Compression of Flow Can Reveal Overlapping-Module Organization in Networks
NASA Astrophysics Data System (ADS)
Viamontes Esquivel, Alcides; Rosvall, Martin
2011-10-01
To better understand the organization of overlapping modules in large networks with respect to flow, we introduce the map equation for overlapping modules. In this information-theoretic framework, we use the correspondence between compression and regularity detection. The generalized map equation measures how well we can compress a description of flow in the network when we partition it into modules with possible overlaps. When we minimize the generalized map equation over overlapping network partitions, we detect modules that capture flow and determine which nodes at the boundaries between modules should be classified in multiple modules and to what degree. With a novel greedy-search algorithm, we find that some networks, for example, the neural network of the nematode Caenorhabditis elegans, are best described by modules dominated by hard boundaries, but that others, for example, the sparse European-roads network, have an organization of highly overlapping modules.
NASA Astrophysics Data System (ADS)
Palla, Gergely; Farkas, Illés J.; Pollner, Péter; Derényi, Imre; Vicsek, Tamás
2007-06-01
A search technique locating network modules, i.e. internally densely connected groups of nodes in directed networks is introduced by extending the clique percolation method originally proposed for undirected networks. After giving a suitable definition for directed modules we investigate their percolation transition in the Erdos-Rényi graph both analytically and numerically. We also analyse four real-world directed networks, including Google's own web-pages, an email network, a word association graph and the transcriptional regulatory network of the yeast Saccharomyces cerevisiae. The obtained directed modules are validated by additional information available for the nodes. We find that directed modules of real-world graphs inherently overlap and the investigated networks can be classified into two major groups in terms of the overlaps between the modules. Accordingly, in the word-association network and Google's web-pages, overlaps are likely to contain in-hubs, whereas the modules in the email and transcriptional regulatory network tend to overlap via out-hubs.
Kovács, István A.; Palotai, Robin; Szalay, Máté S.; Csermely, Peter
2010-01-01
Background Network communities help the functional organization and evolution of complex networks. However, the development of a method, which is both fast and accurate, provides modular overlaps and partitions of a heterogeneous network, has proven to be rather difficult. Methodology/Principal Findings Here we introduce the novel concept of ModuLand, an integrative method family determining overlapping network modules as hills of an influence function-based, centrality-type community landscape, and including several widely used modularization methods as special cases. As various adaptations of the method family, we developed several algorithms, which provide an efficient analysis of weighted and directed networks, and (1) determine pervasively overlapping modules with high resolution; (2) uncover a detailed hierarchical network structure allowing an efficient, zoom-in analysis of large networks; (3) allow the determination of key network nodes and (4) help to predict network dynamics. Conclusions/Significance The concept opens a wide range of possibilities to develop new approaches and applications including network routing, classification, comparison and prediction. PMID:20824084
Network module detection: Affinity search technique with the multi-node topological overlap measure
Li, Ai; Horvath, Steve
2009-01-01
Background Many clustering procedures only allow the user to input a pairwise dissimilarity or distance measure between objects. We propose a clustering method that can input a multi-point dissimilarity measure d(i1, i2, ..., iP) where the number of points P can be larger than 2. The work is motivated by gene network analysis where clusters correspond to modules of highly interconnected nodes. Here, we define modules as clusters of network nodes with high multi-node topological overlap. The topological overlap measure is a robust measure of interconnectedness which is based on shared network neighbors. In previous work, we have shown that the multi-node topological overlap measure yields biologically meaningful results when used as input of network neighborhood analysis. Findings We adapt network neighborhood analysis for the use of module detection. We propose the Module Affinity Search Technique (MAST), which is a generalized version of the Cluster Affinity Search Technique (CAST). MAST can accommodate a multi-node dissimilarity measure. Clusters grow around user-defined or automatically chosen seeds (e.g. hub nodes). We propose both local and global cluster growth stopping rules. We use several simulations and a gene co-expression network application to argue that the MAST approach leads to biologically meaningful results. We compare MAST with hierarchical clustering and partitioning around medoid clustering. Conclusion Our flexible module detection method is implemented in the MTOM software which can be downloaded from the following webpage: PMID:19619323
Network module detection: Affinity search technique with the multi-node topological overlap measure.
Li, Ai; Horvath, Steve
2009-07-20
Many clustering procedures only allow the user to input a pairwise dissimilarity or distance measure between objects. We propose a clustering method that can input a multi-point dissimilarity measure d(i1, i2, ..., iP) where the number of points P can be larger than 2. The work is motivated by gene network analysis where clusters correspond to modules of highly interconnected nodes. Here, we define modules as clusters of network nodes with high multi-node topological overlap. The topological overlap measure is a robust measure of interconnectedness which is based on shared network neighbors. In previous work, we have shown that the multi-node topological overlap measure yields biologically meaningful results when used as input of network neighborhood analysis. We adapt network neighborhood analysis for the use of module detection. We propose the Module Affinity Search Technique (MAST), which is a generalized version of the Cluster Affinity Search Technique (CAST). MAST can accommodate a multi-node dissimilarity measure. Clusters grow around user-defined or automatically chosen seeds (e.g. hub nodes). We propose both local and global cluster growth stopping rules. We use several simulations and a gene co-expression network application to argue that the MAST approach leads to biologically meaningful results. We compare MAST with hierarchical clustering and partitioning around medoid clustering. Our flexible module detection method is implemented in the MTOM software which can be downloaded from the following webpage: http://www.genetics.ucla.edu/labs/horvath/MTOM/
Understanding network concepts in modules
2007-01-01
Background Network concepts are increasingly used in biology and genetics. For example, the clustering coefficient has been used to understand network architecture; the connectivity (also known as degree) has been used to screen for cancer targets; and the topological overlap matrix has been used to define modules and to annotate genes. Dozens of potentially useful network concepts are known from graph theory. Results Here we study network concepts in special types of networks, which we refer to as approximately factorizable networks. In these networks, the pairwise connection strength (adjacency) between 2 network nodes can be factored into node specific contributions, named node 'conformity'. The node conformity turns out to be highly related to the connectivity. To provide a formalism for relating network concepts to each other, we define three types of network concepts: fundamental-, conformity-based-, and approximate conformity-based concepts. Fundamental concepts include the standard definitions of connectivity, density, centralization, heterogeneity, clustering coefficient, and topological overlap. The approximate conformity-based analogs of fundamental network concepts have several theoretical advantages. First, they allow one to derive simple relationships between seemingly disparate networks concepts. For example, we derive simple relationships between the clustering coefficient, the heterogeneity, the density, the centralization, and the topological overlap. The second advantage of approximate conformity-based network concepts is that they allow one to show that fundamental network concepts can be approximated by simple functions of the connectivity in module networks. Conclusion Using protein-protein interaction, gene co-expression, and simulated data, we show that a) many networks comprised of module nodes are approximately factorizable and b) in these types of networks, simple relationships exist between seemingly disparate network concepts. Our results are implemented in freely available R software code, which can be downloaded from the following webpage: http://www.genetics.ucla.edu/labs/horvath/ModuleConformity/ModuleNetworks PMID:17547772
Semantic integration to identify overlapping functional modules in protein interaction networks
Cho, Young-Rae; Hwang, Woochang; Ramanathan, Murali; Zhang, Aidong
2007-01-01
Background The systematic analysis of protein-protein interactions can enable a better understanding of cellular organization, processes and functions. Functional modules can be identified from the protein interaction networks derived from experimental data sets. However, these analyses are challenging because of the presence of unreliable interactions and the complex connectivity of the network. The integration of protein-protein interactions with the data from other sources can be leveraged for improving the effectiveness of functional module detection algorithms. Results We have developed novel metrics, called semantic similarity and semantic interactivity, which use Gene Ontology (GO) annotations to measure the reliability of protein-protein interactions. The protein interaction networks can be converted into a weighted graph representation by assigning the reliability values to each interaction as a weight. We presented a flow-based modularization algorithm to efficiently identify overlapping modules in the weighted interaction networks. The experimental results show that the semantic similarity and semantic interactivity of interacting pairs were positively correlated with functional co-occurrence. The effectiveness of the algorithm for identifying modules was evaluated using functional categories from the MIPS database. We demonstrated that our algorithm had higher accuracy compared to other competing approaches. Conclusion The integration of protein interaction networks with GO annotation data and the capability of detecting overlapping modules substantially improve the accuracy of module identification. PMID:17650343
Persistency and flexibility of complex brain networks underlie dual-task interference.
Alavash, Mohsen; Hilgetag, Claus C; Thiel, Christiane M; Gießing, Carsten
2015-09-01
Previous studies on multitasking suggest that performance decline during concurrent task processing arises from interfering brain modules. Here, we used graph-theoretical network analysis to define functional brain modules and relate the modular organization of complex brain networks to behavioral dual-task costs. Based on resting-state and task fMRI we explored two organizational aspects potentially associated with behavioral interference when human subjects performed a visuospatial and speech task simultaneously: the topological overlap between persistent single-task modules, and the flexibility of single-task modules in adaptation to the dual-task condition. Participants showed a significant decline in visuospatial accuracy in the dual-task compared with single visuospatial task. Global analysis of topological similarity between modules revealed that the overlap between single-task modules significantly correlated with the decline in visuospatial accuracy. Subjects with larger overlap between single-task modules showed higher behavioral interference. Furthermore, lower flexible reconfiguration of single-task modules in adaptation to the dual-task condition significantly correlated with larger decline in visuospatial accuracy. Subjects with lower modular flexibility showed higher behavioral interference. At the regional level, higher overlap between single-task modules and less modular flexibility in the somatomotor cortex positively correlated with the decline in visuospatial accuracy. Additionally, higher modular flexibility in cingulate and frontal control areas and lower flexibility in right-lateralized nodes comprising the middle occipital and superior temporal gyri supported dual-tasking. Our results suggest that persistency and flexibility of brain modules are important determinants of dual-task costs. We conclude that efficient dual-tasking benefits from a specific balance between flexibility and rigidity of functional brain modules. © 2015 Wiley Periodicals, Inc.
Gene network interconnectedness and the generalized topological overlap measure
Yip, Andy M; Horvath, Steve
2007-01-01
Background Network methods are increasingly used to represent the interactions of genes and/or proteins. Genes or proteins that are directly linked may have a similar biological function or may be part of the same biological pathway. Since the information on the connection (adjacency) between 2 nodes may be noisy or incomplete, it can be desirable to consider alternative measures of pairwise interconnectedness. Here we study a class of measures that are proportional to the number of neighbors that a pair of nodes share in common. For example, the topological overlap measure by Ravasz et al. [1] can be interpreted as a measure of agreement between the m = 1 step neighborhoods of 2 nodes. Several studies have shown that two proteins having a higher topological overlap are more likely to belong to the same functional class than proteins having a lower topological overlap. Here we address the question whether a measure of topological overlap based on higher-order neighborhoods could give rise to a more robust and sensitive measure of interconnectedness. Results We generalize the topological overlap measure from m = 1 step neighborhoods to m ≥ 2 step neighborhoods. This allows us to define the m-th order generalized topological overlap measure (GTOM) by (i) counting the number of m-step neighbors that a pair of nodes share and (ii) normalizing it to take a value between 0 and 1. Using theoretical arguments, a yeast co-expression network application, and a fly protein network application, we illustrate the usefulness of the proposed measure for module detection and gene neighborhood analysis. Conclusion Topological overlap can serve as an important filter to counter the effects of spurious or missing connections between network nodes. The m-th order topological overlap measure allows one to trade-off sensitivity versus specificity when it comes to defining pairwise interconnectedness and network modules. PMID:17250769
Ren, Jun; Zhou, Wei; Wang, Jianxin
2014-01-01
Many evidences have demonstrated that protein complexes are overlapping and hierarchically organized in PPI networks. Meanwhile, the large size of PPI network wants complex detection methods have low time complexity. Up to now, few methods can identify overlapping and hierarchical protein complexes in a PPI network quickly. In this paper, a novel method, called MCSE, is proposed based on λ-module and “seed-expanding.” First, it chooses seeds as essential PPIs or edges with high edge clustering values. Then, it identifies protein complexes by expanding each seed to a λ-module. MCSE is suitable for large PPI networks because of its low time complexity. MCSE can identify overlapping protein complexes naturally because a protein can be visited by different seeds. MCSE uses the parameter λ_th to control the range of seed expanding and can detect a hierarchical organization of protein complexes by tuning the value of λ_th. Experimental results of S. cerevisiae show that this hierarchical organization is similar to that of known complexes in MIPS database. The experimental results also show that MCSE outperforms other previous competing algorithms, such as CPM, CMC, Core-Attachment, Dpclus, HC-PIN, MCL, and NFC, in terms of the functional enrichment and matching with known protein complexes. PMID:25143945
Comparison of co-expression measures: mutual information, correlation, and model based indices.
Song, Lin; Langfelder, Peter; Horvath, Steve
2012-12-09
Co-expression measures are often used to define networks among genes. Mutual information (MI) is often used as a generalized correlation measure. It is not clear how much MI adds beyond standard (robust) correlation measures or regression model based association measures. Further, it is important to assess what transformations of these and other co-expression measures lead to biologically meaningful modules (clusters of genes). We provide a comprehensive comparison between mutual information and several correlation measures in 8 empirical data sets and in simulations. We also study different approaches for transforming an adjacency matrix, e.g. using the topological overlap measure. Overall, we confirm close relationships between MI and correlation in all data sets which reflects the fact that most gene pairs satisfy linear or monotonic relationships. We discuss rare situations when the two measures disagree. We also compare correlation and MI based approaches when it comes to defining co-expression network modules. We show that a robust measure of correlation (the biweight midcorrelation transformed via the topological overlap transformation) leads to modules that are superior to MI based modules and maximal information coefficient (MIC) based modules in terms of gene ontology enrichment. We present a function that relates correlation to mutual information which can be used to approximate the mutual information from the corresponding correlation coefficient. We propose the use of polynomial or spline regression models as an alternative to MI for capturing non-linear relationships between quantitative variables. The biweight midcorrelation outperforms MI in terms of elucidating gene pairwise relationships. Coupled with the topological overlap matrix transformation, it often leads to more significantly enriched co-expression modules. Spline and polynomial networks form attractive alternatives to MI in case of non-linear relationships. Our results indicate that MI networks can safely be replaced by correlation networks when it comes to measuring co-expression relationships in stationary data.
CytoCluster: A Cytoscape Plugin for Cluster Analysis and Visualization of Biological Networks.
Li, Min; Li, Dongyan; Tang, Yu; Wu, Fangxiang; Wang, Jianxin
2017-08-31
Nowadays, cluster analysis of biological networks has become one of the most important approaches to identifying functional modules as well as predicting protein complexes and network biomarkers. Furthermore, the visualization of clustering results is crucial to display the structure of biological networks. Here we present CytoCluster, a cytoscape plugin integrating six clustering algorithms, HC-PIN (Hierarchical Clustering algorithm in Protein Interaction Networks), OH-PIN (identifying Overlapping and Hierarchical modules in Protein Interaction Networks), IPCA (Identifying Protein Complex Algorithm), ClusterONE (Clustering with Overlapping Neighborhood Expansion), DCU (Detecting Complexes based on Uncertain graph model), IPC-MCE (Identifying Protein Complexes based on Maximal Complex Extension), and BinGO (the Biological networks Gene Ontology) function. Users can select different clustering algorithms according to their requirements. The main function of these six clustering algorithms is to detect protein complexes or functional modules. In addition, BinGO is used to determine which Gene Ontology (GO) categories are statistically overrepresented in a set of genes or a subgraph of a biological network. CytoCluster can be easily expanded, so that more clustering algorithms and functions can be added to this plugin. Since it was created in July 2013, CytoCluster has been downloaded more than 9700 times in the Cytoscape App store and has already been applied to the analysis of different biological networks. CytoCluster is available from http://apps.cytoscape.org/apps/cytocluster.
CytoCluster: A Cytoscape Plugin for Cluster Analysis and Visualization of Biological Networks
Li, Min; Li, Dongyan; Tang, Yu; Wang, Jianxin
2017-01-01
Nowadays, cluster analysis of biological networks has become one of the most important approaches to identifying functional modules as well as predicting protein complexes and network biomarkers. Furthermore, the visualization of clustering results is crucial to display the structure of biological networks. Here we present CytoCluster, a cytoscape plugin integrating six clustering algorithms, HC-PIN (Hierarchical Clustering algorithm in Protein Interaction Networks), OH-PIN (identifying Overlapping and Hierarchical modules in Protein Interaction Networks), IPCA (Identifying Protein Complex Algorithm), ClusterONE (Clustering with Overlapping Neighborhood Expansion), DCU (Detecting Complexes based on Uncertain graph model), IPC-MCE (Identifying Protein Complexes based on Maximal Complex Extension), and BinGO (the Biological networks Gene Ontology) function. Users can select different clustering algorithms according to their requirements. The main function of these six clustering algorithms is to detect protein complexes or functional modules. In addition, BinGO is used to determine which Gene Ontology (GO) categories are statistically overrepresented in a set of genes or a subgraph of a biological network. CytoCluster can be easily expanded, so that more clustering algorithms and functions can be added to this plugin. Since it was created in July 2013, CytoCluster has been downloaded more than 9700 times in the Cytoscape App store and has already been applied to the analysis of different biological networks. CytoCluster is available from http://apps.cytoscape.org/apps/cytocluster. PMID:28858211
Disease networks. Uncovering disease-disease relationships through the incomplete interactome.
Menche, Jörg; Sharma, Amitabh; Kitsak, Maksim; Ghiassian, Susan Dina; Vidal, Marc; Loscalzo, Joseph; Barabási, Albert-László
2015-02-20
According to the disease module hypothesis, the cellular components associated with a disease segregate in the same neighborhood of the human interactome, the map of biologically relevant molecular interactions. Yet, given the incompleteness of the interactome and the limited knowledge of disease-associated genes, it is not obvious if the available data have sufficient coverage to map out modules associated with each disease. Here we derive mathematical conditions for the identifiability of disease modules and show that the network-based location of each disease module determines its pathobiological relationship to other diseases. For example, diseases with overlapping network modules show significant coexpression patterns, symptom similarity, and comorbidity, whereas diseases residing in separated network neighborhoods are phenotypically distinct. These tools represent an interactome-based platform to predict molecular commonalities between phenotypically related diseases, even if they do not share primary disease genes. Copyright © 2015, American Association for the Advancement of Science.
Detection of protein complex from protein-protein interaction network using Markov clustering
NASA Astrophysics Data System (ADS)
Ochieng, P. J.; Kusuma, W. A.; Haryanto, T.
2017-05-01
Detection of complexes, or groups of functionally related proteins, is an important challenge while analysing biological networks. However, existing algorithms to identify protein complexes are insufficient when applied to dense networks of experimentally derived interaction data. Therefore, we introduced a graph clustering method based on Markov clustering algorithm to identify protein complex within highly interconnected protein-protein interaction networks. Protein-protein interaction network was first constructed to develop geometrical network, the network was then partitioned using Markov clustering to detect protein complexes. The interest of the proposed method was illustrated by its application to Human Proteins associated to type II diabetes mellitus. Flow simulation of MCL algorithm was initially performed and topological properties of the resultant network were analysed for detection of the protein complex. The results indicated the proposed method successfully detect an overall of 34 complexes with 11 complexes consisting of overlapping modules and 20 non-overlapping modules. The major complex consisted of 102 proteins and 521 interactions with cluster modularity and density of 0.745 and 0.101 respectively. The comparison analysis revealed MCL out perform AP, MCODE and SCPS algorithms with high clustering coefficient (0.751) network density and modularity index (0.630). This demonstrated MCL was the most reliable and efficient graph clustering algorithm for detection of protein complexes from PPI networks.
Ficklin, Stephen P; Feltus, Frank Alex
2013-01-01
Many traits of biological and agronomic significance in plants are controlled in a complex manner where multiple genes and environmental signals affect the expression of the phenotype. In Oryza sativa (rice), thousands of quantitative genetic signals have been mapped to the rice genome. In parallel, thousands of gene expression profiles have been generated across many experimental conditions. Through the discovery of networks with real gene co-expression relationships, it is possible to identify co-localized genetic and gene expression signals that implicate complex genotype-phenotype relationships. In this work, we used a knowledge-independent, systems genetics approach, to discover a high-quality set of co-expression networks, termed Gene Interaction Layers (GILs). Twenty-two GILs were constructed from 1,306 Affymetrix microarray rice expression profiles that were pre-clustered to allow for improved capture of gene co-expression relationships. Functional genomic and genetic data, including over 8,000 QTLs and 766 phenotype-tagged SNPs (p-value < = 0.001) from genome-wide association studies, both covering over 230 different rice traits were integrated with the GILs. An online systems genetics data-mining resource, the GeneNet Engine, was constructed to enable dynamic discovery of gene sets (i.e. network modules) that overlap with genetic traits. GeneNet Engine does not provide the exact set of genes underlying a given complex trait, but through the evidence of gene-marker correspondence, co-expression, and functional enrichment, site visitors can identify genes with potential shared causality for a trait which could then be used for experimental validation. A set of 2 million SNPs was incorporated into the database and serve as a potential set of testable biomarkers for genes in modules that overlap with genetic traits. Herein, we describe two modules found using GeneNet Engine, one with significant overlap with the trait amylose content and another with significant overlap with blast disease resistance.
Ficklin, Stephen P.; Feltus, Frank Alex
2013-01-01
Many traits of biological and agronomic significance in plants are controlled in a complex manner where multiple genes and environmental signals affect the expression of the phenotype. In Oryza sativa (rice), thousands of quantitative genetic signals have been mapped to the rice genome. In parallel, thousands of gene expression profiles have been generated across many experimental conditions. Through the discovery of networks with real gene co-expression relationships, it is possible to identify co-localized genetic and gene expression signals that implicate complex genotype-phenotype relationships. In this work, we used a knowledge-independent, systems genetics approach, to discover a high-quality set of co-expression networks, termed Gene Interaction Layers (GILs). Twenty-two GILs were constructed from 1,306 Affymetrix microarray rice expression profiles that were pre-clustered to allow for improved capture of gene co-expression relationships. Functional genomic and genetic data, including over 8,000 QTLs and 766 phenotype-tagged SNPs (p-value < = 0.001) from genome-wide association studies, both covering over 230 different rice traits were integrated with the GILs. An online systems genetics data-mining resource, the GeneNet Engine, was constructed to enable dynamic discovery of gene sets (i.e. network modules) that overlap with genetic traits. GeneNet Engine does not provide the exact set of genes underlying a given complex trait, but through the evidence of gene-marker correspondence, co-expression, and functional enrichment, site visitors can identify genes with potential shared causality for a trait which could then be used for experimental validation. A set of 2 million SNPs was incorporated into the database and serve as a potential set of testable biomarkers for genes in modules that overlap with genetic traits. Herein, we describe two modules found using GeneNet Engine, one with significant overlap with the trait amylose content and another with significant overlap with blast disease resistance. PMID:23874666
Umoh, Mfon E; Dammer, Eric B; Dai, Jingting; Duong, Duc M; Lah, James J; Levey, Allan I; Gearing, Marla; Glass, Jonathan D; Seyfried, Nicholas T
2018-01-01
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are neurodegenerative diseases with overlap in clinical presentation, neuropathology, and genetic underpinnings. The molecular basis for the overlap of these disorders is not well established. We performed a comparative unbiased mass spectrometry-based proteomic analysis of frontal cortical tissues from postmortem cases clinically defined as ALS, FTD, ALS and FTD (ALS/FTD), and controls. We also included a subset of patients with the C9orf72 expansion mutation, the most common genetic cause of both ALS and FTD Our systems-level analysis of the brain proteome integrated both differential expression and co-expression approaches to assess the relationship of these differences to clinical and pathological phenotypes. Weighted co-expression network analysis revealed 15 modules of co-expressed proteins, eight of which were significantly different across the ALS-FTD disease spectrum. These included modules associated with RNA binding proteins, synaptic transmission, and inflammation with cell-type specificity that showed correlation with TDP-43 pathology and cognitive dysfunction. Modules were also examined for their overlap with TDP-43 protein-protein interactions, revealing one module enriched with RNA-binding proteins and other causal ALS genes that increased in FTD/ALS and FTD cases. A module enriched with astrocyte and microglia proteins was significantly increased in ALS cases carrying the C9orf72 mutation compared to sporadic ALS cases, suggesting that the genetic expansion is associated with inflammation in the brain even without clinical evidence of dementia. Together, these findings highlight the utility of integrative systems-level proteomic approaches to resolve clinical phenotypes and genetic mechanisms underlying the ALS-FTD disease spectrum in human brain. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.
MINE: Module Identification in Networks
2011-01-01
Background Graphical models of network associations are useful for both visualizing and integrating multiple types of association data. Identifying modules, or groups of functionally related gene products, is an important challenge in analyzing biological networks. However, existing tools to identify modules are insufficient when applied to dense networks of experimentally derived interaction data. To address this problem, we have developed an agglomerative clustering method that is able to identify highly modular sets of gene products within highly interconnected molecular interaction networks. Results MINE outperforms MCODE, CFinder, NEMO, SPICi, and MCL in identifying non-exclusive, high modularity clusters when applied to the C. elegans protein-protein interaction network. The algorithm generally achieves superior geometric accuracy and modularity for annotated functional categories. In comparison with the most closely related algorithm, MCODE, the top clusters identified by MINE are consistently of higher density and MINE is less likely to designate overlapping modules as a single unit. MINE offers a high level of granularity with a small number of adjustable parameters, enabling users to fine-tune cluster results for input networks with differing topological properties. Conclusions MINE was created in response to the challenge of discovering high quality modules of gene products within highly interconnected biological networks. The algorithm allows a high degree of flexibility and user-customisation of results with few adjustable parameters. MINE outperforms several popular clustering algorithms in identifying modules with high modularity and obtains good overall recall and precision of functional annotations in protein-protein interaction networks from both S. cerevisiae and C. elegans. PMID:21605434
Mello, Marco Aurelio Ribeiro; Marquitti, Flávia Maria Darcie; Guimarães, Paulo R; Kalko, Elisabeth Klara Viktoria; Jordano, Pedro; de Aguiar, Marcus Aloizio Martinez
2011-09-01
In networks of plant-animal mutualisms, different animal groups interact preferentially with different plants, thus forming distinct modules responsible for different parts of the service. However, what we currently know about seed dispersal networks is based only on birds. Therefore, we wished to fill this gap by studying bat-fruit networks and testing how they differ from bird-fruit networks. As dietary overlap of Neotropical bats and birds is low, they should form distinct mutualistic modules within local networks. Furthermore, since frugivory evolved only once among Neotropical bats, but several times independently among Neotropical birds, greater dietary overlap is expected among bats, and thus connectance and nestedness should be higher in bat-fruit networks. If bat-fruit networks have higher nestedness and connectance, they should be more robust to extinctions. We analyzed 1 mixed network of both bats and birds and 20 networks that consisted exclusively of either bats (11) or birds (9). As expected, the structure of the mixed network was both modular (M = 0.45) and nested (NODF = 0.31); one module contained only birds and two only bats. In 20 datasets with only one disperser group, bat-fruit networks (NODF = 0.53 ± 0.09, C = 0.30 ± 0.11) were more nested and had a higher connectance than bird-fruit networks (NODF = 0.42 ± 0.07, C = 0.22 ± 0.09). Unexpectedly, robustness to extinction of animal species was higher in bird-fruit networks (R = 0.60 ± 0.13) than in bat-fruit networks (R = 0.54 ± 0.09), and differences were explained mainly by species richness. These findings suggest that a modular structure also occurs in seed dispersal networks, similar to pollination networks. The higher nestedness and connectance observed in bat-fruit networks compared with bird-fruit networks may be explained by the monophyletic evolution of frugivory in Neotropical bats, among which the diets of specialists seem to have evolved from the pool of fruits consumed by generalists.
Unsupervised Learning of Overlapping Image Components Using Divisive Input Modulation
Spratling, M. W.; De Meyer, K.; Kompass, R.
2009-01-01
This paper demonstrates that nonnegative matrix factorisation is mathematically related to a class of neural networks that employ negative feedback as a mechanism of competition. This observation inspires a novel learning algorithm which we call Divisive Input Modulation (DIM). The proposed algorithm provides a mathematically simple and computationally efficient method for the unsupervised learning of image components, even in conditions where these elementary features overlap considerably. To test the proposed algorithm, a novel artificial task is introduced which is similar to the frequently-used bars problem but employs squares rather than bars to increase the degree of overlap between components. Using this task, we investigate how the proposed method performs on the parsing of artificial images composed of overlapping features, given the correct representation of the individual components; and secondly, we investigate how well it can learn the elementary components from artificial training images. We compare the performance of the proposed algorithm with its predecessors including variations on these algorithms that have produced state-of-the-art performance on the bars problem. The proposed algorithm is more successful than its predecessors in dealing with overlap and occlusion in the artificial task that has been used to assess performance. PMID:19424442
Human tracking over camera networks: a review
NASA Astrophysics Data System (ADS)
Hou, Li; Wan, Wanggen; Hwang, Jenq-Neng; Muhammad, Rizwan; Yang, Mingyang; Han, Kang
2017-12-01
In recent years, automated human tracking over camera networks is getting essential for video surveillance. The tasks of tracking human over camera networks are not only inherently challenging due to changing human appearance, but also have enormous potentials for a wide range of practical applications, ranging from security surveillance to retail and health care. This review paper surveys the most widely used techniques and recent advances for human tracking over camera networks. Two important functional modules for the human tracking over camera networks are addressed, including human tracking within a camera and human tracking across non-overlapping cameras. The core techniques of human tracking within a camera are discussed based on two aspects, i.e., generative trackers and discriminative trackers. The core techniques of human tracking across non-overlapping cameras are then discussed based on the aspects of human re-identification, camera-link model-based tracking and graph model-based tracking. Our survey aims to address existing problems, challenges, and future research directions based on the analyses of the current progress made toward human tracking techniques over camera networks.
Definition and characterization of an extended social-affective default network.
Amft, Maren; Bzdok, Danilo; Laird, Angela R; Fox, Peter T; Schilbach, Leonhard; Eickhoff, Simon B
2015-03-01
Recent evidence suggests considerable overlap between the default mode network (DMN) and regions involved in social, affective and introspective processes. We considered these overlapping regions as the social-affective part of the DMN. In this study, we established a robust mapping of the underlying brain network formed by these regions and those strongly connected to them (the extended social-affective default network). We first seeded meta-analytic connectivity modeling and resting-state analyses in the meta-analytically defined DMN regions that showed statistical overlap with regions associated with social and affective processing. Consensus connectivity of each seed was subsequently delineated by a conjunction across both connectivity analyses. We then functionally characterized the ensuing regions and performed several cluster analyses. Among the identified regions, the amygdala/hippocampus formed a cluster associated with emotional processes and memory functions. The ventral striatum, anterior cingulum, subgenual cingulum and ventromedial prefrontal cortex formed a heterogeneous subgroup associated with motivation, reward and cognitive modulation of affect. Posterior cingulum/precuneus and dorsomedial prefrontal cortex were associated with mentalizing, self-reference and autobiographic information. The cluster formed by the temporo-parietal junction and anterior middle temporal sulcus/gyrus was associated with language and social cognition. Taken together, the current work highlights a robustly interconnected network that may be central to introspective, socio-affective, that is, self- and other-related mental processes.
Oh, Min; Ahn, Jaegyoon; Yoon, Youngmi
2014-01-01
The growing number and variety of genetic network datasets increases the feasibility of understanding how drugs and diseases are associated at the molecular level. Properly selected features of the network representations of existing drug-disease associations can be used to infer novel indications of existing drugs. To find new drug-disease associations, we generated an integrative genetic network using combinations of interactions, including protein-protein interactions and gene regulatory network datasets. Within this network, network adjacencies of drug-drug and disease-disease were quantified using a scored path between target sets of them. Furthermore, the common topological module of drugs or diseases was extracted, and thereby the distance between topological drug-module and disease (or disease-module and drug) was quantified. These quantified scores were used as features for the prediction of novel drug-disease associations. Our classifiers using Random Forest, Multilayer Perceptron and C4.5 showed a high specificity and sensitivity (AUC score of 0.855, 0.828 and 0.797 respectively) in predicting novel drug indications, and displayed a better performance than other methods with limited drug and disease properties. Our predictions and current clinical trials overlap significantly across the different phases of drug development. We also identified and visualized the topological modules of predicted drug indications for certain types of cancers, and for Alzheimer’s disease. Within the network, those modules show potential pathways that illustrate the mechanisms of new drug indications, including propranolol as a potential anticancer agent and telmisartan as treatment for Alzheimer’s disease. PMID:25356910
Increased Global Interaction Across Functional Brain Modules During Cognitive Emotion Regulation.
Brandl, Felix; Mulej Bratec, Satja; Xie, Xiyao; Wohlschläger, Afra M; Riedl, Valentin; Meng, Chun; Sorg, Christian
2017-07-13
Cognitive emotion regulation (CER) enables humans to flexibly modulate their emotions. While local theories of CER neurobiology suggest interactions between specialized local brain circuits underlying CER, e.g., in subparts of amygdala and medial prefrontal cortices (mPFC), global theories hypothesize global interaction increases among larger functional brain modules comprising local circuits. We tested the global CER hypothesis using graph-based whole-brain network analysis of functional MRI data during aversive emotional processing with and without CER. During CER, global between-module interaction across stable functional network modules increased. Global interaction increase was particularly driven by subregions of amygdala and cuneus-nodes of highest nodal participation-that overlapped with CER-specific local activations, and by mPFC and posterior cingulate as relevant connector hubs. Results provide evidence for the global nature of human CER, complementing functional specialization of embedded local brain circuits during successful CER. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Mihalik, Ágoston; Csermely, Peter
2011-01-01
Network analysis became a powerful tool giving new insights to the understanding of cellular behavior. Heat shock, the archetype of stress responses, is a well-characterized and simple model of cellular dynamics. S. cerevisiae is an appropriate model organism, since both its protein-protein interaction network (interactome) and stress response at the gene expression level have been well characterized. However, the analysis of the reorganization of the yeast interactome during stress has not been investigated yet. We calculated the changes of the interaction-weights of the yeast interactome from the changes of mRNA expression levels upon heat shock. The major finding of our study is that heat shock induced a significant decrease in both the overlaps and connections of yeast interactome modules. In agreement with this the weighted diameter of the yeast interactome had a 4.9-fold increase in heat shock. Several key proteins of the heat shock response became centers of heat shock-induced local communities, as well as bridges providing a residual connection of modules after heat shock. The observed changes resemble to a ‘stratus-cumulus’ type transition of the interactome structure, since the unstressed yeast interactome had a globally connected organization, similar to that of stratus clouds, whereas the heat shocked interactome had a multifocal organization, similar to that of cumulus clouds. Our results showed that heat shock induces a partial disintegration of the global organization of the yeast interactome. This change may be rather general occurring in many types of stresses. Moreover, other complex systems, such as single proteins, social networks and ecosystems may also decrease their inter-modular links, thus develop more compact modules, and display a partial disintegration of their global structure in the initial phase of crisis. Thus, our work may provide a model of a general, system-level adaptation mechanism to environmental changes. PMID:22022244
SLEEP AND THE FUNCTIONAL CONNECTOME
Picchioni, Dante; Duyn, Jeff H.; Horovitz, Silvina G.
2013-01-01
Sleep and the functional connectome are research areas with considerable overlap. Neuroimaging studies of sleep based on EEG-PET and EEG-fMRI are revealing the brain networks that support sleep, as well as networks that may support the roles and processes attributed to sleep. For example, phenomena such as arousal and consciousness are substantially modulated during sleep, and one would expect this modulation to be reflected in altered network activity. In addition, recent work suggests that sleep also has a number of adaptive functions that support waking activity. Thus the study of sleep may elucidate the circuits and processes that support waking function and complement information obtained from fMRI during waking conditions. In this review, we will discuss examples of this for memory, arousal, and consciousness after providing a brief background on sleep and on studying it with fMRI. PMID:23707592
Yu, Yanan; Zhang, Xiaoxu; Li, Bing; Zhang, Yingying; Liu, Jun; Li, Haixia; Chen, Yinying; Wang, Pengqian; Kang, Ruixia; Wu, Hongli; Wang, Zhong
2016-12-01
Module-based network analysis of diverse pharmacological mechanisms is critical to systematically understand combination therapies and disease outcomes. We first constructed drug-target ischemic networks in baicalin, jasminoidin, ursodeoxycholic acid, and their combinations baicalin and jasminoidin as well as jasminoidin and ursodeoxycholic acid groups and identified modules using the entropy-based clustering algorithm. The modules 11, 7, 4, 8 and 3 were identified as baicalin, jasminoidin, ursodeoxycholic acid, baicalin and jasminoidin and jasminoidin and ursodeoxycholic acid-emerged responsive modules, while 12, 8, 15, 17 and 9 were identified as disappeared responsive modules based on variation of topological similarity, respectively. No overlapping differential biological processes were enriched between baicalin and jasminoidin and jasminoidin and ursodeoxycholic acid pure emerged responsive modules, but two were enriched by their co-disappeared responsive modules including nucleotide-excision repair and epithelial structure maintenance. We found an additive effect of baicalin and jasminoidin in a divergent pattern and a synergistic effect of jasminoidin and ursodeoxycholic acid in a convergent pattern on "central hit strategy" of regulating inflammation against cerebral ischemia. The proposed module-based approach may provide us a holistic view to understand multiple pharmacological mechanisms associated with differential phenotypes from the standpoint of modular pharmacology.
Epidemic spreading on complex networks with overlapping and non-overlapping community structure
NASA Astrophysics Data System (ADS)
Shang, Jiaxing; Liu, Lianchen; Li, Xin; Xie, Feng; Wu, Cheng
2015-02-01
Many real-world networks exhibit community structure where vertices belong to one or more communities. Recent studies show that community structure plays an import role in epidemic spreading. In this paper, we investigate how the extent of overlap among communities affects epidemics. In order to experiment on the characteristic of overlapping communities, we propose a rewiring algorithm that can change the community structure from overlapping to non-overlapping while maintaining the degree distribution of the network. We simulate the Susceptible-Infected-Susceptible (SIS) epidemic process on synthetic scale-free networks and real-world networks by applying our rewiring algorithm. Experiments show that epidemics spread faster on networks with higher level of overlapping communities. Furthermore, overlapping communities' effect interacts with the average degree's effect. Our work further illustrates the important role of overlapping communities in the process of epidemic spreading.
Xu, Jiansong; Potenza, Marc N.; Calhoun, Vince D.; Zhang, Rubin; Yip, Sarah W.; Wall, John T.; Pearlson, Godfrey D.; Worhunsky, Patrick D.; Garrison, Kathleen A.; Moran, Joseph M.
2016-01-01
Functional magnetic resonance imaging (fMRI) studies regularly use univariate general-linear-model-based analyses (GLM). Their findings are often inconsistent across different studies, perhaps because of several fundamental brain properties including functional heterogeneity, balanced excitation and inhibition (E/I), and sparseness of neuronal activities. These properties stipulate heterogeneous neuronal activities in the same voxels and likely limit the sensitivity and specificity of GLM. This paper selectively reviews findings of histological and electrophysiological studies and fMRI spatial independent component analysis (sICA) and reports new findings by applying sICA to two existing datasets. The extant and new findings consistently demonstrate several novel features of brain functional organization not revealed by GLM. They include overlap of large-scale functional networks (FNs) and their concurrent opposite modulations, and no significant modulations in activity of most FNs across the whole brain during any task conditions. These novel features of brain functional organization are highly consistent with the brain’s properties of functional heterogeneity, balanced E/I, and sparseness of neuronal activity, and may help reconcile inconsistent GLM findings. PMID:27592153
Buset, Jonathan M; El-Sahn, Ziad A; Plant, David V
2012-06-18
We demonstrate an improved overlapped-subcarrier multiplexed (O-SCM) WDM PON architecture transmitting over a single feeder using cost sensitive intensity modulation/direct detection transceivers, data re-modulation and simple electronics. Incorporating electronic equalization and Reed-Solomon forward-error correction codes helps to overcome the bandwidth limitation of a remotely seeded reflective semiconductor optical amplifier (RSOA)-based ONU transmitter. The O-SCM architecture yields greater spectral efficiency and higher bit rates than many other SCM techniques while maintaining resilience to upstream impairments. We demonstrate full-duplex 5 Gb/s transmission over 20 km and analyze BER performance as a function of transmitted and received power. The architecture provides flexibility to network operators by relaxing common design constraints and enabling full-duplex operation at BER ∼ 10(-10) over a wide range of OLT launch powers from 3.5 to 8 dBm.
Yu, Yanan; Zhang, Xiaoxu; Li, Bing; Zhang, Yingying; Liu, Jun; Li, Haixia; Chen, Yinying; Wang, Pengqian; Kang, Ruixia; Wu, Hongli
2016-01-01
Module-based network analysis of diverse pharmacological mechanisms is critical to systematically understand combination therapies and disease outcomes. We first constructed drug-target ischemic networks in baicalin, jasminoidin, ursodeoxycholic acid, and their combinations baicalin and jasminoidin as well as jasminoidin and ursodeoxycholic acid groups and identified modules using the entropy-based clustering algorithm. The modules 11, 7, 4, 8 and 3 were identified as baicalin, jasminoidin, ursodeoxycholic acid, baicalin and jasminoidin and jasminoidin and ursodeoxycholic acid-emerged responsive modules, while 12, 8, 15, 17 and 9 were identified as disappeared responsive modules based on variation of topological similarity, respectively. No overlapping differential biological processes were enriched between baicalin and jasminoidin and jasminoidin and ursodeoxycholic acid pure emerged responsive modules, but two were enriched by their co-disappeared responsive modules including nucleotide-excision repair and epithelial structure maintenance. We found an additive effect of baicalin and jasminoidin in a divergent pattern and a synergistic effect of jasminoidin and ursodeoxycholic acid in a convergent pattern on “central hit strategy” of regulating inflammation against cerebral ischemia. The proposed module-based approach may provide us a holistic view to understand multiple pharmacological mechanisms associated with differential phenotypes from the standpoint of modular pharmacology. PMID:27480252
Inborn errors of metabolism and the human interactome: a systems medicine approach.
Woidy, Mathias; Muntau, Ania C; Gersting, Søren W
2018-02-05
The group of inborn errors of metabolism (IEM) displays a marked heterogeneity and IEM can affect virtually all functions and organs of the human organism; however, IEM share that their associated proteins function in metabolism. Most proteins carry out cellular functions by interacting with other proteins, and thus are organized in biological networks. Therefore, diseases are rarely the consequence of single gene mutations but of the perturbations caused in the related cellular network. Systematic approaches that integrate multi-omics and database information into biological networks have successfully expanded our knowledge of complex disorders but network-based strategies have been rarely applied to study IEM. We analyzed IEM on a proteome scale and found that IEM-associated proteins are organized as a network of linked modules within the human interactome of protein interactions, the IEM interactome. Certain IEM disease groups formed self-contained disease modules, which were highly interlinked. On the other hand, we observed disease modules consisting of proteins from many different disease groups in the IEM interactome. Moreover, we explored the overlap between IEM and non-IEM disease genes and applied network medicine approaches to investigate shared biological pathways, clinical signs and symptoms, and links to drug targets. The provided resources may help to elucidate the molecular mechanisms underlying new IEM, to uncover the significance of disease-associated mutations, to identify new biomarkers, and to develop novel therapeutic strategies.
Leveraging disjoint communities for detecting overlapping community structure
NASA Astrophysics Data System (ADS)
Chakraborty, Tanmoy
2015-05-01
Network communities represent mesoscopic structure for understanding the organization of real-world networks, where nodes often belong to multiple communities and form overlapping community structure in the network. Due to non-triviality in finding the exact boundary of such overlapping communities, this problem has become challenging, and therefore huge effort has been devoted to detect overlapping communities from the network. In this paper, we present PVOC (Permanence based Vertex-replication algorithm for Overlapping Community detection), a two-stage framework to detect overlapping community structure. We build on a novel observation that non-overlapping community structure detected by a standard disjoint community detection algorithm from a network has high resemblance with its actual overlapping community structure, except the overlapping part. Based on this observation, we posit that there is perhaps no need of building yet another overlapping community finding algorithm; but one can efficiently manipulate the output of any existing disjoint community finding algorithm to obtain the required overlapping structure. We propose a new post-processing technique that by combining with any existing disjoint community detection algorithm, can suitably process each vertex using a new vertex-based metric, called permanence, and thereby finds out overlapping candidates with their community memberships. Experimental results on both synthetic and large real-world networks show that PVOC significantly outperforms six state-of-the-art overlapping community detection algorithms in terms of high similarity of the output with the ground-truth structure. Thus our framework not only finds meaningful overlapping communities from the network, but also allows us to put an end to the constant effort of building yet another overlapping community detection algorithm.
Research on Some Bus Transport Networks with Random Overlapping Clique Structure
NASA Astrophysics Data System (ADS)
Yang, Xu-Hua; Wang, Bo; Wang, Wan-Liang; Sun, You-Xian
2008-11-01
On the basis of investigating the statistical data of bus transport networks of three big cities in China, we propose that each bus route is a clique (maximal complete subgraph) and a bus transport network (BTN) consists of a lot of cliques, which intensively connect and overlap with each other. We study the network properties, which include the degree distribution, multiple edges' overlapping time distribution, distribution of the overlap size between any two overlapping cliques, distribution of the number of cliques that a node belongs to. Naturally, the cliques also constitute a network, with the overlapping nodes being their multiple links. We also research its network properties such as degree distribution, clustering, average path length, and so on. We propose that a BTN has the properties of random clique increment and random overlapping clique, at the same time, a BTN is a small-world network with highly clique-clustered and highly clique-overlapped. Finally, we introduce a BTN evolution model, whose simulation results agree well with the statistical laws that emerge in real BTNs.
Correlations and Functional Connections in a Population of Grid Cells
Roudi, Yasser
2015-01-01
We study the statistics of spike trains of simultaneously recorded grid cells in freely behaving rats. We evaluate pairwise correlations between these cells and, using a maximum entropy kinetic pairwise model (kinetic Ising model), study their functional connectivity. Even when we account for the covariations in firing rates due to overlapping fields, both the pairwise correlations and functional connections decay as a function of the shortest distance between the vertices of the spatial firing pattern of pairs of grid cells, i.e. their phase difference. They take positive values between cells with nearby phases and approach zero or negative values for larger phase differences. We find similar results also when, in addition to correlations due to overlapping fields, we account for correlations due to theta oscillations and head directional inputs. The inferred connections between neurons in the same module and those from different modules can be both negative and positive, with a mean close to zero, but with the strongest inferred connections found between cells of the same module. Taken together, our results suggest that grid cells in the same module do indeed form a local network of interconnected neurons with a functional connectivity that supports a role for attractor dynamics in the generation of grid pattern. PMID:25714908
Yang, Jialiang; Qiu, Jing; Wang, Kejing; Zhu, Lijuan; Fan, Jingjing; Zheng, Deyin; Meng, Xiaodi; Yang, Jiasheng; Peng, Lihong; Fu, Yu; Zhang, Dahan; Peng, Shouneng; Huang, Haiyun; Zhang, Yi
2017-01-01
Obesity is a primary risk factor for many diseases such as certain cancers. In this study, we have developed three algorithms including a random-walk based method OBNet, a shortest-path based method OBsp and a direct-overlap method OBoverlap, to reveal obesity-disease connections at protein-interaction subnetworks corresponding to thousands of biological functions and pathways. Through literature mining, we also curated an obesity-associated disease list, by which we compared the methods. As a result, OBNet outperforms other two methods. OBNet can predict whether a disease is obesity-related based on its associated genes. Meanwhile, OBNet identifies extensive connections between obesity genes and genes associated with a few diseases at various functional modules and pathways. Using breast cancer and Type 2 diabetes as two examples, OBNet identifies meaningful genes that may play key roles in connecting obesity and the two diseases. For example, TGFB1 and VEGFA are inferred to be the top two key genes mediating obesity-breast cancer connection in modules associated with brain development. Finally, the top modules identified by OBNet in breast cancer significantly overlap with modules identified from TCGA breast cancer gene expression study, revealing the power of OBNet in identifying biological processes involved in the disease. PMID:29156709
Huang, Shi-Ming; Zhao, Xia; Zhao, Xue-Mei; Wang, Xiao-Ying; Li, Shan-Shan; Zhu, Yu-Hui
2014-01-01
Renal transplantation is the preferred method for most patients with end-stage renal disease, however, acute renal allograft rejection is still a major risk factor for recipients leading to renal injury. To improve the early diagnosis and treatment of acute rejection, study on the molecular mechanism of it is urgent. MicroRNA (miRNA) expression profile and mRNA expression profile of acute renal allograft rejection and well-functioning allograft downloaded from ArrayExpress database were applied to identify differentially expressed (DE) miRNAs and DE mRNAs. DE miRNAs targets were predicted by combining five algorithm. By overlapping the DE mRNAs and DE miRNAs targets, common genes were obtained. Differentially co-expressed genes (DCGs) were identified by differential co-expression profile (DCp) and differential co-expression enrichment (DCe) methods in Differentially Co-expressed Genes and Links (DCGL) package. Then, co-expression network of DCGs and the cluster analysis were performed. Functional enrichment analysis for DCGs was undergone. A total of 1270 miRNA targets were predicted and 698 DE mRNAs were obtained. While overlapping miRNA targets and DE mRNAs, 59 common genes were gained. We obtained 103 DCGs and 5 transcription factors (TFs) based on regulatory impact factors (RIF), then built the regulation network of miRNA targets and DE mRNAs. By clustering the co-expression network, 5 modules were obtained. Thereinto, module 1 had the highest degree and module 2 showed the most number of DCGs and common genes. TF CEBPB and several common genes, such as RXRA, BASP1 and AKAP10, were mapped on the co-expression network. C1R showed the highest degree in the network. These genes might be associated with human acute renal allograft rejection. We conducted biological analysis on integration of DE mRNA and DE miRNA in acute renal allograft rejection, displayed gene expression patterns and screened out genes and TFs that may be related to acute renal allograft rejection.
Huang, Shi-Ming; Zhao, Xia; Zhao, Xue-Mei; Wang, Xiao-Ying; Li, Shan-Shan; Zhu, Yu-Hui
2014-01-01
Objectives: Renal transplantation is the preferred method for most patients with end-stage renal disease, however, acute renal allograft rejection is still a major risk factor for recipients leading to renal injury. To improve the early diagnosis and treatment of acute rejection, study on the molecular mechanism of it is urgent. Methods: MicroRNA (miRNA) expression profile and mRNA expression profile of acute renal allograft rejection and well-functioning allograft downloaded from ArrayExpress database were applied to identify differentially expressed (DE) miRNAs and DE mRNAs. DE miRNAs targets were predicted by combining five algorithm. By overlapping the DE mRNAs and DE miRNAs targets, common genes were obtained. Differentially co-expressed genes (DCGs) were identified by differential co-expression profile (DCp) and differential co-expression enrichment (DCe) methods in Differentially Co-expressed Genes and Links (DCGL) package. Then, co-expression network of DCGs and the cluster analysis were performed. Functional enrichment analysis for DCGs was undergone. Results: A total of 1270 miRNA targets were predicted and 698 DE mRNAs were obtained. While overlapping miRNA targets and DE mRNAs, 59 common genes were gained. We obtained 103 DCGs and 5 transcription factors (TFs) based on regulatory impact factors (RIF), then built the regulation network of miRNA targets and DE mRNAs. By clustering the co-expression network, 5 modules were obtained. Thereinto, module 1 had the highest degree and module 2 showed the most number of DCGs and common genes. TF CEBPB and several common genes, such as RXRA, BASP1 and AKAP10, were mapped on the co-expression network. C1R showed the highest degree in the network. These genes might be associated with human acute renal allograft rejection. Conclusions: We conducted biological analysis on integration of DE mRNA and DE miRNA in acute renal allograft rejection, displayed gene expression patterns and screened out genes and TFs that may be related to acute renal allograft rejection. PMID:25664019
Network Approach to Disease Diagnosis
NASA Astrophysics Data System (ADS)
Sharma, Amitabh; Bashan, Amir; Barabasi, Alber-Laszlo
2014-03-01
Human diseases could be viewed as perturbations of the underlying biological system. A thorough understanding of the topological and dynamical properties of the biological system is crucial to explain the mechanisms of many complex diseases. Recently network-based approaches have provided a framework for integrating multi-dimensional biological data that results in a better understanding of the pathophysiological state of complex diseases. Here we provide a network-based framework to improve the diagnosis of complex diseases. This framework is based on the integration of transcriptomics and the interactome. We analyze the overlap between the differentially expressed (DE) genes and disease genes (DGs) based on their locations in the molecular interaction network (''interactome''). Disease genes and their protein products tend to be much more highly connected than random, hence defining a disease sub-graph (called disease module) in the interactome. DE genes, even though different from the known set of DGs, may be significantly associated with the disease when considering their closeness to the disease module in the interactome. This new network approach holds the promise to improve the diagnosis of patients who cannot be diagnosed using conventional tools. Support was provided by HL066289 and HL105339 grants from the U.S. National Institutes of Health.
Optical computing and image processing using photorefractive gallium arsenide
NASA Technical Reports Server (NTRS)
Cheng, Li-Jen; Liu, Duncan T. H.
1990-01-01
Recent experimental results on matrix-vector multiplication and multiple four-wave mixing using GaAs are presented. Attention is given to a simple concept of using two overlapping holograms in GaAs to do two matrix-vector multiplication processes operating in parallel with a common input vector. This concept can be used to construct high-speed, high-capacity, reconfigurable interconnection and multiplexing modules, important for optical computing and neural-network applications.
Archer, Charles J.; Inglett, Todd A.; Ratterman, Joseph D.; Smith, Brian E.
2010-03-02
Methods, apparatus, and products are disclosed for configuring compute nodes of a parallel computer in an operational group into a plurality of independent non-overlapping collective networks, the compute nodes in the operational group connected together for data communications through a global combining network, that include: partitioning the compute nodes in the operational group into a plurality of non-overlapping subgroups; designating one compute node from each of the non-overlapping subgroups as a master node; and assigning, to the compute nodes in each of the non-overlapping subgroups, class routing instructions that organize the compute nodes in that non-overlapping subgroup as a collective network such that the master node is a physical root.
Lu, Guo-Wei; Luís, Ruben S; Mendinueta, José Manuel Delgado; Sakamoto, Takahide; Yamamoto, Naokatsu
2018-01-22
As one of the promising multiplexing and multicarrier modulation technologies, Nyquist subcarrier multiplexing (Nyquist SCM) has recently attracted research attention to realize ultra-fast and ultra-spectral-efficient optical networks. In this paper, we propose and experimentally demonstrate optical subcarrier processing technologies for Nyquist SCM signals such as frequency conversion, multicast and data aggregation of subcarriers, through the coherent spectrum overlapping between subcarriers in four-wave mixing (FWM) with coherent multi-tone pump. The data aggregation is realized by coherently superposing or combining low-level subcarriers to yield high-level subcarriers in the optical field. Moreover, multiple replicas of the data-aggregated subcarriers and the subcarriers carrying the original data are obtained. In the experiment, two 5 Gbps quadrature phase-shift keying (QPSK) subcarriers are coherently combined to generate a 10 Gbps 16 quadrature amplitude modulation (QAM) subcarrier with frequency conversions through the FWM with coherent multi-tone pump. Less than 1 dB optical signal-to-noise ratio (OSNR) penalty variation is observed for the synthesized 16QAM subcarriers after the data aggregation. In addition, some subcarriers are kept in the original formats, QPSK, with a power penalty of less than 0.4 dB with respect to the original input subcarriers. The proposed subcarrier processing technology enables flexibility for spectral management in future dynamic optical networks.
Yan, Koon-Kiu; Fang, Gang; Bhardwaj, Nitin; Alexander, Roger P.; Gerstein, Mark
2010-01-01
The genome has often been called the operating system (OS) for a living organism. A computer OS is described by a regulatory control network termed the call graph, which is analogous to the transcriptional regulatory network in a cell. To apply our firsthand knowledge of the architecture of software systems to understand cellular design principles, we present a comparison between the transcriptional regulatory network of a well-studied bacterium (Escherichia coli) and the call graph of a canonical OS (Linux) in terms of topology and evolution. We show that both networks have a fundamentally hierarchical layout, but there is a key difference: The transcriptional regulatory network possesses a few global regulators at the top and many targets at the bottom; conversely, the call graph has many regulators controlling a small set of generic functions. This top-heavy organization leads to highly overlapping functional modules in the call graph, in contrast to the relatively independent modules in the regulatory network. We further develop a way to measure evolutionary rates comparably between the two networks and explain this difference in terms of network evolution. The process of biological evolution via random mutation and subsequent selection tightly constrains the evolution of regulatory network hubs. The call graph, however, exhibits rapid evolution of its highly connected generic components, made possible by designers’ continual fine-tuning. These findings stem from the design principles of the two systems: robustness for biological systems and cost effectiveness (reuse) for software systems. PMID:20439753
Yan, Koon-Kiu; Fang, Gang; Bhardwaj, Nitin; Alexander, Roger P; Gerstein, Mark
2010-05-18
The genome has often been called the operating system (OS) for a living organism. A computer OS is described by a regulatory control network termed the call graph, which is analogous to the transcriptional regulatory network in a cell. To apply our firsthand knowledge of the architecture of software systems to understand cellular design principles, we present a comparison between the transcriptional regulatory network of a well-studied bacterium (Escherichia coli) and the call graph of a canonical OS (Linux) in terms of topology and evolution. We show that both networks have a fundamentally hierarchical layout, but there is a key difference: The transcriptional regulatory network possesses a few global regulators at the top and many targets at the bottom; conversely, the call graph has many regulators controlling a small set of generic functions. This top-heavy organization leads to highly overlapping functional modules in the call graph, in contrast to the relatively independent modules in the regulatory network. We further develop a way to measure evolutionary rates comparably between the two networks and explain this difference in terms of network evolution. The process of biological evolution via random mutation and subsequent selection tightly constrains the evolution of regulatory network hubs. The call graph, however, exhibits rapid evolution of its highly connected generic components, made possible by designers' continual fine-tuning. These findings stem from the design principles of the two systems: robustness for biological systems and cost effectiveness (reuse) for software systems.
Overlapping community detection in weighted networks via a Bayesian approach
NASA Astrophysics Data System (ADS)
Chen, Yi; Wang, Xiaolong; Xiang, Xin; Tang, Buzhou; Chen, Qingcai; Fan, Shixi; Bu, Junzhao
2017-02-01
Complex networks as a powerful way to represent complex systems have been widely studied during the past several years. One of the most important tasks of complex network analysis is to detect communities embedded in networks. In the real world, weighted networks are very common and may contain overlapping communities where a node is allowed to belong to multiple communities. In this paper, we propose a novel Bayesian approach, called the Bayesian mixture network (BMN) model, to detect overlapping communities in weighted networks. The advantages of our method are (i) providing soft-partition solutions in weighted networks; (ii) providing soft memberships, which quantify 'how strongly' a node belongs to a community. Experiments on a large number of real and synthetic networks show that our model has the ability in detecting overlapping communities in weighted networks and is competitive with other state-of-the-art models at shedding light on community partition.
An ant colony based algorithm for overlapping community detection in complex networks
NASA Astrophysics Data System (ADS)
Zhou, Xu; Liu, Yanheng; Zhang, Jindong; Liu, Tuming; Zhang, Di
2015-06-01
Community detection is of great importance to understand the structures and functions of networks. Overlap is a significant feature of networks and overlapping community detection has attracted an increasing attention. Many algorithms have been presented to detect overlapping communities. In this paper, we present an ant colony based overlapping community detection algorithm which mainly includes ants' location initialization, ants' movement and post processing phases. An ants' location initialization strategy is designed to identify initial location of ants and initialize label list stored in each node. During the ants' movement phase, the entire ants move according to the transition probability matrix, and a new heuristic information computation approach is redefined to measure similarity between two nodes. Every node keeps a label list through the cooperation made by ants until a termination criterion is reached. A post processing phase is executed on the label list to get final overlapping community structure naturally. We illustrate the capability of our algorithm by making experiments on both synthetic networks and real world networks. The results demonstrate that our algorithm will have better performance in finding overlapping communities and overlapping nodes in synthetic datasets and real world datasets comparing with state-of-the-art algorithms.
Methylphenidate Modulates Functional Network Connectivity to Enhance Attention
Zhang, Sheng; Hsu, Wei-Ting; Scheinost, Dustin; Finn, Emily S.; Shen, Xilin; Constable, R. Todd; Li, Chiang-Shan R.; Chun, Marvin M.
2016-01-01
Recent work has demonstrated that human whole-brain functional connectivity patterns measured with fMRI contain information about cognitive abilities, including sustained attention. To derive behavioral predictions from connectivity patterns, our group developed a connectome-based predictive modeling (CPM) approach (Finn et al., 2015; Rosenberg et al., 2016). Previously using CPM, we defined a high-attention network, comprising connections positively correlated with performance on a sustained attention task, and a low-attention network, comprising connections negatively correlated with performance. Validating the networks as generalizable biomarkers of attention, models based on network strength at rest predicted attention-deficit/hyperactivity disorder (ADHD) symptoms in an independent group of individuals (Rosenberg et al., 2016). To investigate whether these networks play a causal role in attention, here we examined their strength in healthy adults given methylphenidate (Ritalin), a common ADHD treatment, compared with unmedicated controls. As predicted, individuals given methylphenidate showed patterns of connectivity associated with better sustained attention: higher high-attention and lower low-attention network strength than controls. There was significant overlap between the high-attention network and a network with greater strength in the methylphenidate group, and between the low-attention network and a network with greater strength in the control group. Network strength also predicted behavior on a stop-signal task, such that participants with higher go response rates showed higher high-attention and lower low-attention network strength. These results suggest that methylphenidate acts by modulating functional brain networks related to sustained attention, and that changing whole-brain connectivity patterns may help improve attention. SIGNIFICANCE STATEMENT Recent work identified a promising neuromarker of sustained attention based on whole-brain functional connectivity networks. To investigate the causal role of these networks in attention, we examined their response to a dose of methylphenidate, a common and effective treatment for attention-deficit/hyperactivity disorder, in healthy adults. As predicted, individuals on methylphenidate showed connectivity signatures of better sustained attention: higher high-attention and lower low-attention network strength than controls. These results suggest that methylphenidate acts by modulating strength in functional brain networks related to attention, and that changing whole-brain connectivity patterns may improve attention. PMID:27629707
Methylphenidate Modulates Functional Network Connectivity to Enhance Attention.
Rosenberg, Monica D; Zhang, Sheng; Hsu, Wei-Ting; Scheinost, Dustin; Finn, Emily S; Shen, Xilin; Constable, R Todd; Li, Chiang-Shan R; Chun, Marvin M
2016-09-14
Recent work has demonstrated that human whole-brain functional connectivity patterns measured with fMRI contain information about cognitive abilities, including sustained attention. To derive behavioral predictions from connectivity patterns, our group developed a connectome-based predictive modeling (CPM) approach (Finn et al., 2015; Rosenberg et al., 2016). Previously using CPM, we defined a high-attention network, comprising connections positively correlated with performance on a sustained attention task, and a low-attention network, comprising connections negatively correlated with performance. Validating the networks as generalizable biomarkers of attention, models based on network strength at rest predicted attention-deficit/hyperactivity disorder (ADHD) symptoms in an independent group of individuals (Rosenberg et al., 2016). To investigate whether these networks play a causal role in attention, here we examined their strength in healthy adults given methylphenidate (Ritalin), a common ADHD treatment, compared with unmedicated controls. As predicted, individuals given methylphenidate showed patterns of connectivity associated with better sustained attention: higher high-attention and lower low-attention network strength than controls. There was significant overlap between the high-attention network and a network with greater strength in the methylphenidate group, and between the low-attention network and a network with greater strength in the control group. Network strength also predicted behavior on a stop-signal task, such that participants with higher go response rates showed higher high-attention and lower low-attention network strength. These results suggest that methylphenidate acts by modulating functional brain networks related to sustained attention, and that changing whole-brain connectivity patterns may help improve attention. Recent work identified a promising neuromarker of sustained attention based on whole-brain functional connectivity networks. To investigate the causal role of these networks in attention, we examined their response to a dose of methylphenidate, a common and effective treatment for attention-deficit/hyperactivity disorder, in healthy adults. As predicted, individuals on methylphenidate showed connectivity signatures of better sustained attention: higher high-attention and lower low-attention network strength than controls. These results suggest that methylphenidate acts by modulating strength in functional brain networks related to attention, and that changing whole-brain connectivity patterns may improve attention. Copyright © 2016 the authors 0270-6474/16/369547-11$15.00/0.
Network pharmacology of JAK inhibitors
Moodley, Devapregasan; Yoshida, Hideyuki; Mostafavi, Sara; Asinovski, Natasha; Ortiz-Lopez, Adriana; Symanowicz, Peter; Telliez, Jean-Baptiste; Hegen, Martin; Clark, James D.; Mathis, Diane; Benoist, Christophe
2016-01-01
Small-molecule inhibitors of the Janus kinase family (JAKis) are clinically efficacious in multiple autoimmune diseases, albeit with increased risk of certain infections. Their precise mechanism of action is unclear, with JAKs being signaling hubs for several cytokines. We assessed the in vivo impact of pan- and isoform-specific JAKi in mice by immunologic and genomic profiling. Effects were broad across the immunogenomic network, with overlap between inhibitors. Natural killer (NK) cell and macrophage homeostasis were most immediately perturbed, with network-level analysis revealing a rewiring of coregulated modules of NK cell transcripts. The repression of IFN signature genes after repeated JAKi treatment continued even after drug clearance, with persistent changes in chromatin accessibility and phospho-STAT responsiveness to IFN. Thus, clinical use and future development of JAKi might need to balance effects on immunological networks, rather than expect that JAKis affect a particular cytokine response and be cued to long-lasting epigenomic modifications rather than by short-term pharmacokinetics. PMID:27516546
Aboud, Katherine S.; Bailey, Stephen K.; Petrill, Stephen A.; Cutting, Laurie E.
2016-01-01
Skilled reading depends on recognizing words efficiently in isolation (word-level processing; WL) and extracting meaning from text (discourse-level processing; DL); deficiencies in either result in poor reading. FMRI has revealed consistent overlapping networks in word and passage reading, as well as unique regions for DL processing, however less is known about how WL and DL processes interact. Here we examined functional connectivity from seed regions derived from where BOLD signal overlapped during word and passage reading in 38 adolescents ranging in reading ability, hypothesizing that even though certain regions support word- and higher-level language, connectivity patterns from overlapping regions would be task modulated. Results indeed revealed that the left-lateralized semantic and working memory (WM) seed regions showed task-dependent functional connectivity patterns: during DL processes, semantic and WM nodes all correlated with the left angular gyrus, a region implicated in semantic memory/coherence building. In contrast, during WL, these nodes coordinated with a traditional WL area (left occipitotemporal region). Additionally, these WL and DL findings were modulated by decoding and comprehension abilities, respectively, with poorer abilities correlating with decreased connectivity. Findings indicate that key regions may uniquely contribute to multiple levels of reading; we speculate that these connectivity patterns may be especially salient for reading outcomes and intervention response. PMID:27147257
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pei, Guangsheng; Chen, Lei; Wang, Jiangxin
2014-11-03
Although recognized as a promising microbial cell factory for producing biofuels, current productivity in cyanobacterial systems is low. To make the processes economically feasible, one of the hurdles, which need to be overcome is the low tolerance of hosts to toxic biofuels. Meanwhile, little information is available regarding the cellular responses to biofuels stress in cyanobacteria, which makes it challenging for tolerance engineering. Using large proteomic datasets of Synechocystis under various biofuels stress and environmental perturbation, a protein co-expression network was first constructed and then combined with the experimentally determined protein–protein interaction network. Proteins with statistically higher topological overlap inmore » the integrated network were identified as common responsive proteins to both biofuels stress and environmental perturbations. In addition, a weighted gene co-expression network analysis was performed to distinguish unique responses to biofuels from those to environmental perturbations and to uncover metabolic modules and proteins uniquely associated with biofuels stress. The results showed that biofuel-specific proteins and modules were enriched in several functional categories, including photosynthesis, carbon fixation, and amino acid metabolism, which may represent potential key signatures for biofuels stress responses in Synechocystis. Network-based analysis allowed determination of the responses specifically related to biofuels stress, and the results constituted an important knowledge foundation for tolerance engineering against biofuels in Synechocystis.« less
Locating hardware faults in a parallel computer
Archer, Charles J.; Megerian, Mark G.; Ratterman, Joseph D.; Smith, Brian E.
2010-04-13
Locating hardware faults in a parallel computer, including defining within a tree network of the parallel computer two or more sets of non-overlapping test levels of compute nodes of the network that together include all the data communications links of the network, each non-overlapping test level comprising two or more adjacent tiers of the tree; defining test cells within each non-overlapping test level, each test cell comprising a subtree of the tree including a subtree root compute node and all descendant compute nodes of the subtree root compute node within a non-overlapping test level; performing, separately on each set of non-overlapping test levels, an uplink test on all test cells in a set of non-overlapping test levels; and performing, separately from the uplink tests and separately on each set of non-overlapping test levels, a downlink test on all test cells in a set of non-overlapping test levels.
Retrieval Search and Strength Evoke Dissociable Brain Activity during Episodic Memory Recall
Reas, Emilie T.; Brewer, James B.
2014-01-01
Neuroimaging studies of episodic memory retrieval have revealed activations in the human frontal, parietal, and medial-temporal lobes that are associated with memory strength. However, it remains unclear whether these brain responses are veritable signals of memory strength or are instead regulated by concomitant subcomponents of retrieval such as retrieval effort or mental search. This study used event-related fMRI during cued recall of previously memorized word-pair associates to dissociate brain responses modulated by memory search from those modulated by the strength of a recalled memory. Search-related deactivations, dissociated from activity due to memory strength, were observed in regions of the default network, whereas distinctly strength-dependent activations were present in superior and inferior parietal and dorsolateral PFC. Both search and strength regulated activity in dorsal anterior cingulate and anterior insula. These findings suggest that, although highly correlated and partially subserved by overlapping cognitive control mechanisms, search and memory strength engage dissociable regions of frontoparietal attention and default networks. PMID:23190328
Circadian and Brain State Modulation of Network Hyperexcitability in Alzheimer's Disease.
Brown, Rosalind; Lam, Alice D; Gonzalez-Sulser, Alfredo; Ying, Andrew; Jones, Mary; Chou, Robert Chang-Chih; Tzioras, Makis; Jordan, Crispin Y; Jedrasiak-Cape, Izabela; Hemonnot, Anne-Laure; Abou Jaoude, Maurice; Cole, Andrew J; Cash, Sydney S; Saito, Takashi; Saido, Takaomi; Ribchester, Richard R; Hashemi, Kevan; Oren, Iris
2018-01-01
Network hyperexcitability is a feature of Alzheimer' disease (AD) as well as numerous transgenic mouse models of AD. While hyperexcitability in AD patients and AD animal models share certain features, the mechanistic overlap remains to be established. We aimed to identify features of network hyperexcitability in AD models that can be related to epileptiform activity signatures in AD patients. We studied network hyperexcitability in mice expressing amyloid precursor protein (APP) with mutations that cause familial AD, and compared a transgenic model that overexpresses human APP (hAPP) (J20), to a knock-in model expressing APP at physiological levels (APP NL/F ). We recorded continuous long-term electrocorticogram (ECoG) activity from mice, and studied modulation by circadian cycle, behavioral, and brain state. We report that while J20s exhibit frequent interictal spikes (IISs), APP NL/F mice do not. In J20 mice, IISs were most prevalent during daylight hours and the circadian modulation was associated with sleep. Further analysis of brain state revealed that IIS in J20s are associated with features of rapid eye movement (REM) sleep. We found no evidence of cholinergic changes that may contribute to IIS-circadian coupling in J20s. In contrast to J20s, intracranial recordings capturing IIS in AD patients demonstrated frequent IIS in non-REM (NREM) sleep. The salient differences in sleep-stage coupling of IIS in APP overexpressing mice and AD patients suggests that different mechanisms may underlie network hyperexcitability in mice and humans. We posit that sleep-stage coupling of IIS should be an important consideration in identifying mouse AD models that most closely recapitulate network hyperexcitability in human AD.
Circadian and Brain State Modulation of Network Hyperexcitability in Alzheimer’s Disease
Ying, Andrew; Jones, Mary; Chou, Robert Chang-Chih; Jordan, Crispin Y.; Jedrasiak-Cape, Izabela; Abou Jaoude, Maurice; Hashemi, Kevan
2018-01-01
Abstract Network hyperexcitability is a feature of Alzheimer’ disease (AD) as well as numerous transgenic mouse models of AD. While hyperexcitability in AD patients and AD animal models share certain features, the mechanistic overlap remains to be established. We aimed to identify features of network hyperexcitability in AD models that can be related to epileptiform activity signatures in AD patients. We studied network hyperexcitability in mice expressing amyloid precursor protein (APP) with mutations that cause familial AD, and compared a transgenic model that overexpresses human APP (hAPP) (J20), to a knock-in model expressing APP at physiological levels (APPNL/F). We recorded continuous long-term electrocorticogram (ECoG) activity from mice, and studied modulation by circadian cycle, behavioral, and brain state. We report that while J20s exhibit frequent interictal spikes (IISs), APPNL/F mice do not. In J20 mice, IISs were most prevalent during daylight hours and the circadian modulation was associated with sleep. Further analysis of brain state revealed that IIS in J20s are associated with features of rapid eye movement (REM) sleep. We found no evidence of cholinergic changes that may contribute to IIS-circadian coupling in J20s. In contrast to J20s, intracranial recordings capturing IIS in AD patients demonstrated frequent IIS in non-REM (NREM) sleep. The salient differences in sleep-stage coupling of IIS in APP overexpressing mice and AD patients suggests that different mechanisms may underlie network hyperexcitability in mice and humans. We posit that sleep-stage coupling of IIS should be an important consideration in identifying mouse AD models that most closely recapitulate network hyperexcitability in human AD. PMID:29780880
Subthalamic nucleus stimulation affects theory of mind network: a PET study in Parkinson's disease.
Péron, Julie; Le Jeune, Florence; Haegelen, Claire; Dondaine, Thibaut; Drapier, Dominique; Sauleau, Paul; Reymann, Jean-Michel; Drapier, Sophie; Rouaud, Tiphaine; Millet, Bruno; Vérin, Marc
2010-03-29
There appears to be an overlap between the limbic system, which is modulated by subthalamic nucleus (STN) deep brain stimulation (DBS) in Parkinson's disease (PD), and the brain network that mediates theory of mind (ToM). Accordingly, the aim of the present study was to investigate the effects of STN DBS on ToM of PD patients and to correlate ToM modifications with changes in glucose metabolism. To this end, we conducted (18)FDG-PET scans in 13 PD patients in pre- and post-STN DBS conditions and correlated changes in their glucose metabolism with modified performances on the Eyes test, a visual ToM task requiring them to describe thoughts or feelings conveyed by photographs of the eye region. Postoperative PD performances on this emotion recognition task were significantly worse than either preoperative PD performances or those of healthy controls (HC), whereas there was no significant difference between preoperative PD and HC. Conversely, PD patients in the postoperative condition performed within the normal range on the gender attribution task included in the Eyes test. As far as the metabolic results are concerned, there were correlations between decreased cerebral glucose metabolism and impaired ToM in several cortical areas: the bilateral cingulate gyrus (BA 31), right middle frontal gyrus (BA 8, 9 and 10), left middle frontal gyrus (BA 6), temporal lobe (fusiform gyrus, BA 20), bilateral parietal lobe (right BA 3 and right and left BA 7) and bilateral occipital lobe (BA 19). There were also correlations between increased cerebral glucose metabolism and impaired ToM in the left superior temporal gyrus (BA 22), left inferior frontal gyrus (BA 13 and BA 47) and right inferior frontal gyrus (BA 47). All these structures overlap with the brain network that mediates ToM. These results seem to confirm that STN DBS hinders the ability to infer the mental states of others and modulates a distributed network known to subtend ToM.
