimeric YACs, two of which were shown to contain the very ends of 5cen on both sides. The p-arm side of 5cen was shown to contain an alphoid subset (D5Z12) different from those described thus far. Two genes and several putative cDNAs could be precisely located close to the centromere. Several L1 elements were shown to be present within alpha satellites at the boundary between alphoid and nonalphoid sequences on both sides of 5cen. They were used to define STSs that could serve as physical anchor points at the junction of 5cen with the p and q arms. Some STSs were placed on a radiation hybrid map. One was polymorphic and could therefore be used as a second centromeric genetic marker at the p arm boundary of 5cen. We could thus estimate recombination rates within and around the centromeric region of chromosome 5. Recombination is highly reduced within 5cen, with zero recombinants in 58 meioses being detected between the two markers located at the two extremities of the centromere. In its immediate vicinity, 5cen indeed exerts a direct negative effect on meiotic recombination within the proximal chromosomal DNA. This effect is, however, less important than expected and is polarized, as different rates are observed on both arms if one compares the 0 c

  13. Characterization of AFLP Sequences From Regions of Maize B Chromosome Defined by 12 B-10L Translocations

    PubMed Central

    Peng, Shu-Fen; Lin, Yao-Pin; Lin, Bor-yaw

    2005-01-01

    Maize B chromosome sequences have been previously cloned by microdissection, and all are proven to be highly repetitive, to be homologous to the normal complement, and to show no similarity to any published gene other than mobile elements. In this study, we isolated sequences from defined B regions. The strategy involved identification and then mapping of AFLP-derived B fragments before cloning. Of 14 B AFLPs, 13 were mapped by 12 B-10L translocations: 3 around the centromeric knob region, 3 in the proximal euchromatic, 1 around the border of proximal euchromatic and distal heterochromatic, and 6 in the distal heterochromatic region of the B long arm. The AFLP fragments were cloned and sequenced. Analogous to the microdissected sequences, all sequences were repetitive, and all but two were highly homologous to the A chromosomes. FISH signals of all but three clones appeared in pachytene B as well as in somatic A and B chromosomes. None of these clones exhibits identity to any published gene. Six clones displayed homology to two centromeric BACs, four to sequences of chromosomes 3, 4, 7, and 10, four to retrotransposons, and three to no sequence deposited in GenBank. Furthermore, flanking regions of two highly B-specific clones were characterized, showing extension of a B-exclusive nature. The possibility of the presence of novel B repeat(s) is discussed. PMID:15489531

  14. Lambda transducing bacteriophage carrying deletions of the argCBH-rpoBC region of the Escherichia coli chromosome.

    PubMed Central

    Linn, T; Goman, M; Scaife, J

    1979-01-01

    Deletions in the rpoBC region have been transferred to phage lambda and characterized in detail by genetic, structural, and functional tests. We thus extend and confirm knowledge of the organization of this part of the chromosome. The new phages are useful tools for studying the genes for the bacterial transcription and translation machinery. Images PMID:159290

  15. Excess functional copy of allele at chromosomal region 11p15 may cause Wiedemann-Beckwith (EMG) syndrome

    SciTech Connect

    Kubota, T.; Saitoh, S.; Jinno, Y.; Niikawa, N.; Matsumoto, T.; Narahara, K.; Fukushima, Y.

    1994-02-15

    Wiedemann-Beckwith syndrome (WBS) is a genetic disorder with overgrowth and predisposition to Wilms` tumor. The putative locus of the gene responsible for this syndrome is assigned to chromosome region 11p15.5, and genomic imprinting in this region has been proposed: the paternally derived gene(s) at 11p15.5 is selectively expressed, while the maternally transmitted gene(s) is inactive. The authors examined 18 patients for the parental origin of their 11p15 regions. DNA polymorphism analyses using 6 loci on chromosome 11 showed that 2 patients with duplications of 11p15 regions from their respective fathers and one from the mother, indicating the transmission of an excessive paternal gene at 11p15 to each patient. The result, together with the previous findings in karyotypically normal or abnormal patients and in overgrowth mouse experiments, are consistent with imprinting hypothesis that overexpression of paternally derived gene(s) at 11p15.5, probably the human insulin-like growth factor II (IFG-II) gene, may cause the phenotype. Total constitutional uniparental paternal disomy (UPD) or segmental UPD for the 6 loci examined of chromosome 11 was not observed in our 12 sporadic patients. In order to explain completely the inheritance of this syndrome in patients with various chromosomal constitutions, the authors propose an alternative imprinting mechanism involving the other locus that may be paternally imprinted and may suppress the expression of this gene. 28 refs., 3 figs., 1 tab.

  16. A high-resolution map of the chromosomal region surrounding the nude gene

    SciTech Connect

    Blackburn, C.C.; Griffith, J.; Morahan, G.

    1995-03-20

    The nude mutation produces the apparently disparate phenotypes of hairlessness and congenital thymic aplasia. These pleiotropic defects are the result of a single, autosomal recessive mutation that was previously mapped to a 9-cM region of murine chromosome 11 bounded by loci encoding the acetylcholine receptor P subunit and myeloperoxidase. In this study, exclusion mapping of a panel of congenic nude strains was used to place the nude locus between the microsatellite loci D11Nds1 and D11Mit8. The relative distance from nude to each of these loci was determined by analyzing a large segregating cross. Thus, nude lies 1.4 cM distal to D11Nds1 and is 0.5 cM proximal to D11Mit8. Mice that carried recombinational breakpoints between D11Nds1 and D11Mit8 were further analyzed at the loci Evi-2 and D11Mit34, which placed nu 0.2 cM proximal to these markers. D11Nds1 and Evi-2/D11Mit34 thus define the new proximal and distal boundaries, respectively, for the nu interval. We also report the typing of the above microsatellite markers in the AKXD, AKXL, BXD, CXB, and BXH recombinant inbred strains, which confirmed the relative order and separation of loci in this region. 47 refs., 3 figs., 1 tab.

  17. A Chromosomal Region on ECA13 Is Associated with Maxillary Prognathism in Horses

    PubMed Central

    Signer-Hasler, Heidi; Neuditschko, Markus; Koch, Christoph; Froidevaux, Sylvie; Flury, Christine; Burger, Dominik; Leeb, Tosso; Rieder, Stefan

    2014-01-01

    Hereditary variations in head morphology and head malformations are known in many species. The most common variation encountered in horses is maxillary prognathism. Prognathism and brachygnathism are syndromes of the upper and lower jaw, respectively. The resulting malocclusion can negatively affect teeth wear, and is considered a non-desirable trait in breeding programs. We performed a case-control analysis for maxillary prognathism in horses using 96 cases and 763 controls. All horses had been previously genotyped with a commercially available 50 k SNP array. We analyzed the data with a mixed-model considering the genomic relationships in order to account for population stratification. Two SNPs within a region on the distal end of chromosome ECA 13 reached the Bonferroni corrected genome-wide significance level. There is no known prognathism candidate gene located within this region. Therefore, our findings in the horse offer the possibility of identifying a novel gene involved in the complex genetics of prognathism that might also be relevant for humans and other livestock species. PMID:24466169

  18. A 3 Mb YAC contig in the region of Usher Ib on chromosome 11q

    SciTech Connect

    Kelley, P.M.; Overbeck, L.; Weston, M.

    1994-09-01

    Under syndrome type Ib, a recessive disorder characterized by deafness, retinitis pigmentosa, and vestibular dysfunction has been mapped to chromosome 11q13. A 3 Mb YAC contig has been constructed covering the critical region of Usher Ib and spanning over eight loci: D11S1321, D11S527, D11S533, OMP, D11S906, D11S911, D11S937, and D11S918. This contig was constructed by PCR screening using the above described DNA markers of the CEPH mega YAC library. Additional YACs were identified by data presented in the Genethon physical map. A long-range restriction map has been constructed from both YAC and genomic DNA using STS markers as probes. Cosmid libraries from a subset of YACs have been screened for the location of CpG islands. In addition, potential transcribed regions have been identified by 3{prime} exon trapping of cosmid pools and placed on the YAC physical map.

  19. The SOX9 upstream region prone to chromosomal aberrations causing campomelic dysplasia contains multiple cartilage enhancers

    PubMed Central

    Yao, Baojin; Wang, Qiuqing; Liu, Chia-Feng; Bhattaram, Pallavi; Li, Wei; Mead, Timothy J.; Crish, James F.; Lefebvre, Véronique

    2015-01-01

    Two decades after the discovery that heterozygous mutations within and around SOX9 cause campomelic dysplasia, a generalized skeleton malformation syndrome, it is well established that SOX9 is a master transcription factor in chondrocytes. In contrast, the mechanisms whereby translocations in the –­350/–50-kb region 5′ of SOX9 cause severe disease and whereby SOX9 expression is specified in chondrocytes remain scarcely known. We here screen this upstream region and uncover multiple enhancers that activate Sox9-promoter transgenes in the SOX9 expression domain. Three of them are primarily active in chondrocytes. E250 (located at –250 kb) confines its activity to condensed prechondrocytes, E195 mainly targets proliferating chondrocytes, and E84 is potent in all differentiated chondrocytes. E84 and E195 synergize with E70, previously shown to be active in most Sox9-expressing somatic tissues, including cartilage. While SOX9 protein powerfully activates E70, it does not control E250. It requires its SOX5/SOX6 chondrogenic partners to robustly activate E195 and additional factors to activate E84. Altogether, these results indicate that SOX9 expression in chondrocytes relies on widely spread transcriptional modules whose synergistic and overlapping activities are driven by SOX9, SOX5/SOX6 and other factors. They help elucidate mechanisms underlying campomelic dysplasia and will likely help uncover other disease mechanisms. PMID:25940622

  20. Differential repetitive DNA composition in the centromeric region of chromosomes of Amazonian lizard species in the family Teiidae

    PubMed Central

    Carvalho, Natalia D. M.; Carmo, Edson; Neves, Rogerio O.; Schneider, Carlos Henrique; Gross, Maria Claudia

    2016-01-01

    Abstract Differences in heterochromatin distribution patterns and its composition were observed in Amazonian teiid species. Studies have shown repetitive DNA harbors heterochromatic blocks which are located in centromeric and telomeric regions in Ameiva ameiva (Linnaeus, 1758), Kentropyx calcarata (Spix, 1825), Kentropyx pelviceps (Cope, 1868), and Tupinambis teguixin (Linnaeus, 1758). In Cnemidophorus sp.1, repetitive DNA has multiple signals along all chromosomes. The aim of this study was to characterize moderately and highly repetitive DNA sequences by Cot1-DNA from Ameiva ameiva and Cnemidophorus sp.1 genomes through cloning and DNA sequencing, as well as mapping them chromosomally to better understand its organization and genome dynamics. The results of sequencing of DNA libraries obtained by Cot1-DNA showed that different microsatellites, transposons, retrotransposons, and some gene families also comprise the fraction of repetitive DNA in the teiid species. FISH using Cot1-DNA probes isolated from both Ameiva ameiva and Cnemidophorus sp.1 showed these sequences mainly located in heterochromatic centromeric, and telomeric regions in Ameiva ameiva, Kentropyx calcarata, Kentropyx pelviceps, and Tupinambis teguixin chromosomes, indicating they play structural and functional roles in the genome of these species. In Cnemidophorus sp.1, Cot1-DNA probe isolated from Ameiva ameiva had multiple interstitial signals on chromosomes, whereas mapping of Cot1-DNA isolated from the Ameiva ameiva and Cnemidophorus sp.1 highlighted centromeric regions of some chromosomes. Thus, the data obtained showed that many repetitive DNA classes are part of the genome of Ameiva ameiva, Cnemidophorus sp.1, Kentroyx calcarata, Kentropyx pelviceps, and Tupinambis teguixin, and these sequences are shared among the analyzed teiid species, but they were not always allocated at the same chromosome position. PMID:27551343

  1. Differential repetitive DNA composition in the centromeric region of chromosomes of Amazonian lizard species in the family Teiidae.

    PubMed

    Carvalho, Natalia D M; Carmo, Edson; Neves, Rogerio O; Schneider, Carlos Henrique; Gross, Maria Claudia

    2016-01-01

    Differences in heterochromatin distribution patterns and its composition were observed in Amazonian teiid species. Studies have shown repetitive DNA harbors heterochromatic blocks which are located in centromeric and telomeric regions in Ameiva ameiva (Linnaeus, 1758), Kentropyx calcarata (Spix, 1825), Kentropyx pelviceps (Cope, 1868), and Tupinambis teguixin (Linnaeus, 1758). In Cnemidophorus sp.1, repetitive DNA has multiple signals along all chromosomes. The aim of this study was to characterize moderately and highly repetitive DNA sequences by C ot1-DNA from Ameiva ameiva and Cnemidophorus sp.1 genomes through cloning and DNA sequencing, as well as mapping them chromosomally to better understand its organization and genome dynamics. The results of sequencing of DNA libraries obtained by C ot1-DNA showed that different microsatellites, transposons, retrotransposons, and some gene families also comprise the fraction of repetitive DNA in the teiid species. FISH using C ot1-DNA probes isolated from both Ameiva ameiva and Cnemidophorus sp.1 showed these sequences mainly located in heterochromatic centromeric, and telomeric regions in Ameiva ameiva, Kentropyx calcarata, Kentropyx pelviceps, and Tupinambis teguixin chromosomes, indicating they play structural and functional roles in the genome of these species. In Cnemidophorus sp.1, C ot1-DNA probe isolated from Ameiva ameiva had multiple interstitial signals on chromosomes, whereas mapping of C ot1-DNA isolated from the Ameiva ameiva and Cnemidophorus sp.1 highlighted centromeric regions of some chromosomes. Thus, the data obtained showed that many repetitive DNA classes are part of the genome of Ameiva ameiva, Cnemidophorus sp.1, Kentroyx calcarata, Kentropyx pelviceps, and Tupinambis teguixin, and these sequences are shared among the analyzed teiid species, but they were not always allocated at the same chromosome position. PMID:27551343

  2. Assignment of the human dihydrofolate reductase gene to the q11. -->. q22 region of chromosome 5

    SciTech Connect

    Funanage, V.L.; Myoda, T.T.; Moses, P.A.; Cowell, H.R.

    1984-10-01

    Cells from a dihydrofolate reductase-deficit Chinese hamster ovary cell line were hybridized to human fetal skin fibroblast cells. Nineteen dihydrofolate reductase-positive hybrid clones were isolated and characterized. Cytogenetic and biochemical analyses of these clones have shown that the human dihydrofolate reductase (DHFR) gene is located on chromosome 5. Three of these hybrid cell lines contained different terminal deletions of chromosome 5. An analysis of the breakpoints of these deletions has demonstrated that the DHFR gene resides in the q11..-->..q22 region.

  3. Expansion of the Pseudo-autosomal Region and Ongoing Recombination Suppression in the Silene latifolia Sex Chromosomes

    PubMed Central

    Bergero, Roberta; Qiu, Suo; Forrest, Alan; Borthwick, Helen; Charlesworth, Deborah

    2013-01-01

    There are two very interesting aspects to the evolution of sex chromosomes: what happens after recombination between these chromosome pairs stops and why suppressed recombination evolves. The former question has been intensively studied in a diversity of organisms, but the latter has been studied largely theoretically. To obtain empirical data, we used codominant genic markers in genetic mapping of the dioecious plant Silene latifolia, together with comparative mapping of S. latifolia sex-linked genes in S. vulgaris (a related hermaphrodite species without sex chromosomes). We mapped 29 S. latifolia fully sex-linked genes (including 21 newly discovered from transcriptome sequencing), plus 6 genes in a recombining pseudo-autosomal region (PAR) whose genetic map length is ∼25 cM in both male and female meiosis, suggesting that the PAR may contain many genes. Our comparative mapping shows that most fully sex-linked genes in S. latifolia are located on a single S. vulgaris linkage group and were probably inherited from a single autosome of an ancestor. However, unexpectedly, our maps suggest that the S. latifolia PAR region expanded through translocation events. Some genes in these regions still recombine in S. latifolia, but some genes from both addition events are now fully sex-linked. Recombination suppression is therefore still ongoing in S. latifolia, and multiple recombination suppression events have occurred in a timescale of few million years, much shorter than the timescale of formation of the most recent evolutionary strata of mammal and bird sex chromosomes. PMID:23733786

  4. Trisomy 8 syndrome owing to isodicentric 8p chromosomes: regional assignment of a presumptive gene involved in corpus callosum development.

    PubMed Central

    Digilio, M C; Giannotti, A; Floridia, G; Uccellatore, F; Mingarelli, R; Danesino, C; Dallapiccola, B; Zuffardi, O

    1994-01-01

    Two patients with trisomy 8 syndrome owing to an isodicentric 8p;8p chromosome are described. Case 1 had a 46,XX/46,XX,-8,+idic(8)(p23) karyotype while case 2, a male, had the same abnormal karyotype without evidence of mosaicism. In situ hybridisation, performed in case 1, showed that the isochromosome was asymmetrical. Agenesis of the corpus callosum (ACC), which is a feature of trisomy 8 syndrome, was found in both patients. Although ACC is associated with aneuploidies for different chromosomes, a review of published reports indicates that, when associated with chromosome 8, this defect is the result of duplication of a gene located within 8p21-pter. Molecular analysis in one of our patients led us to exclude the distal 23 Mb of 8p from this ACC region. Images PMID:8014974

  5. Simulated binding of transcription factors to active and inactive regions folds human chromosomes into loops, rosettes and topological domains

    PubMed Central

    Brackley, Chris A.; Johnson, James; Kelly, Steven; Cook, Peter R.; Marenduzzo, Davide

    2016-01-01

    Biophysicists are modeling conformations of interphase chromosomes, often basing the strengths of interactions between segments distant on the genetic map on contact frequencies determined experimentally. Here, instead, we develop a fitting-free, minimal model: bivalent or multivalent red and green ‘transcription factors’ bind to cognate sites in strings of beads (‘chromatin’) to form molecular bridges stabilizing loops. In the absence of additional explicit forces, molecular dynamic simulations reveal that bound factors spontaneously cluster—red with red, green with green, but rarely red with green—to give structures reminiscent of transcription factories. Binding of just two transcription factors (or proteins) to active and inactive regions of human chromosomes yields rosettes, topological domains and contact maps much like those seen experimentally. This emergent ‘bridging-induced attraction’ proves to be a robust, simple and generic force able to organize interphase chromosomes at all scales. PMID:27060145

  6. In silico screening of the chicken genome for overlaps between genomic regions: microRNA genes, coding and non-coding transcriptional units, QTL, and genetic variations.

    PubMed

    Zorc, Minja; Kunej, Tanja

    2016-05-01

    MicroRNAs (miRNAs) are a class of non-coding RNAs involved in posttranscriptional regulation of target genes. Regulation requires complementarity between target mRNA and the mature miRNA seed region, responsible for their recognition and binding. It has been estimated that each miRNA targets approximately 200 genes, and genetic variability of miRNA genes has been reported to affect phenotypic variability and disease susceptibility in humans, livestock species, and model organisms. Polymorphisms in miRNA genes could therefore represent biomarkers for phenotypic traits in livestock animals. In our previous study, we collected polymorphisms within miRNA genes in chicken. In the present study, we identified miRNA-related genomic overlaps to prioritize genomic regions of interest for further functional studies and biomarker discovery. Overlapping genomic regions in chicken were analyzed using the following bioinformatics tools and databases: miRNA SNiPer, Ensembl, miRBase, NCBI Blast, and QTLdb. Out of 740 known pre-miRNA genes, 263 (35.5 %) contain polymorphisms; among them, 35 contain more than three polymorphisms The most polymorphic miRNA genes in chicken are gga-miR-6662, containing 23 single nucleotide polymorphisms (SNPs) within the pre-miRNA region, including five consecutive SNPs, and gga-miR-6688, containing ten polymorphisms including three consecutive polymorphisms. Several miRNA-related genomic hotspots have been revealed in chicken genome; polymorphic miRNA genes are located within protein-coding and/or non-coding transcription units and quantitative trait loci (QTL) associated with production traits. The present study includes the first description of an exonic miRNA in a chicken genome, an overlap between the miRNA gene and the exon of the protein-coding gene (gga-miR-6578/HADHB), and the first report of a missense polymorphism located within a mature miRNA seed region. Identified miRNA-related genomic hotspots in chicken can serve researchers as a

  7. Expression, function, and targeting of the nuclear exporter chromosome region maintenance 1 (CRM1) protein.

    PubMed

    Ishizawa, Jo; Kojima, Kensuke; Hail, Numsen; Tabe, Yoko; Andreeff, Michael

    2015-09-01

    Nucleocytoplasmic trafficking of proteins/RNAs is essential to normal cellular function. Indeed, accumulating evidence suggests that cancer cells escape anti-neoplastic mechanisms and benefit from pro-survival signals via the dysregulation of this system. The nuclear exporter chromosome region maintenance 1 (CRM1) protein is the only protein in the karyopherin-β protein family that contributes to the trafficking of numerous proteins and RNAs from the nucleus. It is considered to be an oncogenic, anti-apoptotic protein in transformed cells, since it reportedly functions as a gatekeeper for cell survival, including affecting p53 function, and ribosomal biogenesis. Furthermore, abnormally high expression of CRM1 is correlated with poor patient prognosis in various malignancies. Therapeutic targeting of CRM1 has emerged as a novel cancer treatment strategy, starting with a clinical trial with leptomycin B, the original specific inhibitor of CRM1, followed by development of several next-generation small molecules. KPT-330, a novel member of the CRM1-selective inhibitors of nuclear export (SINE) class of compounds, is currently undergoing clinical evaluation for the therapy of various malignancies. Results from these trials suggest that SINE compounds may be particularly useful against hematological malignancies, which often become refractory to standard chemotherapeutic agents.

  8. A novel human phosphoglucomutase (PGM5) maps to the centromeric region of chromosome 9

    SciTech Connect

    Edwards, Y.H.; Putt, W.; Fox, M.; Ives, J.H.

    1995-11-20

    The phophoglucomutases (PGM1-3) in humans are surrounded by three genes, PGM1, PGM2, and PGM3. These enzymes are central to carbohydrate metabolism. All three isozymes show genetic variation, and PGM1 has achieved prominence as a key marker in genetic linkage mapping and in forensic science. The human PGM genes are assumed to have arisen by gene duplication since their products are broadly similar in structure and function; however, direct proof of their evolutionary relationship is not available because only PGM1 has been cloned. During a search for other members of the PGM family, a novel sequence with homology to PGM1 was identified. Mapping using fluorescence in situ hybridization and somatic cell hybrids locates this gene to the centromeric region of chromosome 9. RT-PCR and Northern analysis indicate that this is an expressed PGM gene with widespread distribution in adult and fetal tissues. We propose that this gene be designated PGM5 and that it represents a novel member of the PGM family. 19 refs., 2 figs.

  9. The linkage map of sheep Chromosome 6 compared with orthologous regions in other species.

    PubMed

    Lord, E A; Lumsden, J M; Dodds, K G; Henry, H M; Crawford, A M; Ansari, H A; Pearce, P D; Maher, D W; Stone, R T; Kappes, S M; Beattie, C W; Montgomery, G W

    1996-05-01

    The genetic linkage map of sheep Chromosome (Chr) 6 has been extended to include 35 loci with the addition of 11 RFLP and 12 microsatellite loci. The sex-averaged linkage map now spans 154 cM from phosphodiesterase cyclic GMP beta polypeptide (PDE6B) to OarCP125, an anonymous sheep microsatellite. The male and female map lengths, at 180 cM and 132 cM respectively, did not differ significantly. The physical assignment of PDE6B to Chr 6q33-qter orientates the linkage map on sheep Chr 6 with PDE6B near the telomere and OarCP125 towards the centromere. The order and genetic distances between loci are similar for the sheep Chr 6 and cattle Chr 6 maps, except for the position of the casein genes. The sheep Chr 6 linkage map is also comparable to portions of human Chr 4, mouse Chrs 5 and 3, and pig Chr 8. The synteny between sheep Chr 6 and human Chr 4 has been extended from PDE6B (4p16.3) to epidermal growth factor (EGF, 4q25-q27). However, a region from platelet-derived growth factor receptor alpha polypeptide (PDGFRA) to bone morphogenetic protein 3 (BMP3), which spans 19 cM on sheep Chr 6, appears to be inverted with respect to the human and mouse loci. Other differences in the gene order between sheep, pig, and mouse suggest more complex rearrangements.

  10. Organization of the R chromosome region in maize: Report of progress

    SciTech Connect

    Kermicle, J.

    1987-02-01

    The maize R gene exhibits various features of regulated gene expression. Alleles collected from diverse geographic sources govern the presence and distribution of anthocyanin pigmentation, plant part by plant part. Some alleles confer stable patterns of pigmentation, while others confer unstable somatic phenotypes with frequent germinal mutations. A remarkable change in expression occurs when certain alleles are combined as heterozygotes. Efficient analysis of such phenomena requires a basic understanding of allelic organization. R is organized on a modular basis, with polymorphism both for number and kind of unit. An allele may carry one such unit, or two or more associated with duplicated chromosome segments. When multiple, each unit mutates independently, with its variants constituting a single complementation group. Because such units behave as separate genes, they have been referred to as ''genic elements''. Alleles organized as gene complexes often have been utilized in the discovery and initial description of phenomena of R regulation. When this is so, subsequent analysis proceeds in two stages. The complex is first fractionated by recombination into simpler derivatives that manifest the phenomenon. Such derivatives, preferably carrying a single element, are then candidates for detailed analysis. For the present study, insertional mutagenesis using transposable sequences proved the most effective means of producing R variants for fine structure study. It was also necessary to describe the pattern of recombination that prevailed in this region when insertions were present. With the advent of molecular cloning of maize genes by transposon tagging, a more direct means of investigating R structure was envisioned. 12 refs.

  11. Expression, function, and targeting of the nuclear exporter chromosome region maintenance 1 (CRM1) protein

    PubMed Central

    Ishizawa, Jo; Kojima, Kensuke; Hail, Numsen; Tabe, Yoko; Andreeff, Michael

    2015-01-01

    Nucleocytoplasmic trafficking of proteins/RNAs is essential to normal cellular function. Indeed, accumulating evidence suggests that cancer cells escape anti-neoplastic mechanisms and benefit from pro-survival signals via the dysregulation of this system. The nuclear exporter chromosome region maintenance 1 (CRM1) protein is the only protein in the karyopherin-β protein family that contributes to the trafficking of numerous proteins and RNAs from the nucleus. It is considered to be an oncogenic, anti-apoptotic protein in transformed cells, since it reportedly functions as a gatekeeper for cell survival, including affecting p53 function, and ribosomal biogenesis. Furthermore, abnormally high expression of CRM1 is correlated with poor patient prognosis in various malignancies. Therapeutic targeting of CRM1 has emerged as a novel cancer treatment strategy, starting with a clinical trial with leptomycin B, the original specific inhibitor of CRM1, followed by development of several next-generation small molecules. KPT-330, a novel member of the CRM1-selective inhibitors of nuclear export (SINE) class of compounds, is currently undergoing clinical evaluation for the therapy of various malignancies. Results from these trials suggest that SINE compounds may be particularly useful against hematological malignancies, which often become refractory to standard chemotherapeutic agents. PMID:26048327

  12. A genetic linkage map of the diplosporous chromosomal region in Taraxacum officinale (common dandelion; Asteraceae).

    PubMed

    Vijverberg, K; Van Der Hulst, R G M; Lindhout, P; Van Dijk, P J

    2004-02-01

    In this study, we mapped the diplosporous chromosomal region in Taraxacum officinale, by using amplified fragment length polymorphism technology (AFLP) in 73 plants from a segregating population. Taraxacum serves as a model system to investigate the genetics, ecology, and evolution of apomixis. The genus includes sexual diploid as well as apomictic polyploid, mostly triploid, plants. Apomictic Taraxacum is diplosporous, parthenogenetic, and has autonomous endosperm formation. Previous studies have indicated that these three apomixis elements are controlled by more than one locus in Taraxacum and that diplospory inherits as a dominant, monogenic trait ( Ddd; DIP). A bulked segregant analysis provided 34 AFLP markers that were linked to DIP and were, together with two microsatellite markers, used for mapping the trait. The map length was 18.6 cM and markers were found on both sides of DIP, corresponding to 5.9 and 12.7 cM, respectively. None of the markers completely co-segregated with DIP. Eight markers were selected for PCR-based marker development, of which two were successfully converted. In contrast to all other mapping studies of apomeiosis to date, our results showed no evidence for suppression of recombination around the DIP locus in Taraxacum. No obvious evidence for sequence divergence between the DIP and non- DIP homologous loci was found, and no hemizygosity at the DIP locus was detected. These results may indicate that apomixis is relatively recent in Taraxacum.

  13. Molecular mapping across three populations reveals a QTL hotspot region on chromosome 3 for secondary traits associated with drought tolerance in tropical maize.

    PubMed

    Almeida, Gustavo Dias; Nair, Sudha; Borém, Aluízio; Cairns, Jill; Trachsel, Samuel; Ribaut, Jean-Marcel; Bänziger, Marianne; Prasanna, Boddupalli M; Crossa, Jose; Babu, Raman

    2014-01-01

    Identifying quantitative trait loci (QTL) of sizeable effects that are expressed in diverse genetic backgrounds across contrasting water regimes particularly for secondary traits can significantly complement the conventional drought tolerance breeding efforts. We evaluated three tropical maize biparental populations under water-stressed and well-watered regimes for drought-related morpho-physiological traits, such as anthesis-silking interval (ASI), ears per plant (EPP), stay-green (SG) and plant-to-ear height ratio (PEH). In general, drought stress reduced the genetic variance of grain yield (GY), while that of morpho-physiological traits remained stable or even increased under drought conditions. We detected consistent genomic regions across different genetic backgrounds that could be target regions for marker-assisted introgression for drought tolerance in maize. A total of 203 QTL for ASI, EPP, SG and PEH were identified under both the water regimes. Meta-QTL analysis across the three populations identified six constitutive genomic regions with a minimum of two overlapping traits. Clusters of QTL were observed on chromosomes 1.06, 3.06, 4.09, 5.05, 7.03 and 10.04/06. Interestingly, a ~8-Mb region delimited in 3.06 harboured QTL for most of the morpho-physiological traits considered in the current study. This region contained two important candidate genes viz., zmm16 (MADS-domain transcription factor) and psbs1 (photosystem II unit) that are responsible for reproductive organ development and photosynthate accumulation, respectively. The genomic regions identified in this study partially explained the association of secondary traits with GY. Flanking single nucleotide polymorphism markers reported herein may be useful in marker-assisted introgression of drought tolerance in tropical maize.

  14. Functional Overlap between Regions Involved in Speech Perception and in Monitoring One's Own Voice during Speech Production

    ERIC Educational Resources Information Center

    Zheng, Zane Z.; Munhall, Kevin G.; Johnsrude, Ingrid S.

    2010-01-01

    The fluency and the reliability of speech production suggest a mechanism that links motor commands and sensory feedback. Here, we examined the neural organization supporting such links by using fMRI to identify regions in which activity during speech production is modulated according to whether auditory feedback matches the predicted outcome or…

  15. Mapping strategies: Chromosome 16 workshop

    SciTech Connect

    Not Available

    1989-01-01

    The following topics from a workshop on chromosome 16 are briefly discussed: genetic map of chromosome 16; chromosome breakpoint map of chromosome 16; integrated physical/genetic map of chromosome 16; pulsed field map of the 16p13.2--p13.3 region (3 sheets); and a report of the HGM10 chromosome 16 committee.

  16. The DNA sequence and biological annotation of human chromosome 1.

    PubMed

    Gregory, S G; Barlow, K F; McLay, K E; Kaul, R; Swarbreck, D; Dunham, A; Scott, C E; Howe, K L; Woodfine, K; Spencer, C C A; Jones, M C; Gillson, C; Searle, S; Zhou, Y; Kokocinski, F; McDonald, L; Evans, R; Phillips, K; Atkinson, A; Cooper, R; Jones, C; Hall, R E; Andrews, T D; Lloyd, C; Ainscough, R; Almeida, J P; Ambrose, K D; Anderson, F; Andrew, R W; Ashwell, R I S; Aubin, K; Babbage, A K; Bagguley, C L; Bailey, J; Beasley, H; Bethel, G; Bird, C P; Bray-Allen, S; Brown, J Y; Brown, A J; Buckley, D; Burton, J; Bye, J; Carder, C; Chapman, J C; Clark, S Y; Clarke, G; Clee, C; Cobley, V; Collier, R E; Corby, N; Coville, G J; Davies, J; Deadman, R; Dunn, M; Earthrowl, M; Ellington, A G; Errington, H; Frankish, A; Frankland, J; French, L; Garner, P; Garnett, J; Gay, L; Ghori, M R J; Gibson, R; Gilby, L M; Gillett, W; Glithero, R J; Grafham, D V; Griffiths, C; Griffiths-Jones, S; Grocock, R; Hammond, S; Harrison, E S I; Hart, E; Haugen, E; Heath, P D; Holmes, S; Holt, K; Howden, P J; Hunt, A R; Hunt, S E; Hunter, G; Isherwood, J; James, R; Johnson, C; Johnson, D; Joy, A; Kay, M; Kershaw, J K; Kibukawa, M; Kimberley, A M; King, A; Knights, A J; Lad, H; Laird, G; Lawlor, S; Leongamornlert, D A; Lloyd, D M; Loveland, J; Lovell, J; Lush, M J; Lyne, R; Martin, S; Mashreghi-Mohammadi, M; Matthews, L; Matthews, N S W; McLaren, S; Milne, S; Mistry, S; Moore, M J F; Nickerson, T; O'Dell, C N; Oliver, K; Palmeiri, A; Palmer, S A; Parker, A; Patel, D; Pearce, A V; Peck, A I; Pelan, S; Phelps, K; Phillimore, B J; Plumb, R; Rajan, J; Raymond, C; Rouse, G; Saenphimmachak, C; Sehra, H K; Sheridan, E; Shownkeen, R; Sims, S; Skuce, C D; Smith, M; Steward, C; Subramanian, S; Sycamore, N; Tracey, A; Tromans, A; Van Helmond, Z; Wall, M; Wallis, J M; White, S; Whitehead, S L; Wilkinson, J E; Willey, D L; Williams, H; Wilming, L; Wray, P W; Wu, Z; Coulson, A; Vaudin, M; Sulston, J E; Durbin, R; Hubbard, T; Wooster, R; Dunham, I; Carter, N P; McVean, G; Ross, M T; Harrow, J; Olson, M V; Beck, S; Rogers, J; Bentley, D R; Banerjee, R; Bryant, S P; Burford, D C; Burrill, W D H; Clegg, S M; Dhami, P; Dovey, O; Faulkner, L M; Gribble, S M; Langford, C F; Pandian, R D; Porter, K M; Prigmore, E

    2006-05-18

    The reference sequence for each human chromosome provides the framework for understanding genome function, variation and evolution. Here we report the finished sequence and biological annotation of human chromosome 1. Chromosome 1 is gene-dense, with 3,141 genes and 991 pseudogenes, and many coding sequences overlap. Rearrangements and mutations of chromosome 1 are prevalent in cancer and many other diseases. Patterns of sequence variation reveal signals of recent selection in specific genes that may contribute to human fitness, and also in regions where no function is evident. Fine-scale recombination occurs in hotspots of varying intensity along the sequence, and is enriched near genes. These and other studies of human biology and disease encoded within chromosome 1 are made possible with the highly accurate annotated sequence, as part of the completed set of chromosome sequences that comprise the reference human genome.

  17. Mapping of low-frequency chimeric yeast artificial chromosome libraries from human chromosomes 16 and 21 by fluorescence in situ hybridization and quantitative image analysis

    SciTech Connect

    Marrone, B.L.; Campbell, E.W.; Anzick, S.L.; Shera, K.; Campbell, M.; Yoshida, T.M.; McCormick, M.K.; Deaven, L. )

    1994-05-01

    Yeast artificial chromosome (YAC) clones from low-frequency chimeric libraries of human chromosomes 16 and 21 were mapped onto human diploid fibroblast metaphase chromosomes using fluorescence in situ hybridization (FISH) and digital imaging microscopy. YACs mapped onto chromosome 21 were selected to provide subregional location and ordering of known and unknown markers on the long arm of chromosome 21, particularly in the Down syndrome region (q22). YACs mapped onto chromosome 16 were selected to overlap regions spanning chromosome 16 cosmid maps. YAC clones were indirectly labeled with fluorescein, and the total DNA of the chromosome was counterstained with propidium iodide. A single image containing both the FISH signal and the whole chromosome was acquired for each chromosome of interest containing the fluorescent probe signal in a metaphase spread. From the digitized image, the fluorescence intensity profile through the long axis of the chromosome gave the total chromosome length and the probe position. The map position of the probe was expressed as the fractional length (FL) of the total chromosome relative to the end of the short arm (Flpter). From each clone hybridized, 20-40 chromosome images were analyzed. Thirty-eight YACs were mapped onto chromosome 16, and their FLs were distributed along the short and long arms. On chromosome 21, 47 YACs were mapped, including 12 containing known markers. To confirm the order of a dense population of YACs within the Down syndrome region, a two-color mapping strategy was used in which an anonymous YAC was located relative to one or two known markers on the metaphase chromosome. The chromosome FL maps have a 1- to 2-Mb resolution, and the FL measurement of each probe has a typical standard error of 0.5-1 Mb. 14 refs., 3 figs., 3 tabs.

  18. Identification and High-Density Mapping of Gene-Rich Regions in Chromosome Group 1 of Wheat

    PubMed Central

    Gill, K. S.; Gill, B. S.; Endo, T. R.; Taylor, T.

    1996-01-01

    We studied the distribution of genes and recombination in wheat (Triticum aestivum) group 1 chromosomes by comparing high-density physical and genetic maps. Physical maps of chromosomes 1A, 1B, and 1D were generated by mapping 50 DNA markers on 56 single-break deletion lines. A consensus physical map was compared with the 1D genetic map of Triticum tauschii (68 markers) and a Triticeae group 1 consensus map (288 markers) to generate a cytogenetic ladder map (CLM). Most group 1 markers (86%) were present in five clusters that encompassed only 10% of the group 1 chromosome. This distribution may reflect that of genes because more than half of the probes were cDNA clones and 30% were PstI genomic. All 14 agronomically important genes in group 1 chromosomes were present in these clusters. Most recombination occurred in gene-cluster regions. Markers fell at an average distance of 244 kb in these regions. The CLM involving the Triticeae consensus genetic map revealed that the above distribution of genes and recombination is the same in other Triticeae species. Because of a significant number of common markers, our CLM can be used for comparative mapping and to estimate physical distances among markers in many Poaceae species including rice and maize. PMID:8978071

  19. Automatic segmentation of chromosomes in Q-band images.

    PubMed

    Grisan, Enrico; Poletti, Enea; Tomelleri, Christopher; Ruggeri, Alfredo

    2007-01-01

    Karyotype analysis is a widespread procedure in cytogenetics to assess the possible presence of genetics defects. The procedure is lengthy and repetitive, so that an automatic analysis would greatly help the cytogeneticist routine work. Still, automatic segmentation and full disentangling of chromosomes are open issues. We propose an automatic procedure to obtain the separated chromosomes, which are then ready for a subsequent classification step. The segmentation is carried out by means of a space variant thresholding scheme, which proved to be successful even in presence of hyper- or hypo-fluorescent regions in the image. Then a greedy approach is used to identify and resolve touching and overlapping chromosomes, based on geometric evidence and image information. We show the effectiveness of the proposed method on routine data: 90% of the overlaps and 92% of the adjacencies are resolved, resulting in a correct segmentation of 96% of the chromosomes.

  20. Karyotypic relationships in Asiatic asses (kulan and kiang) as defined using horse chromosome arm-specific and region-specific probes.

    PubMed

    Musilova, Petra; Kubickova, Svatava; Horin, Petr; Vodicka, Roman; Rubes, Jiri

    2009-01-01

    Cross-species chromosome painting has been applied to most of the species making up the numerically small family Equidae. However, comparative mapping data were still lacking in Asiatic asses kulan (Equus hemionus kulan) and kiang (E. kiang). The set of horse arm-specific probes generated by laser microdissection was hybridized onto kulan (E. hemionus kulan) and kiang (E. kiang) chromosomes in order to establish a genome-wide chromosomal correspondence between these Asiatic asses and the horse. Moreover, region-specific probes were generated to determine fusion configuration and orientation of conserved syntenic blocks. The kulan karyotype (2n = 54) was ascertained to be almost identical to the previously investigated karyotype of onager E. h. onager (2n = 56). The only difference is in fusion/fission of chromosomes homologous to horse 2q/3q, which are involved in chromosome number polymorphism in many Equidae species. E. kiang karyotype differs from the karyotype of E. hemionus by two additional fusions 8q/15 and 7/25. Chromosomes equivalent to 2q and 3q are not fused in kiang individuals with 2n = 52. Several discrepancies in centromere positions among kulan, kiang and horse chromosomes have been described. Most of the chromosome fusions in Asiatic asses are of centromere-centromere type. Comparative chromosome painting in kiang completed the efforts to establish chromosomal homologies in all representatives of the family Equidae. Application of region-specific probes allows refinement comparative maps of Asiatic asses.

