Impact Crater Morphology and the Structure of Europa's Ice Shell
NASA Astrophysics Data System (ADS)
Silber, Elizabeth A.; Johnson, Brandon C.
2017-12-01
We performed numerical simulations of impact crater formation on Europa to infer the thickness and structure of its ice shell. The simulations were performed using iSALE to test both the conductive ice shell over ocean and the conductive lid over warm convective ice scenarios for a variety of conditions. The modeled crater depth-diameter is strongly dependent on the thermal gradient and temperature of the warm convective ice. Our results indicate that both a fully conductive (thin) shell and a conductive-convective (thick) shell can reproduce the observed crater depth-diameter and morphologies. For the conductive ice shell over ocean, the best fit is an approximately 8 km thick conductive ice shell. Depending on the temperature (255-265 K) and therefore strength of warm convective ice, the thickness of the conductive ice lid is estimated at 5-7 km. If central features within the crater, such as pits and domes, form during crater collapse, our simulations are in better agreement with the fully conductive shell (thin shell). If central features form well after the impact, however, our simulations suggest that a conductive-convective shell (thick shell) is more likely. Although our study does not provide a firm conclusion regarding the thickness of Europa's ice shell, our work indicates that Valhalla class multiring basins on Europa may provide robust constraints on the thickness of Europa's ice shell.
NASA Astrophysics Data System (ADS)
Silber, E. A.; Johnson, B. C.
2017-12-01
Craters produced by hypervelocity impacts are an invaluable tool for studying planetary surfaces. The observed impact crater depth-diameter (d-D) on the Galilean moon Europa exhibits three distinct transition regimes, two of which may correspond to the presence of warm convecting ice at depths of 7-8 km and a liquid ocean at 19-25 km, respectively [1]. In our study, we use iSALE2D to model formation of impact craters on Europa to investigate thickness and internal structure of its ice shell. This study is different from previous modeling studies [2,3] in that we consider the both fully conductive ice shell over ocean, as well as conductive lid overlying warm convecting ice, to discern the boundary conditions at the interface between the ice and the underlying ocean. Moreover, our model includes implementation of the full viscoelastic-plastic rheology for ice. Our results suggest that both conductive shell over ocean and conductive lid over warm convective ice are equally probable on Europa. We will discuss the implications and relevance of these results. The plausible scenarios are either a 6 - 7 km thick conductive ice lid overlying warm convecting ice at 265 K, or an 8 km completely conductive ice shell over ocean. Acknowledgements: We gratefully acknowledge the developers of iSALE-2D (www.isale-code.de), the simulation code used in our research, including G. Collins, K. Wünnermann, D. Elbeshausen, B. Ivanov and J. Melosh. References: [1] Schenk P. (2002) Nature, 417, 419-421. [2] Bray V.J. et al. (2014) Icarus, 231, 394-406. [3] Cox R. and Beuer A.W. (2015) JGR - Planets, 120(10), 1708-1719.
NASA Astrophysics Data System (ADS)
Allu Peddinti, D.; McNamara, A. K.
2016-12-01
Along with the newly unveiled icy surface of Pluto, several icy planetary bodies show indications of an active surface perhaps underlain by liquid oceans of some size. This augments the interest to explore the evolution of an ice-ocean system and its surface implications. The geologically young surface of the Jovian moon Europa lends much speculation to variations in ice-shell thickness over time. Along with the observed surface features, it suggests the possibility of episodic convection and conduction within the ice-shell as it evolved. What factors would control the growth of the ice-shell as it forms? If and how would those factors determine the thickness of the ice-shell and consequently the heat transfer? Would parameters such as tidal heating or initial temperature affect how the ice-shell grows and to what significance? We perform numerical experiments using geodynamical models of the two-phase ice-water system to study the evolution of planetary ice-oceans such as that of Europa. The models evolve self-consistently from an initial liquid ocean as it cools with time. The effects of presence, absence and magnitude of tidal heating on ice-shell thickness are studied in different models. The vigor of convection changes as the ice-shell continues to thicken. Initial modeling results track changes in the growth rate of the ice-shell as the vigor of the convection changes. The magnitude and temporal location of the rate change varies with different properties of tidal heating and values of initial temperature. A comparative study of models is presented to demonstrate how as the ice-shell is forming, its growth rate and convection are affected by processes such as tidal heating.
Active formation of `chaos terrain' over shallow subsurface water on Europa
NASA Astrophysics Data System (ADS)
Schmidt, B. E.; Blankenship, D. D.; Patterson, G. W.; Schenk, P. M.
2011-11-01
Europa, the innermost icy satellite of Jupiter, has a tortured young surface and sustains a liquid water ocean below an ice shell of highly debated thickness. Quasi-circular areas of ice disruption called chaos terrains are unique to Europa, and both their formation and the ice-shell thickness depend on Europa's thermal state. No model so far has been able to explain why features such as Conamara Chaos stand above surrounding terrain and contain matrix domes. Melt-through of a thin (few-kilometre) shell is thermodynamically improbable and cannot raise the ice. The buoyancy of material rising as either plumes of warm, pure ice called diapirs or convective cells in a thick (>10 kilometres) shell is insufficient to produce the observed chaos heights, and no single plume can create matrix domes. Here we report an analysis of archival data from Europa, guided by processes observed within Earth's subglacial volcanoes and ice shelves. The data suggest that chaos terrains form above liquid water lenses perched within the ice shell as shallow as 3kilometres. Our results suggest that ice-water interactions and freeze-out give rise to the diverse morphologies and topography of chaos terrains. The sunken topography of Thera Macula indicates that Europa is actively resurfacing over a lens comparable in volume to the Great Lakes in North America.
Planetary Ice-Oceans: Numerical Modeling Study of Ice-Shell Growth in Convecting Two-Phase Systems
NASA Astrophysics Data System (ADS)
Allu Peddinti, Divya; McNamara, Allen
2017-04-01
Several icy bodies in the Solar system such as the icy moons Europa and Enceladus exhibit signs of subsurface oceans underneath an ice-shell. For Europa, the geologically young surface, the presence of surface features and the aligned surface chemistry pose interesting questions about formation of the ice-shell and its interaction with the ocean below. This also ties in with its astrobiological potential and implications for similar ice-ocean systems elsewhere in the cosmos. The overall thickness of the H2O layer on Europa is estimated to be 100-150 km while the thickness of the ice-shell is debated. Additionally, Europa is subject to tidal heating due to interaction with Jupiter's immense gravity field. It is of interest to understand how the ice-shell thickness varies in the presence of tidal internal heating and the localization of heating in different regions of the ice-shell. Thus this study aims to determine the effect of tidal internal heating on the growth rate of the ice-shell over time. We perform geodynamic modeling of the ice-ocean system in order to understand how the ice-shell thickness changes with time. The convection code employs the ice Ih-water phase diagram in order to model the two-phase convecting ice-ocean system. All the models begin from an initial warm thick ocean that cools from the top. The numerical experiments analyze three cases: case 1 with no tidal internal heating in the system, case 2 with constant tidal internal heating in the ice and case 3 with viscosity-dependent tidal internal heating in the ice. We track the ice-shell thickness as a function of time as the system cools. Modeling results so far have identified that the shell growth rate changes substantially at a point in time that coincides with a change in the planform of ice-convection cells. Additionally, the velocity vs depth plots indicate a shift from a conduction dominant to a convection dominant ice regime. We compare the three different cases to provide a comprehensive understanding of the temporal variation in the ice-shell thickness due to the addition of heating in the ice.
Active formation of 'chaos terrain' over shallow subsurface water on Europa.
Schmidt, B E; Blankenship, D D; Patterson, G W; Schenk, P M
2011-11-16
Europa, the innermost icy satellite of Jupiter, has a tortured young surface and sustains a liquid water ocean below an ice shell of highly debated thickness. Quasi-circular areas of ice disruption called chaos terrains are unique to Europa, and both their formation and the ice-shell thickness depend on Europa's thermal state. No model so far has been able to explain why features such as Conamara Chaos stand above surrounding terrain and contain matrix domes. Melt-through of a thin (few-kilometre) shell is thermodynamically improbable and cannot raise the ice. The buoyancy of material rising as either plumes of warm, pure ice called diapirs or convective cells in a thick (>10 kilometres) shell is insufficient to produce the observed chaos heights, and no single plume can create matrix domes. Here we report an analysis of archival data from Europa, guided by processes observed within Earth's subglacial volcanoes and ice shelves. The data suggest that chaos terrains form above liquid water lenses perched within the ice shell as shallow as 3 kilometres. Our results suggest that ice-water interactions and freeze-out give rise to the diverse morphologies and topography of chaos terrains. The sunken topography of Thera Macula indicates that Europa is actively resurfacing over a lens comparable in volume to the Great Lakes in North America. ©2011 Macmillan Publishers Limited. All rights reserved
Transport Processes in the Ice Shell of Europa — A Review
NASA Astrophysics Data System (ADS)
Rhoden, A. R.
2017-11-01
Recent models and observations of Europa's geologic activity suggest a dynamic ice shell, rich with liquid water, that may change in thickness and activity over time. Implications for Europa's habitability and future exploration will be discussed.
Extenstional terrain formation in icy satellites: Implications for ocean-surface interaction
NASA Astrophysics Data System (ADS)
Howell, Samuel M.; Pappalardo, Robert T.
2017-10-01
Europa and Ganymede, Galilean satellites of Jupiter, exhibit geologic activity in their outer H2O ice shells that might convey material from water oceans within the satellites to their surfaces. Imagery from the Voyager and Galileo spacecraft reveal surfaces rich with tectonic deformation, including dilational bands on Europa and groove lanes on Ganymede. These features are generally attributed to the extension of a brittle ice lithosphere overlaying a possibly convecting ice asthenosphere. To explore band formation and interaction with interior oceans, we employ fully visco-elasto-plastic 2-D models of faulting and convection with complex, realistic pure ice rheologies. In these models, material entering from below is tracked and considered to be “fossilized ocean,” ocean material that has frozen into the ice shell and evolves through geologic time. We track the volume fraction of fossil ocean material in the ice shell as a function of depth, and the exposure of both fresh ice and fossil ocean material at the ice shell surface. To explore the range in extensional terrains, we vary ice shell thickness, fault localization, melting-temperature ice viscosity, and the presence of pre-existing weaknesses. Mechanisms which act to weaken the ice shell and thin the lithosphere (e.g. vigorous convection, thinner shells, pre-existing weaknesses) tend to plastically yield to form smooth bands at high strains, and are more likely to incorporate fossil ocean material in the ice shell and expose it at the surface. In contrast, lithosphere strengthened by rapid fault annealing or increased viscosity, for example, exhibits large-scale tectonic rifting at low strains superimposed over pre-existing terrains, and inhibits the incorporation and delivery of fossil ocean material to the surface. Thus, our results identify a spectrum of extensional terrain formation mechanisms as linked to lithospheric strength, rather than specific mechanisms that are unique to each type of band, and discuss where in this spectrum ocean material incorporated at the bottom of the ice shell may be exposed on the satellite surface.
Extensional terrain formation on Europa and Ganymede: Implications for ocean-surface interaction
NASA Astrophysics Data System (ADS)
Howell, S. M.; Pappalardo, R. T.
2017-12-01
Europa and Ganymede, Galilean satellites of Jupiter, exhibit geologic activity in their outer H2O ice shells that might convey material from water oceans within the satellites to their surfaces. Imagery from the Voyager and Galileo spacecraft reveal surfaces rich with tectonic deformation, including dilational bands on Europa and groove lanes on Ganymede. These features are generally attributed to the extension of a brittle ice lithosphere overlaying a possibly convecting ice asthenosphere. To explore band formation and interaction with interior oceans, we employ fully visco-elasto-plastic 2-D models of faulting and convection with complex, realistic pure ice rheologies. In these models, material entering from below is tracked and considered to be "fossilized ocean," ocean material that has frozen into the ice shell and evolves through geologic time. We track the volume fraction of fossil ocean material in the ice shell as a function of depth, and the exposure of both fresh ice and fossil ocean material at the ice shell surface. We vary ice shell thickness, fault localization, melting-temperature ice viscosity, and the presence of pre-existing weaknesses. Mechanisms which act to weaken the ice shell and thin the lithosphere (e.g. vigorous convection, thinner shells, pre-existing weaknesses) tend to plastically yield to form smooth bands at high strains, and are more likely to incorporate fossil ocean material in the ice shell and expose it at the surface. In contrast, lithosphere strengthened by rapid fault annealing or increased viscosity, for example, exhibits large-scale tectonic rifting at low strains superimposed over pre-existing terrains, and inhibits the incorporation and delivery of fossil ocean material to the surface. Thus, our results identify a spectrum of extensional terrain formation mechanisms as linked to lithospheric strength, rather than any specific mechanism being unique to each type of band, and where in this spectrum ocean material incorporated at the bottom of the ice shell may be exposed on the satellite surface.
Onset and Cessation of Thermal Convection within Titan's Ice Shell
NASA Astrophysics Data System (ADS)
Mitri, G.; Tobie, G.; Choblet, G.
2015-12-01
The onset of thermal convection within the outer ice shell of Titan is believed to be at the origin of methane outgassing on Titan (Tobie et al., 2006), a possible factor in Titan's resurfacing processes (Mitri et al., 2008), and to have a major role in the evolution and tectonic activity of this Saturnian icy satellite (Tobie et al., 2005; Mitri and Showman, 2008; Mitri et al., 2010). Recent measurements of the gravity field (Iess et al., 2010, 2012) and the modeling of the shape and topography (Zebker et al., 2009; Mitri et al., 2014) have recently improved our knowledge of the thermal state and structure of Titan's outer ice shell. Mitri et al. (2014) found that Titan's surface topography is consistent with an isostatically compensated ice shell of variable thickness, likely at the present in a thermally conductive state (see also Nimmo and Bills, 2010; Hemingway et al., 2013), overlying a relatively dense (~1200-1350 kg m-3) subsurface ocean. As Titan's ice shell is not currently experiencing thermal convection it is likely that the ice shell could have experienced during its history both the onset and the cessation of thermal convection; thermal convection could be present within the ice shell for limited times or in fact be episodic. We investigate the evolution of Titan's outer ice shell from the crystallization of the underlying ocean with a focus on the onset and cessation of thermal convection. To simulate convection in a growing ice shell, we numerically solve the thermal convection equations for a Newtonian rheology in a two dimensional Cartesian domain using finite element method, with a moving bottom boundary to ocean crystallization. We discuss how the crystallization process affects the onset of convection and in which conditions the cessation of thermal convection may occur. The geological consequences of the changes of the thermal state and structure of the outer ice shell will also be discussed.
Brine Pockets in the Icy Shell on Europa: Distribution, Chemistry, and Habitability
NASA Technical Reports Server (NTRS)
Zolotov, M. Yu; Shock, E. L.; Barr, A. C.; Pappalardo, R. T.
2004-01-01
On Earth, sea ice is rich in brine, salt, and gas inclusions that form through capturing of seawater during ice formation. Cooling of the ice over time leads to sequential freezing of captured sea-water, precipitation of salts, exsolution of gases, and formation of brine channels and pockets. Distribution and composition of brines in sea ice depend on the rate of ice formation, vertical temperature gradient, and the age of the ice. With aging, the abundance of brine pockets decreases through downward migration. De- spite low temperatures and elevated salinities, brines in sea ice provide a habitat for photosynthetic and chemosynthetic organisms. On Europa, brine pockets and channels could exist in the icy shell that may be from a few km to a few tens of km thick and is probably underlain by a water ocean. If the icy shell is relatively thick, convection could develop, affecting the temperature pattern in the ice. To predict the distribution and chemistry of brine pockets in the icy shell we have combined numerical models of the temperature distribution within a convecting shell, a model for oceanic chemistry, and a model for freezing of Europan oceanic water. Possible effects of brine and gas inclusions on ice rheology and tectonics are discussed.
Dynamic Ice-Water Interactions Form Europa's Chaos Terrains
NASA Astrophysics Data System (ADS)
Blankenship, D. D.; Schmidt, B. E.; Patterson, G. W.; Schenk, P.
2011-12-01
Unique to the surface of Europa, chaos terrain is diagnostic of the properties and dynamics of its icy shell. We present a new model that suggests large melt lenses form within the shell and that water-ice interactions above and within these lenses drive the production of chaos. This model is consistent with key observations of chaos, predicts observables for future missions, and indicates that the surface is likely still active today[1]. We apply lessons from ice-water interaction in the terrestrial cryosphere to hypothesize a dynamic lense-collapse model to for Europa's chaos terrain. Chaos terrain morphology, like that of Conamara chaos and Thera Macula, suggests a four-phase formation [1]: 1) Surface deflection occurs as ice melts over ascending thermal plumes, as regularly occurs on Earth as subglacial volcanoes activate. The same process can occur at Europa if thermal plumes cause pressure melt as they cross ice-impurity eutectics. 2) Resulting hydraulic gradients and driving forces produce a sealed, pressurized melt lense, akin to the hydraulic sealing of subglacial caldera lakes. On Europa, the water cannot escape the lense due to the horizontally continuous ice shell. 3) Extension of the brittle ice lid above the lense opens cracks, allowing for the ice to be hydrofractured by pressurized water. Fracture, brine injection and percolation within the ice and possible iceberg toppling produces ice-melange-like granular matrix material. 4) Refreezing of the melt lense and brine-filled pores and cracks within the matrix results in raised chaos. Brine soaking and injection concentrates the ice in brines and adds water volume to the shell. As this englacial water freezes, the now water-filled ice will expand, not unlike the process of forming pingos and other "expansion ice" phenomena on Earth. The refreezing can raise the surface and create the oft-observed matrix "domes" In this presentation, we describe how catastrophic ice-water interactions on Earth have informed us about how such dynamics occur on Europa. We will discuss the observations of iceberg and matrix properties that imply shallow liquid water bodies on Europa, argue for the importance of granular mechanics in the interpretation of Europa's geology and present constraints on the properties of its ice shell. [1] Schmidt, B. E., Blankenship, D. D., Patterson, W., Schenk, P: Active chaos formation over shallow subsurface water on Europa, in review, 2011.
NASA Astrophysics Data System (ADS)
Hruba, J.; Kletetschka, G.
2017-12-01
Heat transport across the ice shell of Europa controls the thermal evolution of its interior. Such process involves energy sources that drive ice resurfacing (1). More importantly, heat flux through the ice shell controls the thickness of the ice (2), that is poorly constrained between 1 km to 30+ km (3). Thin ice would allow ocean water to be affected by radiation from space. Thick ice would limit the heat ocean sources available to the rock-ocean interface at the ocean's bottom due to tidal dissipation and potential radioactive sources. The heat flux structures control the development of geometrical configurations on the Europa's surface like double ridges, ice diapirs, chaos regions because the rheology of ice is temperature dependent (4).Analysis of temperature record of growing ice cover over a pond and water below revealed the importance of solar radiation during the ice growth. If there is no snow cover, a sufficient amount of solar radiation can penetrate through the ice and heat the water below. Due to temperature gradient, there is a heat flux from the water to the ice (Qwi), which may reduce ice growth at the bottom. Details and variables that constrain the heat flux through the ice can be utilized to estimate the ice thickness. We show with this analog analysis provides the forth step towards measurement strategy on the surface of Europa. We identify three types of thermal profiles (5) and fourth with combination of all three mechanisms.References:(1) Barr, A. C., A. P. Showman, 2009, Heat transfer in Europa's icy shell, University of Arizona Press, p. 405-430.(2) Ruiz, J., J. A. Alvarez-Gómez, R. Tejero, and N. Sánchez, 2007, Heat flow and thickness of a convective ice shell on Europa for grain size-dependent rheologies: Icarus, v. 190, p. 145-154.(3) Billings, S. E., S. A. Kattenhorn, 2005, The great thickness debate: Ice shell thickness models for Europa and comparisons with estimates based on flexure at ridges: Icarus, v. 177, p. 397-412.(4) Quick, L. C., B. D. Marsh, 2016, Heat transfer of ascending cryomagma on Europa: Journal of Volcanology and Geothermal Research, v. 319, p. 66-77.(5) Mitri, G., A. P. Showman, 2005, Convective-conductive transitions and sensitivity of a convecting ice shell to perturbations in heat flux and tidal-heating rate: Implications for Europa: Icarus, v. 177, p. 447-460.
Do Europa's Mountains Have Roots? Modeling Flow Along the Ice-Water Interface
NASA Astrophysics Data System (ADS)
Cutler, B. B.; Goodman, J. C.
2016-12-01
Are topographic features on the surface of Europa and other icy worlds isostatically compensated by variations in shell thickness (Airy isostasy)? This is only possible if variations in shell thickness can remain stable over geologic time. In this work we demonstrate that local shell thickness perturbations will relax due to viscous flow in centuries. We present a model of Europa's ice crust which includes thermal conduction, viscous flow of ice, and a mobile ice/water interface: the topography along the ice-water interface varies in response to melting, freezing, and ice flow. Temperature-dependent viscosity, conductivity, and density lead to glacier-like flow along the base of the ice shell, as well as solid-state convection in its interior. We considered both small scale processes, such as an isostatically-compensated ridge or lenticula, or heat flux from a hydrothermal plume; and a larger model focusing on melting and flow on the global scale. Our local model shows that ice-basal topographic features 5 kilometers deep and 4 kilometers wide can be filled in by glacial flow in about 200 years; even very large cavities can be infilled in 1000 years. "Hills" (locally thick areas) are removed faster than "holes". If a strong local heat flux (10x global average) is applied to the base of the ice, local melting will be prevented by rapid inflow of ice from nearby. On the large scale, global ice flow from the thick cool pole to the warmer and thinner equator removes global-scale topography in about 1 Ma; melting and freezing from this process may lead to a coupled feedback with the ocean flow. We find that glacial flow at the base of the ice shell is so rapid that Europa's ice-water interface is likely to be very flat. Local surface topography probably cannot be isostatically compensated by thickness variations: Europa's mountains may have no roots.
Durham, W.B.; Stern, L.A.; Kubo, T.; Kirby, S.H.
2005-01-01
We selected two Europan-ice-shell candidate highly hydrated sulfate salts for a laboratory survey of ductile flow properties: MgSO4 ?? 7H2O (epsomite) and Na2SO4 ?? 10H2O (mirabilite), called MS7 and NS10, respectively. Polycrystalline samples in pure form and in mixtures with water ice I were tested using our cryogenic high-pressure creep apparatus at temperatures 232 ??? T ??? 294 K, confining pressures P = 50 and 100 MPa, and strain rates 4 ?? 10-8 ??? ???dot;e ??? 7 ?? 10-5 s-1. Grain size of NS10 samples was > 100 ??m. The flow strength ?? of pure MS7 was over 100 times that of polycrystalline ice I at comparable conditions; that of pure NS10 over 20 times that of ice. In terms of the creep law ???dot;e = A??n e-Q/RT, where R is the gas constant, we determine parameter values of A = 1012.1 MPa-ns-1, n = 5.4, and Q = 128 kJ/mol for pure NS10. Composites of ice I and NS10 of volume fraction ?? NS10 have flow strength ??c = [??NS10??NS10J + (1 - ?? NS10)??iceIJ]1/J where J ??? -0.5, making the effect on the flow of ice with low volume fractions of NS10 much like that of virtually undeformable hard rock inclusions. Being much stronger and denser than ice, massive sulfate inclusions in the warmer, ductile layer of the Europan ice shell are less likely to be entrained in convective ice flow and more likely to be drawn to the base of the ice shell by gravitational forces and eventually expelled. With only smaller, dispersed sulfate inclusions, at probable sulfate ?? < 0.2, the shell may be treated rheologically as pure, polycrystalline ice, with boundary conditions perhaps influenced by the high density and low thermal conductivity of the hydrated salts. Copyright 2005 by the American Geophysical Union.
Slush Fund: The Multiphase Nature of Oceanic Ices and Its Role in Shaping Europa's Icy Shell
NASA Astrophysics Data System (ADS)
Buffo, J.; Schmidt, B. E.; Huber, C.
2017-12-01
The role of Europa's ice shell in mediating ocean-surface interaction, constraining potential habitability of the underlying hydrosphere, and dictating the surface morphology of the moon is discussed extensively in the literature, yet the dynamics and characteristics of the shell itself remain largely unconstrained. Some of the largest unknowns arise from underrepresented physics and varying a priori assumptions built into the current ice shell models. Here we modify and apply a validated one-dimensional reactive transport model designed to simulate the formation and evolution of terrestrial sea ice to the Europa environment. The top-down freezing of sea ice due to conductive heat loss to the atmosphere is akin to the formation of the Jovian moon's outer ice shell, albeit on a different temporal and spatial scale. Nevertheless, the microscale physics that govern the formation of sea ice on Earth (heterogenous solidification leading to brine pockets and channels, multiphase reactive transport phenomena, gravity drainage) likely operate in a similar manner at the ice-ocean interface of Europa, dictating the thermal, chemical, and mechanical properties of the ice shell. Simulations of the European ice-ocean interface at different stages during the ice shell's evolution are interpolated to produce vertical profiles of temperature, salinity, solid fraction, and eutectic points throughout the entire shell. Additionally, the model is coupled to the equilibrium chemistry package FREZCHEM to investigate the impact a diverse range of putative European ocean chemistries has on ice shell properties. This method removes the need for a priori assumptions of impurity entrainment rates and ice shell properties, thus providing a first principles constraint on the stratigraphic characteristics of a simulated European ice shell. These insights have the potential to improve existing estimates for the onset of solid state convection, melt lens formation due to eutectic melting, ice shell thickness, and ocean-surface interaction rates. Moreover, this work aims to shed light on the important role microscale physics plays in determining the macroscale properties of icy worlds by highlighting and adapting successful multiphase reactive transport sea ice models utilized in large scale Earth systems science simulations.
The initiation and persistence of cracks in Enceladus' ice shell
NASA Astrophysics Data System (ADS)
Rudolph, M. L.; Jordan, J.; Manga, M.; Hawkins, E. K.; Grannan, A. M.; Reinhard, A.; Farough, A.; Mittal, T.; Hernandez, J. A.
2016-12-01
The eruption of water from a global ocean underlying Enceladus' ice shell requires; i. a mechanism to create stresses sufficient to produce cracks that reach the ocean, ii. that the ascent of water through the crack must be fast enough to keep the crack from freezing. We develop models for the evolution of stresses in the ice shell and overpressure in the ocean, the propagation of cracks into the ice shell, and the melting of ice caused by the eruption of water through the cracks. We show that modest cooling of Enceladus' interior can produce extensional stresses in the ice shell sufficient to overcome the tensile strength of ice. We show that the resultant ice shell cracks can penetrate to depths greater than 10 km. Cracks of 10 km are required to reach the interior oceans of Enceladus in the polar regions. After crack formation, we show that the present eruption rate is sufficient to keep cracks from freezing below the water-table, at which water boils and subsequently erupts. The ascent of warm water from Enceladus' ocean widens the cracks and thins the ice shell in the South Polar Terrain (SPT). Model predictions show that a crack with the minimum, sufficient heat flow to persist without freezing, would thin the surrounding ice shell by about a factor of two. This calculation for heat flow is consistent with observed heat fluxes at the surface and recent inferences of the ice shell thickness in the SPT based on the shape and gravity of Enceladus.
Europa's shallow subsurface: lakes, layers and life? (Invited)
NASA Astrophysics Data System (ADS)
Schmidt, B. E.; Soderlund, K. M.; Gooch, B. T.; Blankenship, D. D.
2013-12-01
With an icy exterior covering a global ocean, Europa has long been a target of interest in the search for life beyond Earth. A critical question related to the habitability of this icy world is: how does the ice shell recycle? Recent detection of shallow subsurface water lenses or "lakes" joins the evidence that implies Europa is currently active, recycling its ice shell. This new perspective has important astrobiological implications. At a surface age of 40-90 Myr, and about 50% covered by chaos terrain, Europa's resurfacing rate is likely to be very high if water does play a significant role in their formation. Because of the vigor of overturn implied if chaos does form by the collapse of ice above subsurface lenses, it is likely that surface and subsurface materials are well-mixed within the largest and deepest lenses, providing a mechanism for bringing oxidants and other surface contaminants to the deeper ice shell where it can reach the ocean by convective or compositional effects. The timescales over which large lenses refreeze (a few hundred thousand years) are large compared to the timescales for vertical transport (a few tens of thousands of years), while the timescales for smaller lenses are comparable to or shorter than convective timescales but involving smaller impurity loads than for larger more well-mixed sources. Melt lenses are intriguing potential habitats, particularly the larger features. Moreover, their formation likely requires the existence of impurities within the upper ice shell that may be sources of energy for microorganisms. Geomorphic evidence also exists for brine percolation that can disperse fluids both vertically and horizontally through pores and fractures. This process, observed in terrestrial ice shelves, may preserve liquid water within the ice matrix over many kilometers from the source. Horizontal transport of material may produce interconnectivity between distinct regions of Europa, providing a pathway for transferring nutrients and biomass, thus preserving habitable conditions within the ice over a longer duration. From this point of view, we evaluate the habitability of Europa's ice and ocean in light of active processes, including the lifetime of liquid reservoirs, vertical and horizontal material transport, and the resurfacing rate of the body that may be responsible both for reenergizing and destroying shallow habitats.
Evolution of Planetary Ice-Ocean Systems: Effects of Salinity
NASA Astrophysics Data System (ADS)
Allu Peddinti, D.; McNamara, A. K.
2015-12-01
Planetary oceanography is enjoying renewed attention thanks to not only the detection of several exoplanetary ocean worlds but also due to the expanding family of ocean worlds within our own star system. Our solar system is now believed to host about nine ocean worlds including Earth, some dwarf planets and few moons of Jupiter and Saturn. Amongst them, Europa, like Earth is thought to have an ice Ih-liquid water system. However, the thickness of the Europan ice-ocean system is much larger than that of the Earth. The evolution of this system would determine the individual thicknesses of the ice shell and the ocean. In turn, these thicknesses can alter the course of evolution of the system. In a pure H2O system, the thickness of the ice shell would govern if heat loss occurs entirely by conduction or if the shell begins to convect as it attains a threshold thickness. This switch between conduction-convection regimes could determine the longevity of the subsurface ocean and hence define the astrobiological potential of the planetary body at any given time. In reality, however, the system is not pure water ice. The detected induced magnetic field infers a saline ocean layer. Salts are expected to act as an anti-freeze allowing a subsurface ocean to persist over long periods but the amount of salts would determine the extent of that effect. In our current study, we use geodynamic models to examine the effect of salinity on the evolution of ice-ocean system. An initial ocean with different salinities is allowed to evolve. The effect of salinity on thickness of the two layers at any time is examined. We also track how salinity controls the switch between conductive-convective modes. The study shows that for a given time period, larger salinities can maintain a thick vigorously convecting ocean while the smaller salinities behave similar to a pure H2O system leading to a thick convecting ice-shell. A range of salinities identified can potentially predict the current state and possibly the intermediate states of the ice-ocean system as it evolved over time. This could help constrain the endogenic contribution of salts to the surface chemistry.
What explains the structure of Enceladus's ice shell and can it be in equilibrium?
NASA Astrophysics Data System (ADS)
Hemingway, D.; Mittal, T.
2017-12-01
Over the course of the Cassini mission, a series of geodetic measurements [1-3] have revealed that Enceladus's ongoing south polar eruptions are likely sourced from a global subsurface liquid water ocean [2-6]. The extent of the ocean and the structure of the overlying ice shell are of particular importance as they speak to the nature of the eruptions and the thermal state and evolution of Enceladus. How quickly is Enceladus cooling? Is the ocean a recent, perhaps transient phenomenon, or has it been present for billions of years? Based on shape, gravity, and libration observations, the floating ice shell is inferred to be thickest at the equator, where it is perhaps 35-45 km thick at the sub- and anti-Saturnian points, and thinnest at the poles, especially beneath the broad topographic depression associated with the South Polar Terrain (SPT), where the shell is likely less—perhaps much less—than 10 km thick [6,7]. Although tidal heating is assumed to be the mechanism primarily responsible for the observed shell structure, and whereas several theoretical studies have been carried out [e.g., 8], a clear match between theory and observations has yet to be demonstrated. Likewise, the question of whether or not the current configuration can be in equilibrium, remains open. Here we model the effects of tidal heating on Enceladus's ice shell, showing that the expected equilibrium ice shell structure is largely consistent with the structure inferred from shape, gravity, and libration observations. We consider the nature of the north-south polar asymmetry in shell structure and geologic activity, and we address the question of whether or not the current structure can be maintained in spite of ongoing relaxation. In light of our results, we discuss implications for the heat budget and thermal evolution of Enceladus. [1] P. Thomas et al., Icarus 190 (2), 573-584, Oct. 2007. [2] L. Iess et al., Science 344 (6179), 78-80, 2014. [3] P. C. Thomas et al., Icarus 264, 37-47, 2016. [4] W. B. McKinnon, Geophys. Res. Lett. 42, 2015. [5] O. Čadek et al., Geophys. Res. Lett. 43, 2016. [6] M. Beuthe, A. Rivoldini, and A. Trinh, Geophys. Res. Lett. 43, 2016. [7] D. J. Hemingway and T. Mittal, Icarus, in prep. [8] J. H. Roberts and F. Nimmo, Icarus 194 (2), 675-689, 2008.
NASA Astrophysics Data System (ADS)
Barr, Amy C.; Stillman, David E.
2011-03-01
Orbital radar sounding has been suggested as a means of determining the subsurface thermal and physical structure of the outer ice I shells of the Galilean satellites. At radar frequencies, the dielectric permittivity of single- and polycrystalline water ice I is anisotropic. Crystal orientation fabric (COF), which is indicative of strain history, can be unambiguously detected by comparing the received power of dual co-polarization (linear polarization parallel and perpendicular to the orbit) radar data. Regions with crystal orientations dictated by the local strain field (“fabric”) form in terrestrial ice masses where accumulated strain and temperature are high, similar to conditions expected in a convecting outer ice I shell on Europa, Ganymede, or Callisto. We use simulations of solid-state ice shell convection to show that crystal orientation fabric can form in the warm convecting sublayer of the ice shells for plausible grain sizes. Changes in received power from parallel and perpendicular polarizations in the ice shells due to fabric could be detected if multi-polarization data is collected. With proper instrument design, radar sounding could be used to shed light on the strain history of the satellites' ice shells in addition to their present day internal structures.
NASA Astrophysics Data System (ADS)
Kalousová, Klára; Schroeder, Dustin M.; Soderlund, Krista M.
2017-03-01
Young surface and possible recent endogenic activity make Europa one of the most exciting solar system bodies and a primary target for spacecraft exploration. Future Europa missions are expected to carry ice-penetrating radar instruments designed to investigate its subsurface thermophysical structure. Several authors have addressed the radar sounders' performance at icy moons, often ignoring the complex structure of a realistic ice shell. Here we explore the variation in two-way radar attenuation for a variety of potential thermal structures of Europa's shell (determined by reference viscosity, activation energy, tidal heating, surface temperature, and shell thickness) as well as for low and high loss temperature-dependent attenuation model. We found that (i) for all investigated ice shell thicknesses (5-30 km), the radar sounder will penetrate between 15% and 100% of the total thickness, (ii) the maximum penetration depth varies laterally, with deepest penetration possible through cold downwellings, (iii) direct ocean detection might be possible for shells of up to 15 km thick if the signal travels through cold downwelling ice or the shell is conductive, (iv) even if the ice/ocean interface is not directly detected, penetration through most of the shell could constrain the deep shell structure through returns from deep non-ocean interfaces or the loss of signal itself, and (v) for all plausible ice shells, the two-way attenuation to the eutectic point is ≲30 dB which shows a robust potential for longitudinal investigation of the ice shell's shallow thermophysical structure.
NASA Astrophysics Data System (ADS)
Walker, C. C.; Craft, K.; Schmidt, B. E.
2015-12-01
The fracture and failure of Europa's icy shell are not only observable scars of variable stress and activity throughout its evolution, they also serve key as mechanisms in the interaction of surface and subsurface material, and thus crucial aspects of the study of crustal overturn and ice shell habitability. Galileo images, our best and only reasonable-resolution views of Europa until the Europa Multiple Flyby Mission arrives in the coming decades, illustrates a single snapshot in time in Europa's history from which we deduce many temporally-based hypotheses. One of those hypotheses, which we investigate here, is that sub-surface water-both in the form of Great Lake-sized perched water pockets in the near-surface and the larger global ocean below-drives the deformation, fracture, and failure of the surface. Using Galileo's snapshot in time, we use a 2D/3D hydraulic fracturing model to investigate the propagation of vertical fractures upward into the ice shell, motion of water within and between fractures, and the subsequent break-up of ice over shallow water, forming the chaos regions and other smaller surface features. We will present results from a cohesive fragmentation model to determine the time over which chaos formation occurs, and use a fracking model to determine the time interval required to allow water to escape from basal fractures in the ice shell. In determining the style, energy, and timescale of these processes, we constrain temporal variability in observable activity and topography at the surface. Finally, we compare these results to similar settings on Earth-Antarctica-where we have much higher resolution imagery and observations to better understand how sub-surface water can affect ice surface morphology, which most certainly have implications for future flyby and surface lander exploration.
NASA Astrophysics Data System (ADS)
Kalousova, Klara; Schroeder, Dustin M.; Soderlund, Krista M.; Sotin, Christophe
2016-10-01
With its strikingly young surface and possibly recent endogenic activity, Europa is one of the most exciting bodies within our Solar System and a primary target for spacecraft exploration. Future missions to Europa are expected to carry ice penetrating radar instruments which are powerful tools to investigate the subsurface thermophysical structure of its ice shell.Several authors have addressed the 'penetration depth' of radar sounders at icy moons, however, the concept and calculation of a single value penetration depth is a potentially misleading simplification since it ignores the thermal and attenuation structure complexity of a realistic ice shell. Here we move beyond the concept of a single penetration depth by exploring the variation in two-way radar attenuation for a variety of potential thermal structures of Europa's ice shell as well as for a low loss and high loss temperature-dependent attenuation model. The possibility to detect brines is also investigated.Our results indicate that: (i) for all ice shell thicknesses investigated (5-30 km), a nominal satellite-borne radar sounder will penetrate between 15% and 100% of the total thickness, (ii) the maximum penetration depth strongly varies laterally with the deepest penetration possible through the cold downwellings, (iii) the direct detection of the ice/ocean interface might be possible for shells of up to 15 km if the radar signal travels through the cold downwelling, (iv) even if the ice/ocean interface is not detected, the penetration through most of the shell could constrain the deep shell structure through the loss of signal, and (v) for all plausible ice shells the two-way attenuation to the eutectic point is ≤30 dB which shows a robust potential for longitudinal investigation of the ice shell's shallow structure.Part of this work has been performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract to NASA. K.K. acknowledges support by the Grant Agency of the Czech Republic through project 15-14263Y.
Thick or Thin Ice Shell on Europa?
NASA Technical Reports Server (NTRS)
2007-01-01
Scientists are all but certain that Europa has an ocean underneath its icy surface, but they do not know how thick this ice might be. This artist concept illustrates two possible cut-away views through Europa's ice shell. In both, heat escapes, possibly volcanically, from Europa's rocky mantle and is carried upward by buoyant oceanic currents. If the heat from below is intense and the ice shell is thin enough (left), the ice shell can directly melt, causing what are called 'chaos' on Europa, regions of what appear to be broken, rotated and tilted ice blocks. On the other hand, if the ice shell is sufficiently thick (right), the less intense interior heat will be transferred to the warmer ice at the bottom of the shell, and additional heat is generated by tidal squeezing of the warmer ice. This warmer ice will slowly rise, flowing as glaciers do on Earth, and the slow but steady motion may also disrupt the extremely cold, brittle ice at the surface. Europa is no larger than Earth's moon, and its internal heating stems from its eccentric orbit about Jupiter, seen in the distance. As tides raised by Jupiter in Europa's ocean rise and fall, they may cause cracking, additional heating and even venting of water vapor into the airless sky above Europa's icy surface. (Artwork by Michael Carroll.)Why Europa's icy shell may convect, but ice sheets do not: a glaciological perspective
NASA Astrophysics Data System (ADS)
Bassis, J. N.
2016-12-01
Jupiter's moon Europa is covered in an icy shell that lies over a liquid ocean. Geological evidence and numerical models suggest that Europa's icy shell convects, providing the possibility that Europa may experience a form of plate tectonics and could even harbor life in its subsurface ocean. The hypothesis that Europa convects is supported by both models and geological evidence. Surprisingly, when we apply similar calculations and (assumptions) used by planetary scientists to infer convection in icy moons like Europa we find that these models also predict that vigorous convection should also occur in portions of our own terrestrial ice sheets and ice shelves where we have firm evidence to the contrary. We can explain the lack of convection within our own ice sheets by recognizing that instead of the diffusion creep limited rheology frequently invoked by planetary scientists, terrestrial ice undergoes power-law creep down to very low strain rates. Glaciological studies find that power-law creep is required to explain the structure of vertical strain rate near ice sheet divides and shape of the ice sheets near an ice divide. However, when we now apply a rheology that is consistent with terrestrial ice sheet dynamics to icy moon conditions, we find conditions are far less favorable for convection in icy moons, with only a very limited parameter regime where convection can occur. Given the many unknowns (grain size, impurities etc.) it is challenging to draw strong conclusions about the behavior of icy moons . Nonetheless, the lack of convection in terrestrial ice sheets provides an important constraint on the dynamics of icy moons and models that explain convection of icy moons should also explain the lack of convection on terrestrial ice sheets.
NASA Astrophysics Data System (ADS)
Goodman, J. C.
2016-12-01
Are topographic features on the surface of Europa and other icy worlds isostatically compensated by variations in shell thickness (Airy isostasy)? This is only possible if variations in shell thickness can remain stable over geologic time. Here we show that melting and freezing driven by the pressure dependence of the melting point of water - the "ice pump" - can rapidly erase topography at the ice/water interface. We consider ice pumps driven by both tidal action and buoyancy-driven flow. We first show that as tidal action drives the ocean up and down along a sloping interface, ice will be melted from areas where it's thickest and deposited where the ice is thinnest. We show that this process causes the ice interface topography to relax according to a simple "diffusion" linear partial differential equation. We estimate that a 10-km-wide topographic feature would be erased by the tidal ice pump in 3000 years if Europa's tidal current amplitude is 1 cm/s; however, this timescale is inversely proportional to the cube of the tidal velocity! Next, we consider an ice pump powered by ascent of meltwater along a sloping ice-water interface. We consider layer-averaged budgets for heat, mass, and momentum, along with turbulent mixing of the meltwater layer with underlying seawater via a Richardson number dependent entrainment process, and use these to estimate the thickness and mass flux of the meltwater layer. From this we estimate the rate of melting and freezing at the interface. These two ice pump processes combine with the glacial flow of warm basal ice to rapidly flatten out any variations in the height of the ice-water interface: Europa's ice/water interface may be perfectly flat! If so, topography at Europa's surface can only be supported by variations in density of the shell or the strength of the brittle surface ice.
Non-uniform thickness in Europa's icy shell: implications for astrobiology mission design
NASA Astrophysics Data System (ADS)
Fairén, A.; Amils, R.
The exploration of Europa's subsurface ocean is hardly constrained by the presence of an outer ice shell of unknown thickness: a somewhat thin crust would allow easier access to the ocean below. Current estimates for the thickness of Europa's icy surface range from a few km [1] to a few tens of km [2], the shell overlying a liquid water ocean up to 150 km thick [3,4,5]. The surface is believed to be young (mean age of 30-80 Myr [6]) and geologically active [7,8,9], as it is sparsely cratered. Here we report geological evidence indicating that the thickness of Europa's ice crust is actually a complex combination of thicker and thinner areas, highlighting the implications of such structure in the future exploration of the inner ocean. Detailed geologic mapping of impact craters, palimpsests and chaotic terrains distribution on Europa's surface, offers an initial approach to a comprehensive description of the thickness variation in the ice shell. Our analysis is based in: (1) Crater distribution, morphology, diameter and depth. Seminal work by Schenk [2] of transitions in crater shape/diameter suggested enhanced structural collapse of craters with diameter >27-33 km, that will consequently form multiring basins, due to weaker ice or a global ocean at depths >19-25 km. This being true, strictly can only be interpreted regionally: multiring basins indicate regions where the ice shell is thick; in those regions where the icy surface is thin, a bolide impact will breach the ice and leave neither crater nor multiring basin behind, but probably Ganymede's type palimpsests. (2) Palimpsest-type features distribution, indicating regions where the ice shell is too thin to support crater formation after big bolide impacts. In Ganymede, palimpsests are circular, low albedo and relief features formerly formed by impacts [10,11]. (3) Chaotic terrain distribution, considering features tens to hundreds of km across, that may be the evidence for very thin ice areas (from ˜ 2 km to zero shell thickness [12]) with liquid water at shallow depths [5], allowing for bolide penetration, diapirism and the extrusion of water to the surface. The heterogeneity in shell's thickness may be originated in spatial variations in tidal heating [13] and/or warm water upwellings from the silicate interior capable of melt-through the ice from below [12,14]. This thickness heterogeneity can be embedded in a general equatorward thickening trending, due to tidal dissipation and surface temperature variations [15]. A major constraint must be addressed at this point: the dynamism of ductile ice near the base of the shell may drive to decay in lateral thickness contrasts. But this effect has been examined both assuming ice as a Newtonian [16,17,18] and a non-Newtonian material [19], broadly reaching to similar conclusions: global shell thickness variations may survive for up to 100 Myr. In addition, lateral pressure gradients may not decay if they comprise only shallow depths [19]. Therefore, our results point to a dynamic non-uniform Europa's icy shell, displaying some regional and temporal heterogeneity in thickness. As thin/thick ice distribution is as time dependent as the surface ice features are (both are reshaped in periods ˜ 100 Myr), the analysis performed here offers an estimation of the current thickness distribution in the ice shell, estimation that cannot be extrapolated to ancient (e.g., >100 Myr) times. The astrobiological potential the shell and ocean below possess is highlighted by these results: a somewhere thin outer crust allows the possibility for some exogenous materials delivered by asteroids and comets to reach the inner liquid water ocean by breaching the brittle lithosphere [20], and so join to those generated in the interior of Europa via volcanic and hydrothermal activity [21]. In addition, pressure gradients driving the ductile ice at the base of the shell to flow laterally may help to redistribute such materials among the inner ice shell and/or ocean through time. Our results have a direct deal with the investigation of Europa's interior. Mission design will need to incorporate a drill system routine well suited to penetrate the ice shell tens of meters in the thinner areas, allowing to deep subsurface access and sampling. Landing and drilling targets should be selected among the zones where mapping indicates the presence of a thinner ice shell, as it may potentially suggest the existence of nutrient-rich hydrothermal plumes rising from the rocky interior and melting the ice from below, probably creating chaotic terrains [14]. Little-cratered, thin-crust areas would consequently be interpreted as key pacemakers to detect both the ice/ocean interface and the most complex environments under the ice shell. Additionally, drilling processes will be clearly easier in such zones. References: [1] Hoppa, G., et al. Science 285, 1899-1903 (1999). [2] Schenk, P.M. Nature 417, 419-421 (2002). [3] Anderson J.D. et al. Science 276, 1236-1239 (1997). [4] Anderson J.D. et al. Science 281, 2019-2022 (1998). [5] Carr, M.H., et al. Nature 391, 363-365 (1998). [6] Zahnle, K., et al. Icarus 163, 263-289 (2003). [7] Smith, B.A., et al. Science 206, 927-950 (1979). [8] Zahnle, K., et al. Icarus 136, 202-222 (1998). [9] Levison, H.F., et al. Icarus 143, 415-420 (2000). [10] Schenk, P.M. Lunar Planet. Sci. Conf. XXVII, #1137-1138 (1996). [11] Farrar, K.S. & Collins, G.C. Lunar Planet Sci. Conf. XXXIII, #1450 (2002). [12] Greenberg, R., et al. Icarus 141, 263-286 (1999). [13] Ojakangas, G.W. & Stevenson, D.J. Icarus 81, 220-241 (1989). [14] Collins, G.C. & Goodman, J.C. Europa's Icy Shell Conf., #7032 (2004). [15] Tobie, G., et al. J. Geophys. Res. 108, doi: 10.1029/2003JE002099 (2003). [16] Stevenson, D.J. Lunar Planet Sci. Conf. XXXI, #1506 (2000). [17] O'Brien, D.P., et al. Icarus 156, 152-161 (2002). [18] Buck, L., et al. Geophys. Res. Lett. 29, doi: 10.1029/2002GL016171 (2002). [19] Nimmo, F. Icarus in press (2004). [20] Pierazzo, E. and Chyba, C. F. Icarus 157, 120-127 (2002). [21] McCord, T.B. et al. Science 280, 1242-1245 (1998).
In Pursuit of Analogs for Europa's Dynamics & Potential Habitats
NASA Astrophysics Data System (ADS)
Schmidt, Britney E.; Blankenship, D. D.; Greenbaum, J. S.; Young, D. A.
2010-10-01
Future Europa exploration will seek to characterize the distribution of shallow subsurface water as well as to understand the formation of surface features through dynamic ice-shell processes. Radar sounding will be a critical tool for imaging these features, and should be of primary interest to the astrobiology community for understanding how and where life might arise on Europa. To develop successful instrumentation and data interpretation techniques for exploring Europa, we must leverage analogous terrestrial environments and processes. Airborne ice penetrating radar is now a mature tool in terrestrial studies of Earth's ice sheets, and orbital examples have been successfully deployed at Earth's Moon and Mars. It is a distinct possibility that water within or just below the ice on Europa has played a role in forming some of its dynamic terrain. Observations of rotated blocks and dark floor materials may suggest that brines existed in the near subsurface and enabled the formation of such features. The University of Texas High Capability Airborne Radar Sounder (HiCARS) developed to study Antarctic ice sheet dynamics has been configured to test observation scenarios for Europa. We discuss recent results from the 60 MHz HiCARS system over brine infiltrated Antarctic marine ice as an analog for processes affecting the formation of pits and chaos. Basal melt occurring below terrestrial marine ice is directly analogous to processes that may operate on Europa if the shell is "thin,” and will be similar to processes occurring instead within the ice sheet in the case of a thicker, multi-layer ice sheet where enriched brines may remain liquid within the shell. A key site for further investigation of conductive and "convective” ices is found in the polythermal glaciers in the Arctic, and the case for this exploration will be illuminated.
NASA Astrophysics Data System (ADS)
Stillman, D. E.; Grimm, R. E.; MacGregor, J. A.; Sander-Olhoeft, M.; Brown, J.
2016-12-01
The numerous chaos regions, lenticulae and double layer ridges on Europa's surface suggest that pockets of liquid currently exist or did exist. Here we investigate the sensitivity of ice-penetrating radar (IPR) and magnetotelluric (MT) methods to the putative electrical properties of Europa's ice shell, based on a set of plausible ice-shell scenarios and a synthesis of laboratory dielectric spectroscopy measurements of hundreds of ice samples. We evaluate models of the electrical conductivity of the ice shell as a function of impurity content, temperature and liquid vein network tortuosity. Europa's ice shell is estimated to be 5-30 km thick. If its thickness exceeds 10 km, the shell likely convects within its bottom 70%, while the upper part is thermally conductive. These convective downwellings and upwellings are estimated to have core temperatures of 235 K and 253 K, respectively. Downwellings are so cold that they are below of eutectic temperature of most Europa-relevant salts, but not below that of Europa-relevant acids. Given the low temperature of downwelling ice, IPR is expected to penetrate through it. Warmer upwellings may possess significant amounts of unfrozen water if the shell is acid- or salt-rich. The injection of liquid or the melting of acid- or salt-rich ice will eventually lead to refreezing, as the shell conducts away this excess heat. As liquid freezes, impurities are rejected and concentrated in a liquid vein network surrounding relatively pure ice crystals. These vein networks remain liquid as long as the temperature is greater than that of the eutectic of the bulk impurities. Therefore, in upwellings, vein networks should be briny and hence more electrically conductive. The electrical conductivity of these vein networks depends on the initial impurity concentration of the liquid, impurity type, temperature and the tortuosity of any vein networks. The latter property decreases with increasing ice recrystallization. We conclude that IPR will likely be able to map the top of the unfrozen zone, assuming typical marine ice salt concentrations, but not penetrate through it. MT measurements could complement IPR effectively, because they could measure a conductivity depth profile within the unfrozen part of the ice shell, where the electrical conductivity exceeds 0.1 mS/m.
Enceladus' tidal dissipation revisited
NASA Astrophysics Data System (ADS)
Tobie, Gabriel; Behounkova, Marie; Choblet, Gael; Cadek, Ondrej; Soucek, Ondrej
2016-10-01
A series of chemical and physical evidence indicates that the intense activity at Enceladus' South Pole is related to a subsurface salty water reservoir underneath the tectonically active ice shell. The detection of a significant libration implies that this water reservoir is global and that the average ice shell thickness is about 20-25km (Thomas et al. 2016). The interpretation of gravity and topography data further predicts large variations in ice shell thickness, resulting in a shell potentially thinner than 5 km in the South Polar Terrain (SPT) (Cadek et al. 2016). Such an ice shell structure requires a very strong heat source in the interior, with a focusing mechanism at the SPT. Thermal diffusion through the ice shell implies that at least 25-30 GW is lost into space by passive diffusion, implying a very efficient dissipation mechanism in Enceladus' interior to maintain such an ocean/ice configuration thermally stable.In order to determine in which conditions such a large dissipation power may be generated, we model the tidal response of Enceladus including variable ice shell thickness. For the rock core, we consider a wide range of rheological parameters representative of water-saturated porous rock materials. We demonstrate that the thinning toward the South Pole leads to a strong increase in heat production in the ice shell, with a optimal thickness obtained between 1.5 and 3 km, depending on the assumed ice viscosity. Our results imply that the heat production in the ice shell within the SPT may be sufficient to counterbalance the heat loss by diffusion and to power eruption activity. However, outside the SPT, a strong dissipation in the porous core is required to counterbalance the diffusive heat loss. We show that about 20 GW can be generated in the core, for an effective viscosity of 1012 Pa.s, which is comparable to the effective viscosity estimated in water-saturated glacial tills on Earth. We will discuss the implications of this revisited tidal budget for the activity of Enceladus and the long-term evolution of its interior.
Effect of Ice-Shell Thickness Variations on the Tidal Deformation of Enceladus
NASA Astrophysics Data System (ADS)
Choblet, G.; Cadek, O.; Behounkova, M.; Tobie, G.; Kozubek, T.
2015-12-01
Recent analysis of Enceladus's gravity and topography has suggested that the thickness of the ice shell significantly varies laterally - from 30-40 km in the south polar region to 60 km elsewhere. These variations may influence the activity of the geysers and increase the tidal heat production in regions where the ice shell is thinned. Using a model including a regional or global subsurface ocean and Maxwell viscoelasticity, we investigate the impact of these variations on the tidal deformation of the moon and its heat production. For that purpose, we use different numerical approaches - finite elements, local application of 1d spectral method, and a generalized spectral method. Results obtained with these three approaches for various models of ice-shell thickness variations are presented and compared. Implications of a reduced ice shell thickness for the south polar terrain activity are discussed.
Porosity and Salt Content Determine if Subduction Can Occur in Europa's Ice Shell
NASA Astrophysics Data System (ADS)
Johnson, Brandon C.; Sheppard, Rachel Y.; Pascuzzo, Alyssa C.; Fisher, Elizabeth A.; Wiggins, Sean E.
2017-12-01
Motivated by recent evidence for subduction in Europa's ice shell, we explore the geophysical feasibility of this process. Here we construct a simple model to track the evolution of porosity and temperature within a slab that is forced to subduct. We also vary the initial salt content in Europa's ice shell and determine the buoyancy of our simulated subducting slab. We find that porosity and salt content play a dominant role in determining whether the slab is nonbuoyant and subduction in Europa's ice shell is actually possible. Generally, we find that initially low porosities and high salt contents within the conductive lid are more conducive to subduction. If salt contents are laterally homogenous, and Europa has a reasonable surface porosity of ϕ0 = 0.1, the conductive portion of Europa's shell must have salt contents exceeding 22% for subduction to occur. However, if salt contents are laterally heterogeneous, with salt contents varying by a few percent, subduction may occur for a surface porosity of ϕ0 = 0.1 and overall salt contents of 5%. Thus, we argue that under plausible conditions, subduction in Europa's ice shell is possible. Moreover, assuming that subduction is actively occurring or has occurred in Europa's recent past provides important constraints on the structure and composition of the ice shell.
NASA Astrophysics Data System (ADS)
Walker, C. C.; Bassis, J. N.
2011-12-01
At the South Pole of Enceladus, a small icy moon orbiting Saturn, is a heavily fractured ice plain surrounded by a nearly-circular mountain range. Remarkably, the Cassini orbiter detected jets of water emanating from the icy shell and into space, originating from 4 parallel "tiger stripe" rifts within the center of the ice plain. The tiger stripes imaged on Enceladus are morphologically similar to rifts observed to form under extensional stress regimes in terrestrial ice shelves; the putative subsurface ocean hypothesized beneath the icy shell strengthens the analogy that their formation may have similar mechanical origins. Past studies have also suggested that the tiger stripes are the result of a process similar to that of mid-ocean ridge spreading on the Earth, but it remains to be seen whether or not such motion is consistent with the mountainous features seen at the circular cliff-like boundary of the region. In an attempt to understand the formation of these tiger stripes and their relationship to the observed mountain chains, we apply a conceptual model in which the ice is considered to be less like a continuous fluid body and, instead, behaves like a granular material made up of discrete blocks of ice. The tidal forces on the small moon tug on the shell enough that it has been cracked many times over, motivating the assumption that the ice exists in a continuum between wholly intact ice and highly pre-fractured ice. We employ several experimental setups with the intention of mapping the deformation of the south polar segment of the shell, to determine the processes that may contribute to its observed morphological state. These setups range from large scale topographical models, e.g., simulating the build up of mountains and processes that lead to overall elevation differences in the region, to small-scale, and focus on the more detailed level of fracturing. We explore our ice-shelf rifting analogy by modeling both icy moon fracturing and ice shelf rifting to compare and contrast the failure modes that we observe, results that bolster both our comparative platform and, importantly, our understanding of fracture in ice shelves on the Earth as well. A similar approach could be applied to the chaos regions of Europa, where fractures are prevalent and whose underlying causes are not well understood.
A rigid and weathered ice shell on Titan.
Hemingway, D; Nimmo, F; Zebker, H; Iess, L
2013-08-29
Several lines of evidence suggest that Saturn's largest moon, Titan, has a global subsurface ocean beneath an outer ice shell 50 to 200 kilometres thick. If convection is occurring, the rigid portion of the shell is expected to be thin; similarly, a weak, isostatically compensated shell has been proposed to explain the observed topography. Here we report a strong inverse correlation between gravity and topography at long wavelengths that are not dominated by tides and rotation. We argue that negative gravity anomalies (mass deficits) produced by crustal thickening at the base of the ice shell overwhelm positive gravity anomalies (mass excesses) produced by the small surface topography, giving rise to this inverse correlation. We show that this situation requires a substantially rigid ice shell with an elastic thickness exceeding 40 kilometres, and hundreds of metres of surface erosion and deposition, consistent with recent estimates from local features. Our results are therefore not compatible with a geologically active, low-rigidity ice shell. After extrapolating to wavelengths that are controlled by tides and rotation, we suggest that Titan's moment of inertia may be even higher (that is, Titan may be even less centrally condensed) than is currently thought.
Geological evidence for solid-state convection in Europa's ice shell.
Pappalardo, R T; Head, J W; Greeley, R; Sullivan, R J; Pilcher, C; Schubert, G; Moore, W B; Carr, M H; Moore, J M; Belton, M J; Goldsby, D L
1998-01-22
The ice-rich surface of the jovian satellite Europa is sparsely cratered, suggesting that this moon might be geologically active today. Moreover, models of the satellite's interior indicate that tidal interactions with Jupiter might produce enough heat to maintain a subsurface liquid water layer. But the mechanisms of interior heat loss and resurfacing are currently unclear, as is the question of whether Europa has (or had at one time) a liquid water ocean. Here we report on the morphology and geological interpretation of distinct surface features-pits, domes and spots-discovered in high-resolution images of Europa obtained by the Galileo spacecraft. The features are interpreted as the surface manifestation of diapirs, relatively warm localized ice masses that have risen buoyantly through the subsurface. We find that the formation of the features can be explained by thermally induced solid-state convection within an ice shell, possibly overlying a liquid water layer. Our results are consistent with the possibility that Europa has a liquid water ocean beneath a surface layer of ice, but further tests and observations are needed to demonstrate this conclusively.
Geological evidence for solid-state convection in Europa's ice shell
Pappalardo, R.T.; Head, J.W.; Greeley, R.; Sullivan, R.J.; Pilcher, C.; Schubert, G.; Moore, W.B.; Carr, M.H.; Moore, Johnnie N.; Belton, M.J.S.; Goldsby, D.L.
1998-01-01
The ice-rich surface of the jovian satellite Europa is sparsely cratered, suggesting that this moon might be geologically active today. Moreover, models of the satellite's interior indicate that tidal interactions with Jupiter might produce enough heat to maintain a subsurface liquid water layer. But the mechanisms of interior heat loss and resurfacing are currently unclear, as is the question of whether Europa has (or had at one time) a liquid water ocean. Here we report on the morphology and geological interpretation of distinct surface features-pits, domes and spots-discovered in high-resolution images of Europa obtained by the Galileo spacecraft. The features are interpreted as the surface manifestation of diapirs, relatively warm localized ice masses that have risen buoyantly through the subsurface. We find that the formation of the features can be explained by thermally induced solid-state convection within an ice shell, possibly overlying a liquid water layer. Our results are consistent with the possibility that Europa has a liquid water ocean beneath a surface layer of ice, but further tests and observations are needed to demonstrate this conclusively.
Numerical Simulations of Non-Newtonian Convection in Ice: Application to Europa
NASA Technical Reports Server (NTRS)
Barr, A. C.; Pappalardo, R. T.
2003-01-01
Numerical simulations of solid state convection in Europa's ice shell have so far been limited to consideration of Newtonian flow laws, where the viscosity of ice is strongly dependent upon temperature, predicting that a stagnant lid should form at the top (10-40%) of a convecting ice shell. Such large thicknesses seem to contradict estimates of the effective elastic thickness of Europa s ice shell during its geologically active period. Recent laboratory experiments characterize the rheology of ice as the sum of contributions from several temperature and strain rate-dependent creep mechanisms. We present the results of numerical simulations of convection within Europa s ice shell using the finite-element model Citcom, applying the non-Newtonian rheology of grain boundry sliding. Our calculations suggest a shallower brittle/ductile transition and larger interior convective velocities compared to Newtonian rheology. The flow field is time-dependent, with small, localized upwellings and downwellings at the thermal boundary layers that have minimal topographic expression at the surface.
Enceladus's south polar thermal anomaly in light of weak thermal convection
NASA Astrophysics Data System (ADS)
Besserer, Jonathan; Golabek, Gregor J.; Rozel, Antoine; Tackley, Paul J.
2014-05-01
The south polar thermal anomaly of Enceladus, contrasting with older and colder northern regions, suggests an asymmetrical heat transfer in the satellite's ice shell. Most of the current models that explain such a distribution prescribe an a priori asymmetry by mean of a mechanical or topographical anomaly in or below the south polar ice shell. We present here a series of simulations with a 2D-spherical convection model to investigate the possibility of self-consistently generating a localized mechanical anomaly in the ice shell. We focus on the non-Newtonian character of ice rheology, and on the stability of a single-plume (i.e. localized convection) and low-degree convection regimes. We show that the non-Newtonian rheology favors a localized (tidally heated) convection surrounded by a conductive ice mantle, even with a global, liquid water ocean at the base of the ice shell. We find that the single-plume state is very unlikely to remain stable if the rheology is Newtonian. The proposed thermal regime for Enceladus's ice shell is therefore weak, single-plume thermal convection focused at the south pole (e.g., remnant of a formerly more vigorous convection). Such weak-to-sub-critical regimes may be important for icy satellites, as recently pointed out by Solomatov (2012, PEPI). We will discuss the effects of ice plasticity on heat focusing in Enceladus's South Polar Terrain, together with the possibility of an ice shell a factor ~2 thinner than previously thought (Hemingway et al., AGU 2013; Stevenson et al., AGU 2013).
Thick or Thin Ice Shell on Europa? Artist Concept
2007-12-13
Scientists are all but certain that Europa has an ocean underneath its icy surface, but they do not know how thick this ice might be. This artist concept illustrates two possible cut-away views through Europa ice shell.
Ocean-driven heating of Europa's icy shell at low latitudes
NASA Astrophysics Data System (ADS)
Soderlund, K. M.; Schmidt, B. E.; Wicht, J.; Blankenship, D. D.
2014-01-01
The ice shell of Jupiter's moon Europa is marked by regions of disrupted ice known as chaos terrains that cover up to 40% of the satellite's surface, most commonly occurring within 40° of the equator. Concurrence with salt deposits implies a coupling between the geologically active ice shell and the underlying liquid water ocean at lower latitudes. Europa's ocean dynamics have been assumed to adopt a two-dimensional pattern, which channels the moon's internal heat to higher latitudes. Here we present a numerical model of thermal convection in a thin, rotating spherical shell where small-scale convection instead adopts a three-dimensional structure and is more vigorous at lower latitudes. Global-scale currents are organized into three zonal jets and two equatorial Hadley-like circulation cells. We find that these convective motions transmit Europa's internal heat towards the surface most effectively in equatorial regions, where they can directly influence the thermo-compositional state and structure of the ice shell. We suggest that such heterogeneous heating promotes the formation of chaos features through increased melting of the ice shell and subsequent deposition of marine ice at low latitudes. We conclude that Europa's ocean dynamics can modulate the exchange of heat and materials between the surface and interior and explain the observed distribution of chaos terrains.
Tidal deformation of Enceladus' ice shell with variable thickness and Maxwell rheology
NASA Astrophysics Data System (ADS)
Soucek, Ondrej; Behounkova, Marie; Cadek, Ondrej; Tobie, Gabriel; Choblet, Gael
2017-04-01
Tidal deformation of icy moons has been traditionally studied using the spectral approach which is very efficient for perfectly spherical bodies with radially dependent rheological structure. Measurements of Enceladus' topography (Nimmo et al., 2011) and low-degree gravity (Iess et al., 2014) indicate that the ice shell is significantly thinned in the southern hemisphere (Iess et al., 2014; McKinnon, 2015) and according to recent gravity, shape and libration inversion, it may be only a few kilometers thick at the south pole (Cadek et al., 2016). These variations may potentially have a significant effect on the amplitude and pattern of tidal deformation, stress and associated heating inside the shell, but cannot be straightforwardly incorporated into the existing spectral codes. In order to circumvent this difficulty and to quantify the effects of ice-shell thickness variations, we have developed a three-dimensional finite element code in the framework of FEniCS package (Alnaes et al., 2015). Using this numerical tool, we address the changes in tidally-induced deformation amplitude, stresses and tidal heating for structural models of Enceladus' ice shell of various complexity. Considering Maxwell viscoelastic rheology of the shell, we compare models with uniform thickness consistent with the libration data and with constant viscosity, synthetic models with analytically parameterized thinning in the south polar region and depth-dependent viscosity varying over several orders of magnitude, and finally, models with the shell topography and thickness based on the recent model of Cadek et al. (2016). We find that the thinning of the ice shell around the south pole may lead to amplification of the stress and displacement in this region region by a factor of up to 2 and 4, respectively, depending on the average ice shell thickness, the amplitude of thinning and the viscosity structure. Our results also suggest that lateral variations of ice thickness can induce significant anomalies of the surface heat flux and, together with other effects (e.g. Souček et al., 2016), may thus contribute to the hemispheric dichotomy observed on Enceladus. Alnaes, M. S., Blechta, J., Hake, J., Johansson, J., Kehlet, B., Logg, A., Richardson, C., Ring, J., Rognes, M. E.,Wells, G. N., 2015. The FEniCS Project Version 1.5. Archive of Numerical Software 3 (100), 9-23. Cadek, O., Tobie, G., van Hoolst, T., Masse, M., Choblet, G., Lefevre, A., Mitri, G., Baland, R.-M., Behounkova, M., Bourgeois, O., Trinh, A., 2016. Enceladus's internal ocean and ice shell constrained from Cassini gravity, shape, and libration data. Geophys. Res. Let. 46, 5653-5660. Iess, L., Stevenson, D. J., Parisi, M., Hemingway, D., Jacobson, R. A., Lunine, J. I., Nimmo, F., Armstrong, J. W., Asmar, S. W., Ducci, M., Tortora, P., Apr. 2014. The Gravity Field and Interior Structure of Enceladus. Science 344, 78-80. McKinnon, W. B., Apr. 2015. Effect of Enceladus's rapid synchronous spin on interpretation of Cassini gravity. Geophys. Res. Let. 42, 2137-2143. Nimmo, F., Bills, B. G., Thomas, P. C., 2011. Geophysical implications of the long-wavelength topography of the Saturnian satellites. J. Geophys. Res. 116 (E15), E11001. Soucek, O., Hron, J., Behounkova, M., Cadek, O., 2016. Effect of the tiger stripes on the deformation of Saturn's moon Enceladus. Geophys. Res. Let. 43, 7417-7423.
NASA Technical Reports Server (NTRS)
Schenk, Paul M.
2002-01-01
A thin outer ice shell on Jupiter's large moon Europa would imply easy exchange between the surface and any organic or biotic material in its putative subsurface ocean. The thickness of the outer ice shell is poorly constrained, however, with model-dependent estimates ranging from a few kilometers of depths of impact craters on Europa, Ganymede and Callisto that reveal two anomalous transitions in crater shape with diameter. The first transition is probably related to temperature-dependent ductility of the crust at shallow depths (7-8 km on Europa). The second transition is attributed to the influence of subsurface oceans on all three satellites, which constrains Europa's icy shell to be at least 19 km thick. The icy lithospheres of Ganymede and Callisto are equally ice-rich, but Europa's icy shell has a thermal structure about 0.25-0.5 times the thickness of Ganymede's or Callisto's shells, depending on epoch. The appearances of the craters on Europa are inconsistent with thin-ice-shell models and indicate that exchange of oceanic and surface material could be difficult.
Iceberg Scour and Shell Damage in the Antarctic Bivalve Laternula elliptica
Harper, Elizabeth M.; Clark, Melody S.; Hoffman, Joseph I.; Philipp, Eva E. R.; Peck, Lloyd S.; Morley, Simon A.
2012-01-01
We document differences in shell damage and shell thickness in a bivalve mollusc (Laternula elliptica) from seven sites around Antarctica with differing exposures to ice movement. These range from 60% of the sea bed impacted by ice per year (Hangar Cove, Antarctic Peninsula) to those protected by virtually permanent sea ice cover (McMurdo Sound). Patterns of shell damage consistent with blunt force trauma were observed in populations where ice scour frequently occurs; damage repair frequencies and the thickness of shells correlated positively with the frequency of iceberg scour at the different sites with the highest repair rates and thicker shells at Hangar Cove (74.2% of animals damaged) compared to the other less impacted sites (less than 10% at McMurdo Sound). Genetic analysis of population structure using Amplified Fragment Length Polymorphisms (AFLPs) revealed no genetic differences between the two sites showing the greatest difference in shell morphology and repair rates. Taken together, our results suggest that L. elliptica exhibits considerable phenotypic plasticity in response to geographic variation in physical disturbance. PMID:23029484
Fracture formation post impact on Enceladus?
NASA Astrophysics Data System (ADS)
Craft, Kathleen; Roberts, James
2017-10-01
Saturn’s small icy moon Enceladus was observed by the Cassini mission to have jets of ice and vapor emanating from its southern polar terrain (SPT), creating a plume. The fact that the activity is only observed in one region has not been well explained. Hypotheses include a regional sea beneath the SPT or a global ocean that is thicker beneath the SPT, which feeds a group of fractures observed there called the tiger stripes. As Enceladus orbits Saturn, stresses acting on the moon may open and close the fractures enabling interior volatiles to escape and form the plume. Here we investigate how these fractures could have formed and the activity begun. We propose that an impact could have either punctured through or caused substantial melt and fracturing in an ice shell connecting to a liquid layer below. Our goal is to determine whether a formation of fractures resembling the tiger stripes could emerge post-impact.Previous work by Roberts and Stickle (LPSC 2017, #1955) modeled an impact into an ice shell over an ocean and calculated penetration depth and melt temperatures and volumes through the shell thickness. Fracturing would occur during and after the impact, the crater would collapse, water would begin to refreeze and subsequent fluid exchange would occur. Working forward from a point after impact and as the ice shell begins refreezing, we performed finite element modeling to simulate the probable formation of fractures based on the resulting stress regime. Here we explore fracture formation for shells ranging from 1 km to 5 km thick (consistent with gravity and libration studies), to explore formation as the shell cools and thickens through time. We emplaced several fractures, penetrating either entirely or partially across the base to surface. Fracture interactions, tidal stress forcing with orbital true anomalies and ocean water pressurization are considered free parameters in the model. We present results for a number of parameter value combinations and quantify fracture formation sensitivities to model parameters.
Modeling Thermal Transport and Surface Deformation on Europa using Realistic Rheologies
NASA Astrophysics Data System (ADS)
Linneman, D.; Lavier, L.; Becker, T. W.; Soderlund, K. M.
2017-12-01
Most existing studies of Europa's icy shell model the ice as a Maxwell visco-elastic solid or viscous fluid. However, these approaches do not allow for modeling of localized deformation of the brittle part of the ice shell, which is important for understanding the satellite's evolution and unique geology. Here, we model the shell as a visco-elasto-plastic material, with a brittle Mohr-Coulomb elasto-plastic layer on top of a convective Maxwell viscoelastic layer, to investigate how thermal transport processes relate to the observed deformation and topography on Europa's surface. We use Fast Lagrangian Analysis of Continua (FLAC) code, which employs an explicit time-stepping algorithm to simulate deformation processes in Europa's icy shell. Heat transfer drives surface deformation within the icy shell through convection and tidal dissipation due to its elliptical orbit around Jupiter. We first analyze the visco-elastic behavior of a convecting ice layer and the parameters that govern this behavior. The regime of deformation depends on the magnitude of the stress (diffusion creep at low stresses, grain-size-sensitive creep at intermediate stresses, dislocation creep at high stresses), so we calculate effective viscosity each time step using the constitutive stress-strain equation and a combined flow law that accounts for all types of deformation. Tidal dissipation rate is calculated as a function of the temperature-dependent Maxwell relaxation time and the square of the second invariant of the strain rate averaged over each orbital period. After we initiate convection in the viscoelastic layer by instituting an initial temperature perturbation, we then add an elastoplastic layer on top of the convecting layer and analyze how the brittle ice reacts to stresses from below and any resulting topography. We also take into account shear heating along fractures in the brittle layer. We vary factors such as total shell thickness and minimum viscosity, as these parameters are not well constrained, and determine how this affects the thickness and deformation of the brittle layer.
Remote Characterization of Ice Shelf Surface and Basal Processes: Examples from East Antarctica
NASA Astrophysics Data System (ADS)
Greenbaum, J. S.; Blankenship, D. D.; Grima, C.; Schroeder, D. M.; Soderlund, K. M.; Young, D. A.; Kempf, S. D.; Siegert, M. J.; Roberts, J. L.; Warner, R. C.; van Ommen, T. D.
2017-12-01
The ability to remotely characterize surface and basal processes of ice shelves has important implications for conducting systematic, repeatable, and safe evaluations of their stability in the context of atmospheric and oceanic forcing. Additionally, techniques developed for terrestrial ice shelves can be adapted to orbital radar sounding datasets planned for forthcoming investigations of icy moons. This has been made possible through recent advances in radar signal processing that enable these data to be used to test hypotheses derived from conceptual and numerical models of ice shelf- and ice shell-ocean interactions. Here, we present several examples of radar sounding-derived characterizations of surface and basal processes underway on ice shelves in East Antarctica. These include percolation of near-surface meltwater in warm austral summers, brine infiltration along ice shelf calving fronts, basal melt rate and distribution, and basal freeze distribution. On Europa, near-surface brines and their migration may impact local geological variability, while basal processes likely control the distribution of melt and freeze. Terrestrially, we emphasize radar-sounding records of the Totten Glacier Ice Shelf which hosts each of these processes as well as the highest known density of basal melt channels of any terrestrial ice shelf. Further, with a maximum floating ice thickness of over 2.5 km, the pressure at Totten's basal interface may be similar to that at Europa's ice-ocean interface; therefore, evaluating surface and basal processes of Totten Glacier and other ice shelves could serve as analogs for understanding melting processes of Europa's ice shell.
NASA Astrophysics Data System (ADS)
Long, Antony J.; Strzelecki, Mateusz C.; Lloyd, Jerry M.; Bryant, Charlotte L.
2012-08-01
High Arctic raised beaches provide evidence for changes in relative sea-level (RSL), sea-ice extent, storminess, and variations in sediment supply. In many High Arctic areas, driftwood and whale bone are usually the preferred targets for radiocarbon dating, with marine shells a third choice because of their often large age and height uncertainties with respect to former sea level. Here we detail a new approach to sampling marine shells that reduces these problems by targeting juvenile, articulated specimens of Astarte borealis that are washed onto the beach under storm conditions and become incorporated into the beach crest. Radiocarbon dates from articulated valves of A. borealis from eight raised beaches from Billefjorden, Svalbard, provide a chronology for Holocene beach ridge formation and RSL change that compares favourably to the most precise records developed from elsewhere in Svalbard using driftwood or whale bone. We demonstrate the value of this new approach by comparing our record with previously published RSL data from eastern Svalbard to test different models of Late Weichselian ice load in this region. We find support for a major ice dome centred south and east of Kong Karls Land but no evidence for a significant ice dome located over easternmost Spitsbergen or southern Hinlopen Strait as proposed from recent marine geophysical survey. The approach is potentially applicable elsewhere in Svalbard and the High Arctic to address questions of RSL change and beach ridge chronology, and hence wider questions regarding palaeoclimate and ice load history.
Enceladus's ice shell thickness and ocean depth from gravity, topography, and libration measurements
NASA Astrophysics Data System (ADS)
Trinh, A.; Rivoldini, A.; Beuthe, M.; Rekier, J.; Baland, R. M.; Van Hoolst, T.
2017-12-01
One of Cassini's major achievements is the discovery of a global ocean a few kilometres beneath Enceladus's south polar terrain. Here we infer the thickness of Enceladus's ice shell and ocean from Cassini's observations using our latest models of isostatic compensation, shell libration, and ocean dynamics.
Souček, Ondřej; Hron, Jaroslav; Čadek, Ondřej
2017-01-01
Abstract We investigated the effect of variations in ice shell thickness and of the tiger stripe fractures crossing Enceladus' south polar terrain on the moon's tidal deformation by performing finite element calculations in three-dimensional geometry. The combination of thinning in the polar region and the presence of faults has a synergistic effect that leads to an increase of both the displacement and stress in the south polar terrain by an order of magnitude compared to that of the traditional model with a uniform shell thickness and without faults. Assuming a simplified conductive heat transfer and neglecting the heat sources below the ice shell, we computed the global heat budget of the ice shell. For the inelastic properties of the shell described by a Maxwell viscoelastic model, we show that unrealistically low average viscosity of the order of 1013 Pa s is necessary for preserving the volume of the ocean, suggesting the important role of the heat sources in the deep interior. Similarly, low viscosity is required to predict the observed delay of the plume activity, which hints at other delaying mechanisms than just the viscoelasticity of the ice shell. The presence of faults results in large spatial and temporal heterogeneity of geysering activity compared to the traditional models without faults. Our model contributes to understanding the physical mechanisms that control the fault activity, and it provides potentially useful information for future missions that will sample the plume for evidence of life. Key Words: Enceladus—Tidal deformation—Faults—Variable ice shell thickness—Tidal heating—Plume activity and timing. Astrobiology 17, 941–954. PMID:28816521
Diapir-induced reorientation of Saturn's moon Enceladus.
Nimmo, Francis; Pappalardo, Robert T
2006-06-01
Enceladus is a small icy satellite of Saturn. Its south polar region consists of young, tectonically deformed terrain and has an anomalously high heat flux. This heat flux is probably due to localized tidal dissipation within either the ice shell or the underlying silicate core. The surface deformation is plausibly due to upwelling of low-density material (diapirism) as a result of this tidal heating. Here we show that the current polar location of the hotspot can be explained by reorientation of the satellite's rotation axis because of the presence of a low-density diapir. If the diapir is in the ice shell, then the shell must be relatively thick and maintain significant rigidity (elastic thickness greater than approximately 0.5 km); if the diapir is in the silicate core, then Enceladus cannot possess a global subsurface ocean, because the core must be coupled to the overlying ice for reorientation to occur. The reorientation generates large (approximately 10 MPa) tectonic stress patterns that are compatible with the observed deformation of the south polar region. We predict that the distribution of impact craters on the surface will not show the usual leading hemisphere-trailing hemisphere asymmetry. A low-density diapir also yields a potentially observable negative gravity anomaly.
Clathrate hydrates of oxidants in the ice shell of Europa.
Hand, Kevin P; Chyba, Christopher F; Carlson, Robert W; Cooper, John F
2006-06-01
Europa's icy surface is radiolytically modified by high-energy electrons and ions, and photolytically modified by solar ultraviolet photons. Observations from the Galileo Near Infrared Mapping Spectrometer, ground-based telescopes, the International Ultraviolet Explorer, and the Hubble Space Telescope, along with laboratory experiment results, indicate that the production of oxidants, such as H2O2, O2, CO2, and SO2, is a consequence of the surface radiolytic chemistry. Once created, some of the products may be entrained deeper into the ice shell through impact gardening or other resurfacing processes. The temperature and pressure environments of regions within the europan hydrosphere are expected to permit the formation of mixed clathrate compounds. The formation of carbon dioxide and sulfur dioxide clathrates has been examined in some detail. Here we add to this analysis by considering oxidants produced radiolytically on the surface of Europa. Our results indicate that the bulk ice shell could have a approximately 1.7-7.6% by number contamination of oxidants resulting from radiolysis at the surface. Oxidant-hosting clathrates would consequently make up approximately 12-53% of the ice shell by number relative to ice, if oxidants were entrained throughout. We examine, in brief, the consequences of such contamination on bulk ice shell thickness and find that clathrate formation could lead to substantially thinner ice shells on Europa than otherwise expected. Finally, we propose that double occupancy of clathrate cages by O2 molecules could serve as an explanation for the observation of condensed-phase O2 on Europa. Clathrate-sealed, gas-filled bubbles in the near surface ice could also provide an effective trapping mechanism, though they cannot explain the 5771 A (O2)2 absorption.
Thermal state of an ice shell on Europa
NASA Technical Reports Server (NTRS)
Ojakangas, Gregory W.; Stevenson, David J.
1989-01-01
The thickness of the ice shell presently hypothesized for Europa, which is decoupled from a silicate core by a liquid water layer, is calculated as a function of colatitude and longitude under suitable assumptions for two plausible ice rheology behaviors: that of Maxwell type, and that of generalized flow-law rheology. Due to the dissipation rate's pronounced temperature dependence, virtually all tidal dissipation is found to concentrate in the lowest few kilometers of the shell. While for some parameter choices an insulating regolith that raises the near-surface temperature by more than a few tens of degrees C may stabilize the shell against polar wander, a modest regolith may enhance the probability of such wander's occurrence through the reduction of the shell's retarding friction.
Schenk, Paul M
2002-05-23
A thin outer ice shell on Jupiter's large moon Europa would imply easy exchange between the surface and any organic or biotic material in its putative subsurface ocean. The thickness of the outer ice shell is poorly constrained, however, with model-dependent estimates ranging from a few kilometres to ten or more kilometres. Here I present measurements of depths of impact craters on Europa, Ganymede and Callisto that reveal two anomalous transitions in crater shape with diameter. The first transition is probably related to temperature-dependent ductility of the crust at shallow depths (7 8 km on Europa). The second transition is attributed to the influence of subsurface oceans on all three satellites, which constrains Europa's icy shell to be at least 19 km thick. The icy lithospheres of Ganymede and Callisto are equally ice-rich, but Europa's icy shell has a thermal structure about 0.25 0.5 times the thicknesses of Ganymede's or Callisto's shells, depending on epoch. The appearances of the craters on Europa are inconsistent with thin-ice-shell models and indicate that exchange of oceanic and surface material could be difficult.
Radar Imaging of Europa's Subsurface Properties and Processes: The View from Earth
NASA Astrophysics Data System (ADS)
Blankenship, D. D.; Moore, W. B.; Young, D. A.; Peters, M. E.
2007-12-01
A primary objective of future Europa studies will be to characterize the distribution of shallow subsurface water as well as to identify any ice-ocean interface. Another objective will be to understand the formation of surface and subsurface features associated with interchange processes between any ocean and the surface. Achieving these objectives will require either direct or inferred knowledge of the position of any ice/water interfaces as well as any brine or layer pockets. We will review the hypothesized processes that control the thermal, compositional and structural (TCS) properties, and therefore the dielectric character, of the subsurface of Europa's icy shell. Our approach will be to extract the TCS properties for various subsurface processes thought to control the formation of major surface (e.g., ridges/bands, lenticulae, chaos, cratering...) and subsurface (e.g., rigid shell eutectics, diapirs, accretionary lenses ...) features on Europa. We will then assess the spectrum of analog processes and TCS properties represented by Earth's cryosphere including both Arctic and Antarctic ice sheets, ice shelves and valley glaciers. There are few complete analogs over the full TCS space but, because of the wide range of ice thickness, impurities and strain rates for Earth's cryosphere, there are many more analogs than many Earth and planetary researchers might imagine for significant portions of this space (e.g., bottom crevasses, marine ice shelf/subglacial lake accretion, surging polythermal glaciers...).Our ultimate objective is to use these Earth analog studies to define the radar imaging approach for Europa's subsurface that will be most useful for supporting/refuting the hypotheses for the formation of major surface/subsurface features as well as for "pure" exploration of Europa's icy shell and its interface with the underlying ocean.
Thickness of a Europan ice shell from impact crater simulations.
Turtle, E P; Pierazzo, E
2001-11-09
Several impact craters on Jupiter's satellite Europa exhibit central peaks. On the terrestrial planets, central peaks consist of fractured but competent rock uplifted during cratering. Therefore, the observation of central peaks on Europa indicates that an ice layer must be sufficiently thick that the impact events did not completely penetrate it. We conducted numerical simulations of vapor and melt production during cratering of water ice layers overlying liquid water to estimate the thickness of Europa's icy crust. Because impacts disrupt material well beyond the zone of partial melting, our simulations put a lower limit on ice thickness at the locations and times of impact. We conclude that the ice must be more than 3 to 4 kilometers thick.
Topographic variations in chaos on Europa: Implications for diapiric formation
NASA Technical Reports Server (NTRS)
Schenk, Paul M.; Pappalardo, Robert T.
2004-01-01
Disrupted terrain, or chaos, on Europa, might have formed through melting of a floating ice shell from a subsurface ocean [Cam et al., 1998; Greenberg et al., 19991, or breakup by diapirs rising from the warm lower portion of the ice shell [Head and Pappalardo, 1999; Collins et al., 20001. Each model makes specific and testable predictions for topographic expression within chaos and relative to surrounding terrains on local and regional scales. High-resolution stereo-controlled photoclinometric topography indicates that chaos topography, including the archetypal Conamara Chaos region, is uneven and commonly higher than surrounding plains by up to 250 m. Elevated and undulating topography is more consistent with diapiric uplift of deep material in a relatively thick ice shell, rather than melt-through and refreezing of regionally or globally thin ice by a subsurface ocean. Vertical and horizontal scales of topographic doming in Conamara Chaos are consistent with a total ice shell thickness >15 km. Contact between Europa's ocean and surface may most likely be indirectly via diapirism or convection.
Topographic variations in chaos on Europa: Implications for diapiric formation
NASA Astrophysics Data System (ADS)
Schenk, Paul M.; Pappalardo, Robert T.
2004-08-01
Disrupted terrain, or chaos, on Europa, might have formed through melting of a floating ice shell from a subsurface ocean [Carr et al., 1998; Greenberg et al., 1999], or breakup by diapirs rising from the warm lower portion of the ice shell [Head and Pappalardo, 1999; Collins et al., 2000]. Each model makes specific and testable predictions for topographic expression within chaos and relative to surrounding terrains on local and regional scales. High-resolution stereo-controlled photoclinometric topography indicates that chaos topography, including the archetypal Conamara Chaos region, is uneven and commonly higher than surrounding plains by up to 250 m. Elevated and undulating topography is more consistent with diapiric uplift of deep material in a relatively thick ice shell, rather than melt-through and refreezing of regionally or globally thin ice by a subsurface ocean. Vertical and horizontal scales of topographic doming in Conamara Chaos are consistent with a total ice shell thickness >15 km. Contact between Europa's ocean and surface may most likely be indirectly via diapirism or convection.
Polar wander of an ice shell on Europa
NASA Technical Reports Server (NTRS)
Ojakangas, Gregory W.; Stevenson, David J.
1989-01-01
The present consideration of a hypothesized ice shell around Europa, which is decoupled from the silicate core by a liquid water layer and possesses a spatially varying thermal equilibrium thickness profile, proceeds through the development of equations for variations in the inertia tensor of a body when second-harmonic-degree topography is added to the crustal base. Attention is given to a realistic model in which the shell and ocean are assumed to undergo reorientations as a single entity independently of the core, but subject to viscous dissipation within the shell. Shell friction is in this case noted to preclude polar wander, unless a low conductivity regolith increases the near-surface temperature by a few tens of degrees C; the ice beneath the regolith would then behave viscously on the time-scale of polar wander.
NASA Astrophysics Data System (ADS)
Běhounková, Marie; Souček, Ondřej; Hron, Jaroslav; Čadek, Ondřej
2017-09-01
We investigated the effect of variations in ice shell thickness and of the tiger stripe fractures crossing Enceladus' south polar terrain on the moon's tidal deformation by performing finite element calculations in three-dimensional geometry. The combination of thinning in the polar region and the presence of faults has a synergistic effect that leads to an increase of both the displacement and stress in the south polar terrain by an order of magnitude compared to that of the traditional model with a uniform shell thickness and without faults. Assuming a simplified conductive heat transfer and neglecting the heat sources below the ice shell, we computed the global heat budget of the ice shell. For the inelastic properties of the shell described by a Maxwell viscoelastic model, we show that unrealistically low average viscosity of the order of 10^{13} Pa s is necessary for preserving the volume of the ocean, suggesting the important role of the heat sources in the deep interior. Similarly, low viscosity is required to predict the observed delay of the plume activity, which hints at other delaying mechanisms than just the viscoelasticity of the ice shell. The presence of faults results in large spatial and temporal heterogeneity of geysering activity compared to the traditional models without faults. Our model contributes to understanding the physical mechanisms that control the fault activity, and it provides potentially useful information for future missions that will sample the plume for evidence of life.
Recent tectonic activity on Pluto driven by phase changes in the ice shell
NASA Astrophysics Data System (ADS)
Hammond, Noah P.; Barr, Amy C.; Parmentier, Edgar M.
2016-07-01
The New Horizons spacecraft has found evidence for geologic activity on the surface of Pluto, including extensional tectonic deformation of its water ice bedrock see Moore et al. (2016). One mechanism that could drive extensional tectonic activity is global surface expansion due to the partial freezing of an ocean. We use updated physical properties for Pluto and simulate its thermal evolution to understand the survival of a possible subsurface ocean. For thermal conductivities of rock less than 3 W m-1 K-1, an ocean forms and at least partially freezes, leading to recent extensional stresses in the ice shell. In scenarios where the ocean freezes and the ice shell is thicker than 260 km, ice II forms and causes global volume contraction. Since there is no evidence for recent compressional tectonic features, we argue that ice II has not formed and that Pluto's ocean has likely survived to present day.