Lusk, Ryan; Saba, Laura M; Vanderlinden, Lauren A; Zidek, Vaclav; Silhavy, Jan; Pravenec, Michal; Hoffman, Paula L; Tabakoff, Boris
2018-04-24
A statistical pipeline was developed and used for determining candidate genes and candidate gene co-expression networks involved in two alcohol (i.e., ethanol) metabolism phenotypes, namely alcohol clearance and acetate area under the curve (AUC) in a recombinant inbred (HXB/BXH) rat panel. The approach was also used to provide an indication of how ethanol metabolism can impact the normal function of the identified networks. RNA was extracted from alcohol-naïve liver tissue of 30 strains of HXB/BXH recombinant inbred rats. The reconstructed transcripts were quantitated and data was used to construct gene co-expression modules and networks. A separate group of rats, comprising the same 30 strains, were injected with ethanol (2 gm/kg) for measurement of blood ethanol and acetate levels. These data were used for QTL analysis of the rate of ethanol disappearance and circulating acetate levels. The analysis pipeline required calculation of the module eigengene values, the correction of these values with ethanol metabolism rates and acetate levels across the rat strains and the determination of the eigengene QTLs. For a module to be considered a candidate for determining phenotype, the module eigengene values had to have significant correlation with the strain phenotypic values and the module eigengene QTLs had to overlap the phenotypic QTLs. Of the 658 transcript co-expression modules generated from liver RNA sequencing data, a single module satisfied all criteria for being a candidate for determining the alcohol clearance trait. This module contained two alcohol dehydrogenase genes, including the gene whose product was previously shown to be responsible for the majority of alcohol elimination in the rat. This module was also the only module identified as a candidate for influencing circulating acetate levels. This module was also linked to the process of generation and utilization of retinoic acid as related to the autonomous immune response. We propose that our analytical pipeline can successfully identify genetic regions and transcripts which predispose a particular phenotype and our analysis provides functional context for co-expression module components. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Li, Zhenping; Zhang, Xiang-Sun; Wang, Rui-Sheng; Liu, Hongwei; Zhang, Shihua
2013-01-01
Identification of communities in complex networks is an important topic and issue in many fields such as sociology, biology, and computer science. Communities are often defined as groups of related nodes or links that correspond to functional subunits in the corresponding complex systems. While most conventional approaches have focused on discovering communities of nodes, some recent studies start partitioning links to find overlapping communities straightforwardly. In this paper, we propose a new quantity function for link community identification in complex networks. Based on this quantity function we formulate the link community partition problem into an integer programming model which allows us to partition a complex network into overlapping communities. We further propose a genetic algorithm for link community detection which can partition a network into overlapping communities without knowing the number of communities. We test our model and algorithm on both artificial networks and real-world networks. The results demonstrate that the model and algorithm are efficient in detecting overlapping community structure in complex networks. PMID:24386268
Akam, Thomas E.; Kullmann, Dimitri M.
2012-01-01
The ‘communication through coherence’ (CTC) hypothesis proposes that selective communication among neural networks is achieved by coherence between firing rate oscillation in a sending region and gain modulation in a receiving region. Although this hypothesis has stimulated extensive work, it remains unclear whether the mechanism can in principle allow reliable and selective information transfer. Here we use a simple mathematical model to investigate how accurately coherent gain modulation can filter a population-coded target signal from task-irrelevant distracting inputs. We show that selective communication can indeed be achieved, although the structure of oscillatory activity in the target and distracting networks must satisfy certain previously unrecognized constraints. Firstly, the target input must be differentiated from distractors by the amplitude, phase or frequency of its oscillatory modulation. When distracting inputs oscillate incoherently in the same frequency band as the target, communication accuracy is severely degraded because of varying overlap between the firing rate oscillations of distracting inputs and the gain modulation in the receiving region. Secondly, the oscillatory modulation of the target input must be strong in order to achieve a high signal-to-noise ratio relative to stochastic spiking of individual neurons. Thus, whilst providing a quantitative demonstration of the power of coherent oscillatory gain modulation to flexibly control information flow, our results identify constraints imposed by the need to avoid interference between signals, and reveal a likely organizing principle for the structure of neural oscillations in the brain. PMID:23144603
Spiking neural network model for memorizing sequences with forward and backward recall.
Borisyuk, Roman; Chik, David; Kazanovich, Yakov; da Silva Gomes, João
2013-06-01
We present an oscillatory network of conductance based spiking neurons of Hodgkin-Huxley type as a model of memory storage and retrieval of sequences of events (or objects). The model is inspired by psychological and neurobiological evidence on sequential memories. The building block of the model is an oscillatory module which contains excitatory and inhibitory neurons with all-to-all connections. The connection architecture comprises two layers. A lower layer represents consecutive events during their storage and recall. This layer is composed of oscillatory modules. Plastic excitatory connections between the modules are implemented using an STDP type learning rule for sequential storage. Excitatory neurons in the upper layer project star-like modifiable connections toward the excitatory lower layer neurons. These neurons in the upper layer are used to tag sequences of events represented in the lower layer. Computer simulations demonstrate good performance of the model including difficult cases when different sequences contain overlapping events. We show that the model with STDP type or anti-STDP type learning rules can be applied for the simulation of forward and backward replay of neural spikes respectively. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Finding overlapping communities in multilayer networks
Liu, Weiyi; Suzumura, Toyotaro; Ji, Hongyu; Hu, Guangmin
2018-01-01
Finding communities in multilayer networks is a vital step in understanding the structure and dynamics of these layers, where each layer represents a particular type of relationship between nodes in the natural world. However, most community discovery methods for multilayer networks may ignore the interplay between layers or the unique topological structure in a layer. Moreover, most of them can only detect non-overlapping communities. In this paper, we propose a new community discovery method for multilayer networks, which leverages the interplay between layers and the unique topology in a layer to reveal overlapping communities. Through a comprehensive analysis of edge behaviors within and across layers, we first calculate the similarities for edges from the same layer and the cross layers. Then, by leveraging these similarities, we can construct a dendrogram for the multilayer networks that takes both the unique topological structure and the important interplay into consideration. Finally, by introducing a new community density metric for multilayer networks, we can cut the dendrogram to get the overlapping communities for these layers. By applying our method on both synthetic and real-world datasets, we demonstrate that our method has an accurate performance in discovering overlapping communities in multilayer networks. PMID:29694387
Finding overlapping communities in multilayer networks.
Liu, Weiyi; Suzumura, Toyotaro; Ji, Hongyu; Hu, Guangmin
2018-01-01
Finding communities in multilayer networks is a vital step in understanding the structure and dynamics of these layers, where each layer represents a particular type of relationship between nodes in the natural world. However, most community discovery methods for multilayer networks may ignore the interplay between layers or the unique topological structure in a layer. Moreover, most of them can only detect non-overlapping communities. In this paper, we propose a new community discovery method for multilayer networks, which leverages the interplay between layers and the unique topology in a layer to reveal overlapping communities. Through a comprehensive analysis of edge behaviors within and across layers, we first calculate the similarities for edges from the same layer and the cross layers. Then, by leveraging these similarities, we can construct a dendrogram for the multilayer networks that takes both the unique topological structure and the important interplay into consideration. Finally, by introducing a new community density metric for multilayer networks, we can cut the dendrogram to get the overlapping communities for these layers. By applying our method on both synthetic and real-world datasets, we demonstrate that our method has an accurate performance in discovering overlapping communities in multilayer networks.
Overlapping Community Detection based on Network Decomposition
NASA Astrophysics Data System (ADS)
Ding, Zhuanlian; Zhang, Xingyi; Sun, Dengdi; Luo, Bin
2016-04-01
Community detection in complex network has become a vital step to understand the structure and dynamics of networks in various fields. However, traditional node clustering and relatively new proposed link clustering methods have inherent drawbacks to discover overlapping communities. Node clustering is inadequate to capture the pervasive overlaps, while link clustering is often criticized due to the high computational cost and ambiguous definition of communities. So, overlapping community detection is still a formidable challenge. In this work, we propose a new overlapping community detection algorithm based on network decomposition, called NDOCD. Specifically, NDOCD iteratively splits the network by removing all links in derived link communities, which are identified by utilizing node clustering technique. The network decomposition contributes to reducing the computation time and noise link elimination conduces to improving the quality of obtained communities. Besides, we employ node clustering technique rather than link similarity measure to discover link communities, thus NDOCD avoids an ambiguous definition of community and becomes less time-consuming. We test our approach on both synthetic and real-world networks. Results demonstrate the superior performance of our approach both in computation time and accuracy compared to state-of-the-art algorithms.
Resveratrol modulates the inflammatory response via an estrogen receptor-signal integration network
Nwachukwu, Jerome C; Srinivasan, Sathish; Bruno, Nelson E; Parent, Alexander A; Hughes, Travis S; Pollock, Julie A; Gjyshi, Olsi; Cavett, Valerie; Nowak, Jason; Garcia-Ordonez, Ruben D; Houtman, René; Griffin, Patrick R; Kojetin, Douglas J; Katzenellenbogen, John A; Conkright, Michael D; Nettles, Kendall W
2014-01-01
Resveratrol has beneficial effects on aging, inflammation and metabolism, which are thought to result from activation of the lysine deacetylase, sirtuin 1 (SIRT1), the cAMP pathway, or AMP-activated protein kinase. In this study, we report that resveratrol acts as a pathway-selective estrogen receptor-α (ERα) ligand to modulate the inflammatory response but not cell proliferation. A crystal structure of the ERα ligand-binding domain (LBD) as a complex with resveratrol revealed a unique perturbation of the coactivator-binding surface, consistent with an altered coregulator recruitment profile. Gene expression analyses revealed significant overlap of TNFα genes modulated by resveratrol and estradiol. Furthermore, the ability of resveratrol to suppress interleukin-6 transcription was shown to require ERα and several ERα coregulators, suggesting that ERα functions as a primary conduit for resveratrol activity. DOI: http://dx.doi.org/10.7554/eLife.02057.001 PMID:24771768
An improved game-theoretic approach to uncover overlapping communities
NASA Astrophysics Data System (ADS)
Sun, Hong-Liang; Ch'Ng, Eugene; Yong, Xi; Garibaldi, Jonathan M.; See, Simon; Chen, Duan-Bing
How can we uncover overlapping communities from complex networks to understand the inherent structures and functions? Chen et al. firstly proposed a community game (Game) to study this problem, and the overlapping communities have been discovered when the game is convergent. It is based on the assumption that each vertex of the underlying network is a rational game player to maximize its utility. In this paper, we investigate how similar vertices affect the formation of community game. The Adamic-Adar Index (AA Index) has been employed to define the new utility function. This novel method has been evaluated on both synthetic and real-world networks. Experimental study shows that it has significant improvement of accuracy (from 4.8% to 37.6%) compared with the Game on 10 real networks. It is more efficient on Facebook networks (FN) and Amazon co-purchasing networks than on other networks. This result implicates that “friend circles of friends” of Facebook are valuable to understand the overlapping community division.
Uncovering the overlapping community structure of complex networks by maximal cliques
NASA Astrophysics Data System (ADS)
Li, Junqiu; Wang, Xingyuan; Cui, Yaozu
2014-12-01
In this paper, a unique algorithm is proposed to detect overlapping communities in the un-weighted and weighted networks with considerable accuracy. The maximal cliques, overlapping vertex, bridge vertex and isolated vertex are introduced. First, all the maximal cliques are extracted by the algorithm based on the deep and bread searching. Then two maximal cliques can be merged into a larger sub-graph by some given rules. In addition, the proposed algorithm successfully finds overlapping vertices and bridge vertices between communities. Experimental results using some real-world networks data show that the performance of the proposed algorithm is satisfactory.
Huang, Lijia; Szymanska, Katarzyna; Jensen, Victor L.; Janecke, Andreas R.; Innes, A. Micheil; Davis, Erica E.; Frosk, Patrick; Li, Chunmei; Willer, Jason R.; Chodirker, Bernard N.; Greenberg, Cheryl R.; McLeod, D. Ross; Bernier, Francois P.; Chudley, Albert E.; Müller, Thomas; Shboul, Mohammad; Logan, Clare V.; Loucks, Catrina M.; Beaulieu, Chandree L.; Bowie, Rachel V.; Bell, Sandra M.; Adkins, Jonathan; Zuniga, Freddi I.; Ross, Kevin D.; Wang, Jian; Ban, Matthew R.; Becker, Christian; Nürnberg, Peter; Douglas, Stuart; Craft, Cheryl M.; Akimenko, Marie-Andree; Hegele, Robert A.; Ober, Carole; Utermann, Gerd; Bolz, Hanno J.; Bulman, Dennis E.; Katsanis, Nicholas; Blacque, Oliver E.; Doherty, Dan; Parboosingh, Jillian S.; Leroux, Michel R.; Johnson, Colin A.; Boycott, Kym M.
2011-01-01
Joubert syndrome related disorders (JSRDs) have broad but variable phenotypic overlap with other ciliopathies. The molecular etiology of this overlap is unclear but probably arises from disrupting common functional module components within primary cilia. To identify additional module elements associated with JSRDs, we performed homozygosity mapping followed by next-generation sequencing (NGS) and uncovered mutations in TMEM237 (previously known as ALS2CR4). We show that loss of the mammalian TMEM237, which localizes to the ciliary transition zone (TZ), results in defective ciliogenesis and deregulation of Wnt signaling. Furthermore, disruption of Danio rerio (zebrafish) tmem237 expression produces gastrulation defects consistent with ciliary dysfunction, and Caenorhabditis elegans jbts-14 genetically interacts with nphp-4, encoding another TZ protein, to control basal body-TZ anchoring to the membrane and ciliogenesis. Both mammalian and C. elegans TMEM237/JBTS-14 require RPGRIP1L/MKS5 for proper TZ localization, and we demonstrate additional functional interactions between C. elegans JBTS-14 and MKS-2/TMEM216, MKSR-1/B9D1, and MKSR-2/B9D2. Collectively, our findings integrate TMEM237/JBTS-14 in a complex interaction network of TZ-associated proteins and reveal a growing contribution of a TZ functional module to the spectrum of ciliopathy phenotypes. PMID:22152675
Overlapping communities detection based on spectral analysis of line graphs
NASA Astrophysics Data System (ADS)
Gui, Chun; Zhang, Ruisheng; Hu, Rongjing; Huang, Guoming; Wei, Jiaxuan
2018-05-01
Community in networks are often overlapping where one vertex belongs to several clusters. Meanwhile, many networks show hierarchical structure such that community is recursively grouped into hierarchical organization. In order to obtain overlapping communities from a global hierarchy of vertices, a new algorithm (named SAoLG) is proposed to build the hierarchical organization along with detecting the overlap of community structure. SAoLG applies the spectral analysis into line graphs to unify the overlap and hierarchical structure of the communities. In order to avoid the limitation of absolute distance such as Euclidean distance, SAoLG employs Angular distance to compute the similarity between vertices. Furthermore, we make a micro-improvement partition density to evaluate the quality of community structure and use it to obtain the more reasonable and sensible community numbers. The proposed SAoLG algorithm achieves a balance between overlap and hierarchy by applying spectral analysis to edge community detection. The experimental results on one standard network and six real-world networks show that the SAoLG algorithm achieves higher modularity and reasonable community number values than those generated by Ahn's algorithm, the classical CPM and GN ones.
Detecting community structure via the maximal sub-graphs and belonging degrees in complex networks
NASA Astrophysics Data System (ADS)
Cui, Yaozu; Wang, Xingyuan; Eustace, Justine
2014-12-01
Community structure is a common phenomenon in complex networks, and it has been shown that some communities in complex networks often overlap each other. So in this paper we propose a new algorithm to detect overlapping community structure in complex networks. To identify the overlapping community structure, our algorithm firstly extracts fully connected sub-graphs which are maximal sub-graphs from original networks. Then two maximal sub-graphs having the key pair-vertices can be merged into a new larger sub-graph using some belonging degree functions. Furthermore we extend the modularity function to evaluate the proposed algorithm. In addition, overlapping nodes between communities are founded successfully. Finally we report the comparison between the modularity and the computational complexity of the proposed algorithm with some other existing algorithms. The experimental results show that the proposed algorithm gives satisfactory results.
Overlapping Networks Engaged during Spoken Language Production and Its Cognitive Control
Wise, Richard J.S.; Mehta, Amrish; Leech, Robert
2014-01-01
Spoken language production is a complex brain function that relies on large-scale networks. These include domain-specific networks that mediate language-specific processes, as well as domain-general networks mediating top-down and bottom-up attentional control. Language control is thought to involve a left-lateralized fronto-temporal-parietal (FTP) system. However, these regions do not always activate for language tasks and similar regions have been implicated in nonlinguistic cognitive processes. These inconsistent findings suggest that either the left FTP is involved in multidomain cognitive control or that there are multiple spatially overlapping FTP systems. We present evidence from an fMRI study using multivariate analysis to identify spatiotemporal networks involved in spoken language production in humans. We compared spoken language production (Speech) with multiple baselines, counting (Count), nonverbal decision (Decision), and “rest,” to pull apart the multiple partially overlapping networks that are involved in speech production. A left-lateralized FTP network was activated during Speech and deactivated during Count and nonverbal Decision trials, implicating it in cognitive control specific to sentential spoken language production. A mirror right-lateralized FTP network was activated in the Count and Decision trials, but not Speech. Importantly, a second overlapping left FTP network showed relative deactivation in Speech. These three networks, with distinct time courses, overlapped in the left parietal lobe. Contrary to the standard model of the left FTP as being dominant for speech, we revealed a more complex pattern within the left FTP, including at least two left FTP networks with competing functional roles, only one of which was activated in speech production. PMID:24966373
Overlapping networks engaged during spoken language production and its cognitive control.
Geranmayeh, Fatemeh; Wise, Richard J S; Mehta, Amrish; Leech, Robert
2014-06-25
Spoken language production is a complex brain function that relies on large-scale networks. These include domain-specific networks that mediate language-specific processes, as well as domain-general networks mediating top-down and bottom-up attentional control. Language control is thought to involve a left-lateralized fronto-temporal-parietal (FTP) system. However, these regions do not always activate for language tasks and similar regions have been implicated in nonlinguistic cognitive processes. These inconsistent findings suggest that either the left FTP is involved in multidomain cognitive control or that there are multiple spatially overlapping FTP systems. We present evidence from an fMRI study using multivariate analysis to identify spatiotemporal networks involved in spoken language production in humans. We compared spoken language production (Speech) with multiple baselines, counting (Count), nonverbal decision (Decision), and "rest," to pull apart the multiple partially overlapping networks that are involved in speech production. A left-lateralized FTP network was activated during Speech and deactivated during Count and nonverbal Decision trials, implicating it in cognitive control specific to sentential spoken language production. A mirror right-lateralized FTP network was activated in the Count and Decision trials, but not Speech. Importantly, a second overlapping left FTP network showed relative deactivation in Speech. These three networks, with distinct time courses, overlapped in the left parietal lobe. Contrary to the standard model of the left FTP as being dominant for speech, we revealed a more complex pattern within the left FTP, including at least two left FTP networks with competing functional roles, only one of which was activated in speech production. Copyright © 2014 Geranmayeh et al.
Young, Jean-Gabriel; Allard, Antoine; Hébert-Dufresne, Laurent; Dubé, Louis J.
2015-01-01
Community detection is the process of assigning nodes and links in significant communities (e.g. clusters, function modules) and its development has led to a better understanding of complex networks. When applied to sizable networks, we argue that most detection algorithms correctly identify prominent communities, but fail to do so across multiple scales. As a result, a significant fraction of the network is left uncharted. We show that this problem stems from larger or denser communities overshadowing smaller or sparser ones, and that this effect accounts for most of the undetected communities and unassigned links. We propose a generic cascading approach to community detection that circumvents the problem. Using real and artificial network datasets with three widely used community detection algorithms, we show how a simple cascading procedure allows for the detection of the missing communities. This work highlights a new detection limit of community structure, and we hope that our approach can inspire better community detection algorithms. PMID:26461919
Xu, Rui; Yang, Zhao-Hui; Zheng, Yue; Liu, Jian-Bo; Xiong, Wei-Ping; Zhang, Yan-Ru; Lu, Yue; Xue, Wen-Jing; Fan, Chang-Zheng
2018-04-22
Understanding of how anaerobic digestion (AD)-related microbiomes are constructed by operational parameters or their interactions within the biochemical process is limited. Using high-throughput sequencing and molecular ecological network analysis, this study shows the succession of AD-related microbiome hosting diverse members of the phylum Actinobacteria, Bacteroidetes, Euryarchaeota, and Firmicutes, which were affected by organic loading rate (OLR) and hydraulic retention time (HRT). OLR formed finer microbial network modules than HRT (12 vs. 6), suggesting the further subdivision of functional components. Biomarkers were also identified in OLR or HRT groups (e.g. the family Actinomycetaceae, Methanosaetaceae and Aminiphilaceae). The most pair-wise link between Firmicutes and biogas production indicates the keystone members based on network features can be considered as markers in the regulation of AD. A set of 40% species ("core microbiome") were similar across different digesters. Such noteworthy overlap of microbiomes indicates they are generalists in maintaining the ecological stability of digesters. Copyright © 2018 Elsevier Ltd. All rights reserved.
Efficient discovery of overlapping communities in massive networks
Gopalan, Prem K.; Blei, David M.
2013-01-01
Detecting overlapping communities is essential to analyzing and exploring natural networks such as social networks, biological networks, and citation networks. However, most existing approaches do not scale to the size of networks that we regularly observe in the real world. In this paper, we develop a scalable approach to community detection that discovers overlapping communities in massive real-world networks. Our approach is based on a Bayesian model of networks that allows nodes to participate in multiple communities, and a corresponding algorithm that naturally interleaves subsampling from the network and updating an estimate of its communities. We demonstrate how we can discover the hidden community structure of several real-world networks, including 3.7 million US patents, 575,000 physics articles from the arXiv preprint server, and 875,000 connected Web pages from the Internet. Furthermore, we demonstrate on large simulated networks that our algorithm accurately discovers the true community structure. This paper opens the door to using sophisticated statistical models to analyze massive networks. PMID:23950224
Acikalin, M Yavuz; Gorgolewski, Krzysztof J; Poldrack, Russell A
2017-01-01
Previous research has provided qualitative evidence for overlap in a number of brain regions across the subjective value network (SVN) and the default mode network (DMN). In order to quantitatively assess this overlap, we conducted a series of coordinate-based meta-analyses (CBMA) of results from 466 functional magnetic resonance imaging experiments on task-negative or subjective value-related activations in the human brain. In these analyses, we first identified significant overlaps and dissociations across activation foci related to SVN and DMN. Second, we investigated whether these overlapping subregions also showed similar patterns of functional connectivity, suggesting a shared functional subnetwork. We find considerable overlap between SVN and DMN in subregions of central ventromedial prefrontal cortex (cVMPFC) and dorsal posterior cingulate cortex (dPCC). Further, our findings show that similar patterns of bidirectional functional connectivity between cVMPFC and dPCC are present in both networks. We discuss ways in which our understanding of how subjective value (SV) is computed and represented in the brain can be synthesized with what we know about the DMN, mind-wandering, and self-referential processing in light of our findings.
NASA Astrophysics Data System (ADS)
Juher, David; Saldaña, Joan
2018-03-01
We study the properties of the potential overlap between two networks A ,B sharing the same set of N nodes (a two-layer network) whose respective degree distributions pA(k ) ,pB(k ) are given. Defining the overlap coefficient α as the Jaccard index, we prove that α is very close to 0 when A and B are random and independently generated. We derive an upper bound αM for the maximum overlap coefficient permitted in terms of pA(k ) , pB(k ) , and N . Then we present an algorithm based on cross rewiring of links to obtain a two-layer network with any prescribed α inside the range (0 ,αM) . A refined version of the algorithm allows us to minimize the cross-layer correlations that unavoidably appear for values of α beyond a critical overlap αc<αM . Finally, we present a very simple example of a susceptible-infectious-recovered epidemic model with information dissemination and use the algorithms to determine the impact of the overlap on the final outbreak size predicted by the model.
Functional mechanisms of probabilistic inference in feature- and space-based attentional systems.
Dombert, Pascasie L; Kuhns, Anna; Mengotti, Paola; Fink, Gereon R; Vossel, Simone
2016-11-15
Humans flexibly attend to features or locations and these processes are influenced by the probability of sensory events. We combined computational modeling of response times with fMRI to compare the functional correlates of (re-)orienting, and the modulation by probabilistic inference in spatial and feature-based attention systems. Twenty-four volunteers performed two task versions with spatial or color cues. Percentage of cue validity changed unpredictably. A hierarchical Bayesian model was used to derive trial-wise estimates of probability-dependent attention, entering the fMRI analysis as parametric regressors. Attentional orienting activated a dorsal frontoparietal network in both tasks, without significant parametric modulation. Spatially invalid trials activated a bilateral frontoparietal network and the precuneus, while invalid feature trials activated the left intraparietal sulcus (IPS). Probability-dependent attention modulated activity in the precuneus, left posterior IPS, middle occipital gyrus, and right temporoparietal junction for spatial attention, and in the left anterior IPS for feature-based and spatial attention. These findings provide novel insights into the generality and specificity of the functional basis of attentional control. They suggest that probabilistic inference can distinctively affect each attentional subsystem, but that there is an overlap in the left IPS, which responds to both spatial and feature-based expectancy violations. Copyright © 2016 Elsevier Inc. All rights reserved.
Percolation in multiplex networks with overlap.
Cellai, Davide; López, Eduardo; Zhou, Jie; Gleeson, James P; Bianconi, Ginestra
2013-11-01
From transportation networks to complex infrastructures, and to social and communication networks, a large variety of systems can be described in terms of multiplexes formed by a set of nodes interacting through different networks (layers). Multiplexes may display an increased fragility with respect to the single layers that constitute them. However, so far the overlap of the links in different layers has been mostly neglected, despite the fact that it is an ubiquitous phenomenon in most multiplexes. Here, we show that the overlap among layers can improve the robustness of interdependent multiplex systems and change the critical behavior of the percolation phase transition in a complex way.
NASA Astrophysics Data System (ADS)
Chen, X. J.; Yu, T. J.; Lu, H. M.; Yuan, G. C.; Shen, B.; Zhang, G. Y.
2013-10-01
Using modified k.p perturbation method, the optical polarization properties of Al-rich AlGaN/AlN quantum wells (QWs) are studied. It is found that change of wavefunction overlaps between conduction band and valance subbands of heavy hole, light hole, and crystal-field split off hole is different. Such difference leads to the overturn of polarization degree and modulates optical polarization properties as well width and strain vary. This prompts that changing wavefunction overlaps of electron and hole can lead to a way to modulate optical polarization properties of Al-rich AlGaN/AlN QWs, on no condition that valence band order changes.
Ames, Ryan M; Macpherson, Jamie I; Pinney, John W; Lovell, Simon C; Robertson, David L
2013-01-01
Large-scale molecular interaction data sets have the potential to provide a comprehensive, system-wide understanding of biological function. Although individual molecules can be promiscuous in terms of their contribution to function, molecular functions emerge from the specific interactions of molecules giving rise to modular organisation. As functions often derive from a range of mechanisms, we demonstrate that they are best studied using networks derived from different sources. Implementing a graph partitioning algorithm we identify subnetworks in yeast protein-protein interaction (PPI), genetic interaction and gene co-regulation networks. Among these subnetworks we identify cohesive subgraphs that we expect to represent functional modules in the different data types. We demonstrate significant overlap between the subgraphs generated from the different data types and show these overlaps can represent related functions as represented by the Gene Ontology (GO). Next, we investigate the correspondence between our subgraphs and the Gene Ontology. This revealed varying degrees of coverage of the biological process, molecular function and cellular component ontologies, dependent on the data type. For example, subgraphs from the PPI show enrichment for 84%, 58% and 93% of annotated GO terms, respectively. Integrating the interaction data into a combined network increases the coverage of GO. Furthermore, the different annotation types of GO are not predominantly associated with one of the interaction data types. Collectively our results demonstrate that successful capture of functional relationships by network data depends on both the specific biological function being characterised and the type of network data being used. We identify functions that require integrated information to be accurately represented, demonstrating the limitations of individual data types. Combining interaction subnetworks across data types is therefore essential for fully understanding the complex and emergent nature of biological function.
Individual differences and time-varying features of modular brain architecture.
Liao, Xuhong; Cao, Miao; Xia, Mingrui; He, Yong
2017-05-15
Recent studies have suggested that human brain functional networks are topologically organized into functionally specialized but inter-connected modules to facilitate efficient information processing and highly flexible cognitive function. However, these studies have mainly focused on group-level network modularity analyses using "static" functional connectivity approaches. How these extraordinary modular brain structures vary across individuals and spontaneously reconfigure over time remain largely unknown. Here, we employed multiband resting-state functional MRI data (N=105) from the Human Connectome Project and a graph-based modularity analysis to systematically investigate individual variability and dynamic properties in modular brain networks. We showed that the modular structures of brain networks dramatically vary across individuals, with higher modular variability primarily in the association cortex (e.g., fronto-parietal and attention systems) and lower variability in the primary systems. Moreover, brain regions spontaneously changed their module affiliations on a temporal scale of seconds, which cannot be simply attributable to head motion and sampling error. Interestingly, the spatial pattern of intra-subject dynamic modular variability largely overlapped with that of inter-subject modular variability, both of which were highly reproducible across repeated scanning sessions. Finally, the regions with remarkable individual/temporal modular variability were closely associated with network connectors and the number of cognitive components, suggesting a potential contribution to information integration and flexible cognitive function. Collectively, our findings highlight individual modular variability and the notable dynamic characteristics in large-scale brain networks, which enhance our understanding of the neural substrates underlying individual differences in a variety of cognition and behaviors. Copyright © 2017 Elsevier Inc. All rights reserved.
Gourévitch, Boris; Mellen, Nicholas
2014-09-01
In vertebrates, respiratory control is ascribed to heterogeneous respiration-modulated neurons along the Ventral Respiratory Column (VRC) in medulla, which includes the preBötzinger Complex (preBötC), the putative respiratory rhythm generator. Here, the functional anatomy of the VRC was characterized via optical recordings in the sagittaly sectioned neonate rat hindbrain, at sampling rates permitting coupling estimation between neuron pairs, so that each neuron was described using unitary, neuron-system, and coupling attributes. Structured coupling relations in local networks, significantly oriented coupling in the peri-inspiratory interval detected in pooled data, and significant correlations between firing rate and expiratory duration in subsets of neurons revealed network regulation at multiple timescales. Spatially averaged neuronal attributes, including coupling vectors, revealed a sharp boundary at the rostral margin of the preBötC, as well as other functional anatomical features congruent with identified structures, including the parafacial respiratory group and the nucleus ambiguus. Cluster analysis of attributes identified two spatially compact, homogenous groups: the first overlapped with the preBötC, and was characterized by strong respiratory modulation and dense bidirectional coupling with itself and other groups, consistent with a central role for the preBötC in respiratory control; the second lay between preBötC and the facial nucleus, and was characterized by weak respiratory modulation and weak coupling with other respiratory neurons, which is congruent with cardiovascular regulatory networks that are found in this region. Other groups identified using cluster analysis suggested that networks along VRC regulated expiratory duration, and the transition to and from inspiration, but these groups were heterogeneous and anatomically dispersed. Thus, by recording local networks in parallel, this study found evidence for respiratory regulation at multiple timescales along the VRC, as well as a role for the preBötC in the integration of functionally disparate respiratory neurons. Copyright © 2014 Elsevier Inc. All rights reserved.
Osterndorff-Kahanek, Elizabeth A.; Becker, Howard C.; Lopez, Marcelo F.; Farris, Sean P.; Tiwari, Gayatri R.; Nunez, Yury O.; Harris, R. Adron; Mayfield, R. Dayne
2015-01-01
Repeated ethanol exposure and withdrawal in mice increases voluntary drinking and represents an animal model of physical dependence. We examined time- and brain region-dependent changes in gene coexpression networks in amygdala (AMY), nucleus accumbens (NAC), prefrontal cortex (PFC), and liver after four weekly cycles of chronic intermittent ethanol (CIE) vapor exposure in C57BL/6J mice. Microarrays were used to compare gene expression profiles at 0-, 8-, and 120-hours following the last ethanol exposure. Each brain region exhibited a large number of differentially expressed genes (2,000-3,000) at the 0- and 8-hour time points, but fewer changes were detected at the 120-hour time point (400-600). Within each region, there was little gene overlap across time (~20%). All brain regions were significantly enriched with differentially expressed immune-related genes at the 8-hour time point. Weighted gene correlation network analysis identified modules that were highly enriched with differentially expressed genes at the 0- and 8-hour time points with virtually no enrichment at 120 hours. Modules enriched for both ethanol-responsive and cell-specific genes were identified in each brain region. These results indicate that chronic alcohol exposure causes global ‘rewiring‘ of coexpression systems involving glial and immune signaling as well as neuronal genes. PMID:25803291
Ethofer, Thomas; Brück, Carolin; Alter, Kai; Grodd, Wolfgang; Kreifelts, Benjamin
2013-01-01
Laughter is an ancient signal of social communication among humans and non-human primates. Laughter types with complex social functions (e.g., taunt and joy) presumably evolved from the unequivocal and reflex-like social bonding signal of tickling laughter already present in non-human primates. Here, we investigated the modulations of cerebral connectivity associated with different laughter types as well as the effects of attention shifts between implicit and explicit processing of social information conveyed by laughter using functional magnetic resonance imaging (fMRI). Complex social laughter types and tickling laughter were found to modulate connectivity in two distinguishable but partially overlapping parts of the laughter perception network irrespective of task instructions. Connectivity changes, presumably related to the higher acoustic complexity of tickling laughter, occurred between areas in the prefrontal cortex and the auditory association cortex, potentially reflecting higher demands on acoustic analysis associated with increased information load on auditory attention, working memory, evaluation and response selection processes. In contrast, the higher degree of socio-relational information in complex social laughter types was linked to increases of connectivity between auditory association cortices, the right dorsolateral prefrontal cortex and brain areas associated with mentalizing as well as areas in the visual associative cortex. These modulations might reflect automatic analysis of acoustic features, attention direction to informative aspects of the laughter signal and the retention of those in working memory during evaluation processes. These processes may be associated with visual imagery supporting the formation of inferences on the intentions of our social counterparts. Here, the right dorsolateral precentral cortex appears as a network node potentially linking the functions of auditory and visual associative sensory cortices with those of the mentalizing-associated anterior mediofrontal cortex during the decoding of social information in laughter. PMID:23667619
Wildgruber, Dirk; Szameitat, Diana P; Ethofer, Thomas; Brück, Carolin; Alter, Kai; Grodd, Wolfgang; Kreifelts, Benjamin
2013-01-01
Laughter is an ancient signal of social communication among humans and non-human primates. Laughter types with complex social functions (e.g., taunt and joy) presumably evolved from the unequivocal and reflex-like social bonding signal of tickling laughter already present in non-human primates. Here, we investigated the modulations of cerebral connectivity associated with different laughter types as well as the effects of attention shifts between implicit and explicit processing of social information conveyed by laughter using functional magnetic resonance imaging (fMRI). Complex social laughter types and tickling laughter were found to modulate connectivity in two distinguishable but partially overlapping parts of the laughter perception network irrespective of task instructions. Connectivity changes, presumably related to the higher acoustic complexity of tickling laughter, occurred between areas in the prefrontal cortex and the auditory association cortex, potentially reflecting higher demands on acoustic analysis associated with increased information load on auditory attention, working memory, evaluation and response selection processes. In contrast, the higher degree of socio-relational information in complex social laughter types was linked to increases of connectivity between auditory association cortices, the right dorsolateral prefrontal cortex and brain areas associated with mentalizing as well as areas in the visual associative cortex. These modulations might reflect automatic analysis of acoustic features, attention direction to informative aspects of the laughter signal and the retention of those in working memory during evaluation processes. These processes may be associated with visual imagery supporting the formation of inferences on the intentions of our social counterparts. Here, the right dorsolateral precentral cortex appears as a network node potentially linking the functions of auditory and visual associative sensory cortices with those of the mentalizing-associated anterior mediofrontal cortex during the decoding of social information in laughter.
van Ede, Freek; Maris, Eric
2016-01-01
Oscillatory neuronal activity is implicated in many cognitive functions, and its phase coupling between sensors may reflect networks of communicating neuronal populations. Oscillatory activity is often studied using extracranial recordings and compared between experimental conditions. This is challenging, because there is overlap between sensor-level activity generated by different sources, and this can obscure differential experimental modulations of these sources. Additionally, in extracranial data, sensor-level phase coupling not only reflects communicating populations, but can also be generated by a current dipole, whose sensor-level phase coupling does not reflect source-level interactions. We present a novel method, which is capable of separating and characterizing sources on the basis of their phase coupling patterns as a function of space, frequency and time (trials). Importantly, this method depends on a plausible model of a neurobiological rhythm. We present this model and an accompanying analysis pipeline. Next, we demonstrate our approach, using magnetoencephalographic (MEG) recordings during a cued tactile detection task as a case study. We show that the extracted components have overlapping spatial maps and frequency content, which are difficult to resolve using conventional pairwise measures. Because our decomposition also provides trial loadings, components can be readily contrasted between experimental conditions. Strikingly, we observed heterogeneity in alpha and beta sources with respect to whether their activity was suppressed or enhanced as a function of attention and performance, and this happened both in task relevant and irrelevant regions. This heterogeneity contrasts with the common view that alpha and beta amplitude over sensory areas are always negatively related to attention and performance. PMID:27336159
Architecture and dynamics of overlapped RNA regulatory networks.
Lapointe, Christopher P; Preston, Melanie A; Wilinski, Daniel; Saunders, Harriet A J; Campbell, Zachary T; Wickens, Marvin
2017-11-01
A single protein can bind and regulate many mRNAs. Multiple proteins with similar specificities often bind and control overlapping sets of mRNAs. Yet little is known about the architecture or dynamics of overlapped networks. We focused on three proteins with similar structures and related RNA-binding specificities-Puf3p, Puf4p, and Puf5p of S. cerevisiae Using RNA Tagging, we identified a "super-network" comprised of four subnetworks: Puf3p, Puf4p, and Puf5p subnetworks, and one controlled by both Puf4p and Puf5p. The architecture of individual subnetworks, and thus the super-network, is determined by competition among particular PUF proteins to bind mRNAs, their affinities for binding elements, and the abundances of the proteins. The super-network responds dramatically: The remaining network can either expand or contract. These strikingly opposite outcomes are determined by an interplay between the relative abundance of the RNAs and proteins, and their affinities for one another. The diverse interplay between overlapping RNA-protein networks provides versatile opportunities for regulation and evolution. © 2017 Lapointe et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.
Remembering what could have happened: Neural correlates of episodic counterfactual thinking
De Brigard, F; Addis, D.R.; Ford, J.H.; Schacter, D.L.; Giovanello, K.S
2014-01-01
Recent evidence suggests that our capacities to remember the past and to imagine what might happen in the future largely depend on the same core brain network that includes the middle temporal lobe, the posterior cingulate/retrosplenial cortex, the inferior parietal lobe, the medial prefrontal cortex, and the lateral temporal cortex. However, the extent to which regions of this core brain network are also responsible for our capacity to think about what could have happened in our past, yet did not occur (i.e., episodic counterfactual thinking), is still unknown. The present study examined this issue. Using a variation of the experimental recombination paradigm (Addis et al., 2009), participants were asked both to remember personal past events and to envision alternative outcomes to such events while undergoing functional magnetic resonance imaging. Three sets of analyses were performed on the imaging data in order to investigate two related issues. First, a mean-centered spatiotemporal partial least square (PLS) analysis identified a pattern of brain activity across regions of the core network that was common to episodic memory and episodic counterfactual thinking. Second, a non-rotated PLS analysis identified two different patterns of brain activity for likely and unlikely episodic counterfactual thoughts, with the former showing significant overlap with the set of regions engaged during episodic recollection. Finally, a parametric modulation was conducted to explore the differential engagement of brain regions during counterfactual thinking, revealing that areas such as the parahippocampal gyrus and the right hippocampus were modulated by the subjective likelihood of counterfactual simulations. These results suggest that episodic counterfactual thinking engages regions that form the core brain network, and also that the subjective likelihood of our counterfactual thoughts modulates the engagement of different areas within this set of regions. PMID:23376052
Task-Rest Modulation of Basal Ganglia Connectivity in Mild to Moderate Parkinson’s Disease
Müller-Oehring, Eva M.; Sullivan, Edith V.; Pfefferbaum, Adolf; Huang, Neng C.; Poston, Kathleen L.; Bronte-Stewart, Helen M.; Schulte, Tilman
2014-01-01
Parkinson’s disease (PD) is associated with abnormal synchronization in basal ganglia-thalamo-cortical loops. We tested whether early PD patients without demonstrable cognitive impairment exhibit abnormal modulation of functional connectivity at rest, while engaged in a task, or both. PD and healthy controls underwent two functional MRI scans: a resting-state scan and a Stroop Match-to-Sample task scan. Rest-task modulation of basal ganglia (BG) connectivity was tested using seed-to-voxel connectivity analysis with task and rest time series as conditions. Despite substantial overlap of BG–cortical connectivity patterns in both groups, connectivity differences between groups had clinical and behavioral correlates. During rest, stronger putamen–medial parietal and pallidum–occipital connectivity in PD than controls was associated with worse task performance and more severe PD symptoms suggesting that abnormalities in resting-state connectivity denote neural network dedifferentiation. During the executive task, PD patients showed weaker BG-cortical connectivity than controls, i.e., between caudate–supramarginal gyrus and pallidum–inferior prefrontal regions, that was related to more severe PD symptoms and worse task performance. Yet, task processing also evoked stronger striatal–cortical connectivity, specifically between caudate–prefrontal, caudate–precuneus, and putamen–motor/premotor regions in PD relative to controls, which was related to less severe PD symptoms and better performance on the Stroop task. Thus, stronger task-evoked striatal connectivity in PD demonstrated compensatory neural network enhancement to meet task demands and improve performance levels. fMRI-based network analysis revealed that despite resting-state BG network compromise in PD, BG connectivity to prefrontal, premotor, and precuneus regions can be adequately invoked during executive control demands enabling near normal task performance. PMID:25280970
Tamam, Sofina; Ahmad, Asma Hayati
2017-01-01
Pain is modulated by various factors, the most notable of which is emotions. Since love is an emotion, it can also modulate pain. The answer to the question of whether it enhances or reduces pain needs to be determined. A review was conducted of animal and human studies in which this enigmatic emotion and its interaction with pain was explored. Recent advances in neuroimaging have revealed similarities in brain activation relating to love and pain. At the simplest level, this interaction can be explained by the overlapping network structure in brain functional connectivity, although the explanation is considerably more complex. The effect of love can either result in increased or decreased pain perception. An explanation of the interaction between pain and love relates to the functional connectivity of the brain and to the psychological construct of the individual, as well as to his or her ability to engage resources relating to emotion regulation. In turn, this determines how a person relates to love and reacts to pain. PMID:28814928
Kreitz, Silke; de Celis Alonso, Benito; Uder, Michael; Hess, Andreas
2018-01-01
Resting state (RS) connectivity has been increasingly studied in healthy and diseased brains in humans and animals. This paper presents a new method to analyze RS data from fMRI that combines multiple seed correlation analysis with graph-theory (MSRA). We characterize and evaluate this new method in relation to two other graph-theoretical methods and ICA. The graph-theoretical methods calculate cross-correlations of regional average time-courses, one using seed regions of the same size (SRCC) and the other using whole brain structure regions (RCCA). We evaluated the reproducibility, power, and capacity of these methods to characterize short-term RS modulation to unilateral physiological whisker stimulation in rats. Graph-theoretical networks found with the MSRA approach were highly reproducible, and their communities showed large overlaps with ICA components. Additionally, MSRA was the only one of all tested methods that had the power to detect significant RS modulations induced by whisker stimulation that are controlled by family-wise error rate (FWE). Compared to the reduced resting state network connectivity during task performance, these modulations implied decreased connectivity strength in the bilateral sensorimotor and entorhinal cortex. Additionally, the contralateral ventromedial thalamus (part of the barrel field related lemniscal pathway) and the hypothalamus showed reduced connectivity. Enhanced connectivity was observed in the amygdala, especially the contralateral basolateral amygdala (involved in emotional learning processes). In conclusion, MSRA is a powerful analytical approach that can reliably detect tiny modulations of RS connectivity. It shows a great promise as a method for studying RS dynamics in healthy and pathological conditions.
Kreitz, Silke; de Celis Alonso, Benito; Uder, Michael; Hess, Andreas
2018-01-01
Resting state (RS) connectivity has been increasingly studied in healthy and diseased brains in humans and animals. This paper presents a new method to analyze RS data from fMRI that combines multiple seed correlation analysis with graph-theory (MSRA). We characterize and evaluate this new method in relation to two other graph-theoretical methods and ICA. The graph-theoretical methods calculate cross-correlations of regional average time-courses, one using seed regions of the same size (SRCC) and the other using whole brain structure regions (RCCA). We evaluated the reproducibility, power, and capacity of these methods to characterize short-term RS modulation to unilateral physiological whisker stimulation in rats. Graph-theoretical networks found with the MSRA approach were highly reproducible, and their communities showed large overlaps with ICA components. Additionally, MSRA was the only one of all tested methods that had the power to detect significant RS modulations induced by whisker stimulation that are controlled by family-wise error rate (FWE). Compared to the reduced resting state network connectivity during task performance, these modulations implied decreased connectivity strength in the bilateral sensorimotor and entorhinal cortex. Additionally, the contralateral ventromedial thalamus (part of the barrel field related lemniscal pathway) and the hypothalamus showed reduced connectivity. Enhanced connectivity was observed in the amygdala, especially the contralateral basolateral amygdala (involved in emotional learning processes). In conclusion, MSRA is a powerful analytical approach that can reliably detect tiny modulations of RS connectivity. It shows a great promise as a method for studying RS dynamics in healthy and pathological conditions. PMID:29875622
Fast-response IR spatial light modulators with a polymer network liquid crystal
NASA Astrophysics Data System (ADS)
Peng, Fenglin; Chen, Haiwei; Tripathi, Suvagata; Twieg, Robert J.; Wu, Shin-Tson
2015-03-01
Liquid crystals (LC) have widespread applications for amplitude modulation (e.g. flat panel displays) and phase modulation (e.g. beam steering). For phase modulation, a 2π phase modulo is required. To extend the electro-optic application into infrared region (MWIR and LWIR), several key technical challenges have to be overcome: 1. low absorption loss, 2. high birefringence, 3. low operation voltage, and 4. fast response time. After three decades of extensive development, an increasing number of IR devices adopting LC technology have been demonstrated, such as liquid crystal waveguide, laser beam steering at 1.55μm and 10.6 μm, spatial light modulator in the MWIR (3~5μm) band, dynamic scene projectors for infrared seekers in the LWIR (8~12μm) band. However, several fundamental molecular vibration bands and overtones exist in the MWIR and LWIR regions, which contribute to high absorption coefficient and hinder its widespread application. Therefore, the inherent absorption loss becomes a major concern for IR devices. To suppress IR absorption, several approaches have been investigated: 1) Employing thin cell gap by choosing a high birefringence liquid crystal mixture; 2) Shifting the absorption bands outside the spectral region of interest by deuteration, fluorination and chlorination; 3) Reducing the overlap vibration bands by using shorter alkyl chain compounds. In this paper, we report some chlorinated LC compounds and mixtures with a low absorption loss in the near infrared and MWIR regions. To achieve fast response time, we have demonstrated a polymer network liquid crystal with 2π phase change at MWIR and response time less than 5 ms.
Combined node and link partitions method for finding overlapping communities in complex networks
Jin, Di; Gabrys, Bogdan; Dang, Jianwu
2015-01-01
Community detection in complex networks is a fundamental data analysis task in various domains, and how to effectively find overlapping communities in real applications is still a challenge. In this work, we propose a new unified model and method for finding the best overlapping communities on the basis of the associated node and link partitions derived from the same framework. Specifically, we first describe a unified model that accommodates node and link communities (partitions) together, and then present a nonnegative matrix factorization method to learn the parameters of the model. Thereafter, we infer the overlapping communities based on the derived node and link communities, i.e., determine each overlapped community between the corresponding node and link community with a greedy optimization of a local community function conductance. Finally, we introduce a model selection method based on consensus clustering to determine the number of communities. We have evaluated our method on both synthetic and real-world networks with ground-truths, and compared it with seven state-of-the-art methods. The experimental results demonstrate the superior performance of our method over the competing ones in detecting overlapping communities for all analysed data sets. Improved performance is particularly pronounced in cases of more complicated networked community structures. PMID:25715829
A cooperative game framework for detecting overlapping communities in social networks
NASA Astrophysics Data System (ADS)
Jonnalagadda, Annapurna; Kuppusamy, Lakshmanan
2018-02-01
Community detection in social networks is a challenging and complex task, which received much attention from researchers of multiple domains in recent years. The evolution of communities in social networks happens merely due to the self-interest of the nodes. The interesting feature of community structure in social networks is the multi membership of the nodes resulting in overlapping communities. Assuming the nodes of the social network as self-interested players, the dynamics of community formation can be captured in the form of a game. In this paper, we propose a greedy algorithm, namely, Weighted Graph Community Game (WGCG), in order to model the interactions among the self-interested nodes of the social network. The proposed algorithm employs the Shapley value mechanism to discover the inherent communities of the underlying social network. The experimental evaluation on the real-world and synthetic benchmark networks demonstrates that the performance of the proposed algorithm is superior to the state-of-the-art overlapping community detection algorithms.
Identifying and characterizing key nodes among communities based on electrical-circuit networks.
Zhu, Fenghui; Wang, Wenxu; Di, Zengru; Fan, Ying
2014-01-01
Complex networks with community structures are ubiquitous in the real world. Despite many approaches developed for detecting communities, we continue to lack tools for identifying overlapping and bridging nodes that play crucial roles in the interactions and communications among communities in complex networks. Here we develop an algorithm based on the local flow conservation to effectively and efficiently identify and distinguish the two types of nodes. Our method is applicable in both undirected and directed networks without a priori knowledge of the community structure. Our method bypasses the extremely challenging problem of partitioning communities in the presence of overlapping nodes that may belong to multiple communities. Due to the fact that overlapping and bridging nodes are of paramount importance in maintaining the function of many social and biological networks, our tools open new avenues towards understanding and controlling real complex networks with communities accompanied with the key nodes.
Oyarzún, Javiera P; Morís, Joaquín; Luque, David; de Diego-Balaguer, Ruth; Fuentemilla, Lluís
2017-08-09
System memory consolidation is conceptualized as an active process whereby newly encoded memory representations are strengthened through selective memory reactivation during sleep. However, our learning experience is highly overlapping in content (i.e., shares common elements), and memories of these events are organized in an intricate network of overlapping associated events. It remains to be explored whether and how selective memory reactivation during sleep has an impact on these overlapping memories acquired during awake time. Here, we test in a group of adult women and men the prediction that selective memory reactivation during sleep entails the reactivation of associated events and that this may lead the brain to adaptively regulate whether these associated memories are strengthened or pruned from memory networks on the basis of their relative associative strength with the shared element. Our findings demonstrate the existence of efficient regulatory neural mechanisms governing how complex memory networks are shaped during sleep as a function of their associative memory strength. SIGNIFICANCE STATEMENT Numerous studies have demonstrated that system memory consolidation is an active, selective, and sleep-dependent process in which only subsets of new memories become stabilized through their reactivation. However, the learning experience is highly overlapping in content and thus events are encoded in an intricate network of related memories. It remains to be explored whether and how memory reactivation has an impact on overlapping memories acquired during awake time. Here, we show that sleep memory reactivation promotes strengthening and weakening of overlapping memories based on their associative memory strength. These results suggest the existence of an efficient regulatory neural mechanism that avoids the formation of cluttered memory representation of multiple events and promotes stabilization of complex memory networks. Copyright © 2017 the authors 0270-6474/17/377748-11$15.00/0.
Network neighborhood analysis with the multi-node topological overlap measure.
Li, Ai; Horvath, Steve
2007-01-15
The goal of neighborhood analysis is to find a set of genes (the neighborhood) that is similar to an initial 'seed' set of genes. Neighborhood analysis methods for network data are important in systems biology. If individual network connections are susceptible to noise, it can be advantageous to define neighborhoods on the basis of a robust interconnectedness measure, e.g. the topological overlap measure. Since the use of multiple nodes in the seed set may lead to more informative neighborhoods, it can be advantageous to define multi-node similarity measures. The pairwise topological overlap measure is generalized to multiple network nodes and subsequently used in a recursive neighborhood construction method. A local permutation scheme is used to determine the neighborhood size. Using four network applications and a simulated example, we provide empirical evidence that the resulting neighborhoods are biologically meaningful, e.g. we use neighborhood analysis to identify brain cancer related genes. An executable Windows program and tutorial for multi-node topological overlap measure (MTOM) based analysis can be downloaded from the webpage (http://www.genetics.ucla.edu/labs/horvath/MTOM/).
NASA Technical Reports Server (NTRS)
Berkoff, Timothy A.; Welton, Ellsworth J.; Campbell, James R.; Scott, Vibart S.; Spinhirne, James D.
2003-01-01
The Micro-Pulse Lidar NETwork (MPLNET) is comprised of micro-pulse lidars (MPL) stationed around the globe to provide measurements of aerosol and cloud vertical distribution on a continuous basis. MPLNET sites are co-located with sunphotometers in the AErosol Robotic NETwork (AERONET) to provide joint measurements of aerosol optical depth, size, and other inherent optical properties. The IPCC 2001 report discusses . the importance of obtaining routine measurements of aerosol vertical structure, especially for absorbing aerosols. MPLNET provides exactly this sort of measurement, including calculation of aerosol extinction profiles, in a near real-time basis for all sites in the network. In order to obtain aerosol profiles, near range signal returns (0-6 km) must be accurately measured by the MPL. This measurement is complicated by the instrument s overlap range: Le., the minimum distance at which returning signals are completely in the instrument s field-of-view (FOV). Typical MPL overlap distances are large, between 5 - 6 km, due to the narrow FOV of the MPL receiver. A function describing the MPL overlap must be determined and used to correct signals in this range. Currently, overlap functions for MPLNET are determined using horizontal MPL measurements along a path with 10-1 5 km clear line-of-sight and a homogenous atmosphere. These conditions limit the location and ease in which successful overlaps can be obtained. Furthermore, the current MPLNET process of correcting for overlap increases the uncertainty and bias error for the near range signals and the resulting aerosol extinction profiles. To address these issues, an alternative overlap correction method using a small-diameter, wide FOV receiver is being considered for potential use in MPLNET. The wide FOV receiver has a much shorter overlap distance and will be used to calculate the overlap function of the MPL receiver. This approach has a significant benefit in that overlap corrections could be obtained without the need for horizontal measurements. A review of both overlap methods is presented, including a discussion of the impact on reducing the uncertainty and bias error in MPLNET aerosol profiles.
NASA Astrophysics Data System (ADS)
Palla, Gergely; Derenyi, Imre; Farkas, Illes J.; Vicsek, Tamas
2006-03-01
Most tasks in a cell are performed not by individual proteins, but by functional groups of proteins (either physically interacting with each other or associated in other ways). In gene (protein) association networks these groups show up as sets of densely connected nodes. In the yeast, Saccharomyces cerevisiae, known physically interacting groups of proteins (called protein complexes) strongly overlap: the total number of proteins contained by these complexes by far underestimates the sum of their sizes (2750 vs. 8932). Thus, most functional groups of proteins, both physically interacting and other, are likely to share many of their members with other groups. However, current algorithms searching for dense groups of nodes in networks usually exclude overlaps. With the aim to discover both novel functions of individual proteins and novel protein functional groups we combine in protein association networks (i) a search for overlapping dense subgraphs based on the Clique Percolation Method (CPM) (Palla, G., et.al. Nature 435, 814-818 (2005), http://angel.elte.hu/clustering), which explicitly allows for overlaps among the groups, and (ii) a verification and characterization of the identified groups of nodes (proteins) with the help of standard annotation databases listing known functions.
IGF2BP3 modulates the interaction of invasion-associated transcripts with RISC
Ennajdaoui, Hanane; Howard, Jonathan M.; Sterne-Weiler, Timothy; Jahanbani, Fereshteh; Coyne, Doyle J.; Uren, Philip J.; Dargyte, Marija; Katzman, Sol; Draper, Jolene M.; Wallace, Andrew; Cazarez, Oscar; Burns, Suzanne C.; Qiao, Mei; Hinck, Lindsay; Smith, Andrew D.; Toloue, Masoud M.; Blencowe, Benjamin J.; Penalva, Luiz O.F.; Sanford, Jeremy R.
2016-01-01
Summary Insulin-like growth factor 2 mRNA binding protein 3 (IGF2BP3) expression correlates with malignancy. But its role(s) in pathogenesis remain enigmatic. Here, we interrogated the IGF2BP3-RNA interaction network in pancreatic ductal adenocarcinoma (PDAC) cells. Using a combination of genome-wide approaches we identify 164 direct mRNA targets of IGF2BP3. These transcripts encode proteins enriched for functions such as cell migration, proliferation and adhesion. Loss of IGF2BP3 reduced PDAC cell invasiveness and remodeled focal adhesion junctions. Individual-nucleotide resolution crosslinking immunoprecipitation (iCLIP) revealed significant overlap of IGF2BP3 and miRNA binding sites. IGF2BP3 promotes association of the RNA induced silencing complex (RISC) with specific transcripts. Our results show that IGF2BP3 influences a malignancy-associated RNA regulon by modulating miRNA-mRNA interactions. PMID:27210763
Wang, Zhiwei; Liao, Tianqi; Zhou, Zhongkai; Wang, Yuyang; Diao, Yongjia; Strappe, Padraig; Prenzler, Paul; Ayton, Jamie; Blanchard, Chris
2016-09-06
To study the mechanism underlying the liver damage induced by deep-fried oil (DO) consumption and the beneficial effects from resistant starch (RS) supplement, differential gene expression and pathway network were analyzed based on RNA sequencing data from rats. The up/down regulated genes and corresponding signaling pathways were used to construct a novel local gene network (LGN). The topology of the network showed characteristics of small-world network, with some pathways demonstrating a high degree. Some changes in genes led to a larger probability occurrence of disease or infection with DO intake. More importantly, the main pathways were found to be almost the same between the two LGNs (30 pathways overlapped in total 48) with gene expression profile. This finding may indicate that RS supplement in DO-containing diet may mainly regulate the genes that related to DO damage, and RS in the diet may provide direct signals to the liver cells and modulate its effect through a network involving complex gene regulatory events. It is the first attempt to reveal the mechanism of the attenuation of liver dysfunction from RS supplement in the DO-containing diet using differential gene expression and pathway network. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Scalable Multicast Protocols for Overlapped Groups in Broker-Based Sensor Networks
NASA Astrophysics Data System (ADS)
Kim, Chayoung; Ahn, Jinho
In sensor networks, there are lots of overlapped multicast groups because of many subscribers, associated with their potentially varying specific interests, querying every event to sensors/publishers. And gossip based communication protocols are promising as one of potential solutions providing scalability in P(Publish)/ S(Subscribe) paradigm in sensor networks. Moreover, despite the importance of both guaranteeing message delivery order and supporting overlapped multicast groups in sensor or P2P networks, there exist little research works on development of gossip-based protocols to satisfy all these requirements. In this paper, we present two versions of causally ordered delivery guaranteeing protocols for overlapped multicast groups. The one is based on sensor-broker as delegates and the other is based on local views and delegates representing subscriber subgroups. In the sensor-broker based protocol, sensor-broker might lead to make overlapped multicast networks organized by subscriber's interests. The message delivery order has been guaranteed consistently and all multicast messages are delivered to overlapped subscribers using gossip based protocols by sensor-broker. Therefore, these features of the sensor-broker based protocol might be significantly scalable rather than those of the protocols by hierarchical membership list of dedicated groups like traditional committee protocols. And the subscriber-delegate based protocol is much stronger rather than fully decentralized protocols guaranteeing causally ordered delivery based on only local views because the message delivery order has been guaranteed consistently by all corresponding members of the groups including delegates. Therefore, this feature of the subscriber-delegate protocol is a hybrid approach improving the inherent scalability of multicast nature by gossip-based technique in all communications.
Endophenotype Network Models: Common Core of Complex Diseases
Ghiassian, Susan Dina; Menche, Jörg; Chasman, Daniel I.; Giulianini, Franco; Wang, Ruisheng; Ricchiuto, Piero; Aikawa, Masanori; Iwata, Hiroshi; Müller, Christian; Zeller, Tania; Sharma, Amitabh; Wild, Philipp; Lackner, Karl; Singh, Sasha; Ridker, Paul M.; Blankenberg, Stefan; Barabási, Albert-László; Loscalzo, Joseph
2016-01-01
Historically, human diseases have been differentiated and categorized based on the organ system in which they primarily manifest. Recently, an alternative view is emerging that emphasizes that different diseases often have common underlying mechanisms and shared intermediate pathophenotypes, or endo(pheno)types. Within this framework, a specific disease’s expression is a consequence of the interplay between the relevant endophenotypes and their local, organ-based environment. Important examples of such endophenotypes are inflammation, fibrosis, and thrombosis and their essential roles in many developing diseases. In this study, we construct endophenotype network models and explore their relation to different diseases in general and to cardiovascular diseases in particular. We identify the local neighborhoods (module) within the interconnected map of molecular components, i.e., the subnetworks of the human interactome that represent the inflammasome, thrombosome, and fibrosome. We find that these neighborhoods are highly overlapping and significantly enriched with disease-associated genes. In particular they are also enriched with differentially expressed genes linked to cardiovascular disease (risk). Finally, using proteomic data, we explore how macrophage activation contributes to our understanding of inflammatory processes and responses. The results of our analysis show that inflammatory responses initiate from within the cross-talk of the three identified endophenotypic modules. PMID:27278246
Endophenotype Network Models: Common Core of Complex Diseases
NASA Astrophysics Data System (ADS)
Ghiassian, Susan Dina; Menche, Jörg; Chasman, Daniel I.; Giulianini, Franco; Wang, Ruisheng; Ricchiuto, Piero; Aikawa, Masanori; Iwata, Hiroshi; Müller, Christian; Zeller, Tania; Sharma, Amitabh; Wild, Philipp; Lackner, Karl; Singh, Sasha; Ridker, Paul M.; Blankenberg, Stefan; Barabási, Albert-László; Loscalzo, Joseph
2016-06-01
Historically, human diseases have been differentiated and categorized based on the organ system in which they primarily manifest. Recently, an alternative view is emerging that emphasizes that different diseases often have common underlying mechanisms and shared intermediate pathophenotypes, or endo(pheno)types. Within this framework, a specific disease’s expression is a consequence of the interplay between the relevant endophenotypes and their local, organ-based environment. Important examples of such endophenotypes are inflammation, fibrosis, and thrombosis and their essential roles in many developing diseases. In this study, we construct endophenotype network models and explore their relation to different diseases in general and to cardiovascular diseases in particular. We identify the local neighborhoods (module) within the interconnected map of molecular components, i.e., the subnetworks of the human interactome that represent the inflammasome, thrombosome, and fibrosome. We find that these neighborhoods are highly overlapping and significantly enriched with disease-associated genes. In particular they are also enriched with differentially expressed genes linked to cardiovascular disease (risk). Finally, using proteomic data, we explore how macrophage activation contributes to our understanding of inflammatory processes and responses. The results of our analysis show that inflammatory responses initiate from within the cross-talk of the three identified endophenotypic modules.
Li, Yao; Dwivedi, Gaurav; Huang, Wen; Yi, Yingfei
2012-01-01
There is an evolutionary advantage in having multiple components with overlapping functionality (i.e degeneracy) in organisms. While theoretical considerations of degeneracy have been well established in neural networks using information theory, the same concepts have not been developed for differential systems, which form the basis of many biochemical reaction network descriptions in systems biology. Here we establish mathematical definitions of degeneracy, complexity and robustness that allow for the quantification of these properties in a system. By exciting a dynamical system with noise, the mutual information associated with a selected observable output and the interacting subspaces of input components can be used to define both complexity and degeneracy. The calculation of degeneracy in a biological network is a useful metric for evaluating features such as the sensitivity of a biological network to environmental evolutionary pressure. Using a two-receptor signal transduction network, we find that redundant components will not yield high degeneracy whereas compensatory mechanisms established by pathway crosstalk will. This form of analysis permits interrogation of large-scale differential systems for non-identical, functionally equivalent features that have evolved to maintain homeostasis during disruption of individual components. PMID:22619750
RRW: repeated random walks on genome-scale protein networks for local cluster discovery
Macropol, Kathy; Can, Tolga; Singh, Ambuj K
2009-01-01
Background We propose an efficient and biologically sensitive algorithm based on repeated random walks (RRW) for discovering functional modules, e.g., complexes and pathways, within large-scale protein networks. Compared to existing cluster identification techniques, RRW implicitly makes use of network topology, edge weights, and long range interactions between proteins. Results We apply the proposed technique on a functional network of yeast genes and accurately identify statistically significant clusters of proteins. We validate the biological significance of the results using known complexes in the MIPS complex catalogue database and well-characterized biological processes. We find that 90% of the created clusters have the majority of their catalogued proteins belonging to the same MIPS complex, and about 80% have the majority of their proteins involved in the same biological process. We compare our method to various other clustering techniques, such as the Markov Clustering Algorithm (MCL), and find a significant improvement in the RRW clusters' precision and accuracy values. Conclusion RRW, which is a technique that exploits the topology of the network, is more precise and robust in finding local clusters. In addition, it has the added flexibility of being able to find multi-functional proteins by allowing overlapping clusters. PMID:19740439
Phase modulated 2D HSQC-TOCSY for unambiguous assignment of overlapping spin systems
NASA Astrophysics Data System (ADS)
Singh, Amrinder; Dubey, Abhinav; Adiga, Satish K.; Atreya, Hanudatta S.
2018-01-01
We present a new method that allows one to unambiguously resolve overlapping spin systems often encountered in biomolecular systems such as peptides and proteins or in samples containing a mixture of different molecules such as in metabolomics. We address this problem using the recently proposed phase modulation approach. By evolving the 1H chemical shifts in a conventional two dimensional (2D) HSQC-TOCSY experiment for a fixed delay period, the phase/intensity of set of cross peaks belonging to one spin system are modulated differentially relative to those of its overlapping counterpart, resulting in their discrimination and recognition. The method thus accelerates the process of identification and resonance assignment of individual compounds in complex mixtures. This approach facilitated the assignment of molecules in the embryo culture medium used in human assisted reproductive technology.
Yu, Liang; Wang, Bingbo; Ma, Xiaoke; Gao, Lin
2016-12-23
Extracting drug-disease correlations is crucial in unveiling disease mechanisms, as well as discovering new indications of available drugs, or drug repositioning. Both the interactome and the knowledge of disease-associated and drug-associated genes remain incomplete. We present a new method to predict the associations between drugs and diseases. Our method is based on a module distance, which is originally proposed to calculate distances between modules in incomplete human interactome. We first map all the disease genes and drug genes to a combined protein interaction network. Then based on the module distance, we calculate the distances between drug gene sets and disease gene sets, and take the distances as the relationships of drug-disease pairs. We also filter possible false positive drug-disease correlations by p-value. Finally, we validate the top-100 drug-disease associations related to six drugs in the predicted results. The overlapping between our predicted correlations with those reported in Comparative Toxicogenomics Database (CTD) and literatures, and their enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways demonstrate our approach can not only effectively identify new drug indications, but also provide new insight into drug-disease discovery.
Wood, Daniel K; Chouinard, Philippe A; Major, Alex J; Goodale, Melvyn A
2017-12-01
Most object-directed limb movements can be carried out with a comfortable grasp posture. However, the orientation of an object relative to our bodies can sometimes lead us to select an uncomfortable or awkward grasp posture due to limitations imposed by the biomechanics of the arm. In a series of experiments, we identified a network of cortical areas that are engaged during the selection of movement strategies. Neurologically intact participants and two brain-damaged patients with overlapping lesions in the right posterior superior parietal lobule (pSPL) performed a grasp posture selection task in which biomechanical constraints were the primary consideration for selecting an action. The task induced states of bistable actions whereby the same stimulus gave rise to categorically different grasp postures. In a behavioral experiment, the two patients displayed a large range of manual bistability with the contralesional hand, resulting in a higher incidence of awkward grasping postures. In neurologically intact participants, a separate functional magnetic resonance imaging (fMRI) experiment revealed activation of a parieto-frontal network, which included the posterior intraparietal sulcus (pIPS) along the banks of the pSPL that was parametrically modulated by the degree of bistability in grasp posture selection. Superimposing this activation over the patients' structural MRIs revealed that the pIPS/pSPL activation in the neurologically intact participants overlapped with lesioned cortical tissue in both patients; all other areas of activation overlapped with intact cortical tissue in the patients. These results provide converging evidence that the posterior parietal cortex plays a critical role in selecting biomechanically appropriate postures during reach-to-grasp behaviors. Copyright © 2016 Elsevier Ltd. All rights reserved.
Sojoudi, Alireza; Goodyear, Bradley G
2016-12-01
Spontaneous fluctuations of blood-oxygenation level-dependent functional magnetic resonance imaging (BOLD fMRI) signals are highly synchronous between brain regions that serve similar functions. This provides a means to investigate functional networks; however, most analysis techniques assume functional connections are constant over time. This may be problematic in the case of neurological disease, where functional connections may be highly variable. Recently, several methods have been proposed to determine moment-to-moment changes in the strength of functional connections over an imaging session (so called dynamic connectivity). Here a novel analysis framework based on a hierarchical observation modeling approach was proposed, to permit statistical inference of the presence of dynamic connectivity. A two-level linear model composed of overlapping sliding windows of fMRI signals, incorporating the fact that overlapping windows are not independent was described. To test this approach, datasets were synthesized whereby functional connectivity was either constant (significant or insignificant) or modulated by an external input. The method successfully determines the statistical significance of a functional connection in phase with the modulation, and it exhibits greater sensitivity and specificity in detecting regions with variable connectivity, when compared with sliding-window correlation analysis. For real data, this technique possesses greater reproducibility and provides a more discriminative estimate of dynamic connectivity than sliding-window correlation analysis. Hum Brain Mapp 37:4566-4580, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Yeo, B T Thomas; Krienen, Fenna M; Chee, Michael W L; Buckner, Randy L
2014-03-01
The organization of the human cerebral cortex has recently been explored using techniques for parcellating the cortex into distinct functionally coupled networks. The divergent and convergent nature of cortico-cortical anatomic connections suggests the need to consider the possibility of regions belonging to multiple networks and hierarchies among networks. Here we applied the Latent Dirichlet Allocation (LDA) model and spatial independent component analysis (ICA) to solve for functionally coupled cerebral networks without assuming that cortical regions belong to a single network. Data analyzed included 1000 subjects from the Brain Genomics Superstruct Project (GSP) and 12 high quality individual subjects from the Human Connectome Project (HCP). The organization of the cerebral cortex was similar regardless of whether a winner-take-all approach or the more relaxed constraints of LDA (or ICA) were imposed. This suggests that large-scale networks may function as partially isolated modules. Several notable interactions among networks were uncovered by the LDA analysis. Many association regions belong to at least two networks, while somatomotor and early visual cortices are especially isolated. As examples of interaction, the precuneus, lateral temporal cortex, medial prefrontal cortex and posterior parietal cortex participate in multiple paralimbic networks that together comprise subsystems of the default network. In addition, regions at or near the frontal eye field and human lateral intraparietal area homologue participate in multiple hierarchically organized networks. These observations were replicated in both datasets and could be detected (and replicated) in individual subjects from the HCP. © 2013.
Yeo, BT Thomas; Krienen, Fenna M; Chee, Michael WL; Buckner, Randy L
2014-01-01
The organization of the human cerebral cortex has recently been explored using techniques for parcellating the cortex into distinct functionally coupled networks. The divergent and convergent nature of cortico-cortical anatomic connections suggests the need to consider the possibility of regions belonging to multiple networks and hierarchies among networks. Here we applied the Latent Dirichlet Allocation (LDA) model and spatial independent component analysis (ICA) to solve for functionally coupled cerebral networks without assuming that cortical regions belong to a single network. Data analyzed included 1,000 subjects from the Brain Genomics Superstruct Project (GSP) and 12 high quality individual subjects from the Human Connectome Project (HCP). The organization of the cerebral cortex was similar regardless of whether a winner-take-all approach or the more relaxed constraints of LDA (or ICA) were imposed. This suggests that large-scale networks may function as partially isolated modules. Several notable interactions among networks were uncovered by the LDA analysis. Many association regions belong to at least two networks, while somatomotor and early visual cortices are especially isolated. As examples of interaction, the precuneus, lateral temporal cortex, medial prefrontal cortex and posterior parietal cortex participate in multiple paralimbic networks that together comprise subsystems of the default network. In addition, regions at or near the frontal eye field and human lateral intraparietal area homologue participate in multiple hierarchically organized networks. These observations were replicated in both datasets and could be detected (and replicated) in individual subjects from the HCP. PMID:24185018
A local immunization strategy for networks with overlapping community structure
NASA Astrophysics Data System (ADS)
Taghavian, Fatemeh; Salehi, Mostafa; Teimouri, Mehdi
2017-02-01
Since full coverage treatment is not feasible due to limited resources, we need to utilize an immunization strategy to effectively distribute the available vaccines. On the other hand, the structure of contact network among people has a significant impact on epidemics of infectious diseases (such as SARS and influenza) in a population. Therefore, network-based immunization strategies aim to reduce the spreading rate by removing the vaccinated nodes from contact network. Such strategies try to identify more important nodes in epidemics spreading over a network. In this paper, we address the effect of overlapping nodes among communities on epidemics spreading. The proposed strategy is an optimized random-walk based selection of these nodes. The whole process is local, i.e. it requires contact network information in the level of nodes. Thus, it is applicable to large-scale and unknown networks in which the global methods usually are unrealizable. Our simulation results on different synthetic and real networks show that the proposed method outperforms the existing local methods in most cases. In particular, for networks with strong community structures, high overlapping membership of nodes or small size communities, the proposed method shows better performance.
Overlapping Modularity at the Critical Point of k-Clique Percolation
NASA Astrophysics Data System (ADS)
Tóth, Bálint; Vicsek, Tamás; Palla, Gergely
2013-05-01
One of the most remarkable social phenomena is the formation of communities in social networks corresponding to families, friendship circles, work teams, etc. Since people usually belong to several different communities at the same time, the induced overlaps result in an extremely complicated web of the communities themselves. Thus, uncovering the intricate community structure of social networks is a non-trivial task with great potential for practical applications, gaining a notable interest in the recent years. The Clique Percolation Method (CPM) is one of the earliest overlapping community finding methods, which was already used in the analysis of several different social networks. In this approach the communities correspond to k-clique percolation clusters, and the general heuristic for setting the parameters of the method is to tune the system just below the critical point of k-clique percolation. However, this rule is based on simple physical principles and its validity was never subject to quantitative analysis. Here we examine the quality of the partitioning in the vicinity of the critical point using recently introduced overlapping modularity measures. According to our results on real social and other networks, the overlapping modularities show a maximum close to the critical point, justifying the original criteria for the optimal parameter settings.
User's Manual for FOMOCO Utilities-Force and Moment Computation Tools for Overset Grids
NASA Technical Reports Server (NTRS)
Chan, William M.; Buning, Pieter G.
1996-01-01
In the numerical computations of flows around complex configurations, accurate calculations of force and moment coefficients for aerodynamic surfaces are required. When overset grid methods are used, the surfaces on which force and moment coefficients are sought typically consist of a collection of overlapping surface grids. Direct integration of flow quantities on the overlapping grids would result in the overlapped regions being counted more than once. The FOMOCO Utilities is a software package for computing flow coefficients (force, moment, and mass flow rate) on a collection of overset surfaces with accurate accounting of the overlapped zones. FOMOCO Utilities can be used in stand-alone mode or in conjunction with the Chimera overset grid compressible Navier-Stokes flow solver OVERFLOW. The software package consists of two modules corresponding to a two-step procedure: (1) hybrid surface grid generation (MIXSUR module), and (2) flow quantities integration (OVERINT module). Instructions on how to use this software package are described in this user's manual. Equations used in the flow coefficients calculation are given in Appendix A.
Peer Network Overlap in Twin, Sibling, and Friend Dyads
ERIC Educational Resources Information Center
McGuire, Shirley; Segal, Nancy L.
2013-01-01
Research suggests that sibling–peer connections are important for understanding adolescent problem behaviors. Using a novel behavioral genetic design, the current study investigated peer network overlap in 300 child–child pairs (aged 7-13 years) in 5 dyad types: monozygotic (MZ), dizygotic twins, full siblings (FSs), friend pairs, and virtual…
Overlapping community detection based on link graph using distance dynamics
NASA Astrophysics Data System (ADS)
Chen, Lei; Zhang, Jing; Cai, Li-Jun
2018-01-01
The distance dynamics model was recently proposed to detect the disjoint community of a complex network. To identify the overlapping structure of a network using the distance dynamics model, an overlapping community detection algorithm, called L-Attractor, is proposed in this paper. The process of L-Attractor mainly consists of three phases. In the first phase, L-Attractor transforms the original graph to a link graph (a new edge graph) to assure that one node has multiple distances. In the second phase, using the improved distance dynamics model, a dynamic interaction process is introduced to simulate the distance dynamics (shrink or stretch). Through the dynamic interaction process, all distances converge, and the disjoint community structure of the link graph naturally manifests itself. In the third phase, a recovery method is designed to convert the disjoint community structure of the link graph to the overlapping community structure of the original graph. Extensive experiments are conducted on the LFR benchmark networks as well as real-world networks. Based on the results, our algorithm demonstrates higher accuracy and quality than other state-of-the-art algorithms.