  1. Whole genomewide linkage screen for neural tube defects reveals regions of interest on chromosomes 7 and 10

    PubMed Central

    Rampersaud, E; Bassuk, A; Enterline, D; George, T; Siegel, D; Melvin, E; Aben, J; Allen, J; Aylsworth, A; Brei, T; Bodurtha, J; Buran, C; Floyd, L; Hammock, P; Iskandar, B; Ito, J; Kessler, J; Lasarsky, N; Mack, P; Mackey, J; McLone, D; Meeropol, E; Mehltretter, L; Mitchell, L; Oakes, W; Nye, J; Powell, C; Sawin, K; Stevenson, R; Walker, M; West, S; Worley, G; Gilbert, J; Speer, M

    2005-01-01

    Neural tube defects (NTDs) are the second most common birth defects (1 in 1000 live births) in the world. Periconceptional maternal folate supplementation reduces NTD risk by 50–70%; however, studies of folate related and other developmental genes in humans have failed to definitively identify a major causal gene for NTD. The aetiology of NTDs remains unknown and both genetic and environmental factors are implicated. We present findings from a microsatellite based screen of 44 multiplex pedigrees ascertained through the NTD Collaborative Group. For the linkage analysis, we defined our phenotype narrowly by considering individuals with a lumbosacral level myelomeningocele as affected, then we expanded the phenotype to include all types of NTDs. Two point parametric analyses were performed using VITESSE and HOMOG. Multipoint parametric and nonparametric analyses were performed using ALLEGRO. Initial results identified chromosomes 7 and 10, both with maximum parametric multipoint lod scores (Mlod) >2.0. Chromosome 7 produced the highest score in the 24 cM interval between D7S3056 and D7S3051 (parametric Mlod 2.45; nonparametric Mlod 1.89). Further investigation demonstrated that results on chromosome 7 were being primarily driven by a single large pedigree (parametric Mlod 2.40). When this family was removed from analysis, chromosome 10 was the most interesting region, with a peak Mlod of 2.25 at D10S1731. Based on mouse human synteny, two candidate genes (Meox2, Twist1) were identified on chromosome 7. A review of public databases revealed three biologically plausible candidates (FGFR2, GFRA1, Pax2) on chromosome 10. The results from this screen provide valuable positional data for prioritisation of candidate gene assessment in future studies of NTDs. PMID:15831595

  2. Genetic isolation of a chromosome 1 region affecting susceptibility to hypertension-induced renal damage in the spontaneously hypertensive rat.

    PubMed

    St Lezin, E; Griffin, K A; Picken, M; Churchill, M C; Churchill, P C; Kurtz, T W; Liu, W; Wang, N; Kren, V; Zidek, V; Pravenec, M; Bidani, A K

    1999-08-01

    Linkage studies in the fawn-hooded hypertensive rat have suggested that genes influencing susceptibility to hypertension-associated renal failure may exist on rat chromosome 1q. To investigate this possibility in a widely used model of hypertension, the spontaneously hypertensive rat (SHR), we compared susceptibility to hypertension-induced renal damage between an SHR progenitor strain and an SHR congenic strain that is genetically identical except for a defined region of chromosome 1q. Backcross breeding with selection for the markers D1Mit3 and Igf2 on chromosome 1 was used to create the congenic strain (designated SHR.BN-D1Mit3/Igf2) that carries a 22 cM segment of chromosome 1 transferred from the normotensive Brown Norway rat onto the SHR background. Systolic blood pressure (by radiotelemetry) and urine protein excretion were measured in the SHR progenitor and congenic strains before and after the induction of accelerated hypertension by administration of DOCA-salt. At the same level of DOCA-salt hypertension, the SHR.BN-D1Mit3/Igf2 congenic strain showed significantly greater proteinuria and histologically assessed renal vascular and glomerular injury than the SHR progenitor strain. These findings demonstrate that a gene or genes that influence susceptibility to hypertension-induced renal damage have been trapped in the differential chromosome segment of the SHR.BN-D1Mit3/Igf2 congenic strain. This congenic strain represents an important new model for the fine mapping of gene(s) on chromosome 1 that affect susceptibility to hypertension-induced renal injury in the rat.

  3. Cloning and characterization of CpG islands of the human chromosome 1p36 region

    SciTech Connect

    Ellmeier, W.; Barnas, C.; Kobrna, A.

    1996-02-15

    This article reports on the localization of CpG islands to human chromosome 1p36 as a means for the isolation of genes using hybridization techniques. Two cDNA clones encode the human transcription factor E2F-2 and the dominant-negative helix-loop-helix gene ID3. Further information regarding the organization of human chromosome 1 was accomplished using electrophoresis. 11 refs., 3 figs.

  4. Directed isolation and mapping of microsatellites from swine Chromosome 1q telomeric region through microdissection and RH mapping.

    PubMed

    Sarker, N; Hawken, R J; Takahashi, S; Alexander, L J; Awata, T; Schook, L B; Yasue, H

    2001-07-01

    Several quantitative trait loci (QTLs) (vertebrate number, birth weight, age at puberty, growth rate, gestation length, and backfat depth) have been independently mapped to the distal region of swine Chromosome (SSC) 1q in several resource populations. In order to improve the map resolution and refine these QTLs more precisely on SSC1q, we have isolated and mapped additional microsatellites (ms), using chromosome microdissection and radiation hybrid (RH) mapping. Five copies of the telomeric region of SSC1q were microdissected from metaphase spreads and pooled. The chromosomal fragment DNA was randomly amplified by using degenerate oligonucleotide primed polymerase chain reaction (DOP-PCR), enriched for ms, and subcloned into a PCR vector. Screening of subsequent clones with ms probes identified 23 unique ms sequences. Fifteen of these (65%) were subjected to radiation hybrid (RH) mapping by using the INRA-University of Minnesota porcine RH panel (IMpRH); and the remaining eight were not suited for the RH mapping. Twelve microsatellites were assigned to SSC1q telomeric region of IMpRH map (LOD >6), and three remain unlinked (LOD <6). Out of the 15 microsatellite markers, 9 were polymorphic in NIAI reference population based on the Meishan and Göttingen miniature pig. In summary, we have used microdissection and radiation hybrid mapping to clone and map 12 new microsatellites to the swine gene map to increase the resolution of SSC1q in the region of known QTLs.

  5. Identification and mapping of expressed genes, simple sequence repeats and transposable elements in centromeric regions of rice chromosomes.

    PubMed

    Mizuno, Hiroshi; Ito, Kazue; Wu, Jianzhong; Tanaka, Tsuyoshi; Kanamori, Hiroyuki; Katayose, Yuichi; Sasaki, Takuji; Matsumoto, Takashi

    2006-12-31

    The genomic sequences derived from rice centromeric regions were analyzed to facilitate the comprehensive understanding of the rice genome. A rice centromere-specific satellite sequence, RCS2/TrsD/CentO, was used to screen P1-derived artificial chromosome (PAC) and bacterial artificial chromosome (BAC) genomic libraries derived from Oryza sativa L. ssp. japonica cultivar Nipponbare. Physical maps of the centromeric regions were constructed by DNA fingerprinting methods and the aligned clones were analyzed by end sequencing. BLAST analysis revealed the composition of genes, centromeric satellites and other repetitive elements, such as RIRE7/CRR, RIRE8, Squiq, Anaconda, CACTA and miniature inverted-repeat transposable elements. Fiber-fluorescent in situ hybridization analysis also indicated the presence of distinct clusters of RCS2/TrsD/CentO satellite interspersed with other elements, instead of a long homogeneous region. Several expressed genes, sequences representative of ancestral organellar insertions, relatively long simple sequence repeats (SSRs), and sequences corresponding to 5S and 45S ribosomal RNA genes were also identified. Thirty-one gene sequences showed high-similarity to rice full-length cDNA sequences that had not been matched to the published rice genome sequence in silico. These results suggest the presence of expressed genes within and around the clusters of RCS2/TrsD/CentO satellites in unsequenced centromeric regions of the rice chromosomes.

  6. Isolation of candidate genes and physical mapping in the Familial Dysautonomia region of chromosome 9q31

    SciTech Connect

    Slaugenhaupt, S.A.; Liebert, C.B.; Monahan, M.

    1994-09-01

    Familial Dysautonomia is an autosomal recessive disorder characterized by the developmental loss of both sensory and autonomic neurons. We have mapped the DYS gene to human chromosome 9q31-33 by genetic linkage analysis of 26 Ashkenazi Jewish pedigrees. The gene is located in a 3 cM interval between D9S310 and D9S105. We have examined several new SSCP and repeat polymorphisms and have successfully narrowed the minimum candidate region to approximately 300 kb using linkage disequilibrium. A YAC contig that spans 1.5 Mb has been constructed using both Alu-PCR and STS screening methods. In addition, the YACs were used to isolate cosmids by direct hybridization to the Lawrence Livermore National Laboratory chromosome 9 flow-sorted cosmid library. Having cloned the minimal candidate region, we are now constructing a detailed transcription map of the DYS region of chromosome 9. Using exon amplification, we have rapidly identified exon sequences and have used these as probes to isolate three candidate genes. These genes are currently being sequenced and will be assessed for mutations using both SSCP analysis and direct sequencing. A detailed physical map of the DYS region, as well as sequence and homology information for DYS candidate genes, will be presented.

  7. The gene for human erythrocyte membrane protein band 7. 2 (EPB72) maps to 9q33-q34 centromeric to the Philadelphia chromosome translocation breakpoint region

    SciTech Connect

    Gallagher, P.G.; Upender, M.; Ward, D.C.; Forget, B.G. )

    1993-10-01

    Erthrocyte band 7.2b is a 31-kDa integral phosphoprotein absent from the erythrocytes of many patients with hereditary stomatocytosis (HSt). HSt is a heterogeneous group of disorders characterized by mouth-shaped erythrocyte morphology on peripheral blood smears. The clinical severity of HSt is variable; some patients experience hemolysis and anemia while others are asymptomatic. The red cell membranes of these patients usually exhibit abnormal permeability to sodium and potassium with resultant modification of intracellular water content. The band 7.2b protein has been purified and the cDNA cloned. The approved gene name and symbol are erythrocyte membrane protein band 7.2 and EPB72, respectively, as assigned by the Human Gene Nomenclature Committee. Using a human reticulocyte cDNA library as template, a 491-bp fragment corresponding to the 3' end of the coding region of the EPB72 cDNA was amplified. Three overlapping phase DNA clones were isolated using this probe. Four genomic DNA fragments of 2.0, 2.5, 4.5, and 5.0 kb, respectively, were isolated from these clones. To localize the EPB72 gene by fluorescence in situ hybridization, these genomic DNA fragments were labeled with biotin-11-dUTP and hybridized to metaphase chromosomes as described. Probes were preannealed to C[sub 0]t1-fractionated DNA to block repetitive sequences. Experiments were analyzed and digitally imaged using a cooled CCD camera. The probes, in combination, gave specific hybridization signals only in chromosome 9q. The gene for erythrocyte membrane protein 7.2 localized to 9q33-q34.

  8. Investigation of QTL regions on Chromosome 17 for genes associated with meat color in the pig.

    PubMed

    Fan, B; Glenn, K L; Geiger, B; Mileham, A; Rothschild, M F

    2008-08-01

    Previous studies have uncovered several significant quantitative trait loci (QTL) relevant to meat colour traits mapped at the end of SSC17 in the pig. Furthermore, results released from the porcine genome sequencing project have identified genes underlying the entire QTL regions and can further contribute to mining the region for likely causative genes. Ten protein coding genes or novel transcripts located within the QTL regions were screened for single nucleotide polymorphisms (SNPs). Linkage mapping and association studies were carried out in the ISU Berkshire x Yorkshire (B x Y) pig resource family. The total length of the new SSC17 linkage map was 126.6 cM and additional markers including endothelin 3 (EDN3) and phosphatase and actin regulator 3 (PHACTR3) genes were assigned at positions 119.4 cM and 122.9 cM, respectively. A new QTL peak was noted at approximately 120 cM, close to the EDN3 gene, and for some colour traits QTL exceeded the 5% chromosome-wise significance threshold. The association analyses in the B x Y family showed that the EDN3 BslI and PHACTR3 PstI polymorphisms were strongly associated with the subjective colour score and objective colour reflectance measures in the loin, as well as average drip loss percentage and pH value. The RNPC1 DpnII and CTCFL HpyCH4III polymorphisms were associated with some meat colour traits. No significant association between CBLN4, TFAP2C, and four novel transcripts and meat colour traits were detected. The association analyses conducted in one commercial pig line found that both EDN3 BslI and PHACTR3 PstI polymorphisms were associated with meat colour reflectance traits such as centre loin hue angle and Minolta Lightness score. The present findings suggested that the EDN3 and PHACTR3 genes might have potential effects on meat colour in pigs, and molecular mechanisms of their functions are worth exploring.

  9. A large, dominant pedigree of atrioventricular septal defect (AVSD): Exclusion from the Down syndrome critical region on chromosome 21

    SciTech Connect

    Wilson, L.; Curtis, A.; Stephenson, A.; Goodship, J.; Burn, J. ); Korenberg, J.R.; Schipper, R.D. ); Allan, L. ); Chenevix-Trench, G. )

    1993-12-01

    The authors describe a large pedigree of individuals with autosomal dominant atrioventricular septal defect (AVSD). The pedigree includes affected individuals and individuals who have transmitted the defect but are not clinically affected. AVSDs are a rare congenital heart malformation that occurs as only 2.8% of isolated cardiac lesions. They are the predominant heart defect in children with Down syndrome, making chromosome 21 a candidate for genes involved in atrioventricular septal development. The authors have carried out a linkage study in the pedigree by using 10 simple-sequence polymorphisms from chromosome 21. Multipoint linkage analysis gives lod scores of less than [minus]2 for the region of trisomy 21 associated with heart defects, which excludes a locus within this region as the cause of the defect in this family. 34 refs., 5 figs.

  10. Chromosomal Q-heterochromatin regions in native highlanders of Pamir and Tien-Shan and in newcomers.

    PubMed

    Ibraimov, A I; Kurmanova, G U; Ginsburg, E Kh; Aksenovich, T I; Aksenrod, E I

    1990-01-01

    The variability of human chromosomal Q-heterochromatin regions (Q-HR) was studied in 385 newcomers well adapted to the extreme environmental conditions of Pamir and Tien-Shan, as well as in 284 representatives of the native population of these regions. Newcomers were found to represent a highly homogeneous group as regards all the quantitative characteristics of Q-HR variability, but at the same time they differed significantly from both native residents and individuals of similar nationality (Russians) living permanently at low altitude. Differences between these three groups in the amount of Q-HRs in their genome are discussed as evidence in favour of the hypothesis of the possible selective value of chromosomal Q-heterochromatin material in human adaptation to extreme environmental high-altitude conditions.

  11. Chromosomal microarray testing identifies a 4p terminal region associated with seizures in Wolf–Hirschhorn syndrome

    PubMed Central

    South, Sarah T; Lortz, Amanda; Hensel, Charles H; Sdano, Mallory R; Vanzo, Rena J; Martin, Megan M; Peiffer, Andreas; Lambert, Christophe G; Calhoun, Amy; Carey, John C; Battaglia, Agatino

    2016-01-01

    Background Wolf–Hirschhorn syndrome (WHS) is a contiguous gene deletion syndrome involving variable size deletions of the 4p16.3 region. Seizures are frequently, but not always, associated with WHS. We hypothesised that the size and location of the deleted region may correlate with seizure presentation. Methods Using chromosomal microarray analysis, we finely mapped the breakpoints of copy number variants (CNVs) in 48 individuals with WHS. Seizure phenotype data were collected through parent-reported answers to a comprehensive questionnaire and supplemented with available medical records. Results We observed a significant correlation between the presence of an interstitial 4p deletion and lack of a seizure phenotype (Fisher's exact test p=3.59e-6). In our cohort, there were five individuals with interstitial deletions with a distal breakpoint at least 751 kbp proximal to the 4p terminus. Four of these individuals have never had an observable seizure, and the fifth individual had a single febrile seizure at the age of 1.5 years. All other individuals in our cohort whose deletions encompass the terminal 751 kbp region report having seizures typical of WHS. Additional examples from the literature corroborate these observations and further refine the candidate seizure susceptibility region to a region 197 kbp in size, starting 368 kbp from the terminus of chromosome 4. Conclusions We identify a small terminal region of chromosome 4p that represents a seizure susceptibility region. Deletion of this region in the context of WHS is sufficient for seizure occurrence. PMID:26747863

  12. Physical mapping and microsynteny of Brassica rapa ssp. pekinensis genome corresponding to a 222 kbp gene-rich region of Arabidopsis chromosome 4 and partially duplicated on chromosome 5.

    PubMed

    Park, J Y; Koo, D H; Hong, C P; Lee, S J; Jeon, J W; Lee, S H; Yun, P Y; Park, B S; Kim, H R; Bang, J W; Plaha, P; Bancroft, I; Lim, Y P

    2005-12-01

    We constructed a bacterial artificial chromosome (BAC) library, designated as KBrH, from high molecular weight genomic DNA of Brassica rapa ssp. pekinensis (Chinese cabbage). This library, which was constructed using HindIII-cleaved genomic DNA, consists of 56,592 clones with average insert size of 115 kbp. Using a partially duplicated DNA sequence of Arabidopsis, represented by 19 and 9 predicted genes on chromosome 4 and 5, respectively, and BAC clones from the KBrH library, we studied conservation and microsynteny corresponding to the Arabidopsis regions in B. rapa ssp. pekinensis. The BAC contigs assembled according to the Arabidopsis homoeologues revealed triplication and rearrangements in the Chinese cabbage. In general, collinearity of genes in the paralogous segments was maintained, but gene contents were highly variable with interstitial losses. We also used representative BAC clones, from the assembled contigs, as probes and hybridized them on mitotic (metaphase) and/or meiotic (leptotene/pachytene/metaphase I) chromosomes of Chinese cabbage using bicolor fluorescence in situ hybridization. The hybridization pattern physically identified the paralogous segments of the Arabidopsis homoeologues on B. rapa ssp. pekinensis chromosomes. The homoeologous segments corresponding to chromosome 4 of Arabidopsis were located on chromosomes 2, 8 and 7, whereas those of chromosome 5 were present on chromosomes 6, 1 and 4 of B. rapa ssp. pekinensis.

  13. Neuronal NOS inhibitor and conventional antidepressant drugs attenuate stress-induced fos expression in overlapping brain regions.

    PubMed

    Silva, Michelle; Aguiar, Daniele C; Diniz, Cassiano R A; Guimarães, Francisco Silveira; Joca, Sâmia R L

    2012-04-01

    Recent evidence indicates that the administration of inhibitors of neuronal nitric oxide synthase (nNOS) induces antidepressant-like effects in animal models such as the forced swimming test (FST). However, the neural circuits involved in these effects are not yet known. Therefore, this study investigated the expression of Fos protein, a marker of neuronal activity, in the brain of rats submitted to FST and treated with the preferential nNOS inhibitor, 7-nitroindazole (7-NI), or with classical antidepressant drugs (Venlafaxine and Fluoxetine). Male Wistar rats were submitted to a forced swimming pretest (PT) and, immediately after, started receiving a sequence of three ip injections (0, 5, and 23 h after PT) of Fluoxetine (10 mg/kg), Venlafaxine (10 mg/kg), 7-NI (30 mg/kg) or respective vehicles. One hour after the last drug injection the animals were submitted to the test session, when immobility time was recorded. After the FST they were sacrificed and had their brains removed and processed for Fos immunohistochemistry. Independent group of non-stressed animals received the same drug treatments, or no treatment (naïve). 7-NI, Venlafaxine or Fluoxetine reduced immobility time in the FST, an antidepressant-like effect. None of the treatments induce significant changes in Fos expression per se. However, swimming stress induced significant increases in Fos expression in the following brain regions: medial prefrontal cortex, nucleus accumbens, locus coeruleus, raphe nuclei, striatum, hypothalamic nucleus, periaqueductal grey, amygdala, habenula, paraventricular nucleus of hypothalamus, and bed nucleus of stria terminalis. This effect was attenuated by 7-NI, Venlafaxine or Fluoxetine. These results show that 7-NI produces similar behavioral and neuronal activation effects to those of typical antidepressants, suggesting that these drugs share common neurobiological substrates.

  14. Comparative genetic mapping between duplicated segments on maize chromosomes 3 and 8 and homoeologous regions in sorghum and sugarcane.

    PubMed

    Dufour, P; Grivet, L; D'Hont, A; Deu, M; Trouche, G; Glaszmann, J C; Hamon, P

    1996-06-01

    Comparative mapping within maize, sorghum and sugarcane has previously revealed the existence of syntenic regions between the crops. In the present study, mapping on the sorghum genome of a set of probes previously located on the maize and sugarcane maps allow a detailed analysis of the relationship between maize chromosomes 3 and 8 and sorghum and sugarcane homoeologous regions. Of 49 loci revealed by 46 (4 sugarcane and 42 maize) polymorphic probes in sorghum, 42 were linked and were assigned to linkage groups G (28), E (10) and I (4). On the basis of common probes, a complete co-linearity is observed between sorghum linkage group G and the two sugarcane linkage groups II and III. The comparison between the consensus sorghum/sugarcane map (G/II/III) and the maps of maize chromosomes 3 and 8 reveals a series of linkage blocks within which gene orders are conserved. These blocks are interspersed with non-homoeologous regions corresponding to the central part of the two maize chromosomes and have been reshuffled, resulting in several inversions in maize compared to sorghum and sugarcane. The results emphasize the fact that duplication will considerably complicate precise comparative mapping at the whole genome scale between maize and other Poaceae. PMID:24166631

  15. Genetic map of the spinocerebellar ataxia type 2 (SCA2) region on chromosome 12

    SciTech Connect

    Nechiporuk, A.; Frederick, T.; Pulst, S.M.

    1994-09-01

    The autosomal dominant ataxias (SCAs) are a clinically and genetically heterogeneous group of neurodegenerative diseases characterized by progressive ataxia. At least four gene loci have been identified: SCA1 on chromosome (CHR) 6, SCA2 on CHR12, Machado-Joseph disease on CHR14, and SCA families that are not linked to any of the above loci. In addition, the gene causing dentato-rubro-pallido-luysian atrophy has been identified as an expanded CAG repeat on CHR 12p. As a necessary step in identifying the gene for SCA2, we now identified closer flanking markers. To do this we ordered microsatellite markers in the now identified closer flanking markers. To do this we ordered microsatellite markers in the region and then determined pairwise and multipoint lod scores between the markers and SCA2 in three large pedigrees with SCA. The following order was established with odds > 1,000:1 using six non-SCA pedigrees: D12S101-7.1cM-D12S58-0cM-IGF1-3.6cM-D12S78-1.4cM-D12S317-3.7cM-D12S84-0cM-D12S105-7.2cM-D12S79-7.0cM-PLA2. Using this ordered set of markers we examined linkage to SCA2 in three pedigrees of Italian, Austrian and French-Canadian descent. Pairwise linkage analysis resulted in significant positive lod scores for all markers. The highest pairwise lod score was obtained with D12S84/D12S105 (Z{sub max}=7.98, theta{sub max}=0.05). To further define the location of SCA2, we performed multipoint linkage analysis using the genetic map established above. The highest location score was obtained between D12S317 and D12S84/D12S105. A location of SCA2 between these loci was favored with odds > 100:1. These data likely narrow the SCA2 candidate region to approximately 3.7 cM. The relatively large large number of markers tightly linked to SCA2 will facilitate the assignment of additional SCA pedigrees to CHR12, and will help in the presymptomatic diagnosis of individuals in families with proven linkage to CHR12.

  16. Flagellar region 3b supports strong expression of integrated DNA and the highest chromosomal integration efficiency of the Escherichia coli flagellar regions

    PubMed Central

    Juhas, Mario; Ajioka, James W

    2015-01-01

    The Gram-negative bacterium Escherichia coli is routinely used as the chassis for a variety of biotechnology and synthetic biology applications. Identification and analysis of reliable chromosomal integration and expression target loci is crucial for E. coli engineering. Chromosomal loci differ significantly in their ability to support integration and expression of the integrated genetic circuits. In this study, we investigate E. coli K12 MG1655 flagellar regions 2 and 3b. Integration of the genetic circuit into seven and nine highly conserved genes of the flagellar regions 2 (motA, motB, flhD, flhE, cheW, cheY and cheZ) and 3b (fliE, F, G, J, K, L, M, P, R), respectively, showed significant variation in their ability to support chromosomal integration and expression of the integrated genetic circuit. While not reducing the growth of the engineered strains, the integrations into all 16 target sites led to the loss of motility. In addition to high expression, the flagellar region 3b supports the highest efficiency of integration of all E. coli K12 MG1655 flagellar regions and is therefore potentially the most suitable for the integration of synthetic genetic circuits. PMID:26074421

  17. An integrated radiation hybrid map of bovine chromosome 18 that refines a critical region associated with multiple ocular defects in cattle.

    PubMed

    Abbasi, A R; Geriletoya; Ihara, N; Khalaj, M; Sugimoto, Y; Kunieda, T

    2006-02-01

    Congenital multiple ocular defects (MOD) of Japanese black cattle is a hereditary ocular disorder with an autosomal recessive mode of inheritance showing developmental defects of the lens, retina and iris, persistent embryonic eye vascularization and microphthalmia. The MOD locus has been mapped by linkage analysis to a 6.6-cM interval on the proximal end of bovine chromosome 18, which corresponds to human chromosome 16q and mouse chromosome 8. To refine the MOD region in cattle, we constructed an integrated radiation hybrid (RH) map of the proximal region of bovine chromosome 18, which consisted of 17 genes and 10 microsatellite markers, using the SUNbRH7000 panel. Strong conservation of gene order was found among the corresponding chromosomal regions in cattle, human and mouse. The MOD-critical region was fine mapped to a 59.5-cR region that corresponds to a 6.3-Mb segment of human chromosome 16 and a 4.8-Mb segment of mouse chromosome 8. Several positional candidate genes, including FOXC2 and USP10, were identified in this region.

  18. Transcripts of the MHM region on the chicken Z chromosome accumulate as non-coding RNA in the nucleus of female cells adjacent to the DMRT1 locus.

    PubMed

    Teranishi, M; Shimada, Y; Hori, T; Nakabayashi, O; Kikuchi, T; Macleod, T; Pym, R; Sheldon, B; Solovei, I; Macgregor, H; Mizuno, S

    2001-01-01

    The male hypermethylated (MHM) region, located near the middle of the short arm of the Z chromosome of chickens, consists of approximately 210 tandem repeats of a BamHI 2.2-kb sequence unit. Cytosines of the CpG dinucleotides of this region are extensively methylated on the two Z chromosomes in the male but much less methylated on the single Z chromosome in the female. The state of methylation of the MHM region is established after fertilization by about the 1-day embryonic stage. The MHM region is transcribed only in the female from the particular strand into heterogeneous, high molecular-mass, non-coding RNA, which is accumulated at the site of transcription, adjacent to the DMRT1 locus, in the nucleus. The transcriptional silence of the MHM region in the male is most likely caused by the CpG methylation, since treatment of the male embryonic fibroblasts with 5-azacytidine results in hypo-methylation and active transcription of this region. In ZZW triploid chickens, MHM regions are hypomethylated and transcribed on the two Z chromosomes, whereas MHM regions are hypermethylated and transcriptionally inactive on the three Z chromosomes in ZZZ triploid chickens, suggesting a possible role of the W chromosome on the state of the MHM region. PMID:11321370

  19. Increased disomic homozygosity in the telomeric region of chromosome 21 among Down Syndrome individuals with duodenal atresia

    SciTech Connect

    Lamb, N.E.; Feingold, E.; Sherman, S.L.

    1994-09-01

    Although duodenal atresia (DA) is present in only 4-7% of all Down Syndrome (DS) individuals, 30-50% of all congenital duodenal atresias occur in the DS population, suggesting the presence of gene(s) on chromosome 21 that play an important role in intestinal development. We recently proposed a chromosome 21 gene dosage model to explain the phenotypic variance seen among DS individuals and presented a strategy to map genes involved in these phenotypic traits. We suggest that {open_quote}hyper-dosage{close_quote} resulting from normal allelic differences explains the phenotypic variation. A proportion of trisomic genotypes would exceed some activity threshold and express the trait. In affected individuals, this increase in expression is due to the presence of two identical copies of {open_quote}susceptibility{close_quote} allele, inherited from a heterozygous parent of origin. Individuals with trisomy 21 and a specific phenotypic defect should exhibit increased levels of disomic homozygosity in the region containing the gene involved in the defect`s etiology. These data can be used to map these genes. Using this approach, we have examined markers along the long arm of chromosome 21 among DS individuals with DA and determined the degree of disomic homozygosity at each marker. This frequency was compared to the level of disomic homozygosity among our entire DS study population consisting of approximately 380 DS families to test for linkage between DA and each marker. Preliminary analysis of 13 DS cases with DA indicates an increase in disomic homozygosity along the distal region of the chromosome, from HMG14 to D21S171, the most telomeric marker analyzed. An additional 15 cases are currently being analyzed to confirm and better define this candidate region.

  20. Narrowing a region on rat chromosome 13 that protects against hypertension in Dahl SS-13BN congenic strains.

    PubMed

    Moreno, Carol; Williams, Jan M; Lu, Limin; Liang, Mingyu; Lazar, Jozef; Jacob, Howard J; Cowley, Allen W; Roman, Richard J

    2011-04-01

    Transfer of chromosome 13 from the Brown Norway (BN) rat onto the Dahl salt-sensitive (SS) genetic background attenuates the development of hypertension, but the genes involved remain to be identified. The purpose of the present study was to confirm by telemetry that a congenic strain [SS.BN-(D13Hmgc37-D13Got22)/Mcwi, line 5], carrying a 13.4-Mb segment of BN chromosome 13 from position 32.4 to 45.8 Mb, is protected from the development of hypertension and then to narrow the region of interest by creating and phenotyping 11 additional subcongenic strains. Mean arterial pressure (MAP) rose from 118 ± 1 to 186 ± 5 mmHg in SS rats fed a high-salt diet (8.0% NaCl) for 3 wk. Protein excretion increased from 56 ± 11 to 365 ± 37 mg/day. In contrast, MAP only increased to 152 ± 9 mmHg in the line 5 congenic strain. Six subcongenic strains carrying segments of BN chromosome 13 from 32.4 and 38.2 Mb and from 39.9 to 45.8 Mb were not protected from the development of hypertension. In contrast, MAP was reduced by ∼30 mmHg in five strains, carrying a 1.9-Mb common segment of BN chromosome 13 from 38.5 to 40.4 Mb. Proteinuria was reduced by ∼50% in these strains. Sequencing studies did not identify any nonsynonymous single nucleotide polymorphisms in the coding region of the genes in this region. RT-PCR studies indicated that 4 of the 13 genes in this region were differentially expressed in the kidney of two subcongenic strains that were partially protected from hypertension vs. those that were not. These results narrow the region of interest on chromosome 13 from 13.4 Mb (159 genes) to a 1.9-Mb segment containing only 13 genes, of which 4 are differentially expressed in strains partially protected from the development of hypertension. PMID:21257920

  1. Exclusion of linkage between alcoholism and the MNS blood group region on chromosome 4q in multiplex families

    SciTech Connect

    Neiswanger, K.; Kaplan, B.; Hill, S.Y.

    1995-02-27

    Polymorphic DNA markers on the long arm of chromosome 4 were used to examine linkage to alcoholism in 20 multiplex pedigrees. Fifteen loci were determined for 124 individuals. Lod scores were calculated assuming both dominant and recessive disease modes of inheritance, utilizing incidence data by age and gender that allow for correction for variable age of onset and frequency of the disorder by gender. Under the assumption that alcoholism is homogeneous in this set of pedigrees, and that a recessive mode with age and gender correction is the most appropriate, the total lod scores for all families combined were uniformly lower than -2.0. This suggests an absence of linkage between the putative alcoholism susceptibility gene and markers in the region of the MNS blood group (4q28-31), a region for which we had previously found suggestive evidence of linkage to alcoholism. The 100 cM span of chromosome 4 studied includes the class I alcohol dehydrogenase (ADH) loci. Using the recessive mode, no evidence for linkage to alcoholism was found for the markers tested, which spanned almost the entire long arm of chromosome 4. Under the dominant mode, no evidence for linkage could be found for several of the markers. 36 refs., 1 fig., 3 tabs.

  2. Random search for shared chromosomal regions in four affected individuals: the assignment of a new hereditary ataxia locus

    SciTech Connect

    Nikali, K.; Suomalainen, A.; Koskinen, T.; Peltonen, L.; Terwilliger, J.; Weissenbach, J.

    1995-05-01

    Infantile-onset spinocerebellar ataxia (IOSCA) is an autosomal recessively inherited progressive neurological disorder of unknown etiology. This ataxia, identified so far only in the genetically isolated Finnish population, does not share gene locus with any of the previously identified hereditary ataxias, and a random mapping approach was adopted to assign the IOSCA locus. Based on the assumption of one founder mutation, a primary screening of the genome was performed using samples from just four affected individuals in two consanguineous pedigrees. The identification of a shared chromosomal region in these four patients provided the first evidence that the IOSCA gene locus is on chromosome 10q23.3-q24.1, which was confirmed by conventional linkage analysis in the complete family material. Strong linkage disequilibrium observed between IOSCA and the linked markers was utilized to define accurately the critical chromosomal region. The results showed the power of linkage disequilibrium in the locus assignment of diseases with very limited family materials. 30 refs., 3 figs., 2 tabs.

  3. Sensitized phenotypic screening identifies gene dosage sensitive region on chromosome 11 that predisposes to disease in mice

    PubMed Central

    Ermakova, Olga; Piszczek, Lukasz; Luciani, Luisa; Cavalli, Florence M G; Ferreira, Tiago; Farley, Dominika; Rizzo, Stefania; Paolicelli, Rosa Chiara; Al-Banchaabouchi, Mumna; Nerlov, Claus; Moriggl, Richard; Luscombe, Nicholas M; Gross, Cornelius

    2011-01-01

    The identification of susceptibility genes for human disease is a major goal of current biomedical research. Both sequence and structural variation have emerged as major genetic sources of phenotypic variability and growing evidence points to copy number variation as a particularly important source of susceptibility for disease. Here we propose and validate a strategy to identify genes in which changes in dosage alter susceptibility to disease-relevant phenotypes in the mouse. Our approach relies on sensitized phenotypic screening of megabase-sized chromosomal deletion and deficiency lines carrying altered copy numbers of ∼30 linked genes. This approach offers several advantages as a method to systematically identify genes involved in disease susceptibility. To examine the feasibility of such a screen, we performed sensitized phenotyping in five therapeutic areas (metabolic syndrome, immune dysfunction, atherosclerosis, cancer and behaviour) of a 0.8 Mb reciprocal chromosomal duplication and deficiency on chromosome 11 containing 27 genes. Gene dosage in the region significantly affected risk for high-fat diet-induced metabolic syndrome, antigen-induced immune hypersensitivity, ApoE-induced atherosclerosis, and home cage activity. Follow up studies on individual gene knockouts for two candidates in the region showed that copy number variation in Stat5 was responsible for the phenotypic variation in antigen-induced immune hypersensitivity and metabolic syndrome. These data demonstrate the power of sensitized phenotypic screening of segmental aneuploidy lines to identify disease susceptibility genes. PMID:21204268

  4. Precise estimation of genomic regions controlling lodging resistance using a set of reciprocal chromosome segment substitution lines in rice

    PubMed Central

    Ookawa, Taiichiro; Aoba, Ryo; Yamamoto, Toshio; Ueda, Tadamasa; Takai, Toshiyuki; Fukuoka, Shuichi; Ando, Tsuyu; Adachi, Shunsuke; Matsuoka, Makoto; Ebitani, Takeshi; Kato, Yoichiro; Mulsanti, Indria Wahyu; Kishii, Masahiro; Reynolds, Matthew; Piñera, Francisco; Kotake, Toshihisa; Kawasaki, Shinji; Motobayashi, Takashi; Hirasawa, Tadashi

    2016-01-01

    Severe lodging has occurred in many improved rice varieties after the recent strong typhoons in East and Southeast Asian countries. The indica variety Takanari possesses strong culm characteristics due to its large section modulus, which indicates culm thickness, whereas the japonica variety Koshihikari is subject to substantial bending stress due to its thick cortical fibre tissue. To detect quantitative trait loci (QTLs) for lodging resistance and to eliminate the effects of genetic background, we used reciprocal chromosome segment substitution lines (CSSLs) derived from a cross between Koshihikari and Takanari. The oppositional effects of QTLs for section modulus were confirmed in both genetic backgrounds on chromosomes 1, 5 and 6, suggesting that these QTLs are not affected by the genetic background and are controlled independently by a single factor. The candidate region of a QTL for section modulus included SD1. The section modulus of NIL-sd1 was lower than that of Koshihikari, whereas the section modulus of NIL-SD1 was higher than that of Takanari. This result indicated that those regions regulate the culm thickness. The reciprocal effects of the QTLs for cortical fibre tissue thickness were confirmed in both genetic backgrounds on chromosome 9 using CSSLs. PMID:27465821

  5. Precise estimation of genomic regions controlling lodging resistance using a set of reciprocal chromosome segment substitution lines in rice.

    PubMed

    Ookawa, Taiichiro; Aoba, Ryo; Yamamoto, Toshio; Ueda, Tadamasa; Takai, Toshiyuki; Fukuoka, Shuichi; Ando, Tsuyu; Adachi, Shunsuke; Matsuoka, Makoto; Ebitani, Takeshi; Kato, Yoichiro; Mulsanti, Indria Wahyu; Kishii, Masahiro; Reynolds, Matthew; Piñera, Francisco; Kotake, Toshihisa; Kawasaki, Shinji; Motobayashi, Takashi; Hirasawa, Tadashi

    2016-07-28

    Severe lodging has occurred in many improved rice varieties after the recent strong typhoons in East and Southeast Asian countries. The indica variety Takanari possesses strong culm characteristics due to its large section modulus, which indicates culm thickness, whereas the japonica variety Koshihikari is subject to substantial bending stress due to its thick cortical fibre tissue. To detect quantitative trait loci (QTLs) for lodging resistance and to eliminate the effects of genetic background, we used reciprocal chromosome segment substitution lines (CSSLs) derived from a cross between Koshihikari and Takanari. The oppositional effects of QTLs for section modulus were confirmed in both genetic backgrounds on chromosomes 1, 5 and 6, suggesting that these QTLs are not affected by the genetic background and are controlled independently by a single factor. The candidate region of a QTL for section modulus included SD1. The section modulus of NIL-sd1 was lower than that of Koshihikari, whereas the section modulus of NIL-SD1 was higher than that of Takanari. This result indicated that those regions regulate the culm thickness. The reciprocal effects of the QTLs for cortical fibre tissue thickness were confirmed in both genetic backgrounds on chromosome 9 using CSSLs.

  6. Identifying chromosomal selection-sweep regions in facial eczema selection-line animals using an ovine 50K-SNP array.

    PubMed

    Phua, S H; Brauning, R; Baird, H J; Dodds, K G

    2014-04-01

    Facial eczema (FE) is a hepato-mycotoxicosis found mainly in New Zealand sheep and cattle. When genetics was found to be a factor in FE susceptibility, resistant and susceptible selection lines of Romney sheep were established to enable further investigations of this disease trait. Using the Illumina OvineSNP50 BeadChip, we conducted a selection-sweep experiment on these FE genetic lines. Two analytical methods were used to detect selection signals, namely the Peddrift test (Dodds & McEwan, 1997) and fixation index FST (Weir & Hill, 2002). Of 50 975 single nucleotide polymorphism (SNP) markers tested, there were three that showed highly significant allele frequency differences between the resistant and susceptible animals (Peddrift nominal P < 0.000001). These SNP loci are located on chromosomes OAR1, OAR11 and OAR12 that coincide precisely with the three highest genomic FST peaks. In addition, there are nine less significant Peddrift SNPs (nominal P ≤ 0.000009) on OAR6 (n = 2), OAR9 (n = 2), OAR12, OAR19 (n = 2), OAR24 and OAR26. In smoothed FST (five-SNP moving average) plots, the five most prominent peaks are on OAR1, OAR6, OAR7, OAR13 and OAR19. Although these smoothed FST peaks do not coincide with the three most significant Peddrift SNP loci, two (on OAR6 and OAR19) overlap with the set of less significant Peddrift SNPs above. Of these 12 Peddrift SNPs and five smoothed FST regions, none is close to the FE candidate genes catalase and ABCG2; however, two on OAR1 and one on OAR13 fall within suggestive quantitative trait locus regions identified in a previous genome screen experiment. The present studies indicated that there are at least eight genomic regions that underwent a selection sweep in the FE lines. PMID:24521158

  7. Chromosomal Q-heterochromatin regions in the indigenous population of the northern part of West Siberia and in new migrants.

    PubMed

    Ibraimov, A I; Aksenrod, E I; Kurmanova, G U; Turapov, O A

    1991-01-01

    The variability of Q-heterochromatin regions (Q-HR) was studied in native residents of the northern part of West Siberia, viz Yakuts (n = 127), Selkups (n = 90) and Khants (n = 54), as well as in newcomers including oil-borers (n = 43) and children (n = 113) living permanently in this part of the USSR. The major quantitative characteristics of chromosomal Q-HR variability were shown to be very similar in oil-borers and natives, and this is considered to be the result of specific selection of individuals according to the amount of Q-HRs in their genome. The hypothesis on the possible selective value of chromosomal Q-HRs in human adaptation to extreme environmental conditions of the extreme north is discussed.

  8. Overlap in Bibliographic Databases.

    ERIC Educational Resources Information Center

    Hood, William W.; Wilson, Concepcion S.

    2003-01-01

    Examines the topic of Fuzzy Set Theory to determine the overlap of coverage in bibliographic databases. Highlights include examples of comparisons of database coverage; frequency distribution of the degree of overlap; records with maximum overlap; records unique to one database; intra-database duplicates; and overlap in the top ten databases.…

  9. A region of maize chromosome 2 affects response to downy mildew pathogens.

    PubMed

    Sabry, Ahmed; Jeffers, Dan; Vasal, S K; Frederiksen, Richard; Magill, Clint

    2006-07-01

    Quantitative trait loci (QTLs) for downy mildew resistance in maize were identified based on co-segregation with linked restriction fragment length polymorphisms or simple sequence repeats in 220 F2 progeny from a cross between susceptible and resistant parents. Disease response was assessed on F3 families in nurseries in Egypt, Thailand, and South Texas and after inoculation in a controlled greenhouse test. Heritability of the disease reaction was high (around 93% in Thailand). One hundred and thirty polymorphic markers were assigned to the ten chromosomes of maize with LOD scores exceeding 4.9 and covering about 1,265 cM with an average interval length between markers of 9.5 cM. About 90% of the genome is located within 10 cM of the nearest marker. Three putative QTLs were detected in association with resistance to downy mildew in different environments using composite interval mapping. Despite environmental and symptom differences, one locus on chromosome 2 had a major effect and explained up to 70% of the phenotypic variation in Thailand where disease pressure was the highest. The other two QTLs on chromosome 3 and chromosome 9 had minor effects; each explained no more than 4% of the phenotypic variation. The three QTLs appeared to have additive effects on resistance, identifying one major gene and two minor genes that contribute to downy mildew resistance.

  10. The human FGF9 gene maps to chromosomal region 13q11-q12

    SciTech Connect

    Mattei, M.G. Penault-Llorca, F.; Coulier, F.; Birnbaum, D.