Observations of geese foraging for clam shells during spring on the Yukon-Kuskokwim Delta, Alaska
Flint, Paul L.; Fowler, Ada C.; Bottitta, Grace E.; Schamber, Jason L.
1998-01-01
We studied the behavior of geese on exposed river ice during spring on the Yukon-Kuskokwim Delta. The predominant behavior while on the ice for both sexes was foraging; however, females foraged more than males. Visual inspection of the ice revealed no potential plant or animal food items. However, numerous small (<20 mm) clam shells (Macoma balthica) and pieces of shell were noted. It appeared that geese were foraging on empty clam shells. This potential source of calcium was available to breeding geese just prior to egg formation and geese likely stored this calcium in the form of medullary bone for use during egg formation.
NASA Astrophysics Data System (ADS)
Schmidt, B. E.; Blankenship, D. D.; Patterson, G. W.; Schenk, P. M.
2012-04-01
Unique to the surface of Europa, chaos terrain is diagnostic of the properties and dynamics of its icy shell. While models have suggested that partial melt within a thick shell or melt-through of a thin shell may form chaos, neither model has been able to definitively explain all observations of chaos terrain. However, we present a new model that suggests large melt lenses form within the shell and that water-ice interactions above and within these lenses drive the production of chaos. Our analysis of the geomorphology of Conamara Chaos and Thera Macula, was used to infer and test a four-stage lens-collapse chaos formation model: 1) Thermal plumes of warm, pure ice ascend through the shell melting the impure brittle ice above, producing a lake of briny water and surface down draw due to volume reduction. 2) Surface deflection and driving force from the plume below hydraulically seals the water in place. 3) Extension of the brittle ice lid generates fractures from below, allowing brines to enter and fluidize the ice matrix. 4) As the lens and now brash matrix refreeze, thermal expansion creates domes and raises the chaos feature above the background terrain. This new "lense-collapse" model indicates that chaos features form in the presence of a great deal of liquid water, and that large liquid water bodies exist within 3km of Europa's surface comparable in volume to the North American Great Lakes. The detection of shallow subsurface "lakes" implies that the ice shell is recycling rapidly and that Europa may be currently active. In this presentation, we will explore environments on Europa and their analogs on Earth, from collapsing Antarctic ice shelves to to subglacial volcanos in Iceland. I will present these new analyses, and describe how this new perspective informs the debate about Europa's habitability and future exploration.
One-Hundred-km-Scale Basins on Enceladus: Evidence for an Active Ice Shell
NASA Technical Reports Server (NTRS)
Schenk, Paul M.; McKinnon, William B.
2009-01-01
Stereo-derived topographic mapping of 50% of Enceladus reveals at least 6 large-scale, ovoid depressions (basins) 90-175 km across and 800-to-1500 m deep and uncorrelated with geologic boundaries. Their shape and scale are inconsistent with impact, geoid deflection, or with dynamically supported topography. Isostatic thinning of Enceladus ice shell associated with upwellings (and tidally-driven ice melting) can plausibly account for the basins. Thinning implies upwarping of the base of the shell of 10-20 km beneath the depressions, depending on total shell thickness; loss of near-surface porosity due to enhanced heat flow may also contribute to basin lows. Alternatively, the basins may overly cold, inactive, and hence denser ice, but thermal isostasy alone requires thermal expansion more consistent with clathrate hydrate than water ice. In contrast to the basins, the south polar depression (SPD) is larger (350 wide) and shallower (0.4-to-0.8 km deep) and correlates with the area of tectonic deformation and active resurfacing. The SPD also differs in that the floor is relatively flat (i.e., conforms roughly to the global triaxial shape, or geoid) with broad, gently sloping flanks. The relative flatness across the SPD suggests that it is in or near isostatic equilibrium, and underlain by denser material, supporting the polar sea hypothesis of Collins and Goodman. Near flatness is also predicted by a crustal spreading origin for the "tiger stripes (McKinnon and Barr 2007, Barr 2008); the extraordinary, high CIRS heat flows imply half-spreading rates in excess of 10 cm/yr, a very young surface age (250,000 yr), and a rather thin lithosphere (hence modest thermal topography). Topographic rises in places along the outer margin of the SPD correlate with parallel ridges and deformation along the edge of the resurfaced terrain, consistent with a compressional, imbricate thrust origin for these ridges, driven by the spreading.
Lineament Azimuths on Europa: Implications for Evolution of the Europan Ice Shell
NASA Astrophysics Data System (ADS)
Kachingwe, M.; Rhoden, A.; Lekic, V.; Hurford, T., Jr.; Henning, W. G.
2016-12-01
Tectonic activity on Europa has been linked to tidal stress caused by its eccentric orbit, finite obliquity, and possibly non-synchronous rotation of the icy shell. Cycloids and other lineaments are thought to form in response to tidal normal stress while strike-slip motion along preexisting faults has been attributed to tidal shear stress. Tectonic features can thus provide constraints on the rotational parameters that govern tidal stress and insight into the tidal-tectonic processes operating on ice-covered ocean bodies. Past lineament azimuth predictions based on stress models accounting for either spin pole precession or longitude translation yielded distributions that varied with location on Europa (e.g. Hurford, 2005; Fig. 16 of Rhoden and Hurford, 2013). Until now, these predicted azimuths have only been tested on a few spatially restricted regions. Additionally, these predictions were made using a thin shell approximation, which neglects the viscoelastic response of Europa's ice shell. Here, we present new measurements of lineament azimuths across geographically diverse regions of Europa, focusing on locations where lineament azimuths have never before been measured but which have been imaged at better than 250 km/pixel resolution. We focus on lineaments that do not exhibit substantial curvature, and we quantify deviations in azimuth observed along each lineament. We quantitatively compare the observed distributions against published predictions as well as new predictions made with a viscoelastic tidal stress model. These results have implications for Europa's interior and the evolution of tidal stress over time.
Oceans, Ice Shells, and Life on Europa
NASA Technical Reports Server (NTRS)
Schenk, Paul
2002-01-01
The four large satellites of Jupiter are famous for their planet-like diversity and complexity, but none more so than ice-covered Europa. Since the provocative Voyager images of Europa in 1979, evidence has been mounting that a vast liquid water ocean may lurk beneath the moon's icy surface. Europa has since been the target of increasing and sometimes reckless speculation regarding the possibility that giant squid and other creatures may be swimming its purported cold, dark ocean. No wonder Europa tops everyone's list for future exploration in the outer solar system (after the very first reconnaissance of Pluto and the Kuiper belt, of course). Europa may be the smallest of the Galilean moons (so-called because they were discovered by Galileo Galilei in the early 17th century) but more than makes up for its diminutive size with a crazed, alien landscape. The surface is covered with ridges hundreds of meters high, domes tens of kilometers across, and large areas of broken and disrupted crust called chaos. Some of the geologic features seen on Europa resemble ice rafts floating in polar seas here on Earth-reinforcing the idea that an ice shell is floating over an ocean on this Moon-size satellite. However, such features do not prove that an ocean exists or ever did. Warm ice is unusually soft and will flow under its own weight. If the ice shell is thick enough, the warm bottom of the shell will flow, as do terrestrial glaciers. This could produce all the observed surface features on Europa through a variety of processes, the most important of which is convection. (Convection is the vertical overturn of a layer due to heating or density differences-think of porridge or sauce boiling on the stove.) Rising blobs from the base of the crust would then create the oval domes dotting Europa's surface. The strongest evidence for a hidden ocean beneath Europa's surface comes from the Galileo spacecraft's onboard magnetometer, which detected fluctuations in Jupiter's magnetic field consistent with a conductor inside Europa. The most likely conductor: a somewhat salty ocean.
The orbital thermal evolution and global expansion of Ganymede
NASA Astrophysics Data System (ADS)
Bland, Michael T.; Showman, Adam P.; Tobie, Gabriel
2009-03-01
The tectonically and cryovolcanically resurfaced terrains of Ganymede attest to the satellite's turbulent geologic history. Yet, the ultimate cause of its geologic violence remains unknown. One plausible scenario suggests that the Galilean satellites passed through one or more Laplace-like resonances before evolving into the current Laplace resonance. Passage through such a resonance can excite Ganymede's eccentricity, leading to tidal dissipation within the ice shell. To evaluate the effects of resonance passage on Ganymede's thermal history we model the coupled orbital-thermal evolution of Ganymede both with and without passage through a Laplace-like resonance. In the absence of tidal dissipation, radiogenic heating alone is capable of creating large internal oceans within Ganymede if the ice grain size is 1 mm or greater. For larger grain sizes, oceans will exist into the present epoch. The inclusion of tidal dissipation significantly alters Ganymede's thermal history, and for some parameters (e.g. ice grain size, tidal Q of Jupiter) a thin ice shell (5 to 20 km) can be maintained throughout the period of resonance passage. The pulse of tidal heating that accompanies Laplace-like resonance capture can cause up to 2.5% volumetric expansion of the satellite and contemporaneous formation of near surface partial melt. The presence of a thin ice shell and high satellite orbital eccentricity would generate moderate diurnal tidal stresses in Ganymede's ice shell. Larger stresses result if the ice shell rotates non-synchronously. The combined effects of satellite expansion, its associated tensile stress, rapid formation of near surface partial melt, and tidal stress due to an eccentric orbit may be responsible for creating Ganymede's unique surface features.
Band Formation and Ocean-Surface Interaction on Europa and Ganymede
NASA Astrophysics Data System (ADS)
Howell, Samuel M.; Pappalardo, Robert T.
2018-05-01
Geologic activity in the outer H2O ice shells of Europa and Ganymede, Galilean moons of Jupiter, may facilitate material exchange between global water oceans and the icy surface, fundamentally affecting potential habitability and the future search for life. Spacecraft imagery reveals surfaces rich with tectonic bands, predominantly attributed to the extension of brittle ice overlaying a convecting ice layer. However, the details of band-forming processes and links to potential ocean-surface exchange have remained elusive. We simulate ice shell faulting and convection with two-dimensional numerical models and track the movement of "fossil" ocean material frozen into the base of the ice shell and deformed through geologic time. We find that distinct band types form within a spectrum of extensional terrains correlated to lithosphere strength, governed by lithosphere thickness and cohesion. Furthermore, we find that smooth bands formed in weak lithosphere promote exposure of fossil ocean material at the surface.
Ice-shell purification of ice-binding proteins.
Marshall, Craig J; Basu, Koli; Davies, Peter L
2016-06-01
Ice-affinity purification is a simple and efficient method of purifying to homogeneity both natural and recombinant ice-binding proteins. The purification involves the incorporation of ice-binding proteins into slowly-growing ice and the exclusion of other proteins and solutes. In previous approaches, the ice was grown around a hollow brass finger through which coolant was circulated. We describe here an easily-constructed apparatus that employs ice affinity purification that not only shortens the time for purification from 1-2 days to 1-2 h, but also enhances yield and purity. In this apparatus, the surface area for the separation was increased by extracting the ice-binding proteins into an ice-shell formed inside a rotating round-bottom flask partially submerged in a sub-zero bath. In principle, any ice-binding compound can be recovered from liquid solution, and the method is readily scalable. Copyright © 2016 Elsevier Inc. All rights reserved.
Dynamics of the global meridional ice flow of Europa's icy shell
NASA Astrophysics Data System (ADS)
Ashkenazy, Yosef; Sayag, Roiy; Tziperman, Eli
2018-01-01
Europa is one of the most probable places in the solar system to find extra-terrestrial life1,2, motivating the study of its deep ( 100 km) ocean3-6 and thick icy shell3,7-11. The chaotic terrain patterns on Europa's surface12-15 have been associated with vertical convective motions within the ice8,10. Horizontal gradients of ice thickness16,17 are expected due to the large equator-to-pole gradient of surface temperature and can drive a global horizontal ice flow, yet such a flow and its observable implications have not been studied. We present a global ice flow model for Europa composed of warm, soft ice flowing beneath a cold brittle rigid ice crust3. The model is coupled to an underlying (diffusive) ocean and includes the effect of tidal heating and convection within the ice. We show that Europa's ice can flow meridionally due to pressure gradients associated with equator-to-pole ice thickness differences, which can be up to a few km and can be reduced both by ice flow and due to ocean heat transport. The ice thickness and meridional flow direction depend on whether the ice convects or not; multiple (convecting and non-convecting) equilibria are found. Measurements of the ice thickness and surface temperature from future Europa missions18,19 can be used with our model to deduce whether Europa's icy shell convects and to constrain the effectiveness of ocean heat transport.
NASA Astrophysics Data System (ADS)
Bassett, C.; Andrus, C. F. T.
2015-12-01
Sclerochronological analysis of biogenic carbonates provides valuable paleoenvironmental information. Oxygen isotope analysis of bivalve shell yields information on the temperature of the water in which the organism grew. However, in coastal environments, variations in δ18Owater may complicate the interpretation of shell isotope profiles. Measuring and comparing the length of seasonal shell growth in select species of bivalves may complement isotopic analysis, together providing a more precise paleoclimate reconstruction. This project aims to determine the reliability of sclerochronological analysis of bivalves in reconstructing seasonality along the Northwest Coast of North America. To compare bivalves growing at different seasonal temperature conditions, samples of Saxidomus gigantea were collected from southern Alaska and northern British Columbia. Winter cessation lines were identified using oxygen isotope (δ18O) peaks from a profile of variation over the life of the clam, which was sampled sequentially from a section of its shell. Shell growth stops below ~4-5°C and so each winter cessation indicates temperatures lower than this threshold. Lunar-daily growth lines were counted between these winter growth cessation breaks, which quantitatively measure the length of the growing season. The resulting data were compared between habitats to assess if this is a useful method of determining the length of the growing season. If this method of assessing seasonality appears valid, it can be applied to ancient shells abundant in archaeological shell middens to make inferences about past seawater conditions and potentially indicate the presence or absence of the conditions necessary for sea ice accumulation.
Studies on Freezing of Shell-Fish-I
NASA Astrophysics Data System (ADS)
Song, Dae Jin; Konagaya, Shiro; Tanaka, Takeo
Ark shell, Anadara broughtonii(Shrenk), are commonly eaten raw or under-done in Korea, Japan, and East Asian countries. Along with a recent remarkable development of culture fisheries, Ark shell has become one of the commercially important shell-fish species. Transportation and storage of large quantities of shell-fish is becoming increasingly important. This work was begun with this background to make clear the effects of temperature and length of storage time on the quality of frozen stored ark shell. Results are as follows : (1) There was little chang in amounts of free and expressible drip from ark shell flesh frozen stored at -40°CdegC for 6 months. Water holding capacity of the same meat was almost constant over 6 months storage. However, a mounts of both drip increased markedly after 2 months storage at -10°C. (2) Protein extractibility of ark shell flesh tended to decrease gradually from the begining when stored at -10°C, while at -20°C, the protein extractibility was stable for 3 months before decreasing gradually. However at -40°C, the protein extractibility was stable for 6 months. It was found that paramyosin was very stable even when the ark shell was frozen stored at -10°C. (3) It was observed that ark shell flesh became tough when frozen. The toughness of ark shell flesh as measured by an instrument increased with frozen storage time and increased temperature. (4) In the smooth muscle, it was histologically observed that initial small ice crystals formed between muscle bundles grew larger during frozen storage. It was found that the higher the storage temperature, the bigger the ice crystals formed. Aggregation of some muscle fiber and empty spaces between muscle bundles were observd after thawed muscles frozen stored at relatively high temperature such as -10°C.
NASA Astrophysics Data System (ADS)
Mitri, G.; Showman, A. P.; Lunine, J. I.; Lopes, R. M.
2008-12-01
Remote sensing observations yield evidence for cryovolcanism on Titan, and evolutionary models support (but do not require) the presence of an ammonia-water subsurface ocean. The impetus for invoking ammonia as a constituent in an internal ocean and cryovolcanic magma comes from two factors. First, ammonia-water liquid has a lower freezing temperature than pure liquid water, enabling cryovolcanism under the low- temperature conditions prevalent in the outer Solar System. Second, pure water is negatively buoyant with respect to pure water ice, which discourages eruption from the subsurface ocean to the surface. In contrast, the addition of ammonia to the water decreases its density, hence lessening this problem of negative buoyancy. A marginally positive buoyant ammonia-water mixture might allow effusive eruptions from a subsurface ocean. If the subsurface ocean were positively buoyant, all the ammonia would have been erupted very early in Titan's history. Contrary to this scenario, Cassini-Huygens has so far observed neither a global abundance nor a complete dearth of cryovolcanic features. Further, an ancient cryovolcanic epoch cannot explain the relative youth of Titan's surface. Crucial to invoking ammonia-water resurfacing as the source of the apparently recent geological activity is not how to make ammonia-water volcanism work (because the near neutral buoyancy of the ammonia-water mixture encourages an explanation), but rather how to prevent eruption from occurring so easily that cryovolcanic activity is over early on. Although cryovolcanism by ammonia-water has been proposed as a resurfacing process on Titan, few models have specifically dealt with the problem of how to transport ammonia-water liquid onto the surface. We proposed a model of cryovolcanism that involve cracking at the base of the ice shell and formation of ammonia-water pockets in the ice. While the ammonia-water pockets cannot easily become neutral buoyant and promote effusive eruptions, large scale tectonics stress (due to tides, non-synchronous rotation, satellite volume changes, and/or topography) may all promote resurfacing at localized times and spaces. Thermal convection in the ice-I shell can play an important role in ensuring recent cryovolcanism activity on Titan. Ammonia-water pockets trapped in the ice shell provides a possible mechanism for explaining episodic cryovolcanism. Our model has several advantages over more simplistic ones. Because of the relative inefficiency of trapping liquid in the shell and transporting it to the surface, our mechanism makes volcanism a marginal process. In this way we can explain why Titan did not lose all its ammonia into cryovolcanic flows early in Solar System history as would happen were ammonia-water liquid to be positively buoyant, hence making cryovolcanism too "easy". At the same time, our mechanism allows cryovolcanism to be an important process on regional scales: ammonia should be present at the surface and hence detectable so long as it is not buried by subsequent sedimentation of organic aerosols. Finally, because we posit that the cryovolcanic liquid comes from localized pockets rather than directly from the ocean, our scenario also allows the ocean to remain dilute in ammonia, hence much denser than the overlying ice and mechanically stable over the history of the Solar System.
Slush Fund: Modeling the Multiphase Physics of Oceanic Ices
NASA Astrophysics Data System (ADS)
Buffo, J.; Schmidt, B. E.
2016-12-01
The prevalence of ice interacting with an ocean, both on Earth and throughout the solar system, and its crucial role as the mediator of exchange between the hydrosphere below and atmosphere above, have made quantifying the thermodynamic, chemical, and physical properties of the ice highly desirable. While direct observations of these quantities exist, their scarcity increases with the difficulty of obtainment; the basal surfaces of terrestrial ice shelves remain largely unexplored and the icy interiors of moons like Europa and Enceladus have never been directly observed. Our understanding of these entities thus relies on numerical simulation, and the efficacy of their incorporation into larger systems models is dependent on the accuracy of these initial simulations. One characteristic of seawater, likely shared by the oceans of icy moons, is that it is a solution. As such, when it is frozen a majority of the solute is rejected from the forming ice, concentrating in interstitial pockets and channels, producing a two-component reactive porous media known as a mushy layer. The multiphase nature of this layer affects the evolution and dynamics of the overlying ice mass. Additionally ice can form in the water column and accrete onto the basal surface of these ice masses via buoyancy driven sedimentation as frazil or platelet ice. Numerical models hoping to accurately represent ice-ocean interactions should include the multiphase behavior of these two phenomena. While models of sea ice have begun to incorporate multiphase physics into their capabilities, no models of ice shelves/shells explicitly account for the two-phase behavior of the ice-ocean interface. Here we present a 1D multiphase model of floating oceanic ice that includes parameterizations of both density driven advection within the `mushy layer' and buoyancy driven sedimentation. The model is validated against contemporary sea ice models and observational data. Environmental stresses such as supercooling and melting events will be discussed for terrestrial ice. The impact of fluid motion within the mushy layer on nutrient transport and habitability will be discussed. Results from the model's application to icy moon environments will be presented, highlighting ice shell composition, thickness, thermodynamics, and role in potential habitability.
NASA Astrophysics Data System (ADS)
Livsey, C.; Spero, H. J.; Kozdon, R.
2016-12-01
The impacts of sea ice decrease and consequent hydrologic changes in the Arctic Ocean will be experienced globally as ocean and atmospheric temperatures continue to rise, though it is not evident to what extent. Understanding the structure of the Arctic water column during the early/mid Holocene sea ice minimum ( 6-10 kya), a post-glacial analogue of a seasonally ice-free Arctic, will help us to predict what the changes we can expect as the Earth warms over the next century. Neogloboquadrina pachyderma (sinistral; Nps) is a species of planktonic foraminifera that dominates assemblages in the polar oceans. This species grows its chambers (ontogenetic calcite) in the surface waters and subsequently descends through the water column to below the mixed layer where it quickly adds a thick crust of calcite (Kohfeld et al., 1996). Therefore, geochemical signals from both the surface waters and sub-mixed layer depths are captured within single Nps shells. We were able to target <5 μm - sized domains for δ18O using secondary ion mass spectrometry (SIMS), therefore capturing signals from both the ontogenetic and crust calcite in single Nps shells. This data was combined with laser ablation- inductively coupled mass spectrometry (LA-ICPMS) Mg/Ca profiles of trace metals through the two layers of calcite of the same shells, to determine the thermal structure of the water column. Combining δ18O, temperature, and salinity gradients from locations across the Arctic basin allow us to reconstruct the hydrography of the early Holocene Arctic sea ice minimum. These results will be compared with modern Arctic water column characteristics in order to develop a conceptual model of Arctic Ocean oceanographic change due to global warming. Kohfeld, K.E., Fairbanks, R.G., Smith, S.L., Walsh, I.D., 1996. Neogloboquadrina pachyderma(sinistral coiling) as paleoceanographic tracers in polar oceans: Evidence from northeast water polynya plankton tows, sediment traps, and surface sediments. Paleoceanography 11, 679-699.
The Geology and Astrobiology of Europa (Invited)
NASA Astrophysics Data System (ADS)
Chyba, C. F.; Hand, K. P.
2009-12-01
Galileo’s discovery of the jovian moons was a crucial step in the process, completed by Newton, that overthrew the Aristotelian dichotomy between the physics of the terrestrial realm and the physics of the heavens. Now, 400 years later, we know of one kind of biology, Earth biology (DNA-protein life) and have glimpses of other possibilities more closely or distantly related (e.g., the RNA world). The galilean satellite Europa is one of the most likely venues in our solar system for presenting us with another example of life, and life likely from an entirely separate origin. Europa therefore gives us a chance to extend our understanding of biology beyond Earth biology to a more generalized biology, providing a biological counterpart to the galilean/newtonian revolution. This possibility is the reason that Europa is one of the highest priorities in solar system exploration. It is a still entirely speculative but credible possibility, because of Europa’s extraordinary geophysics and chemistry. First, radiogenic decay and tidal energy appear sufficient to maintain a subsurface liquid water ocean on Europa that resides between an ice shell and a rocky mantle. Gravity measurements confirm this differentiation, and magnetometer measurements seem to confirm the liquidity of the ocean. Magnetometer measurements further put strong limits on the thickness of the ice shell overlying the ocean and on the salinity of the ocean itself. Because the ocean is covered by kilometers of ice, the enormous free energy of sunlight is rarely available for chemistry or possible biology, but radiolytic chemistry at the surface ice may provide a powerful oxidizing arrow for the ocean that, coupled with deep hydrothermal activity, maintains a supply of electron acceptor and donor pairs that could be used by life. The details of this scenario depend on surface impact gardening and sputtering rates, and on the interaction of the ice shell with the ocean. Current estimates based on cratering rates suggest an ice shell age 1-2 orders of magnitude less than the age of the solar system; sufficiently frequent melting into the ocean could lead to an oxidized, rather than a reduced ocean. Europa likely formed with a chondritic composition and, in addition, accumulated some material (while losing much in erosion) from impacts over the age of the solar system, so that the biologically essential elements should all be present. It is this combination of liquid water, essential elements, and available energy, all in contact with potentially catalytic mineral surfaces, that makes Europa so biologically attractive and gives its ocean the appearance of habitability, at least for some potential Earth-analog organisms. Of course, habitability for life and prospects for the origin of life are two distinct issues.
Europa's differentiated internal structure: inferences from four Galileo encounters.
Anderson, J D; Schubert, G; Jacobson, R A; Lau, E L; Moore, W B; Sjogren, W L
1998-09-25
Radio Doppler data from four encounters of the Galileo spacecraft with the jovian moon Europa have been used to refine models of Europa's interior. Europa is most likely differentiated into a metallic core surrounded by a rock mantle and a water ice-liquid outer shell, but the data cannot eliminate the possibility of a uniform mixture of dense silicate and metal beneath the water ice-liquid shell. The size of a metallic core is uncertain because of its unknown composition, but it could be as large as about 50 percent of Europa's radius. The thickness of Europa's outer shell of water ice-liquid must lie in the range of about 80 to 170 kilometers.
NASA Astrophysics Data System (ADS)
Kattenhorn, Simon A.
2018-03-01
A new modeling-based study by Johnson et al. (2017, https://doi.org/10.1002/2017JE005370) lends support to the hypothesis that portions of Europa's surface may have been removed by the process of subduction, as suggested by Kattenhorn and Prockter (2014, https://doi.org/10.1038/NGEO2245). Using a simple 1-D model that tracks the thermal and density structure of a descending ice plate, Johnson et al. show that ice plates with 10% porosity and overall salt contents of 5%, which differ in salt content by 2.5% from the surrounding reference ice shell, are nonbuoyant and thus likely to sink through the underlying, convecting portion of the ice shell. The feasibility of subduction in an ice shell is critical to the existence of icy plate tectonics, which is hypothesized to exist at least locally on Europa, potentially making it the only other Solar System body other than Earth with a surface modified by plate tectonics.
On the time-variable nature of Titan's obliquity
NASA Astrophysics Data System (ADS)
Noyelles, Benoit; Nimmo, Francis
2014-05-01
Titan presents an unexpectedly high obliquity (Stiles et al. 2008, Meriggiola & Iess 2012) while its topography and gravity suggest a non-hydrostatic ice shell (Hemingway et al. 2013). We here present a 6-dof model of the rotation of Titan simultaneously simulating the full orientation of the shell and the inner core, and considering a global subsurface ocean with a partially-compensated shell of spatially-variable thickness. Between 10 and 13% of our realistic interior models induce a resonance with the annual forcing, that dramatically raises the obliquity. The relevant model Titans are composed of a 130-140 km thick shell floating on a ~250 km thick ocean. The observed obliquity should not be considered as a mean one but as an instantaneous one, that should vary by ~7 arcmin over the duration of the Cassini mission.
Ocean Tidal Dynamics and Dissipation in the Thick Shell Worlds
NASA Astrophysics Data System (ADS)
Hay, H.; Matsuyama, I.
2017-12-01
Tidal dissipation in the subsurface oceans of icy satellites has so far only been explored in the limit of a free-surface ocean or under the assumption of a thin ice shell. Here we consider ocean tides in the opposite limit, under the assumption of an infinitely rigid, immovable, ice shell. This assumption forces the surface displacement of the ocean to remain zero, and requires the solution of a pressure correction to ensure that the ocean is mass conserving (divergence-free) at all times. This work investigates the effect of an infinitely rigid lid on ocean dynamics and dissipation, focusing on implications for the thick shell worlds Ganymede and Callisto. We perform simulations using a modified version of the numerical model Ocean Dissipation in Icy Satellites (ODIS), solving the momentum equations for incompressible shallow water flow under a degree-2 tidal forcing. The velocity solution to the momentum equations is updated iteratively at each time-step using a pressure correction to guarantee mass conservation everywhere, following a standard solution procedure originally used in solving the incompressible Navier-Stokes equations. We reason that any model that investigates ocean dynamics beneath a global ice layer should be tested in the limit of an immovable ice shell and must yield solutions that exhibit divergence-free flow at all times.
The heterogeneous ice shell thickness of Enceladus
NASA Astrophysics Data System (ADS)
Lucchetti, Alice; Pozzobon, Riccardo; Mazzarini, Francesco; Cremonese, Gabriele; Massironi, Matteo
2016-10-01
Saturn's moon Enceladus is the smallest Solar System body that presents an intense geologic activity on its surface. Plumes erupting from Enceladus' South Polar terrain (SPT) provide direct evidence of a reservoir of liquid below the surface. Previous analysis of gravity data determined that the ice shell above the liquid ocean must be 30-40 km thick from the South Pole up to 50° S latitude (Iess et al., 2014), however, understand the global or regional nature of the ocean beneath the ice crust is still challenging. To infer the thickness of the outer ice shell and prove the global extent of the ocean, we used the self-similar clustering method (Bonnet et al., 2001; Bour et al., 2002) to analyze the widespread fractures of the Enceladus's surface. The spatial distribution of fractures has been analyzed in terms of their self-similar clustering and a two-point correlation method was used to measure the fractal dimension of the fractures population (Mazzarini, 2004, 2010). A self-similar clustering of fractures is characterized by a correlation coefficient with a size range defined by a lower and upper cut-off, that represent a mechanical discontinuity and the thickness of the fractured icy crust, thus connected to the liquid reservoir. Hence, this method allowed us to estimate the icy shell thickness values in different regions of Enceladus from SPT up to northern regions.We mapped fractures in ESRI ArcGis environment in different regions of the satellite improving the recently published geological map (Crow-Willard and Pappalardo, 2015). On these regions we have taken into account the fractures, such as wide troughs and narrow troughs, located in well-defined geological units. Firstly, we analyzed the distribution of South Polar Region fracture patterns finding an ice shell thickness of ~ 31 km, in agreement with gravity measurements (Iess et al., 2014). Then, we applied the same approach to other four regions of the satellite inferring an increasing of the ice shell thickness from 31 to 70 km from the South Pole to northern regions. By these findings, we prove the global extent of the ocean underneath the ice crust of the satellite.
Europa, tidally heated oceans, and habitable zones around giant planets
NASA Astrophysics Data System (ADS)
Reynolds, R. T.; McKay, C. P.; Kasting, J. F.
Tidal dissipation in the satellites of a giant planet may provide sufficient heating to maintain an environment favorable to life on the satellite surface or just below a thin ice layer. Europa could have a liquid ocean which may occasionally receive sunlight through cracks in the overlying ice shell. In such a case, sufficient solar energy could reach liquid water that organisms similar to those found under Antarctic ice could grow. In other solar systems, larger satellites with more significant heat flow could represent environments that are stable over an order of eons and in which life could perhaps evolve. A zone around a giant planet is defined in which such satellites could exist as a tidally-heated habitable zone. This zone can be compared to the habitable zone which results from heating due to the radiation of a central star. In this solar system, this radiatively-heated habitable zone contains the earth.
Europa, tidally heated oceans, and habitable zones around giant planets
NASA Technical Reports Server (NTRS)
Reynolds, Ray T.; Mckay, Christopher P.; Kasting, James F.
1987-01-01
Tidal dissipation in the satellites of a giant planet may provide sufficient heating to maintain an environment favorable to life on the satellite surface or just below a thin ice layer. Europa could have a liquid ocean which may occasionally receive sunlight through cracks in the overlying ice shell. In such a case, sufficient solar energy could reach liquid water that organisms similar to those found under Antarctic ice could grow. In other solar systems, larger satellites with more significant heat flow could represent environments that are stable over an order of eons and in which life could perhaps evolve. A zone around a giant planet is defined in which such satellites could exist as a tidally-heated habitable zone. This zone can be compared to the habitable zone which results from heating due to the radiation of a central star. In this solar system, this radiatively-heated habitable zone contains the earth.
Convection Models for Ice-Water System: Dynamical Investigation of Phase Transition
NASA Astrophysics Data System (ADS)
Allu Peddinti, D.; McNamara, A. K.
2012-12-01
Ever since planetary missions of Voyager and Galileo revealed a dynamically altered surface of the icy moon Europa, a possible subsurface ocean under an icy shell has been speculated and surface features have been interpreted from an interior dynamics perspective. The physics of convection in a two phase water-ice system is governed by a wide set of physical parameters that include melting viscosity of ice, the variation of viscosity due to pressure and temperature, temperature contrast across and tidal heating within the system, and the evolving thickness of each layer. Due to the extreme viscosity contrast between liquid water and solid ice, it is not feasible to model the entire system to study convection. However, using a low-viscosity proxy (higher viscosity than the liquid water but much lower than solid ice) for the liquid phase provides a convenient approximation of the system, and allows for a relatively realistic representation of convection within the ice layer while also providing a self-consistent ice layer thickness that is a function of the thermal state of the system. In order to apply this method appropriately, we carefully examine the upper bound of viscosity required for the low-viscosity proxy to adequately represent the liquid phase. We identify upper bounds on the viscosity of the proxy liquid such that convective dynamics of the ice are not affected by further reductions of viscosity. Furthermore, we investigate how the temperature contrast across the system and viscosity contrast between liquid and ice control ice layer thickness. We also investigate ice shell thickening as a function of cooling, particularly how viscosity affects the conduction-to-convection transition within the ice shell. Finally, we present initial results that investigate the effects that latent heat of fusion (due to the ice-water phase transition) has on ice convection.
Convection in Icy Satellites: Implications for Habitability and Planetary Protection
NASA Technical Reports Server (NTRS)
Barr, A. C.; Pappalardo, R. T.
2004-01-01
Solid-state convection and endogenic resurfacing in the outer ice shells of the icy Galilean satellites (especially Europa) may contribute to the habitability of their internal oceans and to the detectability of any biospheres by spacecraft. If convection occurs in an ice I layer, fluid motions are confined beneath a thick stagnant lid of cold, immobile ice that is too stiff to participate in convection. The thickness of the stagnant lid varies from 30 to 50% of the total thickness of the ice shell, depending on the grain size of ice. Upward convective motions deliver approximately 10(exp 9) to 10(exp 13) kg yr(sup -1) of ice to the base of the stagnant lid, where resurfacing events driven by compositional or tidal effects (such as the formation of domes or ridges on Europa, or formation of grooved terrain on Ganymede) may deliver materials from the stagnant lid onto the surface. Conversely, downward convective motions deliver the same mass of ice from the base of the stagnant lid to the bottom of the satellites ice shells. Materials from the satellites surfaces may be delivered to their oceans by downward convective motions if material from the surface can reach the base of the stagnant lid during resurfacing events. Triggering convection from an initially conductive ice shell requires modest amplitude (a few to tens of kelvins) temperature anomalies to soften the ice to permit convection, which may require tidal heating. Therefore, tidal heating, compositional buoyancy, and solid-state convection in combination may be required to permit mass transport between the surfaces and oceans of icy satellites. Callisto and probably Ganymede have thick stagnant lids with geologically inactive surfaces today, so forward contamination of their surfaces is not a significant issue. Active convection and breaching of the stagnant lid is a possibility on Europa today, so is of relevance to planetary protection policy.
NASA Astrophysics Data System (ADS)
Bierhaus, E. B.
2017-11-01
Impacts on Europa mix surface and subsurface material, introduce fracturing, and at progressively larger sizes, result in deeper melting (and mixing) within the ice shell. The largest sizes punch through the ice, providing a direct, albeit temporary, conduit between the ocean and the surface.
Energizing the Discussion of Ice-Ocean World Habitability
NASA Astrophysics Data System (ADS)
Schmidt, B.
2014-04-01
The outer solar system boasts a wide range of worlds with oceans - moons orbiting the gas giants as well as putative ocean worlds in the Kuiper Belt. These objects span sizes from a few hundred kilometers to larger than Mercury. How do we understand these bodies as a class as well as evaluate the habitability of individual environments? Recognizing that there is more to habitability than a set of ingredients, "Follow the Energy' has become an important mantra. Earth's biosphere is strongly coupled to its geologic activity that maintains a sort of stable chemical disequilibria that is employed by life. From this perspective, we can think of geologic activity as a planetary proxy for energy, setting up redox environments of which life can take advantage. With this as a backdrop, we will explore two of the most intriguing bodies: Europa and Enceladus. With an icy outer shell hiding a global ocean, Europa (r=1565 km) exists in a dynamic environment, where immense tides from Jupiter potentially power an active deeper interior. Intense irradiation and impacts bathe the top of the ice shell. These processes are sources of energy that could sustain a biosphere. In the past few decades the debate about habitability of Europa has been focused strongly on the thickness of its ice shell. However an arguably more critical question is: how does the ice shell really work? Galileo data indicated that Europa has undergone recent resurfacing, and implied that near-surface water was likely involved. Now the detection of potential water ice plumes, subduction-like behavior as well as shallow subsurface "lakes" within the past few years implies that rapid ice shell recycling could create a conveyor belt between the ice and ocean. Mediated by processes at the ice-ocean interface, exchange between Europa's surface and subsurface could allow ocean material to one day be detected or sampled by spacecraft. At least at this level, Europa passes the energy test. But the question remains: is there enough? Enceladus (r=250 km) is the star of the Cassini mission, shooting water ice plumes from its south pole despite its small size and relatively low tidal forcing. This surprising activity, compete with heat signatures surrounding the sources of the south polar jets, is difficult to explain. These plumes contain a wide range of compounds that include potential products of water-rock reactions. Moreover, Enceladus is two-faced - half of the body seems to have undergone immense tectonic evolution, while another region of the moon is covered with ancient craters. Recent work showed that Enceladus' shape was consistent with a localized sea rather than a global ocean, and has now been confirmed by gravity measurements. In such a world, can geologic activity persist to set up redox conditions suitable for life? Moreover, since Enceladus can likely not sustain such activity over geologic activity, what is special about this timing and could a biosphere persist? In this presentation, we will explore these worlds and consider how habitable environments might be produced. These considerations should form the basis for understanding habitability of ice-ocean systems both for their own intrinsic interest and as type examples for planets we may one day detect around other stars.
Morgan, D.; Mawer, S. L.; Harman, P. L.
1994-01-01
A family outbreak of Salmonella enteritidis PT4 infection is described in which home-made ice cream was identified as the vehicle of infection. The ice cream contained approximately 10(5) S. enteritidis PT4 organisms per gm and was probably contaminated by an infected shell egg containing between 10(5)-10(8) organisms. The continued relevance of the Chief Medical Officer's warning on the use of raw shell eggs is highlighted. Home-made ice cream using the same recipe as ice cream that had been incriminated as the cause of the family outbreak of S. enteritidis PT4 infection was used to study the growth of the organism that might have occurred in the 3-4 h it took to prepare the product. When the inoculum was in the stationary phase, as it would be from shell or other cross contamination, there was a lag phase of 3 h before growth occurred at room temperature. Even when actively multiplying organisms were introduced, as may be found in an infected egg, there was less than 3 log(10) increase in the salmonella count in 4 h at room temperature. It was, therefore, given the high S. enteritidis count, unlikely that the ice cream was cross-contaminated. By contrast, raspberry sorbet at pH 3.73 proved to be lethal to a large inoculum of S. enteritidis and may be a relatively safe raw egg containing product. PMID:8062876
Enceladus is not in Steady State
NASA Astrophysics Data System (ADS)
Cheunchitra, T.; Stevenson, D. J.
2016-12-01
Libration data tell us there is a global ocean. Topography and gravity tell us that there is substantial compensation at degree 2, meaning that the underside of the ice shell must have topography. This topography will decay, typically on a timescale of order a million years (fortuitously similar to thermal diffusion times through the ice shell), by viscous lateral flow of the ice. This could in principle be compensated in steady state by net melting beneath the poles and a compensating net freezing at the equator. In that model, the ice shell beneath the poles is partially melted with water being continuously produced and percolating to the base (or expelled if there are cracks, as at the South Pole). We have modeled this without an a priori assumption about the strength of tidal heating. We find that even if the tidal heating is zero on average around the equator, then the latent heat release from the required freezing can only be accommodated in steady state if the ice shell is 18km. The ice thickness must be even less at the poles in order to satisfy gravity and topography. Moreover, there must then be substantial tidal heating at the poles and it is physically unreasonable to have the volumetric tidal heating at the equator be enormously less than at the North Pole. For example, if the volumetric tidal heating at the equator is on average one quarter of that at the North Pole then marginal consistency with gravity and topography may be possible for a mean ice thickness at the equator of 12km. The global heat flow may exceed 40GW, much higher than the detectable IR excess (the observed south polar tiger stripe heat flow). Recent work (Fuller et al.) admits orbital evolutions with large heat flow at least for a recent part of the orbital history. However, this thin shell steady state model has difficulty reconciling observed gravity and topography as well as the libration data. We conclude that it is unlikely that Enceladus has no net melting or freezing. The ice shell can be thicker on average if there is net freezing at present but in that case it is difficult to explain the observed topography and gravity. A more likely scenario is that Enceladus has more melting beneath the poles than the current freezing (if any) beneath the equator. In that non-steady state model, the current ice thickness can be compatible with all current data.
A Lower Limit on the Thickness of Europa's Ice Shell from Numerical Simulations of Impact Cratering
NASA Astrophysics Data System (ADS)
Turtle, E. P.; Ivanov, B. A.
2001-12-01
If Europa has an ice-covered, liquid water ocean, the thickness of the ice shell can be tested by analyzing the impact crater morphologies revealed by Galileo images. Several of Europa's 28 primary impact structures have morphologies typical of complex impact craters on other planetary bodies: terraced rims, flat floors, and central peaks [1]. To constrain the minimum ice thickness necessary to reproduce the observed complex crater morphologies, we have performed numerical simulations, using the modified SALE-2D code [2], of the formation of impact craters in ice layers with thicknesses ranging from 5 to 11 km overlying liquid water. The target ice has ice strength properties from published laboratory data [3] with a gradual decrease towards the base of the ice as the temperature approaches the melting point. The projectile parameters were chosen to produce a 10 km diameter crater in thick ice. We find that ice layers less than 7 km thick are not sufficient to prevent an outburst of liquid water during collapse of the transient cavity. At thicknesses of 8 and 9 km we observe a boundary regime: crater collapse produces a flat or upward-domed floor, however the water under the crater center does not reach the surface. In ice greater than 10 km thick a normal transient cavity forms. These results indicate that the ice thickness, at the times and locations of complex crater formation, must have been comparable to the diameters of the transient craters, the largest of which was between 11.9 and 18.5 km [1]. Implementation of additional mechanisms such as acoustic fluidization and creep may affect the shape of the final crater produced in our simulations: acoustic fluidization can produce central peak and peak-ring craters [4], and creep may result in a flattened crater. We are currently investigating the influence of these processes on the final crater morphology. References: [1] Moore et al., Icarus 151, 2001. [2] Ivanov et al., GSA Spec. Pap., in press. [3] Beeman et al., JGR 93, 1988. [4] Melosh and Ivanov, Ann. Rev. Earth Plan. Sci. 27, 1999.
On ice rifts and the stability of non-Newtonian extensional flows on a sphere
NASA Astrophysics Data System (ADS)
Sayag, Roiy
2017-11-01
Rifts that form at the fronts of floating ice shelves that spread into the ocean can trigger major calving events in the ice. The deformation of ice can be modeled as a thin viscous film driven by buoyancy. The front of such a viscous film that propagates over a flat surface with no-slip basal conditions is known to have stable axisymmetric solutions. In contrast, when the fluid propagates under free-slip conditions at the substrate, the front can become unstable to small perturbations if the fluid is sufficiently strain-rate softening. Consequently, the front will develop tongues with a characteristic wavelength that coarsens over time, a pattern that is reminiscent of ice rifts. Here we investigate the stability of a spherical sheet of power-law fluids under free-slip basal conditions. The fluid is discharged at constant flux and axisymmetrically with respect to the pole, and propagates towards the equator. The propagating front in such a situation may become unstable due to its failure to sustain large extensional forces, resulting in the formation of rifts. This study has implications to understanding the cause of patterns that are observed on shells of floating ice in a range of planetary objects, and whether open rifts that sustain life were feasible in snowball earth. Israel Science Foundation 1368/16.
Numerical Implementation of Ice Rheology for Europa's Shell
NASA Technical Reports Server (NTRS)
Barr, A. C.; Pappalardo, R. T.
2004-01-01
We present a discussion of approximations to the temperature dependent part of the rheology of ice. We have constructed deformation maps using the superplastic rheology of Goldsby & Kohlstedt and find that the rheologies that control convective flow in the Europa's are likely grain boundary sliding and basal slip for a range of grain sizes 0.1 mm < d < 1 cm. We compare the relative merits of two different approximations to the temperature dependence of viscosity and argue that for temperature ranges appropriate to Europa, implementing the non-Newtonian, lab-derived flow law directly is required to accurately judge the onset of convection in the ice shell and temperature gradient in the near-surface ice.
NASA Astrophysics Data System (ADS)
Turtle, E. P.; McEwen, A. S.; Osterman, S. N.; Boldt, J. D.; Strohbehn, K.; EIS Science Team
2016-10-01
EIS NAC and WAC use identical rad-hard rapid-readout 4k × 2k CMOS detectors for imaging during close (≤25 km) fast ( 4.5 km/s) Europa flybys. NAC achieves 0.5 m/pixel over a 2-km swath from 50 km, and WAC provides context pushbroom stereo imaging.
The influence of meridional ice transport on Europa's ocean stratification and heat content
NASA Astrophysics Data System (ADS)
Zhu, Peiyun; Manucharyan, Georgy E.; Thompson, Andrew F.; Goodman, Jason C.; Vance, Steven D.
2017-06-01
Jupiter's moon Europa likely hosts a saltwater ocean beneath its icy surface. Geothermal heating and rotating convection in the ocean may drive a global overturning circulation that redistributes heat vertically and meridionally, preferentially warming the ice shell at the equator. Here we assess the previously unconstrained influence of ocean-ice coupling on Europa's ocean stratification and heat transport. We demonstrate that a relatively fresh layer can form at the ice-ocean interface due to a meridional ice transport forced by the differential ice shell heating between the equator and the poles. We provide analytical and numerical solutions for the layer's characteristics, highlighting their sensitivity to critical ocean parameters. For a weakly turbulent and highly saline ocean, a strong buoyancy gradient at the base of the freshwater layer can suppress vertical tracer exchange with the deeper ocean. As a result, the freshwater layer permits relatively warm deep ocean temperatures.
The influence of meridional ice transport on Europa's ocean stratification and heat content
NASA Astrophysics Data System (ADS)
Zhu, P.; Manucharyan, G.; Thompson, A. F.; Goodman, J. C.; Vance, S.
2017-12-01
Jupiter's moon Europa likely hosts a saltwater ocean beneath its icy surface. Geothermal heating and rotating convection in the ocean may drive a global overturning circulation that redistributes heat vertically and meridionally, preferentially warming the ice shell at the equator. Here we assess thepreviously unconstrained influence of ocean-ice coupling on Europa's ocean stratification and heat transport. We demonstrate that a relatively fresh layer can form at the ice-ocean interface due to a meridional ice transport forced by the differential ice shell heating between the equator and the poles. We provide analytical and numerical solutions for the layer's characteristics, highlighting their sensitivity to critical ocean parameters. For a weakly turbulent and highly saline ocean, a strong buoyancy gradient at the base of the freshwater layer can suppress vertical tracer exchange with the deeper ocean. As a result, the freshwater layer permits relatively warm deep ocean temperatures.
Evidence for subduction in the ice shell of Europa
NASA Astrophysics Data System (ADS)
Kattenhorn, Simon A.; Prockter, Louise M.
2014-10-01
Jupiter’s icy moon Europa has one of the youngest planetary surfaces in the Solar System, implying rapid recycling by some mechanism. Despite ubiquitous extension and creation of new surface area at dilational bands that resemble terrestrial mid-ocean spreading zones, there is little evidence of large-scale contraction to balance the observed extension or to recycle ageing terrains. We address this enigma by presenting several lines of evidence that subduction may be recycling surface material into the interior of Europa’s ice shell. Using Galileo spacecraft images, we produce a tectonic reconstruction of geologic features across a 134,000 km2 region of Europa and find, in addition to dilational band spreading, evidence for transform motions along prominent strike-slip faults, as well as the removal of approximately 20,000 km2 of the surface along a discrete tabular zone. We interpret this zone as a subduction-like convergent boundary that abruptly truncates older geological features and is flanked by potential cryolavas on the overriding ice. We propose that Europa’s ice shell has a brittle, mobile, plate-like system above convecting warmer ice. Hence, Europa may be the only Solar System body other than Earth to exhibit a system of plate tectonics.
NASA Astrophysics Data System (ADS)
Schill, G. P.; Tolbert, M. A.
2013-05-01
Atmospheric ice nucleation on aerosol particles relevant to cirrus clouds remains one of the least understood processes in the atmosphere. Upper tropospheric aerosols as well as sub-visible cirrus residues are known to be enhanced in both sulfates and organics. The hygroscopic phase transitions of organic-sulfate particles can have an impact on both the cirrus cloud formation mechanism and resulting cloud microphysical properties. In addition to deliquescence and efflorescence, organic-sulfate particles are known to undergo another phase transition known as liquid-liquid phase separation. The ice nucleation properties of particles that have undergone liquid-liquid phase separation are unknown. Here, Raman microscopy coupled with an environmental cell was used to study the low temperature deliquescence, efflorescence, and liquid-liquid phase separation behavior of 2 : 1 mixtures of organic polyols (1,2,6-hexanetriol and 1 : 1 1,2,6-hexanetriol + 2,2,6,6-tetrakis(hydroxymethyl)cyclohexanol) and ammonium sulfate from 240-265 K. Further, the ice nucleation efficiency of these organic-sulfate systems after liquid-liquid phase separation and efflorescence was investigated from 210-235 K. Raman mapping and volume-geometry analysis indicate that these particles contain solid ammonium sulfate cores fully engulfed in organic shells. For the ice nucleation experiments, we find that if the organic coatings are liquid, water vapor diffuses through the shell and ice nucleates on the ammonium sulfate core. In this case, the coatings minimally affect the ice nucleation efficiency of ammonium sulfate. In contrast, if the coatings become semi-solid or glassy, ice instead nucleates on the organic shell. Consistent with recent findings that glasses can be efficient ice nuclei, the phase-separated particles are nearly as efficient at ice nucleation as pure crystalline ammonium sulfate.
NASA Astrophysics Data System (ADS)
Schill, G. P.; Tolbert, M. A.
2012-12-01
Atmospheric ice nucleation on aerosol particles relevant to cirrus clouds remains one of the least understood processes in the atmosphere. Upper tropospheric aerosols as well as sub-visible cirrus residues are known to be enhanced in both sulfates and organics. The hygroscopic phase transitions of organic-sulfate particles can have an impact on both the cirrus cloud formation mechanism and resulting cloud microphysical properties. In addition to deliquescence and efflorescence, organic-sulfate particles are known to undergo another phase transition known as liquid-liquid phase separation. The ice nucleation properties of particles that have undergone liquid-liquid phase separation are unknown. Here, Raman microscopy coupled with an environmental cell was used to study the low temperature deliquescence, efflorescence, and liquid-liquid phase separation behavior of 2:1 mixtures of organic polyols (1,2,6-hexanetriol, and 1:1 1,2,6-hexanetriol +2,2,6,6-tetrakis(hydroxymethyl)cycohexanol) and ammonium sulfate from 240-265 K. Further, the ice nucleation efficiency of these organic-sulfate systems after liquid-liquid phase separation and efflorescence was investigated from 210-235 K. Raman mapping and volume-geometry analysis indicates that these particles contain solid ammonium sulfate cores fully engulfed in organic shells. For the ice nucleation experiments, we find that if the organic coatings are liquid, water vapor diffuses through the shell and ice nucleates on the ammonium sulfate core. In this case, the coatings minimally affect the ice nucleation efficiency of ammonium sulfate. In contrast, if the coatings become semi-solid or glassy, ice instead nucleates on the organic shell. Consistent with recent findings that glasses can be efficient ice nuclei, the phase separated particles are nearly as efficient at ice nucleation as pure crystalline ammonium sulfate.
The impact of a pressurized regional sea or global ocean on stresses on Enceladus
NASA Astrophysics Data System (ADS)
Johnston, Stephanie A.; Montési, Laurent G. J.
2017-06-01
Liquid water is likely present in the interior of Enceladus, but it is still debated whether this water forms a global ocean or a regional sea and whether the present-day situation is stable. As the heat flux of Enceladus exceeds most heat source estimates, the liquid water is likely cooling and crystallizing, which results in expansion and pressurization of the sea or ocean. We determine, using an axisymmetric Finite Element Model, the tectonic patterns that pressurization of a regional sea or global ocean might produce at the surface of Enceladus. Tension is always predicted above where the ice is thinnest and generates cracks that might be at the origin of the Tiger Stripes. Tectonic activity is also expected in an annulus around the sea if the ice shell is in contact with but slips freely along the rocky core of the satellite. Cracks at the north pole are expected if the shell slips along the core or if there is a global ocean with thin ice at the pole. Water is likely injected along the base of the ice when the shell is grounded, which may lead to cycles of tectonic activity with the shell alternating between floating and grounded states and midlatitude faulting occurring at the transition from a grounded to a floating state.
Europa, tidally heated oceans, and habitable zones around giant planets.
Reynolds, R T; McKay, C P; Kasting, J F
1987-01-01
Tidal dissipation in the satellites of a giant planet may provide sufficient heating to maintain an environment favorable to life on the satellite surface or just below a thin ice layer. In our own solar system, Europa, one of the Galilean satellites of Jupiter, could have a liquid ocean which may occasionally receive sunlight through cracks in the overlying ice shell. In such case, sufficient solar energy could reach liquid water that organisms similar to those found under Antarctic ice could grow. In other solar systems, larger satellites with more significant heat flow could represent environments that are stable over an order of Aeons and in which life could perhaps evolve. We define a zone around a giant planet in which such satellites could exist as a tidally-heated habitable zone. This zone can be compared to the habitable zone which results from heating due to the radiation of a central star. In our solar system, this radiatively-heated habitable zone contains the Earth.
Effect of the tiger stripes on the deformation of Saturn's moon Enceladus
NASA Astrophysics Data System (ADS)
Souček, Ondřej; Hron, Jaroslav; Běhounková, Marie; Čadek, Ondřej
2016-07-01
Enceladus is a small icy moon of Saturn with active jets of water emanating from fractures around the south pole, informally called tiger stripes, which might be connected to a subsurface water ocean. The effect of these features on periodic tidal deformation of the moon has so far been neglected because of the difficulties associated with implementation of faults in continuum mechanics models. Here we estimate the maximum possible impact of the tiger stripes on tidal deformation and heat production within Enceladus's ice shell by representing them as narrow zones with negligible frictional and bulk resistance passing vertically through the whole ice shell. Assuming a uniform ice shell thickness of 25 km, consistent with the recent estimate of libration, we demonstrate that the faults can dramatically change the distribution of stress and strain in Enceladus's south polar region, leading to a significant increase of the heat production in this area.
Counterintuitive Constraints on Chaos Formation Set by Heat Flux through Europa's Ocean
NASA Astrophysics Data System (ADS)
Goodman, J. C.
2013-12-01
Models for the formation of disruptive chaos features on the icy surface of Europa fall into two broad categories: either chaos is formed when basal heating causes localized melting and thinning of the ice shell, or basal heating drives diapiric convection within the ice shell. We argue that in both of these cases, heating of the ice shell from below does not lead to chaos formation at the location of heating. If chaos is formed when a localized oceanic heat source, such as a hydrothermal plume, "melts through" the ice crust, we must consider what happens to the melted liquid. If Europa's ocean is salty, the melt will form a buoyant pool inside the melted cavity, leading to a stable interface between cold fresh meltwater and warm salty seawater. This stable interface acts like an ablative heat shield, protecting the ice from further damage. Some heat can be transferred across the stable layer by double diffusion, but this transfer is very inefficient. We calculate that local ocean heating cannot be balanced by local flux through the stable layer: instead, the warm ocean water must spread laterally until it is delivering heat to the ice base on a regional or global scale (a heating zone hundreds or thousands of km across, for conservative parameters.) If chaos is formed by diapiric solid-state convection within the ice shell, many investigators have assumed that diapirism and chaos should be most prevalent where the basal heat flux is strongest. We argue that this is not the case. In Rayleigh-Benard convection, increasing the heat flux will make convection more vigorous --- if and only if the convecting layer thickness does not change. We argue that increased basal heat flux will thin the ice shell, reducing its Rayleigh number and making convection less likely, not more. This insight allows us to reverse the logic of recent discussions of the relationship between ocean circulation and chaos (for instance, Soderlund et al, 2013 LPSC). We argue that global oceanic heat transport is governed by geostrophic quasi-two-dimensional convection, which delivers less heat to the tropics and more to the poles. By the argument above, this implies that the ice layer should be thicker in the tropics, and thus more prone to diapiric convection: thus, chaos should be more common there. Recent mapping efforts by other investigators have shown that this does appear to be the case.
Effect of the tiger stripes on the tidal deformation of Enceladus
NASA Astrophysics Data System (ADS)
Soucek, Ondrej; Hron, Jaroslav; Behounkova, Marie; Cadek, Ondrej
2016-10-01
The south polar region of Saturn's moon Enceladus has been subjected to a thorough scientific scrutiny since the Cassini mission discovery of an enigmatic system of fractures informally known as "tiger stripes". This fault system is possibly connected to the internal water ocean and exhibits a striking geological activity manifesting itself in the form of active water geysers on the moon's surface.The effect of the faults on periodic tidal deformation of the moon has so far been neglected because of the difficulties associated with the implementation of fractures in continuum mechanics models. Employing an open source finite element FEniCS package, we provide a numerical estimate of the maximum possible impact of the tiger stripes on the tidal deformation and the heat production in Enceladus's ice shell by representing the faults as narrow zones with negligible frictional and bulk resistance passing vertically through the whole shell.For a uniform ice shell thickness of 25 km, consistent with the recent estimate of libration, and for linear elastic rheology, we demonstrate that the faults can dramatically change the distribution of stress and strain in Enceladus's south polar region, leading to a significant increase of the heat flux and to a complex deformation pattern in this area. We also present preliminary results studying the effects of (i) variable ice-shell thickness, based on the recent topography, gravity and libration inversion model by Čadek et al. (2016) and (ii) Maxwell viscoelastic rheology on the global tidal deformation of the ice shell.O.S. acknowledges support by the Grant Agency of the Czech Republic through the project 15-14263Y.
Geophysics of an Oceanic Ice Shell on Snowball Earth
NASA Technical Reports Server (NTRS)
Gaidos, E. J.
2000-01-01
Kirschvink proposed Precambrian low-latitude glaciation could result in an albedo-driven catastrophic runaway to a "Snowball Earth" state in which pack ice up to 1 km thick covered the world ocean. The geophysical state of an ice crust on a Snowball Earth is examined.
Dissipation in the deep interiors of Ganymede and Europa
NASA Astrophysics Data System (ADS)
Hussmann, Hauke; Shoji, Daigo; Steinbruegge, Gregor; Stark, Alexander; Sohl, Frank
2017-04-01
Jupiter's satellites are subject to strong tidal forces which result in variations of the gravitational potential and deformations of the satellites' surfaces on the diurnal tidal cycle. Tidal flexing in the deep interiors can be a significant heat source for the satellites' thermal-orbital evolution. Whereas typical structure models of Europa consist of a core, a silicate mantle, an ocean and an outer ice-I shell [1], pressures inside Ganymede are sufficient for high-pressure ice phases to occur between the silicate mantle and the ocean [2]. With current data it is unknown whether the deep interiors (i.e., Europa's silicate shell and Ganymede's silicate mantle and/or high-pressure ice layer) are dissipative. Other possibilities would be that the dissipation rates are in general very low (unlikely at least for Europa due to recent observations) or that dissipative processes are mainly occurring in the ice-I shell and/or ocean. Thus, for evaluations of the heating state of these satellites, it is important to measure the magnitude of the interior dissipation. However, observation of the interior layers such as high-pressure ice layers is more challenging than that of the surface ice-I layer. Here we suggest a method to constrain the dissipation states of the deep interiors of Ganymede and Europa by altimetry and gravity measurements from an orbiting or multi-flyby spacecraft. Tidal variations are generally described by the Love numbers k2 and h2 for the tide-induced potential variation due to internal mass redistribution and the radial surface displacement, respectively. The phase-lags of these complex numbers contain information about the rheological and dissipative states of the satellites. For the satellites we assume a decoupling of the outer ice-shell from the deep interior by a liquid subsurface water ocean. We show that, in this case, the phase-lag difference between the lags of k2 and h2 can provide information on the rheological and thermal state of the deep interiors if the viscosities of the deeper layers are small (the phase-lag difference is almost independent of the dissipation in the surface layer). In case of Ganymede, phase-lag differences can reach values of a few degrees for high-pressure ice viscosities of 1e13-1e14 Pa s (around the lower boundary at its melting temperature) and would indicate a highly dissipative state of the deep interior. In this case, in contrast to the phase lags itself, the phase-lag difference is dominated by dissipation in the high-pressure ice layer rather than dissipation within the ice-I shell. These phase lags would be detectable from spacecraft in orbit around the satellite [3]. For Europa the phase-lag difference could reach values exceeding 20 deg if the silicate mantle contains melt and phase-lag measurements could help distinguish between (1) a hot dissipative (melt-containing) silicate mantle which would in thermal equilibrium correspond to a very thin outer ice-I shell and (2) a cold deep interior implying that dissipation would mainly occur in a thick (several tens of km) outer ice-I shell. These measurements are highly relevant for ESA's Jupiter Icy Moons Explorer (JUICE) and NASA's Europa Multiple Flyby Mission, both targeted for the Jupiter system. References: [1] Schubert, G., F. Sohl and H. Hussmann 2009. Interior of Europa. In: Europa, (R.T. Pappalardo, W.B. McKinnon, K. Khurana, Eds.), University of Arizona Press, pp. 353 - 368. [2] Schubert G., J. D. Anderson, T. Spohn, and W. B. McKinnon 2004. Interior composition, structure, and dynamics of the Galilean satellites. In: F. Bagenal, T. E. Dowling, and W. B. McKinnon (eds.) Jupiter. The Planet, Satellites, and Magnetosphere, pp. 281-306. Cambridge University Press. [3] Hussmann, H., D. Shoji, G. Steinbrügge, A. Stark, F. Sohl 2016. Constraints on dissipation in the deep interiors of Ganymede and Europa from tidal phase-lags. Cel. Mech. Dyn. Astr. 126, 131 - 144.
Formation of Ganymede's Grooved Terrain by Convection-Driven Resurfacing
NASA Astrophysics Data System (ADS)
Hammond, N. P.; Barr, A. C.
2013-12-01
Over half the surface of Ganymede, Jupiter's largest icy moon, is covered in grooved terrain, which is composed of 10-100 km wide swaths of sub-parallel ridges and troughs [1]. Convection in Ganymede's ice shell was originally suggested as a driving mechanism for grooved terrain formation [2] but subsequent work has argued that convective stresses were too weak to deform the surface [3] and that Ganymede's ice shell was thin and conductive during groove terrain formation [4]. However, the heat flow [5] and strain rate [6] inferred for grooved terrain formation resemble the conditions observed at the active Enceladus South Polar Terrain (SPT), where 'sluggish lid' convection may be occurring [7]. During 'sluggish lid' convection, thermal buoyancy stresses exceed the lithospheric yield stress, allowing convection to reach the surface and drive deformation [8]. Previous work shows that the heat flows and strain rates associated with sluggish lid convection are consistent with the observed heat flow and surface age of the Enceladus SPT [7, 9]. Here we use numerical models of convection in Ganymede's ice shell to show that convection can provide the heat flow and strain rate inferred for grooved terrain formation. We use the finite element model CITCOM [10] to model convection for a wide range of ice shell conditions. We use a newtonian temperature-dependent viscosity consistent with deformation by volume diffusion [11]. We impose a limited viscosity contrast between the surface and base of the ice shell to mimic the effect of an upper surface whose yield stress is less than the critical stress for sluggish lid convection [7, 12] due to impact fracturing [13], tidal flexing, and/or shallow tidal heating. We find that ice shells 10 to 80 km thick are consistent with the heat flow and strain rate inferred for grooved terrain formation. Regions above convective upwellings are consistent with conditions inferred at groove lanes. Regions above downwellings are consistent with heat flow estimates for dark terrain [14] and conditions which favor the formation of long-wavelength, low-amplitude compressional folds [15], similar to those observed on Europa [16]. Such folds may be detectable by the upcoming Jupiter-Icy-Moon-Explorer Mission. Acknowledgements: This work is supported by NASA PG&G #NNX12AI76G References: [1] Collins G. et al., (1998) GRL 25, 3, 233-236 [2] Lucchitta B. (1980) Icarus 44, 481-501 [3] Squyres S. & Croft S. (1986) Satellites 293-341 [4] Showman A. P. et al., (1997) Icarus 129, 367-383 [5] Nimmo F. et al. (2002) GRL 29, 62-65 [6] Bland M. & Showman A. (2007), Icarus 189, 439-456. [7] Barr A. C. (2008) JGR 113, E07009 14 [8] Solomatov V. (2004) JGR 109, B01412 [9] O'Neill C. & Nimmo F. (2010) Nat. Geo. 3 v2 88-91 [10] Moresi L. & Solomatov V. (1995) Phys. Fluids 7, 2154-2162 [11] Goldsby D. & Kohlstedt D. (2001) JGR 106, B6 11017-11030 [12] Solomatov V. (2004) JGR 109, B01412 [13] Nimmo F. & Schenk P. (2006) J. Struc. Geol. 28, 2194-2203 [14] Nimmo F. & Pappalardo R. (2004) GRL 31, L19701 [15] Bland M. & McKinnon W. (2012) Icarus 221, 2, 694-709 [16] Prockter L. & Pappalardo R. (2000) Science 289, 5481, 941-944
NASA Astrophysics Data System (ADS)
Johnston, Stephanie Ann
Enceladus and Europa are icy satellites that currently support bodies of liquid water in the outer solar system Additionally, they show signs of being geologically active. Developing numerical models informed by observations of these icy satellites allows for the development of additional constraints and an improved understanding of the tectonics and evolution of icy satellites. The formation mechanisms for both chaos and ridges on Europa are thought to involve water as albedo changes observed in association with them imply the deposition of salt-rich water near these features. Ridges are the most ubiquitous feature on Europa and are described as central troughs flanked by two raised edifices, range in height from tens to hundreds of meters. Europan ridges can extend hundreds of km continuously along strike but are only about 2 km across. A model of a crystallizing dike--like water intrusion is able to match the overall morphology of ridges, and is consistent the long continuous strike. However, the intrusion of a large volume of water is required to match the most common heights of the ridges. Chaos on Europa is defined as a large area of disrupted ice that contain blocks of pre-existing material separated by a hummocky matrix. A proposed mechanism for the formation of Chaos is that a region of heterogeneous ice within the shell is melted and then recrystallizes. Comparing the model results with the geology of Thera Macula, a region where it has been proposed that Chaos is currently forming, suggests that additional processes may be needed to fully understand the development of Chaos. Water-rich plumes erupt from the south pole of Enceladus, suggesting the presence of a pressurized water reservoir. If a pressurized sea is located beneath the south polar terrain, its geometry and size in the ice shell would contribute to the stress state in the ice shell. The geometry and location of such an ocean, as well as the boundary conditions and thickness of an ice shell have important implications for the faulting and tectonic deformation anticipated at the surface.
Asymmetric-shell ignition capsule design to tune the low-mode asymmetry during the peak drive
NASA Astrophysics Data System (ADS)
Gu, Jianfa; Dai, Zhensheng; Song, Peng; Zou, Shiyang; Ye, Wenhua; Zheng, Wudi; Gu, Peijun; Wang, Jianguo; Zhu, Shaoping
2016-08-01
The low-mode radiation flux asymmetry in the hohlraum is a main source of performance degradation in the National Ignition Facility (NIF) implosion experiments. To counteract the deleterious effects of the large positive P2 flux asymmetry during the peak drive, this paper develops a new tuning method called asymmetric-shell ignition capsule design which adopts the intentionally asymmetric CH ablator layer or deuterium-tritium (DT) ice layer. A series of two-dimensional implosion simulations have been performed, and the results show that the intentionally asymmetric DT ice layer can significantly improve the fuel ρR symmetry, hot spot shape, hot spot internal energy, and the final neutron yield compared to the spherical capsule. This indicates that the DT asymmetric-shell capsule design is an effective tuning method, while the CH ablator asymmetric-shell capsule could not correct the fuel ρR asymmetry, and it is not as effective as the DT asymmetric-shell capsule design.
Asymmetric-shell ignition capsule design to tune the low-mode asymmetry during the peak drive
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gu, Jianfa, E-mail: gu-jianfa@iapcm.ac.cn; Dai, Zhensheng, E-mail: dai-zhensheng@iapcm.ac.cn; Song, Peng
2016-08-15
The low-mode radiation flux asymmetry in the hohlraum is a main source of performance degradation in the National Ignition Facility (NIF) implosion experiments. To counteract the deleterious effects of the large positive P2 flux asymmetry during the peak drive, this paper develops a new tuning method called asymmetric-shell ignition capsule design which adopts the intentionally asymmetric CH ablator layer or deuterium-tritium (DT) ice layer. A series of two-dimensional implosion simulations have been performed, and the results show that the intentionally asymmetric DT ice layer can significantly improve the fuel ρR symmetry, hot spot shape, hot spot internal energy, and themore » final neutron yield compared to the spherical capsule. This indicates that the DT asymmetric-shell capsule design is an effective tuning method, while the CH ablator asymmetric-shell capsule could not correct the fuel ρR asymmetry, and it is not as effective as the DT asymmetric-shell capsule design.« less
Ocean Inside Saturn Moon Enceladus
2014-04-03
Gravity measurements by NASA Cassini spacecraft and Deep Space Network suggest that Saturn moon Enceladus, which has jets of water vapor and ice gushing from its south pole, also harbors a large interior ocean beneath an ice shell.
Mobile Lid Convection Beneath Enceladus' South Polar Terrain
NASA Technical Reports Server (NTRS)
Barr, Amy C.
2008-01-01
Enceladus' south polar region has a large heat flux, 55-110 milliwatts per square meter (or higher), that is spatially associated with cryovolcanic and tectonic activity. Tidal dissipation and vigorous convection in the underlying ice shell are possible sources of heat; however, prior predictions of the heat flux carried by stagnant lid convection range from F(sub conv) 15 to 30 milliwatts per square meter, too low to explain the observed heat flux. The high heat flux and increased cryovolcanic and tectonic activity suggest that near-surface ice in the region has become rheologically and mechanically weakened enough to permit convective plumes to reach close to the surface. If the yield strength of Enceladus' lithosphere is less than 1-10 kPa, convection may instead occur in the mobile lid" regime, which is characterized by large heat fluxes and large horizontal velocities in the near-surface ice. I show that model ice shells with effective surface viscosities between 10(exp 16) and 10(exp 17) Pa s and basal viscosities between 10(exp 13) and 10(exp 15) Pa s have convective heat fluxes comparable to that observed by the Cassini Composite Infrared Spectrometer. If this style of convection is occurring, the south polar terrain should be spreading horizontally with v1-10 millimeter per year and should be resurfaced in 0.1-10 Ma. On the basis of Cassini imaging data, the south polar terrain is 0.5 Ma old, consistent with the mobile lid hypothesis. Maxwell viscoelastic tidal dissipation in such ice shells is not capable of generating enough heat to balance convective heat transport. However, tidal heat may also be generated in the near-surface along faults as suggested by Nimmo et al. and/or viscous dissipation within the ice shell may occur by other processes not accounted for by the canonical Maxwell dissipation model.
NASA Astrophysics Data System (ADS)
Butler, Paul; Estrella-Martínez, Juan; Scourse, James
2017-04-01
The so-called 8.2K cold event is a rapid cooling of about 6° +/- 2° recorded in the Greenland ice core record and thought to be a consequence of a freshwater pulse from the Laurentide ice sheet which reduced deepwater formation in the North Atlantic. In the Greenland ice cores the event is characterized by a maximum extent of 159 years and a central event lasting for 70 years. As discussed by Thomas et al (QSR, 2007), the low resolution and dating uncertainty of much palaeoclimate data makes it difficult to determine the rates of change and causal sequence that characterise the event at different locations. We present here a bivalve shell chronology based on four shells of Arctica islandica from the northern North Sea which (within radiocarbon uncertainty) is coeval with the 8.2K event recorded in the Greenland ice cores. The years of death of each shell based on radiocarbon analysis and crossmatching are 8094, 8134, 8147, and 8208 yrs BP (where "present" = AD 1950), with an associated radiocarbon uncertainty of +/-80 yrs, and their longevities are 106, 122, 112 and 79 years respectively. The total length of the chronology is 192 years (8286 - 8094 BP +/- 80 yrs). The most noticeable feature of the chronology is an 60-year period of increasing growth which may correspond to a similar period of decreasing ice accumulation in the GRIP (central Greenland) ice core record. We tentatively suggest that this reflects increasing food supply to the benthos as summer stratification is weakened by colder seawater temperatures. Stable isotope analyses (results expected to be available when this abstract is presented), will show changes at annual and seasonal resolution, potentially giving a very detailed insight into the causal factors associated with the 8.2K event and its impact in the northern North Sea.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ojakangas, G.W.
1988-01-01
Two examples of planetary bodies that may have coupled thermal and dynamical evolutions are investigated. The work is presented in three individual papers. The first example is that of a tidally heated satellite in an orbital resonance, for which the tidal dissipation rate is a strongly increasing function of the internal temperature. For such a satellite, a feedback mechanism exists between the orbital and thermal energies, which may lead to periodic variations in tidal heating within the satellite and its orbital eccentricity. A simple model of this mechanisms is presented in the first paper and is applied specifically to Io.more » The second examples is that of an ice shell on Europa, which is decoupled from the silicate core by a layer of liquid water. In the second paper, the spatially varying thickness that such a shell would have in thermal equilibrium with tidal dissipation within it, surface solar insolation and heat flow from the core is calculation for reasonable rheological laws for ice. The contribution of these variations in ice thickness to Europa's inertia tensor is estimated, and the implications for nonsynchronous rotation of Europa are discussed. In the third paper, a detailed dynamical model is developed, which demonstrates that such a shell may exhibit large-scale polar wander as it approaches thermal equilibrium, because of the destabilizing effect of the variations in ice thickness on the inertia tensor of the shell.« less
Titan's interior from Cassini-Huygens
NASA Astrophysics Data System (ADS)
Tobie, G.; Baland, R.-M.; Lefevre, A.; Monteux, J.; Cadek, O.; Choblet, G.; Mitri, G.
2013-09-01
The Cassini-Huygens mission has brought many informations about Titan that can be used to infer its interior structure: the gravity field coefficients (up to degree 3, [1]), the surface shape (up to degree 6, [2]), the tidal Love number [1], the electric field [3], and the orientation of its rotation axis [4]. The measured obliquity and gravity perturbation due to tides, as well as the electric field, are lines of evidence for the presence of an internal global ocean beneath the ice surface of Titan [5,1,3]. The observed surface shape and gravity can be used to further constrain the structure of the ice shell above the internal ocean. The presence of a significant topography associated with weak gravity anomalies indicates that deflections of internal interface or lateral density variations may exist to compensate the topography. To assess the sources of compensation, we consider interior models including interface deflections and/or density variations, which reproduces simultaneously the surface gravity and long-wavelength topography data [6]. Furthermore, in order to test the long-term mechanical stability of the internal mass anomalies, we compute the relaxation rate of each internal interface in response to surface mass load. We show that the topography can be explained either by defections of the ocean/ice interface or by density variations in an upper crust [6]. For non-perfectly compensated models of the outer ice shell, the present-day structure is stable only for a conductive layer above a relatively cold ocean (for bottom viscosity > 1016 Pa.s, T < 250 K). For perfectly compensated models, a convective ice shell is stable (with a bottom viscosity lower than 1015 Pas) if the source of compensation is due to density variations in the upper crust (2-3 km below the surface). In this case, deep gravity anomalies are required to explain the observed geoid. Our calculations show that the high pressure ice layer cannot be the source of the residual gravity anomalies. The existence of mass anomalies in the rocky core is a most likely explanation. However, as the observed geoid and topography are mostly sensitive to the lateral structure of the outer ice shell, no information can be retrieved on the ice shell thickness, ocean density and/or size of the rocky core. Constraints on these internal parameters can be obtained from the tidal Love number and the obliquity. To derive the possible density profile, the obliquity is computed from a Cassini state model for a satellite with an internal liquid layer, each layer having an ellipsoidal shape consistent with the measured surface shape and gravity field [7]. We show that, once the observed surface flattening is taken into account, the measured obliquity can be reproduced only for internal models with a dense ocean (between 1275 and 1350 kg.m-3) above a differentiated interior with a full separation of rock and ice [7]. We obtain normalized moments of inertia between 0.31 and 0.33, significantly lower than the expected hydrostatic value (0.34). The tidal Love number is also found to be mostly sensitive to the ocean density and to a lesser extent the ice shell thickness. By combining obliquity and tidal Love number constraints, we show that the thickness of the outer ice shell is at least 40 km and the ocean thickness is less than 100 km, with an averaged density of 1275-1350 kg.m-3. Such a high density indicates that the ocean may contain a significant fraction of salts. Our calculations also imply that there is a significant difference of flattening between the surface and the ice/ocean interface. This is possible only if the ice layer is viscous enough to limit relaxation, as indicated above. This is also consistent with an ocean enriched in salts for which the crystallization point can be several tens of degree below the crystallization point of pure water system. The elevated density (> 3800 kg.m-3) found for the rocky core further suggests that Titan might have a differentiated iron core. The rocky core is likely fully dehydrated at present, suggesting warm conditions during most of its evolution. All the water contained in the deep interior has probably been expelled to the outer regions, thus potentially explaining the salt enrichments.
NASA Astrophysics Data System (ADS)
Travis, B. J.; Schubert, G.
2012-12-01
Despite its small size, Enceladus emits considerable heat, especially at its south pole, even long after simple thermal models predict it should be frozen. A number of energy mechanisms have been proposed as responsible for this heating, such as TDH (tidal dissipative heating), and convection and shearing in the ice shell, but why energy outflow is primarily at the south pole is still debated. It is not known if TDH has operated continuously at Enceladus. Crater relaxation simulations suggest considerable heat flow has occurred over long stretches of its history. One process missing from previous models is fluid flow, both in an ocean layer and in the silicate core. The simulations described here are part of a study to estimate the impact of hydrothermal flow and to explore under what conditions, and for how long, an ocean layer could persist on Enceladus, with or without TDH. Our model geometry is 2-D spherical (radius and latitude) for most simulations, with one 3-D spherical simulation. We assume a silicate core of about 160 km radius, overlain by an H2O layer out to 250 km radius. Ice shell thickness is initially 15 km. Flow in an ocean layer is represented by a simplified Navier-Stokes model, and porous flow occurs in the core. Surface temperature distribution follows observed values. Radiogenic heating produces about 0.3 GW in the model. A simple TDH model is active in some simulations. Salts and/or NH3 may be present in the interior of Enceladus, and would strongly depress freezing; our model uses a low eutectic salt as an analog. The ice shell's thickness is not required to remain fixed, but can change dynamically, in response to local thermodynamics. Initial core temperature and permeability are unknowns. Initial core temperature is varied over several hundred oC, and permeability is varied over 1-100 millidarcies. In our simulations, typically, a flow field develops characterized by sinking flow at the equator and rising plumes at the poles. A broad thickening of ice in the equatorial region occurs, so much so that flow is gradually restricted to the polar regions, with the south pole flow stronger than at the northern pole. A feedback develops; cooler, sinking flow at the equator results in thickening of the ice there which in turn tends to isolate flow to the deeper ocean plus core region at the poles. The rate at which this pattern develops depends on the presence or absence of TDH. Except at the surface, a nearly cylindrical region from north to south through the model remains fluid. The presence of salt and/or NH3 allows liquid conditions and flow even as the ocean temperature falls well below 0 oC. At higher initial core temperatures, boiling occurs deep in the core because of the low overburden pressure. An approximately 70 km thick difference in ice thickness can develop between equator and poles. However, due to the low gravity of Enceladus, this would give rise to a buoyant pressure difference of only about 5 bars, which is less than shear strength measurements in ice. The core slowly cools, and eventually the ocean may freeze completely without TDH, but that can take on the order of several hundred million years or more. If episodes of strong TDH occurred on that time scale or shorter, a polar ocean might then persist indefinitely.
Thermo-Chemical Convection in Europa's Icy Shell with Salinity
NASA Technical Reports Server (NTRS)
Han, L.; Showman, A. P.
2005-01-01
Europa's icy surface displays numerous pits, uplifts, and chaos terrains that have been suggested to result from solid-state thermal convection in the ice shell, perhaps aided by partial melting. However, numerical simulations of thermal convection show that plumes have insufficient buoyancy to produce surface deformation. Here we present numerical simulations of thermochemical convection to test the hypothesis that convection with salinity can produce Europa's pits and domes. Our simulations show that domes (200-300 m) and pits (300-400 m) comparable to the observations can be produced in an ice shell of 15 km thick with 5-10% compositional density variation if the maximum viscosity is less than 10(exp 18) Pa sec. Additional information is included in the original extended abstract.
Early Student Support to Investigate the Role of Sea Ice-Albedo Feedback in Sea Ice Predictions
2013-09-30
with a heritage stemming from work by Thorndike et al (1975), Bitz et al (2001), and Lipscomb (2001). The sea ice thermodynamics is from Bitz and...K. Shell, J. Kiehl and C. Shields, 2008: Quantifying climate feedbacks using ra- diative kernels. J. Climate, 21, 3504–3520. Thorndike , A. S
NASA Astrophysics Data System (ADS)
Kattenhorn, S. A.; Hurford, T. A.
2007-12-01
This review of Europan tectonics previews a chapter of the forthcoming text "Europa". After the Voyager flyby of the icy moon Europa in 1979, models were developed that attributed pervasive surface fracturing to the effects of tidal forcing due to the gravitational pull of Jupiter. The late 1990s Galileo mission returned high resolution coverage of the surface, allowing a diverse range of tectonic features to be identified. Subsequent description, interpretation, and modeling of these features has resulted in significant developments in five key themes: (1) What drives the tectonics? (2) What are the formation mechanisms of the various types of tectonic features? (3) What are the implications for a subsurface ocean? (4) What is the nature and thickness of the ice shell? (5) Is Europa currently tectonically active? We highlight key developments pertaining to these fundamental issues, focusing on the following elements: (1) Many fracture patterns can be correlated with theoretical stress fields induced by diurnal tidal forcing and long-term effects of nonsynchronous rotation of the ice shell; however, these driving mechanisms alone cannot explain all fracturing. The tectonic fabric has likely been affected by additional contributing effects: tidal despinning, orbital evolution, interior differentiation, polar wander, finite obliquity, stresses due to shell thickening, endogenic forcing by convection and diapirism, and secondary effects driven by strike-slip faulting and plate flexure. (2) Due to the prevalence of global tension, a low lithostatic gradient, and the inherent weakness of ice, tectonic features likely have predominantly extensional primary formation mechanisms (e.g. surface fractures, ridges, and normal faults). There has been no categorical documentation of fracture development by compressive shearing. Even so, the constantly changing nature of the tidal stress field results in shearing reactivation of cracks being important for the morphologic and mechanical development of tectonic features. Hence, strike-slip faults are relatively common. Also, frictional shearing and heating has likely contributed to the construction of edifices along crack margins (i.e., ridges). If Europa has not recently expanded, crustal convergence (although elusive in Galileo images) is required to balance out new surface material created at spreading bands and may be accommodated locally along ridges or convergence bands. (3) Chains of concatenated curved cracks called cycloids provide convincing evidence of a subsurface ocean in that they must be the result of diurnal forcing of sufficient tidal amplitude to break the ice during a large portion of the Europan orbit, suggesting a tidally responding ocean beneath the ice shell. (4) Fracture mechanics reveals that the brittle portion of the ice shell is likely no more than a few km thick, but convection driven diapirism and crater morphologies necessitate a thicker shell overall (up to about 30 km). It is not known if fractures are able to penetrate this entire shell thickness. The brittle layer acts as a stagnant lid to plastic deformation in the ductile portion of the ice shell, resulting in localized brittle deformation. (5) Tectonic resurfacing has dominated the <70 my of visible geologic history. No evidence exists that Europa is currently tectonically active; however, this may be more a failing of the current state of the science rather than a lack of probability. A tectonically based answer to this question lies in a thorough analysis of geologically young surface fractures but would benefit from far more extensive coverage of the surface via a return mission to Europa.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ebey, Peter S.; Asaki, Thomas J.; Hoffer, James K.
2000-01-15
Beta-layering of deuterium-tritium (D-T) ice in spherical shell geometries is numerically and analytically considered to investigate the relationship between temperature differences that arise because of inner-surface perturbations and the absolute shell thickness. The calculations use dimensions based on a proposed design of an inertial confinement fusion target for use at the National Ignition Facility. The temperature differences are calculated within D-T ice shells of varying total thicknesses, and the temperature differences calculated in three dimensions are compared both to the one-dimensional results and to the expected limits in three dimensions for long- and short-wavelength surface perturbations. The three-dimensional numeric resultsmore » agree well with both the long- and short-wavelength limits; the region of crossover from short- to long-wavelength behavior is mapped out. Temperature differences due to surface perturbations are proportional to D-T layer thickness in one-dimensional systems but not in three-dimensional spherical shells. In spherical shells, surface perturbations of long wavelength give rise to temperature perturbations that are approximately proportional to the total shell thickness, while for short-wavelength perturbations, the temperature differences are inversely related to total shell thickness. In contrast to the one-dimensional result, we find that in three dimensions there is not a general relationship between shell thickness and surface temperature differences.« less
Europa's Icy Shell: A Bridge Between Its Surface and Ocean
NASA Technical Reports Server (NTRS)
Schenk, Paul; Mimmo, Francis; Prockter, Louise
2004-01-01
Europa, a Moon-sized, ice-covered satellite of Jupiter, is second only to Mars in its astrobiological potential. Beneath the icy surface, an ocean up to 150 km deep is thought to exist, providing a potential habitat for life,and a tempting target for future space missions. The Galileo mission to the Jovian system recently ended, but there are already long-range plans to send much more capable spacecraft,such as the proposed Jupiter Icy Moons Orbiter (JIMO), to take a closer look at Europa and her siblings, Ganymede and Callisto, some time in the next two decades. Europak outer icy shell is the only interface between this putative ocean and the surface, but many aspects of this shell are presently poorly understood; in particular, its composition, thickness, deformational history, and mechanical properties. To discuss the ice shell and our current understanding of it, 78 scientists from the terrestrial and planetary science communities in the United States and Europe gathered for a 3-day workshop hosted by the Lunar and Planetary Institute in Houston in February. A key goal was to bring researchers from disparate disciplines together to discuss the importance and limitations of available data on Europa with a post-Galileo perspective. The workshop featured 2 days of reviews and contributed talks on the composition, physical properties, stratigraphy, tectonics, and future exploration of the ice shell and underlying ocean. The final morning included an extended discussion period, moderated by a panel of noted experts, highlighting outstanding questions and areas requiring future research.
NASA Astrophysics Data System (ADS)
Parro, Laura M.; Ruiz, Javier; Pappalardo, Robert T.
2016-10-01
Chaos terrains are among the most prominent landforms of Europa, and are generally among the youngest features recorded on the surface. Chaos units were formed by to endogenic activity, maybe related to solid-state convection and thermal diapirism in the ice shell, perhaps aided by melting of salt-rich ice bodies below the surface. In this work, we analyze the different units of chaotic terrain in a portion of Argadnel Regio, a region located on the anti-Jovian hemisphere of Europa, and their possible timing in the general stratigraphic framework of this satellite. Two different chaos units can be differentiated, based on surface texture, morphology, and cross-cutting relationships with other units, and from interpretations based on pre-existing surface restoration through elimination of a low albedo band. The existence of two stratigraphically different chaos units implies that conditions for chaos formation occurred during more than a single discreet time on Europa, at least in Argadnel Regio, and perhaps in other places. The existence of older chaos units on Europa might be related to convective episodes possibly favored by local conditions in the icy shell, such as variations in grain size, abundance of non-water ice-components, or regional thickness of the brittle lithosphere or the entire ice shell.
Biomarker Production and Preservation on Europa
NASA Astrophysics Data System (ADS)
Buffo, J.; Schmidt, B. E.
2017-12-01
Future landing site selection and sampling techniques for Europa will concentrate on locations of high potential biomarker preservation, however it is unclear what the best targets might be. On Europa, the scenario is quite unlike the depositional surface environments of terrestrial planets we've studied thus far-Europa's surface is passively communicating with putative habitable niches below that extend throughout the ice shell, ocean and sea floor. In this work, I approach biomarker production and preservation on Europa based by considering the many hypotheses that govern the its habitability, the processes that occur within the sea floor, ocean, and ice and exchange between them, and the geologic hypotheses for the formation of its various surfaces to establish, what journey through the planet a biomarker might take to arrive, if possible, at the surface where it is accessible to near-term landed missions. The goal of this project is to construct a simple model through which to consider the context for sampled material that will provide us with the ability to identify limitations in our intuition, understanding of the Europan system, our current hypotheses and data, and provide a road map for developing both areas for new research and identifying technology gaps that we must overcome before we can confidently select a landing site or analyze a sample from the near surface of Europa. I first consider the nature of the environment, i.e. at the sea floor interface, the ocean, or ocean-ice interface, in order to establish what the likely "biomarker" could be and then trace its path through the system: downwelling through the shell, mixing through the ocean, and pathways to the surface. Importantly, many models exist for the production of Europa's surface and subsurface geology that could affect the integrity of a putative biomarker. Often we modulate such considerations as a function of the time-scales over which the geologic process occurs, however such processes will also vary in transportation efficiency, and how any ice and water is incorporated into the ice shell. I will also comment on synergies between the upcoming JUICE and Europa Clipper missions, a putative landed mission, and how these missions could provide invaluable data that allows us to get beneath Europa's icy skin in relatively short order.