Community detection for networks with unipartite and bipartite structure
NASA Astrophysics Data System (ADS)
Chang, Chang; Tang, Chao
2014-09-01
Finding community structures in networks is important in network science, technology, and applications. To date, most algorithms that aim to find community structures only focus either on unipartite or bipartite networks. A unipartite network consists of one set of nodes and a bipartite network consists of two nonoverlapping sets of nodes with only links joining the nodes in different sets. However, a third type of network exists, defined here as the mixture network. Just like a bipartite network, a mixture network also consists of two sets of nodes, but some nodes may simultaneously belong to two sets, which breaks the nonoverlapping restriction of a bipartite network. The mixture network can be considered as a general case, with unipartite and bipartite networks viewed as its limiting cases. A mixture network can represent not only all the unipartite and bipartite networks, but also a wide range of real-world networks that cannot be properly represented as either unipartite or bipartite networks in fields such as biology and social science. Based on this observation, we first propose a probabilistic model that can find modules in unipartite, bipartite, and mixture networks in a unified framework based on the link community model for a unipartite undirected network [B Ball et al (2011 Phys. Rev. E 84 036103)]. We test our algorithm on synthetic networks (both overlapping and nonoverlapping communities) and apply it to two real-world networks: a southern women bipartite network and a human transcriptional regulatory mixture network. The results suggest that our model performs well for all three types of networks, is competitive with other algorithms for unipartite or bipartite networks, and is applicable to real-world networks.
Seeding for pervasively overlapping communities
NASA Astrophysics Data System (ADS)
Lee, Conrad; Reid, Fergal; McDaid, Aaron; Hurley, Neil
2011-06-01
In some social and biological networks, the majority of nodes belong to multiple communities. It has recently been shown that a number of the algorithms specifically designed to detect overlapping communities do not perform well in such highly overlapping settings. Here, we consider one class of these algorithms, those which optimize a local fitness measure, typically by using a greedy heuristic to expand a seed into a community. We perform synthetic benchmarks which indicate that an appropriate seeding strategy becomes more important as the extent of community overlap increases. We find that distinct cliques provide the best seeds. We find further support for this seeding strategy with benchmarks on a Facebook network and the yeast interactome.
Yamashita, Yuichi; Tani, Jun
2008-01-01
It is generally thought that skilled behavior in human beings results from a functional hierarchy of the motor control system, within which reusable motor primitives are flexibly integrated into various sensori-motor sequence patterns. The underlying neural mechanisms governing the way in which continuous sensori-motor flows are segmented into primitives and the way in which series of primitives are integrated into various behavior sequences have, however, not yet been clarified. In earlier studies, this functional hierarchy has been realized through the use of explicit hierarchical structure, with local modules representing motor primitives in the lower level and a higher module representing sequences of primitives switched via additional mechanisms such as gate-selecting. When sequences contain similarities and overlap, however, a conflict arises in such earlier models between generalization and segmentation, induced by this separated modular structure. To address this issue, we propose a different type of neural network model. The current model neither makes use of separate local modules to represent primitives nor introduces explicit hierarchical structure. Rather than forcing architectural hierarchy onto the system, functional hierarchy emerges through a form of self-organization that is based on two distinct types of neurons, each with different time properties (“multiple timescales”). Through the introduction of multiple timescales, continuous sequences of behavior are segmented into reusable primitives, and the primitives, in turn, are flexibly integrated into novel sequences. In experiments, the proposed network model, coordinating the physical body of a humanoid robot through high-dimensional sensori-motor control, also successfully situated itself within a physical environment. Our results suggest that it is not only the spatial connections between neurons but also the timescales of neural activity that act as important mechanisms leading to functional hierarchy in neural systems. PMID:18989398
On testing for spatial correspondence between maps of human brain structure and function.
Alexander-Bloch, Aaron F; Shou, Haochang; Liu, Siyuan; Satterthwaite, Theodore D; Glahn, David C; Shinohara, Russell T; Vandekar, Simon N; Raznahan, Armin
2018-06-01
A critical issue in many neuroimaging studies is the comparison between brain maps. Nonetheless, it remains unclear how one should test hypotheses focused on the overlap or spatial correspondence between two or more brain maps. This "correspondence problem" affects, for example, the interpretation of comparisons between task-based patterns of functional activation, resting-state networks or modules, and neuroanatomical landmarks. To date, this problem has been addressed with remarkable variability in terms of methodological approaches and statistical rigor. In this paper, we address the correspondence problem using a spatial permutation framework to generate null models of overlap by applying random rotations to spherical representations of the cortical surface, an approach for which we also provide a theoretical statistical foundation. We use this method to derive clusters of cognitive functions that are correlated in terms of their functional neuroatomical substrates. In addition, using publicly available data, we formally demonstrate the correspondence between maps of task-based functional activity, resting-state fMRI networks and gyral-based anatomical landmarks. We provide open-access code to implement the methods presented for two commonly-used tools for surface based cortical analysis (https://www.github.com/spin-test). This spatial permutation approach constitutes a useful advance over widely-used methods for the comparison of cortical maps, thereby opening new possibilities for the integration of diverse neuroimaging data. Copyright © 2018 Elsevier Inc. All rights reserved.
Specialization and integration of functional thalamocortical connectivity in the human infant.
Toulmin, Hilary; Beckmann, Christian F; O'Muircheartaigh, Jonathan; Ball, Gareth; Nongena, Pumza; Makropoulos, Antonios; Ederies, Ashraf; Counsell, Serena J; Kennea, Nigel; Arichi, Tomoki; Tusor, Nora; Rutherford, Mary A; Azzopardi, Denis; Gonzalez-Cinca, Nuria; Hajnal, Joseph V; Edwards, A David
2015-05-19
Connections between the thalamus and cortex develop rapidly before birth, and aberrant cerebral maturation during this period may underlie a number of neurodevelopmental disorders. To define functional thalamocortical connectivity at the normal time of birth, we used functional MRI (fMRI) to measure blood oxygen level-dependent (BOLD) signals in 66 infants, 47 of whom were at high risk of neurocognitive impairment because of birth before 33 wk of gestation and 19 of whom were term infants. We segmented the thalamus based on correlation with functionally defined cortical components using independent component analysis (ICA) and seed-based correlations. After parcellating the cortex using ICA and segmenting the thalamus based on dominant connections with cortical parcellations, we observed a near-facsimile of the adult functional parcellation. Additional analysis revealed that BOLD signal in heteromodal association cortex typically had more widespread and overlapping thalamic representations than primary sensory cortex. Notably, more extreme prematurity was associated with increased functional connectivity between thalamus and lateral primary sensory cortex but reduced connectivity between thalamus and cortex in the prefrontal, insular and anterior cingulate regions. This work suggests that, in early infancy, functional integration through thalamocortical connections depends on significant functional overlap in the topographic organization of the thalamus and that the experience of premature extrauterine life modulates network development, altering the maturation of networks thought to support salience, executive, integrative, and cognitive functions.
Specialization and integration of functional thalamocortical connectivity in the human infant
Toulmin, Hilary; Beckmann, Christian F.; O'Muircheartaigh, Jonathan; Ball, Gareth; Nongena, Pumza; Makropoulos, Antonios; Ederies, Ashraf; Counsell, Serena J.; Kennea, Nigel; Arichi, Tomoki; Tusor, Nora; Rutherford, Mary A.; Azzopardi, Denis; Gonzalez-Cinca, Nuria; Hajnal, Joseph V.; Edwards, A. David
2015-01-01
Connections between the thalamus and cortex develop rapidly before birth, and aberrant cerebral maturation during this period may underlie a number of neurodevelopmental disorders. To define functional thalamocortical connectivity at the normal time of birth, we used functional MRI (fMRI) to measure blood oxygen level-dependent (BOLD) signals in 66 infants, 47 of whom were at high risk of neurocognitive impairment because of birth before 33 wk of gestation and 19 of whom were term infants. We segmented the thalamus based on correlation with functionally defined cortical components using independent component analysis (ICA) and seed-based correlations. After parcellating the cortex using ICA and segmenting the thalamus based on dominant connections with cortical parcellations, we observed a near-facsimile of the adult functional parcellation. Additional analysis revealed that BOLD signal in heteromodal association cortex typically had more widespread and overlapping thalamic representations than primary sensory cortex. Notably, more extreme prematurity was associated with increased functional connectivity between thalamus and lateral primary sensory cortex but reduced connectivity between thalamus and cortex in the prefrontal, insular and anterior cingulate regions. This work suggests that, in early infancy, functional integration through thalamocortical connections depends on significant functional overlap in the topographic organization of the thalamus and that the experience of premature extrauterine life modulates network development, altering the maturation of networks thought to support salience, executive, integrative, and cognitive functions. PMID:25941391
Zheng, Zane Z; Munhall, Kevin G; Johnsrude, Ingrid S
2010-08-01
The fluency and the reliability of speech production suggest a mechanism that links motor commands and sensory feedback. Here, we examined the neural organization supporting such links by using fMRI to identify regions in which activity during speech production is modulated according to whether auditory feedback matches the predicted outcome or not and by examining the overlap with the network recruited during passive listening to speech sounds. We used real-time signal processing to compare brain activity when participants whispered a consonant-vowel-consonant word ("Ted") and either heard this clearly or heard voice-gated masking noise. We compared this to when they listened to yoked stimuli (identical recordings of "Ted" or noise) without speaking. Activity along the STS and superior temporal gyrus bilaterally was significantly greater if the auditory stimulus was (a) processed as the auditory concomitant of speaking and (b) did not match the predicted outcome (noise). The network exhibiting this Feedback Type x Production/Perception interaction includes a superior temporal gyrus/middle temporal gyrus region that is activated more when listening to speech than to noise. This is consistent with speech production and speech perception being linked in a control system that predicts the sensory outcome of speech acts and that processes an error signal in speech-sensitive regions when this and the sensory data do not match.
Zheng, Zane Z.; Munhall, Kevin G; Johnsrude, Ingrid S
2009-01-01
The fluency and reliability of speech production suggests a mechanism that links motor commands and sensory feedback. Here, we examine the neural organization supporting such links by using fMRI to identify regions in which activity during speech production is modulated according to whether auditory feedback matches the predicted outcome or not, and examining the overlap with the network recruited during passive listening to speech sounds. We use real-time signal processing to compare brain activity when participants whispered a consonant-vowel-consonant word (‘Ted’) and either heard this clearly, or heard voice-gated masking noise. We compare this to when they listened to yoked stimuli (identical recordings of ‘Ted’ or noise) without speaking. Activity along the superior temporal sulcus (STS) and superior temporal gyrus (STG) bilaterally was significantly greater if the auditory stimulus was a) processed as the auditory concomitant of speaking and b) did not match the predicted outcome (noise). The network exhibiting this Feedback type by Production/Perception interaction includes an STG/MTG region that is activated more when listening to speech than to noise. This is consistent with speech production and speech perception being linked in a control system that predicts the sensory outcome of speech acts, and that processes an error signal in speech-sensitive regions when this and the sensory data do not match. PMID:19642886
Uddin, Lucina Q.; Clare Kelly, A. M.; Biswal, Bharat B.; Castellanos, F. Xavier; Milham, Michael P.
2013-01-01
The default mode network (DMN), based in ventromedial prefrontal cortex (vmPFC) and posterior cingulate cortex (PCC), exhibits higher metabolic activity at rest than during performance of externally-oriented cognitive tasks. Recent studies have suggested that competitive relationships between the DMN and various task-positive networks involved in task performance are intrinsically represented in the brain in the form of strong negative correlations (anticorrelations) between spontaneous fluctuations in these networks. Most neuroimaging studies characterize the DMN as a homogenous network, thus few have examined the differential contributions of DMN components to such competitive relationships. Here we examined functional differentiation within the default mode network, with an emphasis on understanding competitive relationships between this and other networks. We used a seed correlation approach on resting-state data to assess differences in functional connectivity between these two regions and their anticorrelated networks. While the positively correlated networks for the vmPFC and PCC seeds largely overlapped, the anticorrelated networks for each showed striking differences. Activity in vmPFC negatively predicted activity in parietal visual spatial and temporal attention networks, whereas activity in PCC negatively predicted activity in prefrontal-based motor control circuits. Granger causality analyses suggest that vmPFC and PCC exert greater influence on their anticorrelated networks than the other way around, suggesting that these two default mode nodes may directly modulate activity in task-positive networks. Thus, the two major nodes comprising the default mode network are differentiated with respect to the specific brain systems with which they interact, suggesting greater heterogeneity within this network than is commonly appreciated. PMID:18219617
Constructing Social Networks from Unstructured Group Dialog in Virtual Worlds
NASA Astrophysics Data System (ADS)
Shah, Fahad; Sukthankar, Gita
Virtual worlds and massively multi-player online games are rich sources of information about large-scale teams and groups, offering the tantalizing possibility of harvesting data about group formation, social networks, and network evolution. However these environments lack many of the cues that facilitate natural language processing in other conversational settings and different types of social media. Public chat data often features players who speak simultaneously, use jargon and emoticons, and only erratically adhere to conversational norms. In this paper, we present techniques for inferring the existence of social links from unstructured conversational data collected from groups of participants in the Second Life virtual world. We present an algorithm for addressing this problem, Shallow Semantic Temporal Overlap (SSTO), that combines temporal and language information to create directional links between participants, and a second approach that relies on temporal overlap alone to create undirected links between participants. Relying on temporal overlap is noisy, resulting in a low precision and networks with many extraneous links. In this paper, we demonstrate that we can ameliorate this problem by using network modularity optimization to perform community detection in the noisy networks and severing cross-community links. Although using the content of the communications still results in the best performance, community detection is effective as a noise reduction technique for eliminating the extra links created by temporal overlap alone.
Helminths, hygiene hypothesis and type 2 diabetes.
de Ruiter, K; Tahapary, D L; Sartono, E; Soewondo, P; Supali, T; Smit, J W A; Yazdanbakhsh, M
2017-05-01
Worldwide, there is little overlap between the prevalence of soil-transmitted helminths and type 2 diabetes (T2D). Helminth-induced type 2 immune responses and immune regulatory network might modulate the obesity-induced activation of inflammatory pathways that are associated with the development of insulin resistance, a strong predictor of the development of T2D. However, other factors such as helminth-associated changes in adiposity and gut microbiome might also contribute to improved metabolic outcomes. In this review, we summarize epidemiological evidence for the link between helminths and T2D and discuss the potential mechanisms, based on findings from experimental studies as well as the limited number of studies in humans. © 2016 John Wiley & Sons Ltd.
Entropic forces drive contraction of cytoskeletal networks.
Braun, Marcus; Lansky, Zdenek; Hilitski, Feodor; Dogic, Zvonimir; Diez, Stefan
2016-05-01
The cytoskeleton is a network of interconnected protein filaments, which provide a three-dimensional scaffold for cells. Remodeling of the cytoskeleton is important for key cellular processes, such as cell motility, division, or morphogenesis. This remodeling is traditionally considered to be driven exclusively by processes consuming chemical energy, such as the dynamics of the filaments or the action of molecular motors. Here, we review two mechanisms of cytoskeletal network remodeling that are independent of the consumption of chemical energy. In both cases directed motion of overlapping filaments is driven by entropic forces, which arise from harnessing thermal energy present in solution. Entropic forces are induced either by macromolecular crowding agents or by diffusible crosslinkers confined to the regions where filaments overlap. Both mechanisms increase filament overlap length and lead to the contraction of filament networks. These force-generating mechanisms, together with the chemical energy-dependent mechanisms, need to be considered for the comprehensive quantitative picture of the remodeling of cytoskeletal networks in cells. © 2016 WILEY Periodicals, Inc.
Justen, Christoph; Herbert, Cornelia
2018-04-19
Numerous studies have investigated the neural underpinnings of passive and active deviance and target detection in the well-known auditory oddball paradigm by means of event-related potentials (ERPs) or functional magnetic resonance imaging (fMRI). The present auditory oddball study investigates the spatio-temporal dynamics of passive versus active deviance and target detection by analyzing amplitude modulations of early and late ERPs while at the same time exploring the neural sources underling this modulation with standardized low-resolution brain electromagnetic tomography (sLORETA) . A 64-channel EEG was recorded from twelve healthy right-handed participants while listening to 'standards' and 'deviants' (500 vs. 1000 Hz pure tones) during a passive (block 1) and an active (block 2) listening condition. During passive listening, participants had to simply listen to the tones. During active listening they had to attend and press a key in response to the deviant tones. Passive and active listening elicited an N1 component, a mismatch negativity (MMN) as difference potential (whose amplitudes were temporally overlapping with the N1) and a P3 component. N1/MMN and P3 amplitudes were significantly more pronounced for deviants as compared to standards during both listening conditions. Active listening augmented P3 modulation to deviants significantly compared to passive listening, whereas deviance detection as indexed by N1/MMN modulation was unaffected by the task. During passive listening, sLORETA contrasts (deviants > standards) revealed significant activations in the right superior temporal gyrus (STG) and the lingual gyri bilaterally (N1/MMN) as well as in the left and right insulae (P3). During active listening, significant activations were found for the N1/MMN in the right inferior parietal lobule (IPL) and for the P3 in multiple cortical regions (e.g., precuneus). The results provide evidence for the hypothesis that passive as well as active deviance and target detection elicit cortical activations in spatially distributed brain regions and neural networks including the ventral attention network (VAN), dorsal attention network (DAN) and salience network (SN). Based on the temporal activation of the neural sources underlying ERP modulations, a neurophysiological model of passive and active deviance and target detection is proposed which can be tested in future studies.
N2pc is modulated by stimulus-stimulus, but not by stimulus-response incompatibilities.
Cespón, J; Galdo-Álvarez, S; Díaz, F
2013-04-01
Studies of the N2pc in Simon-type tasks have revealed inconsistent results. That is, N2pc was only modulated when a stimulus-stimulus (S-S) overlap covaries with the stimulus-response (S-R) overlap. The present study aimed to establish whether N2pc is modulated by the S-R or by the S-S overlap. Therefore, we designed a Simon task requiring response to a colour stimulus (an arrow) with two irrelevant dimensions (position and direction). The following conditions were thus generated: compatible direction-compatible position (CDCP); incompatible direction-compatible position (IDCP); compatible direction-incompatible position (CDIP); and incompatible direction-incompatible position (IDIP). In IDCP and CDIP, both irrelevant dimensions conveyed contradictory spatial information (S-S incompatibility), while compatibility between both irrelevant dimensions occurred in CDCP and IDIP (the direction indicated was compatible with stimulus position). The N2pc amplitude was smaller in IDCP and CDIP than in CDCP and IDIP, what suggests that N2pc was modulated by S-S incompatibility and not by S-R incompatibilities. Copyright © 2013 Elsevier B.V. All rights reserved.
Afzali, Mohammad H; Sunderland, Matthew; Teesson, Maree; Carragher, Natacha; Mills, Katherine; Slade, Tim
2017-01-15
The role of symptom overlap between major depressive disorder and posttraumatic stress disorder in comorbidity between two disorders is unclear. The current study applied network analysis to map the structure of symptom associations between these disorders. Data comes from a sample of 909 Australian adults with a lifetime history of trauma and depressive symptoms. Data analysis consisted of the construction of two comorbidity networks of PTSD/MDD with and without overlapping symptoms, identification of the bridging symptoms, and computation of the centrality measures. The prominent bridging role of four overlapping symptoms (i.e., sleep problems, irritability, concentration problems, and loss of interest) and five non-overlapping symptoms (i.e., feeling sad, feelings of guilt, psychomotor retardation, foreshortened future, and experiencing flashbacks) is highlighted. The current study uses DSM-IV criteria for PTSD and does not take into consideration significant changes made to PTSD criteria in DSM-5. Moreover, due to cross-sectional nature of the data, network estimates do not provide information on whether a symptom actively triggers other symptoms or whether a symptom mostly is triggered by other symptoms. The results support the role of dysphoria-related symptoms in PTSD/MDD comorbidity. Moreover, Identification of central symptoms and bridge symptoms will provide useful targets for interventions that seek to intervene early in the development of comorbidity. Copyright © 2016 Elsevier B.V. All rights reserved.
A plant effector-triggered immunity signaling sector is inhibited by pattern-triggered immunity.
Hatsugai, Noriyuki; Igarashi, Daisuke; Mase, Keisuke; Lu, You; Tsuda, Yayoi; Chakravarthy, Suma; Wei, Hai-Lei; Foley, Joseph W; Collmer, Alan; Glazebrook, Jane; Katagiri, Fumiaki
2017-09-15
Since signaling machineries for two modes of plant-induced immunity, pattern-triggered immunity (PTI) and effector-triggered immunity (ETI), extensively overlap, PTI and ETI signaling likely interact. In an Arabidopsis quadruple mutant, in which four major sectors of the signaling network, jasmonate, ethylene, PAD4, and salicylate, are disabled, the hypersensitive response (HR) typical of ETI is abolished when the Pseudomonas syringae effector AvrRpt2 is bacterially delivered but is intact when AvrRpt2 is directly expressed in planta These observations led us to discovery of a network-buffered signaling mechanism that mediates HR signaling and is strongly inhibited by PTI signaling. We named this mechanism the ETI-Mediating and PTI-Inhibited Sector (EMPIS). The signaling kinetics of EMPIS explain apparently different plant genetic requirements for ETI triggered by different effectors without postulating different signaling machineries. The properties of EMPIS suggest that information about efficacy of the early immune response is fed back to the immune signaling network, modulating its activity and limiting the fitness cost of unnecessary immune responses. © 2017 The Authors.
Reserve networks based on richness hotspots and representation vary with scale.
Shriner, Susan A; Wilson, Kenneth R; Flather, Curtis H
2006-10-01
While the importance of spatial scale in ecology is well established, few studies have investigated the impact of data grain on conservation planning outcomes. In this study, we compared species richness hotspot and representation networks developed at five grain sizes. We used species distribution maps for mammals and birds developed by the Arizona and New Mexico Gap Analysis Programs (GAP) to produce 1-km2, 100-kmn2, 625-km2, 2500-km2, and 10,000-km2 grid cell resolution distribution maps. We used these distribution maps to generate species richness and hotspot (95th quantile) maps for each taxon in each state. Species composition information at each grain size was used to develop two types of representation networks using the reserve selection software MARXAN. Reserve selection analyses were restricted to Arizona birds due to considerable computation requirements. We used MARXAN to create best reserve networks based on the minimum area required to represent each species at least once and equal area networks based on irreplaceability values. We also measured the median area of each species' distribution included in hotspot (mammals and birds of Arizona and New Mexico) and irreplaceability (Arizona birds) networks across all species. Mean area overlap between richness hotspot reserves identified at the five grain sizes was 29% (grand mean for four within-taxon/state comparisons), mean overlap for irreplaceability reserve networks was 32%, and mean overlap for best reserve networks was 53%. Hotspots for mammals and birds showed low overlap with a mean of 30%. Comparison of hotspots and irreplaceability networks showed very low overlap with a mean of 13%. For hotspots, median species distribution area protected within reserves declined monotonically from a high of 11% for 1-km2 networks down to 6% for 10,000-km2 networks. Irreplaceability networks showed a similar, but more variable, pattern of decline. This work clearly shows that map resolution has a profound effect on conservation planning outcomes and that hotspot and representation outcomes may be strikingly dissimilar. Thus, conservation planning is scale dependent, such that reserves developed using coarse-grained data do not subsume fine-grained reserves. Moreover, preserving both full species representation and species rich areas may require combined reserve design strategies.
Isobe, Keisuke; Kawano, Hiroyuki; Kumagai, Akiko; Miyawaki, Atsushi; Midorikawa, Katsumi
2013-01-01
A spatial overlap modulation (SPOM) technique is a nonlinear optical microscopy technique which enhances the three-dimensional spatial resolution and rejects the out-of-focus background limiting the imaging depth inside a highly scattering sample. Here, we report on the implementation of SPOM in which beam pointing modulation is achieved by an electro-optic deflector. The modulation and demodulation frequencies are enhanced to 200 kHz and 400 kHz, respectively, resulting in a 200-fold enhancement compared with the previously reported system. The resolution enhancement and suppression of the out-of-focus background are demonstrated by sum-frequency-generation imaging of pounded granulated sugar and deep imaging of fluorescent beads in a tissue-like phantom, respectively. PMID:24156055
A model for evolution of overlapping community networks
NASA Astrophysics Data System (ADS)
Karan, Rituraj; Biswal, Bibhu
2017-05-01
A model is proposed for the evolution of network topology in social networks with overlapping community structure. Starting from an initial community structure that is defined in terms of group affiliations, the model postulates that the subsequent growth and loss of connections is similar to the Hebbian learning and unlearning in the brain and is governed by two dominant factors: the strength and frequency of interaction between the members, and the degree of overlap between different communities. The temporal evolution from an initial community structure to the current network topology can be described based on these two parameters. It is possible to quantify the growth occurred so far and predict the final stationary state to which the network is likely to evolve. Applications in epidemiology or the spread of email virus in a computer network as well as finding specific target nodes to control it are envisaged. While facing the challenge of collecting and analyzing large-scale time-resolved data on social groups and communities one faces the most basic questions: how do communities evolve in time? This work aims to address this issue by developing a mathematical model for the evolution of community networks and studying it through computer simulation.
NASA Astrophysics Data System (ADS)
Guo, Guodong; Hackney, Drew; Pankow, Mark; Peters, Kara
2017-04-01
A spectral profile division multiplexed fiber Bragg grating (FBG) sensor network is described in this paper. The unique spectral profile of each sensor in the network is identified as a distinct feature to be interrogated. Spectrum overlap is allowed under working conditions. Thus, a specific wavelength window does not need to be allocated to each sensor as in a wavelength division multiplexed (WDM) network. When the sensors are serially connected in the network, the spectrum output is expressed through a truncated series. To track the wavelength shift of each sensor, the identification problem is transformed to a nonlinear optimization problem, which is then solved by a modified dynamic multi-swarm particle swarm optimizer (DMS-PSO). To demonstrate the application of the developed network, a network consisting of four FBGs was integrated into a Kevlar woven fabric, which was under a quasi-static load imposed by an impactor head. Due to the substantial radial strain in the fabric, the spectrums of different FBGs were found to overlap during the loading process. With the developed interrogating method, the overlapped spectrum would be distinguished thus the wavelength shift of each sensor can be monitored.
Network localization of neurological symptoms from focal brain lesions
Prasad, Sashank; Liu, Hesheng; Liu, Qi; Pascual-Leone, Alvaro; Caviness, Verne S.; Fox, Michael D.
2015-01-01
A traditional and widely used approach for linking neurological symptoms to specific brain regions involves identifying overlap in lesion location across patients with similar symptoms, termed lesion mapping. This approach is powerful and broadly applicable, but has limitations when symptoms do not localize to a single region or stem from dysfunction in regions connected to the lesion site rather than the site itself. A newer approach sensitive to such network effects involves functional neuroimaging of patients, but this requires specialized brain scans beyond routine clinical data, making it less versatile and difficult to apply when symptoms are rare or transient. In this article we show that the traditional approach to lesion mapping can be expanded to incorporate network effects into symptom localization without the need for specialized neuroimaging of patients. Our approach involves three steps: (i) transferring the three-dimensional volume of a brain lesion onto a reference brain; (ii) assessing the intrinsic functional connectivity of the lesion volume with the rest of the brain using normative connectome data; and (iii) overlapping lesion-associated networks to identify regions common to a clinical syndrome. We first tested our approach in peduncular hallucinosis, a syndrome of visual hallucinations following subcortical lesions long hypothesized to be due to network effects on extrastriate visual cortex. While the lesions themselves were heterogeneously distributed with little overlap in lesion location, 22 of 23 lesions were negatively correlated with extrastriate visual cortex. This network overlap was specific compared to other subcortical lesions (P < 10−5) and relative to other cortical regions (P < 0.01). Next, we tested for generalizability of our technique by applying it to three additional lesion syndromes: central post-stroke pain, auditory hallucinosis, and subcortical aphasia. In each syndrome, heterogeneous lesions that themselves had little overlap showed significant network overlap in cortical areas previously implicated in symptom expression (P < 10−4). These results suggest that (i) heterogeneous lesions producing similar symptoms share functional connectivity to specific brain regions involved in symptom expression; and (ii) publically available human connectome data can be used to incorporate these network effects into traditional lesion mapping approaches. Because the current technique requires no specialized imaging of patients it may prove a versatile and broadly applicable approach for localizing neurological symptoms in the setting of brain lesions. PMID:26264514
A novel method for overlapping community detection using Multi-objective optimization
NASA Astrophysics Data System (ADS)
Ebrahimi, Morteza; Shahmoradi, Mohammad Reza; Heshmati, Zainabolhoda; Salehi, Mostafa
2018-09-01
The problem of community detection as one of the most important applications of network science can be addressed effectively by multi-objective optimization. In this paper, we aim to present a novel efficient method based on this approach. Also, in this study the idea of using all Pareto fronts to detect overlapping communities is introduced. The proposed method has two main advantages compared to other multi-objective optimization based approaches. The first advantage is scalability, and the second is the ability to find overlapping communities. Despite most of the works, the proposed method is able to find overlapping communities effectively. The new algorithm works by extracting appropriate communities from all the Pareto optimal solutions, instead of choosing the one optimal solution. Empirical experiments on different features of separated and overlapping communities, on both synthetic and real networks show that the proposed method performs better in comparison with other methods.
Maeng, Daniel D; Scanlon, Dennis P; Chernew, Michael E; Gronniger, Tim; Wodchis, Walter P; McLaughlin, Catherine G
2010-01-01
Objective To examine the extent to which health plan quality measures capture physician practice patterns rather than plan characteristics. Data Source We gathered and merged secondary data from the following four sources: a private firm that collected information on individual physicians and their health plan affiliations, The National Committee for Quality Assurance, InterStudy, and the Dartmouth Atlas. Study Design We constructed two measures of physician network overlap for all health plans in our sample and linked them to selected measures of plan performance. Two linear regression models were estimated to assess the relationship between the measures of physician network overlap and the plan performance measures. Principal Findings The results indicate that in the presence of a higher degree of provider network overlap, plan performance measures tend to converge to a lower level of quality. Conclusions Standard health plan performance measures reflect physician practice patterns rather than plans' effort to improve quality. This implies that more provider-oriented measurement, such as would be possible with accountable care organizations or medical homes, may facilitate patient decision making and provide further incentives to improve performance. PMID:20403064
Assessment of a new web-based sexual concurrency measurement tool for men who have sex with men.
Rosenberg, Eli S; Rothenberg, Richard B; Kleinbaum, David G; Stephenson, Rob B; Sullivan, Patrick S
2014-11-10
Men who have sex with men (MSM) are the most affected risk group in the United States' human immunodeficiency virus (HIV) epidemic. Sexual concurrency, the overlapping of partnerships in time, accelerates HIV transmission in populations and has been documented at high levels among MSM. However, concurrency is challenging to measure empirically and variations in assessment techniques used (primarily the date overlap and direct question approaches) and the outcomes derived from them have led to heterogeneity and questionable validity of estimates among MSM and other populations. The aim was to evaluate a novel Web-based and interactive partnership-timing module designed for measuring concurrency among MSM, and to compare outcomes measured by the partnership-timing module to those of typical approaches in an online study of MSM. In an online study of MSM aged ≥18 years, we assessed concurrency by using the direct question method and by gathering the dates of first and last sex, with enhanced programming logic, for each reported partner in the previous 6 months. From these methods, we computed multiple concurrency cumulative prevalence outcomes: direct question, day resolution / date overlap, and month resolution / date overlap including both 1-month ties and excluding ties. We additionally computed variants of the UNAIDS point prevalence outcome. The partnership-timing module was also administered. It uses an interactive month resolution calendar to improve recall and follow-up questions to resolve temporal ambiguities, combines elements of the direct question and date overlap approaches. The agreement between the partnership-timing module and other concurrency outcomes was assessed with percent agreement, kappa statistic (κ), and matched odds ratios at the individual, dyad, and triad levels of analysis. Among 2737 MSM who completed the partnership section of the partnership-timing module, 41.07% (1124/2737) of individuals had concurrent partners in the previous 6 months. The partnership-timing module had the highest degree of agreement with the direct question. Agreement was lower with date overlap outcomes (agreement range 79%-81%, κ range .55-.59) and lowest with the UNAIDS outcome at 5 months before interview (65% agreement, κ=.14, 95% CI .12-.16). All agreements declined after excluding individuals with 1 sex partner (always classified as not engaging in concurrency), although the highest agreement was still observed with the direct question technique (81% agreement, κ=.59, 95% CI .55-.63). Similar patterns in agreement were observed with dyad- and triad-level outcomes. The partnership-timing module showed strong concurrency detection ability and agreement with previous measures. These levels of agreement were greater than others have reported among previous measures. The partnership-timing module may be well suited to quantifying concurrency among MSM at multiple levels of analysis.
Kim, Hongkeun
2016-01-08
It remains unclear whether and to what extent the default network subregions involved in episodic memory (EM) and semantic memory (SM) processes overlap or are separated from one another. This study addresses this issue through a controlled meta-analysis of functional neuroimaging studies involving healthy participants. Various EM and SM task paradigms differ widely in the extent of default network involvement. Therefore, the issue at hand cannot be properly addressed without some control for this factor. In this regard, this study employs a two-stage analysis: a preliminary meta-analysis to select EM and SM task paradigms that recruit relatively extensive default network regions and a main analysis to compare the selected task paradigms. Based on a within-EM comparison, the default network contributed more to recollection/familiarity effects than to old/new effects, and based on a within-SM comparison, it contributed more to word/pseudoword effects than to semantic/phonological effects. According to a direct comparison of recollection/familiarity and word/pseudoword effects, each involving a range of default network regions, there were more overlaps than separations in default network subregions involved in these two effects. More specifically, overlaps included the bilateral posterior cingulate/retrosplenial cortex, left inferior parietal lobule, and left anteromedial prefrontal regions, whereas separations included only the hippocampal formation and the parahippocampal cortex region, which was unique to recollection/familiarity effects. These results indicate that EM and SM retrieval processes involving strong memory signals recruit extensive and largely overlapping default network regions and differ mainly in distinct contributions of hippocampus and parahippocampal regions to EM retrieval. Copyright © 2015 Elsevier Ltd. All rights reserved.
Gene networks specific for innate immunity define post-traumatic stress disorder.
Breen, M S; Maihofer, A X; Glatt, S J; Tylee, D S; Chandler, S D; Tsuang, M T; Risbrough, V B; Baker, D G; O'Connor, D T; Nievergelt, C M; Woelk, C H
2015-12-01
The molecular factors involved in the development of Post-Traumatic Stress Disorder (PTSD) remain poorly understood. Previous transcriptomic studies investigating the mechanisms of PTSD apply targeted approaches to identify individual genes under a cross-sectional framework lack a holistic view of the behaviours and properties of these genes at the system-level. Here we sought to apply an unsupervised gene-network based approach to a prospective experimental design using whole-transcriptome RNA-Seq gene expression from peripheral blood leukocytes of U.S. Marines (N=188), obtained both pre- and post-deployment to conflict zones. We identified discrete groups of co-regulated genes (i.e., co-expression modules) and tested them for association to PTSD. We identified one module at both pre- and post-deployment containing putative causal signatures for PTSD development displaying an over-expression of genes enriched for functions of innate-immune response and interferon signalling (Type-I and Type-II). Importantly, these results were replicated in a second non-overlapping independent dataset of U.S. Marines (N=96), further outlining the role of innate immune and interferon signalling genes within co-expression modules to explain at least part of the causal pathophysiology for PTSD development. A second module, consequential of trauma exposure, contained PTSD resiliency signatures and an over-expression of genes involved in hemostasis and wound responsiveness suggesting that chronic levels of stress impair proper wound healing during/after exposure to the battlefield while highlighting the role of the hemostatic system as a clinical indicator of chronic-based stress. These findings provide novel insights for early preventative measures and advanced PTSD detection, which may lead to interventions that delay or perhaps abrogate the development of PTSD.
IGF2BP3 Modulates the Interaction of Invasion-Associated Transcripts with RISC.
Ennajdaoui, Hanane; Howard, Jonathan M; Sterne-Weiler, Timothy; Jahanbani, Fereshteh; Coyne, Doyle J; Uren, Philip J; Dargyte, Marija; Katzman, Sol; Draper, Jolene M; Wallace, Andrew; Cazarez, Oscar; Burns, Suzanne C; Qiao, Mei; Hinck, Lindsay; Smith, Andrew D; Toloue, Masoud M; Blencowe, Benjamin J; Penalva, Luiz O F; Sanford, Jeremy R
2016-05-31
Insulin-like growth factor 2 mRNA binding protein 3 (IGF2BP3) expression correlates with malignancy, but its role(s) in pathogenesis remains enigmatic. We interrogated the IGF2BP3-RNA interaction network in pancreatic ductal adenocarcinoma (PDAC) cells. Using a combination of genome-wide approaches, we have identified 164 direct mRNA targets of IGF2BP3. These transcripts encode proteins enriched for functions such as cell migration, proliferation, and adhesion. Loss of IGF2BP3 reduced PDAC cell invasiveness and remodeled focal adhesion junctions. Individual nucleotide resolution crosslinking immunoprecipitation (iCLIP) revealed significant overlap of IGF2BP3 and microRNA (miRNA) binding sites. IGF2BP3 promotes association of the RNA-induced silencing complex (RISC) with specific transcripts. Our results show that IGF2BP3 influences a malignancy-associated RNA regulon by modulating miRNA-mRNA interactions. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.
Hypnotic analgesia reduces brain responses to pain seen in others.
Braboszcz, Claire; Brandao-Farinelli, Edith; Vuilleumier, Patrik
2017-08-29
Brain responses to pain experienced by oneself or seen in other people show consistent overlap in the pain processing network, particularly anterior insula, supporting the view that pain empathy partly relies on neural processes engaged by self-nociception. However, it remains unresolved whether changes in one's own pain sensation may affect empathic responding to others' pain. Here we show that inducing analgesia through hypnosis leads to decreased responses to both self and vicarious experience of pain. Activations in the right anterior insula and amygdala were markedly reduced when participants received painful thermal stimuli following hypnotic analgesia on their own hand, but also when they viewed pictures of others' hand in pain. Functional connectivity analysis indicated that this hypnotic modulation of pain responses was associated with differential recruitment of right prefrontal regions implicated in selective attention and inhibitory control. Our results provide novel support to the view that self-nociception is involved during empathy for pain, and demonstrate the possibility to use hypnotic procedures to modulate higher-level emotional and social processes.
Figueiredo, Agnes Marie Sá; Ferreira, Fabienne Antunes; Beltrame, Cristiana Ossaille; Côrtes, Marina Farrel
2017-09-01
Staphylococcus aureus biofilms represent a unique micro-environment that directly contribute to the bacterial fitness within hospital settings. The accumulation of this structure on implanted medical devices has frequently caused the development of persistent and chronic S. aureus-associated infections, which represent an important social and economic burden worldwide. ica-independent biofilms are composed of an assortment of bacterial products and modulated by a multifaceted and overlapping regulatory network; therefore, biofilm composition can vary among S. aureus strains. In the microniches formed by biofilms-produced by a number of bacterial species and composed by different structural components-drug refractory cell subpopulations with distinct physiological characteristics can emerge and result in therapeutic failures in patients with recalcitrant bacterial infections. In this review, we highlight the importance of biofilms in the development of persistence and chronicity in some S. aureus diseases, the main molecules associated with ica-independent biofilm development and the regulatory mechanisms that modulate ica-independent biofilm production, accumulation, and dispersion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tomasi, Dardo; Wang, Gene -Jack; Wang, Ruiliang
Cocaine, through its activation of dopamine (DA) signaling, usurps pathways that process natural rewards. However, the extent to which there is overlap between the networks that process natural and drug rewards and whether DA signaling associated with cocaine abuse influences these networks have not been investigated in humans. We measured brain activation responses to food and cocaine cues with fMRI, and D2/D3 receptors in the striatum with [ 11C]raclopride and PET in 20 active cocaine abusers. Compared to neutral cues, food and cocaine cues increasingly engaged cerebellum, orbitofrontal, inferior frontal and premotor cortices and insula and disengaged cuneus and defaultmore » mode network (DMN). These fMRI signals were proportional to striatal D2/D3 receptors. Surprisingly cocaine and food cues also deactivated ventral striatum and hypothalamus. Compared to food cues, cocaine cues produced lower activation in insula and postcentral gyrus, and less deactivation in hypothalamus and DMN regions. Activation in cortical regions and cerebellum increased in proportion to the valence of the cues, and activation to food cues in somatosensory and orbitofrontal cortices also increased in proportion to body mass. Longer exposure to cocaine was associated with lower activation to both cues in occipital cortex and cerebellum, which could reflect the decreases in D2/D3 receptors associated with chronicity. In conclusion, these findings show that cocaine cues activate similar, though not identical, pathways to those activated by food cues and that striatal D2/D3 receptors modulate these responses, suggesting that chronic cocaine exposure might influence brain sensitivity not just to drugs but also to food cues.« less
Tomasi, Dardo; Wang, Gene -Jack; Wang, Ruiliang; ...
2014-08-20
Cocaine, through its activation of dopamine (DA) signaling, usurps pathways that process natural rewards. However, the extent to which there is overlap between the networks that process natural and drug rewards and whether DA signaling associated with cocaine abuse influences these networks have not been investigated in humans. We measured brain activation responses to food and cocaine cues with fMRI, and D2/D3 receptors in the striatum with [ 11C]raclopride and PET in 20 active cocaine abusers. Compared to neutral cues, food and cocaine cues increasingly engaged cerebellum, orbitofrontal, inferior frontal and premotor cortices and insula and disengaged cuneus and defaultmore » mode network (DMN). These fMRI signals were proportional to striatal D2/D3 receptors. Surprisingly cocaine and food cues also deactivated ventral striatum and hypothalamus. Compared to food cues, cocaine cues produced lower activation in insula and postcentral gyrus, and less deactivation in hypothalamus and DMN regions. Activation in cortical regions and cerebellum increased in proportion to the valence of the cues, and activation to food cues in somatosensory and orbitofrontal cortices also increased in proportion to body mass. Longer exposure to cocaine was associated with lower activation to both cues in occipital cortex and cerebellum, which could reflect the decreases in D2/D3 receptors associated with chronicity. In conclusion, these findings show that cocaine cues activate similar, though not identical, pathways to those activated by food cues and that striatal D2/D3 receptors modulate these responses, suggesting that chronic cocaine exposure might influence brain sensitivity not just to drugs but also to food cues.« less
A Brain Centred View of Psychiatric Comorbidity in Tinnitus: From Otology to Hodology
Minichino, Amedeo; Panico, Roberta; Testugini, Valeria; Altissimi, Giancarlo; Cianfrone, Giancarlo
2014-01-01
Introduction. Comorbid psychiatric disorders are frequent among patients affected by tinnitus. There are mutual clinical influences between tinnitus and psychiatric disorders, as well as neurobiological relations based on partially overlapping hodological and neuroplastic phenomena. The aim of the present paper is to review the evidence of alterations in brain networks underlying tinnitus physiopathology and to discuss them in light of the current knowledge of the neurobiology of psychiatric disorders. Methods. Relevant literature was identified through a search on Medline and PubMed; search terms included tinnitus, brain, plasticity, cortex, network, and pathways. Results. Tinnitus phenomenon results from systemic-neurootological triggers followed by neuronal remapping within several auditory and nonauditory pathways. Plastic reorganization and white matter alterations within limbic system, arcuate fasciculus, insula, salience network, dorsolateral prefrontal cortex, auditory pathways, ffrontocortical, and thalamocortical networks are discussed. Discussion. Several overlapping brain network alterations do exist between tinnitus and psychiatric disorders. Tinnitus, initially related to a clinicoanatomical approach based on a cortical localizationism, could be better explained by an holistic or associationist approach considering psychic functions and tinnitus as emergent properties of partially overlapping large-scale neural networks. PMID:25018882
Neuronal network disintegration: common pathways linking neurodegenerative diseases.
Ahmed, Rebekah M; Devenney, Emma M; Irish, Muireann; Ittner, Arne; Naismith, Sharon; Ittner, Lars M; Rohrer, Jonathan D; Halliday, Glenda M; Eisen, Andrew; Hodges, John R; Kiernan, Matthew C
2016-11-01
Neurodegeneration refers to a heterogeneous group of brain disorders that progressively evolve. It has been increasingly appreciated that many neurodegenerative conditions overlap at multiple levels and therefore traditional clinicopathological correlation approaches to better classify a disease have met with limited success. Neuronal network disintegration is fundamental to neurodegeneration, and concepts based around such a concept may better explain the overlap between their clinical and pathological phenotypes. In this Review, promoters of overlap in neurodegeneration incorporating behavioural, cognitive, metabolic, motor, and extrapyramidal presentations will be critically appraised. In addition, evidence that may support the existence of large-scale networks that might be contributing to phenotypic differentiation will be considered across a neurodegenerative spectrum. Disintegration of neuronal networks through different pathological processes, such as prion-like spread, may provide a better paradigm of disease and thereby facilitate the identification of novel therapies for neurodegeneration. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Determinants of public cooperation in multiplex networks
NASA Astrophysics Data System (ADS)
Battiston, Federico; Perc, Matjaž; Latora, Vito
2017-07-01
Synergies between evolutionary game theory and statistical physics have significantly improved our understanding of public cooperation in structured populations. Multiplex networks, in particular, provide the theoretical framework within network science that allows us to mathematically describe the rich structure of interactions characterizing human societies. While research has shown that multiplex networks may enhance the resilience of cooperation, the interplay between the overlap in the structure of the layers and the control parameters of the corresponding games has not yet been investigated. With this aim, we consider here the public goods game on a multiplex network, and we unveil the role of the number of layers and the overlap of links, as well as the impact of different synergy factors in different layers, on the onset of cooperation. We show that enhanced public cooperation emerges only when a significant edge overlap is combined with at least one layer being able to sustain some cooperation by means of a sufficiently high synergy factor. In the absence of either of these conditions, the evolution of cooperation in multiplex networks is determined by the bounds of traditional network reciprocity with no enhanced resilience. These results caution against overly optimistic predictions that the presence of multiple social domains may in itself promote cooperation, and they help us better understand the complexity behind prosocial behavior in layered social systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gompers, Andrea L.; Su-Feher, Linda; Ellegood, Jacob
The chromatin remodeling gene CHD8 represents a central node in neurodevelopmental gene networks implicated in autism. In this paper, we examined the impact of germline heterozygous frameshift Chd8 mutation on neurodevelopment in mice. Chd8 +/ del5 mice displayed normal social interactions with no repetitive behaviors but exhibited cognitive impairment correlated with increased regional brain volume, validating that phenotypes of Chd8 +/ del5 mice overlap pathology reported in humans with CHD8 mutations. We applied network analysis to characterize neurodevelopmental gene expression, revealing widespread transcriptional changes in Chd8 +/ del5 mice across pathways disrupted in neurodevelopmental disorders, including neurogenesis, synaptic processes andmore » neuroimmune signaling. We identified a co-expression module with peak expression in early brain development featuring dysregulation of RNA processing, chromatin remodeling and cell-cycle genes enriched for promoter binding by Chd8, and we validated increased neuronal proliferation and developmental splicing perturbation in Chd8 +/ del5 mice. Finally, this integrative analysis offers an initial picture of the consequences of Chd8 haploinsufficiency for brain development.« less
Reconstruction and Simulation of Neocortical Microcircuitry.
Markram, Henry; Muller, Eilif; Ramaswamy, Srikanth; Reimann, Michael W; Abdellah, Marwan; Sanchez, Carlos Aguado; Ailamaki, Anastasia; Alonso-Nanclares, Lidia; Antille, Nicolas; Arsever, Selim; Kahou, Guy Antoine Atenekeng; Berger, Thomas K; Bilgili, Ahmet; Buncic, Nenad; Chalimourda, Athanassia; Chindemi, Giuseppe; Courcol, Jean-Denis; Delalondre, Fabien; Delattre, Vincent; Druckmann, Shaul; Dumusc, Raphael; Dynes, James; Eilemann, Stefan; Gal, Eyal; Gevaert, Michael Emiel; Ghobril, Jean-Pierre; Gidon, Albert; Graham, Joe W; Gupta, Anirudh; Haenel, Valentin; Hay, Etay; Heinis, Thomas; Hernando, Juan B; Hines, Michael; Kanari, Lida; Keller, Daniel; Kenyon, John; Khazen, Georges; Kim, Yihwa; King, James G; Kisvarday, Zoltan; Kumbhar, Pramod; Lasserre, Sébastien; Le Bé, Jean-Vincent; Magalhães, Bruno R C; Merchán-Pérez, Angel; Meystre, Julie; Morrice, Benjamin Roy; Muller, Jeffrey; Muñoz-Céspedes, Alberto; Muralidhar, Shruti; Muthurasa, Keerthan; Nachbaur, Daniel; Newton, Taylor H; Nolte, Max; Ovcharenko, Aleksandr; Palacios, Juan; Pastor, Luis; Perin, Rodrigo; Ranjan, Rajnish; Riachi, Imad; Rodríguez, José-Rodrigo; Riquelme, Juan Luis; Rössert, Christian; Sfyrakis, Konstantinos; Shi, Ying; Shillcock, Julian C; Silberberg, Gilad; Silva, Ricardo; Tauheed, Farhan; Telefont, Martin; Toledo-Rodriguez, Maria; Tränkler, Thomas; Van Geit, Werner; Díaz, Jafet Villafranca; Walker, Richard; Wang, Yun; Zaninetta, Stefano M; DeFelipe, Javier; Hill, Sean L; Segev, Idan; Schürmann, Felix
2015-10-08
We present a first-draft digital reconstruction of the microcircuitry of somatosensory cortex of juvenile rat. The reconstruction uses cellular and synaptic organizing principles to algorithmically reconstruct detailed anatomy and physiology from sparse experimental data. An objective anatomical method defines a neocortical volume of 0.29 ± 0.01 mm(3) containing ~31,000 neurons, and patch-clamp studies identify 55 layer-specific morphological and 207 morpho-electrical neuron subtypes. When digitally reconstructed neurons are positioned in the volume and synapse formation is restricted to biological bouton densities and numbers of synapses per connection, their overlapping arbors form ~8 million connections with ~37 million synapses. Simulations reproduce an array of in vitro and in vivo experiments without parameter tuning. Additionally, we find a spectrum of network states with a sharp transition from synchronous to asynchronous activity, modulated by physiological mechanisms. The spectrum of network states, dynamically reconfigured around this transition, supports diverse information processing strategies. VIDEO ABSTRACT. Copyright © 2015 Elsevier Inc. All rights reserved.
ProMotE: an efficient algorithm for counting independent motifs in uncertain network topologies.
Ren, Yuanfang; Sarkar, Aisharjya; Kahveci, Tamer
2018-06-26
Identifying motifs in biological networks is essential in uncovering key functions served by these networks. Finding non-overlapping motif instances is however a computationally challenging task. The fact that biological interactions are uncertain events further complicates the problem, as it makes the existence of an embedding of a given motif an uncertain event as well. In this paper, we develop a novel method, ProMotE (Probabilistic Motif Embedding), to count non-overlapping embeddings of a given motif in probabilistic networks. We utilize a polynomial model to capture the uncertainty. We develop three strategies to scale our algorithm to large networks. Our experiments demonstrate that our method scales to large networks in practical time with high accuracy where existing methods fail. Moreover, our experiments on cancer and degenerative disease networks show that our method helps in uncovering key functional characteristics of biological networks.
Generalised power graph compression reveals dominant relationship patterns in complex networks
Ahnert, Sebastian E.
2014-01-01
We introduce a framework for the discovery of dominant relationship patterns in complex networks, by compressing the networks into power graphs with overlapping power nodes. When paired with enrichment analysis of node classification terms, the most compressible sets of edges provide a highly informative sketch of the dominant relationship patterns that define the network. In addition, this procedure also gives rise to a novel, link-based definition of overlapping node communities in which nodes are defined by their relationships with sets of other nodes, rather than through connections within the community. We show that this completely general approach can be applied to undirected, directed, and bipartite networks, yielding valuable insights into the large-scale structure of real-world networks, including social networks and food webs. Our approach therefore provides a novel way in which network architecture can be studied, defined and classified. PMID:24663099
Functional Module Analysis for Gene Coexpression Networks with Network Integration.
Zhang, Shuqin; Zhao, Hongyu; Ng, Michael K
2015-01-01
Network has been a general tool for studying the complex interactions between different genes, proteins, and other small molecules. Module as a fundamental property of many biological networks has been widely studied and many computational methods have been proposed to identify the modules in an individual network. However, in many cases, a single network is insufficient for module analysis due to the noise in the data or the tuning of parameters when building the biological network. The availability of a large amount of biological networks makes network integration study possible. By integrating such networks, more informative modules for some specific disease can be derived from the networks constructed from different tissues, and consistent factors for different diseases can be inferred. In this paper, we have developed an effective method for module identification from multiple networks under different conditions. The problem is formulated as an optimization model, which combines the module identification in each individual network and alignment of the modules from different networks together. An approximation algorithm based on eigenvector computation is proposed. Our method outperforms the existing methods, especially when the underlying modules in multiple networks are different in simulation studies. We also applied our method to two groups of gene coexpression networks for humans, which include one for three different cancers, and one for three tissues from the morbidly obese patients. We identified 13 modules with three complete subgraphs, and 11 modules with two complete subgraphs, respectively. The modules were validated through Gene Ontology enrichment and KEGG pathway enrichment analysis. We also showed that the main functions of most modules for the corresponding disease have been addressed by other researchers, which may provide the theoretical basis for further studying the modules experimentally.
Recent Developments in Grid Generation and Force Integration Technology for Overset Grids
NASA Technical Reports Server (NTRS)
Chan, William M.; VanDalsem, William R. (Technical Monitor)
1994-01-01
Recent developments in algorithms and software tools for generating overset grids for complex configurations are described. These include the overset surface grid generation code SURGRD and version 2.0 of the hyperbolic volume grid generation code HYPGEN. The SURGRD code is in beta test mode where the new features include the capability to march over a collection of panel networks, a variety of ways to control the side boundaries and the marching step sizes and distance, a more robust projection scheme and an interpolation option. New features in version 2.0 of HYPGEN include a wider range of boundary condition types. The code also allows the user to specify different marching step sizes and distance for each point on the surface grid. A scheme that takes into account of the overlapped zones on the body surface for the purpose of forces and moments computation is also briefly described, The process involves the following two software modules: MIXSUR - a composite grid generation module to produce a collection of quadrilaterals and triangles on which pressure and viscous stresses are to be integrated, and OVERINT - a forces and moments integration module.
Top-down network analysis characterizes hidden termite-termite interactions.
Campbell, Colin; Russo, Laura; Marins, Alessandra; DeSouza, Og; Schönrogge, Karsten; Mortensen, David; Tooker, John; Albert, Réka; Shea, Katriona
2016-09-01
The analysis of ecological networks is generally bottom-up, where networks are established by observing interactions between individuals. Emergent network properties have been indicated to reflect the dominant mode of interactions in communities that might be mutualistic (e.g., pollination) or antagonistic (e.g., host-parasitoid communities). Many ecological communities, however, comprise species interactions that are difficult to observe directly. Here, we propose that a comparison of the emergent properties from detail-rich reference communities with known modes of interaction can inform our understanding of detail-sparse focal communities. With this top-down approach, we consider patterns of coexistence between termite species that live as guests in mounds built by other host termite species as a case in point. Termite societies are extremely sensitive to perturbations, which precludes determining the nature of their interactions through direct observations. We perform a literature review to construct two networks representing termite mound cohabitation in a Brazilian savanna and in the tropical forest of Cameroon. We contrast the properties of these cohabitation networks with a total of 197 geographically diverse mutualistic plant-pollinator and antagonistic host-parasitoid networks. We analyze network properties for the networks, perform a principal components analysis (PCA), and compute the Mahalanobis distance of the termite networks to the cloud of mutualistic and antagonistic networks to assess the extent to which the termite networks overlap with the properties of the reference networks. Both termite networks overlap more closely with the mutualistic plant-pollinator communities than the antagonistic host-parasitoid communities, although the Brazilian community overlap with mutualistic communities is stronger. The analysis raises the hypothesis that termite-termite cohabitation networks may be overall mutualistic. More broadly, this work provides support for the argument that cryptic communities may be analyzed via comparison to well-characterized communities.
Network localization of neurological symptoms from focal brain lesions.
Boes, Aaron D; Prasad, Sashank; Liu, Hesheng; Liu, Qi; Pascual-Leone, Alvaro; Caviness, Verne S; Fox, Michael D
2015-10-01
A traditional and widely used approach for linking neurological symptoms to specific brain regions involves identifying overlap in lesion location across patients with similar symptoms, termed lesion mapping. This approach is powerful and broadly applicable, but has limitations when symptoms do not localize to a single region or stem from dysfunction in regions connected to the lesion site rather than the site itself. A newer approach sensitive to such network effects involves functional neuroimaging of patients, but this requires specialized brain scans beyond routine clinical data, making it less versatile and difficult to apply when symptoms are rare or transient. In this article we show that the traditional approach to lesion mapping can be expanded to incorporate network effects into symptom localization without the need for specialized neuroimaging of patients. Our approach involves three steps: (i) transferring the three-dimensional volume of a brain lesion onto a reference brain; (ii) assessing the intrinsic functional connectivity of the lesion volume with the rest of the brain using normative connectome data; and (iii) overlapping lesion-associated networks to identify regions common to a clinical syndrome. We first tested our approach in peduncular hallucinosis, a syndrome of visual hallucinations following subcortical lesions long hypothesized to be due to network effects on extrastriate visual cortex. While the lesions themselves were heterogeneously distributed with little overlap in lesion location, 22 of 23 lesions were negatively correlated with extrastriate visual cortex. This network overlap was specific compared to other subcortical lesions (P < 10(-5)) and relative to other cortical regions (P < 0.01). Next, we tested for generalizability of our technique by applying it to three additional lesion syndromes: central post-stroke pain, auditory hallucinosis, and subcortical aphasia. In each syndrome, heterogeneous lesions that themselves had little overlap showed significant network overlap in cortical areas previously implicated in symptom expression (P < 10(-4)). These results suggest that (i) heterogeneous lesions producing similar symptoms share functional connectivity to specific brain regions involved in symptom expression; and (ii) publically available human connectome data can be used to incorporate these network effects into traditional lesion mapping approaches. Because the current technique requires no specialized imaging of patients it may prove a versatile and broadly applicable approach for localizing neurological symptoms in the setting of brain lesions. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Ma, Zhizhen; Hemnani, Rohit; Bartels, Ludwig; Agarwal, Ritesh; Sorger, Volker J.
2018-02-01
Here we discuss the physics of electro-optic modulators deploying 2D materials. We include a scaling laws analysis and show how energy-efficiency and speed change for three underlying cavity systems as a function of critical device length scaling. A key result is that the energy-per-bit of the modulator is proportional to the volume of the device, thus making the case for submicron-scale modulators possible deploying a plasmonic optical mode. We then show how Graphene's Pauli-blocking modulation mechanism is sensitive to the device operation temperature, whereby a reduction of the temperature enables a 10× reduction in modulator energy efficiency. Furthermore, we show how the high-index tunability of graphene is able to compensate for the small optical overlap factor of 2D-based material modulators, which is unlike classical silicon-based dispersion devices. Lastly, we demonstrate a novel method towards a 2D material printer suitable for cross-contamination free and on-demand printing. The latter paves the way to integrate 2D materials seamlessly into taped-out photonic chips.
Developmental time windows for axon growth influence neuronal network topology.
Lim, Sol; Kaiser, Marcus
2015-04-01
Early brain connectivity development consists of multiple stages: birth of neurons, their migration and the subsequent growth of axons and dendrites. Each stage occurs within a certain period of time depending on types of neurons and cortical layers. Forming synapses between neurons either by growing axons starting at similar times for all neurons (much-overlapped time windows) or at different time points (less-overlapped) may affect the topological and spatial properties of neuronal networks. Here, we explore the extreme cases of axon formation during early development, either starting at the same time for all neurons (parallel, i.e., maximally overlapped time windows) or occurring for each neuron separately one neuron after another (serial, i.e., no overlaps in time windows). For both cases, the number of potential and established synapses remained comparable. Topological and spatial properties, however, differed: Neurons that started axon growth early on in serial growth achieved higher out-degrees, higher local efficiency and longer axon lengths while neurons demonstrated more homogeneous connectivity patterns for parallel growth. Second, connection probability decreased more rapidly with distance between neurons for parallel growth than for serial growth. Third, bidirectional connections were more numerous for parallel growth. Finally, we tested our predictions with C. elegans data. Together, this indicates that time windows for axon growth influence the topological and spatial properties of neuronal networks opening up the possibility to a posteriori estimate developmental mechanisms based on network properties of a developed network.
A Stochastic Model for Detecting Overlapping and Hierarchical Community Structure
Cao, Xiaochun; Wang, Xiao; Jin, Di; Guo, Xiaojie; Tang, Xianchao
2015-01-01
Community detection is a fundamental problem in the analysis of complex networks. Recently, many researchers have concentrated on the detection of overlapping communities, where a vertex may belong to more than one community. However, most current methods require the number (or the size) of the communities as a priori information, which is usually unavailable in real-world networks. Thus, a practical algorithm should not only find the overlapping community structure, but also automatically determine the number of communities. Furthermore, it is preferable if this method is able to reveal the hierarchical structure of networks as well. In this work, we firstly propose a generative model that employs a nonnegative matrix factorization (NMF) formulization with a l2,1 norm regularization term, balanced by a resolution parameter. The NMF has the nature that provides overlapping community structure by assigning soft membership variables to each vertex; the l2,1 regularization term is a technique of group sparsity which can automatically determine the number of communities by penalizing too many nonempty communities; and hence the resolution parameter enables us to explore the hierarchical structure of networks. Thereafter, we derive the multiplicative update rule to learn the model parameters, and offer the proof of its correctness. Finally, we test our approach on a variety of synthetic and real-world networks, and compare it with some state-of-the-art algorithms. The results validate the superior performance of our new method. PMID:25822148
Hierarchical thinking in network biology: the unbiased modularization of biochemical networks.
Papin, Jason A; Reed, Jennifer L; Palsson, Bernhard O
2004-12-01
As reconstructed biochemical reaction networks continue to grow in size and scope, there is a growing need to describe the functional modules within them. Such modules facilitate the study of biological processes by deconstructing complex biological networks into conceptually simple entities. The definition of network modules is often based on intuitive reasoning. As an alternative, methods are being developed for defining biochemical network modules in an unbiased fashion. These unbiased network modules are mathematically derived from the structure of the whole network under consideration.
Cognitive benefit and cost of acute stress is differentially modulated by individual brain state
Hermans, Erno J.; Fernández, Guillén
2017-01-01
Abstract Acute stress is associated with beneficial as well as detrimental effects on cognition in different individuals. However, it is not yet known how stress can have such opposing effects. Stroop-like tasks typically show this dissociation: stress diminishes speed, but improves accuracy. We investigated accuracy and speed during a stroop-like task of 120 healthy male subjects after an experimental stress induction or control condition in a randomized, counter-balanced cross-over design; we assessed brain–behavior associations and determined the influence of individual brain connectivity patterns on these associations, which may moderate the effect and help identify stress resilience factors. In the mean, stress was associated to increase in accuracy, but decrease in speed. Accuracy was associated to brain activation in a distributed set of brain regions overlapping with the executive control network (ECN) and speed to temporo-parietal activation. In line with a stress-related large-scale network reconfiguration, individuals showing an upregulation of the salience and down-regulation of the executive-control network under stress displayed increased speed, but decreased performance. In contrast, individuals who upregulate their ECN under stress show improved performance. Our results indicate that the individual large-scale brain network balance under acute stress moderates cognitive consequences of threat. PMID:28402480
Cognitive benefit and cost of acute stress is differentially modulated by individual brain state.
Kohn, Nils; Hermans, Erno J; Fernández, Guillén
2017-07-01
Acute stress is associated with beneficial as well as detrimental effects on cognition in different individuals. However, it is not yet known how stress can have such opposing effects. Stroop-like tasks typically show this dissociation: stress diminishes speed, but improves accuracy. We investigated accuracy and speed during a stroop-like task of 120 healthy male subjects after an experimental stress induction or control condition in a randomized, counter-balanced cross-over design; we assessed brain-behavior associations and determined the influence of individual brain connectivity patterns on these associations, which may moderate the effect and help identify stress resilience factors. In the mean, stress was associated to increase in accuracy, but decrease in speed. Accuracy was associated to brain activation in a distributed set of brain regions overlapping with the executive control network (ECN) and speed to temporo-parietal activation. In line with a stress-related large-scale network reconfiguration, individuals showing an upregulation of the salience and down-regulation of the executive-control network under stress displayed increased speed, but decreased performance. In contrast, individuals who upregulate their ECN under stress show improved performance. Our results indicate that the individual large-scale brain network balance under acute stress moderates cognitive consequences of threat. © The Author (2017). Published by Oxford University Press.
NASA Astrophysics Data System (ADS)
Tian, Li-Jun; Huang, Hai-Jun; Liu, Tian-Liang
2009-07-01
We investigate the effects of four different information feedback strategies on the dynamics of traffic, travelers' route choice and the resultant system performance in a signal controlled network with overlapped routes. Simulation results given by the cellular automaton model show that the system purpose-based mean velocity feedback strategy and the congestion coefficient feedback strategy have more advantages in improving network utilization efficiency and reducing travelers' travel times. The travel time feedback strategy and the individual purposed-based mean velocity feedback strategy behave slightly better to ensure user equity.
Khan, Faheem Ahmed; Liu, Hui; Zhou, Hao; Wang, Kai; Qamar, Muhammad Tahir Ul; Pandupuspitasari, Nuruliarizki Shinta; Shujun, Zhang
2017-01-01
The biology of sperm, its capability of fertilizing an egg and its role in sex ratio are the major biological questions in reproductive biology. To answer these question we integrated X and Y chromosome transcriptome across different species: Bos taurus and Sus scrofa and identified reproductive driver genes based on Weighted Gene Co-Expression Network Analysis (WGCNA) algorithm. Our strategy resulted in 11007 and 10445 unique genes consisting of 9 and 11 reproductive modules in Bos taurus and Sus scrofa, respectively. The consensus module calculation yields an overall 167 overlapped genes which were mapped to 846 DEGs in Bos taurus to finally get a list of 67 dual feature genes. We develop gene co-expression network of selected 67 genes that consists of 58 nodes (27 down-regulated and 31 up-regulated genes) enriched to 66 GO biological process (BP) including 6 GO annotations related to reproduction and two KEGG pathways. Moreover, we searched significantly related TF (ISRE, AP1FJ, RP58, CREL) and miRNAs (bta-miR-181a, bta-miR-17-5p, bta-miR-146b, bta-miR-146a) which targeted the genes in co-expression network. In addition we performed genetic analysis including phylogenetic, functional domain identification, epigenetic modifications, mutation analysis of the most important reproductive driver genes PRM1, PPP2R2B and PAFAH1B1 and finally performed a protein docking analysis to visualize their therapeutic and gene expression regulation ability. PMID:28903352
NASA Astrophysics Data System (ADS)
Franke, R.
2016-11-01
In many networks discovered in biology, medicine, neuroscience and other disciplines special properties like a certain degree distribution and hierarchical cluster structure (also called communities) can be observed as general organizing principles. Detecting the cluster structure of an unknown network promises to identify functional subdivisions, hierarchy and interactions on a mesoscale. It is not trivial choosing an appropriate detection algorithm because there are multiple network, cluster and algorithmic properties to be considered. Edges can be weighted and/or directed, clusters overlap or build a hierarchy in several ways. Algorithms differ not only in runtime, memory requirements but also in allowed network and cluster properties. They are based on a specific definition of what a cluster is, too. On the one hand, a comprehensive network creation model is needed to build a large variety of benchmark networks with different reasonable structures to compare algorithms. On the other hand, if a cluster structure is already known, it is desirable to separate effects of this structure from other network properties. This can be done with null model networks that mimic an observed cluster structure to improve statistics on other network features. A third important application is the general study of properties in networks with different cluster structures, possibly evolving over time. Currently there are good benchmark and creation models available. But what is left is a precise sandbox model to build hierarchical, overlapping and directed clusters for undirected or directed, binary or weighted complex random networks on basis of a sophisticated blueprint. This gap shall be closed by the model CHIMERA (Cluster Hierarchy Interconnection Model for Evaluation, Research and Analysis) which will be introduced and described here for the first time.
Nim, Hieu T; Furtado, Milena B; Costa, Mauro W; Rosenthal, Nadia A; Kitano, Hiroaki; Boyd, Sarah E
2015-05-01
Existing de novo software platforms have largely overlooked a valuable resource, the expertise of the intended biologist users. Typical data representations such as long gene lists, or highly dense and overlapping transcription factor networks often hinder biologists from relating these results to their expertise. VISIONET, a streamlined visualisation tool built from experimental needs, enables biologists to transform large and dense overlapping transcription factor networks into sparse human-readable graphs via numerically filtering. The VISIONET interface allows users without a computing background to interactively explore and filter their data, and empowers them to apply their specialist knowledge on far more complex and substantial data sets than is currently possible. Applying VISIONET to the Tbx20-Gata4 transcription factor network led to the discovery and validation of Aldh1a2, an essential developmental gene associated with various important cardiac disorders, as a healthy adult cardiac fibroblast gene co-regulated by cardiogenic transcription factors Gata4 and Tbx20. We demonstrate with experimental validations the utility of VISIONET for expertise-driven gene discovery that opens new experimental directions that would not otherwise have been identified.
Cost-effective FITL technologies for small business and residential customers
NASA Astrophysics Data System (ADS)
Andersen, Niels E.; Woolnough, Peter; Seidenberg, Juergen; Ferreira, Mario F. S.
1995-02-01
FIRST is a RACE project where 5 main European telecoms operators, 4 equipment manufacturers and one university have joined up to define and test in a field trial in Portugal a cost effective Optical Access Network. The main design target has been a system which gives cost effective provision of wideband services for small and medium business customers. The system however, incorporates provision of telephone, ISDN and analog and digital video for residential customers as well. Technologies have been chosen with the objective of providing a simple, robust and flexible system where initial deployment costs are low and closely related to the service take up. The paper describes the main technical features of the system and network applications which shows how the system may be introduced in network planning. The system is based on Passive Optical Network technology where video is distributed in the 1550 nm window and telecoms services transmitted at 1300 nm in full duplex mode. The telecoms system provides high capacity, flexibility in loop length and robustness towards outside plant performance. The Subcarrier Multiple Access (SCMA) method is used for upstream transmission of bi-directional telecoms services. SCMA has advantages compared to the Time Division Multiple Access technology used in other systems. Bandwidth/cost tradeoff is better and the lower requirements to the outside plant increases the overall cost benefit. Optical beat noise due to overlapping of laser spectra which may be a problem for this technology has been addressed with success through the use of a suitable modulation and control technique. This technology is further validated in the field trial. The video system provides cost effective long distance transmission on standard fiber with externally modulated lasers and cascaded amplifiers. Coexistence of analog and digital video on one fiber with different modulation schemes i.e. BPSK, QPSK and 64 QAM have been validated. Total life cycle cost evaluations based on availability data, maintenance requirements and expectations for service development have been made. The field trial will be running for two years.
Statistically validated network of portfolio overlaps and systemic risk.
Gualdi, Stanislao; Cimini, Giulio; Primicerio, Kevin; Di Clemente, Riccardo; Challet, Damien
2016-12-21
Common asset holding by financial institutions (portfolio overlap) is nowadays regarded as an important channel for financial contagion with the potential to trigger fire sales and severe losses at the systemic level. We propose a method to assess the statistical significance of the overlap between heterogeneously diversified portfolios, which we use to build a validated network of financial institutions where links indicate potential contagion channels. The method is implemented on a historical database of institutional holdings ranging from 1999 to the end of 2013, but can be applied to any bipartite network. We find that the proportion of validated links (i.e. of significant overlaps) increased steadily before the 2007-2008 financial crisis and reached a maximum when the crisis occurred. We argue that the nature of this measure implies that systemic risk from fire sales liquidation was maximal at that time. After a sharp drop in 2008, systemic risk resumed its growth in 2009, with a notable acceleration in 2013. We finally show that market trends tend to be amplified in the portfolios identified by the algorithm, such that it is possible to have an informative signal about institutions that are about to suffer (enjoy) the most significant losses (gains).
Statistically validated network of portfolio overlaps and systemic risk
Gualdi, Stanislao; Cimini, Giulio; Primicerio, Kevin; Di Clemente, Riccardo; Challet, Damien
2016-01-01
Common asset holding by financial institutions (portfolio overlap) is nowadays regarded as an important channel for financial contagion with the potential to trigger fire sales and severe losses at the systemic level. We propose a method to assess the statistical significance of the overlap between heterogeneously diversified portfolios, which we use to build a validated network of financial institutions where links indicate potential contagion channels. The method is implemented on a historical database of institutional holdings ranging from 1999 to the end of 2013, but can be applied to any bipartite network. We find that the proportion of validated links (i.e. of significant overlaps) increased steadily before the 2007–2008 financial crisis and reached a maximum when the crisis occurred. We argue that the nature of this measure implies that systemic risk from fire sales liquidation was maximal at that time. After a sharp drop in 2008, systemic risk resumed its growth in 2009, with a notable acceleration in 2013. We finally show that market trends tend to be amplified in the portfolios identified by the algorithm, such that it is possible to have an informative signal about institutions that are about to suffer (enjoy) the most significant losses (gains). PMID:28000764
Systematic analysis of the gerontome reveals links between aging and age-related diseases
Fernandes, Maria; Wan, Cen; Tacutu, Robi; Barardo, Diogo; Rajput, Ashish; Wang, Jingwei; Thoppil, Harikrishnan; Thornton, Daniel; Yang, Chenhao; Freitas, Alex
2016-01-01
Abstract In model organisms, over 2,000 genes have been shown to modulate aging, the collection of which we call the ‘gerontome’. Although some individual aging-related genes have been the subject of intense scrutiny, their analysis as a whole has been limited. In particular, the genetic interaction of aging and age-related pathologies remain a subject of debate. In this work, we perform a systematic analysis of the gerontome across species, including human aging-related genes. First, by classifying aging-related genes as pro- or anti-longevity, we define distinct pathways and genes that modulate aging in different ways. Our subsequent comparison of aging-related genes with age-related disease genes reveals species-specific effects with strong overlaps between aging and age-related diseases in mice, yet surprisingly few overlaps in lower model organisms. We discover that genetic links between aging and age-related diseases are due to a small fraction of aging-related genes which also tend to have a high network connectivity. Other insights from our systematic analysis include assessing how using datasets with genes more or less studied than average may result in biases, showing that age-related disease genes have faster molecular evolution rates and predicting new aging-related drugs based on drug-gene interaction data. Overall, this is the largest systems-level analysis of the genetics of aging to date and the first to discriminate anti- and pro-longevity genes, revealing new insights on aging-related genes as a whole and their interactions with age-related diseases. PMID:28175300
NASA Astrophysics Data System (ADS)
Choo, Seongho; Li, Vitaly; Choi, Dong Hee; Jung, Gi Deck; Park, Hong Seong; Ryuh, Youngsun
2005-12-01
On developing the personal robot system presently, the internal architecture is every module those occupy separated functions are connected through heterogeneous network system. This module-based architecture supports specialization and division of labor at not only designing but also implementation, as an effect of this architecture, it can reduce developing times and costs for modules. Furthermore, because every module is connected among other modules through network systems, we can get easy integrations and synergy effect to apply advanced mutual functions by co-working some modules. In this architecture, one of the most important technologies is the network middleware that takes charge communications among each modules connected through heterogeneous networks systems. The network middleware acts as the human nerve system inside of personal robot system; it relays, transmits, and translates information appropriately between modules that are similar to human organizations. The network middleware supports various hardware platform, heterogeneous network systems (Ethernet, Wireless LAN, USB, IEEE 1394, CAN, CDMA-SMS, RS-232C). This paper discussed some mechanisms about our network middleware to intercommunication and routing among modules, methods for real-time data communication and fault-tolerant network service. There have designed and implemented a layered network middleware scheme, distributed routing management, network monitoring/notification technology on heterogeneous networks for these goals. The main theme is how to make routing information in our network middleware. Additionally, with this routing information table, we appended some features. Now we are designing, making a new version network middleware (we call 'OO M/W') that can support object-oriented operation, also are updating program sources itself for object-oriented architecture. It is lighter, faster, and can support more operation systems and heterogeneous network systems, but other general purposed middlewares like CORBA, UPnP, etc. can support only one network protocol or operating system.
