Science.gov

Sample records for oxaliplatin-dna adduct formation

  1. Towards biomarker-dependent individualized chemotherapy: exploring cell-specific differences in oxaliplatin-DNA adduct distribution using accelerator mass spectrometry.

    PubMed

    Hah, Sang Soo; Henderson, Paul T; Turteltaub, Kenneth W

    2010-04-15

    Oxaliplatin is a third-generation platinum-based anticancer drug that is currently used in the treatment of metastatic colorectal cancer. Oxaliplatin, like other platinum-based anticancer drugs such as cisplatin and carboplatin, is known to induce apoptosis in tumor cells by binding to nuclear DNA, forming monoadducts, and intra- and interstrand diadducts. Previously, we reported an accelerator mass spectrometry (AMS) assay to measure the kinetics of oxaliplatin-induced DNA damage and repair [Hah, S. S.; Sumbad, R. A.; de Vere White, R. W.; Turteltaub, K. W.; Henderson, P. T. Chem. Res. Toxicol.2007, 20, 1745]. Here, we describe another application of AMS to the measurement of oxaliplatin-DNA adduct distribution in cultured platinum-sensitive testicular (833K) and platinum-resistant breast (MDA-MB-231) cancer cells, which resulted in elucidation of cell-dependent differentiation of oxaliplatin-DNA adduct formation, implying that differential adduction and/or accumulation of the drug in cellular DNA may be responsible for the sensitivity of cancer cells to platinum treatment. Ultimately, we hope to use this method to measure the intrinsic platinated DNA adduct repair capacity in cancer patients for use as a biomarker for diagnostics or a predictor of patient outcome.

  2. Adduct Formation in ESI/MS by Mobile Phase Additives

    NASA Astrophysics Data System (ADS)

    Kruve, Anneli; Kaupmees, Karl

    2017-03-01

    Adduct formation is a common ionization method in electrospray ionization mass spectrometry (ESI/MS). However, this process is poorly understood and complicated to control. We demonstrate possibilities to control adduct formation via mobile phase additives in ESI positive mode for 17 oxygen and nitrogen bases. Mobile phase additives were found to be a very effective measure for manipulating the formation efficiencies of adducts. An appropriate choice of additive may increase sensitivity by up to three orders of magnitude. In general, sodium adduct [M + Na]+ and protonated molecule [M + H]+ formation efficiencies were found to be in good correlation; however, the former were significantly more influenced by mobile phase properties. Although the highest formation efficiencies for both species were observed in water/acetonitrile mixtures not containing additives, the repeatability of the formation efficiencies was found to be improved by additives. It is concluded that mobile phase additives are powerful, yet not limiting factors, for altering adduct formation.

  3. Protein modification by acrolein: Formation and stability of cysteine adducts

    PubMed Central

    Cai, Jian; Bhatnagar, Aruni; Pierce, William M.

    2010-01-01

    The toxicity of the ubiquitous pollutant and endogenous metabolite, acrolein, is due in part to covalent protein modifications. Acrolein reacts readily with protein nucleophiles via Michael addition and Schiff base formation. Potential acrolein targets in protein include the nucleophilic side chains of cysteine, histidine, and lysine residues as well as the free amino terminus of proteins. Although cysteine is the most acrolein-reactive residue, cysteine-acrolein adducts are difficult to identify in vitro and in vivo. In this study, model peptides with cysteine, lysine, and histidine residues were used to examine the reactivity of acrolein. Results from these experiments show that acrolein reacts rapidly with cysteine residues through Michael addition to form M+56 Da adducts. These M+56 adducts are, however, not stable, even though spontaneous dissociation of the adduct is slow. Further studies demonstrated that when acrolein and model peptides are incubated at physiological pH and temperature, the M+56 adducts decreased gradually accompanied by the increase of M+38 adducts, which are formed from intra-molecular Schiff base formation. Adduct formation with the side chains of other amino acid residues (lysine and histidine) was much slower than cysteine and required higher acrolein concentration. When cysteine residues were blocked by reaction with iodoacetamide and higher concentrations of acrolein were used, adducts of the N-terminal amino group or histidyl residues were formed but lysine adducts were not detected. Collectively, these data demonstrate that acrolein reacts avidly with protein cysteine residues and that the apparent loss of protein-acrolein Michael adducts over time may be related to the appearance of a novel (M+38) adduct. These findings may be important in identification of in vivo adducts of acrolein with protein cysteine residues. PMID:19231900

  4. Paclitaxel Enhances Carboplatin-DNA Adduct Formation and Cytotoxicity

    PubMed Central

    Jiang, Shuai; Pan, Amy W.; Lin, Tzu-yin; Zhang, Hongyong; Malfatti, Michael; Turteltaub, Kenneth; Henderson, Paul T.; Pan, Chong-xian

    2016-01-01

    This rapid report focuses on the pharmacodynamic mechanism of the carboplatin/paclitaxel combination and correlates it with its cytotoxicity. Consistent with the synergistic to additive antitumor activity (the combination index ranging from 0.53 to 0.94), cells exposed to this combination had significantly increased carboplatin-DNA adduct formation when compared to that of carboplatin alone (450 ± 30 versus 320 ± 120 adducts per 108 nucleotides at 2 h, p = 0.004). Removal of paclitaxel increased the repair of carboplatin-DNA adducts: 39.4 versus 33.1 adducts per 108 nucleotides per hour in carboplatin alone (p = 0.021). This rapid report provides the first pharmacodynamics data to support the use of carboplatin/paclitaxel combination in the clinic. PMID:26544157

  5. Paclitaxel Enhances Carboplatin-DNA Adduct Formation and Cytotoxicity

    DOE PAGES

    Jiang, Shuai; Pan, Amy W.; Lin, Tzu-yin; ...

    2015-11-06

    This rapid report focuses on the pharmacodynamic mechanism of the carboplatin/paclitaxel combination and correlates it with its cytotoxicity. Consistent with the synergistic to additive antitumor activity (the combination index ranging from 0.53 to 0.94), cells exposed to this combination had significantly increased carboplatin-DNA adduct formation when compared to that of carboplatin alone (450 ± 30 versus 320 ± 120 adducts per 108 nucleotides at 2 h, p = 0.004). Removal of paclitaxel increased the repair of carboplatin-DNA adducts: 39.4 versus 33.1 adducts per 108 nucleotides per hour in carboplatin alone (p = 0.021). In conclusion, this rapid report provides themore » first pharmacodynamics data to support the use of carboplatin/paclitaxel combination in the clinic.« less

  6. Paclitaxel Enhances Carboplatin-DNA Adduct Formation and Cytotoxicity

    SciTech Connect

    Jiang, Shuai; Pan, Amy W.; Lin, Tzu-yin; Zhang, Hongyong; Malfatti, Michael; Turteltaub, Kenneth; Henderson, Paul T.; Pan, Chong-xian

    2015-11-06

    This rapid report focuses on the pharmacodynamic mechanism of the carboplatin/paclitaxel combination and correlates it with its cytotoxicity. Consistent with the synergistic to additive antitumor activity (the combination index ranging from 0.53 to 0.94), cells exposed to this combination had significantly increased carboplatin-DNA adduct formation when compared to that of carboplatin alone (450 ± 30 versus 320 ± 120 adducts per 108 nucleotides at 2 h, p = 0.004). Removal of paclitaxel increased the repair of carboplatin-DNA adducts: 39.4 versus 33.1 adducts per 108 nucleotides per hour in carboplatin alone (p = 0.021). In conclusion, this rapid report provides the first pharmacodynamics data to support the use of carboplatin/paclitaxel combination in the clinic.

  7. A Cyclic Disilylated Stannylene: Synthesis, Dimerization, and Adduct Formation

    PubMed Central

    2011-01-01

    Reaction of 1,4-dipotassio-1,1,4,4-tetrakis(trimethylsilyl)tetramethyltetrasilane with [(Me3Si)2N]2Sn led to the formation of an endocyclic distannene via the dimerization of a transient stannylene. In the presence of strong donor molecules such as PEt3, the stannylene could be trapped as adduct. Reaction of the PEt3 derivative with B(C6F5)3 gave rise to the formation of the stannylene B(C6F5)3 adduct. PMID:21438553

  8. Theoretical investigations on the formation of nitrobenzanthrone-DNA adducts.

    PubMed

    Arlt, Volker M; Phillips, David H; Reynisson, Jóhannes

    2011-09-07

    3-Nitrobenzanthrone (3-NBA) is a potent mutagen and suspected human carcinogen identified in diesel exhaust. The thermochemical formation cascades were calculated for six 3-NBA-derived DNA adducts employing its arylnitrenium ion as precursor using density functional theory (DFT). Clear exothermic pathways were found for four adducts, i.e., 2-(2'-deoxyadenosin-N(6)-yl)-3-aminobenzanthrone, 2-(2'-deoxyguanosin-N(2)-yl)-3-aminobenzanthrone, N-(2'-deoxyguanosin-8-yl)-3-aminobenzanthrone and 2-(2'-deoxyguanosin-8-yl)-3-aminobenzanthrone. All four have been observed to be formed in cell-free experimental systems. The formation of N-(2'-deoxyadenosin-8-yl)-3-aminobenzanthrone is predicted to be not thermochemically viable explaining its absence in either in vitro or in vivo model systems. However, 2-(2'-deoxyadenosin-8-yl)-3-aminobenzanthrone, can be formed, albeit not as a major product, and is a viable candidate for an unknown adenine adduct observed experimentally. 2-nitrobenzanthrone (2-NBA), an isomer of 3-NBA, was also included in the calculations; it has a higher abundance in ambient air than 3-NBA, but a much lower genotoxic potency. Similar thermochemical profiles were obtained for the calculated 2-NBA-derived DNA adducts. This leads to the conclusion that enzymatic activation as well as the stability of its arylnitrenium ion are important determinants of 2-NBA genotoxicity.

  9. Formation of monofunctional cisplatin-DNA adducts in carbonate buffer.

    PubMed

    Binter, Alexandra; Goodisman, Jerry; Dabrowiak, James C

    2006-07-01

    Carbonate in its various forms is an important component in blood and the cytosol. Since, under conditions that simulate therapy, carbonate reacts with cisplatin to form carbonato complexes, one of which is taken up and/or modified by the cell [C.R. Centerwall, J. Goodisman, D.J. Kerwood, J. Am. Chem. Soc., 127 (2005) 12768-12769], cisplatin-carbonato complexes may be important in the mechanism of action of cisplatin. In this report we study the binding of cisplatin to pBR322 DNA in two different buffers, using gel electrophoresis. In 23.8mM HEPES, N-(2-hydroxyethyl)-piperazine-N'-2-ethanesulfonic acid, 5mM NaCl, pH 7.4 buffer, cisplatin produces aquated species, which react with DNA to unwind supercoiled Form I DNA, increasing its mobility, and reducing the binding of ethidium to DNA. This behavior is consistent with the formation of the well-known intrastrand crosslink on DNA. In 23.8mM carbonate buffer, 5mM NaCl, pH 7.4, cisplatin forms carbonato species that produce DNA-adducts which do not significantly change supercoiling but enhance binding of ethidium to DNA. This behavior is consistent with the formation of a monofunctional cisplatin adduct on DNA. These results show that aquated cisplatin and carbonato complexes of cisplatin produce different types of lesions on DNA and they underscore the importance of carrying out binding studies with cisplatin and DNA using conditions that approximate those found in the cell.

  10. Temporal and spatial features of the formation of DNA adducts in sulfur mustard-exposed skin

    SciTech Connect

    Batal, Mohamed; Boudry, Isabelle; Mouret, Stéphane; Wartelle, Julien; Emorine, Sandy; Bertoni, Marine; Bérard, Izabel; and others

    2013-12-15

    Sulfur mustard (SM) is a chemical warfare agent that targets skin where it induces large blisters. DNA alkylation is a critical step to explain SM-induced cutaneous symptoms. We determined the kinetics of formation of main SM–DNA adducts and compare it with the development of the SM-induced pathogenesis in skin. SKH-1 mice were exposed to 2, 6 and 60 mg/kg of SM and treated skin was biopsied between 6 h and 21 days. Formation of SM DNA adducts was dose-dependent with a maximum immediately after exposure. However, adducts were persistent and still detectable 21 days post-exposure. The time-dependent formation of DNA adducts was also found to be correlated with the appearance of apoptotic cells. This temporal correlation suggests that these two early events are responsible for the severity of the damage to the skin. Besides, SM–DNA adducts were also detected in areas located next to contaminated zone, thus suggesting that SM diffuses in skin. Altogether, this work provides for the first time a clear picture of SM-induced genotoxicity using DNA adducts as a marker. - Highlights: • Sulfur mustard adducts are formed in DNA after skin exposure. • DNA damage formation is an early event in the pathological process of skin burn. • The amount of SM–DNA adducts is maximal at the earliest time point investigated. • Adducts are still detected 3 weeks after exposure. • Sulfur mustard diffuses in skin especially when large doses are applied.

  11. Effect of phytochemical intervention on dibenzo[a,l]pyrene-induced DNA adduct formation

    PubMed Central

    Russell, Gilandra K.; Gupta, Ramesh C.; Vadhanam, Manicka V.

    2015-01-01

    Dibenzo[a,l]pyrene (DBP) has been found to be the most potent carcinogen of the polycyclic aromatic hydrocarbons (PAHs). Primary sources for DBP in the environment are combustion of wood and coal burning, gasoline and diesel exhaust, and tires. Given the likelihood of environmental exposure to DBP and strong experimental evidence of its potency, it is likely to contribute to lung cancer development. Intervention with compounds of natural origin (“phytochemicals”) is considered an effective means to prevent cancer development and favorably modulate the underlying mechanisms, including DNA adduct formation. In this study, several agents have been identified that inhibit environmental carcinogen-induced DNA adduct formation using a cell-free microsomal system. Of the ten agents tested, resveratrol (648 ± 26 adducts/109 nucleotides), oltipraz (1007 ± 348 adducts/109 nucleotides), delphinidin (1252 ± 142 adducts/109 nucleotides), tanshinone I (1981 ± 213 adducts/109 nucleotides), tanshinone IIA (2606 ± 478 adducts/109 nucleotides) and diindoylmethane (3643 ± 469 adducts/109 nucleotides) were the most effective compared to vehicle treatment (14,062 ± 1097 adducts/109 nucleotides). DBP is metabolized by phase I metabolizing enzymes CYP1A1, CYP1A2, and CYP1B1. DBP-induced DNA adducts can be inhibited by several mechanisms. We found that all the test agents inhibited DNA adducts by inhibiting one or more of these enzymes. Oltipraz inhibited DNA adducts entirely by inhibiting the CYP450s, while resveratrol and delphinidin inhibited DNA adducts by also interacting directly with the carcinogenic metabolite, anti-dibenzo(a,l)pyrene-11,12-dihydrodiol-13,14-epoxide. PMID:25794985

  12. Formation of DNA adducts from oil-derived products analyzed by 32P-HPLC.

    PubMed

    Akkineni, L K; Zeisig, M; Baranczewski, P; Ekström, L G; Möller, L

    2001-01-01

    The aim of this study was to investigate the genotoxic potential of DNA adducts and to compare DNA adduct levels and patterns in petroleum vacuum distillates, coal tar distillate, bitumen fume condensates, and related substances that have a wide range of boiling temperatures. An in vitro assay was used for DNA adduct analysis with human and rat S-9 liver extract metabolic activation followed by 32P-postlabeling and 32P-high-performance liquid chromatography (32p-HPLC). For petroleum distillates originating from one crude oil there was a correlation between in vitro DNA adduct formation and mutagenic index, which showed an increase with a distillation temperature of 250 degrees C and a peak around a distillation point of approximately 400 degrees C. At higher temperatures, the genotoxicity (DNA adducts and mutagenicity) rapidly declined to very low levels. Different petroleum products showed a more than 100-fold range in DNA adduct formation, with severely hydrotreated base oil and bitumen fume condensates being lowest. Coal tar distillates showed ten times higher levels of DNA adduct formation than the most potent petroleum distillate. A clustered DNA adduct pattern was seen over a wide distillation range after metabolic activation with liver extracts of rat or human origin. These clusters were eluted in a region where alkylated aromatic hydrocarbons could be expected. The DNA adduct patterns were similar for base oil and bitumen fume condensates, whereas coal tar distillates had a wider retention time range of the DNA adducts formed. Reference substances were tested in the same in vitro assay. Two- and three-ringed nonalkylated aromatics were rather low in genotoxicity, but some of the three- to four-ringed alkylated aromatics were very potent inducers of DNA adducts. Compounds with an amino functional group showed a 270-fold higher level of DNA adduct formation than the same structures with a nitro functional group. The most potent DNA adduct inducers of the 16

  13. Methods for synthesizing alane without the formation of adducts and free of halides

    DOEpatents

    Zidan, Ragaiy; Knight, Douglas A; Dinh, Long V

    2013-02-19

    A process is provided to synthesize an alane without the formation of alane adducts as a precursor. The resulting product is a crystallized .alpha.-alane and is a highly stable product and is free of halides.

  14. Preferential Formation of Benzo[a]pyrene Adducts at Lung Cancer Mutational Hotspots in P53

    NASA Astrophysics Data System (ADS)

    Denissenko, Mikhail F.; Pao, Annie; Tang, Moon-Shong; Pfeifer, Gerd P.

    1996-10-01

    Cigarette smoke carcinogens such as benzo[a]pyrene are implicated in the development of lung cancer. The distribution of benzo[a]pyrene diol epoxide (BPDE) adducts along exons of the P53 gene in BPDE-treated HeLa cells and bronchial epithelial cells was mapped at nucleotide resolution. Strong and selective adduct formation occurred at guanine positions in codons 157, 248, and 273. These same positions are the major mutational hotspots in human lung cancers. Thus, targeted adduct formation rather than phenotypic selection appears to shape the P53 mutational spectrum in lung cancer. These results provide a direct etiological link between a defined chemical carcinogen and human cancer.

  15. Formation and persistence of benzo(a)pyrene metabolite-DNA adducts.

    PubMed Central

    Stowers, S J; Anderson, M W

    1985-01-01

    Benzo(a)pyrene (BP) and other polycyclic aromatic hydrocarbons (PAH) are ubiquitous environmental pollutants and are suspected to be carcinogenic in man. The in vivo formation of BP metabolite-DNA adducts has been characterized in a variety of target and nontarget tissues of mice and rabbits. Tissues included were lung, liver, forestomach, colon, kidney, muscle, and brain. The major adduct identified in each tissue was the (+)-7 beta,8 alpha-dihydroxy-9 alpha,10 alpha-epoxy-7,8,9,10-tetrahydro-BP (BPDEI)-deoxyguanosine adduct. A 7 beta, 8 alpha-dihydroxy-9 beta,10 beta-epoxy-7,8,9,10-tetrahydro-BP (BPDEII)-deoxyguanosine adduct, a (-)-BPDEI-deoxyguanosine adduct, and an unidentified adduct were also observed. The adduct levels are unexpectedly similar in all the tissues examined from the same BP-treated animal. For example, the BPDEI-DNA adduct levels in muscle and brain of mice were approximately 50% of those in lung and liver at each oral BP dose used. We have also examined adduct levels formed in vivo in several cell types of lung and liver. Macrophages, type II cells, and Clara cells from lung and hepatocytes and nonpparenchymal cells from liver were isolated from BP-treated rabbits. BPDEI-deoxyguanosine adduct was observed in each cell type and, moreover, the levels were similar in various cell types. These and previous results strongly suggest that DNA in many human tissues is continuously damaged from known exposure of humans to BP and other PAH. Moreover, DNA adducts formed from BP are persistent in lung and brain.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:4085435

  16. DNA Adduct Formation of 4-Aminobiphenyl and Heterocyclic Aromatic Amines in Human Hepatocytes

    PubMed Central

    Nauwelaers, Gwendoline; Bessette, Erin E.; Gu, Dan; Tang, Yijin; Rageul, Julie; Fessard, Valérie; Yuan, Jian-Min; Yu, Mimi C.; Langouët, Sophie; Turesky, Robert J.

    2011-01-01

    DNA adduct formation of the aromatic amine, 4-aminobiphenyl (4-ABP), a known human carcinogen present in tobacco smoke, and the heterocyclic aromatic amines (HAAs), 2-amino-9H-pyrido[2,3-b]indole (AαC), 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), 2-amino-3-methylimidazo[4,5-f]quinoline (IQ), and 2-amino-3,8-dimethylmidazo[4,5-f]quinoxaline (MeIQx), potential human carcinogens, which are also present in tobacco smoke or formed during the high-temperature cooking of meats, was investigated in freshly cultured human hepatocytes. The carcinogens (10 μM) were incubated with hepatocytes derived from eight different donors for time periods up to 24 h. The DNA adducts were quantified by liquid chromatography-electrospray ionization mass spectrometry with a linear quadrupole ion trap mass spectrometer. The principal DNA adducts formed for all of the carcinogens were N-(deoxyguanosin-8-yl) (dG-C8) adducts. The levels of adducts ranged from 3.4 to 140 adducts per 107 DNA bases. The highest level of adduct formation occurred with AαC, followed by 4-ABP, then by PhIP, MeIQx, and IQ. Human hepatocytes formed dG-C8-HAA-adducts at levels that were up to 100-fold greater than the amounts of adducts produced in rat hepatocytes. In contrast to HAA adducts, the levels of dG-C8-4-ABP adduct formation were similar in human and rat hepatocytes. These DNA binding data demonstrate that the rat, an animal model that is used for carcinogenesis bioassays, significantly underestimates the potential hepatic genotoxicity of HAAs in humans. The high level of DNA adducts formed by AαC, a carcinogen produced in tobacco smoke at levels that are up to 100-fold higher than the amounts of 4-ABP, is noteworthy. The possible causal role of AαC in tobacco-associated cancers warrants investigation. PMID:21456541

  17. Formation and Repair of Tobacco Carcinogen-Derived Bulky DNA Adducts

    PubMed Central

    Hang, Bo

    2010-01-01

    DNA adducts play a central role in chemical carcinogenesis. The analysis of formation and repair of smoking-related DNA adducts remains particularly challenging as both smokers and nonsmokers exposed to smoke are repetitively under attack from complex mixtures of carcinogens such as polycyclic aromatic hydrocarbons and N-nitrosamines. The bulky DNA adducts, which usually have complex structure, are particularly important because of their biological relevance. Several known cellular DNA repair pathways have been known to operate in human cells on specific types of bulky DNA adducts, for example, nucleotide excision repair, base excision repair, and direct reversal involving O6-alkylguanine DNA alkyltransferase or AlkB homologs. Understanding the mechanisms of adduct formation and repair processes is critical for the assessment of cancer risk resulting from exposure to cigarette smoke, and ultimately for developing strategies of cancer prevention. This paper highlights the recent progress made in the areas concerning formation and repair of bulky DNA adducts in the context of tobacco carcinogen-associated genotoxic and carcinogenic effects. PMID:21234336

  18. Formation and Repair of Tobacco Carcinogen-Derived Bulky DNA Adducts

    DOE PAGES

    Hang, Bo

    2010-01-01

    DNA adducts play a central role in chemical carcinogenesis. The analysis of formation and repair of smoking-related DNA adducts remains particularly challenging as both smokers and nonsmokers exposed to smoke are repetitively under attack from complex mixtures of carcinogens such as polycyclic aromatic hydrocarbons and N -nitrosamines. The bulky DNA adducts, which usually have complex structure, are particularly important because of their biological relevance. Several known cellular DNA repair pathways have been known to operate in human cells on specific types of bulky DNA adducts, for example, nucleotide excision repair, base excision repair, and direct reversal involving O 6more » -alkylguanine DNA alkyltransferase or AlkB homologs. Understanding the mechanisms of adduct formation and repair processes is critical for the assessment of cancer risk resulting from exposure to cigarette smoke, and ultimately for developing strategies of cancer prevention. This paper highlights the recent progress made in the areas concerning formation and repair of bulky DNA adducts in the context of tobacco carcinogen-associated genotoxic and carcinogenic effects.« less

  19. DNA adduct formation by the environmental contaminant 3-nitrobenzanthrone after intratracheal instillation in rats.

    PubMed

    Bieler, Christian A; Cornelius, Michael G; Klein, Reinhold; Arlt, Volker M; Wiessler, Manfred; Phillips, David H; Schmeiser, Heinz H

    2005-10-10

    3-Nitrobenzanthrone (3-NBA) is an environmental pollutant and suspected human carcinogen found in emissions from diesel and gasoline engines and on the surface of ambient air particulate matter; human exposure to 3-NBA is likely to occur primarily via the respiratory tract. In our study female Sprague Dawley rats were treated by intratracheal instillation with a single dose of 0.2 or 2 mg/kg body weight of 3-NBA. Using the butanol enrichment version of the (32)P-postlabeling method, DNA adduct formation by 3-NBA 48 hr after intratracheal administration in different organs (lung, pancreas, kidney, urinary bladder, heart, small intestine and liver) and in blood was investigated. The same adduct pattern consisting of up to 5 DNA adduct spots was detected by thin layer chromatography in all tissues and blood and at both doses. Highest total adduct levels were found in lung and pancreas (350 +/- 139 and 620 +/- 370 adducts per 10(8) nucleotides for the high dose and 39 +/- 18 and 55 +/- 34 adducts per 10(8) nucleotides for the low dose, respectively) followed by kidney, urinary bladder, heart, small intestine and liver. Adduct levels were dose-dependent in all organs (approximately 10-fold difference between doses). It was demonstrated by high performance liquid chromatography (HPLC) that all 5 3-NBA-derived DNA adducts formed in rats after intratracheal instillation are identical to those formed by other routes of application and are, as previously shown, formed from reductive metabolites bound to purine bases. Although total adduct levels in the blood were much lower (41 +/- 27 and 9.5 +/- 1.9 adducts per 10(8) nucleotides for the high and low dose, respectively) than those found in the lung, they were related to dose and to the levels found in lung. These results show that uptake of 3-NBA by the lung induces high levels of specific DNA adducts in several organs of the rat and an identical adduct pattern in DNA from blood. Therefore, 3-NBA-DNA adducts present in the

  20. Solvent effect on the adduct formation of methyltrioxorhenium (MTO) and pyridine: enthalpy and entropy contributions.

    PubMed

    Nabavizadeh, S Masoud; Akbari, Alireza; Rashidi, Mehdi

    2005-07-21

    1:1 adduct formation between methyltrioxorhenium (MTO) and pyridine in different solvents (n-hexane, benzene, chloroform, ethyl acetate, dichloromethane and acetone) was studied using spectrophotometric techniques. The formation constants were determined from the absorbance change of the adduct versus pyridine concentration. The values of the formation constants vary from 114.5 to 752.5 L mol(-1) at T= 20 degrees C depending on the dielectric constant of the solvent (epsilon(r) = 1.89-20.7). Enthalpy and entropy changes during the adduct formation reactions were determined from van't Hoff plots. The measured enthalpy change of -37.0 to -22.2 kJ mol(-1) depends on epsilon(r), which is explained by Onsager's reaction field theory. The measured entropy change ranges from -71.2 to -36.6 J K(-1) mol(-1), and the dependence on the solvent is discussed in terms of the solvation effect.

  1. Mutagenicity and DNA adduct formation by the urban air pollutant 2-nitrobenzanthrone.

    PubMed

    Arlt, Volker M; Glatt, Hansruedi; Gamboa da Costa, Gonçalo; Reynisson, Jóhannes; Takamura-Enya, Takeji; Phillips, David H

    2007-08-01

    2-Nitrobenzanthrone (2-NBA) has recently been detected in ambient air particulate matter. Its isomer 3-nitrobenzanthrone (3-NBA) is a potent mutagen and suspected human carcinogen identified in diesel exhaust. The highest mutagenic activity of 2-NBA tested in Salmonella typhimurium was exhibited in strain TA1538-hSULT1A1 expressing human sulfotransferase (SULT) 1A1. 2-NBA also induced mutations in Chinese hamster lung V79 cells expressing human N-acetyltransferase 2 or SULT1A1, but no mutagenicity was observed in the parental cell line. DNA adduct formation in vitro was examined in different human cell lines by thin-layer chromatography (32)P-postlabeling. Whereas 3-NBA formed characteristic DNA adducts in lung A549, liver HepG2, colon HCT116, and breast MCF-7 cells, 2-NBA-derived DNA adducts were only observed in A549 and HepG2 cells, indicating differences in the bioactivation of each isomer. The pattern of 2-NBA-derived DNA adducts in both cell lines consisted of a cluster of up to five adducts. In HepG2 cells DNA binding by 2-NBA was up to 14-fold lower than by 3-NBA. DNA adduct formation of 2-NBA was also investigated in vivo in Wistar rats treated with a single dose of 2, 10, or 100 mg/kg body weight (bw). No DNA adduct formation was detected at doses of up to 10 mg/kg bw 2-NBA, even though 3-NBA induced DNA adducts at a dose of 2 mg/kg bw. Only after administration of one high dose of 100 mg/kg bw 2-NBA was a low level of DNA adduct formation detected, and then only in lung tissue. Density functional theory calculations for both NBAs revealed that the nitrenium ion of the 3-isomer is considerably more stable ( approximately 10 kcal/mol) than that of the 2-isomer, providing a possible explanation for the large differences in DNA adduct formation and mutagenicity between 2- and 3-NBA.

  2. Formation and persistence of arylamine DNA adducts in vivo.

    PubMed Central

    Beland, F A; Kadlubar, F F

    1985-01-01

    Aromatic amines are urinary bladder carcinogens in man and induce tumors at a number of sites in experimental animals including the liver, mammary gland, intestine, and bladder. In this review, the particular pathways involved in the metabolic activation of aromatic amines are considered as well as the specific DNA adducts formed in target and nontarget tissue. Particular emphasis is placed on the following compounds: 1-naphthylamine, 2-naphthylamine, 4-aminobiphenyl, 4-acetylaminobiphenyl, 4-acetylamino-4'-fluorobiphenyl, 3,2'-dimethyl-4-aminobiphenyl, 2-acetylaminofluorene, benzidine, N-methyl-4-aminoazobenzene, 4-aminoazobenzene, and 2-acetylaminophenanthrene. PMID:4085422

  3. Formation of acrolein-derived 2'-deoxyadenosine adduct in an iron-induced carcinogenesis model.

    PubMed

    Kawai, Yoshichika; Furuhata, Atsunori; Toyokuni, Shinya; Aratani, Yasuaki; Uchida, Koji

    2003-12-12

    Acrolein is a representative carcinogenic aldehyde found ubiquitously in the environment and formed endogenously through oxidation reactions, such as lipid peroxidation and myeloperoxidase-catalyzed amino acid oxidation. It shows facile reactivity toward DNA to form an exocyclic DNA adduct. To verify the formation of acrolein-derived DNA adduct under oxidative stress in vivo, we raised a novel monoclonal antibody (mAb21) against the acrolein-modified DNA and found that the antibody most significantly recognized an acrolein-modified 2' -deoxyadenosine. On the basis of chemical and spectroscopic evidence, the major antigenic product of mAb21 was the 1,N6-propano-2' -deoxyadenosine adduct. The exposure of rat liver epithelial RL34 cells to acrolein resulted in a significant accumulation of the acrolein-2' -deoxyadenosine adduct in the nuclei. Formation of this adduct under oxidative stress in vivo was immunohistochemically examined in rats exposed to ferric nitrilotriacetate, a carcinogenic iron chelate that specifically induces oxidative stress in the kidneys of rodents. It was observed that the acrolein-2' -deoxyadenosine adduct was formed in the nuclei of the proximal tubular cells, the target cells of this carcinogenesis model. The same cells were stained with a monoclonal antibody 5F6 that recognizes an acrolein-lysine adduct, by which cytosolic accumulation of acrolein-modified proteins appeared. Similar results were also obtained from myeloperoxidase knockout mice exposed to the iron complex, suggesting that the myeloperoxidase-catalyzed oxidation system might not be essential for the generation of acrolein in this experimental animal carcinogenesis model. The data obtained in this study suggest that the formation of a carcinogenic aldehyde through lipid peroxidation may be causally involved in the pathophysiological effects associated with oxidative stress.

  4. Formation of dopamine adducts derived from brain polyunsaturated fatty acids: mechanism for Parkinson disease.

    PubMed

    Liu, Xuebo; Yamada, Naruomi; Maruyama, Wakako; Osawa, Toshihiko

    2008-12-12

    Oxidative stress appears to be directly involved in the pathogenesis of the neurodegeneration of dopaminergic systems in Parkinson disease. In this study, we formed four dopamine modification adducts derived from docosahexaenoic acid (C22:6/omega-3) and arachidonic acid (C18:4/omega-6), which are known as the major polyunsaturated fatty acids in the brain. Upon incubation of dopamine with fatty acid hydroperoxides and an in vivo experiment using rat brain tissue, all four dopamine adducts were detected. Furthermore, hexanoyl dopamine (HED), an arachidonic acid-derived adduct, caused severe cytotoxicity in human dopaminergic neuroblastoma SH-SY5Y cells, whereas the other adducts were only slightly affected. The HED-induced cell death was found to include apoptosis, which also seems to be mediated by reactive oxygen species generation and mitochondrial abnormality. Additionally, the experiments using monoamine transporter inhibitor and mouse embryonic fibroblast NIH-3T3 cells that lack the monoamine transporter indicate that the HED-induced cytotoxicity might specially occur in the neuronal cells. These data suggest that the formation of the docosahexaenoic acid- and arachidonic acid-derived dopamine adducts in vitro and in vivo, and HED, the arachidonic acid-derived dopamine modification adduct, which caused selective cytotoxicity of neuronal cells, may indicate a novel mechanism responsible for the pathogenesis in Parkinson disease.