The impact of ice I rheology on interior models of Ganymede: The elastic vs. the visco-elastic case
NASA Astrophysics Data System (ADS)
Steinbrügge, Gregor; Hussmann, Hauke; Sohl, Frank; Oberst, Jürgen
2015-04-01
Many investigations on key processes of icy satellites are driven by the rheological behavior of planetary ices. Future missions to Jupiter's icy moons (e.g. JUICE / Europa clipper) aimed at constraining the thickness of the outer ice shell using radio science and/or laser altimetry will have to address this problem. We investigate for the case of Ganymede under which conditions the ice I viscosity could be constrained by measuring the phase-lag of the tidal response using laser altimetry. In the absence of seismic data, interior structure models are constrained by the satellite's mean density and mean moment-of-inertia factor. One key observable to reduce the ambiguity of the corresponding structural models is the measurement of the dynamic response of the satellite's outer ice shells to tidal forces exerted by Jupiter and characterized by the body tide surface Love numbers h2 and k2. The Love number k2 measures the variation of the gravitational potential due to tidally induced internal redistribution of mass and can be inferred from radio science experiments. The Love number h2 is a measure for the tide-induced radial displacement of the satellite's surface. It is an advantage that Ganymede's surface displacement Love number h2 can be expected to be measured with a high accuracy using laser altimetry (Steinbrügge et al., 2014). However, the determination of the resulting ice thickness further depends on the possible existence of a liquid subsurface water ocean and on the tidally effective rheology of the outer ice shell (Moore and Schubert, 2003). Here, we distinguish between an elastic, visco-elastic or even fluid behavior in the sense of the Maxwell model and alternative rheological models. In the case of Ganymede the fluid case would imply high ice temperatures which are at odds with thermal equilibrium models calculated by Spohn and Schubert (2003). However the visco-elastic case is still possible. Laboratory measurements of ice I (e.g. Sotin et al., 1998) suggest that the rigidity can be constrained and the ambiguity left by the structural model can be recovered by the simultaneous determination of the linear combination 1+k2-h2 (Wahr et al., 2006). However, the less well known viscosity can play a major role when inferring the thickness of the outer ice shell. Limits for measurements by laser altimetry will be discussed. References: Moore, W.B. and Schubert, G., "The tidal response of Ganymede and Callisto with and without liquid water oceans", Icarus, vol. 16, p. 223-226, 2003 Sotin, C., Grasset, O. and Beauchesne, S., "Thermodynamic properties of high pressure ices: Implications for the dynamics and internal structure of large icy satellites" in "Solar system ices", p. 79-96, Springer Netherlands, 1998, doi:10.1007/97894-011-5252-54 Spohn, T. and Schubert, G., "Oceans in the icy Galilean satellites of Jupiter?", Icarus, vol. 161, p. 456-467, 2003, doi: 10.1016/S0019-1035(02)00048-9 Steinbrügge, G., Hussmann, H., Stark, A., and Oberst, J., "Measuring Ganymede's tidal deformation by laser altimetry: application to the GALA Experiment", EGU General Assembly 2014, Abstract 3761 Wahr, J. M., Zuber, M. T., Smith, D. E., and Lunine, J. I., "Tides on Europa, and the thickness of Europa's icy shell" Journal of Geophysical Research: Planets, vol. 11, 2006. doi: 10.1029/2006JE002729
NASA Astrophysics Data System (ADS)
Kondratyev, B. P.
2018-03-01
The structure, dynamical equilibrium, and evolution of Saturn's moon Iapetus are studied. It has been shown that, in the current epoch, the oblateness of the satellite ɛ2 ≈ 0.046 does not correspond to its angular velocity of rotation, which causes the secular spherization behavior of the ice shell of Iapetus. To study this evolution, we apply a spheroidal model, containing a rock core and an ice shell with an external surface ɛ2, to Iapetus. The model is based on the equilibrium finite-difference equation of the Clairaut theory, while the model parameters are taken from observations. The mean radius of the rock core and the oblateness of its level surface, ɛ1 ≈ 0.028, were determined. It was found that Iapetus is covered with a thick ice shell, which is 56.6% of the mean radius of the figure. We analyze a role of the core in the evolution of the shape of a gravitating figure. It was determined that the rock core plays a key part in the settling of the ice masses of the equatorial bulge, which finally results in the formation of a large circular equatorial ridge on the surface of the satellite. From the known mean altitude of this ice ridge, it was found that, in the epoch of its formation, the rotation period of Iapetus was 166 times shorter than that at present, as little as T ≈ 11h27m. This is consistent with the fact that a driving force of the evolution of the satellite in our model was its substantial despinning. The model also predicts that the ice ridge should be formed more intensively in the leading (dark and, consequently, warmer) hemisphere of the satellite, where the ice is softer. This inference agrees with the observations: in the leading hemisphere of Iapetus, the ridge is actually high and continuous everywhere, while it degenerates into individual ice peaks in the opposite colder hemisphere.
NASA Astrophysics Data System (ADS)
Pappalardo, R. T.
2007-12-01
Ice diapirism has been cited to explain Europa's pits, spots, and domes (commonly collectively referred to as "lenticulae") as well as the satellite's larger chaos terrains. Europa's diapirs have been modeled as thermal- compositional in origin, rising within an ice shell greater than ~20 km thick. The morphologies and characteristics of terrestrial diapirs shed light on possible diapiric processes within Europa. Diapirs commonly rise in fields of similarly sized subcircular features which can intrude into the shallow subsurface or extrude onto the surface. Rim synclines (peripheral depressions) may form in response to withdrawal of diapiric material from a diapir's surroundings, and peripheral and crestal faults are predicted above intrusive diapirs. The heads of neighboring synchronously active diapirs can flatten against one another. Each of these terrestrial characteristics is consistent with the morphologies of some Europan lenticulae. Terrestrial diapiric heads can merge into a broad canopy, potentially analogous to the formation of some Europan chaos terrains. Xenoliths can be carried upward within terrestrial diapirs, suggesting that diapirism within Europa's ice shell can dredge deep material up toward the surface on the timescale of diapir rise. The deepest strata rise into the central axes of terrestrial diapirs, implying that materials from greatest depth in Europa's ice shell may be exposed in the centers of individual extrusive lenticulae and in discrete locations within chaos regions. Lenticulae and chaos are high priority locations to explore for materials that have risen from near Europa's ice-ocean interface to the surface.
Impact resistance of spar-shell composite fan blades
NASA Technical Reports Server (NTRS)
Graff, J.; Stoltze, L.; Varholak, E. M.
1973-01-01
Composite spar-shell fan blades for a 1.83 meter (6 feet) diameter fan stage were fabricated and tested in a whirling arm facility to evaluate foreign object damage (FOD) resistance. The blades were made by adhesively bonding boron-epoxy shells on titanium spars and then adhesively bonding an Inconel 625 sheath on the leading edge. The rotating blades were individually tested at a tip speed of 800 feet per second. Impacting media used were gravel, rivets, bolt, nut, ice balls, simulated birds, and a real bird. Incidence angles were typical of those which might be experienced by STOL aircraft. The tests showed that blades of the design tested in this program have satisfactory impact resistance to small objects such as gravel, rivets, nuts, bolts, and two inch diameter ice balls. The blades suffered nominal damage when impacted with one-pound birds (9 to 10 ounce slice size). However, the shell was removed from the spar for a larger slice size.
NASA Astrophysics Data System (ADS)
Xu, Li; Huang, Chang-Xu; Huang, Zhen-Fei; Sun, Qiang; Li, Jie
2018-05-01
The ice crystal particles are easy to enter into the seawater cooling system of polar ship together with seawater when it sails in the Arctic. They are easy to accumulate in the pipeline, causing serious blockage of the cooling pipe. In this study, the flow and melting characteristics of ice particles-seawater two-phase flow in inlet straight pipe of shell-and-tube heat exchanger were numerically simulated by using Eulerian-Eulerian two-fluid model coupled with the interphase heat and mass transfer model. The influences of inlet ice packing factor, ice crystal particle diameter, and inlet velocity on the distribution and melting characteristics of ice crystals were investigated. The degree of asymmetry of the distribution of ice crystals in the cross section decreases gradually when the IPF changes from 5 to 15%. The volume fractions of ice crystals near the top of the outlet cross section are 19.59, 19.51, and 22.24% respectively for ice packing factor of 5, 10 and 15%. When the particle diameter is 0.5 mm, the ice crystals are gradually stratified during the flow process. With particle diameters of 1.0 and 2.0 mm, the region with the highest volume fraction of ice crystals is a small circle and the contours in the cloud map are compact. The greater the inlet flow velocity, the less stratified the ice crystals and the more obvious the turbulence on the outlet cross section. The average volume fraction of ice crystals along the flow direction is firstly rapidly reduced and then stabilized after 300 mm.
Impact of tidal heating on the onset of convection in Enceladus' ice shell
NASA Astrophysics Data System (ADS)
Behounkova, Marie; Tobie, Gabriel; Choblet, Gael; Cadek, Ondrej
2013-04-01
Observations of Enceladus by the Cassini spacecraft indicated that its south pole is very active, with jets of water vapor and ice emanating from warm tectonic ridges. Convective processes in the ice shell are commonly advocated to explain the enhanced activity at the south pole. The conditions under which convection may occur on Enceladus are, however, still puzzling. According to the estimation of Barr and McKinnon (2007) based on scaling laws, convection may initiate in Enceladus' ice shell only for grain size smaller than 0.3 mm, which is very small compared to the grain size observed on Earth in polar ice sheets for similar temperature and stress conditions (2-4mm). Moreover, Bahounková et al. (2012) showed that such enhanced activity periods associated with thermal convection and internal melting should be brief (~ 1 - 10Myrs) and should be followed by relatively long periods of inactivity (~ 100Myrs), with a probable cessation of thermal convection. In order to constrain the likelihood and periodicity of enhanced activity periods, the conditions under which thermal convection may restart are needed to be investigated. In particular, the goal is to understand how tidal heating, especially during periods of elevated eccentricity, may influence the onset of convection. To answer this question, 3D simulations of thermal convection including a self-consistent computation of tidal dissipation using the code Antigone (Bahounková et al., 2010, 2012) were performed, a composite non-Newtonian rheology (Goldsby and Kohlstedt, 2001) and Maxwell-like rheology mimicking Andrade model were considered. Our simulations show that the onset of convection may occur in Enceladus' ice shell only for ice grain size smaller or equal than 0.5 mm in absence of tidal heating. Tidal dissipation shifts the critical grain size for convection up to values of 1-1.5 mm. The convection is initiated in the polar region due to enhanced tidal dissipation in this area and remains in the southern hemisphere as long as the ocean width is smaller than Δ < 240°. Furthermore, we show that the onset of convection is associated with internal melting for tidal heating rate larger than ~ 0.5 - 1 ? 10-6Wm-3 and that increasing the heating rate above 10-6Wm-3 does not influence anymore the critical grain size for the initiation of convection.
Annually resolved North Atlantic marine climate over the last millennium
NASA Astrophysics Data System (ADS)
Reynolds, D. J.; Scourse, J. D.; Halloran, P. R.; Nederbragt, A. J.; Wanamaker, A. D.; Butler, P. G.; Richardson, C. A.; Heinemeier, J.; Eiríksson, J.; Knudsen, K. L.; Hall, I. R.
2016-12-01
Owing to the lack of absolutely dated oceanographic information before the modern instrumental period, there is currently significant debate as to the role played by North Atlantic Ocean dynamics in previous climate transitions (for example, Medieval Climate Anomaly-Little Ice Age, MCA-LIA). Here we present analyses of a millennial-length, annually resolved and absolutely dated marine δ18O archive. We interpret our record of oxygen isotope ratios from the shells of the long-lived marine bivalve Arctica islandica (δ18O-shell), from the North Icelandic shelf, in relation to seawater density variability and demonstrate that solar and volcanic forcing coupled with ocean circulation dynamics are key drivers of climate variability over the last millennium. During the pre-industrial period (AD 1000-1800) variability in the sub-polar North Atlantic leads changes in Northern Hemisphere surface air temperatures at multi-decadal timescales, indicating that North Atlantic Ocean dynamics played an active role in modulating the response of the atmosphere to solar and volcanic forcing.
Meltwater pulse recorded in Last Interglacial mollusk shells from Bermuda
NASA Astrophysics Data System (ADS)
Winkelstern, Ian Z.; Rowe, Mark P.; Lohmann, Kyger C.; Defliese, William F.; Petersen, Sierra V.; Brewer, Aaron W.
2017-02-01
The warm climate of Bermuda today is modulated by the nearby presence of the Gulf Stream current. However, iceberg scours in the Florida Strait and the presence of ice-rafted debris in Bermuda Rise sediments indicate that, during the last deglaciation, icebergs discharged from the Laurentide Ice Sheet traveled as far south as subtropical latitudes. We present evidence that an event of similar magnitude affected the subtropics during the Last Interglacial, potentially due to melting of the Greenland Ice Sheet. Using the clumped isotope paleothermometer, we found temperatures 10°C colder and seawater δ18O values 2‰ lower than modern in Last Interglacial Cittarium pica shells from Grape Bay, Bermuda. In contrast, Last Interglacial shells from Rocky Bay, Bermuda, record temperatures only slightly colder and seawater δ18O values similar to modern, likely representing more typical Last Interglacial conditions in Bermuda outside of a meltwater event. The significantly colder ocean temperatures observed in Grape Bay samples illustrate the extreme sensitivity of Bermudian climate to broad-scale ocean circulation changes. They indicate routine meltwater transport in the North Atlantic to near-equatorial latitudes, which would likely have resulted in disruption of the Atlantic Meridional Overturning Circulation. These data demonstrate that future melting of the Greenland Ice Sheet, a potential source of the Last Interglacial meltwater event, could have dramatic climate effects outside of the high latitudes.
Latest Pleistocene glaciomarine and marine deposition in the northern Puget lowland, Washington
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dethier, D.P.
Latest Pleistocene (Fraser) continental ice deposited thick, narrow zones of ice-marginal debris and widespread pebbly silt into marine water as it retreated from the northern Puget lowland of Washington at about 14,000 B.P. Exposed deposits include several collapsed terrestrial ice-contact complexes. Most sediment accumulated in marine water during or after ice retreat, but before glacioisostatic rebound lifted the area about sea level. Gravelly sand, pebbly silt, gravelly diamicton, cross bedded silty sand, and massive to laminated silt were deposited in glaciomarine, marine, estuarine, and shoreline environments now exposed at elevations as high as 150 m. Ice-proximal facies formed from sediment-richmore » fresh-water plumes and mass movements at the margins of grounded ice lobes; transitional and distal deposits incorporated sediment from dispersed meltwater, turbidity flows and icebergs hundreds of m to tens of km from the grounding line. Macrofossils assemblages in the glaciomarine deposits formed in water < 40 meters deep whereas the marine deposits represent intertidal depths to over 80 meters. [sup 14]C shell ages demonstrate that ice retreated 125 km from the E. Strait of Juan de Fuca between about 14.0 ka and 13.5 ka, and that a fluctuating ice margin persisted near the international Border until sometime after 11.5 ka. More than 10 km[sup 3] of ice-marginal sediment, now bands of submerged banks, outline grounding-line positions in the 50 km between the E. Strait of Juan de Fuca and the San Juan Islands.« less
Late-Quaternary glaciation and postglacial emergence, southern Eureka Sound, high-Arctic Canada
NASA Astrophysics Data System (ADS)
O Cofaigh, Colm Seamus
Eureka Sound is the inter-island channel separating Ellesmere and Axel Heiberg islands, High Arctic Canada. This thesis reconstructs the glacial and sea level history of southern Eureka Sound through surficial geological mapping, studies of glacial sedimentology and geomorphology, surveying of raised marine shorelines, radiocarbon dating of marine shells and driftwood and surface exposure dating of erratics and bedrock. Granite dispersal trains, shelly till and ice-moulded bedrock record westerly-flow of warm-based, regional ice into Eureka Sound from a source on southeastern Ellesmere Island during the late Wisconsinan. Regional ice was coalescent with local ice domes over Raanes and northern Svendsen peninsulas. Marine limit (dating <=9.2 ka BP; <=9.9 ka cal BP) is inset into the dispersal trains and records early Holocene deglaciation of regional ice. Collectively these data indicate an extensive ice-cover in southern Eureka Sound during the Last Glacial Maximum. Ice-divides were located along the highlands of central Ellesmere and Axel Heiberg islands, from which ice converged on Eureka Sound, and subsequently flowed north and south along the channel. Deglaciation was characterised by a two-step retreat pattern, likely triggered by eustatic sea level rise and abrupt early Holocene warming. Initial break-up and radial retreat of ice in Eureka Sound and the larger fiords, preceded terrestrial stabilisation along coastlines and inner fiords. Location of deglacial depocentres was predominantly controlled by fiord bathymetry. Regionally, two-step deglaciation is reflected by prominent contrasts in glacial geomorphology between the inner and outer parts of many fiords. Glacial sedimentological and geomorphological evidence indicates spatial variation in basal thermal regime between retreating trunk glaciers. Holocene emergence of up to 150 m asl along southern Eureka Sound is recorded by raised marine deltas, beaches and washing limits. Emergence curves exhibit marked contrasts in the form and rate of initial unloading. Isobases drawn on the 8.5 ka shoreline for greater Eureka Sound demonstrate that a cell of highest emergence extends along the length of the channel, and closes in the vicinity of the entrance to Norwegian Bay. The isobase pattern indicates a distinct loading centre over the sound, and in conjunction with glacial geological evidence, suggests that the thickest late Wisconsinan ice lay over the channel.
Sasaki, Kaito; Panagopoulou, Anna; Kita, Rio; Shinyashiki, Naoki; Yagihara, Shin; Kyritsis, Apostolos; Pissis, Polycarpos
2017-01-12
The glass transition of partially crystallized gelatin-water mixtures was investigated using broadband dielectric spectroscopy (BDS) over a wide range of frequencies (10 mHz to 10 MHz), temperatures (113-298 K), and concentrations (10-45 wt %). Three dielectric relaxation processes (processes I, II, and III) were clearly observed. Processes I, II, and III originate from uncrystallized water (UCW) in the hydration shells of gelatin, ice, and hydrated gelatin, respectively. A dynamic crossover, called the Arrhenius to non-Arrhenius transition of UCW, was observed at the glass transition temperature of the relaxation process of hydrated gelatin for all mixtures. The amount of UCW increases with increasing gelatin content. However, above 35 wt % gelatin, the amount of UCW became more dependent on the gelatin concentration. This increase in UCW causes a decrease in the glass transition temperature of the cooperative motion of gelatin and UCW, which appears to result from a change in the aggregation structure of gelatin in the mixture at a gelatin concentration of approximately 35 wt %. The temperature dependence of the relaxation time of process II has nearly the same activation energy as pure ice made by slow crystallization of ice Ih. This implies that process II originates from the dynamics of slowly crystallized ice Ih.
Development of a full ice-cream cone model for halo CME structures
NASA Astrophysics Data System (ADS)
Na, Hyeonock; Moon, Yong-Jae
2015-04-01
The determination of three dimensional parameters (e.g., radial speed, angular width, source location) of Coronal Mass Ejections (CMEs) is very important for space weather forecast. To estimate these parameters, several cone models based on a flat cone or a shallow ice-cream cone with spherical front have been suggested. In this study, we investigate which cone model is proper for halo CME morphology using 33 CMEs which are identified as halo CMEs by one spacecraft (SOHO or STEREO-A or B) and as limb CMEs by the other ones. From geometrical parameters of these CMEs such as their front curvature, we find that near full ice-cream cone CMEs (28 events) are dominant over shallow ice-cream cone CMEs (5 events). So we develop a new full ice-cream cone model by assuming that a full ice-cream cone consists of many flat cones with different heights and angular widths. This model is carried out by the following steps: (1) construct a cone for given height and angular width, (2) project the cone onto the sky plane, (3) select points comprising the outer boundary, (4) minimize the difference between the estimated projection points with the observed ones. We apply this model to several halo CMEs and compare the results with those from other methods such as a Graduated Cylindrical Shell model and a geometrical triangulation method.
NASA Astrophysics Data System (ADS)
O'Cofaigh, Colm; Callard, S. Louise; Benetti, Sara; Chiverell, Richard C.; Saher, Margot; van Landeghem, Katrien; Livingstone, Stephen J.; Scourse, James; Clark, Chris D.
2015-04-01
The record of glaciation on the continental shelf west of Ireland has, until recently, been relatively poorly studied. The UK NERC funded project BRITICE-CHRONO collected marine geophysical data in the form of multibeam swath bathymetry and sub-bottom profiles supplemented by over 50 vibro- and piston cores across the continental shelf west of Ireland during cruise JC106 of the RRS James Cook in 2014. Across the western Irish shelf, offshore of counties Galway and Clare, a series of large arcuate moraines record the former presence of a grounded ice sheet on the shelf. However, geophysical data from further to the west across the Porcupine Bank show a series of ridges and wedge-shaped sedimentary features whose form is consistent with an origin as moraines and/or grounding-zone wedges. Sediment cores from several of these landforms recovered stiff, massive diamictons containing reworked shells that are interpreted as subglacial tills. Cores from the eastern Porcupine Bank recovered laminated muds with cold-water glacimarine foraminifera, in some cases overlying till. Collectively the geophysical and sedimentary data imply the presence of grounded ice across the northern Porcupine Bank and thus much further west on the Irish margin than has previously been considered. This ice underwent retreat in a glacimarine setting. The large 'Olex Moraine' on the western Irish shelf is thus interpreted as recessional feature. Work is currently underway to dates these features and to obtain a retreat chronology for this sector of the last British-Irish Ice Sheet.
NASA Astrophysics Data System (ADS)
Cameron, M. E.; Smith-Konter, B. R.; Burkhard, L. M.; Patthoff, D. A.; Pappalardo, R. T.; Collins, G. C.
2017-12-01
Laplace-like resonances among Ganymede, Europa, and Io may have once led Ganymede to have an eccentricity as high as 0.07 (presently e = 0.0013). While diurnal stresses at Ganymede today are small (<10 kPa), a previous period of high eccentricity may have produced significant diurnal tidal stresses that influenced faulting during a past period of active tectonism. We investigate the role of tidal stresses on faulting by using the numerical model SatStress to calculate both diurnal and non-synchronous rotation (NSR) tidal stresses at Ganymede's surface. We assume an NSR rate of 105 years, and steady-state rotation of a viscoelastic ice shell of viscosity 1019 Pa s, yielding stresses on the order of MPa. We adopt two end-member models: (1) present-day Ganymede, and (2) Ganymede in the past (e = 0.05). For the present-day model, we assume a spherical ice shell of thickness 150 km (upper 10 km is cold, stiff ice), underlain by a 40 km deep global subsurface ocean. For the warmer past model, we assume a 100 km ice shell (upper 2 km is cold, stiff ice), and a 140 km ocean. We resolve normal and shear stress components onto discrete fault segments of specified orientation and assess Coulomb failure stress criteria along three previously inferred shear zones: Dardanus Sulcus, Tiamat Sulcus, and Nun Sulci. Models of stress contributions from only the diurnal tidal cycle are strongly dependent on eccentricity, while combined diurnal and NSR stress models are largely insensitive due to large (MPa) NSR stresses. For the diurnal only model, failure is not expected for the present eccentricity along any of the three shear zones. For the past, high eccentricity case, failure is predicted in isolated diurnal slip windows and limited to very shallow depths (< 250 m). This model predicts a dominant right-lateral slip window for both Dardanus and Tiamat Sulcus and significant right- and left-lateral slip windows are predicted along both north and south branches of Nun Sulci. Likewise, the sense of inferred shear from imagery and structural mapping efforts is right-lateral for Dardanus and Tiamat Sulcus, and left-lateral for Nun Sulci. Moreover, a low coefficient of friction (μf = 0.2) Coulomb failure model of right- and left- lateral slip episodes over a diurnal cycle could indicate a plausible case for tidal walking in Ganymede's high-eccentricity past.
NASA Astrophysics Data System (ADS)
Surge, D. M.; Barrett, J. H.
2013-12-01
Proxy records reconstructing marine climatic conditions across the transition between the Medieval Climate Anomaly (MCA; ~900-1350 AD) and Little Ice Age (LIA; ~1350-1850) are strongly biased towards decadal to annual resolution and summer/growing seasons. Here we present new archives of seasonal variability in North Atlantic sea surface temperature (SST) from shells of the European limpet, Patella vulgata, which accumulated in Viking and medieval shell and fish middens at Quoygrew on Westray, Orkney. SST was reconstructed at submonthly resolution using oxygen isotope ratios preserved in shells from the 12th and mid 15th centuries (MCA and LIA, respectively). MCA shells recorded warmer summers and colder winters by ~2 degrees C relative to the late 20th Century (1961-1990). Therefore, seasonality was higher during the MCA relative to the late 20th century. Without the benefit of seasonal resolution, SST averaged from shell time series would be weighted toward the fast-growing summer season, resulting in the conclusion that the early MCA was warmer than the late 20th century by ~1°C. This conclusion is broadly true for the summer season, but not true for the winter season. Higher seasonality and cooler winters during early medieval times may result from a weakened North Atlantic Oscillation index. In contrast, the LIA shells have a more a variable inter-annual pattern. Some years record cooler summers and winters relative to the MCA shells and late 20th century, whereas other years record warmer summers and cooler winters similar to the MCA shells. Our findings provide a new test for the accuracy of seasonal amplitudes resulting from paleoclimate model experiments.
The effect of gravitational and pressure torques on Titan's length-of-day variations
NASA Astrophysics Data System (ADS)
Van Hoolst, T.; Rambaux, N.; Karatekin, Ö.; Baland, R.-M.
2009-03-01
Cassini radar observations show that Titan's spin is slightly faster than synchronous spin. Angular momentum exchange between Titan's surface and the atmosphere over seasonal time scales corresponding to Saturn's orbital period of 29.5 year is the most likely cause of the observed non-synchronous rotation. We study the effect of Saturn's gravitational torque and torques between internal layers on the length-of-day (LOD) variations driven by the atmosphere. Because static tides deform Titan into an ellipsoid with the long axis approximately in the direction to Saturn, non-zero gravitational and pressure torques exist that can change the rotation rate of Titan. For the torque calculation, we estimate the flattening of Titan and its interior layers under the assumption of hydrostatic equilibrium. The gravitational forcing by Saturn, due to misalignment of the long axis of Titan with the line joining the mass centers of Titan and Saturn, reduces the LOD variations with respect to those for a spherical Titan by an order of magnitude. Internal gravitational and pressure coupling between the ice shell and the interior beneath a putative ocean tends to reduce any differential rotation between shell and interior and reduces further the LOD variations by a few times. For the current estimate of the atmospheric torque, we obtain LOD variations of a hydrostatic Titan that are more than 100 times smaller than the observations indicate when Titan has no ocean as well as when a subsurface ocean exists. Moreover, Saturn's torque causes the rotation to be slower than synchronous in contrast to the Cassini observations. The calculated LOD variations could be increased if the atmospheric torque is larger than predicted and or if fast viscous relaxation of the ice shell could reduce the gravitational coupling, but it remains to be studied if a two order of magnitude increase is possible and if these effects can explain the phase difference of the predicted rotation variations. Alternatively, the large differences with the observations may suggest that non-hydrostatic effects in Titan are important. In particular, we show that the amplitude and phase of the calculated rotation variations are similar to the observed values if non-hydrostatic effects could strongly reduce the equatorial flattening of the ice shell above an internal ocean.
Unusual dynamic properties of water near the ice-binding plane of hyperactive antifreeze protein
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuffel, Anna; Czapiewski, Dariusz; Zielkiewicz, Jan, E-mail: jaz@chem.pg.gda.pl
2015-10-07
The dynamical properties of solvation water of hyperactive antifreeze protein from Choristoneura fumiferana (CfAFP) are analyzed and discussed in context of its antifreeze activity. The protein comprises of three well-defined planes and one of them binds to the surface of ice. The dynamical properties of solvation water around each of these planes were analyzed separately; the results are compared with the dynamical properties of solvation water of ice around its two crystallographic planes: basal and prism. Three main conclusions are inferred from our investigations. The first one is that the solvation shell of CfAFP does not seem to be particularlymore » far-ranged, at least not beyond what is usually observed for proteins that do not interact with ice. Therefore, it does not appear to us that the antifreeze activity is enhanced by a long-ranged retardation of water mobility. Also the correlation between the collective mobility of water and the collective mobility of protein atoms highly resembles the one measured for the protein that does not interact with ice. Our second conclusion is that the dynamical properties of solvation water of CfAFP are non-uniform. The dynamics of solvation water of ice-binding plane is, in some respects, different from the dynamics of solvation water of the two remaining planes. The feature that distinguishes the dynamics of solvation water of the three planes is the activation energy of diffusion process. The third conclusion is that—from the three analyzed solvation shells of CfAFP—the dynamical properties of solvation water of the ice-binding plane resemble the most the properties of solvation water of ice; note, however, that these properties still clearly differ from the dynamic properties of solvation water of ice.« less
NASA Astrophysics Data System (ADS)
Lee, S.; Pappalardo, R. T.; Makris, N. C.
2005-12-01
Among Europa's surface features, cycloidal cracks are probably the most important for proving the existence of a subsurface liquid ocean. This is because (1) there is strong evidence that they are caused by tidally induced stress [1], and (2) this stress likely only approaches the ice failure strength if an ocean is present. There are a number of outstanding issues, however, in quantitatively explaining cycloidal cracks. First, current estimates of the pure diurnal tidal stress necessary to cause cycloidal cracks even in the presence of an ocean [1,2] is well below the typical stress known to cause tensile failure in natural terrestrial ice [3]. Second, models of ridge formation suggest that cycloidal cracks penetrate through the entire brittle-ice layer [1,4], but current models limit the depth of tidally induced surface cracks to be less than 100 m even in the presence of an ocean [1,5]. Third, the 3-km/h crack propagation speed determined by [1] is three orders of magnitude lower than the roughly 2-km/s speed at which cracks are known to propagate in ice. Our goal is to quantitatively address these issues in a unified manner. To do this, a fracture mechanics model is developed for the initiation and propagation of a crack through an ice layer of finite thickness in the presence of gravitational overburden and porosity. It is shown that Europa's ice shell may be highly porous and salt-rich. This implies that the strength of Europa's outer ice shell may be sufficiently low to make the crack initiation strengths arrived at by current kinematic models [1,2] highly plausible, even though they are much lower than those typically measured for terrestrial ice. A model is developed for the stress intensity factor at a crack tip in an ice shell with finite thickness, gravitational overburden, and depth-dependent porosity. This leads to the conclusion that cycloids are generated as a sequence of discrete and near instantaneous fracture events, each of which penetrates through the entire brittle layer with horizontal length on the order of the brittle layer thickness. This mechanism yields an apparent propagation speed that is consistent with the 3 km/h crack propagation speed necessary to generate cycloids in current kinematic models [1,2]. An implication of this model is that the level of seismic activity should be higher by orders of magnitude in the presence of an ocean. High correlation is then expected between the level of seismic activity and the tidal period in the presence but not in the absence of an ocean. The cracks associated with cycloids that fully penetrate the brittle layer should be at least 106 times more energetic than the shallow, roughly 100-m deep, surface cracks. We show that this greatly improves the signal-to-noise ratio for the type of seismic profiling discussed in [6] if fully penetrating cracks are used as sources of opportunity. Although Europa's ice is likely highly porous, the size of vacuous pores is likely on the order of a millimeter. Since the pore size is at least three orders of magnitude smaller than the ice-penetrating radar wavelength, our calculations show that porosity-induced scattering should not be significant. [1] Hoppa et al. 1999, Science 285. [2] Crawford et al. 2005, LPSC XXXVI #2042. [3] Weeks and Cox 1984, Ocean Sci. Eng. 9. [4] Pappalardo et al. 1999, J. Geophys. Res. 97. [5] Crawford and Stevenson 1988, Icarus 73. [6] Lee et al. 2003, Icarus 165.
NASA Astrophysics Data System (ADS)
Andrus, C. F. T.; Bassett, C.; Black, H. D.; Payne, T. N.
2016-12-01
Several recent studies demonstrate that nitrogen isotope analysis of the organic fraction of mollusk shells can serve as a proxy for anthropogenic environmental impacts, including sewage input into estuaries. Analysis of δ15N in shells from archaeological sites permits construction of time-series proxy data from the present day to pre-industrial times, yielding insight into the history of some human environmental influences such as waste input and land use changes. Most such studies utilize a single bulk analysis per valve, combining shell material grown over time periods of one or more years. However, large, fast-growing species (e.g. some scallops and abalone) may permit sub-annual sampling, potentially yielding insight into seasonal processes. Such sclerochronological sampling of archaeological shells may enable researchers to detect variation at a finer temporal scale than has been attempted to date, which in turn may facilitate analysis of seasonal resource procurement strategies and related actions. This presentation will incorporate new and published data from the Atlantic, Pacific and Gulf of Mexico coasts of North America to assess how sclerochronological δ15N data can be useful to better understand pre-industrial human-environmental interaction and change, and also address diagenesis and other preservational concerns commonly found in archaeological samples.
Organic History and Ice-Rock Decoupling on Enceladus
NASA Astrophysics Data System (ADS)
Zolotov, M. Y.
2007-12-01
The Cassini detection of methane, propane and acetylene in the Enceladus plume, and condensed organic compounds (OC) on the south polar region imply an organic-bearing interior of the moon. At least a few wt. % of C is expected in rocks from which Enceladus accreted. By analogy with carbonaceous chondrites, the majority of accreted OC was in a polymer in which polyaromatic groups are linked by O-, N-, and S-bearing aliphatic units. If accreted, cometary-type materials also delivered CO2, CO(?), methanol, ethane, ethene, acetylene, and condensed OC. Subsequent water ice melting and hydrothermal processes driven by decay of short-lived radionuclides led to dissolution of CO, CO2 and methanol in water and transformations of the polymer and cometary OC. CO converted to formic acid, carbonate species, methanol and methane. Hydrous pyrolysis and oxidation of the polymer partially liberated aromatic molecules and led to the formation of O-bearing OC (carboxylic and amino acids, alcohols). Increase in temperature favored oxidation of OC to carbonate species and N2, and led to graphitization of the polymer. Despite net oxidation of OC driven by H2 escape, mineral- catalyzed Fisher-Tropsch like synthesis of hydrocarbons and methane occurred in H2-rich niches. As a result, an array of aromatic, aliphatic, and N-, O-, S-bearing OC, and methane was delivered into a primordial water ocean in hydrothermal fluids. Highly soluble OC (acids, alcohols) made multiple passes through hydrothermal systems causing further oxidation of OC in rocks and solutions. In contrast, hydrocarbons exolved from cold oceanic water and formed an organic layer below the ice shell. Subsequent cooling of ocean-entering fluids and ocean freezing from above led to further separation and accumulation of OC. Some OC was trapped in ice, and methane formed clathrates. After freezing of salt eutectic brines, the light oil (a solution/mixture of ethane, propane, butane, ethene, acetylene, methanol, toluene etc.) remained unfrozen and decoupled the ice shell from underlying salt deposits and rocks. Even after oil solidification, if it occurred, the organic layer had a lower viscosity than salts and ice. An uneven pressure and/or topography at the ice-salt boundary could have led to preferential oil (and salt?) accumulation below the south polar region. Throughout history (and today), the uneven oil-rich layer could have favored tidal motions and heat generation at the bottom of the ice shell.
NASA Astrophysics Data System (ADS)
Peck, Victoria L.; Tarling, Geraint A.; Manno, Clara; Harper, Elizabeth M.; Tynan, Eithne
2016-05-01
Scarred shells of polar pteropod Limacina helicina collected from the Greenland Sea in June 2012 reveal a history of damage, most likely failed predation, in earlier life stages. Evidence of shell fracture and subsequent re-growth is commonly observed in specimens recovered from the sub-Arctic and further afield. However, at one site within sea-ice on the Greenland shelf, shells that had been subject to mechanical damage were also found to exhibit considerable dissolution. It was evident that shell dissolution was localised to areas where the organic, periostracal sheet that covers the outer shell had been damaged at some earlier stage during the animal's life. Where the periostracum remained intact, the shell appeared pristine with no sign of dissolution. Specimens which appeared to be pristine following collection were incubated for four days. Scarring of shells that received periostracal damage during collection only became evident in specimens that were incubated in waters undersaturated with respect to aragonite, ΩAr≤1. While the waters from which the damaged specimens were collected at the Greenland Sea sea-ice margin were not ΩAr≤1, the water column did exhibit the lowest ΩAr values observed in the Greenland and Barents Seas, and was likely to have approached ΩAr≤1 during the winter months. We demonstrate that L. helicina shells are only susceptible to dissolution where both the periostracum has been breached and the aragonite beneath the breach is exposed to waters of ΩAr≤1. Exposure of multiple layers of aragonite in areas of deep dissolution indicate that, as with many molluscs, L. helicina is able to patch up dissolution damage to the shell by secreting additional aragonite internally and maintain their shell. We conclude that, unless breached, the periostracum provides an effective shield for pteropod shells against dissolution in waters ΩAr≤1, and when dissolution does occur the animal has an effective means of self-repair. We suggest that future studies of pteropod shell condition are undertaken on specimens from which the periostracum has not been removed in preparation.
Rheology of Diabase: Implications for Tectonics on Venus and Mars
NASA Technical Reports Server (NTRS)
Kohlstedt, David L.
2001-01-01
Two important goals of our experimental investigation of the rheological behavior of diabase rocks were: (1) to determine flow laws describing their creep behavior over wide ranges of temperature, stress and strain rate and (2) to develop an understanding of the physical mechanisms by which these rocks flow under laboratory conditions. With this basis, a primary objective then was to construct constitutive equations that can be used to extrapolate from laboratory to planetary conditions. We specifically studied the rheological properties of both natural rock samples and synthetic aggregates. The former provided constraints for geologic systems, while the latter defined the relative contributions of the constituent mineral phases and avoided the influence of glass/melt found in natural samples. In addition, partially molten samples of crustal rock composition were deformed in shear to large strains (greater than 200%) important in crustal environments. The results of this research yielded essential rheological properties essential for models of crustal deformation on terrestrial planets, specifically Venus and Mars, as well as on the geodynamical evolution of these planets. Over the past three years, we also completed our investigation of the creep behavior of water ice with applications to the glaciers, ice sheets and icy satellites. Constitutive equations were determined that describe flow over a wide ranged of stress, strain rate, grain size and temperature. In the case of ice, three creep regimes were delineate. Extrapolation demonstrates that dislocation glide and grain boundary sliding processes dominate flow in ice I under planetary conditions and that diffusion creep is not an important deformation mechanism either in the laboratory or on icy satellites. These results have already been incorporated by other investigators into models describing, for example, the thickness and stability of the ice shell on Europa and to unravel long-standing discrepancies between field observations on glaciers and laboratory results.
The implications of tides on the Mimas ocean hypothesis
NASA Astrophysics Data System (ADS)
Rhoden, Alyssa Rose; Henning, Wade; Hurford, Terry A.; Patthoff, D. Alex; Tajeddine, Radwan
2017-02-01
We investigate whether a present-day global ocean within Mimas is compatible with the lack of tectonic activity on its surface by computing tidal stresses for ocean-bearing interior structure models derived from observed librations. We find that, for the suite of compatible rheological models, peak surface tidal stresses caused by Mimas' high eccentricity would range from a factor of 2 smaller to an order of magnitude larger than those on tidally active Europa. Thermal stresses from a freezing ocean, or a past higher eccentricity, would enhance present-day tidal stresses, exceeding the magnitudes associated with Europa's ubiquitous tidally driven fractures and, in some cases, the failure strength of ice in laboratory studies. Therefore, in order for Mimas to have an ocean, its ice shell cannot fail at the stress values implied for Europa. Furthermore, if Mimas' ocean is freezing out, the ice shell must also be able to withstand thermal stresses that could be an order of magnitude higher than the failure strength of laboratory ice samples. In light of these challenges, we consider an ocean-free Mimas to be the most straightforward model, best supported by our tidal stress analysis.
The Implications of Tides on the Mimas Ocean Hypothesis
NASA Technical Reports Server (NTRS)
Rhoden, Alyssa Rose; Henning, Wade; Hurford, Terry A.; Patthoff, D. Alex; Tajeddine, Radwan
2017-01-01
We investigate whether a present-day global ocean within Mimas is compatible with the lack of tectonic activity on its surface by computing tidal stresses for ocean-bearing interior structure models derived from observed librations. We find that, for the suite of compatible rheological models, peak surface tidal stresses caused by Mimas' high eccentricity would range from a factor of 2 smaller to an order of magnitude larger than those on tidally active Europa. Thermal stresses from a freezing ocean, or a past higher eccentricity, would enhance present-day tidal stresses, exceeding the magnitudes associated with Europa's ubiquitous tidally driven fractures and, in some cases, the failure strength of ice in laboratory studies. Therefore, in order for Mimas to have an ocean, its ice shell cannot fail at the stress values implied for Europa. Furthermore, if Mimas' ocean is freezing out, the ice shell must also be able to withstand thermal stresses that could be an order of magnitude higher than the failure strength of laboratory ice samples. In light of these challenges, we consider an ocean-free Mimas to be the most straightforward model, best supported by our tidal stress analysis.
The tidally-modulated plume of Enceladus: an update
NASA Astrophysics Data System (ADS)
Nimmo, F.; Porco, C.; Mitchell, C. J.; Van Hoolst, T.; Hedman, M. M.
2016-12-01
The brightness of the ice grain plume of Enceladus is observed to vary on a diurnal timescale [1,2], consistent with predictions that the plume's mass is modulated by normal tidal stresses, which open and close cracks that reach the ocean [3]. Here we extend our previous analysis [2] to a larger set of ISS plume observations, including images taken since 2010, extending the temporal baseline by more than a factor of two. The observations were reduced using the same approach as in [2]. Fits were performed as in [2] but now include two different assumptions of how plume brightness responds to stresses [4] plus an updated calculation of the effects of long-period librations [5]. An apparent phase lag of 30-60 degrees between the modelled and observed response is robustly present, irrespective of the data set and assumptions used. This phase lag may be the result of the viscosity structure of the ice shell [2,4], an eruptive delay caused by the hydrodynamics within tidally-pumped cracks [6], or other as yet unknown processes. An earlier suggestion [2], that the phase lag is caused by the additional stresses arising from an 0.8 degree 1:1 physical libration in the moon's ice shell, can be rejected now that this libration has been measured with an amplitude of 0.12 degrees [7]. We also find in ISS images a secular decrease in plume brightness over the ten years of Cassini observations; this decrease may be due to long-period (forced) librations of Enceladus. [1] Hedman et al., Nature 2013 [2] Nimmo et al., Astron. J. 2014 [3] Hurford et al., Nature 2007 [4] Behounkova et al., Nature Geosci. 2015 [5] Yseboodt & Van Hoolst, Fall AGU, 2015 [6] Kite & Rubin, PNAS 2016 [7] Thomas et al., Icarus 2016
"Solid State" Chemistry in Titan Ice Particles
2016-09-20
Scientists from NASA's Cassini mission suggested in a 2016 paper that the appearance of a cloud of dicyanoacetylene (C4N2) ice in Titan's stratosphere may be explained by "solid-state" chemistry taking place inside ice particles. The particles have an inner layer of cyanoacetylene (HC3N) ice coated with an outer layer of hydrogen cyanide (HCN) ice. Left: When a photon of light penetrates the outer shell, it can interact with the HC3N, producing C3N and H. Center: The C3N then reacts with HCN to yield C4N2 and H (shown at right). Another reaction that also yields C4N2 ice and H also is possible, but the researchers think it is less likely. http://photojournal.jpl.nasa.gov/catalog/PIA20715
NASA Astrophysics Data System (ADS)
Steinbrügge, G.; Schroeder, D. M.; Haynes, M. S.; Hussmann, H.; Grima, C.; Blankenship, D. D.
2018-01-01
The tidal Love number h2 is a key geophysical measurement for the characterization of Europa's interior, especially of its outer ice shell if a subsurface ocean is present. We performed numerical simulations to assess the potential for estimating h2 using altimetric measurements with a combination of radar sounding and stereo imaging data. The measurement principle exploits both delay and Doppler information in the radar surface return in combination with topography from a digital terrain model (DTM). The resulting radar range measurements at cross-over locations can be used in combination with radio science Doppler data for an improved trajectory solution and for estimating the h2 Love number. Our simulation results suggest that the absolute accuracy of h2 from the joint analysis of REASON (Radar for Europa Assessment and Sounding: Ocean to Near-surface) surface return and EIS (Europa Imaging System) DTM data will be in the range of 0.04-0.17 assuming full radio link coverage. The error is controlled by the SNR budget and DTM quality, both dependent on the surface properties of Europa. We estimate that this would unambiguously confirm (or reject) the global ocean hypothesis and, in combination with a nominal radio-science based measurement of the tidal Love number k2, constrain the thickness of Europa's outer ice shell to up to ±15 km.
Long-period seismology on Europa: 1. Physically consistent interior models
NASA Astrophysics Data System (ADS)
Cammarano, F.; Lekic, V.; Manga, M.; Panning, M.; Romanowicz, B.
2006-12-01
In order to examine the potential of seismology to determine the interior structure and properties of Europa, it is essential to calculate seismic velocities and attenuation for the range of plausible interiors. We calculate a range of models for the physical structure of Europa, as constrained by the satellite's composition, mass, and moment of inertia. We assume a water-ice shell, a pyrolitic or a chondritic mantle, and a core composed of pure iron or iron plus 20 weight percent of sulfur. We consider two extreme mantle thermal states: hot and cold. Given a temperature and composition, we determine density, seismic velocities, and attenuation using thermodynamical models. While anelastic effects will be negligible in a cold mantle and the brittle part of the ice shell, strong dispersion and dissipation are expected in a hot convective mantle and the bulk of the ice shell. There is a strong relationship between different thermal structures and compositions. The ``hot'' mantle may maintain temperatures consistent with a liquid core made of iron plus light elements. For the ``cold scenarios,'' the possibility of a solid iron core cannot be excluded, and it may even be favored. The depths of the ocean and core-mantle boundary are determined with high precision, 10 km and 40 km, respectively, once we assume a composition and thermal structure. Furthermore, the depth of the ocean is relatively insensitive (4 km) to the core composition used.
Quebec's Ice Storm '98: "all cards wild, all rules broken" in Quebec's shell-shocked hospitals
Hamilton, J
1998-01-01
The remarkable ice storm that brought life to a standstill in most of Eastern Ontario and Quebec in January had a huge impact on medical services. Hospitals that lost power found themselves serving as shelters not only for patients but also for staff members and nearby residents. Doctors' offices were forced to close and a large number of operations were cancelled. The 2 articles that follow detail the huge impact the "ice storm of the century" had on health care. PMID:9627567
NASA Astrophysics Data System (ADS)
Senske, D. A.; Prockter, L. M.; Pappalardo, R. T.; Patterson, G. W.; Vance, S.
2012-12-01
Europa is a prime candidate in the search for present-day habitable environments in our solar system. Europa is unique among the large icy satellites because it probably has a saltwater ocean today beneath an ice shell that is geodynamically active. The combination of irradiation of its surface and tidal heating of its interior could make Europa a rich source of chemical energy for life. Perhaps most importantly, Europa's ocean is believed to be in direct contact with its rocky mantle, where conditions could be similar to those on Earth's biologically rich sea floor. Hydrothermal zones on Earth's seafloor are known to be rich with life, powered by energy and nutrients that result from reactions between the seawater and the warm rocky ocean floor. Life as we know it depends on three principal "ingredients": 1) a sustained liquid water environment; 2) essential chemical elements that are critical for building life; and 3) a source of energy that could be utilized by life. Europa's habitability requires understanding whether it possesses these three ingredients. NASA has enlisted a study team to consider Europa mission options feasible over the next decade, compatible with NASA's projected planetary science budget and addressing Planetary Decadal Survey priorities. Two Europa mission concepts (Orbiter and multiple flyby—call the "Clipper") are undergoing continued study with the goal to "Explore Europa to investigate its habitability." Each mission would address this goal in complementary ways, with high science value of its own. The Orbiter and Clipper architectures lend themselves to specific types of scientific measurements. The Orbiter concept is tailored to the unique geophysical science that requires being in orbit at Europa. This includes confirming the existence of an ocean and characterizing that ocean through geophysical measurements of Europa's gravitational tides and magnetic induction response. It also includes mapping of the global morphology and topography of the satellite to reveal its geological evolution. This architecture would provide for radiation-shielded instruments with low mass, power, and data rate, requiring limited spacecraft resources. The Clipper Mission concept concentrates on remote sensing science that can be accomplished through multiple close flybys of Europa. This includes exploring Europa's ice shell for evidence of liquid water within or beneath it, in order to understand the thickness of the ice shell and potential material pathways from the ocean to the surface and from the surface to the ocean. The mission concept also includes exploration of the surface and atmospheric composition of Europa, in order to address ocean composition and habitability. Detailed morphologic and topographic characterization of Europa's surface are included as well. This architecture would provide for radiation-shielded instruments with high mass, power, and data rate. NASA has directed the Europa team to refine, within a cost constrained budget, the ability of the Orbiter concept to characterize the ice shell and composition, and for the Clipper concept to address investigations to characterize the ocean. The status of these updated concepts will be reported.
Sediments in Arctic sea ice: Implications for entrainment, transport and release
Nurnberg, D.; Wollenburg, I.; Dethleff, D.; Eicken, H.; Kassens, H.; Letzig, T.; Reimnitz, E.; Thiede, Jorn
1994-01-01
Despite the Arctic sea ice cover's recognized sensitivity to environmental change, the role of sediment inclusions in lowering ice albedo and affecting ice ablation is poorly understood. Sea ice sediment inclusions were studied in the central Arctic Ocean during the Arctic 91 expedition and in the Laptev Sea (East Siberian Arctic Region Expedition 1992). Results from these investigations are here combined with previous studies performed in major areas of ice ablation and the southern central Arctic Ocean. This study documents the regional distribution and composition of particle-laden ice, investigates and evaluates processes by which sediment is incorporated into the ice cover, and identifies transport paths and probable depositional centers for the released sediment. In April 1992, sea ice in the Laptev Sea was relatively clean. The sediment occasionally observed was distributed diffusely over the entire ice column, forming turbid ice. Observations indicate that frazil and anchor ice formation occurring in a large coastal polynya provide a main mechanism for sediment entrainment. In the central Arctic Ocean sediments are concentrated in layers within or at the surface of ice floes due to melting and refreezing processes. The surface sediment accumulation in central Arctic multi-year sea ice exceeds by far the amounts observed in first-year ice from the Laptev Sea in April 1992. Sea ice sediments are generally fine grained, although coarse sediments and stones up to 5 cm in diameter are observed. Component analysis indicates that quartz and clay minerals are the main terrigenous sediment particles. The biogenous components, namely shells of pelecypods and benthic foraminiferal tests, point to a shallow, benthic, marine source area. Apparently, sediment inclusions were resuspended from shelf areas before and incorporated into the sea ice by suspension freezing. Clay mineralogy of ice-rafted sediments provides information on potential source areas. A smectite maximum in sea ice sediment samples repeatedly occurred between 81??N and 83??N along the Arctic 91 transect, indicating a rather stable and narrow smectite rich ice drift stream of the Transpolar Drift. The smectite concentrations are comparable to those found in both Laptev Sea shelf sediments and anchor ice sediments, pointing to this sea as a potential source area for sea ice sediments. In the central Arctic Ocean sea ice clay mineralogy is significantly different from deep-sea clay mineral distribution patterns. The contribution of sea ice sediments to the deep sea is apparently diluted by sedimentary material provided by other transport mechanisms. ?? 1994.
Deglacial Meltwater Pulse Recorded in Last Interglacial Mollusk Shells from Bermuda
NASA Astrophysics Data System (ADS)
Winkelstern, I. Z.; Rowe, M. P.; Lohmann, K. C.; Defliese, W.; Petersen, S. V.; Brewer, A. W.
2016-12-01
Iceberg scours as far south as the Florida Strait and the presence of ice rafted debris in sediments from the Bermuda Rise indicate that during the last glacial phase icebergs traveled quite far south during episodes of excessive iceberg discharge from the Laurentide Ice Sheet (Heinrich Events). We present evidence that the effects of these events extended southward into the subtropics during the previous deglaciation (Termination-II), potentially aligned with Heinrich Event 11, and that meltwater reached Bermuda. Temperatures 10° C colder and seawater δ18O values 2 ‰ more negative than modern are derived from Last Interglacial Cittarium pica shells from Grape Bay, Bermuda using the clumped isotope paleothermometer. In contrast, Last Interglacial shells from Rocky Bay record temperatures only slightly colder and seawater δ18O values similar to modern, potentially representing more typical Last Interglacial conditions in Bermuda outside of a meltwater event. The cold ocean conditions observed illustrate extreme sensitivity of Bermudian climate to rapid climate and ocean circulation changes. They also provide further evidence for routine meltwater transport in the North Atlantic to near-equatorial latitudes during deglaciation.
Identification of Ice Nucleation Active Sites on Feldspar Dust Particles
2015-01-01
Mineral dusts originating from Earth’s crust are known to be important atmospheric ice nuclei. In agreement with earlier studies, feldspar was found as the most active of the tested natural mineral dusts. Here we investigated in closer detail the reasons for its activity and the difference in the activity of the different feldspars. Conclusions are drawn from scanning electron microscopy, X-ray powder diffraction, infrared spectroscopy, and oil-immersion freezing experiments. K-feldspar showed by far the highest ice nucleation activity. Finally, we give a potential explanation of this effect, finding alkali-metal ions having different hydration shells and thus an influence on the ice nucleation activity of feldspar surfaces. PMID:25584435
NASA Astrophysics Data System (ADS)
Wilner, J.; Hofmann, A.; Hand, K. P.
2017-12-01
Accurately modelling the intensification of greenhouse gas effects in the polar regions ("polar amplification") necessitates a thorough understanding of the geochemical balance between atmospheric, sea ice, and oceanic layers. Sea ice is highly permeable to CO2 and therefore represents a major sink of oceanic CO2 in winter and of atmospheric CO2 in summer, sinks that are typically either poorly constrained in or fully absent from global climate models. We present a novel method for sampling both trapped and dissolved gases (CO2, CH4 and δ13CH4) in sea ice with a Picarro 2132-i Methane Analyzer, taking the following sampling considerations into account: minimization of water and air contamination, full headspace sampling, prevention of inadvertent sample bag double-puncturing, and ease of use. This method involves melting of vacuum-sealed ice cores to evacuate trapped gases to the headspace and sampling the headspace gas with a blunt needle sheathed by a beveled puncturing needle. A gravity catchment tube prevents input of dangerous levels of liquid water to the Picarro cavity. Subsequent ultrasonic degassing allows for dissolved gas measurement. We are in the process of using this method to sample gases trapped and dissolved in Arctic autumn sea ice cores and atmospheric samples collected during the 2016 Polarstern Expedition and during a May 2017 field campaign north of Barrow, Alaska. We additionally employ this method, together with inductively coupled plasma mass spectrometry (ICP-MS), to analyze the transfer of potential biogeochemical signatures of underlying hydrothermal plumes to sea ice. This has particular relevance to Europa and Enceladus, where hypothetical hydrothermal plumes may deliver seafloor chemicals to the overlying ice shell. Hence, we are presently investigating the entrainment of methane and other hydrothermal material in sea ice cores collected along the Gakkel Ridge that may serve as biosignatures of methanogenic organisms in seafloor oases analogous to icy ocean worlds.
West Antarctic Ice Sheet retreat driven by Holocene warm water incursions
Hillenbrand, Claus-Dieter; Smith, James A.; Hodell, David A.; Greaves, Mervyn; Poole, Christopher R.; Kender, Sev; Williams, Mark; Andersen, Thorbjørn Joest; Jernas, Patrycja E.; Klages, Johann P.; Roberts, Stephen J.; Gohl, Karsten; Larter, Robert D.; Kuhn, Gerhard
2017-01-01
Glaciological and oceanographic observations coupled with numerical models show that warm Circumpolar Deep Water (CDW) upwelling onto the West Antarctic continental shelf causes melting of the undersides of floating ice shelves. Because these ice shelves buttress glaciers feeding into them, their ocean-induced thinning is driving Antarctic ice-sheet loss today. Here we present the first multi-proxy data based reconstruction of variability in CDW inflow to the Amundsen Sea sector, the most vulnerable part of the West Antarctic Ice Sheet, during the last 11,000 years. The chemical composition of foraminifer shells and benthic foraminifer assemblages in marine sediments indicate that enhanced CDW upwelling, controlled by the latitudinal position of the Southern Hemisphere westerly winds, forced deglaciation of this sector both until 7,500 years ago, when an ice-shelf collapse may have caused rapid ice-sheet thinning further upstream, and since the 1940s. These results increase confidence in the predictive capability of current ice-sheet models. PMID:28682333
West Antarctic Ice Sheet retreat driven by Holocene warm water incursions.
Hillenbrand, Claus-Dieter; Smith, James A; Hodell, David A; Greaves, Mervyn; Poole, Christopher R; Kender, Sev; Williams, Mark; Andersen, Thorbjørn Joest; Jernas, Patrycja E; Elderfield, Henry; Klages, Johann P; Roberts, Stephen J; Gohl, Karsten; Larter, Robert D; Kuhn, Gerhard
2017-07-05
Glaciological and oceanographic observations coupled with numerical models show that warm Circumpolar Deep Water (CDW) incursions onto the West Antarctic continental shelf cause melting of the undersides of floating ice shelves. Because these ice shelves buttress glaciers feeding into them, their ocean-induced thinning is driving Antarctic ice-sheet retreat today. Here we present a multi-proxy data based reconstruction of variability in CDW inflow to the Amundsen Sea sector, the most vulnerable part of the West Antarctic Ice Sheet, during the Holocene epoch (from 11.7 thousand years ago to the present). The chemical compositions of foraminifer shells and benthic foraminifer assemblages in marine sediments indicate that enhanced CDW upwelling, controlled by the latitudinal position of the Southern Hemisphere westerly winds, forced deglaciation of this sector from at least 10,400 years ago until 7,500 years ago-when an ice-shelf collapse may have caused rapid ice-sheet thinning further upstream-and since the 1940s. These results increase confidence in the predictive capability of current ice-sheet models.
Rolling the dice on the ice; New modes for underway data acquisition in the Arctic Ocean
NASA Astrophysics Data System (ADS)
Coakley, B.; Dove, D.
2012-12-01
Exploration of the Arctic Ocean has always depended on the sea ice. It has been a platform supporting drifting ice stations and an obstacle to be over come by force (icebreakers) or finesse (US Navy fast attack submarines). Reduced seasonal sea ice cover has made it possible to work more freely in the peripheral Arctic Ocean, opening relatively unknown regions to scientific exploration and study. In September 2011, the RV Marcus G. Langseth set sail from Dutch Harbor, Alaska bound through Bering Strait for the Arctic Ocean. This was the first Arctic Ocean trip for MGG data acquisition by a US academic research vessel since 1994, when the RV Maurice Ewing collected a 2-D MCS profile across the Bering Shelf, through the Strait and along the Beaufort Shelf, stopping near Barrow, Alaska. RV Langseth arrived on the mid-Chukchi shelf and streamed gear just south of the "Crackerjack" well, drilled by Shell Exploration in the late eighties. The ship sailed north, crossing the "Popcorn" well and then set a course to the NW, setting the baseline for the survey parallel to the Beaufort Shelf edge. Sailing through almost entirely ice-free waters, approximately 5300 km of multi-channel seismic reflection data were acquired on a NW-SE oriented grid, which straddled the transition from Chukchi Shelf to the Chukchi Borderland. It would not have been possible for Langseth, which is not ice reinforced, to acquire these data prior to 2007. The dramatic expansion of late Summer open water in the western Arctic Ocean made it possible to use this ship effectively across a broad swath of the shelf and the periphery of the deep central basin. While the survey region was almost entirely ice free during this cruise, which straddled the ice minimum for 2011, it was not possible to predict this a priori, despite expectations set by the previous five years of ice edge retreat. For this reason, the Canadian Ice Service was engaged to provide interpreted ice imagery, multiple times per day, substantially improving the ship's ability to operate confidently in this region, particularly at night. As confidence increases about the timing and extent of open water over the shelves and periphery of Arctic Ocean, it is possible to anticipate utilizing other UNOLS vessels and other resources (eg. JOIDES Resolution) in the Arctic. Employing these ships, with appropriate interpretive support, will open a new chapter in the exploration of this relatively unknown ocean basin.
Wavy and Cycloidal Lineament Formation on Europa from Combined Diurnal and Nonsynchronous Stresses
NASA Technical Reports Server (NTRS)
Gleeson, Damhnait; Crawford, Zane; Barr, Amy C.; Mullen, McCall; Pappalardo, Robert T.; Prockter, Louise M.; Stempel, Michelle M.; Wahr, John
2005-01-01
In a companion abstract, we show that fractures propagated into combined diurnal and nonsynchronous rotation (NSR) stress fields can be cycloidal, "wavy," or arcuate in planform as the relative proportion of NSR stress in increased. These transitions occur as NSR stress accumulates over approx. 0 to 10 deg of ice shell rotation, for average fracture propagation speeds of approx. 1 to 3 m/s. Here we consider the NSR speed parameter space for these morphological transitions, and explore the effects on cycloids of adding NSR to diurnal stress. Fitting individual Europan lineaments can constrain the combined NSR plus diurnal stress field at the time of formation.
Can xenon in water inhibit ice growth? Molecular dynamics of phase transitions in water-Xe system.
Artyukhov, Vasilii I; Pulver, Alexander Yu; Peregudov, Alex; Artyuhov, Igor
2014-07-21
Motivated by recent experiments showing the promise of noble gases as cryoprotectants, we perform molecular dynamics modeling of phase transitions in water with xenon under cooling. We follow the structure and dynamics of xenon water solution as a function of temperature. Homogeneous nucleation of clathrate hydrate phase is observed and characterized. As the temperature is further reduced we observe hints of dissociation of clathrate due to stronger hydrophobic hydration, pointing towards a possible instability of clathrate at cryogenic temperatures and conversion to an amorphous phase comprised of "xenon + hydration shell" Xe·(H2O)21.5 clusters. Simulations of ice-xenon solution interface in equilibrium and during ice growth reveal the effects of xenon on the ice-liquid interface, where adsorbed xenon causes roughening of ice surface but does not preferentially form clathrate. These results provide evidence against the ice-blocker mechanism of xenon cryoprotection.
Cronin, Thomas M.; Wingard, G. Lynn; Dwyer, Gary S.; Swart, Peter K.; Willard, Debra A.; Albietz, Jessica
2012-01-01
An 800-year-long environmental history of Biscayne Bay, Florida, is reconstructed from ostracod faunal and shell geochemical (oxygen, carbon isotopes, Mg/Ca ratios) studies of sediment cores from three mudbanks in the central and southern parts of the bay. Using calibrations derived from analyses of modern Biscayne and Florida Bay ostracods, palaeosalinity oscillations associated with changes in precipitation were identified. These oscillations reflect multidecadal- and centennial-scale climate variability associated with the Atlantic Multidecadal Oscillation during the late Medieval Climate Anomaly (MCA) and the Little Ice Age (LIA). Evidence suggests wetter regional climate during the MCA and drier conditions during the LIA. In addition, twentieth century anthropogenic modifications to Everglades hydrology influenced bay circulation and/or processes controlling carbon isotopic composition.
FOD impact testing of composite fan blades
NASA Technical Reports Server (NTRS)
Johns, R. H.
1974-01-01
The results of impact tests on large, fiber composite fan blades for aircraft turbofan engine applications are discussed. Solid composite blades of two different sizes and designs were tested. Both graphite/epoxy and boron/epoxy were evaluated. In addition, a spar-shell blade design was tested that had a boron/epoxy shell bonded to a titanium spar. All blades were tested one at a time in a rotating arm rig to simulate engine operating conditions. Impacting media included small gravel, two inch diameter ice balls, gelatin and RTV foam-simulated birds, as well as starlings and pigeons. The results showed little difference in performance between the graphite and boron/epoxy blades. The results also indicate that composite blades may be able to tolerate ice ball and small bird impacts but need improvement to tolerate birds in the small duck and larger category.
FOD impact testing of composite fan blades
NASA Technical Reports Server (NTRS)
Johns, R. H.
1974-01-01
The results of impact tests on large, fiber composite fan blades for aircraft turbofan engine applications are discussed. Solid composite blades of two different sizes and designs were tested. Both graphite/epoxy and boron/epoxy were evaluated. In addition, a spar-shell blade design was tested that had a boron/epoxy shell bonded to a titanium spar. All blades were tested one at a time in a rotating arm rig to simulate engine operating conditions. Impacting media included small gravel, two inch diameter ice balls, gelatin, and RTV foam-simulated birds, as well as starlings and pigeons. The results showed little difference in performance between the graphite and boron/epoxy blades. The results also indicate that composite blades may be able to tolerate ice ball and small bird impacts but need improvement to tolerate birds in the small duck and larger category.
Impact testing on composite fan blades
NASA Technical Reports Server (NTRS)
Johns, R. H.
1974-01-01
The results of impact tests on large, fiber composite fan blades for aircraft turbofan engine applications are discussed. Solid composite blades of two different sizes and designs were tested. Both graphite/epoxy and boron/epoxy were evaluated. In addition, a spar-shell blade design was tested that had a boron/epoxy shell bonded to a titanium spar. All blades were tested one at a time in a rotating arm rig to simulate engine operating conditions. Impacting media included small gravel, two inch diameter ice balls, gelatin and RTV foam-simulated birds, as well as starlings and pigeons. The results showed little difference in performance between the graphite and boron/epoxy blades. The results also indicate that composite blades may be able to tolerate ice ball and small bird impacts but need improvement to tolerate birds in the small duck and larger category.
An Examination of Issues Related to a Europa Subsurface Component for the JIMO Mission
NASA Technical Reports Server (NTRS)
Carsey, F. D.; Hecht, M. H.; Wilcox, B. H.; Behar, A. E.; Holland, P. M.
2003-01-01
The Galileo Europa data set served to revolutionize our view of Europa. In particular the strong evidence of a large, cold, salty Ocean beneath 5-30 km of ice has profoundly altered the significance of Europa in our thinking, especially of context of habitability in the solar system. While much remains to be learned from spacecraft observations of several sorts, there are significant questions answerable only by in-situ techniques; these relate to the formation of Europa, the nature of its ocean, and the prospects for life in its ocean, sediments, and ice. We feel that wide-ranging discussion of an in-situ subsurface mission to Europa, as part of JIMO, should proceed. The science objective of the mission is to characterize the icy shell of Europa to resolve its provenance, estimate the composition of brine of the Europa ocean, and search for evidence of Earth-like life. Probably anyone would agree that an in-situ mission to Europa would be of great value, but he or she would also immediately take the position that such a mission is utterly impractical. We take the position here of defining the least complex mission that can nonetheless justify its cost and to argue that such a mission is realistic enough that it should be seriously considered. Our mission thinking has been: 1) Soft landing. A soft lander is required on a site sufficiently flat to offer a stable platform; no further site selectivity is required. 2) Subsurface exploration. The Europa subsurface must be examined. Surficial processes on Europa arguably have exposed the upper 200 m of shell to chemical effects from the Jovian radiation belts as well as cometary infall, etc; to examine native ice we must descend below that point to, for discussion, 300 m. At that depth we argue that the ice is characteristic of ice at depth and possibly is effectively sea ice. 3) Science data. A few simple measurements at various depths and at 300 m constitute a scientifically successful mission. Measurements would include analysis of meltwater for a few inorganic ions and amino acids and an optical examination of the borehole wall. 4) Communication. Transmission of data to an orbiter is essential, but we will constrain the landed mission to a daily communication over a few days. 5) Subsurface access. Drilling to 300 m is a significant challenge; it can be addressed by several means: Thermal Probe (Cryobot) which permits water to refreeze above the vehicle. This is our tentative choice with plutonium as the fuel to generate thermal energy for drilling and electrical power for operations. Open Hole Drill, a thermal system in which the meltwater is removed for greater thermal efficiency. Meltwater removal on Europa is both a complexity and a risk, but analysis is improved. Mechanical Drilling in which cutting or grinding generates ice chips which are removed. This is too complex at Europa temperatures. The measurement objectives for the mission will be: Obj. 1: Determine the concentration of simple inorganic salts in the Europa Ice Shell and, by extrapolation, of the ocean. These data will also validate spaceborne sensors. Obj. 2: Determine the nature and abundance of amino acids in the ice such that cometary infall material in the upper ice can be compared to material at depth. Obj. 3: Optically examine the ice to resolve inclusion structure, particulate content, and stratification. Access to 300 m depth is a significant if not audacious plan; we are aware that this has not been done on any planetary body. Our approach is the use of a plutonium heat source; to overcome Europa's surface temperature and to melt ice a significant amount of plutonium is needed, and significant shielding and other protective steps will be required. The quantity of plutonium is a key concern. The mission will require subsurface collection and processing of samples for in situ analysis, calling for a miniature, high pressure micro-sampling system designed to meet needs of instruments that require low presses for operation. The inlet system itself collects a micro-sample in the external high pressure environment, then transfers it into a protected low pressure environment for analysis.
Exploring the Oxidation Chemistry of Enceladus' Ocean
NASA Astrophysics Data System (ADS)
Ray, C.; Glein, C. R.; Waite, J. H.; Teolis, B. D.
2018-05-01
We explore the various physical and chemical processes in Enceladus ice shell and ocean that affect the availability of oxidants, and constrain this availability to determine how much chemical energy may be available for possible life.
New clues on the interior of Titan from its rotation state
NASA Astrophysics Data System (ADS)
Noyelles, Benoît; Nimmo, Francis
2014-07-01
The Saturnian satellite Titan is one of the main targets of the Cassini-Huygens mission, which revealed in particular Titan's shape, gravity field, and rotation state. The shape and gravity field suggest that Titan is not in hydrostatic equilibrium, that it has a global subsurface ocean, and that its ice shell is both rigid (at tidal periods) and of variable thickness. The rotational state of Titan consists of an expected synchronous rotation rate and an unexpectedly high obliquity (0.3○) explained by Baland et al. (2011) to be a resonant behavior. We here combine a realistic model of the ice shell and interior and a 6-degrees of freedom rotational model, in which the librations, obliquity and polar motion of the rigid core and of the shell are modelled, to constrain the structure of Titan from the observations. We consider the gravitational pull of Saturn on the 2 rigid layers, the gravitational coupling between them, and the pressure coupling at the liquid-solid interfaces. We confirm the influence of the resonance found by Baland et al., that affects between 10 and 13% of the possible Titans. It is due to the 29.5-year periodic annual forcing. The resonant Titans can be obtained in situations in which a mass anomaly at the shell-ocean boundary (bottom loading) is from 80 to 92% compensated. This suggests a 250 to 280 km thick ocean below a 130 to 140 km thick shell, and is consistent with the degree-3 analysis of Hemingway 26 et al. (2013).
Inferring Enceladus' ice shell strength and structure from Tiger Stripe formation
NASA Astrophysics Data System (ADS)
Rhoden, A.; Hurford, T., Jr.; Spitale, J.; Henning, W. G.
2017-12-01
The tiger stripe fractures (TSFs) of Enceladus are four, roughly parallel, linear fractures that correlate with plume sources and high heat flows measured by Cassini. Diurnal variations of plume eruptions along the TSFs strongly suggest that tides modulate the eruptions. Several attempts have been made to infer Enceladus' ice shell structure, and the mechanical process of plume formation, by matching variations in the plumes' eruptive output with tidal stresses for different interior models. Unfortunately, the many, often degenerate, unknowns make these analyses non-unique. Tidal-interior models that best match the observed plume variability imply very low tidal stresses (<14 kPa), much lower than the 1 MPa tensile strength of ice implied by lab experiments or the 100 kPa threshold inferred for Europa's ice. In addition, the interior models that give the best matches are inconsistent with the constraints from observed librations. To gain more insight into the interior structure and rheology of Enceladus and the role of tidal stress in the development of the south polar terrain, we utilize the orientations of the TSFs themselves as observational constraints on tidal-interior models. While the initial formation of the TSFs has previously been attributed to tidal stress, detailed modeling of their formation has not been performed until now. We compute tidal stresses for a suite of rheologically-layered interior models, consistent with Enceladus' observed librations, and apply a variety of failure conditions. We then compare the measured orientations at 6391 points along the TSFs with the predicted orientations from the tidal models. Ultimately, we compute the likelihood of forming the TSFs with tidal stresses for each model and failure condition. We find that tidal stresses are a good match to the observed orientations of the TSFs and likely led to their formation. We also find that the model with the highest likelihood changes depending on the failure criterion applied. We will discuss the implications of our model results on the structure and strength of Enceladus's ice shell and the evolution of the SPT.
Continued evolution of Europa subsurface exploration technologies
NASA Technical Reports Server (NTRS)
Carsey, F. D.; Hecht, M. H.; Lane, A. L.; Mogensen, C.; Zimmerman, W.
2002-01-01
The Galileo results convincingly indicate that Europa has a deep salty ocean covered by a shell of water ice a few tens of kilometers thick; this physical description gives rise to a host of thoughtful speculation as to the nature of the ocean, its seafloor, and the likelihood of microbial life within it. We argue that this situation points to the high desirability of a series of in-situ missions to examine the ice and, ultimately, the ocean.
NASA Astrophysics Data System (ADS)
Bergman, J. E. S.; Wahlund, J.-E.; Witasse, O.; Cripps, V.
2017-09-01
The Radio & Plasma Wave Investigation (RPWI) on board the JUICE mission to Jupiter and its icy moons will enhance our understanding of magnetospheric and ionospheric physics processes in the Jupiter system, with emphasis on its icy moon Ganymede. By using innovative measurement techniques, such as passive ground penetrating radar, RPWI will also investigate the ice shell and try to measure its thickness. RPWI will as well help to detect and characterise the subsurface ocean of Ganymede. Thereby, RPWI will contribute to many high level science objectives, not foreseen when the instrument was proposed and selected for flight by ESA. The close collaboration with the two other in situ payload teams (JMAG and PEP), on ground and on board the JUICE spacecraft, will further enhance the value of our combined data sets.
Water-rich planets: How habitable is a water layer deeper than on Earth?
NASA Astrophysics Data System (ADS)
Noack, L.; Höning, D.; Rivoldini, A.; Heistracher, C.; Zimov, N.; Journaux, B.; Lammer, H.; Van Hoolst, T.; Bredehöft, J. H.
2016-10-01
Water is necessary for the origin and survival of life as we know it. In the search for life-friendly worlds, water-rich planets therefore are obvious candidates and have attracted increasing attention in recent years. The surface H2O layer on such planets (containing a liquid water ocean and possibly high-pressure ice below a specific depth) could potentially be hundreds of kilometres deep depending on the water content and the evolution of the proto-atmosphere. We study possible constraints for the habitability of deep water layers and introduce a new habitability classification relevant for water-rich planets (from Mars-size to super-Earth-size planets). A new ocean model has been developed that is coupled to a thermal evolution model of the mantle and core. Our interior structure model takes into account depth-dependent thermodynamic properties and the possible formation of high-pressure ice. We find that heat flowing out of the silicate mantle can melt an ice layer from below (in some cases episodically), depending mainly on the thickness of the ocean-ice shell, the mass of the planet, the surface temperature and the interior parameters (e.g. radioactive mantle heat sources). The high pressure at the bottom of deep water-ice layers could also impede volcanism at the water-mantle boundary for both stagnant lid and plate tectonics silicate shells. We conclude that water-rich planets with a deep ocean, a large planet mass, a high average density or a low surface temperature are likely less habitable than planets with an Earth-like ocean.
Structure of Enceladus' Ice Shell
NASA Astrophysics Data System (ADS)
Hemingway, D.
2016-12-01
Constraining the internal structure of Enceladus is essential for understanding its evolution, its highly active south polar region, and its prospects for habitability. Of particular interest is the thickness of the icy shell, which has implications for the thermal structure, the effects of tidal stresses, and the conduits feeding the jets and plume. Since Enceladus' low order gravity field was first measured [1], several studies of shape and gravity have suggested the presence of an internal ocean beneath the icy shell [1-3]. These analyses, however, involve several assumptions and approximations and yield distinct shell thickness estimates (ranging from 18-60 km), only some of which are compatible with estimates from the measured physical librations (15-25 km [4,5]). Part of the challenge is that standard approaches to interior modeling (e.g., Radau-Darwin) are not well suited to Enceladus due to its fast rotation and relatively large non-hydrostatic topography [2,6]. Because of Enceladus' small radius, results are also sensitive to the details of the compensation model [7,8]. Here we apply an analytical compensation model that accommodates the spherical geometry in a manner that is distinct from previous studies, and employ a high fidelity numerical approach to modeling the hydrostatic equilibrium figure [6]. We show that the resulting shell thickness estimates are smaller than in previous models—in agreement with the libration observations—suggesting the possibility of an extremely thin ice crust at the south pole. While a range of mean shell thicknesses are permitted within the observational constraints, the amplitude of lateral shell thickness variations is well constrained. In particular, the shell is 10 km thicker at the north pole than at the south pole, potentially helping to explain the nature of the north-south polar asymmetry in endogenic activity. 1. Iess et al., Science. 344, 78-80 (2014). 2. McKinnon, Geophys. Res. Lett.42 (2015). 3. Cadek et al., Geophys. Res. Lett. (2016). 4. Thomas et al., Icarus. 264, 37-47 (2016). 5. Van Hoolst, Baland, Trinh, Icarus. 277, 311-318 (2016). 6. Tricarico, Astrophys. J. 782, 99 (2014). 7. Jeffreys, The Earth (Cambridge University Press, 6thed, 1976). 8. Turcotte, Willemann, Haxby, Norberry, J. Geophys. Res. 86, 3951-3959 (1981).
Expected Seismicity and the Seismic Noise Environment of Europa
NASA Astrophysics Data System (ADS)
Panning, Mark P.; Stähler, Simon C.; Huang, Hsin-Hua; Vance, Steven D.; Kedar, Sharon; Tsai, Victor C.; Pike, William T.; Lorenz, Ralph D.
2018-01-01
Seismic data will be a vital geophysical constraint on internal structure of Europa if we land instruments on the surface. Quantifying expected seismic activity on Europa both in terms of large, recognizable signals and ambient background noise is important for understanding dynamics of the moon, as well as interpretation of potential future data. Seismic energy sources will likely include cracking in the ice shell and turbulent motion in the oceans. We define a range of models of seismic activity in Europa's ice shell by assuming each model follows a Gutenberg-Richter relationship with varying parameters. A range of cumulative seismic moment release between 1016 and 1018 Nm/yr is defined by scaling tidal dissipation energy to tectonic events on the Earth's moon. Random catalogs are generated and used to create synthetic continuous noise records through numerical wave propagation in thermodynamically self-consistent models of the interior structure of Europa. Spectral characteristics of the noise are calculated by determining probabilistic power spectral densities of the synthetic records. While the range of seismicity models predicts noise levels that vary by 80 dB, we show that most noise estimates are below the self-noise floor of high-frequency geophones but may be recorded by more sensitive instruments. The largest expected signals exceed background noise by ˜50 dB. Noise records may allow for constraints on interior structure through autocorrelation. Models of seismic noise generated by pressure variations at the base of the ice shell due to turbulent motions in the subsurface ocean may also generate observable seismic noise.
Dry Sources of Plume Emissions on Enceladus
NASA Astrophysics Data System (ADS)
Zolotov, M. Y.
2009-12-01
Salt-bearing icy particles [1], inorganic gases [2] and organic species [2,3] emitted from Enceladus could originate in the heterogeneous icy shell that captured oceanic water and primordial solids earlier in history. A major trapping could have occurred during sinking of a dense (1.6 g/cm3) primordial rock-ice crust [4] into an early salt-, gas- and organic-bearing ocean [5]. The lack of spectral and geological signs for rocky components at the surface is consistent with the submergence of primordial crust that has not been affected by initial water-rock differentiation. The sinking could have been triggered by impacts and/or volume changes in the interior. A rapid submergence could have caused vigorous boiling and freezing of oceanic water that appeared at the surface. The low temperature of submerged crust, and cooling of surface waters may have limited major melting of sunken rock-ice blocks. Some primary spices (e.g. HCN [2]), if released from sunken rock-ice debris, could have been re-captured in ice, which limited their chemical interactions. After formation of a thin icy shell, diking events and impacts caused further trapping of salty oceanic water in multiple disrupted areas, as occurred on Europa. Condensed and soluble organic compounds, and at least some CO2, N2, CH4 and light hydrocarbons released via oceanic degassing were trapped as well. The concentration of salts in rapidly frozen oceanic water reflected oceanic composition, and the salt/water ratio in Na-rich E-ring particles [1] may represent salinity of the early ocean. In fact, the salinity inferred from the composition of salt-rich particles (4-20 g/kg H2O [1]) and salt composition matches models for the early ocean [5]. The Na-poor E-ring particles [1] may originate from a middle part of the icy shell that formed through slow downward freezing and expelling impurities into solution. The dominance of Na-poor E-ring icy grains (~93%, [1]) implies a low volume of salty ice that represents rapidly frozen early oceanic water. A lack of highly saline particles in E ring that are expected to form due to significant evaporation of an aqueous reservoir also argues for dry sources. The E-ring grains [1,3] may represent neither thick salt deposits at the core-ice boundary nor brines that may exist at that boundary today [5]. A low upper limit for atomic Na content at Enceladus [6] is consistent with Na emission in salt particles from dry sources. A low (far from eutectic) NH3/H2O ratio in plumes [2] implies dry sources as well. If present, primary species (e.g. NH3, HCN) in plums [2] and Mg silicates in E-ring particles [3] could originate from unmelted fragments of sunken primordial crust that have been incorporated into the formed icy shell. The structural heterogeneity of current icy shell may account for the chemical diversity of gases [2] and solids [1,3] emitted from Enceladus. Refs.: [1] Portberg F. et al. (2009) Nature 459, 1098-1101. [2] Waite J. et al. et al. (2009) Nature 460, 487-490. [3] Postberg F. et al. (2008) Icarus 193, 438-454. [4] Schubert G. et al. (2007) Icarus 188, 335-345. [5] Zolotov M. (2007) GRL 34, L23203. [6] Schneider N. et al. (2009) Nature 459, 1098-1101.
NASA Astrophysics Data System (ADS)
Noviello, J. L.; Torrano, Z. A.; Rhoden, A.; Manga, M.
2017-12-01
A key objective of the Europa lander mission is to identify liquid water within 30 km of the lander (Europa Lander SDT report, 2017), to provide essential context with which to evaluate samples and enable assessment of Europa's overall habitability. To inform lander mission development, we utilize a model of surface feature formation that invokes liquid water within Europa's ice shell to map out the implied 3D distribution of liquid water and assess the likelihood of a lander to be within 30 km of liquid water given regional variability. Europa's surface displays a variety of microfeatures, also called lenticulae, including pits, domes, spots, and microchaos. A recent model by Manga and Michaut (2017) attributes these features to various stages in the thermal-mechanical evolution of liquid water intrusions (i.e. sills) within the ice shell, from sill emplacement to surface breaching (in the case of microchaos) to freezing of the sill. Pits are of particular interest because they appear only when liquid water is still present. Another key feature of the model is that the size of a microfeature at the surface is controlled by the depth of the sill. Hence, we can apply this model to regions of Europa that contain microfeatures to infer the size, depth, and spatial distribution of liquid water within the ice shell. We are creating a database of microfeatures that includes digitized, collated data from previous mapping efforts along with our own mapping study. We focus on images with 220 m/pixel resolution, which includes the regional mapping data sets. Analysis of a preliminary study area suggests that sills are typically located at depths of 2km or less from the surface. We will present analysis of the full database of microfeatures and the corresponding 3D distribution of sills implied by the model. Our preliminary analysis also shows that pits are clustered in some regions, consistent with previous results, although individual pits are also observed. We apply a statistical method, using the distribution of nearest neighbor distances, to quantify the degree of clustering and to determine the typical spatial separation among and between microfeature types. We will create density maps of microfeatures in several regions of Europa, and determine the likelihood that a lander will be within 30 km of a sill, assuming an arbitrary landing site.
Report of the International Ice Patrol in the North Atlantic. 1986 Season Bulletin Number 72
1986-01-01
business transac-tions from the season. Flight The Intemnational Ice Patrol Month Sooe these nhos requested that all ships transiting -Month Sorties hours...GERMANY 1 EASTERN SHELL UNKNOWN 1 EASTERN UNICORN PANAMA 1 1 ESPANA 1 FEDERAL REPUBLIC OF GERMANY 1 EUROPE BELGIUM 5 EVA FRANCE 1 1 EVERGREEN USA 15 1...when flown at 8000 ft similar pattern, but a winch failure computed using an algorithm (2438 m), maps a 50 km wide after 28 CTD stations resulted in
Geomorphological evidence for ground ice on dwarf planet Ceres
Schmidt, Britney E.; Hughson, Kynan H.G.; Chilton, Heather T.; Scully, Jennifer E. C.; Platz, Thomas; Nathues, Andreas; Sizemore, Hanna; Bland, Michael T.; Byrne, Shane; Marchi, Simone; O'Brien, David; Schorghofer, Norbert; Hiesinger, Harald; Jaumann, Ralf; Hendrick Pasckert, Jan; Lawrence, Justin D.; Buzckowski, Debra; Castillo-Rogez, Julie C.; Sykes, Mark V.; Schenk, Paul M.; DeSanctis, Maria-Cristina; Mitri, Giuseppe; Formisano, Michelangelo; Li, Jian-Yang; Reddy, Vishnu; Le Corre, Lucille; Russell, Christopher T.; Raymond, Carol A.
2017-01-01
Five decades of observations of Ceres suggest that the dwarf planet has a composition similar to carbonaceous meteorites and may have an ice-rich outer shell protected by a silicate layer. NASA’s Dawn spacecraft has detected ubiquitous clays, carbonates and other products of aqueous alteration across the surface of Ceres, but surprisingly it has directly observed water ice in only a few areas. Here we use Dawn Framing Camera observations to analyse lobate morphologies on Ceres’ surface and we infer the presence of ice in the upper few kilometres of Ceres. We identify three distinct lobate morphologies that we interpret as surface flows: thick tongue-shaped, furrowed flows on steep slopes; thin, spatulate flows on shallow slopes; and cuspate sheeted flows that appear fluidized. The shapes and aspect ratios of these flows are different from those of dry landslides—including those on ice-poor Vesta—but are morphologically similar to ice-rich flows on other bodies, indicating the involvement of ice. Based on the geomorphology and poleward increase in prevalence of these flows, we suggest that the shallow subsurface of Ceres is comprised of mixtures of silicates and ice, and that ice is most abundant near the poles.
Modeling Europa's Ice-Ocean Interface
NASA Astrophysics Data System (ADS)
Elsenousy, A.; Vance, S.; Bills, B. G.
2014-12-01
This work focuses on modeling the ice-ocean interface on Jupiter's Moon (Europa); mainly from the standpoint of heat and salt transfer relationship with emphasis on the basal ice growth rate and its implications to Europa's tidal response. Modeling the heat and salt flux at Europa's ice/ocean interface is necessary to understand the dynamics of Europa's ocean and its interaction with the upper ice shell as well as the history of active turbulence at this area. To achieve this goal, we used McPhee et al., 2008 parameterizations on Earth's ice/ocean interface that was developed to meet Europa's ocean dynamics. We varied one parameter at a time to test its influence on both; "h" the basal ice growth rate and on "R" the double diffusion tendency strength. The double diffusion tendency "R" was calculated as the ratio between the interface heat exchange coefficient αh to the interface salt exchange coefficient αs. Our preliminary results showed a strong double diffusion tendency R ~200 at Europa's ice-ocean interface for plausible changes in the heat flux due to onset or elimination of a hydrothermal activity, suggesting supercooling and a strong tendency for forming frazil ice.
The Europa Imaging System (EIS): Investigating Europa's geology, ice shell, and current activity
NASA Astrophysics Data System (ADS)
Turtle, Elizabeth; Thomas, Nicolas; Fletcher, Leigh; Hayes, Alexander; Ernst, Carolyn; Collins, Geoffrey; Hansen, Candice; Kirk, Randolph L.; Nimmo, Francis; McEwen, Alfred; Hurford, Terry; Barr Mlinar, Amy; Quick, Lynnae; Patterson, Wes; Soderblom, Jason
2016-07-01
NASA's Europa Mission, planned for launch in 2022, will perform more than 40 flybys of Europa with altitudes at closest approach as low as 25 km. The instrument payload includes the Europa Imaging System (EIS), a camera suite designed to transform our understanding of Europa through global decameter-scale coverage, topographic and color mapping, and unprecedented sub- meter-scale imaging. EIS combines narrow-angle and wide-angle cameras to address these science goals: • Constrain the formation processes of surface features by characterizing endogenic geologic structures, surface units, global cross-cutting relationships, and relationships to Europa's subsurface structure and potential near-surface water. • Search for evidence of recent or current activity, including potential plumes. • Characterize the ice shell by constraining its thickness and correlating surface features with subsurface structures detected by ice penetrating radar. • Characterize scientifically compelling landing sites and hazards by determining the nature of the surface at scales relevant to a potential lander. EIS Narrow-angle Camera (NAC): The NAC, with a 2.3°° x 1.2°° field of view (FOV) and a 10-μμrad instantaneous FOV (IFOV), achieves 0.5-m pixel scale over a 2-km-wide swath from 50-km altitude. A 2-axis gimbal enables independent targeting, allowing very high-resolution stereo imaging to generate digital topographic models (DTMs) with 4-m spatial scale and 0.5-m vertical precision over the 2-km swath from 50-km altitude. The gimbal also makes near-global (>95%) mapping of Europa possible at ≤50-m pixel scale, as well as regional stereo imaging. The NAC will also perform high-phase-angle observations to search for potential plumes. EIS Wide-angle Camera (WAC): The WAC has a 48°° x 24°° FOV, with a 218-μμrad IFOV, and is designed to acquire pushbroom stereo swaths along flyby ground-tracks. From an altitude of 50 km, the WAC achieves 11-m pixel scale over a 44-km-wide swath, generating DTMs with 32-m spatial scale and 4-m vertical precision. These data also support characterization of surface clutter for interpretation of radar deep and shallow sounding modes. Detectors: The cameras have identical rapid-readout, radiation-hard 4k x 2k CMOS detectors and can image in both pushbroom and framing modes. Color observations are acquired by pushbroom imaging using six broadband filters (~300-1050 nm), allowing mapping of surface units for correlation with geologic structures, topography, and compositional units from other instruments.
FTIR study of CO2 and H2O/CO2 nanoparticles and their temporal evolution at 80 K.
Taraschewski, M; Cammenga, H K; Tuckermann, R; Bauerecker, S
2005-04-21
Fourier transform infrared (FTIR) spectroscopy combined with a long-path collisional cooling cell was used to investigate the temporal evolution of CO2 nanoparticles and binary H2O/CO2 nanocomposites in the aerosol phase at 80 K. The experimental conditions for the formation of different CO2 particle shapes as slab, shell, sphere, cube, and needle have been studied by comparison with calculated data from the literature. The H2O/CO2 nanoparticles were generated with a newly developed multiple-pulse injection technique and with the simpler flow-in technique. The carbon dioxide nu3-vibration band at 2360 cm(-1) and the water ice OH-dangling band at 3700 cm(-1) were used to study the evolution of structure, shape, and contact area of the nanocomposites over 150 s. Different stages of binary nanocomposites with primary water ice cores were identified dependent on the injected CO2 portion: (a) disordered (amorphous) CO2 slabs on water particle surfaces, (b) globular crystalline CO2 humps sticking on the water cores, and (c) water cores being completely enclosed in bigger predominantly crystalline CO2 nanoparticles. However, regular CO2 shell structures on primary water particles showing both longitudinal (LO) and transverse (TO) optical mode features of the nu3-vibration band could not be observed. Experiments with reversed nucleation order indicate that H2O/CO2 composite particles with different initial structures evolve toward similar molecular nanocomposites with separated CO2 and H2O regions.
Analysis of Benthic Foraminiferal Size Change During the Eocene-Oligocene Transition
NASA Astrophysics Data System (ADS)
Zachary, W.; Keating-Bitonti, C.