Is My Network Module Preserved and Reproducible?
Langfelder, Peter; Luo, Rui; Oldham, Michael C.; Horvath, Steve
2011-01-01
In many applications, one is interested in determining which of the properties of a network module change across conditions. For example, to validate the existence of a module, it is desirable to show that it is reproducible (or preserved) in an independent test network. Here we study several types of network preservation statistics that do not require a module assignment in the test network. We distinguish network preservation statistics by the type of the underlying network. Some preservation statistics are defined for a general network (defined by an adjacency matrix) while others are only defined for a correlation network (constructed on the basis of pairwise correlations between numeric variables). Our applications show that the correlation structure facilitates the definition of particularly powerful module preservation statistics. We illustrate that evaluating module preservation is in general different from evaluating cluster preservation. We find that it is advantageous to aggregate multiple preservation statistics into summary preservation statistics. We illustrate the use of these methods in six gene co-expression network applications including 1) preservation of cholesterol biosynthesis pathway in mouse tissues, 2) comparison of human and chimpanzee brain networks, 3) preservation of selected KEGG pathways between human and chimpanzee brain networks, 4) sex differences in human cortical networks, 5) sex differences in mouse liver networks. While we find no evidence for sex specific modules in human cortical networks, we find that several human cortical modules are less preserved in chimpanzees. In particular, apoptosis genes are differentially co-expressed between humans and chimpanzees. Our simulation studies and applications show that module preservation statistics are useful for studying differences between the modular structure of networks. Data, R software and accompanying tutorials can be downloaded from the following webpage: http://www.genetics.ucla.edu/labs/horvath/CoexpressionNetwork/ModulePreservation. PMID:21283776
An access alternative for mobile satellite networks
NASA Technical Reports Server (NTRS)
Wu, W. W.
1988-01-01
Conceptually, this paper discusses strategies of digital satellite communication networks for a very large number of low density traffic stations. These stations can be either aeronautical, land mobile, or maritime. The techniques can be applied to international, domestic, regional, and special purpose satellite networks. The applications can be commercial, scientific, military, emergency, navigational or educational. The key strategy is the use of a non-orthogonal access method, which tolerates overlapping signals. With n being either time or frequency partitions, and with a single overlapping signal allowed, a low cost mobile satellite system can be designed with n squared (n squared + n + 1) number of terminals.
Graph theoretical analysis of functional network for comprehension of sign language.
Liu, Lanfang; Yan, Xin; Liu, Jin; Xia, Mingrui; Lu, Chunming; Emmorey, Karen; Chu, Mingyuan; Ding, Guosheng
2017-09-15
Signed languages are natural human languages using the visual-motor modality. Previous neuroimaging studies based on univariate activation analysis show that a widely overlapped cortical network is recruited regardless whether the sign language is comprehended (for signers) or not (for non-signers). Here we move beyond previous studies by examining whether the functional connectivity profiles and the underlying organizational structure of the overlapped neural network may differ between signers and non-signers when watching sign language. Using graph theoretical analysis (GTA) and fMRI, we compared the large-scale functional network organization in hearing signers with non-signers during the observation of sentences in Chinese Sign Language. We found that signed sentences elicited highly similar cortical activations in the two groups of participants, with slightly larger responses within the left frontal and left temporal gyrus in signers than in non-signers. Crucially, further GTA revealed substantial group differences in the topologies of this activation network. Globally, the network engaged by signers showed higher local efficiency (t (24) =2.379, p=0.026), small-worldness (t (24) =2.604, p=0.016) and modularity (t (24) =3.513, p=0.002), and exhibited different modular structures, compared to the network engaged by non-signers. Locally, the left ventral pars opercularis served as a network hub in the signer group but not in the non-signer group. These findings suggest that, despite overlap in cortical activation, the neural substrates underlying sign language comprehension are distinguishable at the network level from those for the processing of gestural action. Copyright © 2017 Elsevier B.V. All rights reserved.
Otto, Benjamin; Misra, Supriya; Prasad, Aditya; McRae, Kateri
2014-09-01
One factor that influences the success of emotion regulation is the manner in which the regulated emotion was generated. Recent research has suggested that reappraisal, a top-down emotion regulation strategy, is more effective in decreasing self-reported negative affect when emotions were generated from the top-down, versus the bottom-up. On the basis of a process overlap framework, we hypothesized that the neural regions active during reappraisal would overlap more with emotions that were generated from the top-down, rather than from the bottom-up. In addition, we hypothesized that increased neural overlap between reappraisal and the history effects of top-down emotion generation would be associated with increased reappraisal success. The results of several analyses suggested that reappraisal and emotions that were generated from the top-down share a core network of prefrontal, temporal, and cingulate regions. This overlap is specific; no such overlap was observed between reappraisal and emotions that were generated in a bottom-up fashion. This network consists of regions previously implicated in linguistic processing, cognitive control, and self-relevant appraisals, which are processes thought to be crucial to both reappraisal and top-down emotion generation. Furthermore, individuals with high reappraisal success demonstrated greater neural overlap between reappraisal and the history of top-down emotion generation than did those with low reappraisal success. The overlap of these key regions, reflecting overlapping processes, provides an initial insight into the mechanism by which generation history may facilitate emotion regulation.
The behaviour of basic autocatalytic signalling modules in isolation and embedded in networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krishnan, J.; Mois, Kristina; Suwanmajo, Thapanar
2014-11-07
In this paper, we examine the behaviour of basic autocatalytic feedback modules involving a species catalyzing its own production, either directly or indirectly. We first perform a systematic study of the autocatalytic feedback module in isolation, examining the effect of different factors, showing how this module is capable of exhibiting monostable threshold and bistable switch-like behaviour. We then study the behaviour of this module embedded in different kinds of basic networks including (essentially) irreversible cycles, open and closed reversible chains, and networks with additional feedback. We study the behaviour of the networks deterministically and also stochastically, using simulations, analytical work,more » and bifurcation analysis. We find that (i) there are significant differences between the behaviour of this module in isolation and in a network: thresholds may be altered or destroyed and bistability may be destroyed or even induced, even when the ambient network is simple. The global characteristics and topology of this network and the position of the module in the ambient network can play important and unexpected roles. (ii) There can be important differences between the deterministic and stochastic dynamics of the module embedded in networks, which may be accentuated by the ambient network. This provides new insights into the functioning of such enzymatic modules individually and as part of networks, with relevance to other enzymatic signalling modules as well.« less
The behaviour of basic autocatalytic signalling modules in isolation and embedded in networks
NASA Astrophysics Data System (ADS)
Krishnan, J.; Mois, Kristina; Suwanmajo, Thapanar
2014-11-01
In this paper, we examine the behaviour of basic autocatalytic feedback modules involving a species catalyzing its own production, either directly or indirectly. We first perform a systematic study of the autocatalytic feedback module in isolation, examining the effect of different factors, showing how this module is capable of exhibiting monostable threshold and bistable switch-like behaviour. We then study the behaviour of this module embedded in different kinds of basic networks including (essentially) irreversible cycles, open and closed reversible chains, and networks with additional feedback. We study the behaviour of the networks deterministically and also stochastically, using simulations, analytical work, and bifurcation analysis. We find that (i) there are significant differences between the behaviour of this module in isolation and in a network: thresholds may be altered or destroyed and bistability may be destroyed or even induced, even when the ambient network is simple. The global characteristics and topology of this network and the position of the module in the ambient network can play important and unexpected roles. (ii) There can be important differences between the deterministic and stochastic dynamics of the module embedded in networks, which may be accentuated by the ambient network. This provides new insights into the functioning of such enzymatic modules individually and as part of networks, with relevance to other enzymatic signalling modules as well.
A common network of functional areas for attention and eye movements
NASA Technical Reports Server (NTRS)
Corbetta, M.; Akbudak, E.; Conturo, T. E.; Snyder, A. Z.; Ollinger, J. M.; Drury, H. A.; Linenweber, M. R.; Petersen, S. E.; Raichle, M. E.; Van Essen, D. C.;
1998-01-01
Functional magnetic resonance imaging (fMRI) and surface-based representations of brain activity were used to compare the functional anatomy of two tasks, one involving covert shifts of attention to peripheral visual stimuli, the other involving both attentional and saccadic shifts to the same stimuli. Overlapping regional networks in parietal, frontal, and temporal lobes were active in both tasks. This anatomical overlap is consistent with the hypothesis that attentional and oculomotor processes are tightly integrated at the neural level.
Revealing the Hidden Relationship by Sparse Modules in Complex Networks with a Large-Scale Analysis
Jiao, Qing-Ju; Huang, Yan; Liu, Wei; Wang, Xiao-Fan; Chen, Xiao-Shuang; Shen, Hong-Bin
2013-01-01
One of the remarkable features of networks is module that can provide useful insights into not only network organizations but also functional behaviors between their components. Comprehensive efforts have been devoted to investigating cohesive modules in the past decade. However, it is still not clear whether there are important structural characteristics of the nodes that do not belong to any cohesive module. In order to answer this question, we performed a large-scale analysis on 25 complex networks with different types and scales using our recently developed BTS (bintree seeking) algorithm, which is able to detect both cohesive and sparse modules in the network. Our results reveal that the sparse modules composed by the cohesively isolated nodes widely co-exist with the cohesive modules. Detailed analysis shows that both types of modules provide better characterization for the division of a network into functional units than merely cohesive modules, because the sparse modules possibly re-organize the nodes in the so-called cohesive modules, which lack obvious modular significance, into meaningful groups. Compared with cohesive modules, the sizes of sparse ones are generally smaller. Sparse modules are also found to have preferences in social and biological networks than others. PMID:23762457
An iterative network partition algorithm for accurate identification of dense network modules
Sun, Siqi; Dong, Xinran; Fu, Yao; Tian, Weidong
2012-01-01
A key step in network analysis is to partition a complex network into dense modules. Currently, modularity is one of the most popular benefit functions used to partition network modules. However, recent studies suggested that it has an inherent limitation in detecting dense network modules. In this study, we observed that despite the limitation, modularity has the advantage of preserving the primary network structure of the undetected modules. Thus, we have developed a simple iterative Network Partition (iNP) algorithm to partition a network. The iNP algorithm provides a general framework in which any modularity-based algorithm can be implemented in the network partition step. Here, we tested iNP with three modularity-based algorithms: multi-step greedy (MSG), spectral clustering and Qcut. Compared with the original three methods, iNP achieved a significant improvement in the quality of network partition in a benchmark study with simulated networks, identified more modules with significantly better enrichment of functionally related genes in both yeast protein complex network and breast cancer gene co-expression network, and discovered more cancer-specific modules in the cancer gene co-expression network. As such, iNP should have a broad application as a general method to assist in the analysis of biological networks. PMID:22121225
NASA Astrophysics Data System (ADS)
Bodeker, G. E.; Thorne, P.; Braathen, G.; De Maziere, M.; Thompson, A. M.; Kurylo, M. J., III
2016-12-01
There are a number of ground-based global observing networks that collectively aim to make key measurements of atmospheric state variables and atmospheric chemical composition. These networks include, but are not limited to:NDACC: Network for the Detection of Atmospheric Composition Change GUAN: GCOS Upper Air Network GRUAN: GCOS Reference Upper Air Network EARLINET: the European Aerosol Research Lidar Network GAW: Global Atmosphere Watch SHADOZ: Southern Hemisphere ADditional OZonesondes TCCON: Total Carbon Column Observing Network BSRN: Baseline Surface Radiation Network While each network brings unique capabilities to the global observing system, there are many instances where the activities and capabilities of the networks overlap. These commonalities across multiple networks can confound funding agencies when allocating scarce financial resources. Overlaps between networks may also result in some duplication of effort and a resultant sub-optimal use of funding resource for the global observing system. While some degree of overlap is useful for quality assurance, it is essential to identify the degree to which one network can take on a specific responsibility on behalf of all other networks to avoid unnecessary duplication, to identify where expertise in any one network may serve other networks, and to develop a long-term strategy for the evolution of these networks that clarifies to funding agencies where new investment is required. This presentation will briefly summarise the key characteristics of each network listed above, adopt a matrix approach to identify commonalities and, in particular, where there may be a danger of duplication of effort, and where gaps between the networks may be compromising the services that these networks are expected to collectively deliver to the global atmospheric and climate science research communities. The presentation will also examine where sharing of data and tools between networks may result in a more efficient delivery of records of essential climate variables to the global research community. There are aspects of underpinning research that are needed across all of these networks, such as laboratory spectroscopy, that often do not receive the attention they deserve. The presentation will also seek to identify where that underpinning research is lacking.
Scheidel, Jennifer; Lindauer, Klaus; Ackermann, Jörg; Koch, Ina
2015-12-17
The insulin-dependent activation and recycling of the insulin receptor play an essential role in the regulation of the energy metabolism, leading to a special interest for pharmaceutical applications. Thus, the recycling of the insulin receptor has been intensively investigated, experimentally as well as theoretically. We developed a time-resolved, discrete model to describe stochastic dynamics and study the approximation of non-linear dynamics in the context of timed Petri nets. Additionally, using a graph-theoretical approach, we analyzed the structure of the regulatory system and demonstrated the close interrelation of structural network properties with the kinetic behavior. The transition invariants decomposed the model into overlapping subnetworks of various sizes, which represent basic functional modules. Moreover, we computed the quasi-steady states of these subnetworks and demonstrated that they are fundamental to understand the dynamic behavior of the system. The Petri net approach confirms the experimental results of insulin-stimulated degradation of the insulin receptor, which represents a common feature of insulin-resistant, hyperinsulinaemic states.
Astefanoaei, Corina; Daye, Pierre M.; FitzGibbon, Edmond J.; Creanga, Dorina-Emilia; Rufa, Alessandra; Optican, Lance M.
2015-01-01
We move our eyes to explore the world, but visual areas determining where to look next (action) are different from those determining what we are seeing (perception). Whether, or how, action and perception are temporally coordinated is not known. The preparation time course of an action (e.g., a saccade) has been widely studied with the gap/overlap paradigm with temporal asynchronies (TA) between peripheral target onset and fixation point offset (gap, synchronous, or overlap). However, whether the subjects perceive the gap or overlap, and when they perceive it, has not been studied. We adapted the gap/overlap paradigm to study the temporal coupling of action and perception. Human subjects made saccades to targets with different TAs with respect to fixation point offset and reported whether they perceived the stimuli as separated by a gap or overlapped in time. Both saccadic and perceptual report reaction times changed in the same way as a function of TA. The TA dependencies of the time change for action and perception were very similar, suggesting a common neural substrate. Unexpectedly, in the perceptual task, subjects misperceived lights overlapping by less than ∼100 ms as separated in time (overlap seen as gap). We present an attention-perception model with a map of prominence in the superior colliculus that modulates the stimulus signal's effectiveness in the action and perception pathways. This common source of modulation determines how competition between stimuli is resolved, causes the TA dependence of action and perception to be the same, and causes the misperception. PMID:25632126
Büttner, Kathrin; Salau, Jennifer; Krieter, Joachim
2016-01-01
The average topological overlap of two graphs of two consecutive time steps measures the amount of changes in the edge configuration between the two snapshots. This value has to be zero if the edge configuration changes completely and one if the two consecutive graphs are identical. Current methods depend on the number of nodes in the network or on the maximal number of connected nodes in the consecutive time steps. In the first case, this methodology breaks down if there are nodes with no edges. In the second case, it fails if the maximal number of active nodes is larger than the maximal number of connected nodes. In the following, an adaption of the calculation of the temporal correlation coefficient and of the topological overlap of the graph between two consecutive time steps is presented, which shows the expected behaviour mentioned above. The newly proposed adaption uses the maximal number of active nodes, i.e. the number of nodes with at least one edge, for the calculation of the topological overlap. The three methods were compared with the help of vivid example networks to reveal the differences between the proposed notations. Furthermore, these three calculation methods were applied to a real-world network of animal movements in order to detect influences of the network structure on the outcome of the different methods.
Overload-based cascades on multiplex networks and effects of inter-similarity
Zhou, Dong
2017-01-01
Although cascading failures caused by overload on interdependent/interconnected networks have been studied in the recent years, the effect of overlapping links (inter-similarity) on robustness to such cascades in coupled networks is not well understood. This is an important issue since shared links exist in many real-world coupled networks. In this paper, we propose a new model for load-based cascading failures in multiplex networks. We leverage it to compare different network structures, coupling schemes, and overload rules. More importantly, we systematically investigate the impact of inter-similarity on the robustness of the whole system under an initial intentional attack. Surprisingly, we find that inter-similarity can have a negative impact on robustness to overload cascades. To the best of our knowledge, we are the first to report the competition between the positive and the negative impacts of overlapping links on the robustness of coupled networks. These results provide useful suggestions for designing robust coupled traffic systems. PMID:29252988
Ding, Junhua; Chen, Keliang; Zhang, Weibin; Li, Ming; Chen, Yan; Yang, Qing; Lv, Yingru; Guo, Qihao; Han, Zaizhu
2017-01-01
Semantic dementia (SD) is characterized by a selective decline in semantic processing. Although the neuropsychological pattern of this disease has been identified, its topological global alterations and symptom-relevant modules in the whole-brain anatomical network have not been fully elucidated. This study aims to explore the topological alteration of anatomical network in SD and reveal the modules associated with semantic deficits in this disease. We first constructed the whole-brain white-matter networks of 20 healthy controls and 19 patients with SD. Then, the network metrics of graph theory were compared between these two groups. Finally, we separated the network of SD patients into different modules and correlated the structural integrity of each module with the severity of the semantic deficits across patients. The network of the SD patients presented a significantly reduced global efficiency, indicating that the long-distance connections were damaged. The network was divided into the following four distinctive modules: the left temporal/occipital/parietal, frontal, right temporal/occipital, and frontal/parietal modules. The first two modules were associated with the semantic deficits of SD. These findings illustrate the skeleton of the neuroanatomical network of SD patients and highlight the key role of the left temporal/occipital/parietal module and the left frontal module in semantic processing.
2013-01-01
Background In recent years, various types of cellular networks have penetrated biology and are nowadays used omnipresently for studying eukaryote and prokaryote organisms. Still, the relation and the biological overlap among phenomenological and inferential gene networks, e.g., between the protein interaction network and the gene regulatory network inferred from large-scale transcriptomic data, is largely unexplored. Results We provide in this study an in-depth analysis of the structural, functional and chromosomal relationship between a protein-protein network, a transcriptional regulatory network and an inferred gene regulatory network, for S. cerevisiae and E. coli. Further, we study global and local aspects of these networks and their biological information overlap by comparing, e.g., the functional co-occurrence of Gene Ontology terms by exploiting the available interaction structure among the genes. Conclusions Although the individual networks represent different levels of cellular interactions with global structural and functional dissimilarities, we observe crucial functions of their network interfaces for the assembly of protein complexes, proteolysis, transcription, translation, metabolic and regulatory interactions. Overall, our results shed light on the integrability of these networks and their interfacing biological processes. PMID:23663484
Zavaglia, Melissa; Hilgetag, Claus C
2016-06-01
Spatial attention is a prime example for the distributed network functions of the brain. Lesion studies in animal models have been used to investigate intact attentional mechanisms as well as perspectives for rehabilitation in the injured brain. Here, we systematically analyzed behavioral data from cooling deactivation and permanent lesion experiments in the cat, where unilateral deactivation of the posterior parietal cortex (in the vicinity of the posterior middle suprasylvian cortex, pMS) or the superior colliculus (SC) cause a severe neglect in the contralateral hemifield. Counterintuitively, additional deactivation of structures in the opposite hemisphere reverses the deficit. Using such lesion data, we employed a game-theoretical approach, multi-perturbation Shapley value analysis (MSA), for inferring functional contributions and network interactions of bilateral pMS and SC from behavioral performance in visual attention studies. The approach provides an objective theoretical strategy for lesion inferences and allows a unique quantitative characterization of regional functional contributions and interactions on the basis of multi-perturbations. The quantitative analysis demonstrated that right posterior parietal cortex and superior colliculus made the strongest positive contributions to left-field orienting, while left brain regions had negative contributions, implying that their perturbation may reverse the effects of contralateral lesions or improve normal function. An analysis of functional modulations and interactions among the regions revealed redundant interactions (implying functional overlap) between regions within each hemisphere, and synergistic interactions between bilateral regions. To assess the reliability of the MSA method in the face of variable and incomplete input data, we performed a sensitivity analysis, investigating how much the contribution values of the four regions depended on the performance of specific configurations and on the prediction of unknown performances. The results suggest that the MSA approach is sensitive to categorical, but insensitive to gradual changes in the input data. Finally, we created a basic network model that was based on the known anatomical interactions among cortical-tectal regions and reproduced the experimentally observed behavior in visual orienting. We discuss the structural organization of the network model relative to the causal modulations identified by MSA, to aid a mechanistic understanding of the attention network of the brain.
NASA Technical Reports Server (NTRS)
George, Jude (Inventor); Schlecht, Leslie (Inventor); McCabe, James D. (Inventor); LeKashman, John Jr. (Inventor)
1998-01-01
A network management system has SNMP agents distributed at one or more sites, an input output module at each site, and a server module located at a selected site for communicating with input output modules, each of which is configured for both SNMP and HNMP communications. The server module is configured exclusively for HNMP communications, and it communicates with each input output module according to the HNMP. Non-iconified, informationally complete views are provided of network elements to aid in network management.
Germline Chd8 haploinsufficiency alters brain development in mouse
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gompers, Andrea L.; Su-Feher, Linda; Ellegood, Jacob
The chromatin remodeling gene CHD8 represents a central node in neurodevelopmental gene networks implicated in autism. In this paper, we examined the impact of germline heterozygous frameshift Chd8 mutation on neurodevelopment in mice. Chd8 +/ del5 mice displayed normal social interactions with no repetitive behaviors but exhibited cognitive impairment correlated with increased regional brain volume, validating that phenotypes of Chd8 +/ del5 mice overlap pathology reported in humans with CHD8 mutations. We applied network analysis to characterize neurodevelopmental gene expression, revealing widespread transcriptional changes in Chd8 +/ del5 mice across pathways disrupted in neurodevelopmental disorders, including neurogenesis, synaptic processes andmore » neuroimmune signaling. We identified a co-expression module with peak expression in early brain development featuring dysregulation of RNA processing, chromatin remodeling and cell-cycle genes enriched for promoter binding by Chd8, and we validated increased neuronal proliferation and developmental splicing perturbation in Chd8 +/ del5 mice. Finally, this integrative analysis offers an initial picture of the consequences of Chd8 haploinsufficiency for brain development.« less
Germline Chd8 haploinsufficiency alters brain development in mouse
Gompers, Andrea L.; Su-Feher, Linda; Ellegood, Jacob; ...
2017-06-26
The chromatin remodeling gene CHD8 represents a central node in neurodevelopmental gene networks implicated in autism. In this paper, we examined the impact of germline heterozygous frameshift Chd8 mutation on neurodevelopment in mice. Chd8 +/ del5 mice displayed normal social interactions with no repetitive behaviors but exhibited cognitive impairment correlated with increased regional brain volume, validating that phenotypes of Chd8 +/ del5 mice overlap pathology reported in humans with CHD8 mutations. We applied network analysis to characterize neurodevelopmental gene expression, revealing widespread transcriptional changes in Chd8 +/ del5 mice across pathways disrupted in neurodevelopmental disorders, including neurogenesis, synaptic processes andmore » neuroimmune signaling. We identified a co-expression module with peak expression in early brain development featuring dysregulation of RNA processing, chromatin remodeling and cell-cycle genes enriched for promoter binding by Chd8, and we validated increased neuronal proliferation and developmental splicing perturbation in Chd8 +/ del5 mice. Finally, this integrative analysis offers an initial picture of the consequences of Chd8 haploinsufficiency for brain development.« less
A game theoretic algorithm to detect overlapping community structure in networks
NASA Astrophysics Data System (ADS)
Zhou, Xu; Zhao, Xiaohui; Liu, Yanheng; Sun, Geng
2018-04-01
Community detection can be used as an important technique for product and personalized service recommendation. A game theory based approach to detect overlapping community structure is introduced in this paper. The process of the community formation is converted into a game, when all agents (nodes) cannot improve their own utility, the game process will be terminated. The utility function is composed of a gain and a loss function and we present a new gain function in this paper. In addition, different from choosing action randomly among join, quit and switch for each agent to get new label, two new strategies for each agent to update its label are designed during the game, and the strategies are also evaluated and compared for each agent in order to find its best result. The overlapping community structure is naturally presented when the stop criterion is satisfied. The experimental results demonstrate that the proposed algorithm outperforms other similar algorithms for detecting overlapping communities in networks.
St-Germain, Jonathan R.; Taylor, Paul; Tong, Jiefei; Jin, Lily L.; Nikolic, Ana; Stewart, Ian I.; Ewing, Robert M.; Dharsee, Moyez; Li, Zhihua; Trudel, Suzanne; Moran, Michael F.
2009-01-01
Signaling by growth factor receptor tyrosine kinases is manifest through networks of proteins that are substrates and/or bind to the activated receptors. FGF receptor-3 (FGFR3) is a drug target in a subset of human multiple myelomas (MM) and is mutationally activated in some cervical and colon and many bladder cancers and in certain skeletal dysplasias. To define the FGFR3 network in multiple myeloma, mass spectrometry was used to identify and quantify phosphotyrosine (pY) sites modulated by FGFR3 activation and inhibition in myeloma-derived KMS11 cells. Label-free quantification of peptide ion currents indicated the activation of FGFR3 by phosphorylation of tandem tyrosines in the kinase domain activation loop when cellular pY phosphatases were inhibited by pervanadate. Among the 175 proteins that accumulated pY in response to pervanadate was a subset of 52 including FGFR3 that contained a total of 61 pY sites that were sensitive to inhibition by the FGFR3 inhibitor PD173074. The FGFR3 isoform containing the tandem pY motif in its activation loop was targeted by PD173074. Forty of the drug-sensitive pY sites, including two located within the 35-residue cytoplasmic domain of the transmembrane growth factor binding proteoglycan (and multiple myeloma biomarker) Syndecan-1/CD138, were also stimulated in cells treated with the ligand FGF1, providing additional validation of their link to FGFR3. The identification of these overlapping sets of co-modulated tyrosine phosphorylations presents an outline of an FGFR3 network in the MM model and demonstrates the potential for pharmacodynamic monitoring by label-free quantitative phospho-proteomics. PMID:19901323
Wang, Yumei; Yin, Xiaoling; Yang, Fang
2018-02-01
Sepsis is an inflammatory-related disease, and severe sepsis would induce multiorgan dysfunction, which is the most common cause of death of patients in noncoronary intensive care units. Progression of novel therapeutic strategies has proven to be of little impact on the mortality of severe sepsis, and unfortunately, its mechanisms still remain poorly understood. In this study, we analyzed gene expression profiles of severe sepsis with failure of lung, kidney, and liver for the identification of potential biomarkers. We first downloaded the gene expression profiles from the Gene Expression Omnibus and performed preprocessing of raw microarray data sets and identification of differential expression genes (DEGs) through the R programming software; then, significantly enriched functions of DEGs in lung, kidney, and liver failure sepsis samples were obtained from the Database for Annotation, Visualization, and Integrated Discovery; finally, protein-protein interaction network was constructed for DEGs based on the STRING database, and network modules were also obtained through the MCODE cluster method. As a result, lung failure sepsis has the highest number of DEGs of 859, whereas the number of DEGs in kidney and liver failure sepsis samples is 178 and 175, respectively. In addition, 17 overlaps were obtained among the three lists of DEGs. Biological processes related to immune and inflammatory response were found to be significantly enriched in DEGs. Network and module analysis identified four gene clusters in which all or most of genes were upregulated. The expression changes of Icam1 and Socs3 were further validated through quantitative PCR analysis. This study should shed light on the development of sepsis and provide potential therapeutic targets for sepsis-induced multiorgan failure.
Driver Circuit For High-Power MOSFET's
NASA Technical Reports Server (NTRS)
Letzer, Kevin A.
1991-01-01
Driver circuit generates rapid-voltage-transition pulses needed to switch high-power metal oxide/semiconductor field-effect transistor (MOSFET) modules rapidly between full "on" and full "off". Rapid switching reduces time of overlap between appreciable current through and appreciable voltage across such modules, thereby increasing power efficiency.
Early top-down control of visual processing predicts working memory performance
Rutman, Aaron M.; Clapp, Wesley C.; Chadick, James Z.; Gazzaley, Adam
2009-01-01
Selective attention confers a behavioral benefit for both perceptual and working memory (WM) performance, often attributed to top-down modulation of sensory neural processing. However, the direct relationship between early activity modulation in sensory cortices during selective encoding and subsequent WM performance has not been established. To explore the influence of selective attention on WM recognition, we used electroencephalography (EEG) to study the temporal dynamics of top-down modulation in a selective, delayed-recognition paradigm. Participants were presented with overlapped, “double-exposed” images of faces and natural scenes, and were instructed to either remember the face or the scene while simultaneously ignoring the other stimulus. Here, we present evidence that the degree to which participants modulate the early P100 (97–129 ms) event-related potential (ERP) during selective stimulus encoding significantly correlates with their subsequent WM recognition. These results contribute to our evolving understanding of the mechanistic overlap between attention and memory. PMID:19413473
Topological properties of robust biological and computational networks
Navlakha, Saket; He, Xin; Faloutsos, Christos; Bar-Joseph, Ziv
2014-01-01
Network robustness is an important principle in biology and engineering. Previous studies of global networks have identified both redundancy and sparseness as topological properties used by robust networks. By focusing on molecular subnetworks, or modules, we show that module topology is tightly linked to the level of environmental variability (noise) the module expects to encounter. Modules internal to the cell that are less exposed to environmental noise are more connected and less robust than external modules. A similar design principle is used by several other biological networks. We propose a simple change to the evolutionary gene duplication model which gives rise to the rich range of module topologies observed within real networks. We apply these observations to evaluate and design communication networks that are specifically optimized for noisy or malicious environments. Combined, joint analysis of biological and computational networks leads to novel algorithms and insights benefiting both fields. PMID:24789562
Warren, Aaron E L; Abbott, David F; Jackson, Graeme D; Archer, John S
2017-12-01
To identify abnormal thalamocortical circuits in the severe epilepsy of Lennox-Gastaut syndrome (LGS) that may explain the shared electroclinical phenotype and provide potential treatment targets. Twenty patients with a diagnosis of LGS (mean age = 28.5 years) and 26 healthy controls (mean age = 27.6 years) were compared using task-free functional magnetic resonance imaging (MRI). The thalamus was parcellated according to functional connectivity with 10 cortical networks derived using group-level independent component analysis. For each cortical network, we assessed between-group differences in thalamic functional connectivity strength using nonparametric permutation-based tests. Anatomical locations were identified by quantifying spatial overlap with a histologically informed thalamic MRI atlas. In both groups, posterior thalamic regions showed functional connectivity with visual, auditory, and sensorimotor networks, whereas anterior, medial, and dorsal thalamic regions were connected with networks of distributed association cortex (including the default-mode, anterior-salience, and executive-control networks). Four cortical networks (left and right executive-control network; ventral and dorsal default-mode network) showed significantly enhanced thalamic functional connectivity strength in patients relative to controls. Abnormal connectivity was maximal in mediodorsal and ventrolateral thalamic nuclei. Specific thalamocortical circuits are affected in LGS. Functional connectivity is abnormally enhanced between the mediodorsal and ventrolateral thalamus and the default-mode and executive-control networks, thalamocortical circuits that normally support diverse cognitive processes. In contrast, thalamic regions connecting with primary and sensory cortical networks appear to be less affected. Our previous neuroimaging studies show that epileptic activity in LGS is expressed via the default-mode and executive-control networks. Results of the present study suggest that the mediodorsal and ventrolateral thalamus may be candidate targets for modulating abnormal network behavior underlying LGS, potentially via emerging thalamic neurostimulation therapies. Wiley Periodicals, Inc. © 2017 International League Against Epilepsy.
Finding Correlation between Protein Protein Interaction Modules Using Semantic Web Techniques
NASA Astrophysics Data System (ADS)
Kargar, Mehdi; Moaven, Shahrouz; Abolhassani, Hassan
Many complex networks such as social networks and computer show modular structures, where edges between nodes are much denser within modules than between modules. It is strongly believed that cellular networks are also modular, reflecting the relative independence and coherence of different functional units in a cell. In this paper we used a human curated dataset. In this paper we consider each module in the PPI network as ontology. Using techniques in ontology alignment, we compare each pair of modules in the network. We want to see that is there a correlation between the structure of each module or they have totally different structures. Our results show that there is no correlation between proteins in a protein protein interaction network.
Targeting Transcriptional Regulators of CD8+ T Cell Dysfunction to Boost Anti-Tumor Immunity
Waugh, Katherine A.; Leach, Sonia M.; Slansky, Jill E.
2015-01-01
Transcription is a dynamic process influenced by the cellular environment: healthy, transformed, and otherwise. Genome-wide mRNA expression profiles reflect the collective impact of pathways modulating cell function under different conditions. In this review we focus on the transcriptional pathways that control tumor infiltrating CD8+ T cell (TIL) function. Simultaneous restraint of overlapping inhibitory pathways may confer TIL resistance to multiple mechanisms of suppression traditionally referred to as exhaustion, tolerance, or anergy. Although decades of work have laid a solid foundation of altered transcriptional networks underlying various subsets of hypofunctional or “dysfunctional” CD8+ T cells, an understanding of the relevance in TIL has just begun. With recent technological advances, it is now feasible to further elucidate and utilize these pathways in immunotherapy platforms that seek to increase TIL function. PMID:26393659
How many music centers are in the brain?
Altenmüller, E O
2001-06-01
When reviewing the literature on brain substrates of music processing, a puzzling variety of findings can be stated. The traditional view of a left-right dichotomy of brain organization--assuming that in contrast to language, music is primarily processed in the right hemisphere--was challenged 20 years ago, when the influence of music education on brain lateralization was demonstrated. Modern concepts emphasize the modular organization of music cognition. According to this viewpoint, different aspects of music are processed in different, although partly overlapping neuronal networks of both hemispheres. However, even when isolating a single "module," such as, for example, the perception of contours, the interindividual variance of brain substrates is enormous. To clarify the factors contributing to this variability, we conducted a longitudinal experiment comparing the effects of procedural versus explicit music teaching on brain networks. We demonstrated that cortical activation during music processing reflects the auditory "learning biography," the personal experiences accumulated over time. Listening to music, learning to play an instrument, formal instruction, and professional training result in multiple, in many instances multisensory, representations of music, which seem to be partly interchangeable and rapidly adaptive. In summary, as soon as we consider "real music" apart from laboratory experiments, we have to expect individually formed and quickly adaptive brain substrates, including widely distributed neuronal networks in both hemispheres.
Model Information Exchange System (MIXS).
DOT National Transportation Integrated Search
2013-08-01
Many travel demand forecast models operate at state, regional, and local levels. While they share the same physical network in overlapping geographic areas, they use different and uncoordinated modeling networks. This creates difficulties for models ...
Competitive STDP Learning of Overlapping Spatial Patterns.
Krunglevicius, Dalius
2015-08-01
Spike-timing-dependent plasticity (STDP) is a set of Hebbian learning rules firmly based on biological evidence. It has been demonstrated that one of the STDP learning rules is suited for learning spatiotemporal patterns. When multiple neurons are organized in a simple competitive spiking neural network, this network is capable of learning multiple distinct patterns. If patterns overlap significantly (i.e., patterns are mutually inclusive), however, competition would not preclude trained neuron's responding to a new pattern and adjusting synaptic weights accordingly. This letter presents a simple neural network that combines vertical inhibition and Euclidean distance-dependent synaptic strength factor. This approach helps to solve the problem of pattern size-dependent parameter optimality and significantly reduces the probability of a neuron's forgetting an already learned pattern. For demonstration purposes, the network was trained for the first ten letters of the Braille alphabet.
Bayesian module identification from multiple noisy networks.
Zamani Dadaneh, Siamak; Qian, Xiaoning
2016-12-01
Module identification has been studied extensively in order to gain deeper understanding of complex systems, such as social networks as well as biological networks. Modules are often defined as groups of vertices in these networks that are topologically cohesive with similar interaction patterns with the rest of the vertices. Most of the existing module identification algorithms assume that the given networks are faithfully measured without errors. However, in many real-world applications, for example, when analyzing protein-protein interaction networks from high-throughput profiling techniques, there is significant noise with both false positive and missing links between vertices. In this paper, we propose a new model for more robust module identification by taking advantage of multiple observed networks with significant noise so that signals in multiple networks can be strengthened and help improve the solution quality by combining information from various sources. We adopt a hierarchical Bayesian model to integrate multiple noisy snapshots that capture the underlying modular structure of the networks under study. By introducing a latent root assignment matrix and its relations to instantaneous module assignments in all the observed networks to capture the underlying modular structure and combine information across multiple networks, an efficient variational Bayes algorithm can be derived to accurately and robustly identify the underlying modules from multiple noisy networks. Experiments on synthetic and protein-protein interaction data sets show that our proposed model enhances both the accuracy and resolution in detecting cohesive modules, and it is less vulnerable to noise in the observed data. In addition, it shows higher power in predicting missing edges compared to individual-network methods.
NASA Astrophysics Data System (ADS)
Menon, Govind; Krishnan, J.
2016-07-01
While signalling and biochemical modules have been the focus of numerous studies, they are typically studied in isolation, with no examination of the effects of the ambient network. In this paper we formulate and develop a systems framework, rooted in dynamical systems, to understand such effects, by studying the interaction of signalling modules. The modules we consider are (i) basic covalent modification, (ii) monostable switches, (iii) bistable switches, (iv) adaptive modules, and (v) oscillatory modules. We systematically examine the interaction of these modules by analyzing (a) sequential interaction without shared components, (b) sequential interaction with shared components, and (c) oblique interactions. Our studies reveal that the behaviour of a module in isolation may be substantially different from that in a network, and explicitly demonstrate how the behaviour of a given module, the characteristics of the ambient network, and the possibility of shared components can result in new effects. Our global approach illuminates different aspects of the structure and functioning of modules, revealing the importance of dynamical characteristics as well as biochemical features; this provides a methodological platform for investigating the complexity of natural modules shaped by evolution, elucidating the effects of ambient networks on a module in multiple cellular contexts, and highlighting the capabilities and constraints for engineering robust synthetic modules. Overall, such a systems framework provides a platform for bridging the gap between non-linear information processing modules, in isolation and as parts of networks, and a basis for understanding new aspects of natural and engineered cellular networks.
Menon, Govind; Krishnan, J
2016-07-21
While signalling and biochemical modules have been the focus of numerous studies, they are typically studied in isolation, with no examination of the effects of the ambient network. In this paper we formulate and develop a systems framework, rooted in dynamical systems, to understand such effects, by studying the interaction of signalling modules. The modules we consider are (i) basic covalent modification, (ii) monostable switches, (iii) bistable switches, (iv) adaptive modules, and (v) oscillatory modules. We systematically examine the interaction of these modules by analyzing (a) sequential interaction without shared components, (b) sequential interaction with shared components, and (c) oblique interactions. Our studies reveal that the behaviour of a module in isolation may be substantially different from that in a network, and explicitly demonstrate how the behaviour of a given module, the characteristics of the ambient network, and the possibility of shared components can result in new effects. Our global approach illuminates different aspects of the structure and functioning of modules, revealing the importance of dynamical characteristics as well as biochemical features; this provides a methodological platform for investigating the complexity of natural modules shaped by evolution, elucidating the effects of ambient networks on a module in multiple cellular contexts, and highlighting the capabilities and constraints for engineering robust synthetic modules. Overall, such a systems framework provides a platform for bridging the gap between non-linear information processing modules, in isolation and as parts of networks, and a basis for understanding new aspects of natural and engineered cellular networks.
Geddes, Maiya R; Tie, Yanmei; Gabrieli, John D E; McGinnis, Scott M; Golby, Alexandra J; Whitfield-Gabrieli, Susan
2016-01-01
Brainstem lesions causing peduncular hallucinosis (PH) produce vivid visual hallucinations occasionally accompanied by sleep disorders. Overlapping brainstem regions modulate visual pathways and REM sleep functions via gating of thalamocortical networks. A 66-year-old man with paroxysmal atrial fibrillation developed abrupt-onset complex visual hallucinations with preserved insight and violent dream enactment behavior. Brain MRI showed restricted diffusion in the left rostrodorsal pons suggestive of an acute ischemic stroke. REM sleep behavior disorder (RBD) was diagnosed on polysomnography. We investigated the integrity of ponto-geniculate-occipital circuits with seed-based resting-state functional connectivity MRI (rs-fcMRI) in this patient compared to 46 controls. Rs-fcMRI revealed significantly reduced functional connectivity between the lesion and lateral geniculate nuclei (LGN), and between LGN and visual association cortex compared to controls. Conversely, functional connectivity between brainstem and visual association cortex, and between visual association cortex and prefrontal cortex (PFC) was significantly increased in the patient. Focal damage to the rostrodorsal pons is sufficient to cause RBD and PH in humans, suggesting an overlapping mechanism in both syndromes. This lesion produced a pattern of altered functional connectivity consistent with disrupted visual cortex connectivity via de-afferentation of thalamocortical pathways. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.
Disentangling the multigenic and pleiotropic nature of molecular function
2015-01-01
Background Biological processes at the molecular level are usually represented by molecular interaction networks. Function is organised and modularity identified based on network topology, however, this approach often fails to account for the dynamic and multifunctional nature of molecular components. For example, a molecule engaging in spatially or temporally independent functions may be inappropriately clustered into a single functional module. To capture biologically meaningful sets of interacting molecules, we use experimentally defined pathways as spatial/temporal units of molecular activity. Results We defined functional profiles of Saccharomyces cerevisiae based on a minimal set of Gene Ontology terms sufficient to represent each pathway's genes. The Gene Ontology terms were used to annotate 271 pathways, accounting for pathway multi-functionality and gene pleiotropy. Pathways were then arranged into a network, linked by shared functionality. Of the genes in our data set, 44% appeared in multiple pathways performing a diverse set of functions. Linking pathways by overlapping functionality revealed a modular network with energy metabolism forming a sparse centre, surrounded by several denser clusters comprised of regulatory and metabolic pathways. Signalling pathways formed a relatively discrete cluster connected to the centre of the network. Genetic interactions were enriched within the clusters of pathways by a factor of 5.5, confirming the organisation of our pathway network is biologically significant. Conclusions Our representation of molecular function according to pathway relationships enables analysis of gene/protein activity in the context of specific functional roles, as an alternative to typical molecule-centric graph-based methods. The pathway network demonstrates the cooperation of multiple pathways to perform biological processes and organises pathways into functionally related clusters with interdependent outcomes. PMID:26678917
Tousseyn, Simon; Dupont, Patrick; Goffin, Karolien; Sunaert, Stefan; Van Paesschen, Wim
2015-03-01
Epilepsy is increasingly recognized as a network disorder, but the spatial relationship between ictal and interictal networks is still largely unexplored. In this work, we compared hemodynamic changes related to seizures and interictal spikes on a whole brain scale. Twenty-eight patients with refractory focal epilepsy (14 temporal and 14 extratemporal lobe) underwent both subtraction ictal single photon emission computed tomography (SPECT) coregistered to magnetic resonance imaging (MRI) (SISCOM) and spike-related electroencephalography (EEG-functional MRI (fMRI). SISCOM visualized relative perfusion changes during seizures, whereas EEG-fMRI mapped blood oxygen level-dependent (BOLD) changes related to spikes. Similarity between statistical maps of both modalities was analyzed per patient using the following two measures: (1) correlation between unthresholded statistical maps (Pearson's correlation coefficient) and (2) overlap between thresholded images (Dice coefficient). Overlap was evaluated at a regional level, for hyperperfusions and activations and for hypoperfusions and deactivations separately, using different thresholds. Nonparametric permutation tests were applied to assess statistical significance (p ≤ 0.05). We found significant and positive correlations between hemodynamic changes related to seizures and spikes in 27 (96%) of 28 cases (median correlation coefficient 0.29 [range -0.12 to 0.62]). In 20 (71%) of 28 cases, spatial overlap between hyperperfusion on SISCOM and activation on EEG-fMRI was significantly larger than expected by chance. Congruent changes were not restricted to the territory of the presumed epileptogenic zone, but could be seen at distant sites (e.g., cerebellum and basal ganglia). Overlap between ictal hypoperfusion and interictal deactivation was statistically significant in 22 (79%) of 28 patients. Despite the high rate of congruence, discrepancies were observed for both modalities. We conclude that hemodynamic changes related to seizures and spikes varied spatially with the same sign and within a common network. Overlap was present in regions nearby and distant from discharge origin. Wiley Periodicals, Inc. © 2015 International League Against Epilepsy.
Absorption-emission optrode and methods of use thereof
Hirschfeld, T.B.
1990-05-29
A method and apparatus are described for monitoring the physical and chemical properties of a sample fluid by measuring an optical signal generated by a fluorescent substance and modulated by an absorber substance. The emission band of the fluorescent substance overlaps the absorption band of the absorber substance, and the degree of overlap is dependent on the physical and chemical properties of the sample fluid. The fluorescent substance and absorber substance are immobilized on a substrate so that an effective number of molecules thereof are sufficiently close for resonant energy transfer to occur, thereby providing highly efficient modulation of the fluorescent emissions of the fluorescent substance by the absorber substance. 4 figs.
Modeling of chromosome intermingling by partially overlapping uniform random polygons.
Blackstone, T; Scharein, R; Borgo, B; Varela, R; Diao, Y; Arsuaga, J
2011-03-01
During the early phase of the cell cycle the eukaryotic genome is organized into chromosome territories. The geometry of the interface between any two chromosomes remains a matter of debate and may have important functional consequences. The Interchromosomal Network model (introduced by Branco and Pombo) proposes that territories intermingle along their periphery. In order to partially quantify this concept we here investigate the probability that two chromosomes form an unsplittable link. We use the uniform random polygon as a crude model for chromosome territories and we model the interchromosomal network as the common spatial region of two overlapping uniform random polygons. This simple model allows us to derive some rigorous mathematical results as well as to perform computer simulations easily. We find that the probability that one uniform random polygon of length n that partially overlaps a fixed polygon is bounded below by 1 − O(1/√n). We use numerical simulations to estimate the dependence of the linking probability of two uniform random polygons (of lengths n and m, respectively) on the amount of overlapping. The degree of overlapping is parametrized by a parameter [Formula: see text] such that [Formula: see text] indicates no overlapping and [Formula: see text] indicates total overlapping. We propose that this dependence relation may be modeled as f (ε, m, n) = [Formula: see text]. Numerical evidence shows that this model works well when [Formula: see text] is relatively large (ε ≥ 0.5). We then use these results to model the data published by Branco and Pombo and observe that for the amount of overlapping observed experimentally the URPs have a non-zero probability of forming an unsplittable link.
Associative learning changes cross-modal representations in the gustatory cortex
Vincis, Roberto; Fontanini, Alfredo
2016-01-01
A growing body of literature has demonstrated that primary sensory cortices are not exclusively unimodal, but can respond to stimuli of different sensory modalities. However, several questions concerning the neural representation of cross-modal stimuli remain open. Indeed, it is poorly understood if cross-modal stimuli evoke unique or overlapping representations in a primary sensory cortex and whether learning can modulate these representations. Here we recorded single unit responses to auditory, visual, somatosensory, and olfactory stimuli in the gustatory cortex (GC) of alert rats before and after associative learning. We found that, in untrained rats, the majority of GC neurons were modulated by a single modality. Upon learning, both prevalence of cross-modal responsive neurons and their breadth of tuning increased, leading to a greater overlap of representations. Altogether, our results show that the gustatory cortex represents cross-modal stimuli according to their sensory identity, and that learning changes the overlap of cross-modal representations. DOI: http://dx.doi.org/10.7554/eLife.16420.001 PMID:27572258
Global brain connectivity alterations in patients with schizophrenia and bipolar spectrum disorders.
Skåtun, Kristina C; Kaufmann, Tobias; Tønnesen, Siren; Biele, Guido; Melle, Ingrid; Agartz, Ingrid; Alnæs, Dag; Andreassen, Ole A; Westlye, Lars T
2016-08-01
The human brain is organized into functionally distinct modules of which interactions constitute the human functional connectome. Accumulating evidence has implicated perturbations in the patterns of brain connectivity across a range of neurologic and neuropsychiatric disorders, but little is known about diagnostic specificity. Schizophrenia and bipolar disorders are severe mental disorders with partly overlapping symptomatology. Neuroimaging has demonstrated brain network disintegration in the pathophysiologies; however, to which degree the 2 diagnoses present with overlapping abnormalities remains unclear. We collected resting-state fMRI data from patients with schizophrenia or bipolar disorder and from healthy controls. Aiming to characterize connectivity differences across 2 severe mental disorders, we derived global functional connectivity using eigenvector centrality mapping, which allows for regional inference of centrality or importance in the brain network. Seventy-one patients with schizophrenia, 43 with bipolar disorder and 196 healthy controls participated in our study. We found significant effects of diagnosis in 12 clusters, where pairwise comparisons showed decreased global connectivity in high-centrality clusters: sensory regions in patients with schizophrenia and subcortical regions in both patient groups. Increased connectivity occurred in frontal and parietal clusters in patients with schizophrenia, with intermediate effects in those with bipolar disorder. Patient groups differed in most cortical clusters, with the strongest effects in sensory regions. Methodological concerns of in-scanner motion and the use of full correlation measures may make analyses more vulnerable to noise. Our results show decreased eigenvector centrality of limbic structures in both patient groups and in sensory regions in patients with schizophrenia as well as increased centrality in frontal and parietal regions in both groups, with stronger effects in patients with schizophrenia.
Guo, Wenbin; Cui, Xilong; Liu, Feng; Chen, Jindong; Xie, Guangrong; Wu, Renrong; Zhang, Zhikun; Chen, Huafu; Zhao, Jingping
2018-01-01
Abnormal default-mode network (DMN) homogeneity has been involved in the neurophysiology of major depressive disorder (MDD) with inconsistent findings. The inconsistency may be due to clinical and methodological variability, and the reproducibility of the findings is limited. The present study aimed to examine alterations of the DMN homogeneity in two independent samples of patients with first-episode, drug-naive MDD. The samples included 59 patients with MDD and 31 comparison subjects from Sample 1 and 29 patients with MDD and 24 comparison subjects from Sample 2. Network homogeneity (NH) was computed with an overlapping technique, which was employed to define brain regions with abnormal NH common to the MDD samples. Compared with comparison subjects, patients with MDD exhibited increased NH in an overlapped brain region of the left superior medial prefrontal cortex (MPFC). No correlations were found between abnormal NH and HAMD total/subscale scores in the patients of each sample and in the combined patients from both samples. This study is the first to examine alterations of DMN homogeneity in first-episode, drug-naive patients with MDD in two independent samples by using an overlapping technique. Patients with MDD exhibit increased NH in an overlapped region in the anterior DMN. The present study thus highlights the importance of the DMN in the neurophysiology of MDD. Copyright © 2017 Elsevier B.V. All rights reserved.
Astegiano, Julia; Altermatt, Florian; Massol, François
2017-11-13
Species establish different interactions (e.g. antagonistic, mutualistic) with multiple species, forming multilayer ecological networks. Disentangling network co-structure in multilayer networks is crucial to predict how biodiversity loss may affect the persistence of multispecies assemblages. Existing methods to analyse multilayer networks often fail to consider network co-structure. We present a new method to evaluate the modular co-structure of multilayer networks through the assessment of species degree co-distribution and network module composition. We focus on modular structure because of its high prevalence among ecological networks. We apply our method to two Lepidoptera-plant networks, one describing caterpillar-plant herbivory interactions and one representing adult Lepidoptera nectaring on flowers, thereby possibly pollinating them. More than 50% of the species established either herbivory or visitation interactions, but not both. These species were over-represented among plants and lepidopterans, and were present in most modules in both networks. Similarity in module composition between networks was high but not different from random expectations. Our method clearly delineates the importance of interpreting multilayer module composition similarity in the light of the constraints imposed by network structure to predict the potential indirect effects of species loss through interconnected modular networks.
Identification of common coexpression modules based on quantitative network comparison.
Jo, Yousang; Kim, Sanghyeon; Lee, Doheon
2018-06-13
Finding common molecular interactions from different samples is essential work to understanding diseases and other biological processes. Coexpression networks and their modules directly reflect sample-specific interactions among genes. Therefore, identification of common coexpression network or modules may reveal the molecular mechanism of complex disease or the relationship between biological processes. However, there has been no quantitative network comparison method for coexpression networks and we examined previous methods for other networks that cannot be applied to coexpression network. Therefore, we aimed to propose quantitative comparison methods for coexpression networks and to find common biological mechanisms between Huntington's disease and brain aging by the new method. We proposed two similarity measures for quantitative comparison of coexpression networks. Then, we performed experiments using known coexpression networks. We showed the validity of two measures and evaluated threshold values for similar coexpression network pairs from experiments. Using these similarity measures and thresholds, we quantitatively measured the similarity between disease-specific and aging-related coexpression modules and found similar Huntington's disease-aging coexpression module pairs. We identified similar Huntington's disease-aging coexpression module pairs and found that these modules are related to brain development, cell death, and immune response. It suggests that up-regulated cell signalling related cell death and immune/ inflammation response may be the common molecular mechanisms in the pathophysiology of HD and normal brain aging in the frontal cortex.
CUFID-query: accurate network querying through random walk based network flow estimation.
Jeong, Hyundoo; Qian, Xiaoning; Yoon, Byung-Jun
2017-12-28
Functional modules in biological networks consist of numerous biomolecules and their complicated interactions. Recent studies have shown that biomolecules in a functional module tend to have similar interaction patterns and that such modules are often conserved across biological networks of different species. As a result, such conserved functional modules can be identified through comparative analysis of biological networks. In this work, we propose a novel network querying algorithm based on the CUFID (Comparative network analysis Using the steady-state network Flow to IDentify orthologous proteins) framework combined with an efficient seed-and-extension approach. The proposed algorithm, CUFID-query, can accurately detect conserved functional modules as small subnetworks in the target network that are expected to perform similar functions to the given query functional module. The CUFID framework was recently developed for probabilistic pairwise global comparison of biological networks, and it has been applied to pairwise global network alignment, where the framework was shown to yield accurate network alignment results. In the proposed CUFID-query algorithm, we adopt the CUFID framework and extend it for local network alignment, specifically to solve network querying problems. First, in the seed selection phase, the proposed method utilizes the CUFID framework to compare the query and the target networks and to predict the probabilistic node-to-node correspondence between the networks. Next, the algorithm selects and greedily extends the seed in the target network by iteratively adding nodes that have frequent interactions with other nodes in the seed network, in a way that the conductance of the extended network is maximally reduced. Finally, CUFID-query removes irrelevant nodes from the querying results based on the personalized PageRank vector for the induced network that includes the fully extended network and its neighboring nodes. Through extensive performance evaluation based on biological networks with known functional modules, we show that CUFID-query outperforms the existing state-of-the-art algorithms in terms of prediction accuracy and biological significance of the predictions.
Non-overlapping Neural Networks in Hydra vulgaris.
Dupre, Christophe; Yuste, Rafael
2017-04-24
To understand the emergent properties of neural circuits, it would be ideal to record the activity of every neuron in a behaving animal and decode how it relates to behavior. We have achieved this with the cnidarian Hydra vulgaris, using calcium imaging of genetically engineered animals to measure the activity of essentially all of its neurons. Although the nervous system of Hydra is traditionally described as a simple nerve net, we surprisingly find instead a series of functional networks that are anatomically non-overlapping and are associated with specific behaviors. Three major functional networks extend through the entire animal and are activated selectively during longitudinal contractions, elongations in response to light, and radial contractions, whereas an additional network is located near the hypostome and is active during nodding. These results demonstrate the functional sophistication of apparently simple nerve nets, and the potential of Hydra and other basal metazoans as a model system for neural circuit studies. Published by Elsevier Ltd.
Benefits of Sharing Detections for Networked Track Initiation in Anti-Submarine Warfare
2008-01-01
34 since, for the arrangement of circles adopted herein (Fig. 6, p. 328H ), each additional circle from the third to the sixth adds two lenticular ...seventh adds two lenses and a circular triangle, which is the region of overlap of lenses. Hence, for every overlapping pair of lenticular areas
Schmidt, Christoph; Piper, Diana; Pester, Britta; Mierau, Andreas; Witte, Herbert
2018-05-01
Identification of module structure in brain functional networks is a promising way to obtain novel insights into neural information processing, as modules correspond to delineated brain regions in which interactions are strongly increased. Tracking of network modules in time-varying brain functional networks is not yet commonly considered in neuroscience despite its potential for gaining an understanding of the time evolution of functional interaction patterns and associated changing degrees of functional segregation and integration. We introduce a general computational framework for extracting consensus partitions from defined time windows in sequences of weighted directed edge-complete networks and show how the temporal reorganization of the module structure can be tracked and visualized. Part of the framework is a new approach for computing edge weight thresholds for individual networks based on multiobjective optimization of module structure quality criteria as well as an approach for matching modules across time steps. By testing our framework using synthetic network sequences and applying it to brain functional networks computed from electroencephalographic recordings of healthy subjects that were exposed to a major balance perturbation, we demonstrate the framework's potential for gaining meaningful insights into dynamic brain function in the form of evolving network modules. The precise chronology of the neural processing inferred with our framework and its interpretation helps to improve the currently incomplete understanding of the cortical contribution for the compensation of such balance perturbations.
Epidemic spreading and immunization strategy in multiplex networks
NASA Astrophysics Data System (ADS)
Alvarez Zuzek, Lucila G.; Buono, Camila; Braunstein, Lidia A.
2015-09-01
A more connected world has brought major consequences such as facilitate the spread of diseases all over the world to quickly become epidemics, reason why researchers are concentrated in modeling the propagation of epidemics and outbreaks in multilayer networks. In this networks all nodes interact in different layers with different type of links. However, in many scenarios such as in the society, a multiplex network framework is not completely suitable since not all individuals participate in all layers. In this paper, we use a partially overlapped, multiplex network where only a fraction of the individuals are shared by the layers. We develop a mitigation strategy for stopping a disease propagation, considering the Susceptible-Infected- Recover model, in a system consisted by two layers. We consider a random immunization in one of the layers and study the effect of the overlapping fraction in both, the propagation of the disease and the immunization strategy. Using branching theory, we study this scenario theoretically and via simulations and find a lower epidemic threshold than in the case without strategy.
Modulation and coding for throughput-efficient optical free-space links
NASA Technical Reports Server (NTRS)
Georghiades, Costas N.
1993-01-01
Optical direct-detection systems are currently being considered for some high-speed inter-satellite links, where data-rates of a few hundred megabits per second are evisioned under power and pulsewidth constraints. In this paper we investigate the capacity, cutoff-rate and error-probability performance of uncoded and trellis-coded systems for various modulation schemes and under various throughput and power constraints. Modulation schemes considered are on-off keying (OOK), pulse-position modulation (PPM), overlapping PPM (OPPM) and multi-pulse (combinatorial) PPM (MPPM).
NASA Technical Reports Server (NTRS)
1978-01-01
Six photovoltaic modules using solar cells fabricated from silicon ribbons were assembled and delivered to JPL. Each module was comprised of four separate submodules which were parallel connected. The submodules contained 45 EFG cells which were series interconnected by a shingle or overlapping design. The inherent rectangular shape of the cells allowed a high packing factor to be achieved. The average efficiency of the six modules, corrected to AM1 at 28 C was 8.7%, which indicates that the average encapsulated cell efficiency was 10.0%.
Wide swath imaging spectrometer utilizing a multi-modular design
Chrisp, Michael P.
2010-10-05
A wide swath imaging spectrometer utilizing an array of individual spectrometer modules in the telescope focal plane to provide an extended field of view. The spectrometer modules with their individual detectors are arranged so that their slits overlap with motion on the scene providing contiguous spatial coverage. The number of modules can be varied to take full advantage of the field of view available from the telescope.
2013-01-01
Background Differential gene expression (DGE) analysis is commonly used to reveal the deregulated molecular mechanisms of complex diseases. However, traditional DGE analysis (e.g., the t test or the rank sum test) tests each gene independently without considering interactions between them. Top-ranked differentially regulated genes prioritized by the analysis may not directly relate to the coherent molecular changes underlying complex diseases. Joint analyses of co-expression and DGE have been applied to reveal the deregulated molecular modules underlying complex diseases. Most of these methods consist of separate steps: first to identify gene-gene relationships under the studied phenotype then to integrate them with gene expression changes for prioritizing signature genes, or vice versa. It is warrant a method that can simultaneously consider gene-gene co-expression strength and corresponding expression level changes so that both types of information can be leveraged optimally. Results In this paper, we develop a gene module based method for differential gene expression analysis, named network-based differential gene expression (nDGE) analysis, a one-step integrative process for prioritizing deregulated genes and grouping them into gene modules. We demonstrate that nDGE outperforms existing methods in prioritizing deregulated genes and discovering deregulated gene modules using simulated data sets. When tested on a series of smoker and non-smoker lung adenocarcinoma data sets, we show that top differentially regulated genes identified by the rank sum test in different sets are not consistent while top ranked genes defined by nDGE in different data sets significantly overlap. nDGE results suggest that a differentially regulated gene module, which is enriched for cell cycle related genes and E2F1 targeted genes, plays a role in the molecular differences between smoker and non-smoker lung adenocarcinoma. Conclusions In this paper, we develop nDGE to prioritize deregulated genes and group them into gene modules by simultaneously considering gene expression level changes and gene-gene co-regulations. When applied to both simulated and empirical data, nDGE outperforms the traditional DGE method. More specifically, when applied to smoker and non-smoker lung cancer sets, nDGE results illustrate the molecular differences between smoker and non-smoker lung cancer. PMID:24341432
Face Patch Resting State Networks Link Face Processing to Social Cognition
Schwiedrzik, Caspar M.; Zarco, Wilbert; Everling, Stefan; Freiwald, Winrich A.
2015-01-01
Faces transmit a wealth of social information. How this information is exchanged between face-processing centers and brain areas supporting social cognition remains largely unclear. Here we identify these routes using resting state functional magnetic resonance imaging in macaque monkeys. We find that face areas functionally connect to specific regions within frontal, temporal, and parietal cortices, as well as subcortical structures supporting emotive, mnemonic, and cognitive functions. This establishes the existence of an extended face-recognition system in the macaque. Furthermore, the face patch resting state networks and the default mode network in monkeys show a pattern of overlap akin to that between the social brain and the default mode network in humans: this overlap specifically includes the posterior superior temporal sulcus, medial parietal, and dorsomedial prefrontal cortex, areas supporting high-level social cognition in humans. Together, these results reveal the embedding of face areas into larger brain networks and suggest that the resting state networks of the face patch system offer a new, easily accessible venue into the functional organization of the social brain and into the evolution of possibly uniquely human social skills. PMID:26348613
Evaluating factors that predict the structure of a commensalistic epiphyte–phorophyte network
Sáyago, Roberto; Lopezaraiza-Mikel, Martha; Quesada, Mauricio; Álvarez-Añorve, Mariana Yolotl; Cascante-Marín, Alfredo; Bastida, Jesus Ma.
2013-01-01
A central issue in ecology is the understanding of the establishment of biotic interactions. We studied the factors that affect the assembly of the commensalistic interactions between vascular epiphytes and their host plants. We used an analytical approach that considers all individuals and species of epiphytic bromeliads and woody hosts and non-hosts at study plots. We built models of interaction probabilities among species to assess if host traits and abundance and spatial overlap of species predict the quantitative epiphyte–host network. Species abundance, species spatial overlap and host size largely predicted pairwise interactions and several network metrics. Wood density and bark texture of hosts also contributed to explain network structure. Epiphytes were more common on large hosts, on abundant woody species, with denser wood and/or rougher bark. The network had a low level of specialization, although several interactions were more frequent than expected by the models. We did not detect a phylogenetic signal on the network structure. The effect of host size on the establishment of epiphytes indicates that mature forests are necessary to preserve diverse bromeliad communities. PMID:23407832
Evidence of Rentian Scaling of Functional Modules in Diverse Biological Networks.
How, Javier J; Navlakha, Saket
2018-06-12
Biological networks have long been known to be modular, containing sets of nodes that are highly connected internally. Less emphasis, however, has been placed on understanding how intermodule connections are distributed within a network. Here, we borrow ideas from engineered circuit design and study Rentian scaling, which states that the number of external connections between nodes in different modules is related to the number of nodes inside the modules by a power-law relationship. We tested this property in a broad class of molecular networks, including protein interaction networks for six species and gene regulatory networks for 41 human and 25 mouse cell types. Using evolutionarily defined modules corresponding to known biological processes in the cell, we found that all networks displayed Rentian scaling with a broad range of exponents. We also found evidence for Rentian scaling in functional modules in the Caenorhabditis elegans neural network, but, interestingly, not in three different social networks, suggesting that this property does not inevitably emerge. To understand how such scaling may have arisen evolutionarily, we derived a new graph model that can generate Rentian networks given a target Rent exponent and a module decomposition as inputs. Overall, our work uncovers a new principle shared by engineered circuits and biological networks.
ERIC Educational Resources Information Center
Long, Nicole M.; Kahana, Michael J.
2017-01-01
Although episodic and semantic memory share overlapping neural mechanisms, it remains unclear how our pre-existing semantic associations modulate the formation of new, episodic associations. When freely recalling recently studied words, people rely on both episodic and semantic associations, shown through temporal and semantic clustering of…
Overlapping communities from dense disjoint and high total degree clusters
NASA Astrophysics Data System (ADS)
Zhang, Hongli; Gao, Yang; Zhang, Yue
2018-04-01
Community plays an important role in the field of sociology, biology and especially in domains of computer science, where systems are often represented as networks. And community detection is of great importance in the domains. A community is a dense subgraph of the whole graph with more links between its members than between its members to the outside nodes, and nodes in the same community probably share common properties or play similar roles in the graph. Communities overlap when nodes in a graph belong to multiple communities. A vast variety of overlapping community detection methods have been proposed in the literature, and the local expansion method is one of the most successful techniques dealing with large networks. The paper presents a density-based seeding method, in which dense disjoint local clusters are searched and selected as seeds. The proposed method selects a seed by the total degree and density of local clusters utilizing merely local structures of the network. Furthermore, this paper proposes a novel community refining phase via minimizing the conductance of each community, through which the quality of identified communities is largely improved in linear time. Experimental results in synthetic networks show that the proposed seeding method outperforms other seeding methods in the state of the art and the proposed refining method largely enhances the quality of the identified communities. Experimental results in real graphs with ground-truth communities show that the proposed approach outperforms other state of the art overlapping community detection algorithms, in particular, it is more than two orders of magnitude faster than the existing global algorithms with higher quality, and it obtains much more accurate community structure than the current local algorithms without any priori information.
Figure-ground mechanisms provide structure for selective attention.
Qiu, Fangtu T; Sugihara, Tadashi; von der Heydt, Rüdiger
2007-11-01
Attention depends on figure-ground organization: figures draw attention, whereas shapes of the ground tend to be ignored. Recent research has revealed mechanisms for figure-ground organization in the visual cortex, but how these mechanisms relate to the attention process remains unclear. Here we show that the influences of figure-ground organization and volitional (top-down) attention converge in single neurons of area V2 in Macaca mulatta. Although we found assignment of border ownership for attended and for ignored figures, attentional modulation was stronger when the attended figure was located on the neuron's preferred side of border ownership. When the border between two overlapping figures was placed in the receptive field, responses depended on the side of attention, and enhancement was generally found on the neuron's preferred side of border ownership. This correlation suggests that the neural network that creates figure-ground organization also provides the interface for the top-down selection process.
Figure-ground mechanisms provide structure for selective attention
Qiu, Fangtu T.; Sugihara, Tadashi; von der Heydt, Rüdiger
2009-01-01
Attention depends on figure-ground organization: figures draw attention, while shapes of the ground tend to be ignored. Recent research has demonstrated mechanisms of figure-ground organization in the visual cortex, but how they relate to the attention process remains unclear. Here we show that the influences of figure-ground organization and volitional (top-down) attention converge in single neurons of area V2. While assignment of border ownership was found for attended as well as for ignored figures, attentional modulation was stronger when the attended figure was located on the neuron’s preferred side of border ownership. When the border between two overlapping figures was placed in the receptive field, responses depended on the side of attention, and enhancement was generally found on the neuron’s preferred side of border ownership. This correlation suggests that the neural network that creates figure-ground organization also provides the interface for the top-down selection process. PMID:17922006
Video-rate volumetric functional imaging of the brain at synaptic resolution.
Lu, Rongwen; Sun, Wenzhi; Liang, Yajie; Kerlin, Aaron; Bierfeld, Jens; Seelig, Johannes D; Wilson, Daniel E; Scholl, Benjamin; Mohar, Boaz; Tanimoto, Masashi; Koyama, Minoru; Fitzpatrick, David; Orger, Michael B; Ji, Na
2017-04-01
Neurons and neural networks often extend hundreds of micrometers in three dimensions. Capturing the calcium transients associated with their activity requires volume imaging methods with subsecond temporal resolution. Such speed is a challenge for conventional two-photon laser-scanning microscopy, because it depends on serial focal scanning in 3D and indicators with limited brightness. Here we present an optical module that is easily integrated into standard two-photon laser-scanning microscopes to generate an axially elongated Bessel focus, which when scanned in 2D turns frame rate into volume rate. We demonstrated the power of this approach in enabling discoveries for neurobiology by imaging the calcium dynamics of volumes of neurons and synapses in fruit flies, zebrafish larvae, mice and ferrets in vivo. Calcium signals in objects as small as dendritic spines could be resolved at video rates, provided that the samples were sparsely labeled to limit overlap in their axially projected images.
Metagenomic Insights of Microbial Feedbacks to Elevated CO2 (Invited)
NASA Astrophysics Data System (ADS)
Zhou, J.; Tu, Q.; Wu, L.; He, Z.; Deng, Y.; Van Nostrand, J. D.
2013-12-01
Understanding the responses of biological communities to elevated CO2 (eCO2) is a central issue in ecology and global change biology, but its impacts on the diversity, composition, structure, function, interactions and dynamics of soil microbial communities remain elusive. In this study, we first examined microbial responses to eCO2 among six FACE sites/ecosystems using a comprehensive functional gene microarray (GeoChip), and then focused on details of metagenome sequencing analysis in one particular site. GeoChip is a comprehensive functional gene array for examining the relationships between microbial community structure and ecosystem functioning and is a very powerful technology for biogeochemical, ecological and environmental studies. The current version of GeoChip (GeoChip 5.0) contains approximately 162,000 probes from 378,000 genes involved in C, N, S and P cycling, organic contaminant degradation, metal resistance, antibiotic resistance, stress responses, metal homeostasis, virulence, pigment production, bacterial phage-mediated lysis, soil beneficial microorganisms, and specific probes for viruses, protists, and fungi. Our experimental results revealed that both ecosystem and CO2 significantly (p < 0.05) affected the functional composition, structure and metabolic potential of soil microbial communities with the ecosystem having much greater influence (~47%) than CO2 (~1.3%) or CO2 and ecosystem (~4.1%). On one hand, microbial responses to eCO2 shared some common patterns among different ecosystems, such as increased abundances for key functional genes involved in nitrogen fixation, carbon fixation and degradation, and denitrification. On the other hand, more ecosystem-specific microbial responses were identified in each individual ecosystem. Such changes in the soil microbial community structure were closely correlated with geographic distance, soil NO3-N, NH4-N and C/N ratio. Further metagenome sequencing analysis of soil microbial communities in one particular site showed eCO2 altered the overall structure of soil microbial communities with ambient CO2 samples retaining a higher functional gene diversity than eCO2 samples. Also the taxonomic diversity of functional genes decreased at eCO2. Random matrix theory (RMT)-based network analysis showed that the identified networks under ambient and elevated CO2 were substantially different in terms of overall network topology, network composition, node overlap, module preservation, module-based higher order organization (meta-modules), topological roles of individual nodes, and network hubs, indicating that elevated CO2 dramatically altered the network interactions among different phylogenetic and functional groups/populations. In addition, the changes in network structure were significantly correlated with soil carbon and nitrogen content, indicating the potential importance of network interactions in ecosystem functioning. Taken together, this study indicates that eCO2 may decrease the overall functional and taxonomic diversity of soil microbial communities, but such effects appeared to be ecosystem-specific, which makes it more challenging for predicting global or regional terrestrial ecosystems responses to eCO2.
Gene co-expression networks shed light into diseases of brain iron accumulation
Bettencourt, Conceição; Forabosco, Paola; Wiethoff, Sarah; Heidari, Moones; Johnstone, Daniel M.; Botía, Juan A.; Collingwood, Joanna F.; Hardy, John; Milward, Elizabeth A.; Ryten, Mina; Houlden, Henry
2016-01-01
Aberrant brain iron deposition is observed in both common and rare neurodegenerative disorders, including those categorized as Neurodegeneration with Brain Iron Accumulation (NBIA), which are characterized by focal iron accumulation in the basal ganglia. Two NBIA genes are directly involved in iron metabolism, but whether other NBIA-related genes also regulate iron homeostasis in the human brain, and whether aberrant iron deposition contributes to neurodegenerative processes remains largely unknown. This study aims to expand our understanding of these iron overload diseases and identify relationships between known NBIA genes and their main interacting partners by using a systems biology approach. We used whole-transcriptome gene expression data from human brain samples originating from 101 neuropathologically normal individuals (10 brain regions) to generate weighted gene co-expression networks and cluster the 10 known NBIA genes in an unsupervised manner. We investigated NBIA-enriched networks for relevant cell types and pathways, and whether they are disrupted by iron loading in NBIA diseased tissue and in an in vivo mouse model. We identified two basal ganglia gene co-expression modules significantly enriched for NBIA genes, which resemble neuronal and oligodendrocytic signatures. These NBIA gene networks are enriched for iron-related genes, and implicate synapse and lipid metabolism related pathways. Our data also indicates that these networks are disrupted by excessive brain iron loading. We identified multiple cell types in the origin of NBIA disorders. We also found unforeseen links between NBIA networks and iron-related processes, and demonstrate convergent pathways connecting NBIAs and phenotypically overlapping diseases. Our results are of further relevance for these diseases by providing candidates for new causative genes and possible points for therapeutic intervention. PMID:26707700
Gene co-expression networks shed light into diseases of brain iron accumulation.