  5. Tamoxifen-DNA adduct formation in monkey and human reproductive organs.

    PubMed

    Hernandez-Ramon, Elena E; Sandoval, Nicole A; John, Kaarthik; Cline, J Mark; Wood, Charles E; Woodward, Ruth A; Poirier, Miriam C

    2014-05-01

    The estrogen analog tamoxifen (TAM), used for adjuvant therapy of breast cancer, induces endometrial and uterine tumors in breast cancer patients. Proliferation stimulus of the uterine endometrium is likely involved in tumor induction, but genotoxicity may also play a role. Formation of TAM-DNA adducts in human tissues has been reported but remains controversial. To address this issue, we examined TAM-DNA adducts in uteri from two species of monkeys, Erythrocebus patas (patas) and Macaca fascicularis (macaque), and in human endometrium and myometrium. Monkeys were given 3-4 months of chronic TAM dosing scaled to be equivalent to the daily human dose. In the uteri, livers and brains from the patas (n = 3), and endometrium from the macaques (n = 4), TAM-DNA adducts were measurable by TAM-DNA chemiluminescence immunoassay. Average TAM-DNA adduct values for the patas uteri (23 adducts/10(8) nucleotides) were similar to those found in endometrium of the macaques (19 adducts/10(8) nucleotides). Endometrium of macaques exposed to both TAM and low-dose estradiol (n = 5) averaged 34 adducts/10(8) nucleotides. To examine TAM-DNA persistence in the patas, females (n = 3) were exposed to TAM for 3 months and to no drug for an additional month, resulting in low or non-detectable TAM-DNA in livers and uteri. Human endometrial and myometrial samples from women receiving (n = 8) and not receiving (n = 8) TAM therapy were also evaluated. Women receiving TAM therapy averaged 10.3 TAM-DNA adducts/10(8) nucleotides, whereas unexposed women showed no detectable TAM-DNA. The data indicate that genotoxicity, in addition to estrogen agonist effects, may contribute to TAM-induced human endometrial cancer.

  6. Nitropyrene: DNA binding and adduct formation in respiratory tissues.

    PubMed Central

    Jackson, M A; King, L C; Ball, L M; Ghayourmanesh, S; Jeffrey, A M; Lewtas, J

    1985-01-01

    Binding of 1-nitro (14C)pyrene (NP) or its metabolites to cellular DNA and protein in cultures of rabbit alveolar macrophages, lung tissue, and tracheal tissue was examined. DNA binding in tracheal tissue (136 +/- 18.3 pmole NP/mg DNA) was four to five times the levels measured in either lung tissue (38 +/- 9.4 pmole NP/mg DNA) or macrophages (26 +/- 7.5 pmole NP/mg DNA). Adduct analysis of DNA isolated from lung tissue incubated with 1-nitro[H3]pyrene in vitro resulted in the identification of 2 to 5% of the NP adducts as C8-deoxyguanosine 1-aminopyrene. NP was also bound to cellular protein in tracheal tissue and lung tissue, and at a lower level in macrophages. Cocultivation of the macrophages with lung and tracheal tissue decreased the DNA binding in tracheal tissue by 45%. Following intratracheal instillation of diesel particles (5 mg) vapor-coated with 14C-NP (380 ppm, 0.085 muCi/mg) particles into rats, 5-8% of the radioactivity remained in the lungs after 20 hr. Most of the diesel particles were also deposited in the lung. Examination of DNA and protein binding in this tissue showed 5 to 12% of the pulmonary 14C bound to protein and no detectable levels of 14C bound to DNA. PMID:3841313

  7. Rhodium-catalyzed formation of stereocontrolled trisubstituted alkenes from Baylis-Hillman adducts.

    PubMed

    Gendrineau, Thomas; Demoulin, Nicolas; Navarre, Laure; Genet, Jean-Pierre; Darses, Sylvain

    2009-01-01

    Efficient and general conditions for the formation of stereodefined trisubstituted alkenes by using the rhodium-catalyzed reaction of unactivated Baylis-Hillman adducts with either organoboronic acids or potassium trifluoro(organo)borates are reported (see scheme).We report here efficient and general conditions for the formation of stereodefined trisubstituted alkenes using the rhodium-catalyzed reaction of unactivated Baylis-Hillman adducts with either organoboronic acids and potassium trifluoro(organo)borates. The use of the [{Rh(cod)OH}(2)] precursor gave very fast coupling reactions under low catalyst loading, very mild reaction conditions (from room temperature up to 50 degrees C) and without the need of additional phosphane ligands. Based on the new reaction conditions, the reaction, originally limited to Baylis-Hillman adducts derived from esters, could be extended to a large variety of Baylis-Hillman adducts, bearing either keto, cyano or amido functionalities. Moreover, the reaction of Baylis-Hillman adducts bearing esters functionality was improved and could be conducted at lower temperature using lower catalyst loading.

  8. Kinetics of DNA adduct formation in the oral cavity after drinking alcohol

    PubMed Central

    Balbo, Silvia; Meng, Lei; Bliss, Robin L.; Jensen, Joni A.; Hatsukami, Dorothy K.; Hecht, Stephen S.

    2012-01-01

    Background Alcohol consumption is one of the top-10 risks for the worldwide burden of disease and an established cause of head and neck cancer as well as cancer at other sites. Acetaldehyde, the major metabolite of ethanol, reacts with DNA to produce adducts, which are critical in the carcinogenic process and can serve as biomarkers of exposure and possibly of disease risk. Acetaldehyde associated with alcohol consumption is considered “carcinogenic to humans”. We have previously developed the technology to quantify acetaldehyde-DNA adducts in human tissues, but there are no studies in the literature defining the formation and removal of acetaldehyde-DNA adducts in people who consumed alcohol. Methods We investigated levels of N2-ethylidene-dGuo, the major DNA adduct of acetaldehyde, in DNA from human oral cells at several time points after consumption of increasing alcohol doses. Ten healthy non-smokers were dosed once a week for three weeks. Mouthwash samples were collected before and at several time points after the dose. N2-Ethylidene-dGuo was measured as its NaBH3CN reduction product N2-ethyl-dGuo by LC-ESI-MS/MS. Results N2-ethylidene-dGuo levels increased as much as 100-fold from baseline within 4h after each dose for all subjects and in a dose responsive manner (p = 0.001). Conclusion These results demonstrate an effect of alcohol on oral cell DNA adduct formation, strongly supporting the key role of acetaldehyde in head and neck cancer caused by alcohol drinking. Impact Our results provide some of the first conclusive evidence linking exposure to a lifestyle carcinogen and kinetics of DNA adduct formation in humans. PMID:22301829

  9. DNA adduct formation by o-phenylphenol metabolite in vivo and in vitro.

    PubMed

    Ushiyama, K; Nagai, F; Nakagawa, A; Kano, I

    1992-08-01

    [U-14C]o-Phenylphenol (OPP) was found to bind covalently to calf thymus DNA during a 60 min incubation in the presence of microsomes, but not in their absence, indicating that metabolic conversion of the parent compound, OPP, to an activated form is essential. Postlabeling analysis with bladder DNA of rats fed a diet containing 2% OPP for 13 weeks revealed one major adduct on TLC. In an in vitro postlabeling experiment with calf thymus DNA, both of the major metabolites of OPP, phenylhydroquinone (PHQ) and phenylbenzoquinone (PBQ), formed adducts, but no adducts were observed with OPP. The chemical structure responsible for adduct formation is thought to be the PHQ semiquinone radical intermediate formed during interconversion between PHQ and PBQ. When the oligonucleotides, pd(A)12-18, pd(C)12-18, pd(G)12-18 and pd(T)12-18, were used in vitro, only pd(G)12-18 gave TLC-detectable adducts on treatment with PHQ and PBQ. The covalent binding appears to be rather specific to guanine residues. These results suggest that covalent binding of the OPP metabolite is one of the underlying events in OPP-induced carcinogenesis in rats.

  10. N-acetyl cysteine directed detoxification of 2-hydroxyethyl methacrylate by adduct formation.

    PubMed

    Nocca, Giuseppina; D'Antò, Vincenzo; Desiderio, Claudia; Rossetti, Diana Valeria; Valletta, Rosa; Baquala, Adriana Marquez; Schweikl, Helmut; Lupi, Alessandro; Rengo, Sandro; Spagnuolo, Gianrico

    2010-03-01

    Cytotoxicity of the dental resin monomer 2-hydroxyethyl methacrylate (HEMA) and the protective effects of N-acetyl cysteine (NAC) on monomer-induced cell damage are well demonstrated. The aim of our study was to analyze the hypothesis that the protection of NAC from HEMA cytotoxicity might be due to direct NAC adduct formation. To this end, using HPLC we first measured the actual intracellular HEMA concentrations able to cause toxic effects on 3T3-fibroblasts and then determined the decrease in intracellular and extracellular HEMA levels in the presence of NAC. In addition, by capillary electrophoresis coupled with mass spectrometry analysis (CE-MS), we evaluated NAC-HEMA adduct formation. HEMA reduced 3T3 cell vitality in a dose- and time-dependent manner. The concentration of HEMA inside the cells was 15-20 times lower than that added to the culture medium for cell treatment (0-8 mmol/L). In the presence of 10 mmol/L NAC, both intracellular and extracellular HEMA concentrations greatly decreased in conjunction with cytotoxicity. NAC-HEMA adducts were detected both in the presence and absence of cells. Our findings suggest that the in vitro detoxification ability of NAC against HEMA-induced cell damage occurs through NAC adduct formation. Moreover, we provide evidence that the actual intracellular concentration of HEMA able to cause cytotoxic effects is at least one magnitude lower than that applied extracellularly.

  11. Adduct formation of 4-hydroxynonenal and malondialdehyde with elongation factor-2 in vitro and in vivo.

    PubMed

    Argüelles, Sandro; Machado, Alberto; Ayala, Antonio

    2009-08-01

    Protein synthesis is universally affected by aging in all organisms. There is no clear consensus about the mechanism underlying the decline of translation with aging. Previous reports from our laboratory have shown that the elongation step is especially affected with aging as a consequence of alterations in elongation factor-2 (eEF-2), the monomeric protein that catalyzes the movement of the ribosome along the mRNA during protein synthesis. eEF-2 seems to be specifically affected by lipid peroxidant compounds, which concomitantly produce several reactive, toxic aldehydes, such as MDA and HNE. These aldehydes are able to form adducts with proteins that lead to their inactivation. In this paper we studied the formation of adducts between MDA or HNE and eEF-2. The study was performed both in vitro, using liver homogenates treated with cumene hydroperoxide, and in vivo using young control rats, treated with the same oxidant, and 12-and 24-month-old rats. In all cases we found a decrease in the levels of eEF-2, an increase in the amount of lipid peroxidation, and a concomitant formation of adducts between eEF-2 and MDA or HNE. The results suggest that one possible mechanism responsible for the decline of protein synthesis during aging could be the alteration in eEF-2 levels, secondary to lipid peroxidation and adduct formation with these aldehydes.

  12. Covalent adduct formation between the plasmalogen-derived modification product 2-chlorohexadecanal and phloretin

    PubMed Central

    Üllen, Andreas; Nusshold, Christoph; Glasnov, Toma; Saf, Robert; Cantillo, David; Eibinger, Gerald; Reicher, Helga; Fauler, Günter; Bernhart, Eva; Hallstrom, Seth; Kogelnik, Nora; Zangger, Klaus; Oliver Kappe, C.; Malle, Ernst; Sattler, Wolfgang

    2015-01-01

    Hypochlorous acid added as reagent or generated by the myeloperoxidase (MPO)-H2O2-Cl− system oxidatively modifies brain ether-phospholipids (plasmalogens). This reaction generates a sn2-acyl-lysophospholipid and chlorinated fatty aldehydes. 2-Chlorohexadecanal (2-ClHDA), a prototypic member of chlorinated long-chain fatty aldehydes, has potent neurotoxic potential by inflicting blood–brain barrier (BBB) damage. During earlier studies we could show that the dihydrochalcone-type polyphenol phloretin attenuated 2-ClHDA-induced BBB dysfunction. To clarify the underlying mechanism(s) we now investigated the possibility of covalent adduct formation between 2-ClHDA and phloretin. Coincubation of 2-ClHDA and phloretin in phosphatidylcholine liposomes revealed a half-life of 2-ClHDA of approx. 120 min, decaying at a rate of 5.9 × 10−3 min−1. NMR studies and enthalpy calculations suggested that 2-ClHDA-phloretin adduct formation occurs via electrophilic aromatic substitution followed by hemiacetal formation on the A-ring of phloretin. Adduct characterization by high-resolution mass spectroscopy confirmed these results. In contrast to 2-ClHDA, the covalent 2-ClHDA-phloretin adduct was without adverse effects on MTT reduction (an indicator for metabolic activity), cellular adenine nucleotide content, and barrier function of brain microvascular endothelial cells (BMVEC). Of note, 2-ClHDA-phloretin adduct formation was also observed in BMVEC cultures. Intraperitoneal application and subsequent GC–MS analysis of brain lipid extracts revealed that phloretin is able to penetrate the BBB of C57BL/6J mice. Data of the present study indicate that phloretin scavenges 2-ClHDA, thereby attenuating 2-ClHDA-mediated brain endothelial cell dysfunction. We here identify a detoxification pathway for a prototypic chlorinated fatty aldehyde (generated via the MPO axis) that compromises BBB function in vitro and in vivo. PMID:25576489

  13. Both physiological and pharmacological levels of melatonin reduce DNA adduct formation induced by the carcinogen safrole.

    PubMed

    Tan, D; Reiter, R J; Chen, L D; Poeggeler, B; Manchester, L C; Barlow-Walden, L R

    1994-02-01

    Hepatic DNA adduct formation induced by the chemical carcinogen, safrole, was suppressed by both endogenous pineal melatonin release and by the exogenous administration of melatonin to rats. DNA damage after administration of of melatonin to rats. DNA damage after administration of 100 mg/kg safrole (i.p.) was measured by the P1 enhanced 32P-postlabeling analysis method. The RAL (relative adduct labeling) x 10(7) of carcinogen modified DNA in the liver of untreated controls and in safrole treated animals killed during the day, at night, after pinealectomy and pinealectomy plus melatonin injection (0.15 mg/kg x 4 or a total of 0.6 mg/kg) was 0, 12.6 +/- 0.75, 10.9 +/- 0.72, 13.6 +/- 1.12 and 5.7 +/- 0.53 respectively. For the same groups of animals, circulating melatonin levels at the termination of the study were 31 +/- 3, 29 +/- 2, 276 +/- 31, 24 +/- 1 and 13,950 +/- 1016 pg/ml serum respectively. The higher the melatonin concentration in the serum the lower was DNA adduct formation in the rat liver. Thus, high nocturnal levels of melatonin were protective against safrole-induced DNA damage. These findings indicate that the functional pineal gland plays an important role in oncostatic actions of carcinogens such as safrole. At physiological levels, melatonin seemed to prevent especially the formation of what was referred to as the N1 DNA adduct. Melatonin's ability to suppress DNA adduct formation may relate to its inhibitory effect on a mixed function oxidase, cytochrome p-450, and on the recently identified hydroxyl radical scavenging capacity of the indole. The oncostatic action of melatonin is also suggested by its nuclear accumulation and DNA stabilization characteristics. At pharmacological levels melatonin is extremely potent in preventing DNA modification induced by the chemical carcinogen, safrole.

  14. Formation of metal-ion adducts and evidence for surface-catalyzed ionization in electrospray analysis of pharmaceuticals and pesticides

    USGS Publications Warehouse

    Thurman, E.M.; Ferrer, I.

    2002-01-01

    The formation of metal ion adducts in liquid chromatography/mass spectrometry positive-ion electrospray analysis of pharmaceuticals and pesticides was investigated. The evidence of surface-catalyzed ionization in the electrospray analysis was also studied. Both positive and negative ion mass spectrometry were used for the analysis of the products. It was found that the sodium adducts formed in the analysis included single, double, and triple sodium adducts. Adduction was found to occur by attachment of the metal ion to carboxyl, carbonyl and aromatic pi electrons of the molecule.

  15. DNA adduct formation in precision-cut rat liver and lung slices exposed to benzo[a]pyrene.

    PubMed

    Harrigan, Jeanine A; Vezina, Chad M; McGarrigle, Barbara P; Ersing, Noreen; Box, Harold C; Maccubbin, Alexander E; Olson, James R

    2004-02-01

    Chemical-DNA adducts provide an integrated measure of exposure, absorption, bioactivation, detoxification, and DNA repair following exposure to a genotoxic agent. Benzo[a]pyrene (BaP), a prototypical polycyclic aromatic hydrocarbon (PAH), can be bioactivated by cytochrome P-450s (CYPs) and epoxide hydrolase to genotoxic metabolites which form covalent adducts with DNA. In this study, we utilized precision-cut rat liver and lung slices exposed to BaP to investigate tissue-specific differences in chemical absorption and formation of DNA adducts. To investigate the contribution of bioactivating CYPs (such as CYP1A1 and CYP1B1) on the formation of BaP-DNA adducts, animals were also pretreated in vivo with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, dioxin) prior to in vitro incubation of tissue slices with BaP. Furthermore, the tissue distribution of BaP and BaP-DNA adduct levels from in vivo studies were compared with those from the in vitro tissue slice experiments. The results indicate a time- and concentration-dependent increase in tissue-associated BaP following exposure of rat liver and lung tissue slices to BaP in vitro, with generally higher levels of BaP retained in lung tissue. Furthermore, rat liver and lung slices metabolized BaP to reactive intermediates that formed covalent adducts with DNA. Total BaP-DNA adducts increased with concentration and incubation time. Adduct levels (fmol adduct/microg DNA) in lung slices were greater than liver at all doses. Liver slices contained one major and two minor adducts, while lung slices contained two major and 3 minor adducts. The tissue-specific qualitative profile of these adducts in tissue slices was similar to that observed from in vivo studies, further validating the use of this model. Pretreatment of animals with TCDD prior to in vitro incubation with BaP potentiated the levels of DNA adduct formation. TCDD pretreatment altered the adduct distribution in lung but not in liver slices. Together, the results

  16. Modulatory effects of essential oils from spices on the formation of DNA adduct by aflatoxin B1 in vitro.

    PubMed

    Hashim, S; Aboobaker, V S; Madhubala, R; Bhattacharya, R K; Rao, A R

    1994-01-01

    Essential oils from common spices such as nutmeg, ginger, cardamom, celery, xanthoxylum, black pepper, cumin, and coriander were tested for their ability to suppress the formation of DNA adducts by aflatoxin B1 in vitro in a microsomal enzyme-mediated reaction. All oils were found to inhibit adduct formation very significantly and in a dose-dependent manner. The adduct formation appeared to be modulated through the action on microsomal enzymes, because an effective inhibition on the formation of activated metabolite was observed with each oil. The enzymatic modulation is perhaps due to the chemical constituents of the oils, and this could form a basis for their potential anticarcinogenic roles.

  17. Acetonitrile adduct formation as a sensitive means for simple alcohol detection by LC-MS.

    PubMed

    Bogseth, Roy; Edgcomb, Eric; Jones, Christopher M; Chess, Edward K; Hu, Peifeng

    2014-11-01

    Simple alcohols formed protonated acetonitrile adducts containing up to two acetonitrile molecules when analyzed by ESI or APCI in the presence of acetonitrile in the solvent. These acetonitrile adducts underwent dissociation to form a nitrilium ion, also referred to as the substitution ion. Diols and triols behaved differently. In ESI, they formed only one acetonitrile adduct containing one acetonitrile. The S ion was not observed in ESI and was only weakly observed from the dissociation of the (M + ACN + H)(+) ion. On the other hand, the S ion was abundantly formed from the diols in APCI. This formation of acetonitrile adducts and substitution ion from simple alcohols/diols offers an opportunity to detect simple alcohols/diols sensitively by LC-MS interfaced by ESI or APCI. The utility of this chemistry was demonstrated in a method developed for the quantification of cyclohexanol in rat plasma by monitoring the CID-induced fragmentation from the S ion to a fragment ion.

  18. Monitoring the apple polyphenol oxidase-modulated adduct formation of phenolic and amino compounds.

    PubMed

    Reinkensmeier, Annika; Steinbrenner, Katrin; Homann, Thomas; Bußler, Sara; Rohn, Sascha; Rawel, Hashadrai M

    2016-03-01

    Minimally processed fruit products such as smoothies are increasingly coming into demand. However, they are often combined with dairy ingredients. In this combination, phenolic compounds, polyphenoloxidases, and amino compounds could interact. In this work, a model approach is presented where apple serves as a source for a high polyphenoloxidase activity for modulating the reactions. The polyphenoloxidase activity ranged from 128 to 333nakt/mL in different apple varieties. From these, 'Braeburn' was found to provide the highest enzymatic activity. The formation and stability of resulting chromogenic conjugates was investigated. The results show that such adducts are not stable and possible degradation mechanisms leading to follow-up products formed are proposed. Finally, apple extracts were used to modify proteins and their functional properties characterized. There were retaining antioxidant properties inherent to phenolic compounds after adduct formation. Consequently, such interactions may also be utilized to improve the textural quality of food products.

  19. Leptin influences estrogen metabolism and increases DNA adduct formation in breast cancer cells

    PubMed Central

    Shouman, Samia; Wagih, Mohamed; Kamel, Marwa

    2016-01-01

    Objective: The elevated incidence of obesity has been paralleled with higher risks of breast cancer. High adiposity increases leptin secretion from adipose tissue, which in turn increases cancer cell proliferation. The interplay between leptin and estrogen is one of the mechanisms through which leptin influences breast carcinogenesis. An unbalanced estrogen metabolism increases the formations of catechol estrogen quinones, DNA adducts, and cancer mutations. This study aims to investigate the effect of leptin on some estrogen metabolic enzymes and DNA adduction in breast cancer cells. Methods: High performance liquid chromatography (HPLC) was performed to analyze the DNA adducts 4-OHE1[E2]-1-N3 adenine and 4-OHE1[E2]-1-N7 guanine. Reporter gene assay, real time reverse transcription polymerase chain reaction (real time RT-PCR), and Western blot were used to assess the expression of estrogen metabolizing genes and enzymes: Cytochrome P-450 1B1 (CYP1B1), Nicotinamide adenine dinucleotide phosphate-quinone oxidoreductase1 (NQO1), and Catechol-O-methyl transferase (COMT). Results: Leptin significantly increased the DNA adducts 4-OHE1[E2]-1-N3 adenine and 4-OHE1[E2]-1-N7 guanine. Furthermore, leptin significantly upregulated CYP1B1 promoter activity and protein expression. The luciferase promoter activities of NQO1 and mRNA levels were significantly reduced. Moreover, leptin greatly reduced the reporter activities of the COMT-P1 and COMT-P2 promoters and diminished the protein expression of COMT. Conclusions: Leptin increases DNA adduct levels in breast cancer cells partly by affecting key genes and enzymes involved in estrogen metabolism. Thus, increased focus should be directed toward leptin and its effects on the estrogen metabolic pathway as an effective approach against breast cancer. PMID:28154783

  20. Role of CYP1B1 in PAH-DNA adduct formation and breast cancer risk

    SciTech Connect

    Goth-Goldstein, Regine; Russell, Marion L.; Muller, A.P.; Caleffi, M.; Eschiletti, J.; Graudenz, M.; Sohn, Michael D.

    2010-04-01

    This study investigated the hypothesis that increased exposure to polycyclic aromatic hydrocarbons (PAHs) increases breast cancer risk. PAHs are products of incomplete burning of organic matter and are present in cigarette smoke, ambient air, drinking water, and diet. PAHs require metabolic transformation to bind to DNA, causing DNA adducts, which can lead to mutations and are thought to be an important pre-cancer marker. In breast tissue, PAHs appear to be metabolized to their cancer-causing form primarily by the cytochrome P450 enzyme CYP1B1. Because the genotoxic impact of PAH depends on their metabolism, we hypothesized that high CYP1B1 enzyme levels result in increased formation of PAH-DNA adducts in breast tissue, leading to increased development of breast cancer. We have investigated molecular mechanisms of the relationship between PAH exposure, CYP1B1 expression and breast cancer risk in a clinic-based case-control study. We collected histologically normal breast tissue from 56 women (43 cases and 13 controls) undergoing breast surgery and analyzed these specimens for CYP1B1 genotype, PAH-DNA adducts and CYP1B1 gene expression. We did not detect any difference in aromatic DNA adduct levels of cases and controls, only between smokers and non-smokers. CYP1B1 transcript levels were slightly lower in controls than cases, but the difference was not statistically significant. We found no correlation between the levels of CYP1B1 expression and DNA adducts. If CYP1B1 has any role in breast cancer etiology it might be through its metabolism of estrogen rather than its metabolism of PAHs. However, due to the lack of statistical power these results should be interpreted with caution.

  1. Determinants of formation of aflatoxin-albumin adducts: a seven-township study in Taiwan

    PubMed Central

    Sun, C-A; Wu, D-M; Wang, L-Y; Chen, C-J; You, S-L; Santella, R M

    2002-01-01

    Dietary exposure to aflatoxins is one of the major risk factors for hepatocellular carcinoma. Individual susceptibility to aflatoxin-induced hepatocarcinogenesis may be modulated by both genetic and environmental factors affecting metabolism. A cross-sectional study was performed to evaluate determinants of the formation of aflatoxin covalently bound to albumin (AFB1-albumin adducts). A total of 474 subjects who were free of liver cancer and cirrhosis and were initially selected as controls for previous case–control studies of aflatoxin-induced hepatocarcinogenesis in Taiwan, were employed in this study. Aflatoxin-albumin adducts were determined by competitive enzyme-linked immunosorbent assay, hepatitis B surface antigen and antibodies to hepatitis C virus by enzyme immunoassay, as well as genotypes of glutathione S-transferase M1-1 and T1-1 by polymerase chain reaction. The detection rate of AFB1-albumin adducts was significantly higher in males (42.5%) than in females (21.6%) (multivariate-adjusted odds ratio=2.6, 95% confidence interval=1.4–5.0). The formation of detectable albumin adducts was moderately higher in hepatitis B surface antigen carriers (42.8%) than in non-carriers (36.6%) (multivariate-adjusted odds ratio=1.4, 95% confidence interval=1.0–2.1). In addition, the detection rate of AFB1-albumin adducts tended to increase with the increasing number of null genotypes of glutathione S-transferase M1-1 and glutathione S-transferase T1-1. In conclusion, this cross-sectional study has assessed the relative contributions of environmental exposure and host susceptibility factors in the formation of AFB1-albumin adducts in a well characterised Chinese adult population. This study further emphasises the necessity to reduce aflatoxin exposure in people living in an area endemic for chronic hepatitis B virus infection. British Journal of Cancer (2002) 87, 966–970. doi:10.1038/sj.bjc.6600584 www.bjcancer.com © 2002 Cancer Research UK PMID:12434285

  2. Formation and persistence of novel benzo(a)pyrene adducts in rat lung, liver, and peripheral blood lymphocyte DNA

    SciTech Connect

    Ross, J.; Nelson, G.; Kligerman, A.; Erexson, G.; Bryant, M.; Earley, K.; Gupta, R.; Nesnow, S. )

    1990-08-15

    Male CD rats were injected with single i.p. doses of benzo(a)pyrene (B(a)P), and peripheral blood lymphocytes (PBLs), livers, and lungs were removed at various times after administration. DNA adducts were analyzed in each tissue by 32P postlabeling with nuclease P1 enhancement. Sister chromatid exchange frequencies were concomitantly measured in cultured whole blood. B(a)P-DNA adducts were observed in all three tissues from animals sacrificed between 1 and 56 days after injection. Maximal adduction levels occurred at about 4 days after administration, followed by a gradual loss of adducts over the period examined. The apparent half-lives of total DNA adducts were 15 days in liver, 17 days in PBLs, and 22 days in lung. Induced sister chromatid exchanges were linearly related to the amount of DNA adducts remaining in the PBLs at the time of harvest up to 56 days and were significantly elevated above concurrent controls up to 14 days. One of the major adducts found in each tissue was N2-(10 beta-(7 beta,8 alpha,9 alpha-trihydroxy-7,8,9,10-tetrahydrobenzo(a) pyrene)yl)deoxyguanosine. An additional novel major adduct was found in the liver DNA and is derived from the further metabolism of B(a)P-trans-7,8-dihydrodiol. A second major novel B(a)P adduct was found in the DNA of lung tissues and accounts for about 40% of the total adducts present. Experimental evidence suggests that this adduct is derived from a metabolic pathway that includes the formation of 9-hydroxy-B(a)P.

  3. Oxidation process of adrenaline in freshly isolated rat cardiomyocytes: formation of adrenochrome, quinoproteins, and GSH adduct.

    PubMed

    Costa, Vera Marisa; Silva, Renata; Ferreira, Luísa Maria; Branco, Paula Sério; Carvalho, Félix; Bastos, Maria Lourdes; Carvalho, Rui Albuquerque; Carvalho, Márcia; Remião, Fernando

    2007-08-01

    High concentrations of circulating biogenic catecholamines often exist during the course of several cardiovascular disorders. Additionally, coronary dysfunctions are prominent and frequently related to the ischemic and reperfusion phenomenon (I/R) in the heart, which leads to the release of large amounts of catecholamines, namely adrenaline, and to a sustained generation of reactive oxygen species (ROS). Thus, this work aimed to study the toxicity of adrenaline either alone or in the presence of a system capable of generating ROS [xanthine with xanthine oxidase (X/XO)], in freshly isolated, calcium tolerant cardiomyocytes from adult rats. Studies were performed for 3 h, and cardiomyocyte viability, ATP level, lipid peroxidation, protein carbonylation content, and glutathione status were evaluated, in addition to the formation of adrenaline's oxidation products and quinoproteins. Intracellular GSH levels were time-dependently depleted with no GSSG formation when cardiomyocytes were exposed to adrenaline or to adrenaline with X/XO. Meanwhile, a time-dependent increase in the rate of formation of adrenochrome and quinoproteins was observed. Additionally, as a new outcome, 5-(glutathion- S-yl)adrenaline, an adrenaline adduct of glutathione, was identified and quantified. Noteworthy is the fact that the exposure to adrenaline alone promotes a higher rate of formation of quinoproteins and glutathione adduct, while adrenochrome formation is favored where ROS production is stimulated. This study shows that the redox status of the surrounding environment greatly influences adrenaline's oxidation pathway, which may trigger cellular changes responsible for cardiotoxicity.

  4. Adduct formation of 7,12-dimethylbenz(a)anthracene in the embryo of the Japanese medaka (Oryzias latipes)

    SciTech Connect

    Liu, H.; Cooper, K.R.

    1995-12-31

    DNA adduct formation of 7,1 2-dimethylbenz(a)anthracene (DMBA) in vivo in the Japanese medaka embryo were investigated using {sup 32}P-postlabeling analysis. 1-compounds (endogenous adducts) were not observed in the Japanese medaka embryo on days 4 (prior to liver formation), 6 (liver/swim bladder) or 10 (prior to hatch) of development. The level of DMBA:DNA adducts were concentration-dependent over the range of 0.625 ppm (Total Adducts 0.05707 pmol/mg of DNA) to 2.50 ppm (0.43341 pmol/mg of DNA) and decreased at 5.00 ppm (0.25338 pmol/mg of DNA) after medaka embryos were exposed to DMBA for 6 days from the day of fertilization. The decrease in DMBA:DNA adducts at 5.00 ppm was probably due to embryo toxicity (78% death). The level of DMBA:DNA adducts formed from the embryos exposed to DMBA for 24 hr decreased as the stage of development increased: day 4 > day 6 > day 10; 0.0262, 0.0179, 0.0129 pmol/mg of DNA, respectively. The level of DMBA:DNA adducts increased as the length of exposure increased: 4 day < 6 day < 10 day; 0.0233, 0.0614, 0.1502, respectively. There was both a time and dose dependence to the number of adducts detected. The data presented demonstrated the development of DM BA-DNA adducts in the developing Japanese medaka (Oryzias latipes) and the lack of I-compounds.

  5. Formation of DNA adducts in vitro and in Salmonella typhimurium upon metabolic reduction of the environmental mutagen 1-nitropyrene

    SciTech Connect

    Howard, P.C.; Heflich, R.H.; Evans, F.E.; Beland, F.A.

    1983-05-01

    The polycyclic nitroaromatic hydrocarbon 1-nitropyrene is an environmental pollutant, a potent bacterial mutagen, and a carcinogen. Xanthine oxidase, a mammalian nitroreductase, catalyzed the in vitro metabolic activation of this compound to DNA-bound adducts. Maximum adduct formation occurred at pH 5.5 to 6.0 and was increased by the addition of catalase to the incubation medium. DNA binding from 1-nitropyrene was inhibited by hydrogen peroxide, L-ascorbate, and glutathione. Enzymatic hydrolysis of the modified DNA and subsequent analysis by high-pressure liquid chromatography indicated the presence of one major and two minor adducts. The major adduct was characterized by mass spectrometry and nuclear magnetic resonance spectroscopy as N-(deoxyguanosin-8-yl)-1-aminopyrene. The minor adducts appear to be decomposition products of the major adduct. When Salmonella typhimurium TA1538 was incubated with 1-nitropyrene, a strong correlation was found between the extent of DNA binding and the frequency of induced histidine reversions. Analysis of the bacterial DNA indicated one major adduct which had chromatographic properties and pKaS identical to those of N-(deoxyguanosin-8-yl)-1-aminopyrene. These data indicate that N-hydroxy-1-aminopyrene is probably the mutagenic and DNA-binding species formed during the metabolic reduction of 1-nitropyrene.

  6. Contribution of artifacts to N-methylated piperazine cyanide adduct formation in vitro from N-alkyl piperazine analogs.

    PubMed

    Zhang, Minli; Resuello, Christina M; Guo, Jian; Powell, Mark E; Elmore, Charles S; Hu, Jun; Vishwanathan, Karthick

    2013-05-01

    In the liver microsome cyanide (CN)-trapping assays, piperazine-containing compounds formed significant N-methyl piperazine CN adducts. Two pathways for the N-methyl piperazine CN adduct formation were proposed: 1) The α-carbon in the N-methyl piperazine is oxidized to form a reactive iminium ion that can react with cyanide ion; 2) N-dealkylation occurs followed by condensation with formaldehyde and dehydration to produce N-methylenepiperazine iminium ion, which then reacts with cyanide ion to form the N-methyl CN adduct. The CN adduct from the second pathway was believed to be an artifact or metabonate. In the present study, a group of 4'-N-alkyl piperazines and 4'-N-[¹³C]methyl-labeled piperazines were used to determine which pathway was predominant. Following microsomal incubations in the presence of cyanide ions, a significant percentage of 4'-N-[¹³C]methyl group in the CN adduct was replaced by an unlabeled natural methyl group, suggesting that the second pathway was predominant. For 4'-N-alkyl piperazine, the level of 4'-N-methyl piperazine CN adduct formation was limited by the extent of prior 4'-N-dealkylation. In a separate study, when 4'-NH-piperaziens were incubated with potassium cyanide and [¹³C]-labeled formaldehyde, 4'-N-[¹³C]methyl piperazine CN-adduct was formed without NADPH or liver microsome suggesting a direct Mannich reaction is involved. However, when [¹³C]-labeled methanol or potassium carbonate was used as the one-carbon donor, 4'-N-[¹³C]methyl piperazine CN adduct was not detected without liver microsome or NADPH present. The biologic and toxicological implications of bioactivation via the second pathway necessitate further investigation because these one-carbon donors for the formation of reactive iminium ions could be endogenous and readily available in vivo.