2017-12-01
The Eocene-Oligocene transition is a significant global cooling event with the first growth of continental ice on Antarctica. In the geologic record, the size of fossils can be used to indirectly observe how organisms respond to climate change. For example, organisms tend to be larger in cooler environments as a physiological response to temperature. This major global cooling event should influence organism physiology, resulting in significant size trends observed in the fossil record. Benthic foraminifera are protists and those that grow a carbonate shell are both well-preserved and abundant in marine sediments. Here, we used the foraminiferal fossil record to study the relationship between their size and global cooling. We hypothesize that cooler temperatures across the Eocene-Oligocene boundary promoted shell size increase. To test this hypothesis, we studied benthic foraminifera from 10 deep-sea cores drilled at Ocean Drilling Program Site 744, located in the southern Indian Ocean. We washed sediment samples over a 63-micron sieve and picked foraminifera from a 125-micron sieve. We studied the benthic foraminiferal genus Cibicidoides and its size change across this cooling event. Picked specimens were imaged and we measured the diameter of their shells using "imageJ". Overall, we find that Cibicidoides shows a general trend of increasing size during this transition. In particular, both the median and maximum sizes of Cibicidoides increase from the Eocene into the Oligocene. We also analyzed C. pachyderma and C. mundulus for size trends. Although both species increase in median size across the boundary, only C. pachyderma shows a consistent trend of increasing maximum, median, and minimum shell diameter. After the Eocene-Oligocene boundary, we observe that shell diameter decreases following peak cooling and that foraminiferal sizes remain stable into the early Oligocene. Therefore, the Eocene-Oligocene cooling event appears to have strong influence on shell size.
NASA Technical Reports Server (NTRS)
Kadel, Steven D.; Chuang, Frank C.; Greeley, Ronald; Moore, Jeffrey M.
2000-01-01
Galileo images of the Tyre Macula region of Europa at regional (170 m/pixel) and local (approx. 40 m/pixel) scales allow mapping and understanding of surface processes and landforms. Ridged plains, doublet and complex ridges, shallow pits, domes, "chaos" areas. impact structures, tilted blocks and massifs, and young fracture systems indicate a complex history of surface deformation on Europa. Regional and local morphologies of the Tyre region of Europa suggest that an impactor penetrated through several kilometers of water ice tc a mobile layer below. The surface morphology was initially dominated by formation of ridged plains, followed by development of ridge bands and doublet ridges, with chaos and fracture formation dominating the latter part of the geologic history of the Tyre region. Two distinct types of chaos have been identified which, along with upwarped dome materials, appear to represent a continuum of features (domes-play chaos-knobby chaos) resulting from increasing degree of surface disruption associated with local lithospheric heating and thinning. Local and regional stratigraphic relationships, block heights, and the morphology of the Tyre impact structure suggest the presence of low-viscosity ice or liquid water beneath a thin (severa1 kilometers) surface ice shell at the time of the impact. The very low impact crater density on the surface of Europa suggests that this thin shell has either formed or been thoroughly resurfaced in the very recent past.
Growth chronology of Greenland Cockles (Serripes groenlandicus) from Bear Island, Svalbard, Norway
NASA Astrophysics Data System (ADS)
Carroll, Michael; Ambrose, William; Locke, William; Wanamaker, Alan
2017-04-01
Climate change is occurring rapidly in the Arctic, and observing the links between environmental drivers and biological effects can provide key information on the ecosystem consequences of climate change. Analysis of shell-based records of mollusks (sclerochronology) provides an effective and expanding approach to reconstructing environmental-ecological linkages. In particular, annually resolved archives can be key indicators of how climate change manifests in the marine ecosystem. We developed a master growth chronology of the Greenland Cockle (Serripes groenlandicus) from Bear Island (Bjørnøya), Svalbard, Norway (74°41'N, 18°56'E) from analysis of annual shell increments. The chronology was developed from 20 individuals ranging in age from 24 to 45 years old (the oldest known individuals of this species to date). The chronology, expressed as a standardized growth index (SGI), extended from 1968 to 2012 and exhibited a cyclical pattern, with decadal periods of high growth, alternating with slower growth intervals. We also identified significant relationships between large-scale climate regimes (e.g. NAO, AMO), local environmental conditions (e.g. sea temperature, sea ice), and shell growth. Additionally, growth chronologies, and environmental linkages were compared from this, near the southern extent of the Barents Sea polar front, with other Arctic locations influenced by different water masses to examine the nature of the environmental regulation on shell growth of this species in the Barents Sea and Arctic Ocean. We conclude that the Greenland Cockle is quite sensitive to environmental changes over annual to decadal scales and therefore can serve as a proxy of climate change effects on ecosystem processes in the Arctic.
Method of making foam-encapsulated laser targets
Rinde, James A.; Fulton, Fred J.
1977-01-01
Foam-encapsulated laser fusion targets are fabricated by suspending fusion fuel filled shells in a solution of cellulose acetate, extruding the suspension through a small orifice into a bath of ice water, soaking the thus formed shell containing cellulose acetate gel in the water to extract impurities, freezing the gel, and thereafter freeze-drying wherein water and solvents sublime and the gel structure solidifies into a low-density microcellular foam containing one or more encapsulated fuel-filled shells. The thus formed material is thereafter cut and mounted on a support to provide laser fusion targets containing a fuel-filled shell surrounded by foam having a thickness of 10 to 60 .mu.m, a cell size of less than 2 .mu.m, and density of 0.08 to 0.6.times.10.sup.3 kg/m.sup.3. Various configured foam-encapsulated targets capable of being made by the encapsulation method are illustrated.
Microstructures and mechanical behavior of magnesium processed by ECAP at ice-water temperature
NASA Astrophysics Data System (ADS)
Zuo, Dai; Li, Taotao; Liang, Wei; Wen, Xiyu; Yang, Fuqian
2018-05-01
Magnesium of high purity is processed by equal channel angular pressing (ECAP) up to eight passes at the ice-water temperature, in which a core–shell-like structure is used. The core–shell-like structure consists of pure iron (Fe) of 1.5 mm in thickness as the shell and magnesium (Mg) as the core. The microstructure, texture and mechanical behavior of the ECAP-processed Mg are studied. The ECAP processing leads to the formation of fine and equiaxed grains of ~1.1 µm. The basal planes initially parallel to the extrusion direction evolve to slanted basal planes with the tilting angle in a range of 25°–45° to the extrusion direction. Increasing the number of the extrusion passes leads to the decreasing of twins and dislocation density in grains, while individual grains after eight passes still have high dislocation density. The large decreases of twins and the dislocation density make dynamic recrystallization (DRX) difficult, resulting in the decrease of the degree of DRX. Tension test reveals that the mechanical behavior of the ECAP-processed Mg is dependent on grain refinement and textures. The yield strength of the ECAP-extruded Mg first increases with the decrease of the grain size, and then decreases with further decrease of the grain size.
NASA Astrophysics Data System (ADS)
Roberts, J. H.; Nimmo, F.
2007-12-01
Rapid strike-slip motion is predicted to be a consequence of diurnal tidal stresses in most satellites of the outer solar system with short orbital timescales [1]. Such motion can lead to near-surface heating through friction or viscous dissipation [2]. Here we discuss the effect of near-surface shear heating on convection in the underlying ice shells of icy satellites [3], with a focus on Enceladus and a possible origin of the south polar thermal anomaly [4]. We present models of convection in spherical ice shells including both spatially variable volumetric tidal heating [5] and regional shear heating localized in the top 5 km at either the pole or the equator. We observe that the presence of the near-surface heating strongly controls the convective pattern, increasing the wavelength, and promoting the formation of a hot upwelling beneath the shear zone. Our results suggest that localized near- surface heating may result in a degree-1 convective planform in an ice shell of a thickness that may be appropriate for a differentiated Enceladus (d < 0.36 Rsat). The near-surface heating and convection pattern will produce a localized heat flow anomaly. The upwelling beneath the shear zone also produces a few hundred meters of long-wavelength dynamic topography. The ℓ=2 component of the topography may cause reorientation of the satellite [6]. [1] Hoppa, G., B. R. Tufts, R. Greenberg, and P. Geissler, Icarus, 141, 287-298, 1999. [2] Nimmo, F., E. Gaidos, JGR, 107, 5021, 2002. [3] Han, L., A. P. Showman, LPSC XXXVIII, #2277, 2007. [4] Spencer, J. R., et al., Science, 311, 1401-1405. [5] Tobie, G., A. Mocquet, C. Sotin, Icarus, 177 534-549. [6] Nimmo, F., R. T. Pappalardo, Nature, 441, 614-616.
NASA Astrophysics Data System (ADS)
Medioli, B. E.; Dallimore, S. R.; Nixon, F. M.; Dallimore, A.; Blasco, S.; Paull, C. K.; McLaughlin, F.; Ussler, W.; Davies, E.
2004-12-01
Pingo-like features (PLFs) are rounded positive relief features commonly found on Beaufort Sea shelf, NWT. PLFs occur in water depths from 20 to 200m, are typically a few hundred meters in diameter and rise 10 to 35m above the seafloor. In the fall of 2003, an MBARI-USGS-GSC-DFO coring and geophysical study was undertaken of a number of PLFs. The crests, flanks and moats of 8 PLFs, as well as background shelf sites, were vibra-cored. Upon recovery, core temperatures of moat sediments ranged from 2.0 to -0.5 deg C and no ice bonding was observed. Sediments consisted of dark-olive-grey to black muds with shells. Sedimentary structures were rare with some finely laminated to finely-color-banded beds. Intense bioturbation, in situ marine shells and a lack of terriginous macrofossils suggest moat sediments were deposited in a shallow coastal environment. In some instances, a down core grain size coarsening was observed with higher organic content suggesting a gradational environment towards more lagoonal conditions. Core temperatures from the 8 PLFs were 0 to -1.7 deg C, significantly colder than the moat sediments. Ice-bonded permafrost was encountered within 1m of the seabed with visible ice content up to 40% by volume. Several ice-bonded intervals were preserved frozen for detailed investigation in the lab. The observed ground ice in the cores was quite unique when compared with visible ice forms commonly seen in regional terrestrial sections. The ice gave the core a vuggy texture with individual ice-filled vugs 10 to 200 mm3. Vugs were typically flattened to ovoid. When thawed, the ice produced excess water resulting in a very soft texture. In many cases the vuggy texture was maintained with sediment voids forming where the ice was. PLF crest sediments were massive silty clays with clayey silts and muddy fine sand interbeds. They generally lack sedimentary structures, although this may have been due to sediment structure loss upon thawing. The background seafloor sediments consisted of unfrozen, massive silty sands and sandy silts and were distinct from the crest and moat sediments. In several cores, a sharp transition was noted to well-sorted sands. This lower unit may represent a transgressed terrestrial sequence. Research continues to determine the origin of the PLFs and quantify the role of permafrost and ice formation.
NASA Astrophysics Data System (ADS)
Branson, O.; Vetter, L.; Fehrenbacher, J. S.; Spero, H. J.
2016-12-01
The geochemical variability between individual foraminifera within single core intervals records both palaeo-oecanographic conditions and ecology. Within the biological context of foraminiferal species, this population variability may be interpreted to provide unparalleled paleoenvironmental information. For example, coupled trace element and stable isotope analyses of single O. universa offer a powerful tool for reconstructing the δ18O of Laurentide Ice Sheet (LIS) meltwater, by calculating the intercept between temperature-corrected δ18O water and Ba/Ca salinity estimates (Vetter et al., in review). This offers valuable insights into the dynamics of ice sheet melting at the end of the last glacial maximum. Here we apply similar coupled single-shell laser ablation (LA-ICP-MS) and isotope ratio mass spectrometry (IRMS) techniques to explore the δ18O of Laurentide meltwater during H4 and bracketing intervals. The application of these methods to down-core samples requires the development of robust LA-ICP-MS data processing techniques to identify primary signals within Ba contaminated samples, and careful consideration of palaeo Ba/Ca-salinity relationships. Our analyses offer a significant advance in systematic LA-ICP-MS data processing methods, offer constraints on the variability of riverine Ba fluxes, and ultimately provide δ18O estimates of LIS meltwater during H4.
NASA Technical Reports Server (NTRS)
Kattenhorn, Simon
2004-01-01
The work completed during the funding period has provided many important insights into fracturing behavior in Europa's ice shell. It has been determined that fracturing through time is likely to have been controlled by the effects of nonsynchronous rotation stresses and that as much as 720 deg of said rotation may have occurred during the visible geologic history. It has been determined that there are at least two distinct styles of strike-slip faulting and that their mutual evolutionary styles are likely to have been different, with one involving a significant dilational component during shear motion. It has been determined that secondary fracturing in perturbed stress fields adjacent to older structures such as faults is a prevalent process on Europa. It has been determined that cycloidal ridges are likely to experience shear stresses along the existing segment portions as they propagate, which affects propagation direction and ultimately induces tailcracking at the segment tip than then initiates a new cycle of cycloid segment growth. Finally, it has been established that mechanical methods (e.g., flexure analysis) can be used to determine the elastic thickness of the ice shell, which, although probably only several km thick, is likely to be spatially variable, being thinner under bands but thicker under ridged plains terrain.
Ambler, Michael; Vorselaars, Bart; Allen, Michael P; Quigley, David
2017-02-21
We apply the capillary wave method, based on measurements of fluctuations in a ribbon-like interfacial geometry, to determine the solid-liquid interfacial free energy for both polytypes of ice I and the recently proposed ice 0 within a mono-atomic model of water. We discuss various choices for the molecular order parameter, which distinguishes solid from liquid, and demonstrate the influence of this choice on the interfacial stiffness. We quantify the influence of discretisation error when sampling the interfacial profile and the limits on accuracy imposed by the assumption of quasi one-dimensional geometry. The interfacial free energies of the two ice I polytypes are indistinguishable to within achievable statistical error and the small ambiguity which arises from the choice of order parameter. In the case of ice 0, we find that the large surface unit cell for low index interfaces constrains the width of the interfacial ribbon such that the accuracy of results is reduced. Nevertheless, we establish that the interfacial free energy of ice 0 at its melting temperature is similar to that of ice I under the same conditions. The rationality of a core-shell model for the nucleation of ice I within ice 0 is questioned within the context of our results.
Design of an Autonomous Underwater Vehicle to Calibrate the Europa Clipper Ice-Penetrating Radar
NASA Astrophysics Data System (ADS)
Stone, W.; Siegel, V.; Kimball, P.; Richmond, K.; Flesher, C.; Hogan, B.; Lelievre, S.
2013-12-01
Jupiter's moon Europa has been prioritized as the target for the Europa Clipper flyby mission. A key science objective for the mission is to remotely characterize the ice shell and any subsurface water, including their heterogeneity, and the nature of surface-ice-ocean exchange. This objective is a critical component of the mission's overarching goal of assessing the habitability of Europa. The instrument targeted for addressing key aspects of this goal is an ice-penetrating radar (IPR). As a primary goal of our work, we will tightly couple airborne IPR studies of the Ross Ice Shelf by the Europa Clipper radar team with ground-truth data to be obtained from sub-glacial sonar and bio-geochemical mapping of the corresponding ice-water and water-rock interfaces using an advanced autonomous underwater vehicle (AUV). The ARTEMIS vehicle - a heavily morphed long-range, low drag variant of the highly successful 4-degree-of-freedom hovering sub-ice ENDURANCE bot -- will be deployed from a sea-ice drill hole adjacent the McMurdo Ice Shelf (MIS) and will perform three classes of missions. The first includes original exploration and high definition mapping of both the ice-water interface and the benthic interface on a length scale (approximately 10 kilometers under-ice penetration radius) that will definitively tie it to the synchronous airborne IPR over-flights. These exploration and mapping missions will be conducted at up to 10 different locations along the MIS in order to capture varying ice thickness and seawater intrusion into the ice shelf. Following initial mapping characterization, the vehicle will conduct astrobiology-relevant proximity operations using bio-assay sensors (custom-designed UV fluorescence and machine-vision-processed optical imagery) followed by point-targeted studies at regions of interest. Sample returns from the ice-water interface will be triggered autonomously using real-time-processed instrument data and onboard decision-to-collect algorithms. ARTEMIS will be capable of conducting precision hovering proximity science in an unexplored environment, followed by high speed (1.5 m/s) return to the melt hole. The navigation system will significantly advance upon the successes of the prior DEPTHX and ENDURANCE systems and several novel pose-drift correction technologies will be developed and tested under ice during the project. The method of down-hole deployment and auto-docking return will be extended to a vertically-deployed, horizontally-recovered concept that is depth independent and highly relevant to an ice-water deployment on an icy moon. The presentation will discuss the mission down-select architecture for the ARTEMIS vehicle and its implications for the design of a Europa 'fast mover' carrier AUV, the onboard instrument suite, and the Antarctic mission CONOPS. The vehicle and crew will deploy to Antarctica in the 2015/2016 season.
The Influence of Internal and External Torques on Titan's Length-of-day Variations
NASA Astrophysics Data System (ADS)
van Hoolst, T.; Karatekin, O.; Rambaux, N.
2008-12-01
Cassini radar observations show that Titan's spin is slightly faster than synchronous spin. Angular momentum exchange between Titan and its atmosphere is the most likely cause of the observed non-synchronous rotation. We study the effect of Saturn's gravitational torque and torques between Titan's internal layers on the length-of-day (LOD) variations driven by the atmosphere. Those torques depend on the equatorial flattening of Titan resulting from static tides raised by Saturn. We calculate Titan's flattening under the assumption of hydrostatic equilibrium and show that the gravitational forcing by Saturn, due to misalignment of the long axis of Titan with the line joining the mass centers of Titan and Saturn, reduces the LOD variations with respect to those for a spherical Titan by an order of magnitude. Internal gravitational and pressure coupling between the ice shell and the interior beneath a putative ocean tends to diminish any differential rotation between shell and interior and reduces further the LOD variations by a few times. For the current estimate of the atmospheric torque, we obtain LOD variations of a hydrostatic Titan that are more than 50 times smaller than the observations indicate when a subsurface ocean exists and more than 100 times smaller when Titan has no ocean. Moreover, Saturn's torque causes the rotation to be slower than synchronous in contrast to the Cassini observations. Those large differences with the observations suggest that non-hydrostatic effects in Titan are important. In particular, we show that the amplitude and phase of the calculated rotation variations would be similar to the observed values if non-hydrostatic effects strongly reduce the equatorial flattening of the ice shell above an internal ocean. Alternatively, the calculated LOD variations could be increased if the atmospheric torque is larger than predicted or if fast viscous relaxation of the ice shell could reduce the gravitational coupling, but it remains to be studied if a two order of magnitude increase is possible and if these effects can explain the phase difference of the predicted rotation variations.
Comparison Between Terrestrial Explosion Crater Morphology in Floating Ice and Europan Chaos
NASA Technical Reports Server (NTRS)
Billings, S. E.; Kattenhorn, S. A.
2003-01-01
Craters created by explosives have been found to serve as valuable analogs to impact craters, within limits. Explosion craters have been created in floating terrestrial ice in experiments related to clearing ice from waterways. Features called chaos occur on the surface of Europa s floating ice shell. Chaos is defined as a region in which the background plains have been disrupted. Common features of chaos include rafted blocks of pre-existing terrain suspended in a matrix of smooth or hummocky material; low surface albedo; and structural control on chaos outline shape by pre-existing lineaments. All published models of chaos formation call on endogenic processes whereby chaos forms through thermal processes. Nonetheless, we note morphological similarities between terrestrial explosion craters and Europan chaos at a range of scales and consider whether some chaos may have formed by impact. We explore these similarities through geologic and morphologic mapping.
Formation of cycloidal features on Europa.
Hoppa, G V; Tufts, B R; Greenberg, R; Geissler, P E
1999-09-17
Cycloidal patterns are widely distributed on the surface of Jupiter's moon Europa. Tensile cracks may have developed such a pattern in response to diurnal variations in tidal stress in Europa's outer ice shell. When the tensile strength of the ice is reached, a crack may occur. Propagating cracks would move across an ever-changing stress field, following a curving path to a place and time where the tensile stress was insufficient to continue the propagation. A few hours later, when the stress at the end of the crack again exceeded the strength, propagation would continue in a new direction. Thus, one arcuate segment of the cycloidal chain would be produced during each day on Europa. For this model to work, the tensile strength of Europa's ice crust must be less than 40 kilopascals, and there must be a thick fluid layer below the ice to allow sufficient tidal amplitude.
Investigating Sulfur as a Biosignature and Indicator of Habitability at an Arctic Analog to Europa
NASA Astrophysics Data System (ADS)
Gleeson, D. F.; Anderson, M. S.; Pappalardo, R. T.; Wright, K. W.; Templeton, A. S.
2010-03-01
Sulfur-rich materials on the icy surface of Europa have the potential to contain biosignatures representative of processes occurring within the ice shell or ocean. We explore the biogenicity of sulfur minerals from the surface of an Arctic glacier.
Titan's interior from its rotation axis orientation and its Love number
NASA Astrophysics Data System (ADS)
Baland, Rose-Marie; Gabriel, Tobie; Axel, Lefèvre
2013-04-01
The tidal Love number k2 of Titan has been recently estimated from Cassini flybys radio-tracking and is consistent with the presence of a global ocean in Titan's interior, located between two ice layers (Iess et al. 2012), in accordance with prediction from interior and evolutionary models for Titan. Previously, the orientation of the rotation axis of Titan has been measured on the basis of radar images from Cassini (Stiles et al. 2008). Titan's obliquity, is about 0.3. The measured orientation is more consistent with the presence of a global internal liquid ocean than with an entirely solid Titan (Baland et al. 2011). The global topography data of Titan seem to indicate some departure from the hydrostatic shape expected for a synchronous satellite under the influence of its rotation and the static tides raised by the central planet (Zebker et al. 2009). This may be explained by a differential tidal heating in the ice shell which flattens the poles (Nimmo and Bills 2010). A surface more flattened than expected implies compensation in depth to explain the measured gravity coefficients C20 and C22 of Iess et al. (2012). Here, all layers are assumed to have a tri-axial ellipsoid shape, but with polar and equatorial flattenings that differ from the hydrostatic expected ones. We assess the influence of this non-hydrostatic shape on the conclusions of Baland et al. (2011), which developped a Cassini state model for the orientation of the rotation axis of a synchronous satellite having an internal liquid layer. We assess the possibility to constrain Titan's interior (and particularly the structure of the water/ice layer) from both the rotation axis orientation and the Love number. We consider a range of internal structure models consistent with the mean density and the mean radius of Titan, and made of a shell, an ocean, a mantle, and a core, from the surface to the center, with various possible compositions (e.g. ammonia mixed with water for the ocean). The internal structure models consistent with the measured orientation of the rotation axis and Love number still have to be examined with respect to other constrains, such as the shell thickness estimation derived from electric-field measurement of the Huyges probe (Béghin et al. 2012) and the expected temperature profile of the water/ice layer. For instance, a thin shell would imply a rather thick ocean, based on water (or water/ammonia) phase diagram.
Ye, Mu; Huang, Yaoxin; Gurtler, Joshua B; Niemira, Brendan A; Sites, Joseph E; Chen, Haiqiang
2013-05-15
The effects of storage conditions on subsequent high-hydrostatic pressure (HHP) inactivation of Vibrio parahaemolyticus and Vibrio vulnificus in oysters were investigated. Live oysters were inoculated with V. parahaemolyticus or V. vulnificus to ca. 7-8 log MPN/g by feeding and stored at varying conditions (i.e., 21 or 35 °C for 5h, 4 or 10 °C for 1 and 2 days and -18 °C for 2 weeks). Oyster meats were then treated at 225-300 MPa for 2 min at 4, 21 or 35 °C. HHP at 300 MPa for 2 min achieved a >5-log MPN/g reduction of V. parahaemolyticus, completely inactivating V. vulnificus (negative by enrichment) in oysters. Treatment temperatures of 4, 21 and 35 °C did not significantly affect pressure inactivation of V. parahaemolyticus or V. vulnificus (P>0.05). Cold storage at -18, 4 and 10 °C, prior to HHP, decreased V. parahaemolyticus or V. vulnificus populations by 1.5-3.0 log MPN/g, but did not increase their sensitivity to subsequent HHP treatments. The effects of cold storage after HHP on inactivation of V. parahaemolyticus in oysters were also determined. Oysters were inoculated with V. parahaemolyticus and stored at 21 °C for 5h or 4 °C for 1 day. Oyster meats were then treated at 250-300 MPa for 2 min at 21 or 35 °C and stored for 15 days in ice or in a freezer. V. parahaemolyticus populations in HHP-treated oysters gradually decreased during post-HHP ice or frozen storage. A validation study using whole-shell oysters was conducted to determine whether the presence of oyster shells influenced HHP inactivation of V. parahaemolyticus. No appreciable differences in inactivation between shucked oyster meat and whole-shell oysters were observed. HPP at 300 MPa for 2 min at 21 °C, followed by 5-day ice storage or 7-day frozen storage, and HPP at 250 MPa for 2 min at 21 °C, followed by 10-day ice or 7-day frozen storage, completely inactivated V. parahaemolyticus in whole-shell oysters (>7 log reductions). The combination of HHP at a relatively low pressure (e.g., 250 MPa) followed by short-term frozen storage (7 days) could potentially be applied by the shellfish industry as a post-harvest process to eliminate V. parahaemolyticus in oysters. Copyright © 2013 Elsevier B.V. All rights reserved.
Surface and Basal Roughness in Radar Sounding Data: Obstacle and Opportunity
NASA Astrophysics Data System (ADS)
Schroeder, D. M.; Grima, C.; Haynes, M.
2015-12-01
The surface and basal roughness of glaciers, ice sheets, and ice shelves can pose a significant obstacle to the visual interpretation and quantitative analysis of radar sounding data. Areas of high surface roughness - including grounding zones, shear margins, and crevasse fields - can produce clutter and side-lobe signals that obscure the interpretation of englacial and subglacial features. These areas can also introduce significant variation in bed echo strength profiles as a result of losses from two-way propagation through rough ice surfaces. Similarly, reflections from rough basal interfaces beneath ice sheets and ice shelves can also result in large, spatially variable losses in bed echo power. If unmitigated and uncorrected, these effects can degrade or prevent the definitive interpretation of material and geometric properties at the base of ice sheets and ice shelves using radar reflectivity and bed echo character. However, these effects also provide geophysical signatures of surface and basal interface character - including surface roughness, firn density, subglacial bedform geometry, ice shelf basal roughness, marine-ice/brine detection, and crevasse geometry - that can be observed and constrained by exploiting roughness effects in radar sounding data. We present a series of applications and approaches for characterizing and correcting surface and basal roughness effects for airborne radar sounding data collected in Antarctica. We also present challenges, insights, and opportunities for extending these techniques to the orbital radar sounding of Europa's ice shell.
Enceladus: three-act play and current state
NASA Astrophysics Data System (ADS)
Luan, J.; Goldreich, P.
2017-12-01
Eccentricity (e) growth as Enceladus migrates deeper into mean motion resonance with Dione results in increased tidal heating. As the bottom of the ice shell melts, the rate of tidal heating jumps and runaway melting ensues. At the end of run-away melting, the shell's thickness has fallen below the value at which the frequency of free libration equals the orbital mean motion and e has damped to well below its current value. Subsequently, both the shell thickness and e partake in a limit cycle. As e damps toward its minimum value, the shell's thickness asymptotically approaches its resonant value from below. After minimum e, the shell thickens quickly and e grows even faster. This cycle is likely to have been repeated multiple times in the past. Currently, e is much smaller than its equilibrium value corresponding to the shell thickness. Physical libration resonance resolves this mystery, it ensures that the low-e and medium-thickness state is present for most of the time between consecutive limit cycles. It is a robust scenario that avoids fine tuning or extreme parameter choice, and naturally produces episodic stages of high heating, consistent with softening of topographical features on Enceladus.
Putting the Biology Back in Astrobiology: Defining Key Habitat Parameters with EJSM
NASA Astrophysics Data System (ADS)
Bowman, J. S.; Schmidt, B. E.
2010-12-01
The science surrounding missions to the outer planets has been dominated by geophysical questions. The Europa Jupiter System Mission (EJSM), however, is a search explicitly for a “habitable world”. While not a life detection mission, the presence of ice penetrating radar (IPR) and other instruments provides an opportunity to answer questions that are biological in nature. The IPR will characterize the ice structure, including any subsurface water and ice-water interfaces. If life is to be found on Europa it may be present at the first water-ice interface; water lenses within the shell closer to the Europan surface than the ice-ocean interface. IPR can confirm the presence and abundance of these putative habitats, potentially within range of future life detection missions. EJSM will also directly inform biologists by determining some ice properties and estimating its rate of overturn, constraining the flux of oxidants and thus the amount of metabolism that can be supported. Terrestrial analogues may be useful models for the Europan ice-ocean system as revealed by IPR. The underside of sea ice represents a concentrated zone of life, defined by the availability of energy, along a column thousands of meters in length. For phototrophs attachment to the underside of sea ice guarantees access to light. For heterotrophs association ensures a supply of chemical energy in the form of organic carbon. If life exists on Europa we might expect a similar scenario, in this case with chemolithotrophs using the ice as a conduit for energy. This strategy suggests that if life is to be found on Europa it may well reach its highest concentration at the uppermost ice-water interface. Similarly, within saline ice biology is strongly associated with interstitial spaces: microscale channels and pores that result from the differential freezing of saline water. Within these spaces material is concentrated, providing an environment enriched in chemical energy. Here we present several habitat parameters that can be directly assessed via IPR, and discuss biological questions that EJSM may answer in the context of terrestrial analogues with an emphasis on multiyear sea ice (MYI). Although subglacial lakes may be analogues for a biosphere deep in the Europan ocean, MYI may share more structural similarities with the Europan ice shell than grounded glacial ice. Calculations suggest that organic and inorganic materials within the interstial spaces of MYI are concentrated as much as 500 fold, possibly aiding microbial metabolism through periods of very low temperature. In a similar manner organic carbon from endogenic or exogenic sources on Europa would concentrate in these spaces, serving as a valuable electron donor or acceptor for organisms in the ice. An environment’s physical structure helps structure the community which inhabits it, thus the MYI microbial community should inform a developing model of a hypothetical Europan ecosystem. Recent applications of 454 sequencing technology to the MYI community indicates a surprising degree of diversity within this environment, similar to that of underlying seawater. These findings suggest the potential for a diverse Europan microbial ecosystem despite energy limitations imposed by a permanent ice cover.
NASA Astrophysics Data System (ADS)
Saito, Akio; Utaka, Yoshio; Okawa, Seiji; Ishibashi, Hiroaki
Investigation of heat transfer characteristics in an ice making cold energy storage using a set of horizontal cooling pipes was carried out experimentally. Cooling pipe arrangement, number of pipes used and initial water temperature were varied, and temperature distribution in the tank and the volume of ice formed around the pipe were measured. Natural convection was also observed visually. During the experiment, two kinds of layers were observed. One is the layer where ice forming is interfered by natural convection and its temperature decreases rapidly with an almost uniform temperature distribution, and the other is the layer where ice forms steadily under a stagnant water condition. The former was called that the layer is under a cooling process and the latter that the layer is under an ice forming process. The effect of the experimental parameters, such as the arrangement of the cooling pipes, the number of pipes, the initial water temperature and the flow rate of the cooling medium, on the cooling process and the ice forming process were discussed. Approximate analysis was also carried out and compared with the experimental results. Finally, the relationship between the ice packing factor, which is significant in preventing the blockade, and experimental parameters was discussed.
NASA Astrophysics Data System (ADS)
Kalousova, K.; Sotin, C.; Tobie, G.; Choblet, G.; Grasset, O.
2015-12-01
The H2O layers of large icy satellites such as Ganymede, Callisto, or Titan probably include a liquid water ocean sandwiched between the deep high-pressure ice layer and the outer ice I shell [1]. It has been recently suggested that the high-pressure ice layer could be decoupled from the silicate core by a salty liquid water layer [2]. However, it is not clear whether accumulation of liquids at the bottom of the high-pressure layer is possible due to positive buoyancy of water with respect to high-pressure ice. Numerical simulation of this two-phase (i.e. ice and water) problem is challenging, which explains why very few studies have self-consistently handled the presence and transport of liquids within the solid ice [e.g. 3]. While using a simplified description of water production and transport, it was recently showed in [4] that (i) a significant fraction of the high-pressure layer reaches the melting point and (ii) the melt generation and its extraction to the overlying ocean significantly influence the global thermal evolution and interior structure of the large icy moons.Here, we treat the high-pressure ice layer as a compressible mixture of solid ice and liquid water [5]. Several aspects are investigated: (i) the effect of the water formation on the vigor of solid-state convection and its influence on the amount of heat that is transferred from the silicate mantle to the ocean; (ii) the fate of liquids within the upper thermal boundary layer - whether they freeze or reach the ocean; and (iii) the effect of salts and volatile compounds (potentially released from the rocky core) on the melting/freezing processes. Investigation of these aspects will allow us to address the thermo-chemical evolution of the internal ocean which is crucial to evaluate the astrobiological potential of large icy moons. This work has been performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract to NASA. [1] Hussmann et al. (2007), Treatise of Geophysics, 10.15, 509-539. [2] Vance et al. (2014), Planet. Space Sci., 96, 62-70. [3] Kalousova et al. (2014), J. Geophys. Res. Planets, 119(3), 532-549. [4] Tobie et al. (2014), AGU, P43C-3999. [5] Soucek et al. (2014), Geophys. Astro. Fluid, 108(6), 639-666.
Are Titan's radial Labyrinth terrains surface expressions of large laccoliths?
NASA Astrophysics Data System (ADS)
Schurmeier, L.; Dombard, A. J.; Malaska, M.; Radebaugh, J.
2017-12-01
The Labyrinth terrain unit may be the one of the best examples of the surface expression of Titan's complicated history. They are characterized as highly eroded, dissected, and elevated plateaus and remnant ridges, with an assumed composition that is likely organic-rich based on radar emissivity. How these features accumulated organic-rich sediments and formed topographic highs by either locally uplifting or surviving pervasive regional deflation or erosion is an important question for understanding the history of Titan. There are several subsets of Labyrinth terrains, presumably with differing evolutionary histories and formation processes. We aim to explain the formation of a subset of Labyrinth terrain units informally referred to as "radial Labyrinth terrains." They are elevated and appear dome-like, circular in planform, have a strong radial dissection pattern, are bordered by Undifferentiated Plains units, and are found in the mid-latitudes. Based on their shape, clustering, and dimensions, we suggest that they may be the surface expression of large subsurface laccoliths. A recent study by Manga and Michaut (Icarus, 2017) explained Europa's lenticulae (pits, domes, spots) with the formation of saucer-shaped sills that form laccoliths around the brittle-ductile transition depth within the ice shell (1-5 km). Here, we apply the same scaling relationships and find that the larger size of radial labyrinth terrains with Titan's higher gravity implies deeper intrusion depths of around 20-40 km. This intrusion depth matches the expected brittle-ductile transition on Titan based on our finite element simulations and yield strength envelope analyses. We hypothesize that Titan's radial labyrinth terrains formed as cryovolcanic (water) intrusions that rose to the brittle-ductile transition within the ice shell where they spread horizontally, and uplifted the overlying ice. The organic-rich sedimentary cover also uplifted, becoming more susceptible to pluvial and fluvial erosion, and hence resulting in uplifted, highly eroded terrains within the Undifferentiated Plains unit. Since widespread evidence for cryovolcanism has been marginal on Titan, perhaps a large proportion of it is intrusive, expressed as radial Labyrinth terrains on Titan.
NASA Astrophysics Data System (ADS)
Merritt, Jon; Roberson, Sam; Cooper, Mark
2017-04-01
This paper re-evaluates the nature and timing of a Late-Glacial ice sheet re-advance in the north western sector of the Irish Sea basin. The sedimentary archive in the region records the collapse of the Irish Sea Ice Stream, a major outlet glacier of the British-Irish Ice Sheet. The region documents the interplay between southerly flowing Scottish ice, ice flowing southeast from Lough Neagh and locally sourced Mournes ice. We present the results of sedimentological analysis of a glacigenic sequence exposed in a modern cliff section 3 km long between Derryoge and Kilkeel, Co. Down, Northern Ireland. The interaction between an advancing ice-sheet outlet lobe and rapidly changing sea levels are examined using facies analysis and micromorphology. The section is composed of four lithofacies associations (LAs). These are, from the base, a laminated, fossiliferous and deformed silt (LA1) at least 4.5 m thick that contains lenses of diamicton and discontinuous rafts of sandy gravel. Marine shells form the axis of a fold hinge, part of a lightly tectonised channel fill within the raft. LA1 is overlain by a sandy diamict (LA2) up to 14 m thick containing mainly local clasts with some of northern provenance. Within LA2 are wide channel structures infilled by laminated clayey silts (LA2b). These form deposits up to 14 m thick and contain small-scale folds, discrete shear zones and ball-and-pillow structures. LA2b forms a lithofacies association with LA2, consisting of a lower subfacies of sheared and deformed silts, overlain by sandy diamicton, capped by a striated boulder pavement. These are interpreted to represent retreat/advance cycles of a marine terminating ice margin. Up to five such cycles are identified. LA2 is widely punctuated by fissures and conduits infilled by loose sands and gravels. These are inferred to be emplaced by subglacial meltwater during the final stages of ice sheet advance. Covering both LA2 and LA2b, LA3 is a unit of glaciofluvial outwash, composed of cross-trough stratified sandy gravels, with flame structures indicative of syn-depositional loading. The entire sequence is capped by loose interbedded sands and gravels (LA4) representing a Late-Glacial raised beach. Evidence of a marine terminating ice margin provides support for high relative sea levels in the north western sector of the Irish Sea during deglaciation. Forthcoming dates from shells with the rafted subaqueous fan deposits underlying LF2 provide the opportunity to constrain either: a) sea-level rise prior to the onset of Irish Sea Basin glaciation, or, b) Late-Glacial sea level rise following deglaciation of the Irish Sea and prior to the re-advance of local ice masses.
Fault offsets and lateral crustal movement on Europa - Evidence for a mobile ice shell
NASA Technical Reports Server (NTRS)
Schenk, Paul M.; Mckinnon, William B.
1989-01-01
An examination is conducted of Europa's cross-cutting structural relationships between various lineament types, in order to constrain the type of structure involved in each such case and, where possible, to also constrain the degree of extension across the lineaments. Evidence is adduced for significant lateral crustal movement, allowing alternative models and mechanisms for lineament formation to be discussed, as well as plausible lithospheric and crustal models. The question as to whether any of the water-ice layer has been, or currently is, liquid, is also treated in light of the evidence obtained.
Magnetic field variation caused by rotational speed change in a magnetohydrodynamic dynamo.
Miyagoshi, Takehiro; Hamano, Yozo
2013-09-20
We have performed numerical magnetohydrodynamic dynamo simulations in a spherical shell with rotational speed or length-of-day (LOD) variation, which is motivated by correlations between geomagnetic field and climatic variations with ice and non-ice ages. The results show that LOD variation leads to magnetic field variation whose amplitude is considerably larger than that of LOD variation. The heat flux at the outer sphere and the zonal flow also change. The mechanism of the magnetic field variation due to LOD variation is also found. The keys are changes of dynamo activity and Joule heating.
Advances in shock timing experiments on the National Ignition Facility
NASA Astrophysics Data System (ADS)
Robey, H. F.; Celliers, P. M.; Moody, J. D.; Sater, J.; Parham, T.; Kozioziemski, B.; Dylla-Spears, R.; Ross, J. S.; LePape, S.; Ralph, J. E.; Hohenberger, M.; Dewald, E. L.; Berzak Hopkins, L.; Kroll, J. J.; Yoxall, B. E.; Hamza, A. V.; Boehly, T. R.; Nikroo, A.; Landen, O. L.; Edwards, M. J.
2016-03-01
Recent advances in shock timing experiments and analysis techniques now enable shock measurements to be performed in cryogenic deuterium-tritium (DT) ice layered capsule implosions on the National Ignition Facility (NIF). Previous measurements of shock timing in inertial confinement fusion (ICF) implosions were performed in surrogate targets, where the solid DT ice shell and central DT gas were replaced with a continuous liquid deuterium (D2) fill. These previous experiments pose two surrogacy issues: a material surrogacy due to the difference of species (D2 vs. DT) and densities of the materials used and a geometric surrogacy due to presence of an additional interface (ice/gas) previously absent in the liquid-filled targets. This report presents experimental data and a new analysis method for validating the assumptions underlying this surrogate technique.
NASA Astrophysics Data System (ADS)
Patterson, Gerald Wesley; Blankenship, Don; Moussessian, Alina; Plaut, Jeffrey; Gim, Yonggyu; Schroeder, Dustin; Soderlund, Krista; Grima, Cyril; Chapin, Elaine
2015-11-01
The science goal of the Europa multiple flyby mission is to “explore Europa to investigate its habitability”. One of the primary instruments selected for the scientific payload is a multi-frequency, multi-channel ice penetrating radar system. This “Radar for Europa Assessment and Sounding: Ocean to Near-surface (REASON)” would revolutionize our understanding of Europa’s ice shell by providing the first direct measurements of its surface character and subsurface structure. REASON will address key questions regarding Europa’s habitability, including the existence of any liquid water, through the innovative use of radar sounding, altimetry, reflectometry, and plasma/particles analyses. These investigations require a dual-frequency radar (HF and VHF frequencies) instrument with simultaneous shallow and deep sounding that is designed for performance robustness in the challenging environment of Europa. The flyby-centric mission configuration is an opportunity to collect and transmit minimally processed data back to Earth and exploit advanced processing approaches developed for terrestrial airborne data sets. The observation and characterization of subsurface features beneath Europa’s chaotic surface requires discriminating abundant surface clutter from a relatively weak subsurface signal. Finally, the mission plan also includes using REASON as a nadir altimeter capable of measuring tides to test ice shell and ocean hypotheses as well as characterizing roughness across the surface statistically to identify potential follow-on landing sites. We will present a variety of measurement concepts for addressing these challenges.
NASA Astrophysics Data System (ADS)
Moussessian, A.; Blankenship, D. D.; Plaut, J. J.; Patterson, G. W.; Gim, Y.; Schroeder, D. M.; Soderlund, K. M.; Grima, C.; Young, D. A.; Chapin, E.
2015-12-01
The science goal of the Europa multiple flyby mission is to "explore Europa to investigate its habitability". One of the primary instruments selected for the scientific payload is a multi-frequency, multi-channel ice penetrating radar system. This "Radar for Europa Assessment and Sounding: Ocean to Near-surface (REASON)" would revolutionize our understanding of Europa's ice shell by providing the first direct measurements of its surface character and subsurface structure. REASON addresses key questions regarding Europa's habitability, including the existence of any liquid water, through the innovative use of radar sounding, altimetry, reflectometry, and plasma/particles analyses. These investigations require a dual-frequency radar (HF and VHF frequencies) instrument with concurrent shallow and deep sounding that is designed for performance robustness in the challenging environment of Europa. The flyby-centric mission configuration is an opportunity to collect and transmit minimally processed data back to Earth and exploit advanced processing approaches developed for terrestrial airborne data sets. The observation and characterization of subsurface features beneath Europa's chaotic surface require discriminating abundant surface clutter from a relatively weak subsurface signal. Finally, the mission plan also includes using REASON as a nadir altimeter capable of measuring tides to test ice shell and ocean hypotheses as well as characterizing roughness across the surface statistically to identify potential follow-on landing sites. We will present a variety of measurement concepts for addressing these challenges.
NASA Astrophysics Data System (ADS)
Cho, K. H.; Chang, E. C.
2017-12-01
In this study, we performed sensitivity experiments by utilizing the Global/Regional Integrated Model system with different conditions of the sea ice concentration over the Kara-Barents (KB) Sea in autumn, which can affect winter temperature variability over East Asia. Prescribed sea ice conditions are 1) climatological autumn sea ice concentration obtained from 1982 to 2016, 2) reduced autumn sea ice concentration by 50% of the climatology, and 3) increased autumn sea ice concentration by 50% of climatology. Differently prescribed sea ice concentration changes surface albedo, which affects surface heat fluxes and near-surface air temperature. The reduced (increased) sea ice concentration over the KB sea increases (decreases) near-surface air temperature that leads the lower (higher) sea level pressure in autumn. These patterns are maintained from autumn to winter season. Furthermore, it is shown that the different sea ice concentration over the KB sea has remote effects on the sea level pressure patterns over the East Asian region. The lower (higher) sea level pressure over the KB sea by the locally decreased (increased) ice concentration is related to the higher (lower) pressure pattern over the Siberian region, which induces strengthened (weakened) cold advection over the East Asian region. From these sensitivity experiments it is clarified that the decreased (increased) sea ice concentration over the KB sea in autumn can lead the colder (warmer) surface air temperature over East Asia in winter.
Adaptive Management Approach to Oil and Gas Activities in Areas Occupied by Pacific Walrus
NASA Astrophysics Data System (ADS)
Ireland, D.; Broker, K.; San Filippo, V.; Brzuzy, L.; Morse, L.
2016-12-01
During Shell's 2015 exploration drilling program in the Chukchi Sea, activities were conducted in accordance with a Letter of Authorization issued by the United States Fish and Wildlife Service that allowed the incidental harassment of Pacific Walrus and Polar Bears under the Marine Mammal Protection Act. As a part of the request for authorization, Shell proposed a process to monitor and assess the potential for activities to interact with walruses on ice, especially if ice posed a potential threat to the drill site. The process assimilated near real-time information from multiple data sources including vessel-based observations, aerial surveys, satellite-linked GPS tags on walrus, and satellite imagery of ice conditions and movements. These data were reviewed daily and assessed in the context of planned activities to assign a risk level (low, medium, or high). The risk level was communicated to all assets in the field and decision makers during morning briefings. A low risk level meant that planned activities could occur without further review. A medium risk level meant that some operations had a greater potential of interacting with walrus on ice and that additional discussions of those activities were required to determine the relative risk of potential impacts compare to the importance of the planned activity. A high risk level meant that the planned activities were necessary and walrus on ice were likely to be encountered. Assignment of a high risk level triggered contact with agency personnel and directly incorporated them into the assessment and decision making process. This process made effective use of relevant available information to provide meaningful assessments at temporal and spatial scales that allowed approved activities to proceed while minimizing potential impacts. More so, this process provides a valuable alternative to large-scale restriction areas with coarse temporal resolution without reducing protection to target species.
Adaptive Management Approach to Oil and Gas Activities in Areas Occupied by Pacific Walrus
NASA Astrophysics Data System (ADS)
Ireland, D.; Broker, K.; San Filippo, V.; Brzuzy, L.; Morse, L.
2016-02-01
During Shell's 2015 exploration drilling program in the Chukchi Sea, activities were conducted in accordance with a Letter of Authorization issued by the United States Fish and Wildlife Service that allowed the incidental harassment of Pacific Walrus and Polar Bears under the Marine Mammal Protection Act. As a part of the request for authorization, Shell proposed a process to monitor and assess the potential for activities to interact with walruses on ice, especially if ice posed a potential threat to the drill site. The process assimilated near real-time information from multiple data sources including vessel-based observations, aerial surveys, satellite-linked GPS tags on walrus, and satellite imagery of ice conditions and movements. These data were reviewed daily and assessed in the context of planned activities to assign a risk level (low, medium, or high). The risk level was communicated to all assets in the field and decision makers during morning briefings. A low risk level meant that planned activities could occur without further review. A medium risk level meant that some operations had a greater potential of interacting with walrus on ice and that additional discussions of those activities were required to determine the relative risk of potential impacts compare to the importance of the planned activity. A high risk level meant that the planned activities were necessary and walrus on ice were likely to be encountered. Assignment of a high risk level triggered contact with agency personnel and directly incorporated them into the assessment and decision making process. This process made effective use of relevant available information to provide meaningful assessments at temporal and spatial scales that allowed approved activities to proceed while minimizing potential impacts. More so, this process provides a valuable alternative to large-scale restriction areas with coarse temporal resolution without reducing protection to target species.
Thermal diapirism and the habitability of the icy shell of Europa.
Ruiz, Javier; Montoya, Lilia; López, Valle; Amils, Ricardo
2007-06-01
Europa's chaos and lenticulae features may have originated by thermal diapirs related to convective plumes. Warm ice plumes could be habitable, since their temperature is close to the ice melting temperature. Moreover, thermal plumes intruding into the lower stagnant lid warm several kilometers of country ice above 230 K for periods of 10(5) years, and hundreds of meters above 240 K for periods of 10(4) years. Diapir coalescence generating chaos areas should provide a large zone with temperature above approximately 240 K for thousands of years. A temperature above approximately 230 K is potentially interesting for astrobiology, since it corresponds to the lowest temperature at which microbial metabolic activity in Antarctic ice has been reported. So, the warming by thermal plumes could cause an aureole of biological activation/reactivation in the country ice. Adaptation of life to either high salinity or low temperature is similar: it requires the synthesis of compatible solutes, like trehalose or glycerol, which are efficient cryoprotectants. We therefore propose that the future astrobiological exploration of Europa should include the search for compatible solutes in chaos and lenticulae features.
NASA Astrophysics Data System (ADS)
Luan, Jing; Goldreich, Peter
2016-10-01
We offer answers to the following questions?1, How did the global ocean form?2, Why is thermal activity concentrated at the south pole?3, What maintains the current small orbital eccentricity?4, How is the thickness of the ice shell changing?5, Why are the tiger stripes so hot?6, What sets the area of the south polar terrain?
Origin of the northern Atlantic`s Heinrich events
DOE Office of Scientific and Technical Information (OSTI.GOV)
Broecker, W.; Bond, G.; Klas, M.
1992-01-01
As first noted by Heinrich, 1988, glacial age sediments in the eastern part of the northern Atlantic contain layers with unusually high ratios of ice-rafted lithic fragments of foraminifera shells. He estimated that these layers are spaced at intervals of roughly 10000 years. In this paper we present detailed information documenting the existence of the upper five of these layers in ODP core 609 from 50{degrees}N and 24{degrees}W. Their ages are respectively 15000 radiocarbon years, 20000 radiocarbon years, 27000 radiocarbon years, about 40000 years, and about 50000 years. We also note that the high lithic fragment to foram ratio ismore » the result of a near absence of shells in these layers. Although we are not of one mind regarding the origin of these layers, we lean toward an explanation that the Heinrich layers are debris released during the melting of massive influxes of icebergs into the northern Atlantic. These sudden inputs may be the result of surges along the eastern margin of the Laurentide ice sheet. 7 refs., 3 figs., 2 tabs.« less
Multi-proxies Approach of Climatic Records In Terrestrial Mollusks Shells
NASA Astrophysics Data System (ADS)
Labonne, M.; Rousseau, D. D.; Ben Othman, D.; Luck, J. M.; Metref, S.
Fossil land snails shells constitute a valuable source of information for the study of Quaternary deposits as they are commonly preserved in many regions and notably in loess sequences. The use of stable isotope composition of the carbonate in the shells was previously applied to reconstruct past climate or environnements but the technic was not widely exploited and compared with other proxies from the same sequence. In this study, we have analysed stables isotopes, trace elements and Sr isotopes from both shells of land snails Vertigo modesta and the sediment from the Eustis upper Pleistocene loess sequence (Nebraska, USA). This serie developed during the last glaciation and records the last deglaciation between 18,000 and 12,000 B.P. years. We compare the paleoclimatic information obtained by different proxies, such as mag- netic susceptibility, temperature and moisture estimated by land snails assemblage with geochemical data measured on land snails shells in order to validate the climatic information obtained with this proxy. Our study demonstrates that shell carbonate reflects environmental conditions estimated by other proxies. Carbon and oxygen iso- topes show cyclic variations (millenial cycles) along the profile which correlate with stratigraphic units and could be link with the retreat of the Laurentide ice sheet. Trace element and Sr isotopes in the shells indicate various origins for the eolian dusts in the two main loess units along the sequence.
NASA Astrophysics Data System (ADS)
Villamil-Otero, G.; Zhang, J.; Yao, Y.
2017-12-01
The Antarctic Peninsula (AP) has long been the focus of climate change studies due to its rapid environmental changes such as significantly increased glacier melt and retreat, and ice-shelf break-up. Progress has been continuously made in the use of regional modeling to simulate surface mass changes over ice sheets. Most efforts, however, focus on the ice sheets of Greenland with considerable fewer studies in Antarctica. In this study the Weather Research and Forecasting (WRF) model, which has been applied to the Antarctic region for weather modeling, is adopted to capture the past and future surface mass balance changes over AP. In order to enhance the capabilities of WRF model simulating surface mass balance over the ice surface, we implement various ice and snow processes within the WRF and develop a new WRF suite (WRF-Ice). The WRF-Ice includes a thermodynamic ice sheet model that improves the representation of internal melting and refreezing processes and the thermodynamic effects over ice sheet. WRF-Ice also couples a thermodynamic sea ice model to improve the simulation of surface temperature and fluxes over sea ice. Lastly, complex snow processes are also taken into consideration including the implementation of a snowdrift model that takes into account the redistribution of blowing snow as well as the thermodynamic impact of drifting snow sublimation on the lower atmospheric boundary layer. Intensive testing of these ice and snow processes are performed to assess the capability of WRF-Ice in simulating the surface mass balance changes over AP.
NASA Astrophysics Data System (ADS)
Huang, Jianping; Minnis, Patrick; Lin, Bing; Yi, Yuhong; Fan, T.-F.; Sun-Mack, Sunny; Ayers, J. K.
2006-11-01
To provide more accurate ice cloud microphysical properties, the multi-layered cloud retrieval system (MCRS) is used to retrieve ice water path (IWP) in ice-over-water cloud systems globally over oceans using combined instrument data from Aqua. The liquid water path (LWP) of lower-layer water clouds is estimated from the Advanced Microwave Scanning Radiometer for EOS (AMSR-E) measurements. The properties of the upper-level ice clouds are then derived from Moderate Resolution Imaging Spectroradiometer (MODIS) measurements by matching simulated radiances from a two-cloud-layer radiative transfer model. The results show that the MCRS can significantly improve the accuracy and reduce the over-estimation of optical depth and IWP retrievals for ice-over-water cloud systems. The mean daytime ice cloud optical depth and IWP for overlapped ice-over-water clouds over oceans from Aqua are 7.6 and 146.4 gm-2, respectively, down from the initial single-layer retrievals of 17.3 and 322.3 gm-2. The mean IWP for actual single-layer clouds is 128.2 gm-2.
X-Ray Absorption Spectra of Amorphous Ices from GW Quasiparticle Calculation
NASA Astrophysics Data System (ADS)
Kong, Lingzhu; Car, Roberto
2013-03-01
We use a GW approach[2] to compute the x-ray absorption spectra of model low- and high-density amorphous ice structures(LDA and HDA)[3]. We include the structural effects of quantum zero point motion using colored-noise Langevin molecular dynamics[4]. The calculated spectra differences in the main and post edge region between LDA and HDA agree well with experimental observations. We attribute these differences to the presence of interstitial molecules within the first coordination shell range in HDA. This assignment is further supported by a calculation of the spectrum of ice VIII, a high-pressure structure that maximizes the number of interstitial molecules and, accordingly, shows a much weaker post-edge feature. We further rationalize the spectral similarity between HDA and liquid water, and between LDA and ice Ih in terms of the respective similarities in the H-bond network topology and bond angle distributions. Supported by grants DOE-DE-SC0005180, DOE DE-SC0008626 and NSF-CHE-0956500.
NASA Astrophysics Data System (ADS)
Russell, Christopher T.; Raymond, Carol A.; DeSanctis, Maria Christina; Nathues, Andreas; Prettyman, Thomas; Castillo-Rogez, Julie C.; McSween, Harry Y.; Pieters, Carle M.; Jaumann, Ralf; Buczkowski, Debra; Ammannito, Eleonora; Hiesinger, Harald; Toplis, Michael J.; Li, Jian-Yang; Park, Ryan S.
2017-04-01
Dawn has now been in orbit about Ceres for over two years. In that time, it has spiraled down to the lowest altitudes and back to the highest altitudes and on its way, performed global mapping of Ceres' surface morphology, topography, gravity, mineralogy, and elemental composition. It found a water-rich body with a temporary atmosphere that was sufficiently strong to deflect the solar wind. This atmosphere appears after the Sun produces high fluxes of very energetic protons. This time-varying association explains why 1-AU observations previously had both detected and failed to detect a water or OH atmosphere at Ceres. At global scale, the surface typically consists of a layer of phyllosilicates, including ammoniated clays, Ca-Mg carbonates and a dark but spectrally neutral component. At local scale, the Cerealia facula in Occator crater was found to be the largest known extraterrestrial accumulation of Na-carbonates. The Ernutet crater was peppered with organic molecules, possibly of internal origin, while small km square-sized regions of exposed ice were found in several places on the surface. In broad regions at high latitude, ice is just beneath the surface, and the depth to the ice table varies with latitude. Fractured crater floors suggesting stresses produced by uplift of sub-surface material were found, and the dome in the center of Occator craters' central pit was also postulated to be fractured by localized upwelling material. Ahuna mons, a 4-km high isolated mountain, further indicates the recent occurrence of cryovolcanic activity likely driven by brines. The gravity and topography data and the crater-size frequency distribution have been interpreted in terms of a rigid ice-rock shell covering a less rigid interior. Elemental data are consistent with ice-rock fractionation. The data clearly demonstrate that Ceres is a small exotic water-rich world, deserving of much attention in the next wave of planetary exploration.
The Magnetic Dichotomy of the Galilean Satellites Europa and Ganymede
NASA Astrophysics Data System (ADS)
Breuer, D.; Hussmann, H.; Spohn, T.
2006-12-01
A major discovery of the Galileo mission was the detection of Ganymede's self-generated magnetic field. The magnetic field also proves beyond doubt that Ganymede is fully differentiated into an iron-rich core, a silicate mantle, and an outer ice shell that most likely also contains an ocean. It is widely believed that Europa has a similar structure although the absence of a self-sustained magnetic field makes the case for a core in Europa less compelling. Since Callisto's moment-of-inertia factor suggests an undifferentiated satellite and since the absence of a magnetic of Io is best explained by tidal heating in the mantle blocking the heat flow from the core (Wienbruch and Spohn, 1995), Europa and Ganymede form a magnetic dichotomy in the Jovian system. We have used stagnant lid models of convection in the two icy satellites to calculate thermal history models with core cooling and have allowed for inner core growth through freezing. The models have stagnant lid convection or conduction in the outer ice shells (depending on material parameters), isothermal oceans, and, in the case of Ganymede, stagnant-lid convection in the ice shell underneath the ocean and above the rock mantle. For Europa the ocean interfaces with the rock mantle. We assume iron cores that start fully molten for both satellites, the radii of which were taken from Sohl et al. (2002). These models suggest that Europa has a few 100 km smaller core and thinner mantle and a substantially thinner ice shell. All but interior structure parameters equal, we find that core convection and hence dynamo action is more likely for Europa than for Ganymede. The reason are mainly the larger core and the thicker mantle. Accepting core convection in Ganymede, the question than poses itself of how to explain the absence of core convection in Europa. We find and will discuss the following possibilities: 1) Europa has no iron core. This is consistent with the observation but leaves the question why Ganymede should have fully differentiated while Europa did not. 2) A higher concentration of light elements in Europa's core. Taking Sulfur as a point in case, Europa may have more sulfur, in which case more cooling would be required to freeze the core, or may even be on the FeS rich side of the eutectic, in which case chemical convection could be less efficient in Europa. 3) Tidal heating. We find that a few times the present-day radiogenic heating rate would be required to possibly frustrate dynamo action. This much tidal heat is consistent with the models of Hussmann et al. (2002) Hussmann, H. et al., 2002. Icarus, 156, 143-151; Sohl, F. et al., 2002, Icarus, 157,104-119; Wienbruch, U. and T. Spohn, 1995, PSS, 43, 1045-1057
NASA Astrophysics Data System (ADS)
Morrison, A. L.; Kay, J. E.; Chepfer, H.; Guzman, R.; Yettella, V.
2018-01-01
While the radiative influence of clouds on Arctic sea ice is known, the influence of sea ice cover on Arctic clouds is challenging to detect, separate from atmospheric circulation, and attribute to human activities. Providing observational constraints on the two-way relationship between sea ice cover and Arctic clouds is important for predicting the rate of future sea ice loss. Here we use 8 years of CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) spaceborne lidar observations from 2008 to 2015 to analyze Arctic cloud profiles over sea ice and over open water. Using a novel surface mask to restrict our analysis to where sea ice concentration varies, we isolate the influence of sea ice cover on Arctic Ocean clouds. The study focuses on clouds containing liquid water because liquid-containing clouds are the most important cloud type for radiative fluxes and therefore for sea ice melt and growth. Summer is the only season with no observed cloud response to sea ice cover variability: liquid cloud profiles are nearly identical over sea ice and over open water. These results suggest that shortwave summer cloud feedbacks do not slow long-term summer sea ice loss. In contrast, more liquid clouds are observed over open water than over sea ice in the winter, spring, and fall in the 8 year mean and in each individual year. Observed fall sea ice loss cannot be explained by natural variability alone, which suggests that observed increases in fall Arctic cloud cover over newly open water are linked to human activities.
NASA Astrophysics Data System (ADS)
Harding, D. R.; Wittman, M. D.; Elasky, L.; Iwan, L. S.; Lund, L.
2001-10-01
The OMEGA Cryogenic Target Handling System (OCTHS) allows variable-thickness ice layers (nominal 100-μm) to be formed inside OMEGA-size (1-mm-diam., 3-μm-wall) plastic shells. The OCTHS design provides the most straightforward thermal environment for layering targets: permeation filled spherical targets are in a spherical isothermal environment. The layered target can be rotated 360^o to acquire multiple views of the ice layer. However, the capability of providing cryogenic targets for implosion experiments imposes constraints that do not exist in test systems dedicated to ice-layering studies. Most affected is the ability to characterize the target: space constraints and the need for multiple sets of windows limit the viewing access to f/5 optics, which affects the image quality. With these features, the OCTS provides the most relevant test system, to date, for layering targets and quantifying the overall ice roughness. No single layering protocol provides repeatable ice smoothness. All techniques require extensive operator interaction, and the layering process is lengthy. Typical ice rms smoothness varied from 5 to 10 μm for all targets studied. Characterizing the ice layer from different views shows a ~30% variation in the ice rms smoothness and a greater difference in the power spectra, depending on the view axis. This work was supported by the U.S. DOE Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC03-92SF19460.
Zhao, Gang; Liu, Xiaoli; Zhu, Kaixuan; He, Xiaoming
2017-12-01
Core-shell structured stem cell microencapsulation in hydrogel has wide applications in tissue engineering, regenerative medicine, and cell-based therapies because it offers an ideal immunoisolative microenvironment for cell delivery and 3D culture. Long-term storage of such microcapsules as cell-biomaterial constructs by cryopreservation is an enabling technology for their wide distribution and ready availability for clinical transplantation. However, most of the existing studies focus on cryopreservation of single cells or cells in microcapsules without a core-shell structure (i.e., hydrogel beads). The goal of this study is to achieve cryopreservation of stem cells encapsulated in core-shell microcapsules as cell-biomaterial constructs or biocomposites. To this end, a capillary microfluidics-based core-shell alginate hydrogel encapsulation technology is developed to produce porcine adipose-derived stem cell-laden microcapsules for vitreous cryopreservation with very low concentration (2 mol L -1 ) of cell membrane penetrating cryoprotective agents (CPAs) by suppressing ice formation. This may provide a low-CPA and cost-effective approach for vitreous cryopreservation of "ready-to-use" stem cell-biomaterial constructs, facilitating their off-the-shelf availability and widespread applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Petty, A.; Tsamados, M.; Kurtz, N. T.
2016-12-01
Here we present atmospheric form drag estimates over Arctic sea ice using high resolution, three-dimensional surface elevation data from NASA's Operation IceBridge Airborne Topographic Mapper (ATM), and surface roughness estimates from the Advanced Scatterometer (ASCAT). Surface features of the ice pack (e.g. pressure ridges) are detected using IceBridge ATM elevation data and a novel surface feature-picking algorithm. We use simple form drag parameterizations to convert the observed height and spacing of surface features into an effective atmospheric form drag coefficient. The results demonstrate strong regional variability in the atmospheric form drag coefficient, linked to variability in both the height and spacing of surface features. This includes form drag estimates around 2-3 times higher over the multiyear ice north of Greenland, compared to the first-year ice of the Beaufort/Chukchi seas. We compare results from both scanning and linear profiling to ensure our results are consistent with previous studies investigating form drag over Arctic sea ice. A strong correlation between ASCAT surface roughness estimates (using radar backscatter) and the IceBridge form drag results enable us to extrapolate the IceBridge data collected over the western-Arctic across the entire Arctic Ocean. While our focus is on spring, due to the timing of the primary IceBridge campaigns since 2009, we also take advantage of the autumn data collected by IceBridge in 2015 to investigate seasonality in Arctic ice topography and the resulting form drag coefficient. Our results offer the first large-scale assessment of atmospheric form drag over Arctic sea ice due to variable ice topography (i.e. within the Arctic pack ice). The analysis is being extended to the Antarctic IceBridge sea ice data, and the results are being used to calibrate a sophisticated form drag parameterization scheme included in the sea ice model CICE, to improve the representation of form drag over Arctic and Antarctic sea ice in global climate models.
The sedimentary evolution of the Celtic Sea during Marine Isotope Stages 1 and 2
NASA Astrophysics Data System (ADS)
Lockhart, Edward; Scourse, James; Van Landeghem, Katrien; Praeg, Daniel; Mellett, Claire; Huws, Dei; Saher, Margot; Benetti, Sara
2017-04-01
During the Last Glacial Maximum (LGM), the Celtic Sea was partially glaciated by the Irish Sea Ice Stream and is considered to have subsequently experienced a high-energy post-glacial transgression. The combination of these events resulted in the deposition, reworking and erosion of a wide range of sediment types to produce the upper stratigraphy of the shelf, including the world's largest submarine elongated ridges. These geomorphic features dominate the shelf and have been previously interpreted to have formed as a result of the tidal reworking of shelf deposits during transgression, despite not having been directly dated. Shelf-wide high-resolution geophysical data, and vibrocores, collected as part of the BRITICE-CHRONO Project, provide new information on relationships between seismic and shallow sedimentary units. A regionally extensive near-surface reflector, cored in several locations, correlates to a gravel/shell layer with an erosive base, unconformably overlying fine-grained LGM glacial sediments with undrained shear strengths in excess of 120 kPa, and in places exhibiting visibly deformed laminations. Geotechnical tests suggest these sediments to be over-consolidated, and we propose that these properties and the observed deformation can only be explained by subglacial reworking under a re-advancing Irish Sea Ice Stream, a scenario never before evidenced in reconstructions of Celtic Sea glaciation. Previous reconstructions propose a single advance-retreat cycle; therefore, a re-advance during a time of inferred retreat would represent a significant change in glacial dynamics. Seismic reflection profiles show that the regionally continuous gravel/shell layer appears to form an undulating palaeo-topography, possibly influenced by the geotechnical properties of the deposits below, on which the large surface ridges are formed. The presence of a regionally continuous reflection surface truncating LGM glacial sediments would suggest a significant erosion event after glacial deposition occurred, possibly representing transgression. This suggests that the large surface ridges may be of post-glacial tidal origin, but with significant sediment supply and morphological control influenced by the glaciation of the Celtic Sea.
Robey, H F; Moody, J D; Celliers, P M; Ross, J S; Ralph, J; Le Pape, S; Berzak Hopkins, L; Parham, T; Sater, J; Mapoles, E R; Holunga, D M; Walters, C F; Haid, B J; Kozioziemski, B J; Dylla-Spears, R J; Krauter, K G; Frieders, G; Ross, G; Bowers, M W; Strozzi, D J; Yoxall, B E; Hamza, A V; Dzenitis, B; Bhandarkar, S D; Young, B; Van Wonterghem, B M; Atherton, L J; Landen, O L; Edwards, M J; Boehly, T R
2013-08-09
The first measurements of multiple, high-pressure shock waves in cryogenic deuterium-tritium (DT) ice layered capsule implosions on the National Ignition Facility have been performed. The strength and relative timing of these shocks must be adjusted to very high precision in order to keep the DT fuel entropy low and compressibility high. All previous measurements of shock timing in inertial confinement fusion implosions [T. R. Boehly et al., Phys. Rev. Lett. 106, 195005 (2011), H. F. Robey et al., Phys. Rev. Lett. 108, 215004 (2012)] have been performed in surrogate targets, where the solid DT ice shell and central DT gas regions were replaced with a continuous liquid deuterium (D2) fill. This report presents the first experimental validation of the assumptions underlying this surrogate technique.
Prospects of passive radio detection of a subsurface ocean on Europa with a lander
NASA Astrophysics Data System (ADS)
Romero-Wolf, Andrew; Schroeder, Dustin M.; Ries, Paul; Bills, Bruce G.; Naudet, Charles; Scott, Bryan R.; Treuhaft, Robert; Vance, Steve
2016-09-01
We estimate the sensitivity of a lander-based instrument for the passive radio detection of a subsurface ocean beneath the ice shell of Europa, expected to be between 3 km and 30 km thick, using Jupiter's decametric radiation. A passive technique was previously studied for an orbiter. Using passive detection in a lander platform provides a point measurement with significant improvements due to largely reduced losses from surface roughness effects, longer integration times, and diminished dispersion due to ionospheric effects allowing operation at lower frequencies and a wider band. A passive sounder on-board a lander provides a low resource instrument sensitive to subsurface ocean at Europa up to depths of 6.9 km for high loss ice (16 dB/km two-way attenuation rate) and 69 km for pure ice (1.6 dB/km).
A finite element study of the EIDI system. [Electro-Impulse De-Icing System
NASA Technical Reports Server (NTRS)
Khatkhate, A. A.; Scavuzzo, R. J.; Chu, M. L.
1988-01-01
This paper presents a method for modeling the structural dynamics of an Electro-Impulse De-Icing System, using finite element analyses procedures. A guideline for building a representative finite element model is discussed. Modeling was done initially using four noded cubic elements, four noded isoparametric plate elements and eight noded isoparametric shell elements. Due to the size of the problem and due to the underestimation of shear stress results when compared to previous analytical work an approximate model was created to predict possible areas of shedding of ice. There appears to be good agreement with the test data provided by The Boeing Commercial Airplane Company. Thus these initial results of this method were found to be encouraging. Additional analytical work and comparison with experiment is needed in order to completely evaluate this approach.
NASA Technical Reports Server (NTRS)
Fanale, Fraser P.; Salvail, James R.; Matson, Dennis L.; Brown, Robert H.
1990-01-01
The present quantitative modeling of convective, condensational, and sublimational effects on porous ice crust volumes subjected to solar radiation encompasses the effect of such insolation's penetration of visible bandpass-translucent light, but opaque to the IR bandpass. Quasi-steady-state temperatures, H2O mass fluxes, and ice mass-density change rates are computed as functions of time of day and ice depth. When the effects of latent heat and mass transport are included in the model, the enhancement of near-surface temperature due to the 'solid-state greenhouse effect' is substantially diminished. When latent heat, mass transport, and densification effects are considered, however, a significant solid-state greenhouse effect is shown to be compatible with both morphological evidence for high crust strengths and icy shell decoupling from the lithosphere.
Enceladus' Internal Structure Inferred from Analysis of Cassini-derived Gravity and Topography
NASA Astrophysics Data System (ADS)
Hemingway, D.; Nimmo, F.; Iess, L.
2013-12-01
The interior of the small Saturnian satellite, Enceladus, is of great interest as it bears on the body's unusually extensive and on-going geological activity [1,2]. The moon's shape, estimated from limb profiles [3,4], differs significantly from the expected hydrostatic shape and is perhaps related to lateral variations in ice shell thickness [5]. Recent Cassini radio tracking analysis [Iess et al., in preparation] has yielded preliminary estimates of the degree-2 gravity field and J3. Like the topography, the gravity field is not precisely hydrostatic, but both can be separated into their hydrostatic and non-hydrostatic components by assuming a particular moment of inertia. Here, we employ an admittance analysis [6,7] (ratio of gravity to topography) in an attempt to constrain Enceladus' moment of inertia. We estimate the non-hydrostatic admittance separately for both J2 and C22, over a range of possible moments of inertia. Assuming the true admittance is isotropic, the two estimates should converge for the correct moment of inertia. We find the best agreement between the two estimates with normalized moments of inertia (C/MR2) in the range 0.332-0.336, with a 2-sigma lower bound of 0.309 and a 2-sigma upper bound of 0.341, suggesting a differentiated Enceladus with a core density between ~2300 and ~3500 kg/m3 [1]. The admittance estimated from J3 is broadly consistent with this result in that the computed degree-2 and degree-3 admittances are related by approximately the expected ratio of 5/7. These admittance estimates are ~1/3 of what is expected for uncompensated topography, suggesting that the topography is significantly compensated. Assuming a fully isostatic model in which compensation occurs where the ice shell encounters a subsurface liquid ocean [8], and neglecting the role of the silicate interior [9], best estimates for the ice shell thickness range from 25-75 km. If surface loading dominates, our results are incompatible with an average elastic thickness in excess of ~100 m. [1] Schubert, G., Anderson, J. D., Travis, B. J. & Palguta, J., Icarus 188, 345-355 (2007). [2] Spencer, J. R. & Nimmo, F., Annu. Rev. Earth Planet. Sci. 41, 693-717 (2013). [3] Porco, C. C. et al., Science 311, 1393-1401 (2006). [4] Nimmo, F., Bills, B. G. & Thomas, P. C., J. Geophys. Res. 116, E11001 (2011). [5] Schenk, P. M. & McKinnon, W. B., Geophys. Res. Lett. 36, L16202 (2009). [6] McKenzie, D., Icarus 112, 55-88 (1994). [7] Hemingway, D., Nimmo, F., Zebker, H. & Iess, L., Nature (in press). [8] Collins, G. C. & Goodman, J. C., Icarus 189, 72-82 (2007). [9] McKinnon, W. B., AGU Fall Mtg. 2012, P32A-04 (2012).
Shell damage and shell repair in the Antarctic limpet Nacella concinna from King George Island
NASA Astrophysics Data System (ADS)
Cadée, Gerhard C.
1999-03-01
Nacella concinna is the most conspicuous macroinvertebrate in the intertidal of King George Island. An important predator, the Kelp gull Larus dominicanus, feeds on Nacella during spring low tides. The gulls deposit empty Nacella shells as regurgitates mainly on roosts on coastal rocks. The regurgitates were found to consist of 40% shell fragments by weight and 60% intact shells. Faeces of Kelp gulls contained much smaller fragments than the regurgitates. Some of the Nacella, particularly those too large to ingest, are handled in the intertidal. The middens are, therefore, inadequate to study size selection by Kelp gulls: the largest Nacella are underrepresented. Seventy-five per cent of the intact Nacella shells from the Larus middens showed one or more shell repairs. Such repairs may be due to unsuccessful attacks by gulls, but more probably they indicate damage caused by rolling ice blocks and stones in the intertidal and shallow subtidal. A number of living Nacella were found stranded on the beach, detached from the rocks. They showed damage along the shell margin and even one Nacella was collected without any shell left. The observed repair frequency of 75% in Nacella was much higher than in other (smaller) intertidal gastropods at Potter Peninsula (3-11%, av. 8%). Comparably high frequencies are observed for instance in tropical intertidal gastropods, where repair is due to heavy unsuccessful crab predation; however, shell-crushing crabs are absent on King George Island. This indicates that palaeontologists should be cautious in ascribing all shell repairs in fossil shells (particularly from tidal environments) to predators. Shell repair in the related Nacella deaurata, collected in a less exposed site at Port Stanley (Falkland Islands), occurred only in 13% of the specimens. Another conspicuous form of shell damage was due to grazing by Nacella on the boring algae living in other Nacella shells. Epigrowth of crustose calcareous algae inhibited such grazing, but in the absence of epigrowth deep hollows were scraped in the shells, the parallel scratches by the radula clearly visible, urging Nacella to repair its shell by producing more shelly material on the inside.
Enceladus Plume Activity Consistent with Eruptions from Sources within a Thin Shell
NASA Astrophysics Data System (ADS)
Hurford, Terry; Spitale, Joseph N.; Rhoden, Alyssa R.; Henning, Wade
2017-10-01
Enceladus is a small (radius 250 km) moon that orbits Saturn between the moons Mimas and Tethys with a period of 1.37 days. A 2:1 mean motion resonance with the moon Dione, which orbits just beyond Tethys, excites its orbital eccentricity to the observed value of 0.0047, which in turn produces periodic tidal stress on the surface.In 2005, Cassini detected the eruption of material from warm regions, which correlated with the large Tiger Stripe fractures near the south pole of Enceladus. A 2007 analysis of tidal stress postulated that the eruptive activity might be linked to tidal tension across these fractures and predicted that activity should vary on the orbital timescale such that greatest activity should be observed near apocenter (Hurford et al., 2007). In 2013, results from analysis of Cassini’s Visual and Infrared Map- ping Spectrometer (VIMS) data detected variability of the erupting material in the orbital cycle and qualitatively confirmed the predictions of variable activity from 2007 (Hedman et al., 2013; Hurford et al. 2007).Since then, work has been done to refine models for tidal control of plume activity. Nimmo et al. (2014) found that the plume activity could track the fraction of fractures under tension, but required a ~5 hr lag in Enceladus’ tidal response. This lag seemed plausible in a 24km ice shell. Behounkova et al. (2105) confirmed this result with a slightly improved model that linked tidal activity to normalize average tensile stress on the fracture.In this work, we illustrate how reservoir depth combines with a lag in tidal response to mimic larger delays in tidal activity. Taking into account the depth of the volatile reservoir, we find that the response of Enceladus to tidal deformation needs only be ~3 hrs and is more consistent with eruptions from a thin ice shell (≤10 km). This result is more consistent with recent revisions in ice shell thickness (Iess et al., 2014; Thomas et al., 2016).Hurford et al., 2007, Nature 447, 292-294. Hedman et al, 2013, Nature 500, 182-184. Nimmo et al, 2014, The Astronomical Journal 148. Behounkova et al., 2015, Nature Geoscience 8, 601-604. Iess et al., 2014, Science 344, 78-80. Thomas et al., 2016, Icarus 264, 37-47.
NASA Technical Reports Server (NTRS)
Senior, T. B. A.; Weil, H.
1977-01-01
Important in the atmospheric heat balance are the reflection, transmission, and absorption of visible and infrared radiation by clouds and polluted atmospheres. Integral equations are derived to evaluate the scattering and absorption of electromagnetic radiation from thin cylindrical dielectric shells of arbitrary cross section when irradiated by a plane wave of any polarization incident in a plane perpendicular to the generators. Application of the method to infinitely long hexagonal cylinders has yielded numerical scattering and absorption data which simulate columnar sheath ice crystals. It is found that the numerical procedures are economical for cylinders having perimeters less than approximately fifteen free-space wavelengths.
Su, Liwei; Xu, Yawei; Xie, Jian; Wang, Lianbang; Wang, Yuanhao
2016-12-28
The challenging problems of SnO 2 anode material for lithium ion batteries are the poor electronic conductivity and the low oxygen reutilization due to the irreversibility of Li 2 O generated in the initial discharge leading to a theoretical initial Coulombic efficiency (ICE) of only 52.4%. Different from these strategies, this work proposes a novel strategy to level up the oxygen reutilization in SnO 2 by introducing Co 3 Sn 2 nanoalloys which can release Co atoms to reversibly react with Li 2 O instead. According to this protocol, multi-yolk-shell SnO 2 /Co 3 Sn 2 @C nanocubes are designed and successfully prepared using hollow CoSn(OH) 6 nanocubes as precursors followed a hydrothermal carbon coating and calcination treatment. The unique multi-yolk-shell nanostructure offers adequate breathing space for the volumetric deformation during long-term cycling. Moreover, the removal of Li 2 O allows a high electronic conductivity and resultant rate performance. As a result, the efficient reutilization of oxygen enables a high ICE of 71.7% and a reversible capacity of 1003 mA h g -1 after 200 cycles at 100 mA g -1 . Cyclic voltammetry, cycling performance at different voltage windows, and X-ray photoelectron spectroscopy confirm the proposed mechanism. This strategy employing oxygen-poor metals or alloys provides a novel approach to enhance the oxygen reutilization in SnO 2 for higher reversibility.
Clayton, L.; Attig, J.W.; Ham, N.R.; Johnson, M.D.; Jennings, C.E.; Syverson, K.M.
2008-01-01
Ice-walled-lake plains are prominent in many areas of hummocky-till topography left behind as the Laurentide Ice Sheet melted from middle North America. The formation of the hummocky-till topography has been explained by: (1) erosion by subglacial floods; (2) squeezing of subglacial till up into holes in stagnant glacial ice; or (3) slumping of supraglacial till. The geomorphology and stratigraphy of ice-walled-lake plains provide evidence that neither the lake plains nor the adjacent hummocks are of subglacial origin. These flat lake plains, up to a few kilometers in diameter, are perched as much as a few tens of meters above surrounding depressions. They typically are underlain by laminated, fine-grained suspended-load lake sediment. Many ice-walled-lake plains are surrounded by a low rim ridge of coarser-grained shore sediment or by a steeper rim ridge of debris that slumped off the surrounding ice slopes. The ice-walled lakes persisted for hundreds to thousands of years following glacial stagnation. Shells of aquatic molluscs from several deposits of ice-walled-lake sediment in south-central North Dakota have been dated from about 13 500 to 10 500??B.P. (calibrated radiocarbon ages), indicating a climate only slightly cooler than present. This is confirmed by recent palaeoecological studies in nearby non-glacial sites. To survive so long, the stagnant glacial ice had to be well-insulated by a thick cover of supraglacial sediment, and the associated till hummocks must be composed primarily of collapsed supraglacial till. ?? 2007 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Huang, Jianping; Minnis, Patrick; Lin, Bing; Yi, Yuhong; Fan, T.-F.; Sun-Mack, Sunny; Ayers, J. K.
2006-01-01
To provide more accurate ice cloud properties for evaluating climate models, the updated version of multi-layered cloud retrieval system (MCRS) is used to retrieve ice water path (IWP) in ice-over-water cloud systems over global ocean using combined instrument data from the Aqua satellite. The liquid water path (LWP) of lower layer water clouds is estimated from the Advanced Microwave Scanning Radiometer for EOS (AMSR-E) measurements. With the lower layer LWP known, the properties of the upper-level ice clouds are then derived from Moderate Resolution Imaging Spectroradiometer measurements by matching simulated radiances from a two-cloud layer radiative transfer model. Comparisons with single-layer cirrus systems and surface-based radar retrievals show that the MCRS can significantly improve the accuracy and reduce the over-estimation of optical depth and ice water path retrievals for ice over-water cloud systems. During the period from December 2004 through February 2005, the mean daytime ice cloud optical depth and IWP for overlapped ice-over-water clouds over ocean from Aqua are 7.6 and 146.4 gm(sup -2), respectively, significantly less than the initial single layer retrievals of 17.3 and 322.3 gm(sup -2). The mean IWP for actual single-layer clouds was 128.2 gm(sup -2).
Do Titan's Mountains Betray the Late Acquisition of its Current Atmosphere
NASA Technical Reports Server (NTRS)
Moore, Jeffrey Morgan; Nimmo, F.
2011-01-01
Titan may have acquired its massive atmosphere relatively recently in solar system history [1,2,3,4]. Prior to that time, Titan would have been nearly airless, with its volatiles frozen or sequestered. Present-day Titan experiences only small (approximately 4 K) pole-to-equator variations, owing to efficient heat transport via the thick atmosphere [5]; these temperature variations would have been much larger (approximately 20 K) in the absence of an atmosphere. If Titan's ice shell is conductive, the change in surface temperature associated with the development of an atmosphere would have led to changes in shell thickness. In particular, the poles would move down (inducing compression) while the equator would move up. Figure 1 shows the predicted change in surface elevation as a result of the change in surface temperature, using the numerical conductive shell thickness model of [6
Active Cryovolcanism on Europa?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sparks, W. B.; Cracraft, M.; Deustua, S. E
Evidence for plumes of water on Europa has previously been found using the Hubble Space Telescope using two different observing techniques. Roth et al. found line emission from the dissociation products of water. Sparks et al. found evidence for off-limb continuum absorption as Europa transited Jupiter. Here, we present a new transit observation of Europa that shows a second event at the same location as a previous plume candidate from Sparks et al., raising the possibility of a consistently active source of erupting material on Europa. This conclusion is bolstered by comparison with a nighttime thermal image from the Galileomore » Photopolarimeter-Radiometer that shows a thermal anomaly at the same location, within the uncertainties. The anomaly has the highest observed brightness temperature on the Europa nightside. If heat flow from a subsurface liquid water reservoir causes the thermal anomaly, its depth is ≈1.8–2 km, under simple modeling assumptions, consistent with scenarios in which a liquid water reservoir has formed within a thick ice shell. Models that favor thin regions within the ice shell that connect directly to the ocean, however, cannot be excluded, nor modifications to surface thermal inertia by subsurface activity. Alternatively, vapor deposition surrounding an active vent could increase the thermal inertia of the surface and cause the thermal anomaly. This candidate plume region may offer a promising location for an initial characterization of Europa’s internal water and ice and for seeking evidence of Europa’s habitability.« less
Active Cryovolcanism on Europa?
NASA Astrophysics Data System (ADS)
Sparks, W. B.; Schmidt, B. E.; McGrath, M. A.; Hand, K. P.; Spencer, J. R.; Cracraft, M.; E Deustua, S.
2017-04-01
Evidence for plumes of water on Europa has previously been found using the Hubble Space Telescope using two different observing techniques. Roth et al. found line emission from the dissociation products of water. Sparks et al. found evidence for off-limb continuum absorption as Europa transited Jupiter. Here, we present a new transit observation of Europa that shows a second event at the same location as a previous plume candidate from Sparks et al., raising the possibility of a consistently active source of erupting material on Europa. This conclusion is bolstered by comparison with a nighttime thermal image from the Galileo Photopolarimeter-Radiometer that shows a thermal anomaly at the same location, within the uncertainties. The anomaly has the highest observed brightness temperature on the Europa nightside. If heat flow from a subsurface liquid water reservoir causes the thermal anomaly, its depth is ≈1.8-2 km, under simple modeling assumptions, consistent with scenarios in which a liquid water reservoir has formed within a thick ice shell. Models that favor thin regions within the ice shell that connect directly to the ocean, however, cannot be excluded, nor modifications to surface thermal inertia by subsurface activity. Alternatively, vapor deposition surrounding an active vent could increase the thermal inertia of the surface and cause the thermal anomaly. This candidate plume region may offer a promising location for an initial characterization of Europa’s internal water and ice and for seeking evidence of Europa’s habitability.
NASA Technical Reports Server (NTRS)
Zwally, H. Jay; Brenner, Anita C.; Major, Judith A.; Martin, Thomas V.; Bindschadler, Robert A.
1990-01-01
The data-processing methods and ice data products derived from Seasat radar altimeter measurements over the Greenland ice sheet and surrounding sea ice are documented. The corrections derived and applied to the Seasat radar altimeter data over ice are described in detail, including the editing and retracking algorithm to correct for height errors caused by lags in the automatic range tracking circuit. The methods for radial adjustment of the orbits and estimation of the slope-induced errors are given.
Determination of CME 3D parameters based on a new full ice-cream cone model
NASA Astrophysics Data System (ADS)
Na, Hyeonock; Moon, Yong-Jae
2017-08-01
In space weather forecast, it is important to determine three-dimensional properties of CMEs. Using 29 limb CMEs, we examine which cone type is close to a CME three-dimensional structure. We find that most CMEs have near full ice-cream cone structure which is a symmetrical circular cone combined with a hemisphere. We develop a full ice-cream cone model based on a new methodology that the full ice-cream cone consists of many flat cones with different heights and angular widths. By applying this model to 12 SOHO/LASCO halo CMEs, we find that 3D parameters from our method are similar to those from other stereoscopic methods (i.e., a triangulation method and a Graduated Cylindrical Shell model). In addition, we derive CME mean density (ρmean=Mtotal/Vcone) based on the full ice-cream cone structure. For several limb events, we determine CME mass by applying the Solarsoft procedure (e.g., cme_mass.pro) to SOHO/LASCO C3 images. CME volumes are estimated from the full ice-cream cone structure. From the power-law relationship between CME mean density and its height, we estimate CME mean densities at 20 solar radii (Rs). We will compare the CME densities at 20 Rs with their corresponding ICME densities.
Sea ice and polar climate in the NCAR CSM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weatherly, J.W.; Briegleb, B.P.; Large, W.G.
The Climate System Model (CSM) consists of atmosphere, ocean, land, and sea-ice components linked by a flux coupler, which computes fluxes of energy and momentum between components. The sea-ice component consists of a thermodynamic formulation for ice, snow, and leads within the ice pack, and ice dynamics using the cavitating-fluid ice rheology, which allows for the compressive strength of ice but ignores shear viscosity. The results of a 300-yr climate simulation are presented, with the focus on sea ice and the atmospheric forcing over sea ice in the polar regions. The atmospheric model results are compared to analyses from themore » European Centre for Medium-Range Weather Forecasts and other observational sources. The sea-ice concentrations and velocities are compared to satellite observational data. The atmospheric sea level pressure (SLP) in CSM exhibits a high in the central Arctic displaced poleward from the observed Beaufort high. The Southern Hemisphere SLP over sea ice is generally 5 mb lower than observed. Air temperatures over sea ice in both hemispheres exhibit cold biases of 2--4 K. The precipitation-minus-evaporation fields in both hemispheres are greatly improved over those from earlier versions of the atmospheric GCM.« less
Habitability constraints on water-rich exoplanets
NASA Astrophysics Data System (ADS)
Noack, Lena; Höning, Dennis; Rivoldini, Attilio; Heistracher, Clemens; Zimov, Nastasia; Journaux, Baptiste; Lammer, Helmut; Van Hoolst, Tim; Hendrik Bredehöft, Jan
2016-04-01
This research addresses the characterization, modelling, thermal evolution and possible habitability of water-rich exoplanets. Water is necessary for the origin and survival of life as we know it. In the search for habitable worlds, water-rich planets therefore seem obvious candidates. The water layer on such planets could be hundreds of kilometers deep. Depending on the temperature profile and the pressure gradient, it is likely that at great depths a significant part of the water layer is solid high pressure ice. Whether the solid ice layer extends to the bottom of the water layer, or if a shallow lower ocean forms above the silicate mantle, depends amongst others on the thermal state of the planet. We therefore model the thermal evolution of water-rich planets with a 1D parameterized model. Depth-dependent profiles for thermodynamic properties as well as pressure and gravity are obtained by solving the Poisson equation for the gravity and the hydrostatic pressure equation for pre-defined mass and composition (in terms of iron, silicates and water) [1]. For density, equations of state are applied. For the simulation of the thermal evolution of water-rich planets, several parameters (as initial temperatures or layer thicknesses) are unknown. We therefore employ a quantitatve study with more than 20'000 simulations, where we investigated which parameters have the largest influence on the appearance of a lower ocean, i.e. the possible melting of high-pressure ice by heat flowing out of the silicate mantle [2]. We find that the surface temperature has the largest influence on the thickness of water layers, for which a lower ocean can still form between the high-pressure ice layer and the silicate mantle. For higher surface temperatures, not only entirely liquid oceans are possible for deeper water shells, also a liquid ocean can form under high-pressure ice layers of hundreds of kilometer thickness (for a 1 Earth-mass planet). Deeper down, the lower ocean can still appear episodically at the water-mantle boundary (WMB). We also investigated the main paramters influencing the existence of volcanic activity and silicate crust formation. Under deep water layers, the high pressure from the overlying water layer can inhibit melting in the mantle. The main parameters influencing the maximal water layer depth, for which melting is still possible, are indeed the parameters influencing the mantle energy budget, which are the amount of radioactive heat sources and the initial upper mantle temperature. Plate tectonics also has a strong influence on the existence of volcanism. Crustal parameters (initial thickness or heat sources enrichment factor) as well as the ice rheology (i.e. the isolating effect of the ice shell on the mantle) have only a small influence on melting processes in the interior and the formation of crust. [1] L. Noack, A. Rivoldini and T. Van Hoolst 2015: CHIC - Coupling Habitability, Interior and Crust: A new Code for Modeling the Thermal Evolution of Planets and Moons. INFOCOMP 2015, ISSN 2308-3484, ISBN 978-1-61208-416-9, pp. 84-90, IARIA, 2015. [2] L. Noack, D. Höning, A. Rivoldini, C. Heistracher, N. Zimov, B. Journaux, H. Lammer, T. Van Hoolst and J.H. Bredehöft: Water-rich planets: how habitable is a water layer deeper than on Earth? Submitted to Icarus.