    1995-10-10

    The FGF gene family (fibroblast growth factor) currently comprises nine members: FGF1 to FGF9. FGFs are peptide regulatory factors acting through four distinct tyrosine kinase receptors and involved in various biological processes during embryogenesis and adult life, including implantation, morphogenesis, angiogenesis, and possibly tumorigensis. To date the chromosomal localizations of only seven human FGF and eight mouse Fgf genes are known. They are localized in various areas of the human and mouse genomes, except for FGF3 and FGF4, which are tandemly linked on chromosome 11 in humans and 7 in mice. The determination of the chromosomal localization of FGF and FGF receptor genes has often been instrumental in linking human disease or mouse spontaneous mutations to molecular alterations and is therefore of particular interest. Radioactive chromosomal in situ hybridization was used to map the most recently isolated member of the family, FGF9, in the human genome. The probe for FGF9 was pFGF9-FP, a plasmid containing a 0.5-kb product of amplification by polymerase chain reaction derived from our previous experiments and subcloned into a Bluescript vector. In situ hybridization was performed according to published procedures. 9 refs., 1 fig.

  11. Exclusion of candidate genes from the chromosome 1q juvenile glaucoma region and mapping of the peripheral cannabis receptor gene (CNR2) to chromosome 1

    SciTech Connect

    Sunden, S.L.F.; Nichols, B.E.; Alward, W.L.M.

    1994-09-01

    Juvenile onset primary open angle glaucoma has been mapped by linkage to 1q21-q31. Several candidate genes were evaluated in the same family used to identify the primary linkage. Atrionatriuretic peptide receptor A (NPR1) and laminin C1 (LAMC1) have been previously mapped to this region and could putatively play a role in the pathogenesis of glaucoma. A third gene, the peripheral cannabis receptor (CNR2) was not initially mapped in humans but was a candidate because of the relief that cannabis affords some patients with primary open angle glaucoma. Microsatellites associated with NPR1 and LAMC1 revealed multiple recombinations in affected members of this pedigree. CNR2 was shown to be on chromosome 1 by PCR amplification of a 150 bp fragment of the 3{prime} untranslated region in monochromosomal somatic cell hybrids (NIGMS panel No. 2). These primers also revealed a two allele single strand conformation polymorphism which showed multiple recombinants with juvenile onset primary open angle glaucoma in large pedigrees, segregating this disorder. The marker was then mapped to 1p34-p36 by linkage, with the most likely location between liver alkaline phosphatase (ALPL) and alpha-L-1 fucosidase (FUCA1).

  12. Sequence of DNA replication in Allium fistulosum chromosomes during S-phase.

    PubMed

    Fujishige, I; Taniguchi, K

    1998-12-01

    Bromodeoxyuridine pulse labelling and immunodetection were applied to synchronized Allium fistulosum cells to study sequential changes in the chromosome replication pattern during S-phase. The replication patterns were classified into five main types depending on the location of the replication signals: (1) over the whole chromosomes; (2) at proximal and interstitial regions; (3) at proximal, interstitial and distal regions; (4) at interstitial and distal regions; and (5) at distal regions. The frequencies of each pattern changed sequentially according to the timing of BrdU incorporation, demonstrating the temporal order of chromosome replication during S-phase. The distal regions that correspond to the major C-bands replicated throughout S-phase except for the earliest stage, but most intensely in late S-phase. The replication time of different chromosome sites overlapped, which is quite different from the biphasic mode of replication that occurs in mammalian chromosomes. PMID:10099874

  13. The human glutamate receptor delta 2 gene (GRID2) maps to chromosome 4q22.

    PubMed

    Hu, W; Zuo, J; De Jager, P L; Heintz, N

    1998-01-01

    We isolated the human glutamate receptor delta 2 (GRID2) gene, which has 97.0% identity in amino acid sequence to the mouse glutamate receptor delta 2 (Grid2) gene. We subsequently mapped this gene to human chromosome 4q22 by radiation hybrid mapping and by hybridization to two overlapping human yeast artificial chromosomes that are located in 4q22. The Grid2 gene, which is mutated in lurcher (Lc) mice, maps to mouse chromosome 6. Thus, the mapping of the GRID2 gene to human chromosome 4q22 confirms and refines a region of synteny between mouse and human genomes.

  14. Specific primer sets used to amplify by PCR the hepatitis B virus overlapping S/Pol region select different viral variants.

    PubMed

    Cuestas, M L; Mathet, V L; Oubiña, J R

    2012-10-01

    PCR detection of viral genomes has provided new insights into viral diagnosis. Nowadays, it is the most frequently used nucleic acid testing (qualitative and quantitative) technique. The aim of this study was to analyse the major circulating hepatitis B virus (HBV) variants PCR-amplified by three sets of primers in a patient infected with genotype E. The HBV S/Pol overlapping genomic region was amplified from the serum of an infected child using three primer sets previously described. Sequence analysis corresponding to the HBV S/Pol region revealed the presence of different viral populations depending on the set of primers used. D144A S-escape mutant was detected with two of the primer sets, while the rtL217R mutant within the Pol - conferring resistance to Adefovir - could be picked up with a different pair of primer sets. This study undoubtedly implies that the description of viral polymorphisms should be stated together with the sequence of the primers used for PCR amplification when studies of escape and/or antiviral-resistant HBV mutants are carried out.

  15. Specific primer sets used to amplify by PCR the hepatitis B virus overlapping S/Pol region select different viral variants.

    PubMed

    Cuestas, M L; Mathet, V L; Oubiña, J R

    2012-10-01

    PCR detection of viral genomes has provided new insights into viral diagnosis. Nowadays, it is the most frequently used nucleic acid testing (qualitative and quantitative) technique. The aim of this study was to analyse the major circulating hepatitis B virus (HBV) variants PCR-amplified by three sets of primers in a patient infected with genotype E. The HBV S/Pol overlapping genomic region was amplified from the serum of an infected child using three primer sets previously described. Sequence analysis corresponding to the HBV S/Pol region revealed the presence of different viral populations depending on the set of primers used. D144A S-escape mutant was detected with two of the primer sets, while the rtL217R mutant within the Pol - conferring resistance to Adefovir - could be picked up with a different pair of primer sets. This study undoubtedly implies that the description of viral polymorphisms should be stated together with the sequence of the primers used for PCR amplification when studies of escape and/or antiviral-resistant HBV mutants are carried out. PMID:22967107

  16. The First Cytogenetic Data on Strumigenys louisianae Roger, 1863 (Formicidae: Myrmicinae: Dacetini): The Lowest Chromosome Number in the Hymenoptera of the Neotropical Region

    PubMed Central

    Alves-Silva, Ana Paula; Barros, Luísa Antônia Campos; Chaul, Júlio Cézar Mário; Pompolo, Silvia das Graças

    2014-01-01

    In the present study, the first cytogenetic data was obtained for the ant species Strumigenys louisianae, from a genus possessing no previous cytogenetic data for the Neotropical region. The chromosome number observed was 2n = 4, all possessing metacentric morphology. Blocks rich in GC base pairs were observed in the interstitial region of the short arm of the largest chromosome pair, which may indicate that this region corresponds to the NORs. The referred species presented the lowest chromosome number observed for the subfamily Myrmicinae and for the Hymenoptera found in the Neotropical region. Observation of a low chromosome number karyotype has been described in Myrmecia croslandi, in which the occurrence of tandem fusions accounts for the most probable rearrangement for its formation. The accumulation of cytogenetic data may carry crucial information to ensure deeper understanding of the systematics of the tribe Dacetini. PMID:25379715

  17. Chromosome speciation: Humans, Drosophila, and mosquitoes

    PubMed Central

    Ayala, Francisco J.; Coluzzi, Mario

    2005-01-01

    Chromosome rearrangements (such as inversions, fusions, and fissions) may play significant roles in the speciation between parapatric (contiguous) or partly sympatric (geographically overlapping) populations. According to the “hybrid-dysfunction” model, speciation occurs because hybrids with heterozygous chromosome rearrangements produce dysfunctional gametes and thus have low reproductive fitness. Natural selection will, therefore, promote mutations that reduce the probability of intercrossing between populations carrying different rearrangements and thus promote their reproductive isolation. This model encounters a disabling difficulty: namely, how to account for the spread in a population of a chromosome rearrangement after it first arises as a mutation in a single individual. The “suppressed-recombination” model of speciation points out that chromosome rearrangements act as a genetic filter between populations. Mutations associated with the rearranged chromosomes cannot flow from one to another population, whereas genetic exchange will freely occur between colinear chromosomes. Mutations adaptive to local conditions will, therefore, accumulate differentially in the protected chromosome regions so that parapatric or partially sympatric populations will genetically differentiate, eventually evolving into different species. The speciation model of suppressed recombination has recently been tested by gene and DNA sequence comparisons between humans and chimpanzees, between Drosophila species, and between species related to Anopheles gambiae, the vector of malignant malaria in Africa. PMID:15851677

  18. Mapping of the chromosome 1p36 region surrounding the Charcot-Marie-Tooth disease type 2A locus

    SciTech Connect

    Denton, P.; Gere, S.; Wolpert, C.

    1994-09-01

    Charcot-Marie-Tooth (CMT) disease is the most common inherited peripheral neuropathy. Although CMT2 is clinically indistinguishable from CMT1, the two forms can be differentiated by pathological and neurophysiological methods. We have established one locus, CMT2A on chromosome 1p36, and have established genetic heterogeneity. This locus maps to the region of the deletions associated with neuroblastoma. We have now identified an additional 11 CMT2 families. Three families are linked to chromosome 1p36 while six families are excluded from this region. Another six families are currently under analysis and collection. To date the CMT2A families represent one third of those CMT2 families examined. We have established a microdissection library of the 1p36 region which is currently being characterized for microsatellite repeats and STSs using standard hybridization techniques and a modified degenerate primer method. In addition, new markers (D1S253, D1S450, D1S489, D1S503, GATA27E04, and GATA4H04) placed in this region are being mapped using critical recombinants in the CEPH reference pedigrees. Fluorescent in situ hybridization (FISH) has been used to confirm mapping. A YAC contig is being assembled from the CEPH megabase library using STSs to isolate key YACs which are extended by vectorette end clone and Alu-PCR. These findings suggest that the CMT2 phenotype is secondary to at least two different genes and demonstrates further heterogeneity in the CMT phenotype.

  19. Peopling of the North Circumpolar Region--insights from Y chromosome STR and SNP typing of Greenlanders.

    PubMed

    Olofsson, Jill Katharina; Pereira, Vania; Børsting, Claus; Morling, Niels

    2015-01-01

    The human population in Greenland is characterized by migration events of Paleo- and Neo-Eskimos, as well as admixture with Europeans. In this study, the Y-chromosomal variation in male Greenlanders was investigated in detail by typing 73 Y-chromosomal single nucleotide polymorphisms (Y-SNPs) and 17 Y-chromosomal short tandem repeats (Y-STRs). Approximately 40% of the analyzed Greenlandic Y chromosomes were of European origin (I-M170, R1a-M513 and R1b-M343). Y chromosomes of European origin were mainly found in individuals from the west and south coasts of Greenland, which is in agreement with the historic records of the geographic placements of European settlements in Greenland. Two Inuit Y-chromosomal lineages, Q-M3 (xM19, M194, L663, SA01 and L766) and Q-NWT01 (xM265) were found in 23% and 31% of the male Greenlanders, respectively. The time to the most recent common ancestor (TMRCA) of the Q-M3 lineage of the Greenlanders was estimated to be between 4,400 and 10,900 years ago (y. a.) using two different methods. This is in agreement with the theory that the North Circumpolar Region was populated via a second expansion of humans in the North American continent. The TMRCA of the Q-NWT01 (xM265) lineage in Greenland was estimated to be between 7,000 and 14,300 y. a. using two different methods, which is older than the previously reported TMRCA of this lineage in other Inuit populations. Our results indicate that Inuit individuals carrying the Q-NWT01 (xM265) lineage may have their origin in the northeastern parts of North America and could be descendants of the Dorset culture. This in turn points to the possibility that the current Inuit population in Greenland is comprised of individuals of both Thule and Dorset descent.

  20. Inversion of the Chromosomal Region between Two Mating Type Loci Switches the Mating Type in Hansenula polymorpha

    PubMed Central

    Maekawa, Hiromi; Kaneko, Yoshinobu

    2014-01-01

    Yeast mating type is determined by the genotype at the mating type locus (MAT). In homothallic (self-fertile) Saccharomycotina such as Saccharomyces cerevisiae and Kluveromyces lactis, high-efficiency switching between a and α mating types enables mating. Two silent mating type cassettes, in addition to an active MAT locus, are essential components of the mating type switching mechanism. In this study, we investigated the structure and functions of mating type genes in H. polymorpha (also designated as Ogataea polymorpha). The H. polymorpha genome was found to harbor two MAT loci, MAT1 and MAT2, that are ∼18 kb apart on the same chromosome. MAT1-encoded α1 specifies α cell identity, whereas none of the mating type genes were required for a identity and mating. MAT1-encoded α2 and MAT2-encoded a1 were, however, essential for meiosis. When present in the location next to SLA2 and SUI1 genes, MAT1 or MAT2 was transcriptionally active, while the other was repressed. An inversion of the MAT intervening region was induced by nutrient limitation, resulting in the swapping of the chromosomal locations of two MAT loci, and hence switching of mating type identity. Inversion-deficient mutants exhibited severe defects only in mating with each other, suggesting that this inversion is the mechanism of mating type switching and homothallism. This chromosomal inversion-based mechanism represents a novel form of mating type switching that requires only two MAT loci. PMID:25412462

  1. Inversion of the chromosomal region between two mating type loci switches the mating type in Hansenula polymorpha.

    PubMed

    Maekawa, Hiromi; Kaneko, Yoshinobu

    2014-11-01

    Yeast mating type is determined by the genotype at the mating type locus (MAT). In homothallic (self-fertile) Saccharomycotina such as Saccharomyces cerevisiae and Kluveromyces lactis, high-efficiency switching between a and α mating types enables mating. Two silent mating type cassettes, in addition to an active MAT locus, are essential components of the mating type switching mechanism. In this study, we investigated the structure and functions of mating type genes in H. polymorpha (also designated as Ogataea polymorpha). The H. polymorpha genome was found to harbor two MAT loci, MAT1 and MAT2, that are ∼18 kb apart on the same chromosome. MAT1-encoded α1 specifies α cell identity, whereas none of the mating type genes were required for a identity and mating. MAT1-encoded α2 and MAT2-encoded a1 were, however, essential for meiosis. When present in the location next to SLA2 and SUI1 genes, MAT1 or MAT2 was transcriptionally active, while the other was repressed. An inversion of the MAT intervening region was induced by nutrient limitation, resulting in the swapping of the chromosomal locations of two MAT loci, and hence switching of mating type identity. Inversion-deficient mutants exhibited severe defects only in mating with each other, suggesting that this inversion is the mechanism of mating type switching and homothallism. This chromosomal inversion-based mechanism represents a novel form of mating type switching that requires only two MAT loci.

  2. Molecular cytogenetic analysis of Inv Dup(15) chromosomes, using probes specific for the Pradar-Willi/Angelman syndrome region: Clinical implications

    SciTech Connect

    Leana-Cox, J. ); Jenkins, L. ); Palmer, C.G.; Plattner, R. ); Sheppard, L. ); Flejter, W.L. ); Zackowski, J. ); Tsien, F. ); Schwartz, S. )

    1994-05-01

    Twenty-seven cases of inverted duplications of chromosome 15 (inv dup[15]) were investigated by FISH with two DNA probes specific for the Prader-Willi syndrome/Angelman syndrome (PWS/AS) region on proximal 15q. Sixteen of the marker chromosomes displayed two copies of each probe, while in the remaining 11 markers no hybridization was observed. A significant association was found between the presence of this region and an abnormal phenotype (P<.01). This is the largest study to date of inv dup(15) chromosomes, that uses molecular cytogenetic methods and is the first to report a significant association between the presence of a specific chromosomal region in such markers and an abnormal phenotype. 30 refs., 1 fig., 4 tabs.

  3. Expanded conserved linkage group between human 16p13 and the Scid region of the mouse chromosome 16

    SciTech Connect

    Deng, Z.M.; Siciliano, M.J.; Davisson, M.T.

    1994-09-01

    Knowledge of homologies between human and mouse chromosomes is essential for understanding chromosomal evolution and the development of experimental models for human disease. We have reported the identification of a conserved linkage group between human 16p13 and the centromeric portion of the mouse 16. Defining the extent of this linkage conservation has significant biomedical implications since that region of mouse genome contains the Scid mutation and the human 16p13 contains genes that are involved in DNA repair and certain types of human leukemia as well as other diseases such as Rubinstein-Taybi Syndrome. Here, this conserved linkage group has been defined and expanded. It now contains 5 genetic loci and spans more than 3 Mb in human and 23 cM in mouse. The 5 loci are PRM1,2 (protamine 1 and 2), NOP3 (a subclone of D16S237), GSPT1 (a gene involved in the regulation of G1 to S phase transition), MYH11 (a human smooth muscle myosin heavy chain gene) and MRP (multi-drug resistant-associated protein gene). Using a panel of human-rodent hybrids that are informative for different portions of human 16, we have established the following order on human 16p: telomere-NOP3-PRM1,2-GSPT1-(MYH11,MRP)-centromere. The genes were assigned to the mouse chromosome 16 by a mouse-Chinese hamster somatic cell hybrid panel informative for mouse chromosomes. Linkage analysis using backcross mice informative for the Scid mutation indicated the following order and genetic distance (in cM) in mouse: centromere-Nop3-11.7-Prm1-1.4-Gspt1-8.2-(Myh11,Mrp)-1.4-Scid-telomere.

  4. Overlapping binding of PhoP and AfsR to the promoter region of glnR in Streptomyces coelicolor.

    PubMed

    Santos-Beneit, Fernando; Rodríguez-García, Antonio; Martín, Juan F

    2012-10-12

    Growth of soil bacteria is often limited by the availability of essential nutrients such as carbon, nitrogen and phosphate. The reaction to a specific nutrient starvation triggers interconnected responses to equilibrate the metabolism. It is known that PhoP (response regulator involved in phosphate control) specifically binds to several promoters of genes involved in nitrogen metabolism which are also regulated by GlnR (regulator involved in nitrogen control). In this article we report a novel cross-talk between GlnR and the SARP-like regulator, AfsR. AfsR binds to some PhoP-regulated promoters including those of afsS (a small regulatory protein of secondary metabolism), pstS (a component of the phosphate transport system) and phoRP (encoding the two component system itself). We have characterized the regulation exerted upon the nitrogen regulator glnR gene by AfsR, using EMSA and DNase I footprinting assays as well as in vivo expression studies with ΔphoP, ΔafsR and ΔafsR-ΔphoP mutants. Both PhoP and AfsR proteins are able to bind to overlapping regions within the glnR promoter producing different effects. This work demonstrates a cross-talk of three different regulators of both primary and secondary metabolism.

  5. A pulsed-field gel electrophoresis map in the ataxia-telangiectasia region of chromosome 11q22. 3

    SciTech Connect

    Uhrhammer, N.; Huo, Y.; Gatti, R.A. ); Concannon, P. ); Nakamura, Yusuke )

    1994-03-15

    The authors interest in isolating the gene(s) for ataxia-telangiectasia has prompted construction of a physical map of chromosome 11q22.3 using markers localized to this region by linkage analysis and/or hybrid cell panels. Twenty-two markers have been analyzed by pulsed-field gel electrophoresis. Nine of these markers form an [approximately]2-Mb long-range contiguous map. An average distance of 200 kb between probes in this map should facilitate the isolation of new cDNAs, anonymous probes, and YACs in an orderly way. 15 refs., 2 figs.

  6. The mouse mutation sarcosinemia (sar) maps to chromosome 2 in a region homologous to human 9q33-q34

    SciTech Connect

    Brunialti, A.L.B.; Guenet, J.L.; Harding, C.O.; Wolff, J.A.

    1996-08-15

    The autosomal recessive mouse mutation sarcosinemia (sar), which was discovered segregating in the progeny of a male whose premeiotic germ cells had been treated with the mutagen ethylnitrosourea, is characterized by a deficiency in sarcosine dehydrogenase activity. Using an intersubspecific cross, we mapped the sar locus to mouse chromosome 2, approximately 15-18 cM from the centromere. The genetic localization of this locus in the mouse allows the identification of a candidate region in human (9q33-q34) where the homologous disease should map. 15 refs., 2 figs.

  7. Assembling the Setaria italica L. Beauv. genome into nine chromosomes and insights into regions affecting growth and drought tolerance

    PubMed Central

    Tsai, Kevin J.; Lu, Mei-Yeh Jade; Yang, Kai-Jung; Li, Mengyun; Teng, Yuchuan; Chen, Shihmay; Ku, Maurice S. B.; Li, Wen-Hsiung

    2016-01-01

    The diploid C4 plant foxtail millet (Setaria italica L. Beauv.) is an important crop in many parts of Africa and Asia for the vast consumption of its grain and ability to grow in harsh environments, but remains understudied in terms of complete genomic architecture. To date, there have been only two genome assembly and annotation efforts with neither assembly reaching over 86% of the estimated genome size. We have combined de novo assembly with custom reference-guided improvements on a popular cultivar of foxtail millet and have achieved a genome assembly of 477 Mbp in length, which represents over 97% of the estimated 490 Mbp. The assembly anchors over 98% of the predicted genes to the nine assembled nuclear chromosomes and contains more functional annotation gene models than previous assemblies. Our annotation has identified a large number of unique gene ontology terms related to metabolic activities, a region of chromosome 9 with several growth factor proteins, and regions syntenic with pearl millet or maize genomic regions that have been previously shown to affect growth. The new assembly and annotation for this important species can be used for detailed investigation and future innovations in growth for millet and other grains. PMID:27734962

  8. Three-region specific microdissection libraries for the long arm of human chromosome 2, regions q33-q35, q31-q32, and q23-q24

    SciTech Connect

    Yu, J.; Tong, S.; Whittier, A.

    1995-09-01

    Three region-specific libraries have been constructed from the long arm of human chromosome 2, including regions 2q33-35 (2Q2 library), 2q31-32 (2Q3) and 2q23-24 (2Q4). Chromosome microdissection and the MboI linker-adaptor microcloning techniques were used in constructing these libraries. The libraries comprised hundreds of thousands of microclones in each library. Approximately half of the microclones in the library contained unique or low-copy number sequence inserts. The insert sizes ranged between 50 and 800 bp, with a mean of 130-190 bp. Southern blot analysis of individual unique sequence microclones showed that 70-94% of the microclones were derived from the dissected region. 31 unique sequence microclones from the 2Q2 library, 31 from 2Q3, and 30 from 2Q4, were analyzed for insert sizes, the hybridizing genomic HindIII fragment sizes, and cross-hybridization to rodent species. These libraries and the short insert microclones derived from the libraries should be useful for high resolution physical mapping, sequence-ready reagents for large scale genomic sequencing, and positional cloning of disease-related genes assigned to these regions, e.g. the recessive familial amyotrophic lateral sclerosis assigned to 2q33-q35, and a type I diabetes susceptibility gene to 2q31-q33. 17 refs., 5 figs., 2 tabs.

  9. A 1.6-Mb P1-based physical map of the Down syndrome region on chromosome 21

    SciTech Connect

    Ohira, Miki; Suzuki, Kazunobu |; Ichikawa, Hitoshi

    1996-04-01

    The Down Syndrome (DS) region on chromosome 21, which is responsible for the main features of DS such as characteristic facial features, a congenital heart defect, and mental retardation, has been defined by molecular analysis of DS patients with partial trisomy 21. The 2.5-Mb region around the marker D21S55 between D21S17 and ERG in 21q22 is thought to be important, although contributions of other regions cannot be excluded. In this region, we focused on a 1.6-Mb region between a NotI site, LA68 (D21S396, which is mapped distal to D21S17) and ERG, because analysis of a Japanese DS family with partial trisomy 21 revealed that the proximal border of its triplicated region was distal to LA68. We constructed P1 contigs with 46 P1 clones covering more than 95% of the 1.6-Mb region. A high-resolution restriction map using BamHI was also constructed for more details analysis. Our P1 contig map supplements other physical maps previously reported and provides useful materials for further analysis including isolation and sequencing of the DS region. 31 refs., 7 figs., 1 tab.

  10. A Meiotic Drive Element in the Maize Pathogen Fusarium verticillioides Is Located Within a 102 kb Region of Chromosome V

    PubMed Central

    Pyle, Jay; Patel, Tejas; Merrill, Brianna; Nsokoshi, Chabu; McCall, Morgan; Proctor, Robert H.; Brown, Daren W.; Hammond, Thomas M.

    2016-01-01

    Fusarium verticillioides is an agriculturally important fungus because of its association with maize and its propensity to contaminate grain with toxic compounds. Some isolates of the fungus harbor a meiotic drive element known as Spore killer (SkK) that causes nearly all surviving meiotic progeny from an SkK × Spore killer-susceptible (SkS) cross to inherit the SkK allele. SkK has been mapped to chromosome V but the genetic element responsible for meiotic drive has yet to be identified. In this study, we used cleaved amplified polymorphic sequence markers to genotype individual progeny from an SkK × SkS mapping population. We also sequenced the genomes of three progeny from the mapping population to determine their single nucleotide polymorphisms. These techniques allowed us to refine the location of SkK to a contiguous 102 kb interval of chromosome V, herein referred to as the Sk region. Relative to SkS genotypes, SkK genotypes have one extra gene within this region for a total of 42 genes. The additional gene in SkK genotypes, herein named SKC1 for Spore Killer Candidate 1, is the most highly expressed gene from the Sk region during early stages of sexual development. The Sk region also has three hyper-variable regions, the longest of which includes SKC1. The possibility that SKC1, or another gene from the Sk region, is an essential component of meiotic drive and spore killing is discussed. PMID:27317777

  11. A Meiotic Drive Element in the Maize Pathogen Fusarium verticillioides Is Located Within a 102 kb Region of Chromosome V.

    PubMed

    Pyle, Jay; Patel, Tejas; Merrill, Brianna; Nsokoshi, Chabu; McCall, Morgan; Proctor, Robert H; Brown, Daren W; Hammond, Thomas M

    2016-08-09

    Fusarium verticillioides is an agriculturally important fungus because of its association with maize and its propensity to contaminate grain with toxic compounds. Some isolates of the fungus harbor a meiotic drive element known as Spore killer (Sk(K)) that causes nearly all surviving meiotic progeny from an Sk(K) × Spore killer-susceptible (Sk(S)) cross to inherit the Sk(K) allele. Sk(K) has been mapped to chromosome V but the genetic element responsible for meiotic drive has yet to be identified. In this study, we used cleaved amplified polymorphic sequence markers to genotype individual progeny from an Sk(K) × Sk(S) mapping population. We also sequenced the genomes of three progeny from the mapping population to determine their single nucleotide polymorphisms. These techniques allowed us to refine the location of Sk(K) to a contiguous 102 kb interval of chromosome V, herein referred to as the Sk region. Relative to Sk(S) genotypes, Sk(K) genotypes have one extra gene within this region for a total of 42 genes. The additional gene in Sk(K) genotypes, herein named SKC1 for Spore Killer Candidate 1, is the most highly expressed gene from the Sk region during early stages of sexual development. The Sk region also has three hyper-variable regions, the longest of which includes SKC1 The possibility that SKC1, or another gene from the Sk region, is an essential component of meiotic drive and spore killing is discussed.

  12. A Meiotic Drive Element in the Maize Pathogen Fusarium verticillioides Is Located Within a 102 kb Region of Chromosome V.

    PubMed

    Pyle, Jay; Patel, Tejas; Merrill, Brianna; Nsokoshi, Chabu; McCall, Morgan; Proctor, Robert H; Brown, Daren W; Hammond, Thomas M

    2016-01-01

    Fusarium verticillioides is an agriculturally important fungus because of its association with maize and its propensity to contaminate grain with toxic compounds. Some isolates of the fungus harbor a meiotic drive element known as Spore killer (Sk(K)) that causes nearly all surviving meiotic progeny from an Sk(K) × Spore killer-susceptible (Sk(S)) cross to inherit the Sk(K) allele. Sk(K) has been mapped to chromosome V but the genetic element responsible for meiotic drive has yet to be identified. In this study, we used cleaved amplified polymorphic sequence markers to genotype individual progeny from an Sk(K) × Sk(S) mapping population. We also sequenced the genomes of three progeny from the mapping population to determine their single nucleotide polymorphisms. These techniques allowed us to refine the location of Sk(K) to a contiguous 102 kb interval of chromosome V, herein referred to as the Sk region. Relative to Sk(S) genotypes, Sk(K) genotypes have one extra gene within this region for a total of 42 genes. The additional gene in Sk(K) genotypes, herein named SKC1 for Spore Killer Candidate 1, is the most highly expressed gene from the Sk region during early stages of sexual development. The Sk region also has three hyper-variable regions, the longest of which includes SKC1 The possibility that SKC1, or another gene from the Sk region, is an essential component of meiotic drive and spore killing is discussed. PMID:27317777

  13. Identification of Regions of the Chromosome of Neisseria meningitidis and Neisseria gonorrhoeae Which Are Specific to the Pathogenic Neisseria Species

    PubMed Central

    Perrin, Agnes; Nassif, Xavier; Tinsley, Colin

    1999-01-01

    Neisseria meningitidis and Neisseria gonorrhoeae give rise to dramatically different diseases. Their interactions with the host, however, do share common characteristics: they are both human pathogens which do not survive in the environment and which colonize and invade mucosa at their port of entry. It is therefore likely that they have common properties that might not be found in nonpathogenic bacteria belonging to the same genetically related group, such as Neisseria lactamica. Their common properties may be determined by chromosomal regions found only in the pathogenic Neisseria species. To address this issue, we used a previously described technique (C. R. Tinsley and X. Nassif, Proc. Natl. Acad. Sci. USA 93:11109–11114, 1996) to identify sequences of DNA specific for pathogenic neisseriae and not found in N. lactamica. Sequences present in N. lactamica were physically subtracted from the N. meningitidis Z2491 sequence and also from the N. gonorrhoeae FA1090 sequence. The clones obtained from each subtraction were tested by Southern blotting for their reactivity with the three species, and only those which reacted with both N. meningitidis and N. gonorrhoeae (i.e., not specific to either one of the pathogens) were further investigated. In a first step, these clones were mapped onto the chromosomes of both N. meningitidis and N. gonorrhoeae. The majority of the clones were arranged in clusters extending up to 10 kb, suggesting the presence of chromosomal regions common to N. meningitidis and N. gonorrhoeae which distinguish these pathogens from the commensal N. lactamica. The sequences surrounding these clones were determined from the N. meningitidis genome-sequencing project. Several clones corresponded to previously described factors required for colonization and survival at the port of entry, such as immunoglobulin A protease and PilC. Others were homologous to virulence-associated proteins in other bacteria, demonstrating that the subtractive clones are

  14. Characterization of the NTRK1 genomic region involved in chromosomal rearrangements generating TRK oncogenes

    SciTech Connect

    Greco, A.; Mariani, C.; Miranda, C.; Pagliardini, S.; Pierotti, M.A. )

    1993-11-01

    TRK oncogenes are created by chromosomal rearrangements linking the tyrosine-kinase domain of the NTRK1 gene (encoding one of the receptors for the nerve growth factor) to foreign activating sequences. TRK oncogenes are frequently detected in human papillary thyroid carcinoma, as a result of rearrangements involving at least three different activating genes. The authors have found that the rearrangements creating all the TRK oncogenes so far characterized fall within a 2.9-kb XbaI/SmaI restriction fragment of the NTRK1 gene. Here they report the nucleotide sequence and the exon organization of this fragment. 13 refs., 2 figs.

  15. Localization of the human indoleamine 2,3-dioxygenase (IDO) gene to the pericentromeric region of human chromosome 8

    SciTech Connect

    Burkin, D.J.; Jones, C. ); Kimbro, K.S.; Taylor, M.W. ); Barr, B.L.; Gupta, S.L. )

    1993-07-01

    Indoleamine 2,3-dioxygenase (IDO) is the first enzyme in the catabolic pathway for tryptophan. This extrahepatic enzyme differs from the hepatic enzyme, tryptophan 2,3-dioxygenase (TDO), in molecular as well as enzymatic characteristics, although both enzymes catalyze the same reaction: cleavage of tryptophan into N-formylkynurenine. The induction of IDO by IFN-[gamma] plays a role in the antigrowth effect of IFN-[gamma] in cell cultures and in the inhibition of intracellular pathogens, e.g., Toxoplasma gondii and Chlamydia psittaci. Tryptophan is also the precursor for the synthesis of serotonin, and reduced levels of tryptophan and serotonin found in AIDS patients have been correlated with the presence of IFN-[gamma] and consequent elevation of IDO activity. The IDO enzyme has been purified and characterized, and its cDNA and genomic DNA clones have been isolated and analyzed. DNA from hybrid cells containing fragments of human chromosome 8 was used to determine the regional localization of the IDO gene on chromosome 8. The hybrids R30-5B and R30-2A contain 8p11 [yields] qter and 8q13 [yields] qter, respectively. Hybrid 229-3A contains the 8pter [yields] q11. The hybrid R30-2A was negative for the IDO gene, whereas R30-5B and 229-3A were positive as analyzed by PCR and verified by Southern blotting. Only the region close to the centromere is shared by R30-5B and 229-3A hybrids. The results indicate that the IDO gene is located on chromosome 8p11 [yields] q11.

  16. Metabolic and Molecular Changes of the Phenylpropanoid Pathway in Tomato (Solanum lycopersicum) Lines Carrying Different Solanum pennellii Wild Chromosomal Regions

    PubMed Central

    Rigano, Maria Manuela; Raiola, Assunta; Docimo, Teresa; Ruggieri, Valentino; Calafiore, Roberta; Vitaglione, Paola; Ferracane, Rosalia; Frusciante, Luigi; Barone, Amalia

    2016-01-01

    Solanum lycopersicum represents an important dietary source of bioactive compounds including the antioxidants flavonoids and phenolic acids. We previously identified two genotypes (IL7-3 and IL12-4) carrying loci from the wild species Solanum pennellii, which increased antioxidants in the fruit. Successively, these lines were crossed and two genotypes carrying both introgressions at the homozygous condition (DHO88 and DHO88-SL) were selected. The amount of total antioxidant compounds was increased in DHOs compared to both ILs and the control genotype M82. In order to understand the genetic mechanisms underlying the positive interaction between the two wild regions pyramided in DHO genotypes, detailed analyses of the metabolites accumulated in the fruit were carried out by colorimetric methods and LC/MS/MS. These analyses evidenced a lower content of flavonoids in DHOs and in ILs, compared to M82. By contrast, in the DHOs the relative content of phenolic acids increased, particularly the fraction of hexoses, thus evidencing a redirection of the phenylpropanoid flux toward the biosynthesis of phenolic acid glycosides in these genotypes. In addition, the line DHO88 exhibited a lower content of free phenolic acids compared to M82. Interestingly, the two DHOs analyzed differ in the size of the wild region on chromosome 12. Genes mapping in the introgression regions were further investigated. Several genes of the phenylpropanoid biosynthetic pathway were identified, such as one 4-coumarate:CoA ligase and two UDP-glycosyltransferases in the region 12-4 and one chalcone isomerase and one UDP-glycosyltransferase in the region 7-3. Transcriptomic analyses demonstrated a different expression of the detected genes in the ILs and in the DHOs compared to M82. These analyses, combined with biochemical analyses, suggested a central role of the 4-coumarate:CoA ligase in redirecting the phenylpropanoid pathways toward the biosynthesis of phenolic acids in the pyramided lines

  17. Comparative mapping of DNA probes derived from the V{sub k} immunoglobulin gene regions on human and great ape chromosomes by fluorescence in situ hybridization

    SciTech Connect

    Arnold, N.; Wienberg, J.; Ermert, K.

    1995-03-01

    Fluorescence in situ hybridization (FISH) of cosmid clones of human V{sub K} gene regions to human and primate chromosomes contributed to the dating of chromosome reorganizations in evolution. A clone from the K locus at 2p11-p12 (cos 106) hybridized to the assumed homologous chromosome bands in the chimpanzees Pan troglodytes (PTR) and P. paniscus (PPA), the Gorilla gorilla (GGO), and the orangutan Pongo Pygmaeus (PPY). Human and both chimpanzees differed from gorilla and orangutan by the mapping of cos 170, a clone derived from chromosome 2cen-q11.2; the transposition of this orphon to the other side of the centromere can, therefore, be dated after the human/chimpanzee and gorilla divergence. Hybridization to homologous bands was also found with a cosmid clone containing a V{sub K}I orphon located on chromosome 1 (cos 115, main signal at 1q31-q32), although the probe is not fully unique. Also, a clone derived from the orphon V{sub K} region on chromosome 22q11 (cos 121) hybridized to the homologous bands in the great apes. This indicates that the orphons on human chromosomes 1 and 22 had been translocated early in primate evolution. 18 refs., 2 figs.

  18. Temporal Fluctuation in North East Baltic Sea Region Cattle Population Revealed by Mitochondrial and Y-Chromosomal DNA Analyses

    PubMed Central

    Niemi, Marianna; Bläuer, Auli; Iso-Touru, Terhi; Harjula, Janne; Nyström Edmark, Veronica; Rannamäe, Eve; Lõugas, Lembi; Sajantila, Antti; Lidén, Kerstin; Taavitsainen, Jussi-Pekka

    2015-01-01

    Background Ancient DNA analysis offers a way to detect changes in populations over time. To date, most studies of ancient cattle have focused on their domestication in prehistory, while only a limited number of studies have analysed later periods. Conversely, the genetic structure of modern cattle populations is well known given the undertaking of several molecular and population genetic studies. Results Bones and teeth from ancient cattle populations from the North-East Baltic Sea region dated to the Prehistoric (Late Bronze and Iron Age, 5 samples), Medieval (14), and Post-Medieval (26) periods were investigated by sequencing 667 base pairs (bp) from the mitochondrial DNA (mtDNA) and 155 bp of intron 19 in the Y-chromosomal UTY gene. Comparison of maternal (mtDNA haplotypes) genetic diversity in ancient cattle (45 samples) with modern cattle populations in Europe and Asia (2094 samples) revealed 30 ancient mtDNA haplotypes, 24 of which were shared with modern breeds, while 6 were unique to the ancient samples. Of seven Y-chromosomal sequences determined from ancient samples, six were Y2 and one Y1 haplotype. Combined data including Swedish samples from the same periods (64 samples) was compared with the occurrence of Y-chromosomal haplotypes in modern cattle (1614 samples). Conclusions The diversity of haplogroups was highest in the Prehistoric samples, where many haplotypes were unique. The Medieval and Post-Medieval samples also show a high diversity with new haplotypes. Some of these haplotypes have become frequent in modern breeds in the Nordic Countries and North-Western Russia while other haplotypes have remained in only a few local breeds or seem to have been lost. A temporal shift in Y-chromosomal haplotypes from Y2 to Y1 was detected that corresponds with the appearance of new mtDNA haplotypes in the Medieval and Post-Medieval period. This suggests a replacement of the Prehistoric mtDNA and Y chromosomal haplotypes by new types of cattle. PMID:25992976

  19. Adjacent chromosomal regions can evolve at very different rates: evolution of the Drosophila 68C glue gene cluster.

    PubMed

    Meyerowitz, E M; Martin, C H

    1984-01-01

    The 68C puff is a highly transcribed region of the Drosophila melanogaster salivary gland polytene chromosomes. Three different classes of messenger RNA originate in a 5000-bp region in the puff; each class is translated to one of the salivary gland glue proteins sgs-3, sgs-7, or sgs-8. These messenger RNA classes are coordinately controlled, with each RNA appearing in the third larval instar and disappearing at the time of puparium formation. Their disappearance is initiated by the action of the steroid hormone ecdysterone. In the work reported here, we studied evolution of this hormone-regulated gene cluster in the melanogaster species subgroup of Drosophila. Genome blot hybridization experiments showed that five other species of this subgroup have DNA sequences that hybridize to D. melanogaster 68C sequences, and that these sequences are divided into a highly conserved region, which does not contain the glue genes, and an extraordinarily diverged region, which does. Molecular cloning of this DNA from D. simulans, D. erecta, D. yakuba, and D. teissieri confirmed the division of the region into a slowly and a rapidly evolving portion, and also showed that the rapidly evolving region of each species codes for third instar larval salivary gland RNAs homologous to the D. melanogaster glue mRNAs. The highly conserved region is at least 13,000 bp long, and is not known to code for any RNAs.

  20. Identification of Chromosome Abnormalities in Subtelomeric Regions by Microarray Analysis: A Study of 5,380 Cases

    PubMed Central

    Shao, Lina; Shaw, Chad A.; Lu, Xin-Yan; Sahoo, Trilochan; Bacino, Carlos A.; Lalani, Seema R.; Stankiewicz, Pawel; Yatsenko, Svetlana A.; Li, Yinfeng; Neill, Sarah; Pursley, Amber N.; Chinault, A. Craig; Patel, Ankita; Beaudet, Arthur L.; Lupski, James R.; Cheung, Sau W.

    2009-01-01

    Subtelomeric imbalances are a significant cause of congenital disorders. Screening for these abnormalities has traditionally utilized GTG-banding analysis, fluorescence in situ hybridization (FISH) assays, and multiplex ligation-dependent probe amplification. Microarray-based comparative genomic hybridization (array-CGH) is a relatively new technology that can identify microscopic and submicroscopic chromosomal imbalances. It has been proposed that an array with extended coverage at subtelomeric regions could characterize subtelomeric aberrations more efficiently in a single experiment. The targeted arrays for chromosome microarray analysis (CMA), developed by Baylor College of Medicine, have on average 12 BAC/PAC clones covering 10 Mb of each of the 41 subtelomeric regions. We screened 5,380 consecutive clinical patients using CMA. The most common reasons for referral included developmental delay (DD), and/or mental retardation (MR), dysmorphic features (DF), multiple congenital anomalies (MCA), seizure disorders (SD), and autistic, or other behavioral abnormalities. We found pathogenic rearrangements at subtelomeric regions in 236 patients (4.4%). Among these patients, 103 had a deletion, 58 had a duplication, 44 had an unbalanced translocation, and 31 had a complex rearrangement. The detection rates varied among patients with a normal karyotype analysis (2.98%), with an abnormal karyotype analysis (43.4%), and with an unavailable or no karyotype analysis (3.16%). Six patients out of 278 with a prior normal subtelomere-FISH analysis showed an abnormality including an interstitial deletion, two terminal deletions, two interstitial duplications, and a terminal duplication. In conclusion, genomic imbalances at subtelomeric regions contribute significantly to congenital disorders. Targeted array-CGH with extended coverage (up to 10 Mb) of subtelomeric regions will enhance the detection of subtelomeric imbalances, especially for submicroscopic imbalances. PMID

  1. Tetralogy of Fallot associated with deletion in the DiGeorge region of chromosome 22 (22q11)

    SciTech Connect

    D`Angelo, J.A.; Pillers, D.M.; Jett, P.L.