Bettencourt, Conceição; Forabosco, Paola; Wiethoff, Sarah; Heidari, Moones; Johnstone, Daniel M; Botía, Juan A; Collingwood, Joanna F; Hardy, John; Milward, Elizabeth A; Ryten, Mina; Houlden, Henry
2016-03-01
Aberrant brain iron deposition is observed in both common and rare neurodegenerative disorders, including those categorized as Neurodegeneration with Brain Iron Accumulation (NBIA), which are characterized by focal iron accumulation in the basal ganglia. Two NBIA genes are directly involved in iron metabolism, but whether other NBIA-related genes also regulate iron homeostasis in the human brain, and whether aberrant iron deposition contributes to neurodegenerative processes remains largely unknown. This study aims to expand our understanding of these iron overload diseases and identify relationships between known NBIA genes and their main interacting partners by using a systems biology approach. We used whole-transcriptome gene expression data from human brain samples originating from 101 neuropathologically normal individuals (10 brain regions) to generate weighted gene co-expression networks and cluster the 10 known NBIA genes in an unsupervised manner. We investigated NBIA-enriched networks for relevant cell types and pathways, and whether they are disrupted by iron loading in NBIA diseased tissue and in an in vivo mouse model. We identified two basal ganglia gene co-expression modules significantly enriched for NBIA genes, which resemble neuronal and oligodendrocytic signatures. These NBIA gene networks are enriched for iron-related genes, and implicate synapse and lipid metabolism related pathways. Our data also indicates that these networks are disrupted by excessive brain iron loading. We identified multiple cell types in the origin of NBIA disorders. We also found unforeseen links between NBIA networks and iron-related processes, and demonstrate convergent pathways connecting NBIAs and phenotypically overlapping diseases. Our results are of further relevance for these diseases by providing candidates for new causative genes and possible points for therapeutic intervention. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Algebraic Approach for Recovering Topology in Distributed Camera Networks
2009-01-14
not valid for camera networks. Spatial sam- pling of plenoptic function [2] from a network of cameras is rarely i.i.d. (independent and identi- cally...coverage can be used to track and compare paths in a wireless camera network without any metric calibration information. In particular, these results can...edition edition, 2000. [14] A. Rahimi, B. Dunagan, and T. Darrell. Si- multaneous calibration and tracking with a network of non-overlapping sensors. In
Villandre, Luc; Günthard, Huldrych F.; Kouyos, Roger; Stadler, Tanja
2016-01-01
Background Transmission patterns of sexually-transmitted infections (STIs) could relate to the structure of the underlying sexual contact network, whose features are therefore of interest to clinicians. Conventionally, we represent sexual contacts in a population with a graph, that can reveal the existence of communities. Phylogenetic methods help infer the history of an epidemic and incidentally, may help detecting communities. In particular, phylogenetic analyses of HIV-1 epidemics among men who have sex with men (MSM) have revealed the existence of large transmission clusters, possibly resulting from within-community transmissions. Past studies have explored the association between contact networks and phylogenies, including transmission clusters, producing conflicting conclusions about whether network features significantly affect observed transmission history. As far as we know however, none of them thoroughly investigated the role of communities, defined with respect to the network graph, in the observation of clusters. Methods The present study investigates, through simulations, community detection from phylogenies. We simulate a large number of epidemics over both unweighted and weighted, undirected random interconnected-islands networks, with islands corresponding to communities. We use weighting to modulate distance between islands. We translate each epidemic into a phylogeny, that lets us partition our samples of infected subjects into transmission clusters, based on several common definitions from the literature. We measure similarity between subjects’ island membership indices and transmission cluster membership indices with the adjusted Rand index. Results and Conclusion Analyses reveal modest mean correspondence between communities in graphs and phylogenetic transmission clusters. We conclude that common methods often have limited success in detecting contact network communities from phylogenies. The rarely-fulfilled requirement that network communities correspond to clades in the phylogeny is their main drawback. Understanding the link between transmission clusters and communities in sexual contact networks could help inform policymaking to curb HIV incidence in MSMs. PMID:26863322
Carrieri, Arthur H; Copper, Jack; Owens, David J; Roese, Erik S; Bottiger, Jerold R; Everly, Robert D; Hung, Kevin C
2010-01-20
An active spectrophotopolarimeter sensor and support system were developed for a military/civilian defense feasibility study concerning the identification and standoff detection of biological aerosols. Plumes of warfare agent surrogates gamma-irradiated Bacillus subtilis and chicken egg white albumen (analytes), Arizona road dust (terrestrial interferent), water mist (atmospheric interferent), and talcum powders (experiment controls) were dispersed inside windowless chambers and interrogated by multiple CO(2) laser beams spanning 9.1-12.0 microm wavelengths (lambda). Molecular vibration and vibration-rotation activities by the subject analyte are fundamentally strong within this "fingerprint" middle infrared spectral region. Distinct polarization-modulations of incident irradiance and backscatter radiance of tuned beams generate the Mueller matrix (M) of subject aerosol. Strings of all 15 normalized elements {M(ij)(lambda)/M(11)(lambda)}, which completely describe physical and geometric attributes of the aerosol particles, are input fields for training hybrid Kohonen self-organizing map feed-forward artificial neural networks (ANNs). The properly trained and validated ANN model performs pattern recognition and type-classification tasks via internal mappings. A typical ANN that mathematically clusters analyte, interferent, and control aerosols with nil overlap of species is illustrated, including sensitivity analysis of performance.
DiME: A Scalable Disease Module Identification Algorithm with Application to Glioma Progression
Liu, Yunpeng; Tennant, Daniel A.; Zhu, Zexuan; Heath, John K.; Yao, Xin; He, Shan
2014-01-01
Disease module is a group of molecular components that interact intensively in the disease specific biological network. Since the connectivity and activity of disease modules may shed light on the molecular mechanisms of pathogenesis and disease progression, their identification becomes one of the most important challenges in network medicine, an emerging paradigm to study complex human disease. This paper proposes a novel algorithm, DiME (Disease Module Extraction), to identify putative disease modules from biological networks. We have developed novel heuristics to optimise Community Extraction, a module criterion originally proposed for social network analysis, to extract topological core modules from biological networks as putative disease modules. In addition, we have incorporated a statistical significance measure, B-score, to evaluate the quality of extracted modules. As an application to complex diseases, we have employed DiME to investigate the molecular mechanisms that underpin the progression of glioma, the most common type of brain tumour. We have built low (grade II) - and high (GBM) - grade glioma co-expression networks from three independent datasets and then applied DiME to extract potential disease modules from both networks for comparison. Examination of the interconnectivity of the identified modules have revealed changes in topology and module activity (expression) between low- and high- grade tumours, which are characteristic of the major shifts in the constitution and physiology of tumour cells during glioma progression. Our results suggest that transcription factors E2F4, AR and ETS1 are potential key regulators in tumour progression. Our DiME compiled software, R/C++ source code, sample data and a tutorial are available at http://www.cs.bham.ac.uk/~szh/DiME. PMID:24523864
Wang, Zhishi; Craven, Mark; Newton, Michael A.; Ahlquist, Paul
2013-01-01
Systematic, genome-wide RNA interference (RNAi) analysis is a powerful approach to identify gene functions that support or modulate selected biological processes. An emerging challenge shared with some other genome-wide approaches is that independent RNAi studies often show limited agreement in their lists of implicated genes. To better understand this, we analyzed four genome-wide RNAi studies that identified host genes involved in influenza virus replication. These studies collectively identified and validated the roles of 614 cell genes, but pair-wise overlap among the four gene lists was only 3% to 15% (average 6.7%). However, a number of functional categories were overrepresented in multiple studies. The pair-wise overlap of these enriched-category lists was high, ∼19%, implying more agreement among studies than apparent at the gene level. Probing this further, we found that the gene lists implicated by independent studies were highly connected in interacting networks by independent functional measures such as protein-protein interactions, at rates significantly higher than predicted by chance. We also developed a general, model-based approach to gauge the effects of false-positive and false-negative factors and to estimate, from a limited number of studies, the total number of genes involved in a process. For influenza virus replication, this novel statistical approach estimates the total number of cell genes involved to be ∼2,800. This and multiple other aspects of our experimental and computational results imply that, when following good quality control practices, the low overlap between studies is primarily due to false negatives rather than false-positive gene identifications. These results and methods have implications for and applications to multiple forms of genome-wide analysis. PMID:24068911
Bhinder, Bhavneet; Shum, David; Djaballah, Hakim
2014-02-01
RNAi screening in combination with the genome-sequencing projects would constitute the Holy Grail of modern genetics; enabling discovery and validation towards a better understanding of fundamental biology leading to novel targets to combat disease. Hit discordance at inter-screen level together with the lack of reproducibility is emerging as the technology's main pitfalls. To examine some of the underlining factors leading to such discrepancies, we reasoned that perhaps there is an inherent difference in knockdown efficiency of the various RNAi technologies. For this purpose, we utilized the two most popular ones, chemically synthesized siRNA duplex and plasmid-based shRNA hairpin, in order to perform a head to head comparison. Using a previously developed gain-of-function assay probing modulators of the miRNA biogenesis pathway, we first executed on a siRNA screen against the Silencer Select V4.0 library (AMB) nominating 1,273, followed by an shRNA screen against the TRC1 library (TRC1) nominating 497 gene candidates. We observed a poor overlap of only 29 hits given that there are 15,068 overlapping genes between the two libraries; with DROSHA as the only common hit out of the seven known core miRNA biogenesis genes. Distinct genes interacting with the same biogenesis regulators were observed in both screens, with a dismal cross-network overlap of only 3 genes (DROSHA, TGFBR1, and DIS3). Taken together, our study demonstrates differential knockdown activities between the two technologies, possibly due to the inefficient intracellular processing and potential cell-type specificity determinants in generating intended targeting sequences for the plasmid-based shRNA hairpins; and suggests this observed inefficiency as potential culprit in addressing the lack of reproducibility.
Chironomidae larvae (Diptera) of Neotropical floodplain: overlap niche in different habitats.
Butakka, C M M; Ragonha, F H; Takeda, A M
2014-05-01
The niche overlap between trophic groups of Chironomidae larvae in different habitats was observed between trophic groups and between different environments in Neotropical floodplain. For the evaluation we used the index of niche overlap (CXY) and analysis of trophic networks, both from the types and amount of food items identified in the larval alimentary canal. In all environments, the larvae fed on mainly organic matter such as plants fragments and algae, but there were many omnivore larvae. Species that have high values of food items occurred in diverse environments as generalists with great overlap niche and those with a low amount of food items with less overlap niche were classified as specialists. The largest number of trophic niche overlap was observed among collector-gatherers in connected floodplain lakes. The lower values of index niche overlap were predators. The similarity in the diet of different taxa in the same niche does not necessarily imply competition between them, but coexistence when the food resource is not scarce in the environment even in partially overlapping niches.
Communities and classes in symmetric fractals
NASA Astrophysics Data System (ADS)
Krawczyk, Małgorzata J.
2015-07-01
Two aspects of fractal networks are considered: the community structure and the class structure, where classes of nodes appear as a consequence of a local symmetry of nodes. The analyzed systems are the networks constructed for two selected symmetric fractals: the Sierpinski triangle and the Koch curve. Communities are searched for by means of a set of differential equations. Overlapping nodes which belong to two different communities are identified by adding some noise to the initial connectivity matrix. Then, a node can be characterized by a spectrum of probabilities of belonging to different communities. Our main goal is that the overlapping nodes with the same spectra belong to the same class.
Garagnani, Max; Wennekers, Thomas; Pulvermüller, Friedemann
2009-01-01
Current cognitive theories postulate either localist representations of knowledge or fully overlapping, distributed ones. We use a connectionist model that closely replicates known anatomical properties of the cerebral cortex and neurophysiological principles to show that Hebbian learning in a multi-layer neural network leads to memory traces (cell assemblies) that are both distributed and anatomically distinct. Taking the example of word learning based on action-perception correlation, we document mechanisms underlying the emergence of these assemblies, especially (i) the recruitment of neurons and consolidation of connections defining the kernel of the assembly along with (ii) the pruning of the cell assembly’s halo (consisting of very weakly connected cells). We found that, whereas a learning rule mapping covariance led to significant overlap and merging of assemblies, a neurobiologically grounded synaptic plasticity rule with fixed LTP/LTD thresholds produced minimal overlap and prevented merging, exhibiting competitive learning behaviour. Our results are discussed in light of current theories of language and memory. As simulations with neurobiologically realistic neural networks demonstrate here spontaneous emergence of lexical representations that are both cortically dispersed and anatomically distinct, both localist and distributed cognitive accounts receive partial support. PMID:20396612
Garagnani, Max; Wennekers, Thomas; Pulvermüller, Friedemann
2009-06-01
Current cognitive theories postulate either localist representations of knowledge or fully overlapping, distributed ones. We use a connectionist model that closely replicates known anatomical properties of the cerebral cortex and neurophysiological principles to show that Hebbian learning in a multi-layer neural network leads to memory traces (cell assemblies) that are both distributed and anatomically distinct. Taking the example of word learning based on action-perception correlation, we document mechanisms underlying the emergence of these assemblies, especially (i) the recruitment of neurons and consolidation of connections defining the kernel of the assembly along with (ii) the pruning of the cell assembly's halo (consisting of very weakly connected cells). We found that, whereas a learning rule mapping covariance led to significant overlap and merging of assemblies, a neurobiologically grounded synaptic plasticity rule with fixed LTP/LTD thresholds produced minimal overlap and prevented merging, exhibiting competitive learning behaviour. Our results are discussed in light of current theories of language and memory. As simulations with neurobiologically realistic neural networks demonstrate here spontaneous emergence of lexical representations that are both cortically dispersed and anatomically distinct, both localist and distributed cognitive accounts receive partial support.
Scaling vectors of attoJoule per bit modulators
NASA Astrophysics Data System (ADS)
Sorger, Volker J.; Amin, Rubab; Khurgin, Jacob B.; Ma, Zhizhen; Dalir, Hamed; Khan, Sikandar
2018-01-01
Electro-optic modulation performs the conversion between the electrical and optical domain with applications in data communication for optical interconnects, but also for novel optical computing algorithms such as providing nonlinearity at the output stage of optical perceptrons in neuromorphic analog optical computing. While resembling an optical transistor, the weak light-matter-interaction makes modulators 105 times larger compared to their electronic counterparts. Since the clock frequency for photonics on-chip has a power-overhead sweet-spot around tens of GHz, ultrafast modulation may only be required in long-distance communication, not for short on-chip links. Hence, the search is open for power-efficient on-chip modulators beyond the solutions offered by foundries to date. Here, we show scaling vectors towards atto-Joule per bit efficient modulators on-chip as well as some experimental demonstrations of novel plasmonic modulators with sub-fJ/bit efficiencies. Our parametric study of placing different actively modulated materials into plasmonic versus photonic optical modes shows that 2D materials overcompensate their miniscule modal overlap by their unity-high index change. Furthermore, we reveal that the metal used in plasmonic-based modulators not only serves as an electrical contact, but also enables low electrical series resistances leading to near-ideal capacitors. We then discuss the first experimental demonstration of a photon-plasmon-hybrid graphene-based electro-absorption modulator on silicon. The device shows a sub-1 V steep switching enabled by near-ideal electrostatics delivering a high 0.05 dB V-1 μm-1 performance requiring only 110 aJ/bit. Improving on this demonstration, we discuss a plasmonic slot-based graphene modulator design, where the polarization of the plasmonic mode aligns with graphene’s in-plane dimension; where a push-pull dual-gating scheme enables 2 dB V-1 μm-1 efficient modulation allowing the device to be just 770 nm short for 3 dB small signal modulation. Lastly, comparing the switching energy of transistors to modulators shows that modulators based on emerging materials and plasmonic-silicon hybrid integration perform on-par relative to their electronic counter parts. This in turn allows for a device-enabled two orders-of-magnitude improvement of electrical-optical co-integrated network-on-chips over electronic-only architectures. The latter opens technological opportunities in cognitive computing, dynamic data-driven applications systems, and optical analog computer engines including neuromorphic photonic computing.
Detection of communities with Naming Game-based methods
Ribeiro, Carlos Henrique Costa
2017-01-01
Complex networks are often organized in groups or communities of agents that share the same features and/or functions, and this structural organization is built naturally with the formation of the system. In social networks, we argue that the dynamic of linguistic interactions of agreement among people can be a crucial factor in generating this community structure, given that sharing opinions with another person bounds them together, and disagreeing constantly would probably weaken the relationship. We present here a computational model of opinion exchange that uncovers the community structure of a network. Our aim is not to present a new community detection method proper, but to show how a model of social communication dynamics can reveal the (simple and overlapping) community structure in an emergent way. Our model is based on a standard Naming Game, but takes into consideration three social features: trust, uncertainty and opinion preference, that are built over time as agents communicate among themselves. We show that the separate addition of each social feature in the Naming Game results in gradual improvements with respect to community detection. In addition, the resulting uncertainty and trust values classify nodes and edges according to role and position in the network. Also, our model has shown a degree of accuracy both for non-overlapping and overlapping communities that are comparable with most algorithms specifically designed for topological community detection. PMID:28797097
Scalable Management of Enterprise and Data-Center Networks
2011-09-01
To the best of our knowledge , there is no systematic and efficient solution for handling overlapping wildcard rules in network-wide flow- management ...and D. Maltz, “Unraveling the complexity of network management ,” in NSDI, 2009. [4] P. Mahadevan, P. Sharma, S. Banerjee, and P. Ranganathan , “A...Scalable Management of Enterprise and Data-Center Networks Minlan Yu A Dissertation Presented to the Faculty of Princeton University in Candidacy for
Efficient large-scale graph data optimization for intelligent video surveillance
NASA Astrophysics Data System (ADS)
Shang, Quanhong; Zhang, Shujun; Wang, Yanbo; Sun, Chen; Wang, Zepeng; Zhang, Luming
2017-08-01
Society is rapidly accepting the use of a wide variety of cameras Location and applications: site traffic monitoring, parking Lot surveillance, car and smart space. These ones here the camera provides data every day in an analysis Effective way. Recent advances in sensor technology Manufacturing, communications and computing are stimulating.The development of new applications that can change the traditional Vision system incorporating universal smart camera network. This Analysis of visual cues in multi camera networks makes wide Applications ranging from smart home and office automation to large area surveillance and traffic surveillance. In addition, dense Camera networks, most of which have large overlapping areas of cameras. In the view of good research, we focus on sparse camera networks. One Sparse camera network using large area surveillance. As few cameras as possible, most cameras do not overlap Each other’s field of vision. This task is challenging Lack of knowledge of topology Network, the specific changes in appearance and movement Track different opinions of the target, as well as difficulties Understanding complex events in a network. In this review in this paper, we present a comprehensive survey of recent studies Results to solve the problem of topology learning, Object appearance modeling and global activity understanding sparse camera network. In addition, some of the current open Research issues are discussed.
Why would Musical Training Benefit the Neural Encoding of Speech? The OPERA Hypothesis.
Patel, Aniruddh D
2011-01-01
Mounting evidence suggests that musical training benefits the neural encoding of speech. This paper offers a hypothesis specifying why such benefits occur. The "OPERA" hypothesis proposes that such benefits are driven by adaptive plasticity in speech-processing networks, and that this plasticity occurs when five conditions are met. These are: (1) Overlap: there is anatomical overlap in the brain networks that process an acoustic feature used in both music and speech (e.g., waveform periodicity, amplitude envelope), (2) Precision: music places higher demands on these shared networks than does speech, in terms of the precision of processing, (3) Emotion: the musical activities that engage this network elicit strong positive emotion, (4) Repetition: the musical activities that engage this network are frequently repeated, and (5) Attention: the musical activities that engage this network are associated with focused attention. According to the OPERA hypothesis, when these conditions are met neural plasticity drives the networks in question to function with higher precision than needed for ordinary speech communication. Yet since speech shares these networks with music, speech processing benefits. The OPERA hypothesis is used to account for the observed superior subcortical encoding of speech in musically trained individuals, and to suggest mechanisms by which musical training might improve linguistic reading abilities.
Motivation but not valence modulates neuroticism-dependent cingulate cortex and insula activity.
Deng, Yaling; Li, Shijia; Zhou, Renlai; Walter, Martin
2018-04-01
Neuroticism has been found to specifically modulate amygdala activations during differential processing of valence and motivation while other brain networks yet are unexplored for associated effects. The main purpose of this study was to investigate whether neural mechanisms processing valence or motivation are prone to neuroticism in the salience network (SN), a network that is anchored in the anterior cingulate cortex (ACC) and the anterior insula. This study used functional magnetic resonance imaging (fMRI) and an approach/avoid emotional pictures task to investigate brain activations modulated by pictures' valence or motivational status between high and low neurotic individuals. We found that neuroticism-dependent SN and the parahippocampal-fusiform area activations were modulated by motivation but not valence. Valence in contrast interacted with neuroticism in the lateral orbitofrontal cortex. We suggested that neuroticism modulated valence and motivation processing, however, under the influence of the two distinct networks. Neuroticism modulated the motivation through the SN while it modulated the valence through the orbitofrontal networks. © 2018 Wiley Periodicals, Inc.
Dense module enumeration in biological networks
NASA Astrophysics Data System (ADS)
Tsuda, Koji; Georgii, Elisabeth
2009-12-01
Analysis of large networks is a central topic in various research fields including biology, sociology, and web mining. Detection of dense modules (a.k.a. clusters) is an important step to analyze the networks. Though numerous methods have been proposed to this aim, they often lack mathematical rigorousness. Namely, there is no guarantee that all dense modules are detected. Here, we present a novel reverse-search-based method for enumerating all dense modules. Furthermore, constraints from additional data sources such as gene expression profiles or customer profiles can be integrated, so that we can systematically detect dense modules with interesting profiles. We report successful applications in human protein interaction network analyses.
Individual differences in automatic semantic priming.
Andrews, Sally; Lo, Steson; Xia, Violet
2017-05-01
This research investigated whether masked semantic priming in a semantic categorization task that required classification of words as animals or nonanimals was modulated by individual differences in lexical proficiency. A sample of 89 skilled readers, assessed on reading comprehension, vocabulary and spelling ability, classified target words preceded by brief (50 ms) masked primes that were either congruent or incongruent with the category of the target. Congruent primes were also selected to be either high (e.g., hawk EAGLE, pistol RIFLE) or low (e.g., mole EAGLE, boots RIFLE) in semantic feature overlap with the target. "Overall proficiency," indexed by high performance on both a "semantic composite" measure of reading comprehension and vocabulary and a "spelling composite," was associated with stronger congruence priming from both high and low feature overlap primes for animal exemplars, but only predicted priming from low overlap primes for nonexemplars. Classification of high frequency nonexemplars was also significantly modulated by an independent "spelling-meaning" factor, indexed by the discrepancy between the semantic and spelling composites, because relatively higher scores on the semantic than the spelling composite were associated with stronger semantic priming. These findings show that higher lexical proficiency is associated with stronger evidence of automatic semantic priming and suggest that individual differences in lexical quality modulate the division of labor between orthographic and semantic processing in early lexical retrieval. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
J-modulation effects in DOSY experiments and their suppression: the Oneshot45 experiment.
Botana, Adolfo; Aguilar, Juan A; Nilsson, Mathias; Morris, Gareth A
2011-02-01
Diffusion-ordered spectroscopy (DOSY) is a powerful NMR method for identifying compounds in mixtures. DOSY experiments are very demanding of spectral quality; even small deviations from expected behaviour in NMR signals can cause significant distortions in the diffusion domain. This is a particular problem when signals overlap, so it is very important to be able to acquire clean data with as little overlap as possible. DOSY experiments all suffer to a greater or lesser extent from multiplet phase distortions caused by J-modulation, requiring a trade-off between such distortions and gradient pulse width. Multiplet distortions increase spectral overlap and may cause unexpected and misleading apparent diffusion coefficients in DOSY spectra. These effects are described here and a simple and effective remedy, the addition of a 45° purging pulse immediately before the onset of acquisition to remove the unwanted anti-phase terms, is demonstrated. As well as affording significantly cleaner results, the new method allows much longer diffusion-encoding pulses to be used without problems from J-modulation, and hence greatly increases the range of molecular sizes that can be studied for coupled spin systems. The sensitivity loss is negligible and the added phase cycling is modest. The new method is illustrated for a widely-used general purpose DOSY pulse sequence, Oneshot. Copyright © 2010 Elsevier Inc. All rights reserved.
A Novel Modulation Classification Approach Using Gabor Filter Network
Ghauri, Sajjad Ahmed; Qureshi, Ijaz Mansoor; Cheema, Tanveer Ahmed; Malik, Aqdas Naveed
2014-01-01
A Gabor filter network based approach is used for feature extraction and classification of digital modulated signals by adaptively tuning the parameters of Gabor filter network. Modulation classification of digitally modulated signals is done under the influence of additive white Gaussian noise (AWGN). The modulations considered for the classification purpose are PSK 2 to 64, FSK 2 to 64, and QAM 4 to 64. The Gabor filter network uses the network structure of two layers; the first layer which is input layer constitutes the adaptive feature extraction part and the second layer constitutes the signal classification part. The Gabor atom parameters are tuned using Delta rule and updating of weights of Gabor filter using least mean square (LMS) algorithm. The simulation results show that proposed novel modulation classification algorithm has high classification accuracy at low signal to noise ratio (SNR) on AWGN channel. PMID:25126603
Construct mine environment monitoring system based on wireless mesh network
NASA Astrophysics Data System (ADS)
Chen, Xin; Ge, Gengyu; Liu, Yinmei; Cheng, Aimin; Wu, Jun; Fu, Jun
2018-04-01
The system uses wireless Mesh network as a network transmission medium, and strive to establish an effective and reliable underground environment monitoring system. The system combines wireless network technology and embedded technology to monitor the internal data collected in the mine and send it to the processing center for analysis and environmental assessment. The system can be divided into two parts: the main control network module and the data acquisition terminal, and the SPI bus technology is used for mutual communication between them. Multi-channel acquisition and control interface design Data acquisition and control terminal in the analog signal acquisition module, digital signal acquisition module, and digital signal output module. The main control network module running Linux operating system, in which the transplant SPI driver, USB card driver and AODV routing protocol. As a result, the internal data collection and reporting of the mine are realized.
Integrated Module and Gene-Specific Regulatory Inference Implicates Upstream Signaling Networks
Roy, Sushmita; Lagree, Stephen; Hou, Zhonggang; Thomson, James A.; Stewart, Ron; Gasch, Audrey P.
2013-01-01
Regulatory networks that control gene expression are important in diverse biological contexts including stress response and development. Each gene's regulatory program is determined by module-level regulation (e.g. co-regulation via the same signaling system), as well as gene-specific determinants that can fine-tune expression. We present a novel approach, Modular regulatory network learning with per gene information (MERLIN), that infers regulatory programs for individual genes while probabilistically constraining these programs to reveal module-level organization of regulatory networks. Using edge-, regulator- and module-based comparisons of simulated networks of known ground truth, we find MERLIN reconstructs regulatory programs of individual genes as well or better than existing approaches of network reconstruction, while additionally identifying modular organization of the regulatory networks. We use MERLIN to dissect global transcriptional behavior in two biological contexts: yeast stress response and human embryonic stem cell differentiation. Regulatory modules inferred by MERLIN capture co-regulatory relationships between signaling proteins and downstream transcription factors thereby revealing the upstream signaling systems controlling transcriptional responses. The inferred networks are enriched for regulators with genetic or physical interactions, supporting the inference, and identify modules of functionally related genes bound by the same transcriptional regulators. Our method combines the strengths of per-gene and per-module methods to reveal new insights into transcriptional regulation in stress and development. PMID:24146602
Auditing complex concepts of SNOMED using a refined hierarchical abstraction network.
Wang, Yue; Halper, Michael; Wei, Duo; Gu, Huanying; Perl, Yehoshua; Xu, Junchuan; Elhanan, Gai; Chen, Yan; Spackman, Kent A; Case, James T; Hripcsak, George
2012-02-01
Auditors of a large terminology, such as SNOMED CT, face a daunting challenge. To aid them in their efforts, it is essential to devise techniques that can automatically identify concepts warranting special attention. "Complex" concepts, which by their very nature are more difficult to model, fall neatly into this category. A special kind of grouping, called a partial-area, is utilized in the characterization of complex concepts. In particular, the complex concepts that are the focus of this work are those appearing in intersections of multiple partial-areas and are thus referred to as overlapping concepts. In a companion paper, an automatic methodology for identifying and partitioning the entire collection of overlapping concepts into disjoint, singly-rooted groups, that are more manageable to work with and comprehend, has been presented. The partitioning methodology formed the foundation for the development of an abstraction network for the overlapping concepts called a disjoint partial-area taxonomy. This new disjoint partial-area taxonomy offers a collection of semantically uniform partial-areas and is exploited herein as the basis for a novel auditing methodology. The review of the overlapping concepts is done in a top-down order within semantically uniform groups. These groups are themselves reviewed in a top-down order, which proceeds from the less complex to the more complex overlapping concepts. The results of applying the methodology to SNOMED's Specimen hierarchy are presented. Hypotheses regarding error ratios for overlapping concepts and between different kinds of overlapping concepts are formulated. Two phases of auditing the Specimen hierarchy for two releases of SNOMED are reported on. With the use of the double bootstrap and Fisher's exact test (two-tailed), the auditing of concepts and especially roots of overlapping partial-areas is shown to yield a statistically significant higher proportion of errors. Copyright © 2011 Elsevier Inc. All rights reserved.
Auditing Complex Concepts of SNOMED using a Refined Hierarchical Abstraction Network
Wang, Yue; Halper, Michael; Wei, Duo; Gu, Huanying; Perl, Yehoshua; Xu, Junchuan; Elhanan, Gai; Chen, Yan; Spackman, Kent A.; Case, James T.; Hripcsak, George
2012-01-01
Auditors of a large terminology, such as SNOMED CT, face a daunting challenge. To aid them in their efforts, it is essential to devise techniques that can automatically identify concepts warranting special attention. “Complex” concepts, which by their very nature are more difficult to model, fall neatly into this category. A special kind of grouping, called a partial-area, is utilized in the characterization of complex concepts. In particular, the complex concepts that are the focus of this work are those appearing in intersections of multiple partial-areas and are thus referred to as overlapping concepts. In a companion paper, an automatic methodology for identifying and partitioning the entire collection of overlapping concepts into disjoint, singly-rooted groups, that are more manageable to work with and comprehend, has been presented. The partitioning methodology formed the foundation for the development of an abstraction network for the overlapping concepts called a disjoint partial-area taxonomy. This new disjoint partial-area taxonomy offers a collection of semantically uniform partial-areas and is exploited herein as the basis for a novel auditing methodology. The review of the overlapping concepts is done in a top-down order within semantically uniform groups. These groups are themselves reviewed in a top-down order, which proceeds from the less complex to the more complex overlapping concepts. The results of applying the methodology to SNOMED’s Specimen hierarchy are presented. Hypotheses regarding error ratios for overlapping concepts and between different kinds of overlapping concepts are formulated. Two phases of auditing the Specimen hierarchy for two releases of SNOMED are reported on. With the use of the double bootstrap and Fisher’s exact test (two-tailed), the auditing of concepts and especially roots of overlapping partial-areas is shown to yield a statistically significant higher proportion of errors. PMID:21907827
Environmental versatility promotes modularity in genome-scale metabolic networks.
Samal, Areejit; Wagner, Andreas; Martin, Olivier C
2011-08-24
The ubiquity of modules in biological networks may result from an evolutionary benefit of a modular organization. For instance, modularity may increase the rate of adaptive evolution, because modules can be easily combined into new arrangements that may benefit their carrier. Conversely, modularity may emerge as a by-product of some trait. We here ask whether this last scenario may play a role in genome-scale metabolic networks that need to sustain life in one or more chemical environments. For such networks, we define a network module as a maximal set of reactions that are fully coupled, i.e., whose fluxes can only vary in fixed proportions. This definition overcomes limitations of purely graph based analyses of metabolism by exploiting the functional links between reactions. We call a metabolic network viable in a given chemical environment if it can synthesize all of an organism's biomass compounds from nutrients in this environment. An organism's metabolism is highly versatile if it can sustain life in many different chemical environments. We here ask whether versatility affects the modularity of metabolic networks. Using recently developed techniques to randomly sample large numbers of viable metabolic networks from a vast space of metabolic networks, we use flux balance analysis to study in silico metabolic networks that differ in their versatility. We find that highly versatile networks are also highly modular. They contain more modules and more reactions that are organized into modules. Most or all reactions in a module are associated with the same biochemical pathways. Modules that arise in highly versatile networks generally involve reactions that process nutrients or closely related chemicals. We also observe that the metabolism of E. coli is significantly more modular than even our most versatile networks. Our work shows that modularity in metabolic networks can be a by-product of functional constraints, e.g., the need to sustain life in multiple environments. This organizational principle is insensitive to the environments we consider and to the number of reactions in a metabolic network. Because we observe this principle not just in one or few biological networks, but in large random samples of networks, we propose that it may be a generic principle of metabolic network organization.
NASA Astrophysics Data System (ADS)
Patel, Dhananjay; Dalal, U. D.
2017-05-01
A novel m-QAM Orthogonal Frequency Division Multiplexing (OFDM) Single Sideband (SSB) architecture is proposed for centralized light source (CLS) bidirectional Radio over Fiber (RoF) - Wavelength Division Multiplexing (WDM) - Passive Optical Network (PON). In bidirectional transmission with carrier reuse over the single fiber, the Rayleigh Backscattering (RB) noise and reflection (RE) interferences from optical components can seriously deteriorate the transmission performance of the fiber optic systems. These interferometric noises can be mitigated by utilizing the optical modulation schemes at the Optical Line Terminal (OLT) and Optical Network Unit (ONU) such that the spectral overlap between the optical data spectrum and the RB and RE noise is minimum. A mathematical model is developed for the proposed architecture to accurately measure the performance of the transmission system and also to analyze the effect of interferometric noise caused by the RB and RE. The model takes into the account the different modulation schemes employed at the OLT and the ONU using a Mach Zehnder Modulator (MZM), the optical launch power and the bit-rates of the downstream and upstream signals, the gain of the amplifiers at the OLT and the ONU, the RB-RE noise, chromatic dispersion of the single mode fiber and optical filter responses. In addition, the model analyzes all the components of the RB-RE noise such as carrier RB, signal RB, carrier RE and signal RE, thus providing the complete representation of all the physical phenomena involved. An optical m-QAM OFDM SSB signal acts as a test signal to validate the model which provides excellent agreement with simulation results. The SSB modulation technique using the MZM at the OLT and the ONU differs in the data transmission technique that takes place through the first-order higher and the lower optical sideband respectively. This spectral gap between the downstream and upstream signals reduces the effect of Rayleigh backscattering and discrete reflections.
Discovering Multimodal Behavior in Ms. Pac-Man through Evolution of Modular Neural Networks.
Schrum, Jacob; Miikkulainen, Risto
2016-03-12
Ms. Pac-Man is a challenging video game in which multiple modes of behavior are required: Ms. Pac-Man must escape ghosts when they are threats and catch them when they are edible, in addition to eating all pills in each level. Past approaches to learning behavior in Ms. Pac-Man have treated the game as a single task to be learned using monolithic policy representations. In contrast, this paper uses a framework called Modular Multi-objective NEAT (MM-NEAT) to evolve modular neural networks. Each module defines a separate behavior. The modules are used at different times according to a policy that can be human-designed (i.e. Multitask) or discovered automatically by evolution. The appropriate number of modules can be fixed or discovered using a genetic operator called Module Mutation. Several versions of Module Mutation are evaluated in this paper. Both fixed modular networks and Module Mutation networks outperform monolithic networks and Multitask networks. Interestingly, the best networks dedicate modules to critical behaviors (such as escaping when surrounded after luring ghosts near a power pill) that do not follow the customary division of the game into chasing edible and escaping threat ghosts. The results demonstrate that MM-NEAT can discover interesting and effective behavior for agents in challenging games.
Discovering Multimodal Behavior in Ms. Pac-Man through Evolution of Modular Neural Networks
Schrum, Jacob; Miikkulainen, Risto
2015-01-01
Ms. Pac-Man is a challenging video game in which multiple modes of behavior are required: Ms. Pac-Man must escape ghosts when they are threats and catch them when they are edible, in addition to eating all pills in each level. Past approaches to learning behavior in Ms. Pac-Man have treated the game as a single task to be learned using monolithic policy representations. In contrast, this paper uses a framework called Modular Multi-objective NEAT (MM-NEAT) to evolve modular neural networks. Each module defines a separate behavior. The modules are used at different times according to a policy that can be human-designed (i.e. Multitask) or discovered automatically by evolution. The appropriate number of modules can be fixed or discovered using a genetic operator called Module Mutation. Several versions of Module Mutation are evaluated in this paper. Both fixed modular networks and Module Mutation networks outperform monolithic networks and Multitask networks. Interestingly, the best networks dedicate modules to critical behaviors (such as escaping when surrounded after luring ghosts near a power pill) that do not follow the customary division of the game into chasing edible and escaping threat ghosts. The results demonstrate that MM-NEAT can discover interesting and effective behavior for agents in challenging games. PMID:27030803
Colom, Roberto; Burgaleta, Miguel; Román, Francisco J; Karama, Sherif; Alvarez-Linera, Juan; Abad, Francisco J; Martínez, Kenia; Quiroga, Ma Ángeles; Haier, Richard J
2013-05-15
Evidence from neuroimaging studies suggests that intelligence differences may be supported by a parieto-frontal network. Research shows that this network is also relevant for cognitive functions such as working memory and attention. However, previous studies have not explicitly analyzed the commonality of brain areas between a broad array of intelligence factors and cognitive functions tested in the same sample. Here fluid, crystallized, and spatial intelligence, along with working memory, executive updating, attention, and processing speed were each measured by three diverse tests or tasks. These twenty-one measures were completed by a group of one hundred and four healthy young adults. Three cortical measures (cortical gray matter volume, cortical surface area, and cortical thickness) were regressed against psychological latent scores obtained from a confirmatory factor analysis for removing test and task specific variance. For cortical gray matter volume and cortical surface area, the main overlapping clusters were observed in the middle frontal gyrus and involved fluid intelligence and working memory. Crystallized intelligence showed an overlapping cluster with fluid intelligence and working memory in the middle frontal gyrus. The inferior frontal gyrus showed overlap for crystallized intelligence, spatial intelligence, attention, and processing speed. The fusiform gyrus in temporal cortex showed overlap for spatial intelligence and attention. Parietal and occipital areas did not show any overlap across intelligence and cognitive factors. Taken together, these findings underscore that structural features of gray matter in the frontal lobes support those aspects of intelligence related to basic cognitive processes. Copyright © 2013 Elsevier Inc. All rights reserved.
Structural covariance networks across healthy young adults and their consistency.
Guo, Xiaojuan; Wang, Yan; Guo, Taomei; Chen, Kewei; Zhang, Jiacai; Li, Ke; Jin, Zhen; Yao, Li
2015-08-01
To investigate structural covariance networks (SCNs) as measured by regional gray matter volumes with structural magnetic resonance imaging (MRI) from healthy young adults, and to examine their consistency and stability. Two independent cohorts were included in this study: Group 1 (82 healthy subjects aged 18-28 years) and Group 2 (109 healthy subjects aged 20-28 years). Structural MRI data were acquired at 3.0T and 1.5T using a magnetization prepared rapid-acquisition gradient echo sequence for these two groups, respectively. We applied independent component analysis (ICA) to construct SCNs and further applied the spatial overlap ratio and correlation coefficient to evaluate the spatial consistency of the SCNs between these two datasets. Seven and six independent components were identified for Group 1 and Group 2, respectively. Moreover, six SCNs including the posterior default mode network, the visual and auditory networks consistently existed across the two datasets. The overlap ratios and correlation coefficients of the visual network reached the maximums of 72% and 0.71. This study demonstrates the existence of consistent SCNs corresponding to general functional networks. These structural covariance findings may provide insight into the underlying organizational principles of brain anatomy. © 2014 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Chang, Wen-Li
2010-01-01
We investigate the influence of blurred ways on pattern recognition of a Barabási-Albert scale-free Hopfield neural network (SFHN) with a small amount of errors. Pattern recognition is an important function of information processing in brain. Due to heterogeneous degree of scale-free network, different blurred ways have different influences on pattern recognition with same errors. Simulation shows that among partial recognition, the larger loading ratio (the number of patterns to average degree P/langlekrangle) is, the smaller the overlap of SFHN is. The influence of directed (large) way is largest and the directed (small) way is smallest while random way is intermediate between them. Under the ratio of the numbers of stored patterns to the size of the network P/N is less than 0. 1 conditions, there are three families curves of the overlap corresponding to directed (small), random and directed (large) blurred ways of patterns and these curves are not associated with the size of network and the number of patterns. This phenomenon only occurs in the SFHN. These conclusions are benefit for understanding the relation between neural network structure and brain function.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hall, David R; Bartholomew, David B; Moon, Justin
2009-09-08
An apparatus for fixing computational latency within a deterministic region on a network comprises a network interface modem, a high priority module and at least one deterministic peripheral device. The network interface modem is in communication with the network. The high priority module is in communication with the network interface modem. The at least one deterministic peripheral device is connected to the high priority module. The high priority module comprises a packet assembler/disassembler, and hardware for performing at least one operation. Also disclosed is an apparatus for executing at least one instruction on a downhole device within a deterministic region,more » the apparatus comprising a control device, a downhole network, and a downhole device. The control device is near the surface of a downhole tool string. The downhole network is integrated into the tool string. The downhole device is in communication with the downhole network.« less
NASA Astrophysics Data System (ADS)
Lacava, C.; Liu, Z.; Thomson, D.; Ke, Li; Fedeli, J. M.; Richardson, D. J.; Reed, G. T.; Petropoulos, P.
2016-02-01
Communication traffic grows relentlessly in today's networks, and with ever more machines connected to the network, this trend is set to continue for the foreseeable future. It is widely accepted that increasingly faster communications are required at the point of the end users, and consequently optical transmission plays a progressively greater role even in short- and medium-reach networks. Silicon photonic technologies are becoming increasingly attractive for such networks, due to their potential for low cost, energetically efficient, high-speed optical components. A representative example is the silicon-based optical modulator, which has been actively studied. Researchers have demonstrated silicon modulators in different types of structures, such as ring resonators or slow light based devices. These approaches have shown remarkably good performance in terms of modulation efficiency, however their operation could be severely affected by temperature drifts or fabrication errors. Mach-Zehnder modulators (MZM), on the other hand, show good performance and resilience to different environmental conditions. In this paper we present a CMOS-compatible compact silicon MZM. We study the application of the modulator to short-reach interconnects by realizing data modulation using some relevant advanced modulation formats, such as 4-level Pulse Amplitude Modulation (PAM-4) and Discrete Multi-Tone (DMT) modulation and compare the performance of the different systems in transmission.
Ter Wal, Anne L.J.; Alexy, Oliver; Block, Jörn; Sandner, Philipp G.
2016-01-01
Open networks give actors non-redundant information that is diverse, while closed networks offer redundant information that is easier to interpret. Integrating arguments about network structure and the similarity of actors’ knowledge, we propose two types of network configurations that combine diversity and ease of interpretation. Closed-diverse networks offer diversity in actors’ knowledge domains and shared third-party ties to help in interpreting that knowledge. In open-specialized networks, structural holes offer diversity, while shared interpretive schema and overlap between received information and actors’ prior knowledge help in interpreting new information without the help of third parties. In contrast, actors in open-diverse networks suffer from information overload due to the lack of shared schema or overlapping prior knowledge for the interpretation of diverse information, and actors in closed-specialized networks suffer from overembeddedness because they cannot access diverse information. Using CrunchBase data on early-stage venture capital investments in the U.S. information technology sector, we test the effect of investors’ social capital on the success of their portfolio ventures. We find that ventures have the highest chances of success if their syndicating investors have either open-specialized or closed-diverse networks. These effects are manifested beyond the direct effects of ventures’ or investors’ quality and are robust to controlling for the possibility that certain investors could have chosen more promising ventures at the time of first funding. PMID:27499546
NASA Technical Reports Server (NTRS)
Drummond, R. W., Jr.; Shepard, N. F., Jr.
1984-01-01
Solar cells perform two functions: waterproofing roof and generating electricity. Sections through horizontal and slanting joints show overlapping modules sealed by L-section rubber strips and side-by-side modules sealed by P-section strips. Water seeping through seals of slanting joints drains along channels. Rooftop photovoltaic array used watertight south facing roof, replacing shingles, tar, and gravel. Concept reduces cost of residential solar-cell array.
Net Venn - An integrated network analysis web platform for gene lists
USDA-ARS?s Scientific Manuscript database
Many lists containing biological identifiers such as gene lists have been generated in various genomics projects. Identifying the overlap among gene lists can enable us to understand the similarities and differences between the datasets. Here, we present an interactome network-based web application...
Modulation of gene expression via overlapping binding sites exerted by ZNF143, Notch1 and THAP11
Ngondo-Mbongo, Richard Patryk; Myslinski, Evelyne; Aster, Jon C.; Carbon, Philippe
2013-01-01
ZNF143 is a zinc-finger protein involved in the transcriptional regulation of both coding and non-coding genes from polymerase II and III promoters. Our study deciphers the genome-wide regulatory role of ZNF143 in relation with the two previously unrelated transcription factors Notch1/ICN1 and thanatos-associated protein 11 (THAP11) in several human and murine cells. We show that two distinct motifs, SBS1 and SBS2, are associated to ZNF143-binding events in promoters of >3000 genes. Without co-occupation, these sites are also bound by Notch1/ICN1 in T-lymphoblastic leukaemia cells as well as by THAP11, a factor involved in self-renewal of embryonic stem cells. We present evidence that ICN1 binding overlaps with ZNF143 binding events at the SBS1 and SBS2 motifs, whereas the overlap occurs only at SBS2 for THAP11. We demonstrate that the three factors modulate expression of common target genes through the mutually exclusive occupation of overlapping binding sites. The model we propose predicts that the binding competition between the three factors controls biological processes such as rapid cell growth of both neoplastic and stem cells. Overall, our study establishes a novel relationship between ZNF143, THAP11 and ICN1 and reveals important insights into ZNF143-mediated gene regulation. PMID:23408857
Fault-tolerant battery system employing intra-battery network architecture
Hagen, Ronald A.; Chen, Kenneth W.; Comte, Christophe; Knudson, Orlin B.; Rouillard, Jean
2000-01-01
A distributed energy storing system employing a communications network is disclosed. A distributed battery system includes a number of energy storing modules, each of which includes a processor and communications interface. In a network mode of operation, a battery computer communicates with each of the module processors over an intra-battery network and cooperates with individual module processors to coordinate module monitoring and control operations. The battery computer monitors a number of battery and module conditions, including the potential and current state of the battery and individual modules, and the conditions of the battery's thermal management system. An over-discharge protection system, equalization adjustment system, and communications system are also controlled by the battery computer. The battery computer logs and reports various status data on battery level conditions which may be reported to a separate system platform computer. A module transitions to a stand-alone mode of operation if the module detects an absence of communication connectivity with the battery computer. A module which operates in a stand-alone mode performs various monitoring and control functions locally within the module to ensure safe and continued operation.
Dimitrakopoulos, Christos; Theofilatos, Konstantinos; Pegkas, Andreas; Likothanassis, Spiros; Mavroudi, Seferina
2016-07-01
Proteins are vital biological molecules driving many fundamental cellular processes. They rarely act alone, but form interacting groups called protein complexes. The study of protein complexes is a key goal in systems biology. Recently, large protein-protein interaction (PPI) datasets have been published and a plethora of computational methods that provide new ideas for the prediction of protein complexes have been implemented. However, most of the methods suffer from two major limitations: First, they do not account for proteins participating in multiple functions and second, they are unable to handle weighted PPI graphs. Moreover, the problem remains open as existing algorithms and tools are insufficient in terms of predictive metrics. In the present paper, we propose gradually expanding neighborhoods with adjustment (GENA), a new algorithm that gradually expands neighborhoods in a graph starting from highly informative "seed" nodes. GENA considers proteins as multifunctional molecules allowing them to participate in more than one protein complex. In addition, GENA accepts weighted PPI graphs by using a weighted evaluation function for each cluster. In experiments with datasets from Saccharomyces cerevisiae and human, GENA outperformed Markov clustering, restricted neighborhood search and clustering with overlapping neighborhood expansion, three state-of-the-art methods for computationally predicting protein complexes. Seven PPI networks and seven evaluation datasets were used in total. GENA outperformed existing methods in 16 out of 18 experiments achieving an average improvement of 5.5% when the maximum matching ratio metric was used. Our method was able to discover functionally homogeneous protein clusters and uncover important network modules in a Parkinson expression dataset. When used on the human networks, around 47% of the detected clusters were enriched in gene ontology (GO) terms with depth higher than five in the GO hierarchy. In the present manuscript, we introduce a new method for the computational prediction of protein complexes by making the realistic assumption that proteins participate in multiple protein complexes and cellular functions. Our method can detect accurate and functionally homogeneous clusters. Copyright © 2016 Elsevier B.V. All rights reserved.
The Network Structure of Symptoms of the Diagnostic and Statistical Manual of Mental Disorders.
Boschloo, Lynn; van Borkulo, Claudia D; Rhemtulla, Mijke; Keyes, Katherine M; Borsboom, Denny; Schoevers, Robert A
2015-01-01
Although current classification systems have greatly contributed to the reliability of psychiatric diagnoses, they ignore the unique role of individual symptoms and, consequently, potentially important information is lost. The network approach, in contrast, assumes that psychopathology results from the causal interplay between psychiatric symptoms and focuses specifically on these symptoms and their complex associations. By using a sophisticated network analysis technique, this study constructed an empirically based network structure of 120 psychiatric symptoms of twelve major DSM-IV diagnoses using cross-sectional data of the National Epidemiologic Survey on Alcohol and Related Conditions (NESARC, second wave; N = 34,653). The resulting network demonstrated that symptoms within the same diagnosis showed differential associations and indicated that the strategy of summing symptoms, as in current classification systems, leads to loss of information. In addition, some symptoms showed strong connections with symptoms of other diagnoses, and these specific symptom pairs, which both concerned overlapping and non-overlapping symptoms, may help to explain the comorbidity across diagnoses. Taken together, our findings indicated that psychopathology is very complex and can be more adequately captured by sophisticated network models than current classification systems. The network approach is, therefore, promising in improving our understanding of psychopathology and moving our field forward.
NASA Astrophysics Data System (ADS)
Havemann, Frank; Heinz, Michael; Struck, Alexander; Gläser, Jochen
2011-01-01
We propose a new local, deterministic and parameter-free algorithm that detects fuzzy and crisp overlapping communities in a weighted network and simultaneously reveals their hierarchy. Using a local fitness function, the algorithm greedily expands natural communities of seeds until the whole graph is covered. The hierarchy of communities is obtained analytically by calculating resolution levels at which communities grow rather than numerically by testing different resolution levels. This analytic procedure is not only more exact than its numerical alternatives such as LFM and GCE but also much faster. Critical resolution levels can be identified by searching for intervals in which large changes of the resolution do not lead to growth of communities. We tested our algorithm on benchmark graphs and on a network of 492 papers in information science. Combined with a specific post-processing, the algorithm gives much more precise results on LFR benchmarks with high overlap compared to other algorithms and performs very similarly to GCE.
Improvement of the Hopfield Neural Network by MC-Adaptation Rule
NASA Astrophysics Data System (ADS)
Zhou, Zhen; Zhao, Hong
2006-06-01
We show that the performance of the Hopfield neural networks, especially the quality of the recall and the capacity of the effective storing, can be greatly improved by making use of a recently presented neural network designing method without altering the whole structure of the network. In the improved neural network, a memory pattern is recalled exactly from initial states having a given degree of similarity with the memory pattern, and thus one can avoids to apply the overlap criterion as carried out in the Hopfield neural networks.
Cross-language phonological activation: evidence from masked onset priming and ERPs.
Jouravlev, Olessia; Lupker, Stephen J; Jared, Debra
2014-07-01
The goal of the present research was to provide direct evidence for the cross-language interaction of phonologies at the sub-lexical level by using the masked onset priming paradigm. More specifically, we investigated whether there is a cross-language masked onset priming effect (MOPE) with L2 (English) primes and L1 (Russian) targets and whether it is modulated by the orthographic similarity of primes and targets. Primes and targets had onsets that overlapped either only phonologically, only orthographically, both phonologically and orthographically, or did not have any overlap. Phonological overlap, but not orthographic overlap, between primes and targets led to faster naming latencies. In contrast, the ERP data provided evidence for effects of both phonological and orthographic overlap. Finally, the time-course of phonological and orthographic processing for our bilinguals mirrored the time-course previously reported for monolinguals in the ERP data. These results provide evidence for shared representations at the sub-lexical level for a bilingual's two languages. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Anqi; Meng, Zhixin; Feng, Yanying
2017-10-01
We design a fiber electro-optic modulator (FEOM)-based laser frequency-offset locking system using frequency modulation spectroscopy (FMS) with the 3F modulation. The modulation signal and the frequency-offset control signal are simultaneously loaded on the FEOM by a mixer in order to suppress the frequency and power jitter caused by internal modulation on the current or piezoelectric ceramic transducer (PZT). It is expected to accomplish a fast locking, a widely tunable frequency-offset, a sensitive and rapid detection of narrow spectral features with the 3F modulation. The laser frequency fluctuation is limited to +/-1MHz and its overlapping Allan deviation is around 10-12 in twenty minutes, which successfully meets the requirements of the cold atom interferometer.
Prom-On, Santitham; Chanthaphan, Atthawut; Chan, Jonathan Hoyin; Meechai, Asawin
2011-02-01
Relationships among gene expression levels may be associated with the mechanisms of the disease. While identifying a direct association such as a difference in expression levels between case and control groups links genes to disease mechanisms, uncovering an indirect association in the form of a network structure may help reveal the underlying functional module associated with the disease under scrutiny. This paper presents a method to improve the biological relevance in functional module identification from the gene expression microarray data by enhancing the structure of a weighted gene co-expression network using minimum spanning tree. The enhanced network, which is called a backbone network, contains only the essential structural information to represent the gene co-expression network. The entire backbone network is decoupled into a number of coherent sub-networks, and then the functional modules are reconstructed from these sub-networks to ensure minimum redundancy. The method was tested with a simulated gene expression dataset and case-control expression datasets of autism spectrum disorder and colorectal cancer studies. The results indicate that the proposed method can accurately identify clusters in the simulated dataset, and the functional modules of the backbone network are more biologically relevant than those obtained from the original approach.
Wireless telemedicine systems for diagnosing sleep disorders with Zigbee star network topology
NASA Astrophysics Data System (ADS)
Oh, Sechang; Kwon, Hyeokjun; Varadan, Vijay K.
2012-10-01
Good sleep is critical for one's overall physical and mental health but more than 50 million Americans have experienced or are suffering from sleep disorders. Nevertheless, 85% of them remain undiagnosed or untreated. They can lead to chronic diseases. Sleep disorders are diagnosed through polysomnography, also known as sleep study, performed in a sleep laboratory overnight. This perturbs his/her daily sleep routine, and consequently, an accurate diagnosis cannot be made. Many companies have been developing home sleep test systems to reduce the cost of sleep studies and provide a more convenience solution to patients. The category of the system varies as type II, type III and type IV according to the type of sleep study. Current systems cannot be easily extended from one type to include a higher type. A patient who has a type III system to diagnose sleep apnea should additionally purchase a type II system which has functions that overlap with a type III system, to evaluate sleep stages. In this paper, we propose a wireless telemedicine system for easy extension of channels using the start network topology of the Zigbee protocol. The HST system consists of two wireless HST devices with a Zigbee module, a wireless HST receiver with both a Zigbee and a Wi-Fi module, and a sever which monitors/saves the physiological signals. One transmitter provides 5 channels for 2x EOG, 2x EEG and EMG to evaluate sleep stages. The other transmitter provides 5 additional channels for ECG, nasal air flow, body position, abdominal/chest efforts and oxygen saturation to diagnose sleep apnea. These two transmitters, acting as routers, and the receiver as a coordinator form a Zigbee star network. The data from each transmitter in the receiver are retransmitted to the monitoring unit through Wi-Fi. By building a star network with Zigbee, channels can be easily extended so that low level systems can be upgraded to higher level systems by simply adding the necessary channels. In addition, the proposed system provides real time monitoring of physiological signals at remote locations using Wi-Fi.
Bian, Zhong-Rui; Yin, Juan; Sun, Wen; Lin, Dian-Jie
2017-04-01
Diagnose of active tuberculosis (TB) is challenging and treatment response is also difficult to efficiently monitor. The aim of this study was to use an integrated analysis of microarray and network-based method to the samples from publically available datasets to obtain a diagnostic module set and pathways in active TB. Towards this goal, background protein-protein interactions (PPI) network was generated based on global PPI information and gene expression data, following by identification of differential expression network (DEN) from the background PPI network. Then, ego genes were extracted according to the degree features in DEN. Next, module collection was conducted by ego gene expansion based on EgoNet algorithm. After that, differential expression of modules between active TB and controls was evaluated using random permutation test. Finally, biological significance of differential modules was detected by pathways enrichment analysis based on Reactome database, and Fisher's exact test was implemented to extract differential pathways for active TB. Totally, 47 ego genes and 47 candidate modules were identified from the DEN. By setting the cutoff-criteria of gene size >5 and classification accuracy ≥0.9, 7 ego modules (Module 4, Module 7, Module 9, Module 19, Module 25, Module 38 and Module 43) were extracted, and all of them had the statistical significance between active TB and controls. Then, Fisher's exact test was conducted to capture differential pathways for active TB. Interestingly, genes in Module 4, Module 25, Module 38, and Module 43 were enriched in the same pathway, formation of a pool of free 40S subunits. Significant pathway for Module 7 and Module 9 was eukaryotic translation termination, and for Module 19 was nonsense mediated decay enhanced by the exon junction complex (EJC). Accordingly, differential modules and pathways might be potential biomarkers for treating active TB, and provide valuable clues for better understanding of molecular mechanism of active TB. Copyright © 2017 Elsevier Ltd. All rights reserved.
atBioNet--an integrated network analysis tool for genomics and biomarker discovery.
Ding, Yijun; Chen, Minjun; Liu, Zhichao; Ding, Don; Ye, Yanbin; Zhang, Min; Kelly, Reagan; Guo, Li; Su, Zhenqiang; Harris, Stephen C; Qian, Feng; Ge, Weigong; Fang, Hong; Xu, Xiaowei; Tong, Weida
2012-07-20
Large amounts of mammalian protein-protein interaction (PPI) data have been generated and are available for public use. From a systems biology perspective, Proteins/genes interactions encode the key mechanisms distinguishing disease and health, and such mechanisms can be uncovered through network analysis. An effective network analysis tool should integrate different content-specific PPI databases into a comprehensive network format with a user-friendly platform to identify key functional modules/pathways and the underlying mechanisms of disease and toxicity. atBioNet integrates seven publicly available PPI databases into a network-specific knowledge base. Knowledge expansion is achieved by expanding a user supplied proteins/genes list with interactions from its integrated PPI network. The statistically significant functional modules are determined by applying a fast network-clustering algorithm (SCAN: a Structural Clustering Algorithm for Networks). The functional modules can be visualized either separately or together in the context of the whole network. Integration of pathway information enables enrichment analysis and assessment of the biological function of modules. Three case studies are presented using publicly available disease gene signatures as a basis to discover new biomarkers for acute leukemia, systemic lupus erythematosus, and breast cancer. The results demonstrated that atBioNet can not only identify functional modules and pathways related to the studied diseases, but this information can also be used to hypothesize novel biomarkers for future analysis. atBioNet is a free web-based network analysis tool that provides a systematic insight into proteins/genes interactions through examining significant functional modules. The identified functional modules are useful for determining underlying mechanisms of disease and biomarker discovery. It can be accessed at: http://www.fda.gov/ScienceResearch/BioinformaticsTools/ucm285284.htm.
Jeong, Hyundoo; Qian, Xiaoning; Yoon, Byung-Jun
2016-10-06
Comparative analysis of protein-protein interaction (PPI) networks provides an effective means of detecting conserved functional network modules across different species. Such modules typically consist of orthologous proteins with conserved interactions, which can be exploited to computationally predict the modules through network comparison. In this work, we propose a novel probabilistic framework for comparing PPI networks and effectively predicting the correspondence between proteins, represented as network nodes, that belong to conserved functional modules across the given PPI networks. The basic idea is to estimate the steady-state network flow between nodes that belong to different PPI networks based on a Markov random walk model. The random walker is designed to make random moves to adjacent nodes within a PPI network as well as cross-network moves between potential orthologous nodes with high sequence similarity. Based on this Markov random walk model, we estimate the steady-state network flow - or the long-term relative frequency of the transitions that the random walker makes - between nodes in different PPI networks, which can be used as a probabilistic score measuring their potential correspondence. Subsequently, the estimated scores can be used for detecting orthologous proteins in conserved functional modules through network alignment. Through evaluations based on multiple real PPI networks, we demonstrate that the proposed scheme leads to improved alignment results that are biologically more meaningful at reduced computational cost, outperforming the current state-of-the-art algorithms. The source code and datasets can be downloaded from http://www.ece.tamu.edu/~bjyoon/CUFID .
Container-code recognition system based on computer vision and deep neural networks
NASA Astrophysics Data System (ADS)
Liu, Yi; Li, Tianjian; Jiang, Li; Liang, Xiaoyao
2018-04-01
Automatic container-code recognition system becomes a crucial requirement for ship transportation industry in recent years. In this paper, an automatic container-code recognition system based on computer vision and deep neural networks is proposed. The system consists of two modules, detection module and recognition module. The detection module applies both algorithms based on computer vision and neural networks, and generates a better detection result through combination to avoid the drawbacks of the two methods. The combined detection results are also collected for online training of the neural networks. The recognition module exploits both character segmentation and end-to-end recognition, and outputs the recognition result which passes the verification. When the recognition module generates false recognition, the result will be corrected and collected for online training of the end-to-end recognition sub-module. By combining several algorithms, the system is able to deal with more situations, and the online training mechanism can improve the performance of the neural networks at runtime. The proposed system is able to achieve 93% of overall recognition accuracy.
Automatic Camera Calibration Using Multiple Sets of Pairwise Correspondences.
Vasconcelos, Francisco; Barreto, Joao P; Boyer, Edmond
2018-04-01
We propose a new method to add an uncalibrated node into a network of calibrated cameras using only pairwise point correspondences. While previous methods perform this task using triple correspondences, these are often difficult to establish when there is limited overlap between different views. In such challenging cases we must rely on pairwise correspondences and our solution becomes more advantageous. Our method includes an 11-point minimal solution for the intrinsic and extrinsic calibration of a camera from pairwise correspondences with other two calibrated cameras, and a new inlier selection framework that extends the traditional RANSAC family of algorithms to sampling across multiple datasets. Our method is validated on different application scenarios where a lack of triple correspondences might occur: addition of a new node to a camera network; calibration and motion estimation of a moving camera inside a camera network; and addition of views with limited overlap to a Structure-from-Motion model.
Interference Cognizant Network Scheduling
NASA Technical Reports Server (NTRS)
Hall, Brendan (Inventor); Bonk, Ted (Inventor); DeLay, Benjamin F. (Inventor); Varadarajan, Srivatsan (Inventor); Smithgall, William Todd (Inventor)
2017-01-01
Systems and methods for interference cognizant network scheduling are provided. In certain embodiments, a method of scheduling communications in a network comprises identifying a bin of a global timeline for scheduling an unscheduled virtual link, wherein a bin is a segment of the timeline; identifying a pre-scheduled virtual link in the bin; and determining if the pre-scheduled and unscheduled virtual links share a port. In certain embodiments, if the unscheduled and pre-scheduled virtual links don't share a port, scheduling transmission of the unscheduled virtual link to overlap with the scheduled transmission of the pre-scheduled virtual link; and if the unscheduled and pre-scheduled virtual links share a port: determining a start time delay for the unscheduled virtual link based on the port; and scheduling transmission of the unscheduled virtual link in the bin based on the start time delay to overlap part of the scheduled transmission of the pre-scheduled virtual link.
Hierarchical surface code for network quantum computing with modules of arbitrary size
NASA Astrophysics Data System (ADS)
Li, Ying; Benjamin, Simon C.
2016-10-01
The network paradigm for quantum computing involves interconnecting many modules to form a scalable machine. Typically it is assumed that the links between modules are prone to noise while operations within modules have a significantly higher fidelity. To optimize fault tolerance in such architectures we introduce a hierarchical generalization of the surface code: a small "patch" of the code exists within each module and constitutes a single effective qubit of the logic-level surface code. Errors primarily occur in a two-dimensional subspace, i.e., patch perimeters extruded over time, and the resulting noise threshold for intermodule links can exceed ˜10 % even in the absence of purification. Increasing the number of qubits within each module decreases the number of qubits necessary for encoding a logical qubit. But this advantage is relatively modest, and broadly speaking, a "fine-grained" network of small modules containing only about eight qubits is competitive in total qubit count versus a "course" network with modules containing many hundreds of qubits.
Calabrese, Gina; Mesner, Larry D.; Foley, Patricia L.; Rosen, Clifford J.; Farber, Charles R.
2016-01-01
The postmenopausal period in women is associated with decreased circulating estrogen levels, which accelerate bone loss and increase the risk of fracture. Here, we gained novel insight into the molecular mechanisms mediating bone loss in ovariectomized (OVX) mice, a model of human menopause, using co-expression network analysis. Specifically, we generated a co-expression network consisting of 53 gene modules using expression profiles from intact and OVX mice from a panel of inbred strains. The expression of four modules was altered by OVX, including module 23 whose expression was decreased by OVX across all strains. Module 23 was enriched for genes involved in the response to oxidative stress, a process known to be involved in OVX-induced bone loss. Additionally, module 23 homologs were co-expressed in human bone marrow. Alpha synuclein (Snca) was one of the most highly connected “hub” genes in module 23. We characterized mice deficient in Snca and observed a 40% reduction in OVX-induced bone loss. Furthermore, protection was associated with the altered expression of specific network modules, including module 23. In summary, the results of this study suggest that Snca regulates bone network homeostasis and ovariectomy-induced bone loss. PMID:27378017
Exploring the networking behaviors of hospital organizations.
Di Vincenzo, Fausto
2018-05-08
Despite an extensive body of knowledge exists on network outcomes and on how hospital network structures may contribute to the creation of outcomes at different levels of analysis, less attention has been paid to understanding how and why hospital organizational networks evolve and change. The aim of this paper is to study the dynamics of networking behaviors of hospital organizations. Stochastic actor-based model for network dynamics was used to quantitatively examine data covering six-years of patient transfer relations among 35 hospital organizations. Specifically, the study investigated about determinants of patient transfer evolution modeling partner selection choice as a combination of multiple organizational attributes and endogenous network-based processes. The results indicate that having overlapping specialties and treating patients with the same case-mix decrease the likelihood of observing network ties between hospitals. Also, results revealed as geographical proximity and membership of the same LHA have a positive impact on the networking behavior of hospitals organizations, there is a propensity in the network to choose larger hospitals as partners, and to transfer patients between hospitals facing similar levels of operational uncertainty. Organizational attributes (overlapping specialties and case-mix), institutional factors (LHA), and geographical proximity matter in the formation and shaping of hospital networks over time. Managers can benefit from the use of these findings by clearly identifying the role and strategic positioning of their hospital with respect to the entire network. Social network analysis can yield novel information and also aid policy makers in the formation of interventions, encouraging alliances among providers as well as planning health system restructuring.
Nozue, Kazunari; Harmer, Stacey L.; Maloof, Julin N.
2011-01-01
Plants exhibit daily rhythms in their growth, providing an ideal system for the study of interactions between environmental stimuli such as light and internal regulators such as the circadian clock. We previously found that two basic loop-helix-loop transcription factors, PHYTOCHROME-INTERACTING FACTOR4 (PIF4) and PIF5, integrate light and circadian clock signaling to generate rhythmic plant growth in Arabidopsis (Arabidopsis thaliana). Here, we use expression profiling and real-time growth assays to identify growth regulatory networks downstream of PIF4 and PIF5. Genome-wide analysis of light-, clock-, or growth-correlated genes showed significant overlap between the transcriptomes of clock-, light-, and growth-related pathways. Overrepresentation analysis of growth-correlated genes predicted that the auxin and gibberellic acid (GA) hormone pathways both contribute to diurnal growth control. Indeed, lesions of GA biosynthesis genes retarded rhythmic growth. Surprisingly, GA-responsive genes are not enriched among genes regulated by PIF4 and PIF5, whereas auxin pathway and response genes are. Consistent with this finding, the auxin response is more severely affected than the GA response in pif4 pif5 double mutants and in PIF5-overexpressing lines. We conclude that at least two downstream modules participate in diurnal rhythmic hypocotyl growth: PIF4 and/or PIF5 modulation of auxin-related pathways and PIF-independent regulation of the GA pathway. PMID:21430186
NASA Technical Reports Server (NTRS)
McDowell, Mark
2004-01-01
An integrated algorithm for decomposing overlapping particle images (multi-particle objects) along with determining each object s constituent particle centroid(s) has been developed using image analysis techniques. The centroid finding algorithm uses a modified eight-direction search method for finding the perimeter of any enclosed object. The centroid is calculated using the intensity-weighted center of mass of the object. The overlap decomposition algorithm further analyzes the object data and breaks it down into its constituent particle centroid(s). This is accomplished with an artificial neural network, feature based technique and provides an efficient way of decomposing overlapping particles. Combining the centroid finding and overlap decomposition routines into a single algorithm allows us to accurately predict the error associated with finding the centroid(s) of particles in our experiments. This algorithm has been tested using real, simulated, and synthetic data and the results are presented and discussed.
Applied Graph-Mining Algorithms to Study Biomolecular Interaction Networks
2014-01-01
Protein-protein interaction (PPI) networks carry vital information on the organization of molecular interactions in cellular systems. The identification of functionally relevant modules in PPI networks is one of the most important applications of biological network analysis. Computational analysis is becoming an indispensable tool to understand large-scale biomolecular interaction networks. Several types of computational methods have been developed and employed for the analysis of PPI networks. Of these computational methods, graph comparison and module detection are the two most commonly used strategies. This review summarizes current literature on graph kernel and graph alignment methods for graph comparison strategies, as well as module detection approaches including seed-and-extend, hierarchical clustering, optimization-based, probabilistic, and frequent subgraph methods. Herein, we provide a comprehensive review of the major algorithms employed under each theme, including our recently published frequent subgraph method, for detecting functional modules commonly shared across multiple cancer PPI networks. PMID:24800226
Designing Networked Improvement in a Small-College Context
ERIC Educational Resources Information Center
Rachford, Jennifer L.; Brown, Travis M.; Sambolin, Hector L., Jr.; Seligman, Lenny
2017-01-01
This chapter demonstrates the complexity of pedagogical and curricular change as it unfolds through several overlapping phases of increasingly coordinated reflection and action around STEM initiatives at Pomona College. It argues for a networked model of research and practice, drawing on theory and lessons from improvement science and highlighting…
Jiang, Xi; Li, Xiang; Lv, Jinglei; Zhao, Shijie; Zhang, Shu; Zhang, Wei; Zhang, Tuo; Han, Junwei; Guo, Lei; Liu, Tianming
2018-06-01
Various studies in the brain mapping field have demonstrated that there exist multiple concurrent functional networks that are spatially overlapped and interacting with each other during specific task performance to jointly realize the total brain function. Assessing such spatial overlap patterns of functional networks (SOPFNs) based on functional magnetic resonance imaging (fMRI) has thus received increasing interest for brain function studies. However, there are still two crucial issues to be addressed. First, the SOPFNs are assessed over the entire fMRI scan assuming the temporal stationarity, while possibly time-dependent dynamics of the SOPFNs is not sufficiently explored. Second, the SOPFNs are assessed within individual subjects, while group-wise consistency of the SOPFNs is largely unknown. To address the two issues, we propose a novel computational framework of group-wise sparse representation of whole-brain fMRI temporal segments to assess the temporal dynamic spatial patterns of SOPFNs that are consistent across different subjects. Experimental results based on the recently publicly released Human Connectome Project grayordinate task fMRI data demonstrate that meaningful SOPFNs exhibiting dynamic spatial patterns across different time periods are effectively and robustly identified based on the reconstructed concurrent functional networks via the proposed framework. Specifically, those SOPFNs locate significantly more on gyral regions than on sulcal regions across different time periods. These results reveal novel functional architecture of cortical gyri and sulci. Moreover, these results help better understand functional dynamics mechanisms of cerebral cortex in the future.
Reich, Stephanie M; Subrahmanyam, Kaveri; Espinoza, Guadalupe
2012-03-01
Many new and important developmental issues are encountered during adolescence, which is also a time when Internet use becomes increasingly popular. Studies have shown that adolescents are using these online spaces to address developmental issues, especially needs for intimacy and connection to others. Online communication with its potential for interacting with unknown others, may put teens at increased risk. Two hundred and fifty-one high school students completed an in-person survey, and 126 of these completed an additional online questionnaire about how and why they use the Internet, their activities on social networking sites (e.g., Facebook, MySpace) and their reasons for participation, and how they perceive these online spaces to impact their friendships. To examine the extent of overlap between online and offline friends, participants were asked to list the names of their top interaction partners offline and online (Facebook and instant messaging). Results reveal that adolescents mainly use social networking sites to connect with others, in particular with people known from offline contexts. While adolescents report little monitoring by their parents, there was no evidence that teens are putting themselves at risk by interacting with unknown others. Instead, adolescents seem to use the Internet, especially social networking sites, to connect with known others. While the study found moderate overlap between teens' closest online and offline friends, the patterns suggest that adolescents use online contexts to strengthen offline relationships. PsycINFO Database Record (c) 2012 APA, all rights reserved.
Ter Wal, Anne L J; Alexy, Oliver; Block, Jörn; Sandner, Philipp G
2016-09-01
Open networks give actors non-redundant information that is diverse, while closed networks offer redundant information that is easier to interpret. Integrating arguments about network structure and the similarity of actors' knowledge, we propose two types of network configurations that combine diversity and ease of interpretation. Closed-diverse networks offer diversity in actors' knowledge domains and shared third-party ties to help in interpreting that knowledge. In open-specialized networks, structural holes offer diversity, while shared interpretive schema and overlap between received information and actors' prior knowledge help in interpreting new information without the help of third parties. In contrast, actors in open-diverse networks suffer from information overload due to the lack of shared schema or overlapping prior knowledge for the interpretation of diverse information, and actors in closed-specialized networks suffer from overembeddedness because they cannot access diverse information. Using CrunchBase data on early-stage venture capital investments in the U.S. information technology sector, we test the effect of investors' social capital on the success of their portfolio ventures. We find that ventures have the highest chances of success if their syndicating investors have either open-specialized or closed-diverse networks. These effects are manifested beyond the direct effects of ventures' or investors' quality and are robust to controlling for the possibility that certain investors could have chosen more promising ventures at the time of first funding.
Saez-Rodriguez, Julio; Gayer, Stefan; Ginkel, Martin; Gilles, Ernst Dieter
2008-08-15
The modularity of biochemical networks in general, and signaling networks in particular, has been extensively studied over the past few years. It has been proposed to be a useful property to analyze signaling networks: by decomposing the network into subsystems, more manageable units are obtained that are easier to analyze. While many powerful algorithms are available to identify modules in protein interaction networks, less attention has been paid to signaling networks de.ned as chemical systems. Such a decomposition would be very useful as most quantitative models are de.ned using the latter, more detailed formalism. Here, we introduce a novel method to decompose biochemical networks into modules so that the bidirectional (retroactive) couplings among the modules are minimized. Our approach adapts a method to detect community structures, and applies it to the so-called retroactivity matrix that characterizes the couplings of the network. Only the structure of the network, e.g. in SBML format, is required. Furthermore, the modularized models can be loaded into ProMoT, a modeling tool which supports modular modeling. This allows visualization of the models, exploiting their modularity and easy generation of models of one or several modules for further analysis. The method is applied to several relevant cases, including an entangled model of the EGF-induced MAPK cascade and a comprehensive model of EGF signaling, demonstrating its ability to uncover meaningful modules. Our approach can thus help to analyze large networks, especially when little a priori knowledge on the structure of the network is available. The decomposition algorithms implemented in MATLAB (Mathworks, Inc.) are freely available upon request. ProMoT is freely available at http://www.mpi-magdeburg.mpg.de/projects/promot. Supplementary data are available at Bioinformatics online.
Functional modules by relating protein interaction networks and gene expression.
Tornow, Sabine; Mewes, H W
2003-11-01
Genes and proteins are organized on the basis of their particular mutual relations or according to their interactions in cellular and genetic networks. These include metabolic or signaling pathways and protein interaction, regulatory or co-expression networks. Integrating the information from the different types of networks may lead to the notion of a functional network and functional modules. To find these modules, we propose a new technique which is based on collective, multi-body correlations in a genetic network. We calculated the correlation strength of a group of genes (e.g. in the co-expression network) which were identified as members of a module in a different network (e.g. in the protein interaction network) and estimated the probability that this correlation strength was found by chance. Groups of genes with a significant correlation strength in different networks have a high probability that they perform the same function. Here, we propose evaluating the multi-body correlations by applying the superparamagnetic approach. We compare our method to the presently applied mean Pearson correlations and show that our method is more sensitive in revealing functional relationships.
Functional modules by relating protein interaction networks and gene expression
Tornow, Sabine; Mewes, H. W.
2003-01-01
Genes and proteins are organized on the basis of their particular mutual relations or according to their interactions in cellular and genetic networks. These include metabolic or signaling pathways and protein interaction, regulatory or co-expression networks. Integrating the information from the different types of networks may lead to the notion of a functional network and functional modules. To find these modules, we propose a new technique which is based on collective, multi-body correlations in a genetic network. We calculated the correlation strength of a group of genes (e.g. in the co-expression network) which were identified as members of a module in a different network (e.g. in the protein interaction network) and estimated the probability that this correlation strength was found by chance. Groups of genes with a significant correlation strength in different networks have a high probability that they perform the same function. Here, we propose evaluating the multi-body correlations by applying the superparamagnetic approach. We compare our method to the presently applied mean Pearson correlations and show that our method is more sensitive in revealing functional relationships. PMID:14576317
Ecological modules and roles of species in heathland plant-insect flower visitor networks.