  7. The formation of argpyrimidine, a methylglyoxal-arginine adduct, in the nucleus of neural cells

    SciTech Connect

    Nakadate, Yusuke; Uchida, Koji; Shikata, Keiji; Yoshimura, Saori; Azuma, Masayuki; Hirata, Tatsumi; Konishi, Hiroyuki; Kiyama, Hiroshi; Tachibana, Taro

    2009-01-09

    Methylglyoxal (MG) is an endogenous metabolite in glycolysis and forms stable adducts primarily with arginine residues of intracellular proteins. The biological role of this modification in cell function is not known. In the present study, we found that a MG-detoxification enzyme glyoxalase I (GLO1) is mainly expressed in the ventricular zone (VZ) at embryonic day 16 which neural stem and progenitor cells localize. Moreover, immunohistochemical analysis revealed that argpyrimidine, a major MG-arginine adduct, is predominantly produced in cortical plate neurons not VZ during cerebral cortex development and is exclusively located in the nucleus. Immunoblotting experiment showed that the formation of argpyrimidine occurs on some nuclear proteins of cortical neurons. To our knowledge, this is first report of the argpyrimidine formation in the nucleus of neuron. These findings suggest that GLO1, which is dominantly expressed in the embryonic VZ, reduces the intracellular level of MG and suppresses the formation of argpyrimidine in neural stem and progenitor cells. Argpyrimidine may contribute to the neural differentiation and/or the maintenance of the differentiated state via the modification of nuclear proteins.

  8. Characterization of Nitrogen Mustard Formamidopyrimidine Adduct Formation of bis-(2-Chloroethyl)ethylamine with Calf Thymus DNA and a Human Mammary Cancer Cell Line

    PubMed Central

    Gruppi, Francesca; Hejazi, Leila; Christov, Plamen P.; Krishnamachari, Sesha; Turesky, Robert J.; Rizzo, Carmelo J.

    2015-01-01

    A robust, quantitative ultraperformance liquid chromatography ion trap multistage scanning mass spectrometric (UPLC/MS3) method was established to characterize and measure five deoxyguanosine (dG) adducts formed by reaction of the chemotherapeutic nitrogen mustard (NM) bis-(2-chloroethyl)ethylamine with calf thymus (CT) DNA. In addition to the known N7-guanine (NM-G) adduct and its crosslink (G-NM-G), the ring-opened formamidopyrimidine (FapyG) mono-adduct (NM-FapyG) and cross-links in which one (FapyG-NM-G) or both (FapyG-NM-FapyG) guanines underwent ring-opening to FapyG units were identified. Authentic standards of all adducts were synthesized and characterized by NMR and mass spectrometry. These adducts were quantified in CT DNA treated with NM (1 μM) as their deglycosylated bases. A two-stage neutral thermal hydrolysis was developed to mitigate the artifactual formation of ring-opened FapyG adducts involving hydrolysis of the cationic adduct at 37 °C, followed by hydrolysis of the FapyG adducts at 95 °C. The limit of quantification values ranged between 0.3 and 1.6 adducts per 107 DNA bases, when the equivalent of 5 μg DNA hydrolysate was assayed on column. The principal adduct formed was the G-NM-G cross-link, followed by the NM-G mono-adduct; the FapyG-NM-FapyG adduct was at the limit of detection. The NM-FapyG adducts formed in CT DNA at a level of ~20% that of the NM-G adduct. NM-FapyG has not been previously quanitified and the FapyG-NM-G and FapyG-NM-FapyG adducts have not be previously characterized. Our validated analytical method was then applied to measure DNA adduct formation in the MDA-MB-231 mammary tumor cell line exposed to NM (100 μM) for 24 h. The major adduct formed was NM-G (970 adducts per 107 bases), followed by G-NM-G (240 adducts per 107 bases) and NM-FapyG (180 adducts per 107 bases), and lastly the FapyG-NM-G cross-link adduct (6.0 adducts per 107 bases). These lesions are expected to contribute to the NM-mediated toxicity and

  9. Formation of vitisins and anthocyanin-flavanol adducts during red grape drying.

    PubMed

    Marquez, Ana; Dueñas, Montserrat; Serratosa, María P; Merida, Julieta

    2012-07-11

    This study evaluated the formation of anthocyanin-derived compounds during the production of sweet red wines from Merlot and Syrah grapes previously chamber-dried under controlled-temperature conditions. The musts from both grape varieties were found to contain pelargonidin-3-glucoside throughout the vinification process. Besides, HPLC-DAD-MS revealed the presence of pyranoanthocyanins in unfermented musts from the raisins. These compounds are adducts resulting from the cycloaddition of pyruvic acid (type A vitisins) and acetaldehyde (type B vitisins) to anthocyanin molecules. The analyses additionally revealed the presence of products of the condensation via a methylmethine bridge between anthocyanins and (epi)catechin, which requires the presence of acetaldehyde. The absence of pyruvic acid, acetaldehyde, and ethanol in the musts from fresh grapes and their presence in those from dried grapes support the idea that these compounds result from enzymatic transformations because the vinification of the musts involves no alcoholic fermentation. The drying process alters the permeability of grape membranes by the lipoxygenase activation effect (LOX), a switch to an anaerobic metabolism and the resulting triggering of the alcohol dehydrogenase enzyme (ADH). The activation of these and several other enzymes confirmed the occurrence of enzymatic transformations and the formation of vitisin A, acetylvitisin A, and the B vitisins of malvidin-3-glucoside, peonidin-3-glucoside, peonidin-3-acetylglucoside, and malvidin-3-acetylglucoside, as well as the adducts Pn-3-glc-methylmethine(epi)catechin, Mv-3-glc-methylmethine(epi) catechin, and Mv-3-acetylmethylmethine(epi)catechin.

  10. Phosphoramide mustard exposure induces DNA adduct formation and the DNA damage repair response in rat ovarian granulosa cells

    SciTech Connect

    Ganesan, Shanthi Keating, Aileen F.

    2015-02-01

    Phosphoramide mustard (PM), the ovotoxic metabolite of the anti-cancer agent cyclophosphamide (CPA), destroys rapidly dividing cells by forming NOR-G-OH, NOR-G and G-NOR-G adducts with DNA, potentially leading to DNA damage. A previous study demonstrated that PM induces ovarian DNA damage in rat ovaries. To investigate whether PM induces DNA adduct formation, DNA damage and induction of the DNA repair response, rat spontaneously immortalized granulosa cells (SIGCs) were treated with vehicle control (1% DMSO) or PM (3 or 6 μM) for 24 or 48 h. Cell viability was reduced (P < 0.05) after 48 h of exposure to 3 or 6 μM PM. The NOR-G-OH DNA adduct was detected after 24 h of 6 μM PM exposure, while the more cytotoxic G-NOR-G DNA adduct was formed after 48 h by exposure to both PM concentrations. Phosphorylated H2AX (γH2AX), a marker of DNA double stranded break occurrence, was also increased by PM exposure, coincident with DNA adduct formation. Additionally, induction of genes (Atm, Parp1, Prkdc, Xrcc6, and Brca1) and proteins (ATM, γH2AX, PARP-1, PRKDC, XRCC6, and BRCA1) involved in DNA repair were observed in both a time- and dose-dependent manner. These data support that PM induces DNA adduct formation in ovarian granulosa cells, induces DNA damage and elicits the ovarian DNA repair response. - Highlights: • PM forms ovarian DNA adducts. • DNA damage marker γH2AX increased by PM exposure. • PM induces ovarian DNA double strand break repair.

  11. Efficient CO2 capture by tertiary amine-functionalized ionic liquids through Li+-stabilized zwitterionic adduct formation

    PubMed Central

    Yang, Zhen-Zhen

    2014-01-01

    Summary Highly efficient CO2 absorption was realized through formation of zwitterionic adducts, combining synthetic strategies to ionic liquids (ILs) and coordination. The essence of our strategy is to make use of multidentate cation coordination between Li+ and an organic base. Also PEG-functionalized organic bases were employed to enhance the CO2-philicity. The ILs were reacted with CO2 to form the zwitterionic adduct. Coordination effects between various lithium salts and neutral ligands, as well as the CO2 capacity of the chelated ILs obtained were investigated. For example, the CO2 capacity of PEG150MeBu2N increased steadily from 0.10 to 0.66 (mol CO2 absorbed per mol of base) through the formation of zwitterionic adducts being stabilized by Li+. PMID:25246955

  12. Efficient CO2 capture by tertiary amine-functionalized ionic liquids through Li(+)-stabilized zwitterionic adduct formation.

    PubMed

    Yang, Zhen-Zhen; He, Liang-Nian

    2014-01-01

    Highly efficient CO2 absorption was realized through formation of zwitterionic adducts, combining synthetic strategies to ionic liquids (ILs) and coordination. The essence of our strategy is to make use of multidentate cation coordination between Li(+) and an organic base. Also PEG-functionalized organic bases were employed to enhance the CO2-philicity. The ILs were reacted with CO2 to form the zwitterionic adduct. Coordination effects between various lithium salts and neutral ligands, as well as the CO2 capacity of the chelated ILs obtained were investigated. For example, the CO2 capacity of PEG150MeBu2N increased steadily from 0.10 to 0.66 (mol CO2 absorbed per mol of base) through the formation of zwitterionic adducts being stabilized by Li(+).

  13. Switching from adduct formation to electron transfer in a light-oxygen-voltage domain containing the reactive cysteine.

    PubMed

    Magerl, Kathrin; Stambolic, Ivan; Dick, Bernhard

    2017-03-08

    LOV (light-, oxygen- or voltage-sensitive) domains act as photosensory units of many prokaryotic and eukaryotic proteins. Upon blue light excitation they undergo a photocycle via the excited triplet state of their flavin chromophore yielding the flavin-cysteinyl adduct. Adduct formation is highly conserved among all LOV domains and constitutes the primary step of LOV domain signaling. But recently, it has been shown that signal propagation can also be triggered by flavin photoreduction to the neutral semiquinone offering new prospects for protein engineering. This, however, requires mutation of the photo-active Cys. Here, we report on LOV1 mutants of C. reinhardtii phototropin in which adduct formation is suppressed although the photo-active Cys is present. Introduction of a Tyr into the LOV core induces a proton coupled electron transfer towards the flavin chromophore. Flavin radical species are formed via either the excited flavin singlet or triplet state depending on the geometry of donor and acceptor. This photoreductive pathway resembles the photoreaction observed in other blue light photoreceptors, e.g. blue-light sensors using flavin adenine dinucleotide (BLUF) domains or cryptochromes. The ability to tune the photoreactivity of the flavin chromophore inside the LOV core has implications for the mechanism of adduct formation in the wild type and may be of use for protein engineering.

  14. DNA adduct formation by the environmental contaminant 3-nitrobenzanthrone in V79 cells expressing human cytochrome P450 enzymes.

    PubMed

    Bieler, Christian A; Arlt, Volker M; Wiessler, Manfred; Schmeiser, Heinz H

    2003-10-08

    Diesel exhaust is known to induce tumours in animals. Of the compounds found in diesel exhaust 3-nitrobenzanthrone (3-NBA) is particularly a powerful mutagen. Recently we showed that 3-NBA is genotoxic in vivo in rats by forming specific DNA adducts derived from nitroreduction. In this study a panel of genetically engineered V79 Chinese hamster cell lines expressing various human cytochrome P450 (CYP) enzymes (CYP1A1, CYP3A4) and/or human NADPH:CYP oxidoreductase (CYPOR) was used to identify CYP enzymes involved in the metabolic activation of 3-NBA. We analyzed the formation of specific DNA adducts by 32P-postlabelling after exposing cells to 1 microM 3-NBA. A similar pattern with a total of four distinct 3-NBA-DNA adducts was found in all cells, identical to those detected previously in DNA from rats treated with 3-NBA in vivo. Total adduct levels ranged from 75 to 132 using nuclease P1 and from 103 to 220 adducts per 10(8) nucleotides, using butanol enrichment. Comparison of DNA binding between different V79MZ derived cells revealed that human CYPOR and CYP3A4 were involved in the metabolic activation of 3-NBA. Furthermore, dose-dependent high adduct levels were detected after exposure to 0.01, 0.1 or 1 microM 3-NBA in the subclone V79NH which exhibits high activities of nitroreductase and N,O-acetyltransferase. Our results suggest that nitroreduction is the major pathway in the human bioactivation of 3-NBA. Moreover, acetylation of the initially formed N-hydroxy arylamine intermediates may contribute to the high genotoxic potential of 3-NBA.

  15. Genetic polymorphisms in catalase and CYP1B1 determine DNA adduct formation by benzo(a)pyrene ex vivo.

    PubMed

    Schults, Marten A; Chiu, Roland K; Nagle, Peter W; Wilms, Lonneke C; Kleinjans, Jos C; van Schooten, Frederik J; Godschalk, Roger W

    2013-03-01

    Genetic polymorphisms can partially explain the large inter-individual variation in DNA adduct levels following exposure to polycyclic aromatic hydrocarbons. Effects of genetic polymorphisms on DNA adduct formation are difficult to assess in human studies because exposure misclassification attenuates underlying relationships. Conversely, ex vivo studies offer the advantage of controlled exposure settings, allowing the possibility to better elucidate genotype-phenotype relationships and gene-gene interactions. Therefore, we exposed lymphocytes of 168 non-smoking volunteers ex vivo to the environmental pollutant benzo(a)pyrene (BaP) and BaP-related DNA adducts were quantified. Thirty-four genetic polymorphisms were assessed in genes involved in carcinogen metabolism, oxidative stress and DNA repair. Polymorphisms in catalase (CAT, rs1001179) and cytochrome P450 1B1 (CYP1B1, rs1800440) were significantly associated with DNA adduct levels, especially when combined. Moreover, reverse transcription-polymerase chain reaction (RT-PCR) analysis in a subset of 30 subjects revealed that expression of catalase correlated strongly with expression of CYP1B1 (R = 0.92, P < 0.001). To further investigate the mechanism by which catalase influences CYP1B1 and how they simultaneously affect BaP-related DNA adduct levels, catalase expression was transiently knocked down in the human lung epithelial cell line A549. Although catalase knockdown did not immediately change CYP1B1 gene expression, recovery of catalase expression 8 h after the knockdown coincided with a 2.2-fold increased expression of CYP1B1 (P < 0.05). We conclude that the genetic polymorphism in the promoter region of CAT may determine the amount and activity of catalase, which may subsequently regulate the expression of CYP1B1. As a result, both genetic polymorphisms modulate DNA adduct levels in lymphocytes by BaP ex vivo.

  16. PROTEIN TARGETS OF ACRYLAMIDE ADDUCT FORMATION IN CULTURED RAT DOPAMINERGIC CELLS

    PubMed Central

    Martyniuk, Christopher J.; Feswick, April; Fang, Bin; Koomen, John M.; Barber, David S.; Gavin, Terrence; LoPachin, Richard M.

    2013-01-01

    Acrylamide (ACR) is an electrophilic unsaturated carbonyl derivative that produces neurotoxicity by forming irreversible Michael-type adducts with nucleophilic sulfhydryl thiolate groups on cysteine residues of neuronal proteins. Identifying specific proteins targeted by ACR can lead to a better mechanistic understanding of the corresponding neurotoxicity. Therefore, in the present study, the ACR-adducted proteome in exposed primary immortalized mesencephalic dopaminergic cells (N27) was determined using tandem mass spectrometry (LTQ-Orbitrap). N27 cells were characterized based on the presumed involvement of CNS dopaminergic damage in ACR neurotoxicity. Shotgun proteomics identified a total of 15,243 peptides in N27 cells of which 103 unique peptides exhibited ACR-adducted Cys groups. These peptides were derived from 100 individual proteins and therefore ~0.7% of the N27 cell proteome was adducted. Proteins that contained ACR adducts on multiple peptides included annexin A1 and pleckstrin homology domain-containing family M member 1. Sub-network enrichment analyses indicated that ACR-adducted proteins were involved in processes associated with neuron toxicity, diabetes, inflammation, nerve degeneration and atherosclerosis. These results provide detailed information regarding the ACR-adducted proteome in a dopaminergic cell line. The catalog of affected proteins indicates the molecular sites of ACR action and the respective roles of these proteins in cellular processes can offer insight into the corresponding neurotoxic mechanism. PMID:23566896

  17. Gas-Phase Anionic σ-Adduct (Trans)formations in Heteroaromatic Systems1

    NASA Astrophysics Data System (ADS)

    Zimnicka, Magdalena; Danikiewicz, Witold

    2015-07-01

    Anions of nitroderivatives of thiophene and furan were subjected to the reactions with selected C-H acids in the gas phase. Various structures and reaction pathways were proposed for the observed ionic products. In general, the reactions of heteroaromatic anions with C-H acids may be divided into three groups, depending on the proton affinity difference between C-H acid's conjugate base and heteroaromatic anion (ΔPA). The proton transfer from C-H acid to heteroaromatic anion is a dominant process in the reactions for which ΔPA < 0 kcal mol-1, whereas the reactions with high ΔPA (ΔPA > 16 kcal mol-1) do not lead to any ionic products. The formation of σ-adducts and products of their further transformations according to the VNS, SNAr, cine, and tele substitution mechanisms have been proposed for reactions with moderate ΔPA. The other possible mechanisms as SN2 reaction, nucleophilic addition to the cyano group, ring-opening pathway, and halogenophilic reaction have also been discussed to contribute in the reactions between heteroaromatic anions and C-H acids.

  18. Cell toxicity of methacrylate monomers-the role of glutathione adduct formation.

    PubMed

    Ansteinsson, V; Kopperud, H B; Morisbak, E; Samuelsen, J T

    2013-12-01

    Polymer-based dental restorative materials are designed to polymerize in situ. However, the conversion of methacrylate monomer to polymer is never complete, and leakage of the monomer occurs. It has been shown that these monomers are toxic in vitro; hence concerns regarding exposure of patients and dental personnel have been raised. Different monomer methacrylates are thought to cause toxicity through similar mechanisms, and the sequestration of cellular glutathione (GSH) may be a key event. In this study we examined the commonly used monomer methacrylates, 2-hydroxyethylmethacrylate (HEMA), triethylenglycol-dimethacrylate (TEGDMA), bisphenol-A-glycidyl-dimethacrylate (BisGMA), glycerol-dimethacrylate (GDMA) and methyl-methacrylate (MMA). The study aimed to establish monomers' ability to complex with GSH, and relate this to cellular toxicity endpoints. Except for BisGMA, all the monomer methacrylates decreased the GSH levels both in cells and in a cell-free system. The spontaneous formation of methacrylate-GSH adducts were observed for all methacrylate monomers except BisGMA. However, we were not able to correlate GSH depletion and toxic response measured as SDH activity and changes in cell growth pattern. Together, the current study indicates mechanisms other than GSH-binding to be involved in the toxicity of methacrylate monomers.

  19. Modulation of the time-resolved photoluminescence of cadmium selenide by adduct formation with gaseous amines

    SciTech Connect

    Leung, L.K.; Meyer, G.J.; Ellis, A.B. ); Lisensky, G.C. )

    1990-02-22

    The time-resolved, band edge photoluminescence (PL) of cleaved samples of single-crystal n-CdSe has been measured in the presence of N{sub 2}, NH{sub 3}, and CH{sub 3}NH{sub 2} (30% mixtures of the amines in N{sub 2}). Nonexponential decay profiles are modeled. At a low incident average power of {approx} 0.1 mW, both {tau} and {beta} reversibly increase relative to a N{sub 2} ambient upon exposure of CdSe to NH{sub 3} and CH{sub 3}NH{sub 2}, which engage in adduct formation with the semiconductor surface; the magnitude of the enhancement in both decay parameters is larger for the more basic CH{sub 3}NH{sub 2} than for NH{sub 3}. Increases in incident power cause the absolute values of {tau} and {beta} to increase while reducing the dependence of these parameters on gaseous ambient. Interfacial properties that contribute to these effects are discussed and comparisons with steady-state PL properties are presented.

  20. Influence of Quercetin and Its Methylglyoxal Adducts on the Formation of α-Dicarbonyl Compounds in a Lysine/Glucose Model System.

    PubMed

    Liu, Guimei; Xia, Qiuqin; Lu, Yongling; Zheng, Tiesong; Sang, Shengmin; Lv, Lishuang

    2017-03-15

    Increasing evidence has identified α-dicarbonyl compounds, the reactive intermediates generated during Maillard reaction, as the potential factors to cause protein glycation and the development of chronic diseases. Therefore, there is an urgent need to decrease the levels of reactive dicarbonyl compounds in foods. In this study, we investigated the inhibitory effect of quercetin, a major dietary flavonoid, and its major mono- and di-MGO adducts on the formation of dicarbonyl compounds, such as methylglyoxal (MGO) and glyoxal (GO), in a lysine/glucose aqueous system, a model system to reflect the Maillard reaction in food process. Our result indicated that quercetin could efficiently inhibit the formation of MGO and GO in a time-dependent manner. Further mechanistic study was conducted by monitoring the formation of quercetin oxidation and conjugation products using LC-MS/MS. Quercetin MGO adducts, quercetin quinones, and the quinones of quercetin MGO adducts were detected in the system, indicating quercetin plays a dual role in inhibiting the formation of MGO and GO by scavenging free radicals generated in the system and trapping of MGO and GO to form MGO adducts. In addition, we prepared the mono- and di-MGO quercetin adducts and investigated their antioxidant activity and trapping capacity of MGO and GO. Our results indicated that both mono- and di-MGO quercetin adducts could scavenge the DPPH radical in a dose-dependent manner with >40% DPPH scavenged by the MGO adducts at 10 μM, and the di-MGO quercetin adduct could further trap MGO to generate tri-MGO adducts. Therefore, we demonstrate for the first time that quercetin MGO adducts retain the antioxidant activity and trapping capacity of reactive dicarbonyl species.

  1. Quantifying tetrahedral adduct formation and stabilization in the cysteine and the serine proteases.

    PubMed

    Cleary, Jennifer A; Doherty, William; Evans, Paul; Malthouse, J Paul G

    2015-10-01

    Two new papain inhibitors have been synthesized where the terminal α-carboxyl groups of Z-Phe-Ala-COOH and Ac-Phe-Gly-COOH have been replaced by a proton to give Z-Phe-Ala-H and Ac-Phe-Gly-H. We show that for papain, replacing the terminal carboxylate group of a peptide inhibitor with a hydrogen atom decreases binding 3-4 fold while replacing an aldehyde or glyoxal group with a hydrogen atom decreases binding by 300,000-1,000,000 fold. Thiohemiacetal formation by papain with aldehyde or glyoxal inhibitors is shown to be ~10,000 times more effective than hemiacetal or hemiketal formation with chymotrypsin. It is shown using effective molarities, that for papain, thiohemiacetal stabilization is more effective with aldehyde inhibitors than with glyoxal inhibitors. The effective molarity obtained when papain is inhibited by an aldehyde inhibitor is similar to the effective molarity obtained when chymotrypsin is inhibited by glyoxal inhibitors showing that both enzymes can stabilize tetrahedral adducts by similar amounts. Therefore the greater potency of aldehyde and glyoxal inhibitors with papain is not due to greater thiohemiacetal stabilization by papain compared to the hemiketal and hemiacetal stabilization by chymotrypsin, instead it reflects the greater intrinsic reactivity of the catalytic thiol group of papain compared to the catalytic hydroxyl group of chymotrypsin. It is argued that while the hemiacetals and thiohemiacetals formed with the serine and cysteine proteases respectively can mimic the catalytic tetrahedral intermediate they are also analogues of the productive and non-productive acyl intermediates that can be formed with the cysteine and serine proteases.

  2. Protective effects of selenium against DNA adducts formation in Inuit environmentally exposed to PCBs

    PubMed Central

    Ravoori, Srivani; Srinivasan, Cidambi; Pereg, Daria; Robertson, Larry W; Ayotte, Pierre; Gupta, Ramesh C

    2012-01-01

    Dietary habits that expose populations to potential toxicants as well as protective agents simultaneously is a realistic scenario where a meaningful assessment of the interactions and net benefit or damage can be made. A group of Inuit from Salluit, Northern Canada are exposed to high levels of PCBs and selenium, both present in the Inuit traditional foods such as blubber from sea mammals and fatty fish. Blood samples were collected from 83 Inuit, 22–70 years old. Blood selenium and PCB levels were determined previously and ranged from 227 to 2,069 µg/L and 1.7 to 143 µg/L, respectively. DNA isolated from white blood cells were analyzed by modified 32P-postlabeling adductomics technology that detects a multitude of highly polar to lipophilic adducts. The levels of 8-oxodG adducts ranged from 470 to 7,400 adducts/109 nucleotides. Other as yet unidentified polar adducts showed a 30 to 800–fold inter-individual variability. Adduct levels were negatively associated with PCB and selenium levels. The subjects were classified into high and low ratio groups, with respect to selenium/PCB. In the high ratio group, the coefficient of selenium is significantly negatively correlated with 8-oxodG (r = −0.38, p = 0.014) and total adducts (r = −0.41, p = 0.009) while there was no correlation within the low selenium/PCB group. This study suggests increasing selenium has mitigating effect in reducing DNA adducts and therefore, possible negative effects of PCB were not rendered. A protective effect of selenium is highlighted. PMID:19735942

  3. Thymine photodimer formation in DNA hairpins. Unusual conformations favor (6 - 4) vs. (2 + 2) adducts.

    PubMed

    Hariharan, Mahesh; Siegmund, Karsten; Saurel, Clifton; McCullagh, Martin; Schatz, George C; Lewis, Frederick D

    2014-02-01

    The photochemical reactions of eleven synthetic DNA hairpins possessing a single TT step either in a base-paired stem or in a hexanucleotide linker have been investigated. The major reaction products have been identified as the cis-syn (2 + 2) adduct and the (6 - 4) adduct on the basis of their spectroscopic properties including 1D and 2D NMR spectra, UV spectra and stability or instability to photochemical cleavage. Product quantum yields and ratios determined by HPLC analysis allow the behaviour of the eleven hairpins to be placed into three groups: Group I in which the (2 + 2) adduct is the major product, as is usually the case for DNA, Group II in which comparable amounts of (2 + 2) and (6 - 4) adducts are formed, and Group III in which the major product is the (6 - 4) adduct. The latter behaviour is without precedent in natural or synthetic DNA and appears to be related to the highly fluxional structures of the hairpin reactants. Molecular dynamics simulation of ground state conformations provides quantum yields and product ratios calculated using a single parameter model that are in reasonable agreement with most of the experimental results. Factors which may influence the observed product ratios are discussed.

  4. 32P-postlabeling analysis of adducts formed between DNA and safrole 2',3'-epoxide: absence of adduct formation in vivo.

    PubMed

    Qato, M K; Guenthner, T M

    1995-01-01

    We have used the 32P-postlabeling technique to examine the binding of safrole 2',3'-oxide to DNA. At least 8 covalent adducts are formed when calf thymus DNA is incubated with this oxygenated metabolite of safrole in vitro. However, no corresponding adducts are formed with liver DNA when whole animals are exposed to safrole 2',3'-oxide, or safrole itself. Although safrole 2',3'-oxide is readily formed in vivo, and is sufficiently reactive to covalently bind to DNA, it is probably not a factor in the in vivo genotoxicity of safrole. We also demonstrate that adducts with similar mobility to the major safrole 2',3'-oxide-DNA adduct are formed in vitro between safrole 2',3'-oxide and deoxyguanosine, and also between its chemical analogs allylbenzene 2',3'-oxide or estragole 2',3'-oxide and DNA.

  5. Formation of long-lived hydroxyl free radical adducts of proline and hydroxyproline in a Fenton reaction.

    PubMed

    Floyd, R A; Nagy, I

    1984-10-09

    Proline and hydroxyproline when exposed to the hydroxyl free radical generating system of ADP-Fe(II)-H2O2 yielded long-lived free radicals. An analysis of the electron paramagnetic resonance spectra of the long-lived hydroxyl free radical adducts of proline and hydroxyproline is consistent with a free electron on a nitroxyl group interacting with the nitrogen atom as well as with three separate protons. In the case of proline, nitroxide formation was observed under the influence of tert-butyl-hydroperoxide, giving a similar EPR spectrum (Lin, J.S., Tom, T.C. and Olcott, H.S. (1974) J. Agr. Food Chem. 22, 526-528); however, the hydroxyl free radical adduct of hydroxyproline has not been described yet. In the case of the proline nitroxide radical, two of the three protons involved interact with the free electron equivalently. The coupling constants for the hydroxyl free radical adduct of proline are AN = 1.58 mT, AH1 beta = AH2 beta = 2.13 mT, AH3 beta = 1.77 mT and for hydroxyproline are AN = 1.54 mT, AH1 beta = 2.56 mT, AH2 beta = 2.03 and AH3 beta = 1.51. The data are consistent with the amine nitrogen of proline and hydroxyproline being oxidized to a nitroxyl group and the free electron of the nitroxyl interacting with the beta-protons of these amino acid hydroxyl free radical adducts.

  6. A physiologically based biodynamic (PBBD) model for estragole DNA binding in rat liver based on in vitro kinetic data and estragole DNA adduct formation in primary hepatocytes

    SciTech Connect

    Paini, Alicia; Punt, Ans; Viton, Florian; Scholz, Gabriele; Delatour, Thierry; Marin-Kuan, Maricel; Schilter, Benoit; Bladeren, Peter J. van; Rietjens, Ivonne M.C.M.

    2010-05-15

    Estragole has been shown to be hepatocarcinogenic in rodent species at high-dose levels. Translation of these results into the likelihood of formation of DNA adducts, mutation, and ultimately cancer upon more realistic low-dose exposures remains a challenge. Recently we have developed physiologically based biokinetic (PBBK) models for rat and human predicting bioactivation of estragole. These PBBK models, however, predict only kinetic characteristics. The present study describes the extension of the PBBK model to a so-called physiologically based biodynamic (PBBD) model predicting in vivo DNA adduct formation of estragole in rat liver. This PBBD model was developed using in vitro data on DNA adduct formation in rat primary hepatocytes exposed to 1'-hydroxyestragole. The model was extended by linking the area under the curve for 1'-hydroxyestragole formation predicted by the PBBK model to the area under the curve for 1'-hydroxyestragole in the in vitro experiments. The outcome of the PBBD model revealed a linear increase in DNA adduct formation with increasing estragole doses up to 100 mg/kg bw. Although DNA adduct formation of genotoxic carcinogens is generally seen as a biomarker of exposure rather than a biomarker of response, the PBBD model now developed is one step closer to the ultimate toxic effect of estragole than the PBBK model described previously. Comparison of the PBBD model outcome to available data showed that the model adequately predicts the dose-dependent level of DNA adduct formation. The PBBD model predicts DNA adduct formation at low levels of exposure up to a dose level showing to cause cancer in rodent bioassays, providing a proof of principle for modeling a toxicodynamic in vivo endpoint on the basis of solely in vitro experimental data.

  7. A physiologically based in silico model for trans-2-hexenal detoxification and DNA adduct formation in human including interindividual variation indicates efficient detoxification and a negligible genotoxicity risk.

    PubMed

    Kiwamoto, R; Spenkelink, A; Rietjens, I M C M; Punt, A

    2013-09-01

    A number of α,β-unsaturated aldehydes are present in food both as natural constituents and as flavouring agents. Their reaction with DNA due to their electrophilic α,β-unsaturated aldehyde moiety may result in genotoxicity as observed in some in vitro models, thereby raising a safety concern. A question that remains is whether in vivo detoxification would be efficient enough to prevent DNA adduct formation and genotoxicity. In this study, a human physiologically based kinetic/dynamic (PBK/D) model of trans-2-hexenal (2-hexenal), a selected model α,β-unsaturated aldehyde, was developed to examine dose-dependent detoxification and DNA adduct formation in humans upon dietary exposure. The kinetic model parameters for detoxification were quantified using relevant pooled human tissue fractions as well as tissue fractions from 11 different individual subjects. In addition, a Monte Carlo simulation was performed so that the impact of interindividual variation in 2-hexenal detoxification on the DNA adduct formation in the population as a whole could be examined. The PBK/D model revealed that DNA adduct formation due to 2-hexenal exposure was 0.039 adducts/10⁸ nucleotides (nt) at the estimated average 2-hexenal dietary intake (0.04 mg 2-hexenal/kg bw) and 0.18 adducts/10⁸ nt at the 95th percentile of the dietary intake (0.178 mg 2-hexenal/kg bw) in the most sensitive people. These levels are three orders of magnitude lower than natural background DNA adduct levels that have been reported in disease-free humans (6.8-110 adducts/10⁸ nt), suggesting that the genotoxicity risk for the human population at realistic dietary daily intakes of 2-hexenal may be negligible.