Shock timing measurements and analysis in deuterium-tritium-ice layered capsule implosions on NIF
NASA Astrophysics Data System (ADS)
Robey, H. F.; Celliers, P. M.; Moody, J. D.; Sater, J.; Parham, T.; Kozioziemski, B.; Dylla-Spears, R.; Ross, J. S.; LePape, S.; Ralph, J. E.; Hohenberger, M.; Dewald, E. L.; Berzak Hopkins, L.; Kroll, J. J.; Yoxall, B. E.; Hamza, A. V.; Boehly, T. R.; Nikroo, A.; Landen, O. L.; Edwards, M. J.
2014-02-01
Recent advances in shock timing experiments and analysis techniques now enable shock measurements to be performed in cryogenic deuterium-tritium (DT) ice layered capsule implosions on the National Ignition Facility (NIF). Previous measurements of shock timing in inertial confinement fusion implosions [Boehly et al., Phys. Rev. Lett. 106, 195005 (2011); Robey et al., Phys. Rev. Lett. 108, 215004 (2012)] were performed in surrogate targets, where the solid DT ice shell and central DT gas were replaced with a continuous liquid deuterium (D2) fill. These previous experiments pose two surrogacy issues: a material surrogacy due to the difference of species (D2 vs. DT) and densities of the materials used and a geometric surrogacy due to presence of an additional interface (ice/gas) previously absent in the liquid-filled targets. This report presents experimental data and a new analysis method for validating the assumptions underlying this surrogate technique. Comparison of the data with simulation shows good agreement for the timing of the first three shocks, but reveals a considerable discrepancy in the timing of the 4th shock in DT ice layered implosions. Electron preheat is examined as a potential cause of the observed discrepancy in the 4th shock timing.
Liquid Water on Enceladus from Observations of Ammonia and Ar-40 in the Plume
NASA Technical Reports Server (NTRS)
Waite, J. H., Jr.; Lewis, W. S.; Magee, B. A.; Lunine, J. I.; McKinnon, W. B.; Glein, C. R.; Mousis, O.; Young, D. T.; Brockwell, T.; Westlake, J.;
2009-01-01
Jets of water ice from surface fractures near the south pole of Saturn's icy moon Enceladus produce a plume of gas and particles. The source of the jets may be a liquid water region under the ice shell-as suggested most recently by the discovery of salts in E-ring particles derived from the plume-or warm ice that is heated, causing dissociation of clathrate hydrates. Here we report that ammonia is present in the plume, along with various organic compounds, deuterium and, very probably, Ar-40. The presence of ammonia provides strong evidence for the existence of at least some liquid water, given that temperatures in excess of 180 K have been measured near the fractures from which the jets emanate. We conclude, from the overall composition of the material, that the plume derives from both a liquid reservoir (or from ice that in recent geological time has been in contact with such a reservoir) as well as from degassing, volatile-charged ice. As part of a general comprehensive review of the midsize saturnian satellites at the conclusion of the prime Cassini mission, PI McKinnon and co-I Barr contributed to three review chapters.
Atmospheric form drag over Arctic sea ice derived from high-resolution IceBridge elevation data
NASA Astrophysics Data System (ADS)
Petty, A.; Tsamados, M.; Kurtz, N. T.
2016-02-01
Here we present a detailed analysis of atmospheric form drag over Arctic sea ice, using high resolution, three-dimensional surface elevation data from the NASA Operation IceBridge Airborne Topographic Mapper (ATM) laser altimeter. Surface features in the sea ice cover are detected using a novel feature-picking algorithm. We derive information regarding the height, spacing and orientation of unique surface features from 2009-2014 across both first-year and multiyear ice regimes. The topography results are used to explicitly calculate atmospheric form drag coefficients; utilizing existing form drag parameterizations. The atmospheric form drag coefficients show strong regional variability, mainly due to variability in ice type/age. The transition from a perennial to a seasonal ice cover therefore suggest a decrease in the atmospheric form drag coefficients over Arctic sea ice in recent decades. These results are also being used to calibrate a recent form drag parameterization scheme included in the sea ice model CICE, to improve the representation of form drag over Arctic sea ice in global climate models.
Cryogenic Target-Implosion Experiments on OMEGA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harding, D.R.; Meyerhofer, D.D.; Sangster, T.C.
The University of Rochester’s Laboratory for Laser Energetics has been imploding thick cryogenic targets for six years. Improvements in the Cryogenic Target Handling System and the ability to accurately design laser pulse shapes that properly time shocks and minimize electron preheat, produced high fuel areal densities in deuterium cryogenic targets (202+/-7 mg/cm^2). The areal density was inferred from the energy loss of secondary protons in the fuel (D2) shell. Targets were driven on a low final adiabat (alpha = 2) employing techniques to radially grade the adiabat (the highest adiabat at the ablation surface). The ice layer meets the target-designmore » toughness specification for DT ice of 1-um rms (all modes), while D2 ice layers average 3.0-um-rms roughness. The implosion experiments and the improvements in the quality and understanding of cryogenic targets are presented.« less
Experimental Constraints on the Fatigue of Icy Satellite Lithospheres by Tidal Forces
NASA Astrophysics Data System (ADS)
Hammond, Noah P.; Barr, Amy C.; Cooper, Reid F.; Caswell, Tess E.; Hirth, Greg
2018-02-01
Fatigue can cause materials that undergo cyclic loading to experience brittle failure at much lower stresses than under monotonic loading. We propose that the lithospheres of icy satellites could become fatigued and thus weakened by cyclical tidal stresses. To test this hypothesis, we performed a series of laboratory experiments to measure the fatigue of water ice at temperatures of 198 K and 233 K and at a loading frequency of 1 Hz. We find that ice is not susceptible to fatigue at our experimental conditions and that the brittle failure stress does not decrease with increasing number of loading cycles. Even though fatigue was not observed at our experimental conditions, colder temperatures, lower loading frequencies, and impurities in the ice shells of icy satellites may increase the likelihood of fatigue crack growth. We also explore other mechanisms that may explain the weak behavior of the lithospheres of some icy satellites.
Rech, Jason A.; Nekola, Jeffrey C.; Pigati, Jeffrey S.
2012-01-01
Analysis of terrestrial gastropods that underlie the late Pleistocene Two Creeks forest bed (~ 13,800–13,500 cal yr BP) in eastern Wisconsin, USA provides evidence for a mixed tundra-taiga environment prior to formation of the taiga forest bed. Ten new AMS 14C analyses on terrestrial gastropod shells indicate the mixed tundra-taiga environment persisted from ~ 14,500 to 13,900 cal yr BP. The Twocreekan climatic substage, representing ice-free conditions on the shore of Lake Michigan, therefore began near the onset of peak warming conditions during the Bølling–Allerød interstadial and lasted ~ 1000 yr, nearly 600 yr longer than previously thought. These results provide important data for understanding the response of continental ice sheets to global climate forcing and demonstrate the potential of using terrestrial gastropod fossils for both environmental reconstruction and age control in late Quaternary sediments.
Thermodynamics of emergent magnetic charge screening in artificial spin ice
Farhan, Alan; Scholl, Andreas; Petersen, Charlotte F.; ...
2016-09-01
Electric charge screening is a fundamental principle governing the behaviour in a variety of systems in nature. Through reconfiguration of the local environment, the Coulomb attraction between electric charges is decreased, leading, for example, to the creation of polaron states in solids or hydration shells around proteins in water. Here, we directly visualize the real-time creation and decay of screened magnetic charge configurations in a two-dimensional artificial spin ice system, the dipolar dice lattice. By comparing the temperature dependent occurrence of screened and unscreened emergent magnetic charge defects, we determine that screened magnetic charges are indeed a result of localmore » energy reduction and appear as a transient minimum energy state before the system relaxes towards the predicted ground state. These results highlight the important role of emergent magnetic charges in artificial spin ice, giving rise to screened charge excitations and the emergence of exotic low-temperature configurations.« less
Thermodynamics of emergent magnetic charge screening in artificial spin ice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farhan, Alan; Scholl, Andreas; Petersen, Charlotte F.
Electric charge screening is a fundamental principle governing the behaviour in a variety of systems in nature. Through reconfiguration of the local environment, the Coulomb attraction between electric charges is decreased, leading, for example, to the creation of polaron states in solids or hydration shells around proteins in water. Here, we directly visualize the real-time creation and decay of screened magnetic charge configurations in a two-dimensional artificial spin ice system, the dipolar dice lattice. By comparing the temperature dependent occurrence of screened and unscreened emergent magnetic charge defects, we determine that screened magnetic charges are indeed a result of localmore » energy reduction and appear as a transient minimum energy state before the system relaxes towards the predicted ground state. These results highlight the important role of emergent magnetic charges in artificial spin ice, giving rise to screened charge excitations and the emergence of exotic low-temperature configurations.« less
Mehrabani, Homayun; Ray, Neil; Tse, Kyle
2014-01-01
Growth of ice on surfaces poses a challenge for both organisms and for devices that come into contact with liquids below the freezing point. Resistance of some organisms to ice formation and growth, either in subtidal environments (e.g., Antarctic anchor ice), or in environments with moisture and cold air (e.g., plants, intertidal) begs examination of how this is accomplished. Several factors may be important in promoting or mitigating ice formation. As a start, here we examine the effect of surface texture alone. We tested four candidate surfaces, inspired by hard-shelled marine invertebrates and constructed using a three-dimensional printing process. We examined sub-polar marine organisms to develop sample textures and screened them for ice formation and accretion in submerged conditions using previous methods for comparison to data for Antarctic organisms. The sub-polar organisms tested were all found to form ice readily. We also screened artificial 3-D printed samples using the same previous methods, and developed a new test to examine ice formation from surface droplets as might be encountered in environments with moist, cold air. Despite limitations inherent to our techniques, it appears surface texture plays only a small role in delaying the onset of ice formation: a stripe feature (corresponding to patterning found on valves of blue mussels, Mytilus edulis, or on the spines of the Antarctic sea urchin Sterechinus neumayeri) slowed ice formation an average of 25% compared to a grid feature (corresponding to patterning found on sub-polar butterclams, Saxidomas nuttalli). The geometric dimensions of the features have only a small (∼6%) effect on ice formation. Surface texture affects ice formation, but does not explain by itself the large variation in ice formation and species-specific ice resistance observed in other work. This suggests future examination of other factors, such as material elastic properties and surface coatings, and their interaction with surface pattern. PMID:25279268
Improving Surface Mass Balance Over Ice Sheets and Snow Depth on Sea Ice
NASA Technical Reports Server (NTRS)
Koenig, Lora Suzanne; Box, Jason; Kurtz, Nathan
2013-01-01
Surface mass balance (SMB) over ice sheets and snow on sea ice (SOSI) are important components of the cryosphere. Large knowledge gaps remain in scientists' abilities to monitor SMB and SOSI, including insufficient measurements and difficulties with satellite retrievals. On ice sheets, snow accumulation is the sole mass gain to SMB, and meltwater runoff can be the dominant single loss factor in extremely warm years such as 2012. SOSI affects the growth and melt cycle of the Earth's polar sea ice cover. The summer of 2012 saw the largest satellite-recorded melt area over the Greenland ice sheet and the smallest satellite-recorded Arctic sea ice extent, making this meeting both timely and relevant.
Olsher, Richard H.; Hsu, Hsiao-Hua; Casson, William H.; Vasilik, Dennis G.; Kleck, Jeffrey H.; Beverding, Anthony
1996-01-01
A neutron dose equivalent detector for measuring neutron dose capable of accurately responding to neutron energies according to published fluence to dose curves. The neutron dose equivalent meter has an inner sphere of polyethylene, with a middle shell overlying the inner sphere, the middle shell comprising RTV.RTM. silicone (organosiloxane) loaded with boron. An outer shell overlies the middle shell and comprises polyethylene loaded with tungsten. The neutron dose equivalent meter defines a channel through the outer shell, the middle shell, and the inner sphere for accepting a neutron counter tube. The outer shell is loaded with tungsten to provide neutron generation, increasing the neutron dose equivalent meter's response sensitivity above 8 MeV.
In situ observations of Arctic cloud properties across the Beaufort Sea marginal ice zone
NASA Astrophysics Data System (ADS)
Corr, C.; Moore, R.; Winstead, E.; Thornhill, K. L., II; Crosbie, E.; Ziemba, L. D.; Beyersdorf, A. J.; Chen, G.; Martin, R.; Shook, M.; Corbett, J.; Smith, W. L., Jr.; Anderson, B. E.
2016-12-01
Clouds play an important role in Arctic climate. This is particularly true over the Arctic Ocean where feedbacks between clouds and sea-ice impact the surface radiation budget through modifications of sea-ice extent, ice thickness, cloud base height, and cloud cover. This work summarizes measurements of Arctic cloud properties made aboard the NASA C-130 aircraft over the Beaufort Sea during ARISE (Arctic Radiation - IceBridge Sea&Ice Experiment) in September 2014. The influence of surface-type on cloud properties is also investigated. Specifically, liquid water content (LWC), droplet concentrations, and droplet size distributions are compared for clouds sampled over three distinct regimes in the Beaufort Sea: 1) open water, 2) the marginal ice zone, and 3) sea-ice. Regardless of surface type, nearly all clouds intercepted during ARISE were liquid-phase clouds. However, differences in droplet size distributions and concentrations were evident for the surface types; clouds over the MIZ and sea-ice generally had fewer and larger droplets compared to those over open water. The potential implication these results have for understanding cloud-surface albedo climate feedbacks in Arctic are discussed.
The physics of sliding cylinders and curling rocks
NASA Astrophysics Data System (ADS)
Penner, A. Raymond
2001-03-01
The lateral deflection of a rotating cylindrical shell sliding on one of its ends is considered and both theoretical and experimental results are presented. The coefficient of kinetic friction between a curling rock and an ice surface is then derived and compared with experiment. Current models of the motion of a curling rock are discussed and an alternate hypothesis is presented.
Powering prolonged hydrothermal activity inside Enceladus
NASA Astrophysics Data System (ADS)
Choblet, Gaël; Tobie, Gabriel; Sotin, Christophe; Běhounková, Marie; Čadek, Ondřej; Postberg, Frank; Souček, Ondřej
2017-12-01
Geophysical data from the Cassini spacecraft imply the presence of a global ocean underneath the ice shell of Enceladus1, only a few kilometres below the surface in the South Polar Terrain2-4. Chemical analyses indicate that the ocean is salty5 and is fed by ongoing hydrothermal activity6-8. In order to explain these observations, an abnormally high heat power (>20 billion watts) is required, as well as a mechanism to focus endogenic activity at the south pole9,10. Here, we show that more than 10 GW of heat can be generated by tidal friction inside the unconsolidated rocky core. Water transport in the tidally heated permeable core results in hot narrow upwellings with temperatures exceeding 363 K, characterized by powerful (1-5 GW) hotspots at the seafloor, particularly at the south pole. The release of heat in narrow regions favours intense interaction between water and rock, and the transport of hydrothermal products from the core to the plume sources. We are thus able to explain the main global characteristics of Enceladus: global ocean, strong dissipation, reduced ice-shell thickness at the south pole and seafloor activity. We predict that this endogenic activity can be sustained for tens of millions to billions of years.
Evidence for a subsurface ocean on Europa.
Carr, M H; Belton, M J; Chapman, C R; Davies, M E; Geissler, P; Greenberg, R; McEwen, A S; Tufts, B R; Greeley, R; Sullivan, R; Head, J W; Pappalardo, R T; Klaasen, K P; Johnson, T V; Kaufman, J; Senske, D; Moore, J; Neukum, G; Schubert, G; Burns, J A; Thomas, P; Veverka, J
1998-01-22
Ground-based spectroscopy of Jupiter's moon Europa, combined with gravity data, suggests that the satellite has an icy crust roughly 150 km thick and a rocky interior. In addition, images obtained by the Voyager spacecraft revealed that Europa's surface is crossed by numerous intersecting ridges and dark bands (called lineae) and is sparsely cratered, indicating that the terrain is probably significantly younger than that of Ganymede and Callisto. It has been suggested that Europa's thin outer ice shell might be separated from the moon's silicate interior by a liquid water layer, delayed or prevented from freezing by tidal heating; in this model, the lineae could be explained by repetitive tidal deformation of the outer ice shell. However, observational confirmation of a subsurface ocean was largely frustrated by the low resolution (>2 km per pixel) of the Voyager images. Here we present high-resolution (54 m per pixel) Galileo spacecraft images of Europa, in which we find evidence for mobile 'icebergs'. The detailed morphology of the terrain strongly supports the presence of liquid water at shallow depths below the surface, either today or at some time in the past. Moreover, lower-resolution observations of much larger regions suggest that the phenomena reported here are widespread.
Evidence for a subsurface ocean on Europa
Carr, M.H.; Belton, M.J.S.; Chapman, C.R.; Davies, M.E.; Geissler, P.; Greenberg, R.; McEwen, A.S.; Tufts, B.R.; Greeley, R.; Sullivan, R.; Head, J.W.; Pappalardo, R.T.; Klaasen, K.P.; Johnson, T.V.; Kaufman, J.; Senske, D.; Moore, J.; Neukum, G.; Schubert, G.; Burns, J.A.; Thomas, P.; Veverka, J.
1998-01-01
Ground-based spectroscopy of Jupiter's moon Europa, combined with gravity data, suggests that the satellite has an icy crust roughly 150 km thick and a rocky interior. In addition, images obtained by the Voyager spacecraft revealed that Europa's surface is crossed by numerous intersecting ridges and dark bands (called lineae) and is sparsely cratered, indicating that the terrain is probably significantly younger than that of Ganymede and Callisto. It has been suggested that Europa's thin outer ice shell might be separated from the moon's silicate interior by a liquid water layer, delayed or prevented from freezing by tidal heating; in this model, the lineae could be explained by repetitive tidal deformation of the outer ice shell. However, observational confirmation of a subsurface ocean was largely frustrated by the low resolution (>2 km per pixel) of the Voyager images. Here we present high-resolution (54 m per pixel) Galileo spacecraft images of Europa, in which we find evidence for mobile 'icebergs'. The detailed morphology of the terrain strongly supports the presence of liquid water at shallow depths below the surface, either today or at some time in the past. Moreover, lower- resolution observations of much larger regions suggest that the phenomena reported here are widespread.
Shape of lenticulae on Europa and their interaction with lineaments.
NASA Astrophysics Data System (ADS)
Culha, Cansu; Manga, Michael
2015-04-01
The surface of Europa contains many elliptical features that have been grouped into three classes: (a) positive relief (domes), (b) negative relief (pits), or (c) complex terrain (small chaos). Collectively, these three classes of features are often called "lenticulae". The internal processes that form lenticulae are unknown. However, given that the diameters of all these features are similar, it is parsimonious to ascribe each class of feature to a different stage in the evolution of some process occurring within the ice shell. Proposed models for these features including diapirs (Sotin et al., 2002; Rathbun et al., 1998); melting above diapirs (Schmidt et al., 2011); and sills of water (Michaut and Manga, 2014). The objective of the present study is to first characterize the shape of lecticulae, and then look at the interaction of lenticulae with lineaments, in order to test lenticulae formation mechanisms. Lenticulae and lineaments are mapped and annotated on ArcGIS. We mapped a total of 57 pits and 86 domes. Both pits and domes have similar aspect ratios and orientations. The elliptical similarities of domes and pits suggest that domes and pits are surface expressions of different stages of a common process within the ice shell. The cross cutting relationships between lineaments reveal relative age. Lineaments either lie over or under the lenticulae. All of the lineament segments that appear within pits also appear topographically lower than the rest of the surface. Domes lie over and under lineaments, but unlike pits there are lineaments that lie over domes that do not vary in topography. This suggests that the lineaments that lie above lenticulae and match the lenticulae's topography are older than the lenticulae. Domes have more crossing lineaments. Therefore, on average, they appear to be older than pits. Lineaments also appear on the sides of lenticulae. There are two different ways in which adjacent lineaments appear: 1. they disrupt the shape of the lenticulae; 2. they are tangent to the edge of the lenticulae. These observations suggest that lineaments that interrupt the shape of lenticulae are younger than the lenticulae, and the lineaments tangent to lenticulae are older than the lenticulae. The shape of the disrupted lenticulae, which has lost its elliptical shape due to the lineament, implies that the ice behaves rigidly on either side of the lineament. Furthermore, lenticulae do not perturb lineaments during lineament formation. Last, pits that have lineaments tangent to them appear sheared or compressed, suggesting that pits could be influenced by the stresses that form lineaments. References: [1] Sotin, C., Head, J.W., and Tobie, G. (2002) Geophys. Res. Lett., 29, 74/1-4. [2] Rathbun, J.A., Musser, G.S., and Squyres, S.W. (1998), Geophys. Res. Lett., 25, 4157-4160. [3] Schmidt, B.E., Blankenship, D.D., Patterson, G.W. and Schenk, P.M. (2011) Nature, 479, 502-505. [4] Michaut, C. and Manga, M. (2014), J. Geophys. Res. Planets, 119, 550.
Investigating a link between large and small-scale chaos features on Europa
NASA Astrophysics Data System (ADS)
Tognetti, L.; Rhoden, A.; Nelson, D. M.
2017-12-01
Chaos is one of the most recognizable, and studied, features on Europa's surface. Most models of chaos formation invoke liquid water at shallow depths within the ice shell; the liquid destabilizes the overlying ice layer, breaking it into mobile rafts and destroying pre-existing terrain. This class of model has been applied to both large-scale chaos like Conamara and small-scale features (i.e. microchaos), which are typically <10 km in diameter. Currently unknown, however, is whether both large-scale and small-scale features are produced together, e.g. through a network of smaller sills linked to a larger liquid water pocket. If microchaos features do form as satellites of large-scale chaos features, we would expect a drop off in the number density of microchaos with increasing distance from the large chaos feature; the trend should not be observed in regions without large-scale chaos features. Here, we test the hypothesis that large chaos features create "satellite" systems of smaller chaos features. Either outcome will help us better understand the relationship between large-scale chaos and microchaos. We focus first on regions surrounding the large chaos features Conamara and Murias (e.g. the Mitten). We map all chaos features within 90,000 sq km of the main chaos feature and assign each one a ranking (High Confidence, Probable, or Low Confidence) based on the observed characteristics of each feature. In particular, we look for a distinct boundary, loss of preexisting terrain, the existence of rafts or blocks, and the overall smoothness of the feature. We also note features that are chaos-like but lack sufficient characteristics to be classified as chaos. We then apply the same criteria to map microchaos features in regions of similar area ( 90,000 sq km) that lack large chaos features. By plotting the distribution of microchaos with distance from the center point of the large chaos feature or the mapping region (for the cases without a large feature), we determine whether there is a distinct signature linking large-scale chaos features with nearby microchaos. We discuss the implications of these results on the process of chaos formation and the extent of liquid water within Europa's ice shell.
Variability of Arctic Sea Ice as Determined from Satellite Observations
NASA Technical Reports Server (NTRS)
Parkinson, Claire L.
1999-01-01
The compiled, quality-controlled satellite multichannel passive-microwave record of polar sea ice now spans over 18 years, from November 1978 through December 1996, and is revealing considerable information about the Arctic sea ice cover and its variability. The information includes data on ice concentrations (percent areal coverages of ice), ice extents, ice melt, ice velocities, the seasonal cycle of the ice, the interannual variability of the ice, the frequency of ice coverage, and the length of the sea ice season. The data reveal marked regional and interannual variabilities, as well as some statistically significant trends. For the north polar ice cover as a whole, maximum ice extents varied over a range of 14,700,000 - 15,900,000 sq km, while individual regions experienced much greater percent variations, for instance, with the Greenland Sea having a range of 740,000 - 1,110,000 sq km in its yearly maximum ice coverage. In spite of the large variations from year to year and region to region, overall the Arctic ice extents showed a statistically significant, 2.80% / decade negative trend over the 18.2-year period. Ice season lengths, which vary from only a few weeks near the ice margins to the full year in the large region of perennial ice coverage, also experienced interannual variability, along with spatially coherent overall trends. Linear least squares trends show the sea ice season to have lengthened in much of the Bering Sea, Baffin Bay, the Davis Strait, and the Labrador Sea, but to have shortened over a much larger area, including the Sea of Okhotsk, the Greenland Sea, the Barents Sea, and the southeastern Arctic.
Ice versus liquid water saturation in simulations of the indian summer monsoon
NASA Astrophysics Data System (ADS)
Glazer, Russell H.; Misra, Vasubandhu
2018-02-01
At the same temperature, below 0 °C, the saturation vapor pressure (SVP) over ice is slightly less than the SVP over liquid water. Numerical models use the Clausius-Clapeyron relation to calculate the SVP and relative humidity, but there is not a consistent method for the treatment of saturation above the freezing level where ice and mixed-phase clouds may be present. In the context of current challenges presented by cloud microphysics in climate models, we argue that a better understanding of the impact that this treatment has on saturation-related processes like cloud formation and precipitation, is needed. This study explores the importance of the SVP calculation through model simulations of the Indian summer monsoon (ISM) using the regional spectral model (RSM) at 15 km grid spacing. A combination of seasonal and multiyear simulations is conducted with two saturation parameterizations. In one, the SVP over liquid water is prescribed through the entire atmospheric column (woIce), and in another the SVP over ice is used above the freezing level (wIce). When SVP over ice is prescribed, a thermodynamic drying of the middle and upper troposphere above the freezing level occurs due to increased condensation. In the wIce runs, the model responds to the slight decrease in the saturation condition by increasing, relative to the SVP over liquid water only run, grid-scale condensation of water. Increased grid-scale mean seasonal precipitation is noted across the ISM region in the simulation with SVP over ice prescribed. Modification of the middle and upper troposphere moisture results in a decrease in mean seasonal mid-level cloud amount and an increase in high cloud amount when SVP over ice is prescribed. Multiyear simulations strongly corroborate the qualitative results found in the seasonal simulations regarding the impact of ice versus liquid water SVP on the ISM's mean precipitation and moisture field. The mean seasonal rainfall difference over All India between wIce and woIce is around 10% of the observed interannual variability of seasonal All India rainfall.
NASA Astrophysics Data System (ADS)
Lane, A. L.; Behar, A.; Bhartia, R.; Conrad, P. G.; Hug, W. F.
2007-12-01
The quest to study and understand extremophiles has led to many quite different research paths in the past 30 years. One of the more difficult directions has been the study of biochemical material in deep glacial ice and in subglacial lakes. Lake Vostok in Eastern Antarctica has been perhaps the most discussed subglacial lake because of its large size (~14,000 sq km), deep location under >3700 m of overlying ice, and thick sediment bed (~200m). Once the physical conditions of the Lake were assessed, questions immediately arose about the potential existence of biological material - either extinct or possibly extant under conditions of extremely limited energy and nutrients [1-2]. To investigate the biology of Vostok, via in-situ methods, is a major issue that awaits proven techniques that will not contaminate the Lake beyond what may have occurred to date. Lake Ellsworth, in West Antarctica, also discovered by ice penetrating radar, is of significantly smaller size, but is also >3500 m below the overlying ice. It represents a wonderful opportunity to design, engineer and build in-situ delivery systems that consider bio-cleanliness approaches to enable examination of its water, sediment bed and the "roof" area accretion ice for biochemicals [3]. Our laboratory has been developing deep UV fluorescence and UV Raman instrumentation to locate and classify organic material at a variety of extremophile locations. The confluence of the measurement techniques and the engineering for high external pressure instrument shells has enabled us to design and begin prototype fabrication of a biochemical sensing probe that can be inserted into a hot-water drilled ice borehole, functioning as a local area mapper in water environments as deep as 6000 m. Real-time command and control is conducted from a surface science station. We have been using the deep Vostok ice cores at the U.S. National Ice Core Lab to validate our science and data analysis approaches with an "inverted" system that has recently generated spatially resolved spectral images of material inside the Vostok cores without extraction or disturbance to the material in the ice. We will describe the instrumentation we will have available for the British Antarctica Survey Lake Ellsworth Exploration field campaign, provide a possible operational scenario and show examples of the kinds of possible measurement results that might be obtained, based upon our Lake Vostok core studies. [1] Siegert, M.J., Tranter, M., Ellis-Evans, C.J., Priscu, J.C. & Lyons, W.B. (2003) The hydrochemistry of Lake Vostok and the potential for life in Antarctic subglacial lakes. Hydrological Processes, 17, 795-814. [2] Priscu, J.C. and B.C. Christner (2004). Earth's icy biosphere, pp. 130-145, In "Microbial Diversity and Bioprospecting", A. Bull (editor). Chap 13. ASM Press, Washington, D.C. [3] Siegert M.J., Hindmarsh, R., Corr H., Smith, A., Woodward, J., King, E., Payne, A.J., and Joughin, I.(2004) Subglacial Lake Ellsworth: a candidate for in situ exploration in West Antarctica. Geophysical Research Letters, 31 (23), L23403, 10.1029/2004GL021477.
Blackbody Cavity for Calibrations at 200 to 273 K
NASA Technical Reports Server (NTRS)
Howell, Dane; Ryan, Robert; Ryan, Jim; Henderson, Doug; Clayton, Larry
2004-01-01
A laboratory blackbody cavity has been designed and built for calibrating infrared radiometers used to measure radiant temperatures in the range from about 200 to about 273 K. In this below-room-temperature range, scattering of background infrared radiation from room-temperature surfaces could, potentially, contribute significantly to the spectral radiance of the blackbody cavity, thereby contributing a significant error to the radiant temperature used as the calibration value. The present blackbody cavity is of an established type in which multiple reflections from a combination of conical and cylindrical black-coated walls are exploited to obtain an effective emissivity greater than the emissivity value of the coating material on a flat exposed surface. The coating material in this case is a flat black paint that has an emissivity of approximately of 0.91 in the thermal spectral range and was selected over other, higher-emissivity materials because of its ability to withstand thermal cycling. We found many black coatings cracked and flaked after thermal cycling due to differences in the coefficient of expansion differences. On the basis of theoretical calculations, the effective emissivity is expected to approach 0.999. The cylindrical/conical shell enclosing the cavity is machined from copper, which is chosen for its high thermal conductivity. In use, the shell is oriented vertically, open end facing up, and inserted in a Dewar flask filled with isopropyl alcohol/dry-ice slush. A flange at the open end of the shell is supported by a thermally insulating ring on the lip of the Dewar flask. The slush cools the shell (and thus the black-body cavity) to the desired temperature. Typically, the slush starts at a temperature of about 194 K. The slush is stirred and warmed by bubbling dry air or nitrogen through it, thereby gradually increasing the temperature through the aforementioned calibration range during an interval of several hours. The temperature of the slush is monitored by use of a precise thermocouple probe.
NASA Astrophysics Data System (ADS)
Trofimova, Tamara; Andersson, Carin; Bonitz, Fabian
2017-04-01
The seasonality of temperature changes is an important characteristic of climate. However, observational data for the ocean are only available for the last 150 year from a limited number of locations. Prior to 18th century information is only available from proxy reconstructions. The vast majority of such reconstructions depend on land-based archives, primarily from dendrochronology. Established marine proxy records for the ocean, especially at high latitudes, are both sparsely distributed and poorly resolved in time. Therefore, the identification and development of proxies for studying key ocean processes at sub-annual resolution that can extend the marine instrumental record is a clear priority in marine climate science. In this study, we have developed a record of early Holocene seasonal variability of bottom water temperature from the Viking Bank in the northern most North Sea. This area is of a particular interest since the hydrography is controlled by the inflow of Atlantic water. The reconstruction is based on the oxygen isotope composition of the growth increments in two sub-fossil shells of Arctica islandica (Bivalvia), dated to 9600-9335 cal. yr BP. By combining radiocarbon dating and sclerochronological techniques a floating chronology spanning over 200 years was constructed. Using the chronology as an age model, oxygen isotope measurements from 2 shells were combined into a 22-years long record. The results from this oxygen isotope record are compared with stable oxygen isotope profiles from modern shells to estimate changes in the mean state and seasonality between present and early Holocene. Shell-derived oxygen isotope values together with ice-volume corrected oxygen isotope values for the seawater were used to calculate bottom-water temperatures on a sub-annual time-scale. Preliminary results of the reconstructed early Holocene bottom water temperature indicate higher seasonality and lower minimum temperature compared to the present.
NASA Technical Reports Server (NTRS)
Harrington, R. F.; Swift, C. T.; Fedors, J. C.
1980-01-01
Airborne stepped-frequency microwave radiometer (SFMR) observations of the Fabry-Perot interference fringes of ice-water systems are discussed. The microwave emissivity at normal incidence of a smooth layered dielectric medium over a semi-infinite dielectric medium is examined for the case of ice over water as a function of ice thickness and attenuation coefficient, and the presence of quarter-wavelength oscillations in emissivity as the ice thickness and frequency are varied is pointed out. Experimental observations of pronounced quarter-wavelength oscillations in radiometric brightness temperature due to the Fabry-Perot interference fringes over smooth sea ice and lake ice varying in roughness as the radiometer frequencies were scanned are then presented.
On the nature of the dirty ice at the bottom of the GISP2 ice core
Bender, Michael L.; Burgess, Edward; Alley, Richard B.; Barnett, Bruce; Clow, Gary D.
2010-01-01
We present data on the triple Ar isotope composition in trapped gas from clean, stratigraphically disturbed ice between 2800 and 3040m depth in the GISP2 ice core, and from basal dirty ice from 3040 to 3053m depth. We also present data for the abundance and isotopic composition of O2 and N2, and abundance of Ar, in the basal dirty ice. The Ar/N2 ratio of dirty basal ice, the heavy isotope enrichment (reflecting gravitational fractionation), and the total gas content all indicate that the gases in basal dirty ice originate from the assimilation of clean ice of the overlying glacier, which comprises most of the ice in the dirty bottom layer. O2 is partly to completely depleted in basal ice, reflecting active metabolism. The gravitationally corrected ratio of 40Ar/38Ar, which decreases with age in the global atmosphere, is compatible with an age of 100-250ka for clean disturbed ice. In basal ice, 40Ar is present in excess due to injection of radiogenic 40Ar produced in the underlying continental crust. The weak depth gradient of 40Ar in the dirty basal ice, and the distribution of dirt, indicate mixing within the basal ice, while various published lines of evidence indicate mixing within the overlying clean, disturbed ice. Excess CH4, which reaches thousands of ppm in basal dirty ice at GRIP, is virtually absent in overlying clean disturbed ice, demonstrating that mixing of dirty basal ice into the overlying clean ice, if it occurs at all, is very slow. Order-of-magnitude estimates indicate that the mixing rate of clean ice into dirty ice is sufficient to maintain a steady thickness of dirty ice against thinning from the mean ice flow. The dirty ice appears to consist of two or more basal components in addition to clean glacial ice. A small amount of soil or permafrost, plus preglacial snow, lake or ground ice could explain the observations.
The Influence of Ice-Ocean Interactions on Europa's Overturning Circulation
NASA Astrophysics Data System (ADS)
Zhu, P.; Manucharyan, G. E.; Thompson, A. F.; Goodman, J. C.; Vance, S.
2016-12-01
Jupiter's moon Europa appears to have a global liquid ocean, which is located beneath an ice shell that covers the moon's entire surface. Linking ocean dynamics and ice-ocean interactions is crucial to understanding observed surface features on Europa as well as other satellite measurements. Ocean properties and circulation may also provide clues as to whether the moon has the potential to support extraterrestrial life through chemical transport governed by ice-ocean interactions. Previous studies have identified a Hadley cell-like overturning circulation extending from the equator to mid latitudes. However, these model simulations do not consider ice-ocean interactions. In this study, our goal is to investigate how the ocean circulation may be affected by ice. We study two ice-related processes by building idealized models. One process is horizontal convection driven by an equator-to-pole buoyancy difference due to latitudinal ice transport at the ocean surface, which is found to be much weaker than the convective overturning circulation. The second process we consider is the freshwater layer formed by ice melting at the equator. A strong buoyancy contrast between the freshwater layer and the underlying water suppresses convection and turbulent mixing, which may modify the surface heat flux from the ocean to the bottom of the ice. We find that the salinity of the ocean below the freshwater layer tends to be homogeneous both vertically and horizontally with the presence of an overturning circulation. Critical values of circulation strength constrain the freshwater layer depth, and this relationship is sensitive to the average salinity of the ocean. Further coupling of temperature and salinity of the ice and the ocean that includes mutual influences between the surface heat flux and the freshwater layer may provide additional insights into the ice-ocean feedback, and its influence on the latitudinal difference of heat transport.
Mapping the Topography of Europa: The Galileo-Clipper Story
NASA Astrophysics Data System (ADS)
Schenk, Paul M.
2014-11-01
The renewed effort to return to Europa for global mapping and landing site selection raises the question: What do we know about Europa topography and how do we know it? The question relates to geologic questions of feature formation, to the issue of ice shell thickness, mechanical strength, and internal activity, and to landing hazards. Our topographic data base for Europa is sparse indeed (no global map is possible), but we are not without hope. Two prime methods have been employed in our mapping program are stereo image and shape-from-shading (PC) slope analyses. On Europa, we are fortunate that many PC-DEM areas are also controlled by stereo-DEMs, mitigating the long-wavelength uncertainties in the PC data. Due to the Galileo antenna malfunction, mapping is limited to no more than 20% of the surface, far less than for any of the inner planets. Thirty-seven individual mapping sites have been identified, scattered across the globe, and all have now been mapped. Excellent stereo mapping is possible at all Sun angles, if resolution is below ~350 m. PC mapping is possible at Sun angles greater than ~60 degrees, if emission angles are less than ~40 degrees. The only extended contiguous areas of topographic mapping larger than 150 km across are the two narrow REGMAP mapping mosaics extending pole-to-pole along longitudes 85 and 240 W. These are PC-only and subject to long-wavelength uncertainties and errors, especially in the north/south where oblique imaging produces layover. Key findings include the mean slopes of individual terrain types (Schenk, 2009), topography across chaos (Schenk and Pappalardo, 2004), topography of craters and inferences for ice shell thickness (Schenk, 2002; Schenk and Turtle, 2009), among others. A key discovery, despite the limited data, is that Europan terrains rarely have topographic amplitude greater than 250 meters, but that regionally Europa has imprinted on it topographic amplitudes of +/- 1 km, in the form of raised plateaus and bowed-down arcuate troughs. Such amplitudes imply that the ice shell is capable of supporting relief and is not extremely thin.
NASA Astrophysics Data System (ADS)
Tunstall, Lori Elizabeth
Air voids are deliberately introduced into concrete to provide resistance against frost damage. However, our ability to control air distribution in both traditional and nontraditional concrete is hindered by the limited amount of research available on air-entraining agent (AEA) interaction with both the solid and solution components of these systems. This thesis seeks to contribute to the information gap in several ways. Using tensiometry, we are able to quantify the adsorption capacity of cement, fly ash, and fly ash carbon for four commercial AEAs. These results indicate that fly ash interference with air entrainment is due to adsorption onto the glassy particles tucked inside carbon, rather than adsorption onto the carbon itself. Again using tensiometry, we show that two of the AEA show a stronger tendency to micellize and to interact with calcium ions than the others, which seems to be linked to the freezing behavior in mortars, since mortars made with these AEA require smaller dosages to achieve similar levels of protection. We evaluate the frost resistance of cement and cement/fly ash mortars by measuring the strain in the body as it is cooled and reheated. All of the mortars show some expansion at temperatures ≥ -42 °C. Many of the cement mortars are able to maintain net compression during this expansion, but none of the fly ash mortars maintain net compression once expansion begins. Frost resistance improves with an increase in AEA dosage, but no correlation is seen between frost resistance and the air void system. Thus, another factor must contribute to frost resistance, which we propose is the microstructure of the shell around the air void. The strain behavior is attributed to ice growth surrounding the void, which can plug the pores in the shell and reduce or eliminate the negative pore pressure induced by the ice inside the air void; the expansion would then result from the unopposed crystallization pressure, but this must be verified by future work. If the shell has numerous, tiny pores it is more difficult to eliminate suction, since more ice is needed to plug all the pores.
NASA Astrophysics Data System (ADS)
Das, I.; Bell, R. E.; Creyts, T. T.; Wolovick, M.
2013-12-01
Large deformed ice structures have been imaged at the base of northern Greenland ice sheet by IceBridge airborne radar. Numerous deformed structures lie along the base of both Petermann Glacier and Northeast Ice stream catchments covering 10-13% of the catchment area. These structures may be combinations of basal freeze-on and folded ice that overturns and inverts stratigraphy. In the interior, where the ice velocity is low, the radar imaged height of the deformed structures are frequently a significant fraction of the ice thickness. They are related to basal freeze on and stick-slip at the base of the ice sheet and may be triggered by subglacial water, sediments or local geological conditions. The larger ones (at times up to 700 m thick and 140 km long) perturb the ice stratigraphy and create prominent undulations on the ice surface and modify the local surface mass balance. Here, we investigate the relationship between the deformed structures and surface processes using shallow and deep ice radar stratigraphy. The surface undulations caused by the deformed structures modulate the pattern of local surface snow accumulation. Using normalized differences of several near-surface stratigraphic layers, we have calculated the accumulation anomaly over these deformed structures. The accumulation anomalies can be as high as 20% of the local surface accumulation over some of the larger surface depressions caused by these deformed structures. We observe distinct differences in the phases of the near-surface internal layers on the Petermann and Northeast catchments. These differences indicate that the deformed bodies over Petermann are controlled by conditions at the bed different from the Northeast Ice stream. The distinctly different near-surface stratigraphy over the deformed structures in the Petermann and Northeast catchments have opened up a number of questions including their formation and how they influence the ice dynamics, ice stratigraphy and surface mass balance. In this study we will model the different physical conditions at the bed and ice rheology from their distinct signatures in the near-surface strata. The results will identify the distinct mechanisms that form these bodies and their control over the surface morphology and snow accumulation.
Use of 41Ar production to measure ablator areal density in NIF beryllium implosions
Wilson, Douglas Carl; Cassata, W. S.; Sepke, S. M.; ...
2017-02-06
For the first time, 41Ar produced by the (n,Υ) reaction from 40Ar in the beryllium shell of a DT filled Inertial Confinement Fusion capsule has been measured. Ar is co-deposited with beryllium in the sputter deposition of the capsule shell. Combined with a measurement of the neutron yield, the radioactive 41Ar then quantifies the areal density of beryllium during the DT neutron production. Here, the measured 1.15 ± 0.17 × 10 +8 atoms of 41Ar are 2.5 times that from the best post-shot calculation, suggesting that the Ar and Be areal densities are correspondingly higher than those calculated. Possible explanationsmore » are that (1) the beryllium shell is compressed more than calculated, (2) beryllium has mixed into the cold DT ice, or more likely (3) less beryllium is ablated than calculated. Since only one DT filled beryllium capsule has been fielded at NIF, these results can be confirmed and expanded in the future.« less
Relating Regional Arctic Sea Ice and climate extremes over Europe
NASA Astrophysics Data System (ADS)
Ionita-Scholz, Monica; Grosfeld, Klaus; Lohmann, Gerrit; Scholz, Patrick
2016-04-01
The potential increase of temperature extremes under climate change is a major threat to society, as temperature extremes have a deep impact on environment, hydrology, agriculture, society and economy. Hence, the analysis of the mechanisms underlying their occurrence, including their relationships with the large-scale atmospheric circulation and sea ice concentration, is of major importance. At the same time, the decline in Arctic sea ice cover during the last 30 years has been widely documented and it is clear that this change is having profound impacts at regional as well as planetary scale. As such, this study aims to investigate the relation between the autumn regional sea ice concentration variability and cold winters in Europe, as identified by the numbers of cold nights (TN10p), cold days (TX10p), ice days (ID) and consecutive frost days (CFD). We analyze the relationship between Arctic sea ice variation in autumn (September-October-November) averaged over eight different Arctic regions (Barents/Kara Seas, Beaufort Sea, Chukchi/Bering Seas, Central Arctic, Greenland Sea, Labrador Sea/Baffin Bay, Laptev/East Siberian Seas and Northern Hemisphere) and variations in atmospheric circulation and climate extreme indices in the following winter season over Europe using composite map analysis. Based on the composite map analysis it is shown that the response of the winter extreme temperatures over Europe is highly correlated/connected to changes in Arctic sea ice variability. However, this signal is not symmetrical for the case of high and low sea ice years. Moreover, the response of temperatures extreme over Europe to sea ice variability over the different Arctic regions differs substantially. The regions which have the strongest impact on the extreme winter temperature over Europe are: Barents/Kara Seas, Beaufort Sea, Central Arctic and the Northern Hemisphere. For the years of high sea ice concentration in the Barents/Kara Seas there is a reduction in the number of cold nights, cold days, ice days and consecutive frost days over the western part of Europe. In the opposite case of low sea ice concentration over the Barents/Kara Seas an increase of up to 8 days/winter of cold nights and days is observed over the whole Europe and an increase of up to 4 days/winter in the number of ID and CFD is observed over the same regions. The cold winters over Europe (low sea ice years) are associated with anomalous anticyclone and the downstream development of a mid-latitude trough, which in turn favours the advection of cold air from the north, providing favourable conditions for severe winters over Europe. We suggest that these results can help to improve the seasonal predictions of winter extreme events over Europe. Due to the non-linear response to high vs. low sea ice years, the skill of the predictions might depend on the sign and amplitude of the anomalies.
SIIOS in Alaska: Testing an "In-Vault" Option for a Europa Lander Seismometer Experiment
NASA Technical Reports Server (NTRS)
Bray, Veronica J.; Weber, Renee C.; DellaGiustina, Daniella N.; Bailey, S. H. (Hop); Schmerr, Nicholas C.; Pettit, Erin C.; Avenson, Brad; Marusiak, Angela G.; Dahl, Peter; Carr, Christina;
2017-01-01
The icy moons of Europa and Enceladus are thought to have global subsurface oceans in contact with mineral-rich silicate interiors, likely providing the three ingredients needed for life as we know it: liquid water, essential chemicals, and a source of energy. The possibility of life forming in their subsurface oceans relies in part on transfer of oxidants from the irradiated ice surface to the sheltered ocean below. Constraining the mechanisms and location of material exchange between the ice surface, the ice shell, and the subsurface ocean, however, is not possible without knowledge of ice thickness and liquid water depths. In a future lander-based experiment seismic measurements will be a key geophysical tool for obtaining this critical knowledge. The Seismometer to Investigate Ice and Ocean Structure (SIIOS) field-tests flight-ready technologies and develops the analytical methods necessary to make a seismic study of Europa and Enceladus a reality. We have been performing small-array seismology with a flight-candidate sensor in analog environments that exploit passive sources. Determining the depth to a subsurface ocean and any intermediate bodies of water is a priority for Ocean Worlds missions as it allows assessment of the habitability of these worlds and provides vital information for evaluating the spacecraft technologies required to access their oceans.
Navier-Stokes analysis of airfoils with leading edge ice accretions
NASA Technical Reports Server (NTRS)
Potapczuk, Mark G.
1993-01-01
A numerical analysis of the flowfield characteristics and the performance degradation of an airfoil with leading edge ice accretions was performed. The important fluid dynamic processes were identified and calculated. Among these were the leading edge separation bubble at low angles of attack, complete separation on the low pressure surface resulting in premature shell, drag rise due to the ice shape, and the effects of angle of attack on the separated flow field. Comparisons to experimental results were conducted to confirm these calculations. A computer code which solves the Navier-Stokes equations in two dimensions, ARC2D, was used to perform the calculations. A Modified Mixing Length turbulence model was developed to produce grids for several ice shape and airfoil combinations. Results indicate that the ability to predict overall performance characteristics, such as lift and drag, at low angles of attack is excellent. Transition location is important for accurately determining separation bubble shape. Details of the flowfield in and downstream of the separated regions requires some modifications. Calculations for the stalled airfoil indicate periodic shedding of vorticity that was generated aft of the ice accretion. Time averaged pressure values produce results which compare favorably with experimental information. A turbulence model which accounts for the history effects in the flow may be justified.
Shock timing measurements and analysis in deuterium-tritium-ice layered capsule implosions on NIF
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robey, H. F.; Celliers, P. M.; Moody, J. D.
2014-02-15
Recent advances in shock timing experiments and analysis techniques now enable shock measurements to be performed in cryogenic deuterium-tritium (DT) ice layered capsule implosions on the National Ignition Facility (NIF). Previous measurements of shock timing in inertial confinement fusion implosions [Boehly et al., Phys. Rev. Lett. 106, 195005 (2011); Robey et al., Phys. Rev. Lett. 108, 215004 (2012)] were performed in surrogate targets, where the solid DT ice shell and central DT gas were replaced with a continuous liquid deuterium (D2) fill. These previous experiments pose two surrogacy issues: a material surrogacy due to the difference of species (D2 vs.more » DT) and densities of the materials used and a geometric surrogacy due to presence of an additional interface (ice/gas) previously absent in the liquid-filled targets. This report presents experimental data and a new analysis method for validating the assumptions underlying this surrogate technique. Comparison of the data with simulation shows good agreement for the timing of the first three shocks, but reveals a considerable discrepancy in the timing of the 4th shock in DT ice layered implosions. Electron preheat is examined as a potential cause of the observed discrepancy in the 4th shock timing.« less
NASA Astrophysics Data System (ADS)
Yi, D.; Kurtz, N. T.; Harbeck, J.
2017-12-01
The airborne IceBridge and spaceborne Cryosat-2 missions observe polar sea ice at different altitudes with different footprint sizes and often at different time and locations. Many studies use different retrackers to derive Cryosat-2 surface elevation, which we find causes large differences in the elevation and freeboard comparisons of IceBridge and Cryosat-2. In this study, we compare sea ice surface elevation and freeboard using 8 coincident CryoSat-2, ATM, and LVIS observations with IceBridge airplanes under flying the Cryosat-2 ground tracks. We apply identical ellipsoid, geoid model, tide model, and atmospheric correction to CryoSat-2 and IceBridge data to reduce elevation bias due to their differences. IceBridge's ATM and LVIS elevation and freeboard and Snow Radar snow depth are averaged at each CryoSat-2 footprint for comparison. The four different Cryosat-2 retrackers (ESA, GSFC, AWI, and JPL) show distinct differences in mean elevation up to 0.35 meters over leads and over floes, which suggests that systematic elevation bias exists between the retrackers. The mean IceBridge elevation over leads is within the mean elevation distribution of the four Cryosat-2 retrackers. The mean IceBridge elevation over floes is above the mean elevation distribution of the four Cryosat-2 retrackers. After removing the snow depth from IceBridge elevation, over floe, the mean elevation of IceBridge is within the mean elevation distribution of the four Cryosat-2 retrackers. By identifying the strengths and weaknesses of the retrackers, this study provides a mechanism to improve freeboard retrievals from existing methods.
NASA Astrophysics Data System (ADS)
Flocco, D.; Laxon, S. W.; Feltham, D. L.; Haas, C.
2011-12-01
The GlobIce project has provided high resolution sea ice product datasets over the Arctic derived from SAR data in the ESA archive. The products are validated sea ice motion, deformation and fluxes through straits. GlobIce sea ice velocities, deformation data and sea ice concentration have been validated using buoy data provided by the International Arctic Buoy Program (IABP). Over 95% of the GlobIce and buoy data analysed fell within 5 km of each other. The GlobIce Eulerian image pair product showed a high correlation with buoy data. The sea ice concentration product was compared to SSM/I data. An evaluation of the validity of the GlobICE data will be presented in this work. GlobICE sea ice velocity and deformation were compared with runs of the CICE sea ice model: in particular the mass fluxes through the straits were used to investigate the correlation between the winter behaviour of sea ice and the sea ice state in the following summer.
NASA Astrophysics Data System (ADS)
Pilskaln, C. H.; Manganini, S. J.; Trull, T. W.; Armand, L.; Howard, W.; Asper, V. L.; Massom, R.
2004-02-01
Time-series sediment traps were deployed between December 1998 and January 2000 and from March 2000 to February 2001 at two offshore Prydz Bay sites within the seasonal ice zone (SIZ) of the Southern Indian Ocean located between 62-63°S and 73-76°E to quantify seasonal biogeochemical particle fluxes. Samples were obtained from traps placed at 1400, 2400, and 3400 m during the first deployment year (PZB-1) and from 3300 m in the second deployment year (PZB-2). All geochemical export fluxes were highly seasonal with primary peaks occurring during the austral summer and relatively low fluxes prevailing through the winter months. Secondary flux peaks in mid-winter and in early spring were suggestive of small-scale, sea-ice break-up events and the spring retreat of seasonal ice, respectively. Biogenic silica represented over 70% (by weight) of the collected trap material and provided an annual opal export of 18 g m -2 to 1 km and 3-10 g m -2 to 3 km. POC fluxes supplied an annual export of approximately 1 g m -2, equal to the estimated ocean-wide average. Elevated particulate C org/C inorg and Si bio/C inorg molar ratios indicate a productive, diatom-dominated system, although consistently small fluxes of planktonic foraminifera and pteropod shells document a heterotrophic source of carbonate to deeper waters in the SIZ. The observation of high Si bio/C org ratios and the δ15N time-series data suggest enhanced rates of diatom-POC remineralization in the upper 1000 m relative to bioSiO 2. The occurrence in this region of a pronounced temperature minimum, associated with a strong pycnocline and subsurface particle maximum at 50-100 m, may represent a zone where sinking, diatom-rich particulates temporarily accumulate and POC is remineralized.
NASA Astrophysics Data System (ADS)
Clilverd, Mark A.; Cobbett, Neil; Rodger, Craig J.; Brundell, James B.; Denton, Michael H.; Hartley, David P.; Rodriguez, Juan V.; Danskin, Donald; Raita, Tero; Spanswick, Emma L.
2013-11-01
from two autonomous VLF radio receiver systems installed in a remote region of the Antarctic in 2012 is used to take advantage of the juxtaposition of the L = 4.6 contour, and the Hawaii-Halley, Antarctica, great circle path as it passes over thick Antarctic ice shelf. The ice sheet conductivity leads to high sensitivity to changing D region conditions, and the quasi constant L shell highlights outer radiation belt processes. The ground-based instruments observed several energetic electron precipitation events over a moderately active 24 h period, during which the outer radiation belt electron flux declined at most energies and subsequently recovered. Combining the ground-based data with low and geosynchronous orbiting satellite observations on 27 February 2012, different driving mechanisms were observed for three precipitation events with clear signatures in phase space density and electron anisotropy. Comparison between flux measurements made by Polar-orbiting Operational Environmental Satellites (POES) in low Earth orbit and by the Antarctic instrumentation provides evidence of different cases of weak and strong diffusion into the bounce loss cone, helping to understand the physical mechanisms controlling the precipitation of energetic electrons into the atmosphere. Strong diffusion events occurred as the <600 keV fluxes began to recover as a result of adiabatic transport of electrons. One event appeared to have a factor of about 10 to 100 times more flux than was reported by POES, consistent with weak diffusion into the bounce loss cone. Two events had a factor of about 3 to 10 times more >30 keV flux than was reported by POES, more consistent with strong diffusion conditions.
NASA Astrophysics Data System (ADS)
Walliser, E. O.; Schöne, B. R.; Tütken, T.; Zirkel, J.; Grimm, K. I.; Pross, J.
2015-04-01
Current global warming is likely to result in a unipolar glaciated world with unpredictable repercussions on atmospheric and oceanic circulation patterns. These changes are expected to affect seasonal extremes and the year-to-year variability of seasonality. To better constrain the mode and tempo of the anticipated changes, climatologists require ultra-high-resolution proxy data of time intervals in the past, e.g., the Oligocene, during which boundary conditions were similar to those predicted for the near future. In the present paper, we assess whether such information can be obtained from shells of the long-lived bivalve mollusk Glycymeris planicostalis from the late Rupelian of the Mainz Basin, Germany. Our results indicate that the studied shells are pristinely preserved and provide an excellent archive for reconstructing changes of sea surface temperature on seasonal to interannual timescales. Shells of G. planicostalis grew uninterruptedly during winter and summer and therefore recorded the full seasonal temperature amplitude that prevailed in the Mainz Basin ~ 30 Ma. Absolute sea surface temperature data were reconstructed from δ18Oshell values assuming a δ18Owater signature that was extrapolated from coeval sirenian tooth enamel. Reconstructed values range between 12.3 and 22.0 °C and agree well with previous estimates based on planktonic foraminifera and shark teeth. However, temperatures during seasonal extremes vary greatly on interannual timescales. Mathematically re-sampled (i.e., corrected for uneven number of samples per annual increment) winter and summer temperatures averaged over 40 annual increments of three specimens equal 13.6 ± 0.8 and 17.3 ± 1.2 °C, respectively. Such high-resolution paleoclimate information can be highly relevant for numerical climate studies aiming to predict possible future climates in a unipolar glaciated or, ultimately, polar-ice-free world.
NASA Astrophysics Data System (ADS)
Bingham, R. G.; Rippin, D. M.; Karlsson, N. B.; Corr, H.; Ferraccioli, F.; Jordan, T. A.; Le Brocq, A.; Ross, N.; Wright, A.; Siegert, M. J.
2012-12-01
Radio-echo sounding (RES) across polar ice sheets reveals extensive, isochronous internal layers, whose stratigraphy, and especially their degree of continuity over multi-km distances, can inform us about both present ice flow and past ice-flow histories. Here, we bring together for the first time two recent advances in this field of cryospheric remote sensing to analyse ice flow into the Weddell Sea sector of West Antarctica. Firstly, we have developed a new quantitative routine for analysing the continuity of internal layers obtained over large areas of ice by airborne RES surveys - we term this routine the "Internal-Layering Continuity-Index (ILCI)". Secondly, in the austral season 2010-11 we acquired, by airborne RES survey, the first comprehensive dataset of deep internal layering across Institute and Möller Ice Streams, two of the more significant feeders of ice into the Filchner-Ronne Ice Shelf. Applying the ILCI to SAR-processed (migrated) RES profiles across Institute Ice Stream's catchment reveals two contrasting regions of internal-layering continuity behaviour. In the western portion of the catchment, where ice-stream tributaries incise deeply through the Ellsworth Subglacial Highlands, the continuity of internal layers is most disrupted across the present ice streams. We therefore interpret the ice-flow configuration in this western region as predominantly spatially stable over the lifetime of the ice. Further east, towards Möller Ice Stream, and towards the interior of the ice sheet, the ILCI does not closely match the present ice flow configuration, while across most of present-day Möller Ice Stream itself, the continuity of internal layers is generally low. We propose that the variation in continuity of internal layering across eastern Institute Ice Stream and the neighbouring Möller results primarily from two factors. Firstly, the noncorrespondence of some inland tributaries with internal-layering continuity acts as evidence for past spatial migration of those tributaries, with likely consequences for the relative positions of Institute and Möller Ice Streams over recent history. Secondly, the subglacial roughness, in part a function of the underlying geology across the region, imposes a strong influence on the continuity of the overlying deep internal layers, though whether it controls, or is a function of, ice flow, remains undetermined. We conclude that in the subglacially mountainous Ellsworth Subglacial Highlands sector, there is long-term stability in the spatial configuration of ice flow, but that elsewhere across Insitute and Möller Ice Streams, the ice-flow configuration has the potential to switch.
Canadian Arctic sea ice reconstructed from bromine in the Greenland NEEM ice core.
Spolaor, Andrea; Vallelonga, Paul; Turetta, Clara; Maffezzoli, Niccolò; Cozzi, Giulio; Gabrieli, Jacopo; Barbante, Carlo; Goto-Azuma, Kumiko; Saiz-Lopez, Alfonso; Cuevas, Carlos A; Dahl-Jensen, Dorthe
2016-09-21
Reconstructing the past variability of Arctic sea ice provides an essential context for recent multi-year sea ice decline, although few quantitative reconstructions cover the Holocene period prior to the earliest historical records 1,200 years ago. Photochemical recycling of bromine is observed over first-year, or seasonal, sea ice in so-called "bromine explosions" and we employ a 1-D chemistry transport model to quantify processes of bromine enrichment over first-year sea ice and depositional transport over multi-year sea ice and land ice. We report bromine enrichment in the Northwest Greenland Eemian NEEM ice core since the end of the Eemian interglacial 120,000 years ago, finding the maximum extension of first-year sea ice occurred approximately 9,000 years ago during the Holocene climate optimum, when Greenland temperatures were 2 to 3 °C above present values. First-year sea ice extent was lowest during the glacial stadials suggesting complete coverage of the Arctic Ocean by multi-year sea ice. These findings demonstrate a clear relationship between temperature and first-year sea ice extent in the Arctic and suggest multi-year sea ice will continue to decline as polar amplification drives Arctic temperatures beyond the 2 °C global average warming target of the recent COP21 Paris climate agreement.
Determination of a Critical Sea Ice Thickness Threshold for the Central Arctic Ocean
NASA Astrophysics Data System (ADS)
Ford, V.; Frauenfeld, O. W.; Nowotarski, C. J.
2017-12-01
While sea ice extent is readily measurable from satellite observations and can be used to assess the overall survivability of the Arctic sea ice pack, determining the spatial variability of sea ice thickness remains a challenge. Turbulent and conductive heat fluxes are extremely sensitive to ice thickness but are dominated by the sensible heat flux, with energy exchange expected to increase with thinner ice cover. Fluxes over open water are strongest and have the greatest influence on the atmosphere, while fluxes over thick sea ice are minimal as heat conduction from the ocean through thick ice cannot reach the atmosphere. We know that turbulent energy fluxes are strongest over open ocean, but is there a "critical thickness of ice" where fluxes are considered non-negligible? Through polar-optimized Weather Research and Forecasting model simulations, this study assesses how the wintertime Arctic surface boundary layer, via sensible heat flux exchange and surface air temperature, responds to sea ice thinning. The region immediately north of Franz Josef Land is characterized by a thickness gradient where sea ice transitions from the thickest multi-year ice to the very thin marginal ice seas. This provides an ideal location to simulate how the diminishing Arctic sea ice interacts with a warming atmosphere. Scenarios include both fixed sea surface temperature domains for idealized thickness variability, and fixed ice fields to detect changes in the ocean-ice-atmosphere energy exchange. Results indicate that a critical thickness threshold exists below 1 meter. The threshold is between 0.4-1 meters thinner than the critical thickness for melt season survival - the difference between first year and multi-year ice. Turbulent heat fluxes and surface air temperature increase as sea ice thickness transitions from perennial ice to seasonal ice. While models predict a sea ice free Arctic at the end of the warm season in future decades, sea ice will continue to transform seasonally during Polar winter. However, despite seasonal sea ice change, if and where its thickness remains below this critical threshold, the Arctic Ocean will continue interacting with the overlying atmosphere and contributing to Arctic amplification during the cold season.
Sea ice roughness: the key for predicting Arctic summer ice albedo
NASA Astrophysics Data System (ADS)
Landy, J.; Ehn, J. K.; Tsamados, M.; Stroeve, J.; Barber, D. G.
2017-12-01
Although melt ponds on Arctic sea ice evolve in stages, ice with smoother surface topography typically allows the pond water to spread over a wider area, reducing the ice-albedo and accelerating further melt. Building on this theory, we simulated the distribution of meltwater on a range of statistically-derived topographies to develop a quantitative relationship between premelt sea ice surface roughness and summer ice albedo. Our method, previously applied to ICESat observations of the end-of-winter sea ice roughness, could account for 85% of the variance in AVHRR observations of the summer ice-albedo [Landy et al., 2015]. Consequently, an Arctic-wide reduction in sea ice roughness over the ICESat operational period (from 2003 to 2008) explained a drop in ice-albedo that resulted in a 16% increase in solar heat input to the sea ice cover. Here we will review this work and present new research linking pre-melt sea ice surface roughness observations from Cryosat-2 to summer sea ice albedo over the past six years, examining the potential of winter roughness as a significant new source of sea ice predictability. We will further evaluate the possibility for high-resolution (kilometre-scale) forecasts of summer sea ice albedo from waveform-level Cryosat-2 roughness data in the landfast sea ice zone of the Canadian Arctic. Landy, J. C., J. K. Ehn, and D. G. Barber (2015), Albedo feedback enhanced by smoother Arctic sea ice, Geophys. Res. Lett., 42, 10,714-10,720, doi:10.1002/2015GL066712.
NASA Astrophysics Data System (ADS)
Ruesch, O.; Platz, T.; Schenk, P.; McFadden, L. A.; Castillo-Rogez, J. C.; Quick, L. C.; Byrne, S.; Preusker, F.; O'Brien, D. P.; Schmedemann, N.; Williams, D. A.; Li, J.-Y.; Bland, M. T.; Hiesinger, H.; Kneissl, T.; Neesemann, A.; Schaefer, M.; Pasckert, J. H.; Schmidt, B. E.; Buczkowski, D. L.; Sykes, M. V.; Nathues, A.; Roatsch, T.; Hoffmann, M.; Raymond, C. A.; Russell, C. T.
2016-09-01
Volcanic edifices are abundant on rocky bodies of the inner solar system. In the cold outer solar system, volcanism can occur on solid bodies with a water-ice shell, but derived cryovolcanic constructs have proved elusive. We report the discovery, using Dawn Framing Camera images, of a landform on dwarf planet Ceres that we argue represents a viscous cryovolcanic dome. Parent material of the cryomagma is a mixture of secondary minerals, including salts and water ice. Absolute model ages from impact craters reveal that extrusion of the dome has occurred recently. Ceres’ evolution must have been able to sustain recent interior activity and associated surface expressions. We propose salts with low eutectic temperatures and thermal conductivities as key drivers for Ceres’ long-term internal evolution.
Ruesch, O.; Platz, T.; Schenk, P.; McFadden, L.A.; Castillo-Rogez, J. C.; Quick, L. C.; Byrne, S.; Preusker, F.; O'Brien, D. P.; Schmedemann, N.; Williams, D.A.; Li, Jian-Yang; Bland, M. T.; Hiesinger, H.; Kneissl, T.; Neesemann, A.; Schaefer, M.; Pasckert, J. H.; Schmidt, B.E.; Buczkowski, D.L.; Sykes, M. V.; Nathues, A.; Roatsch, T.; Hoffman, M.; Raymond, C.A.; Russell, C.T.
2016-01-01
Volcanic edifices are abundant on rocky bodies of the inner solar system. In the cold outer solar system, volcanism can occur on solid bodies with a water-ice shell, but derived cryovolcanic constructs have proved elusive. We report the discovery using Dawn Framing Camera images of a landform on dwarf planet Ceres, which we argue represents a viscous cryovolcanic dome. Parent material of the cryomagma is a mixture of secondary minerals, including salts and water ice. Absolute model ages from impact craters reveal that extrusion of the dome has occurred recently. Ceres’ evolution must have been able to sustain recent interior activity and associated surface expressions. We propose salts with low eutectic temperatures and thermal conductivities as key drivers for Ceres’ long-term internal evolution.
NASA Astrophysics Data System (ADS)
Nelson, C. B.; King, K.
2015-12-01
The largest ice shelf in Antarctic, Ross Ice Shelf, was investigated over the years of (1970-2015). Near the basal stress boundary between the ice shelf and the West Antarctic ice sheet, ice velocity ranges from a few meters per year to several hundred meters per year in ice streams. Most of the drainage from West Antarctica into the Ross Ice Shelf flows down two major ice streams, each of which discharges more than 20 km3 of ice each year. Along with velocity changes, the warmest water below parts of the Ross Ice Shelf resides in the lowest portion of the water column because of its high salinity. Vertical mixing caused by tidal stirring can thus induce ablation by lifting the warm water into contact with the ice shelf. This process can cause melting over a period of time and eventually cause breakup of ice shelf. With changes occurring over many years a validation is needed for the Antarctic Snow Accumulation and Ice Discharge (ASAID) basal stress boundary created in 2003. After the 2002 Larsen B Ice Shelf disintegration, nearby glaciers in the Antarctic Peninsula accelerated up to eight times their original speed over the next 18 months. Similar losses of ice tongues in Greenland have caused speed-ups of two to three times the flow rates in just one year. Rapid changes occurring in regions surrounding Antarctica are causing concern in the polar science community to research changes occurring in coastal zones over time. During the research, the team completed study on the Ross Ice Shelf located on the south western coast of the Antarctic. The study included a validation of the ABSB vs. the natural basal stress boundary (NBSB) along the Ross Ice Shelf. The ASAID BSB was created in 2003 by a team of researchers headed by National Aeronautics and Space Administration Goddard Space Flight Center (NASA GSFC), with an aim of studying coastal deviations as it pertains to the mass balance of the entire continent. The point data file was aimed at creating a replica of the natural BSB. Select cloud free Landsat satellite imagery from satellites 1 through 7 was used to detect changes occurring over the span of 19 years. The last major interest in the study included documenting the deviations or incorrect placements of the ABSB vs. NBSB. ENVI 4.7 as well as ENVI 5.0 image manipulation software was used in the geo-rectifying and the geo-referencing process.
Polynyas and Ice Production Evolution in the Ross Sea (PIPERS)
NASA Astrophysics Data System (ADS)
Ackley, S. F.
2017-12-01
One focus of the PIPERS cruise into the Ross Sea ice cover during April-June 2017 was the Terra Nova Bay (TNB) polynya where joint measurements of air-ice-ocean wave interaction were conducted over twelve days. In Terra Nova Bay, measurements were made in three katabatic wind events each with sustained winds over 35 ms-1 and air temperatures below -15C. Near shore, intense wave fields with wave amplitudes of over 2m and 7-9 sec periods built and large amounts of frazil ice crystals grew. The frazil ice gathered initially into short and narrow plumes that eventually were added laterally to create longer and wider streaks or bands. Breaking waves within these wider streaks were dampened which appeared to enhance the development of pancake ice. Eventually, the open water areas between the streaks sealed off, developing a complete ice cover of 100 percent concentration (80-90 percent pancakes, 20-10 percent frazil) over a wide front (30km). The pancakes continued to grow in diameter and thickness as waves alternately contracted and expanded the ice cover, with the thicker larger floes further diminishing the wave field and lateral motion between pancakes until the initial pancake ice growth ceased. The equilibrium thickness of the ice was 20-30cm in the pancake ice. While the waves had died off however, katabatic wind velocities were sustained and resulted in a wide area of concentrated, rafted, pancake ice that was rapidly advected downstream until the end of the katabatic event. High resolution TerraSar-X radar satellite imagery showed the length of the ice area produced in one single event extended over 300km or ten times the length of the open water area during one polynya event. The TNB polynya is therefore an "ice factory" where frazil ice is manufactured into pancake ice floes that are then pushed out of the assembly area and advected, rafted (and occasionally piled up into "dragon skin" ice), until the katabatic wind dies off at the coastal source.
The role of ice shelves in the Holocene evolution of the Antarctic ice sheet
NASA Astrophysics Data System (ADS)
Bernales, Jorge; Rogozhina, Irina; Thomas, Maik
2014-05-01
Using the continental-scale ice sheet-shelf model SICOPOLIS (Greve, 1997 [1]; Sato and Greve, 2012 [2]), we assess the influence of ice shelves on the Holocene evolution and present-day geometry of the Antarctic ice sheet. We have designed a series of paleoclimate simulations driven by a time-evolved climate forcing that couples the surface temperature record from the Vostok ice core with precipitation pattern using an empirical relation of Dahl-Jensen et al., (1998) [3]. Our numerical experiments show that the geometry of ice shelves is determined by the evolution of climate and ocean conditions over time scales of 15 to 25 kyr. This implies that the initial configuration of ice shelves at the Last Glacial Maximum (LGM, about 21 kyr before present) has a significant effect on the modelled Early Holocene volume of ice shelves (up to 20%) that gradually diminishes to a negligible level for the present-day ice shelf configuration. Thus, the present-day geometry of the Antarctic ice shelves can be attained even if an ice-shelf-free initial condition is chosen at the LGM. However, the grounded ice volume, thickness and dynamic states are found to be sensitive to the ice shelf dynamics over a longer history spanning several tens of thousands of years. A presence of extensive marine ice at the LGM, supported by sediment core reconstructions (e.g. Naish et al., 2009 [4]), has a clear buttressing effect on the grounded ice that remains significant over a period of 30 to 50 kyr. If ice-shelf-free conditions are prescribed at the LGM, the modelled Early Holocene and present-day grounded ice volumes are underestimated by up to 10%, as opposed to simulations incorporating ice shelf dynamics over longer periods. The use of ice-shelf-free LGM conditions thus results in 50 to over 200 meters thinner ice sheet across much of East Antarctica. References [1] Greve, R. (1997). Application of a polythermal three-dimensional ice sheet model to the Greenland ice sheet: response to steady-state and transient climate scenarios. Journal of Climate, 10(5), 901-918. [2] Sato, T., and Greve, R. (2012). Sensitivity experiments for the Antarctic ice sheet with varied sub-ice-shelf melting rates. Annals of Glaciology, 53(60), 221-228. [3] Dahl-Jensen, D., Mosegaard, K., Gundestrup, N., Clow, G. D., Johnsen, S. J., Hansen, A. W., and Balling, N. (1998). Past temperatures directly from the Greenland ice sheet. Science, 282(5387), 268-271. [4] Naish, T., Powell, R., Levy, R., Wilson, G., Scherer, R., Talarico, F., ... and Schmitt, D. (2009). Obliquity-paced Pliocene West Antarctic ice sheet oscillations. Nature, 458(7236), 322-328.
Radar-imaged internal layering in the Weddell Sea sector of West Antarctica
NASA Astrophysics Data System (ADS)
Bingham, Robert G.; Rippin, David M.; Karlsson, Nanna B.; Corr, Hugh F. J.; Ferraccioli, Fausto; Jordan, Tom A.; Le Brocq, Anne M.; Ross, Neil; Wright, Andrew P.; Siegert, Martin J.
2013-04-01
Radio-echo sounding (RES) across polar ice sheets reveals extensive, isochronous internal layers, whose stratigraphy, and especially their degree of continuity over multi-km distances, can inform us about both present ice flow and past ice-flow histories. Here, we bring together for the first time two recent advances in this field of cryospheric remote sensing to analyse ice flow into the Weddell Sea sector of West Antarctica. Firstly, we have developed a new quantitative routine for analysing the continuity of internal layers obtained over large areas of ice by airborne RES surveys - we term this routine the "Internal-Layering Continuity-Index (ILCI)". Secondly, in the austral season 2010-11 we acquired, by airborne RES survey, the first comprehensive dataset of deep internal layering across Institute and Möller Ice Streams, two of the more significant feeders of ice into the Filchner-Ronne Ice Shelf. Applying the ILCI to SAR-processed (migrated) RES profiles across Institute Ice Stream's catchment reveals two contrasting regions of internal-layering continuity behaviour. In the western portion of the catchment, where ice-stream tributaries incise deeply through the Ellsworth Subglacial Highlands, the continuity of internal layers is most disrupted across the present ice streams. We therefore interpret the ice-flow configuration in this western region as predominantly spatially stable over the lifetime of the ice. Further east, towards Möller Ice Stream, and towards the interior of the ice sheet, the ILCI does not closely match the present ice flow configuration, while across most of present-day Möller Ice Stream itself, the continuity of internal layers is generally low. We propose that the variation in continuity of internal layering across eastern Institute Ice Stream and the neighbouring Möller results primarily from two factors. Firstly, the noncorrespondence of some inland tributaries with internal-layering continuity acts as evidence for past spatial migration of those tributaries, with likely consequences for the relative positions of Institute and Möller Ice Streams over recent history. Secondly, the subglacial roughness, in part a function of the underlying geology across the region, imposes a strong influence on the continuity of the overlying deep internal layers, though whether it controls, or is a function of, ice flow, remains undetermined. We conclude that in the subglacially mountainous Ellsworth Subglacial Highlands sector, there is long-term stability in the spatial configuration of ice flow, but that elsewhere across Insitute and Möller Ice Streams, the ice-flow configuration is not stable.
Comparing IceBridge and CryoSat-2 sea ice observations over the Arctic and the Southern Ocean
NASA Astrophysics Data System (ADS)
Yi, D.; Kurtz, N. T.; Harbeck, J.; Hofton, M. A.; Manizade, S.; Cornejo, H.
2016-12-01
From 2009 to 2015, CryoSat-2 and IceBridge had 34 coincident lines over sea ice, 23 over the Arctic (20 with ATM, 2 with LVIS, and 1 with both ATM and LVIS) and 11 over the Southern Ocean (9 with ATM and 2 with both ATM and LVIS). In this study, we will compare both surface elevation and sea ice freeboard from CryoSat-2, ATM, and LVIS. We will apply identical ellipsoid, geoid, tide models, and atmospheric corrections to CryoSat-2, ATM, and LVIS data. For CryoSat-2, we will use surface elevation and sea ice freeboard both in the standard CryoSat-2 data product and calculated through a waveform fitting method. For ATM and LVIS, we will use surface elevation and sea ice freeboard in the OIB data product and the elevation and sea ice freeboard calculated through Gaussian waveform fitting method. The results of this study are important for using ATM and LVIS to calibrate/validate CryoSat-2 results and bridging the data gap between ICESat and ICESat-2.
Spatially Mapped Reductions in the Length of the Arctic Sea Ice Season
NASA Technical Reports Server (NTRS)
Parkinson, Claire L.
2014-01-01
Satellite data are used to determine the number of days having sea ice coverage in each year 1979-2013 and to map the trends in these ice-season lengths. Over the majority of the Arctic seasonal sea ice zone, the ice season shortened at an average rate of at least 5 days/decade between 1979 and 2013, and in a small area in the northeastern Barents Sea the rate of shortening reached over 65 days/decade. The only substantial non-coastal area with lengthening sea ice seasons is the Bering Sea, where the ice season lengthened by 5-15 days/decade. Over the Arctic as a whole, the area with ice seasons shortened by at least 5 days/decade is 12.4 × 10(exp 6) square kilimeters, while the area with ice seasons lengthened by at least 5 days/decade is only 1.1 × 10(exp 6) square kilometers. The contrast is even greater, percentage-wise, for higher rates.
Howes, Ella L; Eagle, Robert A; Gattuso, Jean-Pierre; Bijma, Jelle
2017-01-01
Anthropogenic carbon perturbation has caused decreases in seawater pH and increases in global temperatures since the start of the 20th century. The subsequent lowering of the saturation state of CaCO3 may make the secretion of skeletons more problematic for marine calcifiers. As organisms that precipitate thin aragonite shells, thecosome pteropods have been identified as being particularly vulnerable to climate change effects. Coupled with their global distribution, this makes them ideal for use as sentinel organisms. Recent studies have highlighted shell dissolution as a potential indicator of ocean acidification; however, this metric is not applicable for monitoring pH changes in supersaturated basins. In this study, the novel approach of high resolution computed tomography (CT) scanning was used to produce quantitative 3-dimensional renderings pteropod shells to assess the potential of using this method to monitor small changes in shell biometrics that may be driven by climate change drivers. An ontogenetic analysis of the shells of Cavolinia inflexa and Styliola subula collected from the Mediterranean was used to identify suitable monitoring metrics. Modern samples were then compared to historical samples of the same species, collected during the Mediterranean leg of the Thor (1910) and Dana (1921) cruises to assess whether any empirical differences could be detected. Shell densities were calculated and scanning electron microscopy was used to compare the aragonite crystal morphology. pH for the collection years was hind-cast using temperature and salinity time series with atmospheric CO2 concentrations from ice core data. Historical samples of S. subula were thicker than S. subula shells of the same size from 2012 and C. inflexa shells collected in 1910 were significantly denser than those from 2012. These results provide a baseline for future work to develop monitoring techniques for climate change in the oceans using the novel approach of high-resolution CT scanning.
Gattuso, Jean-Pierre; Bijma, Jelle
2017-01-01
Anthropogenic carbon perturbation has caused decreases in seawater pH and increases in global temperatures since the start of the 20th century. The subsequent lowering of the saturation state of CaCO3 may make the secretion of skeletons more problematic for marine calcifiers. As organisms that precipitate thin aragonite shells, thecosome pteropods have been identified as being particularly vulnerable to climate change effects. Coupled with their global distribution, this makes them ideal for use as sentinel organisms. Recent studies have highlighted shell dissolution as a potential indicator of ocean acidification; however, this metric is not applicable for monitoring pH changes in supersaturated basins. In this study, the novel approach of high resolution computed tomography (CT) scanning was used to produce quantitative 3-dimensional renderings pteropod shells to assess the potential of using this method to monitor small changes in shell biometrics that may be driven by climate change drivers. An ontogenetic analysis of the shells of Cavolinia inflexa and Styliola subula collected from the Mediterranean was used to identify suitable monitoring metrics. Modern samples were then compared to historical samples of the same species, collected during the Mediterranean leg of the Thor (1910) and Dana (1921) cruises to assess whether any empirical differences could be detected. Shell densities were calculated and scanning electron microscopy was used to compare the aragonite crystal morphology. pH for the collection years was hind-cast using temperature and salinity time series with atmospheric CO2 concentrations from ice core data. Historical samples of S. subula were thicker than S. subula shells of the same size from 2012 and C. inflexa shells collected in 1910 were significantly denser than those from 2012. These results provide a baseline for future work to develop monitoring techniques for climate change in the oceans using the novel approach of high-resolution CT scanning. PMID:28125590
NASA Astrophysics Data System (ADS)
Flocco, D.; Laxon, S. W.; Feltham, D. L.; Haas, C.
2012-04-01
The GlobIce project has provided high resolution sea ice product datasets over the Arctic derived from SAR data in the ESA archive. The products are validated sea ice motion, deformation and fluxes through straits. GlobIce sea ice velocities, deformation data and sea ice concentration have been validated using buoy data provided by the International Arctic Buoy Program (IABP). Over 95% of the GlobIce and buoy data analysed fell within 5 km of each other. The GlobIce Eulerian image pair product showed a high correlation with buoy data. The sea ice concentration product was compared to SSM/I data. An evaluation of the validity of the GlobICE data will be presented in this work. GlobICE sea ice velocity and deformation were compared with runs of the CICE sea ice model: in particular the mass fluxes through the straits were used to investigate the correlation between the winter behaviour of sea ice and the sea ice state in the following summer.
NASA Technical Reports Server (NTRS)
Maslanik, J. A.; Rivas, M. Belmonte; Holmgren, J.; Gasiewski, A. J.; Heinrichs, J. F.; Stroeve, J. C.; Klein, M.; Markus, T.; Perovich, D. K.; Sonntag, J. G.;
2006-01-01
Aircraft-acquired passive microwave data, laser radar height observations, RADARSAT synthetic aperture radar imagery, and in situ measurements obtained during the AMSR-Ice03 experiment are used to investigate relationships between microwave emission and ice characteristics over several space scales. The data fusion allows delineation of the shore-fast ice and pack ice in the Barrow area, AK, into several ice classes. Results show good agreement between observed and Polarimetric Scanning Radiometer (PSR)-derived snow depths over relatively smooth ice, with larger differences over ridged and rubbled ice. The PSR results are consistent with the effects on snow depth of the spatial distribution and nature of ice roughness, ridging, and other factors such as ice age. Apparent relationships exist between ice roughness and the degree of depolarization of emission at 10,19, and 37 GHz. This depolarization .would yield overestimates of total ice concentration using polarization-based algorithms, with indications of this seen when the NT-2 algorithm is applied to the PSR data. Other characteristics of the microwave data, such as effects of grounding of sea ice and large contrast between sea ice and adjacent land, are also apparent in the PSR data. Overall, the results further demonstrate the importance of macroscale ice roughness conditions such as ridging and rubbling on snow depth and microwave emissivity.
On the origin of south polar folds on Enceladus
NASA Astrophysics Data System (ADS)
Barr, Amy C.; Preuss, Lauren J.
2010-07-01
Recent high-resolution Cassini images of the south polar terrain of Enceladus reveal regions of short-wavelength deformation, inferred to be compressional folds between the Baghdad and Damascus tiger stripes (Spencer, J.R., Barr, A.C., Esposito, L.W., Helfenstein, P., Ingersoll, A.P., Jaumann, R., McKay, C.P., Nimmo, F., Waite, J.H. [2009a]. Enceladus: An active cryovolcanic satellite. In: Saturn after Cassini-Huygens. Springer, New York, pp. 683-722). Here, we use Fourier analysis of the bright/dark variations to show that the folds have a dominant wavelength of 1.1 ± 0.4 km. We use the simple model of lava flow folding from Fink (Fink, J. [1980]. Geology 8, 250-254) to show that the folds could form in an ice shell with an upper high-viscosity boundary layer of thickness <400 m, with a driving stress of 40-80 kPa, and strain rate between 10 -14 s -1 and 10 -12 s -1. Such deformation rates imply resurfacing of the SPT in 0.05-5 Myr, consistent with its estimated surface age. Measurements of fold topography and more sophisticated numerical modeling can narrow down the conditions of fold formation and provide valuable constraints on the thermal structure of the ice shell on Enceladus.
Dive Europa: a search-for-life initiative.
Naganuma, T; Uematsu, H
1998-06-01
Liquid water, underwater volcanoes and possibly life forms have been suggested to be present beneath the estimated 10 km-thick ice shell of Europa the Jovian satellite J2. Europa's possible ocean is estimated to be 100-200km deep. Despite the great depth of the Europa's ocean, hydrostatic pressure at the seafloor would be 130-260 MPa, corresponding to 13-26 km depth of a theoretical Earth's ocean. The hydrostatic pressure is not beyond the edge of existing deep-sea technology. Here we propose exploration of Europa's deep-sea by the use of current technologies, taking a symbolic example of a deep submergence vehicle Shinkai 6500 which dives to a depth of 6.5 km deep (50 km depth of Europa's ocean). Shinkai 6500 is embarkable in the payload bay of the Space Shuttles in terms of size and weight for the transportation to a Low Earth Orbit (LEO). Secondary boost is needed for interplanetary flight from the LEO. On-orbit assembly of the secondary booster is a technological challenge. The International Space Station (ISS) and ISS-related technologies will facilitate the secondary boost. Also, ice shell drilling is a challenge and is needed before the dive into Europa's ocean. These challenges should be overcome during a certain leading time for matured experience in the ISS operation.
The stability against freezing of an internal liquid-water ocean in Callisto.
Ruiz, J
2001-07-26
The discovery of the induced magnetic field of Callisto-one of Jupiter's moons-has been interpreted as evidence for a subsurface ocean, even though the presence of such an ocean is difficult to understand in the context of existing theoretical models. Tidal heating should not be significant for Callisto, and, in the absence of such heating, it is difficult to see how this internal ocean could have survived until today without freezing. Previous work indicated that an outer ice layer on the ocean would be unstable against solid-state convection, which once begun would lead to total freezing of liquid water in about 108 years. Here I show that when a methodology for more physically reasonable water ice viscosities (that is, stress-dependent non-newtonian viscosities, rather than the stress-independent newtonian viscosities considered previously) is adopted, the outer ice shell becomes stable against convection. This implies that a subsurface ocean could have survived up to the present, without the need for invoking antifreeze substances or other special conditions.
Shen, Dayong; Liu, Yuling; Huang, Shengli
2012-01-01
The estimation of ice/snow accumulation is of great significance in quantifying the mass balance of ice sheets and variation in water resources. Improving the accuracy and reducing uncertainty has been a challenge for the estimation of annual accumulation over the Greenland ice sheet. In this study, we kriged and analyzed the spatial pattern of accumulation based on an observation data series including 315 points used in a recent research, plus 101 ice cores and snow pits and newly compiled 23 coastal weather station data. The estimated annual accumulation over the Greenland ice sheet is 31.2 g cm−2 yr−1, with a standard error of 0.9 g cm−2 yr−1. The main differences between the improved map developed in this study and the recently published accumulation maps are in the coastal areas, especially southeast and southwest regions. The analysis of accumulations versus elevation reveals the distribution patterns of accumulation over the Greenland ice sheet.
NASA Astrophysics Data System (ADS)
Labrousse, S.; Sallee, J. B.; Fraser, A. D.; Massom, R. A.; Reid, P.; Sumner, M.; Guinet, C.; Harcourt, R.; Bailleul, F.; Hindell, M.; Charrassin, J. B.
2016-02-01
Investigating ecological relationships between top predators and their environment is essential to understand the response of marine ecosystems to climate variability. Specifically, variability and changes in sea ice, which is known as an important habitat for marine ecosystems, presents complex patterns in East Antarctic. The impact for ecosystems of such changes of their habitat is however still unknown. Acting as an ecological double-edged sword, sea ice can impede access to marine resources while harboring a rich ecosystem during winter. Here, we investigated which type of sea ice habitat is used by male and female southern elephant seals during winter and examine if and how the spatio-temporal variability of sea ice concentration (SIC) influence their foraging strategies. We also examined over a 10 years time-series the impact of SIC and sea ice advance anomaly on foraging activity. To do this, we studied 46 individuals equipped with Satellite linked data recorders between 2004 and 2014, undertaking post-moult trips in winter from Kerguelen to the peri-Antarctic shelf. The general patterns of sea ice use by males and females are clearly distinct; while females tended to follow the sea ice edge as it extended northward, males remained on the continental shelf. Female foraging activity was higher in late autumn in the outer part of the pack ice in concentrated SIC and spatially stable. They remained in areas of variable SIC over time and low persistence. The seal hunting time, a proxy of foraging activity inferred from the diving behaviour, was much higher during earlier advance of sea ice over female time-series. The females were possibly taking advantage of the ice algal autumn bloom sustaining krill and an under ice ecosystem without being trapped in sea ice. Males foraging activity increased when they remained deep inside sea ice over the shelf using variable SIC in time and space, presumably in polynyas or flaw leads between fast and pack ice. This strategy probably gave them access to zones of enhanced resources in early spring such as polynyas, the Antarctic Slope Front, or the Antarctic shelf while avoiding the constraint of sea ice. Over years, males foraging activity were not affected by anomalies of sea ice advance, however negative SIC anomalies were profitable allowing them to use remote areas within sea ice.
Polar process and world climate /A brief overview/
NASA Technical Reports Server (NTRS)
Goody, R.
1980-01-01
A review is presented of events relating polar regions to the world climate, the mechanisms of sea ice and polar ice sheets, and of two theories of the Pleistocene Ice Ages. The sea ice which varies over time scales of one or two years and the polar ice sheets with time changes measured in tens or hundreds of thousands of years introduce two distinct time constants into global time changes; the yearly Arctic sea ice variations affect northern Europe and have some effect over the entire Northern Hemisphere; the ice-albedo coupling in the polar ice sheets is involved in major climatic events such as the Pleistocene ice ages. It is concluded that climate problems require a global approach including the atmosphere, the oceans, and the cryosphere.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Charnawskas, Joseph C.; Alpert, Peter A.; Lambe, Andrew T.