Dupont, Yoko L; Olesen, Jens M
2009-03-01
1. Co-existing plants and flower-visiting animals often form complex interaction networks. A long-standing question in ecology and evolutionary biology is how to detect nonrandom subsets (compartments, blocks, modules) of strongly interacting species within such networks. Here we use a network analytical approach to (i) detect modularity in pollination networks, (ii) investigate species composition of modules, and (iii) assess the stability of modules across sites. 2. Interactions between entomophilous plants and their flower-visitors were recorded throughout the flowering season at three heathland sites in Denmark, separated by >or= 10 km. Among sites, plant communities were similar, but composition of flower-visiting insect faunas differed. Visitation frequencies of visitor species were recorded as a measure of insect abundance. 3. Qualitative (presence-absence) interaction networks were tested for modularity. Modules were identified, and species classified into topological roles (peripherals, connectors, or hubs) using 'functional cartography by simulated annealing', a method recently developed by Guimerà & Amaral (2005a). 4. All networks were significantly modular. Each module consisted of 1-6 plant species and 18-54 insect species. Interactions aggregated around one or two hub plant species, which were largely identical at the three study sites. 5. Insect species were categorized in taxonomic groups, mostly at the level of orders. When weighted by visitation frequency, each module was dominated by one or few insect groups. This pattern was consistent across sites. 6. Our study adds support to the conclusion that certain plant species and flower-visitor groups are nonrandomly and repeatedly associated. Within a network, these strongly interacting subgroups of species may exert reciprocal selection pressures on each other. Thus, modules may be candidates for the long-sought key units of co-evolution.
Detecting phenotype-driven transitions in regulatory network structure.
Padi, Megha; Quackenbush, John
2018-01-01
Complex traits and diseases like human height or cancer are often not caused by a single mutation or genetic variant, but instead arise from functional changes in the underlying molecular network. Biological networks are known to be highly modular and contain dense "communities" of genes that carry out cellular processes, but these structures change between tissues, during development, and in disease. While many methods exist for inferring networks and analyzing their topologies separately, there is a lack of robust methods for quantifying differences in network structure. Here, we describe ALPACA (ALtered Partitions Across Community Architectures), a method for comparing two genome-scale networks derived from different phenotypic states to identify condition-specific modules. In simulations, ALPACA leads to more nuanced, sensitive, and robust module discovery than currently available network comparison methods. As an application, we use ALPACA to compare transcriptional networks in three contexts: angiogenic and non-angiogenic subtypes of ovarian cancer, human fibroblasts expressing transforming viral oncogenes, and sexual dimorphism in human breast tissue. In each case, ALPACA identifies modules enriched for processes relevant to the phenotype. For example, modules specific to angiogenic ovarian tumors are enriched for genes associated with blood vessel development, and modules found in female breast tissue are enriched for genes involved in estrogen receptor and ERK signaling. The functional relevance of these new modules suggests that not only can ALPACA identify structural changes in complex networks, but also that these changes may be relevant for characterizing biological phenotypes.
Measuring the extent of overlaps in protected area designations
Arnell, Andy; Juffe-Bignoli, Diego; Shi, Yichuan; Bingham, Heather; MacSharry, Brian; Kingston, Naomi
2017-01-01
Over the past decades, a number of national policies and international conventions have been implemented to promote the expansion of the world’s protected area network, leading to a diversification of protected area strategies, types and designations. As a result, many areas are protected by more than one convention, legal instrument, or other effective means which may result in a lack of clarity around the governance and management regimes of particular locations. We assess the degree to which different designations overlap at global, regional and national levels to understand the extent of this phenomenon at different scales. We then compare the distribution and coverage of these multi-designated areas in the terrestrial and marine realms at the global level and among different regions, and we present the percentage of each county’s protected area extent that is under more than one designation. Our findings show that almost a quarter of the world’s protected area network is protected through more than one designation. In fact, we have documented up to eight overlapping designations. These overlaps in protected area designations occur in every region of the world, both in the terrestrial and marine realms, but are more common in the terrestrial realm and in some regions, notably Europe. In the terrestrial realm, the most common overlap is between one national and one international designation. In the marine realm, the most common overlap is between any two national designations. Multi-designations are therefore a widespread phenomenon but its implications are not well understood. This analysis identifies, for the first time, multi-designated areas across all designation types. This is a key step to understand how these areas are managed and governed to then move towards integrated and collaborative approaches that consider the different management and conservation objectives of each designation. PMID:29176888
Measuring the extent of overlaps in protected area designations.
Deguignet, Marine; Arnell, Andy; Juffe-Bignoli, Diego; Shi, Yichuan; Bingham, Heather; MacSharry, Brian; Kingston, Naomi
2017-01-01
Over the past decades, a number of national policies and international conventions have been implemented to promote the expansion of the world's protected area network, leading to a diversification of protected area strategies, types and designations. As a result, many areas are protected by more than one convention, legal instrument, or other effective means which may result in a lack of clarity around the governance and management regimes of particular locations. We assess the degree to which different designations overlap at global, regional and national levels to understand the extent of this phenomenon at different scales. We then compare the distribution and coverage of these multi-designated areas in the terrestrial and marine realms at the global level and among different regions, and we present the percentage of each county's protected area extent that is under more than one designation. Our findings show that almost a quarter of the world's protected area network is protected through more than one designation. In fact, we have documented up to eight overlapping designations. These overlaps in protected area designations occur in every region of the world, both in the terrestrial and marine realms, but are more common in the terrestrial realm and in some regions, notably Europe. In the terrestrial realm, the most common overlap is between one national and one international designation. In the marine realm, the most common overlap is between any two national designations. Multi-designations are therefore a widespread phenomenon but its implications are not well understood. This analysis identifies, for the first time, multi-designated areas across all designation types. This is a key step to understand how these areas are managed and governed to then move towards integrated and collaborative approaches that consider the different management and conservation objectives of each designation.
Auxin Controls Arabidopsis Adventitious Root Initiation by Regulating Jasmonic Acid Homeostasis[W
Gutierrez, Laurent; Mongelard, Gaëlle; Floková, Kristýna; Păcurar, Daniel I.; Novák, Ondřej; Staswick, Paul; Kowalczyk, Mariusz; Păcurar, Monica; Demailly, Hervé; Geiss, Gaia; Bellini, Catherine
2012-01-01
Vegetative shoot-based propagation of plants, including mass propagation of elite genotypes, is dependent on the development of shoot-borne roots, which are also called adventitious roots. Multiple endogenous and environmental factors control the complex process of adventitious rooting. In the past few years, we have shown that the auxin response factors ARF6 and ARF8, targets of the microRNA miR167, are positive regulators of adventitious rooting, whereas ARF17, a target of miR160, is a negative regulator. We showed that these genes have overlapping expression profiles during adventitious rooting and that they regulate each other’s expression at the transcriptional and posttranscriptional levels by modulating the homeostasis of miR160 and miR167. We demonstrate here that this complex network of transcription factors regulates the expression of three auxin-inducible Gretchen Hagen3 (GH3) genes, GH3.3, GH3.5, and GH3.6, encoding acyl-acid-amido synthetases. We show that these three GH3 genes are required for fine-tuning adventitious root initiation in the Arabidopsis thaliana hypocotyl, and we demonstrate that they act by modulating jasmonic acid homeostasis. We propose a model in which adventitious rooting is an adaptive developmental response involving crosstalk between the auxin and jasmonate regulatory pathways. PMID:22730403
Leduc, Magalie S; Blair, Rachael Hageman; Verdugo, Ricardo A; Tsaih, Shirng-Wern; Walsh, Kenneth; Churchill, Gary A; Paigen, Beverly
2012-06-01
A higher incidence of coronary artery disease is associated with a lower level of HDL-cholesterol. We searched for genetic loci influencing HDL-cholesterol in F2 mice from a cross between MRL/MpJ and SM/J mice. Quantitative trait loci (QTL) mapping revealed one significant HDL QTL (Apoa2 locus), four suggestive QTL on chromosomes 10, 11, 13, and 18 and four additional QTL on chromosomes 1 proximal, 3, 4, and 7 after adjusting HDL for the strong Apoa2 locus. A novel nonsynonymous polymorphism supports Lipg as the QTL gene for the chromosome 18 QTL, and a difference in Abca1 expression in liver tissue supports it as the QTL gene for the chromosome 4 QTL. Using weighted gene co-expression network analysis, we identified a module that after adjustment for Apoa2, correlated with HDL, was genetically determined by a QTL on chromosome 11, and overlapped with the HDL QTL. A combination of bioinformatics tools and systems genetics helped identify several candidate genes for both the chromosome 11 HDL and module QTL based on differential expression between the parental strains, cis regulation of expression, and causality modeling. We conclude that integrating systems genetics to a more-traditional genetics approach improves the power of complex trait gene identification.
Adaptations in a hierarchical food web of southeastern Lake Michigan
Krause, Ann E.; Frank, Ken A.; Jones, Michael L.; Nalepa, Thomas F.; Barbiero, Richard P.; Madenjian, Charles P.; Agy, Megan; Evans, Marlene S.; Taylor, William W.; Mason, Doran M.; Léonard, Nancy J.
2009-01-01
Two issues in ecological network theory are: (1) how to construct an ecological network model and (2) how do entire networks (as opposed to individual species) adapt to changing conditions? We present a novel method for constructing an ecological network model for the food web of southeastern Lake Michigan (USA) and we identify changes in key system properties that are large relative to their uncertainty as this ecological network adapts from one time point to a second time point in response to multiple perturbations. To construct our food web for southeastern Lake Michigan, we followed the list of seven recommendations outlined in Cohen et al. [Cohen, J.E., et al., 1993. Improving food webs. Ecology 74, 252–258] for improving food webs. We explored two inter-related extensions of hierarchical system theory with our food web; the first one was that subsystems react to perturbations independently in the short-term and the second one was that a system's properties change at a slower rate than its subsystems’ properties. We used Shannon's equations to provide quantitative versions of the basic food web properties: number of prey, number of predators, number of feeding links, and connectance (or density). We then compared these properties between the two time-periods by developing distributions of each property for each time period that took uncertainty about the property into account. We compared these distributions, and concluded that non-overlapping distributions indicated changes in these properties that were large relative to their uncertainty. Two subsystems were identified within our food web system structure (p < 0.001). One subsystem had more non-overlapping distributions in food web properties between Time 1 and Time 2 than the other subsystem. The overall system had all overlapping distributions in food web properties between Time 1 and Time 2. These results supported both extensions of hierarchical systems theory. Interestingly, the subsystem with more non-overlapping distributions in food web properties was the subsystem that contained primarily benthic taxa, contrary to expectations that the identified major perturbations (lower phosphorous inputs and invasive species) would more greatly affect the subsystem containing primarily pelagic taxa. Future food-web research should employ rigorous statistical analysis and incorporate uncertainty in food web properties for a better understanding of how ecological networks adapt.
Kujala, Rainer; Glerean, Enrico; Pan, Raj Kumar; Jääskeläinen, Iiro P; Sams, Mikko; Saramäki, Jari
2016-11-01
Networks have become a standard tool for analyzing functional magnetic resonance imaging (fMRI) data. In this approach, brain areas and their functional connections are mapped to the nodes and links of a network. Even though this mapping reduces the complexity of the underlying data, it remains challenging to understand the structure of the resulting networks due to the large number of nodes and links. One solution is to partition networks into modules and then investigate the modules' composition and relationship with brain functioning. While this approach works well for single networks, understanding differences between two networks by comparing their partitions is difficult and alternative approaches are thus necessary. To this end, we present a coarse-graining framework that uses a single set of data-driven modules as a frame of reference, enabling one to zoom out from the node- and link-level details. As a result, differences in the module-level connectivity can be understood in a transparent, statistically verifiable manner. We demonstrate the feasibility of the method by applying it to networks constructed from fMRI data recorded from 13 healthy subjects during rest and movie viewing. While independently partitioning the rest and movie networks is shown to yield little insight, the coarse-graining framework enables one to pinpoint differences in the module-level structure, such as the increased number of intra-module links within the visual cortex during movie viewing. In addition to quantifying differences due to external stimuli, the approach could also be applied in clinical settings, such as comparing patients with healthy controls. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Overlap and distinction between measures of insight and self-stigma.
Hasson-Ohayon, Ilanit
2018-05-24
Multiple studies on insight into one's illness and self-stigma among patients with serious mental illness and their relatives have shown that these constructs are related to one another and that they affect outcome. However, a critical exploration of the items used to assess both constructs raises questions with regard to the possible overlapping and centrality of items. The current study used five different samples to explore the possible overlap and distinction between insight and self-stigma, and to identify central items, via network analyses and principal component factor analysis. Findings from the network analyses showed overlap between insight and self-stigma exist with a relatively clearer observational distinction between the constructs among the two parent samples in comparison to the patient samples. Principal component factor analysis constrained to two factors showed that a relatively high percentage of items were not loaded on either factor, and in a few datasets, several insight items were loaded on the self-stigma scale and vice versa. The author discusses implications for research and calls for rethinking the way insight is assessed. Clinical implications are also discussed in reference to central items of social isolation, future worries and stereotype endorsement among the different study groups. Copyright © 2018 Elsevier B.V. All rights reserved.
Lee, Kangjoo; Lina, Jean-Marc; Gotman, Jean; Grova, Christophe
2016-07-01
Functional hubs are defined as the specific brain regions with dense connections to other regions in a functional brain network. Among them, connector hubs are of great interests, as they are assumed to promote global and hierarchical communications between functionally specialized networks. Damage to connector hubs may have a more crucial effect on the system than does damage to other hubs. Hubs in graph theory are often identified from a correlation matrix, and classified as connector hubs when the hubs are more connected to regions in other networks than within the networks to which they belong. However, the identification of hubs from functional data is more complex than that from structural data, notably because of the inherent problem of multicollinearity between temporal dynamics within a functional network. In this context, we developed and validated a method to reliably identify connectors and corresponding overlapping network structure from resting-state fMRI. This new method is actually handling the multicollinearity issue, since it does not rely on counting the number of connections from a thresholded correlation matrix. The novelty of the proposed method is that besides counting the number of networks involved in each voxel, it allows us to identify which networks are actually involved in each voxel, using a data-driven sparse general linear model in order to identify brain regions involved in more than one network. Moreover, we added a bootstrap resampling strategy to assess statistically the reproducibility of our results at the single subject level. The unified framework is called SPARK, i.e. SParsity-based Analysis of Reliable k-hubness, where k-hubness denotes the number of networks overlapping in each voxel. The accuracy and robustness of SPARK were evaluated using two dimensional box simulations and realistic simulations that examined detection of artificial hubs generated on real data. Then, test/retest reliability of the method was assessed using the 1000 Functional Connectome Project database, which includes data obtained from 25 healthy subjects at three different occasions with long and short intervals between sessions. We demonstrated that SPARK provides an accurate and reliable estimation of k-hubness, suggesting a promising tool for understanding hub organization in resting-state fMRI. Copyright © 2016 Elsevier Inc. All rights reserved.
A mean field neural network for hierarchical module placement
NASA Technical Reports Server (NTRS)
Unaltuna, M. Kemal; Pitchumani, Vijay
1992-01-01
This paper proposes a mean field neural network for the two-dimensional module placement problem. An efficient coding scheme with only O(N log N) neurons is employed where N is the number of modules. The neurons are evolved in groups of N in log N iteration steps such that the circuit is recursively partitioned in alternating vertical and horizontal directions. In our simulations, the network was able to find optimal solutions to all test problems with up to 128 modules.
Mapping, Awareness, And Virtualization Network Administrator Training Tool Virtualization Module
2016-03-01
AND VIRTUALIZATION NETWORK ADMINISTRATOR TRAINING TOOL VIRTUALIZATION MODULE by Erik W. Berndt March 2016 Thesis Advisor: John Gibson...REPORT TYPE AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE MAPPING, AWARENESS, AND VIRTUALIZATION NETWORK ADMINISTRATOR TRAINING TOOL... VIRTUALIZATION MODULE 5. FUNDING NUMBERS 6. AUTHOR(S) Erik W. Berndt 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Naval Postgraduate School
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacArthur, Stewart; Li, Xiao-Yong; Li, Jingyi
2009-05-15
BACKGROUND: We previously established that six sequence-specific transcription factors that initiate anterior/posterior patterning in Drosophila bind to overlapping sets of thousands of genomic regions in blastoderm embryos. While regions bound at high levels include known and probable functional targets, more poorly bound regions are preferentially associated with housekeeping genes and/or genes not transcribed in the blastoderm, and are frequently found in protein coding sequences or in less conserved non-coding DNA, suggesting that many are likely non-functional. RESULTS: Here we show that an additional 15 transcription factors that regulate other aspects of embryo patterning show a similar quantitative continuum of functionmore » and binding to thousands of genomic regions in vivo. Collectively, the 21 regulators show a surprisingly high overlap in the regions they bind given that they belong to 11 DNA binding domain families, specify distinct developmental fates, and can act via different cis-regulatory modules. We demonstrate, however, that quantitative differences in relative levels of binding to shared targets correlate with the known biological and transcriptional regulatory specificities of these factors. CONCLUSIONS: It is likely that the overlap in binding of biochemically and functionally unrelated transcription factors arises from the high concentrations of these proteins in nuclei, which, coupled with their broad DNA binding specificities, directs them to regions of open chromatin. We suggest that most animal transcription factors will be found to show a similar broad overlapping pattern of binding in vivo, with specificity achieved by modulating the amount, rather than the identity, of bound factor.« less
A new multi-scale method to reveal hierarchical modular structures in biological networks.
Jiao, Qing-Ju; Huang, Yan; Shen, Hong-Bin
2016-11-15
Biological networks are effective tools for studying molecular interactions. Modular structure, in which genes or proteins may tend to be associated with functional modules or protein complexes, is a remarkable feature of biological networks. Mining modular structure from biological networks enables us to focus on a set of potentially important nodes, which provides a reliable guide to future biological experiments. The first fundamental challenge in mining modular structure from biological networks is that the quality of the observed network data is usually low owing to noise and incompleteness in the obtained networks. The second problem that poses a challenge to existing approaches to the mining of modular structure is that the organization of both functional modules and protein complexes in networks is far more complicated than was ever thought. For instance, the sizes of different modules vary considerably from each other and they often form multi-scale hierarchical structures. To solve these problems, we propose a new multi-scale protocol for mining modular structure (named ISIMB) driven by a node similarity metric, which works in an iteratively converged space to reduce the effects of the low data quality of the observed network data. The multi-scale node similarity metric couples both the local and the global topology of the network with a resolution regulator. By varying this resolution regulator to give different weightings to the local and global terms in the metric, the ISIMB method is able to fit the shape of modules and to detect them on different scales. Experiments on protein-protein interaction and genetic interaction networks show that our method can not only mine functional modules and protein complexes successfully, but can also predict functional modules from specific to general and reveal the hierarchical organization of protein complexes.
State-dependent, bidirectional modulation of neural network activity by endocannabinoids.
Piet, Richard; Garenne, André; Farrugia, Fanny; Le Masson, Gwendal; Marsicano, Giovanni; Chavis, Pascale; Manzoni, Olivier J
2011-11-16
The endocannabinoid (eCB) system and the cannabinoid CB1 receptor (CB1R) play key roles in the modulation of brain functions. Although actions of eCBs and CB1Rs are well described at the synaptic level, little is known of their modulation of neural activity at the network level. Using microelectrode arrays, we have examined the role of CB1R activation in the modulation of the electrical activity of rat and mice cortical neural networks in vitro. We find that exogenous activation of CB1Rs expressed on glutamatergic neurons decreases the spontaneous activity of cortical neural networks. Moreover, we observe that the net effect of the CB1R antagonist AM251 inversely correlates with the initial level of activity in the network: blocking CB1Rs increases network activity when basal network activity is low, whereas it depresses spontaneous activity when its initial level is high. Our results reveal a complex role of CB1Rs in shaping spontaneous network activity, and suggest that the outcome of endogenous neuromodulation on network function might be state dependent.
The Device Centric Communication System for 5G Networks
NASA Astrophysics Data System (ADS)
Biswash, S. K.; Jayakody, D. N. K.
2017-01-01
The Fifth Generation Communication (5G) networks have several functional features such as: Massive Multiple Input and Multiple Output (MIMO), Device centric data and voice support, Smarter-device communications, etc. The objective for 5G networks is to gain the 1000x more throughput, 10x spectral efficiency, 100 x more energy efficiency than existing technologies. The 5G system will provide the balance between the Quality of Experience (QoE) and the Quality of Service (QoS), without compromising the user benefit. The data rate has been the key metric for wireless QoS; QoE deals with the delay and throughput. In order to realize a balance between the QoS and QoE, we propose a cellular Device centric communication methodology for the overlapping network coverage area in the 5G communication system. The multiple beacon signals mobile tower refers to an overlapping network area, and a user must be forwarded to the next location area. To resolve this issue, we suggest the user centric methodology (without Base Station interface) to handover the device in the next area, until the users finalize the communication. The proposed method will reduce the signalling cost and overheads for the communication.
Evolutionary fuzzy ARTMAP neural networks for classification of semiconductor defects.
Tan, Shing Chiang; Watada, Junzo; Ibrahim, Zuwairie; Khalid, Marzuki
2015-05-01
Wafer defect detection using an intelligent system is an approach of quality improvement in semiconductor manufacturing that aims to enhance its process stability, increase production capacity, and improve yields. Occasionally, only few records that indicate defective units are available and they are classified as a minority group in a large database. Such a situation leads to an imbalanced data set problem, wherein it engenders a great challenge to deal with by applying machine-learning techniques for obtaining effective solution. In addition, the database may comprise overlapping samples of different classes. This paper introduces two models of evolutionary fuzzy ARTMAP (FAM) neural networks to deal with the imbalanced data set problems in a semiconductor manufacturing operations. In particular, both the FAM models and hybrid genetic algorithms are integrated in the proposed evolutionary artificial neural networks (EANNs) to classify an imbalanced data set. In addition, one of the proposed EANNs incorporates a facility to learn overlapping samples of different classes from the imbalanced data environment. The classification results of the proposed evolutionary FAM neural networks are presented, compared, and analyzed using several classification metrics. The outcomes positively indicate the effectiveness of the proposed networks in handling classification problems with imbalanced data sets.
Quantifying the propagation of distress and mental disorders in social networks.
Scatà, Marialisa; Di Stefano, Alessandro; La Corte, Aurelio; Liò, Pietro
2018-03-22
Heterogeneity of human beings leads to think and react differently to social phenomena. Awareness and homophily drive people to weigh interactions in social multiplex networks, influencing a potential contagion effect. To quantify the impact of heterogeneity on spreading dynamics, we propose a model of coevolution of social contagion and awareness, through the introduction of statistical estimators, in a weighted multiplex network. Multiplexity of networked individuals may trigger propagation enough to produce effects among vulnerable subjects experiencing distress, mental disorder, which represent some of the strongest predictors of suicidal behaviours. The exposure to suicide is emotionally harmful, since talking about it may give support or inadvertently promote it. To disclose the complex effect of the overlapping awareness on suicidal ideation spreading among disordered people, we also introduce a data-driven approach by integrating different types of data. Our modelling approach unveils the relationship between distress and mental disorders propagation and suicidal ideation spreading, shedding light on the role of awareness in a social network for suicide prevention. The proposed model is able to quantify the impact of overlapping awareness on suicidal ideation spreading and our findings demonstrate that it plays a dual role on contagion, either reinforcing or delaying the contagion outbreak.
RM-SORN: a reward-modulated self-organizing recurrent neural network.
Aswolinskiy, Witali; Pipa, Gordon
2015-01-01
Neural plasticity plays an important role in learning and memory. Reward-modulation of plasticity offers an explanation for the ability of the brain to adapt its neural activity to achieve a rewarded goal. Here, we define a neural network model that learns through the interaction of Intrinsic Plasticity (IP) and reward-modulated Spike-Timing-Dependent Plasticity (STDP). IP enables the network to explore possible output sequences and STDP, modulated by reward, reinforces the creation of the rewarded output sequences. The model is tested on tasks for prediction, recall, non-linear computation, pattern recognition, and sequence generation. It achieves performance comparable to networks trained with supervised learning, while using simple, biologically motivated plasticity rules, and rewarding strategies. The results confirm the importance of investigating the interaction of several plasticity rules in the context of reward-modulated learning and whether reward-modulated self-organization can explain the amazing capabilities of the brain.
Simonyan, Kristina; Fuertinger, Stefan
2015-04-01
Speech production is one of the most complex human behaviors. Although brain activation during speaking has been well investigated, our understanding of interactions between the brain regions and neural networks remains scarce. We combined seed-based interregional correlation analysis with graph theoretical analysis of functional MRI data during the resting state and sentence production in healthy subjects to investigate the interface and topology of functional networks originating from the key brain regions controlling speech, i.e., the laryngeal/orofacial motor cortex, inferior frontal and superior temporal gyri, supplementary motor area, cingulate cortex, putamen, and thalamus. During both resting and speaking, the interactions between these networks were bilaterally distributed and centered on the sensorimotor brain regions. However, speech production preferentially recruited the inferior parietal lobule (IPL) and cerebellum into the large-scale network, suggesting the importance of these regions in facilitation of the transition from the resting state to speaking. Furthermore, the cerebellum (lobule VI) was the most prominent region showing functional influences on speech-network integration and segregation. Although networks were bilaterally distributed, interregional connectivity during speaking was stronger in the left vs. right hemisphere, which may have underlined a more homogeneous overlap between the examined networks in the left hemisphere. Among these, the laryngeal motor cortex (LMC) established a core network that fully overlapped with all other speech-related networks, determining the extent of network interactions. Our data demonstrate complex interactions of large-scale brain networks controlling speech production and point to the critical role of the LMC, IPL, and cerebellum in the formation of speech production network. Copyright © 2015 the American Physiological Society.
Vemuri, Kavita; Surampudi, Bapi Raju
2015-08-01
This study reports dynamic functional network connectivity (dFNC) analysis on time courses of putative empathy networks-cognitive, emotional, and motor-and the default mode network (DMN) identified from independent components (ICs) derived by the group independent component analysis (ICA) method. The functional magnetic resonance imaging (fMRI) data were collected from 15 subjects watching movies of three genres, an animation (S1), Indian Hindi (S2), and a Hollywood English (S3) movie. The hypothesis of the study is that empathic engagement in a movie narrative would modulate the activation with the DMN. The clippings were individually rated for emotional expressions, context, and empathy self-response by the fMRI subjects post scanning and by 40 participants in an independent survey who rated at four time intervals in each clipping. The analysis illustrates the following: (a) the ICA method separated ICs with areas reported for empathy response and anterior/posterior DMNs. An IC indicating insula region activation reported to be crucial for the emotional empathy network was separated for S2 and S3 movies only, but not for S1, (b) the dFNC between DMN and ICs corresponding to cognitive empathy network showed higher positive periodical fluctuating correlations for all three movies, while ICs with areas crucial to motor or emotional empathy display lower positive or negative correlation values with no distinct periodicity. A possible explanation for the lower values and anticorrelation between the DMN and emotional empathy networks could possibly be inhibition due to internal self-reflections, attributed to DMN, while processing and preparing a response to external emotional content. The positive higher correlation values for cognitive empathy networks may reflect a functional overlap with DMN for enhanced internal self-reflections, inferring beliefs and intentions about the 'other', all triggered by the external stimuli. The findings are useful in the study of deviations in functional synergies of large complex networks associated with empathy responses and DMN in clinical applications like autism and schizophrenia.
Energy Aware Clustering Algorithms for Wireless Sensor Networks
NASA Astrophysics Data System (ADS)
Rakhshan, Noushin; Rafsanjani, Marjan Kuchaki; Liu, Chenglian
2011-09-01
The sensor nodes deployed in wireless sensor networks (WSNs) are extremely power constrained, so maximizing the lifetime of the entire networks is mainly considered in the design. In wireless sensor networks, hierarchical network structures have the advantage of providing scalable and energy efficient solutions. In this paper, we investigate different clustering algorithms for WSNs and also compare these clustering algorithms based on metrics such as clustering distribution, cluster's load balancing, Cluster Head's (CH) selection strategy, CH's role rotation, node mobility, clusters overlapping, intra-cluster communications, reliability, security and location awareness.
Statistical physics of interacting neural networks
NASA Astrophysics Data System (ADS)
Kinzel, Wolfgang; Metzler, Richard; Kanter, Ido
2001-12-01
Recent results on the statistical physics of time series generation and prediction are presented. A neural network is trained on quasi-periodic and chaotic sequences and overlaps to the sequence generator as well as the prediction errors are calculated numerically. For each network there exists a sequence for which it completely fails to make predictions. Two interacting networks show a transition to perfect synchronization. A pool of interacting networks shows good coordination in the minority game-a model of competition in a closed market. Finally, as a demonstration, a perceptron predicts bit sequences produced by human beings.
Dopaminergic neurons encode a distributed, asymmetric representation of temperature in Drosophila.
Tomchik, Seth M
2013-01-30
Dopaminergic circuits modulate a wide variety of innate and learned behaviors in animals, including olfactory associative learning, arousal, and temperature-preference behavior. It is not known whether distinct or overlapping sets of dopaminergic neurons modulate these behaviors. Here, I have functionally characterized the dopaminergic circuits innervating the Drosophila mushroom body with in vivo calcium imaging and conditional silencing of genetically defined subsets of neurons. Distinct subsets of PPL1 dopaminergic neurons innervating the vertical lobes of the mushroom body responded to decreases in temperature, but not increases, with rapidly adapting bursts of activity. PAM neurons innervating the horizontal lobes did not respond to temperature shifts. Ablation of the antennae and maxillary palps reduced, but did not eliminate, the responses. Genetic silencing of dopaminergic neurons innervating the vertical mushroom body lobes substantially reduced behavioral cold avoidance, but silencing smaller subsets of these neurons had no effect. These data demonstrate that overlapping dopaminergic circuits encode a broadly distributed, asymmetric representation of temperature that overlays regions implicated previously in learning, memory, and forgetting. Thus, diverse behaviors engage overlapping sets of dopaminergic neurons that encode multimodal stimuli and innervate a single anatomical target, the mushroom body.
Cooke, Martin; Lu, Youyi
2010-10-01
Talkers change the way they speak in noisy conditions. For energetic maskers, speech production changes are relatively well-understood, but less is known about how informational maskers such as competing speech affect speech production. The current study examines the effect of energetic and informational maskers on speech production by talkers speaking alone or in pairs. Talkers produced speech in quiet and in backgrounds of speech-shaped noise, speech-modulated noise, and competing speech. Relative to quiet, speech output level and fundamental frequency increased and spectral tilt flattened in proportion to the energetic masking capacity of the background. In response to modulated backgrounds, talkers were able to reduce substantially the degree of temporal overlap with the noise, with greater reduction for the competing speech background. Reduction in foreground-background overlap can be expected to lead to a release from both energetic and informational masking for listeners. Passive changes in speech rate, mean pause length or pause distribution cannot explain the overlap reduction, which appears instead to result from a purposeful process of listening while speaking. Talkers appear to monitor the background and exploit upcoming pauses, a strategy which is particularly effective for backgrounds containing intelligible speech.
McLelland, Victoria C.; Chan, David; Ferber, Susanne; Barense, Morgan D.
2014-01-01
Recent research suggests that the medial temporal lobe (MTL) is involved in perception as well as in declarative memory. Amnesic patients with focal MTL lesions and semantic dementia patients showed perceptual deficits when discriminating faces and objects. Interestingly, these two patient groups showed different profiles of impairment for familiar and unfamiliar stimuli. For MTL amnesics, the use of familiar relative to unfamiliar stimuli improved discrimination performance. By contrast, patients with semantic dementia—a neurodegenerative condition associated with anterolateral temporal lobe damage—showed no such facilitation from familiar stimuli. Given that the two patient groups had highly overlapping patterns of damage to the perirhinal cortex, hippocampus, and temporal pole, the neuroanatomical substrates underlying their performance discrepancy were unclear. Here, we addressed this question with a multivariate reanalysis of the data presented by Barense et al. (2011), using functional connectivity to examine how stimulus familiarity affected the broader networks with which the perirhinal cortex, hippocampus, and temporal poles interact. In this study, healthy participants were scanned while they performed an odd-one-out perceptual task involving familiar and novel faces or objects. Seed-based analyses revealed that functional connectivity of the right perirhinal cortex and right anterior hippocampus was modulated by the degree of stimulus familiarity. For familiar relative to unfamiliar faces and objects, both right perirhinal cortex and right anterior hippocampus showed enhanced functional correlations with anterior/lateral temporal cortex, temporal pole, and medial/lateral parietal cortex. These findings suggest that in order to benefit from stimulus familiarity, it is necessary to engage not only the perirhinal cortex and hippocampus, but also a network of regions known to represent semantic information. PMID:24624075
Valk, Sofie L; Bernhardt, Boris C; Trautwein, Fynn-Mathis; Böckler, Anne; Kanske, Philipp; Guizard, Nicolas; Collins, D Louis; Singer, Tania
2017-10-01
Although neuroscientific research has revealed experience-dependent brain changes across the life span in sensory, motor, and cognitive domains, plasticity relating to social capacities remains largely unknown. To investigate whether the targeted mental training of different cognitive and social skills can induce specific changes in brain morphology, we collected longitudinal magnetic resonance imaging (MRI) data throughout a 9-month mental training intervention from a large sample of adults between 20 and 55 years of age. By means of various daily mental exercises and weekly instructed group sessions, training protocols specifically addressed three functional domains: (i) mindfulness-based attention and interoception, (ii) socio-affective skills (compassion, dealing with difficult emotions, and prosocial motivation), and (iii) socio-cognitive skills (cognitive perspective-taking on self and others and metacognition). MRI-based cortical thickness analyses, contrasting the different training modules against each other, indicated spatially diverging changes in cortical morphology. Training of present-moment focused attention mostly led to increases in cortical thickness in prefrontal regions, socio-affective training induced plasticity in frontoinsular regions, and socio-cognitive training included change in inferior frontal and lateral temporal cortices. Module-specific structural brain changes correlated with training-induced behavioral improvements in the same individuals in domain-specific measures of attention, compassion, and cognitive perspective-taking, respectively, and overlapped with task-relevant functional networks. Our longitudinal findings indicate structural plasticity in well-known socio-affective and socio-cognitive brain networks in healthy adults based on targeted short daily mental practices. These findings could promote the development of evidence-based mental training interventions in clinical, educational, and corporate settings aimed at cultivating social intelligence, prosocial motivation, and cooperation.
Biase, Fernando H; Kimble, Katelyn M
2018-05-10
The maturation and successful acquisition of developmental competence by an oocyte, the female gamete, during folliculogenesis is highly dependent on molecular interactions with somatic cells. Most of the cellular interactions identified, thus far, are modulated by growth factors, ions or metabolites. We hypothesized that this interaction is also modulated at the transcriptional level, which leads to the formation of gene regulatory networks between the oocyte and cumulus cells. We tested this hypothesis by analyzing transcriptome data from single oocytes and the surrounding cumulus cells collected from antral follicles employing an analytical framework to determine interdependencies at the transcript level. We overlapped our transcriptome data with putative protein-protein interactions and identified hundreds of ligand-receptor pairs that can transduce paracrine signaling between an oocyte and cumulus cells. We determined that 499 ligand-encoding genes expressed in oocytes and cumulus cells are functionally associated with transcription regulation (FDR < 0.05). Ligand-encoding genes with specific expression in oocytes or cumulus cells were enriched for biological functions that are likely associated with the coordinated formation of transzonal projections from cumulus cells that reach the oocyte's membrane. Thousands of gene pairs exhibit significant linear co-expression (absolute correlation > 0.85, FDR < 1.8 × 10 - 5 ) patterns between oocytes and cumulus cells. Hundreds of co-expressing genes showed clustering patterns associated with biological functions (FDR < 0.5) necessary for a coordinated function between the oocyte and cumulus cells during folliculogenesis (i.e. regulation of transcription, translation, apoptosis, cell differentiation and transport). Our analyses revealed a complex and functional gene regulatory circuit between the oocyte and surrounding cumulus cells. The regulatory profile of each cumulus-oocyte complex is likely associated with the oocytes' developmental potential to derive an embryo.
Ross, Christian; Shen, Qingxi J
2006-09-01
Abscisic acid (ABA) is one of the central plant hormones, responsible for controlling both maturation and germination in seeds, as well as mediating adaptive responses to desiccation, injury, and pathogen infection in vegetative tissues. Thorough analyses of two barley genes, HVA1 and HVA22, indicate that their response to ABA relies on the interaction of two cis-acting elements in their promoters, an ABA response element (ABRE) and a coupling element (CE). Together, they form an ABA response promoter complex (ABRC). Comparison of promoters of barley HVA1 and it rice orthologue indicates that the structures and sequences of their ABRCs are highly similar. Prediction of ABA responsive genes in the rice genome is then tractable to a bioinformatics approach based on the structures of the well-defined barley ABRCs. Here we describe a model developed based on the consensus, inter-element spacing and orientations of experimentally determined ABREs and CEs. Our search of the rice promoter database for promoters that fit the model has generated a partial list of genes in rice that have a high likelihood of being involved in the ABA signaling network. The ABA inducibility of some of the rice genes identified was validated with quantitative reverse transcription PCR (QPCR). By limiting our input data to known enhancer modules and experimentally derived rules, we have generated a high confidence subset of ABA-regulated genes. The results suggest that the pathways by which cereals respond to biotic and abiotic stresses overlap significantly, and that regulation is not confined to the level transcription. The large fraction of putative regulatory genes carrying HVA1-like enhancer modules in their promoters suggests the ABA signal enters at multiple points into a complex regulatory network that remains largely unmapped.
Qiao, Liang; Cao, Minghao; Zheng, Jian; Zhao, Yihong; Zheng, Zhi-Liang
2017-10-30
The ratio of sugars to organic acids, two of the major metabolites in fleshy fruits, has been considered the most important contributor to fruit sweetness. Although accumulation of sugars and acids have been extensively studied, whether plants evolve a mechanism to maintain, sense or respond to the fruit sugar/acid ratio remains a mystery. In a prior study, we used an integrated systems biology tool to identify a group of 39 acid-associated genes from the fruit transcriptomes in four sweet orange varieties (Citrus sinensis L. Osbeck) with varying fruit acidity, Succari (acidless), Bingtang (low acid), and Newhall and Xinhui (normal acid). We reanalyzed the prior sweet orange fruit transcriptome data, leading to the identification of 72 genes highly correlated with the fruit sugar/acid ratio. The majority of these sugar/acid ratio-related genes are predicted to be involved in regulatory functions such as transport, signaling and transcription or encode enzymes involved in metabolism. Surprisingly, only three of these sugar/acid ratio-correlated genes are weakly correlated with sugar level and none of them overlaps with the acid-associated genes. Weighted Gene Coexpression Network Analysis (WGCNA) has revealed that these genes belong to four modules, Blue, Grey, Brown and Turquoise, with the former two modules being unique to the sugar/acid ratio control. Our results indicate that orange fruits contain a possible mechanistically distinct class of genes that may potentially be involved in maintaining fruit sugar/acid ratios and/or responding to the cellular sugar/acid ratio status. Therefore, our analysis of orange transcriptomes provides an intriguing insight into the potentially novel genetic or molecular mechanisms controlling the sugar/acid ratio in fruits.
Valk, Sofie L.; Bernhardt, Boris C.; Trautwein, Fynn-Mathis; Böckler, Anne; Kanske, Philipp; Guizard, Nicolas; Collins, D. Louis; Singer, Tania
2017-01-01
Although neuroscientific research has revealed experience-dependent brain changes across the life span in sensory, motor, and cognitive domains, plasticity relating to social capacities remains largely unknown. To investigate whether the targeted mental training of different cognitive and social skills can induce specific changes in brain morphology, we collected longitudinal magnetic resonance imaging (MRI) data throughout a 9-month mental training intervention from a large sample of adults between 20 and 55 years of age. By means of various daily mental exercises and weekly instructed group sessions, training protocols specifically addressed three functional domains: (i) mindfulness-based attention and interoception, (ii) socio-affective skills (compassion, dealing with difficult emotions, and prosocial motivation), and (iii) socio-cognitive skills (cognitive perspective-taking on self and others and metacognition). MRI-based cortical thickness analyses, contrasting the different training modules against each other, indicated spatially diverging changes in cortical morphology. Training of present-moment focused attention mostly led to increases in cortical thickness in prefrontal regions, socio-affective training induced plasticity in frontoinsular regions, and socio-cognitive training included change in inferior frontal and lateral temporal cortices. Module-specific structural brain changes correlated with training-induced behavioral improvements in the same individuals in domain-specific measures of attention, compassion, and cognitive perspective-taking, respectively, and overlapped with task-relevant functional networks. Our longitudinal findings indicate structural plasticity in well-known socio-affective and socio-cognitive brain networks in healthy adults based on targeted short daily mental practices. These findings could promote the development of evidence-based mental training interventions in clinical, educational, and corporate settings aimed at cultivating social intelligence, prosocial motivation, and cooperation. PMID:28983507
Gazda, Stefanie; Iyer, Swami; Killingback, Timothy; Connor, Richard; Brault, Solange
2015-03-01
Network analysis has proved to be a valuable tool for studying the behavioural patterns of complex social animals. Often such studies either do not distinguish between different behavioural states of the organisms or simply focus attention on a single behavioural state to the exclusion of all others. In either of these approaches it is impossible to ascertain how the behavioural patterns of individuals depend on the type of activity they are engaged in. Here we report on a network-based analysis of the behavioural associations in a population of bottlenose dolphins (Tursiops truncatus) in Cedar Key, Florida. We consider three distinct behavioural states-socializing, travelling and foraging-and analyse the association networks corresponding to each activity. Moreover, in constructing the different activity networks we do not simply record a spatial association between two individuals as being either present or absent, but rather quantify the degree of any association, thus allowing us to construct weighted networks describing each activity. The results of these weighted activity networks indicate that networks can reveal detailed patterns of bottlenose dolphins at the population level; dolphins socialize in large groups with preferential associations; travel in small groups with preferential associates; and spread out to forage in very small, weakly connected groups. There is some overlap in the socialize and travel networks but little overlap between the forage and other networks. This indicates that the social bonds maintained in other activities are less important as they forage on dispersed, solitary prey. The overall network, not sorted by activity, does not accurately represent any of these patterns.
Gazda, Stefanie; Iyer, Swami; Killingback, Timothy; Connor, Richard; Brault, Solange
2015-01-01
Network analysis has proved to be a valuable tool for studying the behavioural patterns of complex social animals. Often such studies either do not distinguish between different behavioural states of the organisms or simply focus attention on a single behavioural state to the exclusion of all others. In either of these approaches it is impossible to ascertain how the behavioural patterns of individuals depend on the type of activity they are engaged in. Here we report on a network-based analysis of the behavioural associations in a population of bottlenose dolphins (Tursiops truncatus) in Cedar Key, Florida. We consider three distinct behavioural states—socializing, travelling and foraging—and analyse the association networks corresponding to each activity. Moreover, in constructing the different activity networks we do not simply record a spatial association between two individuals as being either present or absent, but rather quantify the degree of any association, thus allowing us to construct weighted networks describing each activity. The results of these weighted activity networks indicate that networks can reveal detailed patterns of bottlenose dolphins at the population level; dolphins socialize in large groups with preferential associations; travel in small groups with preferential associates; and spread out to forage in very small, weakly connected groups. There is some overlap in the socialize and travel networks but little overlap between the forage and other networks. This indicates that the social bonds maintained in other activities are less important as they forage on dispersed, solitary prey. The overall network, not sorted by activity, does not accurately represent any of these patterns. PMID:26064611
Dynamic Neural Networks Supporting Memory Retrieval
St. Jacques, Peggy L.; Kragel, Philip A.; Rubin, David C.
2011-01-01
How do separate neural networks interact to support complex cognitive processes such as remembrance of the personal past? Autobiographical memory (AM) retrieval recruits a consistent pattern of activation that potentially comprises multiple neural networks. However, it is unclear how such large-scale neural networks interact and are modulated by properties of the memory retrieval process. In the present functional MRI (fMRI) study, we combined independent component analysis (ICA) and dynamic causal modeling (DCM) to understand the neural networks supporting AM retrieval. ICA revealed four task-related components consistent with the previous literature: 1) Medial Prefrontal Cortex (PFC) Network, associated with self-referential processes, 2) Medial Temporal Lobe (MTL) Network, associated with memory, 3) Frontoparietal Network, associated with strategic search, and 4) Cingulooperculum Network, associated with goal maintenance. DCM analysis revealed that the medial PFC network drove activation within the system, consistent with the importance of this network to AM retrieval. Additionally, memory accessibility and recollection uniquely altered connectivity between these neural networks. Recollection modulated the influence of the medial PFC on the MTL network during elaboration, suggesting that greater connectivity among subsystems of the default network supports greater re-experience. In contrast, memory accessibility modulated the influence of frontoparietal and MTL networks on the medial PFC network, suggesting that ease of retrieval involves greater fluency among the multiple networks contributing to AM. These results show the integration between neural networks supporting AM retrieval and the modulation of network connectivity by behavior. PMID:21550407
A Modularity-Based Method Reveals Mixed Modules from Chemical-Gene Heterogeneous Network
Song, Jianglong; Tang, Shihuan; Liu, Xi; Gao, Yibo; Yang, Hongjun; Lu, Peng
2015-01-01
For a multicomponent therapy, molecular network is essential to uncover its specific mode of action from a holistic perspective. The molecular system of a Traditional Chinese Medicine (TCM) formula can be represented by a 2-class heterogeneous network (2-HN), which typically includes chemical similarities, chemical-target interactions and gene interactions. An important premise of uncovering the molecular mechanism is to identify mixed modules from complex chemical-gene heterogeneous network of a TCM formula. We thus proposed a novel method (MixMod) based on mixed modularity to detect accurate mixed modules from 2-HNs. At first, we compared MixMod with Clauset-Newman-Moore algorithm (CNM), Markov Cluster algorithm (MCL), Infomap and Louvain on benchmark 2-HNs with known module structure. Results showed that MixMod was superior to other methods when 2-HNs had promiscuous module structure. Then these methods were tested on a real drug-target network, in which 88 disease clusters were regarded as real modules. MixMod could identify the most accurate mixed modules from the drug-target 2-HN (normalized mutual information 0.62 and classification accuracy 0.4524). In the end, MixMod was applied to the 2-HN of Buchang naoxintong capsule (BNC) and detected 49 mixed modules. By using enrichment analysis, we investigated five mixed modules that contained primary constituents of BNC intestinal absorption liquid. As a matter of fact, the findings of in vitro experiments using BNC intestinal absorption liquid were found to highly accord with previous analysis. Therefore, MixMod is an effective method to detect accurate mixed modules from chemical-gene heterogeneous networks and further uncover the molecular mechanism of multicomponent therapies, especially TCM formulae. PMID:25927435
Human connectome module pattern detection using a new multi-graph MinMax cut model.
De, Wang; Wang, Yang; Nie, Feiping; Yan, Jingwen; Cai, Weidong; Saykin, Andrew J; Shen, Li; Huang, Heng
2014-01-01
Many recent scientific efforts have been devoted to constructing the human connectome using Diffusion Tensor Imaging (DTI) data for understanding the large-scale brain networks that underlie higher-level cognition in human. However, suitable computational network analysis tools are still lacking in human connectome research. To address this problem, we propose a novel multi-graph min-max cut model to detect the consistent network modules from the brain connectivity networks of all studied subjects. A new multi-graph MinMax cut model is introduced to solve this challenging computational neuroscience problem and the efficient optimization algorithm is derived. In the identified connectome module patterns, each network module shows similar connectivity patterns in all subjects, which potentially associate to specific brain functions shared by all subjects. We validate our method by analyzing the weighted fiber connectivity networks. The promising empirical results demonstrate the effectiveness of our method.
Dispatching packets on a global combining network of a parallel computer
Almasi, Gheorghe [Ardsley, NY; Archer, Charles J [Rochester, MN
2011-07-19
Methods, apparatus, and products are disclosed for dispatching packets on a global combining network of a parallel computer comprising a plurality of nodes connected for data communications using the network capable of performing collective operations and point to point operations that include: receiving, by an origin system messaging module on an origin node from an origin application messaging module on the origin node, a storage identifier and an operation identifier, the storage identifier specifying storage containing an application message for transmission to a target node, and the operation identifier specifying a message passing operation; packetizing, by the origin system messaging module, the application message into network packets for transmission to the target node, each network packet specifying the operation identifier and an operation type for the message passing operation specified by the operation identifier; and transmitting, by the origin system messaging module, the network packets to the target node.
Tucker, Thomas R; Katz, Lawrence C
2003-01-01
To investigate how neurons in cortical layer 2/3 integrate horizontal inputs arising from widely distributed sites, we combined intracellular recording and voltage-sensitive dye imaging to visualize the spatiotemporal dynamics of neuronal activity evoked by electrical stimulation of multiple sites in visual cortex. Individual stimuli evoked characteristic patterns of optical activity, while delivering stimuli at multiple sites generated interacting patterns in the regions of overlap. We observed that neurons in overlapping regions received convergent horizontal activation that generated nonlinear responses due to the emergence of large inhibitory potentials. The results indicate that co-activation of multiple sets of horizontal connections recruit strong inhibition from local inhibitory networks, causing marked deviations from simple linear integration.
Multistability of the Brain Network for Self-other Processing
Chen, Yi-An; Huang, Tsung-Ren
2017-01-01
Early fMRI studies suggested that brain areas processing self-related and other-related information were highly overlapping. Hypothesising functional localisation of the cortex, researchers have tried to locate “self-specific” and “other-specific” regions within these overlapping areas by subtracting suspected confounding signals in task-based fMRI experiments. Inspired by recent advances in whole-brain dynamic modelling, we instead explored an alternative hypothesis that similar spatial activation patterns could be associated with different processing modes in the form of different synchronisation patterns. Combining an automated synthesis of fMRI data with a presumption-free diffusion spectrum image (DSI) fibre-tracking algorithm, we isolated a network putatively composed of brain areas and white matter tracts involved in self-other processing. We sampled synchronisation patterns from the dynamical systems of this network using various combinations of physiological parameters. Our results showed that the self-other processing network, with simulated gamma-band activity, tended to stabilise at a number of distinct synchronisation patterns. This phenomenon, termed “multistability,” could serve as an alternative model in theorising the mechanism of processing self-other information. PMID:28256520
A computational system for lattice QCD with overlap Dirac quarks
NASA Astrophysics Data System (ADS)
Chiu, Ting-Wai; Hsieh, Tung-Han; Huang, Chao-Hsi; Huang, Tsung-Ren
2003-05-01
We outline the essential features of a Linux PC cluster which is now being developed at National Taiwan University, and discuss how to optimize its hardware and software for lattice QCD with overlap Dirac quarks. At present, the cluster constitutes of 30 nodes, with each node consisting of one Pentium 4 processor (1.6/2.0 GHz), one Gbyte of PC800 RDRAM, one 40/80 Gbyte hard disk, and a network card. The speed of this system is estimated to be 30 Gflops, and its price/performance ratio is better than $1.0/Mflops for 64-bit (double precision) computations in quenched lattice QCD with overlap Dirac quarks.
A biological approach to assembling tissue modules through endothelial capillary network formation.
Riesberg, Jeremiah J; Shen, Wei
2015-09-01
To create functional tissues having complex structures, bottom-up approaches to assembling small tissue modules into larger constructs have been emerging. Most of these approaches are based on chemical reactions or physical interactions at the interface between tissue modules. Here we report a biological assembly approach to integrate small tissue modules through endothelial capillary network formation. When adjacent tissue modules contain appropriate extracellular matrix materials and cell types that support robust endothelial capillary network formation, capillary tubules form and grow across the interface, resulting in assembly of the modules into a single, larger construct. It was shown that capillary networks formed in modules of dense fibrin gels seeded with human umbilical vein endothelial cells (HUVECs) and mesenchymal stem cells (MSCs); adjacent modules were firmly assembled into an integrated construct having a strain to failure of 117 ± 26%, a tensile strength of 2208 ± 83 Pa and a Young's modulus of 2548 ± 574 Pa. Under the same culture conditions, capillary networks were absent in modules of dense fibrin gels seeded with either HUVECs or MSCs alone; adjacent modules disconnected even when handled gently. This biological assembly approach eliminates the need for chemical reactions or physical interactions and their associated limitations. In addition, the integrated constructs are prevascularized, and therefore this bottom-up assembly approach may also help address the issue of vascularization, another key challenge in tissue engineering. Copyright © 2015 John Wiley & Sons, Ltd.
Default Network Modulation and Large-Scale Network Interactivity in Healthy Young and Old Adults
Schacter, Daniel L.
2012-01-01
We investigated age-related changes in default, attention, and control network activity and their interactions in young and old adults. Brain activity during autobiographical and visuospatial planning was assessed using multivariate analysis and with intrinsic connectivity networks as regions of interest. In both groups, autobiographical planning engaged the default network while visuospatial planning engaged the attention network, consistent with a competition between the domains of internalized and externalized cognition. The control network was engaged for both planning tasks. In young subjects, the control network coupled with the default network during autobiographical planning and with the attention network during visuospatial planning. In old subjects, default-to-control network coupling was observed during both planning tasks, and old adults failed to deactivate the default network during visuospatial planning. This failure is not indicative of default network dysfunction per se, evidenced by default network engagement during autobiographical planning. Rather, a failure to modulate the default network in old adults is indicative of a lower degree of flexible network interactivity and reduced dynamic range of network modulation to changing task demands. PMID:22128194
Coding and non-coding gene regulatory networks underlie the immune response in liver cirrhosis.
Gao, Bo; Zhang, Xueming; Huang, Yongming; Yang, Zhengpeng; Zhang, Yuguo; Zhang, Weihui; Gao, Zu-Hua; Xue, Dongbo
2017-01-01
Liver cirrhosis is recognized as being the consequence of immune-mediated hepatocyte damage and repair processes. However, the regulation of these immune responses underlying liver cirrhosis has not been elucidated. In this study, we used GEO datasets and bioinformatics methods to established coding and non-coding gene regulatory networks including transcription factor-/lncRNA-microRNA-mRNA, and competing endogenous RNA interaction networks. Our results identified 2224 mRNAs, 70 lncRNAs and 46 microRNAs were differentially expressed in liver cirrhosis. The transcription factor -/lncRNA- microRNA-mRNA network we uncovered that results in immune-mediated liver cirrhosis is comprised of 5 core microRNAs (e.g., miR-203; miR-219-5p), 3 transcription factors (i.e., FOXP3, ETS1 and FOS) and 7 lncRNAs (e.g., ENTS00000671336, ENST00000575137). The competing endogenous RNA interaction network we identified includes a complex immune response regulatory subnetwork that controls the entire liver cirrhosis network. Additionally, we found 10 overlapping GO terms shared by both liver cirrhosis and hepatocellular carcinoma including "immune response" as well. Interestingly, the overlapping differentially expressed genes in liver cirrhosis and hepatocellular carcinoma were enriched in immune response-related functional terms. In summary, a complex gene regulatory network underlying immune response processes may play an important role in the development and progression of liver cirrhosis, and its development into hepatocellular carcinoma.
Evidence of community structure in biomedical research grant collaborations.
Nagarajan, Radhakrishnan; Kalinka, Alex T; Hogan, William R
2013-02-01
Recent studies have clearly demonstrated a shift towards collaborative research and team science approaches across a spectrum of disciplines. Such collaborative efforts have also been acknowledged and nurtured by popular extramurally funded programs including the Clinical Translational Science Award (CTSA) conferred by the National Institutes of Health. Since its inception, the number of CTSA awardees has steadily increased to 60 institutes across 30 states. One of the objectives of CTSA is to accelerate translation of research from bench to bedside to community and train a new genre of researchers under the translational research umbrella. Feasibility of such a translation implicitly demands multi-disciplinary collaboration and mentoring. Networks have proven to be convenient abstractions for studying research collaborations. The present study is a part of the CTSA baseline study and investigates existence of possible community-structure in Biomedical Research Grant Collaboration (BRGC) networks across data sets retrieved from the internally developed grants management system, the Automated Research Information Administrator (ARIA) at the University of Arkansas for Medical Sciences (UAMS). Fastgreedy and link-community community-structure detection algorithms were used to investigate the presence of non-overlapping and overlapping community-structure and their variation across years 2006 and 2009. A surrogate testing approach in conjunction with appropriate discriminant statistics, namely: the modularity index and the maximum partition density is proposed to investigate whether the community-structure of the BRGC networks were different from those generated by certain types of random graphs. Non-overlapping as well as overlapping community-structure detection algorithms indicated the presence of community-structure in the BRGC network. Subsequent, surrogate testing revealed that random graph models considered in the present study may not necessarily be appropriate generative mechanisms of the community-structure in the BRGC networks. The discrepancy in the community-structure between the BRGC networks and the random graph surrogates was especially pronounced at 2009 as opposed to 2006 indicating a possible shift towards team-science and formation of non-trivial modular patterns with time. The results also clearly demonstrate presence of inter-departmental and multi-disciplinary collaborations in BRGC networks. While the results are presented on BRGC networks as a part of the CTSA baseline study at UAMS, the proposed methodologies are as such generic with potential to be extended across other CTSA organizations. Understanding the presence of community-structure can supplement more traditional network analysis as they're useful in identifying research teams and their inter-connections as opposed to the role of individual nodes in the network. Such an understanding can be a critical step prior to devising meaningful interventions for promoting team-science, multi-disciplinary collaborations, cross-fertilization of ideas across research teams and identifying suitable mentors. Understanding the temporal evolution of these communities may also be useful in CTSA evaluation. Copyright © 2012. Published by Elsevier Inc.
Khoshgoftaar, T M; Allen, E B; Hudepohl, J P; Aud, S J
1997-01-01
Society relies on telecommunications to such an extent that telecommunications software must have high reliability. Enhanced measurement for early risk assessment of latent defects (EMERALD) is a joint project of Nortel and Bell Canada for improving the reliability of telecommunications software products. This paper reports a case study of neural-network modeling techniques developed for the EMERALD system. The resulting neural network is currently in the prototype testing phase at Nortel. Neural-network models can be used to identify fault-prone modules for extra attention early in development, and thus reduce the risk of operational problems with those modules. We modeled a subset of modules representing over seven million lines of code from a very large telecommunications software system. The set consisted of those modules reused with changes from the previous release. The dependent variable was membership in the class of fault-prone modules. The independent variables were principal components of nine measures of software design attributes. We compared the neural-network model with a nonparametric discriminant model and found the neural-network model had better predictive accuracy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hermansen, M; Bova, F; John, T St.
2015-06-15
Purpose To minimize the number of monitor units required to deliver a sphere packing stereotactic radiosurgery (SRS) plan by eliminating overlaps of individual beam projections. Methods An algorithm was written in C{sup ++} to calculate SRS treatment doses using sphere packing. Three fixed beams were used to approximate each arc in a typical SRS treatment plan. For cases involving multiple isocenters, at each gantry and table angle position beams directed to individual spheres overlap to produce regions of high dose, resulting in intensity modulated beams. These high dose regions were dampened by post-processing of the combined beam profile. The post-processmore » dampening involves removing the excess overlapping fluence from all but the highest contributing beam. The dampened beam profiles at each table and gantry angle position were then summed to produce the new total dose distribution. Results Delivery times for even the most complex multiple sphere plans can be reduced to consistent times of about 20 to 30 minutes. The total MUs required to deliver the plan can also be reduced by as much as 85% of the original plan’s MUs. Conclusion Regions of high dose are removed. Dampening overlapping radiation fluence can produce the new beam profiles that have more uniform dose distributions using less MUs. This results in a treatment that requires significantly fewer intensity values than traditional IMRT or VAMT planning.« less
Ma, Hsiang-Yang; Lin, Ying-Hsiu; Wang, Chiao-Yin; Chen, Chiung-Nien; Ho, Ming-Chih; Tsui, Po-Hsiang
2016-08-01
Ultrasound Nakagami imaging is an attractive method for visualizing changes in envelope statistics. Window-modulated compounding (WMC) Nakagami imaging was reported to improve image smoothness. The sliding window technique is typically used for constructing ultrasound parametric and Nakagami images. Using a large window overlap ratio may improve the WMC Nakagami image resolution but reduces computational efficiency. Therefore, the objectives of this study include: (i) exploring the effects of the window overlap ratio on the resolution and smoothness of WMC Nakagami images; (ii) proposing a fast algorithm that is based on the convolution operator (FACO) to accelerate WMC Nakagami imaging. Computer simulations and preliminary clinical tests on liver fibrosis samples (n=48) were performed to validate the FACO-based WMC Nakagami imaging. The results demonstrated that the width of the autocorrelation function and the parameter distribution of the WMC Nakagami image reduce with the increase in the window overlap ratio. One-pixel shifting (i.e., sliding the window on the image data in steps of one pixel for parametric imaging) as the maximum overlap ratio significantly improves the WMC Nakagami image quality. Concurrently, the proposed FACO method combined with a computational platform that optimizes the matrix computation can accelerate WMC Nakagami imaging, allowing the detection of liver fibrosis-induced changes in envelope statistics. FACO-accelerated WMC Nakagami imaging is a new-generation Nakagami imaging technique with an improved image quality and fast computation. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pena-Castillo, Lourdes; Mercer, Ryan; Gurinovich, Anastasia
2014-08-28
The genus Rhodobacter contains purple nonsulfur bacteria found mostly in freshwater environments. Representative strains of two Rhodobacter species, R. capsulatus and R. sphaeroides, have had their genomes fully sequenced and both have been the subject of transcriptional profiling studies. Gene co-expression networks can be used to identify modules of genes with similar expression profiles. Functional analysis of gene modules can then associate co-expressed genes with biological pathways, and network statistics can determine the degree of module preservation in related networks. In this paper, we constructed an R. capsulatus gene co-expression network, performed functional analysis of identified gene modules, and investigatedmore » preservation of these modules in R. capsulatus proteomics data and in R. sphaeroides transcriptomics data. Results: The analysis identified 40 gene co-expression modules in R. capsulatus. Investigation of the module gene contents and expression profiles revealed patterns that were validated based on previous studies supporting the biological relevance of these modules. We identified two R. capsulatus gene modules preserved in the protein abundance data. We also identified several gene modules preserved between both Rhodobacter species, which indicate that these cellular processes are conserved between the species and are candidates for functional information transfer between species. Many gene modules were non-preserved, providing insight into processes that differentiate the two species. In addition, using Local Network Similarity (LNS), a recently proposed metric for expression divergence, we assessed the expression conservation of between-species pairs of orthologs, and within-species gene-protein expression profiles. Conclusions: Our analyses provide new sources of information for functional annotation in R. capsulatus because uncharacterized genes in modules are now connected with groups of genes that constitute a joint functional annotation. We identified R. capsulatus modules enriched with genes for ribosomal proteins, porphyrin and bacteriochlorophyll anabolism, and biosynthesis of secondary metabolites to be preserved in R. sphaeroides whereas modules related to RcGTA production and signalling showed lack of preservation in R. sphaeroides. In addition, we demonstrated that network statistics may also be applied within-species to identify congruence between mRNA expression and protein abundance data for which simple correlation measurements have previously had mixed results.« less
Liu, Yonghong; Liu, Yuanyuan; Wu, Jiaming; Roizman, Bernard; Zhou, Grace Guoying
2018-04-03
Analyses of the levels of mRNAs encoding IFIT1, IFI16, RIG-1, MDA5, CXCL10, LGP2, PUM1, LSD1, STING, and IFNβ in cell lines from which the gene encoding LGP2, LSD1, PML, HDAC4, IFI16, PUM1, STING, MDA5, IRF3, or HDAC 1 had been knocked out, as well as the ability of these cell lines to support the replication of HSV-1, revealed the following: ( i ) Cell lines lacking the gene encoding LGP2, PML, or HDAC4 (cluster 1) exhibited increased levels of expression of partially overlapping gene networks. Concurrently, these cell lines produced from 5 fold to 12 fold lower yields of HSV-1 than the parental cells. ( ii ) Cell lines lacking the genes encoding STING, LSD1, MDA5, IRF3, or HDAC 1 (cluster 2) exhibited decreased levels of mRNAs of partially overlapping gene networks. Concurrently, these cell lines produced virus yields that did not differ from those produced by the parental cell line. The genes up-regulated in cell lines forming cluster 1, overlapped in part with genes down-regulated in cluster 2. The key conclusions are that gene knockouts and subsequent selection for growth causes changes in expression of multiple genes, and hence the phenotype of the cell lines cannot be ascribed to a single gene; the patterns of gene expression may be shared by multiple knockouts; and the enhanced immunity to viral replication by cluster 1 knockout cell lines but not by cluster 2 cell lines suggests that in parental cells, the expression of innate resistance to infection is specifically repressed.
Oxytocin receptors modulate a social salience neural network in male prairie voles.
Johnson, Zachary V; Walum, Hasse; Xiao, Yao; Riefkohl, Paula C; Young, Larry J
2017-01-01
Social behavior is regulated by conserved neural networks across vertebrates. Variation in the organization of neuropeptide systems across these networks is thought to contribute to individual and species diversity in network function during social contexts. For example, oxytocin (OT) is an ancient neuropeptide that binds to OT receptors (OTRs) in the brain and modulates social and reproductive behavior across vertebrate species, including humans. Central OTRs exhibit extraordinarily diverse expression patterns that are associated with individual and species differences in social behavior. In voles, OTR density in the nucleus accumbens (NAc)-a region important for social and reward learning-is associated with individual and species variation in social attachment behavior. Here we test whether OTRs in the NAc modulate a social salience network (SSN)-a network of interconnected brain nuclei thought to encode valence and incentive salience of sociosensory cues-during a social context in the socially monogamous male prairie vole. Using a selective OTR antagonist, we test whether activation of OTRs in the NAc during sociosexual interaction and mating modulates expression of the immediate early gene product Fos across nuclei of the SSN. We show that blockade of endogenous OTR signaling in the NAc during sociosexual interaction and mating does not strongly modulate levels of Fos expression in individual nodes of the network, but strongly modulates patterns of correlated Fos expression between the NAc and other SSN nuclei. Published by Elsevier Inc.
Multi-equilibrium property of metabolic networks: SSI module.
Lei, Hong-Bo; Zhang, Ji-Feng; Chen, Luonan
2011-06-20
Revealing the multi-equilibrium property of a metabolic network is a fundamental and important topic in systems biology. Due to the complexity of the metabolic network, it is generally a difficult task to study the problem as a whole from both analytical and numerical viewpoint. On the other hand, the structure-oriented modularization idea is a good choice to overcome such a difficulty, i.e. decomposing the network into several basic building blocks and then studying the whole network through investigating the dynamical characteristics of the basic building blocks and their interactions. Single substrate and single product with inhibition (SSI) metabolic module is one type of the basic building blocks of metabolic networks, and its multi-equilibrium property has important influence on that of the whole metabolic networks. In this paper, we describe what the SSI metabolic module is, characterize the rates of the metabolic reactions by Hill kinetics and give a unified model for SSI modules by using a set of nonlinear ordinary differential equations with multi-variables. Specifically, a sufficient and necessary condition is first given to describe the injectivity of a class of nonlinear systems, and then, the sufficient condition is used to study the multi-equilibrium property of SSI modules. As a main theoretical result, for the SSI modules in which each reaction has no more than one inhibitor, a sufficient condition is derived to rule out multiple equilibria, i.e. the Jacobian matrix of its rate function is nonsingular everywhere. In summary, we describe SSI modules and give a general modeling framework based on Hill kinetics, and provide a sufficient condition for ruling out multiple equilibria of a key type of SSI module.
Multi-equilibrium property of metabolic networks: SSI module
2011-01-01
Background Revealing the multi-equilibrium property of a metabolic network is a fundamental and important topic in systems biology. Due to the complexity of the metabolic network, it is generally a difficult task to study the problem as a whole from both analytical and numerical viewpoint. On the other hand, the structure-oriented modularization idea is a good choice to overcome such a difficulty, i.e. decomposing the network into several basic building blocks and then studying the whole network through investigating the dynamical characteristics of the basic building blocks and their interactions. Single substrate and single product with inhibition (SSI) metabolic module is one type of the basic building blocks of metabolic networks, and its multi-equilibrium property has important influence on that of the whole metabolic networks. Results In this paper, we describe what the SSI metabolic module is, characterize the rates of the metabolic reactions by Hill kinetics and give a unified model for SSI modules by using a set of nonlinear ordinary differential equations with multi-variables. Specifically, a sufficient and necessary condition is first given to describe the injectivity of a class of nonlinear systems, and then, the sufficient condition is used to study the multi-equilibrium property of SSI modules. As a main theoretical result, for the SSI modules in which each reaction has no more than one inhibitor, a sufficient condition is derived to rule out multiple equilibria, i.e. the Jacobian matrix of its rate function is nonsingular everywhere. Conclusions In summary, we describe SSI modules and give a general modeling framework based on Hill kinetics, and provide a sufficient condition for ruling out multiple equilibria of a key type of SSI module. PMID:21689474
Interpreting fMRI data: maps, modules and dimensions
Op de Beeck, Hans P.; Haushofer, Johannes; Kanwisher, Nancy G.
2009-01-01
Neuroimaging research over the past decade has revealed a detailed picture of the functional organization of the human brain. Here we focus on two fundamental questions that are raised by the detailed mapping of sensory and cognitive functions and illustrate these questions with findings from the object-vision pathway. First, are functionally specific regions that are located close together best understood as distinct cortical modules or as parts of a larger-scale cortical map? Second, what functional properties define each cortical map or module? We propose a model in which overlapping continuous maps of simple features give rise to discrete modules that are selective for complex stimuli. PMID:18200027
Exploring novel key regulators in breast cancer network.
Ali, Shahnawaz; Malik, Md Zubbair; Singh, Soibam Shyamchand; Chirom, Keilash; Ishrat, Romana; Singh, R K Brojen
2018-01-01
The breast cancer network constructed from 70 experimentally verified genes is found to follow hierarchical scale free nature with heterogeneous modular organization and diverge leading hubs. The topological parameters (degree distributions, clustering co-efficient, connectivity and centralities) of this network obey fractal rules indicating absence of centrality lethality rule, and efficient communication among the components. From the network theoretical approach, we identified few key regulators out of large number of leading hubs, which are deeply rooted from top to down of the network, serve as backbone of the network, and possible target genes. However, p53, which is one of these key regulators, is found to be in low rank and keep itself at low profile but directly cross-talks with important genes BRCA2 and BRCA3. The popularity of these hubs gets changed in unpredictable way at various levels of organization thus showing disassortive nature. The local community paradigm approach in this network shows strong correlation of nodes in majority of modules/sub-modules (fast communication among nodes) and weak correlation of nodes only in few modules/sub-modules (slow communication among nodes) at various levels of network organization.
Overlapping clusters for distributed computation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mirrokni, Vahab; Andersen, Reid; Gleich, David F.
2010-11-01
Scalable, distributed algorithms must address communication problems. We investigate overlapping clusters, or vertex partitions that intersect, for graph computations. This setup stores more of the graph than required but then affords the ease of implementation of vertex partitioned algorithms. Our hope is that this technique allows us to reduce communication in a computation on a distributed graph. The motivation above draws on recent work in communication avoiding algorithms. Mohiyuddin et al. (SC09) design a matrix-powers kernel that gives rise to an overlapping partition. Fritzsche et al. (CSC2009) develop an overlapping clustering for a Schwarz method. Both techniques extend an initialmore » partitioning with overlap. Our procedure generates overlap directly. Indeed, Schwarz methods are commonly used to capitalize on overlap. Elsewhere, overlapping communities (Ahn et al, Nature 2009; Mishra et al. WAW2007) are now a popular model of structure in social networks. These have long been studied in statistics (Cole and Wishart, CompJ 1970). We present two types of results: (i) an estimated swapping probability {rho}{infinity}; and (ii) the communication volume of a parallel PageRank solution (link-following {alpha} = 0.85) using an additive Schwarz method. The volume ratio is the amount of extra storage for the overlap (2 means we store the graph twice). Below, as the ratio increases, the swapping probability and PageRank communication volume decreases.« less
Optical interconnect for large-scale systems
NASA Astrophysics Data System (ADS)
Dress, William
2013-02-01
This paper presents a switchless, optical interconnect module that serves as a node in a network of identical distribution modules for large-scale systems. Thousands to millions of hosts or endpoints may be interconnected by a network of such modules, avoiding the need for multi-level switches. Several common network topologies are reviewed and their scaling properties assessed. The concept of message-flow routing is discussed in conjunction with the unique properties enabled by the optical distribution module where it is shown how top-down software control (global routing tables, spanning-tree algorithms) may be avoided.
Social dysfunction after pediatric traumatic brain injury: a translational perspective
Ryan, Nicholas P.; Catroppa, Cathy; Godfrey, Celia; Noble-Haeusslein, Linda J.; Shultz, Sandy R.; O'Brien, Terence J.; Anderson, Vicki; Semple, Bridgette D.
2016-01-01
Social dysfunction is common after traumatic brain injury (TBI), contributing to reduced quality of life for survivors. Factors which influence the emergence, development or persistence of social deficits after injury remain poorly understood, particularly in the context of ongoing brain maturation during childhood. Aberrant social interactions have recently been modeled in adult and juvenile rodents after experimental TBI, providing an opportunity to gain new insights into the underlying neurobiology of these behaviors. Here, we review our current understanding of social dysfunction in both humans and rodent models of TBI, with a focus on brain injuries acquired during early development. Modulators of social outcomes are discussed, including injury-related and environmental risk and resilience factors. Disruption of social brain network connectivity and aberrant neuroendocrine function are identified as potential mechanisms of social impairments after pediatric TBI. Throughout, we highlight the overlap and disparities between outcome measures and findings from clinical and experimental approaches, and explore the translational potential of future research to prevent or ameliorate social dysfunction after childhood TBI. PMID:26949224
Emergence of structured communities through evolutionary dynamics.
Shtilerman, Elad; Kessler, David A; Shnerb, Nadav M
2015-10-21
Species-rich communities, in which many competing species coexist in a single trophic level, are quite frequent in nature, but pose a formidable theoretical challenge. In particular, it is known that complex competitive systems become unstable and unfeasible when the number of species is large. Recently, many studies have attributed the stability of natural communities to the structure of the interspecific interaction network, yet the nature of such structures and the underlying mechanisms responsible for them remain open questions. Here we introduce an evolutionary model, based on the generic Lotka-Volterra competitive framework, from which a stable, structured, diverse community emerges spontaneously. The modular structure of the competition matrix reflects the phylogeny of the community, in agreement with the hierarchial taxonomic classification. Closely related species tend to have stronger niche overlap and weaker fitness differences, as opposed to pairs of species from different modules. The competitive-relatedness hypothesis and the idea of emergent neutrality are discussed in the context of this evolutionary model. Copyright © 2015 Elsevier Ltd. All rights reserved.
The diverse functions of Src family kinases in macrophages
Abram, Clare L.; Lowell, Clifford A.
2015-01-01
Macrophages are key components of the innate immune response. These cells possess a diverse repertoire of receptors that allow them to respond to a host of external stimuli including cytokines, chemokines, and pathogen-associated molecules. Signals resulting from these stimuli activate a number of macrophage functional responses such as adhesion, migration, phagocytosis, proliferation, survival, cytokine release and production of reactive oxygen and nitrogen species. The cytoplasmic tyrosine kinase Src and its family members (SFKs) have been implicated in many intracellular signaling pathways in macrophages, initiated by a diverse set of receptors ranging from integrins to Toll-like receptors. However, it has been difficult to implicate any given member of the family in any specific pathway. SFKs appear to have overlapping and complementary functions in many pathways. Perhaps the function of these enzymes is to modulate the overall intracellular signaling network in macrophages, rather than operating as exclusive signaling switches for defined pathways. In general, SFKs may function more like rheostats, influencing the amplitude of many pathways. PMID:18508521
The Disordered C-Terminus of Yeast Hsf1 Contains a Cryptic Low-Complexity Amyloidogenic Region.
Pujols, Jordi; Santos, Jaime; Pallarès, Irantzu; Ventura, Salvador
2018-05-06
Response mechanisms to external stress rely on networks of proteins able to activate specific signaling pathways to ensure the maintenance of cell proteostasis. Many of the proteins mediating this kind of response contain intrinsically disordered regions, which lack a defined structure, but still are able to interact with a wide range of clients that modulate the protein function. Some of these interactions are mediated by specific short sequences embedded in the longer disordered regions. Because the physicochemical properties that promote functional and abnormal interactions are similar, it has been shown that, in globular proteins, aggregation-prone and binding regions tend to overlap. It could be that the same principle applies for disordered protein regions. In this context, we show here that a predicted low-complexity interacting region in the disordered C-terminus of the stress response master regulator heat shock factor 1 (Hsf1) protein corresponds to a cryptic amyloid region able to self-assemble into fibrillary structures resembling those found in neurodegenerative disorders.