  8. Electrochemical oxidation and protein adduct formation of aniline: a liquid chromatography/mass spectrometry study.

    PubMed

    Melles, Daniel; Vielhaber, Torsten; Baumann, Anne; Zazzeroni, Raniero; Karst, Uwe

    2012-04-01

    Historically, skin sensitization tests are typically based on in vivo animal tests. However, for substances used in cosmetic products, these tests have to be replaced according to the European Commission regulation no. 1223/2009. Modification of skin proteins by electrophilic chemicals is a key process associated with the induction of skin sensitization. The present study investigates the capabilities of a purely instrumental setup to determine the potential of commonly used non-electrophilic chemicals to cause skin sensitization by the generation of electrophilic species from the parent compound. In this work, the electrophiles were generated by the electrochemical oxidation of aniline, a basic industrial chemical which may also be released from azo dyes in cosmetics. The compound is a known sensitizer and was oxidized in an electrochemical thin-layer cell which was coupled online to electrospray ionization-mass spectrometry. The electrochemical oxidation was performed on a boron-doped diamond working electrode, which is able to generate hydroxyl radicals in aqueous solutions at high potentials. Without any pretreatment, the oxidation products were identified by electrospray ionization/time-of-flight mass spectrometry (ESI-ToF-MS) using their exact masses. A mass voltammogram was generated by plotting the obtained mass spectra against the applied potential. Oligomerization states with up to six monomeric units in different redox states of aniline were observed using this setup. This approach was extended to generate adducts between the oxidation products of aniline and the tripeptide glutathione. Two adducts were identified with this trapping experiment. Protein modification was carried out subsequently: Aniline was oxidized at a constant potential and was allowed to react with β-lactoglobulin A (β-LGA) or human serum albumin (HSA), respectively. The generated adducts were analyzed by liquid chromatography coupled to ESI-ToF-MS. For both β-LGA and HSA, aniline

  9. Process for making a calcium/sodium ferrate adduct by the electrochemical formation of sodium ferrate

    SciTech Connect

    Deininger, J.P.; Dotson, R.L.

    1984-05-29

    Described is a process for making a calcium/sodium ferrate adduct with sodium ferrate in a divided-type electrolysis cell. The anolyte chamber of the cell is charged with an aqueous solution of sodium hydroxide and a sodium ferrate-stabilizing proportion of at least one sodium halide salt. The anolyte chamber additionally contains ferric ions (Fe(III)). The catholyte chamber contains an aqueous sodium hydroxide solution during operation. The source of ferric ion in the anolyte may be either an iron-containing anode or at least one iron-containing compound present in the anolyte solution or both. The preferred material separating the anolyte chamber from the catholyte chamber is comprised of a gas- and hydraulic-impermeable, ionically-conductive, chemically-stable ionomeric film (e.g., a cation-exchange membrane with carboxylic, sulfonic or other inorganic exchange sites). Sodium ferrate is prepared in the anolyte chamber by passing an electric current and impressing a voltage between the anode and cathode of the cell. During electrolysis, sodium ferrate forms in the aqueous sodium hydroxide anolyte. This anolyte is reacted with a calcium compound to produce a calcium/sodium ferrate adduct. Alternatively the sodium ferrate may be first recovered in a solid form and then reacted with a calcium compound to produce said adduct.

  10. The application of multiple analyte adduct formation in the LC-MS(3) analysis of valproic acid in human serum.

    PubMed

    Dziadosz, Marek

    2017-01-01

    LC-MS using electrospray ionisation (negative ion mode) and low-energy collision-induced dissociation tandem mass spectrometric (CID-MS/MS) analysis, together with the multiple analyte adduct formation with the components of the mobile phase, were applied to analyse valproic acid in human serum with LC-MS(3). The CID-fragmentation of the precursor analyte adduct [M+2CH3COONa-H](-) was applied in the method validation (307.1/225.1/143.0). Chromatographic separation was performed with a Luna 5μm C18 (2) 100A, 150mm×2mm column and the elution with a mobile phase consisting of A (H2O/methanol=95/5, v/v) and B (H2O/methanol=3/97, v/v), both with 10mM ammonium acetate and 0.1% acetic acid. A binary flow pumping mode with a total flow rate of 0.400mL/min was used. The calculated limit of detection/quantification of the method calibrated in the range of 10-200μg/mL was 0.31/1.0μg/mL. The sample preparation based on protein precipitation with 1mL of H2O/methanol solution (3/97, v/v) with 10mM sodium acetate and 100mM acetic acid. On the basis of the experiments performed could be demonstrated, that multiple analyte adduct formation can be applied to generate MS(3) quantitation of analytes with problematic fragmentation. The presented new strategy makes the analysis of small drugs, which do not produce any stable product ions at all, on the basis of LC-MS(3) possible.

  11. Effects of selenium on 7,12-dimethylbenz(a)anthracene-induced mammary carcinogenesis and DNA adduct formation

    SciTech Connect

    Ip, C.; Daniel, F.B.

    1985-01-01

    The purpose of the present investigation was to determine the effects of dietary selenium deficiency or excess on 7,12-dimethylbenz(a)anthracene (DMBA)-induced mammary neoplasia in rats and to delineate whether selenium-mediated modification of mammary carcinogenesis was associated with changes in carcinogen:DNA adduct formation and activities of liver microsomal enzymes that are involved in xenobiotic metabolism. Female Sprague-Dawley rats were divided into three groups from weaning and were maintained on one of three synthetic diets designated as follows: selenium deficient (less than 0.02 ppm); selenium adequate (0.2 ppm); or selenium excess (2.5 ppm). For the DMBA binding and DNA adduct studies, rats were given a dose of (/sup 3/H)DMBA p.o. after 1 month on their respective diets. Results from the liver and the mammary gland indicated that neither selenium deficiency nor excess had any significant effect on the binding levels, which were calculated on the basis of total radioactivity isolated with the purified DNA. Furthermore, it was found that dietary selenium intake did not seem to affect quantitatively or qualitatively the formation of DMBA:DNA adducts in the liver. Similarly, in a parallel group of rats that did not receive DMBA, the activities of aniline hydroxylase, aminopyrine N-demethylase, and cytochrome c reductase were not significantly altered by dietary selenium levels. Concurrent with the above experiments, the effect of dietary selenium intake on carcinogenesis was also monitored. Results of this experiment indicated that selenium deficiency enhanced mammary carcinogenesis only when this nutritional condition was maintained in the postinitiation phase. Likewise, an excess of selenium intake inhibited neoplastic development only when this regimen was continued after DMBA administration.

  12. An integrated QSAR-PBK/D modelling approach for predicting detoxification and DNA adduct formation of 18 acyclic food-borne α,β-unsaturated aldehydes

    SciTech Connect

    Kiwamoto, R. Spenkelink, A.; Rietjens, I.M.C.M.; Punt, A.

    2015-01-01

    Acyclic α,β-unsaturated aldehydes present in food raise a concern because the α,β-unsaturated aldehyde moiety is considered a structural alert for genotoxicity. However, controversy remains on whether in vivo at realistic dietary exposure DNA adduct formation is significant. The aim of the present study was to develop physiologically based kinetic/dynamic (PBK/D) models to examine dose-dependent detoxification and DNA adduct formation of a group of 18 food-borne acyclic α,β-unsaturated aldehydes without 2- or 3-alkylation, and with no more than one conjugated double bond. Parameters for the PBK/D models were obtained using quantitative structure–activity relationships (QSARs) defined with a training set of six selected aldehydes. Using the QSARs, PBK/D models for the other 12 aldehydes were defined. Results revealed that DNA adduct formation in the liver increases with decreasing bulkiness of the molecule especially due to less efficient detoxification. 2-Propenal (acrolein) was identified to induce the highest DNA adduct levels. At realistic dietary intake, the predicted DNA adduct levels for all aldehydes were two orders of magnitude lower than endogenous background levels observed in disease free human liver, suggesting that for all 18 aldehydes DNA adduct formation is negligible at the relevant levels of dietary intake. The present study provides a proof of principle for the use of QSAR-based PBK/D modelling to facilitate group evaluations and read-across in risk assessment. - Highlights: • Physiologically based in silico models were made for 18 α,β-unsaturated aldehydes. • Kinetic parameters were determined by in vitro incubations and a QSAR approach. • DNA adduct formation was negligible at levels relevant for dietary intake. • The use of QSAR-based PBK/D modelling facilitates group evaluations and read-across.

  13. Formation of a major DNA adduct of the mitomycin metabolite 2,7-diaminomitosene in EMT6 mouse mammary tumor cells treated with mitomycin C.

    PubMed

    Palom, Y; Belcourt, M F; Kumar, G S; Arai, H; Kasai, M; Sartorelli, A C; Rockwell, S; Tomasz, M

    1998-01-01

    Treatment of EMT6 mouse mammary tumor cells with [3H]mitomycin C (MC) results in the formation of six major DNA adducts, as described earlier using an HPLC assay of 3H-labeled products of enzymatic hydrolysis of DNA isolated from MC-treated cells. Four of these adducts were identified as monofunctional and bifunctional guanine-N2 adducts in the minor groove of DNA. In order to establish relationships between individual types of MC-DNA adducts and biological responses it is necessary to identify all of the adducts formed in cells. To this end we have now identified a predominant, previously unknown adduct formed in MC-treated EMT6 cells as a derivative not of MC, but of 2,7-diaminomitosene (2,7-DAM), the major bioreductive metabolite of MC. Rigorous proof demonstrates that it is a DNA major groove, guanine-N7 adduct of 2,7-DAM, linked at C-10 to DNA. The adduct is relatively stable at ambient temperature, but is readily depurinated upon heating. Its isolation from MC-treated cells indicates that MC is reductively metabolized to 2,7-DAM, which then undergoes further reductive activation to alkylate DNA, along with the parent MC. Low MC:DNA ratios were identified as a critical factor promoting 2,7-DAM adduct formation in an in vitro model calf thymus DNA/ MC/reductase model system, as well as in MC-treated EMT6 cells. The 2,7-DAM-guanine-N7 DNA adduct appears to be relatively noncytotoxic, as indicated by the dramatically lower cytotoxicity of 2,7-DAM in comparison with MC in EMT6 cells. Like MC, 2,7-DAM exhibited slightly greater cytotoxicity to cells treated under hypoxic as compared to aerobic conditions. However, 2,7-DAM was markedly less cytotoxic than MC under both aerobic and hypoxic conditions. Thus, metabolic reduction of MC to 2,7-DAM represents a detoxification process. The differential effects of MC-DNA and 2,7-DAM-DNA adducts support the concept that specific structural features of the DNA damage may play a critical role in the cytotoxic response to a DNA

  14. Role of CYP1B1 in PAH-DNA Adduct Formation and Breast Cancer Risk

    DTIC Science & Technology

    2006-03-01

    xenobiotic metabolism, CYP1B1 , gene expression, genetic polymorphism , DNA adducts 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18...Task 2: Characterize the breast tissue samples in respect to CYP1B1 expression and CYP1B1 polymorphism – in progress a. Isolate DNA and RNA from...19.78) 0.06 – 73.7 d. Perform CYP1B1 genotype analysis The CYP1B1 genotype at two polymorphic sites located in the catalytic side of the enzyme

  15. Suppression of aflatoxin B1-induced lipid abnormalities and macromolecule-adduct formation by L-carnitine.

    PubMed

    Sachan, D S; Yatim, A M

    1992-01-01

    The fatty liver and hypolipidemia caused by aflatoxin B1 (AFB1) were studied in male Sprague-Dawley rats fed Purina Rat Chow with or without L-carnitine supplement for 6 weeks. In Experiment 1, the rats (n = 20) were divided into four groups, i.e., nonsupplemented control (NSC), nonsupplemented AFB1 (NSA), carnitine supplemented control (CSC), and carnitine supplemented AFB1 (CSA). The NSA and CSA groups were given an oral dose of [3H]AFB1 (1 mg/kg) 6 hr before kill. In Experiment 2 (n = 10) there were only NSA and CSA groups and they were killed 24 hr post-AFB1 administration. Hepatic and plasma concentrations of total lipid, triglycerides, AFB1-macromolecules adducts and urinary excretion of AFB1 were determined. Carnitine supplementation ameliorated AFB1-induced hepatic steatosis and hypolipidemia. Supplementary carnitine reduced covalent binding of AFB1 to hepatic DNA, RNA, and protein. The carnitine effect was more pronounced after 24 hr than after 6 hr of AFB1 treatment. We conclude that supplementary carnitine suppressed AFB1-induced fatty liver and AFB1-macromolecule adduct formation in the rat.

  16. Protein modifications by electrophilic lipoxidation products: Adduct formation, chemical strategies and tandem mass spectrometry for their detection and identification

    PubMed Central

    Vasil’ev, Yury V.; Tzeng, Shin-Chen; Huang, Lin; Maier, Claudia S.

    2014-01-01

    The post-translational modification of proteins by electrophilic oxylipids is emerging as an important mechanism that contributes to the complexity of proteomes. Enzymatic and nonenzymatic oxidation of biological lipids results in the formation of chemically diverse electrophilic carbonyl compounds, such as 2-alkenals and 4-hydroxy alkenals, epoxides and eicosanoids with reactive cyclopentenone structures. These lipoxidation products are capable of modifying proteins. Originally considered solely as markers of oxidative insult, more recently the modifications of proteins by lipid peroxidation products are being recognized as a new mechanism of cell signaling with relevance to redox homeostasis, adaptive response and inflammatory resolution. The growing interest in protein modifications by reactive oxylipid species necessitates the availability of methods that are capable of detecting, identifying and characterizing these protein adducts in biological samples with high complexity. However, the efficient analysis of these chemically diverse proteins presents a considerable analytical challenge. We first provide an introduction into the chemistry and biological relevance of the protein adduction by electrophilic lipoxidation products. We then provide an overview of tandem mass spectrometry approaches that have been developed in recent years for the interrogation of protein modifications by electrophilic oxylipid species. PMID:24818247

  17. Effects of the co-carcinogen catechol on benzo(a)pyrene metabolism and DNA adduct formation in mouse skin

    SciTech Connect

    Melikian, A.A.; Leszczynska, J.M.; Hecht, S.S.; Hoffmann, D.

    1986-01-01

    We have studied the effects of the co-carcinogen catechol (1,2-dihydroxybenzene) on the metabolic activation of (/sup 3/H) benzo(a)pyrene (BaP) in mouse skin, in vivo and on the binding of BaP metabolites to DNA and protein at intervals from 0.5-24 h. Upon topical application of 0.015 mg (/sup 3/H)BaP and 0.25 or 0.5 mg catechol per mouse, catechol had little effect on the total amount of (/sup 3/H)BaP metabolized in mouse skin, but it affected the relative proportions of (/sup 3/H)BaP metabolites. Catechol (0.5 mg/mouse) decreased the proportion of water-soluble (/sup 3/H)BaP metabolites, ethyl acetate-soluble polar metabolites and quinones, but doubled the levels of unconjugated 3-hydroxy-BaP at all measured intervals after treatment. Catechol also caused a small increase in the levels of trans-7,8-dihydroxy-7,8-dihydroBaP and trans-9,10-dihydroxy-9,10-dihydroBaP 0.5 h after treatment. Two hours after treatment, the levels of these metabolites subsided to those of the controls. Catechol did not affect the levels of glutathione conjugates of BaP. However, it caused a decrease in glucuronide and sulphate conjugate formation from BaP. Catechol caused an approximately 2-fold increase in the formation of anti-7,8-dihydroxy-9,10-epoxy-7,8,9,10-tetrahydroBaP (BPDE) DNA adducts and elevated the ratio of anti-syn-BPDE-DNA adducts 1.6 to 2.9-fold. Catechol treatment increased the radioactivity associated with epidermal proteins after (/sup 3/H)BaP application. Because catechol increased levels of 3-hydroxyBaP, we considered the possibility that 3-hydroxyBaP might enhance the tumor initiating activities of BaP or BPDE in mouse skin; a bioassay demonstrated that this was not the case. The results of this study indicate that one important effect of catechol related to its co-carcinogenicity is its ability to enhance formation of anti-BPDE-DNA adducts in mouse skin.

  18. Exposure to the chlorofluorocarbon substitute 2,2-dichloro-1,1,1- trifluoroethane and the anesthetic agent halothane is associated with transient protein adduct formation in the heart

    SciTech Connect

    Huwyler, J.; Gut, J. )

    1992-05-15

    Hydrochlorofluorocarbons (HCFCs) that are structural analogues of the anesthetic agent halothane may follow a common pathway of bioactivation and formation of adducts to cellular targets of distinct tissues. Exposure of rats to a single dose of HCFC 123 (2,2-dichloro- 1,1,1-trifluoroethane) or its structural analogue halothane (2-bromo-2-chloro-1,1,1-trifluoroethane) in vivo resulted in the formation of one prominent trifluoroacetylated protein adduct (TFA-protein adduct) in the heart. In contrast, a variety of distinct TFA-protein adducts were formed in the liver and the kidney of the same animals. The TFA-protein adduct in the heart was processed rapidly; t1/2 of the intact TFA-protein adduct was less than 12 h.

  19. PENTACHLOROPHENOL POTENTIATES BENZO[A]PYRENE DNA ADDUCT FORMATION IN ADULT BUT NOT INFANT B6C3F1 MALE MICE

    EPA Science Inventory

    Abstract

    The objective of this study is to determine whether pentachlorophenol (PCP) alters benzo[a]pyrene (B[a]P) induced DNA adduct formation in infant and adult B6C3Fl mice. Mice were exposed to 55 ug B[a]P/g body weight (BW) alone and in combination with several dose...

  20. AN EVALUATION OF THE MUTAGENICITY, METABOLISM AND DNA ADDUCT FORMATION OF 5-NITROBENZO[B]NAPHTHO[2,1-D]THIOPHENE

    EPA Science Inventory

    An Evaluation of the Mutagenicity, Metabolism and DNA Adduct Formation of 5-Nitrobenzo[b ]naphtho[2, I-d]thiophene

    Thioarenes, sulfur containing polycyclic aromatic compounds, are environmental contaminants suspected of posing human health risks. In this study, 5-nitroben...

  1. No effects of chlorophyllin on IQ (2-amino-3-methylimidazo[4,5-f]-quinoline)-genotoxicity and -DNA adduct formation in Drosophila.

    PubMed

    Negishi, Tomoe; Shinoda, Aki; Ishizaki, Nao; Hayatsu, Hikoya; Sugiyama, Chitose

    2004-02-01

    Previously we demonstrated that chlorophyllin suppressed the genotoxicities of many carcinogens. However, the genotoxicity of IQ (2-amino-3-methylimidazo[4,5-f]quinoline), a carcinogenic heterocyclic amine, was not suppressed in Drosophila. On the contrary, it has been reported that chrolophyllin suppressed the genotoxicity of IQ in rodents, rainbow trout and Salmonella. We demonstrated that the chlorophyllin-induced suppression of MeIQx (2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline)-genotoxicity was associated with a decrease in MeIQx-DNA adduct formation in Drosophila larval DNA. MeIQx represents another type of heterocyclic amine and is similar to IQ in structure. In this study we utilized (32)P-postlabeling to examine whether chlorophyllin reduced IQ-DNA adduct formation in Drosophila DNA in the same way as MeIQx. The results revealed that the formation of IQ-DNA adducts was unaffected by treatment with chlorophyllin. This was consistent with the absence of any inhibitory effect on genotoxicity as observed in the Drosophila repair test. These results suggest that IQ-behavior in Drosophila is not affected by chlorophyllin, indicating that the process of IQ-DNA adduct formation followed by expression of genotoxicity in Drosophila may be different from that in other organisms.

  2. Evidence for adduct formation at the semiconductor-solution interface. Photoluminescent properties of cadmium selenide in the presence of lanthanide. beta. -diketonate complexes

    SciTech Connect

    Murphy, C.J.; Ellis, A.B. )

    1990-04-05

    Photoluminescence (PL) measurements of etched, single-crystal n-CdSe demonstrate that the semiconductor surface engages in adduct formation with a family of lanthanide {beta}-diketonate complexes, Ln(fod){sub 3} (Ln = lanthanide; fod = 6,6,7,7,8,8,8-heptafluoro-2,2-dimethyl-3,5-octanedionato anion), in isooctane ambient.

  3. STUDIES ON THE METABOLISM OF 6-NITROCHRYSENE AND THE FORMATION OF DNA ADDUCTS IN THE LIVER, LUNG AND BLADDER OF A/J MICE

    EPA Science Inventory

    /
    Studies On The Metabolism of 6-Nitrochrysene and The Formation of DNA Adducts in the Liver, Lung and Bladder ofAJJ Mice
    Moses McDaniel*, Linda Adamst, Joycelyn Allisont, Michael George"l", Dhimant Desai+, 5hantu Amin+, Guy Lambertt, William Padgettt, Stephen Nesnowt and...

  4. 2-Methoxyethanol metabolism, embryonic distribution, and macromolecular adduct formation in the rat: the effect of radiofrequency radiation-induced hyperthermia.

    PubMed

    Cheever, K L; Swearengin, T F; Edwards, R M; Nelson, B K; Werren, D W; Conover, D L; DeBord, D G

    2001-05-31

    Exposure of pregnant rats to the solvent 2-methoxyethanol (2ME) and radiofrequency (RF) radiation results in greater than additive fetal malformations (Nelson, B.K., Conover, D.L., Brightwell, W.S., Shaw, P.B., Werren, D.W., Edwards, R.M., Lary, J.M., 1991. Marked increase in the teratogenicity of the combined administration of the industrial solvent 2-methoxyethanol and radiofrequency radiation in rats. Teratology 43, 621-34; Nelson, B.K., Conover, D.L., Shaw, P.B., Werren, D.W., Edwards, R.M., Hoberman, A.M., 1994. Interactive developmental toxicity of radiofrequency radiation and 2-methoxyethanol in rats. Teratology 50, 275-93). The current study evaluated the metabolism of 14C-labeled 2ME and the distribution of methoxyacetic acid (MAA) in maternal and embryonic tissues of pregnant Sprague-Dawley rats either exposed to 10 MHz RF radiation or sham conditions. Additionally, adduct formation for both plasma and embryonic protein was tested as a possible biomarker for the observed 2ME/RF teratogenicity. Rats were administered [ethanol-1,2-(14)C]-2ME (150 mg/kg, 161 microCi/rat average) by gavage on gestation day 13 immediately before RF radiation sufficient to elevate body temperature to 42 degrees C for 30 min. Concurrent sham- and RF-exposed rats were sacrificed at 3, 6, 24 or 48 h for harvest of maternal blood, urine, embryos and extra-embryonic fluid. Tissues were either digested for determination of radioactivity or deproteinized with TCA and analyzed by HPLC for quantification of 2ME metabolites. Results show the presence of 2ME and seven metabolites, with the major metabolite, MAA, peaking at 6 h in the tissues tested. MAA, the proximal teratogen, was detectable in maternal serum, urine, embryo and extraembryonic fluid 48 h after dosing. Clearance of total body 14C was significantly reduced for the RF-exposed animals (P<0.05) for the 24-48 h period, but MAA values for serum, embryos and extraembryonic fluid were similar for both sham- and RF-exposed rats

  5. Utilization of MALDI-TOF to Determine Chemical-Protein Adduct Formation In Vitro

    PubMed Central

    Fisher, Ashley A.; Labenski, Matthew T.; Monks, Terrence J.; Lau, Serrine S.

    2014-01-01

    Biological reactive intermediates can be created via metabolism of xenobiotics during the process of chemical elimination. They can also be formed as by-products of cellular metabolism, which produces reactive oxygen and nitrogen species. These reactive intermediates tend to be electrophilic in nature, which enables them to interact with tissue macromolecules, disrupting cellular signaling processes and often producing acute and chronic toxicities. Quinones are a well-known class of electrophilic species. Many natural products contain quinones as active constituents, and the quinone moiety exists in a number of chemotherapeutic agents. Quinones are also frequently formed as electrophilic metabolites from a variety of xeno- and endobiotics. Hydroquinone (HQ) is present in the environment from various sources, and it is also a known metabolite of benzene. HQ is converted in the body to 1,4-benzoqui-none, which subsequently gives rise to hematotoxic and nephrotoxic quinone–thioether metabolites. The toxicity of these metabolites is dependent upon their ability to arylate proteins and to produce oxidative stress. Protein tertiary structure and protein amino acid sequence combine to determine which proteins are targets of these electrophilic quinone–thioether metabolites. We have used cytochrome c and model peptides to view adduction profiles of quinone–thioether metabolites, and have determined by MALDI-TOF analysis that these electrophiles target specific residues within these model systems. PMID:20972761

  6. Effect of histone acetylation on the formation and removal of B(a)P chromatin adducts.

    PubMed Central

    Kootstra, A

    1982-01-01

    The modification of core histone proteins in mouse 10T1/2 cells and human lung epitheloid (A549) cells by B(a)PDE in vivo and in vitro was found to be similar. Only histones H2A and H3 were extensively modified. Also other proteins, possibly A24 protein and the minor histone H1 species seem to be binding relatively high levels of this ultimate carcinogen. Butyrate treatment which causes hyperacetylation of the core histones, did not change the specificity of B(a)PDE binding to core histones, nor did it affect the initial level of DNA modification. The acetylated species of histone H3 were all accessible to B(a)PDE, suggesting that these epsilon-amino-groups of the lysine residues are not the targets of the B(a)PDE. The rate of removal of B(a)P-DNA adducts was not affected by butyrate treatment in either normal human or XP fibroblasts. Furthermore the B(a)P-core histones were not preferentially removed from normal human fibroblast chromatin during a 24 h post-treatment incubation. Images PMID:6285308

  7. Absence of formation of benzo[a]pyrene/DNA adducts in the cuttlefish (Sepia officinalis, Mollusca: Cephalopoda)

    SciTech Connect

    Lee, P.G.; Lu, L.J.W.; Salazar, J.J.; Holoubek, V. )

    1994-01-01

    Benzo[a]pyrene (B[a]P) injected intramuscularly into the base of the arms of cuttlefish was released continuously from the injection site and removed from the organism. Only a portion of the compound accumulated in the body. Twenty-four hr after its injection, 75% of B[a]P applied in olive oil was removed from the cuttlefish, and 1.2% was found in the body outside the head, in site of injection. If the carcinogen was dissolved in dimethylformamide, the removal of B[a]P was slower, so that only 18% of the injected B[a]P was removed from the organism and 0.36% accumulated in the body outside the head 24 hr after injection. The high level of B[a]P in gills and hemolymph 4 hr after injection and the kinetics of the decrease of its concentration with time indicate that these two organs could be involved in the excretion of B[a]P from the body. The B[a]P/DNA adducts characteristic for vertebrates could not be demonstrated in gills, skin, brain, hepatopancreas, and lymphocytes of the cuttlefish 24 hr after injection. The dose of the carcinogene injected into the cuttlefish was 2-4 times higher than the dose resulting in the formation of a high level of B[a]P/DNA adducts in vertebrates. A different metabolism of B[a]P in the tissue of cephalopods, compared to vertebrates, could be less favorable to the process leading to malignant transformation and could explain the absence from the literature of reports of tumors in cephalopods. 15 refs., 1 fig., 2 tabs.

  8. DNA adduct formation and oxidative stress from the carcinogenic urban air pollutant 3-nitrobenzanthrone and its isomer 2-nitrobenzanthrone, in vitro and in vivo.

    PubMed

    Nagy, Eszter; Adachi, Shuichi; Takamura-Enya, Takeji; Zeisig, Magnus; Möller, Lennart

    2007-03-01

    The carcinogenic vehicle emission product 3-nitrobenzanthrone (3-NBA) is known to rearrange in the atmosphere to the isomer 2-nitrobenzanthrone (2-NBA), which exists in 70-fold higher concentration in ambient air. The genotoxicity of 2-NBA and 3-NBA was studied both in vitro (human cell lines A549 and HepG2) and in vivo (F344 female rats intra-tracheally administered 5 mg/kg body weight of 3-NBA) models, using the (32)P-HPLC and the single-cell gel electrophoresis (Comet assay) methods. In vitro, also the parent compound benzanthrone (BA) and the metabolite 3-aminobenzanthrone (3-ABA) were evaluated. 3-NBA gave highest levels of DNA adducts in the two cell lines, but significantly higher in HepG2 (relative adduct level approximately 500 adducts/10(8) normal nucleotides), whereas 2-NBA formed about one-third and one-twentieth of the DNA adduct amount in A549 and HepG2 cells, respectively. 3-ABA formed only minute amounts of DNA adducts and only in the A549 cells, whereas BA did not give rise to any detectable levels. The DNA adduct patterns from 3-NBA were similar between the two model systems, but differed somewhat for 2-NBA. The oxidative stress induced by BA was almost as high as what was observed for 3-NBA and 3-ABA in both cell lines, and 2-NBA induced lowest level of oxidative stress. The oxidative stress and DNA adduct level, in whole blood, was significantly increased by 3-NBA but not by 2-NBA. However, 2-NBA showed similar toxicity to 3-NBA, with respect to DNA adduct formation in vivo, hence it is important to further study 2-NBA as a potential contributor to health risk. While DNA adduct level in the 3-NBA-exposed animals reached a peak around 1 and 2 days after instillation, 2-NBA-treated animals showed a tendency towards a continuing increase at the end of the study.

  9. Aflatoxin-albumin adduct formation after single and multiple doses of aflatoxin B(1) in rats treated with Thai medicinal plants.

    PubMed

    Vinitketkumnuen, U; Chewonarin, T; Dhumtanom, P; Lertprasertsuk, N; Wild, C P

    1999-07-16

    The objective was to conduct an assessment of the ability of two Thai medicinal plants, Cymbopogon citratus Stapf and Murdannia loriformis, to modulate levels of serum aflatoxin-albumin (AF-albumin) adducts following aflatoxin B(1) (AFB(1)) exposure in rats. The influence of the plant extracts on AF-albumin adduct formation after a single exposure to 250 microg/kg body weight (bw) AFB(1) was measured over a 48-h period. Rats received M. loriformis extract (3 g/kg bw) or C. citratus Stapf extract (5 g/kg bw) daily for the week prior to the AFB(1) administration. In control rats, maximum adduct levels were observed 12 h post-AFB(1) treatment but in the animals receiving Murdannia extract, maximum levels occurred earlier, at 4 h post-treatment. No such effect was observed with the Cymbopogon extract. Daily treatment of rats with AFB(1) at 250 microg/kg bw for 3 weeks caused serum AF-albumin adduct levels to accumulate over a 10-14 day period and reach plateau levels 4.4-fold higher than observed after a single dose. Treatment with Murdannia extract for 1 week before and then throughout the AFB(1) exposure period resulted in a slight decrease in the AF-albumin adduct levels in the first week of the intervention. After that time, however, the reduction in adduct levels in the Murdannia extract group did not differ significantly from controls. No significant alteration in the biomarker levels was seen with the Cymbopogon extract treatments compared to control rats.

  10. Alcohol, Aldehydes, Adducts and Airways

    PubMed Central

    Sapkota, Muna; Wyatt, Todd A.

    2015-01-01

    Drinking alcohol and smoking cigarettes results in the formation of reactive aldehydes in the lung, which are capable of forming adducts with several proteins and DNA. Acetaldehyde and malondialdehyde are the major aldehydes generated in high levels in the lung of subjects with alcohol use disorder who smoke cigarettes. In addition to the above aldehydes, several other aldehydes like 4-hydroxynonenal, formaldehyde and acrolein are also detected in the lung due to exposure to toxic gases, vapors and chemicals. These aldehydes react with nucleophilic targets in cells such as DNA, lipids and proteins to form both stable and unstable adducts. This adduction may disturb cellular functions as well as damage proteins, nucleic acids and lipids. Among several adducts formed in the lung, malondialdehyde DNA (MDA-DNA) adduct and hybrid malondialdehyde-acetaldehyde (MAA) protein adducts have been shown to initiate several pathological conditions in the lung. MDA-DNA adducts are pre-mutagenic in mammalian cells and induce frame shift and base-pair substitution mutations, whereas MAA protein adducts have been shown to induce inflammation and inhibit wound healing. This review provides an insight into different reactive aldehyde adducts and their role in the pathogenesis of lung disease. PMID:26556381

  11. FORMATION OF HEMOGLOBIN AND ALBUMIN ADDUCTS OF BENZENE OXIDE IN MOUSE, RAT, AND HUMAN BLOOD

    EPA Science Inventory

    Little is known about the formation and disposition of benzene oxide (BO), the initial metabolite arising from oxidation of benzene by cytochrome P450. In this study, reactions of BO with hemoglobin (Hb) and albumin (Alb) were investigated in blood from B6C3F1 mice, F344 rats, ...

  12. DNA Adduct Formation from Metabolic 5'-Hydroxylation of the Tobacco-Specific Carcinogen N'-Nitrosonornicotine in Human Enzyme Systems and in Rats.

    PubMed

    Zarth, Adam T; Upadhyaya, Pramod; Yang, Jing; Hecht, Stephen S

    2016-03-21

    N'-Nitrosonornicotine (NNN) is carcinogenic in multiple animal models and has been evaluated as a human carcinogen. NNN can be metabolized by cytochrome P450s through two activation pathways: 2'-hydroxylation and 5'-hydroxylation. While most previous studies have focused on 2'-hydroxylation in target tissues of rats, available evidence suggests that 5'-hydroxylation is a major activation pathway in human enzyme systems, in nonhuman primates, and in target tissues of some other rodent carcinogenicity models. In the study reported here, we investigated DNA damage resulting from NNN 5'-hydroxylation by quantifying the adduct 2-(2-(3-pyridyl)-N-pyrrolidinyl)-2'-deoxyinosine (py-py-dI). In rats treated with NNN in the drinking water (7-500 ppm), py-py-dI was the major DNA adduct resulting from 5'-hydroxylation of NNN in vivo. Levels of py-py-dI in the lung and nasal cavity were the highest, consistent with the tissue distribution of CYP2A3. In rats treated with (S)-NNN or (R)-NNN, the ratios of formation of (R)-py-py-dI to (S)-py-py-dI were not the expected mirror image, suggesting that there may be a carrier for one of the unstable intermediates formed upon 5'-hydroxylation of NNN. Rat hepatocytes treated with (S)- or (R)-NNN or (2'S)- or (2'R)-5'-acetoxyNNN exhibited a pattern of adduct formation similar to that of live rats. In vitro studies with human liver S9 fraction or human hepatocytes incubated with NNN (2-500 μM) demonstrated that py-py-dI formation was greater than the formation of pyridyloxobutyl-DNA adducts resulting from 2'-hydroxylation of NNN. (S)-NNN formed more total py-py-dI adducts than (R)-NNN in human liver enzyme systems, which is consistent with the critical role of CYP2A6 in the 5'-hydroxylation of NNN in human liver. The results of this study demonstrate that the major DNA adduct resulting from NNN metabolism by human enzymes is py-py-dI and provide potentially important new insights into the metabolic activation of NNN in rodents and humans.