Anthropogenic and biogenic gas emissions contribute to the formation of secondary organic aerosol (SOA). When present, soot particles from fossil fuel combustion can acquire a coating of SOA. We investigate SOA–soot biogenic–anthropogenic interactions and their impact on ice nucleation in relation to the particles’ organic phase state. SOA particles were generated from the OH oxidation of naphthalene, α-pinene, longifolene, or isoprene, with or without the presence of sulfate or soot particles. Corresponding particle glass transition (T g) and full deliquescence relative humidity (FDRH) were estimated using a numerical diffusion model. Longifolene SOA particles are solid-like and all biogenic SOA sulfatemore » mixtures exhibit a core–shell configuration (i.e.a sulfate-rich core coated with SOA). Biogenic SOA with or without sulfate formed ice at conditions expected for homogeneous ice nucleation, in agreement with respectiveT gand FDRH. α-pinene SOA coated soot particles nucleated ice above the homogeneous freezing temperature with soot acting as ice nuclei (IN). At lower temperatures the α-pinene SOA coating can be semisolid, inducing ice nucleation. Naphthalene SOA coated soot particles acted as ice nuclei above and below the homogeneous freezing limit, which can be explained by the presence of a highly viscous SOA phase. Our results suggest that biogenic SOA does not play a significant role in mixed-phase cloud formation and the presence of sulfate renders this even less likely. However, anthropogenic SOA may have an enhancing effect on cloud glaciation under mixed-phase and cirrus cloud conditions compared to biogenic SOA that dominate during pre-industrial times or in pristine areas.« less
Condensed-phase biogenic–anthropogenic interactions with implications for cold cloud formation
Charnawskas, Joseph C.; Alpert, Peter A.; Lambe, Andrew T.; ...
2017-01-24
Anthropogenic and biogenic gas emissions contribute to the formation of secondary organic aerosol (SOA). When present, soot particles from fossil fuel combustion can acquire a coating of SOA. We investigate SOA–soot biogenic–anthropogenic interactions and their impact on ice nucleation in relation to the particles’ organic phase state. SOA particles were generated from the OH oxidation of naphthalene, α-pinene, longifolene, or isoprene, with or without the presence of sulfate or soot particles. Corresponding particle glass transition (T g) and full deliquescence relative humidity (FDRH) were estimated using a numerical diffusion model. Longifolene SOA particles are solid-like and all biogenic SOA sulfatemore » mixtures exhibit a core–shell configuration (i.e.a sulfate-rich core coated with SOA). Biogenic SOA with or without sulfate formed ice at conditions expected for homogeneous ice nucleation, in agreement with respectiveT gand FDRH. α-pinene SOA coated soot particles nucleated ice above the homogeneous freezing temperature with soot acting as ice nuclei (IN). At lower temperatures the α-pinene SOA coating can be semisolid, inducing ice nucleation. Naphthalene SOA coated soot particles acted as ice nuclei above and below the homogeneous freezing limit, which can be explained by the presence of a highly viscous SOA phase. Our results suggest that biogenic SOA does not play a significant role in mixed-phase cloud formation and the presence of sulfate renders this even less likely. However, anthropogenic SOA may have an enhancing effect on cloud glaciation under mixed-phase and cirrus cloud conditions compared to biogenic SOA that dominate during pre-industrial times or in pristine areas.« less
Condensed-phase biogenic-anthropogenic interactions with implications for cold cloud formation.
Charnawskas, Joseph C; Alpert, Peter A; Lambe, Andrew T; Berkemeier, Thomas; O'Brien, Rachel E; Massoli, Paola; Onasch, Timothy B; Shiraiwa, Manabu; Moffet, Ryan C; Gilles, Mary K; Davidovits, Paul; Worsnop, Douglas R; Knopf, Daniel A
2017-08-24
Anthropogenic and biogenic gas emissions contribute to the formation of secondary organic aerosol (SOA). When present, soot particles from fossil fuel combustion can acquire a coating of SOA. We investigate SOA-soot biogenic-anthropogenic interactions and their impact on ice nucleation in relation to the particles' organic phase state. SOA particles were generated from the OH oxidation of naphthalene, α-pinene, longifolene, or isoprene, with or without the presence of sulfate or soot particles. Corresponding particle glass transition (T g ) and full deliquescence relative humidity (FDRH) were estimated using a numerical diffusion model. Longifolene SOA particles are solid-like and all biogenic SOA sulfate mixtures exhibit a core-shell configuration (i.e. a sulfate-rich core coated with SOA). Biogenic SOA with or without sulfate formed ice at conditions expected for homogeneous ice nucleation, in agreement with respective T g and FDRH. α-pinene SOA coated soot particles nucleated ice above the homogeneous freezing temperature with soot acting as ice nuclei (IN). At lower temperatures the α-pinene SOA coating can be semisolid, inducing ice nucleation. Naphthalene SOA coated soot particles acted as ice nuclei above and below the homogeneous freezing limit, which can be explained by the presence of a highly viscous SOA phase. Our results suggest that biogenic SOA does not play a significant role in mixed-phase cloud formation and the presence of sulfate renders this even less likely. However, anthropogenic SOA may have an enhancing effect on cloud glaciation under mixed-phase and cirrus cloud conditions compared to biogenic SOA that dominate during pre-industrial times or in pristine areas.
History and anatomy of subsurface ice on Mars
NASA Astrophysics Data System (ADS)
Schorghofer, Norbert; Forget, Francois
2012-08-01
Ice buried beneath a thin layer of soil has been revealed by neutron spectroscopy and explored by the Phoenix Mars Lander. It has also been exposed by recent impacts. This subsurface ice is thought to lose and gain volume in response to orbital variations (Milankovitch cycles). We use a powerful numerical model to follow the growth and retreat of near-surface ice as a result of regolith-atmosphere exchange continuously over millions of years. If a thick layer of almost pure ice has been deposited recently, it has not yet reached equilibrium with the atmospheric water vapor and may still remain as far equatorward as 43°N, where ice has been revealed by recent impacts. A potentially observable consequence is present-day humidity output from the still retreating ice. We also demonstrate that in a sublimation environment, subsurface pore ice can accumulate in two ways. The first mode, widely known, is the progressive filling of pores by ice over a range of depths. The second mode occurs on top of an already impermeable ice layer; subsequent ice accumulates in the form of pasted on horizontal layers such that beneath the ice table, the pores are completely full with ice. Most or all of the pore ice on Mars today may be of the second type. At the Phoenix landing site, where such a layer is also expected to exist above an underlying ice sheet, it may be extremely thin, due to exceptionally small variations in ice stability over time.
Measurements of Turbulent Fluxes over Sea Ice Region in the Sea of Okhotsk.
NASA Astrophysics Data System (ADS)
Fujisaki, A.; Yamaguchi, H.; Toyota, T.; Futatsudera, A.; Miyanaga, M.
2007-12-01
The measurements of turbulent fluxes over sea ice area were done in the southern part of the Sea of Okhotsk, during the cruises of the ice-breaker P/V 'Soya' in 2000-2005. The air-ice drag coefficients CDN were 3.57×10-3 over small floes \\left(diameter:φ=20- 100m\\right), 3.38×10-3 over medium floes \\left(φ=100-500m\\right), and 2.12×10-3 over big floes \\left( φ=500m-2km\\right), which showed a decrease with the increase of floe size. This is because the smaller floes contribue to the roughness of sea-ice area by their edges more than the larger ones. The average CDN values showed a gradual upslope with ice concentration, which is simply due to the rougher surface of sea ice than that of open water, while they showed a slight decline at ice concentration 100%, which is possibly due to the lack of freeboard effect of lateral side of floes. We also compared the relation between the roughness length zM and the friction velocity u* with the model developed in the previous study. The zM-u* relation well corresponded with the model results, while the range of zM we obtained was larger than those obtained at the Ice Station Weddell and during the Surface Heat Budget of the Arctic Ocean project. The sensible heat transfer coefficients CHN were 1.35×10-3 at 80-90% ice concentration, and 0.95×10-3 at 100% ice concentration, which are comparable with the results of the past reaserches. On the other hand, we obtained a maximum CHN value of 2.39×10-3at 20-50% ice concentration, and 2.35×10-3 over open water, which are more than twice as the typical value of 1.0×10-3 over open water. These large CHN values are due to the significant upward sensible heat flux during the measurements.
SETAC Short Course: Introduction to interspecies toxicity extrapolation using EPA’s Web-ICE tool
The Web-ICE tool is a user friendly interface that contains modules to predict acute toxicity to over 500 species of aquatic (algae, invertebrates, fish) and terrestrial (birds and mammals) taxa. The tool contains a suite of over 3000 ICE models developed from a database of over ...
NASA Technical Reports Server (NTRS)
Brooks, R. L.
1981-01-01
Generalized surface slopes were computed for the Antarctic and Greenland ice sheets by differencing plotted contour levels and dividing them by the distance between the contours. It was observed that more than 90% of the ice sheets have surface slopes less than 1%. Seasat test mode-1 Seasat altimeter measurements over Greenland were analyzed by comparisons with collinear and intersecting normal mode Seasat altimeter passes. Over the ice sheet, the computed surface elevations from test mode-1 measurements were consistently lower by about 45 m and the AGC levels were down by approximately 6 dB. No test mode-1 data were acquired over Antarctica. It is concluded that analysis of the existing altimeter data base over the two ice sheets is crucial in designing a future improved altimeter tracking capability. It is recommended that additional waveform retracking be performed to characterize ice sheet topography as a function of geographic area and elevation.
Analysis of the strength of sea gas pipelines of positive buoyancy conditioned by glaciation
NASA Astrophysics Data System (ADS)
Malkov, Venyamin; Kurbatova, Galina; Ermolaeva, Nadezhda; Malkova, Yulia; Petrukhin, Ruslan
2018-05-01
A technique for estimating the stress state of a gas pipeline laid along the seabed in northern latitudes in the presence of glaciation is proposed. It is assumed that the pipeline lies on the bottom of the seabed, but under certain conditions on the some part of the pipeline a glaciation is formed and the gas pipeline section in the place of glaciation can come off the ground due to the positive buoyancy of the ice. Calculation of additional stresses caused by bending of the pipeline is of practical interest for strength evaluation. The gas pipeline is a two-layer cylindrical shell of circular cross section. The inner layer is made of high-strength steel, the outer layer is made of reinforced ferroconcrete. The proposed methodology for calculating the gas pipeline for strength is based on the equations of the theory of shells. The procedure takes into account the effect of internal gas pressure, external pressure of sea water, the weight of two-layer gas pipeline and the weight of the ice layer. The lifting force created by the displaced fluid and the positive buoyancy of the ice is also taken into account. It is significant that the listed loads cause only two types of deformation of the gas pipeline: axisymmetric and antisymmetric. The interaction of the pipeline with the ground as an elastic foundation is not considered. The main objective of the research is to establish the fact of separation of part of the pipeline from the ground. The method of calculations of stresses and deformations occurring in a model sea gas pipeline is presented.
NASA Astrophysics Data System (ADS)
Hall, Brenda L.; Borns, Harold W.; Bromley, Gordon R. M.; Lowell, Thomas V.
2017-08-01
The Laurentide Ice Sheet was a major driver of global sea-level change during the last deglaciation and may have impacted both atmospheric and oceanic circulation. An understanding of past changes in the ice sheet is important for constraining its interaction with other components of the climate system. Here, we present the geologic context and chronology for ice-sheet fluctuations in eastern Maine, adjacent to the North Atlantic Ocean, thought to be a key player in the termination of the last ice age. Retreat of the Laurentide Ice Sheet through coastal Maine first produced a series of lobate grounding-line moraines, followed by deposition of the prominent Pineo Ridge System, which crosscut the earlier moraine set and which is characterized by extensive ice-contact deltas, closely spaced parallel moraines, and association with eskers. Our new 10Be surface exposure ages indicate that the Pineo Ridge System, which extends for more than 100 km in eastern Maine and Atlantic Canada, dates to ∼15.3 ka, ∼800 years older than recent estimates. Our data are in accord with inboard minimum-limiting radiocarbon ages of terrestrial materials, which indicate deglaciation as early as 15.3 ka, as well as of marine shells that are as old as 15.0 ka. Both the deglaciation that produced the lobate moraines and the short-lived readvance that led to the Pineo Ridge System occurred during Heinrich Stadial 1. Given that faunal and isotopic evidence indicates that the ocean remained cold during deglaciation of coastal Maine, we infer that ice recession was due to rising summer air temperatures that gave way briefly to cooling to allow minor readvance. Glacial deposits north of the Pineo Ridge System display evidence of ice stagnation and downwasting, suggesting rapid ice retreat following deposition of the delta-moraine complex, coincident with the onset of the Bølling.
NASA Astrophysics Data System (ADS)
Harriss, Kathryn H.; Burchell, Mark J.
2017-07-01
Many bodies in the outer solar system are theorized to have an ice shell with a different subsurface material below, be it chondritic, regolith, or a subsurface ocean. This layering can have a significant influence on the morphology of impact craters. Accordingly, we have undertaken laboratory hypervelocity impact experiments on a range of multilayered targets, with interiors of water, sand, and basalt. Impact experiments were undertaken using impact speeds in the range of 0.8-5.3 km s-1, a 1.5 mm Al ball bearing projectile, and an impact incidence of 45°. The surface ice crust had a thickness between 5 and 50 mm, i.e., some 3-30 times the projectile diameter. The thickness of the ice crust as well as the nature of the subsurface layer (liquid, well consolidated, etc.) have a marked effect on the morphology of the resulting impact crater, with thicker ice producing a larger crater diameter (at a given impact velocity), and the crater diameter scaling with impact speed to the power 0.72 for semi-infinite ice, but with 0.37 for thin ice. The density of the subsurface material changes the structure of the crater, with flat crater floors if there is a dense, well-consolidated subsurface layer (basalt) or steep, narrow craters if there is a less cohesive subsurface (sand). The associated faulting in the ice surface is also dependent on ice thickness and the substrate material. We find that the ice layer (in impacts at 5 km s-1) is effectively semi-infinite if its thickness is more than 15.5 times the projectile diameter. Below this, the crater diameter is reduced by 4% for each reduction in ice layer thickness equal to the impactor diameter. Crater depth is also affected. In the ice thickness region, 7-15.5 times the projectile diameter, the crater shape in the ice is modified even when the subsurface layer is not penetrated. For ice thicknesses, <7 times the projectile diameter, the ice layer is breached, but the nature of the resulting crater depends heavily on the subsurface material. If the subsurface is noncohesive (loose) material, a crater forms in it. If it is dense, well-consolidated basalt, no crater forms in the exposed subsurface layer.
NASA Technical Reports Server (NTRS)
Zwally, H. Jay
2004-01-01
NASA's Ice, Cloud and Land Elevation Satellite (ICESat) has been measuring elevations of the Antarctic ice sheet and sea-ice freeboard elevations with unprecedented accuracy. Since February 20,2003, data has been acquired during three periods of laser operation varying from 36 to 54 days, which is less than the continuous operation of 3 to 5 years planned for the mission. The primary purpose of ICESat is to measure time-series of ice-sheet elevation changes for determination of the present-day mass balance of the ice sheets, study of associations between observed ice changes and polar climate, and estimation of the present and future contributions of the ice sheets to global sea level rise. ICESat data will continue to be acquired for approximately 33 days periods at 3 to 6 month intervals with the second of ICESat's three lasers, and eventually with the third laser. The laser footprints are about 70 m on the surface and are spaced at 172 m along-track. The on-board GPS receiver enables radial orbit determinations to an accuracy better than 5 cm. The orbital altitude is around 600 km at an inclination of 94 degrees with a 8-day repeat pattern for the calibration and validation period, followed by a 91 -day repeat period for the rest of the mission. The expected range precision of single footprint measurements was 10 cm, but the actual range precision of the data has been shown to be much better at 2 to 3 cm. The star-tracking attitude-determination system should enable footprints to be located to 6 m horizontally when attitude calibrations are completed. With the present attitude calibration, the elevation accuracy over the ice sheets ranges from about 30 cm over the low-slope areas to about 80 cm over areas with slopes of 1 to 2 degrees, which is much better than radar altimetry. After the first period of data collection, the spacecraft attitude was controlled to point the laser beam to within 50 m of reference surface tracks over the ice sheets. Detection of ice elevation changes over select areas of the ice sheet is demonstrated with using both crossover analysis and precise-repeat track analysis. Sea ice freeboard-height distributions over the Antarctic sea pack are derived over distances of 50 km and converted into maps of average freeboard thickness and sea-ice thickness.
Stress and deformation characteristics of sea ice in a high resolution numerical sea ice model.
NASA Astrophysics Data System (ADS)
Heorton, Harry; Feltham, Daniel; Tsamados, Michel
2017-04-01
The drift and deformation of sea ice floating on the polar oceans is due to the applied wind and ocean currents. The deformations of sea ice over ocean basin length scales have observable patterns; cracks and leads in satellite images and within the velocity fields generated from floe tracking. In a climate sea ice model the deformation of sea ice over ocean basin length scales is modelled using a rheology that represents the relationship between stresses and deformation within the sea ice cover. Here we investigate the link between observable deformation characteristics and the underlying internal sea ice stresses and force balance using the Los Alamos numerical sea ice climate model. In order to mimic laboratory experiments on the deformation of small cubes of sea ice we have developed an idealised square domain that tests the model response at spatial resolutions of up to 500m. We use the Elastic Anisotropic Plastic and Elastic Viscous Plastic rheologies, comparing their stability over varying resolutions and time scales. Sea ice within the domain is forced by idealised winds in order to compare the confinement of wind stresses and internal sea ice stresses. We document the characteristic deformation patterns of convergent, divergent and rotating stress states.
NASA Technical Reports Server (NTRS)
Perkins, Porter J
1955-01-01
A statistical survey and a preliminary analysis are made of icing data collected from scheduled flights over the United States and Canada from November 1951 to June 1952 by airline aircraft equipped with NACA pressure-type icing-rate meters. This interim report presents information obtained from a continuing program sponsored by the NACA with the cooperation of the airlines. An analysis of over 600 icing encounters logged by three airlines operating in the United States, one operating in Canada and one operating up the coast to Alaska, is presented. The icing conditions encountered provided relative frequencies of many icing-cloud variables, such as horizontal extent, vertical thickness, temperatures, icing rate, liquid-water content, and total ice accumulation. Liquid-water contents were higher than data from earlier research flights in layer-type clouds but slightly lower than previous data from cumulus clouds. Broken-cloud conditions, indicated by intermittent icing, accounted for nearly one-half of all the icing encounters. About 90 percent of the encounters did not exceed a distance of 120 miles, and continuous icing did not exceed 50 miles for 90 percent of the unbroken conditions. Icing cloud thicknesses measured during climbs and descents were less than 4500 feet for 90 percent of the vertical cloud traverses.
NASA Astrophysics Data System (ADS)
Matrai, P.
2016-02-01
Autonomous, sea ice-tethered O-Buoys have been deployed (2009-2016) across the Arctic sea ice for long-term atmospheric measurements (http://www.o-buoy.org). O-Buoys (15) provide in-situ concentrations of three sentinel atmospheric chemicals, ozone, CO2 and BrO, as well as meteorological parameters and imagery, over the frozen ocean. O-Buoys were designed to transmit daily data over a period of 2 years while deployed in sea ice, as part of automated ice-drifting stations that include snow/ice measurement systems (e.g. Ice Mass Balance buoys) and oceanographic measurements (e.g. Ice Tethered Profilers). Seasonal changes in Arctic atmospheric chemistry are influenced by changes in the characteristics and presence of the sea ice vs. open water as well as air mass trajectories, especially during the winter-spring and summer-fall transitions when sea ice is melting and freezing, respectively. The O-Buoy Chemical Network provides the unique opportunity to observe these transition periods in real-time with high temporal resolution, and to compare them with those collected on land-based monitoring stations located. Due to the logistical challenges of measurements over the Arctic Ocean region, most long term, in-situ observations of atmospheric chemistry have been made at coastal or island sites around the periphery of the Arctic Ocean, leaving large spatial and temporal gaps that O-Buoys overcome. Advances in floatation, communications, power management, and sensor hardware have been made to overcome the challenges of diminished Arctic sea ice. O-Buoy data provide insights into enhanced seasonal, interannual and spatial variability in atmospheric composition, atmospheric boundary layer control on the amount of halogen activation, enhancement of the atmospheric CO2 signal over the more variable and porous pack ice, and to develop an integrated picture of the coupled ocean/ice/atmosphere system. As part of the Arctic Observing Network, we provide data to the community (www.aoncadis.org).
When Big Ice Turns Into Water It Matters For Houses, Stores And Schools All Over
NASA Astrophysics Data System (ADS)
Bell, R. E.
2017-12-01
When ice in my glass turns to water it is not bad but when the big ice at the top and bottom of the world turns into water it is not good. This new water makes many houses, stores and schools wet. It is really bad during when the wind is strong and the rain is hard. New old ice water gets all over the place. We can not get to work or school or home. We go to the big ice at the top and bottom of the world to see if it will turn to water soon and make more houses wet. We fly over the big ice to see how it is doing. Most of the big ice sits on rock. Around the edge of the big sitting on rock ice, is really low ice that rides on top of the water. This really low ice slows down the big rock ice turning into water. If the really low ice cracks up and turns into little pieces of ice, the big rock ice will make more houses wet. We look to see if there is new water in the cracks. Water in the cracks is bad as it hurts the big rock ice. Water in the cracks on the really low ice will turn the low ice into many little pieces of ice. Then the big rock ice will turn to water. That is water in cracks is bad for the houses, schools and businesses. If water moves off the really low ice, it does not stay in the cracks. This is better for the really low ice. This is better for the big rock ice. We took pictures of the really low ice and saw water leaving. The water was not staying in the cracks. Water leaving the really low ice might be good for houses, schools and stores.
An East Siberian ice shelf during the Late Pleistocene glaciations: Numerical reconstructions
NASA Astrophysics Data System (ADS)
Colleoni, Florence; Kirchner, Nina; Niessen, Frank; Quiquet, Aurélien; Liakka, Johan
2016-09-01
A recent data campaign in the East Siberian Sea has revealed evidence of grounded and floating ice dynamics in regions of up to 1000 m water depth, and which are attributed to glaciations older than the Last Glacial Maximum (21 kyrs BP). The main hypothesis based on this evidence is that a small ice cap developed over Beringia and expanded over the East Siberian continental margin during some of the Late Pleistocene glaciations. Other similar evidence of ice dynamics that have been previously collected on the shallow continental shelves of the Arctic Ocean have been attributed to the penultimate glaciation, i.e. Marine Isotopes Stage 6 (≈140 kyrs BP). We use an ice sheet model, forced by two previously simulated MIS 6 glacial maximum climates, to carry out a series of sensitivity experiments testing the impact of dynamics and mass-balance related parameters on the geometry of the East Siberian ice cap and ice shelf. Results show that the ice cap developing over Beringia connects to the Eurasian ice sheet in all simulations and that its volume ranges between 6 and 14 m SLE, depending on the climate forcing. This ice cap generates an ice shelf of dimensions comparable with or larger than the present-day Ross ice shelf in West Antarctica. Although the ice shelf extent strongly depends on the ice flux through the grounding line, it is particularly sensitive to the choice of the calving and basal melting parameters. Finally, inhibiting a merging of the Beringia ice cap with the Eurasian ice sheet affects the expansion of the ice shelf only in the simulations where the ice cap fluxes are not large enough to compensate for the fluxes coming from the Eurasian ice sheet.
2015-12-10
Like Earth's water table, Mars has an ice table. Sometimes, the ice table coincides with the ground's surface as it does here. The knobby, pitted terrain is caused when ice is deposited and then sublimates over and over again. This geologic process is called "accrescence" and "decrescence" and also occurs on Neptune's moon Triton and on Pluto, though in the outer Solar System the ice is not water ice. Other evidence for ice here includes the rope-like, curved flow feature that resembles glacial flow. Solis Planum -- a huge mound south of Valles Marineris -- is the location of this image. http://photojournal.jpl.nasa.gov/catalog/PIA20208
Ice electrode electrolytic cell
Glenn, D.F.; Suciu, D.F.; Harris, T.L.; Ingram, J.C.
1993-04-06
This invention relates to a method and apparatus for removing heavy metals from waste water, soils, or process streams by electrolytic cell means. The method includes cooling a cell cathode to form an ice layer over the cathode and then applying an electric current to deposit a layer of the heavy metal over the ice. The metal is then easily removed after melting the ice. In a second embodiment, the same ice-covered electrode can be employed to form powdered metals.
Ice electrode electrolytic cell
Glenn, David F.; Suciu, Dan F.; Harris, Taryl L.; Ingram, Jani C.
1993-01-01
This invention relates to a method and apparatus for removing heavy metals from waste water, soils, or process streams by electrolytic cell means. The method includes cooling a cell cathode to form an ice layer over the cathode and then applying an electric current to deposit a layer of the heavy metal over the ice. The metal is then easily removed after melting the ice. In a second embodiment, the same ice-covered electrode can be employed to form powdered metals.
MABEL Iceland 2012 Flight Report
NASA Technical Reports Server (NTRS)
Cook, William B.; Brunt, Kelly M.; De Marco, Eugenia L.; Reed, Daniel L.; Neumann, Thomas A.; Markus, Thorsten
2017-01-01
In March and April 2012, NASA conducted an airborne lidar campaign based out of Keflavik, Iceland, in support of Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) algorithm development. The survey targeted the Greenland Ice Sheet, Iceland ice caps, and sea ice in the Arctic Ocean during the winter season. Ultimately, the mission, MABEL Iceland 2012, including checkout and transit flights, conducted 14 science flights, for a total of over 80 flight hours over glaciers, icefields, and sea ice.
Mathematical Modeling of Electrodynamics Near the Surface of Earth and Planetary Water Worlds
NASA Technical Reports Server (NTRS)
Tyler, Robert H.
2017-01-01
An interesting feature of planetary bodies with hydrospheres is the presence of an electrically conducting shell near the global surface. This conducting shell may typically lie between relatively insulating rock, ice, or atmosphere, creating a strong constraint on the flow of large-scale electric currents. All or parts of the shell may be in fluid motion relative to main components of the rotating planetary magnetic field (as well as the magnetic fields due to external bodies), creating motionally-induced electric currents that would not otherwise be present. As such, one may expect distinguishing features in the types of electrodynamic processes that occur, as well as an opportunity for imposing specialized mathematical methods that efficiently address this class of application. The purpose of this paper is to present and discuss such specialized methods. Specifically, thin-shell approximations for both the electrodynamics and fluid dynamics are combined to derive simplified mathematical formulations describing the behavior of these electric currents as well as their associated electric and magnetic fields. These simplified formulae allow analytical solutions featuring distinct aspects of the thin-shell electrodynamics in idealized cases. A highly efficient numerical method is also presented that is useful for calculations under inhomogeneous parameter distributions. Finally, the advantages as well as limitations in using this mathematical approach are evaluated. This evaluation is presented primarily for the generic case of bodies with water worlds or other thin spherical conducting shells. More specific discussion is given for the case of Earth, but also Europa and other satellites with suspected oceans.
NASA Technical Reports Server (NTRS)
Brucker, L.; Dinnat, E. P.; Koenig, L. S.
2014-01-01
Following the development and availability of Aquarius weekly polar-gridded products, this study presents the spatial and temporal radiometer and scatterometer observations at L band (frequency1.4 GHz) over the cryosphere including the Greenland and Antarctic ice sheets, sea ice in both hemispheres, and over sub-Arctic land for monitoring the soil freeze-thaw state. We provide multiple examples of scientific applications for the L-band data over the cryosphere. For example, we show that over the Greenland Ice Sheet, the unusual 2012 melt event lead to an L-band brightness temperature (TB) sustained decrease of 5 K at horizontal polarization. Over the Antarctic ice sheet, normalized radar cross section (NRCS) observations recorded during ascending and descending orbits are significantly different, highlighting the anisotropy of the ice cover. Over sub-Arctic land, both passive and active observations show distinct values depending on the soil physical state (freeze-thaw). Aquarius sea surface salinity (SSS) retrievals in the polar waters are also presented. SSS variations could serve as an indicator of fresh water input to the ocean from the cryosphere, however the presence of sea ice often contaminates the SSS retrievals, hindering the analysis. The weekly grided Aquarius L-band products used a redistributed by the US Snow and Ice Data Center at http:nsidc.orgdataaquariusindex.html, and show potential for cryospheric studies.
NASA Astrophysics Data System (ADS)
Minchew, B. M.; Simons, M.; Riel, B.; Milillo, P.
2017-01-01
To better understand the influence of stress changes over floating ice shelves on grounded ice streams, we develop a Bayesian method for inferring time-dependent 3-D surface velocity fields from synthetic aperture radar (SAR) and optical remote sensing data. Our specific goal is to observe ocean tide-induced variability in vertical ice shelf position and horizontal ice stream flow. Thus, we consider the special case where observed surface displacement at a given location can be defined by a 3-D secular velocity vector, a family of 3-D sinusoidal functions, and a correction to the digital elevation model used to process the SAR data. Using nearly 9 months of SAR data collected from multiple satellite viewing geometries with the COSMO-SkyMed 4-satellite constellation, we infer the spatiotemporal response of Rutford Ice Stream, West Antarctica, to ocean tidal forcing. Consistent with expected tidal uplift, inferred vertical motion over the ice shelf is dominated by semidiurnal and diurnal tidal constituents. Horizontal ice flow variability, on the other hand, occurs primarily at the fortnightly spring-neap tidal period (Msf). We propose that periodic grounding of the ice shelf is the primary mechanism for translating vertical tidal motion into horizontal flow variability, causing ice flow to accelerate first and most strongly over the ice shelf. Flow variations then propagate through the grounded ice stream at a mean rate of ˜29 km/d and decay quasi-linearly with distance over ˜85 km upstream of the grounding zone.
Detecting Near-Surface Ice Formation Over Time Using the Kennaugh Elements Approach From TerraSAR-X
NASA Astrophysics Data System (ADS)
Fernandes, L.
2016-12-01
The summer melting has increased substantially at higher elevations on the Canadian Arctic ice caps. The resulting meltwater percolates into the upper layers of snow and firn and then refreeze, building massive ice bodies. It seems likely that these within-firn ice bodies now limit meltwater penetration into the firn and may be creating a feedback whereby the fraction of melt that runs off to the ocean is increasing. Although changes in firn structure as presence of ice layers and ice bodies are well documented over the Devon ice cap, the firm has shown that it exerts a crucial role to predict more accurately the contribution of small ice caps to the sea level rise. However it is still challenging to assess the extent of these features within the shallow subsurface using ice cores and GPR (Ground Penetrating Radar) data collected along a limited number of linear transects. Studying changes in the distribution of ice bodies' formation over time has the potential to provide information about how the growth of ice bodies in the firn is affecting the pattern of water flow in the firn layer. The objective is investigate the potential of Kennaugh Elements (KE) derived from x-band SAR (Synthetic Aperture Radar) for mapping the distribution and growth of large ice bodies within the firn and the evolution of their distribution over time. The evaluation of this method could reveal a new approach suitable for other glacierized regions that would reduce the costs and amount of field work for studying such properties.
Gradual slowdown and thickening of Fimbulisen ice shelf, East Antarctica, over the past decade
NASA Astrophysics Data System (ADS)
van Oostveen, Jelte; Moholdt, Geir; Kääb, Andreas; Matsuoka, Kenichi
2017-04-01
Fimbulisen is a fast-flowing (up to 780±10 ma-1) ice shelf in the Dronning Maud Land region of East Antarctica. Fed by one of the few major outlet glaciers along that coast, Jutulstraumen, the ice shelf has the potential to affect the stability of a considerable part of the inland ice sheet. Here we present evidence of a slowdown and thickening of Fimbulisen over the last decade. We derive ice shelf velocities using synthetic aperture radar (SAR) data from Envisat in 2008 and Radarsat-2 in 2015. We find that the speeds of Fimbulisen have decreased by 10±2 ma-1 over the last 7 years, which is confirmed with repeated GPS stake readings from 2010-2011. The slow-down of Fimbulisen coincides with a gradual ice shelf thickening that we infer from ICESat (2003-2009) and CryoSat-2 (2010-2016) altimetry. Available surface mass balance data from Fimbulisen show no clear trends over the past decades, suggesting that ice dynamics is the main explanation for the observed thickening. Considering that Fimbulisen is in a long-term phase of advance after its main tongue calved off in 1967, it is plausible that the slowdown is cyclic and related to the longitudinal expansion of the ice shelf. In support of this theory we have found several uncharted ice rumples and stationary icebergs near the eastern front of the ice shelf, indicating the presence of shallow bathymetry that might affect the ice shelf dynamics considerably in the event of ice shelf grounding or ungrounding.
NASA Astrophysics Data System (ADS)
Addanki, Satish; Nedumaran, D.
2017-07-01
Core-Shell nanostructures play a vital role in the sensor field owing to their performance improvements in sensing characteristics and well-established synthesis procedures. These nanostructures can be ingeniously tuned to achieve tailored properties for a particular application of interest. In this work, an Ag-Au core-shell thin film nanoislands with APTMS (3-Aminopropyl trimethoxysilane) and PVA (Polyvinyl alcohol) binding agents was modeled, synthesized and characterized. The simulation results were used to fabricate the sensor through chemical route. The results of this study confirmed that the APTMS based Ag-Au core-shell thin film nanoislands offered a better performance over the PVA based Ag-Au core-shell thin film nanoislands. Also, the APTMS based Ag-Au core-shell thin film nanoislands exhibited better sensitivity towards ozone sensing over the other types, viz., APTMS/PVA based Au-Ag core-shell and standalone Au/Ag thin film nanoislands.
Modeling of Cloud/Radiation Processes for Large-Scale Clouds and Tropical Anvils
1994-05-31
Bergeron- Findeisen process. The saturation vapor pressure over ice is less than 2.4. Radiative transfer parameterization that over water. As a result, ice...nucleation to generate ice dN ) ’- if T>- -20 0C crystals, depositional growth to simulate the T•’= 0j At (3.7) Bergeron- Findeisen process, sublimation...and (0 if T< - 200C. melting of ice crystals, and gravitational settling to deplete the ice crystals. The Bergeron- Findeisen Here, N, +,,, and N, are
SmaggIce 2D Version 1.8: Software Toolkit Developed for Aerodynamic Simulation Over Iced Airfoils
NASA Technical Reports Server (NTRS)
Choo, Yung K.; Vickerman, Mary B.
2005-01-01
SmaggIce 2D version 1.8 is a software toolkit developed at the NASA Glenn Research Center that consists of tools for modeling the geometry of and generating the grids for clean and iced airfoils. Plans call for the completed SmaggIce 2D version 2.0 to streamline the entire aerodynamic simulation process--the characterization and modeling of ice shapes, grid generation, and flow simulation--and to be closely coupled with the public-domain application flow solver, WIND. Grid generated using version 1.8, however, can be used by other flow solvers. SmaggIce 2D will help researchers and engineers study the effects of ice accretion on airfoil performance, which is difficult to do with existing software tools because of complex ice shapes. Using SmaggIce 2D, when fully developed, to simulate flow over an iced airfoil will help to reduce the cost of performing flight and wind-tunnel tests for certifying aircraft in natural and simulated icing conditions.
NASA Science Flights Target Melting Arctic Sea Ice
2017-12-08
This summer, with sea ice across the Arctic Ocean shrinking to below-average levels, a NASA airborne survey of polar ice just completed its first flights. Its target: aquamarine pools of melt water on the ice surface that may be accelerating the overall sea ice retreat. NASA’s Operation IceBridge completed the first research flight of its new 2016 Arctic summer campaign on July 13. The science flights, which continue through July 25, are collecting data on sea ice in a year following a record-warm winter in the Arctic. Read more: go.nasa.gov/29T6mxc Caption: A large pool of melt water over sea ice, as seen from an Operation IceBridge flight over the Beaufort Sea on July 14, 2016. During this summer campaign, IceBridge will map the extent, frequency and depth of melt ponds like these to help scientists forecast the Arctic sea ice yearly minimum extent in September. Credit: NASA/Operation IceBridge
Antarctic Sea-Ice Freeboard and Estimated Thickness from NASA's ICESat and IceBridge Observations
NASA Technical Reports Server (NTRS)
Yi, Donghui; Kurtz, Nathan; Harbeck, Jeremy; Manizade, Serdar; Hofton, Michelle; Cornejo, Helen G.; Zwally, H. Jay; Robbins, John
2016-01-01
ICESat completed 18 observational campaigns during its lifetime from 2003 to 2009. Data from all of the 18 campaign periods are used in this study. Most of the operational periods were between 34 and 38 days long. Because of laser failure and orbit transition from 8-day to 91-day orbit, there were four periods lasting 57, 16, 23, and 12 days. IceBridge data from 2009, 2010, and 2011 are used in this study. Since 2009, there are 19 Airborne Topographic Mapper (ATM) campaigns, and eight Land, Vegetation, and Ice Sensor (LVIS) campaigns over the Antarctic sea ice. Freeboard heights are derived from ICESat, ATM and LVIS elevation and waveform data. With nominal densities of snow, water, and sea ice, combined with snow depth data from AMSR-E/AMSR2 passive microwave observation over the southern ocean, sea-ice thickness is derived from the freeboard. Combined with AMSR-E/AMSR2 ice concentration, sea-ice area and volume are also calculated. During the 2003-2009 period, sea-ice freeboard and thickness distributions show clear seasonal variations that reflect the yearly cycle of the growth and decay of the Antarctic pack ice. We found no significant trend of thickness or area for the Antarctic sea ice during the ICESat period. IceBridge sea ice freeboard and thickness data from 2009 to 2011 over the Weddell Sea and Amundsen and Bellingshausen Seas are compared with the ICESat results.
Gravity is the Key Experiment to Address the Habitability of the Ocean in Jupiter's Moon Europa
NASA Astrophysics Data System (ADS)
Sessa, A. M.; Dombard, A. J.
2013-12-01
Life requires three constituents: a liquid solvent (i.e., water), a chemical system that can form large molecules to record genetic information (e.g., carbon based) as well as chemical nutrients (e.g., nitrogen, phosphorous), and a chemical disequilibrium system that can provide metabolic energy. While it is believed that there is a saline water layer located between the rock and ice layers in Jupiter's moon Europa, which would satisfy the first requirement, it is unknown if the other conditions are currently met. The likelihood that Europa is a haven for life in our Solar System skyrockets, however, if there is currently active volcanism at the rock-water interface, much the same that volcanic processes enable the chemosynthetic life that forms the basis of deep sea-vent communities at the bottom of Earth's oceans. Exploring the volcanic activity on this interface is challenging, as direct observation via a submersible or high-resolution indirect observations via a dense global seismic network on the surface is at present technically (and fiscally!) untenable. Thus, gravity studies are the best way to explore currently the structure of this all-important interface. Though mostly a silicate body with only a relatively thin (~100 km) layer of water, Europa is different from the terrestrial planets in that this rock-water interface, and not the surface, represents the largest density contrast across the moon's near-surface layers, and thus topography on this interface could conceivably dominate the gravity. Here, we calculate the potential anomalies that arise from topography on the surface, the water-ice interface (at 20 km depth), and the rock-water interface, finding that the latter dominates the free-air gravity at the longest wavelengths (spherical harmonic degrees < 10) and the Bouguer gravity at intermediate wavelengths (degrees ~10-50), and only for the shortest wavelengths (degrees > 50) does the water-ice interface (and presumably mass-density anomalies within the ice shell) dominate the Bouguer gravity. Thus, gravity can be used to explore this interface. To test whether active volcanism can be detected, we scale gravity models for the terrestrial planets down to a body the size of Europa's silicate core and with a density contrast consistent with a rock-water interface. Here, Venus and Earth serve as proxies for volcanically active bodies, while the Moon and Mars are proxies for inactive bodies. Additionally, we create gravity from synthetic topography on the base of the ice shell. Maps of the Bouguer-gravity and geoid anomalies reveal that active volcanism is characterized by small amplitudes (a few mGal and a few meters). Large-scale topography on the base of the ice shell adds larger geoid anomalies (tens of meters) but still small gravity anomalies. The absence of volcanic activity on the rock-water interface is likely characterized by larger anomalies (tens of mGal and tens of meters), plausibly because the cooler thermal structure permits the rocky lithosphere to support larger mass-density anomalies. Thus, study of the gravity may illuminate the habitability of Europa, and gravity and topography experiments on any future mission (e.g., the Europa Clipper) should be given the highest scientific priority.
Marion, G.M.; Kargel, J.S.; Catling, D.C.; Jakubowski, S.D.
2005-01-01
Pressure plays a critical role in controlling aqueous geochemical processes in deep oceans and deep ice. The putative ocean of Europa could have pressures of 1200 bars or higher on the seafloor, a pressure not dissimilar to the deepest ocean basin on Earth (the Mariana Trench at 1100 bars of pressure). At such high pressures, chemical thermodynamic relations need to explicitly consider pressure. A number of papers have addressed the role of pressure on equilibrium constants, activity coefficients, and the activity of water. None of these models deal, however, with processes at subzero temperatures, which may be important in cold environments on Earth and other planetary bodies. The objectives of this work were to (1) incorporate a pressure dependence into an existing geochemical model parameterized for subzero temperatures (FREZCHEM), (2) validate the model, and (3) simulate pressure-dependent processes on Europa. As part of objective 1, we examined two models for quantifying the volumetric properties of liquid water at subzero temperatures: one model is based on the measured properties of supercooled water, and the other model is based on the properties of liquid water in equilibrium with ice. The relative effect of pressure on solution properties falls in the order: equilibrium constants(K) > activity coefficients (??) > activity of water (aw). The errors (%) in our model associated with these properties, however, fall in the order: ?? > K > aw. The transposition between K and ?? is due to a more accurate model for estimating K than for estimating ??. Only activity coefficients are likely to be significantly in error. However, even in this case, the errors are likely to be only in the range of 2 to 5% up to 1000 bars of pressure. Evidence based on the pressure/temperature melting of ice and salt solution densities argue in favor of the equilibrium water model, which depends on extrapolations, for characterizing the properties of liquid water in electrolyte solutions at subzero temperatures, rather than the supercooled water model. Model-derived estimates of mixed salt solution densities and chemical equilibria as a function of pressure are in reasonably good agreement with experimental measurements. To demonstrate the usefulness of this low-temperature, high-pressure model, we examined two hypothetical cases for Europa. Case 1 dealt with the ice cover of Europa, where we asked the question: How far above the putative ocean in the ice layer could we expect to find thermodynamically stable brine pockets that could serve as habitats for life? For a hypothetical nonconvecting 20 km icy shell, this potential life zone only extends 2.8 km into the icy shell before the eutectic is reached. For the case of a nonconvecting icy shell, the cold surface of Europa precludes stable aqueous phases (habitats for life) anywhere near the surface. Case 2 compared chemical equilibria at 1 bar (based on previous work) with a more realistic 1460 bars of pressure at the base of a 100 km Europan ocean. A pressure of 1460 bars, compared to 1 bar, caused a 12 K decrease in the temperature at which ice first formed and a 11 K increase in the temperature at which MgSO4. 12H2O first formed. Remarkably, there was only a 1.2 K decrease in the eutectic temperatures between 1 and 1460 bars of pressure. Chemical systems and their response to pressure depend, ultimately, on the volumetric properties of individual constituents, which makes every system response highly individualistic. Copyright ?? 2005 Elsevier Ltd.
Increased West Antarctic and unchanged East Antarctic ice discharge over the last 7 years
NASA Astrophysics Data System (ADS)
Gardner, Alex S.; Moholdt, Geir; Scambos, Ted; Fahnstock, Mark; Ligtenberg, Stefan; van den Broeke, Michiel; Nilsson, Johan
2018-02-01
Ice discharge from large ice sheets plays a direct role in determining rates of sea-level rise. We map present-day Antarctic-wide surface velocities using Landsat 7 and 8 imagery spanning 2013-2015 and compare to earlier estimates derived from synthetic aperture radar, revealing heterogeneous changes in ice flow since ˜ 2008. The new mapping provides complete coastal and inland coverage of ice velocity north of 82.4° S with a mean error of < 10 m yr-1, resulting from multiple overlapping image pairs acquired during the daylight period. Using an optimized flux gate, ice discharge from Antarctica is 1929 ± 40 Gigatons per year (Gt yr-1) in 2015, an increase of 36 ± 15 Gt yr-1 from the time of the radar mapping. Flow accelerations across the grounding lines of West Antarctica's Amundsen Sea Embayment, Getz Ice Shelf and Marguerite Bay on the western Antarctic Peninsula, account for 88 % of this increase. In contrast, glaciers draining the East Antarctic Ice Sheet have been remarkably constant over the period of observation. Including modeled rates of snow accumulation and basal melt, the Antarctic ice sheet lost ice at an average rate of 183 ± 94 Gt yr-1 between 2008 and 2015. The modest increase in ice discharge over the past 7 years is contrasted by high rates of ice sheet mass loss and distinct spatial patters of elevation lowering. The West Antarctic Ice Sheet is experiencing high rates of mass loss and displays distinct patterns of elevation lowering that point to a dynamic imbalance. We find modest increase in ice discharge over the past 7 years, which suggests that the recent pattern of mass loss in Antarctica is part of a longer-term phase of enhanced glacier flow initiated in the decades leading up to the first continent-wide radar mapping of ice flow.
Airborne Tomographic Swath Ice Sounding Processing System
NASA Technical Reports Server (NTRS)
Wu, Xiaoqing; Rodriquez, Ernesto; Freeman, Anthony; Jezek, Ken
2013-01-01
Glaciers and ice sheets modulate global sea level by storing water deposited as snow on the surface, and discharging water back into the ocean through melting. Their physical state can be characterized in terms of their mass balance and dynamics. To estimate the current ice mass balance, and to predict future changes in the motion of the Greenland and Antarctic ice sheets, it is necessary to know the ice sheet thickness and the physical conditions of the ice sheet surface and bed. This information is required at fine resolution and over extensive portions of the ice sheets. A tomographic algorithm has been developed to take raw data collected by a multiple-channel synthetic aperture sounding radar system over a polar ice sheet and convert those data into two-dimensional (2D) ice thickness measurements. Prior to this work, conventional processing techniques only provided one-dimensional ice thickness measurements along profiles.
Ice Cloud Properties in Ice-Over-Water Cloud Systems Using TRMM VIRS and TMI Data
NASA Technical Reports Server (NTRS)
Minnis, Patrick; Huang, Jianping; Lin, Bing; Yi, Yuhong; Arduini, Robert F.; Fan, Tai-Fang; Ayers, J. Kirk; Mace, Gerald G.
2007-01-01
A multi-layered cloud retrieval system (MCRS) is updated and used to estimate ice water path in maritime ice-over-water clouds using Visible and Infrared Scanner (VIRS) and TRMM Microwave Imager (TMI) measurements from the Tropical Rainfall Measuring Mission spacecraft between January and August 1998. Lookup tables of top-of-atmosphere 0.65- m reflectance are developed for ice-over-water cloud systems using radiative transfer calculations with various combinations of ice-over-water cloud layers. The liquid and ice water paths, LWP and IWP, respectively, are determined with the MCRS using these lookup tables with a combination of microwave (MW), visible (VIS), and infrared (IR) data. LWP, determined directly from the TMI MW data, is used to define the lower-level cloud properties to select the proper lookup table. The properties of the upper-level ice clouds, such as optical depth and effective size, are then derived using the Visible Infrared Solar-infrared Split-window Technique (VISST), which matches the VIRS IR, 3.9- m, and VIS data to the multilayer-cloud lookup table reflectances and a set of emittance parameterizations. Initial comparisons with surface-based radar retrievals suggest that this enhanced MCRS can significantly improve the accuracy and decrease the IWP in overlapped clouds by 42% and 13% compared to using the single-layer VISST and an earlier simplified MW-VIS-IR (MVI) differencing method, respectively, for ice-over-water cloud systems. The tropical distribution of ice-over-water clouds is the same as derived earlier from combined TMI and VIRS data, but the new values of IWP and optical depth are slightly larger than the older MVI values, and exceed those of single-layered layered clouds by 7% and 11%, respectively. The mean IWP from the MCRS is 8-14% greater than that retrieved from radar retrievals of overlapped clouds over two surface sites and the standard deviations of the differences are similar to those for single-layered clouds. Examples of a method for applying the MCRS over land without microwave data yield similar differences with the surface retrievals. By combining the MCRS with other techniques that focus primarily on optically thin cirrus over low water clouds, it will be possible to more fully assess the IWP in all conditions over ocean except for precipitating systems.
Coupled Northern Hemisphere permafrost-ice-sheet evolution over the last glacial cycle
NASA Astrophysics Data System (ADS)
Willeit, M.; Ganopolski, A.
2015-09-01
Permafrost influences a number of processes which are relevant for local and global climate. For example, it is well known that permafrost plays an important role in global carbon and methane cycles. Less is known about the interaction between permafrost and ice sheets. In this study a permafrost module is included in the Earth system model CLIMBER-2, and the coupled Northern Hemisphere (NH) permafrost-ice-sheet evolution over the last glacial cycle is explored. The model performs generally well at reproducing present-day permafrost extent and thickness. Modeled permafrost thickness is sensitive to the values of ground porosity, thermal conductivity and geothermal heat flux. Permafrost extent at the Last Glacial Maximum (LGM) agrees well with reconstructions and previous modeling estimates. Present-day permafrost thickness is far from equilibrium over deep permafrost regions. Over central Siberia and the Arctic Archipelago permafrost is presently up to 200-500 m thicker than it would be at equilibrium. In these areas, present-day permafrost depth strongly depends on the past climate history and simulations indicate that deep permafrost has a memory of surface temperature variations going back to at least 800 ka. Over the last glacial cycle permafrost has a relatively modest impact on simulated NH ice sheet volume except at LGM, when including permafrost increases ice volume by about 15 m sea level equivalent in our model. This is explained by a delayed melting of the ice base from below by the geothermal heat flux when the ice sheet sits on a porous sediment layer and permafrost has to be melted first. Permafrost affects ice sheet dynamics only when ice extends over areas covered by thick sediments, which is the case at LGM.
Pfister, Catherine A.; Roy, Kaustuv; Wootton, J. Timothy; McCoy, Sophie J.; Paine, Robert T.; Suchanek, Thomas H.; Sanford, Eric
2016-01-01
Seawater pH and the availability of carbonate ions are decreasing due to anthropogenic carbon dioxide emissions, posing challenges for calcifying marine species. Marine mussels are of particular concern given their role as foundation species worldwide. Here, we document shell growth and calcification patterns in Mytilus californianus, the California mussel, over millennial and decadal scales. By comparing shell thickness across the largest modern shells, the largest mussels collected in the 1960s–1970s and shells from two Native American midden sites (∼1000–2420 years BP), we found that modern shells are thinner overall, thinner per age category and thinner per unit length. Thus, the largest individuals of this species are calcifying less now than in the past. Comparisons of shell thickness in smaller individuals over the past 10–40 years, however, do not show significant shell thinning. Given our sampling strategy, these results are unlikely to simply reflect within-site variability or preservation effects. Review of environmental and biotic drivers known to affect shell calcification suggests declining ocean pH as a likely explanation for the observed shell thinning. Further future decreases in shell thickness could have significant negative impacts on M. californianus survival and, in turn, negatively impact the species-rich complex that occupies mussel beds. PMID:27306049
Pfister, Catherine A.; Roy, Kaustuv; Wootton, Timothy J.; McCoy, Sophie J.; Paine, Robert T.; Suchanek, Tom; Sanford, Eric
2016-01-01
Seawater pH and the availability of carbonate ions are decreasing due to anthropogenic carbon dioxide emissions, posing challenges for calcifying marine species. Marine mussels are of particular concern given their role as foundation species worldwide. Here, we document shell growth and calcification patterns in Mytilus californianus, the California mussel, over millennial and decadal scales. By comparing shell thickness across the largest modern shells, the largest mussels collected in the 1960s–1970s and shells from two Native American midden sites (∼1000–2420 years BP), we found that modern shells are thinner overall, thinner per age category and thinner per unit length. Thus, the largest individuals of this species are calcifying less now than in the past. Comparisons of shell thickness in smaller individuals over the past 10–40 years, however, do not show significant shell thinning. Given our sampling strategy, these results are unlikely to simply reflect within-site variability or preservation effects. Review of environmental and biotic drivers known to affect shell calcification suggests declining ocean pH as a likely explanation for the observed shell thinning. Further future decreases in shell thickness could have significant negative impacts on M. californianus survival and, in turn, negatively impact the species-rich complex that occupies mussel beds..
Pfister, Catherine A; Roy, Kaustuv; Wootton, J Timothy; McCoy, Sophie J; Paine, Robert T; Suchanek, Thomas H; Sanford, Eric
2016-06-15
Seawater pH and the availability of carbonate ions are decreasing due to anthropogenic carbon dioxide emissions, posing challenges for calcifying marine species. Marine mussels are of particular concern given their role as foundation species worldwide. Here, we document shell growth and calcification patterns in Mytilus californianus, the California mussel, over millennial and decadal scales. By comparing shell thickness across the largest modern shells, the largest mussels collected in the 1960s-1970s and shells from two Native American midden sites (∼1000-2420 years BP), we found that modern shells are thinner overall, thinner per age category and thinner per unit length. Thus, the largest individuals of this species are calcifying less now than in the past. Comparisons of shell thickness in smaller individuals over the past 10-40 years, however, do not show significant shell thinning. Given our sampling strategy, these results are unlikely to simply reflect within-site variability or preservation effects. Review of environmental and biotic drivers known to affect shell calcification suggests declining ocean pH as a likely explanation for the observed shell thinning. Further future decreases in shell thickness could have significant negative impacts on M. californianus survival and, in turn, negatively impact the species-rich complex that occupies mussel beds. © 2016 The Author(s).
Impacts of polar ice sheets on the East Asian monsoon during the MIS-13 interglacial
NASA Astrophysics Data System (ADS)
Shi, Feng; Yin, Qiuzhen; Nikolova, Irina; Guo, Zhengtang; Berger, Andre
2017-04-01
Among all the interglacials of the last one million years, Marine Isotope Stage (MIS) 13 has the highest δ18O value over the past 800 ka in the deep-sea sediments. This would indicate that MIS-13 is the coolest interglacial if assuming δ18O mainly represents global ice volume. The Antarctic ice core records show also that MIS-13 is the coolest interglacial over Antarctica with almost the lowest greenhouse gases concentrations (GHG). However, many proxy records from the northern hemisphere (NH) indicate that MIS-13 is at least as warm as or even warmer than the recent interglacials, with extremely strong summer monsoon and a possible melting of Greenland ice sheet. In this study, based on proxy reconstructions, different scenarios regarding the size of the Greenland and Antarctic ice sheets are made, and the response of the East Asian summer monsoon to these scenarios are tested by using the models HadCM3 and LOVECLIM as well as factor separation analysis and under the astronomical and GHG configurations of MIS-13. The results show that the influence of the disappearance of Greenland ice sheet on the surface temperature is quite localized, mainly over the northern high latitudinal regions, however, the influence of the bigger southern Hemisphere (SH) ice sheet on the surface temperature is very global, especially in the southern hemisphere. This ice sheet condition has an impact on the precipitation pattern over tropical-subtropical regions. It causes much more summer precipitation over all the East Asian monsoon region, in consistent with the paleosol record from southern China. The scenario of melted Greenland ice sheet and of larger SH ice sheets provides one of the explanations of the strong monsoon rainfall documented by the proxy data.
NASA Astrophysics Data System (ADS)
Tjernström, Michael; Sotiropoulou, Georgia; Sedlar, Joseph; Achtert, Peggy; Brooks, Barbara; Brooks, Ian; Persson, Ola; Prytherch, John; Salsbury, Dominic; Shupe, Matthew; Johnston, Paul; Wolfe, Dan
2016-04-01
With more open water present in the Arctic summer, an understanding of atmospheric processes over open-water and sea-ice surfaces as summer turns into autumn and ice starts forming becomes increasingly important. The Arctic Clouds in Summer Experiment (ACSE) was conducted in a mix of open water and sea ice in the eastern Arctic along the Siberian shelf during late summer and early autumn 2014, providing detailed observations of the seasonal transition, from melt to freeze. Measurements were taken over both ice-free and ice-covered surfaces, offering an insight to the role of the surface state in shaping the lower troposphere and the boundary-layer conditions as summer turned into autumn. During summer, strong surface inversions persisted over sea ice, while well-mixed boundary layers capped by elevated inversions were frequent over open-water. The former were often associated with advection of warm air from adjacent open-water or land surfaces, whereas the latter were due to a positive buoyancy flux from the warm ocean surface. Fog and stratus clouds often persisted over the ice, whereas low-level liquid-water clouds developed over open water. These differences largely disappeared in autumn, when mixed-phase clouds capped by elevated inversions dominated in both ice-free and ice-covered conditions. Low-level-jets occurred ~20-25% of the time in both seasons. The observations indicate that these jets were typically initiated at air-mass boundaries or along the ice edge in autumn, while in summer they appeared to be inertial oscillations initiated by partial frictional decoupling as warm air was advected in over the sea ice. The start of the autumn season was related to an abrupt change in atmospheric conditions, rather than to the gradual change in solar radiation. The autumn onset appeared as a rapid cooling of the whole atmosphere and the freeze up followed as the warm surface lost heat to the atmosphere. While the surface type had a pronounced impact on boundary-layer structure in summer, the surface was often warmer than the atmosphere in autumn, regardless of surface type. Hence the autumn boundary-layer structure was more dependent on synoptic scale meteorology.
TOLERANCE TIME OF EXPERIMENTAL THERMAL PAIN (COLD INDUCED) IN VOLUNTEERS.
Vaid, V N; Wilkhoo, N S; Jain, A K
1998-10-01
Perception of thermal pain (cold induced) was studied in 106 volunteers from troops and civilians deployed in J & K. Thermal stimulus devised was "holding ice". Tolerance time of holding ice was taken to be a measure of thermal sensitivity, volunteers were classified based on their native areas, addiction habits and socio-economic status, out of 106 volunteers, 81 could & 25 could not hold ice over 10 min. Sixteen out of 40 from coastline States and 9 out of 66 from non-coast line States failed to hold ice over 10 min. In "below average" "average" and "high average" socio-economic groups, three out of 27, 19 out of 73 and 03 out of 6 failed to hold ice over 10 min respectively. Fifteen out of 64 from "addiction habit group" and 10 out of 42 from "no addiction habit group" failed to hold ice over 10 min. Statistically no classification used in the study revealed significant difference in "tolerance times" of volunteers except the one based on coastline and non-coastline States.
NASA Astrophysics Data System (ADS)
Brucker, L.; Dinnat, E. P.; Koenig, L. S.
2014-05-01
Following the development and availability of Aquarius weekly polar-gridded products, this study presents the spatial and temporal radiometer and scatterometer observations at L band (frequency ~1.4 GHz) over the cryosphere including the Greenland and Antarctic ice sheets, sea ice in both hemispheres, and over sub-Arctic land for monitoring the soil freeze/thaw state. We provide multiple examples of scientific applications for the L-band data over the cryosphere. For example, we show that over the Greenland Ice Sheet, the unusual 2012 melt event lead to an L-band brightness temperature (TB) sustained decrease of ~5 K at horizontal polarization. Over the Antarctic ice sheet, normalized radar cross section (NRCS) observations recorded during ascending and descending orbits are significantly different, highlighting the anisotropy of the ice cover. Over sub-Arctic land, both passive and active observations show distinct values depending on the soil physical state (freeze/thaw). Aquarius sea surface salinity (SSS) retrievals in the polar waters are also presented. SSS variations could serve as an indicator of fresh water input to the ocean from the cryosphere, however the presence of sea ice often contaminates the SSS retrievals, hindering the analysis. The weekly grided Aquarius L-band products used are distributed by the US Snow and Ice Data Center at http://nsidc.org/data/aquarius/index.html , and show potential for cryospheric studies.
Changes in Arctic Sea Ice Thickness and Floe Size
NASA Astrophysics Data System (ADS)
Zhang, J.; Schweiger, A. J. B.; Stern, H. L., III; Steele, M.
2016-12-01
A thickness, floe size, and enthalpy distribution sea ice model was implemented into the Pan-arctic Ice-Ocean Modeling and Assimilation System (PIOMAS) by coupling the Zhang et al. [2015] sea ice floe size distribution (FSD) theory with the Thorndike et al. [1975] ice thickness distribution (ITD) theory in order to explicitly simulate multicategory FSD and ITD simultaneously. A range of ice thickness and floe size observations were used for model calibration and validation. The expanded, validated PIOMAS was used to study sea ice response to atmospheric and oceanic changes in the Arctic, focusing on the interannual variability and trends of ice thickness and floe size over the period 1979-2015. It is found that over the study period both ice thickness and floe size have been decreasing steadily in the Arctic. The simulated ice thickness shows considerable spatiotemporal variability in recent years. As the ice cover becomes thinner and weaker, the model simulates an increasing number of small floes (at the low end of the FSD), which affects sea ice properties, particularly in the marginal ice zone.
A comparison of radiation budgets in the Fram Strait marginal ice zone
NASA Technical Reports Server (NTRS)
Francis, Jennifer A.; Katsaros, Kristina B.; Ackerman, Thomas P.; Lind, Richard J.; Davidson, Kenneth L.
1991-01-01
Results are presented from calculations of radiation budgets for the sea-ice and the open-water regimes in the marginal ice zone (MIZ) of the Fram Strait, from measurements of surface irradiances and meteorological conditions made during the 1984 Marginal Ice Zone Experiment. Simultaneous measurements on either side of the ice edge allowed a comparison of the open-water and the sea-ice environments. The results show significant differences between the radiation budgets of the two regimes in the MIZ. The open water absorbed twice as much radiation as did the ice, and the mean cooling rate of the atmosphere over water was approximately 15 percent larger than that over ice. Calculated fluxes and atmospheric cooling rates were found to compare well with available literature data.
Heat resistant protective hand covering
NASA Technical Reports Server (NTRS)
Sidman, K. R.; Arons, I. J. (Inventor)
1984-01-01
The heat resistant, protective glove is made up of first and second shell sections which define a palm side and a backside, respectively. The first shell section is made of a twill wave fabric of a temperature-resistant aromatic polyamide fiber. The second shell section is made of a knitted fabric of a temperature-resistant aromatic polyamide fiber. The first and second shell sections are secured to one another, e.g., by sewing, to provide the desired glove configuration and an opening for insertion of the wearer's hand. The protective glove also includes a first liner section which is secured to and overlies the inner surface of the first shell section and is made of a felt fabric of a temperature-resistant aromatic polyamide fiber and has a flame resistant, elastomenic coating on the surface facing and overlying the inner surface of the first shell section.
NASA Astrophysics Data System (ADS)
Feltham, D. L.; Heorton, H. D.; Tsamados, M.
2016-12-01
The spatial distribution of Arctic sea ice arises from its deformation, driven by external momentum forcing, thermodynamic growth and melt. The deformation of Arctic sea ice is observed to have structural alignment on a broad range of length scales. By considering the alignment of diamond-shaped sea ice floes, an anisotropic rheology (known as the Elastic Anisotropic Plastic, EAP, rheology) has been developed for use in a climate sea ice model. Here we present investigations into the role of anisotropy in determining the internal ice stress gradient and the complete force balance of Arctic sea ice using a state-of-the-art climate sea ice model. Our investigations are focused on the link between external imposed dynamical forcing, predominantly the wind stress, and the emergent properties of sea ice, including its drift speed and thickness distribution. We analyse the characteristics of deformation events for different sea ice states and anisotropic alignment over different regions of the Arctic Ocean. We present the full seasonal stress balance and sea ice state over the Arctic ocean. We have performed 10 km basin-scale simulations over a 30-year time scale, and 2 km and 500 m resolution simulations in an idealised configuration. The anisotropic EAP sea ice rheology gives higher shear stresses than the more customary isotropic EVP rheology, and these reduce ice drift speed and mechanical thickening, particularly important in the Archipelago. In the central Arctic the circulation of sea ice is reduced allowing it to grow thicker thermodynamically. The emergent stress-strain rate correlations from the EAP model suggest that it is possible to characterise the internal ice stresses of Arctic sea ice from observable basin-wide deformation and drift patterns.
Willard, R; Packard, G C; Packard, M J; Tucker, J K
2000-11-01
Hatchlings of the North American painted turtle (Chrysemys picta) spend their first winter of life inside a shallow, subterranean hibernaculum (the natal nest) where they may be exposed for extended periods to ice and cold. Hatchlings seemingly survive exposure to such conditions by becoming supercooled (i.e., by remaining unfrozen at temperatures below the equilibrium freezing point for body fluids), so we investigated the role of their integument in preventing ice from penetrating into body compartments from surrounding soil. We first showed that hatchlings whose epidermis has been damaged are more likely to be penetrated by growing crystals of ice than are turtles whose cutaneous barrier is intact. We next studied integument from a forelimb by light microscopy and discovered that the basal part of the alpha-keratin layer of the epidermis contains a dense layer of lipid. Skin from the forelimb of other neonatal turtles lacks such a layer of lipid in the epidermis, and these other turtles also are highly susceptible to inoculative freezing. Moreover, epidermis from the neck of hatchling painted turtles lacks the lipid layer, and this region of the skin is readily penetrated by growing crystals of ice. We therefore conclude that the resistance to inoculation imposed by skin on the limbs of hatchling painted turtles results from the presence of lipids in the alpha-keratin layer of the epidermis. Neonates apparently are able to avoid freezing during winter by drawing much of the body inside the shell, leaving only the ice-resistant integument of the limbs exposed to ice in the environment. The combination of behavior and skin morphology enables overwintering hatchlings to exploit an adaptive strategy based on supercooling. Copyright 2000 Wiley-Liss, Inc.
Variability of Arctic Sea Ice as Viewed from Space
NASA Technical Reports Server (NTRS)
Parkinson, Claire L.
1998-01-01
Over the past 20 years, satellite passive-microwave radiometry has provided a marvelous means for obtaining information about the variability of the Arctic sea ice cover and particularly about sea ice concentrations (% areal coverages) and from them ice extents and the lengths of the sea ice season. This ability derives from the sharp contrast between the microwave emissions of sea ice versus liquid water and allows routine monitoring of the vast Arctic sea ice cover, which typically varies in extent from a minimum of about 8,000,000 sq km in September to a maximum of about 15,000,000 sq km in March, the latter value being over 1.5 times the area of either the United States or Canada. The vast Arctic ice cover has many impacts, including hindering heat, mass, and y momentum exchanges between the oceans and the atmosphere, reducing the amount of solar radiation absorbed at the Earth's surface, affecting freshwater transports and ocean circulation, and serving as a vital surface for many species of polar animals. These direct impacts also lead to indirect impacts, including effects on local and perhaps global atmospheric temperatures, effects that are being examined in general circulation modeling studies, where preliminary results indicate that changes on the order of a few percent sea ice concentration can lead to temperature changes of 1 K or greater even in local areas outside of the sea ice region. Satellite passive-microwave data for November 1978 through December 1996 reveal marked regional and interannual variabilities in both the ice extents and the lengths of the sea ice season, as well as some statistically significant trends. For the north polar ice cover as a whole, maximum ice extents varied over a range of 14,700,000 - 15,900,000 km(2), while individual regions showed much greater percentage variations, e.g., with the Greenland Sea experiencing a range of 740,000 - 1,1110,000 km(2) in its yearly maximum ice coverage. Although variations from year to year and region to region are large, overall the Arctic ice extents did show a statistically significant, 2.8%/ decade negative trend over the 18.2-year period. Ice season lengths, which vary from only a few weeks near the ice margins to the full year in the large region of perennial ice coverage, also experienced interannual variability, and mapping their trends allows detailed geographic information on exactly where the ice season lengthened and where it shortened. Over the 18 years, ice season lengthening occurred predominantly in the western hemisphere and was strongest in the western Labrador Sea, while ice season shortening occurred predominantly in the eastern hemisphere and was strongest in the eastern Barents Sea. Much information about other important Arctic sea ice variables has also been obtained from satellite data, including information about melt ponding, temperature, snow cover, and ice velocities. For instance, maps of ice velocities have now been made from satellite scatterometry data, including information about melt ponding, temperature, snow cover, and ice velocities.
Laser Altimetry Sampling Strategies over Sea Ice
NASA Technical Reports Server (NTRS)
Farrell, Sinead L.; Markus, Thorsten; Kwok, Ron; Connor, Laurence
2011-01-01
With the conclusion of the science phase of the Ice, Cloud and land Elevation Satellite (ICESat) mission in late 2009, and the planned launch of ICESat-2 in late 2015, NASA has recently established the IceBridge program to provide continuity between missions. A major goal of IceBridge is to obtain a sea-ice thickness time series via airborne surveys over the Arctic and Southern Oceans. Typically two laser altimeters, the Airborne Topographic Mapper (ATM) and the Land, Vegetation and Ice Sensor (LVIS), are utilized during IceBridge flights. Using laser altimetry simulations of conventional analogue systems such as ICESat, LVIS and ATM, with the multi-beam system proposed for ICESat-2, we investigate differences in measurements gathered at varying spatial resolutions and the impact on sea-ice freeboard. We assess the ability of each system to reproduce the elevation distributions of two seaice models and discuss potential biases in lead detection and sea-surface elevation, arising from variable footprint size and spacing. The conventional systems accurately reproduce mean freeboard over 25km length scales, while ICESat-2 offers considerable improvements over its predecessor ICESat. In particular, its dense along-track sampling of the surface will allow flexibility in the algorithmic approaches taken to optimize the signal-to-noise ratio for accurate and precise freeboard retrieval.
2014-11-10
NASA’s Operation IceBridge collected some rare images on a flight out of Punta Arenas, Chile on Nov. 5, 2014, on a science flight over western Antarctica dubbed Ferrigno-Alison-Abbott 01. Following a routine calibration pass over Punta Arenas airport, the NASA DC-8 overflew the USS Constellation which is being towed for demolition after 53 yeas of service. The crew then snapped a few shots of a calving front of the Antarctic ice sheet. This particular flight plan was designed to collect data on changes in ice elevation along the coast near the Ferrigno and Alison ice streams, on the Abbot Ice Shelf, and grounded ice along the Eights Coast.
NASA Astrophysics Data System (ADS)
Winebrenner, D. P.; Kintner, P. M. S.; MacGregor, J. A.
2017-12-01
Over deep Antarctic subglacial lakes, spatially varying ice thickness and the pressure-dependent melting point of ice result in areas of melting and accretion at the ice-water interface, i.e., the lake lid. These ice mass fluxes drive lake circulation and, because basal Antarctic ice contains air-clathrate, affect the input of oxygen to the lake, with implications for subglacial life. Inferences of melting and accretion from radar-layer tracking and geodesy are limited in spatial coverage and resolution. Here we develop a new method to estimate rates of accretion, melting, and the resulting oxygen input at a lake lid, using airborne radar data over Lake Vostok together with ice-temperature and chemistry data from the Vostok ice core. Because the lake lid is a coherent reflector of known reflectivity (at our radar frequency), we can infer depth-averaged radiowave attenuation in the ice, with spatial resolution 1 km along flight lines. Spatial variation in attenuation depends mostly on variation in ice temperature near the lid, which in turn varies strongly with ice mass flux at the lid. We model ice temperature versus depth with ice mass flux as a parameter, thus linking that flux to (observed) depth-averaged attenuation. The resulting map of melt- and accretion-rates independently reproduces features known from earlier studies, but now covers the entire lid. We find that accretion is dominant when integrated over the lid, with an ice imbalance of 0.05 to 0.07 km3 a-1, which is robust against uncertainties.
Thinning of the ice sheet in northwest Greenland over the past forty years.
Paterson, W S; Reeh, N
2001-11-01
Thermal expansion of the oceans, as well as melting of glaciers, ice sheets and ice caps have been the main contributors to global sea level rise over the past century. The greatest uncertainty in predicting future sea level changes lies with our estimates of the mass balance of the ice sheets in Greenland and Antarctica. Satellite measurements have been used to determine changes in these ice sheets on short timescales, demonstrating that surface-elevation changes on timescales of decades or less result mainly from variations in snow accumulation. Here we present direct measurements of the changes in surface elevation between 1954 and 1995 on a traverse across the north Greenland ice sheet. Measurements over a time interval of this length should reflect changes in ice flow-the important quantity for predicting changes in sea level-relatively unperturbed by short-term fluctuations in snow accumulation. We find only small changes in the eastern part of the transect, except for some thickening of the north ice stream. On the west side, however, the thinning rates of the ice sheet are significantly higher and thinning extends to higher elevations than had been anticipated from previous studies.
2012-11-01
Low-lying clouds over sea ice on the Bellingshausen Sea. Credit: NASA / Maria-Jose Vinas NASA's Operation IceBridge is an airborne science mission to study Earth's polar ice. For more information about IceBridge, visit: www.nasa.gov/icebridge NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Seasonal sea ice predictions for the Arctic based on assimilation of remotely sensed observations
NASA Astrophysics Data System (ADS)
Kauker, F.; Kaminski, T.; Ricker, R.; Toudal-Pedersen, L.; Dybkjaer, G.; Melsheimer, C.; Eastwood, S.; Sumata, H.; Karcher, M.; Gerdes, R.
2015-10-01
The recent thinning and shrinking of the Arctic sea ice cover has increased the interest in seasonal sea ice forecasts. Typical tools for such forecasts are numerical models of the coupled ocean sea ice system such as the North Atlantic/Arctic Ocean Sea Ice Model (NAOSIM). The model uses as input the initial state of the system and the atmospheric boundary condition over the forecasting period. This study investigates the potential of remotely sensed ice thickness observations in constraining the initial model state. For this purpose it employs a variational assimilation system around NAOSIM and the Alfred Wegener Institute's CryoSat-2 ice thickness product in conjunction with the University of Bremen's snow depth product and the OSI SAF ice concentration and sea surface temperature products. We investigate the skill of predictions of the summer ice conditions starting in March for three different years. Straightforward assimilation of the above combination of data streams results in slight improvements over some regions (especially in the Beaufort Sea) but degrades the over-all fit to independent observations. A considerable enhancement of forecast skill is demonstrated for a bias correction scheme for the CryoSat-2 ice thickness product that uses a spatially varying scaling factor.
Unusual ice diamicts emplaced during the December 15, 1989 eruption of redoubt volcano, Alaska
Waitt, R.B.; Gardner, C.A.; Pierson, T.C.; Major, J.J.; Neal, C.A.
1994-01-01
Ice diamict comprising clasts of glacier ice and subordinate rock debris in a matrix of ice (snow) grains, coarse ash, and frozen pore water was deposited during the eruption of Redoubt Volcano on December 15, 1989. Rounded clasts of glacier ice and snowpack are as large as 2.5 m, clasts of Redoubt andesite and basement crystalline rocks reach 1 m, and tabular clasts of entrained snowpack are as long as 10 m. Ice diamict was deposited on both the north and south volcano flanks. On Redoubt's north flank along the east side of Drift piedmont glacier and outwash valley, ice diamict accumulated as at least 3 units, each 1-5 m thick. Two ice-diamict layers underlie a pumice-lithic fall tephra that accumulated on December 15 from 10:15 to 11:45 AST. A third ice diamict overlies the pumiceous tephra. Some of the ice diamicts have a basal 'ice-sandstone' layer. The north side icy flows reached as far as 14 km laterally over an altitude drop of 2.3 km and covered an area of about 5.7 km2. On Crescent Glacier on the south volcano flank, a composite ice diamict is locally as thick as 20 m. It travelled 4.3 km over an altitude drop of 1.7 km, covering about 1 km2. The much higher mobility of the northside flows was influenced by their much higher water contents than the southside flow(s). Erupting hot juvenile andesite triggered and turbulently mixed with snow avalanches at snow-covered glacier heads. These flows rapidly entrained more snow, firn, and ice blocks from the crevassed glacier. On the north flank, a trailing watery phase of each ice-diamict flow swept over and terraced the new icy deposits. The last (and perhaps each) flood reworked valley-floor snowpack and swept 35 km downvalley to the sea. Ice diamict did not form during eruptions after December 15 despite intervening snowfalls. These later pyroclastic flows swept mainly over glacier ice rather than snowpack and generated laharic floods rather than snowflows. Similar flows of mixed ice grains and pyroclastic debris resulted from the November 13, 1985 eruption of Nevado del Ruiz volcano and from eruptions of snowclad Mount St. Helens in 1982-1984. Such deposits at snowclad volcanoes are initially broad and geomorphically distinct, but they soon become extensively reworked and hard to recognize in the geologic record. ?? 1994.
The Discourse of the Middle Ground: Citizen Shell Commits to Sustainable Development.
ERIC Educational Resources Information Center
Livesey, Sharon M.
2002-01-01
Uses Foucauldian theory to interpret the Royal Dutch/Shell Group's first annual "report to society" and an expository text by Shell's expert consultant. Analyzes the document and the emerging phenomenon of social reporting in the context of a larger sociopolitical struggle over sustainable development. Reveals how Shell both accommodated…
NASA Astrophysics Data System (ADS)
Norris, Sophie L.; Evans, David J. A.; Cofaigh, Colm Ó.
2018-04-01
A multidimensional study, utilising geomorphological mapping and the analysis of regional borehole stratigraphy, is employed to elucidate the regional till architecture of terrestrial palaeo-ice streams relating to the Late Wisconsinan southwest Laurentide Ice Sheet. Detailed mapping over a 57,400 km2 area of southwestern Saskatchewan confirms previous reconstructions of a former southerly flowing ice stream, demarcated by a 800 km long corridor of megaflutes and mega-scale glacial lineations (Ice Stream 1) and cross cut by three, formerly southeast flowing ice streams (Ice Streams 2A, B and C). Analysis of the lithologic and geophysical characteristics of 197 borehole samples within these corridors reveals 17 stratigraphic units comprising multiple tills and associated stratified sediments overlying preglacial deposits, the till thicknesses varying with both topography and distance down corridor. Reconciling this regional till architecture with the surficial geomorphology reveals that surficial units are spatially consistent with a dynamic switch in flow direction, recorded by the cross cutting corridors of Ice Streams 1, 2A, B and C. The general thickening of tills towards lobate ice stream margins is consistent with subglacial deformation theory and variations in this pattern on a more localised scale are attributed to influences of subglacial topography including thickening at buried valley margins, thinning over uplands and thickening in overridden ice-marginal landforms.
Multi-decadal Arctic sea ice roughness.
NASA Astrophysics Data System (ADS)
Tsamados, M.; Stroeve, J.; Kharbouche, S.; Muller, J. P., , Prof; Nolin, A. W.; Petty, A.; Haas, C.; Girard-Ardhuin, F.; Landy, J.
2017-12-01
The transformation of Arctic sea ice from mainly perennial, multi-year ice to a seasonal, first-year ice is believed to have been accompanied by a reduction of the roughness of the ice cover surface. This smoothening effect has been shown to (i) modify the momentum and heat transfer between the atmosphere and ocean, (ii) to alter the ice thickness distribution which in turn controls the snow and melt pond repartition over the ice cover, and (iii) to bias airborne and satellite remote sensing measurements that depend on the scattering and reflective characteristics over the sea ice surface topography. We will review existing and novel remote sensing methodologies proposed to estimate sea ice roughness, ranging from airborne LIDAR measurement (ie Operation IceBridge), to backscatter coefficients from scatterometers (ASCAT, QUICKSCAT), to multi angle maging spectroradiometer (MISR), and to laser (Icesat) and radar altimeters (Envisat, Cryosat, Altika, Sentinel-3). We will show that by comparing and cross-calibrating these different products we can offer a consistent multi-mission, multi-decadal view of the declining sea ice roughness. Implications for sea ice physics, climate and remote sensing will also be discussed.
Determination of HCME 3-D parameters using a full ice-cream cone model
NASA Astrophysics Data System (ADS)
Na, Hyeonock; Moon, Yong-Jae; Lee, Harim
2016-05-01
It is very essential to determine three dimensional parameters (e.g., radial speed, angular width, source location) of Coronal Mass Ejections (CMEs) for space weather forecast. Several cone models (e.g., an elliptical cone model, an ice-cream cone model, an asymmetric cone model) have been examined to estimate these parameters. In this study, we investigate which cone type is close to a halo CME morphology using 26 CMEs: halo CMEs by one spacecraft (SOHO or STEREO-A or B) and as limb CMEs by the other ones. From cone shape parameters of these CMEs such as their front curvature, we find that near full ice-cream cone type CMEs are much closer to observations than shallow ice-cream cone type CMEs. Thus we develop a new cone model in which a full ice-cream cone consists of many flat cones with different heights and angular widths. This model is carried out by the following steps: (1) construct a cone for given height and angular width, (2) project the cone onto the sky plane, (3) select points comprising the outer boundary, and (4) minimize the difference between the estimated projection speeds with the observed ones. By applying this model to 12 SOHO/LASCO halo CMEs, we find that 3-D parameters from our method are similar to those from other stereoscopic methods (a geometrical triangulation method and a Graduated Cylindrical Shell model) based on multi-spacecraft data. We are developing a general ice-cream cone model whose front shape is a free parameter determined by observations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Charnawskas, Joseph C.; Alpert, Peter A.; Lambe, Andrew
Anthropogenic and biogenic gas emissions contribute to the formation of secondary organic aerosol (SOA). When present, soot particles from fossil-fuel combustion can acquire a coating of SOA. We investigate SOA-soot biogenic-anthropogenic interactions and their impact on ice nucleation in relation to the particles’ organic phase state. SOA particles were generated from the OH oxidation of naphthalene, α-pinene, longifolene, or isoprene, with or without presence of sulfate or soot particles. Corresponding particle glass transition (T g) and full deliquescence relative humidity (FDRH) were estimated by a numerical diffusion model. Longifolene SOA particles are solid-like and all biogenic SOA sulfate mixtures exhibitmore » a core-shell configuration (i.e. a sulfate-rich core coated with SOA). Biogenic SOA with or without sulfate formed ice at conditions expected for homogeneous ice nucleation in agreement with respective T g and FDRH. α-pinene SOA coated soot particles nucleated ice above the homogeneous freezing temperature with soot acting as ice nuclei (IN). At lower temperatures the α-pinene SOA coating can be semisolid inducing ice nucleation. Naphthalene SOA coated soot particles acted as IN above and below the homogeneous freezing limit, which can be explained by the presence of a highly viscous SOA phase. Our results suggest that biogenic SOA does not play a significant role in mixed-phase cloud formation and the presence of sulfate further renders this even less likely. Furthermore, anthropogenic SOA may have an enhancing effect on cloud glaciation under mixed-phase and cirrus cloud conditions compared to biogenic SOA that dominate during preindustrial times or in pristine areas.« less
Condensed-phase biogenic-anthropogenic interactions with implications for cold cloud formation
Charnawskas, Joseph C.; Alpert, Peter A.; Lambe, Andrew; ...
2017-01-24
Anthropogenic and biogenic gas emissions contribute to the formation of secondary organic aerosol (SOA). When present, soot particles from fossil-fuel combustion can acquire a coating of SOA. We investigate SOA-soot biogenic-anthropogenic interactions and their impact on ice nucleation in relation to the particles’ organic phase state. SOA particles were generated from the OH oxidation of naphthalene, α-pinene, longifolene, or isoprene, with or without presence of sulfate or soot particles. Corresponding particle glass transition (T g) and full deliquescence relative humidity (FDRH) were estimated by a numerical diffusion model. Longifolene SOA particles are solid-like and all biogenic SOA sulfate mixtures exhibitmore » a core-shell configuration (i.e. a sulfate-rich core coated with SOA). Biogenic SOA with or without sulfate formed ice at conditions expected for homogeneous ice nucleation in agreement with respective T g and FDRH. α-pinene SOA coated soot particles nucleated ice above the homogeneous freezing temperature with soot acting as ice nuclei (IN). At lower temperatures the α-pinene SOA coating can be semisolid inducing ice nucleation. Naphthalene SOA coated soot particles acted as IN above and below the homogeneous freezing limit, which can be explained by the presence of a highly viscous SOA phase. Our results suggest that biogenic SOA does not play a significant role in mixed-phase cloud formation and the presence of sulfate further renders this even less likely. Furthermore, anthropogenic SOA may have an enhancing effect on cloud glaciation under mixed-phase and cirrus cloud conditions compared to biogenic SOA that dominate during preindustrial times or in pristine areas.« less
http://www.nasa.gov/image-feature/goddard/hubble-spots-the-layers-of-ngc-3923
2015-05-15
The glowing object in this Hubble Space Telescope image is an elliptical galaxy called NGC 3923. It is located over 90 million light-years away in the constellation of Hydra. NGC 3923 is an example of a shell galaxy where the stars in its halo are arranged in layers. Finding concentric shells of stars enclosing a galaxy is quite common and is observed in many elliptical galaxies. In fact, every tenth elliptical galaxy exhibits this onion-like structure, which has never been observed in spiral galaxies. The shell-like structures are thought to develop as a consequence of galactic cannibalism, when a larger galaxy ingests a smaller companion. As the two centers approach, they initially oscillate about a common center, and this oscillation ripples outwards forming the shells of stars just as ripples on a pond spread when the surface is disturbed. NGC 3923 has over twenty shells, with only a few of the outer ones visible in this image, and its shells are much more subtle than those of other shell galaxies. The shells of this galaxy are also interestingly symmetrical, while other shell galaxies are more skewed. Credit: ESA/Hubble & NASA
The importance of dissolved salts to the in vivo efficacy of antifreeze proteins.
Evans, Robert P; Hobbs, Rod S; Goddard, Sally V; Fletcher, Garth L
2007-11-01
Antifreeze proteins (AFP) and antifreeze glycoproteins (AFGP) lower the freezing point of marine fish plasma non-colligatively by specifically adsorbing to certain surfaces of ice crystals, modifying their structure and inhibiting further growth. While the freezing point is lowered, the melting point is unaltered and the difference between the two is termed thermal hysteresis (TH). In pure water, the level of TH is directly related to the intrinsic activity of the specific AF(G)P in solution and to their concentration. Results of this study indicate that when AF(G)P are dissolved in salt solutions, such as NaCl, encompassing the range they could encounter in nature, there is a synergistic enhancement of basal TH that is positively related to the salt concentration. This enhancement is likely a result of the hydration shell surrounding the dissolved ions and, as a consequence, reducing freezable water. A secondary reason for the enhancement is that the salt could be influencing the hydration shell surrounding the AF(G)P, increasing their solubility and thus the protein surface area available to adsorb to the ice/water interface. The former hypothesis for the salt enhanced TH has implications for the in vivo function of AF(G)P, particularly at the seawater/external epithelia (gills, skin, stomach) interface. The latter hypothesis is likely only relevant to in vitro situations where freeze dried protein is dissolved in low salt solutions.
Regan, S. P.; Epstein, R.; Hammel, B. A.; ...
2012-03-30
Ignition of an inertial confinement fusion (ICF) target depends on the formation of a central hot spot with sufficient temperature and areal density. Radiative and conductive losses from the hot spot can be enhanced by hydrodynamic instabilities. The concentric spherical layers of current National Ignition Facility (NIF) ignition targets consist of a plastic ablator surrounding 2 a thin shell of cryogenic thermonuclear fuel (i.e., hydrogen isotopes), with fuel vapor filling the interior volume. The Rev. 5 ablator is doped with Ge to minimize preheat of the ablator closest to the DT ice caused by Au M-band emission from the hohlraummore » x-ray drive. Richtmyer–Meshkov and Rayleigh–Taylor hydrodynamic instabilities seeded by high-mode (50 < t < 200) ablator-surface perturbations can cause Ge-doped ablator to mix into the interior of the shell at the end of the acceleration phase. As the shell decelerates, it compresses the fuel vapor, forming a hot spot. K-shell line emission from the ionized Ge that has penetrated into the hot spot provides an experimental signature of hot-spot mix. The Ge emission from tritium–hydrogen–deuterium (THD) and DT cryogenic targets and gas-filled plastic shell capsules, which replace the THD layer with a massequivalent CH layer, was examined. The inferred amount of hot-spot mix mass, estimated from the Ge K-shell line brightness using a detailed atomic physics code, is typically below the 75 ng allowance for hot-spot mix. Furthermore, predictions of a simple mix model, based on linear growth of the measured surface-mass modulations, are consistent with the experimental results.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Regan, S. P.; Epstein, R.; Hammel, B. A.
Ignition of an inertial confinement fusion (ICF) target depends on the formation of a central hot spot with sufficient temperature and areal density. Radiative and conductive losses from the hot spot can be enhanced by hydrodynamic instabilities. The concentric spherical layers of current National Ignition Facility (NIF) ignition targets consist of a plastic ablator surrounding 2 a thin shell of cryogenic thermonuclear fuel (i.e., hydrogen isotopes), with fuel vapor filling the interior volume. The Rev. 5 ablator is doped with Ge to minimize preheat of the ablator closest to the DT ice caused by Au M-band emission from the hohlraummore » x-ray drive. Richtmyer–Meshkov and Rayleigh–Taylor hydrodynamic instabilities seeded by high-mode (50 < t < 200) ablator-surface perturbations can cause Ge-doped ablator to mix into the interior of the shell at the end of the acceleration phase. As the shell decelerates, it compresses the fuel vapor, forming a hot spot. K-shell line emission from the ionized Ge that has penetrated into the hot spot provides an experimental signature of hot-spot mix. The Ge emission from tritium–hydrogen–deuterium (THD) and DT cryogenic targets and gas-filled plastic shell capsules, which replace the THD layer with a massequivalent CH layer, was examined. The inferred amount of hot-spot mix mass, estimated from the Ge K-shell line brightness using a detailed atomic physics code, is typically below the 75 ng allowance for hot-spot mix. Furthermore, predictions of a simple mix model, based on linear growth of the measured surface-mass modulations, are consistent with the experimental results.« less
Towards development of an operational snow on sea ice product
NASA Astrophysics Data System (ADS)
Stroeve, J.; Liston, G. E.; Barrett, A. P.; Tschudi, M. A.; Stewart, S.
2017-12-01
Sea ice has been visibly changing over the past couple of decades; most notably the annual minimum extent which has shown a distinct downward, and recently accelerating, trend. September mean sea ice extent was over 7×106 km2 in the 1980's, but has averaged less than 5×106 km2 in the last decade. Should this loss continue, there will be wide-ranging impacts on marine ecosystems, coastal communities, prospects for resource extraction and marine activity, and weather conditions in the Arctic and beyond. While changes in the spatial extent of sea ice have been routinely monitored since the 1970s, less is known about how the thickness of the ice cover has changed. While estimates of ice thickness across the Arctic Ocean have become available over the past 20 years based on data from ERS-1/2, Envisat, ICESat, CryoSat-2 satellites and Operation IceBridge aircraft campaigns, the variety of these different measurement approaches, sensor technologies and spatial coverage present formidable challenges. Key among these is that measurement techniques do not measure ice thickness directly - retrievals also require snow depth and density. Towards that end, a sophisticated snow accumulation model is tested in a Lagrangian framework to map daily snow depths across the Arctic sea ice cover using atmospheric reanalysis data as input. Accuracy of the snow accumulation is assessed through comparison with Operation IceBridge data and ice mass balance buoys (IMBs). Impacts on ice thickness retrievals are further discussed.
Biological Ice Nuclei: They are Everywhere, What are Their Roles? (Invited)
NASA Astrophysics Data System (ADS)
Schnell, R. C.