    1994-09-01

    Cardiac conotruncal defects, such as Tetralogy of Fallot (TOF), are associated with DiGeorge syndrome which has been mapped to the q11 region of chromosome 22 and includes abnormalities of neural crest and branchial arch development. Patients with conotruncal defects and velo-cardio-facial syndrome may have defects in the 22q11 region but not show the complete DiGeorge phenotype consisting of cardiac, thymus, and parathyroid abnormalities. We report two neonates with TOF and small deletions in the DiGeorge region of chromosome 22 (46,XX,del(22)(q11.21q11.23) and 46,XY,del(22)(q11.2q11.2)) using both high-resolution cytogenetics and fluorescence in situ hybridization (FISH). The first patient is a female with TOF and a family history of congenital heart disease. The mother has pulmonic stenosis and a right-sided aortic arch, one brother has TOF, and a second brother has a large VSD. The patient had intrauterine growth retardation and had thrombocytopenia due to maternal IgG platelet-directed autoantibody. Lymphocyte populations, both T and B cells, were reduced in number but responded normally to stimulation. The findings were not attributed to a DiGeorge phenotype. Although she had transient neonatal hypocalcemia, her parathyroid hormone level was normal. The patient was not dysmorphic in the newborn period but her mother had features consistent with velo-cardio-facial syndrome. The second patient was a male with TOF who was not dysmorphic and had no other significant clinical findings and no family history of heart disease. Lymphocyte testing did not reveal a specific immunodeficiency. No significant postnatal hypocalcemia was noted. These cases illustrate that there is a wide spectrum of clinical features associated with defects of the 22q11 region. We recommend karyotype analysis, including FISH probes specific to the DiGeorge region, in any patient with conotruncal cardiac defects.

  2. Nephropathic cystinosis (CTNS-LSB): construction of a YAC contig comprising the refined critical region on chromosome 17p13.

    PubMed

    Peters, U; Senger, G; Rählmann, M; Du Chesne, I; Stec, I; Köhler, M R; Weissenbach, J; Leal, S M; Koch, H G; Deufel, T; Harms, E

    1997-01-01

    A yeast artificial chromosome (YAC) contig was constructed encompassing the entire region on chromosome 17p13 where the autosomal recessive disorder infantile nephropathic cystinosis (MIM 21980, CTNS-LSB) has been genetically mapped. It comprises seven clones ordered by their content of a series of six sequence-tagged sites (STSs). Fluorescence in situ hybridisation (FISH) revealed two chimaeric clones. The order of four polymorphic STSs mapped with the contig was consistent with that of the known genetic map with the exception of markers D17S1583 (AFMb307zg5) and D17S1798 (AFMa202xf5) where a telomeric location of D17S1583 was inferred from the contig; two non-polymorphic STSs were localised within the marker frame-work. From the analysis of recombination events in an unaffected individual as defined by leucocyte cystine levels we support the high-resolution mapping of this region to a small genetic interval and show that it is entirely represented on a single, non-chimaeric YAC clone in the contig.

  3. Linkage disequilibrium, SNP frequency change due to selection, and association mapping in popcorn chromosome regions containing QTLs for quality traits

    PubMed Central

    Paes, Geísa Pinheiro; Viana, José Marcelo Soriano; Silva, Fabyano Fonseca e; Mundim, Gabriel Borges

    2016-01-01

    Abstract The objectives of this study were to assess linkage disequilibrium (LD) and selection-induced changes in single nucleotide polymorphism (SNP) frequency, and to perform association mapping in popcorn chromosome regions containing quantitative trait loci (QTLs) for quality traits. Seven tropical and two temperate popcorn populations were genotyped for 96 SNPs chosen in chromosome regions containing QTLs for quality traits. The populations were phenotyped for expansion volume, 100-kernel weight, kernel sphericity, and kernel density. The LD statistics were the difference between the observed and expected haplotype frequencies (D), the proportion of D relative to the expected maximum value in the population, and the square of the correlation between the values of alleles at two loci. Association mapping was based on least squares and Bayesian approaches. In the tropical populations, D-values greater than 0.10 were observed for SNPs separated by 100-150 Mb, while most of the D-values in the temperate populations were less than 0.05. Selection for expansion volume indirectly led to increase in LD values, population differentiation, and significant changes in SNP frequency. Some associations were observed for expansion volume and the other quality traits. The candidate genes are involved with starch, storage protein, lipid, and cell wall polysaccharides synthesis. PMID:27007903

  4. Linkage disequilibrium, SNP frequency change due to selection, and association mapping in popcorn chromosome regions containing QTLs for quality traits.

    PubMed

    Paes, Geísa Pinheiro; Viana, José Marcelo Soriano; Silva, Fabyano Fonseca E; Mundim, Gabriel Borges

    2016-03-01

    The objectives of this study were to assess linkage disequilibrium (LD) and selection-induced changes in single nucleotide polymorphism (SNP) frequency, and to perform association mapping in popcorn chromosome regions containing quantitative trait loci (QTLs) for quality traits. Seven tropical and two temperate popcorn populations were genotyped for 96 SNPs chosen in chromosome regions containing QTLs for quality traits. The populations were phenotyped for expansion volume, 100-kernel weight, kernel sphericity, and kernel density. The LD statistics were the difference between the observed and expected haplotype frequencies (D), the proportion of D relative to the expected maximum value in the population, and the square of the correlation between the values of alleles at two loci. Association mapping was based on least squares and Bayesian approaches. In the tropical populations, D-values greater than 0.10 were observed for SNPs separated by 100-150 Mb, while most of the D-values in the temperate populations were less than 0.05. Selection for expansion volume indirectly led to increase in LD values, population differentiation, and significant changes in SNP frequency. Some associations were observed for expansion volume and the other quality traits. The candidate genes are involved with starch, storage protein, lipid, and cell wall polysaccharides synthesis. PMID:27007903

  5. Fine-Scale Heterogeneity in Crossover Rate in the garnet-scalloped Region of the Drosophila melanogaster X Chromosome

    PubMed Central

    Singh, Nadia D.; Stone, Eric A.; Aquadro, Charles F.; Clark, Andrew G.

    2013-01-01

    Homologous recombination affects myriad aspects of genome evolution, from standing levels of nucleotide diversity to the efficacy of natural selection. Rates of crossing over show marked variability at all scales surveyed, including species-, population-, and individual-level differences. Even within genomes, crossovers are nonrandomly distributed in a wide diversity of taxa. Although intra- and intergenomic heterogeneities in crossover distribution have been documented in Drosophila, the scale and degree of crossover rate heterogeneity remain unclear. In addition, the genetic features mediating this heterogeneity are unknown. Here we quantify fine-scale heterogeneity in crossover distribution in a 2.1-Mb region of the Drosophila melanogaster X chromosome by localizing crossover breakpoints in 2500 individuals, each containing a single crossover in this specific X chromosome region. We show 90-fold variation in rates of crossing over at a 5-kb scale, place this variation in the context of several aspects of genome evolution, and identify several genetic features associated with crossover rates. Our results shed new light on the scale and magnitude of crossover rate heterogeneity in D. melanogaster and highlight potential features mediating this heterogeneity. PMID:23410829

  6. Genome-based identification of chromosomal regions specific for Salmonella spp.

    PubMed

    Hansen-Wester, Imke; Hensel, Michael

    2002-05-01

    Acquisition of genomic elements by horizontal gene transfer represents an important mechanism in the evolution of bacterial species. Pathogenicity islands are a subset of horizontally acquired elements present in various pathogens. These elements are frequently located adjacent to tRNA genes. We performed a comparative genome analysis of Salmonella enterica serovars Typhi and Typhimurium and Escherichia coli and scanned tRNA loci for the presence of species-specific, horizontally acquired genomic elements. A large number of species-specific elements were identified. Here, we describe the characteristics of four large chromosomal insertions at tRNA genes of Salmonella spp. The tRNA-associated elements harbor various genes previously identified as single virulence genes, indicating that these genes have been acquired with large chromosomal insertions. Southern blot analyses confirmed that the tRNA-associated elements are specific to Salmonella and also indicated a heterogeneous distribution within the salmonellae. Systematic scanning for insertions at tRNA genes thus represents a tool for the identification of novel pathogenicity islands.

  7. Genetic Analysis of a Chromosomal Region Containing vanA and vanB, Genes Required for Conversion of Either Ferulate or Vanillate to Protocatechuate in Acinetobacter†

    PubMed Central

    Segura, Ana; Bünz, Patricia V.; D’Argenio, David A.; Ornston, L. Nicholas

    1999-01-01

    VanA and VanB form an oxygenative demethylase that converts vanillate to protocatechuate in microorganisms. Ferulate, an abundant phytochemical, had been shown to be metabolized through a vanillate intermediate in several Pseudomonas isolates, and biochemical evidence had indicated that vanillate also is an intermediate in ferulate catabolism by Acinetobacter. Genetic evidence supporting this conclusion was obtained by characterization of mutant Acinetobacter strains blocked in catabolism of both ferulate and vanillate. Cloned Acinetobacter vanA and vanB were shown to be members of a chromosomal segment remote from a supraoperonic cluster containing other genes required for completion of the catabolism of ferulate and its structural analogs, caffeate and coumarate, through protocatechuate. The nucleotide sequence of DNA containing vanA and vanB demonstrated the presence of genes that, on the basis of nucleotide sequence similarity, appeared to be associated with transport of aromatic compounds, metabolism of such compounds, or iron scavenging. Spontaneous deletion of 100 kb of DNA containing this segment does not impede the growth of cells with simple carbon sources other than vanillate or ferulate. Additional spontaneous mutations blocking vanA and vanB expression were shown to be mediated by IS1236, including insertion of the newly discovered composite transposon Tn5613. On the whole, vanA and vanB appear to be located within a nonessential genetic region that exhibits considerable genetic malleability in Acinetobacter. The overall organization of genes neighboring Acinetobacter vanA and vanB, including a putative transcriptional regulatory gene that is convergently transcribed and overlaps vanB, is conserved in Pseudomonas aeruginosa but has undergone radical rearrangement in other Pseudomonas species. PMID:10348863

  8. Sequence analysis of 203 kilobases from Saccharomyces cerevisiae chromosome VII.

    PubMed

    Rieger, M; Brückner, M; Schäfer, M; Müller-Auer, S

    1997-09-15

    The nucleotide sequences of five major regions from chromosome VII of Saccharomyces cerevisiae have been determined and analysed. These regions represent 203 kilobases corresponding to approximately one-fifth of the complete yeast chromosome VII. Two fragments originate from the left arm of this chromosome. The first one of about 15.8 kb starts approximately 75 kb from the left telomere and is bordered by the SK18 chromosomal marker. The second fragment covers the 72.6 kb region between the chromosomal markers CYH2 and ALG2. On the right chromosomal arm three regions, a 70.6 kb region between the MSB2 and the KSS1 chromosomal markers and two smaller regions dominated by the KRE11 marker and another one in the vicinity of the SER2 marker were sequenced. We found a total of 114 open reading frames (ORFs), 13 of which were completely overlapping with larger ORFs running in the opposite direction. A total of 44 yeast genes, the physiological functions of which are known, could be precisely mapped on this chromosome. Of the remaining 57 ORFs, 26 shared sequence homologies with known genes, among which were 13 other S. cerevisiae genes and five genes from other organisms. No homology with any sequence in the databases could be found for 31 ORFs. Furthermore, five Ty elements were found, one of which may not be functional due to a frame shift in its Ty1B amino acid sequence. The five chromosomal regions harboured five potential ARS elements and one sigma element together with eight tRNA genes and two snRNAs, one of which is encoded by an intron of a protein-coding gene. PMID:9290212

  9. Cloning of the alpha-adducin gene from the Huntington's disease candidate region of chromosome 4 by exon amplification.

    PubMed

    Taylor, S A; Snell, R G; Buckler, A; Ambrose, C; Duyao, M; Church, D; Lin, C S; Altherr, M; Bates, G P; Groot, N

    1992-11-01

    We have applied the technique of exon amplification to the isolation of genes from the chromosome 4p16.3 Huntington's disease (HD) candidate region. Exons recovered from cosmid Y24 identified cDNA clones corresponding to the alpha-subunit of adducin, a calmodulin-binding protein that is thought to promote assembly of spectrin-actin complexes in the formation of the membrane cytoskeleton, alpha-adducin is widely expressed and, at least in brain, is encoded by alternatively spliced mRNAs. The alpha-adducin gene maps immediately telomeric to D4S95, in a region likely to contain the HD defect, and must be scrutinized to establish whether it is the site of the HD mutation.

  10. Canine Distemper Virus Infects Canine Keratinocytes and Immune Cells by Using Overlapping and Distinct Regions Located on One Side of the Attachment Protein▿

    PubMed Central

    Langedijk, Johannes P. M.; Janda, Jozef; Origgi, Francesco C.; Örvell, Claes; Vandevelde, Marc; Zurbriggen, Andreas; Plattet, Philippe

    2011-01-01

    The morbilliviruses measles virus (MeV) and canine distemper virus (CDV) both rely on two surface glycoproteins, the attachment (H) and fusion proteins, to promote fusion activity for viral cell entry. Growing evidence suggests that morbilliviruses infect multiple cell types by binding to distinct host cell surface receptors. Currently, the only known in vivo receptor used by morbilliviruses is CD150/SLAM, a molecule expressed in certain immune cells. Here we investigated the usage of multiple receptors by the highly virulent and demyelinating CDV strain A75/17. We based our study on the assumption that CDV-H may interact with receptors similar to those for MeV, and we conducted systematic alanine-scanning mutagenesis on CDV-H throughout one side of the β-propeller documented in MeV-H to contain multiple receptor-binding sites. Functional and biochemical assays performed with SLAM-expressing cells and primary canine epithelial keratinocytes identified 11 residues mutation of which selectively abrogated fusion in keratinocytes. Among these, four were identical to amino acids identified in MeV-H as residues contacting a putative receptor expressed in polarized epithelial cells. Strikingly, when mapped on a CDV-H structural model, all residues clustered in or around a recessed groove located on one side of CDV-H. In contrast, reported CDV-H mutants with SLAM-dependent fusion deficiencies were characterized by additional impairments to the promotion of fusion in keratinocytes. Furthermore, upon transfer of residues that selectively impaired fusion induction in keratinocytes into the CDV-H of the vaccine strain, fusion remained largely unaltered. Taken together, our results suggest that a restricted region on one side of CDV-H contains distinct and overlapping sites that control functional interaction with multiple receptors. PMID:21849439

  11. FISH-Based Analysis of Clonally Derived CHO Cell Populations Reveals High Probability for Transgene Integration in a Terminal Region of Chromosome 1 (1q13)

    PubMed Central

    Li, Shengwei; Gao, Xiaoping; Peng, Rui; Zhang, Sheng; Fu, Wei

    2016-01-01

    A basic goal in the development of recombinant proteins is the generation of cell lines that express the desired protein stably over many generations. Here, we constructed engineered Chinese hamster ovary cell lines (CHO-S) with a pCHO-hVR1 vector that carried an extracellular domain of a VEGF receptor (VR) fusion gene. Forty-five clones with high hVR1 expression were selected for karyotype analysis. Using fluorescence in situ hybridization (FISH) and G-banding, we found that pCHO-hVR1 was integrated into three chromosomes, including chromosomes 1, Z3 and Z4. Four clones were selected to evaluate their productivity under non-fed, non-optimized shake flask conditions. The results showed that clones 1 and 2 with integration sites on chromosome 1 revealed high levels of hVR1 products (shake flask of approximately 800 mg/L), whereas clones 3 and 4 with integration sites on chromosomes Z3 or Z4 had lower levels of hVR1 products. Furthermore, clones 1 and 2 maintained their productivity stabilities over a continuous period of 80 generations, and clones 3 and 4 showed significant declines in their productivities in the presence of selection pressure. Finally, pCHO-hVR1 localized to the same region at chromosome 1q13, the telomere region of normal chromosome 1. In this study, these results demonstrate that the integration of exogenous hVR1 gene on chromosome 1, band q13, may create a high protein-producing CHO-S cell line, suggesting that chromosome 1q13 may contain a useful target site for the high expression of exogenous protein. This study shows that the integration into the target site of chromosome 1q13 may avoid the problems of random integration that cause gene silencing or also overcome position effects, facilitating exogenous gene expression in CHO-S cells. PMID:27684722

  12. Fine Mapping of a GWAS-Derived Obesity Candidate Region on Chromosome 16p11.2

    PubMed Central

    Jarick, Ivonne; Pütter, Carolin; Göbel, Maria; Horn, Lucie; Struve, Christoph; Haas, Katharina; Knoll, Nadja; Grallert, Harald; Illig, Thomas; Reinehr, Thomas; Wang, Hai-Jun; Hebebrand, Johannes; Hinney, Anke

    2015-01-01

    Introduction Large-scale genome-wide association studies (GWASs) have identified 97 chromosomal loci associated with increased body mass index in population-based studies on adults. One of these SNPs, rs7359397, tags a large region (approx. 1MB) with high linkage disequilibrium (r²>0.7), which comprises five genes (SH2B1, APOBR, sulfotransferases: SULT1A1 and SULT1A2, TUFM). We had previously described a rare mutation in SH2B1 solely identified in extremely obese individuals but not in lean controls. Methods The coding regions of the genes APOBR, SULT1A1, SULT1A2, and TUFM were screened for mutations (dHPLC, SSCP, Sanger re-sequencing) in 95 extremely obese children and adolescents. Detected non-synonymous variants were genotyped (TaqMan SNP Genotyping, MALDI TOF, PCR-RFLP) in independent large study groups (up to 3,210 extremely obese/overweight cases, 485 lean controls and 615 obesity trios). In silico tools were used for the prediction of potential functional effects of detected variants. Results Except for TUFM we detected non-synonymous variants in all screened genes. Two polymorphisms rs180743 (APOBR p.Pro428Ala) and rs3833080 (APOBR p.Gly369_Asp370del9) showed nominal association to (extreme) obesity (uncorrected p = 0.003 and p = 0.002, respectively). In silico analyses predicted a functional implication for rs180743 (APOBR p.Pro428Ala). Both APOBR variants are located in the repetitive region with unknown function. Conclusion Variants in APOBR contributed as strongly as variants in SH2B1 to the association with extreme obesity in the chromosomal region chr16p11.2. In silico analyses implied no functional effect of several of the detected variants. Further in vitro or in vivo analyses on the functional implications of the obesity associated variants are warranted. PMID:25955518

  13. Chromosome 4q deletion syndrome: narrowing the cardiovascular critical region to 4q32.2-q34.3.

    PubMed

    Xu, Wenbo; Ahmad, Ayesha; Dagenais, Susan; Iyer, Ramaswamy K; Innis, Jeffrey W

    2012-03-01

    The 4q deletion syndrome is a rare chromosome deletion syndrome with a wide range of clinical phenotypes. There is limited clinical phenotype and molecular correlation for congenital heart defects (CHDs) reported so far for this region primarily because many cases are large deletions, often terminal, and because high-resolution array has not been reported in the evaluation of this group of patients. CHDs are reported in about 60% of patients with 4q deletion syndrome, occurring in the presence or absence of dHAND deletion, implying the existence of additional genes in 4q whose dosage influences cardiac development. We report an 8-month-old patient with a large mid-muscular to outlet ventricular septal defect (VSD), moderate-sized secundum-type atrial septal defect (ASD), thickened, dysplastic pulmonary valve with mild stenosis and moderate pulmonic regurgitation, and patent ductus arteriosus (PDA). Illumina CytoSNP array analysis disclosed a de novo, heterozygous, interstitial deletion of 11.6 Mb of genomic material from the long arm of chromosome 4, at 4q32.3-q34.3 (Chr4:167236114-178816031; hg18). The deleted region affects 37 RefSeq genes (hg18), including two provisional microRNA stemloops. Three genes in this region, namely TLL1 (Tolloid-like-1), HPGD (15-hydroxyprostaglandin dehydrogenase), and HAND2 (Heart and neural crest derivatives-expressed protein 2), are known to be involved in cardiac morphogenesis. This report narrows the critical region responsible for CHDs seen in 4q deletion syndrome. PMID:22302627

  14. Origin of gene overlap: the case of TCP1 and ACAT2.

    PubMed Central

    Shintani, S; O'hUigin, C; Toyosawa, S; Michalová, V; Klein, J

    1999-01-01

    The human acetyl-CoA acetyltransferase 2 gene, ACAT2, codes for a thiolase, an enzyme involved in lipid metabolism. The human T-complex protein 1 gene, TCP1, encodes a molecular chaperone of the chaperonin family. The two genes overlap by their 3'-untranslated regions, their coding sequences being located on opposite DNA strands in a tail-to-tail orientation. To find out how the overlap might have arisen in evolution, the homologous genes of the zebrafish, the African toad, caiman, platypus, opossum, and wallaby were identified. In each species, standard or long polymerase chain reactions were used to determine whether the ACAT2 and TCP1 homologs are closely linked and, if so, whether they overlap. The results reveal that the overlap apparently arose during the transition from therapsid reptiles to mammals and has been retained for >200 million years. Part of the overlapping untranslated region shows remarkable sequence conservation. The overlap presumably arose during the chromosomal rearrangement that brought the two unrelated and previously separated genes together. One or both of the transposed genes found by chance signals that are necessary for the processing of their transcripts to be present on the noncoding strand of the partner gene. PMID:10353914

  15. The putative imprinted locus D15S9 within the common deletion region for the Prader-Willi and Angelman syndromes encodes two overlapping mRNAs transcribed from opposite strands

    SciTech Connect

    Glenn, C.C.; Driscoll, D.J.; Saitoh, S.

    1994-09-01

    Prader-Willi syndrome is typically caused by a deletion of paternal 15q11-q13, or maternal uniparental disomy (UPD) of chromosome 15, while Angelman syndrome is caused by a maternal deletion or paternal UPD of the same region. Therefore, these two clinically distinct neurobehavioral syndromes result from differential expression of imprinted genes within 15q11-q13. A 3.1 kb cDNA, DN34, from the D15S9 locus within 15q11-q13 was isolated from a human fetal brain library. We showed previously that DN34 probe detects a DNA methylation imprint and therefore may represent a candidate imprinted gene. Isolation of genomic clones and DNA sequencing demonstrated that the gene segment encoding the partial cDNA DN34 was split by a 2 kb intron, but did not encode a substantial open reading frame (ORF). Preliminary analysis of expression by RT-PCR suggests that this gene is expressed in fetal but not in tested tissue types from the adult, and thus its imprinting status has not been possible to assess at present. Surprisingly, we found an ORF on the antisense strand of the DN34 cDNA. This ORF encodes a putative polypeptide of 505 amino acid residues containing a RING C{sub 3}HC{sub 4} zinc-finger motif and other features of nuclear proteins. Subsequent characterization of this gene, ZNF127, and a mouse homolog, demonstrated expression of 3.2 kb transcript from all tested fetal and adult tissues. Transcripts initiate from within a CpG-island, shown to be differentially methylated on parental alleles in the human. Interestingly, functional imprinting of the mouse homolog was subsequently demonstrated in an F{sub 1} cross by analyzing a VNTR polymorphism in the mRNA. The ZNF127 gene is intronless, has significant overlap with the DN34 gene on the antisense strand, and a 1 kb 3{prime} end within the 2 kb DN34 intron.

  16. Overlapping Structures in Sensory-Motor Mappings

    PubMed Central

    Earland, Kevin; Lee, Mark; Shaw, Patricia; Law, James

    2014-01-01

    This paper examines a biologically-inspired representation technique designed for the support of sensory-motor learning in developmental robotics. An interesting feature of the many topographic neural sheets in the brain is that closely packed receptive fields must overlap in order to fully cover a spatial region. This raises interesting scientific questions with engineering implications: e.g. is overlap detrimental? does it have any benefits? This paper examines the effects and properties of overlap between elements arranged in arrays or maps. In particular we investigate how overlap affects the representation and transmission of spatial location information on and between topographic maps. Through a series of experiments we determine the conditions under which overlap offers advantages and identify useful ranges of overlap for building mappings in cognitive robotic systems. Our motivation is to understand the phenomena of overlap in order to provide guidance for application in sensory-motor learning robots. PMID:24392118

  17. Adipose and muscle tissue expression of two genes (NCAPG and LCORL) located in a chromosomal region associated with cattle feed intake and gain

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A region on bovine chromosome 6 has been implicated in cattle birth weight, growth, and length. Non-SMC conodensin I complex subunit G (NCAPG) and ligand dependent nuclear receptor corepressor-like protein (LCORL) are positional candidate genes within this region. We previously identified genetic ...

  18. Adipose and muscle tissue gene expression of two genes (NCAPG and LCORL) located in a chromosomal region associated with cattle feed intake and gain

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A region on bovine chromosome 6 has been implicated in cattle birth weight, growth, and length. Non-SMC conodensin I complex subunit G (NCAPG) and ligand dependent nuclear receptor corepressor-like protein (LCORL) are positional candidate genes within this region. Previously identified genetic mark...

  19. Sequence analysis of bacterial artificial chromosome clones from the apospory-specific genomic region of Pennisetum and Cenchrus.

    PubMed

    Conner, Joann A; Goel, Shailendra; Gunawan, Gunawati; Cordonnier-Pratt, Marie-Michele; Johnson, Virgil Ed; Liang, Chun; Wang, Haiming; Pratt, Lee H; Mullet, John E; DeBarry, Jeremy; Yang, Lixing; Bennetzen, Jeffrey L; Klein, Patricia E; Ozias-Akins, Peggy

    2008-07-01

    Apomixis, asexual reproduction through seed, is widespread among angiosperm families. Gametophytic apomixis in Pennisetum squamulatum and Cenchrus ciliaris is controlled by the apospory-specific genomic region (ASGR), which is highly conserved and macrosyntenic between these species. Thirty-two ASGR bacterial artificial chromosomes (BACs) isolated from both species and one ASGR-recombining BAC from P. squamulatum, which together cover approximately 2.7 Mb of DNA, were used to investigate the genomic structure of this region. Phrap assembly of 4,521 high-quality reads generated 1,341 contiguous sequences (contigs; 730 from the ASGR and 30 from the ASGR-recombining BAC in P. squamulatum, plus 580 from the C. ciliaris ASGR). Contigs containing putative protein-coding regions unrelated to transposable elements were identified based on protein similarity after Basic Local Alignment Search Tool X analysis. These putative coding regions were further analyzed in silico with reference to the rice (Oryza sativa) and sorghum (Sorghum bicolor) genomes using the resources at Gramene (www.gramene.org) and Phytozome (www.phytozome.net) and by hybridization against sorghum BAC filters. The ASGR sequences reveal that the ASGR (1) contains both gene-rich and gene-poor segments, (2) contains several genes that may play a role in apomictic development, (3) has many classes of transposable elements, and (4) does not exhibit large-scale synteny with either rice or sorghum genomes but does contain multiple regions of microsynteny with these species. PMID:18508959

  20. Linkage analysis of primary open-angle glaucoma excludes the juvenile glaucoma region on chromosome 1q

    SciTech Connect

    Wirtz, M.K.; Acott, T.S.; Samples, J.R. |

    1994-09-01

    The gene for one form of juvenile glaucoma has been mapped to chromosome 1q21-q31. This raises the possibility of primary open-angle glaucoma (POAG) also mapping to this region if the same defective gene causes both diseases. To ask this question linkage analysis was performed on a large POAG kindred. Blood samples or skin biopsies were obtained from 40 members of this family. Individuals were diagnosed as having POAG if they met two or more of the following criteria: (1) Visual field defects compatible with glaucoma on automated perimetry; (2) Optic nerve head and/or nerve fiber layer analysis compatible with glaucomatous damage; (3) high intraocular pressures (> 20 mm Hg). Patients were considered glaucoma suspects if they only met one criterion. These individuals were excluded from the analysis. Of the 40 members, seven were diagnosed with POAG; four were termed suspects. The earliest age of onset was 38 years old, while the average age of onset was 65 years old. We performed two-point and multipoint linkage analysis, using five markers which encompass the region 1q21-q31; specifically, D1S194, D1S210, D1S212, D1S191 and LAMB2. Two-point lod scores excluded tight linkage with all markers except D1S212 (maximum lod score of 1.07 at theta = 0.0). In the multipoint analysis, including D1S210-D1S212-LAMB2 and POAG, the entire 11 cM region spanned by these markers was excluded for linkage with POAG; that is, lod scores were < -2.0. In conclusion, POAG in this family does not map to chromosome 1q21-q31 and, thus, they carry a gene that is distinct from the juvenile glaucoma gene.

  1. Linkage between stature and a region on chromosome 20 and analysis of a candidate gene, bone morphogenetic protein 2

    SciTech Connect

    Thompson, D.B.; Ossowski, V.; Janssen, R.C.; Knowler, W.C.; Bogardus, C.

    1995-12-04

    Sib-pair linkage analysis of the quantitative trait, stature, in over 500 Pima Indians indicates that a genetic determinant of governing stature is located on chromosome 20. Analysis of 10 short tandem repeat polymorphisms localized this linkage to a 3. cM region that includes D20S98 and D20S66. Using all possible sib-pair combinations, linkage was detected to both stature (P = 0.0001) and to leg length (P = 0.001), but not to sitting height. Single-strand conformational polymorphism analysis of exon 3 of the bone morphogenetic protein 2 (BMP2) gene, a candidate gene in this region, in genomic DNA of 20 of the tallest and 20 of the shortest individuals did not show any consistent differences associated with leg length or height. Sequence analysis of the region encoding the mature protein revealed a single nucleotide substitution, a T to G transversion, not detected by single-strand conformational polymorphism (SSCP) analysis. This transversion results in a conservative amino acid substitution of glycine for valine at codon 80 of BMP2. The frequency of this allele was 0.23 in the sample. No significant differences in height were noted in persons carrying either allele. This indicates that this structural alteration in the mature BMP2 protein does not contribute to the differences in stature observed in the Pima Indians, nor is this structural change in the mature protein likely to be responsible for the linkage observed with stature on chromosome 20. 33 refs., 2 figs., 2 tabs.

  2. Physical mapping of the holoprosencephaly critical region in 21q22.3, exclusion of SIM2 as a candidate gene for holoprosencephaly, and mapping of SIM2 to a region of chromosome 21 important for Down syndrome

    SciTech Connect

    Muenke, M.; Bone, L.J.; Mitchell, H.F.

    1995-11-01

    We set out to define the holoprosencephaly (HPE) critical region on chromosome 21 and also to determine whether there were human homologues of the Drosophila single-minded (sim) gene that might be involved in HPE. Analysis of somatic cell hybrid clones that contained rearranged chromosomes 21 from HPE patients defined the HPE minimal critical region in 21q22.3 as D21S113 to qter. We used established somatic cell hybrid mapping panels to map SIM2 to chromosome 21 within subbands q22.2-q22.3. Analysis of the HPE patient-derived somatic cell hybrids showed that SIM2 is not deleted in two of three patients and thus is not a likely candidate for HPE1, the HPE gene on chromosome 21. However, SIM2 does map within the Down syndrome critical region and thus is a candidate gene that might contribute to the Down syndrome phenotype. 31 refs., 2 figs., 1 tab.

  3. Comparative analysis of chicken chromosome 28 provides new clues to the evolutionary fragility of gene-rich vertebrate regions

    PubMed Central

    Gordon, Laurie; Yang, Shan; Tran-Gyamfi, Mary; Baggott, Dan; Christensen, Mari; Hamilton, Aaron; Crooijmans, Richard; Groenen, Martien; Lucas, Susan; Ovcharenko, Ivan; Stubbs, Lisa

    2007-01-01

    The chicken genome draft sequence has provided a valuable resource for studies of an important agricultural and experimental model species and an important data set for comparative analysis. However, some of the most gene-rich segments are missing from chicken genome draft assemblies, limiting the analysis of a substantial number of genes and preventing a closer look at regions that are especially prone to syntenic rearrangements. To facilitate the functional and evolutionary analysis of one especially gene-rich, rearrangement-prone genomic region, we analyzed sequence from BAC clones spanning chicken microchromosome GGA28; as a complement we also analyzed a gene-sparse, stable region from GGA11. In these two regions we documented the conservation and lineage-specific gain and loss of protein-coding genes and precisely mapped the locations of 31 major human-chicken syntenic breakpoints. Altogether, we identified 72 lineage-specific genes, many of which are found at or near syntenic breaks, implicating evolutionary breakpoint regions as major sites of genetic innovation and change. Twenty-two of the 31 breakpoint regions have been reused repeatedly as rearrangement breakpoints in vertebrate evolution. Compared with stable GC-matched regions, GGA28 is highly enriched in CpG islands, as are break-prone intervals identified elsewhere in the chicken genome; evolutionary breakpoints are further enriched in GC content and CpG islands, highlighting a potential role for these features in genome instability. These data support the hypothesis that chromosome rearrangements have not occurred randomly over the course of vertebrate evolution but are focused preferentially within “fragile” regions with unusual DNA sequence characteristics. PMID:17921355

  4. A physically anchored genetic map and linkage to avirulence reveals recombination suppression over the proximal region of Hessian fly chromosome A2.

    PubMed Central

    Behura, Susanta K; Valicente, Fernando H; Rider, S Dean; Shun-Chen, Ming; Jackson, Scott; Stuart, Jeffrey J

    2004-01-01

    Resistance in wheat (Triticum aestivum) to the Hessian fly (Mayetiola destructor), a major insect pest of wheat, is based on a gene-for-gene interaction. Close linkage (3 +/- 2 cM) was discovered between Hessian fly avirulence genes vH3 and vH5. Bulked segregant analysis revealed two DNA markers (28-178 and 23-201) within 10 cM of these loci and only 3 +/- 2 cM apart. However, 28-178 was located in the middle of the short arm of Hessian fly chromosome A2 whereas 23-201 was located in the middle of the long arm of chromosome A2, suggesting the presence of severe recombination suppression over its proximal region. To further test that possibility, an AFLP-based genetic map of the Hessian fly genome was constructed. Fluorescence in situ hybridization of 20 markers on the genetic map to the polytene chromosomes of the Hessian fly indicated good correspondence between the linkage groups and the four Hessian fly chromosomes. The physically anchored genetic map is the first of any gall midge species. The proximal region of mitotic chromosome A2 makes up 30% of its length but corresponded to <3% of the chromosome A2 genetic map. PMID:15166159

  5. An exploration of the sequence of a 2.9-Mb region of the genome of Drosophila melanogaster: The Adh region

    SciTech Connect

    Ashburner, M.; Misra, S.; Roote, J.; Lewis, S.E.; Blazej, R.; Davis, T.; Doyle, C.; Galle, R.; George, R.; Harris, N.; Hartzell, G.; Harvey, D.; Hong, L.; Houston, K.; Hoskins, R.; Johnson, G.; Martin, C.; Moshrefi, A.; Palazzolo, M.; Reese, M.G.; Spradling, A.; Tsang, G.; Wan, K.; Whitelaw, K.; Kimmel, B.; Celniker, S.; Rubin, G.M.

    1999-03-24

    A contiguous sequence of nearly 3 Mb from the genome of Drosophila melanogaster has been sequenced from a series of overlapping P1 and BAC clones. This region covers 69 chromosome polytene bands on chromosome arm 2L, including the genetically well-characterized

  6. Mapping of the gene encoding the. beta. -amyloid precursor protein and its relationship to the Down syndrome region of chromosome 21

    SciTech Connect

    Patterson, D.; Gardiner, K.; Kao, F.T.; Tanzi, R.; Watkins, P.; Gusella, J.F. )

    1988-11-01

    The gene encoding the {beta}-amyloid precursor protein has been assigned to human chromosome 21, as has a gene responsible for at least some cases of familial Alzheimer disease. Linkage studies strongly suggest that the {beta}-amyloid precursor protein and the product corresponding to familial Alzheimer disease are from two genes, or at least that several million base pairs of DNA separate the markers. The precise location of the {beta}-amyloid precursor protein gene on chromosome 21 has not yet been determined. Here the authors show, by using a somatic-cell/hybrid-cell mapping panel, in situ hybridization, and transverse-alternating-field electrophoresis, that the {beta}-amyloid precursor protein gene is located on chromosome 21 very near the 21q21/21q/22 border and probably within the region of chromosome 21 that, when trisomic, results in Down syndrome.

  7. A region on bovine chromosome 15 influences beef longissimus tenderness in steers.

    PubMed

    Keele, J W; Shackelford, S D; Kappes, S M; Koohmaraie, M; Stone, R T

    1999-06-01

    A genome scan was conducted using 196 microsatellite DNA markers spanning 29 autosomal bovine chromosomes and Warner-Bratzler shear force collected at d 2 and 14 postmortem on steaks from the longissimus muscle of 294 progeny from one Brahman x Hereford bull mated to Bos taurus cows to identify QTL for beef tenderness. One QTL was identified and located 28 cM (95% confidence interval is 17 to 40 cM) from the most centromeric marker on BTA15. The QTL interacted significantly with slaughter group. The difference in shear force of steaks aged 14 d postmortem between progeny with the Brahman paternally inherited allele vs those with Hereford was 1.19 phenotypic standard deviations (explained 26% of phenotypic variance) for one slaughter group and was not significant for three other slaughter groups. Apparently, unknown environmental factors present for three of the four slaughter groups were capable of masking the effect of this QTL. The sensitivity of the QTL effect to environmental factors may complicate utilization of markers for genetic improvement. Future research to elucidate the cause of the QTL x slaughter group interaction may lead to improved strategies for controlling variation in meat tenderness via marker-assisted selection, postmortem processing, or live animal management.

  8. Regional chromosomal assignments for four members of the myocyte-specific enhancer-binding factor 2 (MEF2) gene family to human chromosomes 15q, 19q, 5q, and 1q

    SciTech Connect

    Hobson, G.M.; Funanage, V.L.; Krahe, R.

    1994-09-01

    MEF2 genes belong to the MADS box family of transcription factors and encode proteins that bind as homo- and heterodimers to a consensus CTA(T/A){sub 4}TAG/A sequence present in the regulatory regions of numerous muscle-specific and growth inducible genes. Sequence analysis of human MEF2 cDNA clones suggested that they arose from alternatively spliced transcripts of four different genes, termed MEF2A-D. We have mapped the MEF2 genes to human chromosomal regions by identifying unique sequences in the 5{prime} or 3{prime} untranslated regions of each clone and using these sequences as PCR primers on the DNA of a human-rodent hybrid clone panel informative for different regions of the human genome. The localization of MEF2A to chromosome 15q, MEF2B to 19q, MEF2C to 5q, and MEF2D to 1q verifies the existence of at least four distinct loci for members of this gene family. The same PCR primers were used to identify individual YAC clones for each gene. Such isolated clones are now being used for fluorescence in situ hybridization for high resolution chromosomal regional assignment.

  9. De novo LINE-1 retrotransposition in HepG2 cells preferentially targets gene poor regions of chromosome 13.

    PubMed

    Bojang, Pasano; Anderton, Mark J; Roberts, Ruth A; Ramos, Kenneth S

    2014-08-01

    Long interspersed nuclear elements (Line-1 or L1s) account for ~17% of the human genome. While the majority of human L1s are inactive, ~80-100 elements remain retrotransposition competent and mobilize through RNA intermediates to different locations within the genome. De novo insertions of L1s account for polymorphic variation of the human genome and disruption of target loci at their new location. In the present study, fluorescence in situ hybridization and DNA sequencing were used to characterize retrotransposition profiles of L1(RP) in cultured human HepG2 cells. While expression of synthetic L1(RP) was associated with full-length and truncated insertions throughout the entire genome, a strong preference for gene-poor regions, such as those found in chromosome 13 was observed for full-length insertions. These findings shed light into L1 targeting mechanisms within the human genome and question the putative randomness of L1 retrotransposition.

  10. An autosomal recessive syndrome of severe mental retardation, cataract, coloboma and kyphosis maps to the pericentromeric region of chromosome 4.

    PubMed

    Kahrizi, Kimia; Najmabadi, Hossein; Kariminejad, Roxana; Jamali, Payman; Malekpour, Mahdi; Garshasbi, Masoud; Ropers, Hans Hilger; Kuss, Andreas Walter; Tzschach, Andreas

    2009-01-01

    We report on three siblings with a novel mental retardation (MR) syndrome who were born to distantly related Iranian parents. The clinical problems comprised severe MR, cataracts with onset in late adolescence, kyphosis, contractures of large joints, bulbous nose with broad nasal bridge, and thick lips. Two patients also had uni- or bilateral iris coloboma. Linkage analysis revealed a single 10.4 Mb interval of homozygosity with significant LOD score in the pericentromeric region of chromosome 4 flanked by SNPs rs728293 (4p12) and rs1105434 (4q12). This interval contains more than 40 genes, none of which has been implicated in MR so far. The identification of the causative gene defect for this syndrome will provide new insights into the development of the brain and the eye.

  11. The IL-9 receptor gene (IL9R): Genomic structure, chromosomal localization in the pseudoautosomal region of the long arm of sex chromosomes, and identification of IL9R pseudogenes at 9qter, 10pter, 16pter, 18pter

    SciTech Connect

    Kermouni, A.; Godelaine, D.; Lurquin, C.; Szikora, J.P.