  13. Hydroxyl radical reaction with trans-resveratrol: initial carbon radical adduct formation followed by rearrangement to phenoxyl radical.

    PubMed

    Li, Dan-Dan; Han, Rui-Min; Liang, Ran; Chen, Chang-Hui; Lai, Wenzhen; Zhang, Jian-Ping; Skibsted, Leif H

    2012-06-21

    In the reaction between trans-resveratrol (resveratrol) and the hydroxyl radical, kinetic product control leads to a short-lived hydroxyl radical adduct with an absorption maximum at 420 nm and a lifetime of 0.21 ± 0.01 μs (anaerobic acetonitrile at 25 °C) as shown by laser flash photolysis using N-hydroxypyridine-2(1H)-thione (N-HPT) as a "photo-Fenton" reagent. The transient spectra of the radical adduct are in agreement with density functional theory (DFT) calculations showing an absorption maximum at 442 or 422 nm for C2 and C6 hydroxyl adducts, respectively, and showing the lowest energy for the transition state leading to the C2 adduct compared to other radical products. From this initial product, the relative long-lived 4'-phenoxyl radical of resveratrol (τ = 9.9 ± 0.9 μs) with an absorption maximum at 390 nm is formed in a process with a time constant (τ = 0.21 ± 0.01 μs) similar to the decay constant for the C2 hydroxyl adduct (or a C2/C6 hydroxyl adduct mixture) and in agreement with thermodynamics identifying this product as the most stable resveratrol radical. The hydroxyl radical adduct to phenoxyl radical conversion with concomitant water dissociation has a rate constant of 5 × 10(6) s(-1) and may occur by intramolecular hydrogen atom transfer or by stepwise proton-assisted electron transfer. Photolysis of N-HPT also leads to a thiyl radical which adds to resveratrol in a parallel reaction forming a sulfur radical adduct with a lifetime of 0.28 ± 0.04 μs and an absorption maximum at 483 nm.

  14. Formation of pyrophosphate-like adducts from nerve agents sarin, soman and cyclosarin in phosphate buffer: implications for analytical and toxicological investigations.

    PubMed

    Gäb, Jürgen; John, Harald; Blum, Marc-Michael

    2011-01-15

    Phosphate buffer is frequently used in biological, biochemical and biomedical applications especially when pH is to be controlled around the physiological value of 7.4. One of the prerequisites of a buffer compound among good buffering capacity and pH stability over time is its non-reactivity with other constituents of the solution. This is especially important for quantitative analytical or toxicological assays. Previous work has identified a number of amino alcohol buffers like TRIS to react with G-type nerve agents sarin, soman and cyclosarin to form stable phosphonic diesters. In case of phosphate buffer we were able to confirm not only the rapid hydrolysis of these agents to the respective alkyl methylphosphonates but also the formation of substantial amounts of pyrophosphate-like adducts (phosphorylated methylphosphonates), which very slowly hydrolyzed following zero-order kinetics. This led to a complex mixture of phosphorus containing species with changing concentrations over time. We identified the molecular structure of these buffer adducts using 1D ¹H-³¹P HSQC NMR and LC-ESI-MS/MS techniques. Reaction rates of adduct formation are fast enough to compete with hydrolysis in aqueous solution and to yield substantial amounts of buffer adduct over the course of just a couple of minutes. Possible reaction mechanisms are discussed with respect to the formation and subsequent hydrolysis of the pyrophosphate-like compounds as well as the increased rate of hydrolysis of the nerve agent to the corresponding alkyl methylphosphonates. In summary, the use of phosphate buffer for the development of new assays with sarin, soman and cyclosarin is discouraged. Already existing protocols should be carefully reexamined on an individual basis.

  15. A sensitive method for digoxin determination using formate-adduct ion based on the effect of ionization enhancement in liquid chromatograph-mass spectrometer.

    PubMed

    Li, Xia; Wang, Yu; Zhou, Qingyuan; Yu, Yunqiu; Chen, Lihong; Zheng, Jie

    2015-01-26

    A sensitive and rapid method based on formate-adduct ion detection was developed and fully validated for digoxin determination in rat plasma. For LC/MS/MS detection with formate-adducts as precursor ions, transitions of m/z 825.5→779.9 for digoxin and m/z 809.5→763.4 for the internal standard (digitoxin) were monitored in negative mode. To investigate the impact of formic acid on the mass response and method sensitivity, a formic acid concentration range of 0-0.1% (0, 0.0005%, 0.002%, 0.01%, 0.1%, v/v) was evaluated. A concentration of 0.002% gave the highest sensitivity, which was 16- to 18-fold higher than deprotonated ions, and was designated as the contribution giving the strongest ionization enhancement and adduction. A number of parameters were then varied in order to optimize the method, and a limit of quantitation (LOQ) at 0.2 ng/mL was reached with an injection volume of 5 μL, a total run time of 3 min, and 0.1 mL of rat plasma. A calibration curve was plotted over the range 0.2-50 ng/mL (R(2)=0.9998), and the method was successfully applied to study pharmacokinetics in rat following a single oral administration of digoxin (0.05 mg/kg). Four additional steroid saponins (digitoxin, deslanoside, ginsenoside Rg1 and Rb1) were investigated to assess the impact of formic acid on the mass response of steroid saponins. Compounds with a conjugated lactonic ring in their structures such as digoxin, digitoxin and deslanoside tended to form stable formate-adduct ions more easily. The LC/MS/MS method developed here is therefore well suited for the quantification of steroid saponins that are difficult to deprotonate using other MS approaches.

  16. Inhibition of aryl hydrocarbon receptor transactivation and DNA adduct formation by CYP1 isoform-selective metabolic deactivation of benzo[a]pyrene

    SciTech Connect

    Endo, Kaori; Uno, Shigeyuki; Seki, Taiichiro; Ariga, Toyohiko; Kusumi, Yoshiaki; Mitsumata, Masako; Yamada, Sachiko; Makishima, Makoto

    2008-07-15

    Benzo[a]pyrene (BaP), a polyaromatic hydrocarbon produced by the combustion of cigarettes and coke ovens, is a known procarcinogen. BaP activates the aryl hydrocarbon receptor (AhR) and induces the expression of a battery of genes, including CYP1A1, which metabolize BaP to toxic compounds. The possible role of CYP1 enzymes in mediating BaP detoxification or metabolic activation remains to be elucidated. In this study, we assessed the effects of CYP1 enzymes (CYP1A1, CYP1A2 and CYP1B1) on BaP-induced AhR transactivation and DNA adduct formation in HEK293 cells and HepG2 cells. Transfection of CYP1A1 and CYP1B1, but not CYP1A2, suppressed BaP-induced activation of AhR. Expression of CYP1A1 and CYP1A2, but not CYP1B1, inhibited DNA adduct formation in BaP-treated HepG2 cells. These results indicate that CYP1A1 and CYP1B1 play a role in deactivation of BaP on AhR and that CYP1A1 and CYP1A2 are involved in BaP detoxification by suppressing DNA adduct formation. BaP treatment did not induce DNA adduct formation in HEK293 cells, even after transfection of CYP1 enzymes, suggesting that expression of CYP1 enzymes is not sufficient for DNA adduct formation. Lower expression of epoxide hydrolase and higher expression of glutathione S-transferase P1 (GSTP1) and GSTM1/M2 were observed in HEK293 cells compared with HepG2 cells. Dynamic expression of CYP1A1, CYP1A2 and CYP1B1 along with expression of other enzymes such as epoxide hydrolase and phase II enzymes may determine the detoxification or metabolic activation of BaP.

  17. Inhibition of the formation of benzo[a]pyrene adducts to DNA in A549 lung cells exposed to mixtures of polycyclic aromatic hydrocarbons.

    PubMed

    Genies, Camille; Jullien, Amandine; Lefebvre, Emmanuel; Revol, Morgane; Maitre, Anne; Douki, Thierry

    2016-09-01

    Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous pollutants, which exhibit carcinogenic properties especially in lungs. In the present work, we studied the effect of mixtures of 12 PAHs on the A549 alveolar cells. We first assess the ability of each PAH at inducing gene expression of phase I metabolization enzymes and at generating DNA adducts. A good correlation was found between these two endpoints. We then exposed cells to either binary mixtures of the highly genotoxic benzo[a]pyrene (B[a]P) with each PAH or complex mixtures of all studied PAHs mimicking by real emissions including combustion of wood, cigarette smoke, and atmospheres of garage, silicon factory and urban environments. Compared to pure B[a]P, both types of mixtures led to reduced CYP450 activity measured by the EROD test. A similar trend was observed for the formation of DNA adducts. Surprisingly, the complex mixtures were more potent than B[a]P used at the same concentration for the induction of genes coding for CYP. Our results stress the lack of additivity of the genotoxic properties of PAH in mixtures. Interestingly, an opposite synergy in the formation of B[a]P adducts were observed previously in hepatocytes. Our data also show that measurement of the metabolic activity rather than quantification of gene expression reflects the actual bioactivation of PAHs into DNA damaging species.

  18. Circadian Regulation of Benzo[a]Pyrene Metabolism and DNA Adduct Formation in Breast Cells and the Mouse Mammary Gland.

    PubMed

    Schmitt, Emily E; Barhoumi, Rola; Metz, Richard P; Porter, Weston W

    2017-03-01

    The circadian clock plays a role in many biologic processes, yet very little is known about its role in metabolism of drugs and carcinogens. The purpose of this study was to define the impact of circadian rhythms on benzo-a-pyrene (BaP) metabolism in the mouse mammary gland and develop a circadian in vitro model for investigating changes in BaP metabolism resulting from cross-talk between the molecular clock and aryl hydrocarbon receptor. Female 129sv mice (12 weeks old) received a single gavage dose of 50 mg/kg BaP at either noon or midnight, and mammary tissues were isolated 4 or 24 hours later. BaP-induced Cyp1a1 and Cyp1b1 mRNA levels were higher 4 hours after dosing at noon than at 4 hours after dosing at midnight, and this corresponded with parallel changes in Per gene expression. In our in vitro model, we dosed MCF10A mammary cells at different times after serum shock to study how time of day shifts drug metabolism in cells. Analysis of CYP1A1 and CYP1B1 gene expression showed the maximum enzyme-induced metabolism response 12 and 20 hours after shock, as determined by ethoxyresorufin-O-deethylase activity, metabolism of BaP, and formation of DNA-BaP adducts. The pattern of PER-, BMAL-, and aryl hydrocarbon receptor-induced P450 gene expression and BaP metabolism was similar to BaP-induced Cyp1A1 and Cyp1B1 and molecular clock gene expression in mouse mammary glands. These studies indicate time-of-day exposure influences BaP metabolism in mouse mammary glands and describe an in vitro model that can be used to investigate the circadian influence on the metabolism of carcinogens.

  19. Direct reduction of N-acetoxy-PhIP by tea polyphenols: a possible mechanism for chemoprevention against PhIP-DNA adduct formation.

    PubMed

    Lin, Dong-Xin; Thompson, Patricia A; Teitel, Candee; Chen, Jun-Shi; Kadlubar, Fred F

    2003-01-01

    The chemopreventive effect of tea against 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP)-DNA adduct formation and its mechanism were studied. Rats were exposed to freshly prepared aqueous extracts of green tea (3% (w/v)) as the sole source of drinking water for 10 days prior to administration with a single dose of PhIP (10 mg/kg body weight) by oral gavage. PhIP-DNA adducts in the liver, colon, heart, and lung were measured using the 32P-postlabelling technique. Rats pre-treated with tea and given PhIP 20 h before sacrifice had significantly reduced levels of PhIP-DNA adducts as compared with controls given PhIP alone. The possible mechanism of protective effect of tea on PhIP-DNA adduct formation was then examined in vitro. It was found that an aqueous extract of green and black tea, mixtures of green and black tea polyphenols, as well as purified polyphenols could strongly inhibit the DNA binding of N-acetoxy-PhIP, a putative ultimate carcinogen of PhIP formed in vivo via metabolic activation. Among these, epigallocatechin gallate was exceptionally potent. HPLC analyses of these incubation mixtures containing N-acetoxy-PhIP and the tea polyphenols each revealed the production of the parent amine, PhIP, indicating the involvement of a redox mechanism. In view of the presence of relatively high levels of tea polyphenols in rat and human plasma after ingestion of tea, this study suggests that direct reduction of the ultimate carcinogen N-acetoxy-PhIP by tea polyphenols is likely to be involved in the mechanism of chemoprotection of tea against this carcinogen.

  20. 4,4'-Methylene-bis(2-chloroaniline) (MOCA): Comparison of macromolecular adduct formation after oral or dermal administration in the rat

    SciTech Connect

    Cheever, K.L.; Richards, D.E.; Weigel, W.W.; Begley, K.B.; DeBord, D.G.; Swearengin, T.F.; Savage, R.E. Jr. )

    1990-02-01

    The macromolecular binding of 4,4'-methylenebis(2-chloroaniline) (MOCA), a suspect human carcinogen, was studied in the adult male Sprague-Dawley rat after both oral and dermal administration. Rats were euthanized 1, 3, 7, 10, 14, and 29 days after a single 281 mumol/kg body wt dose of (14C)MOCA (oral, 213 muCi/kg; dermal, 904 muCi/kg). DNA from various tissues and hemoglobin were isolated for determination of the time course of MOCA macromolecular binding. After oral administration adduct formation was rapid with maximum levels appearing at 24 hr. The 24-hr covalent binding associated with the globin was 7.84 pmol/mg globin (t1/2 = 14.3 days). More extensive 24-hr covalent binding was detected for liver DNA with 49.11 pmol/mg DNA (t1/2 = 11.1 days). After dermal administration of MOCA the major portion of the dose, 86.2%, remained at the application site throughout the study. For these rats the 24-hr covalent binding determined for liver DNA was 0.38 pmol/mg DNA (t1/2 = 15.6 days). Although lower levels were detected after dermal application, similar stability of MOCA-DNA adducts indicates that quantification of such MOCA adducts may be useful for the long-term industrial biomonitoring of MOCA exposure and for the evaluation of human DNA-MOCA adduct formation, a lesion thought to be associated with the production of cancer.

  1. Detection in vivo of a Novel Endogenous Etheno DNA Adduct Derived from Arachidonic Acid and the Effects of Antioxidants on Its Formation

    PubMed Central

    Cruz, Idalia M.; Pondicherry, Sharanya R.; Fernandez, Aileen; Schultz, Casey L.; Yang, Peiying; Pan, Jishen; Desai, Dhimant; Krzeminski, Jacek; Amin, Shantu; Christov, Plamen P.; Hara, Yukihiko; Chung, Fung-Lung

    2014-01-01

    Previous studies showed that the 7-(1′,2′-dihydroxyheptyl) substituted etheno DNA adducts are products from reactions with epoxide of (E)-4-hydroxy-2-nonenal (HNE), an oxidation product of ω-6 polyunsaturated fatty acids (PUFAs). In this work, we report the detection of 7-(1′,2′-dihydroxyheptyl)-1,N6-ethenodeoxyadenosine (DHHedA) in rodent and human tissues by two independent methods: a 32P-postlabeling/HPLC method and an isotope dilution liquid chromatography electrospray ionization tandem mass spectrometry method (ID-LC-ESI-MS/MS), demonstrating for the first time that DHHedA is a background DNA lesion in vivo. We showed that DHHedA can be formed upon incubation of arachidonic acid (AA) with deoxyadenosine (dA), supporting the notion that ω-6 PUFAs are the endogenous source of DHHedA formation. Because cyclic adducts are derived from the oxidation of PUFAs, we subsequently examined the effects of antioxidants, α-lipoic acid, Polyphenon E and vitamin E, on the formation of DHHedA and γ-hydroxy-1,N2-propanodeoxyguanosine (γ-OHPdG), a widely studied acrolein-derived adduct arising from oxidized PUFAs, in the livers of Long Evans Cinnamon (LEC) rats. LEC rats are inflicted with elevated lipid peroxidation and prone to the development of hepatocellular carcinomas. The results showed that while the survival of LEC rats increased significantly by α-lipoic acid, none of the antioxidants inhibited the formation of DHHedA and only Polyphenon E decreased the formation of γ-OHPdG. In contrast, vitamin E caused a significant increase in the formation of both γ-OHPdG and DHHedA in the livers of LEC rats. PMID:24816294

  2. Trimethylsilylmethyl complexes of the rare-earth metals with sterically hindered N-heterocyclic carbene ligands: adduct formation and C-H bond activation.

    PubMed

    Fegler, Waldemar; Spaniol, Thomas P; Okuda, Jun

    2010-08-07

    Tris(trimethylsilylmethyl) complexes of yttrium and lutetium [LnR(3)(THF)(2)] (R = CH(2)SiMe(3)) were treated with sterically bulky N-heterocyclic carbenes (NHC) 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene (IPr) and 1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene (IMes). IPr gave labile mono-adducts [LnR(3)(NHC)], isolated as thermally robust crystals and fully characterized by NMR spectroscopy and X-ray diffraction. IMes gave a similar lutetium mono-adduct [LuR(3)(IMes)] with the lutetium alkyl [LuR(3)(THF)(2)], whereas the yttrium alkyl [YR(3)(THF)(2)] resulted in the formation of an ortho-metalated product. This compound, isolated as a crystalline bis(THF) adduct, contains a strained six-membered chelate ring that has been formed by the C-H bond activation of one of the ortho-methyl groups of the mesityl group. In contrast [LuR(3)(IMes)] only slowly underwent a similar C-H bond activation.

  3. Cytochrome P450 system expression and DNA adduct formation in the liver of Zacco platypus following waterborne benzo(a)pyrene exposure: implications for biomarker determination.

    PubMed

    Lee, Jin Wuk; Kim, Yong Hwa; Yoon, Seokjoo; Lee, Sung Kyu

    2014-09-01

    Benzo(a)pyrene (BaP) is a polycyclic aromatic hydrocarbon that causes mutations and tumor formation. Zacco platypus is a sentinel species that is suitable for monitoring aquatic environments. We studied cytochrome P450 system (CYP system) expression and DNA adduct formation in the liver of Z. platypus following waterborne exposure to BaP. The results showed both dose and time dependency. The significant induction levels of CYP system mRNA and protein reached maximums at 2 days and 14 days, respectively, and hepatosomatic index was maximally induced at 4 days during 14 days BaP exposure. DNA adduct formation was significantly induced compared to corresponding controls (t-test, p < 0.01) after 4 days of exposure in 100 μg/L BaP. These results indicate that the only use of mRNA expression level of CYP system as a biomarker make us underestimate prolonged toxicity (4-14 days) of BaP and the only use of protein expression level of CYP system make us underestimate acute toxicity (1-2 days) of BaP. Therefore, we suggests that a combinational use of the mRNA expression level and protein expression level of CYP system, hepatosomatic index is a useful biomarker in risk assessment of waterborne BaP exposure. In addition, DNA adduct formation was a useful biomarker in risk assessment of waterborne BaP exposure at 4 days. CYP1A was a more sensitive biomarker than CYP reductase for BaP exposure when considering both the mRNA and protein level. Furthermore, our results show that Z. platypus is a useful species for assessing the risk of waterborne BaP exposure.

  4. Metabolism of isoniazid by neutrophil myeloperoxidase leads to isoniazid-NAD(+) adduct formation: A comparison of the reactivity of isoniazid with its known human metabolites.

    PubMed

    Khan, Saifur R; Morgan, Andrew G M; Michail, Karim; Srivastava, Nutan; Whittal, Randy M; Aljuhani, Naif; Siraki, Arno G

    2016-04-15

    The formation of isonicotinyl-nicotinamide adenine dinucleotide (INH-NAD(+)) via the mycobacterial catalase-peroxidase enzyme, KatG, has been described as the major component of the mode of action of isoniazid (INH). However, there are numerous human peroxidases that may catalyze this reaction. The role of neutrophil myeloperoxidase (MPO) in INH-NAD(+) adduct formation has never been explored; this is important, as neutrophils are recruited at the site of tuberculosis infection (granuloma) through infected macrophages' cell death signals. In our studies, we showed that neutrophil MPO is capable of INH metabolism using electron paramagnetic resonance (EPR) spin-trapping and UV-Vis spectroscopy. MPO or activated human neutrophils (by phorbol myristate acetate) catalyzed the oxidation of INH and formed several free radical intermediates; the inclusion of superoxide dismutase revealed a carbon-centered radical which is considered to be the reactive metabolite that binds with NAD(+). Other human metabolites, including N-acetyl-INH, N-acetylhydrazine, and hydrazine did not show formation of carbon-centered radicals, and either produced no detectable free radicals, N-centered free radicals, or superoxide, respectively. A comparison of these free radical products indicated that only the carbon-centered radical from INH is reducing in nature, based on UV-Vis measurement of nitroblue tetrazolium reduction. Furthermore, only INH oxidation by MPO led to a new product (λmax=326nm) in the presence of NAD(+). This adduct was confirmed to be isonicotinyl-NAD(+) using LC-MS analysis where the intact adduct was detected (m/z=769). The findings of this study suggest that neutrophil MPO may also play a role in INH pharmacological activity.

  5. Oral administration of the citrus coumarin, isopimpinellin, blocks DNA adduct formation and skin tumor initiation by 7,12-dimethylbenz[a]anthracene in SENCAR mice.

    PubMed

    Kleiner, Heather E; Vulimiri, Suryanarayana V; Starost, Matthew F; Reed, Melissa J; DiGiovanni, John

    2002-10-01

    The current study was designed to evaluate the effects of oral administration of the citrus coumarin, isopimpinellin, on skin tumor initiation by topically applied benzo[a]pyrene (B[a]P) and 7,12-dimethylbenz[a]anthracene (DMBA). To evaluate the effects of orally administered isopimpinellin on skin tumor initiation by B[a]P and DMBA, its effects on DNA adduct formation were first evaluated. Female SENCAR mice were pre-treated twice with corn oil, or isopimpinellin (70 mg/kg body wt per os) at 24 h and 2 h prior to topical treatment with B[a]P or DMBA. Another citrus coumarin, imperatorin, was also included in these experiments for comparison. Orally administered isopimpinellin and imperatorin significantly inhibited B[a]P-DNA adduct formation by 37 and 26%, respectively. Imperatorin also blocked DMBA-DNA adduct formation by 43%. In a second dose-response study, orally administered isopimpinellin (35, 70 and 150 mg/kg) blocked DMBA-DNA adduct formation by 23, 56 and 69%, respectively. For the tumor study, mice were pretreated orally with corn oil or isopimpinellin at 24 and 2 h prior to initiation with DMBA, and 2 weeks later promotion began with 12-O-tetradecanoylphorbol-13-acetate (TPA). Isopimpinellin significantly reduced the mean number of papillomas per mouse by 49, 73 and 78% compared to corn oil controls at 30, 70 and 150 mg/kg body wt, respectively. Orally administered isopimpinellin also significantly reduced the percentage of mice with papillomas at the highest dose tested (150 mg/kg). The effectiveness of isopimpinellin given topically over a broad dose range against DMBA tumor initiation was also evaluated for comparison. As part of this study, several parameters of systemic toxicity were evaluated following oral dosing with isopimpinellin and imperatorin. Mice were treated orally with corn oil, isopimpinellin or imperatorin (35, 70 and 150 mg/kg body wt per os) once daily for four consecutive days, killed at 24 h after the last dose, and livers, lungs

  6. DNA adduct formation in mice following dermal application of smoke condensates from cigarettes that burn or heat tobacco

    SciTech Connect

    Lee, C.K.; Brown, B.G.; Reed, E.A.; Mosberg, A.T.; Doolittle, D.J.; Hayes, A.W. ); Hejtmancik, M. )

    1992-01-01

    A prototype cigarette that heats tobacco (test cigarette), developed by R.J. Reynolds Tobacco Company, has yielded consistently negative results in several in vivo and in vitro genetic toxicology tests. The objective of the present study was to evaluate the potential of cigarette smoke condensate (CSC) from the test cigarette to induce DNA adducts in mouse tissues and compare the results with those obtained with CSC from a reference tobacco-burning cigarette (1R4F). CD-1 mice were skin-painted with CSF from reference and test cigarettes three times a week for 4 weeks. The highest mass of CSC applied was 180 mg tar per week per animal for both reference and test cigarette. DNA adducts were analyzed in skin and lung tissues using the [sup 32]P-postlabeling method with the P[sub 1] nuclease modification. Distinct diagonal radioactive zones (DRZ) were observed in the DNA from both skin and lung tissues of animals dosed with reference CSC, whereas no corresponding DRZ were observed from the DNA of animals dosed with either test CSC or acetone (solvent control). The relative adduct labeling (RAL) values of skin and lung DNA from reference CSC-treated animals were significantly greater than those of the test CSC-treated animals. The RAL values of the test CSC-treated animals were no greater than those of solvent controls. The negative results in DNA adduct assays with test CSC are consistent with all previous results of in vivo and in vitro genetic toxicology testing on this cigarette and provide additional evidence that smoke condensate from the test cigarette is not genotoxic. 31 refs., 4 figs., 2 tabs.

  7. Covalent Adduct Formation between the Antihypertensive Drug Hydralazine and Abasic Sites in Double- and Single-Stranded DNA

    PubMed Central

    2015-01-01

    Hydralazine (4) is an antihypertensive agent that displays both mutagenic and epigenetic properties. Here, gel electrophoretic, mass spectroscopic, and chemical kinetics methods were used to provide evidence that medicinally relevant concentrations of 4 rapidly form covalent adducts with abasic sites in double- and single-stranded DNA under physiological conditions. These findings raise the intriguing possibility that the genotoxic properties of this clinically used drug arise via reactions with an endogenous DNA lesion rather than with the canonical structure of DNA. PMID:25405892

  8. Competitive Deprotonation and Superoxide [O2 -•] Radical-Anion Adduct Formation Reactions of Carboxamides under Negative-Ion Atmospheric-Pressure Helium-Plasma Ionization (HePI) Conditions

    NASA Astrophysics Data System (ADS)

    Hassan, Isra; Pinto, Spencer; Weisbecker, Carl; Attygalle, Athula B.

    2016-03-01

    Carboxamides bearing an N-H functionality are known to undergo deprotonation under negative-ion-generating mass spectrometric conditions. Herein, we report that N-H bearing carboxamides with acidities lower than that of the hydroperoxyl radical (HO-O•) preferentially form superoxide radical-anion (O2 -•) adducts, rather than deprotonate, when they are exposed to the glow discharge of a helium-plasma ionization source. For example, the spectra of N-alkylacetamides show peaks for superoxide radical-anion (O2 -•) adducts. Conversely, more acidic amides, such as N-alkyltrifluoroacetamides, preferentially undergo deprotonation under similar experimental conditions. Upon collisional activation, the O2 -• adducts of N-alkylacetamides either lose the neutral amide or the hydroperoxyl radical (HO-O•) to generate the superoxide radical-anion ( m/z 32) or the deprotonated amide [ m/z (M - H)-], respectively. For somewhat acidic carboxamides, the association between the two entities is weak. Thus, upon mildest collisional activation, the adduct dissociates to eject the superoxide anion. Superoxide-adduct formation results are useful for structure determination purposes because carboxamides devoid of a N-H functionality undergo neither deprotonation nor adduct formation under HePI conditions.

  9. Tea as a potential chemopreventive agent in PhIP carcinogenesis: effects of green tea and black tea on PhIP-DNA adduct formation in female F-344 rats.

    PubMed

    Schut, H A; Yao, R

    2000-01-01

    The heterocyclic amine 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) is formed during the cooking of proteinaceous animal foods (meat, chicken, and fish). PhIP is a carcinogen in the Fischer 344 (F-344) rat; it induces mammary tumors in female rats and lymphomas and colon and prostate tumors in male rats. In F-344 rats, PhIP forms DNA adducts in various organs, including the target organs. Inhibition of PhIP-DNA adduct formation is likely to lead to inhibition of PhIP tumorigenicity. We have examined the chemopreventive properties of green tea and black tea in PhIP carcinogenesis by evaluating their effects on PhIP-DNA adduct formation in the female F-344 rat. Young adult animals were maintained on powdered AIN-76A diet while receiving regular drinking water or 2% (wt/vol) infusions of green tea or black tea for a total of six weeks. During Weeks 3, 4, and 5, all animals received PhIP by gavage (1 mg/kg/day). Three rats per group were euthanized on Days 1 and 8 after termination of PhIP exposure. DNA was isolated from a number of organs and analyzed for PhIP-DNA adducts by 32P-postlabeling assays. Compared with animals on regular drinking water, PhIP-DNA adduct formation was inhibited in small intestine, colon, liver, and mammary epithelial cells (MECs) of animals receiving green tea or black tea as the sole source of drinking fluid. Green tea inhibited adduct formation in colon, liver, and MECs (33.3-80.0%) on both days, but only on Day 8 (54.4%) in small intestine. Black tea inhibited adduct formation on both days in liver (71.4-80.0%), on Day 1 in colon (40.0%), and on Day 8 in small intestine (81.8%); it had no effect on MEC adducts. Neither green tea nor black tea had an effect on adduct levels in pancreas, lungs, white blood cells, heart, kidneys, spleen, cecum, or stomach. Similarly, these teas did not affect the rate of adduct removal (percent change from Day 1 to Day 8) in any organ. It is concluded that green tea and black tea are potential

  10. Isolevuglandin Adducts in Disease

    PubMed Central

    Bi, Wenzhao

    2015-01-01

    Abstract Significance: A diverse family of lipid-derived levulinaldehydes, isolevuglandins (isoLGs), is produced by rearrangement of endoperoxide intermediates generated through both cyclooxygenase (COX) and free radical-induced cyclooxygenation of polyunsaturated fatty acids and their phospholipid esters. The formation and reactions of isoLGs with other biomolecules has been linked to alcoholic liver disease, Alzheimer's disease, age-related macular degeneration, atherosclerosis, cardiac arythmias, cancer, end-stage renal disease, glaucoma, inflammation of allergies and infection, mitochondrial dysfunction, multiple sclerosis, and thrombosis. This review chronicles progress in understanding the chemistry of isoLGs, detecting their production in vivo and understanding their biological consequences. Critical Issues: IsoLGs have never been isolated from biological sources, because they form adducts with primary amino groups of other biomolecules within seconds. Chemical synthesis enabled investigation of isoLG chemistry and detection of isoLG adducts present in vivo. Recent Advances: The first peptide mapping and sequencing of an isoLG-modified protein present in human retina identified the modification of a specific lysyl residue of the sterol C27-hydroxylase Cyp27A1. This residue is preferentially modified by iso[4]LGE2 in vitro, causing loss of function. Adduction of less than one equivalent of isoLG can induce COX-associated oligomerization of the amyloid peptide Aβ1-42. Adduction of isoLGE2 to phosphatidylethanolamines causes gain of function, converting them into proinflammatory isoLGE2-PE agonists that foster monocyte adhesion to endothelial cells. Future Directions: Among the remaining questions on the biochemistry of isoLGs are the dependence of biological activity on isoLG isomer structure, the structures and mechanism of isoLG-derived protein–protein and DNA–protein cross-link formation, and its biological consequences. Antioxid. Redox Signal. 22

  11. Mitochondrial protein adducts formation and mitochondrial dysfunction during N-acetyl-m-aminophenol (AMAP)-induced hepatotoxicity in primary human hepatocytes

    PubMed Central

    Xie, Yuchao; McGill, Mitchell R.; Du, Kuo; Dorko, Kenneth; Kumer, Sean C.; Schmitt, Timothy M.; Ding, Wen-Xing; Jaeschke, Hartmut

    2015-01-01

    3′-Hydroxyacetanilide or N-acetyl-meta-aminophenol (AMAP) is generally regarded as a non-hepatotoxic analog of acetaminophen (APAP). Previous studies demonstrated absence of toxicity after AMAP in mice, hamsters, primary mouse hepatocytes and several cell lines. In contrast, experiments with liver slices suggested that it may be toxic to human hepatocytes; however, the mechanism of toxicity is unclear. To explore this, we treated primary human hepatocytes (PHH) with AMAP or APAP for up to 48 h and measured several parameters to assess metabolism and injury. Although less toxic than APAP, AMAP dose-dependently triggered cell death in PHH as indicated by alanine aminotransferase (ALT) release and propidium iodide (PI) staining. Similar to APAP, AMAP also significantly depleted glutathione (GSH) in PHH and caused mitochondrial damage as indicated by glutamate dehydrogenase (GDH) release and the JC-1 assay. However, unlike APAP, AMAP treatment did not cause relevant c-jun-N-terminal kinase (JNK) activation in the cytosol or phospho-JNK translocation to mitochondria. To compare, AMAP toxicity was assessed in primary mouse hepatocytes (PMH). No cytotoxicity was observed as indicated by the lack of lactate dehydrogenase release and no PI staining. Furthermore, there was no GSH depletion or mitochondrial dysfunction after AMAP treatment in PMH. Immunoblotting for arylated proteins suggested that AMAP treatment caused extensive mitochondrial protein adducts formation in PHH but not in PMH. In conclusion, AMAP is hepatotoxic in PHH and the mechanism involves formation of mitochondrial protein adducts and mitochondrial dysfunction. PMID:26431796

  12. Acrylamide exposure induces a delayed unscheduled DNA synthesis in germ cells of male mice that is correlated with the temporal pattern of adduct formation in testis DNA

    SciTech Connect

    Sega, G.A.; Generoso, E.E.; Brimer, P.A. )

    1990-01-01

    A study of meiotic and postmeiotic germ-cell-stage sensitivity of male mice to induction of unscheduled DNA synthesis (UDS) by acrylamide showed that DNA repair could be detected in early spermatocytes (after the last scheduled DNA synthesis) through about mid-spermatid stages. No DNA repair could be detected in later stages. The maximum UDS response was observed 6 hr after i.p. exposure and was about 5 times greater than the response measured immediately after treatment. This is the longest delay between chemical treatment and maximum UDS response yet observed in mouse germ cells. There was a linear relationship between the UDS response and acrylamide exposure from 7.8 to 125 mg/kg. By using 14C-labeled acrylamide it was determined that the temporal pattern of adduct formation in testes DNA paralleled that of the UDS response, with maximum binding occurring 4 to 6 hr after exposure. In contrast, the temporal pattern of adduct formation in liver DNA showed maximum binding within 1 to 2 hr after exposure and was an order of magnitude greater than that found for the testis DNA.