Thick Filament Protein Network, Functions, and Disease Association.
Wang, Li; Geist, Janelle; Grogan, Alyssa; Hu, Li-Yen R; Kontrogianni-Konstantopoulos, Aikaterini
2018-03-13
Sarcomeres consist of highly ordered arrays of thick myosin and thin actin filaments along with accessory proteins. Thick filaments occupy the center of sarcomeres where they partially overlap with thin filaments. The sliding of thick filaments past thin filaments is a highly regulated process that occurs in an ATP-dependent manner driving muscle contraction. In addition to myosin that makes up the backbone of the thick filament, four other proteins which are intimately bound to the thick filament, myosin binding protein-C, titin, myomesin, and obscurin play important structural and regulatory roles. Consistent with this, mutations in the respective genes have been associated with idiopathic and congenital forms of skeletal and cardiac myopathies. In this review, we aim to summarize our current knowledge on the molecular structure, subcellular localization, interacting partners, function, modulation via posttranslational modifications, and disease involvement of these five major proteins that comprise the thick filament of striated muscle cells. © 2018 American Physiological Society. Compr Physiol 8:631-709, 2018. Copyright © 2018 American Physiological Society. All rights reserved.
Re-modulated technology of WDM-PON employing different DQPSK downstream signals
NASA Astrophysics Data System (ADS)
Gao, Chao; Xin, Xiang-jun; Yu, Chong-xiu
2012-11-01
This paper proposes a kind of modulation architecture for wavelength-division-multiplexing passive optical network (WDMPON) employing optical differential quadrature phase shift keying (DQPSK) downstream signals and two different modulation formats of re-modulated upstream signals. At the optical line terminal (OLT), 10 Gbit/s signal is modulated with DQPSK. At the optical network unit (ONU), part of the downstream signal is re-modulated with on-off keying (OOK) or inverse-return-to-zero (IRZ). Simulation results show the impact on the system employing NRZ, RZ and carrier-suppressed return-to-zero (CSRZ). The analyses also reflect that the architecture can restrain chromatic dispersion and channel crosstalk, which makes it the best architecture of access network in the future.
INfORM: Inference of NetwOrk Response Modules.
Marwah, Veer Singh; Kinaret, Pia Anneli Sofia; Serra, Angela; Scala, Giovanni; Lauerma, Antti; Fortino, Vittorio; Greco, Dario
2018-06-15
Detecting and interpreting responsive modules from gene expression data by using network-based approaches is a common but laborious task. It often requires the application of several computational methods implemented in different software packages, forcing biologists to compile complex analytical pipelines. Here we introduce INfORM (Inference of NetwOrk Response Modules), an R shiny application that enables non-expert users to detect, evaluate and select gene modules with high statistical and biological significance. INfORM is a comprehensive tool for the identification of biologically meaningful response modules from consensus gene networks inferred by using multiple algorithms. It is accessible through an intuitive graphical user interface allowing for a level of abstraction from the computational steps. INfORM is freely available for academic use at https://github.com/Greco-Lab/INfORM. Supplementary data are available at Bioinformatics online.
Noncoherent Physical-Layer Network Coding with FSK Modulation: Relay Receiver Design Issues
2011-03-01
222 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 59, NO. 9, SEPTEMBER 2011 2595 Noncoherent Physical-Layer Network Coding with FSK Modulation: Relay... noncoherent reception, channel estima- tion. I. INTRODUCTION IN the two-way relay channel (TWRC), a pair of sourceterminals exchange information...2011 4. TITLE AND SUBTITLE Noncoherent Physical-Layer Network Coding with FSK Modulation:Relay Receiver Design Issues 5a. CONTRACT NUMBER 5b
WGCNA: an R package for weighted correlation network analysis.
Langfelder, Peter; Horvath, Steve
2008-12-29
Correlation networks are increasingly being used in bioinformatics applications. For example, weighted gene co-expression network analysis is a systems biology method for describing the correlation patterns among genes across microarray samples. Weighted correlation network analysis (WGCNA) can be used for finding clusters (modules) of highly correlated genes, for summarizing such clusters using the module eigengene or an intramodular hub gene, for relating modules to one another and to external sample traits (using eigengene network methodology), and for calculating module membership measures. Correlation networks facilitate network based gene screening methods that can be used to identify candidate biomarkers or therapeutic targets. These methods have been successfully applied in various biological contexts, e.g. cancer, mouse genetics, yeast genetics, and analysis of brain imaging data. While parts of the correlation network methodology have been described in separate publications, there is a need to provide a user-friendly, comprehensive, and consistent software implementation and an accompanying tutorial. The WGCNA R software package is a comprehensive collection of R functions for performing various aspects of weighted correlation network analysis. The package includes functions for network construction, module detection, gene selection, calculations of topological properties, data simulation, visualization, and interfacing with external software. Along with the R package we also present R software tutorials. While the methods development was motivated by gene expression data, the underlying data mining approach can be applied to a variety of different settings. The WGCNA package provides R functions for weighted correlation network analysis, e.g. co-expression network analysis of gene expression data. The R package along with its source code and additional material are freely available at http://www.genetics.ucla.edu/labs/horvath/CoexpressionNetwork/Rpackages/WGCNA.
Community Size Effects on Epidemic Spreading in Multiplex Social Networks.
Liu, Ting; Li, Ping; Chen, Yan; Zhang, Jie
2016-01-01
The dynamical process of epidemic spreading has drawn much attention of the complex network community. In the network paradigm, diseases spread from one person to another through the social ties amongst the population. There are a variety of factors that govern the processes of disease spreading on the networks. A common but not negligible factor is people's reaction to the outbreak of epidemics. Such reaction can be related information dissemination or self-protection. In this work, we explore the interactions between disease spreading and population response in terms of information diffusion and individuals' alertness. We model the system by mapping multiplex networks into two-layer networks and incorporating individuals' risk awareness, on the assumption that their response to the disease spreading depends on the size of the community they belong to. By comparing the final incidence of diseases in multiplex networks, we find that there is considerable mitigation of diseases spreading for full phase of spreading speed when individuals' protection responses are introduced. Interestingly, the degree of community overlap between the two layers is found to be critical factor that affects the final incidence. We also analyze the consequences of the epidemic incidence in communities with different sizes and the impacts of community overlap between two layers. Specifically, as the diseases information makes individuals alert and take measures to prevent the diseases, the effective protection is more striking in small community. These phenomena can be explained by the multiplexity of the networked system and the competition between two spreading processes.
Community Size Effects on Epidemic Spreading in Multiplex Social Networks
Liu, Ting; Li, Ping; Chen, Yan; Zhang, Jie
2016-01-01
The dynamical process of epidemic spreading has drawn much attention of the complex network community. In the network paradigm, diseases spread from one person to another through the social ties amongst the population. There are a variety of factors that govern the processes of disease spreading on the networks. A common but not negligible factor is people’s reaction to the outbreak of epidemics. Such reaction can be related information dissemination or self-protection. In this work, we explore the interactions between disease spreading and population response in terms of information diffusion and individuals’ alertness. We model the system by mapping multiplex networks into two-layer networks and incorporating individuals’ risk awareness, on the assumption that their response to the disease spreading depends on the size of the community they belong to. By comparing the final incidence of diseases in multiplex networks, we find that there is considerable mitigation of diseases spreading for full phase of spreading speed when individuals’ protection responses are introduced. Interestingly, the degree of community overlap between the two layers is found to be critical factor that affects the final incidence. We also analyze the consequences of the epidemic incidence in communities with different sizes and the impacts of community overlap between two layers. Specifically, as the diseases information makes individuals alert and take measures to prevent the diseases, the effective protection is more striking in small community. These phenomena can be explained by the multiplexity of the networked system and the competition between two spreading processes. PMID:27007112
Automated isotope identification algorithm using artificial neural networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamuda, Mark; Stinnett, Jacob; Sullivan, Clair
There is a need to develop an algorithm that can determine the relative activities of radio-isotopes in a large dataset of low-resolution gamma-ray spectra that contains a mixture of many radio-isotopes. Low-resolution gamma-ray spectra that contain mixtures of radio-isotopes often exhibit feature over-lap, requiring algorithms that can analyze these features when overlap occurs. While machine learning and pattern recognition algorithms have shown promise for the problem of radio-isotope identification, their ability to identify and quantify mixtures of radio-isotopes has not been studied. Because machine learning algorithms use abstract features of the spectrum, such as the shape of overlapping peaks andmore » Compton continuum, they are a natural choice for analyzing radio-isotope mixtures. An artificial neural network (ANN) has be trained to calculate the relative activities of 32 radio-isotopes in a spectrum. Furthermore, the ANN is trained with simulated gamma-ray spectra, allowing easy expansion of the library of target radio-isotopes. In this paper we present our initial algorithms based on an ANN and evaluate them against a series measured and simulated spectra.« less
Automated isotope identification algorithm using artificial neural networks
Kamuda, Mark; Stinnett, Jacob; Sullivan, Clair
2017-04-12
There is a need to develop an algorithm that can determine the relative activities of radio-isotopes in a large dataset of low-resolution gamma-ray spectra that contains a mixture of many radio-isotopes. Low-resolution gamma-ray spectra that contain mixtures of radio-isotopes often exhibit feature over-lap, requiring algorithms that can analyze these features when overlap occurs. While machine learning and pattern recognition algorithms have shown promise for the problem of radio-isotope identification, their ability to identify and quantify mixtures of radio-isotopes has not been studied. Because machine learning algorithms use abstract features of the spectrum, such as the shape of overlapping peaks andmore » Compton continuum, they are a natural choice for analyzing radio-isotope mixtures. An artificial neural network (ANN) has be trained to calculate the relative activities of 32 radio-isotopes in a spectrum. Furthermore, the ANN is trained with simulated gamma-ray spectra, allowing easy expansion of the library of target radio-isotopes. In this paper we present our initial algorithms based on an ANN and evaluate them against a series measured and simulated spectra.« less
Slotline fed microstrip antenna array modules
NASA Technical Reports Server (NTRS)
Lo, Y. T.; Oberhart, M. L.; Brenneman, J. S.; Aoyagi, P.; Moore, J.; Lee, R. Q. H.
1988-01-01
A feed network comprised of a combination of coplanar waveguide and slot transmission line is described for use in an array module of four microstrip elements. Examples of the module incorporating such networks are presented as well as experimentally obtained impedance and radiation characteristics.
Altered brain network modules induce helplessness in major depressive disorder.
Peng, Daihui; Shi, Feng; Shen, Ting; Peng, Ziwen; Zhang, Chen; Liu, Xiaohua; Qiu, Meihui; Liu, Jun; Jiang, Kaida; Fang, Yiru; Shen, Dinggang
2014-10-01
The abnormal brain functional connectivity (FC) has been assumed to be a pathophysiological aspect of major depressive disorder (MDD). However, it is poorly understood, regarding the underlying patterns of global FC network and their relationships with the clinical characteristics of MDD. Resting-state functional magnetic resonance imaging data were acquired from 16 first episode, medication-naïve MDD patients and 16 healthy control subjects. The global FC network was constructed using 90 brain regions. The global topological patterns, e.g., small-worldness and modularity, and their relationships with depressive characteristics were investigated. Furthermore, the participant coefficient and module degree of MDD patients were measured to reflect the regional roles in module network, and the impairment of FC was examined by network based statistic. Small-world property was not altered in MDD. However, MDD patients exhibited 5 atypically reorganized modules compared to the controls. A positive relationship was also found among MDD patients between the intra-module I and helplessness factor evaluated via the Hamilton Depression Scale. Specifically, eight regions exhibited the abnormal participant coefficient or module degree, e.g., left superior orbital frontal cortex and right amygdala. The decreased FC was identified among the sub-network of 24 brain regions, e.g., frontal cortex, supplementary motor area, amygdala, thalamus, and hippocampus. The limited size of MDD samples precluded meaningful study of distinct clinical characteristics in relation to aberrant FC. The results revealed altered patterns of brain module network at the global level in MDD patients, which might contribute to the feelings of helplessness. Copyright © 2014 Elsevier B.V. All rights reserved.
Altered brain network modules induce helplessness in major depressive disorder
Peng, Daihui; Shi, Feng; Shen, Ting; Peng, Ziwen; Zhang, Chen; Liu, Xiaohua; Qiu, Meihui; Liu, Jun; Jiang, Kaida; Shen, Dinggang
2017-01-01
Objective The abnormal brain functional connectivity (FC) has been assumed to be a pathophysiological aspect of major depressive disorder (MDD). However, it is poorly understood, regarding the underlying patterns of global FC network and their relationships with the clinical characteristics of MDD. Methods Resting-state functional magnetic resonance imaging data were acquired from 16 first episode, medication-naïve MDD patients and 16 healthy control subjects. The global FC network was constructed using 90 brain regions. The global topological patterns, e.g., small-worldness and modularity, and their relationships with depressive characteristics were investigated. Furthermore, the participant coefficient and module degree of MDD patients were measured to reflect the regional roles in module network, and the impairment of FC was examined by network based statistic. Results Small-world property was not altered in MDD. However, MDD patients exhibited 5 atypically reorganized modules compared to the controls. A positive relationship was also found among MDD patients between the intra-module I and helplessness factor evaluated via the Hamilton Depression Scale. Specifically, eight regions exhibited the abnormal participant coefficient or module degree, e.g., left superior orbital frontal cortex and right amygdala. The decreased FC was identified among the sub-network of 24 brain regions, e.g., frontal cortex, supplementary motor area, amygdala, thalamus, and hippocampus. Limitation The limited size of MDD samples precluded meaningful study of distinct clinical characteristics in relation to aberrant FC. Conclusions The results revealed altered patterns of brain module network at the global level in MDD patients, which might contribute to the feelings of helplessness. PMID:25033474
Simple tool for prediction of parotid gland sparing in intensity-modulated radiation therapy.
Gensheimer, Michael F; Hummel-Kramer, Sharon M; Cain, David; Quang, Tony S
2015-01-01
Sparing one or both parotid glands is a key goal when planning head and neck cancer radiation treatment. If the planning target volume (PTV) overlaps one or both parotid glands substantially, it may not be possible to achieve adequate gland sparing. This finding results in physicians revising their PTV contours after an intensity-modulated radiation therapy (IMRT) plan has been run and reduces workflow efficiency. We devised a simple formula for predicting mean parotid gland dose from the overlap of the parotid gland and isotropically expanded PTV contours. We tested the tool using 44 patients from 2 institutions and found agreement between predicted and actual parotid gland doses (mean absolute error = 5.3 Gy). This simple method could increase treatment planning efficiency by improving the chance that the first plan presented to the physician will have optimal parotid gland sparing. Published by Elsevier Inc.
Simple tool for prediction of parotid gland sparing in intensity-modulated radiation therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gensheimer, Michael F.; Hummel-Kramer, Sharon M., E-mail: sharonhummel@comcast.net; Cain, David
Sparing one or both parotid glands is a key goal when planning head and neck cancer radiation treatment. If the planning target volume (PTV) overlaps one or both parotid glands substantially, it may not be possible to achieve adequate gland sparing. This finding results in physicians revising their PTV contours after an intensity-modulated radiation therapy (IMRT) plan has been run and reduces workflow efficiency. We devised a simple formula for predicting mean parotid gland dose from the overlap of the parotid gland and isotropically expanded PTV contours. We tested the tool using 44 patients from 2 institutions and found agreementmore » between predicted and actual parotid gland doses (mean absolute error = 5.3 Gy). This simple method could increase treatment planning efficiency by improving the chance that the first plan presented to the physician will have optimal parotid gland sparing.« less
Ino, Tadashi; Nakai, Ryusuke; Azuma, Takashi; Kimura, Toru; Fukuyama, Hidenao
2011-01-01
Recent neuroimaging studies have suggested that brain regions activated during retrieval of autobiographical memory (ABM) overlap with the default mode network (DMN), which shows greater activation during rest than cognitively demanding tasks and is considered to be involved in self-referential processing. However, detailed overlap and segregation between ABM and DMN remain unclear. This fMRI study focuses first on revealing components of the DMN which are related to ABM and those which are unrelated to ABM, and second on extracting the neural bases which are specifically devoted to ABM. Brain activities relative to rest during three tasks matched in task difficulty assessed by reaction time were investigated by fMRI; category cued recall from ABM, category cued recall from semantic memory, and number counting task. We delineated the overlap between the regions that showed less activation during semantic memory and number counting relative to rest, which correspond to the DMN, and the areas that showed greater or less activation during ABM relative to rest. ABM-specific activation was defined as the overlap between the contrast of ABM versus rest and the contrast of ABM versus semantic memory. The fMRI results showed that greater activation as well as less activation during ABM relative to rest overlapped considerably with the DMN, indicating that the DMN is segregated to the regions which are functionally related to ABM and the regions which are unrelated to ABM. ABM-specific activation was observed in the left-lateralized brain regions and most of them fell within the DMN. PMID:21643504
Silicon Modulators, Switches and Sub-systems for Optical Interconnect
NASA Astrophysics Data System (ADS)
Li, Qi
Silicon photonics is emerging as a promising platform for manufacturing and integrating photonic devices for light generation, modulation, switching and detection. The compatibility with existing CMOS microelectronic foundries and high index contrast in silicon could enable low cost and high performance photonic systems, which find many applications in optical communication, data center networking and photonic network-on-chip. This thesis first develops and demonstrates several experimental work on high speed silicon modulators and switches with record performance and novel functionality. A 8x40 Gb/s transmitter based on silicon microrings is first presented. Then an end-to-end link using microrings for Binary Phase Shift Keying (BPSK) modulation and demodulation is shown, and its performance with conventional BPSK modulation/ demodulation techniques is compared. Next, a silicon traveling-wave Mach- Zehnder modulator is demonstrated at data rate up to 56 Gb/s for OOK modulation and 48 Gb/s for BPSK modulation, showing its capability at high speed communication systems. Then a single silicon microring is shown with 2x2 full crossbar switching functionality, enabling optical interconnects with ultra small footprint. Then several other experiments in the silicon platform are presented, including a fully integrated in-band Optical Signal to Noise Ratio (OSNR) monitor, characterization of optical power upper bound in a silicon microring modulator, and wavelength conversion in a dispersion-engineered waveguide. The last part of this thesis is on network-level application of photonics, specically a broadcast-and-select network based on star coupler is introduced, and its scalability performance is studied. Finally a novel switch architecture for data center networks is discussed, and its benefits as a disaggregated network are presented.
Bergstrom, Paul M.; Daly, Thomas P.; Moses, Edward I.; Patterson, Jr., Ralph W.; Schach von Wittenau, Alexis E.; Garrett, Dewey N.; House, Ronald K.; Hartmann-Siantar, Christine L.; Cox, Lawrence J.; Fujino, Donald H.
2000-01-01
A system and method is disclosed for radiation dose calculation within sub-volumes of a particle transport grid. In a first step of the method voxel volumes enclosing a first portion of the target mass are received. A second step in the method defines dosel volumes which enclose a second portion of the target mass and overlap the first portion. A third step in the method calculates common volumes between the dosel volumes and the voxel volumes. A fourth step in the method identifies locations in the target mass of energy deposits. And, a fifth step in the method calculates radiation doses received by the target mass within the dosel volumes. A common volume calculation module inputs voxel volumes enclosing a first portion of the target mass, inputs voxel mass densities corresponding to a density of the target mass within each of the voxel volumes, defines dosel volumes which enclose a second portion of the target mass and overlap the first portion, and calculates common volumes between the dosel volumes and the voxel volumes. A dosel mass module, multiplies the common volumes by corresponding voxel mass densities to obtain incremental dosel masses, and adds the incremental dosel masses corresponding to the dosel volumes to obtain dosel masses. A radiation transport module identifies locations in the target mass of energy deposits. And, a dose calculation module, coupled to the common volume calculation module and the radiation transport module, for calculating radiation doses received by the target mass within the dosel volumes.
R Patrick Bixler; Shawn Johnson; Kirk Emerson; Tina Nabatchi; Melly Reuling; Charles Curtin; Michele Romolini; Morgan Grove
2016-01-01
The objective of large landscape conser vation is to mitigate complex ecological problems through interventions at multiple and overlapping scales. Implementation requires coordination among a diverse network of individuals and organizations to integrate local-scale conservation activities with broad-scale goals. This requires an understanding of the governance options...
Characterization of the Network of Protected Areas in Puerto Rico
J. Castro-Prieto; Maya Quinones; William Gould
2016-01-01
Our goal was to describe the biodiversity and associated landscape diversity and forest cover characteristics within the network of terrestrial protected areas in Puerto Rico. We conducted spatial analysis to quantify different indicators of diversity at these sites. We found that protected areas in Puerto Rico overlap the most species-rich regions on the island,...
Hammer, Harriet; Bader, Benjamin M; Ehnert, Corina; Bundgaard, Christoffer; Bunch, Lennart; Hoestgaard-Jensen, Kirsten; Schroeder, Olaf H-U; Bastlund, Jesper F; Gramowski-Voß, Alexandra; Jensen, Anders A
2015-08-01
In the present study, we have elucidated the functional characteristics and mechanism of action of methaqualone (2-methyl-3-o-tolyl-4(3H)-quinazolinone, Quaalude), an infamous sedative-hypnotic and recreational drug from the 1960s-1970s. Methaqualone was demonstrated to be a positive allosteric modulator at human α1,2,3,5β2,3γ2S GABAA receptors (GABAARs) expressed in Xenopus oocytes, whereas it displayed highly diverse functionalities at the α4,6β1,2,3δ GABAAR subtypes, ranging from inactivity (α4β1δ), through negative (α6β1δ) or positive allosteric modulation (α4β2δ, α6β2,3δ), to superagonism (α4β3δ). Methaqualone did not interact with the benzodiazepine, barbiturate, or neurosteroid binding sites in the GABAAR. Instead, the compound is proposed to act through the transmembrane β((+))/α((-)) subunit interface of the receptor, possibly targeting a site overlapping with that of the general anesthetic etomidate. The negligible activities displayed by methaqualone at numerous neurotransmitter receptors and transporters in an elaborate screening for additional putative central nervous system (CNS) targets suggest that it is a selective GABAAR modulator. The mode of action of methaqualone was further investigated in multichannel recordings from primary frontal cortex networks, where the overall activity changes induced by the compound at 1-100 μM concentrations were quite similar to those mediated by other CNS depressants. Finally, the free methaqualone concentrations in the mouse brain arising from doses producing significant in vivo effects in assays for locomotion and anticonvulsant activity correlated fairly well with its potencies as a modulator at the recombinant GABAARs. Hence, we propose that the multifaceted functional properties exhibited by methaqualone at GABAARs give rise to its effects as a therapeutic and recreational drug. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.
Tsuda, Kenichi; Mine, Akira; Bethke, Gerit; Igarashi, Daisuke; Botanga, Christopher J; Tsuda, Yayoi; Glazebrook, Jane; Sato, Masanao; Katagiri, Fumiaki
2013-01-01
Network robustness is a crucial property of the plant immune signaling network because pathogens are under a strong selection pressure to perturb plant network components to dampen plant immune responses. Nevertheless, modulation of network robustness is an area of network biology that has rarely been explored. While two modes of plant immunity, Effector-Triggered Immunity (ETI) and Pattern-Triggered Immunity (PTI), extensively share signaling machinery, the network output is much more robust against perturbations during ETI than PTI, suggesting modulation of network robustness. Here, we report a molecular mechanism underlying the modulation of the network robustness in Arabidopsis thaliana. The salicylic acid (SA) signaling sector regulates a major portion of the plant immune response and is important in immunity against biotrophic and hemibiotrophic pathogens. In Arabidopsis, SA signaling was required for the proper regulation of the vast majority of SA-responsive genes during PTI. However, during ETI, regulation of most SA-responsive genes, including the canonical SA marker gene PR1, could be controlled by SA-independent mechanisms as well as by SA. The activation of the two immune-related MAPKs, MPK3 and MPK6, persisted for several hours during ETI but less than one hour during PTI. Sustained MAPK activation was sufficient to confer SA-independent regulation of most SA-responsive genes. Furthermore, the MPK3 and SA signaling sectors were compensatory to each other for inhibition of bacterial growth as well as for PR1 expression during ETI. These results indicate that the duration of the MAPK activation is a critical determinant for modulation of robustness of the immune signaling network. Our findings with the plant immune signaling network imply that the robustness level of a biological network can be modulated by the activities of network components.
WGCNA: an R package for weighted correlation network analysis
Langfelder, Peter; Horvath, Steve
2008-01-01
Background Correlation networks are increasingly being used in bioinformatics applications. For example, weighted gene co-expression network analysis is a systems biology method for describing the correlation patterns among genes across microarray samples. Weighted correlation network analysis (WGCNA) can be used for finding clusters (modules) of highly correlated genes, for summarizing such clusters using the module eigengene or an intramodular hub gene, for relating modules to one another and to external sample traits (using eigengene network methodology), and for calculating module membership measures. Correlation networks facilitate network based gene screening methods that can be used to identify candidate biomarkers or therapeutic targets. These methods have been successfully applied in various biological contexts, e.g. cancer, mouse genetics, yeast genetics, and analysis of brain imaging data. While parts of the correlation network methodology have been described in separate publications, there is a need to provide a user-friendly, comprehensive, and consistent software implementation and an accompanying tutorial. Results The WGCNA R software package is a comprehensive collection of R functions for performing various aspects of weighted correlation network analysis. The package includes functions for network construction, module detection, gene selection, calculations of topological properties, data simulation, visualization, and interfacing with external software. Along with the R package we also present R software tutorials. While the methods development was motivated by gene expression data, the underlying data mining approach can be applied to a variety of different settings. Conclusion The WGCNA package provides R functions for weighted correlation network analysis, e.g. co-expression network analysis of gene expression data. The R package along with its source code and additional material are freely available at . PMID:19114008
Guajardo, Lourdes F.; Wicha, Nicole Y. Y.
2014-01-01
Event-related potential studies of grammatical gender agreement often report a left anterior negativity (LAN) when agreement violations occur. Some studies have shown that during sentence comprehension gender violations can also interact with semantic processing to modulate a negativity associated with processing meaning – the N400. Given that the LAN and N400 overlap in time, they are identified by their scalp distributions and purported functional roles. Critically, grammatical gender violations also elicit a right posterior positivity that can overlap temporally with and potentially affect the scalp distribution of the LAN/N400. We measured the effect of grammatical gender violations in the LAN/N400 window and late positive component (LPC) during comprehension of Spanish sentences. A post-nominal adjective could either make sense or not, and either agree or disagree in gender with the preceding noun. We observed a negativity to gender agreement violations in the LAN/N400 window (300–500 ms post stimulus onset) that was smaller than the semantic-congruity N400, but overlapped with it in time and distribution. The early portion of the LPC to gender violations was modulated by sentence constraint, occurring as early as 450ms in highly constraining sentences. A subadditive interaction occurred at the later portion of the LPC with equivalent effects for single and double violations (gender and semantics), reflecting a general stage of reprocessing. Overall, our data support models of language comprehension whereby both semantic and morphosyntactic information can affect processing at similar time points. PMID:24462934
Guajardo, Lourdes F; Wicha, Nicole Y Y
2014-05-01
Event-related potential studies of grammatical gender agreement often report a left anterior negativity (LAN) when agreement violations occur. Some studies have shown that during sentence comprehension gender violations can also interact with semantic processing to modulate a negativity associated with processing meaning - the N400. Given that the LAN and N400 overlap in time, they are identified by their scalp distributions and purported functional roles. Critically, grammatical gender violations also elicit a right posterior positivity that can overlap temporally and potentially affect the scalp distribution of the LAN/N400. We measured the effect of grammatical gender violations in the LAN/N400 window and late positive component (LPC) during comprehension of Spanish sentences. A post-nominal adjective could either make sense or not, and either agree or disagree in gender with the preceding noun. We observed a negativity to gender agreement violations in the LAN/N400 window (300-500ms post stimulus onset) that was smaller than the semantic-congruity N400, but overlapped with it in time and distribution. The early portion of the LPC to gender violations was modulated by sentence constraint, occurring as early as 450ms in highly constraining sentences. A subadditive interaction occurred at the later portion of the LPC with equivalent effects for single and double violations (gender and semantics), reflecting a general stage of reprocessing. Overall, our data support models of language comprehension whereby both semantic and morphosyntactic information can affect processing at similar time points. Copyright © 2014 Elsevier Inc. All rights reserved.
Li, Dong; Pan, Zhisong; Hu, Guyu; Zhu, Zexuan; He, Shan
2017-03-14
Active modules are connected regions in biological network which show significant changes in expression over particular conditions. The identification of such modules is important since it may reveal the regulatory and signaling mechanisms that associate with a given cellular response. In this paper, we propose a novel active module identification algorithm based on a memetic algorithm. We propose a novel encoding/decoding scheme to ensure the connectedness of the identified active modules. Based on the scheme, we also design and incorporate a local search operator into the memetic algorithm to improve its performance. The effectiveness of proposed algorithm is validated on both small and large protein interaction networks.
Davis, Jesse Harper Zehring [Berkeley, CA; Stark, Jr., Douglas Paul; Kershaw, Christopher Patrick [Hayward, CA; Kyker, Ronald Dean [Livermore, CA
2008-06-10
A distributed wireless sensor network node is disclosed. The wireless sensor network node includes a plurality of sensor modules coupled to a system bus and configured to sense a parameter. The parameter may be an object, an event or any other parameter. The node collects data representative of the parameter. The node also includes a communication module coupled to the system bus and configured to allow the node to communicate with other nodes. The node also includes a processing module coupled to the system bus and adapted to receive the data from the sensor module and operable to analyze the data. The node also includes a power module connected to the system bus and operable to generate a regulated voltage.
Multiple supervised residual network for osteosarcoma segmentation in CT images.
Zhang, Rui; Huang, Lin; Xia, Wei; Zhang, Bo; Qiu, Bensheng; Gao, Xin
2018-01-01
Automatic and accurate segmentation of osteosarcoma region in CT images can help doctor make a reasonable treatment plan, thus improving cure rate. In this paper, a multiple supervised residual network (MSRN) was proposed for osteosarcoma image segmentation. Three supervised side output modules were added to the residual network. The shallow side output module could extract image shape features, such as edge features and texture features. The deep side output module could extract semantic features. The side output module could compute the loss value between output probability map and ground truth and back-propagate the loss information. Then, the parameters of residual network could be modified by gradient descent method. This could guide the multi-scale feature learning of the network. The final segmentation results were obtained by fusing the results output by the three side output modules. A total of 1900 CT images from 15 osteosarcoma patients were used to train the network and a total of 405 CT images from another 8 osteosarcoma patients were used to test the network. Results indicated that MSRN enabled a dice similarity coefficient (DSC) of 89.22%, a sensitivity of 88.74% and a F1-measure of 0.9305, which were larger than those obtained by fully convolutional network (FCN) and U-net. Thus, MSRN for osteosarcoma segmentation could give more accurate results than FCN and U-Net. Copyright © 2018 Elsevier Ltd. All rights reserved.
Interference of Overlapping Insect Vibratory Communication Signals: An Eushistus heros Model
Čokl, Andrej; Laumann, Raul Alberto; Žunič Kosi, Alenka; Blassioli-Moraes, Maria Carolina; Virant-Doberlet, Meta; Borges, Miguel
2015-01-01
Plants limit the range of insect substrate-borne vibratory communication by their architecture and mechanical properties that change transmitted signal time, amplitude and frequency characteristics. Stinkbugs gain higher signal-to-noise ratio and increase communication distance by emitting narrowband low frequency vibratory signals that are tuned with transmission properties of plants. The objective of the present study was to investigate hitherto overlooked consequences of duetting with mutually overlapped narrowband vibratory signals. The overlapped vibrations of the model stinkbug species Eushistus heros, produced naturally or induced artificially on different plants, have been analysed. They represent female and male strategies to preserve information within a complex masked signal. The brown stinkbugs E. heros communicate with species and gender specific vibratory signals that constitute characteristic duets in the calling, courtship and rivalry phases of mating behaviour. The calling female pulse overlaps the male vibratory response when the latency of the latter is shorter than the duration of the female triggering signal or when the male response does not inhibit the following female pulse. Overlapping of signals induces interference that changes their amplitude pattern to a sequence of regularly repeated pulses in which their duration and the difference between frequencies of overlapped vibrations are related inversely. Interference does not occur in overlapped narrow band female calling pulses and broadband male courtship pulse trains. In a duet with overlapped signals females and males change time parameters and increase the frequency difference between signals by changing the frequency level and frequency modulation pattern of their calls. PMID:26098637
DOE Office of Scientific and Technical Information (OSTI.GOV)
Werley, Kenneth Alan; Mccown, Andrew William
The EPREP code is designed to evaluate the effects of an Electro-Magnetic Pulse (EMP) on the electric power transmission system. The EPREP code embodies an umbrella framework that allows a user to set up analysis conditions and to examine analysis results. The code links to three major physics/engineering modules. The first module describes the EM wave in space and time. The second module evaluates the damage caused by the wave on specific electric power (EP) transmission system components. The third module evaluates the consequence of the damaged network on its (reduced) ability to provide electric power to meet demand. Thismore » third module is the focus of the present paper. The EMPACT code serves as the third module. The EMPACT name denotes EMP effects on Alternating Current Transmission systems. The EMPACT algorithms compute electric power transmission network flow solutions under severely damaged network conditions. Initial solutions are often characterized by unacceptible network conditions including line overloads and bad voltages. The EMPACT code contains algorithms to adjust optimally network parameters to eliminate network problems while minimizing outages. System adjustments include automatically adjusting control equipment (generator V control, variable transformers, and variable shunts), as well as non-automatic control of generator power settings and minimal load shedding. The goal is to evaluate the minimal loss of customer load under equilibrium (steady-state) conditions during peak demand.« less
Analysis of a large-scale weighted network of one-to-one human communication
NASA Astrophysics Data System (ADS)
Onnela, Jukka-Pekka; Saramäki, Jari; Hyvönen, Jörkki; Szabó, Gábor; Argollo de Menezes, M.; Kaski, Kimmo; Barabási, Albert-László; Kertész, János
2007-06-01
We construct a connected network of 3.9 million nodes from mobile phone call records, which can be regarded as a proxy for the underlying human communication network at the societal level. We assign two weights on each edge to reflect the strength of social interaction, which are the aggregate call duration and the cumulative number of calls placed between the individuals over a period of 18 weeks. We present a detailed analysis of this weighted network by examining its degree, strength, and weight distributions, as well as its topological assortativity and weighted assortativity, clustering and weighted clustering, together with correlations between these quantities. We give an account of motif intensity and coherence distributions and compare them to a randomized reference system. We also use the concept of link overlap to measure the number of common neighbours any two adjacent nodes have, which serves as a useful local measure for identifying the interconnectedness of communities. We report a positive correlation between the overlap and weight of a link, thus providing strong quantitative evidence for the weak ties hypothesis, a central concept in social network analysis. The percolation properties of the network are found to depend on the type and order of removed links, and they can help understand how the local structure of the network manifests itself at the global level. We hope that our results will contribute to modelling weighted large-scale social networks, and believe that the systematic approach followed here can be adopted to study other weighted networks.
Kubera, Katharina M; Hirjak, Dusan; Wolf, Nadine D; Sambataro, Fabio; Thomann, Philipp A; Wolf, R Christian
2018-05-01
Impulsiveness is a central human personality trait and of high relevance for the development of several mental disorders. Impulsiveness is a multidimensional construct, yet little is known about dimension-specific neural correlates. Here, we address the question whether motor, attentional and non-planning components, as measured by the Barratt Impulsiveness Scale (BIS-11), are associated with distinct or overlapping neural network activity. In this study, we investigated brain activity at rest and its relationship to distinct dimensions of impulsiveness in 30 healthy young adults (m/f = 13/17; age mean/SD = 26.4/2.6 years) using resting-state functional magnetic resonance imaging at 3T. A spatial independent component analysis and a multivariate model selection strategy were used to identify systems loading on distinct impulsivity domains. We first identified eight networks for which we had a-priori hypotheses. These networks included basal ganglia, cortical motor, cingulate and lateral prefrontal systems. From the eight networks, three were associated with impulsiveness measures (p < 0.05, FDR corrected). There were significant relationships between right frontoparietal network function and all three BIS domains. Striatal and midcingulate network activity was associated with motor impulsiveness only. Within the networks regionally confined effects of age and gender were found. These data suggest distinct and overlapping patterns of neural activity underlying specific dimensions of impulsiveness. Motor impulsiveness appears to be specifically related to striatal and midcingulate network activity, in contrast to a domain-unspecific right frontoparietal system. Effects of age and gender have to be considered in young healthy samples.
Kim, Inhae; Lee, Heetak; Han, Seong Kyu; Kim, Sanguk
2014-10-01
The modular architecture of protein-protein interaction (PPI) networks is evident in diverse species with a wide range of complexity. However, the molecular components that lead to the evolution of modularity in PPI networks have not been clearly identified. Here, we show that weak domain-linear motif interactions (DLIs) are more likely to connect different biological modules than strong domain-domain interactions (DDIs). This molecular division of labor is essential for the evolution of modularity in the complex PPI networks of diverse eukaryotic species. In particular, DLIs may compensate for the reduction in module boundaries that originate from increased connections between different modules in complex PPI networks. In addition, we show that the identification of biological modules can be greatly improved by including molecular characteristics of protein interactions. Our findings suggest that transient interactions have played a unique role in shaping the architecture and modularity of biological networks over the course of evolution.
Schmithorst, Vincent J
2005-04-01
Music perception is a quite complex cognitive task, involving the perception and integration of various elements including melody, harmony, pitch, rhythm, and timbre. A preliminary functional MRI investigation of music perception was performed, using a simplified passive listening task. Group independent component analysis (ICA) was used to separate out various components involved in music processing, as the hemodynamic responses are not known a priori. Various components consistent with auditory processing, expressive language, syntactic processing, and visual association were found. The results are discussed in light of various hypotheses regarding modularity of music processing and its overlap with language processing. The results suggest that, while some networks overlap with ones used for language processing, music processing may involve its own domain-specific processing subsystems.
Shen, Hong-Bin
2011-01-01
Modern science of networks has brought significant advances to our understanding of complex systems biology. As a representative model of systems biology, Protein Interaction Networks (PINs) are characterized by a remarkable modular structures, reflecting functional associations between their components. Many methods were proposed to capture cohesive modules so that there is a higher density of edges within modules than those across them. Recent studies reveal that cohesively interacting modules of proteins is not a universal organizing principle in PINs, which has opened up new avenues for revisiting functional modules in PINs. In this paper, functional clusters in PINs are found to be able to form unorthodox structures defined as bi-sparse module. In contrast to the traditional cohesive module, the nodes in the bi-sparse module are sparsely connected internally and densely connected with other bi-sparse or cohesive modules. We present a novel protocol called the BinTree Seeking (BTS) for mining both bi-sparse and cohesive modules in PINs based on Edge Density of Module (EDM) and matrix theory. BTS detects modules by depicting links and nodes rather than nodes alone and its derivation procedure is totally performed on adjacency matrix of networks. The number of modules in a PIN can be automatically determined in the proposed BTS approach. BTS is tested on three real PINs and the results demonstrate that functional modules in PINs are not dominantly cohesive but can be sparse. BTS software and the supporting information are available at: www.csbio.sjtu.edu.cn/bioinf/BTS/. PMID:22140454
Kikuchi, Masataka; Ogishima, Soichi; Miyamoto, Tadashi; Miyashita, Akinori; Kuwano, Ryozo; Nakaya, Jun; Tanaka, Hiroshi
2013-01-01
Alzheimer’s disease (AD), the most common cause of dementia, is associated with aging, and it leads to neuron death. Deposits of amyloid β and aberrantly phosphorylated tau protein are known as pathological hallmarks of AD, but the underlying mechanisms have not yet been revealed. A high-throughput gene expression analysis previously showed that differentially expressed genes accompanying the progression of AD were more down-regulated than up-regulated in the later stages of AD. This suggested that the molecular networks and their constituent modules collapsed along with AD progression. In this study, by using gene expression profiles and protein interaction networks (PINs), we identified the PINs expressed in three brain regions: the entorhinal cortex (EC), hippocampus (HIP) and superior frontal gyrus (SFG). Dividing the expressed PINs into modules, we examined the stability of the modules with AD progression and with normal aging. We found that in the AD modules, the constituent proteins, interactions and cellular functions were not maintained between consecutive stages through all brain regions. Interestingly, the modules were collapsed with AD progression, specifically in the EC region. By identifying the modules that were affected by AD pathology, we found the transcriptional regulation-associated modules that interact with the proteasome-associated module via UCHL5 hub protein, which is a deubiquitinating enzyme. Considering PINs as a system made of network modules, we found that the modules relevant to the transcriptional regulation are disrupted in the EC region, which affects the ubiquitin-proteasome system. PMID:24348898
The biometric-based module of smart grid system
NASA Astrophysics Data System (ADS)
Engel, E.; Kovalev, I. V.; Ermoshkina, A.
2015-10-01
Within Smart Grid concept the flexible biometric-based module base on Principal Component Analysis (PCA) and selective Neural Network is developed. The formation of the selective Neural Network the biometric-based module uses the method which includes three main stages: preliminary processing of the image, face localization and face recognition. Experiments on the Yale face database show that (i) selective Neural Network exhibits promising classification capability for face detection, recognition problems; and (ii) the proposed biometric-based module achieves near real-time face detection, recognition speed and the competitive performance, as compared to some existing subspaces-based methods.
To cut or not to cut? Assessing the modular structure of brain networks.
Chang, Yu-Teng; Pantazis, Dimitrios; Leahy, Richard M
2014-05-01
A wealth of methods has been developed to identify natural divisions of brain networks into groups or modules, with one of the most prominent being modularity. Compared with the popularity of methods to detect community structure, only a few methods exist to statistically control for spurious modules, relying almost exclusively on resampling techniques. It is well known that even random networks can exhibit high modularity because of incidental concentration of edges, even though they have no underlying organizational structure. Consequently, interpretation of community structure is confounded by the lack of principled and computationally tractable approaches to statistically control for spurious modules. In this paper we show that the modularity of random networks follows a transformed version of the Tracy-Widom distribution, providing for the first time a link between module detection and random matrix theory. We compute parametric formulas for the distribution of modularity for random networks as a function of network size and edge variance, and show that we can efficiently control for false positives in brain and other real-world networks. Copyright © 2014 Elsevier Inc. All rights reserved.
Alertness Modulates Conflict Adaptation and Feature Integration in an Opposite Way
Chen, Jia; Huang, Xiting; Chen, Antao
2013-01-01
Previous studies show that the congruency sequence effect can result from both the conflict adaptation effect (CAE) and feature integration effect which can be observed as the repetition priming effect (RPE) and feature overlap effect (FOE) depending on different experimental conditions. Evidence from neuroimaging studies suggests that a close correlation exists between the neural mechanisms of alertness-related modulations and the congruency sequence effect. However, little is known about whether and how alertness mediates the congruency sequence effect. In Experiment 1, the Attentional Networks Test (ANT) and a modified flanker task were used to evaluate whether the alertness of the attentional functions had a correlation with the CAE and RPE. In Experimental 2, the ANT and another modified flanker task were used to investigate whether alertness of the attentional functions correlate with the CAE and FOE. In Experiment 1, through the correlative analysis, we found a significant positive correlation between alertness and the CAE, and a negative correlation between the alertness and the RPE. Moreover, a significant negative correlation existed between CAE and RPE. In Experiment 2, we found a marginally significant negative correlation between the CAE and the RPE, but the correlation between alertness and FOE, CAE and FOE was not significant. These results suggest that alertness can modulate conflict adaptation and feature integration in an opposite way. Participants at the high alerting level group may tend to use the top-down cognitive processing strategy, whereas participants at the low alerting level group tend to use the bottom-up processing strategy. PMID:24250824
Anticipating conflict facilitates controlled stimulus-response selection
Correa, Ángel; Rao, Anling; Nobre, Anna C.
2014-01-01
Cognitive control can be triggered in reaction to previous conflict, as suggested by the finding of sequential effects in conflict tasks. Can control also be triggered proactively by presenting cues predicting conflict (‘proactive control’)? We exploited the high temporal resolution of event-related potentials (ERPs) and controlled for sequential effects to ask whether proactive control based on anticipating conflict modulates neural activity related to cognitive control, as may be predicted from the conflict-monitoring model. ERPs associated with conflict detection (N2) were measured during a cued flanker task. Symbolic cues were either informative or neutral with respect to whether the target involved conflicting or congruent responses. Sequential effects were controlled by analysing the congruency of the previous trial. The results showed that cuing conflict facilitated conflict resolution and reduced the N2 latency. Other potentials (frontal N1 and P3) were also modulated by cuing conflict. Cuing effects were most evident after congruent than after incongruent trials. This interaction between cuing and sequential effects suggests neural overlap between the control networks triggered by proactive and reactive signals. This finding clarifies why previous neuroimaging studies, in which reactive sequential effects were not controlled, have rarely found anticipatory effects upon conflict-related activity. Finally, the high temporal resolution of ERPs was critical to reveal a temporal modulation of conflict detection by proactive control. This novel finding suggests that anticipating conflict speeds up conflict detection and resolution. Recent research suggests that this anticipatory mechanism may be mediated by pre-activation of the ACC during the preparatory interval. PMID:18823248
Network clustering and community detection using modulus of families of loops.
Shakeri, Heman; Poggi-Corradini, Pietro; Albin, Nathan; Scoglio, Caterina
2017-01-01
We study the structure of loops in networks using the notion of modulus of loop families. We introduce an alternate measure of network clustering by quantifying the richness of families of (simple) loops. Modulus tries to minimize the expected overlap among loops by spreading the expected link usage optimally. We propose weighting networks using these expected link usages to improve classical community detection algorithms. We show that the proposed method enhances the performance of certain algorithms, such as spectral partitioning and modularity maximization heuristics, on standard benchmarks.
Distinct sets of locomotor modules control the speed and modes of human locomotion
Yokoyama, Hikaru; Ogawa, Tetsuya; Kawashima, Noritaka; Shinya, Masahiro; Nakazawa, Kimitaka
2016-01-01
Although recent vertebrate studies have revealed that different spinal networks are recruited in locomotor mode- and speed-dependent manners, it is unknown whether humans share similar neural mechanisms. Here, we tested whether speed- and mode-dependence in the recruitment of human locomotor networks exists or not by statistically extracting locomotor networks. From electromyographic activity during walking and running over a wide speed range, locomotor modules generating basic patterns of muscle activities were extracted using non-negative matrix factorization. The results showed that the number of modules changed depending on the modes and speeds. Different combinations of modules were extracted during walking and running, and at different speeds even during the same locomotor mode. These results strongly suggest that, in humans, different spinal locomotor networks are recruited while walking and running, and even in the same locomotor mode different networks are probably recruited at different speeds. PMID:27805015
Protein complexes and functional modules in molecular networks
NASA Astrophysics Data System (ADS)
Spirin, Victor; Mirny, Leonid A.
2003-10-01
Proteins, nucleic acids, and small molecules form a dense network of molecular interactions in a cell. Molecules are nodes of this network, and the interactions between them are edges. The architecture of molecular networks can reveal important principles of cellular organization and function, similarly to the way that protein structure tells us about the function and organization of a protein. Computational analysis of molecular networks has been primarily concerned with node degree [Wagner, A. & Fell, D. A. (2001) Proc. R. Soc. London Ser. B 268, 1803-1810; Jeong, H., Tombor, B., Albert, R., Oltvai, Z. N. & Barabasi, A. L. (2000) Nature 407, 651-654] or degree correlation [Maslov, S. & Sneppen, K. (2002) Science 296, 910-913], and hence focused on single/two-body properties of these networks. Here, by analyzing the multibody structure of the network of protein-protein interactions, we discovered molecular modules that are densely connected within themselves but sparsely connected with the rest of the network. Comparison with experimental data and functional annotation of genes showed two types of modules: (i) protein complexes (splicing machinery, transcription factors, etc.) and (ii) dynamic functional units (signaling cascades, cell-cycle regulation, etc.). Discovered modules are highly statistically significant, as is evident from comparison with random graphs, and are robust to noise in the data. Our results provide strong support for the network modularity principle introduced by Hartwell et al. [Hartwell, L. H., Hopfield, J. J., Leibler, S. & Murray, A. W. (1999) Nature 402, C47-C52], suggesting that found modules constitute the "building blocks" of molecular networks.
Cai, Congbo; Wang, Chao; Zeng, Yiqing; Cai, Shuhui; Liang, Dong; Wu, Yawen; Chen, Zhong; Ding, Xinghao; Zhong, Jianhui
2018-04-24
An end-to-end deep convolutional neural network (CNN) based on deep residual network (ResNet) was proposed to efficiently reconstruct reliable T 2 mapping from single-shot overlapping-echo detachment (OLED) planar imaging. The training dataset was obtained from simulations that were carried out on SPROM (Simulation with PRoduct Operator Matrix) software developed by our group. The relationship between the original OLED image containing two echo signals and the corresponding T 2 mapping was learned by ResNet training. After the ResNet was trained, it was applied to reconstruct the T 2 mapping from simulation and in vivo human brain data. Although the ResNet was trained entirely on simulated data, the trained network was generalized well to real human brain data. The results from simulation and in vivo human brain experiments show that the proposed method significantly outperforms the echo-detachment-based method. Reliable T 2 mapping with higher accuracy is achieved within 30 ms after the network has been trained, while the echo-detachment-based OLED reconstruction method took approximately 2 min. The proposed method will facilitate real-time dynamic and quantitative MR imaging via OLED sequence, and deep convolutional neural network has the potential to reconstruct maps from complex MRI sequences efficiently. © 2018 International Society for Magnetic Resonance in Medicine.
Low inductance busbar assembly
Holbrook, Meghan Ann
2010-09-21
A busbar assembly for electrically coupling first and second busbars to first and second contacts, respectively, on a power module is provided. The assembly comprises a first terminal integrally formed with the first busbar, a second terminal integrally formed with the second busbar and overlapping the first terminal, a first bridge electrode having a first tab electrically coupled to the first terminal and overlapping the first and second terminals, and a second tab electrically coupled to the first contact, a second bridge electrode having a third tab electrically coupled to the second terminal, and overlapping the first and second terminals and the first tab, and a fourth tab electrically coupled to the second contact, and a fastener configured to couple the first tab to the first terminal, and the third tab to the second terminal.
Network-dependent modulation of brain activity during sleep.
Watanabe, Takamitsu; Kan, Shigeyuki; Koike, Takahiko; Misaki, Masaya; Konishi, Seiki; Miyauchi, Satoru; Miyahsita, Yasushi; Masuda, Naoki
2014-09-01
Brain activity dynamically changes even during sleep. A line of neuroimaging studies has reported changes in functional connectivity and regional activity across different sleep stages such as slow-wave sleep (SWS) and rapid-eye-movement (REM) sleep. However, it remains unclear whether and how the large-scale network activity of human brains changes within a given sleep stage. Here, we investigated modulation of network activity within sleep stages by applying the pairwise maximum entropy model to brain activity obtained by functional magnetic resonance imaging from sleeping healthy subjects. We found that the brain activity of individual brain regions and functional interactions between pairs of regions significantly increased in the default-mode network during SWS and decreased during REM sleep. In contrast, the network activity of the fronto-parietal and sensory-motor networks showed the opposite pattern. Furthermore, in the three networks, the amount of the activity changes throughout REM sleep was negatively correlated with that throughout SWS. The present findings suggest that the brain activity is dynamically modulated even in a sleep stage and that the pattern of modulation depends on the type of the large-scale brain networks. Copyright © 2014 Elsevier Inc. All rights reserved.
PyPathway: Python Package for Biological Network Analysis and Visualization.
Xu, Yang; Luo, Xiao-Chun
2018-05-01
Life science studies represent one of the biggest generators of large data sets, mainly because of rapid sequencing technological advances. Biological networks including interactive networks and human curated pathways are essential to understand these high-throughput data sets. Biological network analysis offers a method to explore systematically not only the molecular complexity of a particular disease but also the molecular relationships among apparently distinct phenotypes. Currently, several packages for Python community have been developed, such as BioPython and Goatools. However, tools to perform comprehensive network analysis and visualization are still needed. Here, we have developed PyPathway, an extensible free and open source Python package for functional enrichment analysis, network modeling, and network visualization. The network process module supports various interaction network and pathway databases such as Reactome, WikiPathway, STRING, and BioGRID. The network analysis module implements overrepresentation analysis, gene set enrichment analysis, network-based enrichment, and de novo network modeling. Finally, the visualization and data publishing modules enable users to share their analysis by using an easy web application. For package availability, see the first Reference.
Depression, anxiety and somatization in primary care: syndrome overlap and functional impairment.
Löwe, Bernd; Spitzer, Robert L; Williams, Janet B W; Mussell, Monika; Schellberg, Dieter; Kroenke, Kurt
2008-01-01
To determine diagnostic overlap of depression, anxiety and somatization as well as their unique and overlapping contribution to functional impairment. Two thousand ninety-one consecutive primary care clinic patients participated in a multicenter cross-sectional survey in 15 primary care clinics in the United States (participation rate, 92%). Depression, anxiety, somatization and functional impairment were assessed using validated scales from the Patient Health Questionnaire (PHQ) (PHQ-8, eight-item depression module; GAD-7, seven-item Generalized Anxiety Disorder Scale; and PHQ-15, 15-item somatic symptom scale) and the Short-Form General Health Survey (SF-20). Multiple linear regression analyses were used to investigate unique and overlapping associations of depression, anxiety and somatization with functional impairment. In over 50% of cases, comorbidities existed between depression, anxiety and somatization. The contribution of the commonalities of depression, anxiety and somatization to functional impairment substantially exceeded the contribution of their independent parts. Nevertheless, depression, anxiety and somatization did have important and individual effects (i.e., separate from their overlap effect) on certain areas of functional impairment. Given the large syndrome overlap, a potential consideration for future diagnostic classification would be to describe basic diagnostic criteria for a single overarching disorder and to optionally code additional diagnostic features that allow a more detailed classification into specific depressive, anxiety and somatoform subtypes.
Ad hoc Laser networks component technology for modular spacecraft
NASA Astrophysics Data System (ADS)
Huang, Xiujun; Shi, Dele; Ma, Zongfeng; Shen, Jingshi
2016-03-01
Distributed reconfigurable satellite is a new kind of spacecraft system, which is based on a flexible platform of modularization and standardization. Based on the module data flow analysis of the spacecraft, this paper proposes a network component of ad hoc Laser networks architecture. Low speed control network with high speed load network of Microwave-Laser communication mode, no mesh network mode, to improve the flexibility of the network. Ad hoc Laser networks component technology was developed, and carried out the related performance testing and experiment. The results showed that ad hoc Laser networks components can meet the demand of future networking between the module of spacecraft.
Ad hoc laser networks component technology for modular spacecraft
NASA Astrophysics Data System (ADS)
Huang, Xiujun; Shi, Dele; Shen, Jingshi
2017-10-01
Distributed reconfigurable satellite is a new kind of spacecraft system, which is based on a flexible platform of modularization and standardization. Based on the module data flow analysis of the spacecraft, this paper proposes a network component of ad hoc Laser networks architecture. Low speed control network with high speed load network of Microwave-Laser communication mode, no mesh network mode, to improve the flexibility of the network. Ad hoc Laser networks component technology was developed, and carried out the related performance testing and experiment. The results showed that ad hoc Laser networks components can meet the demand of future networking between the module of spacecraft.
Intrinsic functional network architecture of human semantic processing: Modules and hubs.
Xu, Yangwen; Lin, Qixiang; Han, Zaizhu; He, Yong; Bi, Yanchao
2016-05-15
Semantic processing entails the activation of widely distributed brain areas across the temporal, parietal, and frontal lobes. To understand the functional structure of this semantic system, we examined its intrinsic functional connectivity pattern using a database of 146 participants. Focusing on areas consistently activated during semantic processing generated from a meta-analysis of 120 neuroimaging studies (Binder et al., 2009), we found that these regions were organized into three stable modules corresponding to the default mode network (Module DMN), the left perisylvian network (Module PSN), and the left frontoparietal network (Module FPN). These three dissociable modules were integrated by multiple connector hubs-the left angular gyrus (AG) and the left superior/middle frontal gyrus linking all three modules, the left anterior temporal lobe linking Modules DMN and PSN, the left posterior portion of dorsal intraparietal sulcus (IPS) linking Modules DMN and FPN, and the left posterior middle temporal gyrus (MTG) linking Modules PSN and FPN. Provincial hubs, which converge local information within each system, were also identified: the bilateral posterior cingulate cortices/precuneus, the bilateral border area of the posterior AG and the superior lateral occipital gyrus for Module DMN; the left supramarginal gyrus, the middle part of the left MTG and the left orbital inferior frontal gyrus (IFG) for Module FPN; and the left triangular IFG and the left IPS for Module FPN. A neuro-functional model for semantic processing was derived based on these findings, incorporating the interactions of memory, language, and control. Copyright © 2016 Elsevier Inc. All rights reserved.
Coding and non-coding gene regulatory networks underlie the immune response in liver cirrhosis
Zhang, Xueming; Huang, Yongming; Yang, Zhengpeng; Zhang, Yuguo; Zhang, Weihui; Gao, Zu-hua; Xue, Dongbo
2017-01-01
Liver cirrhosis is recognized as being the consequence of immune-mediated hepatocyte damage and repair processes. However, the regulation of these immune responses underlying liver cirrhosis has not been elucidated. In this study, we used GEO datasets and bioinformatics methods to established coding and non-coding gene regulatory networks including transcription factor-/lncRNA-microRNA-mRNA, and competing endogenous RNA interaction networks. Our results identified 2224 mRNAs, 70 lncRNAs and 46 microRNAs were differentially expressed in liver cirrhosis. The transcription factor -/lncRNA- microRNA-mRNA network we uncovered that results in immune-mediated liver cirrhosis is comprised of 5 core microRNAs (e.g., miR-203; miR-219-5p), 3 transcription factors (i.e., FOXP3, ETS1 and FOS) and 7 lncRNAs (e.g., ENTS00000671336, ENST00000575137). The competing endogenous RNA interaction network we identified includes a complex immune response regulatory subnetwork that controls the entire liver cirrhosis network. Additionally, we found 10 overlapping GO terms shared by both liver cirrhosis and hepatocellular carcinoma including “immune response” as well. Interestingly, the overlapping differentially expressed genes in liver cirrhosis and hepatocellular carcinoma were enriched in immune response-related functional terms. In summary, a complex gene regulatory network underlying immune response processes may play an important role in the development and progression of liver cirrhosis, and its development into hepatocellular carcinoma. PMID:28355233
NASA Astrophysics Data System (ADS)
Bezur, L.; Marshall, J.; Ottaway, J. M.
A square-wave wavelength modulation system, based on a rotating quartz chopper with four quadrants of different thicknesses, has been developed and evaluated as a method for automatic background correction in carbon furnace atomic emission spectrometry. Accurate background correction is achieved for the residual black body radiation (Rayleigh scatter) from the tube wall and Mie scatter from particles generated by a sample matrix and formed by condensation of atoms in the optical path. Intensity modulation caused by overlap at the edges of the quartz plates and by the divergence of the optical beam at the position of the modulation chopper has been investigated and is likely to be small.
7 CFR 1735.12 - Nonduplication.
Code of Federal Regulations, 2013 CFR
2013-01-01
...) The LEC's network is capable of accommodating Internet access at speeds of at least 28,800 bits per... competing wireless carriers to upgrade their E911 capabilities in overlapping geographic territories to be...
7 CFR 1735.12 - Nonduplication.
Code of Federal Regulations, 2012 CFR
2012-01-01
...) The LEC's network is capable of accommodating Internet access at speeds of at least 28,800 bits per... competing wireless carriers to upgrade their E911 capabilities in overlapping geographic territories to be...
7 CFR 1735.12 - Nonduplication.
Code of Federal Regulations, 2014 CFR
2014-01-01
...) The LEC's network is capable of accommodating Internet access at speeds of at least 28,800 bits per... competing wireless carriers to upgrade their E911 capabilities in overlapping geographic territories to be...
Larson, Diane L.; Rabie, Paul A.; Droege, Sam; Larson, Jennifer L.; Haar, Milton
2016-01-01
The majority of pollinating insects are generalists whose lifetimes overlap flowering periods of many potentially suitable plant species. Such generality is instrumental in allowing exotic plant species to invade pollination networks. The particulars of how existing networks change in response to an invasive plant over the course of its phenology are not well characterized, but may shed light on the probability of long-term effects on plant-pollinator interactions and the stability of network structure. Here we describe changes in network topology and modular structure of infested and non-infested networks during the flowering season of the generalist non-native flowering plant, Cirsium arvense in mixed-grass prairie at Badlands National Park, South Dakota, USA. Objectives were to compare network-level effects of infestation as they propagate over the season in infested and non-infested (with respect to C. arvense) networks. We characterized plant-pollinator networks on 5 non-infested and 7 infested 1-ha plots during 4 sample periods that collectively covered the length of C. arvense flowering period. Two other abundantly-flowering invasive plants were present during this time: Melilotus officinalis had highly variable floral abundance in both C. arvense-infested and non-infested plots andConvolvulus arvensis, which occurred almost exclusively in infested plots and peaked early in the season. Modularity, including roles of individual species, and network topology were assessed for each sample period as well as in pooled infested and non-infested networks. Differences in modularity and network metrics between infested and non-infested networks were limited to the third and fourth sample periods, during flower senescence of C. arvenseand the other invasive species; generality of pollinators rose concurrently, suggesting rewiring of the network and a lag effect of earlier floral abundance. Modularity was lower and number of connectors higher in infested networks, whether they were assessed in individual sample periods or pooled into infested and non-infested networks over the entire blooming period of C.arvense. Connectors typically did not reside within the same modules as C. arvense, suggesting that effects of the other invasive plants may also influence the modularity results, and that effects of infestation extend to co-flowering native plants. We conclude that the presence of abundantly flowering invasive species is associated with greater network stability due to decreased modularity, but whether this is advantageous for the associated native plant-pollinator communities depends on the nature of perturbations they experience.
NASA Astrophysics Data System (ADS)
Hadjloum, Massinissa; El Gibari, Mohammed; Li, Hongwu; Daryoush, Afshin S.
2017-06-01
A large performance improvement of polymer phase modulators is reported by using buried in-plane coupled microstrip (CMS) driving electrodes, instead of standard vertical Micro-Strip electrodes. The in-plane CMS driving electrodes have both low radio frequency (RF) losses and high overlap integral between optical and RF waves compared to the vertical designs. Since the optical waveguide and CMS electrodes are located in the same plane, optical injection and microwave driving access cannot be separated perpendicularly without intersection between them. A via-less transition between grounded coplanar waveguide access and CMS driving electrodes is introduced in order to provide broadband excitation of optical phase modulators and avoid the intersection of the optical core and the electrical probe. Simulation and measurement results of the benzocyclobutene polymer as a cladding material and the PMMI-CPO1 polymer as an optical core with an electro-optic coefficient of 70 pm/V demonstrate a broadband operation of 67 GHz using travelling-wave driving electrodes with a half-wave voltage of 4.5 V, while satisfying its low RF losses and high overlap integral between optical and RF waves of in-plane CMS electrodes.
He, Jieyue; Li, Chaojun; Ye, Baoliu; Zhong, Wei
2012-06-25
Most computational algorithms mainly focus on detecting highly connected subgraphs in PPI networks as protein complexes but ignore their inherent organization. Furthermore, many of these algorithms are computationally expensive. However, recent analysis indicates that experimentally detected protein complexes generally contain Core/attachment structures. In this paper, a Greedy Search Method based on Core-Attachment structure (GSM-CA) is proposed. The GSM-CA method detects densely connected regions in large protein-protein interaction networks based on the edge weight and two criteria for determining core nodes and attachment nodes. The GSM-CA method improves the prediction accuracy compared to other similar module detection approaches, however it is computationally expensive. Many module detection approaches are based on the traditional hierarchical methods, which is also computationally inefficient because the hierarchical tree structure produced by these approaches cannot provide adequate information to identify whether a network belongs to a module structure or not. In order to speed up the computational process, the Greedy Search Method based on Fast Clustering (GSM-FC) is proposed in this work. The edge weight based GSM-FC method uses a greedy procedure to traverse all edges just once to separate the network into the suitable set of modules. The proposed methods are applied to the protein interaction network of S. cerevisiae. Experimental results indicate that many significant functional modules are detected, most of which match the known complexes. Results also demonstrate that the GSM-FC algorithm is faster and more accurate as compared to other competing algorithms. Based on the new edge weight definition, the proposed algorithm takes advantages of the greedy search procedure to separate the network into the suitable set of modules. Experimental analysis shows that the identified modules are statistically significant. The algorithm can reduce the computational time significantly while keeping high prediction accuracy.
Modulation aware cluster size optimisation in wireless sensor networks
NASA Astrophysics Data System (ADS)
Sriram Naik, M.; Kumar, Vinay
2017-07-01
Wireless sensor networks (WSNs) play a great role because of their numerous advantages to the mankind. The main challenge with WSNs is the energy efficiency. In this paper, we have focused on the energy minimisation with the help of cluster size optimisation along with consideration of modulation effect when the nodes are not able to communicate using baseband communication technique. Cluster size optimisations is important technique to improve the performance of WSNs. It provides improvement in energy efficiency, network scalability, network lifetime and latency. We have proposed analytical expression for cluster size optimisation using traditional sensing model of nodes for square sensing field with consideration of modulation effects. Energy minimisation can be achieved by changing the modulation schemes such as BPSK, 16-QAM, QPSK, 64-QAM, etc., so we are considering the effect of different modulation techniques in the cluster formation. The nodes in the sensing fields are random and uniformly deployed. It is also observed that placement of base station at centre of scenario enables very less number of modulation schemes to work in energy efficient manner but when base station placed at the corner of the sensing field, it enable large number of modulation schemes to work in energy efficient manner.
Array processor architecture connection network
NASA Technical Reports Server (NTRS)
Barnes, George H. (Inventor); Lundstrom, Stephen F. (Inventor); Shafer, Philip E. (Inventor)
1982-01-01
A connection network is disclosed for use between a parallel array of processors and a parallel array of memory modules for establishing non-conflicting data communications paths between requested memory modules and requesting processors. The connection network includes a plurality of switching elements interposed between the processor array and the memory modules array in an Omega networking architecture. Each switching element includes a first and a second processor side port, a first and a second memory module side port, and control logic circuitry for providing data connections between the first and second processor ports and the first and second memory module ports. The control logic circuitry includes strobe logic for examining data arriving at the first and the second processor ports to indicate when the data arriving is requesting data from a requesting processor to a requested memory module. Further, connection circuitry is associated with the strobe logic for examining requesting data arriving at the first and the second processor ports for providing a data connection therefrom to the first and the second memory module ports in response thereto when the data connection so provided does not conflict with a pre-established data connection currently in use.
Liu, Qiong; Liu, Jun; Wang, Pengqian; Zhang, Yingying; Li, Bing; Yu, Yanan; Dang, Haixia; Li, Haixia; Zhang, Xiaoxu; Wang, Zhong
2017-07-01
This study aimed to investigate the pure pharmacological mechanisms of baicalin/baicalein (BA) in the targeted network of mouse cerebral ischemia using a poly-dimensional network comparative analysis. Eighty mice with induced focal cerebral ischemia were randomly divided into four groups: BA, Concha Margaritifera (CM), vehicle and sham group. A poly-dimensional comparative analysis of the expression levels of 374 stroke-related genes in each of the four groups was performed using MetaCore. BA significantly reduced the ischemic infarct volume (P<0.05), whereas CM was ineffective. Two processes and 10 network nodes were shared between "BA vs CM" and vehicle, but there were no overlapping pathways. Two pathways, three processes and 12 network nodes overlapped in "BA vs CM" and BA. The pure pharmacological mechanism of BA resulted in targeting of pathways related to development, G-protein signaling, apoptosis, signal transduction and immunity. The biological processes affected by BA were primarily found to correlate with apoptotic, anti-apoptotic and neurophysiological processes. Three network nodes changed from up-regulation to down-regulation, while mitogen-activated protein kinase kinase 6 (MAP2K6, also known as MEK6) changed from down-regulation to up-regulation in "BA vs CM" and vehicle. The changed nodes were all related to cell death and development. The pure pharmacological mechanism of BA is related to immunity, apoptosis, development, cytoskeletal remodeling, transduction and neurophysiology, as ascertained using a poly-dimensional network comparative analysis. Copyright © 2017. Published by Elsevier B.V.
Mackey, Scott; Olafsson, Valur; Aupperle, Robin L; Lu, Kun; Fonzo, Greg A; Parnass, Jason; Liu, Thomas; Paulus, Martin P
2016-09-01
The significance of why a similar set of brain regions are associated with the default mode network and value-related neural processes remains to be clarified. Here, we examined i) whether brain regions exhibiting willingness-to-pay (WTP) task-related activity are intrinsically connected when the brain is at rest, ii) whether these regions overlap spatially with the default mode network, and iii) whether individual differences in choice behavior during the WTP task are reflected in functional brain connectivity at rest. Blood-oxygen-level dependent (BOLD) signal was measured by functional magnetic resonance imaging while subjects performed the WTP task and at rest with eyes open. Brain regions that tracked the value of bids during the WTP task were used as seed regions in an analysis of functional connectivity in the resting state data. The seed in the ventromedial prefrontal cortex was functionally connected to core regions of the WTP task-related network. Brain regions within the WTP task-related network, namely the ventral precuneus, ventromedial prefrontal and posterior cingulate cortex overlapped spatially with publically available maps of the default mode network. Also, those individuals with higher functional connectivity during rest between the ventromedial prefrontal cortex and the ventral striatum showed greater preference consistency during the WTP task. Thus, WTP task-related regions are an intrinsic network of the brain that corresponds spatially with the default mode network, and individual differences in functional connectivity within the WTP network at rest may reveal a priori biases in choice behavior.
Mackey, Scott; Olafsson, Valur; Aupperle, Robin; Lu, Kun; Fonzo, Greg; Parnass, Jason; Liu, Thomas; Paulus, Martin P.
2015-01-01
The significance of why a similar set of brain regions are associated with the default mode network and value-related neural processes remains to be clarified. Here, we examined i) whether brain regions exhibiting willingness-to-pay (WTP) task-related activity are intrinsically connected when the brain is at rest, ii) whether these regions overlap spatially with the default mode network, and iii) whether individual differences in choice behavior during the WTP task are reflected in functional brain connectivity at rest. Blood-oxygen-level dependent (BOLD) signal was measured by functional magnetic resonance imaging while subjects performed the WTP task and at rest with eyes open. Brain regions that tracked the value of bids during the WTP task were used as seed regions in an analysis of functional connectivity in the resting state data. The seed in the ventromedial prefrontal cortex was functionally connected to core regions of the WTP task-related network. Brain regions within the WTP task-related network, namely the ventral precuneus, ventromedial prefrontal and posterior cingulate cortex overlapped spatially with publically available maps of the default mode network. Also, those individuals with higher functional connectivity during rest between the ventromedial prefrontal cortex and the ventral striatum showed greater preference consistency during the WTP task. Thus, WTP task-related regions are an intrinsic network of the brain that corresponds spatially with the default mode network, and individual differences in functional connectivity within the WTP network at rest may reveal a priori biases in choice behavior. PMID:26271206
A novel network module for medical devices.
Chen, Ping-Yu
2008-01-01
In order to allow medical devices to upload the vital signs to a server on a network without manually configuring for end-users, a new network module is proposed. The proposed network module, called Medical Hub (MH), functions as a bridge to fetch the data from all connecting medical devices, and then upload these data to the server. When powering on, the MH can immediately establish network configuration automatically. Network Address Translation (NAT) traversal is also supported by the MH with the UPnP Internet Gateway Device (IGD) methodology. Besides the network configuration, other configuration in the MH is automatically established by using the remote management protocol TR-069. On the other hand, a mechanism for updating software automatically according to the variant connected medical device is proposed. With this mechanism, newcome medical devices can be detected and supported by the MH without manual operation.
Wang, Yi-Feng; Long, Zhiliang; Cui, Qian; Liu, Feng; Jing, Xiu-Juan; Chen, Heng; Guo, Xiao-Nan; Yan, Jin H; Chen, Hua-Fu
2016-01-01
Neural oscillations are essential for brain functions. Research has suggested that the frequency of neural oscillations is lower for more integrative and remote communications. In this vein, some resting-state studies have suggested that large scale networks function in the very low frequency range (<1 Hz). However, it is difficult to determine the frequency characteristics of brain networks because both resting-state studies and conventional frequency tagging approaches cannot simultaneously capture multiple large scale networks in controllable cognitive activities. In this preliminary study, we aimed to examine whether large scale networks can be modulated by task-induced low frequency steady-state brain responses (lfSSBRs) in a frequency-specific pattern. In a revised attention network test, the lfSSBRs were evoked in the triple network system and sensory-motor system, indicating that large scale networks can be modulated in a frequency tagging way. Furthermore, the inter- and intranetwork synchronizations as well as coherence were increased at the fundamental frequency and the first harmonic rather than at other frequency bands, indicating a frequency-specific modulation of information communication. However, there was no difference among attention conditions, indicating that lfSSBRs modulate the general attention state much stronger than distinguishing attention conditions. This study provides insights into the advantage and mechanism of lfSSBRs. More importantly, it paves a new way to investigate frequency-specific large scale brain activities. © 2015 Wiley Periodicals, Inc.
Preservation affinity in consensus modules among stages of HIV-1 progression.
Mosaddek Hossain, Sk Md; Ray, Sumanta; Mukhopadhyay, Anirban
2017-03-20
Analysis of gene expression data provides valuable insights into disease mechanism. Investigating relationship among co-expression modules of different stages is a meaningful tool to understand the way in which a disease progresses. Identifying topological preservation of modular structure also contributes to that understanding. HIV-1 disease provides a well-documented progression pattern through three stages of infection: acute, chronic and non-progressor. In this article, we have developed a novel framework to describe the relationship among the consensus (or shared) co-expression modules for each pair of HIV-1 infection stages. The consensus modules are identified to assess the preservation of network properties. We have investigated the preservation patterns of co-expression networks during HIV-1 disease progression through an eigengene-based approach. We discovered that the expression patterns of consensus modules have a strong preservation during the transitions of three infection stages. In particular, it is noticed that between acute and non-progressor stages the preservation is slightly more than the other pair of stages. Moreover, we have constructed eigengene networks for the identified consensus modules and observed the preservation structure among them. Some consensus modules are marked as preserved in two pairs of stages and are analyzed further to form a higher order meta-network consisting of a group of preserved modules. Additionally, we observed that module membership (MM) values of genes within a module are consistent with the preservation characteristics. The MM values of genes within a pair of preserved modules show strong correlation patterns across two infection stages. We have performed an extensive analysis to discover preservation pattern of co-expression network constructed from microarray gene expression data of three different HIV-1 progression stages. The preservation pattern is investigated through identification of consensus modules in each pair of infection stages. It is observed that the preservation of the expression pattern of consensus modules remains more prominent during the transition of infection from acute stage to non-progressor stage. Additionally, we observed that the module membership values of genes are coherent with preserved modules across the HIV-1 progression stages.
Ueda, Yoshihiro; Fukunaga, Jun-Ichi; Kamima, Tatsuya; Adachi, Yumiko; Nakamatsu, Kiyoshi; Monzen, Hajime
2018-03-20
The aim of this study was to evaluate the performance of a commercial knowledge-based planning system, in volumetric modulated arc therapy for prostate cancer at multiple radiation therapy departments. In each institute, > 20 cases were assessed. For the knowledge-based planning, the estimated dose (ED) based on geometric and dosimetric information of plans was generated in the model. Lower and upper limits of estimated dose were saved as dose volume histograms for each organ at risk. To verify whether the models performed correctly, KBP was compared with manual optimization planning in two cases. The relationships between the EDs in the models and the ratio of the OAR volumes overlapping volume with PTV to the whole organ volume (V overlap /V whole ) were investigated. There were no significant dosimetric differences in OARs and PTV between manual optimization planning and knowledge-based planning. In knowledge-based planning, the difference in the volume ratio of receiving 90% and 50% of the prescribed dose (V90 and V50) between institutes were more than 5.0% and 10.0%, respectively. The calculated doses with knowledge-based planning were between the upper and lower limits of ED or slightly under the lower limit of ED. The relationships between the lower limit of ED and V overlap /V whole were different among the models. In the V90 and V50 for the rectum, the maximum differences between the lower limit of ED among institutes were 8.2% and 53.5% when V overlap /V whole for the rectum was 10%. In the V90 and V50 for the bladder, the maximum differences of the lower limit of ED among institutes were 15.1% and 33.1% when V overlap /V whole for the bladder was 10%. Organs' upper and lower limits of ED in the models correlated closely with the V overlap /V whole . It is important to determine whether the models in KBP match a different institute's plan design before the models can be shared.