    1995-09-20

    Cosmids containing the human IL-9 receptor (R) gene (IL9R) have been isolated from a genomic library using the IL9R cDNA as a probe. We have shown that the human IL9R gene is composed of 11 exons and 10 introns, stretching over {approx} 17 kb, and is located within the pseudoautosomal region of the Xq and Yq chromosome, in the vicinity of the telomere. Analysis of the 5` flanking region revealed multiple transcription initiation sites as well as potential binding motifs for AP1, AP2, AP3, Sp1, and NF-kB, although this region lacks a TATA box. Using the human IL9R cosmid as a probe to perform fluorescence in situ hybridization, additional signals were identified in the subtelomeric regions of chromosomes 9q, 10p, 16p, and 18p. IL9R homologs located on chromosomes 9 and 18 were partially characterized, while those located on chromosomes 16 and 10 were completely sequenced. Although they are similiar to the IL9R gene ({approx} 90% identity), none of these copies encodes a functional receptor: none of them contains sequences homologous to the 5` flanking region or exon 1 of the IL9R gene, and the remaining ORFs have been inactivated by various point mutations and deletions. Taken together, our results indicate that the IL9R gene is located at Xq28 and Yq12, in the long arm pseudoautosomal region, and that four IL9R pseudogenes are located on 9q34, 10p15, 16p13.3 and 18p11.3, probably dispersed as the result of translocations during evolution. 42 refs., 6 figs., 3 tabs.

  12. A map of nuclear matrix attachment regions within the breast cancer loss-of-heterozygosity region on human chromosome 16q22.1.

    PubMed

    Shaposhnikov, Sergey A; Akopov, Sergey B; Chernov, Igor P; Thomsen, Preben D; Joergensen, Claus; Collins, Andrew R; Frengen, Eirik; Nikolaev, Lev G

    2007-03-01

    There is abundant evidence that the DNA in eukaryotic cells is organized into loop domains that represent basic structural and functional units of chromatin packaging. To explore the DNA domain organization of the breast cancer loss-of-heterozygosity region on human chromosome 16q22.1, we have identified a significant portion of the scaffold/matrix attachment regions (S/MARs) within this region. Forty independent putative S/MAR elements were assigned within the 16q22.1 locus. More than 90% of these S/MARs are AT rich, with GC contents as low as 27% in 2 cases. Thirty-nine (98%) of the S/MARs are located within genes and 36 (90%) in gene introns, of which 15 are in first introns of different genes. The clear tendency of S/MARs from this region to be located within the introns suggests their regulatory role. The S/MAR resource constructed may contribute to an understanding of how the genes in the region are regulated and of how the structural architecture and functional organization of the DNA are related. PMID:17188460

  13. Association of chromosomal regions 3p21.2, 10p13, and 16p13.3 with nonsyndromic cleft lip and palate.

    PubMed

    Blanton, Susan H; Bertin, Terry; Serna, Maria E; Stal, Samuel; Mulliken, John B; Hecht, Jacqueline T

    2004-02-15

    Approximately 4,000 babies with nonsyndromic cleft lip with or without cleft palate (NSCLP) are born each year in the United States. Because NSCLP exhibits both etiologic and genetic heterogeneity, attempts to identify the underlying genetic causes have met with limited success and the pursuit of early promising findings have yielded mixed results. Two recent genomic scans identified a number of suggestive regions; some of these results have been supported by our lab and others in subsequent studies. Using our NSCLP multiplex family population, we were able to provide additional supportive evidence for association to the regions 2q37, 11p12-14, 12q13, and 16p13.11-p12 that were identified in the genomic scans. However, there remains a number of additional viable candidate genes and regions that have not been sufficiently investigated. These include chromosomal translocations in patients with NSCLP, growth factor genes, metalloproteinase (MMP) and transcription factor (patterning) genes, including those in the WNT family. Here, we present results from screening the 10p13 chromosomal translocation region associated with NSCLP, MMP genes clustered on chromosomes 1p36, 11q22.3, 16p13.3, and 16q12-13, and the region containing the WNT5A gene on chromosome 3p21. Markers from three of the regions, 10p13, 16p13.3 (MMP25), and 3p21.2, yielded findings that are sufficiently significant to warrant closer investigation.

  14. A 4-Mb deletion in the region Xq27.3-q28 is associated with non-random inactivation of the non-mutant X chromosome

    SciTech Connect

    Clarke, J.T.R.; Han, L.P.; Michalickova, K.

    1994-09-01

    A girl with severe Hunter disease was found to have a submicroscopic deletion distrupting the IDS locus in the region Xq27.3-q28 together with non-random inactivation of the non-mutant X chromosome. Southern analysis of DNA from the parents and from hamster-patient somatic cell hybrids containing only the mutant X chromosome revealed that the deletion represented a de novo mutation involving the paternal X chromosome. Methylation-sensitive RFLP analysis of DNA from maternal fibroblasts and lymphocytes showed methylation patterns consistent with random X-inactivation, indicating that the non-random X-inactivation in the patient was not inherited and was likely a direct result of the Xq27.3-q28 deletion. A 15 kb EcoRI junction fragment, identified in patient DNA using IDS cDNA probes, was cloned from a size-selected patient DNA library. Clones containing the deletion junction were restriction mapped and fragments were subcloned and used to isolate normal sequence on either side of the deletion from normal X chromosome libraries. Comparison of the sequences from normal and mutant X chromosome clones straddling the deletion breakpoint showed that the mutation had occurred by recombination between Alu repeats. Screening of YAC contigs containing normal X chromosome sequence from the region of the mutation, using probes from either side of the deletion breakpoint, showed that the deletion was approximately 4 Mb in size. Probing of mutant DNA with 16 STSs distributed throughout the region of the deletion confirmed that the mutation is a simple deletion with no complex rearrangements of islands of retained DNA. A search for sequences at Xq27.3-q28 involved in X chromosome inactivation is in progress.

  15. Identification and physical localization of useful genes and markers to a major gene-rich region on wheat group 1S chromosomes.

    PubMed Central

    Sandhu, D; Champoux, J A; Bondareva, S N; Gill, K S

    2001-01-01

    The short arm of Triticeae homeologous group 1 chromosomes is known to contain many agronomically important genes. The objectives of this study were to physically localize gene-containing regions of the group 1 short arm, enrich these regions with markers, and study the distribution of genes and recombination. We focused on the major gene-rich region ("1S0.8 region") and identified 75 useful genes along with 93 RFLP markers by comparing 35 different maps of Poaceae species. The RFLP markers were tested by gel blot DNA analysis of wheat group 1 nullisomic-tetrasomic lines, ditelosomic lines, and four single-break deletion lines for chromosome arm 1BS. Seventy-three of the 93 markers mapped to group 1 and detected 91 loci on chromosome 1B. Fifty-one of these markers mapped to two major gene-rich regions physically encompassing 14% of the short arm. Forty-one marker loci mapped to the 1S0.8 region and 10 to 1S0.5 region. Two cDNA markers mapped in the centromeric region and the remaining 24 loci were on the long arm. About 82% of short arm recombination was observed in the 1S0.8 region and 17% in the 1S0.5 region. Less than 1% recombination was observed for the remaining 85% of the physical arm length. PMID:11290727

  16. Developmental Genetics of the 2c-D Region of the Drosophila X Chromosome

    PubMed Central

    Perrimon, Norbert; Engstrom, Lee; Mahowald, Anthony P.

    1985-01-01

    We have conducted a genetic and developmental analysis of genes within the 2C-D area of the X chromosome. Phenotypes of 33 mutations representing nine adjacent complementation groups including eight recessive lethals and one visible homeotic mutation (polyhomeotic) are described. Germline clonal analysis of the eight zygotic lethals has revealed three types of gene requirements: (1) normal activity at two pupal lethal loci (corkscrew and C204) and one larval lethal locus (ultraspiracle) is required for normal embryogenesis; (2) normal activity at three larval lethal loci (DF967, VE651 and Pgd) is required for normal oogenesis; and (3) activity at only one locus (EA82), a larval lethal, appears to have no maternal requirement. Ambiguous results were obtained for the GF316 lethal complementation group. Analysis of mitotic figures of the pupal lethals indicates that C204 disrupts an essential mitotic function. This result correlates with the preblastoderm arrest observed among embryos derived from germline clones of C204. Embryos derived from germline clones of corkscrew (csw) exhibit a "twisted" phenotype. The recessive lethal ultraspiracle (usp) disrupts the organization of the posterior tip of the larva both zygotically and maternally: second instar usp/Y larvae derived from heterozygous usp/+ mothers possess an extra set of spiracles, whereas usp/Y embryos derived from females possessing a germline clone (usp/usp) exhibit a localized ventral defect in the ninth or posterior eighth abdominal segment. Analysis of the phenotypes of deficiency-hemizygous embryos indicates the presence of an embryonic zygotic lethal locus, as yet unidentified, which produces central nervous system and ventral hypoderm degeneration. Additional information on the genetic organization of loci within the adjacent 2E area are also described. The implications of this analysis to our understanding of the maternal of zygotic lethal loci in development are discussed. PMID:3928431

  17. Four out of eight genes in a mouse chromosome 7 congenic donor region are candidate obesity genes.

    PubMed

    Sarahan, Kari A; Fisler, Janis S; Warden, Craig H

    2011-09-22

    We previously identified a region of mouse chromosome 7 that influences body fat mass in F2 littermates of congenic × background intercrosses. Current analyses revealed that alleles in the donor region of the subcongenic B6.C-D7Mit318 (318) promoted a twofold increase in adiposity in homozygous lines of 318 compared with background C57BL/6ByJ (B6By) mice. Parent-of-origin effects were discounted through cross-fostering studies and an F1 reciprocal cross. Mapping of the donor region revealed that it has a maximal size of 2.8 Mb (minimum 1.8 Mb) and contains a maximum of eight protein coding genes. Quantitative PCR in whole brain, liver, and gonadal white adipose tissue (GWAT) revealed differential expression between genotypes for three genes in females and two genes in males. Alpha-2,8-sialyltransferase 8B (St8sia2) showed reduced 318 mRNA levels in brain for females and males and in GWAT for females only. Both sexes of 318 mice had reduced Repulsive guidance molecule-a (Rgma) expression in GWAT. In brain, Family with sequence similarity 174 member b (Fam174b) had increased expression in 318 females, whereas Chromodomain helicase DNA binding protein 2 (Chd2-2) had reduced expression in 318 males. No donor region genes were differentially expressed in liver. Sequence analysis of coding exons for all genes in the 318 donor region revealed only one single nucleotide polymorphism that produced a nonsynonymous missense mutation, Gln7Pro, in Fam174b. Our findings highlight the difficulty of using expression and sequence to identify quantitative trait genes underlying obesity even in small genomic regions.

  18. Four out of eight genes in a mouse chromosome 7 congenic donor region are candidate obesity genes

    PubMed Central

    Sarahan, Kari A.; Fisler, Janis S.

    2011-01-01

    We previously identified a region of mouse chromosome 7 that influences body fat mass in F2 littermates of congenic × background intercrosses. Current analyses revealed that alleles in the donor region of the subcongenic B6.C-D7Mit318 (318) promoted a twofold increase in adiposity in homozygous lines of 318 compared with background C57BL/6ByJ (B6By) mice. Parent-of-origin effects were discounted through cross-fostering studies and an F1 reciprocal cross. Mapping of the donor region revealed that it has a maximal size of 2.8 Mb (minimum 1.8 Mb) and contains a maximum of eight protein coding genes. Quantitative PCR in whole brain, liver, and gonadal white adipose tissue (GWAT) revealed differential expression between genotypes for three genes in females and two genes in males. Alpha-2,8-sialyltransferase 8B (St8sia2) showed reduced 318 mRNA levels in brain for females and males and in GWAT for females only. Both sexes of 318 mice had reduced Repulsive guidance molecule-a (Rgma) expression in GWAT. In brain, Family with sequence similarity 174 member b (Fam174b) had increased expression in 318 females, whereas Chromodomain helicase DNA binding protein 2 (Chd2-2) had reduced expression in 318 males. No donor region genes were differentially expressed in liver. Sequence analysis of coding exons for all genes in the 318 donor region revealed only one single nucleotide polymorphism that produced a nonsynonymous missense mutation, Gln7Pro, in Fam174b. Our findings highlight the difficulty of using expression and sequence to identify quantitative trait genes underlying obesity even in small genomic regions. PMID:21730028

  19. Pasture names with Romance and Slavic roots facilitate dissection of Y chromosome variation in an exclusively German-speaking alpine region.

    PubMed

    Niederstätter, Harald; Rampl, Gerhard; Erhart, Daniel; Pitterl, Florian; Oberacher, Herbert; Neuhuber, Franz; Hausner, Isolde; Gassner, Christoph; Schennach, Harald; Berger, Burkhard; Parson, Walther

    2012-01-01

    The small alpine district of East Tyrol (Austria) has an exceptional demographic history. It was contemporaneously inhabited by members of the Romance, the Slavic and the Germanic language groups for centuries. Since the Late Middle Ages, however, the population of the principally agrarian-oriented area is solely Germanic speaking. Historic facts about East Tyrol's colonization are rare, but spatial density-distribution analysis based on the etymology of place-names has facilitated accurate spatial mapping of the various language groups' former settlement regions. To test for present-day Y chromosome population substructure, molecular genetic data were compared to the information attained by the linguistic analysis of pasture names. The linguistic data were used for subdividing East Tyrol into two regions of former Romance (A) and Slavic (B) settlement. Samples from 270 East Tyrolean men were genotyped for 17 Y-chromosomal microsatellites (Y-STRs) and 27 single nucleotide polymorphisms (Y-SNPs). Analysis of the probands' surnames revealed no evidence for spatial genetic structuring. Also, spatial autocorrelation analysis did not indicate significant correlation between genetic (Y-STR haplotypes) and geographic distance. Haplogroup R-M17 chromosomes, however, were absent in region A, but constituted one of the most frequent haplogroups in region B. The R-M343 (R1b) clade showed a marked and complementary frequency distribution pattern in these two regions. To further test East Tyrol's modern Y-chromosomal landscape for geographic patterning attributable to the early history of settlement in this alpine area, principal coordinates analysis was performed. The Y-STR haplotypes from region A clearly clustered with those of Romance reference populations and the samples from region B matched best with Germanic speaking reference populations. The combined use of onomastic and molecular genetic data revealed and mapped the marked structuring of the distribution of Y

  20. Pasture names with Romance and Slavic roots facilitate dissection of Y chromosome variation in an exclusively German-speaking alpine region.

    PubMed

    Niederstätter, Harald; Rampl, Gerhard; Erhart, Daniel; Pitterl, Florian; Oberacher, Herbert; Neuhuber, Franz; Hausner, Isolde; Gassner, Christoph; Schennach, Harald; Berger, Burkhard; Parson, Walther

    2012-01-01

    The small alpine district of East Tyrol (Austria) has an exceptional demographic history. It was contemporaneously inhabited by members of the Romance, the Slavic and the Germanic language groups for centuries. Since the Late Middle Ages, however, the population of the principally agrarian-oriented area is solely Germanic speaking. Historic facts about East Tyrol's colonization are rare, but spatial density-distribution analysis based on the etymology of place-names has facilitated accurate spatial mapping of the various language groups' former settlement regions. To test for present-day Y chromosome population substructure, molecular genetic data were compared to the information attained by the linguistic analysis of pasture names. The linguistic data were used for subdividing East Tyrol into two regions of former Romance (A) and Slavic (B) settlement. Samples from 270 East Tyrolean men were genotyped for 17 Y-chromosomal microsatellites (Y-STRs) and 27 single nucleotide polymorphisms (Y-SNPs). Analysis of the probands' surnames revealed no evidence for spatial genetic structuring. Also, spatial autocorrelation analysis did not indicate significant correlation between genetic (Y-STR haplotypes) and geographic distance. Haplogroup R-M17 chromosomes, however, were absent in region A, but constituted one of the most frequent haplogroups in region B. The R-M343 (R1b) clade showed a marked and complementary frequency distribution pattern in these two regions. To further test East Tyrol's modern Y-chromosomal landscape for geographic patterning attributable to the early history of settlement in this alpine area, principal coordinates analysis was performed. The Y-STR haplotypes from region A clearly clustered with those of Romance reference populations and the samples from region B matched best with Germanic speaking reference populations. The combined use of onomastic and molecular genetic data revealed and mapped the marked structuring of the distribution of Y

  1. Pasture Names with Romance and Slavic Roots Facilitate Dissection of Y Chromosome Variation in an Exclusively German-Speaking Alpine Region

    PubMed Central

    Niederstätter, Harald; Rampl, Gerhard; Erhart, Daniel; Pitterl, Florian; Oberacher, Herbert; Neuhuber, Franz; Hausner, Isolde; Gassner, Christoph; Schennach, Harald; Berger, Burkhard; Parson, Walther

    2012-01-01

    The small alpine district of East Tyrol (Austria) has an exceptional demographic history. It was contemporaneously inhabited by members of the Romance, the Slavic and the Germanic language groups for centuries. Since the Late Middle Ages, however, the population of the principally agrarian-oriented area is solely Germanic speaking. Historic facts about East Tyrol's colonization are rare, but spatial density-distribution analysis based on the etymology of place-names has facilitated accurate spatial mapping of the various language groups' former settlement regions. To test for present-day Y chromosome population substructure, molecular genetic data were compared to the information attained by the linguistic analysis of pasture names. The linguistic data were used for subdividing East Tyrol into two regions of former Romance (A) and Slavic (B) settlement. Samples from 270 East Tyrolean men were genotyped for 17 Y-chromosomal microsatellites (Y-STRs) and 27 single nucleotide polymorphisms (Y-SNPs). Analysis of the probands' surnames revealed no evidence for spatial genetic structuring. Also, spatial autocorrelation analysis did not indicate significant correlation between genetic (Y-STR haplotypes) and geographic distance. Haplogroup R-M17 chromosomes, however, were absent in region A, but constituted one of the most frequent haplogroups in region B. The R-M343 (R1b) clade showed a marked and complementary frequency distribution pattern in these two regions. To further test East Tyrol's modern Y-chromosomal landscape for geographic patterning attributable to the early history of settlement in this alpine area, principal coordinates analysis was performed. The Y-STR haplotypes from region A clearly clustered with those of Romance reference populations and the samples from region B matched best with Germanic speaking reference populations. The combined use of onomastic and molecular genetic data revealed and mapped the marked structuring of the distribution of Y

  2. A high-resolution linkage map of the achondroplasia critical region on human chromosome 4q16.3

    SciTech Connect

    Tiller, G.E.; Polumbo, P.A.

    1994-09-01

    Achondroplasia is the most common nonlethal skeletal dysplasia, with an incidence of greater than 1/40,000 births. Recently, a random search of the genome using highly polymorphic autosomal markers has localized the gene for achondroplasia to the distal portion of human chromosome 4p. We report here the construction of a high-resolution linkage map of the critical region including the achondroplasia locus. The CEPH panel of pedigrees was genotyped at several loci using highly polymorphic markers, including the Huntington locus (IT15), D4S43, D4S115, and the gene for the {beta}-subunit of rod cGMP phosphodiesterase (PDEB). These data were incorporated into the CEPH v.6.6 database and a multipoint map was generated using the LINKAGE programs v.5.1. Based on reported recombination events in achondroplasia pedigrees, the gene for achondroplasia lies distal to the anonymous marker D4S43, in the 8 cM region defined as follows: cen-IT15-D4S43-D4S98-[D4S115-D4S111]-D4S90-PDEB. The disparity between the genetic distance and the physical distance (2 mB) among these markers likely reflects the high rate of recombination within the region. Extension of this linkage map further toward the telomere and identification of distal recombinant markers should expedite efforts directed toward isolation of the gene for achondroplasia.

  3. Re-sequencing regions of the ovine Y chromosome in domestic and wild sheep reveals novel paternal haplotypes.

    PubMed

    Meadows, J R S; Kijas, J W

    2009-02-01

    The male-specific region of the ovine Y chromosome (MSY) remains poorly characterized, yet sequence variants from this region have the potential to reveal the wild progenitor of domestic sheep or examples of domestic and wild paternal introgression. The 5' promoter region of the sex-determining gene SRY was re-sequenced using a subset of wild sheep including bighorn (Ovis canadensis), thinhorn (Ovis dalli spp.), urial (Ovis vignei), argali (Ovis ammon), mouflon (Ovis musimon) and domestic sheep (Ovis aries). Seven novel SNPs (oY2-oY8) were revealed; these were polymorphic between but not within species. Re-sequencing and fragment analysis was applied to the MSY microsatellite SRYM18. It contains a complex compound repeat structure and sequencing of three novel size fragments revealed that a pentanucleotide element remained fixed, whilst a dinucleotide element displayed variability within species. Comparison of the sequence between species revealed that urial and argali sheep grouped more closely to the mouflon and domestic breeds than the pachyceriforms (bighorn and thinhorn). SNP and microsatellite data were combined to define six previously undetected haplotypes. Analysis revealed the mouflon as the only species to share a haplotype with domestic sheep, consistent with its status as a feral domesticate that has undergone male-mediated exchange with domestic animals. A comparison of the remaining wild species and domestic sheep revealed that O. aries is free from signatures of wild sheep introgression.

  4. Type 1 diabetes and the control of dexamethazone-induced apoptosis in mice maps to the same region on chromosome 6

    SciTech Connect

    Penha-Goncalves, C.; Leijon, K.; Persson, L.

    1995-08-10

    Quantitative trait loci mapping was used to identify the chromosomal location of genes that contribute to increase the resistance to apoptosis induced in immature CD4{sup +}8{sup +} thymocytes. An F2 intercross of the nonobese diabetic (NOD) mouse (displaying an apoptosis-resistance phenotype) and the C57BL/6 mouse (displaying a nonresistance phenotype) was phenotypically analyzed and genotyped for 32 murine microsatellite polymorphisms. Maximum likelihood methods identified a region on the distal part of chromosome 6 that is linked to dexamethazone-induced apoptosis (lod score = 3.46) and accounts for 14% of the phenotypic variation. This chromosomal region contains the diabetes susceptibility locus Idd6, suggesting that the apoptosis-resistance phenotype constitutes a pathogenesis factor in IDDM of NOD mice. 29 refs., 4 figs.

  5. Y-chromosomal STR haplotypes in a population from the Amazon region, Brazil.

    PubMed

    Palha, Teresinha de Jesus Brabo Ferreira; Rodrigues, Elzemar Martins Ribeiro; Dos Santos, Sidney Emanuel Batista

    2007-03-01

    Haplotype and allele frequencies of the nine Y-STR (DYS19, DYS389 I, DYS389 II, DYS390, DYS391, DYS392, DYS393, DYS385 I/II) were determined in a population sample of 200 unrelated males from Belém, Brazil. The most common haplotypes are shared by 1.5% of the sample, while 186 haplotypes are unique. The haplotype diversity is 0.9995+/-0.0006. The data obtained were compared to those of other Brazilian populations. AMOVA indicates that 99.91% of all the haplotypical variation is found within geopolitical regions and only 0.09% is found among regions.

  6. Long-Read Single Molecule Sequencing to Resolve Tandem Gene Copies: The Mst77Y Region on the Drosophila melanogaster Y Chromosome.

    PubMed

    Krsticevic, Flavia J; Schrago, Carlos G; Carvalho, A Bernardo

    2015-06-01

    The autosomal gene Mst77F of Drosophila melanogaster is essential for male fertility. In 2010, Krsticevic et al. (Genetics 184: 295-307) found 18 Y-linked copies of Mst77F ("Mst77Y"), which collectively account for 20% of the functional Mst77F-like mRNA. The Mst77Y genes were severely misassembled in the then-available genome assembly and were identified by cloning and sequencing polymerase chain reaction products. The genomic structure of the Mst77Y region and the possible existence of additional copies remained unknown. The recent publication of two long-read assemblies of D. melanogaster prompted us to reinvestigate this challenging region of the Y chromosome. We found that the Illumina Synthetic Long Reads assembly failed in the Mst77Y region, most likely because of its tandem duplication structure. The PacBio MHAP assembly of the Mst77Y region seems to be very accurate, as revealed by comparisons with the previously found Mst77Y genes, a bacterial artificial chromosome sequence, and Illumina reads of the same strain. We found that the Mst77Y region spans 96 kb and originated from a 3.4-kb transposition from chromosome 3L to the Y chromosome, followed by tandem duplications inside the Y chromosome and invasion of transposable elements, which account for 48% of its length. Twelve of the 18 Mst77Y genes found in 2010 were confirmed in the PacBio assembly, the remaining six being polymerase chain reaction-induced artifacts. There are several identical copies of some Mst77Y genes, coincidentally bringing the total copy number to 18. Besides providing a detailed picture of the Mst77Y region, our results highlight the utility of PacBio technology in assembling difficult genomic regions such as tandemly repeated genes. PMID:25858959

  7. Long-Read Single Molecule Sequencing to Resolve Tandem Gene Copies: The Mst77Y Region on the Drosophila melanogaster Y Chromosome.

    PubMed

    Krsticevic, Flavia J; Schrago, Carlos G; Carvalho, A Bernardo

    2015-04-09

    The autosomal gene Mst77F of Drosophila melanogaster is essential for male fertility. In 2010, Krsticevic et al. (Genetics 184: 295-307) found 18 Y-linked copies of Mst77F ("Mst77Y"), which collectively account for 20% of the functional Mst77F-like mRNA. The Mst77Y genes were severely misassembled in the then-available genome assembly and were identified by cloning and sequencing polymerase chain reaction products. The genomic structure of the Mst77Y region and the possible existence of additional copies remained unknown. The recent publication of two long-read assemblies of D. melanogaster prompted us to reinvestigate this challenging region of the Y chromosome. We found that the Illumina Synthetic Long Reads assembly failed in the Mst77Y region, most likely because of its tandem duplication structure. The PacBio MHAP assembly of the Mst77Y region seems to be very accurate, as revealed by comparisons with the previously found Mst77Y genes, a bacterial artificial chromosome sequence, and Illumina reads of the same strain. We found that the Mst77Y region spans 96 kb and originated from a 3.4-kb transposition from chromosome 3L to the Y chromosome, followed by tandem duplications inside the Y chromosome and invasion of transposable elements, which account for 48% of its length. Twelve of the 18 Mst77Y genes found in 2010 were confirmed in the PacBio assembly, the remaining six being polymerase chain reaction-induced artifacts. There are several identical copies of some Mst77Y genes, coincidentally bringing the total copy number to 18. Besides providing a detailed picture of the Mst77Y region, our results highlight the utility of PacBio technology in assembling difficult genomic regions such as tandemly repeated genes.

  8. Long-Read Single Molecule Sequencing to Resolve Tandem Gene Copies: The Mst77Y Region on the Drosophila melanogaster Y Chromosome

    PubMed Central

    Krsticevic, Flavia J.; Schrago, Carlos G.; Carvalho, A. Bernardo

    2015-01-01

    The autosomal gene Mst77F of Drosophila melanogaster is essential for male fertility. In 2010, Krsticevic et al. (Genetics 184: 295−307) found 18 Y-linked copies of Mst77F (“Mst77Y”), which collectively account for 20% of the functional Mst77F-like mRNA. The Mst77Y genes were severely misassembled in the then-available genome assembly and were identified by cloning and sequencing polymerase chain reaction products. The genomic structure of the Mst77Y region and the possible existence of additional copies remained unknown. The recent publication of two long-read assemblies of D. melanogaster prompted us to reinvestigate this challenging region of the Y chromosome. We found that the Illumina Synthetic Long Reads assembly failed in the Mst77Y region, most likely because of its tandem duplication structure. The PacBio MHAP assembly of the Mst77Y region seems to be very accurate, as revealed by comparisons with the previously found Mst77Y genes, a bacterial artificial chromosome sequence, and Illumina reads of the same strain. We found that the Mst77Y region spans 96 kb and originated from a 3.4-kb transposition from chromosome 3L to the Y chromosome, followed by tandem duplications inside the Y chromosome and invasion of transposable elements, which account for 48% of its length. Twelve of the 18 Mst77Y genes found in 2010 were confirmed in the PacBio assembly, the remaining six being polymerase chain reaction−induced artifacts. There are several identical copies of some Mst77Y genes, coincidentally bringing the total copy number to 18. Besides providing a detailed picture of the Mst77Y region, our results highlight the utility of PacBio technology in assembling difficult genomic regions such as tandemly repeated genes. PMID:25858959

  9. High-resolution physical mapping of a 250-kb region of human chromosome 11q24 by genomic sequence sampling (GSS)

    SciTech Connect

    Selleri, L.; Smith, M.W.; Holmsen, A.L.

    1995-04-10

    A physical map of the region of human chromosome 11q24 containing the FLI1 gene, disrupted by the t(11;22) translocation in Ewing sarcoma and primitive neuroectodermal tumors, was analyzed by genomic sequence sampling. Using a 4- to 5-fold coverage chromosome 11-specific library, 22 region-specific cosmid clones were identified by phenol emulsion reassociation hybridization, with a 245-kb yeast artificial chromosome clone containing the FLI1 gene, and by directed {open_quotes}walking{close_quotes} techniques. Cosmid contigs were constructed by individual clone fingerprinting using restriction enzyme digestion and assembly with the Genome Reconstruction and AsseMbly (GRAM) computer algorithm. The relative orientation and spacing of cosmid contigs with respect to the chromosome were determined by the structural analysis of cosmid clones and by direct visual in situ hybridization mapping. Each cosmid clone in the contig was subjected to {open_quotes}one-pass{close_quotes} end sequencing, and the resulting ordered sequence fragments represent {approximately}5% of the complete DNA sequence, making the entire region accessible by PCR amplification. The sequence samples were analyzed for putative exons, repetitive DNAs, and simple sequence repeats using a variety of computer algorithms. Based upon the computer predictions, Southern and Northern blot experiments led to the independent identification and localization of the FLI1 gene as well as a previously unknown gene located in this region of chromosome 11q24. This approach to high-resolution physical analysis of human chromosomes allows the assembly of detailed sequence-based maps. 62 refs., 7 figs.

  10. A gene responsible for profound congenital nonsyndromal recessive deafness maps to the pericentromeric region of chromosome 17

    SciTech Connect

    Friedman, T.B.; Liang, Y.; Asher, J.H. Jr.

    1994-09-01

    Autosomal recessive deafness is the most common form of human hereditary hearing loss. Two percent of the 2,185 residents of Bengkala, Bali, Indonesia have profound congenital neurosensory nonsyndromal hereditary deafness due to a fully penetrant autosomal recessive mutation (NARD1). Families, identified through children with profound congenital deafness having hearing parents, give the expected 25% deaf progeny when corrected for ascertainment bias. Congenitally deaf individuals from Bengkala show no response to pure tone audiological examination. Obligate heterozygotes for autosomal recessive deafness in Bengkala have normal or borderline normal hearing. A chromosomal location for NARD1 was assigned directly using a linkage strategy that combines allele-frequency dependent homozygosity mapping (AHM) followed by an analysis of historical recombinants to position NARD1 relative to flanking markers. Thirteen deaf Bengkala villagers of hearing parents were typed initially for 148 STRPs distributed across the human genome and a cluster of tightly linked 17p markers with a significantly higher number of homozygotes than expected under Hardy-Weinberg and linkage equilibrium were identified. NARD1 maps closest to STRPs for D17S261 (Mfd41) and D17S805 (AFM234ta1) that are 3.2 cM apart. Recombinant genotypes for the flanking markers, D17S122 (VAW409) and D17S783 (AFM026vh7), in individuals homozygous for NARD1 place NARD1 in a 5.3 cM interval of the pericentromeric region of chromosome 17 on a refined 17p-17q12 genetic map.

  11. High-density genetic map of the BRCA1 region of chromosome 17q12-q21

    SciTech Connect

    Anderson, L.A.; Friedman, L.; Lynch, E.; King, M.C. ); Osborne-Lawrence, S.; Bowcock, A. ); Weissenbach, J. )

    1993-09-01

    To facilitate the positional cloning of the breast-ovarian cancer gene BRCA1, the authors constructed a high-density genetic map of the 8.3-cM interval between D17S250 and GIP on chromosome 17q12-q21. Markers were mapped by linkage in the CEPH and in extended kindreds in the breast cancer series. The map comprises 33 ordered polymorphisms, including 12 genes and 21 anonymous markers, yielding an average of one polymorphism every 250 kb. Twenty-five of the markers are PCR-based systems. The order of polymorphic genes and markers is cen-D17S250-D17S518-HER2-THRA1-RARA-D17S80-KRT10-[D17S800-D17S857]-GAS-D17S856-EDH17B-D17S855-D17S859-D17S858-[PPY-D17S78]-D17S183-EPB3-D17S579-D17S509-[D17S508-D17S190 = D17S810]-D17S791-[D17S181 = D17S806]-D17S797-HOX2B-GP3A-[D17S507 = GIP]-qter. BRCA1 lies in the middle of the interval, between THRA1 and D17S183. Markers from this map can be used to determine whether cancer is linked to BRCA1 in families, to evaluate whether tumors have lost heterozygosity at loci in the region, and to identify probes for characterizing chromosomal rearrangements from patients and from tumors. 21 refs., 1 fig., 3 tabs.

  12. The telomeric region of the human X chromosome long arm: presence of a highly polymorphic DNA marker and analysis of recombination frequency.

    PubMed Central

    Oberlé, I; Drayna, D; Camerino, G; White, R; Mandel, J L

    1985-01-01

    A DNA fragment (named St14) derived from the human X chromosome reveals a small family of related sequences that have been mapped to the Xq26-Xq28 region by using a panel of rodent-human somatic cell hybrids. The probe detects in human DNA digested by Taq I a polymorphic system defined by a series of at least eight allelic fragments with a calculated heterozygosity in females of 80%. With Msp I, we found three additional restriction fragment length polymorphisms, each of them being defined by two alleles. These polymorphisms are also common in Caucasian populations. The genetic locus defined by probe St14 has been localized more precisely to the distal end of the X chromosome (in band q28) by linkage analysis to other polymorphic DNA markers. The results obtained suggest that the frequency of recombination is distributed very unevenly in the q27-qter region of the X chromosome, with a cluster of seven tightly linked loci in q28 showing about 30% recombination with the gene for coagulation factor IX located in the neighboring q27 band. Probe St14 reveals one of the most polymorphic loci known to date in the human genome, and 17 different genotypes have already been observed. It constitutes the best marker on the X chromosome and should be of great use for the genetic study of three important diseases: hemophilia A, mental retardation with a fragile X chromosome, and adrenoleukodystrophy. Images PMID:2986139

  13. Presentation of 17 Y-chromosomal STRs in the population of the Sverdlovsk region.

    PubMed

    Trynova, Elena G; Tsitovich, Tamara N; Vylegzhanina, Elena Ya; Bandurenko, Natalija A; Parson, Walther

    2011-06-01

    We established a data set of 17 Y-STRs (DYS19, DYS389I, DYS389II, DYS390, DYS391, DYS392, DYS393, DYS385a/b, DYS438, DYS439, DYS437, DYS448, DYS456, DYS458, DYS635 and Y-GATA-H4) of 832 unrelated males from the Sverdlovsk region, Russian Federation. In total we observed 773 different haplotypes of which 732 were unique and 41 occurred between two and nine times in the investigated population. The haplotype diversity was 0.9981 and the discrimination capacity was 0.9291. This study represents the Y-STR reference data set for forensic applications in the Sverdlovsk region. PMID:21277273

  14. Worldwide DNA sequence variation in a 10-kilobase noncoding region on human chromosome 22.

    PubMed

    Zhao, Z; Jin, L; Fu, Y X; Ramsay, M; Jenkins, T; Leskinen, E; Pamilo, P; Trexler, M; Patthy, L; Jorde, L B; Ramos-Onsins, S; Yu, N; Li, W H

    2000-10-10

    Human DNA sequence variation data are useful for studying the origin, evolution, and demographic history of modern humans and the mechanisms of maintenance of genetic variability in human populations, and for detecting linkage association of disease. Here, we report worldwide variation data from a approximately 10-kilobase noncoding autosomal region. We identified 75 variant sites in 64 humans (128 sequences) and 463 variant sites among the human, chimpanzee, and orangutan sequences. Statistical tests suggested that the region is selectively neutral. The average nucleotide diversity (pi) across the region was 0.088% among all of the human sequences obtained, 0.085% among African sequences, and 0.082% among non-African sequences, supporting the view of a low nucleotide diversity ( approximately 0.1%) in humans. The comparable pi value in non-Africans to that in Africans indicates no severe bottleneck during the evolution of modern non-Africans; however, the possibility of a mild bottleneck cannot be excluded because non-Africans showed considerably fewer variants than Africans. The present and two previous large data sets all show a strong excess of low frequency variants in comparison to that expected from an equilibrium population, indicating a relatively recent population expansion. The mutation rate was estimated to be 1.15 x 10(-9) per nucleotide per year. Estimates of the long-term effective population size N(e) by various statistical methods were similar to those in other studies. The age of the most recent common ancestor was estimated to be approximately 1.29 million years ago among all of the sequences obtained and approximately 634,000 years ago among the non-African sequences, providing the first evidence from a noncoding autosomal region for ancient human histories, even among non-Africans.

  15. Identification and mapping of ten new potential insulators in the FXYD5-COX7A1 region of human chromosome 19q13.12.

    PubMed

    Didych, D A; Akopov, S B; Snezhkov, E V; Skaptsova, N V; Nikolaev, L G; Sverdlov, E D

    2009-07-01

    A positive-negative selection system revealed 10 potential insulators able to block enhancer interaction with promoter in the 10(6) bp human chromosome 19 region between genes FXYD5 and COX7A1. Relative positions of insulators and genes are in accord with the hypothesis that insulators subdivide genomic DNA into independently regulated loop domains. PMID:19747092

  16. Targeted discovery of single-nucleotide polymorphisms in an unmarked wheat chromosomal region containing the Hessian fly resistance gene H33

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The highly effective Hessian fly-resistance gene, H33, was introgressed from durum wheat into common wheat and genetically mapped to chromosome 3AS, in previous research. However, H33 located to a region that is well-known to be devoid of molecular markers, with the closest flanking simple sequence ...

  17. Quantitative variation in obesity-related traits and insulin precursors linked to the OB gene region on human chromosome 7

    SciTech Connect

    Duggirala, R.; Stern, M.P.; Reinhart, L.J.

    1996-09-01

    Despite the evidence that human obesity has strong genetic determinants, efforts at identifying specific genes that influence human obesity have largely been unsuccessful. Using the sibship data obtained from 32 low-income Mexican American pedigrees ascertained on a type II diabetic proband and a multipoint variance-components method, we tested for linkage between various obesity-related traits plus associated metabolic traits and 15 markers on human chromosome 7. We found evidence for linkage between markers in the OB gene region and various traits, as follows: D7S514 and extremity skinfolds (LOD = 3.1), human carboxypeptidase A1 (HCPA1) and 32,33-split proinsulin level (LOD = 4.2), and HCPA1 and proinsulin level (LOD = 3.2). A putative susceptibility locus linked to the marker D7S514 explained 56% of the total phenotypic variation in extremity skinfolds. Variation at the HCPA1 locus explained 64% of phenotypic variation in proinsulin level and {approximately}73% of phenotypic variation in split proinsulin concentration, respectively. Weaker evidence for linkage to several other obesity-related traits (e.g., waist circumference, body-mass index, fat mass by bioimpedance, etc.) was observed for a genetic location, which is {approximately}15 cM telomeric to OB. In conclusion, our study reveals that the OB region plays a significant role in determining the phenotypic variation of both insulin precursors and obesity-related traits, at least in Mexican Americans. 66 refs., 3 figs., 4 tabs.

  18. In silico prediction of structure and functions for some proteins of male-specific region of the human Y chromosome.

    PubMed

    Saha, Chinmoy; Polash, Ahsan Habib; Islam, Md Tariqul; Shafrin, Farhana

    2013-12-01

    Male-specific region of the human Y chromosome (MSY) comprises 95% of its length that is functionally active. This portion inherits in block from father to male offspring. Most of the genes in the MSY region are involved in male-specific function, such as sex determination and spermatogenesis; also contains genes probably involved in other cellular functions. However, a detailed characterization of numerous MSY-encoded proteins still remains to be done. In this study, 12 uncharacterized proteins of MSY were analyzed through bioinformatics tools for structural and functional characterization. Within these 12 proteins, a total of 55 domains were found, with DnaJ domain signature corresponding to be the highest (11%) followed by both FAD-dependent pyridine nucleotide reductase signature and fumarate lyase superfamily signature (9%). The 3D structures of our selected proteins were built up using homology modeling and the protein threading approaches. These predicted structures confirmed in detail the stereochemistry; indicating reasonably good quality model. Furthermore the predicted functions and the proteins with whom they interact established their biological role and their mechanism of action at molecular level. The results of these structure-functional annotations provide a comprehensive view of the proteins encoded by MSY, which sheds light on their biological functions and molecular mechanisms. The data presented in this study may assist in future prognosis of several human diseases such as Turner syndrome, gonadal sex reversal, spermatogenic failure, and gonadoblastoma.

  19. Deletion of a telomeric region on chromosome 8 correlates with higher productivity and stability of CHO cell lines.

    PubMed

    Ritter, Anett; Voedisch, Bernd; Wienberg, Johannes; Wilms, Burkhard; Geisse, Sabine; Jostock, Thomas; Laux, Holger

    2016-05-01

    Chinese Hamster Ovary (CHO) cells are widely used for large scale production of recombinant biopharmaceuticals. Although these cells have been extensively used, a demand to further increase the performance, for example, to facilitate the process of clone selection to isolate the highest producing cell lines that maintain stability of production over time is still existing. We compared gene expression profiles of high versus low producing CHO clones to identify regulated genes which can be used as biomarkers during clone selection or for cell line engineering. We present evidence that increased production rates and cell line stability are correlated with the loss of the telomeric region of the chromosome 8. A new parental CHO cell line lacking this region was generated and its capability for protein production was assessed. The average volumetric productivity of cells after gene transfer and selection was found to be several fold improved, facilitating the supply of early drug substance material to determine for example, quality. In addition, significantly more cell clones with a higher average productivity and higher protein production stability were obtained with the new host cell line after single cell cloning. This allows reduced efforts in single cell sorting, screening of fewer clones and raises the opportunity to circumvent time and labor-intensive stability studies.

  20. Linkage to markers for the chromosome region 17q12-q21 in 13 Dutch breast cancer kindreds

    SciTech Connect

    Devilee, P.; Cornelis, R.S.; Bardoel, A.; Vliet, M. van; Leeuwen, I. van; Cleton, F.J.; Vasen, H.F.A.; Cornelisse, C.J.; Meera Khan, P. ); Bootsma, A.; Klein, A. de; Lindhout, D. )

    1993-04-01

    The authors have performed linkage analysis with five markers for the chromosome region 17q12-q21 in 13 Dutch breast cancer kindreds in order to find support for the claim by Hall et al. that a gene in this region, termed [open quotes]BRCA1,[close quotes] is associated with predisposition to early-onset familial breast cancer. This work is part of a collaborative study, the results of which are published elsewhere in this issue. Best evidence for linkage was observed with the marker CMM86 (D17S74) in pedigrees with an average age at onset of [le]47 years (LOD score = 1.77 at 1% recombination). In one breast-ovarian cancer family with a high probability of being linked to 17q, they observed one putative recombinant between D17S250 and D17S579, which suggests that BRCA1 is proximal to D17S579. 32 refs., 2 figs., 2 tabs.