  13. Formation of a tyrosine adduct involved in lignin degradation by Trametopsis cervina lignin peroxidase: a novel peroxidase activation mechanism.

    PubMed

    Miki, Yuta; Pogni, Rebecca; Acebes, Sandra; Lucas, Fátima; Fernández-Fueyo, Elena; Baratto, Maria Camilla; Fernández, María I; de los Ríos, Vivian; Ruiz-Dueñas, Francisco J; Sinicropi, Adalgisa; Basosi, Riccardo; Hammel, Kenneth E; Guallar, Victor; Martínez, Angel T

    2013-06-15

    LiP (lignin peroxidase) from Trametopsis cervina has an exposed catalytic tyrosine residue (Tyr181) instead of the tryptophan conserved in other lignin-degrading peroxidases. Pristine LiP showed a lag period in VA (veratryl alcohol) oxidation. However, VA-LiP (LiP after treatment with H2O2 and VA) lacked this lag, and H2O2-LiP (H2O2-treated LiP) was inactive. MS analyses revealed that VA-LiP includes one VA molecule covalently bound to the side chain of Tyr181, whereas H2O2-LiP contains a hydroxylated Tyr181. No adduct is formed in the Y171N variant. Molecular docking showed that VA binding is favoured by sandwich π stacking with Tyr181 and Phe89. EPR spectroscopy after peroxide activation of the pre-treated LiPs showed protein radicals other than the tyrosine radical found in pristine LiP, which were assigned to a tyrosine-VA adduct radical in VA-LiP and a dihydroxyphenyalanine radical in H2O2-LiP. Both radicals are able to oxidize large low-redox-potential substrates, but H2O2-LiP is unable to oxidize high-redox-potential substrates. Transient-state kinetics showed that the tyrosine-VA adduct strongly promotes (>100-fold) substrate oxidation by compound II, the rate-limiting step in catalysis. The novel activation mechanism is involved in ligninolysis, as demonstrated using lignin model substrates. The present paper is the first report on autocatalytic modification, resulting in functional alteration, among class II peroxidases.

  14. Formation of Metal-Adducted Analyte Ions by Flame-Induced Atmospheric Pressure Chemical Ionization Mass Spectrometry.

    PubMed

    Cheng, Sy-Chyi; Wang, Chin-Hsiung; Shiea, Jentaie

    2016-05-17

    A flame-induced atmospheric pressure chemical ionization (FAPCI) source, consisting of a miniflame, nebulizer, and heated tube, was developed to ionize analytes. The ionization was performed by reacting analytes with a charged species generated in a flame. A stainless steel needle deposited with saturated alkali chloride solution was introduced into the mini oxyacetylene flame to generate alkali ions, which were reacted with analytes (M) generated in a heated nebulizer. The alkali-adducted 18-crown-6 ether ions, including (M + Li)(+), (M + Na)(+), (M + K)(+), (M + Rb)(+), and (M + Cs)(+), were successfully detected on the FAPCI mass spectra when the corresponding alkali chloride solutions were separately introduced to the flame. When an alkali chloride mixture was introduced, all alkali-adducted analyte ions were simultaneously detected. Their intensity order was as follows: (M + Cs)(+) > (M + Rb)(+) > (M + K)(+) > (M + Na)(+) > (M + Li)(+), and this trend agreed with the lattice energies of alkali chlorides. Besides alkali ions, other transition metal ions such as Ni(+), Cu(+), and Ag(+) were generated in a flame for analyte ionization. Other than metal ions, the reactive species generated in the fossil fuel flame could also be used to ionize analytes, which formed protonated analyte ions (M + H)(+) in positive ion mode and deprotonated analyte ions (M - H)(-) in negative ion mode.

  15. Formation of DNA adducts in wild-type and transgenic mice expressing human sulfotransferases 1A1 and 1A2 after oral exposure to furfuryl alcohol

    PubMed Central

    Høie, Anja Hortemo; Monien, Bernhard Hans; Sakhi, Amrit Kaur; Glatt, Hansruedi; Hjertholm, Hege; Husøy, Trine

    2015-01-01

    Furfuryl alcohol (FFA) is present in many heat-treated foods as a result of its formation via dehydration of pentoses. It is also used legally as a flavouring agent. In an inhalation study conducted in the National Toxicology Program, FFA showed some evidence of carcinogenic activity in rats and mice. FFA was generally negative in conventional genotoxicity assays, which suggests that it may be a non-genotoxic carcinogen. However, it was recently found that FFA is mutagenic in Salmonella strains expressing appropriate sulfotransferases (SULTs), such as human or mouse SULT1A1. The same DNA adducts that were formed by FFA in these strains, mainly N 2-((furan-2-yl)methyl)-2′-deoxyguanosine (N 2-MF-dG), were also detected in tissues of FFA-exposed mice and even in human lung specimens. In the present study, a single oral dose of FFA (250mg/kg body weight) or saline was administered to FVB/N mice and transgenic mice expressing human SULT1A1/1A2 on the FVB/N background. The transgenic mice were used, since human and mouse SULT1A1 substantially differ in substrate specificity and tissue distribution. DNA adducts were studied in liver, kidney, proximal and distal small intestine as well as colon, using isotope-dilution ultra performance liquid chromatography (UPLC–MS/MS). Surprisingly, low levels of adducts that may represent N 2-MF-dG were detected even in tissues of untreated mice. FFA exposure enhanced the adduct levels in colon and liver, but not in the remaining investigated tissues of wild-type (wt) mice. The situation was similar in transgenic mice, except that N 2-MF-dG levels were also strongly enhanced in the proximal small intestine. These different results between wt and transgenic mice may be attributed to the fact that human SULT1A1, but not the orthologous mouse enzyme, is strongly expressed in the small intestine. PMID:25904584

  16. Formation of DNA adducts in wild-type and transgenic mice expressing human sulfotransferases 1A1 and 1A2 after oral exposure to furfuryl alcohol.

    PubMed

    Høie, Anja Hortemo; Monien, Bernhard Hans; Sakhi, Amrit Kaur; Glatt, Hansruedi; Hjertholm, Hege; Husøy, Trine

    2015-09-01

    Furfuryl alcohol (FFA) is present in many heat-treated foods as a result of its formation via dehydration of pentoses. It is also used legally as a flavouring agent. In an inhalation study conducted in the National Toxicology Program, FFA showed some evidence of carcinogenic activity in rats and mice. FFA was generally negative in conventional genotoxicity assays, which suggests that it may be a non-genotoxic carcinogen. However, it was recently found that FFA is mutagenic in Salmonella strains expressing appropriate sulfotransferases (SULTs), such as human or mouse SULT1A1. The same DNA adducts that were formed by FFA in these strains, mainly N (2)-((furan-2-yl)methyl)-2'-deoxyguanosine (N (2)-MF-dG), were also detected in tissues of FFA-exposed mice and even in human lung specimens. In the present study, a single oral dose of FFA (250 mg/kg body weight) or saline was administered to FVB/N mice and transgenic mice expressing human SULT1A1/1A2 on the FVB/N background. The transgenic mice were used, since human and mouse SULT1A1 substantially differ in substrate specificity and tissue distribution. DNA adducts were studied in liver, kidney, proximal and distal small intestine as well as colon, using isotope-dilution ultra performance liquid chromatography (UPLC-MS/MS). Surprisingly, low levels of adducts that may represent N (2)-MF-dG were detected even in tissues of untreated mice. FFA exposure enhanced the adduct levels in colon and liver, but not in the remaining investigated tissues of wild-type (wt) mice. The situation was similar in transgenic mice, except that N (2)-MF-dG levels were also strongly enhanced in the proximal small intestine. These different results between wt and transgenic mice may be attributed to the fact that human SULT1A1, but not the orthologous mouse enzyme, is strongly expressed in the small intestine.

  17. Reduction of in-source collision-induced dissociation and thermolysis of sulopenem prodrugs for quantitative liquid chromatography/electrospray ionization mass spectrometric analysis by promoting sodium adduct formation.

    PubMed

    Wujcik, Chad E; Kadar, Eugene P

    2008-10-01

    Six chromatographically resolved sulopenem prodrugs were monitored for their potential to undergo both in-source collision-induced dissociation (CID) and thermolysis. Initial Q1 scans for each prodrug revealed the formation of intense [Prodrug2 + H]+, [Prodrug2 + Na]+, [Prodrug + Na]+, and [Sulopenem + Na]+ ions. Non-adduct-associated sulopenem ([Sulopenem + H]+) along with several additional lower mass ions were also observed. Product ion scans of [Prodrug3 + Na]+ showed the retention of the sodium adduct in the collision cell continuing down to opening of the beta-lactam ring. In-source CID and temperature experiments were conducted under chromatographic conditions while monitoring several of the latter ion transitions (i.e., adducts, dimers and degradants/fragments) for a given prodrug. The resulting ion profiles indicated the regions of greatest stability for temperature and declustering potential (DP) that provided the highest signal intensity for each prodrug and minimized in-source degradation. The heightened stability of adduct ions, relative to their appropriate counterpart (i.e., dimer to dimer adduct and prodrug to prodrug adduct ions), was observed under elevated temperature and DP conditions. The addition of 100 microM sodium to the mobile phase further enhanced the formation of these more stable adduct ions, yielding an optimal [Prodrug + Na]+ ion signal at temperatures from 400 to 600 degrees C. A clinical liquid chromatography/tandem mass spectrometry (LC/MS/MS) assay for sulopenem prodrug PF-04064900 in buffered whole blood was successfully validated using sodium-fortified mobile phase and the [PF-04064900 + Na]+ ion for quantitation. A conservative five-fold increase in sensitivity from previously validated preclinical assays using the [PF-04064900 + H]+ precursor ion was achieved.

  18. Adduct Formation, B-H Activation and Ring Expansion at Room Temperature from Reactions of HBcat with NHCs.

    PubMed

    Würtemberger-Pietsch, Sabrina; Schneider, Heidi; Marder, Todd B; Radius, Udo

    2016-09-05

    We report the reactions of catecholborane (HBcat; 1) with unsaturated and saturated NHCs as well as CAAC(Me) . Mono-NHC adducts of the type HBcat⋅NHC (NHC=nPr2 Im, iPr2 Im, iPr2 Im(Me) , and Dipp2 Im) were obtained by stoichiometric reactions of HBcat with the unsaturated NHCs. The reaction of CAAC(Me) with HBcat yielded the B-H activated product CAAC(Me) (H)Bcat via insertion of the carbine-carbon atom into the B-H bond. The saturated NHC Dipp2 SIm reacted in a 2:2 ratio yielding an NHC ring-expanded product at room temperature forming a six-membered -B-C=N-C=C-N- ring via C-N bond cleavage and further migration of the hydrides from two HBcat molecules to the former carbene-carbon atom.

  19. Mechanism for the formation of gas-phase protonated alcohol-ether adducts by VUV laser ionization and density-functional calculations.

    PubMed

    Lam, Selay; Shi, Y J; Mosey, N J; Woo, T K; Lipson, R H

    2004-11-22

    The neutral vapors above liquid alcohol/ether mixtures, (diethyl ether/methanol, diethyl ether/ethanol, tetrahydrofuran/methanol, and tetrahydrofuran/ethanol) were co-expanded with He in a supersonic jet, ionized with a 118-nm vacuum ultraviolet laser, and detected in a time-of-flight mass spectrometer. In each case, features attributed to protonated alcohol-ether dimers and protonated ether monomers were observed, as well as those ions obtained by ionizing neat alcohol or ether samples alone. Theoretical calculations, carried out to establish the energetics of the various possible reactions leading to the formation of the observed binary adducts, indicate that the most thermodynamically favorable pathway corresponds to the addition of a protonated alcohol monomer to neutral ether.

  20. Carcinogenicity and DNA adduct formation of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone and enantiomers of its metabolite 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol in F-344 rats.

    PubMed

    Balbo, Silvia; Johnson, Charles S; Kovi, Ramesh C; James-Yi, Sandra A; O'Sullivan, M Gerard; Wang, Mingyao; Le, Chap T; Khariwala, Samir S; Upadhyaya, Pramod; Hecht, Stephen S

    2014-12-01

    4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is metabolized to enantiomers of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL), found in the urine of virtually all people exposed to tobacco products. We assessed the carcinogenicity in male F-344 rats of (R)-NNAL (5 ppm in drinking water), (S)-NNAL (5 ppm), NNK (5 ppm) and racemic NNAL (10 ppm) and analyzed DNA adduct formation in lung and pancreas of these rats after 10, 30, 50 and 70 weeks of treatment. All test compounds induced a high incidence of lung tumors, both adenomas and carcinomas. NNK and racemic NNAL were most potent; (R)-NNAL and (S)-NNAL had equivalent activity. Metastasis was observed from primary pulmonary carcinomas to the pancreas, particularly in the racemic NNAL group. DNA adducts analyzed were O (2)-[4-(3-pyridyl)-4-oxobut-1-yl]thymidine (O (2)-POB-dThd), 7-[4-(3-pyridyl)-4-oxobut-1-yl]guanine(7-POB-Gua),O (6)-[4-(3-pyridyl)-4-oxobut-1-yl]deoxyguanosine(O (6)-POB-dGuo),the 4-(3-pyridyl)-4-hydroxybut-1-yl(PHB)adductsO (2)-PHB-dThd and 7-PHB-Gua, O (6)-methylguanine (O (6)-Me-Gua) and 4-hydroxy-1-(3-pyridyl)-1-butanone (HPB)-releasing adducts. Adduct levels significantly decreased with time in the lungs of rats treated with NNK. Pulmonary POB-DNA adducts and O (6)-Me-Gua were similar in rats treated with NNK and (S)-NNAL; both were significantly greater than in the (R)-NNAL rats. In contrast, pulmonary PHB-DNA adduct levels were greatest in the rats treated with (R)-NNAL. Total pulmonary DNA adduct levels were similar in (S)-NNAL and (R)-NNAL rats. Similar trends were observed for DNA adducts in the pancreas, but adduct levels were significantly lower than in the lung. The results of this study clearly demonstrate the potent pulmonary carcinogenicity of both enantiomers of NNAL in rats and provide important new information regarding DNA damage by these compounds in lung and pancreas.

  1. Fluorescent adduct formation with terbium: a novel strategy for transferrin glycoform identification in human body fluids and carbohydrate-deficient transferrin HPLC method validation.

    PubMed

    Sorio, Daniela; De Palo, Elio Franco; Bertaso, Anna; Bortolotti, Federica; Tagliaro, Franco

    2017-02-01

    This paper puts forward a new method for the transferrin (Tf) glycoform analysis in body fluids that involves the formation of a transferrin-terbium fluorescent adduct (TfFluo). The key idea is to validate the analytical procedure for carbohydrate-deficient transferrin (CDT), a traditional biochemical serum marker to identify chronic alcohol abuse. Terbium added to a human body-fluid sample produced TfFluo. Anion exchange HPLC technique, with fluorescence detection (λ exc 298 nm and λ em 550 nm), permitted clear separation and identification of Tf glycoform peaks without any interfering signals, allowing selective Tf sialoforms analysis in human serum and body fluids (cadaveric blood, cerebrospinal fluid, and dried blood spots) hampered for routine test. Serum samples (n = 78) were analyzed by both traditional absorbance (Abs) and fluorescence (Fl) HPLC methods and CDT% levels demonstrated a significant correlation (p < 0.001 Pearson). Intra- and inter-runs CV% was 3.1 and 4.6%, respectively. The cut-off of 1.9 CDT%, related to the HPLC Abs proposed as the reference method, by interpolation in the correlation curve with the present method demonstrated a 1.3 CDT% cut-off. Method comparison by Passing-Bablok and Bland-Altman tests demonstrated Fl versus Abs agreement. In conclusion, the novel method is a reliable test for CDT% analysis and provides a substantial analytical improvement offering important advantages in terms of types of body fluid analysis. Its sensitivity and absence of interferences extend clinical applications being reliable for CDT assay on body fluids usually not suitable for routine test. Graphical Abstract The formation of a transferrin-terbium fluorescent adduct can be used to analyze the transferrin glycoforms. The HPLC method for carbohydrate-deficient transferrin (CDT%) measurement was validated and employed to determine the levels in different body fluids.

  2. THE K-REGION DIHYDRODIOL OF BENZO[A]PYRENE INDUCES DNA DAMAGE AND MORPHOLOGICAL CELL TRANSFORMATION IN C3H10T1/2CL8 MOUSE EMBRYO CELLS WITHOUT THE FORMATION OF DETECTABLE STABLE COVALENT DNA ADDUCTS

    EPA Science Inventory

    The K -region dihydrodiol ofbenzo[ a ]pyrene induces DNA damage and morphological cell transformation in C3HlOTY2CL8 mouse embryo cells without the formation of detectable stable covalent DNA adducts

    Benzo[ a ]pyrene (B[ a ]P) is the most thoroughly studied polycyclic aro...

  3. Fat content and nitrite-curing influence the formation of oxidation products and NOC-specific DNA adducts during in vitro digestion of meat.

    PubMed

    Van Hecke, Thomas; Vossen, Els; Vanden Bussche, Julie; Raes, Katleen; Vanhaecke, Lynn; De Smet, Stefaan

    2014-01-01

    The effects of fat content and nitrite-curing of pork were investigated on the formation of cytotoxic and genotoxic lipid oxidation products (malondialdehyde, 4-hydroxy-2-nonenal, volatile simple aldehydes), protein oxidation products (protein carbonyl compounds) and NOC-specific DNA adducts (O6-carboxy-methylguanine) during in vitro digestion. The formation of these products during digestion is suggested to be responsible for the association between red meat and processed meat consumption and colorectal cancer risk. Digestion of uncured pork to which fat was added (total fat content 5 or 20%), resulted in significantly higher lipid and protein oxidation in the mimicked duodenal and colonic fluids, compared to digestion of pork without added fat (1% fat). A higher fat content also significantly favored the formation of O6-carboxy-methylguanine in the colon. Nitrite-curing of meat resulted in significantly lower lipid and protein oxidation before and after digestion, while an inconsistent effect on the formation of O6-carboxy-methylguanine was observed. The presented results demonstrate that haem-Fe is not solely responsible for oxidation and nitrosation reactions throughout an in vitro digestion approach but its effect is promoted by a higher fat content in meat.

  4. Fat Content and Nitrite-Curing Influence the Formation of Oxidation Products and NOC-Specific DNA Adducts during In Vitro Digestion of Meat

    PubMed Central

    Van Hecke, Thomas; Vossen, Els; Vanden Bussche, Julie; Raes, Katleen; Vanhaecke, Lynn; De Smet, Stefaan

    2014-01-01

    The effects of fat content and nitrite-curing of pork were investigated on the formation of cytotoxic and genotoxic lipid oxidation products (malondialdehyde, 4-hydroxy-2-nonenal, volatile simple aldehydes), protein oxidation products (protein carbonyl compounds) and NOC-specific DNA adducts (O6-carboxy-methylguanine) during in vitro digestion. The formation of these products during digestion is suggested to be responsible for the association between red meat and processed meat consumption and colorectal cancer risk. Digestion of uncured pork to which fat was added (total fat content 5 or 20%), resulted in significantly higher lipid and protein oxidation in the mimicked duodenal and colonic fluids, compared to digestion of pork without added fat (1% fat). A higher fat content also significantly favored the formation of O6-carboxy-methylguanine in the colon. Nitrite-curing of meat resulted in significantly lower lipid and protein oxidation before and after digestion, while an inconsistent effect on the formation of O6-carboxy-methylguanine was observed. The presented results demonstrate that haem-Fe is not solely responsible for oxidation and nitrosation reactions throughout an in vitro digestion approach but its effect is promoted by a higher fat content in meat. PMID:24978825

  5. Measurement artifacts identified in the UV-vis spectroscopic study of adduct formation within the context of molecular imprinting of naproxen

    NASA Astrophysics Data System (ADS)

    Perez, Martin; Concu, Riccardo; Ornelas, Mariana; Cordeiro, M. Natália D. S.; Azenha, Manuel; Fernando Silva, A.

    2016-01-01

    The ultraviolet-visible spectroscopy has been assessed as a technique for the evaluation of the strength of template-precursor adduct in the development of molecular imprints of the non-steroidal anti-inflammatory drug naproxen (NAP). The commonly employed approach relies on the collection of UV spectra of drug + precursor mixtures at different proportions, the spectra being recorded against blanks containing the same concentration of the precursor. The observation of either blue or red band-shifts and abatement of a major band are routinely attributed to template-precursor adduct formation. Following the described methodology, the precursors 1-(triethoxysilylpropyl)-3-(trimethoxysilylpropyl)-4,5-dihydroimidazolium iodide (AO-DHI+) and 4-(2-(trimethoxysilyl)ethyl)pyridine (PETMOS) provoked a blue-shift and band abatement effect on the NAP spectrum. Molecular dynamics simulations indicated a reasonable affinity between NAP and these precursors (coordination numbers 0.33 for AO-DHI+ and 0.18 for PETMOS), hence showing that NAP-precursor complexation is in fact effective. However, time dependent density functional theory (TD-DFT) calculations of the spectra of both free and precursor-complexed NAP were identical, thus providing no theoretical basis for the complexation-induced effects observed. We realized that the intense spectral bands of AO-DHI+ and PETMOS (at around 265 nm) superimpose partially with the NAP bands, and the apparent "blue-shifting" in the NAP spectra when mixed with AO-DHI + and PETMOS was in this case a spurious effect of the intense background subtraction. Therefore, extreme care must be taken when interpreting other spectroscopic results obtained in a similar fashion.

  6. Synthesis, characterization and thermodynamics of complex formation of some new Schiff base ligands with some transition metal ions and the adduct formation of zinc Schiff base complexes with some organotin chlorides

    NASA Astrophysics Data System (ADS)

    Asadi, Mozaffar; Asadi, Zahra; Torabi, Susan; Lotfi, Najmeh

    Four new complexes, [M(Salpyr)] where Salpyr = N,N'-bis(Salicylidene)-2,3- and 3,4-diiminopyridine and M = Co, Cu, Mn, Ni and Zn were synthesized and characterized by 1H NMR, IR spectroscopy, elemental analysis and UV-vis spectrophotometry. UV-vis spectrophotometric study of the adduct formation of the zinc(II) complexes, [Zn(2,3-Salpyr)] and [Zn(3,4-Salpyr)], as donor with R2SnCl2 (R = methyl, phenyl, n-butyl), PhSnCl3 and Bu3SnCl as acceptors has been investigated in methanol, as solvent. The formation constants and the thermodynamic free energies were measured using UV-vis spectrophotometry. Titration of the organotin chlorides with Zn(II) complexes at various temperatures (T = 283-313 K) leads to 1:1 adduct formation. The results show that the formation constants were decreased by increasing the temperature. The trend of the reaction of RnSnCl4-n as acceptors toward given zinc complexes was as follows: PhSnCl3 > Me2SnCl2 > Ph2SnCl2 > Bu2SnCl2 > Bu3SnCl By considering the formation constants and the ΔG° of the complex formation for the Schiff base as donor and the M(II) as acceptor, the following conclusion was drawn: the formation constant for a given Schiff base changes according to the following trend: Ni > Cu > Co > Zn > Mn

  7. Flight restriction prevents associative learning deficits but not changes in brain protein-adduct formation during honeybee ageing.

    PubMed

    Tolfsen, Christina C; Baker, Nicholas; Kreibich, Claus; Amdam, Gro V

    2011-04-15

    Honeybees (Apis mellifera) senesce within 2 weeks after they discontinue nest tasks in favour of foraging. Foraging involves metabolically demanding flight, which in houseflies (Musca domestica) and fruit flies (Drosophila melanogaster) is associated with markers of ageing such as increased mortality and accumulation of oxidative damage. The role of flight in honeybee ageing is incompletely understood. We assessed relationships between honeybee flight activity and ageing by simulating rain that confined foragers to their colonies most of the day. After 15 days on average, flight-restricted foragers were compared with bees with normal (free) flight: one group that foraged for ∼15 days and two additional control groups, for flight duration and chronological age, that foraged for ∼5 days. Free flight over 15 days on average resulted in impaired associative learning ability. In contrast, flight-restricted foragers did as well in learning as bees that foraged for 5 days on average. This negative effect of flight activity was not influenced by chronological age or gustatory responsiveness, a measure of the bees' motivation to learn. Contrasting their intact learning ability, flight-restricted bees accrued the most oxidative brain damage as indicated by malondialdehyde protein adduct levels in crude cytosolic fractions. Concentrations of mono- and poly-ubiquitinated brain proteins were equal between the groups, whereas differences in total protein amounts suggested changes in brain protein metabolism connected to forager age, but not flight. We propose that intense flight is causal to brain deficits in aged bees, and that oxidative protein damage is unlikely to be the underlying mechanism.

  8. Kinetics and Thermochemistry of Reversible Adduct Formation in the Reaction of Cl((sup 2)P(sub J)) with CS2

    NASA Technical Reports Server (NTRS)

    Nicovich, J. M.; Shackelford, C. J.; Wine, P. H.

    1997-01-01

    Reversible adduct formation in the reaction of Cl((sup 2)P(sub J)) with CS2 has been observed over the temperature range 193-258 K by use of time-resolved resonance fluorescence spectroscopy to follow the decay of pulsed-laser-generated Cl((sup 2)P(sub J)) into equilbrium with CS2Cl. Rate coefficients for CS2Cl formation and decomposition have been determined as a function of temperature and pressure; hence, the equilbrium constant has been determined as a function of temperature. A second-law analysis of the temperature dependence of Kp and heat capacity corrections calculated with use of an assumed CS2Cl structure yields the following thermodynamic parameters for the association reaction: Delta-H(sub 298) = -10.5 +/- 0.5 kcal/mol, Delta-H(sub 0) = -9.5 +/- 0.7 kcal/mol, Delta-S(sub 298) = -26.8 +/- 2.4 cal/mol.deg., and Delta-H(sub f,298)(CS2Cl) = 46.4 +/- 0.6 kcal/mol. The resonance fluorescence detection scheme has been adapted to allow detection of Cl((sup 2)P(sub J)) in the presence of large concentrations of O2, thus allowing the CS2Cl + Cl + O2 reaction to be investigated. We find that the rate coefficient for CS2Cl + O2 reaction via all channels that do not generate Cl((sup 2)P(sub J)) is less than 2.5 x 10(exp-16) cu cm/(molecule.s) at 293 K and 300-Torr total pressure and that the total rate coefficient is less than 2 x 10 (exp -15) cu cm/(molecule.s) at 230 K and 30-Torr total pressure. Evidence for reversible adduct formation in the reaction of Cl((sup 2)P(sub J)) with COS was sought but not observed, even at temperatures as low as 194 K.

  9. Influence of selenium, age and dosage of 7,12-dimethylbenz(a)anthracene (DMBA) on the in vivo formation of DNA adducts in mammary tissue

    SciTech Connect

    Jinzhou Liu; Milner, J.A. )

    1991-03-15

    Diets formulated to contain selenium, as sodium selenite, 0.1 or 2 {mu}g/g were fed for 2 weeks prior to DMBA treatment. Food intake and weight gain were not influenced by Se intake. Anti- and syn-dihydrodiol epoxide adducts reached maximum binding by 24 h. Se supplementation inhibited by about 50% the appearance of both anti-and syn- DMBA-DNA adducts. Dietary selenium increased the rate of removal of the anti-dihydrodiol epoxide adduct bound to guanine, but delayed the removal of the other adducts. The occurrence of DMBA-DNA adducts correlated positively with the dosage of DMBA administered. Binding increased about 40% as the rat's age increased from 36 to 125 d. Se supplementation inhibited binding in 36, 54 and 125 d old rats. These data confirmed that dietary selenium is effective in inhibiting in vivo metabolism of DMBA.

  10. Formation of DNA adducts in the skin of psoriasis patients, in human skin in organ culture, and in mouse skin and lung following topical application of coal-tar and juniper tar.

    PubMed

    Schoket, B; Horkay, I; Kósa, A; Páldeák, L; Hewer, A; Grover, P L; Phillips, D H

    1990-02-01

    Preparations of coal-tar and juniper tar (cade oil) that are used in the treatment of psoriasis are known to contain numerous potentially carcinogenic polycyclic aromatic hydrocarbons (PAH). Evidence of covalent binding to DNA by components of these mixtures was sought in a) human skin biopsy samples from 12 psoriasis patients receiving therapy with these agents, b) human skin explants maintained in organ culture and treated topically with the tars, and c) the skin and lungs of mice treated with repeated doses of the formulations following the regimen used in the clinic. DNA was isolated from the human and mouse tissues and digested enzymically to mononucleotides. 32P-Post-labeling analysis revealed the presence of aromatic DNA adducts in the biopsy samples at levels of up to 0.4 fmol total adducts/microgram DNA. Treatment of human skin in organ culture produced similar levels of adducts, while treatment with dithranol, a non-mutagenic therapeutic agent, resulted in chromatograms indistinguishable from those from untreated controls. In mouse skin, coal-tar ointment and juniper tar gave similar DNA adduct levels, with a similar time-course of removal: maximum levels (0.5 fmol/microgram DNA) at 24 h after the final treatment declined rapidly to 0.05 fmol/microgram at 7 d, thereafter declining slowly over the succeeding 25 d. However, while coal-tar ointment produced only very low levels of adducts in mouse lung (less than 0.03 fmol/microgram DNA), juniper tar produced adducts at a high level (0.7 fmol/microgram DNA) that were persistent in this tissue. These results provide direct evidence for the formation of potentially carcinogenic DNA damage in human and mouse tissue by components of these therapeutic tar preparations.

  11. Determination of equilibrium constant of amino carbamate adduct formation in sisomicin by a high pH based high performance liquid chromatography.

    PubMed

    Wlasichuk, Kenneth B; Tan, Li; Guo, Yushen; Hildebrandt, Darin J; Zhang, Hao; Karr, Dane E; Schmidt, Donald E

    2015-01-01

    Amino carbamate adduct formation from the amino group of an aminoglycoside and carbon dioxide has been postulated as a mechanism for reducing nephrotoxicity in the aminoglycoside class compounds. In this study, sisomicin was used as a model compound for amino carbamate analysis. A high pH based reversed-phase high performance liquid chromatography (RP-HPLC) method is used to separate the amino carbamate from sisomicin. The carbamate is stable as the breakdown is inhibited at high pH and any reactive carbon dioxide is removed as the carbonate. The amino carbamate was quantified and the molar fraction of amine as the carbamate of sisomicin was obtained from the HPLC peak areas. The equilibrium constant of carbamate formation, Kc, was determined to be 3.3 × 10(-6) and it was used to predict the fraction of carbamate over the pH range in a typical biological systems. Based on these results, the fraction of amino carbamate at physiological pH values is less than 13%, and the postulated mechanism for nephrotoxicity protection is not valid. The same methodology is applicable for other aminoglycosides.

  12. Kinetics and thermochemistry of reversible adduct formation in the reaction of Cl( sup 2 P sub J ) with CS sub 2

    SciTech Connect

    Nicovich, J.M.; Shackelford, C.J.; Wine, P.H. )

    1990-04-05

    Reversible adduct formation in the reaction of Cl({sup 2}P{sub J}) with CS{sub 2} has been observed over the temperature range 193-258 K by use of time-resolved resonance fluorescence spectroscopy to follow the decay of pulsed-laser-generated Cl({sup 2}P{sub J}) into equilibrium with CS{sub 2}Cl. Rate coefficients for CS{sub 2}Cl formation and decomposition have been determined as a function of temperature and pressure; hence, the equilibrium constant has been determined as a function of temperature. We find that the rate coefficient for CS{sub 2}Cl + O{sub 2} reaction via all channels that do not generate Cl({sup 2}P{sub J}) is <2.5 {times} 10{sup {minus}16} cm{sup 3} molecule{sup {minus}1} s{sup {minus}1} at 293 K and 300-Torr total pressure and that the total rate coefficient is <2 {times} 10{sup {minus}15} cm{sup 3} molecule{sup {minus}1} s{sup {minus}1} at 230 K and 30-Torr total pressure.

  13. Correlation between CYP1A1 transcript, protein level, enzyme activity and DNA adduct formation in normal human mammary epithelial cell strains exposed to benzo[a]pyrene

    PubMed Central

    Divi, Rao L.; Einem Lindeman, Tracey L.; Shockley, Marie E.; Keshava, Channa; Weston, Ainsley; Poirier, Miriam C.

    2014-01-01

    The polycyclic aromatic hydrocarbon (PAH) benzo(a)pyrene (BP) is thought to bind covalently to DNA, through metabolism by cytochrome P450 1A1 (CYP1A1) and CYP1B1, and other enzymes, to form r7, t8, t9-trihydroxy-c-10-(N 2-deoxyguanosyl)-7,8,9,10-tetrahydro-benzo[a]-pyrene (BPdG). Evaluation of RNA expression data, to understand the contribution of different metabolic enzymes to BPdG formation, is typically presented as fold-change observed upon BP exposure, leaving the actual number of RNA transcripts unknown. Here, we have quantified RNA copies/ng cDNA (RNA cpn) for CYP1A1 and CYP1B1, as well as NAD(P)H:quinone oxidoreductase 1 (NQO1), which may reduce formation of BPdG adducts, using primary normal human mammary epithelial cell (NHMEC) strains, and the MCF-7 breast cancer cell line. In unexposed NHMECs, basal RNA cpn values were 58–836 for CYP1A1, 336–5587 for CYP1B1 and 5943–40112 for NQO1. In cells exposed to 4.0 µM BP for 12h, RNA cpn values were 251–13234 for CYP1A1, 4133–57078 for CYP1B1 and 4456–55887 for NQO1. There were 3.5 (mean, range 0.2–15.8) BPdG adducts/108 nucleotides in the NHMECs (n = 16), and 790 in the MCF-7s. In the NHMECs, BP-induced CYP1A1 RNA cpn was highly associated with BPdG (P = 0.002), but CYP1B1 and NQO1 were not. Western blots of four NHMEC strains, chosen for different levels of BPdG adducts, showed a linear correlation between BPdG and CYP1A1, but not CYP1B1 or NQO1. Ethoxyresorufin-O-deethylase (EROD) activity, which measures CYP1A1 and CYP1B1 together, correlated with BPdG, but NQO1 activity did not. Despite more numerous levels of CYP1B1 and NQO1 RNA cpn in unexposed and BP-exposed NHMECs and MCF-7cells, BPdG formation was only correlated with induction of CYP1A1 RNA cpn. The higher level of BPdG in MCF-7 cells, compared to NHMECs, may have been due to a much increased induction of CYP1A1 and EROD. Overall, BPdG correlation was observed with CYP1A1 protein and CYP1A1/1B1 enzyme activity, but not with CYP1B1 or NQO

  14. Formation of 1,2:3,4-Diepoxybutane-Specific Hemoglobin Adducts in 1,3-Butadiene Exposed Workers

    PubMed Central

    Boysen, Gunnar; Georgieva, Nadia I.; Bordeerat, Narisa K.; Šram, Radim J.; Vacek, Pamela; Albertini, Richard J.; Swenberg, James A.