Identification of functional modules using network topology and high-throughput data.
Ulitsky, Igor; Shamir, Ron
2007-01-26
With the advent of systems biology, biological knowledge is often represented today by networks. These include regulatory and metabolic networks, protein-protein interaction networks, and many others. At the same time, high-throughput genomics and proteomics techniques generate very large data sets, which require sophisticated computational analysis. Usually, separate and different analysis methodologies are applied to each of the two data types. An integrated investigation of network and high-throughput information together can improve the quality of the analysis by accounting simultaneously for topological network properties alongside intrinsic features of the high-throughput data. We describe a novel algorithmic framework for this challenge. We first transform the high-throughput data into similarity values, (e.g., by computing pairwise similarity of gene expression patterns from microarray data). Then, given a network of genes or proteins and similarity values between some of them, we seek connected sub-networks (or modules) that manifest high similarity. We develop algorithms for this problem and evaluate their performance on the osmotic shock response network in S. cerevisiae and on the human cell cycle network. We demonstrate that focused, biologically meaningful and relevant functional modules are obtained. In comparison with extant algorithms, our approach has higher sensitivity and higher specificity. We have demonstrated that our method can accurately identify functional modules. Hence, it carries the promise to be highly useful in analysis of high throughput data.
Robinson, Amanda K; Plaut, David C; Behrmann, Marlene
2017-07-01
Words and faces have vastly different visual properties, but increasing evidence suggests that word and face processing engage overlapping distributed networks. For instance, fMRI studies have shown overlapping activity for face and word processing in the fusiform gyrus despite well-characterized lateralization of these objects to the left and right hemispheres, respectively. To investigate whether face and word perception influences perception of the other stimulus class and elucidate the mechanisms underlying such interactions, we presented images using rapid serial visual presentations. Across 3 experiments, participants discriminated 2 face, word, and glasses targets (T1 and T2) embedded in a stream of images. As expected, T2 discrimination was impaired when it followed T1 by 200 to 300 ms relative to longer intertarget lags, the so-called attentional blink. Interestingly, T2 discrimination accuracy was significantly reduced at short intertarget lags when a face was followed by a word (face-word) compared with glasses-word and word-word combinations, indicating that face processing interfered with word perception. The reverse effect was not observed; that is, word-face performance was no different than the other object combinations. EEG results indicated the left N170 to T1 was correlated with the word decrement for face-word trials, but not for other object combinations. Taken together, the results suggest face processing interferes with word processing, providing evidence for overlapping neural mechanisms of these 2 object types. Furthermore, asymmetrical face-word interference points to greater overlap of face and word representations in the left than the right hemisphere. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Correlation between Academic and Skills-Based Tests in Computer Networks
ERIC Educational Resources Information Center
Buchanan, William
2006-01-01
Computing-related programmes and modules have many problems, especially related to large class sizes, large-scale plagiarism, module franchising, and an increased requirement from students for increased amounts of hands-on, practical work. This paper presents a practical computer networks module which uses a mixture of online examinations and a…
Generation of oscillating gene regulatory network motifs
NASA Astrophysics Data System (ADS)
van Dorp, M.; Lannoo, B.; Carlon, E.
2013-07-01
Using an improved version of an evolutionary algorithm originally proposed by François and Hakim [Proc. Natl. Acad. Sci. USAPNASA60027-842410.1073/pnas.0304532101 101, 580 (2004)], we generated small gene regulatory networks in which the concentration of a target protein oscillates in time. These networks may serve as candidates for oscillatory modules to be found in larger regulatory networks and protein interaction networks. The algorithm was run for 105 times to produce a large set of oscillating modules, which were systematically classified and analyzed. The robustness of the oscillations against variations of the kinetic rates was also determined, to filter out the least robust cases. Furthermore, we show that the set of evolved networks can serve as a database of models whose behavior can be compared to experimentally observed oscillations. The algorithm found three smallest (core) oscillators in which nonlinearities and number of components are minimal. Two of those are two-gene modules: the mixed feedback loop, already discussed in the literature, and an autorepressed gene coupled with a heterodimer. The third one is a single gene module which is competitively regulated by a monomer and a dimer. The evolutionary algorithm also generated larger oscillating networks, which are in part extensions of the three core modules and in part genuinely new modules. The latter includes oscillators which do not rely on feedback induced by transcription factors, but are purely of post-transcriptional type. Analysis of post-transcriptional mechanisms of oscillation may provide useful information for circadian clock research, as recent experiments showed that circadian rhythms are maintained even in the absence of transcription.
Shannon, Casey P; Chen, Virginia; Takhar, Mandeep; Hollander, Zsuzsanna; Balshaw, Robert; McManus, Bruce M; Tebbutt, Scott J; Sin, Don D; Ng, Raymond T
2016-11-14
Gene network inference (GNI) algorithms can be used to identify sets of coordinately expressed genes, termed network modules from whole transcriptome gene expression data. The identification of such modules has become a popular approach to systems biology, with important applications in translational research. Although diverse computational and statistical approaches have been devised to identify such modules, their performance behavior is still not fully understood, particularly in complex human tissues. Given human heterogeneity, one important question is how the outputs of these computational methods are sensitive to the input sample set, or stability. A related question is how this sensitivity depends on the size of the sample set. We describe here the SABRE (Similarity Across Bootstrap RE-sampling) procedure for assessing the stability of gene network modules using a re-sampling strategy, introduce a novel criterion for identifying stable modules, and demonstrate the utility of this approach in a clinically-relevant cohort, using two different gene network module discovery algorithms. The stability of modules increased as sample size increased and stable modules were more likely to be replicated in larger sets of samples. Random modules derived from permutated gene expression data were consistently unstable, as assessed by SABRE, and provide a useful baseline value for our proposed stability criterion. Gene module sets identified by different algorithms varied with respect to their stability, as assessed by SABRE. Finally, stable modules were more readily annotated in various curated gene set databases. The SABRE procedure and proposed stability criterion may provide guidance when designing systems biology studies in complex human disease and tissues.
Leduc, Magalie S.; Blair, Rachael Hageman; Verdugo, Ricardo A.; Tsaih, Shirng-Wern; Walsh, Kenneth; Churchill, Gary A.; Paigen, Beverly
2012-01-01
A higher incidence of coronary artery disease is associated with a lower level of HDL-cholesterol. We searched for genetic loci influencing HDL-cholesterol in F2 mice from a cross between MRL/MpJ and SM/J mice. Quantitative trait loci (QTL) mapping revealed one significant HDL QTL (Apoa2 locus), four suggestive QTL on chromosomes 10, 11, 13, and 18 and four additional QTL on chromosomes 1 proximal, 3, 4, and 7 after adjusting HDL for the strong Apoa2 locus. A novel nonsynonymous polymorphism supports Lipg as the QTL gene for the chromosome 18 QTL, and a difference in Abca1 expression in liver tissue supports it as the QTL gene for the chromosome 4 QTL. Using weighted gene co-expression network analysis, we identified a module that after adjustment for Apoa2, correlated with HDL, was genetically determined by a QTL on chromosome 11, and overlapped with the HDL QTL. A combination of bioinformatics tools and systems genetics helped identify several candidate genes for both the chromosome 11 HDL and module QTL based on differential expression between the parental strains, cis regulation of expression, and causality modeling. We conclude that integrating systems genetics to a more-traditional genetics approach improves the power of complex trait gene identification. PMID:22498810
Jiang, T; Jiang, C-Y; Shu, J-H; Xu, Y-J
2017-07-10
The molecular mechanism of nasopharyngeal carcinoma (NPC) is poorly understood and effective therapeutic approaches are needed. This research aimed to excavate the attractor modules involved in the progression of NPC and provide further understanding of the underlying mechanism of NPC. Based on the gene expression data of NPC, two specific protein-protein interaction networks for NPC and control conditions were re-weighted using Pearson correlation coefficient. Then, a systematic tracking of candidate modules was conducted on the re-weighted networks via cliques algorithm, and a total of 19 and 38 modules were separately identified from NPC and control networks, respectively. Among them, 8 pairs of modules with similar gene composition were selected, and 2 attractor modules were identified via the attract method. Functional analysis indicated that these two attractor modules participate in one common bioprocess of cell division. Based on the strategy of integrating systemic module inference with the attract method, we successfully identified 2 attractor modules. These attractor modules might play important roles in the molecular pathogenesis of NPC via affecting the bioprocess of cell division in a conjunct way. Further research is needed to explore the correlations between cell division and NPC.
Correcting Evaluation Bias of Relational Classifiers with Network Cross Validation
2010-01-01
classi- fication algorithms: simple random resampling (RRS), equal-instance random resampling (ERS), and network cross-validation ( NCV ). The first two... NCV procedure that eliminates overlap between test sets altogether. The procedure samples for k disjoint test sets that will be used for evaluation...propLabeled ∗ S) nodes from train Pool in f erenceSet =network − trainSet F = F ∪ < trainSet, test Set, in f erenceSet > end for output: F NCV addresses
Farber, Charles R
2010-11-01
Bone mineral density (BMD) is influenced by a complex network of gene interactions; therefore, elucidating the relationships between genes and how those genes, in turn, influence BMD is critical for developing a comprehensive understanding of osteoporosis. To investigate the role of transcriptional networks in the regulation of BMD, we performed a weighted gene coexpression network analysis (WGCNA) using microarray expression data on monocytes from young individuals with low or high BMD. WGCNA groups genes into modules based on patterns of gene coexpression. and our analysis identified 11 gene modules. We observed that the overall expression of one module (referred to as module 9) was significantly higher in the low-BMD group (p = .03). Module 9 was highly enriched for genes belonging to the immune system-related gene ontology (GO) category "response to virus" (p = 7.6 × 10(-11)). Using publically available genome-wide association study data, we independently validated the importance of module 9 by demonstrating that highly connected module 9 hubs were more likely, relative to less highly connected genes, to be genetically associated with BMD. This study highlights the advantages of systems-level analyses to uncover coexpression modules associated with bone mass and suggests that particular monocyte expression patterns may mediate differences in BMD. © 2010 American Society for Bone and Mineral Research.
Li, Guipeng; Li, Ming; Zhang, Yiwei; Wang, Dong; Li, Rong; Guimerà, Roger; Gao, Juntao Tony; Zhang, Michael Q
2014-01-01
Rapidly increasing amounts of (physical and genetic) protein-protein interaction (PPI) data are produced by various high-throughput techniques, and interpretation of these data remains a major challenge. In order to gain insight into the organization and structure of the resultant large complex networks formed by interacting molecules, using simulated annealing, a method based on the node connectivity, we developed ModuleRole, a user-friendly web server tool which finds modules in PPI network and defines the roles for every node, and produces files for visualization in Cytoscape and Pajek. For given proteins, it analyzes the PPI network from BioGRID database, finds and visualizes the modules these proteins form, and then defines the role every node plays in this network, based on two topological parameters Participation Coefficient and Z-score. This is the first program which provides interactive and very friendly interface for biologists to find and visualize modules and roles of proteins in PPI network. It can be tested online at the website http://www.bioinfo.org/modulerole/index.php, which is free and open to all users and there is no login requirement, with demo data provided by "User Guide" in the menu Help. Non-server application of this program is considered for high-throughput data with more than 200 nodes or user's own interaction datasets. Users are able to bookmark the web link to the result page and access at a later time. As an interactive and highly customizable application, ModuleRole requires no expert knowledge in graph theory on the user side and can be used in both Linux and Windows system, thus a very useful tool for biologist to analyze and visualize PPI networks from databases such as BioGRID. ModuleRole is implemented in Java and C, and is freely available at http://www.bioinfo.org/modulerole/index.php. Supplementary information (user guide, demo data) is also available at this website. API for ModuleRole used for this program can be obtained upon request.
Hubless satellite communications networks
NASA Technical Reports Server (NTRS)
Robinson, Peter Alan
1994-01-01
Frequency Comb Multiple Access (FCMA) is a new combined modulation and multiple access method which will allow cheap hubless Very Small Aperture Terminal (VSAT) networks to be constructed. Theoretical results show bandwidth efficiency and power efficiency improvements over other modulation and multiple access methods. Costs of the VSAT network are reduced dramatically since a hub station is not required.
Sparse dictionary learning of resting state fMRI networks.
Eavani, Harini; Filipovych, Roman; Davatzikos, Christos; Satterthwaite, Theodore D; Gur, Raquel E; Gur, Ruben C
2012-07-02
Research in resting state fMRI (rsfMRI) has revealed the presence of stable, anti-correlated functional subnetworks in the brain. Task-positive networks are active during a cognitive process and are anti-correlated with task-negative networks, which are active during rest. In this paper, based on the assumption that the structure of the resting state functional brain connectivity is sparse, we utilize sparse dictionary modeling to identify distinct functional sub-networks. We propose two ways of formulating the sparse functional network learning problem that characterize the underlying functional connectivity from different perspectives. Our results show that the whole-brain functional connectivity can be concisely represented with highly modular, overlapping task-positive/negative pairs of sub-networks.
Topographical maps as complex networks
NASA Astrophysics Data System (ADS)
da Fontoura Costa, Luciano; Diambra, Luis
2005-02-01
The neuronal networks in the mammalian cortex are characterized by the coexistence of hierarchy, modularity, short and long range interactions, spatial correlations, and topographical connections. Particularly interesting, the latter type of organization implies special demands on developing systems in order to achieve precise maps preserving spatial adjacencies, even at the expense of isometry. Although the object of intensive biological research, the elucidation of the main anatomic-functional purposes of the ubiquitous topographical connections in the mammalian brain remains an elusive issue. The present work reports on how recent results from complex network formalism can be used to quantify and model the effect of topographical connections between neuronal cells over the connectivity of the network. While the topographical mapping between two cortical modules is achieved by connecting nearest cells from each module, four kinds of network models are adopted for implementing intramodular connections, including random, preferential-attachment, short-range, and long-range networks. It is shown that, though spatially uniform and simple, topographical connections between modules can lead to major changes in the network properties in some specific cases, depending on intramodular connections schemes, fostering more effective intercommunication between the involved neuronal cells and modules. The possible implications of such effects on cortical operation are discussed.
Zhou, Chunshan; Zhang, Chao; Tian, Di; Wang, Ke; Huang, Mingzhi; Liu, Yanbiao
2018-01-02
In order to manage water resources, a software sensor model was designed to estimate water quality using a hybrid fuzzy neural network (FNN) in Guangzhou section of Pearl River, China. The software sensor system was composed of data storage module, fuzzy decision-making module, neural network module and fuzzy reasoning generator module. Fuzzy subtractive clustering was employed to capture the character of model, and optimize network architecture for enhancing network performance. The results indicate that, on basis of available on-line measured variables, the software sensor model can accurately predict water quality according to the relationship between chemical oxygen demand (COD) and dissolved oxygen (DO), pH and NH 4 + -N. Owing to its ability in recognizing time series patterns and non-linear characteristics, the software sensor-based FNN is obviously superior to the traditional neural network model, and its R (correlation coefficient), MAPE (mean absolute percentage error) and RMSE (root mean square error) are 0.8931, 10.9051 and 0.4634, respectively.
Romero, Gustavo Quevedo; Linhares, Arício Xavier; Vizentin-Bugoni, Jeferson; Porto, Erica Aline Correa; Setz, Eleonore Zulnara Freire
2017-01-01
Species co-existence depends on how organisms utilize their environment and resources. When two sympatric species are similar in some ecological requirements, their coexistence may arise from differences in resource use over time and/or space. Interactions among coexisting marsupials remain poorly understood, especially in the Neotropics. Here we combine spatial niche measurements, individual-resource networks, and isotopic niche approaches, to investigate the ecological strategies used by the Neotropical marsupials Didelphis aurita and Metachirus nudicaudatus to co-occur in an area of Serra do Mar State Park (southeast of Brazil). Both individual-resource networks and isotopic niche approaches indicate similar patterns of omnivory for both species. Isotopic analysis showed the species’ trophic niche to be similar, with 52% of overlap, and no differences between proportional contributions of each resource to their diets. Moreover, individual-resource network analysis found no evidence of diet nestedness or segregation. The trophic niche overlap observed was associated with spatial segregation between species. Despite using the same area over the year, D. aurita and M. nudicaudatus exhibited spatial segregation among seasons. These results illustrate that the detection of spatial segregation is scale-dependent and must be carefully considered. In conclusion, our findings provide a new perspective on the ecology of these two Neotropical marsupials by illustrating how the association of distinct but complementary methods can be applied to reach a more complete understanding of resource partitioning and species coexistence. PMID:28704561
Kaushal, Mayank; Oni-Orisan, Akinwunmi; Chen, Gang; Li, Wenjun; Leschke, Jack; Ward, Doug; Kalinosky, Benjamin; Budde, Matthew; Schmit, Brian; Li, Shi-Jiang; Muqeet, Vaishnavi; Kurpad, Shekar
2017-09-01
Network analysis based on graph theory depicts the brain as a complex network that allows inspection of overall brain connectivity pattern and calculation of quantifiable network metrics. To date, large-scale network analysis has not been applied to resting-state functional networks in complete spinal cord injury (SCI) patients. To characterize modular reorganization of whole brain into constituent nodes and compare network metrics between SCI and control subjects, fifteen subjects with chronic complete cervical SCI and 15 neurologically intact controls were scanned. The data were preprocessed followed by parcellation of the brain into 116 regions of interest (ROI). Correlation analysis was performed between every ROI pair to construct connectivity matrices and ROIs were categorized into distinct modules. Subsequently, local efficiency (LE) and global efficiency (GE) network metrics were calculated at incremental cost thresholds. The application of a modularity algorithm organized the whole-brain resting-state functional network of the SCI and the control subjects into nine and seven modules, respectively. The individual modules differed across groups in terms of the number and the composition of constituent nodes. LE demonstrated statistically significant decrease at multiple cost levels in SCI subjects. GE did not differ significantly between the two groups. The demonstration of modular architecture in both groups highlights the applicability of large-scale network analysis in studying complex brain networks. Comparing modules across groups revealed differences in number and membership of constituent nodes, indicating modular reorganization due to neural plasticity.
Michels, Lars; Christidi, Foteini; Steiger, Vivian R; Sándor, Peter S; Gantenbein, Andreas R; Landmann, Gunther; Schreglmann, Sebastian R; Kollias, Spyros; Riederer, Franz
2017-07-01
Background Neuroimaging studies revealed structural and functional changes in medication-overuse headache (MOH), but it remains unclear whether similar changes could be observed in other chronic pain disorders. Methods In this cross-sectional study, we investigated functional connectivity (FC) with resting-state functional magnetic resonance imaging (fMRI) and white matter integrity using diffusion tensor imaging (DTI) to measure fractional anisotropy (FA) and mean diffusivity (MD) in patients with MOH ( N = 12) relative to two control groups: patients with chronic myofascial pain (MYO; N = 11) and healthy controls (CN; N = 16). Results In a data-driven approach we found hypoconnectivity in the fronto-parietal attention network in both pain groups relative to CN (i.e. MOH < CN and MYO < CN). In contrast, hyperconnectivity in the saliency network (SN) was detected only in MOH, which correlated with FA in the insula. In a seed-based analysis we investigated FC between the periaqueductal grey (PAG) and all other brain regions. In addition to overlapping hyperconnectivity seen in patient groups (relative to CN), MOH had a distinct connectivity pattern with lower FC to parieto-occipital regions and higher FC to orbitofrontal regions compared to controls. FA and MD abnormalities were mostly observed in MOH, involving the insula. Conclusions Hyperconnectivity within the SN along with associated white matter changes therein suggest a particular role of this network in MOH. In addition, abnormal connectivity between the PAG and other pain modulatory (frontal) regions in MOH are consistent with dysfunctional central pain control.
NASA Astrophysics Data System (ADS)
Wijeratne, Sitara; Subramanian, Radhika
The relative sliding of microtubules by motor proteins is important for the organization of specialized cellular microtubule networks. In cells, sliding filaments are likely to encounter crowded regions of microtubules, such as the plus-ends, which are densely occupied by motor and non-motor proteins. How molecular crowding impacts microtubule sliding is not well understood. Here, we reconstitute the collective activities of the non-motor protein PRC1 and the motor protein Kif4A on anti-parallel microtubules to address this question. We find that the accumulation of PRC1 and Kif4A at microtubule-plus ends (`end-tags') can act as a physical barrier to Kif4A-mediated microtubule sliding. This enables the formation of stable microtubule overlaps that persist even after the deactivation of the motor protein. Our data suggest that while end-tags stabilize anti-parallel overlaps by inhibiting relative sliding, they permit the remodeling of the microtubule bundles by external forces, as may be required for the reorganization of microtubule networks during dynamic cellular processes.
NASA Astrophysics Data System (ADS)
Saitoh, Kuniyasu; Magnanimo, Vanessa; Luding, Stefan
2017-10-01
Employing two-dimensional molecular dynamics (MD) simulations of soft particles, we study their non-affine responses to quasi-static isotropic compression where the effects of microscopic friction between the particles in contact and particle size distributions are examined. To quantify complicated restructuring of force-chain networks under isotropic compression, we introduce the conditional probability distributions (CPDs) of particle overlaps such that a master equation for distribution of overlaps in the soft particle packings can be constructed. From our MD simulations, we observe that the CPDs are well described by q-Gaussian distributions, where we find that the correlation for the evolution of particle overlaps is suppressed by microscopic friction, while it significantly increases with the increase of poly-dispersity.
FMRI connectivity analysis of acupuncture effects on an amygdala-associated brain network
Qin, Wei; Tian, Jie; Bai, Lijun; Pan, Xiaohong; Yang, Lin; Chen, Peng; Dai, Jianping; Ai, Lin; Zhao, Baixiao; Gong, Qiyong; Wang, Wei; von Deneen, Karen M; Liu, Yijun
2008-01-01
Background Recently, increasing evidence has indicated that the primary acupuncture effects are mediated by the central nervous system. However, specific brain networks underpinning these effects remain unclear. Results In the present study using fMRI, we employed a within-condition interregional covariance analysis method to investigate functional connectivity of brain networks involved in acupuncture. The fMRI experiment was performed before, during and after acupuncture manipulations on healthy volunteers at an acupuncture point, which was previously implicated in a neural pathway for pain modulation. We first identified significant fMRI signal changes during acupuncture stimulation in the left amygdala, which was subsequently selected as a functional reference for connectivity analyses. Our results have demonstrated that there is a brain network associated with the amygdala during a resting condition. This network encompasses the brain structures that are implicated in both pain sensation and pain modulation. We also found that such a pain-related network could be modulated by both verum acupuncture and sham acupuncture. Furthermore, compared with a sham acupuncture, the verum acupuncture induced a higher level of correlations among the amygdala-associated network. Conclusion Our findings indicate that acupuncture may change this amygdala-specific brain network into a functional state that underlies pain perception and pain modulation. PMID:19014532
Identifying module biomarkers from gastric cancer by differential correlation network
Liu, Xiaoping; Chang, Xiao
2016-01-01
Gastric cancer (stomach cancer) is a severe disease caused by dysregulation of many functionally correlated genes or pathways instead of the mutation of individual genes. Systematic identification of gastric cancer biomarkers can provide insights into the mechanisms underlying this deadly disease and help in the development of new drugs. In this paper, we present a novel network-based approach to predict module biomarkers of gastric cancer that can effectively distinguish the disease from normal samples. Specifically, by assuming that gastric cancer has mainly resulted from dysfunction of biomolecular networks rather than individual genes in an organism, the genes in the module biomarkers are potentially related to gastric cancer. Finally, we identified a module biomarker with 27 genes, and by comparing the module biomarker with known gastric cancer biomarkers, we found that our module biomarker exhibited a greater ability to diagnose the samples with gastric cancer. PMID:27703371
Optimal design of reverse osmosis module networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maskan, F.; Wiley, D.E.; Johnston, L.P.M.
2000-05-01
The structure of individual reverse osmosis modules, the configuration of the module network, and the operating conditions were optimized for seawater and brackish water desalination. The system model included simple mathematical equations to predict the performance of the reverse osmosis modules. The optimization problem was formulated as a constrained multivariable nonlinear optimization. The objective function was the annual profit for the system, consisting of the profit obtained from the permeate, capital cost for the process units, and operating costs associated with energy consumption and maintenance. Optimization of several dual-stage reverse osmosis systems were investigated and compared. It was found thatmore » optimal network designs are the ones that produce the most permeate. It may be possible to achieve economic improvements by refining current membrane module designs and their operating pressures.« less
Hu, Xueping; Wang, Xiangpeng; Gu, Yan; Luo, Pei; Yin, Shouhang; Wang, Lijun; Fu, Chao; Qiao, Lei; Du, Yi; Chen, Antao
2017-10-01
Numerous behavioral studies have found a modulation effect of phonological experience on voice discrimination. However, the neural substrates underpinning this phenomenon are poorly understood. Here we manipulated language familiarity to test the hypothesis that phonological experience affects voice discrimination via mediating the engagement of multiple perceptual and cognitive resources. The results showed that during voice discrimination, the activation of several prefrontal regions was modulated by language familiarity. More importantly, the same effect was observed concerning the functional connectivity from the fronto-parietal network to the voice-identity network (VIN), and from the default mode network to the VIN. Our findings indicate that phonological experience could bias the recruitment of cognitive control and information retrieval/comparison processes during voice discrimination. Therefore, the study unravels the neural substrates subserving the modulation effect of phonological experience on voice discrimination, and provides new insights into studying voice discrimination from the perspective of network interactions. Copyright © 2017. Published by Elsevier Inc.
Resilience of networks formed of interdependent modular networks
NASA Astrophysics Data System (ADS)
Shekhtman, Louis M.; Shai, Saray; Havlin, Shlomo
2015-12-01
Many infrastructure networks have a modular structure and are also interdependent with other infrastructures. While significant research has explored the resilience of interdependent networks, there has been no analysis of the effects of modularity. Here we develop a theoretical framework for attacks on interdependent modular networks and support our results through simulations. We focus, for simplicity, on the case where each network has the same number of communities and the dependency links are restricted to be between pairs of communities of different networks. This is particularly realistic for modeling infrastructure across cities. Each city has its own infrastructures and different infrastructures are dependent only within the city. However, each infrastructure is connected within and between cities. For example, a power grid will connect many cities as will a communication network, yet a power station and communication tower that are interdependent will likely be in the same city. It has previously been shown that single networks are very susceptible to the failure of the interconnected nodes (between communities) (Shai et al 2014 arXiv:1404.4748) and that attacks on these nodes are even more crippling than attacks based on betweenness (da Cunha et al 2015 arXiv:1502.00353). In our example of cities these nodes have long range links which are more likely to fail. For both treelike and looplike interdependent modular networks we find distinct regimes depending on the number of modules, m. (i) In the case where there are fewer modules with strong intraconnections, the system first separates into modules in an abrupt first-order transition and then each module undergoes a second percolation transition. (ii) When there are more modules with many interconnections between them, the system undergoes a single transition. Overall, we find that modular structure can significantly influence the type of transitions observed in interdependent networks and should be considered in attempts to make interdependent networks more resilient.
Single frequency multitransmitter telemetry
NASA Technical Reports Server (NTRS)
Carreno, Victor A. (Inventor)
1986-01-01
The invention relates to a single frequency multitransmitter telemetry system that will deliver a substantial amount of data at low cost. The invention consists essentially of a plurality of sensor transmitter units at different locations, with individual signal conditioning and logic, which send sampled data signals to a single receiver. The transmitters operate independently on the same frequency in a frequency shift keying modulation system and are not synchronized to the receiver. The problem of reception of data from more than one transmitter simultaneously is solved by discarding the data - when there is overlap of data from two or more transmitters, the data is discarded and when there is no overlap the data is retained. The invention utilizes a unique overlap detection technique to determine if data should be retained or discarded. When data is received from a transmitter, it goes into a shift register.
NASA Technical Reports Server (NTRS)
Forestieri, A. F.; Ratajczak, A. F.; Sidorak, L. G. (Inventor)
1977-01-01
A solar cell shingle was made of an array of solar cells on a lower portion of a substantially rectangular shingle substrate made of fiberglass cloth or the like. The solar cells may be encapsulated in flourinated ethylene propylene or some other weatherproof translucent or transparent encapsulant to form a combined electrical module and a roof shingle. The interconnected solar cells were connected to connectors at the edge of the substrate through a connection to a common electrical bus or busses. An overlap area was arranged to receive the overlap of a cooperating similar shingle so that the cell portion of the cooperating shingle may overlie the overlap area of the roof shingle. Accordingly, the same shingle serves the double function of an ordinary roof shingle which may be applied in the usual way and an array of cooperating solar cells from which electrical energy may be collected.
Modular architecture for robotics and teleoperation
Anderson, Robert J.
1996-12-03
Systems and methods for modularization and discretization of real-time robot, telerobot and teleoperation systems using passive, network based control laws. Modules consist of network one-ports and two-ports. Wave variables and position information are passed between modules. The behavior of each module is decomposed into uncoupled linear-time-invariant, and coupled, nonlinear memoryless elements and then are separately discretized.
NASA Astrophysics Data System (ADS)
Kondratjevs, K.; Zabasta, A.; Selmanovs-Pless, V.
2016-02-01
In recent years, there has been significant research focus that revolves around harvesting and minimising energy consumption by wireless sensor network nodes. When a sensor node is depleted of energy, it becomes unresponsive and disconnected from the network that can significantly influence the performance of the whole network. The purpose of the present research is to create a power supply management module in order to provide stable operating voltage for autonomous operations of radio signal repeaters, sensors or gateways of WSN. The developed management module is composed of a solar panel, lithium battery and power supply management module. The novelty of the research is the management module, which ensures stable and uninterrupted operations of electronic equipment in various power supply modes in different situations, simultaneously ensuring energy protection and sustainability of the module components. The management module is able to provide power supply of 5 V for electronics scheme independently, without power interruption switching between power sources and power flows in different directions.
ERIC Educational Resources Information Center
Electronic Frontier Foundation, 2006
2006-01-01
This paper is intended to help institutions of higher education critically evaluate the principal technological tools and policies being used to enforce copyright on campus networks. It first explores where the goals of copyright holders and universities overlap and where they conflict. It then discusses the pros and cons of the major solutions…
Spatial overlap links seemingly unconnected genotype-matched TB cases in rural Uganda
Kato-Maeda, Midori; Emperador, Devy M.; Wandera, Bonnie; Mugagga, Olive; Crandall, John; Janes, Michael; Marquez, Carina; Kamya, Moses R.; Charlebois, Edwin D.; Havlir, Diane V.
2018-01-01
Introduction Incomplete understanding of TB transmission dynamics in high HIV prevalence settings remains an obstacle for prevention. Understanding where transmission occurs could provide a platform for case finding and interrupting transmission. Methods From 2012–2015, we sought to recruit all adults starting TB treatment in a Ugandan community. Participants underwent household (HH) contact investigation, and provided names of social contacts, sites of work, healthcare and socializing, and two sputum samples. Mycobacterium tuberculosis culture-positive specimens underwent 24-loci MIRU-VNTR and spoligotyping. We sought to identify epidemiologic links between genotype-matched cases by analyzing social networks and mapping locations where cases reported spending ≥12 hours over the one-month pre-treatment. Sites of spatial overlap (≤100m) between genotype-matched cases were considered potential transmission sites. We analyzed social networks stratified by genotype clustering status, with cases linked by shared locations, and compared network density by location type between clustered vs. non-clustered cases. Results Of 173 adults with TB, 131 (76%) were enrolled, 108 provided sputum, and 84/131 (78%) were MTB culture-positive: 52% (66/131) tested HIV-positive. Of 118 adult HH contacts, 105 (89%) were screened and 3 (2.5%) diagnosed with active TB. Overall, 33 TB cases (39%) belonged to 15 distinct MTB genotype-matched clusters. Within each cluster, no cases shared a HH or reported shared non-HH contacts. In 6/15 (40%) clusters, potential epidemiologic links were identified by spatial overlap at specific locations: 5/6 involved health care settings. Genotype-clustered TB social networks had significantly greater network density based on shared clinics (p<0.001) and decreased density based on shared marketplaces (p<0.001), compared to non-clustered networks. Conclusions In this molecular epidemiologic study, links between MTB genotype-matched cases were only identifiable via shared locations, healthcare locations in particular, rather than named contacts. This suggests most transmission is occurring between casual contacts, and emphasizes the need for improved infection control in healthcare settings in rural Africa. PMID:29438413
Integrative Analysis of Many Weighted Co-Expression Networks Using Tensor Computation
Li, Wenyuan; Liu, Chun-Chi; Zhang, Tong; Li, Haifeng; Waterman, Michael S.; Zhou, Xianghong Jasmine
2011-01-01
The rapid accumulation of biological networks poses new challenges and calls for powerful integrative analysis tools. Most existing methods capable of simultaneously analyzing a large number of networks were primarily designed for unweighted networks, and cannot easily be extended to weighted networks. However, it is known that transforming weighted into unweighted networks by dichotomizing the edges of weighted networks with a threshold generally leads to information loss. We have developed a novel, tensor-based computational framework for mining recurrent heavy subgraphs in a large set of massive weighted networks. Specifically, we formulate the recurrent heavy subgraph identification problem as a heavy 3D subtensor discovery problem with sparse constraints. We describe an effective approach to solving this problem by designing a multi-stage, convex relaxation protocol, and a non-uniform edge sampling technique. We applied our method to 130 co-expression networks, and identified 11,394 recurrent heavy subgraphs, grouped into 2,810 families. We demonstrated that the identified subgraphs represent meaningful biological modules by validating against a large set of compiled biological knowledge bases. We also showed that the likelihood for a heavy subgraph to be meaningful increases significantly with its recurrence in multiple networks, highlighting the importance of the integrative approach to biological network analysis. Moreover, our approach based on weighted graphs detects many patterns that would be overlooked using unweighted graphs. In addition, we identified a large number of modules that occur predominately under specific phenotypes. This analysis resulted in a genome-wide mapping of gene network modules onto the phenome. Finally, by comparing module activities across many datasets, we discovered high-order dynamic cooperativeness in protein complex networks and transcriptional regulatory networks. PMID:21698123
Handheld portable real-time tracking and communications device
Wiseman, James M [Albuquerque, NM; Riblett, Jr., Loren E.; Green, Karl L [Albuquerque, NM; Hunter, John A [Albuquerque, NM; Cook, III, Robert N.; Stevens, James R [Arlington, VA
2012-05-22
Portable handheld real-time tracking and communications devices include; a controller module, communications module including global positioning and mesh network radio module, data transfer and storage module, and a user interface module enclosed in a water-resistant enclosure. Real-time tracking and communications devices can be used by protective force, security and first responder personnel to provide situational awareness allowing for enhance coordination and effectiveness in rapid response situations. Such devices communicate to other authorized devices via mobile ad-hoc wireless networks, and do not require fixed infrastructure for their operation.
Fast detection of the fuzzy communities based on leader-driven algorithm
NASA Astrophysics Data System (ADS)
Fang, Changjian; Mu, Dejun; Deng, Zhenghong; Hu, Jun; Yi, Chen-He
2018-03-01
In this paper, we present the leader-driven algorithm (LDA) for learning community structure in networks. The algorithm allows one to find overlapping clusters in a network, an important aspect of real networks, especially social networks. The algorithm requires no input parameters and learns the number of clusters naturally from the network. It accomplishes this using leadership centrality in a clever manner. It identifies local minima of leadership centrality as followers which belong only to one cluster, and the remaining nodes are leaders which connect clusters. In this way, the number of clusters can be learned using only the network structure. The LDA is also an extremely fast algorithm, having runtime linear in the network size. Thus, this algorithm can be used to efficiently cluster extremely large networks.
ERIC Educational Resources Information Center
Vallès, Astrid; Granic, Ivica; De Weerd, Peter; Martens, Gerard J. M.
2014-01-01
Modulation of cortical network connectivity is crucial for an adaptive response to experience. In the rat barrel cortex, long-term sensory stimulation induces cortical network modifications and neuronal response changes of which the molecular basis is unknown. Here, we show that long-term somatosensory stimulation by enriched environment…
Kawano, Mitsuoki
2012-12-01
Toxin-antitoxin (TA) systems are categorized into three classes based on the type of antitoxin. In type I TA systems, the antitoxin is a small antisense RNA that inhibits translation of small toxic proteins by binding to the corresponding mRNAs. Those type I TA systems were originally identified as plasmid stabilization modules rendering a post-segregational killing (PSK) effect on the host cells. The type I TA loci also exist on the Escherichia coli chromosome but their biological functions are less clear. Genetic organization and regulatory elements of hok/sok and ldr/rdl families are very similar and the toxins are predicted to contain a transmembrane domain, but otherwise share no detectable sequence similarity. This review will give an overview of the type I TA modules of E. coli K-12, especially hok/sok, ldr/rdl and SOS-inducible symE/symR systems, which are regulated by divergently overlapping cis-encoded antisense RNAs.
Cross-Linguistic Similarity and Task Demands in Japanese-English Bilingual Processing
Allen, David B.; Conklin, Kathy
2013-01-01
Even in languages that do not share script, bilinguals process cognates faster than matched noncognates in a range of tasks. The current research more fully explores what underpins the cognate ‘advantage’ in different script bilinguals (Japanese-English). To do this, instead of the more traditional binary cognate/noncognate distinction, the current study uses continuous measures of phonological and semantic overlap, L2 (second language) proficiency and lexical variables (e.g., frequency). An L2 picture naming (Experiment 1) revealed a significant interaction between phonological and semantic similarity and demonstrates that degree of overlap modulates naming times. In lexical decision (Experiment 2), increased phonological similarity (e.g., bus/basu/vs. radio/rajio/) lead to faster response times. Interestingly, increased semantic similarity slowed response times in lexical decision. The studies also indicate how L2 proficiency and lexical variables modulate L2 word processing. These findings are explained in terms of current models of bilingual lexical processing. PMID:24015266
Implementation of quantum key distribution network simulation module in the network simulator NS-3
NASA Astrophysics Data System (ADS)
Mehic, Miralem; Maurhart, Oliver; Rass, Stefan; Voznak, Miroslav
2017-10-01
As the research in quantum key distribution (QKD) technology grows larger and becomes more complex, the need for highly accurate and scalable simulation technologies becomes important to assess the practical feasibility and foresee difficulties in the practical implementation of theoretical achievements. Due to the specificity of the QKD link which requires optical and Internet connection between the network nodes, to deploy a complete testbed containing multiple network hosts and links to validate and verify a certain network algorithm or protocol would be very costly. Network simulators in these circumstances save vast amounts of money and time in accomplishing such a task. The simulation environment offers the creation of complex network topologies, a high degree of control and repeatable experiments, which in turn allows researchers to conduct experiments and confirm their results. In this paper, we described the design of the QKD network simulation module which was developed in the network simulator of version 3 (NS-3). The module supports simulation of the QKD network in an overlay mode or in a single TCP/IP mode. Therefore, it can be used to simulate other network technologies regardless of QKD.
Differential network as an indicator of osteoporosis with network entropy.
Ma, Lili; Du, Hongmei; Chen, Guangdong
2018-07-01
Osteoporosis is a common skeletal disorder characterized by a decrease in bone mass and density. The peak bone mass (PBM) is a significant determinant of osteoporosis. To gain insights into the indicating effect of PBM to osteoporosis, this study focused on characterizing the PBM networks and identifying key genes. One biological data set with 12 monocyte low PBM samples and 11 high PBM samples was derived to construct protein-protein interaction networks (PPINs). Based on clique-merging, module-identification algorithm was used to identify modules from PPINs. The systematic calculation and comparison were performed to test whether the network entropy can discriminate the low PBM network from high PBM network. We constructed 32 destination networks with 66 modules divided from monocyte low and high PBM networks. Among them, network 11 was the only significantly differential one (P<0.05) with 8 nodes and 28 edges. All genes belonged to precursors of osteoclasts, which were related to calcium transport as well as blood monocytes. In conclusion, based on the entropy in PBM PPINs, the differential network appears to be a novel therapeutic indicator for osteoporosis during the bone monocyte progression; these findings are helpful in disclosing the pathogenetic mechanisms of osteoporosis.
Chasman, Deborah; Walters, Kevin B.; Lopes, Tiago J. S.; Eisfeld, Amie J.; Kawaoka, Yoshihiro; Roy, Sushmita
2016-01-01
Mammalian host response to pathogenic infections is controlled by a complex regulatory network connecting regulatory proteins such as transcription factors and signaling proteins to target genes. An important challenge in infectious disease research is to understand molecular similarities and differences in mammalian host response to diverse sets of pathogens. Recently, systems biology studies have produced rich collections of omic profiles measuring host response to infectious agents such as influenza viruses at multiple levels. To gain a comprehensive understanding of the regulatory network driving host response to multiple infectious agents, we integrated host transcriptomes and proteomes using a network-based approach. Our approach combines expression-based regulatory network inference, structured-sparsity based regression, and network information flow to infer putative physical regulatory programs for expression modules. We applied our approach to identify regulatory networks, modules and subnetworks that drive host response to multiple influenza infections. The inferred regulatory network and modules are significantly enriched for known pathways of immune response and implicate apoptosis, splicing, and interferon signaling processes in the differential response of viral infections of different pathogenicities. We used the learned network to prioritize regulators and study virus and time-point specific networks. RNAi-based knockdown of predicted regulators had significant impact on viral replication and include several previously unknown regulators. Taken together, our integrated analysis identified novel module level patterns that capture strain and pathogenicity-specific patterns of expression and helped identify important regulators of host response to influenza infection. PMID:27403523
Bachir, Alexia; Horwitz, Alan Rick; Nelson, W. James; Bianchini, Julie M.
2018-01-01
Cell adhesions link cells to the extracellular matrix (ECM) and to each other, and depend on interactions with the actin cytoskeleton. Both cell-ECM and cell-cell adhesion sites contain discrete, yet overlapping functional modules. These modules establish physical association with the actin cytoskeleton, locally modulate actin organization and dynamics, and trigger intracellular signaling pathways. Interplay between these modules generates distinct actin architectures that underlie different stages, types, and functions of cell-ECM and cell-cell adhesions. Actomyosin contractility is required to generate mature, stable adhesions, as well as sense and translate the mechanical properties of the cellular environment to changes in cell organization and behavior. In this chapter we discuss the organization and function of different adhesion modules and how they interact with the actin cytoskeleton. We highlight the molecular mechanisms of mechanotransduction in adhesions, and how adhesion molecules mediate crosstalk between cell-ECM and cell-cell adhesion sites. PMID:28679638
Research on virtual network load balancing based on OpenFlow
NASA Astrophysics Data System (ADS)
Peng, Rong; Ding, Lei
2017-08-01
The Network based on OpenFlow technology separate the control module and data forwarding module. Global deployment of load balancing strategy through network view of control plane is fast and of high efficiency. This paper proposes a Weighted Round-Robin Scheduling algorithm for virtual network and a load balancing plan for server load based on OpenFlow. Load of service nodes and load balancing tasks distribution algorithm will be taken into account.
Beyond Fine Tuning: Adding capacity to leverage few labels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hodas, Nathan O.; Shaffer, Kyle J.; Yankov, Artem
2017-12-09
In this paper we present a technique to train neural network models on small amounts of data. Current methods for training neural networks on small amounts of rich data typically rely on strategies such as fine-tuning a pre-trained neural networks or the use of domain-specific hand-engineered features. Here we take the approach of treating network layers, or entire networks, as modules and combine pre-trained modules with untrained modules, to learn the shift in distributions between data sets. The central impact of using a modular approach comes from adding new representations to a network, as opposed to replacing representations via fine-tuning.more » Using this technique, we are able surpass results using standard fine-tuning transfer learning approaches, and we are also able to significantly increase performance over such approaches when using smaller amounts of data.« less
Name-Based Address Mapping for Virtual Private Networks
NASA Astrophysics Data System (ADS)
Surányi, Péter; Shinjo, Yasushi; Kato, Kazuhiko
IPv4 private addresses are commonly used in local area networks (LANs). With the increasing popularity of virtual private networks (VPNs), it has become common that a user connects to multiple LANs at the same time. However, private address ranges for LANs frequently overlap. In such cases, existing systems do not allow the user to access the resources on all LANs at the same time. In this paper, we propose name-based address mapping for VPNs, a novel method that allows connecting to hosts through multiple VPNs at the same time, even when the address ranges of the VPNs overlap. In name-based address mapping, rather than using the IP addresses used on the LANs (the real addresses), we assign a unique virtual address to each remote host based on its domain name. The local host uses the virtual addresses to communicate with remote hosts. We have implemented name-based address mapping for layer 3 OpenVPN connections on Linux and measured its performance. The communication overhead of our system is less than 1.5% for throughput and less than 0.2ms for each name resolution.
Submillisecond-response polymer network liquid crystal phase modulators at 1.06-μm wavelength
NASA Astrophysics Data System (ADS)
Sun, Jie; Xianyu, Haiqing; Chen, Yuan; Wu, Shin-Tson
2011-07-01
A fast-response and scattering-free polymer network liquid crystal (PNLC) light modulator is demonstrated at λ = 1.06 μm wavelength. A decay time of 117 μs for 2π phase modulation is obtained at 70 °C, which is ˜ 650 × faster than that of the host nematic LCs. The major tradeoff is the increased operating voltage. Potential applications include spatial light modulators and adaptive optics.
Bäuml, Josef G; Daamen, Marcel; Meng, Chun; Neitzel, Julia; Scheef, Lukas; Jaekel, Julia; Busch, Barbara; Baumann, Nicole; Bartmann, Peter; Wolke, Dieter; Boecker, Henning; Wohlschläger, Afra M; Sorg, Christian
2015-11-01
Widespread brain changes are present in preterm born infants, adolescents, and even adults. While neurobiological models of prematurity facilitate powerful explanations for the adverse effects of preterm birth on the developing brain at microscale, convincing linking principles at large-scale level to explain the widespread nature of brain changes are still missing. We investigated effects of preterm birth on the brain's large-scale intrinsic networks and their relation to brain structure in preterm born adults. In 95 preterm and 83 full-term born adults, structural and functional magnetic resonance imaging at-rest was used to analyze both voxel-based morphometry and spatial patterns of functional connectivity in ongoing blood oxygenation level-dependent activity. Differences in intrinsic functional connectivity (iFC) were found in cortical and subcortical networks. Structural differences were located in subcortical, temporal, and cingulate areas. Critically, for preterm born adults, iFC-network differences were overlapping and correlating with aberrant regional gray-matter (GM) volume specifically in subcortical and temporal areas. Overlapping changes were predicted by prematurity and in particular by neonatal medical complications. These results provide evidence that preterm birth has long-lasting effects on functional connectivity of intrinsic networks, and these changes are specifically related to structural alterations in ventral brain GM. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
On-line dynamic monitoring automotive exhausts: using BP-ANN for distinguishing multi-components
NASA Astrophysics Data System (ADS)
Zhao, Yudi; Wei, Ruyi; Liu, Xuebin
2017-10-01
Remote sensing-Fourier Transform infrared spectroscopy (RS-FTIR) is one of the most important technologies in atmospheric pollutant monitoring. It is very appropriate for on-line dynamic remote sensing monitoring of air pollutants, especially for the automotive exhausts. However, their absorption spectra are often seriously overlapped in the atmospheric infrared window bands, i.e. MWIR (3 5μm). Artificial Neural Network (ANN) is an algorithm based on the theory of the biological neural network, which simplifies the partial differential equation with complex construction. For its preferable performance in nonlinear mapping and fitting, in this paper we utilize Back Propagation-Artificial Neural Network (BP-ANN) to quantitatively analyze the concentrations of four typical industrial automotive exhausts, including CO, NO, NO2 and SO2. We extracted the original data of these automotive exhausts from the HITRAN database, most of which virtually overlapped, and established a mixed multi-component simulation environment. Based on Beer-Lambert Law, concentrations can be retrieved from the absorbance of spectra. Parameters including learning rate, momentum factor, the number of hidden nodes and iterations were obtained when the BP network was trained with 80 groups of input data. By improving these parameters, the network can be optimized to produce necessarily higher precision for the retrieved concentrations. This BP-ANN method proves to be an effective and promising algorithm on dealing with multi-components analysis of automotive exhausts.
de Menezes, Alexandre B; Prendergast-Miller, Miranda T; Richardson, Alan E; Toscas, Peter; Farrell, Mark; Macdonald, Lynne M; Baker, Geoff; Wark, Tim; Thrall, Peter H
2015-08-01
Network and multivariate statistical analyses were performed to determine interactions between bacterial and fungal community terminal restriction length polymorphisms as well as soil properties in paired woodland and pasture sites. Canonical correspondence analysis (CCA) revealed that shifts in woodland community composition correlated with soil dissolved organic carbon, while changes in pasture community composition correlated with moisture, nitrogen and phosphorus. Weighted correlation network analysis detected two distinct microbial modules per land use. Bacterial and fungal ribotypes did not group separately, rather all modules comprised of both bacterial and fungal ribotypes. Woodland modules had a similar fungal : bacterial ribotype ratio, while in the pasture, one module was fungal dominated. There was no correspondence between pasture and woodland modules in their ribotype composition. The modules had different relationships to soil variables, and these contrasts were not detected without the use of network analysis. This study demonstrated that fungi and bacteria, components of the soil microbial communities usually treated as separate functional groups as in a CCA approach, were co-correlated and formed distinct associations in these adjacent habitats. Understanding these distinct modular associations may shed more light on their niche space in the soil environment, and allow a more realistic description of soil microbial ecology and function. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.
CommWalker: correctly evaluating modules in molecular networks in light of annotation bias.
Luecken, M D; Page, M J T; Crosby, A J; Mason, S; Reinert, G; Deane, C M
2018-03-15
Detecting novel functional modules in molecular networks is an important step in biological research. In the absence of gold standard functional modules, functional annotations are often used to verify whether detected modules/communities have biological meaning. However, as we show, the uneven distribution of functional annotations means that such evaluation methods favor communities of well-studied proteins. We propose a novel framework for the evaluation of communities as functional modules. Our proposed framework, CommWalker, takes communities as inputs and evaluates them in their local network environment by performing short random walks. We test CommWalker's ability to overcome annotation bias using input communities from four community detection methods on two protein interaction networks. We find that modules accepted by CommWalker are similarly co-expressed as those accepted by current methods. Crucially, CommWalker performs well not only in well-annotated regions, but also in regions otherwise obscured by poor annotation. CommWalker community prioritization both faithfully captures well-validated communities and identifies functional modules that may correspond to more novel biology. The CommWalker algorithm is freely available at opig.stats.ox.ac.uk/resources or as a docker image on the Docker Hub at hub.docker.com/r/lueckenmd/commwalker/. deane@stats.ox.ac.uk. Supplementary data are available at Bioinformatics online.
Hsiao, Tzu-Hung; Chiu, Yu-Chiao; Hsu, Pei-Yin; Lu, Tzu-Pin; Lai, Liang-Chuan; Tsai, Mong-Hsun; Huang, Tim H.-M.; Chuang, Eric Y.; Chen, Yidong
2016-01-01
Several mutual information (MI)-based algorithms have been developed to identify dynamic gene-gene and function-function interactions governed by key modulators (genes, proteins, etc.). Due to intensive computation, however, these methods rely heavily on prior knowledge and are limited in genome-wide analysis. We present the modulated gene/gene set interaction (MAGIC) analysis to systematically identify genome-wide modulation of interaction networks. Based on a novel statistical test employing conjugate Fisher transformations of correlation coefficients, MAGIC features fast computation and adaption to variations of clinical cohorts. In simulated datasets MAGIC achieved greatly improved computation efficiency and overall superior performance than the MI-based method. We applied MAGIC to construct the estrogen receptor (ER) modulated gene and gene set (representing biological function) interaction networks in breast cancer. Several novel interaction hubs and functional interactions were discovered. ER+ dependent interaction between TGFβ and NFκB was further shown to be associated with patient survival. The findings were verified in independent datasets. Using MAGIC, we also assessed the essential roles of ER modulation in another hormonal cancer, ovarian cancer. Overall, MAGIC is a systematic framework for comprehensively identifying and constructing the modulated interaction networks in a whole-genome landscape. MATLAB implementation of MAGIC is available for academic uses at https://github.com/chiuyc/MAGIC. PMID:26972162
Prior knowledge based mining functional modules from Yeast PPI networks with gene ontology
2010-01-01
Background In the literature, there are fruitful algorithmic approaches for identification functional modules in protein-protein interactions (PPI) networks. Because of accumulation of large-scale interaction data on multiple organisms and non-recording interaction data in the existing PPI database, it is still emergent to design novel computational techniques that can be able to correctly and scalably analyze interaction data sets. Indeed there are a number of large scale biological data sets providing indirect evidence for protein-protein interaction relationships. Results The main aim of this paper is to present a prior knowledge based mining strategy to identify functional modules from PPI networks with the aid of Gene Ontology. Higher similarity value in Gene Ontology means that two gene products are more functionally related to each other, so it is better to group such gene products into one functional module. We study (i) to encode the functional pairs into the existing PPI networks; and (ii) to use these functional pairs as pairwise constraints to supervise the existing functional module identification algorithms. Topology-based modularity metric and complex annotation in MIPs will be used to evaluate the identified functional modules by these two approaches. Conclusions The experimental results on Yeast PPI networks and GO have shown that the prior knowledge based learning methods perform better than the existing algorithms. PMID:21172053
Tweaked residual convolutional network for face alignment
NASA Astrophysics Data System (ADS)
Du, Wenchao; Li, Ke; Zhao, Qijun; Zhang, Yi; Chen, Hu
2017-08-01
We propose a novel Tweaked Residual Convolutional Network approach for face alignment with two-level convolutional networks architecture. Specifically, the first-level Tweaked Convolutional Network (TCN) module predicts the landmark quickly but accurately enough as a preliminary, by taking low-resolution version of the detected face holistically as the input. The following Residual Convolutional Networks (RCN) module progressively refines the landmark by taking as input the local patch extracted around the predicted landmark, particularly, which allows the Convolutional Neural Network (CNN) to extract local shape-indexed features to fine tune landmark position. Extensive evaluations show that the proposed Tweaked Residual Convolutional Network approach outperforms existing methods.
Field-effect Flow Control in Polymer Microchannel Networks
NASA Technical Reports Server (NTRS)
Sniadecki, Nathan; Lee, Cheng S.; Beamesderfer, Mike; DeVoe, Don L.
2003-01-01
A new Bio-MEMS electroosmotic flow (EOF) modulator for plastic microchannel networks has been developed. The EOF modulator uses field-effect flow control (FEFC) to adjust the zeta potential at the Parylene C microchannel wall. By setting a differential EOF pumping rate in two of the three microchannels at a T-intersection with EOF modulators, the induced pressure at the intersection generated pumping in the third, field-free microchannel. The EOF modulators are able to change the magnitude and direction of the pressure pumping by inducing either a negative or positive pressure at the intersection. The flow velocity is tracked by neutralized fluorescent microbeads in the microchannels. The proof-of-concept of the EOF modulator described here may be applied to complex plastic ,microchannel networks where individual microchannel flow rates are addressable by localized induced-pressure pumping.
Modularity, pollination systems, and interaction turnover in plant-pollinator networks across space.
Carstensen, Daniel W; Sabatino, Malena; Morellato, Leonor Patricia C
2016-05-01
Mutualistic interaction networks have been shown to be structurally conserved over space and time while pairwise interactions show high variability. In such networks, modularity is the division of species into compartments, or modules, where species within modules share more interactions with each other than they do with species from other modules. Such a modular structure is common in mutualistic networks and several evolutionary and ecological mechanisms have been proposed as underlying drivers. One prominent explanation is the existence of pollination syndromes where flowers tend to attract certain pollinators as determined by a set of traits. We investigate the modularity of seven community level plant-pollinator networks sampled in rupestrian grasslands, or campos rupestres, in SE Brazil. Defining pollination systems as corresponding groups of flower syndromes and pollinator functional groups, we test the two hypotheses that (1) interacting species from the same pollination system are more often assigned to the same module than interacting species from different pollination systems and; that (2) interactions between species from the same pollination system are more consistent across space than interactions between species from different pollination systems. Specifically we ask (1) whether networks are consistently modular across space; (2) whether interactions among species of the same pollination system occur more often inside modules, compared to interactions among species of different pollination systems, and finally; (3) whether the spatial variation in interaction identity, i.e., spatial interaction rewiring, is affected by trait complementarity among species as indicated by pollination systems. We confirm that networks are consistently modular across space and that interactions within pollination systems principally occur inside modules. Despite a strong tendency, we did not find a significant effect of pollination systems on the spatial consistency of pairwise interactions. These results indicate that the spatial rewiring of interactions could be constrained by pollination systems, resulting in conserved network structures in spite of high variation in pairwise interactions. Our findings suggest a relevant role of pollination systems in structuring plant-pollinator networks and we argue that structural patterns at the sub-network level can help us to fully understand how and why interactions vary across space and time.
Fast Fragmentation of Networks Using Module-Based Attacks
Requião da Cunha, Bruno; González-Avella, Juan Carlos; Gonçalves, Sebastián
2015-01-01
In the multidisciplinary field of Network Science, optimization of procedures for efficiently breaking complex networks is attracting much attention from a practical point of view. In this contribution, we present a module-based method to efficiently fragment complex networks. The procedure firstly identifies topological communities through which the network can be represented using a well established heuristic algorithm of community finding. Then only the nodes that participate of inter-community links are removed in descending order of their betweenness centrality. We illustrate the method by applying it to a variety of examples in the social, infrastructure, and biological fields. It is shown that the module-based approach always outperforms targeted attacks to vertices based on node degree or betweenness centrality rankings, with gains in efficiency strongly related to the modularity of the network. Remarkably, in the US power grid case, by deleting 3% of the nodes, the proposed method breaks the original network in fragments which are twenty times smaller in size than the fragments left by betweenness-based attack. PMID:26569610
Detection of Significant Pneumococcal Meningitis Biomarkers by Ego Network.
Wang, Qian; Lou, Zhifeng; Zhai, Liansuo; Zhao, Haibin
2017-06-01
To identify significant biomarkers for detection of pneumococcal meningitis based on ego network. Based on the gene expression data of pneumococcal meningitis and global protein-protein interactions (PPIs) data recruited from open access databases, the authors constructed a differential co-expression network (DCN) to identify pneumococcal meningitis biomarkers in a network view. Here EgoNet algorithm was employed to screen the significant ego networks that could accurately distinguish pneumococcal meningitis from healthy controls, by sequentially seeking ego genes, searching candidate ego networks, refinement of candidate ego networks and significance analysis to identify ego networks. Finally, the functional inference of the ego networks was performed to identify significant pathways for pneumococcal meningitis. By differential co-expression analysis, the authors constructed the DCN that covered 1809 genes and 3689 interactions. From the DCN, a total of 90 ego genes were identified. Starting from these ego genes, three significant ego networks (Module 19, Module 70 and Module 71) that could predict clinical outcomes for pneumococcal meningitis were identified by EgoNet algorithm, and the corresponding ego genes were GMNN, MAD2L1 and TPX2, respectively. Pathway analysis showed that these three ego networks were related to CDT1 association with the CDC6:ORC:origin complex, inactivation of APC/C via direct inhibition of the APC/C complex pathway, and DNA strand elongation, respectively. The authors successfully screened three significant ego modules which could accurately predict the clinical outcomes for pneumococcal meningitis and might play important roles in host response to pathogen infection in pneumococcal meningitis.
Network architecture of the cerebral nuclei (basal ganglia) association and commissural connectome.
Swanson, Larry W; Sporns, Olaf; Hahn, Joel D
2016-10-04
The cerebral nuclei form the ventral division of the cerebral hemisphere and are thought to play an important role in neural systems controlling somatic movement and motivation. Network analysis was used to define global architectural features of intrinsic cerebral nuclei circuitry in one hemisphere (association connections) and between hemispheres (commissural connections). The analysis was based on more than 4,000 reports of histologically defined axonal connections involving all 45 gray matter regions of the rat cerebral nuclei and revealed the existence of four asymmetrically interconnected modules. The modules form four topographically distinct longitudinal columns that only partly correspond to previous interpretations of cerebral nuclei structure-function organization. The network of connections within and between modules in one hemisphere or the other is quite dense (about 40% of all possible connections), whereas the network of connections between hemispheres is weak and sparse (only about 5% of all possible connections). Particularly highly interconnected regions (rich club and hubs within it) form a topologically continuous band extending through two of the modules. Connection path lengths among numerous pairs of regions, and among some of the network's modules, are relatively long, thus accounting for low global efficiency in network communication. These results provide a starting point for reexamining the connectional organization of the cerebral hemispheres as a whole (right and left cerebral cortex and cerebral nuclei together) and their relation to the rest of the nervous system.
Network based management for multiplexed electric vehicle charging
Gadh, Rajit; Chung, Ching Yen; Qui, Li
2017-04-11
A system for multiplexing charging of electric vehicles, comprising a server coupled to a plurality of charging control modules over a network. Each of said charging modules being connected to a voltage source such that each charging control module is configured to regulate distribution of voltage from the voltage source to an electric vehicle coupled to the charging control module. Data collection and control software is provided on the server for identifying a plurality of electric vehicles coupled to the plurality of charging control modules and selectively distributing charging of the plurality of charging control modules to multiplex distribution of voltage to the plurality of electric vehicles.
Comparison of large-scale human brain functional and anatomical networks in schizophrenia.
Nelson, Brent G; Bassett, Danielle S; Camchong, Jazmin; Bullmore, Edward T; Lim, Kelvin O
2017-01-01
Schizophrenia is a disease with disruptions in thought, emotion, and behavior. The dysconnectivity hypothesis suggests these disruptions are due to aberrant brain connectivity. Many studies have identified connectivity differences but few have been able to unify gray and white matter findings into one model. Here we develop an extension of the Network-Based Statistic (NBS) called NBSm (Multimodal Network-based statistic) to compare functional and anatomical networks in schizophrenia. Structural, resting functional, and diffusion magnetic resonance imaging data were collected from 29 chronic patients with schizophrenia and 29 healthy controls. Images were preprocessed, and average time courses were extracted for 90 regions of interest (ROI). Functional connectivity matrices were estimated by pairwise correlations between wavelet coefficients of ROI time series. Following diffusion tractography, anatomical connectivity matrices were estimated by white matter streamline counts between each pair of ROIs. Global and regional strength were calculated for each modality. NBSm was used to find significant overlap between functional and anatomical components that distinguished health from schizophrenia. Global strength was decreased in patients in both functional and anatomical networks. Regional strength was decreased in all regions in functional networks and only one region in anatomical networks. NBSm identified a distinguishing functional component consisting of 46 nodes with 113 links (p < 0.001), a distinguishing anatomical component with 47 nodes and 50 links (p = 0.002), and a distinguishing intermodal component with 26 nodes (p < 0.001). NBSm is a powerful technique for understanding network-based group differences present in both anatomical and functional data. In light of the dysconnectivity hypothesis, these results provide compelling evidence for the presence of significant overlapping anatomical and functional disruption in people with schizophrenia.
NASA Technical Reports Server (NTRS)
DeCristofaro, Michael A.; Lansdowne, Chatwin A.; Schlesinger, Adam M.
2014-01-01
NASA has identified standardized wireless mesh networking as a key technology for future human and robotic space exploration. Wireless mesh networks enable rapid deployment, provide coverage in undeveloped regions. Mesh networks are also self-healing, resilient, and extensible, qualities not found in traditional infrastructure-based networks. Mesh networks can offer lower size, weight, and power (SWaP) than overlapped infrastructure-perapplication. To better understand the maturity, characteristics and capability of the technology, we developed an 802.11 mesh network consisting of a combination of heterogeneous commercial off-the-shelf devices and opensource firmware and software packages. Various streaming applications were operated over the mesh network, including voice and video, and performance measurements were made under different operating scenarios. During the testing several issues with the currently implemented mesh network technology were identified and outlined for future work.
Larson, Diane L.; Droege, Sam; Rabie, Paul A.; Larson, Jennifer L.; Devalez, Jelle; Haar, Milton; McDermott-Kubeczko, Margaret
2014-01-01
1. Analyses of flower-visitor interaction networks allow application of community-level information to conservation problems, but management recommendations that ensue from such analyses are not well characterized. Results of modularity analyses, which detect groups of species (modules) that interact more with each other than with species outside their module, may be particularly applicable to management concerns. 2. We conducted modularity analyses of networks surrounding a rare endemic annual plant, Eriogonum visheri, at Badlands National Park, USA, in 2010 and 2011. Plant species visited were determined by pollen on insect bodies and by flower species upon which insects were captured. Roles within modules (network hub, module hub, connector and peripheral, in decreasing order of network structural importance) were determined for each species. 3. Relationships demonstrated by the modularity analysis, in concert with knowledge of pollen species carried by insects, allowed us to infer effects of two invasive species on E. visheri. Sharing a module increased risk of interspecific pollen transfer to E. visheri. Control of invasive Salsola tragus, which shared a module with E. visheri, is therefore a prudent management objective, but lack of control of invasive Melilotus officinalis, which occupied a different module, is unlikely to negatively affect pollination of E. visheri. Eriogonum pauciflorum may occupy a key position in this network, supporting insects from the E. visheri module when E. visheri is less abundant. 4. Year-to-year variation in species' roles suggests management decisions must be based on observations over several years. Information on pollen deposition on stigmas would greatly strengthen inferences made from the modularity analysis. 5. Synthesis and applications: Assessing the consequences of pollination, whether at the community or individual level, is inherently time-consuming. A trade-off exists: rather than an estimate of fitness effects, the network approach provides a broad understanding of the relationships among insect visitors and other plant species that may affect the focal rare plant. Knowledge of such relationships allows managers to detect, target and prioritize control of only the important subset of invasive species present and identify other species that may augment a rare species' population stability, such as E. pauciflorum in our study.
Tadayonnejad, Reza; Ajilore, Olusola; Mickey, Brian J.; Crane, Natania A.; Hsu, David T.; Kumar, Anand; Zubieta, Jon-Kar; Langenecker, Scott A.
2016-01-01
The pulvinar, the largest thalamus nucleus, has rich anatomical connections with several different cortical and subcortical regions suggesting its important involvement in high-level cognitive and emotional functions. Unfortunately, pulvinar dysfunction in psychiatric disorders particularly major depression disorder has not been thoroughly examined to date. In this study we explored the alterations in the baseline regional and network activities of the pulvinar in MDD by applying spectral analysis of resting-state oscillatory activity, functional connectivity and directed (effective) connectivity on resting-state fMRI data acquired from 20 healthy controls and 19 participants with MDD. Furthermore, we tested how pharmacological treatment with duloxetine can modulate the measured local and network variables in ten participants who completed treatment. Our results revealed a frequency-band dependent modulation of power spectrum characteristics of pulvinar regional oscillatory activity. At the network level, we found MDD is associated with aberrant causal interactions between pulvinar and several systems including default-mode and posterior insular networks. It was also shown that duloxetine treatment can correct or overcompensate the pathologic network behavior of the pulvinar. In conclusion, we suggest that pulvinar regional baseline oscillatory activity and its resting-state network dynamics are compromised in MDD and can be modulated therapeutically by pharmacological treatment. PMID:27148894
Stability and structural properties of gene regulation networks with coregulation rules.
Warrell, Jonathan; Mhlanga, Musa
2017-05-07
Coregulation of the expression of groups of genes has been extensively demonstrated empirically in bacterial and eukaryotic systems. Such coregulation can arise through the use of shared regulatory motifs, which allow the coordinated expression of modules (and module groups) of functionally related genes across the genome. Coregulation can also arise through the physical association of multi-gene complexes through chromosomal looping, which are then transcribed together. We present a general formalism for modeling coregulation rules in the framework of Random Boolean Networks (RBN), and develop specific models for transcription factor networks with modular structure (including module groups, and multi-input modules (MIM) with autoregulation) and multi-gene complexes (including hierarchical differentiation between multi-gene complex members). We develop a mean-field approach to analyse the dynamical stability of large networks incorporating coregulation, and show that autoregulated MIM and hierarchical gene-complex models can achieve greater stability than networks without coregulation whose rules have matching activation frequency. We provide further analysis of the stability of small networks of both kinds through simulations. We also characterize several general properties of the transients and attractors in the hierarchical coregulation model, and show using simulations that the steady-state distribution factorizes hierarchically as a Bayesian network in a Markov Jump Process analogue of the RBN model. Copyright © 2017. Published by Elsevier Ltd.
Wang, Rui-Sheng; Loscalzo, Joseph
2018-05-20
Understanding the genetic basis of complex diseases is challenging. Prior work shows that disease-related proteins do not typically function in isolation. Rather, they often interact with each other to form a network module that underlies dysfunctional mechanistic pathways. Identifying such disease modules will provide insights into a systems-level understanding of molecular mechanisms of diseases. Owing to the incompleteness of our knowledge of disease proteins and limited information on the biological mediators of pathobiological processes, the key proteins (seed proteins) for many diseases appear scattered over the human protein-protein interactome and form a few small branches, rather than coherent network modules. In this paper, we develop a network-based algorithm, called the Seed Connector algorithm (SCA), to pinpoint disease modules by adding as few additional linking proteins (seed connectors) to the seed protein pool as possible. Such seed connectors are hidden disease module elements that are critical for interpreting the functional context of disease proteins. The SCA aims to connect seed disease proteins so that disease mechanisms and pathways can be decoded based on predicted coherent network modules. We validate the algorithm using a large corpus of 70 complex diseases and binding targets of over 200 drugs, and demonstrate the biological relevance of the seed connectors. Lastly, as a specific proof of concept, we apply the SCA to a set of seed proteins for coronary artery disease derived from a meta-analysis of large-scale genome-wide association studies and obtain a coronary artery disease module enriched with important disease-related signaling pathways and drug targets not previously recognized. Copyright © 2018 Elsevier Ltd. All rights reserved.
Prior knowledge guided active modules identification: an integrated multi-objective approach.
Chen, Weiqi; Liu, Jing; He, Shan
2017-03-14
Active module, defined as an area in biological network that shows striking changes in molecular activity or phenotypic signatures, is important to reveal dynamic and process-specific information that is correlated with cellular or disease states. A prior information guided active module identification approach is proposed to detect modules that are both active and enriched by prior knowledge. We formulate the active module identification problem as a multi-objective optimisation problem, which consists two conflicting objective functions of maximising the coverage of known biological pathways and the activity of the active module simultaneously. Network is constructed from protein-protein interaction database. A beta-uniform-mixture model is used to estimate the distribution of p-values and generate scores for activity measurement from microarray data. A multi-objective evolutionary algorithm is used to search for Pareto optimal solutions. We also incorporate a novel constraints based on algebraic connectivity to ensure the connectedness of the identified active modules. Application of proposed algorithm on a small yeast molecular network shows that it can identify modules with high activities and with more cross-talk nodes between related functional groups. The Pareto solutions generated by the algorithm provides solutions with different trade-off between prior knowledge and novel information from data. The approach is then applied on microarray data from diclofenac-treated yeast cells to build network and identify modules to elucidate the molecular mechanisms of diclofenac toxicity and resistance. Gene ontology analysis is applied to the identified modules for biological interpretation. Integrating knowledge of functional groups into the identification of active module is an effective method and provides a flexible control of balance between pure data-driven method and prior information guidance.
Modulation of the semantic system by word imageability.
Sabsevitz, D S; Medler, D A; Seidenberg, M; Binder, J R
2005-08-01
A prevailing neurobiological theory of semantic memory proposes that part of our knowledge about concrete, highly imageable concepts is stored in the form of sensory-motor representations. While this theory predicts differential activation of the semantic system by concrete and abstract words, previous functional imaging studies employing this contrast have provided relatively little supporting evidence. We acquired event-related functional magnetic resonance imaging (fMRI) data while participants performed a semantic similarity judgment task on a large number of concrete and abstract noun triads. Task difficulty was manipulated by varying the degree to which the words in the triad were similar in meaning. Concrete nouns, relative to abstract nouns, produced greater activation in a bilateral network of multimodal and heteromodal association areas, including ventral and medial temporal, posterior-inferior parietal, dorsal prefrontal, and posterior cingulate cortex. In contrast, abstract nouns produced greater activation almost exclusively in the left hemisphere in superior temporal and inferior frontal cortex. Increasing task difficulty modulated activation mainly in attention, working memory, and response monitoring systems, with almost no effect on areas that were modulated by imageability. These data provide critical support for the hypothesis that concrete, imageable concepts activate perceptually based representations not available to abstract concepts. In contrast, processing abstract concepts makes greater demands on left perisylvian phonological and lexical retrieval systems. The findings are compatible with dual coding theory and less consistent with single-code models of conceptual representation. The lack of overlap between imageability and task difficulty effects suggests that once the neural representation of a concept is activated, further maintenance and manipulation of that information in working memory does not further increase neural activation in the conceptual store.
Progesterone receptor isoforms, agonists and antagonists differentially reprogram estrogen signaling
Singhal, Hari; Greene, Marianne E.; Zarnke, Allison L.; Laine, Muriel; Al Abosy, Rose; Chang, Ya-Fang; Dembo, Anna G.; Schoenfelt, Kelly; Vadhi, Raga; Qiu, Xintao; Rao, Prakash; Santhamma, Bindu; Nair, Hareesh B.; Nickisch, Klaus J.; Long, Henry W.; Becker, Lev; Brown, Myles; Greene, Geoffrey L.
2018-01-01
Major roadblocks to developing effective progesterone receptor (PR)-targeted therapies in breast cancer include the lack of highly-specific PR modulators, a poor understanding of the pro- or anti-tumorigenic networks for PR isoforms and ligands, and an incomplete understanding of the cross talk between PR and estrogen receptor (ER) signaling. Through genomic analyses of xenografts treated with various clinically-relevant ER and PR-targeting drugs, we describe how the activation or inhibition of PR differentially reprograms estrogen signaling, resulting in the segregation of transcriptomes into separate PR agonist and antagonist-mediated groups. These findings address an ongoing controversy regarding the clinical utility of PR agonists and antagonists, alone or in combination with tamoxifen, for breast cancer management. Additionally, the two PR isoforms PRA and PRB, bind distinct but overlapping genomic sites and interact with different sets of co-regulators to differentially modulate estrogen signaling to be either pro- or anti-tumorigenic. Of the two isoforms, PRA inhibited gene expression and ER chromatin binding significantly more than PRB. Differential gene expression was observed in PRA and PRB-rich patient tumors and PRA-rich gene signatures had poorer survival outcomes. In support of antiprogestin responsiveness of PRA-rich tumors, gene signatures associated with PR antagonists, but not PR agonists, predicted better survival outcomes. The better patient survival associated with PR antagonists versus PR agonists treatments was further reflected in the higher in vivo anti-tumor activity of therapies that combine tamoxifen with PR antagonists and modulators. This study suggests that distinguishing common effects observed due to concomitant interaction of another receptor with its ligand (agonist or antagonist), from unique isoform and ligand-specific effects will inform the development of biomarkers for patient selection and translation of PR-targeted therapies to the clinic. PMID:29435103
Technology Developments Integrating a Space Network Communications Testbed
NASA Technical Reports Server (NTRS)
Kwong, Winston; Jennings, Esther; Clare, Loren; Leang, Dee
2006-01-01
As future manned and robotic space explorations missions involve more complex systems, it is essential to verify, validate, and optimize such systems through simulation and emulation in a low cost testbed environment. The goal of such a testbed is to perform detailed testing of advanced space and ground communications networks, technologies, and client applications that are essential for future space exploration missions. We describe the development of new technologies enhancing our Multi-mission Advanced Communications Hybrid Environment for Test and Evaluation (MACHETE) that enable its integration in a distributed space communications testbed. MACHETE combines orbital modeling, link analysis, and protocol and service modeling to quantify system performance based on comprehensive considerations of different aspects of space missions. It can simulate entire networks and can interface with external (testbed) systems. The key technology developments enabling the integration of MACHETE into a distributed testbed are the Monitor and Control module and the QualNet IP Network Emulator module. Specifically, the Monitor and Control module establishes a standard interface mechanism to centralize the management of each testbed component. The QualNet IP Network Emulator module allows externally generated network traffic to be passed through MACHETE to experience simulated network behaviors such as propagation delay, data loss, orbital effects and other communications characteristics, including entire network behaviors. We report a successful integration of MACHETE with a space communication testbed modeling a lunar exploration scenario. This document is the viewgraph slides of the presentation.