  1. Congenital fibrosis of the extraocular muscles maps to the centromeric region of human chromosome 12 in multiple families

    SciTech Connect

    Engle, E.C.; Kunkel, L.M.; Beggs, A.H.

    1994-09-01

    Congenital fibrosis of the extraocular muscles (CFEOM) is an autosomal dominant, ocular disorder characterized by congenital, non-progressive bilateral ptosis and external ophthalmoplegia with a compensatory backward tilt of the head. The pathophysiology of this disorder is unknown and it is unclear if it has a primary neurogenic or myopathic etiology. Postmortem examination of one affected individual reveals normal brainstem, cranial nerves, and non-fibrotic extraocular muscle (EOM). EOM biopsies of several other affected individuals contain relatively normal fibers interspersed in connective tissue, possibly representing normal tendinous insertions. We recently reported linkage of this disease in two unrelated families to markers in the centromeric region of human chromosome 12. D12S59 did not recombine with the disease giving a two-point lod score of 12.5 ({theta}=0.00) while D12S87 and D12S85 flank the CFEOM locus with two-point lod scores of 8.9 ({theta}=0.03) and 5.4 ({theta}=0.03), respectively. Recent experiments with two additional families indicate that the disease in all four kindreds maps to the same locus. The use of several new markers has allowed us to identify a new flanking marker (CHLC, GATA5A09) reducing the size of the critical region to approximately 3.7 cM. Furthermore, D12S331 and D12S345 are nonrecombinant and apparently within the interval D12S87-GATA5A09.

  2. Adrenocorticotropin receptor/melanocortin receptor-2 maps within a reported susceptibility region for bipolar illness on chromosome 18

    SciTech Connect

    Detera-Wadleigh, S.D.; Yoon, Sung W.; Goldin, L.R.

    1995-08-14

    We have examined the possible linkage of adrenocorticotropin receptor/melanocortin receptor-2 (ACTHR/MC-2) to a reported putative susceptibility locus for bipolar illness (BP) in 20 affected pedigrees. Initially, allelic variants of the gene were identified by polymerase chain reaction-single stranded conformation polymorphism (PCR-SSCP) and the gene was genetically mapped using both the Centre d`Etudes du Polymorphisme Humain (CEPH) pedigrees and the BP pedigrees used in this study. We found that the ACTHR/MC-2 gene maps between D18S53 and D18S66. These loci span a region of chromosome 18 which, in a previous study revealed a putative predisposing locus to BP through nonparametric methods of analyses, although affected sib-pair (ASP) method revealed an increase in allele sharing among ill individuals, P=0.023. Since this receptor is within a potential linkage region, ACTHR/MC-2 could be considered a candidate gene for BP. 22 refs., 4 figs., 2 tabs.

  3. Copy-number variations in Y-chromosomal azoospermia factor regions identified by multiplex ligation-dependent probe amplification.

    PubMed

    Saito, Kazuki; Miyado, Mami; Kobori, Yoshitomo; Tanaka, Yoko; Ishikawa, Hiromichi; Yoshida, Atsumi; Katsumi, Momori; Saito, Hidekazu; Kubota, Toshiro; Okada, Hiroshi; Ogata, Tsutomu; Fukami, Maki

    2015-03-01

    Although copy-number variations (CNVs) in Y-chromosomal azoospermia factor (AZF) regions have been associated with the risk of spermatogenic failure (SF), the precise frequency, genomic basis and clinical consequences of these CNVs remain unclear. Here we performed multiplex ligation-dependent probe amplification (MLPA) analysis of 56 Japanese SF patients and 65 control individuals. We compared the results of MLPA with those of conventional sequence-tagged site PCR analyses. Eleven simple and complex CNVs, including three hitherto unreported variations, were identified by MLPA. Seven of the 11 CNVs were undetectable by conventional analyses. CNVs were widely distributed in AZF regions and shared by ~60% of the patients and ~40% of the controls. Most breakpoints resided within locus-specific repeats. The majority of CNVs, including the most common gr/gr deletion, were identified in the patient and control groups at similar frequencies, whereas simple duplications were observed exclusively in the patient group. The results imply that AZF-linked CNVs are more frequent and heterogeneous than previously reported. Non-allelic homologous recombination likely underlies these CNVs. Our data confirm the functional neutrality of the gr/gr deletion in the Japanese population. We also found a possible association between AZF-linked simple duplications and SF, which needs to be evaluated in future studies.

  4. Positive selection in the chromosome 16 VKORC1 genomic region has contributed to the variability of anticoagulant response in humans.

    PubMed

    Patillon, Blandine; Luisi, Pierre; Blanché, Hélène; Patin, Etienne; Cann, Howard M; Génin, Emmanuelle; Sabbagh, Audrey

    2012-01-01

    VKORC1 (vitamin K epoxide reductase complex subunit 1, 16p11.2) is the main genetic determinant of human response to oral anticoagulants of antivitamin K type (AVK). This gene was recently suggested to be a putative target of positive selection in East Asian populations. In this study, we genotyped the HGDP-CEPH Panel for six VKORC1 SNPs and downloaded chromosome 16 genotypes from the HGDP-CEPH database in order to characterize the geographic distribution of footprints of positive selection within and around this locus. A unique VKORC1 haplotype carrying the promoter mutation associated with AVK sensitivity showed especially high frequencies in all the 17 HGDP-CEPH East Asian population samples. VKORC1 and 24 neighboring genes were found to lie in a 505 kb region of strong linkage disequilibrium in these populations. Patterns of allele frequency differentiation and haplotype structure suggest that this genomic region has been submitted to a near complete selective sweep in all East Asian populations and only in this geographic area. The most extreme scores of the different selection tests are found within a smaller 45 kb region that contains VKORC1 and three other genes (BCKDK, MYST1 (KAT8), and PRSS8) with different functions. Because of the strong linkage disequilibrium, it is not possible to determine if VKORC1 or one of the three other genes is the target of this strong positive selection that could explain present-day differences among human populations in AVK dose requirement. Our results show that the extended region surrounding a presumable single target of positive selection should be analyzed for genetic variation in a wide range of genetically diverse populations in order to account for other neighboring and confounding selective events and the hitchhiking effect.

  5. Neural overlap in processing music and speech.

    PubMed

    Peretz, Isabelle; Vuvan, Dominique; Lagrois, Marie-Élaine; Armony, Jorge L

    2015-03-19

    Neural overlap in processing music and speech, as measured by the co-activation of brain regions in neuroimaging studies, may suggest that parts of the neural circuitries established for language may have been recycled during evolution for musicality, or vice versa that musicality served as a springboard for language emergence. Such a perspective has important implications for several topics of general interest besides evolutionary origins. For instance, neural overlap is an important premise for the possibility of music training to influence language acquisition and literacy. However, neural overlap in processing music and speech does not entail sharing neural circuitries. Neural separability between music and speech may occur in overlapping brain regions. In this paper, we review the evidence and outline the issues faced in interpreting such neural data, and argue that converging evidence from several methodologies is needed before neural overlap is taken as evidence of sharing. PMID:25646513

  6. Neural overlap in processing music and speech.

    PubMed

    Peretz, Isabelle; Vuvan, Dominique; Lagrois, Marie-Élaine; Armony, Jorge L

    2015-03-19

    Neural overlap in processing music and speech, as measured by the co-activation of brain regions in neuroimaging studies, may suggest that parts of the neural circuitries established for language may have been recycled during evolution for musicality, or vice versa that musicality served as a springboard for language emergence. Such a perspective has important implications for several topics of general interest besides evolutionary origins. For instance, neural overlap is an important premise for the possibility of music training to influence language acquisition and literacy. However, neural overlap in processing music and speech does not entail sharing neural circuitries. Neural separability between music and speech may occur in overlapping brain regions. In this paper, we review the evidence and outline the issues faced in interpreting such neural data, and argue that converging evidence from several methodologies is needed before neural overlap is taken as evidence of sharing.

  7. The identification of exons from the MED/PSACH region of human chromosome 19

    SciTech Connect

    Li, Quan-Yi; Brook, J.D.; Lennon, G.G.

    1996-03-01

    We have used exon amplification to identify putative transcribed sequences from an 823-kb contig consisting of 28 cosmids that form a minimum tiling path from the interval 19p12-p13.1. This region contains the genes responsible for multiple epiphyseal dysplasia (MED) and pseudoachondroplasia (PSACH). We have trapped 66 exons (an average of 2.4 exons per cosmid) from pools of 2 or 3 cosmids. The majority of exons (51.5%) show only weak similarity or no similarity (36.3%) to sequences in current databases. Six of 8 exons examined from these groups, however, show cross-species sequence conservation, indicating that many of them probably represent authentic exons. Eight exons show identity or significant similarity to ESTs or known genes, including the human TNF receptor 3{prime}-flanking region gene, human epoxide hydrolase (EPHX), human growth/differentiation factor (GOF-1), human myocyte-specific enhancer factor 2, the rat neurocan gene, and the human cartilage oligomeric matrix protein gene (COMP). Mutations in this latter gene have recently been shown to be responsible for MED and PSACH. 33 refs., 4 figs., 2 tabs.

  8. Mapping of cosmid clones in Huntington's disease region of chromosome 4.

    PubMed

    Whaley, W L; Bates, G P; Novelletto, A; Sedlacek, Z; Cheng, S; Romano, D; Ormondroyd, E; Allitto, B; Lin, C; Youngman, S

    1991-01-01

    Huntington's disease (HD) is tightly linked to genetic markers in 4p16.3. We have used a regional somatic cell hybrid mapping panel to isolate and map 25 cosmids to the proximal portion of 4p16.3 and 17 cosmids to the distal portion. The latter were positioned by long-range restriction mapping relative to previously mapped markers. One cosmid, L6 (D4S166), spans the critical breakpoint in the mapping panel that distinguishes proximal and distal 4p16.3. Four of the cosmids mapped distal to D4S90, the previous terminal marker on 4p, and stretched to within 75 kb of the telomere. Several of the cosmids that mapped between L6 and D4S90 were clustered near a number of previously isolated clones in a region with many NotI sites. Cosmid E4 (D4S168) was localized immediately proximal to the one remaining gap in the long-range restriction map of distal 4p16.3. Although pulsed field gel mapping with E4 failed to link the two segments of the map, the intervening gap was excluded as a potential site for the HD gene by genetic analysis.

  9. [Estimation of the methylation status of the promoter region of the cell cycle gene P14ARF in placental tissues of spontaneous abortuses with chromosomal mosaicism].

    PubMed

    Kashevarova, A A; Tolmacheva, E N; Sukhanova, N N; Sazhenova, E A; Lebedev, I N

    2009-06-01

    The methylation status of the promoter region of the cell cycle gene P14ARF was studied in the extraembryonic mesoderm and in the chorion cytotrophoblast of 46 human spontaneous abortuses with chromosomal mosaicism. Aberrant methylation of alleles of this gene was revealed for the first time in placental tissues of 9% of embryos. The identified epimutations were found to be characteristic of embryos with aneuploid cell clones of postzygotic origin. It is suggested that epigenetic inactivation of loci responsible for the regulation of cell division and for segregation of chromosomes is associated with the occurrence of mosaic forms of the karyotype at early stages of human embryonic development. PMID:19639877

  10. The ubiquitous mitochondrial creatine kinase gene maps to a conserved region on human chromosome 15q15 and mouse chromosome 2 bands F1-F3

    SciTech Connect

    Steeghs, K.; Wieringa, B.; Merkx, G.

    1994-11-01

    Members of the creatine kinase isoenzyme family (CKs; EC 2.7.3.2) are found in mitochondria and specialized subregions of the cytoplasm and catalyze the reversible exchange of high-energy phosphoryl between ATP and phosphocreatine. At least four functionally active genes, which encode the distinct CK subunits CKB, CKM, CKMT1 (ubiquitous), and CKMT2 (sarcomeric), and a variable number of CKB pseudogenes have been identified. Here, we report the use of a CKMT1 containing phage to map the CKMT1 gene by in situ hybridization on both human and mouse chromosomes.

  11. Further localization of X-linked hydrocephalus in the chromosomal region Xq28

    PubMed Central

    Willems, Patrick J.; Vits, Lieve; Raeymaekers, Peter; Beuten, Joke; Coucke, Paul; Holden, Jeanette J. A.; Van Broeckhoven, Christine; Warren, Stephen T.; Sagi, Michal; Robinson, David; Dennis, Nick; Friedman, Kenneth J.; Magnay, Dorothy; Lyonnet, Stanislas; White, Bradley N.; Wittwer, Bärbel H.; Aylsworth, Arthur S.; Reicke, Sigrid

    1992-01-01

    X-linked hydrocephalus (HSAS) is the most frequent genetic form of hydrocephalus. Clinical symptoms of HSAS include hydrocephalus, mental retardation, clasped thumbs, and spastic paraparesis. Recently we have assigned the HSAS gene to Xq28 by linkage analysis. In the present study we used a panel of 18 Xq27-q28 marker loci to further localize the HSAS gene in 13 HSAS families of different ethnic origins. Among the Xq27-q28 marker loci used, DXS52, DXS15, and F8C gave the highest combined lod scores, of 14.64, 6.53 and 6.33, respectively, at recombination fractions of .04, 0, and .05, respectively. Multipoint linkage analysis localizes the HSAS gene in the telomeric part of the Xq28 region, with a maximal lod score of 20.91 at 0.5 cM distal to DXS52. Several recombinations between the HSAS gene and the Xq28 markers DXS455, DXS304, DXS305, and DXS52 confirm that the HSAS locus is distal to DXS52. One crossover between HSAS and F8C suggests the HSAS gene to be proximal to F8C. Therefore, data from multipoint linkage analysis and the localization of key crossovers indicate that the HSAS gene is most likely located between DXS52 and F8C. This high-resolution genetic mapping places the HSAS locus within a region of <2 Mb in length, which is now amenable to positional cloning. ImagesFigure 2Figure 3 PMID:1642232

  12. Molecular mapping of chromosomes 17 and X

    SciTech Connect

    Barker, D.F.

    1991-01-15

    Progress toward the construction of high density genetic maps of chromosomes 17 and X has been made by isolating and characterizing a relatively large set of polymorphic probes for each chromosome and using these probes to construct genetic maps. We have mapped the same polymorphic probes against a series of chromosome breakpoints on X and 17. The probes could be assigned to over 30 physical intervals on the X chromosome and 7 intervals on 17. In many cases, this process resulted in improved characterization of the relative locations of the breakpoints with respect to each other and the definition of new physical intervals. The strategy for isolation of the polymorphic clones utilized chromosome specific libraries of 1--15 kb segments from each of the two chromosomes. From these libraries, clones were screened for those detecting restriction fragment length polymorphisms. The markers were further characterized, the chromosomal assignments confirmed and in most cases segments of the original probes were subcloned into plasmids to produce probes with improved signal to noise ratios for use in the genetic marker studies. The linkage studies utilize the CEPH reference families and other well-characterized families in our collection which have been used for genetic disease linkage work. Preliminary maps and maps of portions of specific regions of 17 and X are provided. We have nearly completed a map of the 1 megabase Mycoplasma arthritidis genome by applying these techniques to a lambda phage library of its genome. We have found bit mapping to be an efficient means to organize a contiguous set of overlapping clones from a larger genome.

  13. Non-coding-regulatory regions of human brain genes delineated by bacterial artificial chromosome knock-in mice

    PubMed Central

    2013-01-01

    Background The next big challenge in human genetics is understanding the 98% of the genome that comprises non-coding DNA. Hidden in this DNA are sequences critical for gene regulation, and new experimental strategies are needed to understand the functional role of gene-regulation sequences in health and disease. In this study, we build upon our HuGX ('high-throughput human genes on the X chromosome’) strategy to expand our understanding of human gene regulation in vivo. Results In all, ten human genes known to express in therapeutically important brain regions were chosen for study. For eight of these genes, human bacterial artificial chromosome clones were identified, retrofitted with a reporter, knocked single-copy into the Hprt locus in mouse embryonic stem cells, and mouse strains derived. Five of these human genes expressed in mouse, and all expressed in the adult brain region for which they were chosen. This defined the boundaries of the genomic DNA sufficient for brain expression, and refined our knowledge regarding the complexity of gene regulation. We also characterized for the first time the expression of human MAOA and NR2F2, two genes for which the mouse homologs have been extensively studied in the central nervous system (CNS), and AMOTL1 and NOV, for which roles in CNS have been unclear. Conclusions We have demonstrated the use of the HuGX strategy to functionally delineate non-coding-regulatory regions of therapeutically important human brain genes. Our results also show that a careful investigation, using publicly available resources and bioinformatics, can lead to accurate predictions of gene expression. PMID:24124870

  14. Direct selection of expressed sequences within a 1-Mb region flanking BRCA1 on human chromosome 17q21

    SciTech Connect

    Osborne-Lawrence, S.; Welcsh, P.L.; Spillman, M.

    1995-01-01

    Direct selection of genes within the interval of chromosome 17q21 containing BRCA1 was performed. YAC and cosmid contigs spanning the BRCA1 region were used to select cDNA clones from pools of cDNAs derived from human placenta, HeLa cells, activated T cells, and fetal head. A minimum set of 48 fragments of nonoverlapping cDNAs that unequivocally mapped within a 1-Mb region was identified, although it is not yet known how many of these are derived from the same transcript. DNA sequence analyses revealed that 4 of these cDNAs were derived from known genes (EDH17B2, glucose-6-phosphatase, IAI.3B, and E1AF), 1 is a member of a previously described gene family (EMG-17), and 7 share substantial identity with previously described genes from human or other species. The remainder showed no significant homology to known genes. Limited PCR-based expression profiles of a set of 13 of the genes were performed, and all gave positive results with at least some cDNA sources supporting the contention that they truly represent transcribed sequences. A comparison between genes obtained from this region by direct selection with those obtained by direct screening or exon trapping revealed that over 90% of the genes identified by exon trapping were represented in the selected material and that at least two additional genes that appear to represent low abundance transcripts with restricted expression profiles were identified by selection but not by other means. 39 refs., 3 figs., 2 tabs.

  15. The pattern of replication at a human telomeric region (16p13.3): its relationship to chromosome structure and gene expression.

    PubMed

    Smith, Z E; Higgs, D R

    1999-08-01

    We have studied replication throughout 325 kb of the telomeric region of a human chromosome (16p13.3) and related the findings to various aspects of chromosome structure and function (DNA sequence organization, nuclease-hypersensitive sites, nuclear matrix attachment sites, patterns of methylation and gene expression). The GC-rich isochore lying adjacent to the telomere, which contains the alpha-globin locus and many widely expressed genes, replicates early in the cell cycle regardless of the pattern of gene expression. In subtelomeric DNA, replication occurs later in the cell cycle and the most telomeric region (20 kb) is late replicating. Juxtaposition of early replicating DNA next to the telomere causes it to replicate later in S-phase. Analysis of the timing of replication in chromosomes with deletions, or in transgenes containing various segments of this telomeric region, suggests that there are no critical origins or zones that initiate replication, rather the pattern of replication appears to be related to the underlying chromatin structure which may restrict or facilitate access to multiple, redundant origins. These results contrast with the pattern of replication at the human beta-globin locus and this may similarly reflect the different chromosomal environments containing these gene clusters.

  16. Linkage analysis of infantile pyloric stenosis and markers from chromosome 9q11-q33: no evidence for a major gene in this candidate region.

    PubMed Central

    Chung, E; Coffey, R; Parker, K; Tam, P; Pembrey, M E; Gardiner, R M

    1993-01-01

    A genetic component in the aetiology of infantile pyloric stenosis (PS) is well established. Segregation analysis is compatible with a multifactorial sex modified threshold model of inheritance but a major gene of low penetrance has not been excluded. PS has been reported to occur in 57% (four of seven) of cases with duplication of chromosome 9q11-q33. Twenty families with PS were studied using genetic markers at loci D9S55, D9S111, D9S15, D9S12, D9S56, D9S59, and ASS from this region of chromosome 9. Pairwise lod scores of -2 were obtained with all these markers at recombination fractions greater or equal to 0.04 under both autosomal dominant and autosomal recessive models of inheritance. This provides evidence against the existence of a major locus predisposing to PS within chromosome 9q11-q33. PMID:8320701

  17. Mapping of the gene for the p60 subunit of the human chromatin assembly factor (CAF1A) to the Down syndrome region of chromosome 21

    SciTech Connect

    Blouin, J.L.; Gos, A.; Morris, M.A.; Antonarakis, S.E.

    1996-04-15

    Exon trapping was used to clone portions of genes from the Down syndrome critical region (DSCR) of human chromosome 21. One trapped sequence showed complete homology with nucleotide sequence U20980 (GenBank), which corresponds to the gene for the p60 subunit of the human chromatin assembly factor-1 (CAF1A). We mapped this gene to human chromosome 21 by fluorescence in situ hybridization, by the use of somatic cell hybrids, and by hybridization to chromosome 21-specific YACs and cosmids. The CAF1A gene localizes to YACs 745H11 and 230E8 of the Chumakov et al. YAC contig, within the DSCR on 21q22. This CAF1A, which belongs to the WD-motif family of genes and interacts with other polypeptide subunits to promote assembly of histones to replicating DNA, may contribute in a gene dosage-dependent manner to the phenotype of Down syndrome. 22 refs., 1 fig.

  18. Chromosomal Conditions

    MedlinePlus

    ... 150 babies is born with a chromosomal condition. Down syndrome is an example of a chromosomal condition. Because ... all pregnant women be offered prenatal tests for Down syndrome and other chromosomal conditions. A screening test is ...

  19. Possible consequences of the overlap between the CaMV 35S promoter regions in plant transformation vectors used and the viral gene VI in transgenic plants.

    PubMed

    Podevin, Nancy; du Jardin, Patrick

    2012-01-01

    Multiple variants of the Cauliflower mosaic virus 35S promoter (P35S) are used to drive the expression of transgenes in genetically modified plants, for both research purposes and commercial applications. The genetic organization of the densely packed genome of this virus results in sequence overlap between P35S and viral gene VI, encoding the multifunctional P6 protein. The present paper investigates whether introduction of P35S variants by genetic transformation is likely to result in the expression of functional domains of the P6 protein and in potential impacts in transgenic plants. A bioinformatic analysis was performed to assess the safety for human and animal health of putative translation products of gene VI overlapping P35S. No relevant similarity was identified between the putative peptides and known allergens and toxins, using different databases. From a literature study it became clear that long variants of the P35S do contain an open reading frame, when expressed, might result in unintended phenotypic changes. A flowchart is proposed to evaluate possible unintended effects in plant transformants, based on the DNA sequence actually introduced and on the plant phenotype, taking into account the known effects of ectopically expressed P6 domains in model plants.

  20. The Friedreich Ataxia Critical Region Spans A 150-kb Interval on Chromosome 9q13

    PubMed Central

    Montermini, Laura; Rodius, François; Pianese, Luigi; Moltò, Maria Dolores; Cossée, Mireille; Campuzano, Victoria; Cavalcanti, Francesca; Monticelli, Antonella; Palau, Francisco; Gyapay, Gabor; Wenhert, Manfred; Zara, Federico; Patel, Pragna I.; Cocozza, Sergio; Koenig, Michel; Pandolfo, Massimo

    1995-01-01

    By analysis of crossovers in key recombinant families and by homozygosity analysis of inbred families, the Friedreich ataxia (FRDA) locus was localized in a 300-kb interval between the X104 gene and the microsatellite marker FR8 (D9S888). By homology searches of the sequence databases, we identified X104 as the human tight junction protein ZO-2 gene. We generated a largescale physical map of the FRDA region by pulsed-field gel electrophoresis analysis of genomic DNA and of three YAC clones derived from different libraries, and we constructed an uninterrupted cosmid contig spanning the FRDA locus. The cAMP-dependent protein kinase γ-catalytic subunit gene was identified within the critical FRDA interval, but it was excluded as candidate because of its biological properties and because of lack of mutations in FRDA patients. Six new polymorphic markers were isolated between FR2 (D9S886) and FR8 (D9S888), which were used for homozygosity analysis in a family in which parents of an affected child are distantly related. An ancient recombination involving the centromeric FRDA flanking markers had been previously demonstrated in this family. Homozygosity analysis indicated that the FRDA gene is localized in the telomeric 150 kb of the FR2-FR8 interval. ImagesFigure 2 PMID:7485155

  1. Human dopamine {beta}-hydroxylase locus and the chromosome 9q34 region in alcoholism

    SciTech Connect

    Parsian. A.; Suarez, B.K.; Hampe, C.

    1994-09-01

    Human dopamine {beta}-hydroxylase (DBH) is responsible for conversion of dopamine to norepinephrine in catecholamine neurons. Potential inhibitors of this enzyme do exist, but they are generally not effective in vivo in reducing tissue concentrations of catecholamines. The gene for DBH has been localized to 9q34 by linkage analysis and in situ hybridization. Recently there have been reports indicating a suggestive evidence of linkage between DNA markers in 9q34 region and alcoholism. In order to test for this suggestive linkage, we have genotyped a sample of 134 subjects with alcoholism, 30 alcoholic families (n=302) and 92 normal controls. The alcoholic subjects are probands of multiple incidence families. The normal controls are an epidemiologically ascertained samples of middle-aged, unrelated individuals. The two groups were matched for sex and ethnic background. The markers used in this study were dinucleotide repeats in the DBH gene, and two highly informative (CA) markers (D9S64, D9S66) flanking the DBH gene. A preliminary affected-sib-pair analysis was carried out under two diagnostic schemes. Regardless of whether `probable` alcoholics are classified as unaffected (t=0.63) or affected (t=1.50), these data do not reveal a significant excess in DBH marker sharing among affected-sib-pairs. However, the comparison of the DBH marker allele frequencies between the unrelated alcoholic panel and the unrelated normal control panel was significant at the p=0.04 level.

  2. The Friedreich ataxia critical region spans a 150-kb interval on chromosome 9q13

    SciTech Connect

    Montermini, L.; Zara, F.; Patel, P.I.

    1995-11-01

    By analysis of crossovers in key recombinant families and by homozygosity analysis of inbred families, the Friedreich ataxia (FRDA) locus was localized in a 300-kb interval between the X104 gene and the microsatellite marker FR8 (D9S888). By homology searches of the sequence databases, we identified X104 as the human tight junction protein ZO-2 gene. We generated a large-scale physical map of the FRDA region by pulsed-field gel electrophoresis analysis of genomic DNA and of three YAC clones derived from different libraries, and we constructed an uninterrupted cosmid contig spanning the FRDA locus. The cAMP-dependent protein kinase {gamma}-catalytic subunit gene was identified within the critical FRDA interval, but it was excluded as candidate because of its biological properties and because of lack of mutations in FRDA patients. Six new polymorphic markers were isolated between FR2 (D9S886) and FR8 (D9S888), which were used for homozygosity analysis in a family in which parents of an affected child are distantly related. An ancient recombination involving the centromeric FRDA flanking markers had been previously demonstrated in this family. Homozygosity analysis indicated that the FRDA gene is localized in the telomeric 150 kb of the FR2-FR8 interval. 17 refs., 3 figs., 1 tab.

  3. Y-chromosomal microsatellite diversity in three culturally defined regions of historical Tibet.

    PubMed

    Gayden, Tenzin; Bukhari, Areej; Chennakrishnaiah, Shilpa; Stojkovic, Oliver; Herrera, Rene J

    2012-07-01

    In the present study, we analyzed 17 Y-STR loci in 350 Tibetan males from three culturally defined regions of historical Tibet: Amdo (88), Kham (109) and U-Tsang (153). A total of 299 haplotypes were observed, 272 (90.9%) of which were unique. Only one Y-STR profile is shared across the three Tibetan groups and, incidentally, is also the most frequent haplotype (4.0%), represented by two, five and seven individuals from U-Tsang, Kham and Amdo, respectively. The overall haplotype diversity for the three Tibetan populations at 17 Y-STR loci was 0.9978 and the corresponding values for the extended (11-loci) and minimal (9-loci) haplotypes were 0.9935 and 0.9909, respectively. Both neighbor-joining and Rst pairwise analyses suggest a close genetic relationship between the Amdo and Kham populations, while U-Tsang is genetically distinct from the aforementioned groups. The results demonstrate that the 17 Y-STR loci analyzed are highly polymorphic in all three Tibetan populations examined and hence useful for forensic cases, paternity testing and population genetic studies.

  4. Haplotypes for 13 Y-chromosomal STR loci in South Tunisian population (Sfax region).

    PubMed

    Ayadi, Imen; Ammar-Keskes, Leila; Rebai, Ahmed

    2006-12-20

    Nine Y-STR loci from the "minimal haplotype" (DYS19, DYS385a/b, DYS389I, DYS389II, DYS390, DYS391, DYS392, DYS393) included in Y-STR Haplotype Reference Databases (YHRD) with 4 additional Y-STRs (DYS436, DYS437, DYS438, DYS439) were analyzed by PCR using duplex and Y-PLEX 12 kit, followed by automatic genotyping in a sample of 105 Tunisian males originating from Sfax region (south Tunisia). Allelic frequencies and gene diversities for each Y-STR locus were determined. The high haplotype diversity (0.9932) and discrimination capacity (0.7714) show the usefulness of these loci for human identification in forensic studies and paternity tests in Tunisia. The most common haplotype was shared by 4.7% (5 individuals) of the sample was only found in samples from the Tunisian population reported in YHRD. One private allele for DYS392 (allele 17) was discovered and duplications were observed for five loci (DYS19, DYS389I, DYS393, DYS437 and DYS439).

  5. Interstitial duplication of proximal 22q: Phenotypic overlap with cat eye syndrome

    SciTech Connect

    Knoll, J.H.M.; Asamoah, A.; Wagstaff, J.

    1995-01-16

    We describe a child with downslanting palpebral fissures, preauricular malfunctions, congenital heart defect (total anomalous pulmonary venous return), unilateral absence of a kidney, and developmental delay with an apparent interstitial duplication of proximal 22q. Fluorescent in situ hybridization (FISH) analysis showed duplication of the IGLC locus, and C-banding of the duplicated region was negative. The duplication appears to involve 22q11.2-q12. Although the child has neither colobomas nor microphthalmia, he shows phenotypic overlap with with the cat eye syndrome, which is caused by a supernumerary bisatellited chromosome arising from inverted duplication of the short arm and proximal long arm of chromosome 22. Further molecular studies of this patient should help to define the regions responsible for the manifestations of cat eye syndrome. 17 refs., 3 figs., 1 tab.

  6. Replication of the Escherichia coli chromosome in RNase HI-deficient cells: multiple initiation regions and fork dynamics.

    PubMed

    Maduike, Nkabuije Z; Tehranchi, Ashley K; Wang, Jue D; Kreuzer, Kenneth N

    2014-01-01

    DNA replication in Escherichia coli is normally initiated at a single origin, oriC, dependent on initiation protein DnaA. However, replication can be initiated elsewhere on the chromosome at multiple ectopic oriK sites. Genetic evidence indicates that initiation from oriK depends on RNA-DNA hybrids (R-loops), which are normally removed by enzymes such as RNase HI to prevent oriK from misfiring during normal growth. Initiation from oriK sites occurs in RNase HI-deficient mutants, and possibly in wild-type cells under certain unusual conditions. Despite previous work, the locations of oriK and their impact on genome stability remain unclear. We combined 2D gel electrophoresis and whole genome approaches to map genome-wide oriK locations. The DNA copy number profiles of various RNase HI-deficient strains contained multiple peaks, often in consistent locations, identifying candidate oriK sites. Removal of RNase HI protein also leads to global alterations of replication fork migration patterns, often opposite to normal replication directions, and presumably eukaryote-like replication fork merging. Our results have implications for genome stability, offering a new understanding of how RNase HI deficiency results in R-loop-mediated transcription-replication conflict, as well as inappropriate replication stalling or blockage at Ter sites outside of the terminus trap region and at ribosomal operons.

  7. A polymorphic and hypervariable locus in the pseudoautosomal region of the CBA/H mouse sex chromosomes

    SciTech Connect

    Fennelly, J.; Laval, S.; Wright, E.; Plumb, M.

    1996-04-01

    We have identified a genomic locus (DXYH1) that is polymorphic and hypervariable within the CBA/H colony. Using a panel of C57BL/6 x Mus spretus backcross offspring, it was mapped to the distal end of the X chromosome. Pseudoautosomal inheritance was demonstrated through three generations of CBA/H x CBA/H and CBA/H x C57BL/6 crosses and confirmed through linkage to the Sxr locus in X/Y Sxr x 3H1 crosses. Meiotic recombination frequencies place DXYH1 {approximately}28% into the pseudoautosomal region from the boundary. The de novo generation of CBA/H variant DXYH1 restriction fragment length polymorphisms during spermatogenesis is suggestive of the germline instability associated with hypermutable human minisatellites. The absence of DXY1-related sequences in Mus spretus provides DNA sequence evidence to support the observed failure of X-Y pairing during meiosis and consequent hybrid infertility in C57BL/6 x Mus spretus male F1 offspring. 19 refs., 4 figs.

  8. Functional complementation of ataxia-telangiectasia group D (AT-D) cells by microcell-mediated chromosome transfer and mapping of the AT-D locus to the region 11q22-23

    SciTech Connect

    Lambert, C.; Donlon, T.; Friedberg, E.C. ); Schultz, R.A.; McDaniel, L.D. ); Smith, M.; Wagner-McPherson, C.; Stanbridge, E.J. )

    1991-07-01

    The hereditary human disease ataxia-telangiectasia (AT) is characterized by phenotypic complexity at the cellular level. The authors show that multiple mutant phenotypes of immortalized AT cells from genetic complementation group D (AT-D) are corrected after the introduction of a single human chromosome from a human-mouse hybrid line by microcell-mediated chromosome transfer. This chromosome is cytogenetically abnormal. It consists primarily of human chromosome 18, but it carries translocated material from the region 11q22-23, where one or more AT genes have been previously mapped by linkage analysis. A cytogenetically normal human chromosome 18 does not complement AT-D cells after microcell-mediated transfer, whereas a normal human chromosome 11 does. They conclude that the AT-D gene is located on chromosome 11q22-23.

  9. Delineation of a 6 cM commonly deleted region in childhood acute lymphoblastic leukemia on the 6q chromosomal arm.

    PubMed

    Gérard, B; Cavé, H; Guidal, C; Dastugue, N; Vilmer, E; Grandchamp, B

    1997-02-01

    Deletion of the long arm of human chromosome 6 in acute lymphoblastic leukemia (ALL) has been shown by cytogenetic studies in 4-11% of cases. To characterize further the region of deletion and to precisely establish its frequency, we studied loss of heterozygosity (LOH) in 120 children with ALL using polymorphic markers located from the 6q14-15 chromosomal band to the telomere. LOH was detected in eight patients. A single region of LOH, flanked distally by D6S1594 and proximally by D6S301 was detected. These DNA markers are separated by 6 cM and are approximately located at the 6q21-22 band. Our present results delineate a region that is likely to contain a tumor-suppressor gene involved in a subset of childhood ALLs.

  10. A case of ring chromosome 22 with deletion of the 22q13.3 region associated with agenesis of the corpus callosum, fornix and septum pellucidum.

    PubMed

    Delcán, José; Orera, María; Linares, Rafael; Saavedra, Dolores; Palomar, Angustias

    2004-08-01

    We report a 16-week-gestation foetus obtained by voluntary abortion after prenatal diagnosis, in which a ring chromosome 22 was observed with deletion of the 22q13.3 region. A prenatal study of the amniotic fluid by standard chromosome technique with G bands and FISH (fluorescence in situ hybridisation) was performed. After the abortion, the anatomopathological study of the obtained foetus was carried out. Morphological and histological analysis of the foetus did not reveal severe physical abnormalities, although alterations of the nervous system were observed consisting of corpus callosum, fornix and septum pellucidum agenesia. It could be that the genes in this region that were involved in the development of the central nervous system were responsible for the alterations found in the morphological study. The wide range of manifestations observed in patients with this cytogenetic alteration is probably due to size differences in the deleted region.

  11. Human T-cell tumours containing chromosome 14 inversion or translocation with breakpoints proximal to immunoglobulin joining regions at 14q32.

    PubMed

    Mengle-Gaw, L; Willard, H F; Smith, C I; Hammarström, L; Fischer, P; Sherrington, P; Lucas, G; Thompson, P W; Baer, R; Rabbitts, T H

    1987-08-01

    T-cell tumours are frequently found to carry an inversion of chromosome 14 (inv(14)) (q11;q32) or more rarely a chromosome 14 translocation t(14;14) with the same cytogenetic breakpoints (q11;q32). We have examined the molecular junctions of an inv(14) and a translocation t(14;14) using T-cell receptor (TCR) alpha joining (J) region probes. Both of these chromosomal abnormalities have breakpoints within the TCR J alpha locus at 14q11 and both have breakpoints which are proximal (i.e. on the centromeric side) to the immunoglobulin heavy chain JH region at 14q32. The cloned segments corresponding to the junctions at 14q32 are not associated with obvious immunoglobulin-like sequences. This contrasts to the previously described inv(14) in the cell line SUP-T1 and places a potential cluster of chromosome 14 breakpoints downstream of the Ig JH locus. The possible role of the varying breakpoints in the development of these tumours is discussed.

  12. Mapping of the human dentin matrix acidic phosphoprotein gene (DMP1) to the dentinogenesis imperfecta type II critical region at chromosome 4q21

    SciTech Connect

    Aplin, H.M.; Hirst, K.L.; Crosby, A.H.; Dixon, M.J.

    1995-11-20

    Dentinogenesis imperfecta type II (DGI1) is an autosomal dominant disorder of dentin formation, which has been mapped to human chromosome 4q12-q21. The region most likely to contain the DGI1 locus is a 3.2-cM region surrounding the osteopontin (SPP1) locus. Recently, a novel dentin-specific acidic phosphoprotein (dmp1) has been cloned in the rat and mapped to mouse chromosome 5q21. In the current investigation, we have isolated a cosmid containing the human DMP1 gene. The isolation of a short tandem repeat polymorphism at this locus has allowed us to map the DMP1 locus to human chromosome 4q21 and demonstrate that it is tightly linked to DGI1 in two families (Z{sub max} = 11.01, {theta} = 0.001). The creation of a yeast artificial chromosome contig around SPP1 has further allowed us to demonstrate that DMP1 is located within 150 kb of the bone sialoprotein and 490 kb of the SPP1 loci, respectively. DMP1 is therefore a strong candidate for the DGI1 locus. 12 refs., 2 figs., 1 tab.

  13. The Paternal Landscape along the Bight of Benin – Testing Regional Representativeness of West-African Population Samples Using Y-Chromosomal Markers

    PubMed Central

    Larmuseau, Maarten H. D.; Vessi, Andrea; Jobling, Mark A.; Van Geystelen, Anneleen; Primativo, Giuseppina; Biondi, Gianfranco; Martínez-Labarga, Cristina; Ottoni, Claudio; Decorte, Ronny; Rickards, Olga

    2015-01-01

    Patterns of genetic variation in human populations across the African continent are still not well studied in comparison with Eurasia and America, despite the high genetic and cultural diversity among African populations. In population and forensic genetic studies a single sample is often used to represent a complete African region. In such a scenario, inappropriate sampling strategies and/or the use of local, isolated populations may bias interpretations and pose questions of representativeness at a macrogeographic-scale. The non-recombining region of the Y-chromosome (NRY) has great potential to reveal the regional representation of a sample due to its powerful phylogeographic information content. An area poorly characterized for Y-chromosomal data is the West-African region along the Bight of Benin, despite its important history in the trans-Atlantic slave trade and its large number of ethnic groups, languages and lifestyles. In this study, Y-chromosomal haplotypes from four Beninese populations were determined and a global meta-analysis with available Y-SNP and Y-STR data from populations along the Bight of Benin and surrounding areas was performed. A thorough methodology was developed allowing comparison of population samples using Y-chromosomal lineage data based on different Y-SNP panels and phylogenies. Geographic proximity turned out to be the best predictor of genetic affinity between populations along the Bight of Benin. Nevertheless, based on Y-chromosomal data from the literature two population samples differed strongly from others from the same or neighbouring areas and are not regionally representative within large-scale studies. Furthermore, the analysis of the HapMap sample YRI of a Yoruban population from South-western Nigeria based on Y-SNPs and Y-STR data showed for the first time its regional representativeness, a result which is important for standard population and forensic genetic applications using the YRI sample. Therefore, the uniquely

  14. Fine mapping of a region on chromosome 21q21.11–q22.3 showing linkage to type 1 diabetes

    PubMed Central

    Bergholdt, R; Nerup, J; Pociot, F

    2005-01-01

    Background: Results of a Scandinavian genome scan in type 1 diabetes mellitus (T1D) have recently been reported. Among the novel, not previously reported chromosomal regions showing linkage to T1D was a region on chromosome 21. Objective: To fine map this region on chromosome 21. Methods and results: The linked region was initially narrowed by linkage analysis typing microsatellite markers. Linkage was significantly increased, with a peak NPL score of 3.61 (p = 0.0002), suggesting the presence of one or several T1D linked genes in the region. The support interval for linkage of 6.3 Mb was then studied by linkage disequilibrium (LD) mapping with gene based single nucleotide polymorphisms (SNPs). Thirty two candidate genes were identified in this narrowed region, and LD mapping was carried out with SNPs in coding regions (cSNPs) of all these genes. However, none of the SNPs showed association to T1D in the complete material, whereas some evidence for association to T1D of variants of the TTC3, OLIG2, KCNE1, and CBR1 genes was observed in conditioned analyses. The disease related LD was further assessed by a haplotype based association study, in which several haplotypes showed distorted transmission to diabetic offspring, substantiating a possible T1D association of the region. Conclusions: Although a single gene variant responsible for the observed linkage could not be identified, there was evidence for several combinations of markers, and for association of markers in conditioned analyses, supporting the existence of T1D susceptibility genes in the region. PMID:15635070

  15. Isolation of region-specific cosmids by hybridization with microdissection clones from human chromosome 10q11. 1-q21. 1

    SciTech Connect

    Karakawa, Katsu; Takami, Koji; Fujita, Shoichi Osaka Univ. Medical School, Fukushima-ku, Osaka ); Nakamura, Tsutomu; Takai, Shin-ichiro; Nishisho, Isamu ); Jones, C. ); Ohta, Tohru; Jinno, Yoshihiro; Niikawa, Norio )

    1993-08-01

    A region-specific plasmid library composed of 20,000 recombinants was constructed by microdissection of human chromosome 10 (10q11.2-q21.1) and subsequent amplification with the primer-linker method of polymerase chain reaction (PCR). Hybridization with total human DNA showed that 32 of 217 microclones studied contained highly repetitive sequences. Further analysis of the remaining 185 microclones proved that 43 microclones, each having an insert longer than 200 bp, contained unique sequences of human chromosome 10 origin. Twenty-five microclones randomly selected from the 43 were used directly as probes to isolate corresponding cosmid clones, resulting in 32 cosmids corresponding to 14 microclones. Of the 25 cosmids that could be mapped by fluorescence in situ hybridization, 24 proved to originate from the microdissected or adjacent region (10p11.2-q22.3)and 1 from a rather distal region (10q24.3-q25.1). In addition, 15 of the 32 cosmids revealed restriction fragment length polymorphisms, including 1 with a variable number of tandem repeats marker. The microdissection library and the obtained cosmids are valuable resources for constructing high-resolution physical and linkage maps of the pericentromeric region of chromosome 10, where the gene predisposing to multiple endocrine neoplasia type 2A (MEN2A) has been mapped. 30 refs., 3 figs., 3 tabs.