    2012-01-01

    1,3-Butadiene (BD) is an important industrial chemical that is classified as a human carcinogen. BD carcinogenicity has been attributed to its metabolism to several reactive epoxide metabolites and formation of the highly mutagenic 1,2:3,4-diepoxybutane (DEB) has been hypothesized to drive mutagenesis and carcinogenesis at exposures experienced in humans. We report herein the formation of DEB-specific N,N-(2,3-dihydroxy-1,4-butadiyl)valine (pyr-Val) in BD-exposed workers as a biomarker of DEB formation. pyr-Val was determined in BD monomer and polymer plant workers that had been previously analyzed for several other biomarkers of exposure and effect. pyr-Val was detected in 68 of 81 (84%) samples ranging from 0.08 to 0.86 pmol/g globin. Surprisingly, pyr-Val was observed in 19 of 23 administrative control subjects not known to be exposed to BD, suggesting exposure from environmental sources of BD. The mean ± SD amounts of pyr-Val were 0.11 ± 0.07, 0.16 ± 0.12, and 0.29 ± 0.20 pmol/g globin in the controls, monomer, and polymer workers, respectively, clearly demonstrating formation of DEB in humans. The amounts of pyr-Val found in this study suggest that humans are much less efficient in the formation of DEB than mice or rats at similar exposures. Formation of pyr-Val was more than 50-fold lower than has been associated with increased mutagenesis in rodents. The results further suggest that formation of DEB relative to other epoxides is significantly different in the highest exposed polymer workers compared with controls and BD monomer workers. Whether this is due to saturation of metabolic formation or increased GST-mediated detoxification could not be determined. PMID:22003190

  15. Formation and persistence of DNA adducts formed by the carcinogenic air pollutant 3-nitrobenzanthrone in target and non-target organs after intratracheal instillation in rats.

    PubMed

    Bieler, Christian A; Cornelius, Michael G; Stiborova, Marie; Arlt, Volker M; Wiessler, Manfred; Phillips, David H; Schmeiser, Heinz H

    2007-05-01

    Sprague-Dawley rats were treated by intratracheal instillation with a single dose of 0.2 mg/kg body wt of 3-nitrobenzanthrone (3-NBA), and whole blood, lungs, pancreases, kidneys, urinary bladders, hearts, small intestines and livers were removed at various times after administration. At five posttreatment times (2 days, 2, 10, 20 and 36 weeks), DNA adducts were analysed in each tissue by (32)P-postlabelling to study their long-term persistence. 3-NBA-derived DNA adducts consisting of the same adduct pattern were observed in all tissues from animals killed between 2 days and 36 weeks and between 2 days and 20 weeks in blood. DNA isolated from whole blood contained the same 3-NBA-specific adduct pattern as that found in tissues. Although total adduct levels in the blood were much lower than those found in the lung, the target organ of 3-NBA tumourigenicity, they were related (20-25%, R(2) = 0.98) to the levels found in lung. In all organs, total adduct levels decreased over time to 20-30% of the initial levels till the latest time point (36 weeks) and showed a biphasic profile, with a rapid loss during the first 2 weeks followed by a much slower decline that reached a stable plateau at 20 weeks after treatment. These results show that uptake of 3-NBA by the lung induces high levels of specific DNA adducts in target and non-target organs of the rat. The correlation between DNA adducts in lung and blood suggests that persistent 3-NBA-DNA adducts in the blood may be useful biomarkers for human respiratory exposure to 3-NBA.

  16. Modulation of 3-methylcholanthrene toxicity in cultured neoplastic keratinocytes by glucocorticoids and retinoids is not accounted for by macromolecular adduct formation.

    PubMed Central

    Rubin, A L; Rice, R H

    1989-01-01

    3-Methylcholanthrene (3-MC) greatly inhibits the growth of two lines of human squamous carcinoma cells, SCC-9 and SCC-12B2. Exposure of the cells to 2,3,7,8-tetrachlorodibenzo-p-dioxin alone was much less effective and, in the presence of 3-MC, did not alter the sensitivity (EC50 = 0.3 microM) or extent of growth inhibition by the latter. The degree of 3-MC-mediated inhibition, however, was markedly alleviated by inclusion of retinoic acid (EC50 greater than or equal to 0.7 microM) and hydrocortisone (EC50 = 40 nM) or dexamethasone (EC50 = 3 nM) in the culture medium. These physiological effectors, which are known to have opposing actions on keratinocyte character in SCC cells, did not significantly alter either aryl hydrocarbon hydroxylase activity or macromolecular adduct formation. Further analysis of the cellular responses indicated that hydrocortisone and, in some experiments, retinoids increased the growth rate in 3-MC-exposed cultures, while 3-MC increased the saturation density in retinoic acid-exposed cultures, an example of interference with a physiological response of the cells. These results indicate that alteration of the differentiated state, regardless of the direction of the change, can alter the sensitivity of the cells to toxic stimuli. Further investigation of the bases of such toxic responses and their modulation by the microenvironment may enhance our understanding of the target cell specificity of polycyclic aromatic hydrocarbons. Images PMID:2468166

  17. Adduct formation of Thimerosal with human and rat hemoglobin: a study using liquid chromatography coupled to electrospray time-of-flight mass spectrometry (LC/ESI-TOF-MS).

    PubMed

    Janzen, Rasmus; Schwarzer, Miriam; Sperling, Michael; Vogel, Martin; Schwerdtle, Tanja; Karst, Uwe

    2011-08-01

    Thimerosal (THI) is used as a preservative in many vaccines throughout the world. Ethylmercury (EtHg(+)), released from THI in aqueous media, has a high affinity to thiol functions of proteins. In blood, hemoglobin is a likely target protein because of its high abundance and its several free thiol functions. In comparison to hemoglobin of human origin, hemoglobin of rats exhibits almost twice as many free thiol groups, which might lead to different binding behavior and therefore a limited comparability between the situation in man and in rats, which are frequently used as models for mercury species toxicity investigations. Thus, the adduct formation of EtHg(+) with hemoglobin of humans and rats was compared under simulated physiological conditions by using gradient reversed-phase liquid chromatography (LC) with electrospray time-of-flight mass spectrometry (ESI-TOF-MS) detection. The binding stoichiometry correlated with the number of free thiols in the α- and β-chain of hemoglobin. The use of rats to verify the safety of additives in vaccines like Thimerosal is therefore doubtful and should be reevaluated.

  18. A fluorescence-based analysis of aristolochic acid-derived DNA adducts.

    PubMed

    Romanov, Victor; Sidorenko, Victoria; Rosenquist, Thomas A; Whyard, Terry; Grollman, Arthur P

    2012-08-01

    Aristolochic acids (AAs), major components of plant extracts from Aristolochia species, form (after metabolic activation) pro-mutagenic DNA adducts in renal tissue. The DNA adducts can be used as biomarkers for studies of AA toxicity. Identification of these adducts is a complicated and time-consuming procedure. We present here a fast, nonisotopic, fluorescence-based assay for the detection of AA-DNA adducts in multiple samples. This approach allows analysis of AA adducts in synthetic DNA with known nucleotide composition and analysis of DNA adducts formed from chemically diverse AAs in vitro. The method can be applied to compare AA-DNA adduct formation in cells and tissues.

  19. Enhanced glutathione depletion, protein adduct formation, and cytotoxicity following exposure to 4-hydroxy-2-nonenal (HNE) in cells expressing human multidrug resistance protein-1 (MRP1) together with human glutathione S-transferase-M1 (GSTM1)

    PubMed Central

    Rudd, Lisa P.; Kabler, Sandra L.; Morrow, Charles S.; Townsend, Alan J.

    2011-01-01

    4-hydroxy-2-nonenal (HNE) is one of the most reactive products of lipid peroxidation and has both cytotoxic and genotoxic effects in cells. Several enzymatic pathways have been reported to detoxify HNE, including conjugation by glutathione-S-transferases (GSTs). Removal of the resulting HNE-glutathione conjugate (HNE-SG) by an efflux transporter may required for complete detoxification. We investigated the effect of expression of GSTM1 and/or the ABC efflux transporter protein, multidrug-resistance protein-1 (MRP1), on HNE-induced cellular toxicity. Stably transfected MCF7 cell lines were used to examine the effect of GSTM1 and/or MRP1 expression on HNE-induced cytotoxicity, GSH depletion, and HNE-protein adduct formation. Co-expression in the MCF7 cell line of GSTM1 with MRP1 resulted in a 2.3-fold sensitization to HNE cytotoxicity (0.44-fold IC50 value relative to control) rather than the expected protection. Expression of either GSTM1 or MRP1 alone also resulted in slight sensitization to HNE cytotoxicity (0.79-fold and 0.71-fold decreases in IC50 values, respectively). Co-expression of GSTM1 and MRP1 strongly enhanced the formation of HNE-protein adducts relative to the non-expressing control cell line, whereas expression of either MRP1 alone or GSTM1 alone yielded similarly low levels of HNE-protein adducts to that of the control cell line. Glutathione (GSH) levels were reduced by 10–20% in either the control cell line or the MCF7/GSTM1 cell line with the same HNE exposure for 60 minutes. However, HNE induced > 80% depletion of GSH in cells expressing MRP1 alone. Co-expression of both MRP1 and GSTM1 caused slightly greater GSH depletion, consistent with the greater protein adduct formation and cytotoxicity in this cell line. Since expression of GSTM1 or MRP1 alone did not strongly sensitize cells to HNE, or result in greater HNE-protein adducts than in the control cell line, these results indicate that MRP1 and GSTM1 collaborate to enhance HNE-protein adduct

  20. A new approach to evaluating the extent of Michael adduct formation to PAH quinones: tetramethylammonium hydroxide (TMAH) thermochemolysis with GC/MS.

    PubMed

    Briggs, Mary K; Desavis, Emmanuel; Mazzer, Paula A; Sunoj, R B; Hatcher, Susan A; Hadad, Christopher M; Hatcher, Patrick G

    2003-11-01

    Polycyclic aromatic hydrocarbons (PAHs) are environmental pollutants that are converted to cytotoxic and carcinogenic metabolites, quinones, by detoxifying enzyme systems in animals. PAH metabolites such as the quinones can form Michael adducts with biological macromolecules containing reactive nucleophiles, making detection of exposure to PAHs difficult using conventional techniques. A technique has been developed for detecting exposure to PAHs. Tetramethylammonium hydroxide (TMAH) thermochemolysis coupled with GC/MS is proposed as an assay method for PAH quinones that have formed Michael adducts with biological molecules. Three PAH quinones (1,4-naphthoquinone, 1,2-naphthoquinone, and 1,4-anthraquinone) and 1,4-benzoquinone were reacted with cysteine, and the TMAH thermochemolysis method was used to assay for both thiol and amine adduction between the quinones and the cysteine. Additional studies with 1,4-naphthoquinone adducts to glutathione and bovine serum albumin showed the same thiol and amine TMAH thermochemolysis products with larger peptides as was observed with cysteine adducts. The TMAH GC/MS method clearly shows great promise for detecting PAH quinones, produced by enzymatic conversion of PAHs in biological systems, that have been converted to respective Michael adducts.

  1. Role of Red Meat and Resistant Starch in Promutagenic Adduct Formation, MGMT Repair, Thymic Lymphoma and Intestinal Tumourigenesis in Msh2 -Deficient Mice.

    PubMed

    Winter, Jean M; Hu, Ying; Young, Graeme P; Kohonen-Corish, Maija R J; Le Leu, Richard K

    2014-01-01

    Red meat may increase promutagenic lesions in the colon. Resistant starch (RS) can reduce these lesions and chemically induced colon tumours in rodents. Msh2 is a mismatch repair (MMR) protein, recognising unrepaired promutagenic adducts for removal. We determined if red meat and/or RS modulated DNA adducts or oncogenesis in Msh2-deficient mice. A total of 100 Msh2-/- and 60 wild-type mice consumed 1 of 4 diets for 6 months: control, RS, red meat and red meat+RS. Survival time, aberrant crypt foci (ACF), colon and small intestinal tumours, lymphoma, colonic O6-methyl-2-deoxyguanosine (O6MeG) adducts, methylguanine methyltransferase (MGMT) and cell proliferation were examined. In Msh2-/- mice, red meat enhanced survival compared to control (p<0.01) and lowered total tumour burden compared to RS (p<0.167). Msh2-/- mice had more ACF than wild-type mice (p<0.014), but no colon tumours developed. Msh2-/- increased cell proliferation (p<0.001), lowered DNA O6MeG adducts (p<0.143) and enhanced MGMT protein levels (p<0.001) compared to wild-type mice, with RS supplementation also protecting against DNA adducts (p<0.01). No link between red meat-induced promutagenic adducts and risk for colorectal cancer was observed after 6 months' feeding. Colonic epithelial changes after red meat and RS consumption with MMR deficiency will differ from normal epithelial cells.

  2. Differential oxidative modification of proteins in MRL+/+ and MRL/lpr mice: Increased formation of lipid peroxidation-derived aldehyde-protein adducts may contribute to accelerated onset of autoimmune response.

    PubMed

    Wang, Gangduo; Li, Hui; Firoze Khan, M

    2012-12-01

    Even though reactive oxygen species (ROS) have been implicated in SLE pathogenesis, the contributory role of ROS, especially the consequences of oxidative modification of proteins by lipid peroxidation-derived aldehydes (LPDAs) such as malondialdehyde (MDA) and 4-hydroxynonenal (HNE) in eliciting an autoimmune response and disease pathogenesis remains largely unexplored. MRL/lpr mice, a widely used model for SLE, spontaneously develop a condition similar to human SLE, whereas MRL+/+ mice with the same MRL background, show much slower onset of SLE. To assess if the differences in the onset of SLE in the two substrains could partly be due to differential expression of LPDAs and to provide evidence for the role of LPDA-modified proteins in SLE pathogenesis, we determined the serum levels of MDA-/HNE-protein adducts, anti-MDA-/HNE-protein adduct antibodies, MDA-/HNE-protein adduct specific immune complexes, and various autoantibodies in 6-, 12- and 18-week old mice of both substrains. The results show age-related increases in the formation of MDA-/HNE-protein adducts, their corresponding antibodies and MDA-/HNE-specific immune complexes, but MRL/lpr mice showed greater and more accelerated response. Interestingly, a highly positive correlation between increased anti-MDA-/HNE-protein adduct antibodies and autoantibodies was observed. More importantly, we further observed that HNE-MSA caused significant inhibition in antinuclear antibodies (ANA) binding to nuclear antigens. These findings suggest that LPDA-modified proteins could be important sources of autoantibodies and CICs in these mice, and thus contribute to autoimmune disease pathogenesis. The observed differential responses to LPDAs in MRL/lpr and MRL+/+ mice may, in part, be responsible for accelerated and delayed onset of the disease, respectively.

  3. Benzo[a]pyrene (BP) DNA adduct formation in DNA repair–deficient p53 haploinsufficient [Xpa(−/−)p53(+/−)] and wild-type mice fed BP and BP plus chlorophyllin for 28 days

    PubMed Central

    Poirier, Miriam C.

    2012-01-01

    We have evaluated DNA damage (DNA adduct formation) after feeding benzo[a]pyrene (BP) to wild-type (WT) and cancer-susceptible Xpa(−/−)p53(+/−) mice deficient in nucleotide excision repair and haploinsufficient for the tumor suppressor p53. DNA damage was evaluated by high-performance liquid chromatography/electrospray ionization tandem mass spectrometry (HPLC/ES-MS/MS), which measures r7,t8,t9-trihydroxy-c-10-(N 2-deoxyguanosyl)-7,8,9,10-tetrahydrobenzo[a]pyrene (BPdG), and a chemiluminescence immunoassay (CIA), using anti-r7,t8-dihydroxy-t-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BPDE)–DNA antiserum, which measures both BPdG and the other stable BP-DNA adducts. When mice were fed 100 ppm BP for 28 days, BP-induced DNA damage measured in esophagus, liver and lung was typically higher in Xpa(−/−)p53(+/−) mice, compared with WT mice. This result is consistent with the previously observed tumor susceptibility of Xpa(−/−)p53(+/−) mice. BPdG, the major DNA adduct associated with tumorigenicity, was the primary DNA adduct formed in esophagus (a target tissue in the mouse), whereas total BP-DNA adducts predominated in higher levels in the liver (a non-target tissue in the mouse). In an attempt to lower BP-induced DNA damage, we fed the WT and Xpa(−/−)p53(+/−) mice 0.3% chlorophyllin (CHL) in the BP-containing diet for 28 days. The addition of CHL resulted in an increase of BP–DNA adducts in esophagus, liver and lung of WT mice, a lowering of BPdG in esophagi of WT mice and livers of Xpa(−/−)p53(+/−) mice and an increase of BPdG in livers of WT mice. Therefore, the addition of CHL to a BP-containing diet showed a lack of consistent chemoprotective effect, indicating that oral CHL administration may not reduce PAH–DNA adduct levels consistently in human organs. PMID:22828138

  4. Benzo[a]pyrene (BP) DNA adduct formation in DNA repair-deficient p53 haploinsufficient [Xpa(-/-)p53(+/-)] and wild-type mice fed BP and BP plus chlorophyllin for 28 days.

    PubMed

    John, Kaarthik; Pratt, M Margaret; Beland, Frederick A; Churchwell, Mona I; McMullen, Gail; Olivero, Ofelia A; Pogribny, Igor P; Poirier, Miriam C

    2012-11-01

    We have evaluated DNA damage (DNA adduct formation) after feeding benzo[a]pyrene (BP) to wild-type (WT) and cancer-susceptible Xpa(-/-)p53(+/-) mice deficient in nucleotide excision repair and haploinsufficient for the tumor suppressor p53. DNA damage was evaluated by high-performance liquid chromatography/electrospray ionization tandem mass spectrometry (HPLC/ES-MS/MS), which measures r7,t8,t9-trihydroxy-c-10-(N (2)-deoxyguanosyl)-7,8,9,10-tetrahydrobenzo[a]pyrene (BPdG), and a chemiluminescence immunoassay (CIA), using anti-r7,t8-dihydroxy-t-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BPDE)-DNA antiserum, which measures both BPdG and the other stable BP-DNA adducts. When mice were fed 100 ppm BP for 28 days, BP-induced DNA damage measured in esophagus, liver and lung was typically higher in Xpa(-/-)p53(+/-) mice, compared with WT mice. This result is consistent with the previously observed tumor susceptibility of Xpa(-/-)p53(+/-) mice. BPdG, the major DNA adduct associated with tumorigenicity, was the primary DNA adduct formed in esophagus (a target tissue in the mouse), whereas total BP-DNA adducts predominated in higher levels in the liver (a non-target tissue in the mouse). In an attempt to lower BP-induced DNA damage, we fed the WT and Xpa(-/-)p53(+/-) mice 0.3% chlorophyllin (CHL) in the BP-containing diet for 28 days. The addition of CHL resulted in an increase of BP-DNA adducts in esophagus, liver and lung of WT mice, a lowering of BPdG in esophagi of WT mice and livers of Xpa(-/-)p53(+/-) mice and an increase of BPdG in livers of WT mice. Therefore, the addition of CHL to a BP-containing diet showed a lack of consistent chemoprotective effect, indicating that oral CHL administration may not reduce PAH-DNA adduct levels consistently in human organs.

  5. Human DNA adduct measurements: State of the art

    SciTech Connect

    Poirier, M.C.; Weston, A.

    1996-10-01

    Human DNA adduct formation (covalent modification of DNA with chemical carcinogens) is a promising biomarker for elucidating the molecular epidemiology of cancer. Classes of compounds for which human DNA adducts have been observed include polycyclic aromatic hydrocarbons (PAHs), nitrosamines, mycotoxins, aromatic amines, heterocyclic amines, ultraviolet light, and alkylating cancer chemotherapeutic agents. Most human DNA adduct exposure monitoring has been performed with either {sup 32}P-postlabeling or immunoassays, neither of which is able to chemically characterize specific DNA adducts. Recently developed combinations of methods with chemical and physical end points have allowed identification of specific adducts in human tissues. Studies are presented that demonstrate that high ambient levels of benzo[a]pyrene are associated with high levels of DNA adducts in human blood cell DNA and that the same DNA adduct levels drop when the ambient PAH levels decrease significantly. DNA adduct dosimetry, which has been achieved with some dietary carcinogens and cancer chemotherapeutic agents, is described, as well as studies correlating DNA adducts with other biomarkers. It is likely that some toxic, noncarcinogenic compounds may have genotoxic effects, including oxidative damage, and that adverse health outcomes other than cancer may be correlated with DNA adduct formation. The studies presented here may serve as useful prototypes for exploration of other toxicological end points. 156 refs., 1 fig., 3 tabs.

  6. Formation and repair kinetics of Pt-(GpG) DNA adducts in extracted circulating tumour cells and response to platinum treatment

    PubMed Central

    Nel, I; Gauler, T C; Eberhardt, W E; Nickel, A-C; Schuler, M; Thomale, J; Hoffmann, A-C

    2013-01-01

    Background: Pt-(GpG) intrastrand crosslinks are the major DNA adducts induced by platinum-based anticancer drugs. In the cell lines and mouse models, the persistence of these lesions correlates significantly with cell damage. Here we studied Pt-(GpG) DNA adducts in circulating tumour cells (CTC) treated with cisplatin in medium upfront to systemic therapy from patients with advanced non-small-cell lung cancer (NSCLC). Methods: Blood was drawn before systemic treatment and the CD45/CD15-depleted fraction of mononuclear cells was exposed to cisplatin, verified for the presence of CTC by pan-cytokeratin (pCK) staining and immunoanalysed for the level of Pt-(GpG) in DNA. Results: Immunostaining for pCK, CD45 and subsequently for Pt-(GpG) adducts in the cisplatin-exposed cells (ex vivo) at different time points depicted distinct differences for adduct persistence in CTC between responders vs non-responders. Conclusion: Pt-(GpG) adducts can be detected in CTC from NSCLC patients and assessing their kinetics may constitute a clinically feasible biomarker for response prediction and dose individualisation of platinum-based chemotherapy. This functional pre-therapeutic test might represent a more biological approach than measuring protein factors or other molecular markers. PMID:23942068

  7. Investigating the adduct formation of organic mercury species with carbonic anhydrase and hemoglobin from human red blood cell hemolysate by means of LC/ESI-TOF-MS and LC/ICP-MS.

    PubMed

    Hogeback, Jens; Schwarzer, Miriam; Wehe, Christoph A; Sperling, Michael; Karst, Uwe

    2016-01-01

    The interaction of mercury species with human erythrocytes is studied to investigate possible high molecular binding partners for mercury species. Human blood hemolysate was spiked with methylmercury and investigated by means of liquid chromatography (LC) coupled to electrospray ionization time of flight mass spectrometry (ESI-ToF-MS) and inductively coupled plasma mass spectrometry (ICP-MS). Beside adduct formation of mercury species with hemoglobin, the main compound of the erythrocytes, mercury binding to the enzyme carbonic anhydrase was revealed. Due to an enzymatic digest of the protein-mercury adduct, the binding site at the free thiol group of the protein was identified. These results indicate that carbonic anhydrase might play a role in mercury toxicity.

  8. Role of malondialdehyde-acetaldehyde adducts in liver injury.

    PubMed

    Tuma, Dean J

    2002-02-15

    Malondialdehyde and acetaldehyde react together with proteins in a synergistic manner and form hybrid protein adducts, designated as MAA adducts. MAA-protein adducts are composed of two major products whose structures and mechanism of formation have been elucidated. MAA adduct formation, especially in the liver, has been demonstrated in vivo during ethanol consumption. These protein adducts are capable of inducing a potent immune response, resulting in the generation of antibodies against both MAA epitopes, as well as against epitopes on the carrier protein. Chronic ethanol administration to rats results in significant circulating antibody titers against MAA-adducted proteins, and high anti-MAA titers have been associated with the severity of liver damage in humans with alcoholic liver disease. In vitro exposure of liver endothelial or hepatic stellate cells to MAA adducts induces a proinflammatory and profibrogenic response in these cells. Thus, during excessive ethanol consumption, ethanol oxidation and ethanol-induced oxidative stress result in the formation of acetaldehyde and malondialdehyde, respectively. These aldehydes can react together synergistically with proteins and generate MAA adducts, which are very immunogenic and possess proinflammatory and profibrogenic properties. By virtue of these potentially toxic effects, MAA adducts may play an important role in the pathogenesis of alcoholic liver injury.

  9. Structure of adduct X, the last unknown of the six major DNA adducts of mitomycin C formed in EMT6 mouse mammary tumor cells.

    PubMed

    Palom, Y; Belcourt, M F; Musser, S M; Sartorelli, A C; Rockwell, S; Tomasz, M

    2000-06-01

    Treatment of EMT6 mouse mammary tumor cells with mitomycin C (MC) results in the formation of six major MC-DNA adducts. We identified the last unknown of these ("adduct X") as a guanine N(2) adduct of 2, 7-diaminomitosene (2,7-DAM), in which the mitosene is linked at its C-10 position to guanine N(2). The assigned structure is based on UV and mass spectra of adduct X isolated directly from the cells, as well as on its difference UV, second-derivative UV, and circular dichroism spectra, synthesis from [8-(3)H]deoxyguanosine, and observation of its heat stability. These tests were carried out using 17 microg of synthetic material altogether. The mechanism of formation of adduct X involves reductive metabolism of MC to 2,7-DAM, which undergoes a second round of reductive activation to alkylate DNA, yielding adduct X and another 2,7-DAM-guanine adduct (adduct Y), which is linked at guanine N7 to the mitosene. Adduct Y has been described previously. Adduct X is formed preferentially at GpC, while adduct Y favors the GpG sequence. In contrast to MC-DNA adducts, the 2,7-DAM-DNA adducts are not cytotoxic.

  10. MUTAGENICITY AND DNA ADDUCT FORMATION OF PAH, NITRO-PAH, AND OXY-PAH FRACTIONS OF ATMOSPHERIC PARTICULATE MATTER FROM SAO PAULO, BRAZIL

    EPA Science Inventory

    Summary
    What is the study?
    Near roadway and immediate roadway exposures to transportation emissions gave very similar results in the Salmonella mutagenicity assay and in an assay for DNA adducts indicating that near roadway genotoxicity is not altered significantly over...

  11. CYP1A1 and CYP1B1 gene expression and DNA adduct formation in normal human mammary epithelial cells exposed to benzo[a]pyrene in the absence or presence of chlorophyllin.

    PubMed

    John, Kaarthik; Divi, Rao L; Keshava, Channa; Orozco, Christine C; Schockley, Marie E; Richardson, Diana L; Poirier, Miriam C; Nath, Joginder; Weston, Ainsley

    2010-06-28

    Benzo[a]pyrene (BP) is a potent pro-carcinogen and ubiquitous environmental pollutant. Here, we examined the induction and modulation of CYP1A1 and CYP1B1 and 10-(deoxyguanosin-N(2)-yl)-7,8,9-trihydroxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BPdG) adduct formation in DNA from 20 primary normal human mammary epithelial cell (NHMEC) strains exposed to BP (4muM) in the absence or presence of chlorophyllin (5muM). Real-time polymerase chain reaction (RT-PCR) analysis revealed strong induction of both CYP1A1 and CYP1B1 by BP, with high levels of inter-individual variability. Variable BPdG formation was found in all strains by r7, t8-dihydroxy-t-9, 10 epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BPDE)-DNA chemiluminescence assay (CIA). Chlorophyllin mitigated BP-induced CYP1A1 and CYP1B1 gene expression in all 20 strains when administered with BP. Chlorophyllin, administered prior to BP-exposure, mitigated CYP1A1 expression in 18/20 NHMEC strains (p<0.005) and CYP1B1 expression in 17/20 NHMEC strains (p<0.005). Maximum percent reductions of CYP1A1 and CYP1B1 gene expression and BPdG adduct formation were observed when cells were pre-dosed with chlorophyllin followed by administration of the carcinogen with chlorophyllin (p<0.005 for CYP1A1 and CYP1B1 expression and p<0.0005 for BPdG adducts). Therefore, chlorophyllin is likely to be a good chemoprotective agent for a large proportion of the human population.

  12. The resveratrol analogue, 2,3′,4,5′-tetramethoxystilbene, does not inhibit CYP gene expression, enzyme activity and benzo[a]pyrene–DNA adduct formation in MCF-7 cells exposed to benzo[a]pyrene

    PubMed Central

    Einem Lindeman, Tracey; Poirier, Miriam C.; Divi, Rao L.

    2011-01-01

    Exposure to carcinogenic polycyclic aromatic hydrocarbons (PAHs) induces cytochrome P450 (CYP) 1A1 and 1B1 enzymes, which biotransform PAHs resulting in the formation of DNA adducts. We hypothesised that 2,3′,4,5′-tetramethoxystilbene (TMS), an analogue of resveratrol and a potent CYP1B1 inhibitor, may inhibit r7, t8, t9-trihydroxy-c-10-(N2deoxyguanosyl)-7,8,9,10-tetrahydro-benzo[a]pyrene (BPdG) adduct formation in cells exposed to benzo[a]pyrene (BP). To address this, MCF-7 cells were cultured for 96 h in the presence of 1 μM BP, 1 μM BP + 1 μM TMS or 1 μM BP + 4 μM TMS. Cells were assayed at 2–12 h intervals for: BPdG adducts by r7, t8-dihydroxy-t-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BPDE)-DNA chemiluminescence immunoassay; CYP1A1 and 1B1 gene expression changes by relative real-time polymerase chain reaction; and CYP1A1/1B1 enzyme activity by ethoxyresorufin-O-deethylase (EROD) assay. Whereas maximal BPdG levels were similar for all exposure groups, the times at which the maxima were reached increased by 16 and 24 h with the addition of 1 and 4 μM TMS, respectively. The maximal expression of CYP1A1 and CYP1B1 occurred at 16, 24 and 48 h, but the maximal level for EROD-specific activity was reached at 24, 48 and 60 h, in cells exposed to 1 μM BP, 1 μM BP + 1 μM TMS or 1 μM BP + 4 μM TMS, respectively. The area under the curve from 4 to 96 h of exposure (AUC4–96 h) for BPdG adduct formation was not increased in the presence of TMS, but for CYP1A1 and CYP1B1 expression fold increase AUC4–96 h and EROD-specific activity AUC4–96 h, there were significant (P < 0.05) increases in the presence of 4 μM TMS. Therefore, during 96 h of exposure in MCF-7 cells, the combination of BP plus TMS caused a slowing of BP biotransformation, with an increase in CYP1A1 and CYP1B1 expression and EROD activity, and a slowing, but no change in magnitude of BPdG formation. PMID:21669939

  13. Formation of a new adduct based on fullerene tris-malonate samarium salt C60-[C60(=C(COO)2)3]Sm2

    NASA Astrophysics Data System (ADS)

    Petrov, A. A.; Keskinov, V. A.; Semenov, K. N.; Charykov, N. A.; Letenko, D. G.; Nikitin, V. A.

    2017-03-01

    Gram quantities of a new adduct based on light fullerene tris-malonate samarium salt C60 [C60(=C(COO)2)3]Sm2 are obtained via the reaction of ion exchange. The obtained adduct is studied by means of electron and infrared spectroscopy, X-ray and elemental analysis, electron microscopy, and thermogravimetry. The polythermal solubility of [C60(=C(COO)2)3]Sm2 in water is determined in ampoules via saturation within 20-70°C. The composition of crystalline hydrate [C60(=C(COO)2)3]Sm2 · 36H2O, which exists in equilibrium with the saturated solution, is estimated.

  14. Chicken fetal liver DNA damage and adduct formation by activation-dependent DNA-reactive carcinogens and related compounds of several structural classes.

    PubMed

    Williams, Gary M; Duan, Jian-Dong; Brunnemann, Klaus D; Iatropoulos, Michael J; Vock, Esther; Deschl, Ulrich

    2014-09-01

    The chicken egg genotoxicity assay (CEGA), which utilizes the liver of an intact and aseptic embryo-fetal test organism, was evaluated using four activation-dependent DNA-reactive carcinogens and four structurally related less potent carcinogens or non-carcinogens. In the assay, three daily doses of test substances were administered to eggs containing 9-11-day-old fetuses and the fetal livers were assessed for two endpoints, DNA breaks using the alkaline single cell gel electrophoresis (comet) assay and DNA adducts using the (32)P-nucleotide postlabeling (NPL) assay. The effects of four carcinogens of different structures requiring distinct pathways of bioactivation, i.e., 2-acetylaminofluorene (AAF), aflatoxin B1 (AFB1), benzo[a]pyrene (B[a]P), and diethylnitrosamine (DEN), were compared with structurally related non-carcinogens fluorene (FLU) and benzo[e]pyrene (B[e]P) or weak carcinogens, aflatoxin B2 (AFB2) and N-nitrosodiethanolamine (NDELA). The four carcinogens all produced DNA breaks at microgram or low milligram total doses, whereas less potent carcinogens and non-carcinogens yielded borderline or negative results, respectively, at higher doses. AAF and B[a]P produced DNA adducts, whereas none was found with the related comparators FLU or B[e]P, consistent with comet results. DEN and NDELA were also negative for adducts, as expected in the case of DEN for an alkylating agent in the standard NPL assay. Also, AFB1 and AFB2 were negative in NPL, as expected, due to the nature of ring opened aflatoxin adducts, which are resistant to enzymatic digestion. Thus, the CEGA, using comet and NPL, is capable of detection of the genotoxicity of diverse DNA-reactive carcinogens, while not yielding false positives for non-carcinogens.