2009-12-01
Biological ice nuclei active at temperatures warmer than -2C were first observed in the late 1960s associated with decaying grass and tree leaves; discovered more by accident than in a planned experiment. The active component of the decaying leaves was subsequently found to be produced by a few living bacteria, the two most ubiquitous being strains of P. syringae and E. herbicola. The active bacterial ice nuclei are easily deactivated by anaerobic, chemical and heat stresses. The same grass and tree leaves, when well decayed, generally contain less active ice nuclei (threshold temperatures of -5C to - 6C) in the 0.1 micron diameter range compared to the larger (1 micron) bacteria associated ice nuclei. The well decayed leaf litter ice nuclei are stable over a wide range of stresses and time; some samples of leaf derived nuclei stored at room temperature have exhibited the same ice nucleus concentration for over 30 years. Fungi also have active ice nuclei that are stable over many decades. Active ice nuclei are found in marine waters associated with plankton, and are produced by at least one marine dinoflagellate (Heterocapsa niei) that expresses ice nucleus activity almost as warm as terrestrial bacteria ice nuclei. Living ice nucleus bacteria have been found in marine fogs far at sea, in precipitation in Antarctica as well as over many continental areas, in air in the high Arctic, on vegetation around the world, on remote ice bound islands, and growing on and inside water storing vegetation on isolated tropical mountain peaks. But why? What is the evolutionary advantage for the ice nucleus gene to be expressed in such a wide range of environments, by greatly different species? There is an energy cost for bacteria and fungi to support the ice gene, so it probably is not a genetic anomaly. Possibly the ice nuclei play many roles? These could include damaging plants to acquire a food source, an aid in survival and dispersal in clouds, initiation of precipitation to help plant growth, initiating ice formation and subsequent scavenging of water vapor in cold climates (e.g. Arctic and high elevation lichen), living in symbiosis with high elevation vegetation that freezes nightly, and probably a range of others we have not observed or yet hypothesized. Bacterial ice nucleation is truly an intriguing and fantastic phenomenon for which we have just begun to understand.
NASA Astrophysics Data System (ADS)
Koenig, Zoé; Provost, Christine; Villacieros-Robineau, Nicolas; Sennéchael, Nathalie; Meyer, Amelie
2016-10-01
IAOOS (Ice Atmosphere Arctic Ocean Observing System) platforms, measuring physical parameters at the atmosphere-snow-ice-ocean interface deployed as part of the N-ICE2015 campaign, provide new insights on winter conditions North of Svalbard. The three regions crossed during the drifts, the Nansen Basin, the Sofia Deep, and the Svalbard northern continental slope featured distinct hydrographic properties and ice-ocean exchanges. In the Nansen Basin, the quiescent warm layer was capped by a stepped halocline (60 and 110 m) and a deep thermocline (110 m). Ice was forming and the winter mixed layer salinity was larger by ˜0.1 g/kg than previously observed. Over the Svalbard continental slope, the Atlantic Water (AW) was very shallow (20 m from the surface) and extended offshore from the 500 m isobath by a distance of about 70 km, sank along the slope (40 m from the surface) and probably shed eddies into the Sofia Deep. In the Sofia Deep, relatively warm waters of Atlantic origin extended from 90 m downward. Resulting from different pathways, these waters had a wide range of hydrographic characteristics. Sea-ice melt was widespread over the Svalbard continental slope and ocean-to-ice heat fluxes reached values of 400 W m-2 (mean of ˜150 W m-2 over the continental slope). Sea-ice melt events were associated with near 12 h fluctuations in the mixed-layer temperature and salinity corresponding to the periodicity of tides and near-inertial waves potentially generated by winter storms, large barotropic tides over steep topography, and/or geostrophic adjustments.
NASA Astrophysics Data System (ADS)
Vallot, Dorothée; Applegate, Patrick; Pettersson, Rickard
2013-04-01
Projecting future climate and ice sheet development requires sophisticated models and extensive field observations. Given the present state of our knowledge, it is very difficult to say what will happen with certainty. Despite the ongoing increase in atmospheric greenhouse gas concentrations, the possibility that a new ice sheet might form over Scandinavia in the far distant future cannot be excluded. The growth of a new Scandinavian Ice Sheet would have important consequences for buried nuclear waste repositories. The Greenland Analogue Project, initiated by the Swedish Nuclear Fuel and Waste Management Company (SKB), is working to assess the effects of a possible future ice sheet on groundwater flow by studying a constrained domain in Western Greenland by field measurements (including deep bedrock drilling in front of the ice sheet) combined with numerical modeling. To address the needs of the GAP project, we interpolated results from an ensemble of ice sheet model runs to the smaller and more finely resolved modeling domain used in the GAP project's hydrologic modeling. Three runs have been chosen with three fairly different positive degree-day factors among those that reproduced the modern ice margin at the borehole position. The interpolated results describe changes in hydrologically-relevant variables over two time periods, 115 ka to 80 ka, and 20 ka to 1 ka. In the first of these time periods, the ice margin advances over the model domain; in the second time period, the ice margin retreats over the model domain. The spatially-and temporally dependent variables that we treated include the ice thickness, basal melting rate, surface mass balance, basal temperature, basal thermal regime (frozen or thawed), surface temperature, and basal water pressure. The melt flux is also calculated.
Spatial patterns in the length of the sea ice season in the Southern Ocean, 1979-1986
NASA Technical Reports Server (NTRS)
Parkinson, Claire L.
1994-01-01
The length of the sea ice season summarizes in one number the ice coverage conditions for an individual location for an entire year. It becomes a particularly valuable variable when mapped spatially over a large area and examined for regional and interannual differences, as is done here for the Southern Ocean over the years 1979-1986, using the satellite passive microwave data of the Nimbus 7 scanning multichannel microwave radiometer. Three prominent geographic anomalies in ice season lengths occur consistently in each year of the data set, countering the general tendency toward shorter ice seasons from south to north: (1) in the Weddell Sea the tendency is toward shorter ice seasons from southwest to northeast, reflective of the cyclonic ice/atmosphere/ocean circulations in the Weddell Sea region. (2) Directly north of the Ross Ice Shelf anomalously short ice seasons occur, lasting only 245-270 days, in contrast to the perennial ice coverage at comparable latitudes in the southern Bellingshausen and Amundsen Seas and in the western Weddell Sea. The short ice season off the Ross Ice Shelf reflects the consistently early opening of the ice cover each spring, under the influence of upwelling along the continental slope and shelf and atmospheric forcing from winds blowing off the Antarctic continent. (3) In the southern Amundsen Sea, anomalously short ice seasons occur adjacent to the coast, owing to the frequent existence of coastal polynyas off the many small ice shelves bordering the sea. Least squares trends in the ice season lengths over the 1979-1986 period are highly coherent spatially, with overall trends toward shorter ice seasons in the northern Weddell and Bellingshausen seas and toward longer ice seasons in the Ross Sea, around much of East Antarctica, and in a portion of the south central Weddell Sea.
Spatial patterns in the length of the sea ice season in the Southern Ocean, 1979-1986
NASA Astrophysics Data System (ADS)
Parkinson, Claire L.
1994-08-01
The length of the sea ice season summarizes in one number the ice coverage conditions for an individual location for an entire year. It becomes a particularly valuable variable when mapped spatially over a large area and examined for regional and interannual differences, as is done here for the Southern Ocean over the years 1979-1986, using the satellite passive microwave data of the Nimbus 7 scanning multichannel microwave radiometer. Three prominent geographic anomalies in ice season lengths occur consistently in each year of the data set, countering the general tendency toward shorter ice seasons from south to north: (1) In the Weddell Sea the tendency is toward shorter ice seasons from southwest to northeast, reflective of the cyclonic ice/atmosphere/ocean circulations in the Weddell Sea region. (2) Directly north of the Ross Ice Shelf anomalously short ice seasons occur, lasting only 245-270 days, in contrast to the perennial ice coverage at comparable latitudes in the southern Bellingshausen and Amundsen Seas and in the western Weddell Sea. The short ice season off the Ross Ice Shelf reflects the consistently early opening of the ice cover each spring, under the influence of upwelling along the continental slope and shelf and atmospheric forcing from winds blowing off the Antarctic continent. (3) In the southern Amundsen Sea, anomalously short ice seasons occur adjacent to the coast, owing to the frequent existence of coastal polynyas off the many small ice shelves bordering the sea. Least squares trends in the ice season lengths over the 1979-1986 period are highly coherent spatially, with overall trends toward shorter ice seasons in the northern Weddell and Bellingshausen seas and toward longer ice seasons in the Ross Sea, around much of East Antarctica, and in a portion of the south central Weddell Sea.
Molecular Insight into the Slipperiness of Ice.
Weber, Bart; Nagata, Yuki; Ketzetzi, Stefania; Tang, Fujie; Smit, Wilbert J; Bakker, Huib J; Backus, Ellen H G; Bonn, Mischa; Bonn, Daniel
2018-05-16
Measurements of the friction coefficient of steel-on-ice over a large temperature range reveal very high friction at low temperatures (-100 °C) and a steep decrease in the friction coefficient with increasing temperature. Very low friction is only found over the limited temperature range typical for ice skating. The strong decrease in the friction coefficient with increasing temperature exhibits Arrhenius behavior with an activation energy of E a ≈ 11.5 kJ mol -1 . Remarkably, molecular dynamics simulations of the ice-air interface reveal a very similar activation energy for the mobility of surface molecules. Weakly hydrogen-bonded surface molecules diffuse over the surface in a rolling motion, their number and mobility increasing with increasing temperature. This correlation between macroscopic friction and microscopic molecular mobility indicates that slippery ice arises from the high mobility of its surface molecules, making the ice surface smooth and the shearing of the weakly bonded surface molecules easy.
Magnetic induction constraints on electrical conductivity within Europa
NASA Astrophysics Data System (ADS)
Bills, B. G.; Vance, S.
2017-12-01
We examine the problem of inferring radial variations in electrical conductivity within Europa, from measurements of the magnetic field induced within Europa by its motion through Jupiter's magnetic field. The Europa Clipper mission is expected to make multiple encounters with Europa, sampling several periods at which significant magnetic induction forcing occurs. Most previous analyses have considered a simple 3-layer model of Europa's internal structure, with an insulating core, a uniform conductivity ocean, and an insulating ice shell, and have only examined responses at 2 forcing periods. We attempt to address the broader issues of what level of detail can be inferred from plausible estimates of induced field response at several additional forcing periods. We will present results of an analysis of the periods and amplitudes of magnetic field variations at Europa, and at the Europa Clipper spacecraft. It appears likely that useful information on the induction response will be attained at 6 forcing frequencies, spanning the interval from 1 to just over 15 cycles per orbital period, in Europa's motion about Jupiter. The range of periods is 5.6 to 85 hours. The induced field diffuses into the interior, and signals at longer periods penetrate more deeply. Having measurements at a range of forcing periods thus helps resolve radial structure. Even if the ocean is well mixed and has uniform salinity, there will be some depth-dependent variations in electrical conductivity due to temperature and pressure variations. Much larger variations would be present if the ocean were stably stratified, with a denser brine underlying a fresher upper layer. While vigorous convection within the ocean would likely mix and homogenize the water column, a stratified ocean is at least possible. Could such a feature of the ocean be detected via magnetic induction? Also, the conductivities in the ice shell above, and silicate layer beneath the ocean are expected to be substantially smaller than in a salty ocean. However, they are not zero. We will consider the extent to which these regions might also be interrogated via magnetic induction.
NASA Technical Reports Server (NTRS)
Thompson David S.; Soni, Bharat K.
2001-01-01
An integrated geometry/grid/simulation software package, ICEG2D, is being developed to automate computational fluid dynamics (CFD) simulations for single- and multi-element airfoils with ice accretions. The current version, ICEG213 (v2.0), was designed to automatically perform four primary functions: (1) generate a grid-ready surface definition based on the geometrical characteristics of the iced airfoil surface, (2) generate high-quality structured and generalized grids starting from a defined surface definition, (3) generate the input and restart files needed to run the structured grid CFD solver NPARC or the generalized grid CFD solver HYBFL2D, and (4) using the flow solutions, generate solution-adaptive grids. ICEG2D (v2.0) can be operated in either a batch mode using a script file or in an interactive mode by entering directives from a command line within a Unix shell. This report summarizes activities completed in the first two years of a three-year research and development program to address automation issues related to CFD simulations for airfoils with ice accretions. As well as describing the technology employed in the software, this document serves as a users manual providing installation and operating instructions. An evaluation of the software is also presented.
Marine Arctic Ecosystem Study (MARES) - An Integrated Approach to the Dynamics of the Beaufort Sea
NASA Astrophysics Data System (ADS)
Wiese, F. K.; Gryba, R.; Kelly, B. P.
2016-02-01
MARES is an integrated ecosystem research initiative coordinated and planned by the Bureau of Ocean Energy Management, the Office of Naval Research, the National Aeronautics and Space Administration, the U.S. Coast Guard, and Shell through the National Oceanographic Partnership Program. The overarching goal is to advance our knowledge of the structure and function of the Beaufort Sea marine ecosystem so as to link atmospheric and oceanic drivers to sea ice patterns and marine mammal distribution and availability to local subsistence communities. The study, funded in 2014, focuses on the marine ecosystem along the Beaufort Sea shelf from Barrow, Alaska to the Mackenzie River delta in Canada and is scheduled to include bio-physical moorings along the US-Canadian border, glider deployments packed with bio-physical sensors, tagging of whales and ice-associated seals with satellite CTD-Fluorometer tags, biophysical and chemical cruises including the measurement and characterization of hydrography, ice, nutrients, primary and secondary production, carbon budgets, benthic fauna, fish, as well as analysis of freshwater input and chemical loadings, and ecosystem modeling. This presentation will focus on preliminary results from the ice seal tagging that started in the summer of 2015 and describe some of the planning and possibilities for partnerships for the more comprehensive 2016 field season and beyond.
An experimental determination of the drag coefficient of a Mens 8+ racing shell.
Buckmann, James G; Harris, Samuel D
2014-01-01
This study centered around an experimental analysis of a Mens Lightweight Eight racing shell and, specifically, determining an approximation for the drag coefficient. A testing procedure was employed that used a Global Positioning System (GPS) unit in order to determine the acceleration and drag force on the shell, and through calculations yield a drag coefficient. The testing was run over several days in numerous conditions, and a 95% confidence interval was established to capture the results. The results obtained, over these varying trials, maintained a successful level of consistency. The significance of this study transcends the determination an approximation for the drag coefficient of the racing shell; it defined a successful means of quantifying performance of the shell itself. The testing procedures outlined in the study represent a uniform means of evaluating the factors that influence drag on the shell, and thus influence speed.
Poleward upgliding Siberian atmospheric rivers over sea ice heat up Arctic upper air.
Komatsu, Kensuke K; Alexeev, Vladimir A; Repina, Irina A; Tachibana, Yoshihiro
2018-02-13
We carried out upper air measurements with radiosondes during the summer over the Arctic Ocean from an icebreaker moving poleward from an ice-free region, through the ice edge, and into a region of thick ice. Rapid warming of the Arctic is a significant environmental issue that occurs not only at the surface but also throughout the troposphere. In addition to the widely accepted mechanisms responsible for the increase of tropospheric warming during the summer over the Arctic, we showed a new potential contributing process to the increase, based on our direct observations and supporting numerical simulations and statistical analyses using a long-term reanalysis dataset. We refer to this new process as "Siberian Atmospheric Rivers (SARs)". Poleward upglides of SARs over cold air domes overlying sea ice provide the upper atmosphere with extra heat via condensation of water vapour. This heating drives increased buoyancy and further strengthens the ascent and heating of the mid-troposphere. This process requires the combination of SARs and sea ice as a land-ocean-atmosphere system, the implication being that large-scale heat and moisture transport from the lower latitudes can remotely amplify the warming of the Arctic troposphere in the summer.
Rapid wastage of the Hazen Plateau ice caps, northeastern Ellesmere Island, Nunavut, Canada
NASA Astrophysics Data System (ADS)
Serreze, Mark C.; Raup, Bruce; Braun, Carsten; Hardy, Douglas R.; Bradley, Raymond S.
2017-01-01
Two pairs of small stagnant ice bodies on the Hazen Plateau of northeastern Ellesmere Island, the St. Patrick Bay ice caps and the Murray and Simmons ice caps, are rapidly shrinking, and the remnants of the St. Patrick Bay ice caps are likely to disappear entirely within the next 5 years. Vertical aerial photographs of these Little Ice Age relics taken during August of 1959 show that the larger of the St. Patrick Bay ice caps had an area of 7.48 km2 and the smaller one 2.93 km2; the Murray and Simmons ice caps covered 4.37 and 7.45 km2 respectively. Outlines determined from ASTER satellite data for July 2016 show that, compared to 1959, the larger and the smaller of the St. Patrick Bay ice caps had both been reduced to only 5 % of their former area, with the Murray and Simmons ice caps faring better at 39 and 25 %, likely reflecting their higher elevation. Consistent with findings from other glaciological studies in the Queen Elizabeth Islands, ASTER imagery in conjunction with past GPS surveys documents a strikingly rapid wastage of the St. Patrick Bay ice caps over the last 15 years. These two ice caps shrank noticeably even between 2014 and 2015, apparently in direct response to the especially warm summer of 2015 over northeastern Ellesmere Island. The well-documented recession patterns of the Hazen Plateau ice caps over the last 55+ years offer an opportunity to examine the processes of plant recolonization of polar landscapes.
NASA Astrophysics Data System (ADS)
Hall, I. R.; Reynolds, D.; Scourse, J. D.; Richardson, C.; Wanamaker, A. D.; Butler, P. G.
2017-12-01
Given the rapid increase in atmospheric carbon dioxide concentrations (pCO2) over the industrial era there is a pressing need to construct longterm records of natural carbon cycling prior to this perturbation and to develop a more robust understanding of the role the oceans play in the sequestration of atmospheric carbon. Here we reconstruct the historical biological and climatic controls on the carbon isotopic (δ13C-shell) composition of the North Icelandic shelf waters over the last millennium derived from the shells of the long-lived marine bivalve mollusc Arctica islandica. Variability in the annually resolved δ13C-shell record is dominated by multi-decadal variability with a negative trend (-0.003±0.002‰yr-1) over the industrial era (1800-2000). This trend is consistent with the marine Suess effect brought about by the sequestration of isotopically light carbon (δ13C of CO2) derived from the burning of fossil fuels. Comparison of the δ13C-shell record with contemporary proxy archives, over the last millennium, and instrumental data over the 20th century, suggests that primary productivity and climate conditions over the sub-polar North Atlantic region played a vital role in driving inter-annual to multi-decadal scale variability in the δ13C-shell record. Our results highlight that relative shifts in the proportion of sub-polar mode waters and Arctic intermediate waters entrained onto the North Icelandic shelf, coupled with atmospheric circulation patterns associated with the winter North Atlantic Oscillation (wNAO), are the likely physical mechanisms that drive natural variations in seawater δ13C variability on the North Icelandic shelf.
Bioinspired large-scale aligned porous materials assembled with dual temperature gradients
Bai, Hao; Chen, Yuan; Delattre, Benjamin; Tomsia, Antoni P.; Ritchie, Robert O.
2015-01-01
Natural materials, such as bone, teeth, shells, and wood, exhibit outstanding properties despite being porous and made of weak constituents. Frequently, they represent a source of inspiration to design strong, tough, and lightweight materials. Although many techniques have been introduced to create such structures, a long-range order of the porosity as well as a precise control of the final architecture remain difficult to achieve. These limitations severely hinder the scale-up fabrication of layered structures aimed for larger applications. We report on a bidirectional freezing technique to successfully assemble ceramic particles into scaffolds with large-scale aligned, lamellar, porous, nacre-like structure and long-range order at the centimeter scale. This is achieved by modifying the cold finger with a polydimethylsiloxane (PDMS) wedge to control the nucleation and growth of ice crystals under dual temperature gradients. Our approach could provide an effective way of manufacturing novel bioinspired structural materials, in particular advanced materials such as composites, where a higher level of control over the structure is required. PMID:26824062
Arctic Sea Ice Structure and Texture over Four Decades Using Landsat Archive Data
NASA Astrophysics Data System (ADS)
Doulgeris, A. P.; Scambos, T.; Tiampo, K. F.
2017-12-01
Arctic sea ice cover is a sensitive indicator of Arctic climate change, and has shown dramatic changes in recent decades, having thinned by 70% ( 3.5 m to 1.2 m between 1980 and 2015). Age distribution of the ice has changed in a similar fashion, with over 90% of the ice older than 5 winters now lost relative to 1985. To date, most of the data have been based on the continuous passive microwave record that began in 1978, which has 25 km grid resolution, or on SAR imagery with somewhat less frequent, less continuous observations. Landsat image data exist for the Arctic sea ice region north of Alaska and the MacKenzie River Delta area in Canada, the Canadian Archipelago, and Baffin Bay, extending back over 40 years. Resolution of the earliest Landsat MSS data is 56-70 m per pixel, and after 1984 many additional images at 30 m resolution are available. This 40+ year time period is used to investigate long-term changes in sea ice properties, such as comparing image-based snapshots with the trend in seasonal extents today, as well as more novel properties like sea ice roughness, lead structure and texture. The proposed study will initially investigate Landsat image analysis techniques to extract quantitative measures of ice roughness, lead fraction and perhaps morphological measures like lead linearity (which potentially indicate strength and compression history within the ice), and to explore these measures over the 40+ year time frame.
EUROPA Multiple-Flyby Trajectory Design
NASA Technical Reports Server (NTRS)
Buffington, Brent; Campagnola, Stefano; Petropoulos, Anastassios
2012-01-01
As reinforced by the 2011 NRC Decadal Survey, Europa remains one of the most scientifically intriguing targets in planetary science due to its potential suitability for life. However, based on JEO cost estimates and current budgetary constraints, the Decadal Survey recommended-and later directed by NASA Headquarters-a more affordable pathway to Europa exploration be derived. In response, a flyby-only proof-of-concept trajectory has been developed to investigate Europa. The trajectory, enabled by employing a novel combination of new mission design techniques, successfully fulfills a set of Science Definition Team derived scientific objectives carried out by a notional payload including ice penetrating radar, topographic imaging, and short wavelength infrared observations, and ion neutral mass spectrometry in-situ measurements. The current baseline trajectory, referred to as 11-F5, consists of 34 Europa and 9 Ganymede flybys executed over the course of 2.4 years, reached a maximum inclination of 15 degrees, has a deterministic delta v of 157 m/s (post-PJR), and has a total ionizing dose of 2.06 Mrad (Si behind 100 mil Al, spherical shell). The 11-F5 trajectory and more generally speaking, flyby-only trajectories-exhibit a number of potential advantages over an Europa orbiter mission.
NASA Astrophysics Data System (ADS)
Mahoney, A. R.; Kasper, J.; Winsor, P.
2015-12-01
Highly complex patterns of ice motion and deformation were captured by fifteen satellite-telemetered GPS buoys (known as Ice Trackers) deployed near Barrow, Alaska, in spring 2015. Two pentagonal clusters of buoys were deployed on pack ice by helicopter in the Beaufort Sea between 20 and 80 km offshore. During deployment, ice motion in the study region was effectively zero, but two days later the buoys captured a rapid transport event in which multiyear ice from the Beaufort Sea was flushed into the Chukchi Sea. During this event, westward ice motion began in the Chukchi Sea and propagated eastward. This created new openings in the ice and led to rapid elongation of the clusters as the westernmost buoys accelerated away from their neighbors to the east. The buoys tracked ice velocities of over 1.5 ms-1, with fastest motion occurring closest to the coast indicating strong current shear. Three days later, ice motion reversed and the two clusters became intermingled, rendering divergence calculations based on the area enclosed by clusters invalid. The data show no detectable difference in velocity between first year and multiyear ice floes, but Lagrangian timeseries of SAR imagery centered on each buoy show that first year ice underwent significant small-scale deformation during the event. The five remaining buoys were deployed by local residents on prominent ridges embedded in the landfast ice within 16 km of Barrow in order to track the fate of such features after they detached from the coast. Break-up of the landfast ice took place over a period of several days and, although the buoys each initially followed a similar eastward trajectory around Point Barrow into the Beaufort Sea, they rapidly dispersed over an area more than 50 km across. With rapid environmental and socio-economic change in the Arctic, understanding the complexity of nearshore ice motion is increasingly important for predict future changes in the ice and the tracking ice-related hazards contaminants entrained in the ice. This work demonstrates the ability of low-cost easily-deployable Ice Trackers to generate to generate data of both scientific and operational value.
Titanium carbide and titania phases on Antarctic ice particles of probable extraterrrestrial origin
NASA Technical Reports Server (NTRS)
Zolensky, M. E.; Pun, A.; Thomas, K. L.
1989-01-01
Two unique titania-rich particles, found within ancient Antarctic ice have been discovered and characterized, and are believed to be of extraterrestrial origin. Both particles contain abundant submicron-sized crystals of Magneli phases (Ti(n)O(2n-1). In addition, one particle contains a core of TiC. Whereas the Magneli phases would have been stable in the early solar nebula, and so probably formed there, the TiC is more likely to have condensed in the cool, dusty, carbon-rich outer shell of a red giant star. It is suggested that both particles are interplanetary dust particles whose Magneli phases carry a record of the PO2-T conditions of the early solar nebula. It is further suggested that the TiC grain in particle 705 is remnant interstellar dust.
Cloud Response to Arctic Sea Ice Loss and Implications for Feedbacks in the CESM1 Climate Model
NASA Astrophysics Data System (ADS)
Morrison, A.; Kay, J. E.; Chepfer, H.; Guzman, R.; Bonazzola, M.
2017-12-01
Clouds have the potential to accelerate or slow the rate of Arctic sea ice loss through their radiative influence on the surface. Cloud feedbacks can therefore play into Arctic warming as clouds respond to changes in sea ice cover. As the Arctic moves toward an ice-free state, understanding how cloud - sea ice relationships change in response to sea ice loss is critical for predicting the future climate trajectory. From satellite observations we know the effect of present-day sea ice cover on clouds, but how will clouds respond to sea ice loss as the Arctic transitions to a seasonally open water state? In this study we use a lidar simulator to first evaluate cloud - sea ice relationships in the Community Earth System Model (CESM1) against present-day observations (2006-2015). In the current climate, the cloud response to sea ice is well-represented in CESM1: we see no summer cloud response to changes in sea ice cover, but more fall clouds over open water than over sea ice. Since CESM1 is credible for the current Arctic climate, we next assess if our process-based understanding of Arctic cloud feedbacks related to sea ice loss is relevant for understanding future Arctic clouds. In the future Arctic, summer cloud structure continues to be insensitive to surface conditions. As the Arctic warms in the fall, however, the boundary layer deepens and cloud fraction increases over open ocean during each consecutive decade from 2020 - 2100. This study will also explore seasonal changes in cloud properties such as opacity and liquid water path. Results thus far suggest that a positive fall cloud - sea ice feedback exists in the present-day and future Arctic climate.
Multiphase Reactive Transport and Platelet Ice Accretion in the Sea Ice of McMurdo Sound, Antarctica
NASA Astrophysics Data System (ADS)
Buffo, J. J.; Schmidt, B. E.; Huber, C.
2018-01-01
Sea ice seasonally to interannually forms a thermal, chemical, and physical boundary between the atmosphere and hydrosphere over tens of millions of square kilometers of ocean. Its presence affects both local and global climate and ocean dynamics, ice shelf processes, and biological communities. Accurate incorporation of sea ice growth and decay, and its associated thermal and physiochemical processes, is underrepresented in large-scale models due to the complex physics that dictate oceanic ice formation and evolution. Two phenomena complicate sea ice simulation, particularly in the Antarctic: the multiphase physics of reactive transport brought about by the inhomogeneous solidification of seawater, and the buoyancy driven accretion of platelet ice formed by supercooled ice shelf water onto the basal surface of the overlying ice. Here a one-dimensional finite difference model capable of simulating both processes is developed and tested against ice core data. Temperature, salinity, liquid fraction, fluid velocity, total salt content, and ice structure are computed during model runs. The model results agree well with empirical observations and simulations highlight the effect platelet ice accretion has on overall ice thickness and characteristics. Results from sensitivity studies emphasize the need to further constrain sea ice microstructure and the associated physics, particularly permeability-porosity relationships, if a complete model of sea ice evolution is to be obtained. Additionally, implications for terrestrial ice shelves and icy moons in the solar system are discussed.
NASA Astrophysics Data System (ADS)
Luo, Binhe; Yao, Yao
2018-04-01
This study investigates why the Arctic winter sea ice loss over the Barents-Kara Seas (BKS) is accelerated in the recent decade. We first divide 1979-2013 into two time periods: 1979-2000 (P1) and 2001-13 (P2), with a focus on P2 and the difference between P1 and P2. The results show that during P2, the rapid decline of the sea ice over the BKS is related not only to the high sea surface temperature (SST) over the BKS, but also to the increased frequency, duration, and quasi-stationarity of the Ural blocking (UB) events. Observational analysis reveals that during P2, the UB tends to become quasi stationary and its frequency tends to increase due to the weakening (strengthening) of zonal winds over the Eurasia (North Atlantic) when the surface air temperature (SAT) anomaly over the BKS is positive probably because of the high SST. Strong downward infrared (IR) radiation is seen to occur together with the quasi-stationary and persistent UB because of the accumulation of more water vapor over the BKS. Such downward IR favors the sea ice decline over the BKS, although the high SST over the BKS plays a major role. But for P1, the UB becomes westward traveling due to the opposite distribution of zonal winds relative to P2, resulting in weak downward IR over the BKS. This may lead to a weak decline of the sea ice over the BKS. Thus, it is likely that the rapid decline of the sea ice over the BKS during P2 is attributed to the joint effects of the high SST over the BKS and the quasi-stationary and long-lived UB events.
NASA Astrophysics Data System (ADS)
Lange, B. A.; Haas, C.; Beckers, J.; Hendricks, S.
2011-12-01
Satellite observations demonstrate a decreasing summer Arctic sea ice extent over the past ~40 years, as well as a smaller perennial sea ice zone, with a significantly accelerated decline in the last decade. Recent ice extent observations are significantly lower than predicted by any model employed by the Intergovernmental Panel on Climate Change. The disagreement of the modeled and observed results, along with the large variability of model results, can be in part attributed to a lack of consistent and long term sea ice mass balance observations for the High Arctic. This study presents the derivation of large scale (individual floe) seasonal sea ice mass balance in the Lincoln Sea and Nares Strait. Large scale melt estimates are derived by comparing aerial borne electromagnetic induction thickness surveys conducted in spring with surveys conducted in summer 2009. The comparison of coincident floes is ensured by tracking sea ice using ENIVSAT ASAR and MODIS satellite imagery. Only EM thickness survey sections of floes that were surveyed in both spring and summer are analyzed and the resulting modal thicknesses of the distributions, which represent the most abundant ice type, are compared to determine the difference in thickness and therefore total melt (snow+basal ice+surface ice melt). Preliminary analyses demonstrate a bulk (regional ice tracking) seasonal total thickness variability of 1.1m, Lincoln Sea modal thickness 3.7m (April, 2009) and Nares Strait modal thickness 2.6m (August 2009)(Fig1). More detailed floe tracking, in depth analysis of EM surveys and removal of deformed ridged/rafted sea ice (due to inaccuracies over deformed ice) will result in more accurate melt estimates for this region and will be presented. The physical structure of deformed sea ice and the footprint of the EM instrument typically underestimate the total thicknesses observed. Seasonal variations of sea ice properties can add additional uncertainty to the response of the EM instrument over deformed ridged/rafted sea ice. Here we will present additional analysis of the data comparing total thickness to ridge height that will provide some insight into the magnitude of seasonal discrepancies experienced by the EM instrument over deformed ice.
Evaluation of reef shell embankment : final report.
DOT National Transportation Integrated Search
1980-12-01
This report discusses a method of constructing an embankment over marshland soils by end-dumping reef shell directly onto the marshland with no other major subgrade preparation. The dumped reef shell is then spread out to form a "floating" embankment...
Subsurface Structure and Thermal History of Icy Satellites from Stereo Topography
NASA Astrophysics Data System (ADS)
Phillips, C. B.; Hammond, N. P.; Roberts, J. H.; Nimmo, F.; Beyer, R. A.; robuchon, G.
2012-12-01
Stereo topography, in combination with numerical modeling, can be used to study the subsurface structure and thermal history of icy satellites. We are using stereo images of Saturn's icy satellites from the Cassini ISS instrument to construct digital elevation models (DEMs). We first extracted topographic profiles of impact craters on Dione and Rhea. Using the current crater depths, we then estimated the initial crater depth and calculated the viscous crater relaxation for each crater. Our results show that 100 km diameter craters on Rhea range from ~10-50% relaxed, while craters with D> 200 km have relaxations of 40-50%. In comparison, craters with D < 100 km on Dione are 30-50% relaxed, while craters with D >100 km were 60-75% relaxed. We then compared these observations with the results of a combined thermal and visco-elastic relaxation model based on the work of Robuchon et al. 2011 and Robuchon and Nimmo 2011. The model for Rhea predicts a maximum crater relaxation between 10% for smaller craters and 40% for larger craters. For Dione, which is modeled as differentiated, the maximum relaxation is even less: ~5% for smaller craters and ~10% for larger craters. Our model thus underpredicts the observed relaxation. We therefore require more heating early in the history of the satellites to produce the observed relaxation, requiring a subsurface ocean layer. Topographic profiles of tectonic features let us use flexure to estimate elastic thickness and therefore heat flux. We fit observations of the height and distance to observed flexural bulges at two sites on Dione to models of a flexing unbroken elastic plate, and found that the elastic thickness was ~2-5 km. This is consistent with work by Nimmo et al. (2011) that suggested an elastic thickness of 1.5-5 km based on long-wavelength topography. With a measurement of average strain of 0.03, we estimate a heat flux between 20-80 mW/m2. This is far higher than the heat flux of ~ 4 mW/m2 expected from radiogenic heating. A tidal heating model with a 50 km thick ocean for Dione (at the time these features were formed) can produce the observed heat flux with e~0.0022, the current value. Without an ocean, our observed heat flux would require a much higher eccentricity. Therefore, we present two lines of evidence that suggest that a subsurface ocean was present on Dione, and perhaps also Rhea, early in their histories. We are currently working on new thermal models that incorporate subsurface oceans. Preliminary results suggest that if the shells are conductive, the ice will be too stiff to permit the observed degree of relaxation, even if the ice shells are relatively thin (100 km). These results further suggest that the ice shells on Dione and Rhea were convecting at the time of crater formation. Subsurface oceans beneath convective ice shells may not have been long-lived, however, as convection cools the interior far more rapidly than it is heated by radioactive decay. Additional heat sources such as tidal dissipation or shock heating by the impacts themselves may be required to prevent oceans from freezing before relaxation is complete. This work was funded by a grant from the NASA Outer Planets Research Program. References: Robuchon, G., et al. Icarus 214, 82-90, 2011. Robuchon, G., and F. Nimmo. Icarus 216, 426-439, 2011. Nimmo, F. et al., GRL 116, E11001, 2011.
Radar Thickness Measurements over the Southern Part of the Greenland Ice Sheet
NASA Technical Reports Server (NTRS)
Chuah, Teong Sek; Gogineni, Siva Prasad; Allen, Christopher; Wohletz, Brad; Wong, Y. C.; Ng, P. Y.; Ajayi, E.
1996-01-01
We performed ice thickness measurements over the southern part of the Greenland ice sheet during June and July 1993. We used an airborne coherent radar depth sounder for these measurements. The radar was operated from a NASA P-3 aircraft equipped with GPS receivers. Radar data were collected in conjunction with laser altimeter and microwave altimeter measurements of ice surface elevation. This report provides radio echograms and thickness profiles from data collected during 1993.
Wave attenuation in the marginal ice zone during LIMEX
NASA Technical Reports Server (NTRS)
Liu, Antony K.; Peng, Chih Y.; Vachon, Paris W.
1991-01-01
During LIMEX'87 and '89, the CCRS CV-580 aircraft collected SAR (synthetic aperture radar) data over the marginal ice zone off the coast of Newfoundland. Based upon the wavenumber spectra from SAR data, the wave attenuation rate is estimated and compared with a model. The model-data comparisons are reasonably good for the ice conditions during LIMEX (Labrador Ice Margin Experiment). Both model and SAR-derived wave attenuation rates show a roll-over at high wavenumbers.
2017-12-08
During a flight over the Pine Island Glacier ice shelf, the DC-8 banks over the Amundsen Sea and the clean edge of the ice shelf front. The shelf drops about 200 feet from its surface to sea level. This image was taken on Oct. 26, 2011. Credit: NASA/GSFC/Jefferson Beck NASA's Operation IceBridge returns to a base camp of Punta Arenas, Chile for the third year of flights over Antarctica's changing sea ice, glaciers and ice sheets. NASA's DC-8, outfitted with seven remote-sensing instruments, and a Gulfstream 5 operated by the National Science Foundation and National Center for Atmospheric Research and outfitted with a high-altitude laser-ranging mapper, will fly from Chile over Antarctica in October and November. The mission is designed to record changes to Antarctica's ice sheets and give scientists insight into what is driving those changes. Follow the progress of the mission: Campaign News site: www.nasa.gov/mission_pages/icebridge/index.html IceBridge blog: blogs.nasa.gov/cm/newui/blog/viewpostlist.jsp?blogname=ic... Twitter: @nasa_ice NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Mapping the future expansion of Arctic open water
NASA Astrophysics Data System (ADS)
Barnhart, Katherine R.; Miller, Christopher R.; Overeem, Irina; Kay, Jennifer E.
2016-03-01
Sea ice impacts most of the Arctic environment, from ocean circulation and marine ecosystems to animal migration and marine transportation. Sea ice has thinned and decreased in age over the observational record. Ice extent has decreased. Reduced ice cover has warmed the surface ocean, accelerated coastal erosion and impacted biological productivity. Declines in Arctic sea-ice extent cannot be explained by internal climate variability alone and can be attributed to anthropogenic effects. However, extent is a poor measure of ice decline at specific locations as it integrates over the entire Arctic basin and thus contains no spatial information. The open water season, in contrast, is a metric that represents the duration of open water over a year at an individual location. Here we present maps of the open water season over the period 1920-2100 using daily output from a 30-member initial-condition ensemble of business-as-usual climate simulations that characterize the expansion of Arctic open water, determine when the open water season will move away from pre-industrial conditions (`shift’ time) and identify when human forcing will take the Arctic sea-ice system outside its normal bounds (`emergence’ time). The majority of the Arctic nearshore regions began shifting in 1990 and will begin leaving the range of internal variability in 2040. Models suggest that ice will cover coastal regions for only half of the year by 2070.
NASA Technical Reports Server (NTRS)
Palm, Stephen P.; Strey, Sara T.; Spinhirne, James; Markus, Thorsten
2010-01-01
Recent satellite lidar measurements of cloud properties spanning a period of 5 years are used to examine a possible connection between Arctic sea ice amount and polar cloud fraction and vertical distribution. We find an anticorrelation between sea ice extent and cloud fraction with maximum cloudiness occurring over areas with little or no sea ice. We also find that over ice!free regions, there is greater low cloud frequency and average optical depth. Most of the optical depth increase is due to the presence of geometrically thicker clouds over water. In addition, our analysis indicates that over the last 5 years, October and March average polar cloud fraction has increased by about 7% and 10%, respectively, as year average sea ice extent has decreased by 5% 7%. The observed cloud changes are likely due to a number of effects including, but not limited to, the observed decrease in sea ice extent and thickness. Increasing cloud amount and changes in vertical distribution and optical properties have the potential to affect the radiative balance of the Arctic region by decreasing both the upwelling terrestrial longwave radiation and the downward shortwave solar radiation. Because longwave radiation dominates in the long polar winter, the overall effect of increasing low cloud cover is likely a warming of the Arctic and thus a positive climate feedback, possibly accelerating the melting of Arctic sea ice.
Leach, David; Bergendahl, Peter Allen; Waldo, Stuart Forrest; Smith, Robert Leroy; Phelps, Robert Kim
2001-01-01
A turbine includes upper and lower inner shell sections mounting the nozzles and shrouds and which inner shell is supported by pins secured to a surrounding outer shell. To disassemble the turbine for access to the inner shell sections and rotor, an alignment fixture is secured to the lower outer shell section and has pins engaging the inner shell section. To disassemble the turbine, the inner shell weight is transferred to the lower outer shell section via the alignment fixture and cradle pins. Roller assemblies are inserted through access openings vacated by support pins to permit rotation of the lower inner shell section out of and into the lower outer shell section during disassembly and assembly. The alignment fixture includes adjusting rods for adjusting the inner shell axially, vertically, laterally and about a lateral axis. A roller over-cage is provided to rotate the inner shell and a dummy shell to facilitate assembly and disassembly in the field.
Water Droplet Impingement on Simulated Glaze, Mixed, and Rime Ice Accretions
NASA Technical Reports Server (NTRS)
Papadakis, Michael; Rachman, Arief; Wong, See-Cheuk; Yeong, Hsiung-Wei; Hung, Kuohsing E.; Vu, Giao T.; Bidwell, Colin S.
2007-01-01
Water droplet impingement data were obtained at the NASA Glenn Icing Research Tunnel (IRT) for a 36-in. chord NACA 23012 airfoil with and without simulated ice using a dye-tracer method. The simulated ice shapes were defined with the NASA Glenn LEWICE 2.2 ice accretion program and including one rime, four mixed and five glaze ice shapes. The impingement experiments were performed with spray clouds having median volumetric diameters of 20, 52, 111, 154, and 236 micron. Comparisons to the experimental data were generated which showed good agreement for the rime and mixed shapes at lower drop sizes. For larger drops sizes LEWICE 2.2 over predicted the collection efficiencies due to droplet splashing effects which were not modeled in the program. Also for the more complex glaze ice shapes interpolation errors resulted in the over prediction of collection efficiencies in cove or shadow regions of ice shapes.
Role of the Polar Oceans in Global Climate
NASA Technical Reports Server (NTRS)
Rothrock, D. A.
2003-01-01
The project focused on ice-ocean model development and in particular on the assimilation of ice motion data and ice concentration data into both regional and global models. Many of the resulting publications below deal with improvements made in the physics treated by the model and the procedures for assimilating data. Several papers examine how the ability of the model to simulate the past behavior of the ice cover, especially to represent the ice thickness and ice deformation, is improved by data assimilation. A second aspect of the work involved interpretation of modeled behavior. Resulting papers treat the decline of arctic ice thickness over the last thirty years, and how that decline was caused by a slight warming of the near-surface atmosphere, and also how large variation in ice thickness are due to changes in wind patterns associated with a well- known oscillation of the atmospheric circulation. The research resulted in over 20 published papers on these topics.
Airborne radar surveys of snow depth over Antarctic sea ice during Operation IceBridge
NASA Astrophysics Data System (ADS)
Panzer, B.; Gomez-Garcia, D.; Leuschen, C.; Paden, J. D.; Gogineni, P. S.
2012-12-01
Over the last decade, multiple satellite-based laser and radar altimeters, optimized for polar observations, have been launched with one of the major objectives being the determination of global sea ice thickness and distribution [5, 6]. Estimation of sea-ice thickness from these altimeters relies on freeboard measurements and the presence of snow cover on sea ice affects this estimate. Current means of estimating the snow depth rely on daily precipitation products and/or data from passive microwave sensors [2, 7]. Even a small uncertainty in the snow depth leads to a large uncertainty in the sea-ice thickness estimate. To improve the accuracy of the sea-ice thickness estimates and provide validation for measurements from satellite-based sensors, the Center for Remote Sensing of Ice Sheets deploys the Snow Radar as a part of NASA Operation IceBridge. The Snow Radar is an ultra-wideband, frequency-modulated, continuous-wave radar capable of resolving snow depth on sea ice from 5 cm to more than 2 meters from long-range, airborne platforms [4]. This paper will discuss the algorithm used to directly extract snow depth estimates exclusively using the Snow Radar data set by tracking both the air-snow and snow-ice interfaces. Prior work in this regard used data from a laser altimeter for tracking the air-snow interface or worked under the assumption that the return from the snow-ice interface was greater than that from the air-snow interface due to a larger dielectric contrast, which is not true for thick or higher loss snow cover [1, 3]. This paper will also present snow depth estimates from Snow Radar data during the NASA Operation IceBridge 2010-2011 Antarctic campaigns. In 2010, three sea ice flights were flown, two in the Weddell Sea and one in the Amundsen and Bellingshausen Seas. All three flight lines were repeated in 2011, allowing an annual comparison of snow depth. In 2011, a repeat pass of an earlier flight in the Weddell Sea was flown, allowing for a comparison of snow depths with two weeks elapsed between passes. [1] Farrell, S.L., et al., "A First Assessment of IceBridge Snow and Ice Thickness Data Over Arctic Sea Ice," IEEE Tran. Geoscience and Remote Sensing, Vol. 50, No. 6, pp. 2098-2111, June 2012. [2] Kwok, R., and G. F. Cunningham, "ICESat over Arctic sea ice: Estimation of snow depth and ice thickness," J. Geophys. Res., 113, C08010, 2008. [3] Kwok, R., et al., "Airborne surveys of snow depth over Arctic sea ice," J. Geophys. Res., 116, C11018, 2011. [4] Panzer, B., et al., "An ultra-wideband, microwave radar for measuring snow thickness on sea ice and mapping near-surface internal layers in polar firn," Submitted to J. Glaciology, July 23, 2012. [5] Wingham, D.J., et al., "CryoSat: A Mission to Determine the Fluctuations in Earth's Land and Marine Ice Fields," Advances in Space Research, Vol. 37, No. 4, pp. 841-871, 2006. [6] Zwally, H. J., et al., "ICESat's laser measurements of polar ice, atmosphere, ocean, and land," J. Geodynamics, Vol. 34, No. 3-4, pp. 405-445, Oct-Nov 2002. [7] Zwally, H. J., et al., "ICESat measurements of sea ice freeboard and estimates of sea ice thickness in the Weddell Sea," J. Geophys. Res., 113, C02S15, 2008.
Historical trend in river ice thickness and coherence in hydroclimatological trends in Maine
Huntington, T.G.; Hodgkins, G.A.; Dudley, R.W.
2003-01-01
We analyzed long-term records of ice thickness on the Piscataquis River in central Maine and air temperature in Maine to determine whether there were temporal trends that were associated with climate warming. The trend in ice thickness was compared and correlated with regional time series of winter air temperature, heating degree days (HDD), date of river ice-out, seasonal center-of-volume date (SCVD) (date on which half of the stream runoff volume during the period 1 Jan. to 31 May has occurred), water temperature, and lake ice-out date. All of these variables except lake ice-out date showed significant temporal trends during the 20th century. Average ice thickness around 28 February decreased by about 23 cm from 1912 to 2001. Over the period 1900 to 1999, winter air temperature increased by 1.7??C and HDD decreased by about 7.5%. Final ice-out date on the Piscataquis River occurred earlier (advanced), by 0.21 days yr-1 over the period 1931 to 2002, and the SCVD advanced by 0.11 days yr-1 over the period 1903 to 2001. Ice thickness was significantly correlated (P-value < 0.01) with winter air temperature, HDD, river ice-out, and SCVD. These systematic temporal trends in multiple hydrologic indicator variables indicate a coherent response to climate forcing.
NASA Astrophysics Data System (ADS)
Perkovic-Martin, D.; Johnson, M. P.; Holt, B.; Panzer, B.; Leuschen, C.
2012-12-01
This paper presents estimates of snow depth over sea ice from the 2009 through 2011 NASA Operation IceBridge [1] spring campaigns over Greenland and the Arctic Ocean, derived from Kansas University's wideband Snow Radar [2] over annually repeated sea-ice transects. We compare the estimates of the top surface interface heights between NASA's Atmospheric Topographic Mapper (ATM) [3] and the Snow Radar. We follow this by comparison of multi-year snow depth records over repeated sea-ice transects to derive snow depth changes over the area. For the purpose of this paper our analysis will concentrate on flights over North/South basin transects off Greenland, which are the closest overlapping tracks over this time period. The Snow Radar backscatter returns allow for surface and interface layer types to be differentiated between snow, ice, land and water using a tracking and classification algorithm developed and discussed in the paper. The classification is possible due to different scattering properties of surfaces and volumes at the radar's operating frequencies (2-6.5 GHz), as well as the geometries in which they are viewed by the radar. These properties allow the returns to be classified by a set of features that can be used to identify the type of the surface or interfaces preset in each vertical profile. We applied a Support Vector Machine (SVM) learning algorithm [4] to the Snow Radar data to classify each detected interface into one of four types. The SVM algorithm was trained on radar echograms whose interfaces were visually classified and verified against coincident aircraft data obtained by CAMBOT [5] and DMS [6] imaging sensors as well as the scanning ATM lidar. Once the interface locations were detected for each vertical profile we derived a range to each interface that was used to estimate the heights above the WGS84 ellipsoid for direct comparisons with ATM. Snow Radar measurements were calibrated against ATM data over areas free of snow cover and over GPS land surveyed areas of Thule and Sondrestrom air bases. The radar measurements were compared against the ATM and the GPS measurements that were located in the estimated radar footprints, which resulted in an overall error of ~ 0.3 m between the radar and ATM. The agreement between ATM and GPS survey is within +/- 0.1 m. References: [1] http://www.nasa.gov/mission_pages/icebridge/ [2] Panzer, B. et. al, "An ultra-wideband, microwave radar for measuring snow thickness on sea ice and mapping near-surface internal layers in polar firn," Submitted to J. of Glaciology Instr. and Tech., July 23, 2012. [3] Krabill, William B. 2009 and 2011, updated current year. IceBridge ATM L1B Qfit Elevation and Return Strength. Boulder, Colorado USA: National Snow and Ice Data Center. Digital media. [4] Chih-Chung Chang and Chih-Jen Lin. "Libsvm: a library for support vector machines", ACM Transactions on Intelligent Systems and Technology, 2:2:27:1-27:27, 2011. [5] Krabill, William B. 2009 and 2011, updated current year. IceBridge CAMBOT L1B Geolocated Images, [2009-04-25, 2011-04-15]. Boulder, Colorado USA: National Snow and Ice Data Center. Digital media. [6] Dominguez, Roseanne. 2011, updated current year. IceBridge DMS L1B Geolocated and Orthorectified Images. Boulder, Colorado USA: National Snow and Ice Data Center. Digital media
Vanishing river ice cover in the lower part of the Danube basin - signs of a changing climate.
Ionita, M; Badaluta, C -A; Scholz, P; Chelcea, S
2018-05-21
Many of the world's largest rivers in the extra tropics are covered with ice during the cold season, and in the Northern Hemisphere approximately 60% of the rivers experience significant seasonal effects of river ice. Here we present an observational data set of the ice cover regime for the lower part of the Danube River which spans over the period 1837-2016, and its the longest one on record over this area. The results in this study emphasize the strong impact of climate change on the occurrence of ice regime especially in the second part of the 20 th century. The number of ice cover days has decreased considerably (~28days/century) mainly due to an increase in the winter mean temperature. In a long-term context, based on documentary evidences, we show that the ice cover occurrence rate was relatively small throughout the Medieval Warm Period (MWP), while the highest occurrence rates were found during the Maunder Minimum and Dalton Minimum periods. We conclude that the river ice regime can be used as a proxy for the winter temperature over the analyzed region and as an indicator of climate-change related impacts.
NASA Technical Reports Server (NTRS)
Nguyen, Louis; Minnis, Patrick; Spangenberg, Douglas A.; Nordeen, Michele L.; Palikonda, Rabindra; Khaiyer, Mandana M.; Gultepe, Ismail; Reehorst, Andrew L.
2004-01-01
Satellites are ideal for continuous monitoring of aircraft icing conditions in many situations over extensive areas. The satellite imager data are used to diagnose a number of cloud properties that can be used to develop icing intensity indices. Developing and validating these indices requires comparison with objective "cloud truth" data in addition to conventional pilot reports (PIREPS) of icing conditions. Minnis et al. examined the relationships between PIREPS icing and satellite-derived cloud properties. The Atlantic-THORPEX Regional Campaign (ATReC) and the second Alliance Icing Research Study (AIRS-II) field programs were conducted over the northeastern USA and southeastern Canada during late 2003 and early 2004. The aircraft and surface measurements are concerned primarily with the icing characteristics of clouds and, thus, are ideal for providing some validation information for the satellite remote sensing product. This paper starts the process of comparing cloud properties and icing indices derived from the Geostationary Operational Environmental Satellite (GOES) with the aircraft in situ measurements of several cloud properties during campaigns and some of the The comparisons include cloud phase, particle size, icing intensity, base and top altitudes, temperatures, and liquid water path. The results of this study are crucial for developing a more reliable and objective icing product from satellite data. This icing product, currently being derived from GOES data over the USA, is an important complement to more conventional products based on forecasts, and PIREPS.
Sea-Ice Freeboard Retrieval Using Digital Photon-Counting Laser Altimetry
NASA Technical Reports Server (NTRS)
Farrell, Sinead L.; Brunt, Kelly M.; Ruth, Julia M.; Kuhn, John M.; Connor, Laurence N.; Walsh, Kaitlin M.
2015-01-01
Airborne and spaceborne altimeters provide measurements of sea-ice elevation, from which sea-ice freeboard and thickness may be derived. Observations of the Arctic ice pack by satellite altimeters indicate a significant decline in ice thickness, and volume, over the last decade. NASA's Ice, Cloud and land Elevation Satellite-2 (ICESat-2) is a next-generation laser altimeter designed to continue key sea-ice observations through the end of this decade. An airborne simulator for ICESat-2, the Multiple Altimeter Beam Experimental Lidar (MABEL), has been deployed to gather pre-launch data for mission development. We present an analysis of MABEL data gathered over sea ice in the Greenland Sea and assess the capabilities of photon-counting techniques for sea-ice freeboard retrieval. We compare freeboard estimates in the marginal ice zone derived from MABEL photon-counting data with coincident data collected by a conventional airborne laser altimeter. We find that freeboard estimates agree to within 0.03m in the areas where sea-ice floes were interspersed with wide leads, and to within 0.07m elsewhere. MABEL data may also be used to infer sea-ice thickness, and when compared with coincident but independent ice thickness estimates, MABEL ice thicknesses agreed to within 0.65m or better.
IceBridge Survey Flight Over Saunders Island and Wolstenholme Fjord
2017-12-08
This image of Saunders Island and Wolstenholme Fjord with Kap Atholl in the background was taken during an Operation IceBridge survey flight in April, 2013. Sea ice coverage in the fjord ranges from thicker, white ice seen in the background, to thinner grease ice and leads showing open ocean water in the foreground. In March 2013, NASA's Operation IceBridge scientists began another season of research activity over Arctic ice sheets and sea ice. IceBridge, a six-year NASA mission, is the largest airborne survey of Earth's polar ice ever flown. It will yield an unprecedented three-dimensional view of Arctic and Antarctic ice sheets, ice shelves and sea ice. These flights will provide a yearly, multi-instrument look at the behavior of the rapidly changing features of the Greenland and Antarctic ice. Image Credit: NASA / Michael Studinger Read more about the mission here: www.nasa.gov/mission_pages/icebridge/index.html NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Heat flux variations over sea-ice observed at the coastal area of the Sejong Station, Antarctica
NASA Astrophysics Data System (ADS)
Park, S.; Choi, T.; Kim, S.
2012-12-01
This study presents variations of sensible heat flux and latent heat flux over sea-ice observed in 2011 from the 10-m flux tower located at the coast of the Sejong Station on King George Island, Antarctica. A period from June to November was divided into three parts: "Freezing", "Frozen", and "Melting" periods based on daily monitoring of sea state and hourly photos looking at the Marian Cove in front of the Sejong Station. The division of periods enabled us to look into the heat flux variations depending on the sea-ice conditions. Over freezing sea surface during the freezing period of late June, daily mean sensible heat flux was -11.9 Wm-2 and daily mean latent heat flux was +16.3 Wm-2. Over the frozen sea-ice, daily mean sensible heat flux was -10.4 Wm-2 while daily mean latent heat flux was +2.4 Wm-2. During the melting period of mid-October to early November, magnitudes of sensible heat flux increased to -14.2 Wm-2 and latent heat flux also increased to +13.5 Wm-2. In short, latent heat flux was usually upward over sea-ice most of the time while sensible heat flux was downward from atmosphere to sea-ice. Magnitudes of the fluxes were small but increased when freezing or melting of sea-ice was occurring. Especially, latent heat flux increased five to six times compared to that of "frozen" period implying that early melting of sea-ice may cause five to six times larger supply of moisture to the atmosphere.
NASA Astrophysics Data System (ADS)
Powell, Eric N.; Kuykendall, Kelsey M.; Moreno, Paula
2017-06-01
A comprehensive dataset for the Georges Bank region is used to directly compare the distribution of the death assemblage and the living community at large spatial scales and to assess the application of the death assemblage in tracking changes in species' distributional pattern as a consequence of climate change. Focus is placed on the biomass-dominant clam species of the northwest Atlantic continental shelf: the surfclam Spisula solidissima and the ocean quahog Arctica islandica, for which extensive datasets exist on the distributions of the living population and the death assemblage. For both surfclams and ocean quahogs, the distribution of dead shells, in the main, tracked the distribution of live animals relatively closely. Thus, for both species, the presence of dead shells was a positive indicator of present, recent, or past occupation by live animals. Shell dispersion within habitat was greater for surfclams than for ocean quahogs either due to spatial time averaging, animals not living in all habitable areas all of the time, or parautochthonous redistribution of shell. The regional distribution of dead shell differed from the distribution of live animals, for both species, in a systematic way indicative of range shifts due to climate change. In each case the differential distribution was consistent with warming of the northwest Atlantic. Present-day overlap of live surfclams with live ocean quahogs was consistent with the expectation that the surfclam's range is shifting into deeper water in response to the recent warming trend. The presence of locations devoid of dead shells where live surfclams nevertheless were collected measures the recentness of this event. The presence of dead ocean quahog shells at shallower depths than live ocean quahogs offers good evidence that a range shift has occurred in the past, but prior to the initiation of routine surveys in 1980. Possibly, this range shift tracks initial colonization at the end of the Little Ice Age.
Mimas: Constraints on Origin and Evolution from Libration Data
NASA Astrophysics Data System (ADS)
Neveu, Marc; Rhoden, Alyssa R.
2016-10-01
In stark contrast with its neighbor moon Enceladus, Mimas is surprisingly geologically quiet, despite an orbital configuration prone to levels of tidal dissipation 30 times higher. While Mimas' lack of activity could be due to a stiff, frigid interior, libration data from the Cassini spacecraft suggest its interior is not homogeneous [1]. Here, we present 1-D models of Mimas' thermal and structural evolution under two accretion scenarios: primordial, undifferentiated formation in the Saturnian subnebula [2]; and late, layered formation from a debris ring created by the disruption of one or more previous moons [3]. In the primordial scenario, our simulations yield two possible outcomes. If tidal dissipation proceeds at levels higher than those obtained using an Andrade rheology [4], Mimas differentiates and an ocean persists until the present day. This should quickly circularize its orbit, but the current orbit is eccentric. In addition, Mimas lacks surface fractures that should result from strong tidal stresses in an ice shell atop an ocean [5]. If dissipation proceeds at lower levels obtained using a Maxwell rheology, it is too weak to drive differentiation; this does not match the observed libration [1]. In the late accretion scenario, Mimas forms already differentiated. As a result, even its deepest ice is within only 100 km of the frigid surface, and poorly insulated by overlying thermally conductive crystalline ice. Thus, all ice remains cold and poorly dissipative, even if dissipation is an order of magnitude above that provided by the Andrade rheology [4]. If Mimas' rocky core is slightly non-hydrostatic [1], this matches the observed libration. We conclude that Mimas' libration is compatible with a late origin from a debris ring, but not with primordial accretion. Consistent with findings from many authors (e.g. [6]), these models cannot produce an ocean on Enceladus unless its orbital eccentricity is higher than observed.References:[1] Tajeddine et al. (2014) Science 346, 322[2] Peale (1999) Annu Rev Astron Astrophys 37, 533[3] Charnoz et al. (2011) Icarus 216, 535[4] McCarthy & Cooper (2016) EPSL 443, 185[5] Rhoden et al., JGR: Planets, submitted[6] Roberts & Nimmo (2008) Icarus 194, 675
Polar bear and walrus response to the rapid decline in Arctic sea ice
Oakley, K.; Whalen, M.; Douglas, David C.; Udevitz, Mark S.; Atwood, Todd C.; Jay, C.
2012-01-01
The Arctic is warming faster than other regions of the world due to positive climate feedbacks associated with loss of snow and ice. One highly visible consequence has been a rapid decline in Arctic sea ice over the past 3 decades - a decline projected to continue and result in ice-free summers likely as soon as 2030. The polar bear (Ursus maritimus) and the Pacific walrus (Odobenus rosmarus divergens) are dependent on sea ice over the continental shelves of the Arctic Ocean's marginal seas. The continental shelves are shallow regions with high biological productivity, supporting abundant marine life within the water column and on the sea floor. Polar bears use sea ice as a platform for hunting ice seals; walruses use sea ice as a resting platform between dives to forage for clams and other bottom-dwelling invertebrates. How have sea ice changes affected polar bears and walruses? How will anticipated changes affect them in the future?
Antarctic Sea ice variations and seasonal air temperature relationships
NASA Technical Reports Server (NTRS)
Weatherly, John W.; Walsh, John E.; Zwally, H. J.
1991-01-01
Data through 1987 are used to determine the regional and seasonal dependencies of recent trends of Antarctic temperature and sea ice. Lead-lag relationships involving regional sea ice and air temperature are systematically evaluated, with an eye toward the ice-temperature feedbacks that may influence climatic change. Over the 1958-1087 period the temperature trends are positive in all seasons. For the 15 years (l973-l987) for which ice data are available, the trends are predominantly positive only in winter and summer, and are most strongly positive over the Antarctic Peninsula. The spatially aggregated trend of temperature for this latter period is small but positive, while the corresponding trend of ice coverage is small but negative. Lag correlations between seasonal anomalies of the two variables are generally stronger with ice lagging the summer temperatures and with ice leading the winter temperatures. The implication is that summer temperatures predispose the near-surface waters to above-or below-normal ice coverage in the following fall and winter.
NASA Astrophysics Data System (ADS)
Meyer, A.; Duarte, P.; Mork Olsen, L.; Kauko, H.; Assmy, P.; Rösel, A.; Itkin, P.; Hudson, S. R.; Granskog, M. A.; Gerland, S.; Sundfjord, A.; Steen, H.; Jeffery, N.; Hunke, E. C.; Elliott, S.; Turner, A. K.
2016-12-01
Changes in the sea ice regime of the Arctic Ocean over the last decades from a thick perennial multiyear ice to a first year ice have been well documented. These changes in the sea ice regime will affect feedback mechanisms between the sea ice, atmosphere and ocean. Here we evaluate the performance of the Los Alamos Sea Ice Model (CICE), a state of the art sea ice model, to predict sea ice physical and biogeochemical properties at time scales of a few weeks. We also identify the most problematic prognostic variables and what is necessary to improve their forecast. The availability of a complete data set of forcing collected during the Norwegian Young sea Ice (N-ICE-2015) expedition north of Svalbard opens the possibility to properly test CICE. Oceanographic, atmospheric, sea ice, snow, and biological data were collected above, on, and below the ice using R/V Lance as the base for the ice camps that were drifting south towards the Fram Strait. Over six months, four different drifts took place, from the Nansen Basin, through the marginal ice zone, to the open ocean. Obtained results from the model show a good performance regarding ice thickness, salinity and temperature. Nutrients and sea ice algae are however not modelled as accurately. We hypothesize that improvements in biogeochemical modeling may be achieved by complementing brine drainage with a diffusion parameterization and biogeochemical modeling with the introduction of an explicit formulation to forecast chlorophyll and regulate photosynthetic efficiency.
2014-09-30
OBJECTIVES • What is the volume of sea ice in the Beaufort Sea Seasonal Ice Zone (SIZ) and how does this evolve during summer as the ice edge...retreats? Recent observations suggest that the remaining ice in the Beaufort Sea is younger and thinner in recent years in part because even the oldest...surrounding ice . Recent analyses have indicated that ponds on thinner ice are often darker, accelerating the ice - albedo feedback over thin ice in summer
Diminishing sea ice in the western Arctic Ocean
Stone, R.S.; Belchansky, G.I.; Drobot, Sheldon; Douglas, David C.; Levinson, D.H.; Waple, A.M.
2004-01-01
Since the advent of satellite passive microwave radiometry (1978), variations in sea ice extent and concentration have been carefully monitored from space. An estimated 7.4% decrease in sea ice extent has occurred in the last 25 yr (Johannessen et al. 2004), with recent record minima (e.g., Maslanik et al. 1999; Serreze et al. 2003) accounting for much of the decline. Comparisons between the time series of Arctic sea ice melt dynamics and snowmelt dates at the NOAA–CMDL Barrow Observatory (BRW) reveal intriguing correlations.Melt-onset dates over sea ice (Drobot and Anderson 2001) were cross correlated with the melt-date time series from BRW, and a prominent region of high correlation between snowmelt onset over sea ice and the BRW record of melt dates was approximately aligned with the climatological center of the Beaufort Sea Anticyclone (BSA). The BSA induces anticyclonic ice motion in the region, effectively forcing the Beaufort gyre. A weak gyre caused by a breakdown of the BSA diminishes transport of multiyear ice into this region (Drobot and Maslanik 2003). Similarly, the annual snow cycle at BRW varies with the position and intensity of the BSA (Stone et al. 2002, their Fig. 6). Thus, variations in the BSA appear to have far-reaching effects on the annual accumulation and subsequent melt of snow over a large region of the western Arctic.A dramatic increase in melt season duration (Belchansky et al. 2004) was also observed within the same region of high correlation between onset of melt over the ice pack and snowmelt at BRW (Fig. 5.7). By inference, this suggests linkages between factors that modulate the annual cycle of snow on land and processes that influence melting of snow and ice in the western Arctic Ocean.
Sulzberger Ice Shelf Tidal Signal Reconstruction Using InSAR
NASA Astrophysics Data System (ADS)
Baek, S.; Shum, C.; Yi, Y.; Kwoun, O.; Lu, Z.; Braun, A.
2005-12-01
Synthetic Aperture Radar Interferometry (InSAR) and Differential InSAR (DInSAR) have been demonstrated as useful techniques to detect surface deformation over ice sheet and ice shelves over Antarctica. In this study, we use multiple-pass InSAR from the ERS-1 and ERS-2 data to detect ocean tidal deformation with an attempt towards modeling of tides underneath an ice shelf. High resolution Digital Elevation Model (DEM) from repeat-pass interferometry and ICESat profiles as ground control points is used for topographic correction over the study region in Sulzberger Ice Shelf, West Antarctica. Tidal differences measured by InSAR are obtained by the phase difference between a point on the grounded ice and a point on ice shelf. Comparison with global or regional tide models (including NAO, TPXO, GOT, and CATS) of a selected point shows that the tidal amplitude is consistent with the values predicted from tide models to within 4 cm RMS. Even though the lack of data hinders the effort to readily develop a tide model using longer term data (time series span over years), we suggest a method to reconstruction selected tidal constituents using both vertical deformation from InSAR and the knowledge on aliased tidal frequencies from ERS satellites. Finally, we report the comparison results of tidal deformation observed by InSAR and ICESat altimetry.
The gastropod shell has been co-opted to kill parasitic nematodes.
Rae, R
2017-07-06
Exoskeletons have evolved 18 times independently over 550 MYA and are essential for the success of the Gastropoda. The gastropod shell shows a vast array of different sizes, shapes and structures, and is made of conchiolin and calcium carbonate, which provides protection from predators and extreme environmental conditions. Here, I report that the gastropod shell has another function and has been co-opted as a defense system to encase and kill parasitic nematodes. Upon infection, cells on the inner layer of the shell adhere to the nematode cuticle, swarm over its body and fuse it to the inside of the shell. Shells of wild Cepaea nemoralis, C. hortensis and Cornu aspersum from around the U.K. are heavily infected with several nematode species including Caenorhabditis elegans. By examining conchology collections I show that nematodes are permanently fixed in shells for hundreds of years and that nematode encapsulation is a pleisomorphic trait, prevalent in both the achatinoid and non-achatinoid clades of the Stylommatophora (and slugs and shelled slugs), which diverged 90-130 MYA. Taken together, these results show that the shell also evolved to kill parasitic nematodes and this is the only example of an exoskeleton that has been co-opted as an immune system.
High-resolution nitrogen stable isotope sclerochronology of bivalve shell carbonate-bound organics
NASA Astrophysics Data System (ADS)
Gillikin, David P.; Lorrain, Anne; Jolivet, Aurélie; Kelemen, Zita; Chauvaud, Laurent; Bouillon, Steven
2017-03-01
Nitrogen stable isotope ratios (δ15N) of organic material have successfully been used to track food-web dynamics, nitrogen baselines, pollution, and nitrogen cycling. Extending the δ15N record back in time has not been straightforward due to a lack of suitable substrates in which δ15N records are faithfully preserved, thus sparking interest in utilizing skeletal carbonate-bound organic matter (CBOM) in mollusks, corals, and foraminifera. Here we test if calcite Pecten maximus shells from the Bay of Brest and the French continental shelf can be used as an archive of δ15N values over a large environmental gradient and at a high temporal resolution (approximately weekly). Bulk CBOM δ15N values from the growing tip of shells collected over a large nitrogen isotope gradient were strongly correlated with adductor muscle tissue δ15N values (R2 = 0.99, n = 6, p < 0.0001). We were able to achieve weekly resolution (on average) over the growing season from sclerochronological profiles of three shells, which showed large seasonal variations up to 3.4‰. However, there were also large inter-specimen differences (up to 2.5‰) between shells growing at the same time and location. Generally, high-resolution shell δ15N values follow soft-tissue δ15N values, but soft-tissues integrate more time, hence soft-tissue data are more time-averaged and smoothed. Museum-archived shells from the 1950s, 1965, and 1970s do not show a large difference in δ15N values through time despite expected increasing N loading to the Bay over this time, which could be due to anthropogenic N sources with contrasting values. Compiling shell CBOM δ15N data from several studies suggests that the offset between soft-tissue and shell δ15N values (Δtissue-shell) differs between calcite and aragonite shells. We hypothesize that this difference is caused by differences in amino acids used in constructing the different minerals, which should be specific to the CaCO3 polymorph being constructed. Future work should use compound specific isotope analyses (CSIA) to test this hypothesis, and to determine whether certain amino acids could specifically track N sources or possibly identify amino acids that are more resistant to diagenesis in fossil shells. In conclusion, bivalve shell CBOM δ15N values can be used in a similar manner to soft-tissue δ15N values, and can track various biogeochemical events at a very high-resolution.
Arctic Sea Ice: Using Airborne Topographic Mapper Measurements (ATM) to Determine Sea Ice Thickness
2011-05-10
Track Distance (Km) E le v a ti o n ( m ) ATM Elevation Profile Elevation 18 Figure 13: Geoid shape of earth’s equipotential surface , which is...inferred for the region between successive leads. Therefore, flying over a lead in the ice is very important for determining the exact sea surface elevation...inferred for the region between successive leads. Therefore, flying over a lead in the ice is very important for determining the exact sea surface
The Seasonal Evolution of Sea Ice Floe Size Distribution
2013-09-30
the summer breakup of the ice cover . Large-scale, lower resolution imagery from MODIS and other platforms will also be analyzed to determine changes...control number. 1. REPORT DATE 30 SEP 2013 2. REPORT TYPE 3. DATES COVERED 00-00-2013 to 00-00-2013 4. TITLE AND SUBTITLE The Seasonal Evolution...appearance and morphology of the Arctic sea ice cover over and annual cycle. These photos were taken over the pack ice near SHEBA in May (left) and
The Seasonal Evolution of Sea Ice Floe Size Distribution
2014-09-30
summer breakup of the ice cover . Large-scale, lower resolution imagery from MODIS and other platforms will also be analyzed to determine changes in floe...number. 1. REPORT DATE 30 SEP 2014 2. REPORT TYPE 3. DATES COVERED 00-00-2014 to 00-00-2014 4. TITLE AND SUBTITLE The Seasonal Evolution of Sea...morphology of the Arctic sea ice cover over and annual cycle. These photos were taken over the pack ice near SHEBA in May (left) and August (right
NASA Astrophysics Data System (ADS)
Li, Yujing; Wang, Zhi Wei; Chiu, Chin-Yi; Ruan, Lingyan; Yang, Wenbing; Yang, Yang; Palmer, Richard E.; Huang, Yu
2012-01-01
Bimetallic Pt-Pd core-shell nanocrystals (NCs) are synthesized through a two-step process with controlled Pd thickness from sub-monolayer to multiple atomic layers. The oxygen reduction reaction (ORR) catalytic activity and methanol oxidation reactivity of the core-shell NCs for fuel cell applications in alkaline solution are systematically studied and compared based on different Pd thickness. It is found that the Pd shell helps to reduce the over-potential of ORR by up to 50mV when compared to commercial Pd black, while generating up to 3-fold higher kinetic current density. The carbon monoxide poisoning test shows that the bimetallic NCs are more resistant to the CO poisoning than Pt NCs and Pt black. It is also demonstrated that the bimetallic Pt-Pd core-shell NCs can enhance the current density of the methanol oxidation reaction, lowering the over-potential by 35 mV with respect to the Pt core NCs. Further investigation reveals that the Pd/Pt ratio of 1/3, which corresponds to nearly monolayer Pd deposition on Pt core NCs, gives the highest oxidation current density and lowest over-potential. This study shows for the first time the systematic investigation of effects of Pd atomic shells on Pt-Pd bimetallic nanocatalysts, providing valuable guidelines for designing high-performance catalysts for fuel cell applications.Bimetallic Pt-Pd core-shell nanocrystals (NCs) are synthesized through a two-step process with controlled Pd thickness from sub-monolayer to multiple atomic layers. The oxygen reduction reaction (ORR) catalytic activity and methanol oxidation reactivity of the core-shell NCs for fuel cell applications in alkaline solution are systematically studied and compared based on different Pd thickness. It is found that the Pd shell helps to reduce the over-potential of ORR by up to 50mV when compared to commercial Pd black, while generating up to 3-fold higher kinetic current density. The carbon monoxide poisoning test shows that the bimetallic NCs are more resistant to the CO poisoning than Pt NCs and Pt black. It is also demonstrated that the bimetallic Pt-Pd core-shell NCs can enhance the current density of the methanol oxidation reaction, lowering the over-potential by 35 mV with respect to the Pt core NCs. Further investigation reveals that the Pd/Pt ratio of 1/3, which corresponds to nearly monolayer Pd deposition on Pt core NCs, gives the highest oxidation current density and lowest over-potential. This study shows for the first time the systematic investigation of effects of Pd atomic shells on Pt-Pd bimetallic nanocatalysts, providing valuable guidelines for designing high-performance catalysts for fuel cell applications. Electronic supplementary information (ESI) available: Supplementary TEM, EELS, EDS, Electro-chemical measurement data can be found. See DOI: 10.1039/c1nr11374g
NASA Astrophysics Data System (ADS)
Das, Subrata Kumar; Golhait, R. B.; Uma, K. N.
2017-01-01
The CloudSat spaceborne radar and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) space-borne lidar measurements, provide opportunities to understand the intriguing behavior of the vertical structure of monsoon clouds. The combined CloudSat-CALIPSO data products have been used for the summer season (June-August) of 2006-2010 to present the statistics of cloud macrophysical (such as cloud occurrence frequency, distribution of cloud top and base heights, geometrical thickness and cloud types base on occurrence height), and microphysical (such as ice water content, ice water path, and ice effective radius) properties of the Northern Hemisphere (NH) monsoon region. The monsoon regions considered in this work are the North American (NAM), North African (NAF), Indian (IND), East Asian (EAS), and Western North Pacific (WNP). The total cloud fraction over the IND (mostly multiple-layered cloud) appeared to be more frequent as compared to the other monsoon regions. Three distinctive modes of cloud top height distribution are observed over all the monsoon regions. The high-level cloud fraction is comparatively high over the WNP and IND. The ice water content and ice water path over the IND are maximum compared to the other monsoon regions. We found that the ice water content has little variations over the NAM, NAF, IND, and WNP as compared to their macrophysical properties and thus give an impression that the regional differences in dynamics and thermodynamics properties primarily cause changes in the cloud frequency or coverage and only secondary in the cloud ice properties. The background atmospheric dynamics using wind and relative humidity from the ERA-Interim reanalysis data have also been investigated which helps in understanding the variability of the cloud properties over the different monsoon regions.
NASA Astrophysics Data System (ADS)
Provost, C.; Koenig, Z.; Villacieros-Robineau, N.; Sennechael, N.; Meyer, A.; Lellouche, J. M.; Garric, G.
2016-12-01
IAOOS platforms, measuring physical parameters at the atmosphere-snow-ice-ocean interface deployed as part of the N-ICE2015 campaign, provide new insights on winter conditions North of Svalbard. The three regions crossed during the drifts, the Nansen Basin, the Sofia Deep and the Svalbard northern continental slope featured distinct hydrographic properties and ice-ocean exchanges. In the Nansen Basin the quiescent warm layer was capped by a stepped halocline (60 and 110 m) and a deep thermocline (110 m). Ice was forming and the winter mixed layer salinity was larger by 0.1 g/kg than previously observed. Over the Svalbard continental slope, the Atlantic Water (AW) was very shallow (20 m from the surface) and extended offshore from the 500 m isobath by a distance of about 70 km, sank along the slope (40 m from the surface) and probably shedded eddies into the Sofia Deep. In the Sofia Deep, relatively warm waters of Atlantic origin extended from 90 m downward. Resulting from different pathways, these waters had a wide range of hydrographic characteristics. Sea-ice melt was widespread over the Svalbard continental slope and ocean-to-ice heat fluxes reached values of 400 Wm-2 (mean of 150 Wm-2 over the continentalslope). Sea-ice melt events were associated with near 12-hour fluctuations in the mixed-layer temperature and salinity corresponding to the periodicity of tides and near-inertial waves potentially generated by winter storms, large barotropic tides over steep topography and/or geostrophic adjustments.
Arctic sea ice loss and recent extreme cold winter in Eurasia
NASA Astrophysics Data System (ADS)
Mori, Masato; Watanabe, Masahiro; Ishii, Masayoshi; Kimoto, Masahide
2014-05-01
Extreme cold winter over the Eurasia has occurred more frequently in recent years. Observational evidence in recent studies shows that the wintertime cold anomalies over the Eurasia are associated with decline of Arctic sea ice in preceding autumn to winter season. However, the tropical and/or mid-latitude sea surface temperature (SST) anomalies have great influence on the mid- and high-latitude atmospheric variability, it is difficult to isolate completely the impacts of sea ice change from observational data. In this study, we examine possible linkage between the Arctic sea ice loss and the extreme cold winter over the Eurasia using a state-of-the-art MIROC4 (T106L56) atmospheric general circulation model (AGCM) to assess the pure atmospheric responses to sea ice reduction. We perform two sets of experiments with different realistic sea ice boundary conditions calculated by composite of observed sea ice concentration; one is reduced sea ice extent case (referred to as LICE run) and another is enhanced case (HICE run). In both experiments, the model is integrated 6-month from September to February with 100-member ensemble under the climatological SST boundary condition. The difference in ensemble mean of each experiment (LICE minus HICE) shows cold anomalies over the Eurasia in winter and its spatial pattern is very similar to corresponding observation, though the magnitude is smaller than observation. This result indicates that a part of observed cold anomaly can be attributed to the Arctic sea ice loss. We would like to introduce more important results and mechanisms in detail in my presentation.
Beaufort Sea ice zones as delineated by microwave imagery
NASA Technical Reports Server (NTRS)
Campbell, W. J.; Gloersen, P.; Webster, W. J.; Wilheit, T. T.; Ramseier, R. O.
1976-01-01
Microwave and infrared data were obtained from a research aircraft over the Beaufort Sea ice from the shoreline of Harrison Bay northward to a latitude of almost 81 deg N. The data acquired were compared with microwave data obtained on the surface at an approximate position of 75 deg N, 150 deg W. Over this north-south transect of the polar ice canopy it was discovered that the sea ice could be divided into five distinct zones. The shorefast sea ice was found to consist uniformly of first-year sea ice. The second zone was found to be a mixture of first-year sea ice, medium size multiyear floes, and many recently refrozen leads, polynyas, and open water; considerable shearing activity was evident in this zone. The third zone was a mixture of first-year and multiyear sea ice which had a uniform microwave signature. The fourth zone was found to be a mixture of first-year sea ice and medium-to-large size multiyear floes which was similar in composition to the second zone. The fifth zone was almost exclusively multiyear ice extending to the North Pole.
NASA Astrophysics Data System (ADS)
Tsai, I.-Chun; Chen, Jen-Ping; Lin, Yi-Chiu; Chung-Kuang Chou, Charles; Chen, Wei-Nai
2015-05-01
A statistical-numerical aerosol parameterization was incorporated into the Community Multiscale Air Quality modeling system to study the coagulation mixing process focusing on a dust storm event that occurred over East Asia. Simulation results show that the coagulation mixing process tends to decrease aerosol mass, surface area, and number concentrations over the dust source areas. Over the downwind oceanic areas, aerosol concentrations generally increased due to enhanced sedimentation as particles became larger upon coagulation. The mixture process can reduce the overall single-scattering albedo by up to 10% as a result of enhanced core with shell absorption by dust and reduction in the number of scattering particles. The enhanced dry deposition speed also altered the vertical distribution. In addition, the ability of aerosol particles to serve as cloud condensation nuclei (CCN) increased from around 107 m-3 to above 109 m-3 over downwind areas because a large amount of mineral dust particles became effective CCN with solute coating, except over the highly polluted areas where multiple collections of hygroscopic particles by dust in effect reduced CCN number. This CCN effect is much stronger for coagulation mixing than by the uptake of sulfuric acid gas on dust, although the nitric acid gas uptake was not investigated. The ability of dust particles to serve as ice nuclei may decrease or increase at low or high subzero temperatures, respectively, due to the switching from deposition nucleation to immersion freezing or haze freezing.
NASA Astrophysics Data System (ADS)
Bell, R. E.; Tinto, K. J.; Wolovick, M.; Block, A. E.; Frearson, N.; Das, I.; Abdi, A.; Creyts, T. T.; Cochran, J. R.; Csatho, B. M.; Babonis, G. S.
2011-12-01
The Petermann Glacier, one of the major outlet glaciers in Greenland, drains six percent of the Greenland ice from a basin largely below sea level. Petermann Glacier and its large ice shelf may be susceptible to increased change as the waters along the Greenland margin warm. The 2010 and 2011 Operation IceBridge mission, acquired a comprehensive aerogeophysical data set over the Petermann Glacier that provides insights into the ice sheet structure. This analysis employs most of the data streams acquired by the Icebridge platform including ice-penetrating radar, laser altimetry, gravity and magnetics. An orthogonal 10 km grid extends from 60 km upstream of the grounding line to 240 km inland. The ice velocities in the region range from <50m/yr to >200m/yr. On the interior lines the internal layers are pulled down over 2-3 km wide regions. Up to 400m of ice from the base of the ice sheet appears to be absent in these regions. We interpret these pulled down regions as basal melt. These melt regions are mainly located along the upstream side of a 80 km wide east-west trending topographic ridge that separates the interior ice from the Petermann Fjord. The IceBridge magnetic data indicates that this broad flat ridge is the boundary between the Franklinian Basins and the Ellsmerian Foldbelt to the north. Downstream of these pull-down layers we have identified 4 distinct packages of ice that thicken downstream and are characterized by a strong upper reflector. These packages develop at the base of the ice sheet and reach thicknesses of 500-700m over distances of 10-20 km. These basal packages can be traced for 30-100 km following the direction of flow, and may be present close to the grounding line. These basal reflectors deflect the overlying internal layers upward indicating the addition of ice to the base of the ice sheet. The IceBridge gravity data indicates that these features are probably not off-nadir topography since these would show up as around 30mGal anomalies in the gravity data, and no such signature exists. We interpret these basal features in the radar data as ice. The geometry of these packages is very similar to the frozen-on ice packages imaged along the margins of the Gamburtsev Mountains, East Antarctica. We have interpreted these packages as bodies of accreted ice sourced from the upstream melting. Similar packages of basal ice up to 1200m thick are found throughout the margins of the Greenland ice sheet north of 70°N. The accretion process is modifying the base of the ice sheet in the onset regions of Petermann and other outlet glaciers in Greenland. Any change in rheology between basal and meteoric ice is likely to influence ice flow fostering enhanced melting and deformation of the basal ice. These frozen-on basal ice packages may be more susceptible to melt when ice sheet goes afloat and may be the origin of the elongate melt channels in the ice shelf. Accretion may influence both ice flow in outlet glaciers and melt rates at the grounding line and the adjacent ice shelves.
Terrestrial cooling in Northern Europe during the eocene-oligocene transition.
Hren, Michael T; Sheldon, Nathan D; Grimes, Stephen T; Collinson, Margaret E; Hooker, Jerry J; Bugler, Melanie; Lohmann, Kyger C
2013-05-07
Geochemical and modeling studies suggest that the transition from the "greenhouse" state of the Late Eocene to the "icehouse" conditions of the Oligocene 34-33.5 Ma was triggered by a reduction of atmospheric pCO2 that enabled the rapid buildup of a permanent ice sheet on the Antarctic continent. Marine records show that the drop in pCO2 during this interval was accompanied by a significant decline in high-latitude sea surface and deep ocean temperature and enhanced seasonality in middle and high latitudes. However, terrestrial records of this climate transition show heterogeneous responses to changing pCO2 and ocean temperatures, with some records showing a significant time lag in the temperature response to declining pCO2. We measured the Δ47 of aragonite shells of the freshwater gastropod Viviparus lentus from the Solent Group, Hampshire Basin, United Kingdom, to reconstruct terrestrial temperature and hydrologic change in the North Atlantic region during the Eocene-Oligocene transition. Our data show a decrease in growing-season surface water temperatures (~10 °C) during the Eocene-Oligocene transition, corresponding to an average decrease in mean annual air temperature of ~4-6 °C from the Late Eocene to Early Oligocene. The magnitude of cooling is similar to observed decreases in North Atlantic sea surface temperature over this interval and occurs during major glacial expansion. This suggests a close linkage between atmospheric carbon dioxide concentrations, Northern Hemisphere temperature, and expansion of the Antarctic ice sheets.
Habitability of enceladus: planetary conditions for life.
Parkinson, Christopher D; Liang, Mao-Chang; Yung, Yuk L; Kirschivnk, Joseph L
2008-08-01
The prolific activity and presence of a plume on Saturn's tiny moon Enceladus offers us a unique opportunity to sample the interior composition of an icy satellite, and to look for interesting chemistry and possible signs of life. Based on studies of the potential habitability of Jupiter's moon Europa, icy satellite oceans can be habitable if they are chemically mixed with the overlying ice shell on Myr time scales. We hypothesize that Enceladus' plume, tectonic processes, and possible liquid water ocean may create a complete and sustainable geochemical cycle that may allow it to support life. We discuss evidence for surface/ocean material exchange on Enceladus based on the amounts of silicate dust material present in the Enceladus' plume particles. Microphysical cloud modeling of Enceladus' plume shows that the particles originate from a region of Enceladus' near surface where the temperature exceeds 190 K. This could be consistent with a shear-heating origin of Enceladus' tiger stripes, which would indicate extremely high temperatures ( approximately 250-273 K) in the subsurface shear fault zone, leading to the generation of subsurface liquid water, chemical equilibration between surface and subsurface ices, and crustal recycling on a time scale of 1 to 5 Myr. Alternatively, if the tiger stripes form in a mid-ocean-ridge-type mechanism, a half-spreading rate of 1 m/year is consistent with the observed regional heat flux of 250 mW m(-2) and recycling of south polar terrain crust on a 1 to 5 Myr time scale as well.
Little Ice Age Wetting of Interior Asian Deserts and the Rise of the Mongol Empire
NASA Astrophysics Data System (ADS)
Putnam, A. E.; Putnam, D.; Andreu-Hayles, L.; Cook, E. R.; Palmer, J. G.; Clark, E. H.; WANG, C.; Chen, F.; Denton, G.; Boyle, D. P.; Bassett, S.; Birkel, S. D.; Martin Fernandez, J.; Hajdas, I.; Southon, J. R.; Garner, C.; Broecker, W. S.
2015-12-01
Documenting hydrological responses to past climate changes may provide insights into how ongoing warming will alter the distribution of Earth's water resources. Here we report evidence suggesting that wetter-than-present conditions persisted during the past millennium in the deserts of the Tarim Basin, western China, located at the heart of Asia - Earth's largest and most populous continent. Our assessment is based on observations of landforms composed of waterlain sediments occurring throughout the Taklamakan and Lop Deserts of the Tarim Basin. These landforms are associated with subfossil phreatophyte trees, reeds, and mollusk shells. We applied 14C and dendrochronological dating techniques to construct a chronology for when the Tarim Basin was wetter than today. We also employed hydrological modeling to estimate plausible climatic conditions under which the observed wet environment could have been sustained. Our results indicate that the core of the Asian desert belt was dominantly wetter than today during the last major cold spell of the Holocene: The Little Ice Age. Wetter conditions in the Tarim Basin deserts accompanied northern cooling, snowline lowering, a strengthened boreal jet, and coeval weakening of south Asian monsoons. Southward migration of grasslands in response to wetter conditions may have aided the spread of the Mongol Empire across Asian drylands. On the other hand, net drying over the 20th century has led to drought that is unprecedented for at least the past ~830 years, and which could intensify with further warming.
NASA Technical Reports Server (NTRS)
Mikkelsen, K. L.; Mcknight, R. C.; Ranaudo, R. J.; Perkins, P. J., Jr.
1985-01-01
Aircraft icing flight research was performed in natural icing conditions. A data base consisting of icing cloud measurements, ice shapes, and aerodynamic measurements is being developed. During research icing encounters the icing cloud was continuously measured. After the encounter, the ice accretion shapes on the wing were documented with a stereo camera system. The increase in wing section drag was measured with a wake survey probe. The overall aircraft performance loss in terms of lift and drag coefficient changes was obtained by steady level speed/power measurements. Selective deicing of the airframe components was performed to determine their contributions to the total drag increase. Engine out capability in terms of power available was analyzed for the iced aircraft. It was shown that the stereo photography system can be used to document ice shapes in flight and that the wake survey probe can measure increases in wing section drag caused by ice. On one flight, the wing section drag coefficient (c sub d) increased approximately 120 percent over the uniced baseline at an aircraft angle of attack of 6 deg. On another flight, the aircraft darg coefficient (c sub d) increased by 75 percent over the uniced baseline at an aircraft lift coefficient (C sub d) of 0.5.
NASA Technical Reports Server (NTRS)
Mikkelsen, K. L.; Mcknight, R. C.; Ranaudo, R. J.; Perkins, P. J., Jr.
1985-01-01
Aircraft icing flight research was performed in natural icing conditions. A data base consisting of icing cloud measurements, ice shapes, and aerodynamic measurements is being developed. During research icing encounters the icing cloud was continuously measured. After the encounter, the ice accretion shapes on the wing were documented with a stereo camera system. The increase in wing section drag was measured with a wake survey probe. The overall aircraft performance loss in terms of lift and drag coefficient changes were obtained by steady level speed/power measurements. Selective deicing of the airframe components was performed to determine their contributions to the total drag increase. Engine out capability in terms of power available was analyzed for the iced aircraft. It was shown that the stereo photography system can be used to document ice shapes in flight and that the wake survey probe can measure increases in wing section drag caused by ice. On one flight, the wing section drag coefficient (c sub d) increased approximately 120 percent over the uniced baseline at an aircraft angle of attack of 6 deg. On another flight, the aircraft drag coefficient (c sub d) increased by 75 percent over the uniced baseline at an aircraft lift coefficient (c sub d) of 0.5.
Ice stream activity scaled to ice sheet volume during Laurentide Ice Sheet deglaciation.