  16. Further delineation of chromosomal consensus regions in primary mediastinal B-cell lymphomas: an analysis of 37 tumor samples using high-resolution genomic profiling (array-CGH).

    PubMed

    Wessendorf, S; Barth, T F E; Viardot, A; Mueller, A; Kestler, H A; Kohlhammer, H; Lichter, P; Bentz, M; Döhner, H; Möller, P; Schwaenen, C

    2007-12-01

    Primary mediastinal B-cell lymphoma (PMBL) is an aggressive extranodal B-cell non-Hodgkin's lymphoma with specific clinical, histopathological and genomic features. To characterize further the genotype of PMBL, we analyzed 37 tumor samples and PMBL cell lines Med-B1 and Karpas1106P using array-based comparative genomic hybridization (matrix- or array-CGH) to a 2.8k genomic microarray. Due to a higher genomic resolution, we identified altered chromosomal regions in much higher frequencies compared with standard CGH: for example, +9p24 (68%), +2p15 (51%), +7q22 (32%), +9q34 (32%), +11q23 (18%), +12q (30%) and +18q21 (24%). Moreover, previously unknown small interstitial chromosomal low copy number alterations (for example, -6p21, -11q13.3) and a total of 19 DNA amplifications were identified by array-CGH. For 17 chromosomal localizations (10 gains and 7 losses), which were altered in more than 10% of the analyzed cases, we delineated minimal consensus regions based on genomic base pair positions. These regions and selected immunohistochemistries point to candidate genes that are discussed in the context of NF-kappaB transcription activation, human leukocyte antigen class I/II defects, impaired apoptosis and Janus kinase/signal transducer and activator of transcription (JAK/STAT) activation. Our data confirm the genomic uniqueness of this tumor and provide physically mapped genomic regions of interest for focused candidate gene analysis. PMID:17728785

  17. Detailed ordering of markers localizing to the Xq26-Xqter region of the human X chromosome by the use of an interspecific Mus spretus mouse cross

    SciTech Connect

    Avner, P.; Amar, L.; Arnaud, D.; Hanauer, A.; Cambrou, J.

    1987-03-01

    Five probes localizing to the Xq26-Xqter region of the human X chromosome have been genetically mapped on the mouse X chromosome using an interspecific cross involving Mus spretus to a contiguous region lying proximally to the Tabby (Ta) locus. Pedigree and recombinational analysis establish the marker order as being Hprt-FIX-c11-G6PD-St14-1. The size of this contiguous region is such that the X-linked muscular dystrophy (mdx) mouse mutation probably maps within this segment. This in turn suggests that it is highly improbable that the mouse mdx locus represents a model for Duchenne muscular dystrophy (DMD). It is, however, compatible with the idea that this mutation may correspond in man to Emery Dreifuss muscular dystrophy. The high frequency of restriction fragment length polymorphisms found in this interspecific system for all the human cross-reacting probes examined up until now, using only a limited number of restriction enzymes, suggests that the Mus spretus mapping system may be of great potential value for establishing the linkage relationships existing in man when conserved chromosomal regions are concerned and human/mouse cross-reacting probes are available or can be obtained.

  18. Autosomal dominant familial spastic paraplegia: reduction of the FSP1 candidate region on chromosome 14q to 7 cM and locus heterogeneity.

    PubMed Central

    Gispert, S; Santos, N; Damen, R; Voit, T; Schulz, J; Klockgether, T; Orozco, G; Kreuz, F; Weissenbach, J; Auburger, G

    1995-01-01

    Three large pedigrees of German descent with autosomal dominant "pure" familial spastic paraplegia (FSP) were characterized clinically and genetically. Haplotype and linkage analyses, with microsatellites covering the FSP region on chromosome 14q (locus FSP1), were performed. In pedigree W, we found a haplotype that cosegregates with the disease and observed three crossing-over events, reducing the FSP1 candidate region to 7 cM; in addition, the observation of apparent anticipation in this family suggests a trinucleotide repeat expansion as the mutation. In pedigrees D and S, the gene locus could be excluded from the whole FSP1 region, confirming the locus heterogeneity of autosomal dominant FSP. PMID:7825576

  19. Pure chromosome-specific PCR libraries from single sorted chromosomes.

    PubMed Central

    VanDevanter, D R; Choongkittaworn, N M; Dyer, K A; Aten, J; Otto, P; Behler, C; Bryant, E M; Rabinovitch, P S

    1994-01-01

    Chromosome-specific DNA libraries can be very useful in molecular and cytogenetic genome mapping studies. We have developed a rapid and simple method for the generation of chromosome-specific DNA sequences that relies on polymerase chain reaction (PCR) amplification of a single flow-sorted chromosome or chromosome fragment. Previously reported methods for the development of chromosome libraries require larger numbers of chromosomes, with preparation of pure chromosomes sorted by flow cytometry, generation of somatic cell hybrids containing targeted chromosomes, or a combination of both procedures. These procedures are labor intensive, especially when hybrid cell lines are not already available, and this has limited the generation of chromosome-specific DNA libraries from nonhuman species. In contrast, a single sorted chromosome is a pure source of DNA for library production even when flow cytometric resolution of chromosome populations is poor. Furthermore, any sorting cytometer may be used with this technique. Using this approach, we demonstrate the generation of PCR libraries suitable for both molecular and fluorescence in situ hybridization studies from individual baboon and canine chromosomes, separate human homologues, and a rearranged marker chromosome from a transformed cell line. PCR libraries specific to subchromosomal regions have also been produced by sorting a small chromosome fragment. This simple and rapid technique will allow generation of nonhuman linkage maps and probes for fluorescence in situ hybridization and the characterization of marker chromosomes from solid tumors. In addition, allele-specific libraries generated by this strategy may also be useful for mapping genetic diseases. Images PMID:8016078

  20. Isolation of a Genomic Region Affecting Most Components of Metabolic Syndrome in a Chromosome-16 Congenic Rat Model

    PubMed Central

    Šedová, Lucie; Pravenec, Michal; Křenová, Drahomíra; Kazdová, Ludmila; Zídek, Václav; Krupková, Michaela; Liška, František; Křen, Vladimír; Šeda, Ondřej

    2016-01-01

    Metabolic syndrome is a highly prevalent human disease with substantial genomic and environmental components. Previous studies indicate the presence of significant genetic determinants of several features of metabolic syndrome on rat chromosome 16 (RNO16) and the syntenic regions of human genome. We derived the SHR.BN16 congenic strain by introgression of a limited RNO16 region from the Brown Norway congenic strain (BN-Lx) into the genomic background of the spontaneously hypertensive rat (SHR) strain. We compared the morphometric, metabolic, and hemodynamic profiles of adult male SHR and SHR.BN16 rats. We also compared in silico the DNA sequences for the differential segment in the BN-Lx and SHR parental strains. SHR.BN16 congenic rats had significantly lower weight, decreased concentrations of total triglycerides and cholesterol, and improved glucose tolerance compared with SHR rats. The concentrations of insulin, free fatty acids, and adiponectin were comparable between the two strains. SHR.BN16 rats had significantly lower systolic (18–28 mmHg difference) and diastolic (10–15 mmHg difference) blood pressure throughout the experiment (repeated-measures ANOVA, P < 0.001). The differential segment spans approximately 22 Mb of the telomeric part of the short arm of RNO16. The in silico analyses revealed over 1200 DNA variants between the BN-Lx and SHR genomes in the SHR.BN16 differential segment, 44 of which lead to missense mutations, and only eight of which (in Asb14, Il17rd, Itih1, Syt15, Ercc6, RGD1564958, Tmem161a, and Gatad2a genes) are predicted to be damaging to the protein product. Furthermore, a number of genes within the RNO16 differential segment associated with metabolic syndrome components in human studies showed polymorphisms between SHR and BN-Lx (including Lpl, Nrg3, Pbx4, Cilp2, and Stab1). Our novel congenic rat model demonstrates that a limited genomic region on RNO16 in the SHR significantly affects many of the features of metabolic syndrome

  1. Isolation of a Genomic Region Affecting Most Components of Metabolic Syndrome in a Chromosome-16 Congenic Rat Model.

    PubMed

    Šedová, Lucie; Pravenec, Michal; Křenová, Drahomíra; Kazdová, Ludmila; Zídek, Václav; Krupková, Michaela; Liška, František; Křen, Vladimír; Šeda, Ondřej

    2016-01-01

    Metabolic syndrome is a highly prevalent human disease with substantial genomic and environmental components. Previous studies indicate the presence of significant genetic determinants of several features of metabolic syndrome on rat chromosome 16 (RNO16) and the syntenic regions of human genome. We derived the SHR.BN16 congenic strain by introgression of a limited RNO16 region from the Brown Norway congenic strain (BN-Lx) into the genomic background of the spontaneously hypertensive rat (SHR) strain. We compared the morphometric, metabolic, and hemodynamic profiles of adult male SHR and SHR.BN16 rats. We also compared in silico the DNA sequences for the differential segment in the BN-Lx and SHR parental strains. SHR.BN16 congenic rats had significantly lower weight, decreased concentrations of total triglycerides and cholesterol, and improved glucose tolerance compared with SHR rats. The concentrations of insulin, free fatty acids, and adiponectin were comparable between the two strains. SHR.BN16 rats had significantly lower systolic (18-28 mmHg difference) and diastolic (10-15 mmHg difference) blood pressure throughout the experiment (repeated-measures ANOVA, P < 0.001). The differential segment spans approximately 22 Mb of the telomeric part of the short arm of RNO16. The in silico analyses revealed over 1200 DNA variants between the BN-Lx and SHR genomes in the SHR.BN16 differential segment, 44 of which lead to missense mutations, and only eight of which (in Asb14, Il17rd, Itih1, Syt15, Ercc6, RGD1564958, Tmem161a, and Gatad2a genes) are predicted to be damaging to the protein product. Furthermore, a number of genes within the RNO16 differential segment associated with metabolic syndrome components in human studies showed polymorphisms between SHR and BN-Lx (including Lpl, Nrg3, Pbx4, Cilp2, and Stab1). Our novel congenic rat model demonstrates that a limited genomic region on RNO16 in the SHR significantly affects many of the features of metabolic syndrome.

  2. Haplotype frequencies of 17 Y-chromosomal short tandem repeat loci from the Cukurova region of Turkey

    PubMed Central

    Serin, Ayse; Canan, Husniye; Alper, Behnan; Sertdemir, Yasar

    2011-01-01

    Aim To investigate the distribution of 17 Y-short tandem repeat (STR) loci in the population of the Cukurova region of Turkey. Methods In the period between 2009 and 2010, we investigated the distribution of 17 Y-STRs in a sample of 249 unrelated healthy men from the Cukurova region of Turkey. Genomic DNA was extracted with InstaGene matrix and Y-STRs were determined using the AmpFISTR Yfiler PCR amplification kit. Gene and haplotype diversity values were estimated using the Arlequin software. To compare our data to other populations, population pairwise genetic distances and associated probability values were calculated using the Y Chromosome Haplotype Reference Database Web site software. Results At 17 Y-STR loci we detected 148 alleles. The lowest gene diversity in this region was 0.51 for DYS391 and the highest 0.95 for DYS385a/b. Haplotype diversity was 0.9997 ± 0.0004. We compared our data with haplotype data of other Turkish populations and no significant differences were found, except with Ankara population (Φst = 0.025, P = 0.018). Comparisons were also made with the neighboring populations using analysis of molecular variance of the Y-STR loci genetic structure and our population was nearest to Lenkoran-Azerbaijani (Φst = 0.012, P = 0.068) and Iranian Ahvaz population (Φst = 0.007, P = 0.173), followed by Greek (Φst = 0.026, P = 0.000) and Russian (Φst = 0.048, P = 0.000) population. Other countries like Portugal, Spain, Italy, Egypt, Israel (Palestinian Authority Area), and Taiwan showed a high genetic distance from our population. Conclusion Our study showed that Y-STR polymorphisms were a powerful discrimination tool for routine forensic applications and could be used in genealogical investigations. PMID:22180269

  3. Overlap among Environmental Databases.

    ERIC Educational Resources Information Center

    Miller, Betty

    1981-01-01

    Describes the methodology and results of a study comparing the overlap of Enviroline, Pollution, and the Environmental Periodicals Bibliography files through searches on acid rain, asbestos and water, diesel, glass recycling, Lake Erie, Concorde, reverse osmosis wastewater treatment cost, and Calspan. Nine tables are provided. (RBF)

  4. Genome-wide association study to identify chromosomal regions associated with antibody response to Mycobacterium avium subspecies paratuberculosis in milk of Dutch Holstein-Friesians.

    PubMed

    van Hulzen, K J E; Schopen, G C B; van Arendonk, J A M; Nielen, M; Koets, A P; Schrooten, C; Heuven, H C M

    2012-05-01

    Heritability of susceptibility to Johne's disease in cattle has been shown to vary from 0.041 to 0.159. Although the presence of genetic variation involved in susceptibility to Johne's disease has been demonstrated, the understanding of genes contributing to the genetic variance is far from complete. The objective of this study was to contribute to further understanding of genetic variation involved in susceptibility to Johne's disease by identifying associated chromosomal regions using a genome-wide association approach. Log-transformed ELISA test results of 265,290 individual Holstein-Friesian cows from 3,927 herds from the Netherlands were analyzed to obtain sire estimated breeding values for Mycobacterium avium subspecies paratuberculosis (MAP)-specific antibody response in milk using a sire-maternal grandsire model with fixed effects for parity, year of birth, lactation stage, and herd; a covariate for milk yield on test day; and random effects for sire, maternal grandsire, and error. For 192 sires with estimated breeding values with a minimum reliability of 70%, single nucleotide polymorphism (SNP) typing was conducted by a multiple SNP analysis with a random polygenic effect fitting 37,869 SNP simultaneously. Five SNP associated with MAP-specific antibody response in milk were identified distributed over 4 chromosomal regions (chromosome 4, 15, 18, and 28). Thirteen putative SNP associated with MAP-specific antibody response in milk were identified distributed over 10 chromosomes (chromosome 4, 14, 16, 18, 19, 20, 21, 26, 27, and 29). This knowledge contributes to the current understanding of genetic variation involved in Johne's disease susceptibility and facilitates control of Johne's disease and improvement of health status by breeding.

  5. Molecular characterization of an intragenic minisatellite (VNTR) polymorphism in the human parathyroid hormone-related peptide gene in chromosome region 12p12. 1-p11. 2

    SciTech Connect

    Pausova, Z.; Morgan, K.; Fujiwara, M.; Bourdon, J.; Goltzman, D.; Hendy, G.N. )

    1993-07-01

    The human parathyroid hormone-related peptide (hPTHrP) gene in chromosome region 12p12.1-p11.2 plays an important role in mammalian development and specifically in skeletogenesis. The authors have characterized a VNTR polymorphism in the hPTHrP gene that is located in an intron 100-bp downstream of exon VI that encodes a 3[prime] untranslated region. By PCR analysis eight different alleles were identified in a group of 112 unrelated individuals. All eight alleles were sequenced and the repeat unit was identified as the general sequence [G(TA)[sub n]C][sub N], where n = 4 to 11 and N = 3 to 17. This polymorphic sequence-tagged site will be useful for mapping chromosome 12p and will aid in testing for linkage of genetic diseases to the hPTHrP gene. 3 refs., 2 figs.

  6. Physical mapping of the chromosome 7 breakpoint region in an SLOS patient with t(7;20)X(q32.1;q13.2)

    SciTech Connect

    Alley, T.L.; Wallace, M.R.; Scherer, S.W.

    1997-01-31

    Smith-Lemli-Opitz syndrome (SLOS) is an autosomal recessive disorder characterized by multiple congenital anomalies and mental retardation. SLOS has an associated defect in cholesterol biosynthesis, but the molecular genetic basis of this condition has not yet been elucidated. Previously our group reported a patient with a de novo balanced translocation [t(7;20)(q32.1;q13.2)] fitting the clinical and biochemical profile of SLOS. Employing fluorescence in situ hybridization (FISH), a 1.8 Mb chromosome 7-specific yeast artificial chromosome (YAC) was identified which spanned the translocation breakpoint in the reported patient. The following is an update of the on-going pursuit to physically and genetically map the region further, as well as the establishment of candidate genes in the 7q32.1 breakpoint region. 11 refs., 1 fig.

  7. Loss of heterozygosity analysis of microsatellites on multiple chromosome regions in dysplasia and squamous cell carcinoma of the esophagus

    PubMed Central

    LIU, MING; ZHANG, FENG; LIU, SHEN; ZHAO, WEN; ZHU, JING; ZHANG, XIAOLI

    2011-01-01

    The objective of this study was to characterize the molecular events in the carcinogenesis of esophageal squamous cell carcinoma (ESCC) and to identify biomarkers for early detection of the disease. Matched precancerous and cancerous tissues resected from 34 esophageal cancer patients from Chongqing, southern China, were compared to evaluate the extent of loss of heterozygosity (LOH). Sixteen microsatellite markers on chromosome regions 3p, 4p, 5q, 8p, 9p, 9q, 11p, 13q and 17p were used for PCR-based LOH analysis. The overall frequency of LOH at the 16 microsatellite loci was significantly increased as the pathological status of the resection specimens changed from low-grade dysplasia (LGD) to high-grade dysplasia (HGD) and SCC (P<0.001). A total of 8 markers showed LOH in the LGD samples. In addition, heterozygosity was regained at 4 loci in the SCC samples of 4 patients, respectively, in comparison to the results for these loci in the HGD samples. The overall rate of LOH increased significantly with the deterioration of the lesions, indicating that tumorigenesis of the esophageal squamous epithelia is a progressive process involving accumulative changes in LOH. The 8 loci showing allelic loss in the LGD samples may be involved in the early-stage tumorigenesis of ESCC, and LOH analysis at these loci may help improve the early detection of this disease. Regain of heterozygosity found in certain patients suggests the possibility of genetic heterogeneity in the tumori-genesis of esophageal cancer. PMID:22977611

  8. An Unstable Trinucleotide-Repeat Region on Chromosome 13 Implicated in Spinocerebellar Ataxia: A Common Expansion Locus

    PubMed Central

    Vincent, John B; Neves-Pereira, Maria L.; Paterson, Andrew D.; Yamamoto, Etsuko; Parikh, Sagar V.; Macciardi, Fabio; Gurling, Hugh M.D.; Potkin, Steve G.; Pato, Carlos N.; Macedo, Antonio; Kovacs, Maria; Davies, Marilyn; Lieberman, Jeffrey A.; Meltzer, Herbert Y.; Petronis, Arturas; Kennedy, James L.

    2000-01-01

    Larger CAG/CTG trinucleotide-repeat tracts in individuals affected with schizophrenia (SCZ) and bipolar affective disorder (BPAD) in comparison with control individuals have previously been reported, implying a possible etiological role for trinucleotide repeats in these diseases. Two unstable CAG/CTG repeats, SEF2-1B and ERDA1, have recently been cloned, and studies indicate that the majority of individuals with large repeats as detected by repeat-expansion detection (RED) have large repeat alleles at these loci. These repeats do not show association of large alleles with either BPAD or SCZ. Using RED, we have identified a BPAD individual with a very large CAG/CTG repeat that is not due to expansion at SEF2-1B or ERDA1. From this individual’s DNA, we have cloned a highly polymorphic trinucleotide repeat consisting of (CTA)n (CTG)n, which is very long (∼1,800 bp) in this patient. The repeat region localizes to chromosome 13q21, within 1.2 cM of fragile site FRA13C. Repeat alleles in our sample were unstable in 13 (5.6%) of 231 meioses. Large alleles (>100 repeats) were observed in 14 (1.25%) of 1,120 patients with psychosis, borderline personality disorder, or juvenile-onset depression and in 5 (.7%) of 710 healthy controls. Very large alleles were also detected for Centre d’Etude Polymorphisme Humaine (CEPH) reference family 1334. This triplet expansion has recently been reported to be the cause of spinocerebellar ataxia type 8 (SCA8); however, none of our large alleles above the disease threshold occurred in individuals either affected by SCA or with known family history of SCA. The high frequency of large alleles at this locus is inconsistent with the much rarer occurrence of SCA8. Thus, it seems unlikely that expansion alone causes SCA8; other genetic mechanisms may be necessary to explain SCA8 etiology. PMID:10712198

  9. Chromosome region maintenance 1 expression and its association with clinical pathological features in primary carcinoma of the liver

    PubMed Central

    XIE, QIAO-LING; LIU, YUE; ZHU, YING

    2016-01-01

    Liver cancer is the third leading cause of cancer-associated mortality worldwide. Recurrence and metastasis are the major factors affecting the prognosis; thus, investigation of the underlying molecular mechanisms of invasion and metastasis, and detection of novel drug target may improve the mortality rate of liver cancer patients. Chromosome region maintenance 1 (CRM1) recognizes specific leucine-rich nuclear export signal sequences, and its overexpression is associated with tumor-suppressor gene inactivation, proliferation, invasion and resistance to chemotherapy. The aim of the present study was to examine the association of CRM1 expression with the clinical and pathological features of primary liver cancer. In total, 152 cases diagnosed with liver cancer were included. CRM1 expression was detected in cancer tissues and adjacent normal tissues by immunohistochemical assay. No statistically significant difference was found between the CRM1 expression levels in tumor and adjacent normal tissues (P=0.106). However, CRM1 expression in adjacent normal tissues was higher compared with that in tumor tissues in the negative hepatitis B envelope antigen (HBeAg; P=0.029) and low differentiation (P=0.004) groups. In tumor tissues, CRM1 expression was significantly correlated with differentiation (P=0.045), whereas in adjacent normal tissues, CRM1 expression was significantly correlated with the tumor diameter (P=0.004). Therefore, it can be concluded that CRM1 is highly expressed in both tumor and adjacent normal tissues. Furthermore, CRM1 expression is associated with the tumor differentiation degree and diameter. Lower differentiation and larger tumor diameter resulted in higher CRM1 expression in adjacent normal tissues, and higher tendency for invasion and metastasis. In addition, the risk of invasion and metastasis remains in chronic hepatitis B patients with negative HBeAg. PMID:27347018

  10. A case of autism and uniparental disomy of chromosome 1.

    PubMed

    Wassink, Thomas H; Losh, Molly; Frantz, Rebecca S; Vieland, Veronica J; Goedken, Rhinda; Piven, Joseph; Sheffield, Val C

    2005-07-01

    We report a male child with autism found to have maternal uniparental disomy (UPD) of chromosome 1. The child met diagnostic criteria for the three symptom domains of autism: language impairment, deficient social communication and excessively rigid and repetitive behaviours. He also had a variety of features often associated with autism, including mild mental retardation, small head circumference, hyperactivity, poor fine motor skills, slightly dysmorphic facial features and a heightened interest in olfactory stimulation. His brother, who did not have chromosome 1 UPD, was also autistic. The mother, but not the father, had a history of psychiatric illness and a number of personality and social traits similar to the core features of autism. The discovery of the cytogenetic abnormality was made during the course of a genome-wide linkage screen, wherein genotypes at 6 out of 17 chromosome 1 markers were non-Mendelian and all transmissions were consistent with UPD. Further genotyping (a total of 54 markers) revealed alternating regions of heterodisomy and isodisomy. Whereas chromosome 1 UPD has not been shown to cause disease by effects on imprinting, numerous reports exist of the abnormality unmasking recessive disease-causing mutations. In agreement with this, one of the regions of isodisomy overlaps an emerging chromosome 1 region of interest in autism located at 150-160 Mb.

  11. Mapping of the mouse homolog of the human runt domain gene, AML2, to the distal region of mouse chromosome 4

    SciTech Connect

    Avraham, K.B.; Copeland, N.G.; Jenkins, N.A.

    1995-01-20

    AML2 is a runt domain belonging to a group of transcription factors that appear to play a role in Drosophila embryogenesis and mammalian oncogenic transformation. AML2 maps to human chromosome 1p36, a region involved in the t(1;3)(p36;q21) translocation found in association with myelodysplastic syndrome (MDS), myeloproliferative disease (MPD), and acute nonlymphocytic leukemia. 9 refs., 1 fig.

  12. Molecular mapping of chromosomes 17 and X

    SciTech Connect

    Barker, D.F.

    1989-01-01

    The basic aims of this project are the construction of high density genetic maps of chromosomes 17 and X and the utilization of these maps for the subsequent isolation of a set of physically overlapping DNA segment clones. The strategy depends on the utilization of chromosome specific libraries of small (1--15 kb) segments from each of the two chromosomes. Since the time of submission of our previous progress report, we have refined the genetic map of markers which we had previously isolated for chromosome 17. We have completed our genetic mapping in CEPH reference and NF1 families of 15 markers in the pericentric region of chromosome 17. Physical mapping results with three probes, were shown be in very close genetic proximity to the NF1 gene, with respect to two translocation breakpoints which disrupt the activity of the gene. All three of the probes were found to lie between the centromere and the most proximal translocation breakpoint, providing important genetic markers proximal to the NF1 gene. Our primary focus has shifted to the X chromosome. We have isolated an additional 30 polymorphic markers, bringing the total number we have isolated to over 80. We have invested substantial effort in characterizing the polymorphisms at each of these loci and constructed plasmid subclones which reveal the polymorphisms for nearly all of the loci. These subclones are of practical value in that they produce simpler and stronger patterns on human genomic Southern blots, thus improving the efficiency of the genetic mapping experiments. These subclones may also be of value for deriving DNA sequence information at each locus, necessary for establishing polymerase chain reaction primers specific for each locus. Such information would allow the use of each locus as a sequence tagged site.

  13. Role of the pseudoautosomal region in sex-chromosome pairing during male meiosis: Meiotic studies in a man with a deletion of distal Xp

    SciTech Connect

    Mohandas, T.K.; Passage, M.B.; Yen, P.H.; Speed, R.M.; Chandley, A.C.; Shapiro, L.J. )

    1992-09-01

    Meiotic studies were undertaken in a 24-year-old male patient with short stature, chondrodysplasia punctata, ichthyosis, steroid sulfatase deficiency, and mild mental retardation with an inherited cytologically visible deletion of distal Xp. Molecular investigations showed that the pseudoautosomal region as well as the steroid sulfatase gene were deleted, but telomeric sequences were present at the pter on the deleted X chromosome. A complete failure of sex-chromosome pairing was observed in the primary spermatocytes of the patient. Telomeric approaches between the sex chromosomes were made at zygotene in some cells, but XY synaptonemal complex was formed. The sex chromosomes were present as univalents at metaphase I, and germ-cell development was arrested between metaphase I and metaphase II in the vast majority of cells, consistent with the azoospermia observed in the patient. The failure of XY pairing in this individual indicates that the pseudoautosomal sequences play an important role in initiating XY pairing and formation of synaptonemal complex at meiosis. 36 refs., 6 figs.

  14. Frequency, molecular pathology and potential clinical significance of partial chromosome 3 aberrations in uveal melanoma.

    PubMed

    Abdel-Rahman, Mohamed H; Christopher, Benjamin N; Faramawi, Mohammed F; Said-Ahmed, Khaled; Cole, Carol; McFaddin, Andrew; Ray-Chaudhury, Abhik; Heerema, Nyla; Davidorf, Frederick H

    2011-07-01

    The clinical significance of partial chromosome 3 alteration in uveal melanoma is still not clear. Also, the reported frequencies vary considerably in the published literature from 0 to 48%. The aims of the following study were to identify the frequency, molecular pathology and potential clinical significance of partial chromosome 3 alteration in uveal melanoma. We studied 47 uveal melanomas with an average follow-up of 36 months. Of these, 14 had confirmed metastasis. Allelic imbalance/loss of heterozygosity was studied using microsatellite markers on chromosome 3 enriched in markers located in the previously reported smallest regions of deletion overlap. Chromosomal alterations were assessed by conventional cytogenetics or comparative genomic hybridization (CGH) in a subset of patients. Utilizing genotyping, partial chromosome 3 alteration was detected in 14/47 tumors (30%). In the 23 tumors with available cytogenetic/CGH, partial chromosome 3 alteration was detected in 8/23 (38%) and was caused by both gains (4/8) and losses (4/8) of chromosome 3 with high frequency of complex chromosome 3 aberrations detected by cytogenetics. Out of the 14 tumors with confirmed metastasis, only 1 showed partial chromosome 3 alteration and the remaining showed monosomy 3. By limiting the aggressive disease marker to monosomy 3, genotyping showed 93% sensitivity and 67% specificity for detection of aggressive uveal melanoma. In conclusion, partial chromosome 3 alterations are common in uveal melanoma and mostly caused by complex cytogenetic changes leading to partial gains and/or partial losses of chromosome 3. Partial chromosome 3 alteration is not likely to be associated with highly aggressive uveal melanoma that metastasizes within the first 3 years after treatment. Microsatellite-based genotyping of chromosome 3 is highly sensitive for detection of aggressive uveal melanoma.

  15. Chromosomal and regional localization of the loci for IGKC, IGGC, ALDB, HOXB, GPT, and PRNP in the American mink (Mustela vison): comparisons with human and mouse.

    PubMed

    Khlebodarova, T M; Malchenko, S N; Matveeva, N M; Pack, S D; Sokolova, O V; Alabiev, B Y; Belousov, E S; Peremislov, V V; Nayakshin, A M; Brusgaard, K

    1995-10-01

    Chromosomal localization of the genes for gamma- and kappa-immunoglobulins (IGGC and IGKC, respectively), aldolase B (ALDB), prion protein (PRNP), homeo box B (HOXB), and glutamate pyruvate transaminase (GPT) were determined with the use of mink-rodent hybrid cells. Analysis of segregation of the mink markers and chromosomes in these hybrid cells allowed us to assign the gene for HOXB to Chromosome (Chr) 8, IGGC to Chr 10, PRNP and IGKC to Chr 11, ALDB to Chr 12, and GPT to Chr 14 in mink. Furthermore, using a set of mink-mouse hybrid cells carrying fragments of mink Chr 8 of different sizes, we assigned the gene for HOXB to the pter-p26 region of the short arm of Chr 8. Comparative mapping of the genes of mink, human, and mouse, as well as other mammalian species, demonstrated that the mink genes HOXB, PRNP, ALDB, and IGGC are members of a conserved region shared by many mammalian species in common; the IGKC gene is a member of a conserved region common to carnivores and primates, not rodents; the GPT gene is a member of a syntenic gene group probably unique to the Mustelidae family or carnivores.

  16. Multicolor FISH mapping with Alu-PCR-amplified YAC clone DNA determines the order of markers in the BRCA1 region on chromosome 17q12-q21

    SciTech Connect

    Flejter, W.J.; Glover, T.W.; Barcroft, C.L.; Guo, Sun Wei; Boehnke, M.; Chandrasekharappa, S.; Collins, F.S. Howard Hughes Medical Institute, Ann Arbor, MI ); Lynch, E.D. ); Hayes, S. ); Weber, B.L. )

    1993-09-01

    A gene designated BRCA1, implicated in the susceptibility to early-onset familial breast cancer, has recently been localized to chromosome 17q12-q21. To date, the order of DNA markers mapped within this region has been based on genetic linkage analysis. The authors report the use of multicolor fluorescence in situ hybridization to establish a physically based map of five polymorphic DNA markers and 10 cloned genes spanning this region. Three cosmid clones and Alu-PCR-Generated products derived from 12 yeast artificial chromosome clones representing each of these markers were used in two-color mapping experiments to determine an initial proximity of markers relative to each other on metaphase chromosomes. Interphase mapping was then employed to determine the order and orientation of closely spaced loci by direct visualization of fluorescent signals following hybridization of three probes, each detected in a different color. Statistical analysis of the combined data suggests that the order of markers in the BRCA1 regions is cen-THRA1-TOP2-GAS-OF2-17HSD-248yg9-RNU2-OF3-PPY/p131-EPB3-Mfd188-WNT3-HOX2-GP3A-tel. This map is consistent with that determined by radiation-reduced hybrid mapping and will facilitate positional cloning strategies in efforts to isolate and characterize the BRCA1 gene. 27 refs., 2 figs., 3 tabs.

  17. Motor Protein Accumulation on Antiparallel Microtubule Overlaps.

    PubMed

    Kuan, Hui-Shun; Betterton, Meredith D

    2016-05-10

    Biopolymers serve as one-dimensional tracks on which motor proteins move to perform their biological roles. Motor protein phenomena have inspired theoretical models of one-dimensional transport, crowding, and jamming. Experiments studying the motion of Xklp1 motors on reconstituted antiparallel microtubule overlaps demonstrated that motors recruited to the overlap walk toward the plus end of individual microtubules and frequently switch between filaments. We study a model of this system that couples the totally asymmetric simple exclusion process for motor motion with switches between antiparallel filaments and binding kinetics. We determine steady-state motor density profiles for fixed-length overlaps using exact and approximate solutions of the continuum differential equations and compare to kinetic Monte Carlo simulations. Overlap motor density profiles and motor trajectories resemble experimental measurements. The phase diagram of the model is similar to the single-filament case for low switching rate, while for high switching rate we find a new (to our knowledge) low density-high density-low density-high density phase. The overlap center region, far from the overlap ends, has a constant motor density as one would naïvely expect. However, rather than following a simple binding equilibrium, the center motor density depends on total overlap length, motor speed, and motor switching rate. The size of the crowded boundary layer near the overlap ends is also dependent on the overlap length and switching rate in addition to the motor speed and bulk concentration. The antiparallel microtubule overlap geometry may offer a previously unrecognized mechanism for biological regulation of protein concentration and consequent activity. PMID:27166811

  18. Strain of Synechocystis PCC 6803 with Aberrant Assembly of Photosystem II Contains Tandem Duplication of a Large Chromosomal Region.

    PubMed

    Tichý, Martin; Bečková, Martina; Kopečná, Jana; Noda, Judith; Sobotka, Roman; Komenda, Josef

    2016-01-01

    Cyanobacterium Synechocystis PCC 6803 represents a favored model organism for photosynthetic studies. Its easy transformability allowed construction of a vast number of Synechocystis mutants including many photosynthetically incompetent ones. However, it became clear that there is already a spectrum of Synechocystis "wild-type" substrains with apparently different phenotypes. Here, we analyzed organization of photosynthetic membrane complexes in a standard motile Pasteur collection strain termed PCC and two non-motile glucose-tolerant substrains (named here GT-P and GT-W) previously used as genetic backgrounds for construction of many photosynthetic site directed mutants. Although, both the GT-P and GT-W strains were derived from the same strain constructed and described by Williams in 1988, only GT-P was similar in pigmentation and in the compositions of Photosystem II (PSII) and Photosystem I (PSI) complexes to PCC. In contrast, GT-W contained much more carotenoids but significantly less chlorophyll (Chl), which was reflected by lower level of dimeric PSII and especially trimeric PSI. We found that GT-W was deficient in Chl biosynthesis and contained unusually high level of unassembled D1-D2 reaction center, CP47 and especially CP43. Another specific feature of GT-W was a several fold increase in the level of the Ycf39-Hlip complex previously postulated to participate in the recycling of Chl molecules. Genome re-sequencing revealed that the phenotype of GT-W is related to the tandem duplication of a large region of the chromosome that contains 100 genes including ones encoding D1, Psb28, and other PSII-related proteins as well as Mg-protoporphyrin methylester cyclase (Cycl). Interestingly, the duplication was completely eliminated after keeping GT-W cells on agar plates under photoautotrophic conditions for several months. The GT-W strain without a duplication showed no obvious defects in PSII assembly and resembled the GT-P substrain. Although, we do not exactly

  19. Strain of Synechocystis PCC 6803 with Aberrant Assembly of Photosystem II Contains Tandem Duplication of a Large Chromosomal Region

    PubMed Central

    Tichý, Martin; Bečková, Martina; Kopečná, Jana; Noda, Judith; Sobotka, Roman; Komenda, Josef

    2016-01-01

    Cyanobacterium Synechocystis PCC 6803 represents a favored model organism for photosynthetic studies. Its easy transformability allowed construction of a vast number of Synechocystis mutants including many photosynthetically incompetent ones. However, it became clear that there is already a spectrum of Synechocystis “wild-type” substrains with apparently different phenotypes. Here, we analyzed organization of photosynthetic membrane complexes in a standard motile Pasteur collection strain termed PCC and two non-motile glucose-tolerant substrains (named here GT-P and GT-W) previously used as genetic backgrounds for construction of many photosynthetic site directed mutants. Although, both the GT-P and GT-W strains were derived from the same strain constructed and described by Williams in 1988, only GT-P was similar in pigmentation and in the compositions of Photosystem II (PSII) and Photosystem I (PSI) complexes to PCC. In contrast, GT-W contained much more carotenoids but significantly less chlorophyll (Chl), which was reflected by lower level of dimeric PSII and especially trimeric PSI. We found that GT-W was deficient in Chl biosynthesis and contained unusually high level of unassembled D1-D2 reaction center, CP47 and especially CP43. Another specific feature of GT-W was a several fold increase in the level of the Ycf39-Hlip complex previously postulated to participate in the recycling of Chl molecules. Genome re-sequencing revealed that the phenotype of GT-W is related to the tandem duplication of a large region of the chromosome that contains 100 genes including ones encoding D1, Psb28, and other PSII-related proteins as well as Mg-protoporphyrin methylester cyclase (Cycl). Interestingly, the duplication was completely eliminated after keeping GT-W cells on agar plates under photoautotrophic conditions for several months. The GT-W strain without a duplication showed no obvious defects in PSII assembly and resembled the GT-P substrain. Although, we do not

  20. Automatic segmentation and disentangling of chromosomes in Q-band prometaphase images.

    PubMed

    Grisan, Enrico; Poletti, Enea; Ruggeri, Alfredo

    2009-07-01

    Karyotype analysis is a widespread procedure in cytogenetics to assess the possible presence of genetics defects. The procedure is lengthy and repetitive, so that an automatic analysis would greatly help the cytogeneticist routine work. Still, automatic segmentation and full disentangling of chromosomes are open issues. We propose an automatic procedure to obtain the separated chromosomes, which are then ready for a subsequent classification step. The segmentation is carried out by means of a space-variant thresholding scheme, which proved to be successful even in presence of hyper- or hypofluorescent regions in the image. Then, the tree of choices to resolve touching and overlapping chromosomes is recursively explored, choosing the best combination of cuts and overlaps based on geometric evidence and image information. We show the effectiveness of the proposed method on routine data acquired with different microscope-camera setup at different laboratories: from 162 images of 117 cells totaling 6683 chromosomes, 94% of the chromosomes were correctly segmented, solving 90% of the overlaps and 90% of the touchings. In order to provide the scientific community with a public dataset, the data used in this paper are available for public download.

  1. Microsatellite and single nucleotide polymorphisms in the β-globin locus control region-hypersensitive Site 2: SPECIFICITY of Tunisian βs chromosomes.

    PubMed

    Ben Mustapha, Maha; Moumni, Imen; Zorai, Amine; Douzi, Kaïs; Ghanem, Abderraouf; Abbes, Salem

    2012-01-01

    The diversity of sickle cell disease severity is attributed to several cis acting factors, among them the single nucleotide polymorphisms (SNPs) and (AT) rich region in the β-locus control region (β-LCR). This contains five DNase I hypersensitive sites (HS) located 6 to 22 kb upstream to the ϵ gene. The most important of these is the HS2 (5' β-LCR-HS2), characterized by the presence of three different SNPs and a microsatellite region known to be in association with β(S) chromosomes in various populations. The aim of this study was to present the molecular investigation of the 5' β-LCR-HS2 site in normal and sickle cell disease individuals in order to determine if there is any correlation or specificity between these molecular markers, the β(S) Tunisian chromosomes and phenotypical expression of sickle cell disease. One hundred and twenty-four chromosomes from Tunisian individuals (49 β(S) carriers and 13 normal individuals) were screened by polymerase chain reaction (PCR) and sequencing for the polymorphic short tandem microsatellite repeats (AT)(X)N(12)(AT)(Y) and the three SNPs (rs7119428, rs9736333 and rs60240093) of the 5' β-LCR-HS2. Twelve configurations of the microsatellite motif were found with an ancestral configuration elaborated by ClustalW software. Normal and mutated alleles were observed at the homozygous and heterozygous states for the three SNPs. Correlation between microsatellites and SNPs suggests that mutant SNP alleles were mainly associated, in the homozygous sickle cell disease phenotype, with the (AT)(8)N(12)GT(AT)(7) configuration, whereas, normal SNP alleles were associated with the (AT)(X)N(12)(AT)(11) configurations in normal β(A) chromosomes. The correlation of these various configurations with Hb F expression was also investigated. The principal component analysis (PCA) showed the correlation between the homozygous sickle cell disease phenotype, mutated SNP alleles and the Benin microsatellite configuration (AT)(8)N(12)GT

  2. Mapping of PARK2 and PACRG overlapping regulatory region reveals LD structure and functional variants in association with leprosy in unrelated indian population groups.