Stokes, C R; Margold, M; Clark, C D; Tarasov, L
2016-02-18
The contribution of the Greenland and West Antarctic ice sheets to sea level has increased in recent decades, largely owing to the thinning and retreat of outlet glaciers and ice streams. This dynamic loss is a serious concern, with some modelling studies suggesting that the collapse of a major ice sheet could be imminent or potentially underway in West Antarctica, but others predicting a more limited response. A major problem is that observations used to initialize and calibrate models typically span only a few decades, and, at the ice-sheet scale, it is unclear how the entire drainage network of ice streams evolves over longer timescales. This represents one of the largest sources of uncertainty when predicting the contributions of ice sheets to sea-level rise. A key question is whether ice streams might increase and sustain rates of mass loss over centuries or millennia, beyond those expected for a given ocean-climate forcing. Here we reconstruct the activity of 117 ice streams that operated at various times during deglaciation of the Laurentide Ice Sheet (from about 22,000 to 7,000 years ago) and show that as they activated and deactivated in different locations, their overall number decreased, they occupied a progressively smaller percentage of the ice sheet perimeter and their total discharge decreased. The underlying geology and topography clearly influenced ice stream activity, but--at the ice-sheet scale--their drainage network adjusted and was linked to changes in ice sheet volume. It is unclear whether these findings can be directly translated to modern ice sheets. However, contrary to the view that sees ice streams as unstable entities that can accelerate ice-sheet deglaciation, we conclude that ice streams exerted progressively less influence on ice sheet mass balance during the retreat of the Laurentide Ice Sheet.
NASA Astrophysics Data System (ADS)
Yao, C.; Mantegazzi, D.; Deschamps, F.; Sanchez-Valle, C.
2013-12-01
Methanol, CH3OH, has been recently observed in several comets and at the surface of Saturn's icy moon Enceladus, [Hodyss et al., 2009]. Its plausible presence in the subsurface ocean could significantly affect the thermal and structural evolution of the satellite [Deschamps et al., 2010]. Methanol lowers the melting temperature of water ice [Vuillard & Sanchez, 1961; Miller & Carpenter, 1964], hence decreasing the efficiency of convective heat transfer through the outer ice Ih shell, and affects the subsurface ocean density and thermo-chemical evolution. However, the phase diagram and the fluid density of the H2O - CH3OH system remains largely unknown at the high pressures and low temperature conditions relevant for the icy moon interiors. In this study, we determined experimentally the liquidus temperature of Ice Ih and Ice VI and the fluid density in the binary water-methanol system (5, 10 and 20 w% CH3OH) from sound velocity measurments by Brillouin scattering spectroscopy over the P-T range 230 - 300 K and 10-4 - 1.2 GPa. The experiments were conducted using a membrane-type diamond anvil cell (mDAC) and an in-house designed Peltier cooling system to achieve the low temperatures of interest. Melting and crystallization in the system was visually monitored and confirmed from changes in the Brillouin spectra and in the pressure dependence of the measured sound velocities. The density of fluids ρ(P, T,x) in the binary system weas determined from the inversion of sound velocities measured in the fluids as a function of pressure along isotherms from 230 to 300 K. The results are used to propose a thermodynamic model for the CH3OH-H2O system over the investigated P-T range and further used to examine the effect of the methanol on the crystallization and thermo-chemical evolution of the subsurface ocean. The implications of these results for the thermal and structural evolution of icy moons, with particular applications to Titan, will be further discussed. References : Deschamps, F., Mousis, O., Sanchez-Valle, C., and Lunine, J.I., Astrophys. J., 2010. Hodyss, R., Parkinson, C.D. Johnson, V.D., Stern, J.V., Goguen, J.D, Yung, Y.L., and Kanik, I., Geophys. Res. Lett., 1992. Miller, G.A., and Carpenter, D.A., J. Chem. Eng. Data, 1964. Vuillard, G., and Sanchez, M., Bull. Soc. Chim. France, 1961.
Applications of Shell-Model Techniques to N = 50 Nuclei.
NASA Astrophysics Data System (ADS)
Ji, Xiangdong
Traditional shell-model techniques, which involve setting up and diagonalizing model Hamiltonians in a finite Hilbert space, have been used to treat the N = 50 isotones. A model space with active f_{5over 2}, p_{3over 2}, p_{1over 2} and g_{9over 2} proton orbits is used to simulate the low-lying excitations of these isotones. An effective Hamiltonian which consists of one-body and two-body interactions is obtained by varying a total of 69 parameters to fit over 140 experimental energy levels in nuclei ranging from ^{82 }Ge to ^{96}Pd. The structures of the model wavefunctions calculated with the empirical model Hamiltonian are analyzed and compared with experimental measurements. It is found that the overall level systematics of N = 50 nuclei are well described by the model treatment. In particular, for the nuclei heavier than ^{88}Sr, the present results are not essentially different from those obtained in the p_{1over 2}-g_ {9over 2} model space, and for those lighter than ^{88}Sr, the wavefunctions are dominated by f_{5 over 2}-p_{3over 2}-p _{1over2} configurations. The model predictions for very proton-deficient, very unstable nuclei are presented for further experimental verification. Spectroscopic factors for single-proton-transfer reactions and M1 and E2 transition rates and moments are calculated using these model wavefunctions. Effective strengths of electromagnetic operators are adjusted in order to achieve the best agreement between the model predictions and experimental data. The effective proton charge is determined to be 1.9 e. The spin g-factor is found to be quenched by 16 percent for the fp shell orbits and by 29 percent for the g_{9over 2 } orbit. A new shell-model code which is capable of performing shell-model calculations in a general LS -coupling basis has been constructed. The code can be implemented with shell-model truncation schemes for both the LS -coupling limit and the seniority limit. Examples from the Ni isotopes are used to illustrate applications of the code.
Effects of Hot-Spot Geometry on Backscattering and Down-Scattering Neutron Spectra
NASA Astrophysics Data System (ADS)
Mohamed, Z. L.; Mannion, O. M.; Forrest, C. J.; Knauer, J. P.; Anderson, K. S.; Radha, P. B.
2017-10-01
The measured neutron spectrum produced by a fusion experiment plays a key role in inferring observable quantities. One important observable is the areal density of an implosion, which is inferred by measuring the scattering of neutrons. This project seeks to use particle-transport simulations to model the effects of hot-spot geometry on backscattering and down-scattering neutron spectra along different lines of sight. Implosions similar to those conducted at the Laboratory of Laser Energetics are modeled by neutron transport through a DT plasma and a DT ice shell using the particle transport codes MCNP and IRIS. Effects of hot-spot geometry are obtained by ``detecting'' scattered neutrons along different lines of sight. This process is repeated for various hot-spot geometries representing known shape distortions between the hot spot and the shell. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.
Variability of Fram Strait Ice Flux and North Atlantic Oscillation
NASA Technical Reports Server (NTRS)
Kwok, Ron
1999-01-01
An important term in the mass balance of the Arctic Ocean sea ice is the ice export. We estimated the winter sea ice export through the Fram Strait using ice motion from satellite passive microwave data and ice thickness data from moored upward looking sonars. The average winter area flux over the 18-year record (1978-1996) is 670,000 square km, approximately 7% of the area of the Arctic Ocean. The winter area flux ranges from a minimum of 450,000 sq. km in 1984 to a maximum of 906,000 sq km in 1995. The daily, monthly and interannual variabilities of the ice area flux are high. There is an upward trend in the ice area flux over the 18-year record. The average winter volume flux over the winters of October 1990 through May 1995 is 1745 cubic km ranging from a low of 1375 cubic km in 1990 to a high of 2791 cubic km in 1994. The sea-level pressure gradient across the Fram Strait explains more than 80% of the variance in the ice flux over the 18-year record. We use the coefficients from the regression of the time-series of area flux versus pressure gradient across the Fram Strait and ice thickness data to estimate the summer area and volume flux. The average 12-month area flux and volume flux are 919,000 sq km and 2366 cubic km. We find a significant correlation (R =0.86) between the area flux and positive phases of the North Atlantic Oscillation (NAO) index over the months of December through March. Correlation between our six years of volume flux estimates and the NAO index gives R =0.56. During the high NAO years, a more intense Icelandic low increases the gradient in the sea-level pressure by almost 1 mbar across the Fram Strait thus increasing the atmospheric forcing on ice transport. Correlation is reduced during the negative NAO years because of decreased dominance of this large-scale atmospheric pattern on the sea-level pressure gradient across the Fram Strait. Additional information is contained in the original.
NASA Astrophysics Data System (ADS)
Yang, Bernard; Young, Joelle; Brown, Laura; Wells, Mathew
2017-12-01
Detailed observations of thermal structure over an entire winter in a large lake reveal the presence of large (10-20 m) overturns under the ice, driven by diurnal solar heating. Convection can occur in the early winter, but the most vigorous convection occurred near the end of winter. Both periods are when our lake ice model suggest thinner ice that would have been transparent. This under-ice convection led to a deepening of the mixed layer over time, consistent with previous short-term studies. During periods of vigorous convection under the ice at the end of winter, the dissolved oxygen had become supersaturated from the surface to 23 m below the surface, suggesting abundant algal growth. Analysis of our high-frequency observations over the entire winter of 2015 using the Thorpe-scale method quantified the scale of mixing. Furthermore, it revealed that changes in oxygen concentrations are closely related to the intensity of mixing.
EM Bias-Correction for Ice Thickness and Surface Roughness Retrievals over Rough Deformed Sea Ice
NASA Astrophysics Data System (ADS)
Li, L.; Gaiser, P. W.; Allard, R.; Posey, P. G.; Hebert, D. A.; Richter-Menge, J.; Polashenski, C. M.
2016-12-01
The very rough ridge sea ice accounts for significant percentage of total ice areas and even larger percentage of total volume. The commonly used Radar altimeter surface detection techniques are empirical in nature and work well only over level/smooth sea ice. Rough sea ice surfaces can modify the return waveforms, resulting in significant Electromagnetic (EM) bias in the estimated surface elevations, and thus large errors in the ice thickness retrievals. To understand and quantify such sea ice surface roughness effects, a combined EM rough surface and volume scattering model was developed to simulate radar returns from the rough sea ice `layer cake' structure. A waveform matching technique was also developed to fit observed waveforms to a physically-based waveform model and subsequently correct the roughness induced EM bias in the estimated freeboard. This new EM Bias Corrected (EMBC) algorithm was able to better retrieve surface elevations and estimate the surface roughness parameter simultaneously. In situ data from multi-instrument airborne and ground campaigns were used to validate the ice thickness and surface roughness retrievals. For the surface roughness retrievals, we applied this EMBC algorithm to co-incident LiDAR/Radar measurements collected during a Cryosat-2 under-flight by the NASA IceBridge missions. Results show that not only does the waveform model fit very well to the measured radar waveform, but also the roughness parameters derived independently from the LiDAR and radar data agree very well for both level and deformed sea ice. For sea ice thickness retrievals, validation based on in-situ data from the coordinated CRREL/NRL field campaign demonstrates that the physically-based EMBC algorithm performs fundamentally better than the empirical algorithm over very rough deformed sea ice, suggesting that sea ice surface roughness effects can be modeled and corrected based solely on the radar return waveforms.
NASA Astrophysics Data System (ADS)
Van Liefferinge, Brice; Pattyn, Frank; Cavitte, Marie G. P.; Young, Duncan A.; Roberts, Jason L.
2017-04-01
The quest for oldest ice in Antarctica has recently been launched through an EU H2020 project (Beyond EPICA - Oldest Ice) and aims at identifying suitable areas for a potential future drilling. Retrieving an ice core of such age is essential to understand the relation between orbital changes and atmospheric composition during the mid-Pliocene transition. However, sites for a potential undisturbed record of 1.5 million-year old ice in Antarctica are difficult to find and require slow-moving ice (preferably an ice divide) and basal conditions that are not disturbed by large topographic variations. Furthermore, ice should be sufficiently thick but cold basal conditions should still prevail, since basal melting would destroy the bottom layers. Therefore, ice-flow conditions and thermodynamic characteristics are crucial for identifying potential locations of undisturbed ice. Van Liefferinge and Pattyn (2013) identified suitable areas based on a pan-Antarctic simplified thermodynamic ice sheet model and demonstrated that uncertainty in geothermal conditions remain a major unknown. In order to refine these estimates, and provide uncertainties, we employ a full thermo-mechanically coupled higher-order ice sheet model (Pattyn, 2003; Pattyn et al., 2004). Initial conditions for the calculations are based on an inversion of basal slipperiness, based on observed surface topography (Pollard and DeConto, 2012; Pattyn, in prep.). Uncertainties in geothermal conditions are introduced using the convolution of two Gaussian probability density functions: (a) the reconstruction of the Antarctic ice sheet geometry and testing ice thickness variability over the last 2 million years (Pollard and DeConto, 2009) and (b) the surface temperature reconstruction over the same period (Snyder et al., 2016). The standard deviation, the skewness and the kurtosis of the whole Antarctic ice sheet are analyzed to observe likely probable melt conditions. Finally, we focus on model results in the divide area between Dome Concordia and Dome Fuji, and compare to newly acquired radar data in the region (OIA survey).
Integrated Airborne and In-Situ Measurements over Land-Fast Ice near Barrow, AK
NASA Astrophysics Data System (ADS)
Brozena, J. M.; Gardner, J. M.; Liang, R.; Vermillion, M.; Ball, D.; Stoudt, C. A.; Geiger, C. A.; Woods, J. E.; Samluk, J.; Deliberty, T. L.
2013-12-01
During March of 2013, the Naval Research Laboratory, the University of Delaware and the US Naval Academy collected an integrated set of measurements over the largely floating, but land-fast ice near the coast of Barrow, AK. The purpose of the collection was to compare airborne remote sensing methods of collection to in-situ ground-truth measurements. Airborne measurements include scanning LiDAR (Riegl Q 680i), digital photogrammetry (Applanix DSS-439) and a short-pulse (~ 1 nsec) 10 GHz radar altimeter. The LiDAR measures total freeboard (ice + snow) referenced to leads in the ice. The radar measures approximate ice freeboard with the difference with the LiDAR providing an estimate of snow thickness. The freeboard measurements are aimed at estimating ice thickness via estimates of densities and isostasy. The photogrammetry was used to measure ice motion over free-floating sea-ice, but provided only a velocity calibration and general situational awareness over the land-fast ice. Ground measurements were collected along a transect, and included boreholes, snow-thickness (Magnaprobe), and ice thickness (EM31). Airborne data were collected on six overflights of this transect over a three week period. LiDAR swath widths ranged from 200-300m (depending on altitude) and encompassed three grounded ridges which remained essentially stationary over the collection period, that together with the shoreline, provided fixed reference points to compare the heights of the floating ice that varied with the tide (and to some extent the snow conditions). Sampling size or 'footprint' plays a critical role in the attempt to compare in-situ measurements with airborne (or satellite) measurements. Boreholes are point measurements and are difficult enough to obtain, that only a limited number are practical during a survey period. EM31 and Magnaprobe instrumentation allows collection of snow and ice thickness along one-dimensional profiles, and several adjacent profiles can be collected to approximate a two-dimensional swath, assuming that the spacing between profiles does not lead to unacceptable aliasing. For this project we collected two em31 profiles roughly 3-5m apart and two profiles of Magnaprobe snow thickness with separation varying from 1-20 m. The radar footprint is ~ 10-15m at our survey altitudes, and at least somewhat comparable. The LiDAR had a ground point spacing of ~25 cm and so easily encompassed the EM31, Magnaprobe and radar data. Measured snow thickness was minimal, averaging 9 cm on the date of the first collection and 12 cm on the second. Airborne radar data were compared to the LiDAR by applying a circular, weighted kernel to the LiDAR measurements surrounding the radar profile and commensurate in diameter to the radar footprint. Estimated snow thickness is then obtained from the difference of the radar and averaged LiDAR. Ice thickness was then calculated from the freeboard measurements and compared to the boreholes. Using these data sets we hope to address important questions such as: How can we improve co-registration between ground and airborne campaigns by taking advantage of land-fast ice as a non-moving ice field? How can we improve co-registration on drift ice by building from such activities? Is there spatial aliasing of sea ice at different resolutions and if so, what is the impact on sea ice volume and ice thickness distribution?
Modeling Tidal Stresses on Planetary Bodies Using an Enhanced SatStress GUI
NASA Astrophysics Data System (ADS)
Patthoff, D. A.; Pappalardo, R. T.; Tang, L.; Kay, J.; Kattenhorn, S. A.
2014-12-01
Icy and rocky satellites of our solar system display a wide range of structural deformation on their surfaces. Some surfaces are old and heavily cratered showing little evidence for recent tectonism while other surfaces are sparsely cratered and young, with some moons showing geologically very recent or present-day activity. The young deformation can take the form of small cracks in the surface, large double ridges that can extend for thousands of km, and mountain ranges that can reach heights of several kilometers. Many of the potential sources of stress that can deform the surfaces are likely tied to the diurnal tidal deformation of the moons as they orbit their parent planets. Other secular sources of global-scale stress include: volume change induced by the melting or freezing of a subsurface liquid layer, change in the orbital parameters of the moon, or rotation of the outer shell of the satellite relative to the rest of the body (nonsynchronous rotation or true polar wander). We turn to computer modeling to correlate observed structural features to the possible stresses that created them. A variety of modeling programs exist and generally assume a thin ice shell and/or a multi-layered viscoelastic satellite. The program SatStress, which was developed by Zane Crawford and documented by Wahr et al. (2009), computes tidal and nonsynchronous rotation stresses on a satellite. It was later modified into a more user-friendly version with a graphical user interface (SatStress GUI) by Kay and Kattenhorn (2010). This implementation assumes a 4-layer viscoelastic body and is able to calculate stresses resulting from diurnal tides, nonsynchronous rotation, and ice shell thickening. Here we illustrate our recent enhancements to SatStress GUI and compare modeled stresses to example features observed on the surfaces of Ganymede, Europa, and Enceladus. Kay and Kattenhorn (2010) 41st LPSC, abs # 2046. Wahr et al. (2009) Icarus, 200, 188-206.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernstein, L. S.; Clark, F. O.; Lynch, D. K., E-mail: larry@spectral.com, E-mail: dave@thulescientific.com
2013-05-01
We suggest that the diffuse interstellar bands (DIBs) arise from absorption lines of electronic transitions in molecular clusters primarily composed of a single molecule, atom, or ion ({sup s}eed{sup )}, embedded in a single-layer shell of H{sub 2} molecules. Less abundant variants of the cluster, including two seed molecules and/or a two-layer shell of H{sub 2} molecules, may also occur. The lines are broadened, blended, and wavelength-shifted by interactions between the seed and surrounding H{sub 2} shell. We refer to these clusters as contaminated H{sub 2} clusters (CHCs). We show that CHC spectroscopy matches the diversity of observed DIB spectralmore » profiles and provides good fits to several DIB profiles based on a rotational temperature of 10 K. CHCs arise from {approx}centimeter-sized, dirty H{sub 2} ice balls, called contaminated H{sub 2} ice macro-particles (CHIMPs), formed in cold, dense, giant molecular clouds (GMCs), and later released into the interstellar medium (ISM) upon GMC disruption. Attractive interactions, arising from Van der Waals and ion-induced dipole potentials, between the seeds and H{sub 2} molecules enable CHIMPs to attain centimeter-sized dimensions. When an ultraviolet (UV) photon is absorbed in the outer layer of a CHIMP, it heats the icy matrix and expels CHCs into the ISM. While CHCs are quickly destroyed by absorbing UV photons, they are replenished by the slowly eroding CHIMPs. Since CHCs require UV photons for their release, they are most abundant at, but not limited to, the edges of UV-opaque molecular clouds, consistent with the observed, preferred location of DIBs. An inherent property of CHCs, which can be characterized as nanometer size, spinning, dipolar dust grains, is that they emit in the radio-frequency region. We also show that the CHCs offer a natural explanation for the anomalous microwave emission feature in the {approx}10-100 GHz spectral region.« less
NASA Astrophysics Data System (ADS)
Alberti, Matthias; Fürsich, Franz T.; Abdelhady, Ahmed A.; Andersen, Nils
2017-04-01
The Jurassic climate has traditionally been described as equable, warmer than today, with weak latitudinal temperature gradients, and no polar glaciations. This view changed over the last decades with studies pointing to distinct climate fluctuations and the occasional presence of polar ice caps. Most of these temperature reconstructions are based on stable isotope analyses of fossil shells from Europe. Additional data from other parts of the world is slowly completing the picture. Gebel Maghara in the northern Sinai Peninsula of Egypt exposes a thick Jurassic succession. After a phase of terrestrial sedimentation in the Early Jurassic, marine conditions dominated since the end of the Aalenian. The stable isotope (δ18O, δ13C) composition of brachiopod and oyster shells was used to reconstruct seawater temperatures from the Bajocian to the Kimmeridgian at a palaeolatitude of ca. 3°N. Throughout this time interval, temperatures were comparatively constant aorund an average of 25.7°C. Slightly warmer conditions existed in the Early Bathonian ( 27.0°C), while the Kimmeridgian shows the lowest temperatures ( 24.3°C). The seasonality has been reconstructed with the help of high-resolution sampling of two oyster shells and was found to be very low (<2°C) as can be expected for a tropical palaeolatitude. A comparison of the results from Egypt with literature data enabled the reconstruction of latitudinal temperature gradients. During the Middle Jurassic, this gradient was much steeper than previously expected and comparable to today. During the Kimmeridgian, temperatures in Europe were generally warmer leading to weaker latitudinal gradients. Based on currently used estimates for the δ18O value of seawater during the Jurassic, reconstructed water temperatures for localities above the thermocline in Egypt and Europe were mostly lower than Recent sea-surface temperatures. These results improve our understanding of the Jurassic climate and its influence on marine faunal diversity patterns.
2013-09-30
What is the volume of sea ice in the Beaufort Sea SIZ and how does this evolve during summer as the ice edge retreats? Recent observations...suggest that the remaining ice in the Beaufort Sea is younger and thinner in recent years in part because even the oldest ice advected into the region does...indicated that ponds on thinner ice are often darker, accelerating the ice - albedo feedback over thin ice in summer. During winter, leads and very
NASA Astrophysics Data System (ADS)
Cuzzone, Joshua K.; Morlighem, Mathieu; Larour, Eric; Schlegel, Nicole; Seroussi, Helene
2018-05-01
Paleoclimate proxies are being used in conjunction with ice sheet modeling experiments to determine how the Greenland ice sheet responded to past changes, particularly during the last deglaciation. Although these comparisons have been a critical component in our understanding of the Greenland ice sheet sensitivity to past warming, they often rely on modeling experiments that favor minimizing computational expense over increased model physics. Over Paleoclimate timescales, simulating the thermal structure of the ice sheet has large implications on the modeled ice viscosity, which can feedback onto the basal sliding and ice flow. To accurately capture the thermal field, models often require a high number of vertical layers. This is not the case for the stress balance computation, however, where a high vertical resolution is not necessary. Consequently, since stress balance and thermal equations are generally performed on the same mesh, more time is spent on the stress balance computation than is otherwise necessary. For these reasons, running a higher-order ice sheet model (e.g., Blatter-Pattyn) over timescales equivalent to the paleoclimate record has not been possible without incurring a large computational expense. To mitigate this issue, we propose a method that can be implemented within ice sheet models, whereby the vertical interpolation along the z axis relies on higher-order polynomials, rather than the traditional linear interpolation. This method is tested within the Ice Sheet System Model (ISSM) using quadratic and cubic finite elements for the vertical interpolation on an idealized case and a realistic Greenland configuration. A transient experiment for the ice thickness evolution of a single-dome ice sheet demonstrates improved accuracy using the higher-order vertical interpolation compared to models using the linear vertical interpolation, despite having fewer degrees of freedom. This method is also shown to improve a model's ability to capture sharp thermal gradients in an ice sheet particularly close to the bed, when compared to models using a linear vertical interpolation. This is corroborated in a thermal steady-state simulation of the Greenland ice sheet using a higher-order model. In general, we find that using a higher-order vertical interpolation decreases the need for a high number of vertical layers, while dramatically reducing model runtime for transient simulations. Results indicate that when using a higher-order vertical interpolation, runtimes for a transient ice sheet relaxation are upwards of 5 to 7 times faster than using a model which has a linear vertical interpolation, and this thus requires a higher number of vertical layers to achieve a similar result in simulated ice volume, basal temperature, and ice divide thickness. The findings suggest that this method will allow higher-order models to be used in studies investigating ice sheet behavior over paleoclimate timescales at a fraction of the computational cost than would otherwise be needed for a model using a linear vertical interpolation.
NASA Technical Reports Server (NTRS)
Palm, Stephen P.; Strey, Sara T.; Spinhirne, James; Markus, Thorsten
2010-01-01
Recent satellite lidar measurements of cloud properties spanning a period of five years are used to examine a possible connection between Arctic sea ice amount and polar cloud fraction and vertical distribution. We find an anti-correlation between sea ice extent and cloud fraction with maximum cloudiness occurring over areas with little or no sea ice. We also find that over ice free regions, there is greater low cloud frequency and average optical depth. Most of the optical depth increase is due to the presence of geometrically thicker clouds over water. In addition, our analysis indicates that over the last 5 years, October and March average polar cloud fraction has increased by about 7 and 10 percent, respectively, as year average sea ice extent has decreased by 5 to 7 percent. The observed cloud changes are likely due to a number of effects including, but not limited to, the observed decrease in sea ice extent and thickness. Increasing cloud amount and changes in vertical distribution and optical properties have the potential to affect the radiative balance of the Arctic region by decreasing both the upwelling terrestrial longwave radiation and the downward shortwave solar radiation. Since longwave radiation dominates in the long polar winter, the overall effect of increasing low cloud cover is likely a warming of the Arctic and thus a positive climate feedback, possibly accelerating the melting of Arctic sea ice.
Dynamic and thermodynamic impacts of the winter Arctic Oscillation on summer sea ice extent.
NASA Astrophysics Data System (ADS)
Park, H. S.; Stewart, A.
2017-12-01
Arctic summer sea ice extent exhibits substantial interannual variability, as is highlighted by the remarkable recovery in sea ice extent in 2013 following the record minimum in the summer of 2012. Here, we explore the mechanism via which Arctic Oscillation (AO)-induced ice thickness changes impact summer sea ice, using observations and reanalysis data. A positive AO weakens the basin-scale anticyclonic sea ice drift and decreases the winter ice thickness by 15cm and 10cm in the Eurasian and the Pacific sectors of the Arctic respectively. Three reanalysis datasets show that the (upward) surface heat fluxes are reduced over wide areas of the Arctic, suppressing the ice growth during the positive AO winters. The winter dynamic and thermodynamic thinning preconditions the ice for enhanced radiative forcing via the ice-albedo feedback in late spring-summer, leading to an additional 8-10 cm of thinning over the Pacific sector of the Arctic. Because of these winter AO-induced dynamic and thermodynamics effects, the winter AO explains about 22% (r = -0.48) of the interannual variance of September sea ice extent from year 1980 to 2015.
Transient and steady state creep response of ice I and magnesium sulfate hydrate eutectic aggregates
McCarthy, C.; Cooper, R.F.; Goldsby, D.L.; Durham, W.B.; Kirby, S.H.
2011-01-01
Using uniaxial compression creep experiments, we characterized the transient and steady state deformation behaviors of eutectic aggregates of system ice I and MgSO4 11H2O (MS11; meridianiite), which has significance because of its likely presence on moons of the outer solar system. Synthetic samples of eutectic liquid bulk composition, which produce eutectic colonies containing 0.35-0.50 volume fraction MS11, were tested as functions of colony size and lamellar spacing, temperature (230-250 K), and confining pressure (0.1 and 50 MPa) to strains ???0.2. Up to a differential stress of 6 MPa, the ice I-MS11 aggregates display an order of magnitude higher effective viscosity and higher stress sensitivity than do aggregates of pure polycrystalline ice at the same conditions. The creep data and associated microstructural observations demonstrate, however, that the aggregates are additionally more brittle than pure ice, approaching rate-independent plasticity that includes rupture of the hydrate phase at 6-8 MPa, depending on the scale of the microstructure. Microstructures of deformed samples reveal forms of semibrittle flow in which the hydrate phase fractures while the ice phase deforms plastically. Semibrittle flow in the icy shell of a planetary body would truncate the lithospheric strength envelope and thereby decrease the depth to the brittle-ductile transition by 55% and reduce the failure limit for compressional surface features from 10 to ???6 MPa. A constitutive equation that includes eutectic colony boundary sliding and intracolony flow is used to describe the steady state rheology of the eutectic aggregates. Copyright ?? 2011 by the American Geophysical Union.
Airborne Grid Sea-Ice Surveys for Comparison with Cryosat-2
NASA Astrophysics Data System (ADS)
Brozena, J. M.; Gardner, J. M.; Liang, R.; Hagen, R. A.; Ball, D.; Newman, T.
2015-12-01
The Naval Research Laboratory is studying of the changing Arctic with a focus on ice thickness and distribution variability. The goal is optimization of computer models used to predict sea ice changes. An important part of our study is to calibrate/validate Cryosat-2 ice thickness data prior to its incorporation into new ice forecast models. The footprint of the altimeter over sea-ice is a significant issue in any attempt to ground-truth the data. Along-track footprints are reduced to ~ 300 m by SAR processing of the returns. However, the cross-track footprint is determined by the topography of the surface. Further, the actual return is the sum of the returns from individual reflectors within the footprint making it difficult to interpret the return, and optimize the waveform tracker. We therefore collected a series of grids of scanning LiDAR and radar on sub-satellite tracks over sea-ice that would extend far enough cross-track to capture the illuminated area. The difficulty in the collection of such grids, which are comprised of adjacent overlapping tracks is ice motion of as much as 300 m over the duration of a single flight track (~ 20 km) of data collection. With a typical LiDAR swath width of < 500m adjustment of the survey tracks in near real-time for the ice motion is necessary for a coherent data set. This was accomplished by a an NRL devised photogrammetric method of ice velocity determination. Post-processing refinements resulted in typical track-to-track miss-ties of ~ 1-2 m, much of which could be attributed to ice deformation over the period of the survey. This allows us to reconstruct the ice configuration to the time of the satellite overflight, resulting in a good picture of the surface actually illuminated by the radar. The detailed 2-d LiDAR image is the snow surface, not the underlying ice presumably illuminated by the radar. Our hope is that the 1-D radar profiles collected along the LiDAR swath centerlines will be sufficient to correct the grid for snow thickness. A total of 15 grids 5-20 km wide (cross-track) by 10-30 km long (along-track) centered on ice illuminated by CryoSat-2 were collected north of Barrow, AK. This occured over three field seasons which took place from 2013-15. Data from the grids are shown here and are being used to examine the relationship of the tracked satellite waveform data to the actual surface.
NASA Astrophysics Data System (ADS)
Fischer, Hubertus
2014-05-01
The sequence of the last 8 glacial cycles is characterized by irregular 100,000 year cycles in temperature and sea level. In contrast, the time period between 1.5-1.2 million years ago is characterized by more regular cycles with an obliquity periodicity of 41,000 years. Based on a deconvolution of deep ocean temperature and ice volume contributions to benthic δ18O (Elderfield et al., Science, 2012), it is suggested that glacial sea level became progressively lower over the last 1.5 Myr, while glacial deep ocean temperatures were very similar. At the same time many interglacials prior to the Mid Brunhes event showed significantly cooler deep ocean temperatures than the Holocene, while at the same time interglacial ice volume remained essentially the same. In contrast, interglacial sea surface temperatures in the tropics changed little (Herbert et al., Science,2010) and proxy reconstructions of atmospheric CO2 using δ11B in planktic foraminifera (Hönisch et al., Science, 2009) suggest that prior to 900,000 yr before present interglacial CO2 levels did not differ substantially from those over the last 450,000 years. Accordingly, the conundrum arises how interglacials can differ in deep ocean temperature without any obvious change in ice volume or greenhouse gas forcing and what caused the change in cyclicity of glacial interglacial cycles over the Mid Pleistocene Transition. Probably the most important contribution to solve this riddle is the recovery of a 1.5 Myr old ice core from Antarctica, which among others would provide an unambiguous, high-resolution record of the greenhouse gas history over this time period. Accordingly, the international ice core community, as represented by the International Partnership for Ice Core Science (IPICS), has identified such an 'Oldest Ice' ice core as one of the most important scientific targets for the future (http://www.pages.unibe.ch/ipics/white-papers). However, finding stratigraphically undisturbed ice, which covers this time period in Antarctica, is not an easy task. Based on a simple ice and heat flow model and glaciological observations (Fischer et al., Climate of the Past, 2013), we conclude that sites in the vicinity of major domes and saddle positions on the East Antarctic Plateau will most likely have such old ice in store and represent the best study areas for dedicated reconnaissance studies in the near future. In contrast to previous ice core drill site selections, however, significantly reduced ice thickness is required to avoid bottom melting. The most critical parameter is the largely unknown geothermal heat flux at the bottom of the ice sheet. For example for the geothermal heat flux and accumulation conditions at Dome C, an ice thickness lower than but close to about 2500 m would be required to find 1.5 My old ice. If sites with lower geothermal heat flux can be found, also a higher ice thickness is allowed, alleviating the problem of potential flow disturbances in the bottom-most ice to affect a 1.5 Myr climate record.
Cryogenic line insulation made from prefabricated polyurethane shells
NASA Technical Reports Server (NTRS)
Lerma, G.
1975-01-01
Prefabricated polyurethane foam insulation is inexpensive and easily installed on cryogenic lines. Insulation sections are semicircular half shells. Pair of half shells is placed to surround cryogenic line. Cylindrically-shaped knit sock is pulled over insulation then covered with polyurethane resin to seal system.
Hummocky moraine: sedimentary record of stagnant Laurentide Ice Sheet lobes resting on soft beds
NASA Astrophysics Data System (ADS)
Eyles, N.; Boyce, J. I.; Barendregt, R. W.
1999-02-01
Over large areas of the western interior plains of North America, hummocky moraine (HM) formed at the margins of Laurentide Ice Sheet (LIS) lobes that flowed upslope against topographic highs. Current depositional models argue that HM was deposited supraglacially from stagnant debris-rich ice (`disintegration moraine'). Across southern Alberta, Canada, map and outcrop data show that HM is composed of fine-grained till as much as 25 m thick containing rafts of soft, glaciotectonized bedrock and sediment. Chaotic, non-oriented HM commonly passes downslope into weakly-oriented hummocks (`washboard moraine') that are transitional to drumlins in topographic lows; the same subsurface stratigraphy and till facies is present throughout. These landforms, and others such as doughnut-like `rim ridges', flat-topped `moraine plateaux' and linear disintegration ridges, are identified as belonging to subglacially-deposited soft-bed terrain. This terrain is the record of ice lobes moving over deformation till derived from weakly-lithified, bentonite-rich shale. Drumlins record continued active ice flow in topographic lows during deglaciation whereas HM was produced below the outer stagnant margins of ice lobes by gravitational loading (`pressing') of remnant dead ice blocks into wet, plastic till. Intervening zones of washboard moraine mark the former boundary of active and stagnant ice and show `hybrid' drumlins whose streamlined form has been altered by subglacial pressing (` humdrums') below dead ice. The presence of hummocky moraine over a very large area of interior North America provides additional support for glaciological models of a soft-bedded Laurentide Ice Sheet.
Graded core/shell semiconductor nanorods and nanorod barcodes
Alivisatos, A Paul [Oakland, CA; Scher, Erik C [San Francisco, CA; Manna, Liberato [Palo Del Collie, IT
2009-05-19
Disclosed herein is a graded core/shell semiconductor nanorod having at least a first segment of a core of a Group II-VI, Group III-V or a Group IV semiconductor, a graded shell overlying the core, wherein the graded shell comprises at least two monolayers, wherein the at least two monolayers each independently comprise a Group II-VI, Group III-V or a Group IV semiconductor.
Contribution of the Greenland Ice Sheet to Sea-Level over the Next Millennium
NASA Astrophysics Data System (ADS)
Aschwanden, A.; Fahnestock, M. A.; Truffer, M.
2017-12-01
The contribution of Greenland's outlet glaciers to sea-level remains a wild card in global sea level predictions but progress in mapping ice thickness combined with high-resolution flow modeling now allow to revisit questions about the long-term stability of the ice sheet. Here we present the first outlet glacier resolving assessment of Greenland's contribution to sea-level over the next millennium. We find that increased ice discharge resulting from acceleration of outlet glaciers due to ice melt at tidewater glacier margins dominates mass loss during the 21st century. However, as the ice sheet surfaces lowers, surface melt increases and over the course of the millennium, the relative contribution of ice discharge to total mass loss decreases. By the end of the 22nd century, most outlet glaciers in the north-west will have retreated out of tide-water, while in south-east enhanced precipitation partially offsets high ice discharge. The outlet glaciers of the central west coast, most notably Jakobshavn Isbrae, play a key role in dynamic mass loss due to their submarine connection to the interior reservoir. We find that coast-ward advection of cold ice from the interior counteracts outlet glacier acceleration by increasing ice viscosity and thereby reducing vertical shearing. Under the RCP 8.5 scenario, the ice margin in north and north-east Greenland retreats far enough to reach the vast interior where the subglacial topography is below sea level. This leads to a dramatic retreat in the second part of the millenium, and Greenland could shrink to 10% of its current volume by the end of the millennium.
Rise in central west Greenland surface melt unprecedented over the last three centuries
NASA Astrophysics Data System (ADS)
Trusel, Luke; Das, Sarah; Osman, Matthew; Evans, Matthew; Smith, Ben; McConnell, Joe; Noël, Brice; van den Broeke, Michiel
2017-04-01
Greenland Ice Sheet surface melting has intensified and expanded over the last several decades and is now a leading component of ice sheet mass loss. Here, we constrain the multi-century temporal evolution of surface melt across central west Greenland by quantifying layers of refrozen melt within well-dated firn and ice cores collected in 2014 and 2015, as well as from a core collected in 2004. We find significant agreement among ice core, satellite, and regional climate model melt datasets over recent decades, confirming the fidelity of the ice core melt stratigraphy as a reliable record of past variability in the magnitude of surface melt. We also find a significant correlation between the melt records derived from our new 100-m GC-2015 core (2436 m.a.s.l.) and the older (2004) 150-m D5 core (2472 m.a.s.l.) located 50 km to the southeast. This agreement demonstrates the robustness of the ice core-derived melt histories and the potential for reconstructing regional melt evolution from a single site, despite local variability in melt percolation and refreeze processes. Our array of upper percolation zone cores reveals that although the overall frequency of melt at these sites has not increased, the intensification of melt over the last three decades is unprecedented within at least the last 365 years. Utilizing the regional climate model RACMO 2.3, we show that this melt intensification is a nonlinear response to warming summer air temperatures, thus underscoring the heightened sensitivity of this sector of Greenland to further climate warming. Finally, we examine spatial correlations between the ice core melt records and modeled melt fields across the ice sheet to assess the broader representation of each ice core record. This analysis reveals wide-ranging significant correlations, including to modeled meltwater runoff. As such, our ice core melt records may furthermore offer unique, observationally-constrained insights into past variability in ice sheet mass loss.
Oil and ice in the arctic ocean: possible large-scale interactions.
Campbell, W J; Martin, S
1973-07-06
The diffusion and transport mechanisms generated by the pack ice dynamics of the Beaufort Sea, combined with the slow rate of biodegradation of oil under Arctic conditions, would combine to diffuse an oil spill over the sea and eventually deposit the oil on the ice surface, where it would lower the natural albedo over a large area.
NASA Astrophysics Data System (ADS)
Ferguson, Julie E.; Henderson, Gideon M.; Fa, Darren A.; Finlayson, J. Clive; Charnley, Norman R.
2011-08-01
The seasonal cycle is a fundamental aspect of climate, with a significant influence on mean climate and on human societies. Assessing seasonality in different climate states is therefore important but, outside the tropics, very few palaeoclimate records with seasonal resolution exist and there are currently no glacial-age seasonal-resolution sea-surface-temperature (SST) records at mid to high latitudes. Here we show that both Mg/Ca and oxygen isotope (δ 18O) ratios in modern limpet ( Patella) shells record the seasonal range of SST in the western Mediterranean — a region particularly susceptible to seasonal change. Analysis of a suite of fossil limpet shells from Gibraltar shows that SST seasonality was greater during the last glacial by ~ 2 °C as a result of greater winter cooling. These extra-tropical seasonal-resolution SST records for the last glacial suggest that the presence of large ice-sheets in the northern hemisphere enhances winter cooling. This result also indicates that seasonality in the Mediterranean is not well-represented in most palaeoclimate models, which typically show little change in seasonal amplitude, and provides a new test for the accuracy of climate models.
Development of the Los Alamos National Laboratory Cryogenic Pressure Loader
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ebey, Peter S.; Dole, James M.; Hoffer, James K.
2003-05-15
Targets for inertial fusion research and ignition at OMEGA, the National Ignition Facility, LMJ, and future facilities rely on beta-radiation-driven layering of spherical cryogenic DT ice layers contained within plastic or metal shells. Plastic shells will be permeation filled at room temperature then cooled to cryogenic temperatures before removal of the overpressure. The cryogenic pressure loader (CPL) was recently developed at Los Alamos National Laboratory as a testbed for studying the filling and layering of plastic target shells with DT. A technical description of the CPL is provided. The CPL consists of a cryostat, which contains a high-pressure permeation cell,more » and has optical access for investigating beta layering. The cryostat is housed within a tritium glovebox that contains manifolds for supplying high-pressure DT. The CPL shares some design elements with the cryogenic target handling system at the OMEGA facility to allow testing of tritium issues related to that system. The CPL has the capability to fill plastic targets by permeation to pressures up to 100 MPa and to cool them to 15 K. The CPL will accommodate a range of targets and may be modified for future experiments.« less
True polar wander on Europa from global-scale small-circle depressions.
Schenk, Paul; Matsuyama, Isamu; Nimmo, Francis
2008-05-15
The tectonic patterns and stress history of Europa are exceedingly complex and many large-scale features remain unexplained. True polar wander, involving reorientation of Europa's floating outer ice shell about the tidal axis with Jupiter, has been proposed as a possible explanation for some of the features. This mechanism is possible if the icy shell is latitudinally variable in thickness and decoupled from the rocky interior. It would impose high stress levels on the shell, leading to predictable fracture patterns. No satisfactory match to global-scale features has hitherto been found for polar wander stress patterns. Here we describe broad arcuate troughs and depressions on Europa that do not fit other proposed stress mechanisms in their current position. Using imaging from three spacecraft, we have mapped two global-scale organized concentric antipodal sets of arcuate troughs up to hundreds of kilometres long and 300 m to approximately 1.5 km deep. An excellent match to these features is found with stresses caused by an episode of approximately 80 degrees true polar wander. These depressions also appear to be geographically related to other large-scale bright and dark lineaments, suggesting that many of Europa's tectonic patterns may also be related to true polar wander.
Pyroclastic density current dynamics and associated hazards at ice-covered volcanoes
NASA Astrophysics Data System (ADS)
Dufek, J.; Cowlyn, J.; Kennedy, B.; McAdams, J.
2015-12-01
Understanding the processes by which pyroclastic density currents (PDCs) are emplaced is crucial for volcanic hazard prediction and assessment. Snow and ice can facilitate PDC generation by lowering the coefficient of friction and by causing secondary hydrovolcanic explosions, promoting remobilisation of proximally deposited material. Where PDCs travel over snow or ice, the reduction in surface roughness and addition of steam and meltwater signficantly changes the flow dynamics, affecting PDC velocities and runout distances. Additionally, meltwater generated during transit and after the flow has come to rest presents an immediate secondary lahar hazard that can impact areas many tens of kilometers beyond the intial PDC. This, together with the fact that deposits emplaced on ice are rarely preserved means that PDCs over ice have been little studied despite the prevalence of summit ice at many tall stratovolcanoes. At Ruapehu volcano in the North Island of New Zealand, a monolithologic welded PDC deposit with unusually rounded clasts provides textural evidence for having been transported over glacial ice. Here, we present the results of high-resolution multiphase numerical PDC modeling coupled with experimentaly determined rates of water and steam production for the Ruapehu deposits in order to assess the effect of ice on the Ruapehu PDC. The results suggest that the presence of ice significantly modified the PDC dynamics, with implications for assessing the PDC and associated lahar hazards at Ruapehu and other glaciated volcanoes worldwide.
Reduced body size and cub recruitment in polar bears associated with sea ice decline.
Rode, Karyn D; Amstrup, Steven C; Regehr, Eric V
2010-04-01
Rates of reproduction and survival are dependent upon adequate body size and condition of individuals. Declines in size and condition have provided early indicators of population decline in polar bears (Ursus maritimus) near the southern extreme of their range. We tested whether patterns in body size, condition, and cub recruitment of polar bears in the southern Beaufort Sea of Alaska were related to the availability of preferred sea ice habitats and whether these measures and habitat availability exhibited trends over time, between 1982 and 2006. The mean skull size and body length of all polar bears over three years of age declined over time, corresponding with long-term declines in the spatial and temporal availability of sea ice habitat. Body size of young, growing bears declined over time and was smaller after years when sea ice availability was reduced. Reduced litter mass and numbers of yearlings per female following years with lower availability of optimal sea ice habitat, suggest reduced reproductive output and juvenile survival. These results, based on analysis of a long-term data set, suggest that declining sea ice is associated with nutritional limitations that reduced body size and reproduction in this population.
Reduced body size and cub recruitment in polar bears associated with sea ice decline
Rode, Karyn D.; Amstrup, Steven C.; Regehr, Eric V.
2010-01-01
Rates of reproduction and survival are dependent upon adequate body size and condition of individuals. Declines in size and condition have provided early indicators of population decline in polar bears (Ursus maritimus) near the southern extreme of their range. We tested whether patterns in body size, condition, and cub recruitment of polar bears in the southern Beaufort Sea of Alaska were related to the availability of preferred sea ice habitats and whether these measures and habitat availability exhibited trends over time, between 1982 and 2006. The mean skull size and body length of all polar bears over three years of age declined over time, corresponding with long‐term declines in the spatial and temporal availability of sea ice habitat. Body size of young, growing bears declined over time and was smaller after years when sea ice availability was reduced. Reduced litter mass and numbers of yearlings per female following years with lower availability of optimal sea ice habitat, suggest reduced reproductive output and juvenile survival. These results, based on analysis of a long‐term data set, suggest that declining sea ice is associated with nutritional limitations that reduced body size and reproduction in this population.
NASA Astrophysics Data System (ADS)
Schmidt, Peter; Lund, Björn; Näslund, Jens-Ove; Fastook, James
2014-05-01
Observations of glacial isostatic adjustment (GIA) have been used both to study the mechanical properties of the Earth and to invert for Northern Hemisphere palaeo-ice-sheets. This is typically done by solving the sea-level equation using simplified scaling laws to control ice-sheet thickness. However, past ice-sheets can also be reconstructed based on thermo-mechanical modelling driven by palaeo-climate data, invoking simple analytical models to account for the Earth's response. Commonly, both approaches use dated geological markers to constrain the ice-sheet margin location. Irrespective of the approach, the resulting ice-sheet reconstruction depends on the earth response, although the interdependence between the ice model and the earth model differs and therefore the two types of reconstructions could provide complementary information on Earth properties. We compare a thermo-mechanical reconstruction of the Weichselian ice-sheet using the UMISM model (Näslund, 2010) to two GIA driven reconstructions, ANU (Lambeck et al., 2010) and ICE-5G (Peltier & Fairbanks, 2006), commonly used in GIA modelling. We evaluate the three reconstructions both in terms of ice-sheet configurations and predicted Fennoscandian surface deformation ICE-5G comprise the largest reconstructed ice-sheet whereas ANU and UMISM are more similar in volume and areal extent. Significant differences still exists between ANU and UMISM, especially during the final deglaciation phase. Prior to the final retreat of the ice-sheet, ICE-5G is displays a massive and more or less constant ice-sheet configuration, while both ANU and UMISM fluctuates with at times almost ice-free conditions, such as during MIS3. This results in ICE-5G being close to isostatic equilibrium at LGM, whereas ANU and UMISM are not. Hence, the pre-LGM evolution of the Weichselian ice-sheet needs to be considered in GIA studies. For example, perturbing the ANU or UMISM reconstructions we find that changes more recent than 36 kyr BP may change the predicted uplift velocities by more than 0.1 mm/yr, while changes more recent than 55 kyr BP may change the predicted uplift 10 kyr ago by more than 5 m. Despite their differences we find that all three reconstructions can equally well fit observations of the present day uplift in Fennoscandia, as well as the observed sea-level curve along the Ångerman river, Sweden, albeit with different optimal earth models. However, only for ANU can a single optimal earth model be determined as a bifurcation in the optimal viscosity arises from the generally faster present day rebound rates in ICE-5G and UMISM, resulting in a range of well-fitting earth models for the latter reconstructions. Studying models with a reasonable fit to observed present day uplift velocities we find general trends of over- and under-prediction, indicating that all three ice-sheet reconstructions need improvement. In general, all three reconstructions tend to over-predict the uplift rates in southwestern Fennoscandia, whereas over Finland ICE-5G generally over-predicts and ANU generally under-predicts the uplift rates. UMISM tend to under-predict the velocities over central to northern Sweden and similar trends can also be seen in ANU and ICE-5G.
Recent Antarctic Peninsula warming relative to Holocene climate and ice-shelf history.
Mulvaney, Robert; Abram, Nerilie J; Hindmarsh, Richard C A; Arrowsmith, Carol; Fleet, Louise; Triest, Jack; Sime, Louise C; Alemany, Olivier; Foord, Susan
2012-09-06
Rapid warming over the past 50 years on the Antarctic Peninsula is associated with the collapse of a number of ice shelves and accelerating glacier mass loss. In contrast, warming has been comparatively modest over West Antarctica and significant changes have not been observed over most of East Antarctica, suggesting that the ice-core palaeoclimate records available from these areas may not be representative of the climate history of the Antarctic Peninsula. Here we show that the Antarctic Peninsula experienced an early-Holocene warm period followed by stable temperatures, from about 9,200 to 2,500 years ago, that were similar to modern-day levels. Our temperature estimates are based on an ice-core record of deuterium variations from James Ross Island, off the northeastern tip of the Antarctic Peninsula. We find that the late-Holocene development of ice shelves near James Ross Island was coincident with pronounced cooling from 2,500 to 600 years ago. This cooling was part of a millennial-scale climate excursion with opposing anomalies on the eastern and western sides of the Antarctic Peninsula. Although warming of the northeastern Antarctic Peninsula began around 600 years ago, the high rate of warming over the past century is unusual (but not unprecedented) in the context of natural climate variability over the past two millennia. The connection shown here between past temperature and ice-shelf stability suggests that warming for several centuries rendered ice shelves on the northeastern Antarctic Peninsula vulnerable to collapse. Continued warming to temperatures that now exceed the stable conditions of most of the Holocene epoch is likely to cause ice-shelf instability to encroach farther southward along the Antarctic Peninsula.
Ice thickness measurements over Pine Island and Thwaites Glaciers
NASA Astrophysics Data System (ADS)
Kanagaratnam, P.; Casassa, G.; Thomas, R.; Gogineni, S.
2003-04-01
The Pine Island and Thwaites glaciers (PIG and TG) are the fastest measured glaciers in Antarctica and have been identified as the part of the West Antarctica ice sheet most prone to instability. However, the reasons for the rapid retreat of these glaciers have not been resolved due to insufficient data. In particular, the role of ice shelves in regulating the ice discharge of these glaciers has been a point of contention in the glaciology community. To help resolve this issue the Centro de Estudios Científicos (CECS) and NASA with the support of the Armada de Chile conducted four airborne remote sensing missions over the PIG/TG regions. In addition, two missions were conducted over the Antarctic Peninsula. The University of Kansas operated its Coherent Radar Depth Sounder (CORDS) to measure the thickness of the ice sheet in these regions. CORDS is a pulse-compression radar that has proven its utility in the glaciological surveys over Greenland. The combination of pulse compression and coherent processing has allowed us to obtain high-sensitivity and high-resolution in the along-track direction while keeping the transmitted power low. CORDS transmits a 140-160 MHz chirp signal with 200 Watts of peak power and has a vertical resolution of about 5 meters in ice. We used a four-element dipole array on either side of the wing to transmit and receive the radar signals. We successfully mapped the thickness of the ice sheet over 99% of the PIG/TG flight lines. In this paper we will provide a description of the radar, experiment and signal processing. We will also discuss samples results of the ice thickness, basal conditions and surface roughness.
Method for Detecting Perlite Compaction in Large Cryogenic Tanks
NASA Technical Reports Server (NTRS)
Youngquist, Robert
2010-01-01
Perlite is the most typical insulating powder used to separate the inner and outer shells of cryogenic tanks. The inner tank holds the low-temperature commodity, while the outer shell is exposed to the ambient temperature. Perlite minimizes radiative energy transfer between the two tanks. Being a powder, perlite will settle over time, leading to the danger of transferring any loads from the inner shell to the outer shell. This can cause deformation of the outer shell, leading to damaged internal fittings. The method proposed is to place strain or displacement sensors on several locations of the outer shell. Loads induced on the shell by the expanding inner shell and perlite would be monitored, providing an indication of the location and degree of compaction.
Ultra-Wideband Radars for Measurements over Land and Sea Ice
NASA Astrophysics Data System (ADS)
Gogineni, S.; Hale, R.; Miller, H. G.; Yan, S.; Rodriguez-Morales, F.; Leuschen, C.; Wang, Z.; Gomez-Garcia, D.; Binder, T.; Steinhage, D.; Gehrmann, M.; Braaten, D. A.
2015-12-01
We developed two ultra-wideband (UWB) radars for measurements over the ice sheets in Greenland and Antarctica and sea ice. One of the UWB radars operates over a 150-600 MHz frequency range with a large, cross-track 24-element array. It is designed to sound ice, image the ice-bed interface, and map internal layers with fine resolution. The 24-element array consists of three 8-element sub-arrays. One of these sub-arrays is mounted under the fuselage of a BT-67 aircraft; the other two are mounted under the wings. The polarization of each antenna element can be individually reconfigured depending on the target of interest. The measured inflight VSWR is less than 2 over the operating range. The fuselage sub-array is used both for transmission and reception, and the wing-mounted sub-arrays are used for reception. The transmitter consists of an 8-channel digital waveform generator to synthesize chirped pulses of selectable pulse width, duration, and bandwidth. It also consists of drivers and power amplifiers to increase the power level of each individual channel to about 1 kW and a fast high-power transmit/receive switch. Each receiver consists of a limiter, switches, low-noise and driver amplifiers, and filters to shape and amplify received signals to the level required for digitization. The digital sub-section consists of timing and control sub-systems and 24 14-bit A/D converters to digitize received signals at a rate of 1.6 GSPS. The radar performance is evaluated using an optical delay line to simulate returns from about 2 km thick ice, and the measured radar loop sensitivity is about 215 dB. The other UWB microwave radar operates over a 2-18 GHz frequency range in Frequency-Modulated Continuous Wave (FM-CW) mode. It is designed to sound more than 1 m of snow over sea ice and map internal layers to a depth about 25-40 m in polar firn and ice. We operated the microwave radar over snow-covered sea ice and mapped snow as thin as 5 cm and as thick as 60 cm. We mapped internal layers with an early version of the radar to a depth of 45 m with fine resolution in West Antarctica. In this presentation, we will discuss design considerations and present laboratory results to document radar performance, including the impulse response functions. We will also show the results from a field campaign over the Greenland ice sheet.
NASA Astrophysics Data System (ADS)
DiSanti, Michael A.; Bonev, Boncho P.; Dello Russo, Neil; Vervack, Ronald J., Jr.; Gibb, Erika L.; Roth, Nathan X.; McKay, Adam J.; Kawakita, Hideyo; Feaga, Lori M.; Weaver, Harold A.
2017-12-01
We used the new high spectral resolution cross-dispersed facility spectrograph, iSHELL, at the NASA Infrared Telescope Facility on Maunakea, HI, to observe Jupiter-family comet (JFC) 45P/Honda-Mrkos-Pajdušáková. We report water production rates, as well as production rates and abundance ratios relative to H2O, for eight trace parent molecules (native ices), CO, CH4, H2CO, CH3OH, HCN, NH3, C2H2, and C2H6, on 2 days spanning UT 2017 January 6/7 and 7/8, shortly following perihelion. Trace species were measured simultaneously with H2O and/or OH prompt emission, a proxy for H2O production, thereby providing a robust and consistent means of establishing the native ice composition of 45P. Its favorable geocentric radial velocity (approximately -35 km s-1) permitted sensitive measures of the “hypervolatiles” CO and CH4, which are substantially undercharacterized in JFCs. Our results represent the most precise ground-based measures of CO and CH4 to date in a JFC, providing a foundation for building meaningful statistics regarding their abundances. The abundance ratio for CH4 in 45P (0.79% ± 0.06% relative to H2O) was consistent with its median value as measured among Oort Cloud comets, whereas CO (0.60% ± 0.04%) was strongly depleted. Compared with all measured comets, HCN (0.049% ± 0.012%) was strongly depleted, CH3OH (3.6% ± 0.3%) was enriched, and the remaining species were consistent with their respective median abundances. The volatile composition measured for 45P could indicate processing of ices prior to their incorporation into its nucleus. Spatial analysis of emissions suggests enhanced release of more volatile species into the sunward-facing hemisphere of the coma.
Detection of Sea Ice and Open Water from RADARSAT-2 Images for Data Assimilation
NASA Astrophysics Data System (ADS)
Komarov, A.; Buehner, M.
2016-12-01
Automated detection of sea ice and open water from SAR data is very important for further assimilation into coupled ocean-sea ice-atmosphere numerical models, such as the Regional Ice-Ocean Prediction System being implemented at the Environment and Climate Change Canada. Conventional classification approaches based on various learning techniques are found to be limited by the fact that they typically do not indicate the level of confidence for ice and water retrievals. Meanwhile, only ice/water retrievals with a very high level of confidence are allowed to be assimilated into the sea ice model to avoid propagating and magnifying errors into the numerical prediction system. In this study we developed a new technique for ice and water detection from dual-polarization RADARSAT-2 HH-HV images which provides the probability of ice/water at a given location. We collected many hundreds of thousands of SAR signatures over various sea ice types (i.e. new, grey, first-year, and multi-year ice) and open water from all available RADARSAT-2 images and the corresponding Canadian Ice Service Image Analysis products over the period from November 2010 to May 2016. Our analysis of the dataset revealed that ice/water separation can be effectively performed in the space of SAR-based variables independent of the incidence angle and noise floor (such as texture measures) and auxiliary Global Environmental Multiscale Model parameters (such as surface wind speed). Choice of the parameters will be specifically discussed in the presentation. An ice probability empirical model as a function of the selected predictors was built in a form of logistic regression, based on the training dataset from 2012 to 2016. The developed ice probability model showed very good performance on the independent testing subset (year 2011). With the ice/water probability threshold of 0.95 reflecting a very high level of confidence, 79% of the testing ice and water samples were classified with the accuracy of 99%. These results are particularly important in light of the upcoming RADARSAT Constellation mission which will drastically increase the amount of SAR data over the Arctic region.
Greenland Ice Sheet flow response to runoff variability
NASA Astrophysics Data System (ADS)
Stevens, Laura A.; Behn, Mark D.; Das, Sarah B.; Joughin, Ian; Noël, Brice P. Y.; Broeke, Michiel R.; Herring, Thomas
2016-11-01
We use observations of ice sheet surface motion from a Global Positioning System network operating from 2006 to 2014 around North Lake in west Greenland to investigate the dynamical response of the Greenland Ice Sheet's ablation area to interannual variability in surface melting. We find no statistically significant relationship between runoff season characteristics and ice flow velocities within a given year or season. Over the 7 year time series, annual velocities at North Lake decrease at an average rate of -0.9 ± 1.1 m yr-2, consistent with the negative trend in annual velocities observed in neighboring regions over recent decades. We find that net runoff integrated over several preceding years has a negative correlation with annual velocities, similar to findings from the two other available decadal records of ice velocity in western Greenland. However, we argue that this correlation is not necessarily evidence for a direct hydrologic mechanism acting on the timescale of multiple years but could be a statistical construct. Finally, we stress that neither the decadal slowdown trend nor the negative correlation between velocity and integrated runoff is predicted by current ice-sheet models, underscoring that these models do not yet capture all the relevant feedbacks between runoff and ice dynamics needed to predict long-term trends in ice sheet flow.
Durner, George M.; Whiteman, J.P.; Harlow, H.J.; Amstrup, Steven C.; Regehr, E.V.; Ben-David, M.
2011-01-01
Polar bears (Ursus maritimus) prefer to live on Arctic sea ice but may swim between ice floes or between sea ice and land. Although anecdotal observations suggest that polar bears are capable of swimming long distances, no data have been available to describe in detail long distance swimming events or the physiological and reproductive consequences of such behavior. Between an initial capture in late August and a recapture in late October 2008, a radio-collared adult female polar bear in the Beaufort Sea made a continuous swim of 687 km over 9 days and then intermittently swam and walked on the sea ice surface an additional 1,800 km. Measures of movement rate, hourly activity, and subcutaneous and external temperature revealed distinct profiles of swimming and walking. Between captures, this polar bear lost 22% of her body mass and her yearling cub. The extraordinary long distance swimming ability of polar bears, which we confirm here, may help them cope with reduced Arctic sea ice. Our observation, however, indicates that long distance swimming in Arctic waters, and travel over deep water pack ice, may result in high energetic costs and compromise reproductive fitness.
NASA Technical Reports Server (NTRS)
Perkins, Porter J.; Lewis, William; Mulholland, Donald R.
1957-01-01
A statistical study is made of icing data reported from weather reconnaissance aircraft flown by Air Weather Service (USAF). The weather missions studied were flown at fixed flight levels of 500 millibars (18,000 ft) and 700 millibars (10,000 ft) over wide areas of the Pacific, Atlantic, and Arctic Oceans. This report is presented as part of a program conducted by the NACA to obtain extensive icing statistics relevant to aircraft design and operation. The thousands of in-flight observations recorded over a 2- to 4-year period provide reliable statistics on icing encounters for the specific areas, altitudes, and seasons included in the data. The relative frequencies of icing occurrence are presented, together with the estimated icing probabilities and the relation of these probabilities to the frequencies of flight in clouds and cloud temperatures. The results show that aircraft operators can expect icing probabilities to vary widely throughout the year from near zero in the cold Arctic areas in winter up to 7 percent in areas where greater cloudiness and warmer temperatures prevail. The data also reveal a general tendency of colder cloud temperatures to reduce the probability of icing in equally cloudy conditions.
Using the glacial geomorphology of palaeo-ice streams to understand mechanisms of ice sheet collapse
NASA Astrophysics Data System (ADS)
Stokes, Chris R.; Margold, Martin; Clark, Chris; Tarasov, Lev
2017-04-01
Processes which bring about ice sheet deglaciation are critical to our understanding of glacial-interglacial cycles and ice sheet sensitivity to climate change. The precise mechanisms of deglaciation are also relevant to our understanding of modern-day ice sheet stability and concerns over global sea level rise. Mass loss from ice sheets can be broadly partitioned between melting and a 'dynamic' component whereby rapidly-flowing ice streams/outlet glaciers transfer ice from the interior to the oceans. Surface and basal melting (e.g. of ice shelves) are closely linked to atmospheric and oceanic conditions, but the mechanisms that drive dynamic changes in ice stream discharge are more complex, which generates much larger uncertainties about their future contribution to ice sheet mass loss and sea level rise. A major problem is that observations of modern-day ice streams typically span just a few decades and, at the ice-sheet scale, it is unclear how the entire drainage network of ice streams evolves during deglaciation. A key question is whether ice streams might increase and sustain rates of mass loss over centuries or millennia, beyond those expected for a given ocean-climate forcing. To address this issue, numerous workers have sought to understand ice stream dynamics over longer time-scales using their glacial geomorphology in the palaeo-record. Indeed, our understanding of their geomorphology has grown rapidly in the last three decades, from almost complete ignorance to a detailed knowledge of their geomorphological products. Building on this body of work, this paper uses the glacial geomorphology of 117 ice streams in the North American Laurentide Ice Sheet to reconstruct their activity during its deglaciation ( 22,000 to 7,000 years ago). Ice stream activity was characterised by high variability in both time and space, with ice streams switching on and off in different locations. During deglaciation, we find that their overall number decreased, they occupied a progressively smaller percentage of the ice sheet perimeter, and their total discharge decreased. Underlying geology and topography clearly influenced ice stream activity, but - at the ice sheet scale - their drainage network adjusted and was strongly linked to changes in ice sheet volume. It is unclear whether these findings are directly translatable to modern ice sheets but, contrary to the view that sees ice streams as unstable entities that can draw-down large sectors of an ice sheet and accelerate its demise, we conclude that they reduced in effectiveness during deglaciation of the Laurentide Ice Sheet, with final deglaciation accomplished most effectively by surface melting. This raises some interesting questions about the source and nature of major meltwater pulses and iceberg discharge events in the sea-level record.
ERIC Educational Resources Information Center
Radok, Uwe
1985-01-01
The International Antarctic Glaciological Project has collected information on the East Antarctic ice sheet since 1969. Analysis of ice cores revealed climatic history, and radar soundings helped map bedrock of the continent. Computer models of the ice sheet and its changes over time will aid in predicting the future. (DH)
Tradition and Technology: Sea Ice Science on Inuit Sleds
NASA Astrophysics Data System (ADS)
Wilkinson, Jeremy P.; Hanson, Susanne; Hughes, Nick E.; James, Alistair; Jones, Bryn; MacKinnon, Rory; Rysgaard, Søren; Toudal, Leif
2011-01-01
The Arctic is home to a circumpolar community of native people whose culture and traditions have enabled them to thrive in what most would perceive as a totally inhospitable and untenable environment. In many ways, sea ice can be viewed as the glue that binds these northern communities together; it is utilized in all aspects of their daily life. Sea ice acts as highways of the north; indeed, one can travel on these highways with dogsleds and snowmobiles. These travels over the frozen ocean occur at all periods of the sea ice cycle and over different ice types and ages. Excursions may be hunting trips to remote regions or social visits to nearby villages. Furthermore, hunting on the sea ice contributes to the health, culture, and commercial income of a community.
How might the North American ice sheet influence the northwestern Eurasian climate?
NASA Astrophysics Data System (ADS)
Beghin, P.; Charbit, S.; Dumas, C.; Kageyama, M.; Ritz, C.
2015-10-01
It is now widely acknowledged that past Northern Hemisphere ice sheets covering Canada and northern Europe at the Last Glacial Maximum (LGM) exerted a strong influence on climate by causing changes in atmospheric and oceanic circulations. In turn, these changes may have impacted the development of the ice sheets themselves through a combination of different feedback mechanisms. The present study is designed to investigate the potential impact of the North American ice sheet on the surface mass balance (SMB) of the Eurasian ice sheet driven by simulated changes in the past glacial atmospheric circulation. Using the LMDZ5 atmospheric circulation model, we carried out 12 experiments under constant LGM conditions for insolation, greenhouse gases and ocean. In these experiments, the Eurasian ice sheet is removed. The 12 experiments differ in the North American ice-sheet topography, ranging from a white and flat (present-day topography) ice sheet to a full-size LGM ice sheet. This experimental design allows the albedo and the topographic impacts of the North American ice sheet onto the climate to be disentangled. The results are compared to our baseline experiment where both the North American and the Eurasian ice sheets have been removed. In summer, the sole albedo effect of the American ice sheet modifies the pattern of planetary waves with respect to the no-ice-sheet case, resulting in a cooling of the northwestern Eurasian region. By contrast, the atmospheric circulation changes induced by the topography of the North American ice sheet lead to a strong decrease of this cooling. In winter, the Scandinavian and the Barents-Kara regions respond differently to the American ice-sheet albedo effect: in response to atmospheric circulation changes, Scandinavia becomes warmer and total precipitation is more abundant, whereas the Barents-Kara area becomes cooler with a decrease of convective processes, causing a decrease of total precipitation. The gradual increase of the altitude of the American ice sheet leads to less total precipitation and snowfall and to colder temperatures over both the Scandinavian and the Barents and Kara sea sectors. We then compute the resulting annual surface mass balance over the Fennoscandian region from the simulated temperature and precipitation fields used to force an ice-sheet model. It clearly appears that the SMB is dominated by the ablation signal. In response to the summer cooling induced by the American ice-sheet albedo, high positive SMB values are obtained over the Eurasian region, leading thus to the growth of an ice sheet. On the contrary, the gradual increase of the American ice-sheet altitude induces more ablation over the Eurasian sector, hence limiting the growth of Fennoscandia. To test the robustness of our results with respect to the Eurasian ice sheet state, we carried out two additional LMDZ experiments with new boundary conditions involving both the American (flat or full LGM) and high Eurasian ice sheets. The most striking result is that the Eurasian ice sheet is maintained under full-LGM North American ice-sheet conditions, but loses ~ 10 % of its mass compared to the case in which the North American ice sheet is flat. These new findings qualitatively confirm the conclusions from our first series of experiments and suggest that the development of the Eurasian ice sheet may have been slowed down by the growth of the American ice sheet, offering thereby a new understanding of the evolution of Northern Hemisphere ice sheets throughout glacial-interglacial cycles.
Variability in sea ice cover and climate elicit sex specific responses in an Antarctic predator
Labrousse, Sara; Sallée, Jean-Baptiste; Fraser, Alexander D.; Massom, Rob A.; Reid, Phillip; Hobbs, William; Guinet, Christophe; Harcourt, Robert; McMahon, Clive; Authier, Matthieu; Bailleul, Frédéric; Hindell, Mark A.; Charrassin, Jean-Benoit
2017-01-01
Contrasting regional changes in Southern Ocean sea ice have occurred over the last 30 years with distinct regional effects on ecosystem structure and function. Quantifying how Antarctic predators respond to such changes provides the context for predicting how climate variability/change will affect these assemblages into the future. Over an 11-year time-series, we examine how inter-annual variability in sea ice concentration and advance affect the foraging behaviour of a top Antarctic predator, the southern elephant seal. Females foraged longer in pack ice in years with greatest sea ice concentration and earliest sea ice advance, while males foraged longer in polynyas in years of lowest sea ice concentration. There was a positive relationship between near-surface meridional wind anomalies and female foraging effort, but not for males. This study reveals the complexities of foraging responses to climate forcing by a poleward migratory predator through varying sea ice property and dynamic anomalies. PMID:28233791
Quantification of Changes for the Milne Ice Shelf, Nunavut, Canada, 1950 -- 2009
NASA Astrophysics Data System (ADS)
Mortimer, Colleen Adel
This study presents a comprehensive overview of the current state of the Milne Ice Shelf and how it has changed over the last 59 years. The 205 +/-1 km2 ice shelf experienced a 28% (82 +/-0.8 km 2) reduction in area between 1950 -- 2009, and a 20% (2.5 +/-0.9km 3 water equivalent (w.e.)) reduction in volume between 1981 -- 2008/2009, suggesting a long-term state of negative mass balance. Comparison of mean annual specific mass balances (up to -0.34 m w.e. yr-1) with surface mass balance measurements for the nearby Ward Hunt Ice Shelf suggest that basal melt is a key contributor to total ice shelf thinning. The development and expansion of new and existing surface cracks, as well as ice-marginal and epishelf lake development, indicate significant ice shelf weakening. Over the next few decades it is likely that the Milne Ice Shelf will continue to deteriorate.
Variability in sea ice cover and climate elicit sex specific responses in an Antarctic predator.
Labrousse, Sara; Sallée, Jean-Baptiste; Fraser, Alexander D; Massom, Rob A; Reid, Phillip; Hobbs, William; Guinet, Christophe; Harcourt, Robert; McMahon, Clive; Authier, Matthieu; Bailleul, Frédéric; Hindell, Mark A; Charrassin, Jean-Benoit
2017-02-24
Contrasting regional changes in Southern Ocean sea ice have occurred over the last 30 years with distinct regional effects on ecosystem structure and function. Quantifying how Antarctic predators respond to such changes provides the context for predicting how climate variability/change will affect these assemblages into the future. Over an 11-year time-series, we examine how inter-annual variability in sea ice concentration and advance affect the foraging behaviour of a top Antarctic predator, the southern elephant seal. Females foraged longer in pack ice in years with greatest sea ice concentration and earliest sea ice advance, while males foraged longer in polynyas in years of lowest sea ice concentration. There was a positive relationship between near-surface meridional wind anomalies and female foraging effort, but not for males. This study reveals the complexities of foraging responses to climate forcing by a poleward migratory predator through varying sea ice property and dynamic anomalies.
The role of ice nuclei recycling in the maintenance of cloud ice in Arctic mixed-phase stratocumulus
Solomon, Amy; Feingold, G.; Shupe, M. D.
2015-09-25
This study investigates the maintenance of cloud ice production in Arctic mixed-phase stratocumulus in large eddy simulations that include a prognostic ice nuclei (IN) formulation and a diurnal cycle. Balances derived from a mixed-layer model and phase analyses are used to provide insight into buffering mechanisms that maintain ice in these cloud systems. We find that, for the case under investigation, IN recycling through subcloud sublimation considerably prolongs ice production over a multi-day integration. This effective source of IN to the cloud dominates over mixing sources from above or below the cloud-driven mixed layer. Competing feedbacks between dynamical mixing andmore » recycling are found to slow the rate of ice lost from the mixed layer when a diurnal cycle is simulated. Furthermore, the results of this study have important implications for maintaining phase partitioning of cloud ice and liquid that determine the radiative forcing of Arctic mixed-phase clouds.« less
The role of ice nuclei recycling in the maintenance of cloud ice in Arctic mixed-phase stratocumulus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Solomon, Amy; Feingold, G.; Shupe, M. D.
This study investigates the maintenance of cloud ice production in Arctic mixed-phase stratocumulus in large eddy simulations that include a prognostic ice nuclei (IN) formulation and a diurnal cycle. Balances derived from a mixed-layer model and phase analyses are used to provide insight into buffering mechanisms that maintain ice in these cloud systems. We find that, for the case under investigation, IN recycling through subcloud sublimation considerably prolongs ice production over a multi-day integration. This effective source of IN to the cloud dominates over mixing sources from above or below the cloud-driven mixed layer. Competing feedbacks between dynamical mixing andmore » recycling are found to slow the rate of ice lost from the mixed layer when a diurnal cycle is simulated. Furthermore, the results of this study have important implications for maintaining phase partitioning of cloud ice and liquid that determine the radiative forcing of Arctic mixed-phase clouds.« less
NASA Astrophysics Data System (ADS)
Carbonneau, A.; Allard, M.; L'Hérault, E.; LeBlanc, A.
2011-12-01
A study of permafrost conditions was undertaken in the Hamlet of Pangnirtung, Nunavut, by the Geological Survey of Canada (GSC) and Université Laval's Centre d'études nordiques (CEN) to support decision makers in their community planning work. The methods used for this project were based on geophysical and geomorphological approaches, including permafrost cores drilled in surficial deposits and ground penetrating radar surveys using a GPR Pulse EKKO 100 extending to the complete community area and to its projected expansion sector. Laboratory analysis allowed a detailed characterization of permafrost in terms of water contents, salinity and grain size. Cryostratigraphic analysis was done via CT-Scan imagery of frozen cores using medical imaging softwares such as Osiris. This non destructive method allows a 3D imaging of the entire core in order to locate the amount of the excess ice, determine the volumetric ice content and also interpret the ice-formation processes that took place during freezing of the permafrost. Our new map of the permafrost conditions in Pangnirtung illustrates that the dominant mapping unit consist of ice-rich colluvial deposits. Aggradationnal ice formed syngenitically with slope sedimentation. Buried soils were found imbedded in this colluvial layer and demonstrates that colluviation associated with overland-flow during snowmelt occurred almost continuously since 7080 cal. BP. In the eastern sector of town, the 1 to 4 meters thick colluviums cover till and a network of ice wedges that were revealed as spaced hyperbolic reflectors on GPR profiles. The colluviums also cover ice-rich marine silt and bedrock in the western sector of the hamlet; marine shells found in a permafrost core yielded a radiocarbon date of 9553 cal. BP which provides a revised age for the local deglaciation and also a revised marine submergence limit. Among the applied methods, shallow drilling in coarse grained permafrost, core recovery and CT-Scan allowed the discovery of the importance of Holocene slope processes on shaping the surface of the terrain and leading to the observed cryostructures and ice contents in the near surface permafrost.
NASA Astrophysics Data System (ADS)
Journaux, Baptiste; Abramson, Evan; Brown, J. Michael; Bollengier, Olivier
2017-10-01
The presence of several phases of deep high-pressure ices in large icy moons hydrosphere has often been pointed as a major limitation for the habitability of an uppermost ocean. As they are gravitationally stable bellow liquid H2O, they are thought to act as a chemical barrier between the rocky bed and the ocean. Solutes, including salt species such as NaCl and MgSO4, have been suggested inside icy world oceans from remote sensing, magnetic field measurements and chondritic material alteration models. Unfortunately, the pressures and temperatures inside these hydrospheres are very different from the one found in Earth aqueous environments, so most of our current thermodynamic databases do not cover the range of conditions relevant for modeling realistically large icy worlds interiors.Recent experimental results have shown that the presence of solutes, and more particularly salts, in equilibrium with high pressure ices have large effects on the stability, buoyancy and chemistry of all the phases present at these extreme conditions.In particular brines have been measured to be sometimes more dense than the high pressure ices at melting conditions, possibly creating several oceanic layer "sandwiched" in between two ices shells or in contact with the rocky bed.Other effects currently being investigated by our research group also covers ice melting curve depressions that depend on the salt species and incorporation of solutes inside the crystallographic lattice of high pressure ices. Both of these could have very important implication at the planetary scale, enabling thicker/deeper liquid oceans, and allowing chemical transportation through the high pressure ice layer in large icy worlds.We will present the latest results obtained in-situ using diamond anvil cell high pressure allowing to probe the density, chemistry and thermodynamic properties of high pressure ice and aqueous solutions in equilibrium with Na-Mg-SO4-Cl ionic species.We will also discuss the new planetary evolution scenarios implied by these new material and thermodynamic properties and how this could suggest the existence of new habitable environments in large icy worlds, even when high pressure ices dominate the total volume of the hydrosphere.
Is Ceres' deep interior ice-rich? Constraints from crater morphology
NASA Astrophysics Data System (ADS)
Bland, M. T.; Raymond, C. A.; Fu, R.; Marchi, S.; Castillo, J. C.; King, S. D.; Schenk, P.; Preusker, F.; Park, R. S.; Russell, C. T.
2016-12-01
Determining the composition and internal structure of Ceres is critical to understanding its origin and evolution. Analysis of the depths of Ceres' largest impact craters [Bland et al. 2016] and global shape [Fu et al. 2016] using data returned by NASA's Dawn spacecraft indicate that the dwarf planet's subsurface contains no more than 30% water ice by volume, with the other 70% consisting of salts (hydrated and/or anhydrous), clathrates, and phyllosilicates. Despite these findings, Ceres is unlikely to be ice-free. The GRaND instrument has detected probable water ice at decimeter depths (with strong latitudinal variations) [Prettyman et al. 2016], water ice has been detected in fresh [Combe et al. 2016] and permanently shadowed craters [Schorghofer et al. 2016], and the simple-complex morphologic transition diameter is consistent with a weak (icy) surface layer [Schenk et al. 2016]. Furthermore, a cryovolcanic origin for Ahuna Mons requires a source of water-rich material [Ruesch et al. 2016]. Here we use numerical simulations of the viscous relaxation of impact craters to provide new constraints on the water ice content of Ceres as a function of depth that enable a more complete understanding of the thickness and composition of its outer layer. These new simulations include three rheological layers: a high-viscosity near-surface layer, a weaker (possibly ice-rich layer), and an essentially immobile rocky layer at depth. Results are latitude (temperature) dependent; however, we generally find that retaining crater topography requires a high-viscosity (ice-poor) layer with a thickness of 50% the crater radius. For example, retaining a 100-km diameter crater at latitudes below 50o requires a high-viscosity (103x water ice) layer at least 30 km thick, if the underlying layer is pure ice. Deep, low-latitude craters 150 km in diameter are observed on Ceres [Bland et al. 2016], so the high-viscosity layer is likely >40 km thick. However, our results do not exclude the existence of a reservoir enriched in water ice at the base of Ceres' outer layer. We also find that the unique morphology of Ceres' largest crater, Kerwan, may result from viscous relaxation in a thin outer layer, potentially providing a constraint on the local thickness of Ceres outer shell.
Pronounced climatic variations in Alaska during the last two millennia
Hu, Feng Sheng; Ito, Emi; Brown, Thomas A.; Curry, B. Brandon; Engstrom, Daniel R.
2001-01-01
Paired oxygen-isotopic analyses of abiotic carbonate and benthic-ostracode shells from lake sediments provide a continuous quantitative record of growing-season temperature for the past 2000 years in the northwestern foothills of the Alaska Range. This record reveals three time intervals of comparable warmth: anno Domini (A.D.) 0–300, 850-1200, and post-1800, the latter two of which correspond to the Medieval Climatic Anomaly and climatic amelioration after the end of the Little Ice Age. The Little Ice Age culminated at A.D. 1700, when the climate was ≈1.7°C colder than at present. A marked climatic cooling also occurred around A.D. 600, coinciding with extensive glacial advances in Alaska. Comparisons of this temperature record with ostracode trace-element ratios (Mg/Ca, Sr/Ca) further suggest that colder periods were wetter and vice versa during the past 2000 years. PMID:11517320
Tidal dissipation in the subsurface ocean of Enceladus
NASA Astrophysics Data System (ADS)
Matsuyama, I.; Hay, H.; Nimmo, F.; Kamata, S.
2017-12-01
Icy satellites of the outer solar system have emerged as potential habitable worlds due to the presence of subsurface oceans. As a long-term energy source, tidal heating in these oceans can influence the survivability of subsurface oceans, and the thermal, rotational, and orbital evolution of these satellites. Additionally, the spatial and temporal variation of tidal heating has implications for the interior structure and spacecraft observations. Previous models for dissipation in thin oceans are not generally applicable to icy satellites because either they ignore the presence of an overlying solid shell or use a thin shell membrane approximation. We present a new theoretical treatment for tidal dissipation in thin oceans with overlying shells of arbitrary thickness and apply it to Enceladus. The shell's resistance to ocean tides increases with shell thickness, reducing tidal dissipation as expected. Both the magnitude of energy dissipation and the resonant ocean thicknesses decrease as the overlying shell thickness increases, as previously shown using a membrane approximation. In contrast to previous work based on the traditional definition of the tidal quality factor, Q, our new definition is consistent with higher energy dissipation for smaller Q, and introduces a lower limit on Q. The dissipated power and tides are not in phase with the forcing tidal potential due to the delayed ocean response. The phase lag depends on the Rayleigh friction coefficient and ocean and shell thicknesses, which implies that phase lag observations can be used to constrain these parameters. Eccentricity heating produces higher dissipation near the poles, while obliquity heating produces higher dissipation near the equator, in contrast to the dissipation patterns in the shell. The time-averaged surface distribution of tidal heating can generate lateral shell thickness variations, providing an additional constraint on the Rayleigh friction coefficient. Explaining the endogenic power radiated from the south polar terrain requires shell thicknesses smaller than about 1 km, a value that is not consistent with recent libration, gravity and topography constraints.
Large-Scale Trade in Legally Protected Marine Mollusc Shells from Java and Bali, Indonesia.
Nijman, Vincent; Spaan, Denise; Nekaris, K Anne-Isola
2015-01-01
Tropical marine molluscs are traded globally. Larger species with slow life histories are under threat from over-exploitation. We report on the trade in protected marine mollusc shells in and from Java and Bali, Indonesia. Since 1987 twelve species of marine molluscs are protected under Indonesian law to shield them from overexploitation. Despite this protection they are traded openly in large volumes. We collected data on species composition, origins, volumes and prices at two large open markets (2013), collected data from wholesale traders (2013), and compiled seizure data by the Indonesian authorities (2008-2013). All twelve protected species were observed in trade. Smaller species were traded for
Wu, Xiaonan; Xiong, Shunshun; Mao, Zhenghao; Hu, Sheng; Long, Xinggui
2017-06-12
The development of H 2 gas sensors is important for H 2 production as a fuel. In this work, a ZnO@ZIF-8 core-shell nanorod film is designed and synthesized as a gas sensor through a facile solution deposition process. This film shows an excellent selective response for H 2 over CO. By fine-tuning the reaction conditions, a ZnO@ZIF-8 core-shell structure with a thin, fine-grain, porous ZIF-8 shell is obtained. Owing to the facile H 2 penetration through the ZIF-8 thin shell (≈110 nm) and the increased oxygen vacancies for the complex film, the ZnO@ZIF-8 nanorod film shows a higher H 2 sensitivity than a raw ZnO nanorod film. More importantly, the ZnO@ZIF-8 nanorod film shows no response for CO at 200 °C. Because of the fine-grain confinement of the porous ZIF-8 shell (<140 nm), the molecular sieving effect is strengthened, which allows the effective separation of H 2 over CO. This work provides a promising strategy for the design of high-performance H 2 sensors. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
2014-01-01
Background The chicken eggshell is a natural mechanical barrier to protect egg components from physical damage and microbial penetration. Its integrity and strength is critical for the development of the embryo or to ensure for consumers a table egg free of pathogens. This study compared global gene expression in laying hen uterus in the presence or absence of shell calcification in order to characterize gene products involved in the supply of minerals and / or the shell biomineralization process. Results Microarrays were used to identify a repertoire of 302 over-expressed genes during shell calcification. GO terms enrichment was performed to provide a global interpretation of the functions of the over-expressed genes, and revealed that the most over-represented proteins are related to reproductive functions. Our analysis identified 16 gene products encoding proteins involved in mineral supply, and allowed updating of the general model describing uterine ion transporters during eggshell calcification. A list of 57 proteins potentially secreted into the uterine fluid to be active in the mineralization process was also established. They were classified according to their potential functions (biomineralization, proteoglycans, molecular chaperone, antimicrobials and proteases/antiproteases). Conclusions Our study provides detailed descriptions of genes and corresponding proteins over-expressed when the shell is mineralizing. Some of these proteins involved in the supply of minerals and influencing the shell fabric to protect the egg contents are potentially useful biological markers for the genetic improvement of eggshell quality. PMID:24649854
Ultra-Wideband Radar Measurements of Thickness of Snow Over Sea Ice
NASA Technical Reports Server (NTRS)
Kanagaratnam, P.; Markus, T.; Lytle, V.; Heavey, B.; Jansen, P.; Prescott, G.; Gogineni, S.
2007-01-01
An accurate knowledge of snow thickness and its variability over sea ice is crucial for determining the overall polar heat and freshwater budget, which influences the global climate. Recently, algorithms have been developed to extract snow thicknesses from passive microwave satellite data. However, validation of these data over the large footprint of the passive microwave sensor has been a challenge. The only method used thus far has been with meter sticks during ship cruises. To address this problem, we developed an ultra wideband frequency-modulated continuous-wave (FM-CW) radar to measure snow thickness over sea ice. We made snow-thickness measurements over Antarctic sea ice by operating the radar from a sled during September and October, 2003. We performed radar measurements over 11 stations with varying snow thickness between 4 and 85 cm. We observed excellent agreement between radar estimates of snow thickness with physical measurements, achieving a correlation coefficient of 0.95 and a vertical resolution of about 3 cm.
Community dynamics of bottom-ice algae in Dease Strait of the Canadian Arctic
NASA Astrophysics Data System (ADS)
Campbell, K.; Mundy, C. J.; Landy, J. C.; Delaforge, A.; Michel, C.; Rysgaard, S.
2016-12-01
Sea ice algae are a characteristic feature in ice-covered seas, contributing a significant fraction of the total primary production in many areas and providing a concentrated food source of high nutritional value to grazers in the spring. Algae respond to physical changes in the sea ice environment by modifying their cellular carbon, nitrogen and pigment content, and by adjusting their photophysiological characteristics. In this study we examined how the ratios of particulate organic carbon (POC) to nitrogen (PON), and POC to chlorophyll a (chl a), responded to the evolving snow-covered sea ice environment near Cambridge Bay, Nunavut, during spring 2014. We also estimated photosynthesis-irradiance (PI) curves using oxygen-optodes and evaluated the resulting time-series of PI parameters under thin and thick snow-covered sites. There were no significant differences in PI parameters between samples from different overlying snow depths, and only the maximum photosynthetic rates in the absence of photoinhibition (PsB) and photoacclimation (IS) parameters changed significantly over the spring bloom. Furthermore, we found that both these parameters increased over time in response to increasing percent transmission of photosynthetically active radiation (TPAR) through the ice, indicating that light was a limiting factor of photosynthesis and was an important driver of temporal (over the spring) rather than spatial (between snow depths) variability in photophysiological response. However, we note that spatial variability in primary production was evident. Higher TPAR over the spring and under thin snow affected the composition of algae over both time and space, causing greater POC:chl a estimates in late spring and under thin snow cover. Nitrogen limitation was pronounced in this study, likely reducing PsB and algal photosynthetic rates, and increasing POC:PON ratios to over six times the Redfield average. Our results highlight the influence of both light and nutrients on ice algal biomass composition and photophysiology, and suggest a limitation by both resources over a diel period.
RICE ice core: Black Carbon reflects climate variability at Roosevelt Island, West Antarctica
NASA Astrophysics Data System (ADS)
Ellis, Aja; Edwards, Ross; Bertler, Nancy; Winton, Holly; Goodwin, Ian; Neff, Peter; Tuohy, Andrea; Proemse, Bernadette; Hogan, Chad; Feiteng, Wang
2015-04-01
The Roosevelt Island Climate Evolution (RICE) project successfully drilled a deep ice core from Roosevelt Island during the 2011/2012 and 2012/2013 seasons. Located in the Ross Ice Shelf in West Antarctica, the site is an ideal location for investigating climate variability and the past stability of the Ross Ice Shelf. Black carbon (BC) aerosols are emitted by both biomass burning and fossil fuels, and BC particles emitted in the southern hemisphere are transported in the atmosphere and preserved in Antarctic ice. The past record of BC is expected to be sensitive to climate variability, as it is modulated by both emissions and transport. To investigate BC variability over the past 200 years, we developed a BC record from two overlapping ice cores (~1850-2012) and a high-resolution snow pit spanning 2010-2012 (cal. yr). Consistent results are found between the snow pit profiles and ice core records. Distinct decadal trends are found with respect to BC particle size, and the record indicates a steady rise in BC particle size over the last 100 years. Differences in emission sources and conditions may be a possible explanation for changes in BC size. These records also show a significant increase in BC concentration over the past decade with concentrations rising over 1.5 ppb (1.5*10^-9 ng/g), suggesting a fundamental shift in BC deposition to the site.
Shifting balance of thermokarst lake ice regimes across the Arctic Coastal Plain of northern Alaska
Arp, Christopher D.; Jones, Benjamin M.; Lu, Zong; Whitman, Matthew S.
2012-01-01
The balance of thermokarst lakes with bedfast- and floating-ice regimes across Arctic lowlands regulates heat storage, permafrost thaw, winter-water supply, and over-wintering aquatic habitat. Using a time-series of late-winter synthetic aperture radar (SAR) imagery to distinguish lake ice regimes in two regions of the Arctic Coastal Plain of northern Alaska from 2003–2011, we found that 18% of the lakes had intermittent ice regimes, varying between bedfast-ice and floating-ice conditions. Comparing this dataset with a radar-based lake classification from 1980 showed that 16% of the bedfast-ice lakes had shifted to floating-ice regimes. A simulated lake ice thinning trend of 1.5 cm/yr since 1978 is believed to be the primary factor driving this form of lake change. The most profound impacts of this regime shift in Arctic lakes may be an increase in the landscape-scale thermal offset created by additional lake heat storage and its role in talik development in otherwise continuous permafrost as well as increases in over-winter aquatic habitat and winter-water supply.