    PubMed

    Chopra, Rupali; Ali, Shafat; Srivastava, Amit K; Aggarwal, Shweta; Kumar, Bhupender; Manvati, Siddharth; Kalaiarasan, Ponnusamy; Jena, Mamta; Garg, Vijay K; Bhattacharya, Sambit N; Bamezai, Rameshwar N K

    2013-01-01

    Leprosy is a chronic infectious disease caused by Mycobacterium Leprae, where the host genetic background plays an important role toward the disease pathogenesis. Various studies have identified a number of human genes in association with leprosy or its clinical forms. However, non-replication of results has hinted at the heterogeneity among associations between different population groups, which could be due to differently evolved LD structures and differential frequencies of SNPs within the studied regions of the genome. A need for systematic and saturated mapping of the associated regions with the disease is warranted to unravel the observed heterogeneity in different populations. Mapping of the PARK2 and PACRG gene regulatory region with 96 SNPs, with a resolution of 1 SNP per 1 Kb for PARK2 gene regulatory region in a North Indian population, showed an involvement of 11 SNPs in determining the susceptibility towards leprosy. The association was replicated in a geographically distinct and unrelated population from Orissa in eastern India. In vitro reporter assays revealed that the two significantly associated SNPs, located 63.8 kb upstream of PARK2 gene and represented in a single BIN of 8 SNPs, influenced the gene expression. A comparison of BINs between Indian and Vietnamese populations revealed differences in the BIN structures, explaining the heterogeneity and also the reason for non-replication of the associated genomic region in different populations.

  3. HUNTing the Overlap

    SciTech Connect

    Iancu, Costin; Parry, Husbands; Hargrove, Paul

    2005-07-08

    Hiding communication latency is an important optimization for parallel programs. Programmers or compilers achieve this by using non-blocking communication primitives and overlapping communication with computation or other communication operations. Using non-blocking communication raises two issues: performance and programmability. In terms of performance, optimizers need to find a good communication schedule and are sometimes constrained by lack of full application knowledge. In terms of programmability, efficiently managing non-blocking communication can prove cumbersome for complex applications. In this paper we present the design principles of HUNT, a runtime system designed to search and exploit some of the available overlap present at execution time in UPC programs. Using virtual memory support, our runtime implements demand-driven synchronization for data involved in communication operations. It also employs message decomposition and scheduling heuristics to transparently improve the non-blocking behavior of applications. We provide a user level implementation of HUNT on a variety of modern high performance computing systems. Results indicate that our approach is successful in finding some of the overlap available at execution time. While system and application characteristics influence performance, perhaps the determining factor is the time taken by the CPU to execute a signal handler. Demand driven synchronization at execution time eliminates the need for the explicit management of non-blocking communication. Besides increasing programmer productivity, this feature also simplifies compiler analysis for communication optimizations.

  4. Detection of chromosomal blaCTX-M-15 in Escherichia coli O25b-B2-ST131 isolates from the Kinki region of Japan.

    PubMed

    Hirai, Itaru; Fukui, Naoki; Taguchi, Masumi; Yamauchi, Kou; Nakamura, Tatsuya; Okano, Sho; Yamamoto, Yoshimasa

    2013-12-01

    Escherichia coli O25b-B2-ST131 isolates harbouring bla(CTX-M-15) are distributed worldwide. The bla(CTX-M-15) transposition unit has often been found on plasmids and the genetic contexts have been examined; however, less is known about the frequency and contexts of the bla(CTX-M-15) transposition unit on the chromosome. This study was performed to determine the chromosomal location of the bla(CTX-M-15) transposition unit and to analyse the molecular structure of the region surrounding the bla(CTX-M-15) transposition unit in E. coli O25b-B2-ST131 isolates. Twenty-two E. coli O25b-B2-ST131 strains harbouring bla(CTX-M-15) that had been isolated from university hospital patients and nursing home residents in the Kinki region of Japan were examined. Inverse PCR (iPCR) targeting bla(CTX-M-15) was performed to classify the molecular structure of the region surrounding the bla(CTX-M-15) transposition unit. The isolates were classified into nine types (types A-I) considering the iPCR results; type A was the most prevalent type (13/22 isolates). Sequences of the iPCR-amplified DNA fragments showed that the bla(CTX-M-15) transposition unit consisted of ISEcp1, bla(CTX-M-15) and orf477Δ. A homology search of the obtained sequences showed that the bla(CTX-M-15) transposition unit was inserted into different chromosomal regions in eight of the nine classified types. Although 21 of the 22 E. coli isolates possessed chromosomally located bla(CTX-M-15) transposition units, clonal spread was not evident on pulsed-field gel electrophoresis (PFGE) analysis. Taken together, these data indicate that certain E. coli O25b-B2-ST131 strains harbouring chromosomal bla(CTX-M-15) have emerged and spread in the Kinki region of Japan. PMID:24091130

  5. Physical mapping of the Bloom syndrome region by the identification of YAC and P1 clones from human chromosome 15 band q26.1

    SciTech Connect

    Straughen, J.; Groden, J.; Ciocci, S.

    1996-07-01

    The gene for Bloom syndrome (BLM) has been mapped to human chromosome 15 band q26.1 by homozygosity mapping. Further refinement of the location of BLM has relied upon linkage-disequilibrium mapping and somatic intragenic recombination. In combination with these mapping approaches and to identify novel DNA markers and probes for the BLM candidate region, a contiguous representation of the 2-Mb region that contains the BLM gene was generated and is presented here. YAC and P1 clones from the region have been identified and ordered by using previously available genetic markers in the region along with newly developed sequence-tagged sites from radiation-restriction map of the 2-Mb region that allowed estimation of the distance between polymorphic microsatellite loci is also reported. This map and the DNA markers derived from it were instrumental in the recent identification of the BLM gene. 25 refs., 3 figs., 3 tabs.

  6. Cloning of BWS-associated chromosomal breakpoints

    SciTech Connect

    Mannens, M.; Hoovers, J.; Redeker, E.

    1994-09-01

    The Beckwith-Wiedemann syndrome (BWS) is characterized by numerous growth abnormalities and is thought to be subject to {open_quotes}parental imprinting{close_quotes}. There is a striking increased incidence of different types of childhood tumors found in BWS patients of 7.5%. The syndrome is localized to chromosome region 11p15.3-p15.5. A contiguous map of this region of over 10 Mb was constructed and all 25 known genes from this region were localized to this map, including known imprinted genes like IGF2 and H19, or candidate tumor suppressor genes like WEE1, ST5 and rhombotin. In addition, we were able to place the breakpoints of 8 different balanced chromosomal rearrangements, associated with the Beckwith-Wiedemann syndrome, onto this map in two distinct regions that are now known to contain childhood tumor suppressor genes. In one of these BWS clusters (BWSCR1) 5/5 translocation breakpoints could be identified with overlapping cosmids for each breakpoint. A 6.7 kb transcript in all adult tissues tested was identified by several of these cosmids. This transcript was less abundant in fetal tissue. Preliminary results suggest the presence of zinc-finger protein motifs in this gene. This, however, has to be confirmed by sequence analysis. Two breakpoints in the more proximal BWS region (BWSCR2) were associated with clinically distinct BWS phenotypes, of which hemihypertrophy and Wilms` tumor are the most pronounced clinical findings. These breakpoints were found to be overlapped by the same cosmid. In this region, zinc-finger motifs flanking the breakpoints were identified by genomic sequence analysis.

  7. Mapping strategies: Chromosome 16 workshop. Final technical report

    SciTech Connect

    Not Available

    1989-12-31

    The following topics from a workshop on chromosome 16 are briefly discussed: genetic map of chromosome 16; chromosome breakpoint map of chromosome 16; integrated physical/genetic map of chromosome 16; pulsed field map of the 16p13.2--p13.3 region (3 sheets); and a report of the HGM10 chromosome 16 committee.

  8. A locus for the nystagmus-associated form of episodic ataxia maps to an 11-cM region on chromosome 19p

    SciTech Connect

    Kramer, P.L.; Gancher, S.T.; Nutt, J.G.

    1995-07-01

    Episodic ataxia (EA) is a rare neurological disorder characterized by attacks of generalized ataxia and near-normal neurological function between attacks. Most inherited cases are the result of an autosomal dominant condition with unknown neuropathology. It is heterogeneous and includes at least two distinct forms. In EA-1, attacks last minutes and interictal myokymia may be present. In EA-2, attacks may last hours and interictal nystagmus may occur. We reported linkage in four EA-1 families to chromosome 12p13 and identified mutations in these families in a potassium channel gene, KCNA1. Recently, we reported linkage in two EA-2 families to a 30-cM region on chromosome 19p. This report is based on members of the same two families and one additional kindred. 18 refs., 1 fig., 1 tab.

  9. Characterization of a DNA sequence family in the Prader-Willi/Angelman syndrome chromosome region in 15q11-q13

    SciTech Connect

    Dittrich, B.; Knoblauch, H.; Buiting, K.; Horsthemke, B. )

    1993-04-01

    IR4-3R (D15S11) is an anonymous DNA sequence from human chromosome 15. Using YAC cloning and restriction enzyme analysis, the authors have found that IR4-3R detects five related DNA sequences, which are spread over 700 kb within the Prader-Willi/Angelman syndrome chromosome region in 15q11-q 13. The RsaI and StyI polymorphisms, which were described previously, are associated with the most proximal copy of IR4-3R and are in strong linkage disequilibrium. IR4-3R represents the third DNA sequence family that has been identified in 15q11-q13. 14 refs., 2 figs., 1 tab.

  10. Fluorescence in situ hybridization mapping of the mouse platelet endothelial cell adhesion molecule-1 (PECAM1) to mouse chromosome 6, region F3-G1

    SciTech Connect

    Xie, Yong; Muller, W.A.

    1996-10-15

    Human platelet/endothelial cell adhesion molecule-1 (PECAM1), an important member of the immunoglobulin gene superfamily, is widely distributed on cells of the vascular system and mediates cellular interactions through both homophilic and heterophilic adhesive mechanisms. The function of PECAM1 in vitro has begun to be understood, but its function in vivo is yet to be established. To study the function of PECAM1 in vivo, its mouse counterpart was identified and its cDNA gene isolated and characterized. In this study, the mouse chromosomal localization was determined for the mouse gene encoding Pecam. Fluorescence in situ hybridization was used to map the Pecam gene on mouse chromosome 6, region F3-G1. 12 refs., 2 figs.

  11. 20-Mb duplication of chromosome 9p in a girl with minimal physical findings and normal IQ: narrowing of the 9p duplication critical region to 6 Mb.

    PubMed

    Bonaglia, Maria Clara; Giorda, Roberto; Carrozzo, Romeo; Roncoroni, Maria Elena; Grasso, Rita; Borgatti, Renato; Zuffardi, Orsetta

    2002-10-01

    We studied the case of a girl with a partial 9p duplication, dup(9)(p22.1 --> p13.1). Molecular cytogenetics studies defined the chromosome 9 rearrangement as a direct duplication of 20 Mb from D9S1213 to D9S52. Microsatellite analysis demonstrated the presence of a double dosage of the paternal alleles and demonstrated that the duplication occurred between sister chromatids. The patient's phenotype was almost normal, with a few minor anomalies (dolichocephaly, crowded teeth, high arched palate) and normal IQ. The breakpoint's location in this patient and previously reported cases suggest that the critical region for the 9p duplication syndrome lies within a 6-Mb portion of chromosome 9p22 between markers D9S267 and D9S1213.

  12. Hospital mergers and market overlap.

    PubMed Central

    Brooks, G R; Jones, V G

    1997-01-01

    OBJECTIVE: To address two questions: What are the characteristics of hospitals that affect the likelihood of their being involved in a merger? What characteristics of particular pairs of hospitals affect the likelihood of the pair engaging in a merger? DATA SOURCES/STUDY SETTING: Hospitals in the 12 county region surrounding the San Francisco Bay during the period 1983 to 1992 were the focus of the study. Data were drawn from secondary sources, including the Lexis/Nexis database, the American Hospital Association, and the Office of Statewide Health Planning and Development of the State of California. STUDY DESIGN: Seventeen hospital mergers during the study period were identified. A random sample of pairs of hospitals that did not merge was drawn to establish a statistically efficient control set. Models constructed from hypotheses regarding hospital and market characteristics believed to be related to merger likelihood were tested using logistic regression analysis. DATA COLLECTION: See Data Sources/Study Setting. PRINCIPAL FINDINGS: The analysis shows that the likelihood of a merger between a particular pair of hospitals is positively related to the degree of market overlap that exists between them. Furthermore, market overlap and performance difference interact in their effect on merger likelihood. In an analysis of individual hospitals, conditions of rivalry, hospital market share, and hospital size were not found to influence the likelihood that a hospital will engage in a merger. CONCLUSIONS: Mergers between hospitals are not driven directly by considerations of market power or efficiency as much as by the existence of specific merger opportunities in the hospitals' local markets. Market overlap is a condition that enables a merger to occur, but other factors, such as the relative performance levels of the hospitals in question and their ownership and teaching status, also play a role in influencing the likelihood that a merger will in fact take place. PMID

  13. Localization of ataxia-telangiectasia by an international consortium to an 800 kilobase region of chromosome 11q22.3-23.1

    SciTech Connect

    Lange, E.; Gatti, R.A.

    1994-09-01

    Previous linkage studies have localized ataxia-telangiectasia (A-T) to 11q22-23. Our current studies incorporate location score and haplotype analyses on more than 175 A-T pedigrees from seven countries. Forty-seven genetic markers were typed. A robust linkage map of this region was created, combining type data from 59 CEPH pedigrees and 190 pedigrees in an A-T consortium database. Our analyses reveal that an A-T gene(s) localizes between the markers D11S1819 (A4) and D11S1818 (A2), a region of approximately 800 kilobases. No crossovers were discovered between A-T and the markers D11S384 (CJ52.193), D11S535 (J12.8) and D11S1294, all of which fall within this interval. Eight families with classical A-T phenotypes showed results inconsistent with placing an A-T gene between D11S1819 and D11S1818. Five of these families do not link anywhere on chromosome 11q22-23. Of the eight families, six had a single affected child and can be explained by spontaneous mutations. The two remaining families suggest the presence of a second A-T locus not in the chromosome 11q22-23 region. However, until the A-T gene is cloned, firm conclusions about heterogeneity cannot be reached. This new localization of an A-T gene to an 800 kilobase region of chromosome 11q22.3-23.1 should facilitate future cloning efforts.

  14. Chromosomal localization and structure of the human type II IMP dehydrogenase gene

    SciTech Connect

    Glesne, D.; Huberman, E. |; Collart, F.; Varkony, T.; Drabkin, H.

    1994-05-01

    We determined the chromosomal localization and structure of the gene encoding human type II inosine 5{prime}-monophosphate dehydrogenase (IMPDH, EC 1.1.1.205), an enzyme associated with cellular proliferation, malignant transformation, and differentiation. Using polymerase chain reaction (PCR) primers specific for type II IMPDH, we screened a panel of human-Chinese hamster cell somatic hybrids and a separate deletion panel of chromosome 3 hybrids and localized the gene to 3p21.1{yields}p24.2. Two overlapping yeast artificial chromosome clones containing the full gene for type II IMPDH were isolated and a physical map of 117 kb of human genomic DNA in this region of chromosome 3 was constructed. The gene for type II IMPDH was localized and oriented on this map and found to span no more than 12.5 kb.

  15. A structural locus for coagulation factor XIIIA (F13A) is located distal to the HLA region on chromosome 6p in man.

    PubMed

    Olaisen, B; Gedde-Dahl, T; Teisberg, P; Thorsby, E; Siverts, A; Jonassen, R; Wilhelmy, M C

    1985-01-01

    Linkage between the locus for coagulation factor XIIIA (F13A) and HLA-region genes has been revealed during a linkage study between F13A and approximately 40 other polymorphic marker genes. In males, the maximum lod score between F13A and HLA-region genes (HLA-A, -C, -B, -DR; C4A, -B; Bf; and/or C2) is 7.60 at theta 1 = .18. To GLO, the maximum lod score is 2.37 at theta 1 = .19; to PGM3, .22 at theta 1 = .35. Female data indicate a clear sex difference in recombination frequency between F13A and HLA. The present findings, in combination with earlier knowledge of PGM3/GLO/HLA localization and gene distances, show that F13A is distal to HLA on the short arm of chromosome 6 in man. It is thus likely that by including FXIIIA typing in linkage studies, the whole male 6p is within mapping distance of highly polymorphic, classical marker genes. Earlier findings that the Hageman factor gene (F12) is located in the same chromosomal region may indicate the presence of a coagulation factor gene cluster in this region.

  16. A structural locus for coagulation factor XIIIA (F13A) is located distal to the HLA region on chromosome 6p in man.

    PubMed Central

    Olaisen, B; Gedde-Dahl, T; Teisberg, P; Thorsby, E; Siverts, A; Jonassen, R; Wilhelmy, M C

    1985-01-01

    Linkage between the locus for coagulation factor XIIIA (F13A) and HLA-region genes has been revealed during a linkage study between F13A and approximately 40 other polymorphic marker genes. In males, the maximum lod score between F13A and HLA-region genes (HLA-A, -C, -B, -DR; C4A, -B; Bf; and/or C2) is 7.60 at theta 1 = .18. To GLO, the maximum lod score is 2.37 at theta 1 = .19; to PGM3, .22 at theta 1 = .35. Female data indicate a clear sex difference in recombination frequency between F13A and HLA. The present findings, in combination with earlier knowledge of PGM3/GLO/HLA localization and gene distances, show that F13A is distal to HLA on the short arm of chromosome 6 in man. It is thus likely that by including FXIIIA typing in linkage studies, the whole male 6p is within mapping distance of highly polymorphic, classical marker genes. Earlier findings that the Hageman factor gene (F12) is located in the same chromosomal region may indicate the presence of a coagulation factor gene cluster in this region. Images Fig. 1 PMID:2858156

  17. The response regulator SsrB activates transcription and binds to a region overlapping OmpR binding sites at Salmonella pathogenicity island 2.

    PubMed

    Feng, Xiuhong; Walthers, Don; Oropeza, Ricardo; Kenney, Linda J

    2004-11-01

    OmpR activates expression of the two-component regulatory system located on Salmonella pathogenicity island 2 (SPI-2) that controls the expression of a type III secretion system, as well as many other genes required for systemic infection in mice. Measurements of SsrA and SsrB protein levels under different growth conditions indicate that expression of these two components is uncoupled, i.e. SsrB is produced in the absence of ssrA and vice versa. This result was suggested from our previous studies, in which two promoters at ssrA/B were identified. The isolated C-terminus of SsrB binds to DNA and protects regions upstream of ssrA, ssrB and srfH from DNase I digestion. Furthermore, the C-terminus of SsrB alone is capable of activating transcription in the absence of the N-terminus. Results from beta-galactosidase assays indicate that the N-terminal phosphorylation domain inhibits the C-terminal effector domain. A previous study from our laboratory reported that ssrA-lacZ and ssrB-lacZ transcriptional fusions were substantially reduced in an ssrB null strain. Results from DNase I protection assays provide direct evidence that SsrB binds at ssrA and ssrB, although the binding sites lie within the transcribed regions. Additional regulators clearly affect gene expression at this important locus, and here we provide evidence that SlyA, a transcription factor that contributes to Salmonella virulence, also affects ssrA/B gene expression.

  18. The Nuclear Protein Encoded by the Drosophila Neurogenic Gene Mastermind Is Widely Expressed and Associates with Specific Chromosomal Regions

    PubMed Central

    Bettler, D.; Pearson, S.; Yedvobnick, B.

    1996-01-01

    The Drosophila neurogenic loci encode a diverse group of proteins that comprise an inhibitory signal transduction pathway. The pathway is used throughout development in numerous contexts. We have examined the distribution of the neurogenic locus mastermind protein (Mam). Mam is expressed through all germlayers during early embryogenesis, including ectodermal precursors to both neuroblasts and epidermoblasts. Mam is subsequently down-regulated within the nervous system and then reexpressed. It persists in the nervous system through late embryogenesis and postembryonically. Mam is ubiquitously expressed in wing and leg imaginal discs and is not down-regulated in sensory organ precursor cells of the wing margin or notum. In the eye disc, Mam shows most prominent expression posterior to the morphogenetic furrow. Expression of the protein during oogenesis appears limited to follicle cells. Immunohistochemical detection of Mam on polytene chromosomes revealed binding at >100 sites. Chromosome colocalization studies with RNA polymerase and the groucho corepressor protein implicate Mam in transcriptional regulation. PMID:8725234

  19. Genetic mapping of a locus for multiple ephiphyseal dysplasia (EDM2) to a region of chromosome 1 containing a type IX collagen gene

    SciTech Connect

    Briggs, M.D.; Choi, HiChang; Warman, M.L.; Loughlin, J.A.; Wordsworth, P.; Sykes, B.C.; Irven, C.M.M.; Smith, M.; Wynne-Davies, R.; Lipson, M.H.

    1994-10-01

    Multiple epiphyseal dysplasia (MED) is a dominantly inherited chondrodysplasia characterized by mild short stature and early-onset osteoarthrosis. Some forms of MED clinically resemble another chondrodysplasia phenotype, the mild form of pseudoachondroplasia (PSACH). On the basis of their clinical similarities as well as similar ultra-structural and biochemical features in cartilage from some patients, it has been proposed that MED and PSACH belong to a single bone-dysplasia family. Recently, both mild and severe PSACH as well as a form of MED have been linked to the same interval on chromosome 19, suggesting that they may be allelic disorders. Linkage studies with the chromosome 19 markers were carried out in a large family with MED and excluded the previously identified interval. Using this family, we have identified a MED locus on the short arm of chromosome 1, in a region containing the gene (COL9A2) that encodes the {alpha}2 chain of type IX collagen, a structural component of the cartilage extracellular matrix. 39 refs., 3 figs., 3 tabs.

  20. Multiple Sex-Associated Regions and a Putative Sex Chromosome in Zebrafish Revealed by RAD Mapping and Population Genomics

    PubMed Central

    Anderson, Jennifer L.; Rodríguez Marí, Adriana; Braasch, Ingo; Amores, Angel; Hohenlohe, Paul; Batzel, Peter; Postlethwait, John H.

    2012-01-01

    Within vertebrates, major sex determining genes can differ among taxa and even within species. In zebrafish (Danio rerio), neither heteromorphic sex chromosomes nor single sex determination genes of large effect, like Sry in mammals, have yet been identified. Furthermore, environmental factors can influence zebrafish sex determination. Although progress has been made in understanding zebrafish gonad differentiation (e.g. the influence of germ cells on gonad fate), the primary genetic basis of zebrafish sex determination remains poorly understood. To identify genetic loci associated with sex, we analyzed F2 offspring of reciprocal crosses between Oregon *AB and Nadia (NA) wild-type zebrafish stocks. Genome-wide linkage analysis, using more than 5,000 sequence-based polymorphic restriction site associated (RAD-tag) markers and population genomic analysis of more than 30,000 single nucleotide polymorphisms in our *ABxNA crosses revealed a sex-associated locus on the end of the long arm of chr-4 for both cross families, and an additional locus in the middle of chr-3 in one cross family. Additional sequencing showed that two SNPs in dmrt1 previously suggested to be functional candidates for sex determination in a cross of ABxIndia wild-type zebrafish, are not associated with sex in our AB fish. Our data show that sex determination in zebrafish is polygenic and that different genes may influence sex determination in different strains or that different genes become more important under different environmental conditions. The association of the end of chr-4 with sex is remarkable because, unique in the karyotype, this chromosome arm shares features with known sex chromosomes: it is highly heterochromatic, repetitive, late replicating, and has reduced recombination. Our results reveal that chr-4 has functional and structural properties expected of a sex chromosome. PMID:22792396

  1. Restriction maps of the regions coding for methicillin and tobramycin resistances on chromosomal DNA in methicillin-resistant staphylococci.

    PubMed Central

    Ubukata, K; Nonoguchi, R; Matsuhashi, M; Song, M D; Konno, M

    1989-01-01

    Chromosomal BamHI DNA fragments containing both the mecA gene encoding the penicillin-binding protein responsible for methicillin resistance and the aadD gene encoding 4',4"-adenylyltransferase responsible for tobramycin resistance were cloned from three methicillin- and tobramycin-resistant strains of Staphylococcus aureus and one strain of Staphylococcus epidermidis. Physical maps of the fragments were similar, suggesting their unique origin. Images PMID:2817861

  2. Methods for chromosome-specific staining

    DOEpatents

    Gray, Joe W.; Pinkel, Daniel

    1995-01-01

    Methods and compositions for chromosome-specific staining are provided. Compositions comprise heterogenous mixtures of labeled nucleic acid fragments having substantially complementary base sequences to unique sequence regions of the chromosomal DNA for which their associated staining reagent is specific. Methods include methods for making the chromosome-specific staining compositions of the invention, and methods for applying the staining compositions to chromosomes.

  3. Origin and domestication of papaya Yh chromosome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sex in papaya is controlled by a pair of nascent sex chromosomes. Females are XX, and two slightly different Y chromosomes distinguish males (XY) and hermaphrodites (XYh). The hermaphrodite-specific region of the Yh chromosome (HSY) and its X chromosome counterpart were sequenced and analyzed previo...

  4. Chromosome aberrations in human lymphocytes from the plateau region of the Bragg curve for a carbon-ion beam

    NASA Astrophysics Data System (ADS)

    Manti, L.; Durante, M.; Grossi, G.; Pugliese, M.; Scampoli, P.; Gialanella, G.

    2007-06-01

    Radiotherapy with high-energy carbon ion beams can be more advantageous compared to photons because of better physical dose distribution and higher biological efficiency in tumour cell sterilization. Despite enhanced normal tissue sparing, damage incurred by normal cells at the beam entrance is unavoidable and may affect the progeny of surviving cells in the form of inheritable cytogenetic alterations. Furthermore, the quality of the beam along the Bragg curve is modified by nuclear fragmentation of projectile and target nuclei in the body. We present an experimental approach based on the use of a polymethylmethacrylate (PMMA) phantom that allows the simultaneous exposure to a particle beam of several biological samples positioned at various depths along the beam path. The device was used to measure the biological effectiveness of a 60 MeV/amu carbon-ion beam at inducing chromosomal aberrations in G0-human peripheral blood lymphocytes. Chromosome spreads were obtained from prematurely condensed cells and all structural aberration types were scored in Fluorescence in situ Hybridization (FISH)-painted chromosomes 1 and 2. Our results show a marked increase with depth in the aberration frequency prior to the Bragg peak, which is consistent with a linear energy transfer (LET)-dependent increase in biological effectiveness.

  5. Multicenter linkage study of schizophrenia candidate regions on chromosomes 5q, 6q, 10p, and 13q: schizophrenia linkage collaborative group III.

    PubMed

    Levinson, D F; Holmans, P; Straub, R E; Owen, M J; Wildenauer, D B; Gejman, P V; Pulver, A E; Laurent, C; Kendler, K S; Walsh, D; Norton, N; Williams, N M; Schwab, S G; Lerer, B; Mowry, B J; Sanders, A R; Antonarakis, S E; Blouin, J L; DeLeuze, J F; Mallet, J

    2000-09-01

    Schizophrenia candidate regions 33-51 cM in length on chromosomes 5q, 6q, 10p, and 13q were investigated for genetic linkage with mapped markers with an average spacing of 5.64 cM. We studied 734 informative multiplex pedigrees (824 independent affected sibling pairs [ASPs], or 1,003 ASPs when all possible pairs are counted), which were collected in eight centers. Cases with diagnoses of schizophrenia or schizoaffective disorder (DSM-IIIR criteria) were considered affected (n=1,937). Data were analyzed with multipoint methods, including nonparametric linkage (NPL), ASP analysis using the possible-triangle method, and logistic-regression analysis of identity-by-descent (IBD) sharing in ASPs with sample as a covariate, in a test for intersample heterogeneity and for linkage with allowance for intersample heterogeneity. The data most supportive for linkage to schizophrenia were from chromosome 6q; logistic-regression analysis of linkage allowing for intersample heterogeneity produced an empirical P value <.0002 with, or P=.0004 without, inclusion of the sample that produced the first positive report in this region; the maximum NPL score in this region was 2.47 (P=.0046), the maximum LOD score (MLS) from ASP analysis was 3.10 (empirical P=.0036), and there was significant evidence for intersample heterogeneity (empirical P=.0038). More-modest support for linkage was observed for chromosome 10p, with logistic-regression analysis of linkage producing an empirical P=. 045 and with significant evidence for intersample heterogeneity (empirical P=.0096). PMID:10924404

  6. Overlap extension PCR cloning.

    PubMed

    Bryksin, Anton; Matsumura, Ichiro

    2013-01-01

    Rising demand for recombinant proteins has motivated the development of efficient and reliable cloning methods. Here we show how a beginner can clone virtually any DNA insert into a plasmid of choice without the use of restriction endonucleases or T4 DNA ligase. Chimeric primers encoding plasmid sequence at the 5' ends and insert sequence at the 3' ends are designed and synthesized. Phusion(®) DNA polymerase is utilized to amplify the desired insert by PCR. The double-stranded product is subsequently employed as a pair of mega-primers in a PCR-like reaction with circular plasmids. The original plasmids are then destroyed in restriction digests with Dpn I. The product of the overlap extension PCR is used to transform competent Escherichia coli cells. Phusion(®) DNA polymerase is used for both the amplification and fusion reactions, so both steps can be monitored and optimized in the same way. PMID:23996437

  7. Identification of four novel human genes amplified and overexpressed in breast carcinoma and localized to the q11-q21.3 region of chromosome 17

    SciTech Connect

    Tomasetto, C.; Regnier, C.; Basset, P.

    1995-08-10

    We have performed differential screening of a human metastatic lymph node cDNA library to identify genes possibly involved during breast cancer progression. We have identified four novel genes overexpressed in malignant tissues. They were all located between q11 and q21.3, a region known to contain the c-erbB-2 oncogene and the BRCA1 breast carcinomas, and overexpression of three of them was dependent on gene amplification in breast cancer cell lines. These findings further support the concept that human chromosome 17 specifically carries genes possibly involved in breast cancer progression. 61 refs., 3 figs., 4 tabs.

  8. Mapping of D4S98/S114/S113 confines the Huntington's defect to a reduced physical region at the telomere of chromosome 4.

    PubMed

    Whaley, W L; Michiels, F; MacDonald, M E; Romano, D; Zimmer, M; Smith, B; Leavitt, J; Bucan, M; Haines, J L; Gilliam, T C

    1988-12-23

    The dominant gene defect in Huntington's disease (HD) is linked to the DNA marker D4S10, near the telomere of the chromosome 4 short arm. Two other markers, D4S43 and D4S95, are closer, but still proximal to the HD gene in 4p16.3. We have characterized a new locus, D4S114, identified by cloning the end of a NotI fragment resolved by pulsed-field gel electrophoresis. D4S114 was localized distal to D4S43 and D4S95 by both physical and genetic mapping techniques. The "end"-clone overlaps a previously isolated NotI "linking" clone, and is within 150 kb of a second "linking" clone defining D4S113. Restriction fragment length polymorphisms for D4S113 and D4S114, one of which is identical to a SacI polymorphism detected by the anonymous probe pBS731B-C (D4S98), were typed for key crossovers in HD and reference pedigrees. The data support the locus order D4S10-(D4S43, D4S95)-D4S98/S114/S113-HD-telomere. The D4S98/S114/S113 cluster therefore represents the nearest cloned sequences to HD, and provides a valuable new point for launching directional cloning strategies to isolate and characterize this disease gene.

  9. Characterisation of the Nevoid basal cell carcinoma (Gorlin`s) syndrome (NBCCS) gene region on chromosome 9q22-q31

    SciTech Connect

    Morris, D.J.; Digweed, M.; Sperling, K.

    1994-09-01

    Nevoid basal cell carcinoma syndrome (NBCCS) is an autosomal dominantly inherited malignancy-associated disease of unknown etiology. The gene has been mapped to chromosome 9q22-q31 by us and other groups, using linkage analysis and loss of heterozygosity studies. Subsequent linkage and haplotype analyses from 133 meioses in NBCCS families has refined the position of the gene between D9S12 and D9S287. Since the gene for Fanconi`s Anaemia type C (FAAC) has been assigned to the same 9q region, we have performed linkage analysis between FACC and NBCCCS in NBCCS families. No recombination has been observed between NBCCS and FACC and maximum lod scores of 34.98 and 11.94 occur for both diseases at the markers D9S196/D9S197. Southern blot analysis using an FACC cDNA probe has revealed no detectable rearrangements in our NBCCS patients. We have established a YAC contig spanning the region from D9S12 to D9S176 and STS content mapping in 22 YACs has allowed the ordering of 12 loci in the region, including the xeroderma pigmentosum type A (XPAC) gene, as follows: D9S151/D9S12P1 - D9S12P2 - D9S197 - D9S196 - D9S280 - FACC - D9S287/XPAC - D9S180 - D9S6 - D9S176. Using the contig we have been able to eliminate the {alpha}1 type XV collagen gene and the markers D9S119 and D9S297 from the NBCCS candidate region. Twelve YACs have been used to screen a chromosome 9 cosmid library and more than 1000 cosmids from the region have been identified to be used for the construction of a cosmid contig. A selection of these cosmids will be used for the isolation of coding sequencing from the region.

  10. Analysis of noise barrier overlap gaps

    NASA Astrophysics Data System (ADS)

    Herman, Lloyd A.; Clum, Craig M.

    2002-04-01

    Sound propagation through the gap produced by two parallel vertical barriers with overlapped ends is formulated for traffic noise sources. The analysis identifies both source and receiver regions according to the mechanisms that influence noise propagation in the vicinity of an overlap gap. A method to account for the contributions from the various source regions for a given receiver location is described. The derived method can be implemented using various equations for sound propagation. The results of using equations approved by the United States Federal Highway Administration for traffic noise propagation are given. Uncalibrated predictions are compared with field measurements for up to 30 receiver positions from each of four overlap gaps. The relative importance of contributions from reflected rays to the noise levels at receiver positions is given. The analysis confirms the initial hypothesis that a commonly used strategy of overlapping barriers by an amount equal to two or three times the overlap width is useful for controlling line-of-sight propagation but ignores the substantial effect of reflections.

  11. Two Overlapping Regions within the N-Terminal Half of the Herpes Simplex Virus 1 E3 Ubiquitin Ligase ICP0 Facilitate the Degradation and Dissociation of PML and Dissociation of Sp100 from ND10

    PubMed Central

    Perusina Lanfranca, Mirna; Mostafa, Heba H.

    2013-01-01

    Herpes simplex virus 1 (HSV-1) establishes a lifelong latent infection in sensory neurons and can reactivate from latency under stress conditions. To promote lytic infection, the virus must interact with specific cellular factors to evade the host's antiviral defenses. The HSV-1 E3 ubiquitin ligase, infected cell protein 0 (ICP0), activates transcription of viral genes, in part, by mediating the degradation of certain cellular proteins that play a role in host antiviral mechanisms. One component of the cellular defenses that ICP0 disrupts is the suborganelle, nuclear domain 10 (ND10), by inducing the degradation and dissociation of the major organizer of ND10, a promyelocytic leukemia (PML) and ND10 constituent, Sp100. Because previously identified domains in ICP0 explain only partially how it directs the degradation and dissociation of PML and Sp100, we hypothesized that additional regions within ICP0 may contribute to these activities, which in turn facilitate efficient viral replication. To test this hypothesis, we used a series of ICP0 truncation mutants and examined PML protein levels and PML and Sp100 immunofluorescence staining in human embryonic lung cells. Our results demonstrate that two overlapping regions within the central N-terminal portion of ICP0 (residues 212 to 311) promoted the dissociation and degradation of PML and dissociation of Sp100 (residues 212 to 427). In conclusion, we have identified two additional regions in ICP0 involved in altering ND10 antiviral defenses in a cell culture model of HSV-1 infection. PMID:24089549

  12. Identification of the Ω4406 Regulatory Region, a Developmental Promoter of Myxococcus xanthus, and a DNA Segment Responsible for Chromosomal Position-Dependent Inhibition of Gene Expression

    PubMed Central

    Loconto, Jennifer; Viswanathan, Poorna; Nowak, Scott J.; Gloudemans, Monica; Kroos, Lee

    2005-01-01

    When starved, Myxococcus xanthus cells send signals to each other that coordinate their movements, gene expression, and differentiation. C-signaling requires cell-cell contact, and increasing contact brought about by cell alignment in aggregates is thought to increase C-signaling, which induces expression of many genes, causing rod-shaped cells to differentiate into spherical spores. C-signaling involves the product of the csgA gene. A csgA mutant fails to express many genes that are normally induced after about 6 h into the developmental process. One such gene was identified by insertion of Tn5 lac at site Ω4406 in the M. xanthus chromosome. Tn5 lac fused transcription of lacZ to the upstream Ω4406 promoter. In this study, the Ω4406 promoter region was identified by analyzing mRNA and by testing different upstream DNA segments for the ability to drive developmental lacZ expression in M. xanthus. The 5′ end of Ω4406 mRNA mapped to approximately 1.3 kb upstream of the Tn5 lac insertion. A 1.0-kb DNA segment from 0.8 to 1.8 kb upstream of the Tn5 lac insertion, when fused to lacZ and integrated at a phage attachment site in the M. xanthus chromosome, showed a similar pattern of developmental expression as Tn5 lac Ω4406. The DNA sequence upstream of the putative transcriptional start site was strikingly similar to promoter regions of other C-signal-dependent genes. Developmental lacZ expression from the 1.0-kb segment was abolished in a csgA mutant but was restored upon codevelopment of the csgA mutant with wild-type cells, which supply C-signal, demonstrating that the Ω4406 promoter responds to extracellular C-signaling. Interestingly, the 0.8-kb DNA segment immediately upstream of Tn5 lac Ω4406 inhibited expression of a downstream lacZ reporter in transcriptional fusions integrated at a phage attachment site in the chromosome but not at the normal Ω4406 location. To our knowledge, this is the first example in M. xanthus of a chromosomal position

  13. Genomic analysis of a 1 Mb region near the telomere of Hessian fly chromosome X2 and avirulence gene vH13

    PubMed Central

    Lobo, Neil F; Behura, Susanta K; Aggarwal, Rajat; Chen, Ming-Shun; Collins, Frank H; Stuart, Jeff J

    2006-01-01

    Background To have an insight into the Mayetiola destructor (Hessian fly) genome, we performed an in silico comparative genomic analysis utilizing genetic mapping, genomic sequence and EST sequence data along with data available from public databases. Results Chromosome walking and FISH were utilized to identify a contig of 50 BAC clones near the telomere of the short arm of Hessian fly chromosome X2 and near the avirulence gene vH13. These clones enabled us to correlate physical and genetic distance in this region of the Hessian fly genome. Sequence data from these BAC ends encompassing a 760 kb region, and a fully sequenced and assembled 42.6 kb BAC clone, was utilized to perform a comparative genomic study. In silico gene prediction combined with BLAST analyses was used to determine putative orthology to the sequenced dipteran genomes of the fruit fly, Drosophila melanogaster, and the malaria mosquito, Anopheles gambiae, and to infer evolutionary relationships. Conclusion This initial effort enables us to advance our understanding of the structure, composition and evolution of the genome of this important agricultural pest and is an invaluable tool for a whole genome sequencing effort. PMID:16412254

  14. A strategy for fine-structure functional analysis of a 6- to 11-centimorgan region of mouse chromosome 7 by high-efficiency mutagenesis

    SciTech Connect

    Rinchik, E.M.; Carpenter, D.A.; Selby, P.B. )

    1990-02-01

    A refined functional map of a 6- to 11-centimorgan region surrounding the albino (c) locus in mouse chromosome 7 is being generated by N-ethyl-N-nitrosourea (EtNU) saturation mutagenesis of stem-cell spermatogonia. In the first phase of an experiment that will eventually test at least 3,000 gametes, the authors screened 972 mutagenized gametes for the induction of both lethal and visible mutations with a two-cross breeding protocol. Thirteen mutations mapping within the limits of a segment corresponding to the cytologically visible Df(c Mod-2 sh-1){sup 26DVT} deletion were recovered. They represented three phenotypic groups: prenatal lethality (six mutations); a fitness/runting syndrome (three mutations, provisionally designated as fit variants); and a neurological/balance-defect abnormality (four mutations). Complementation analysis provided evidence for a true repeat mutation at the sh-1 (shaker-1) locus (for the neurological mutations) and another at the here defined fit-1 (fitness-1) locus. The recovery of the repeat mutations suggests that the EtNU-induced mutation rate, estimated from specific-locus tests, should make it possible to achieve saturation mutagenesis of a chromosomal region. This experiment is providing basic logistical and statistical information on which to base strategies for expanding the functional map of larger segments of the mouse genome by experimental mutagenesis.

  15. Overlapping left ventricular restoration.

    PubMed

    Matsui, Yoshiro

    2009-06-01

    Cardiac transplantation, a final option of treatment for refractory heart failure, has not been a standard procedure in Japan especially, mainly because of the shortage of donors. However, surgical methods to restore native heart function, such as surgical ventricular restoration (SVR), are often effective for these cases. The Dor procedure has been used for ischemic cardiomyopathy cases presenting with broad akinetic segments. This is a fine method to exclude the scarred septum and to reduce the intraventricular cavity by encircling purse-string suture, but it may produce a postoperative spherical ventricular shape as a result of endoventricular patch repair. Also, partial left ventriculectomy is not recommended for non-ischemic dilated cardiomyopathy cases for now. A modification of these SVR and surgical approaches to functional mitral regurgitation has been named "overlapping ventriculoplasty" without endoventricular patch and resection of viable cardiac muscle, and "mitral complex reconstruction", which consists of mitral annuloplasty, papillary muscle approximation, and suspension. Although the long-term prognosis of these procedures is undetermined, they could be an important option, at least as an alternative bridge to transplantation. This review will describe the concepts and some technical aspects of these procedures for the end-stage heart. PMID:19474505

  16. The nuclear protein encoded by the Drosophila neurogenic gene mastermind is widely expressed and associates with specific chromosomal regions

    SciTech Connect

    Bettler, D.; Pearson, S.; Yedvobnick, B.

    1996-06-01

    The Drosophila neurogenic loci encode a diverse group of proteins that comprise an inhibitory signal transduction pathway. The pathway is used throughout development in numerous contexts. We have examined the distribution of the neurogenic locus mastermind protein (Mam). Mam is expressed through all germlayers during early embryogenesis, including ectoderm