  15. Metformin inhibits 7,12-dimethylbenz[a]anthracene-induced breast carcinogenesis and adduct formation in human breast cells by inhibiting the cytochrome P4501A1/aryl hydrocarbon receptor signaling pathway

    SciTech Connect

    Maayah, Zaid H.; Ghebeh, Hazem; Alhaider, Abdulqader A.; El-Kadi, Ayman O.S.; Soshilov, Anatoly A.; Denison, Michael S.; Ansari, Mushtaq Ahmad; Korashy, Hesham M.

    2015-04-15

    Recent studies have established that metformin (MET), an oral anti-diabetic drug, possesses antioxidant activity and is effective against different types of cancer in several carcinogen-induced animal models and cell lines. However, whether MET can protect against breast cancer has not been reported before. Therefore, the overall objectives of the present study are to elucidate the potential chemopreventive effect of MET in non-cancerous human breast MCF10A cells and explore the underlying mechanism involved, specifically the role of cytochrome P4501A1 (CYP1A1)/aryl hydrocarbon receptor (AhR) pathway. Transformation of the MCF10A cells into initiated breast cancer cells with DNA adduct formation was conducted using 7,12-dimethylbenz[a]anthracene (DMBA), an AhR ligand. The chemopreventive effect of MET against DMBA-induced breast carcinogenesis was evidenced by the capability of MET to restore the induction of the mRNA levels of basic excision repair genes, 8-oxoguanine DNA glycosylase (OGG1) and apurinic/apyrimidinic endonuclease1 (APE1), and the level of 8-hydroxy-2-deoxyguanosine (8-OHdG). Interestingly, the inhibition of DMBA-induced DNA adduct formation was associated with proportional decrease in CYP1A1 and in NAD(P)H:quinone oxidoreductase 1 (NQO1) gene expression. Mechanistically, the involvements of AhR and nuclear factor erythroid 2-related factor-2 (Nrf2) in the MET-mediated inhibition of DMBA-induced CYP1A1 and NQO1 gene expression were evidenced by the ability of MET to inhibit DMBA-induced xenobiotic responsive element and antioxidant responsive element luciferase reporter gene expression which suggests an AhR- and Nrf2-dependent transcriptional control. However, the inability of MET to bind to AhR suggests that MET is not an AhR ligand. In conclusion, the present work shows a strong evidence that MET inhibits the DMBA-mediated carcinogenicity and adduct formation by inhibiting the expression of CYP1A1 through an AhR ligand-independent mechanism

  16. Elucidation of a novel bioactivation pathway of a 3,4-unsubstituted isoxazole in human liver microsomes: formation of a glutathione adduct of a cyanoacrolein derivative after isoxazole ring opening.

    PubMed

    Yu, Jian; Folmer, James J; Hoesch, Valerie; Doherty, James; Campbell, James B; Burdette, Doug

    2011-02-01

    Studies on the biotransformation of isoxazole rings have shown that molecules containing a C3-substituted isoxazole or a 1,2-benzisoxazole can undergo a two-electron reductive ring cleavage to form an imine. In the absence of a C3 substituent, the isoxazole ring opens via deprotonation of the C3 proton followed by N-O bond cleavage to yield an α-cyanoenol analog. We report the identification of a novel bioactivation pathway of a 3,4-unsubstituted isoxazole in human liver microsomes. After the enzyme-catalyzed cleavage of the 3,4-unsubstituted isoxazole ring of N-((2-isopropyl-7-methyl-1-oxoisoindolin-5-yl)methyl)isoxazole-5-carboxamide (P) in human liver microsomes, the formed α-cyanoenol (M1) condenses with formaldehyde to generate an α,β-unsaturated Michael acceptor intermediate (a cyanoacrolein derivative, VII), which further reacts with the cysteinyl thiol of glutathione to yield a GSH adduct of a cyanoacrolein derivative (M3). The same adduct also is formed when M1, generated in 0.1 N NaOH aqueous solution, reacts with formaldehyde and GSH. (13)C-labeled methanol was used to confirm that methanol from the drug stock solution was oxidized by liver microsomal enzymes to formaldehyde and the carbon atom from methanol was finally incorporated in the corresponding GSH adduct. The formation of isoxazole ring-opened products (M1 and M2) in human liver microsomes is NADPH-dependent. M1 and M2 were found in human liver microsomes preincubated with 1-aminobenzotriazole (1 mM) and NADPH (5 mM) at ∼ 10% of the levels found in the samples in the absence of 1-aminobenzotriazole, suggesting that this biotransformation pathway is primarily catalyzed by cytochrome P450. The formation of M3 also was inhibited by 1-aminobenzotriazole at a similar level.

  17. Formation of Fused-Ring 2′-Deoxycytidine Adducts from 1-Chloro-3-buten-2-one, an in Vitro 1,3-Butadiene Metabolite, under in Vitro Physiological Conditions

    PubMed Central

    Sun, Liang; Pelah, Avishay; Zhang, Dong-Ping; Zhong, Yu-Fang; An, Jing; Yu, Ying-Xin; Zhang, Xin-Yu; Elfarra, Adnan A.

    2013-01-01

    1-Chloro-3-buten-2-one (CBO) is a potential metabolite of 1,3-butadiene (BD), a carcinogenic air pollutant. CBO is a bifunctional alkylating agent that readily reacts with glutathione (GSH) to form mono-GSH and di-GSH adducts. Recently, CBO and its precursor 1-chloro-2-hydroxy-3-butene (CHB) were found to be cytotoxic and genotoxic in human liver cells in culture with CBO being approximately 100-fold more potent than CHB. In the present study, CBO was shown to react readily with 2′-deoxycytidine (dC) under in vitro physiological conditions (pH 7.4, 37 °C) to form four dC adducts with the CBO moieties forming fused rings with the N3 and N4 atoms of dC. The four products were structurally characterized as 2-hydroxy-2-hydroxymethyl-7-(2-deoxy-β-D-erythro-pentofuranosyl)-1,2,3,4-tetrahy dro-6-oxo-6H,7H-pyrimido[1,6-a]pyrimidin-5-ium (dC-1 and dC-2, a pair of diastereomers), 4-chloromethyl-4-hydroxy-7-(2-deoxy-β-D-erythro-pentofuranosyl)-1,2,3,4-tetrahydr o-6-oxo-6H,7H-pyrimido[1,6-a]pyrimidin-5-ium (dC-3), and 2-chloromethyl-2-hydroxy-7-(2-deoxy-β-D-erythro-pentofuranosyl)-1,2,3,4-tetrahydr o-6-oxo-6H,7H-pyrimido[1,6-a]pyrimidin-5-ium (dC-4). Interestingly, dC-1 and dC-2 were stable under our experimental conditions (pH 7.4, 37 °C, 6 h) and existed in equilibrium as indicated by HPLC analysis, whereas dC-3 and dC-4 were labile with the half-lives being 3.0 ± 0.36 and 1.7 ± 0.06 h, respectively. Decomposition of dC-4 produced both dC-1 and dC-2, whereas acid hydrolysis of dC-1/dC-2 and dC-4 in 1 M HCl at 100 °C for 30 min yielded the deribosylated adducts dC-1H/dC-2H and dC-4H, respectively. Because fused-ring dC adducts of other chemicals are mutagenic, the characterized CBO-dC adducts could be mutagenic and play a role in the cytotoxicity and genotoxicity of CBO and its precursors, CHB and BD. The CBO-dC adducts may also be used as standards to characterize CBO-DNA adducts and to develop potential biomarkers for CBO formation in vivo. PMID:24020501

  18. Metabolic activation of furfuryl alcohol: formation of 2-methylfuranyl DNA adducts in Salmonella typhimurium strains expressing human sulfotransferase 1A1 and in FVB/N mice.

    PubMed

    Monien, Bernhard H; Herrmann, Kristin; Florian, Simone; Glatt, Hansruedi

    2011-10-01

    Furfuryl alcohol, formed by acid- and heat-induced dehydration from pentoses, is found in many foodstuffs. It induced renal tubule neoplasms in male B6C3F1 mice and nasal neoplasms in male F344/N rats in a study of the National Toxicology Program (NTP). However, furfuryl alcohol was negative in the standard Ames test and in a battery of in vivo mutagenicity tests. Here, we show that furfuryl alcohol is mutagenic in Salmonella typhimurium TA100 engineered for expression of human sulfotransferase (SULT) 1A1. This finding suggests that furfuryl alcohol is converted by intracellular sulfo conjugation to 2-sulfo-oxymethylfuran, an electrophile reacting with DNA. We detected nucleoside adducts of 2'-deoxyadenosine, 2'-deoxyguanosine and 2'-deoxycytidine in porcine liver DNA incubated with freshly prepared 2-sulfo-oxymethylfuran. The main adducts, N(2)-((furan-2-yl)methyl)-2'-deoxyguanosine (N(2)-MFdG) and N(6)-((furan-2-yl)methyl)-2'-deoxyadenosine (N(6)-MFdA) were synthesized. Their structures were verified by NMR and mass spectrometry. Liquid chromatography-tandem mass spectrometry methods for the quantification of both adducts were devised. N(2)-MFdG and N(6)-MFdA were detected in DNA of furfuryl alcohol-exposed S.typhimurium TA100 expressing SULT1A1 and in DNA of liver, lung and kidney of FVB/N mice that had received ∼390 mg furfuryl alcohol/kg body wt/day via the drinking water for 28 days. In summary, furfuryl alcohol is converted by sulfo conjugation to a mutagen. The detection of N(2)-MFdG and N(6)-MFdA in renal DNA of furfuryl alcohol-treated mice suggests that the neoplasms observed in this tissue in the study of the NTP may have been induced by 2-sulfo-oxymethylfuran.

  19. Ethanol and 4-methylpyrazole increase DNA adduct formation of furfuryl alcohol in FVB/N wild-type mice and in mice expressing human sulfotransferases 1A1/1A2.

    PubMed

    Sachse, Benjamin; Meinl, Walter; Glatt, Hansruedi; Monien, Bernhard H

    2016-03-01

    Furfuryl alcohol (FFA) is a carcinogenic food contaminant, which is formed by acid- and heat-catalyzed degradation of fructose and glucose. The activation by sulfotransferases (SULTs) yields a DNA reactive and mutagenic sulfate ester. The most prominent DNA adduct, N(2)-((furan-2-yl)methyl)-2'-deoxyguanosine (N(2)-MF-dG), was detected in FFA-treated mice and also in human tissue samples. The dominant pathway of FFA detoxification is the oxidation via alcohol dehydrogenases (ADHs) and aldehyde dehydrogenases (ALDHs). The activity of these enzymes may be greatly altered in the presence of inhibitors or competitive substrates. Here, we investigated the impact of ethanol and the ADH inhibitor 4-methylpyrazole (4MP) on the DNA adduct formation by FFA in wild-type and in humanized mice that were transgenic for human SULT1A1/1A2 and deficient in the mouse (m) Sult1a1 and Sult1d1 genes (h1A1/1A2/1a1(-)/1d1(-)). The administration of FFA alone led to hepatic adduct levels of 4.5 N(2)-MF-dG/10(8) nucleosides and 33.6 N(2)-MF-dG/10(8) nucleosides in male and female wild-type mice, respectively, and of 19.6 N(2)-MF-dG/10(8) nucleosides and 95.4 N(2)-MF-dG/10(8) nucleosides in male and female h1A1/1A2/1a1(-)/1d1(-) mice. The coadministration of 1.6g ethanol/kg body weight increased N(2)-MF-dG levels by 2.3-fold in male and by 1.7-fold in female wild-type mice and by 2.5-fold in male and by 1.5-fold in female h1A1/1A2/1a1(-)/1d1(-) mice. The coadministration of 100mg 4MP/kg body weight had a similar effect on the adduct levels. These findings indicate that modulators of the oxidative metabolism, e.g. the drug 4MP or consumption of alcoholic beverages, may increase the genotoxic effects of FFA also in humans.

  20. Influence of Na+ on DNA reactions with aromatic epoxides and diol epoxides: evidence that DNA catalyzes the formation of benzo[a]pyrene and benz[a]anthracene adducts at intercalation sites.

    PubMed

    Fernando, H; Huang, C R; Milliman, A; Shu, L; LeBreton, P R

    1996-12-01

    Reactions of the benzo[a]pyrene (BP) and benz[a]anthracene (BA) metabolites, (+/-)-trans-7 8-dihydroxy-anti-9, 10-epoxy-7, 8, 9, 10-tetrahydro-BP (BPDE), (+/-)-trans-3, 4-dihydroxy-anti- 1,2-epoxy-1,2,3,4-tetrahydro-BA (BADE), (+/-)-BP-4,5-oxide (BPO), and (+/-)-BA-5, 6-oxide (BAO), were examined under pseudo-first-order conditions at varying Na+ (2.0-100 Mm) and native calf thymus DNA (ctDNA) concentrations. In 0.2 mM ctDNA and 2.0 mM Na+, at a pH of 7.3 most BPDE, BADE, BPO, and BAO (87-95%) undergo DNA catalyzed hydrolysis or rearrangement. For BPDE and BPO, overall, pseudo-first-order rate constants, k, in 2.0 mM Na+ and 0.2 mM ctDNA are 21-72 times larger than values obtained without DNA. For BADE and BAO, the rate constants are less strongly influenced by DNA; k values in 0.2 mM ctDNA are only 9-12 times larger than values obtained without DNA. Kinetic data for BPDE, BPO, BADE, and BAO and DNA intercalation association constants (KA) for BP and BA diols which are model compounds indicate that KA values for BPDE and BPO in 2.0 mM Na+ are 6.6-59 times larger than those of BADE and BAO. The greater DNA enhancement of rate constants for BPDE and BPO, versus BADE and BAO, correlates with the larger KA values of the BP metabolites. DNA adducts, which account for less than 10% of the yields, also form. For BPDE in 0.20 mM ctDNA, k decreases 5.1 times as the Na+ concentration increases from 2.0 to 100 mM. Nevertheless, the DNA adduct level remains constant over the range of Na+ concentrations examined. These results provide evidence that, for BPDE in 0.20 mM DNA and 2.0 mM Na+, ctDNA adduct formation follows a mechanism which is similar to that for DNA catalyzed hydrolysis. The pseudo-first-order rate constant for adduct formation, kAd, given approximately by kAd approximately equal to (kcat,AdKA[DNA])/(1 + KA[DNA]), where kcat,Ad is a catalytic rate constant. for BADE, BPO, and BAO, the influence of varying DNA and Na+ concentrations on k values is similar to that

  1. Influence of C-5 substituted cytosine and related nucleoside analogs on the formation of benzo[a]pyrene diol epoxide-dG adducts at CG base pairs of DNA.

    PubMed

    Guza, Rebecca; Kotandeniya, Delshanee; Murphy, Kristopher; Dissanayake, Thakshila; Lin, Chen; Giambasu, George Madalin; Lad, Rahul R; Wojciechowski, Filip; Amin, Shantu; Sturla, Shana J; Hudson, Robert H E; York, Darrin M; Jankowiak, Ryszard; Jones, Roger; Tretyakova, Natalia Y

    2011-05-01

    Endogenous 5-methylcytosine ((Me)C) residues are found at all CG dinucleotides of the p53 tumor suppressor gene, including the mutational 'hotspots' for smoking induced lung cancer. (Me)C enhances the reactivity of its base paired guanine towards carcinogenic diolepoxide metabolites of polycyclic aromatic hydrocarbons (PAH) present in cigarette smoke. In the present study, the structural basis for these effects was investigated using a series of unnatural nucleoside analogs and a representative PAH diolepoxide, benzo[a]pyrene diolepoxide (BPDE). Synthetic DNA duplexes derived from a frequently mutated region of the p53 gene (5'-CCCGGCACCC GC[(15)N(3),(13)C(1)-G]TCCGCG-3', + strand) were prepared containing [(15)N(3), (13)C(1)]-guanine opposite unsubstituted cytosine, (Me)C, abasic site, or unnatural nucleobase analogs. Following BPDE treatment and hydrolysis of the modified DNA to 2'-deoxynucleosides, N(2)-BPDE-dG adducts formed at the [(15)N(3), (13)C(1)]-labeled guanine and elsewhere in the sequence were quantified by mass spectrometry. We found that C-5 alkylcytosines and related structural analogs specifically enhance the reactivity of the base paired guanine towards BPDE and modify the diastereomeric composition of N(2)-BPDE-dG adducts. Fluorescence and molecular docking studies revealed that 5-alkylcytosines and unnatural nucleobase analogs with extended aromatic systems facilitate the formation of intercalative BPDE-DNA complexes, placing BPDE in a favorable orientation for nucleophilic attack by the N(2) position of guanine.

  2. Sperm DNA oxidative damage and DNA adducts

    PubMed Central

    Jeng, Hueiwang Anna; Pan, Chih-Hong; Chao, Mu-Rong; Lin, Wen-Yi

    2015-01-01

    The objective of this study was to investigate DNA damage and adducts in sperm from coke oven workers who have been exposed to polycyclic aromatic hydrocarbons. A longitudinal study was conducted with repeated measurements during spermatogenesis. Coke-oven workers (n=112) from a coke-oven plant served the PAH-exposed group, while administrators and security personnel (n=67) served the control. Routine semen parameters (concentration, motility, vitality, and morphology) were analyzed simultaneously; the assessment of sperm DNA integrity endpoints included DNA fragmentation, bulky DNA adducts, and 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxo-dGuo). The degree of sperm DNA fragmentation was measured using the terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) assay and sperm chromatin structure assay (SCSA). The PAH-exposed group had a significant increase in bulky DNA adducts and 8-oxo-dGuo compared to the control subjects (Ps = 0.002 and 0.045, respectively). Coke oven workers' percentages of DNA fragmentation and denaturation from the PAH-exposed group were not significantly different from those of the control subjects (Ps = 0.232 and 0.245, respectively). Routine semen parameters and DNA integrity endpoints were not correlated. Concentrations of 8-oxo-dGuo were positively correlated with percentages of DNA fragmentation measured by both TUNEL and SCSA (Ps = 0.045 and 0.034, respectively). However, the concentrations of 8-oxo-dGuo and percentages of DNA fragmentation did not correlate with concentrations of bulky DNA adducts. In summary, coke oven workers with chronic exposure to PAHs experienced decreased sperm DNA integrity. Oxidative stress could contribute to the degree of DNA fragmentation. Bulky DNA adducts may be independent of the formation of DNA fragmentation and oxidative adducts in sperm. Monitoring sperm DNA integrity is recommended as a part of the process of assessing the impact of occupational and environmental toxins on

  3. Induction of Cyp1a1 and Cyp1b1 and formation of DNA adducts in C57BL/6, Balb/c, and F1 mice following in utero exposure to 3-methylcholanthrene

    SciTech Connect

    Xu Mian; Nelson, Garret B.; Moore, Joseph E.; McCoy, Thomas P.; Dai, Jian; Manderville, Richard A.; Ross, Jeffrey A.; Miller, Mark Steven . E-mail: msmiller@wfubmc.edu

    2005-11-15

    Fetal mice are more sensitive to chemical carcinogens than are adults. Previous studies from our laboratory demonstrated differences in the mutational spectrum induced in the Ki-ras gene from lung tumors isolated from [D2 x B6D2F1]F2 mice and Balb/c mice treated in utero with 3-methylcholanthrene (MC). We thus determined if differences in metabolism, adduct formation, or adduct repair influence strain-specific responses to transplacental MC exposure in C57BL/6 (B6), Balb/c (BC), and reciprocal F1 crosses between these two strains of mice. The induction of Cyp1a1 and Cyp1b1 in fetal lung and liver tissue was determined by quantitative fluorescent real-time PCR. MC treatment caused maximal induction of Cyp1a1 and Cyp1b1 RNA 2-8 h after injection in both organs. RNA levels for both genes then declined in both fetal organs, but a small biphasic, secondary increase in Cyp1a1 was observed specifically in the fetal lung 24-48 h after MC exposure in all four strains. Cyp1a1 induction by MC at 4 h was 2-5 times greater in fetal liver (7000- to 16,000-fold) than fetal lung (2000- to 6000-fold). Cyp1b1 induction in both fetal lung and liver was similar and much lower than that observed for Cyp1a1, with induction ratios of 8- to 18-fold in fetal lung and 10- to 20-fold in fetal liver. The overall kinetics and patterns of induction were thus very similar across the four strains of mice. The only significant strain-specific effect appeared to be the relatively poor induction of Cyp1b1 in the parental strain of B6 mice, especially in fetal lung tissue. We also measured the levels of MC adducts and their disappearance from lung tissue by the P{sup 32} post-labeling assay on gestation days 18 and 19 and postnatal days 1, 4, 11, and 18. Few differences were seen between the different strains of mice; the parental strain of B6 mice had nominally higher levels of DNA adducts 2 (gestation day 19) and 4 (postnatal day 1) days after injection, although this was not statistically

  4. High performance addition-type thermoplastics (ATTs) - Evidence for the formation of a Diels-Alder adduct in the reaction of an acetylene-terminated material and a bismaleimide

    NASA Technical Reports Server (NTRS)

    Pater, R. H.; Soucek, M. D.; Chang, A. C.; Partos, R. D.

    1991-01-01

    Recently, the concept and demonstration of a new versatile synthetic reaction for making a large number of high-performance addition-type thermoplastics (ATTs) were reported. The synthesis shows promise for providing polymers having an attractive combination of easy processability, good toughness, respectable high temperature mechanical performance, and excellent thermo-oxidative stability. The new chemistry involves the reaction of an acetylene-terminated material with a bismaleimide or benzoquinone. In order to clarify the reaction mechanism, model compound studies were undertaken in solutions as well as in the solid state. The reaction products were purified by flash chromatography and characterized by conventional analytical techniques including NMR, FT-IR, UV-visible, mass spectroscopy, and high pressure liquid chromatography. The results are presented of the model compound studies which strongly support the formation of a Diels-Alder adduct in the reaction of an acetylene-terminated compound and a bismaleimide or benzoquinone.

  5. Comparative DNA adduct formation and induction of colonic aberrant crypt foci in mice exposed to 2-amino-9H-pyrido[2,3-b]indole, 2-amino-3,4-dimethylimidazo[4,5-f]quinoline and azoxymethane

    PubMed Central

    Kim, Sangyub; Guo, Jingshu; O’Sullivan, M. Gerald; Gallaher, Daniel D.; Turesky, Robert J.

    2015-01-01

    Considerable evidence suggests that environmental factors, including diet and cigarette smoke, are involved in the pathogenesis of colon cancer. Carcinogenic nitroso compounds (NOC), such as N-nitrosodimethylamine (NDMA), are present in tobacco and processed red meat, and NOC have been implicated in colon cancer. Azoxymethane (AOM), commonly used for experimental colon carcinogenesis, is an isomer of NDMA, and it produces the same DNA adducts as does NDMA. Heterocyclic aromatic amines (HAAs) formed during the combustion of tobacco and high-temperature cooking of meats are also associated with an elevated risk of colon cancer. The most abundant carcinogenic HAA formed in tobacco smoke is 2-amino-9H-pyrido[2,3-b]indole (AαC), whereas 2-amino-3,4-dimethylimidazo[4,5-f]quinoline (MeIQ) is the most potent carcinogenic HAA formed during the cooking of meat and fish. However, the comparative tumor-initiating potential of AαC, MeIQ, and AOM is unknown. In this report, we evaluate the formation of DNA adducts as a measure of genotoxicity, and the induction of colonic aberrant crypt foci (ACF) and dysplastic ACF, as an early measure of carcinogenic potency of these compounds in the colon of male A/J mice. Both AαC and AOM induced a greater number of DNA adducts than MeIQ in the liver and colon. AOM induced a greater number of ACF and dysplastic ACF than either AαC or MeIQ. Conversely, based on adduct levels, MeIQ-DNA adducts were more potent than AαC- and AOM-DNA adducts at inducing ACF. Long-term feeding studies are required to relate levels of DNA adducts, induction of ACF, and colon cancer by these colon genotoxicants. PMID:26734915

  6. Quantitation of DNA adducts by stable isotope dilution mass spectrometry

    PubMed Central

    Tretyakova, Natalia; Goggin, Melissa; Janis, Gregory

    2012-01-01

    Exposure to endogenous and exogenous chemicals can lead to the formation of structurally modified DNA bases (DNA adducts). If not repaired, these nucleobase lesions can cause polymerase errors during DNA replication, leading to heritable mutations potentially contributing to the development of cancer. Due to their critical role in cancer initiation, DNA adducts represent mechanism-based biomarkers of carcinogen exposure, and their quantitation is particularly useful for cancer risk assessment. DNA adducts are also valuable in mechanistic studies linking tumorigenic effects of environmental and industrial carcinogens to specific electrophilic species generated from their metabolism. While multiple experimental methodologies have been developed for DNA adduct analysis in biological samples – including immunoassay, HPLC, and 32P-postlabeling – isotope dilution high performance liquid chromatography-electrospray ionization-tandem mass spectrometry (HPLC-ESI-MS/MS) generally has superior selectivity, sensitivity, accuracy, and reproducibility. As typical DNA adducts concentrations in biological samples are between 0.01 – 10 adducts per 108 normal nucleotides, ultrasensitive HPLC-ESI-MS/MS methodologies are required for their analysis. Recent developments in analytical separations and biological mass spectrometry – especially nanoflow HPLC, nanospray ionization MS, chip-MS, and high resolution MS – have pushed the limits of analytical HPLC-ESI-MS/MS methodologies for DNA adducts, allowing researchers to accurately measure their concentrations in biological samples from patients treated with DNA alkylating drugs and in populations exposed to carcinogens from urban air, drinking water, cooked food, alcohol, and cigarette smoke. PMID:22827593

  7. Sustained induction of cytochrome P4501A1 in human hepatoma cells by co-exposure to benzo[a]pyrene and 7H-dibenzo[c,g]carbazole underlies the synergistic effects on DNA adduct formation

    SciTech Connect

    Gábelová, Alena; Poláková, Veronika; Prochazka, Gabriela; Kretová, Miroslava; Poloncová, Katarína; Regendová, Eva; Luciaková, Katarína; Segerbäck, Dan

    2013-08-15

    To gain a deeper insight into the potential interactions between individual aromatic hydrocarbons in a mixture, several benzo[a]pyrene (B[a]P) and 7H-dibenzo[c,g]carbazole (DBC) binary mixtures were studied. The biological activity of the binary mixtures was investigated in the HepG2 and WB-F344 liver cell lines and the Chinese hamster V79 cell line that stably expresses the human cytochrome P4501A1 (hCYP1A1). In the V79 cells, binary mixtures, in contrast to individual carcinogens, caused a significant decrease in the levels of micronuclei, DNA adducts and gene mutations, but not in cell survival. Similarly, a lower frequency of micronuclei and levels of DNA adducts were found in rat liver WB-F344 cells treated with a binary mixture, regardless of the exposure time. The observed antagonism between B[a]P and DBC may be due to an inhibition of Cyp1a1 expression because cells exposed to B[a]P:DBC showed a decrease in Cyp1a1 mRNA levels. In human liver HepG2 cells exposed to binary mixtures for 2 h, a reduction in micronuclei frequency was also found. However, after a 24 h treatment, synergism between B[a]P and DBC was determined based on DNA adduct formation. Accordingly, the up-regulation of CYP1A1 expression was detected in HepG2 cells exposed to B[a]P:DBC. Our results show significant differences in the response of human and rat cells to B[a]P:DBC mixtures and stress the need to use multiple experimental systems when evaluating the potential risk of environmental pollutants. Our data also indicate that an increased expression of CYP1A1 results in a synergistic effect of B[a]P and DBC in human cells. As humans are exposed to a plethora of noxious chemicals, our results have important implications for human carcinogenesis. - Highlights: • B[a]P:DBC mixtures were less genotoxic in V79MZh1A1 cells than B[a]P and DBC alone. • An antagonism between B[a]P and DBC was determined in rat liver WB-F344 cells. • The inhibition of CYP1a1 expression by B[a]P:DBC mixture

  8. Epoxidation of the methamphetamine pyrolysis product, trans-phenylpropene, to trans-phenylpropylene oxide by CYP enzymes and stereoselective glutathione adduct formation

    SciTech Connect

    Sanga, Madhu; Younis, Islam R.; Tirumalai, Padma S.; Bland, Tina M.; Banaszewska, Monica; Konat, Gregory W.; Tracy, Timothy S.; Gannett, Peter M.; Callery, Patrick S. . E-mail: pcallery@hsc.wvu.edu

    2006-03-01

    Pyrolytic products of smoked methamphetamine hydrochloride are well established. Among the various degradation products formed, trans-phenylpropene (trans-{beta}-methylstyrene) is structurally similar to styrene analogues known to be bioactivated by CYP enzymes. In human liver microsomes, trans-phenylpropene was converted to the epoxide trans-phenylpropylene oxide (trans-2-methyl-3-phenyloxirane) and cinnamyl alcohol. Incubation of trans-phenylpropene with microsomes in the presence of enzyme-specific P450 enzyme inhibitors indicated the involvement of CYP2E1, CYP1A2, and CYP3A4 enzymes. Both (R,R)-phenylpropylene oxide and (S,S)-phenylpropylene oxide were formed in human liver microsomal preparations. Enantiomers of trans-phenylpropylene oxide were stereoselectively and regioselectively conjugated in a Phase II drug metabolism reaction catalyzed by human liver cytosolic enzymes consisting of conjugation with glutathione. The structure of the phenylpropylene oxide-glutathione adduct is consistent with nucleophilic ring-opening by attack at the benzylic carbon. Exposure of cultured C6 glial cells to (S,S)-phenylpropylene oxide produced a cytotoxic response in a concentration-dependent manner based on cell degeneration and death.

  9. Influence of cimetidine and its metabolites on Cisplatin--investigation of adduct formation by means of electrochemistry/liquid chromatography/electrospray mass spectrometry.

    PubMed

    Brauckmann, Christine; Faber, Helene; Lanvers-Kaminsky, Claudia; Sperling, Michael; Karst, Uwe

    2013-03-01

    Cimetidine has been studied as an additive in cancer chemotherapy. It is claimed to reduce the side effects of Cisplatin. This study focuses on possible interactions between Cisplatin and cimetidine on the molecular level. Due to the fact that cimetidine is metabolized in the liver, interactions between its metabolites and Cisplatin are also investigated. By means of LC/ESI-MS, Cisplatin-cimetidine adducts were detected. In a second step, the metabolism of cimetidine was simulated by electrochemical oxidation. These results were compared with microsomal incubations of cimetidine using rat and human liver cell microsomes. Because the two methods showed a correlation, the electrochemical approach was further used to investigate Cisplatin's interactions with metabolites of cimetidine. However, notable interactions that might take place in the human body could neither be observed for pure cimetidine nor for its metabolites. Finally, the impact of cimetidine on Cisplatin-protein interactions were studied using the model protein β-lactoglobulin A. In the presence of cimetidine, the affinity of Cisplatin towards the model protein appears to be increased.

  10. Nitrite curing of chicken, pork, and beef inhibits oxidation but does not affect N-nitroso compound (NOC)-specific DNA adduct formation during in vitro digestion.

    PubMed

    Van Hecke, Thomas; Vanden Bussche, Julie; Vanhaecke, Lynn; Vossen, Els; Van Camp, John; De Smet, Stefaan

    2014-02-26

    Uncured and nitrite-cured chicken, pork, and beef were used as low, medium, and high sources of heme-Fe, respectively, and exposed to an in vitro digestion model simulating the mouth, stomach, duodenum, and colon. With increasing content of iron compounds, up to 25-fold higher concentrations of the toxic lipid oxidation products malondialdehyde, 4-hydroxy-2-nonenal, and other volatile aldehydes were formed during digestion, together with increased protein carbonyl compounds as measurement of protein oxidation. Nitrite curing of all meats lowered lipid and protein oxidation to the level of oxidation in uncured chicken. Strongly depending on the individual fecal inoculum, colonic digestion of beef resulted in significantly higher concentrations of the NOC-specific DNA adduct O(6)-carboxymethyl-guanine compared to chicken and pork, whereas nitrite curing had no significant effect. This study confirms previously reported evidence that heme-Fe is involved in the epidemiological association between red meat consumption and colorectal cancer, but questions the role of nitrite curing in this association.

  11. Epoxidation of the methamphetamine pyrolysis product, trans-phenylpropene, to trans-phenylpropylene oxide by CYP enzymes and stereoselective glutathione adduct formation.

    PubMed

    Sanga, Madhu; Younis, Islam R; Tirumalai, Padma S; Bland, Tina M; Banaszewska, Monica; Konat, Gregory W; Tracy, Timothy S; Gannett, Peter M; Callery, Patrick S

    2006-03-01

    Pyrolytic products of smoked methamphetamine hydrochloride are well established. Among the various degradation products formed, trans-phenylpropene (trans-beta-methylstyrene) is structurally similar to styrene analogues known to be bioactivated by CYP enzymes. In human liver microsomes, trans-phenylpropene was converted to the epoxide trans-phenylpropylene oxide (trans-2-methyl-3-phenyloxirane) and cinnamyl alcohol. Incubation of trans-phenylpropene with microsomes in the presence of enzyme-specific P450 enzyme inhibitors indicated the involvement of CYP2E1, CYP1A2, and CYP3A4 enzymes. Both (R,R)-phenylpropylene oxide and (S,S)-phenylpropylene oxide were formed in human liver microsomal preparations. Enantiomers of trans-phenylpropylene oxide were stereoselectively and regioselectively conjugated in a Phase II drug metabolism reaction catalyzed by human liver cytosolic enzymes consisting of conjugation with glutathione. The structure of the phenylpropylene oxide-glutathione adduct is consistent with nucleophilic ring-opening by attack at the benzylic carbon. Exposure of cultured C6 glial cells to (S,S)-phenylpropylene oxide produced a cytotoxic response in a concentration-dependent manner based on cell degeneration and death.

  12. NITRO MUSK ADDUCTS OF RAINBOW TROUT ...

    EPA Pesticide Factsheets

    Rainbow trout and other fish species can serve as 'sentinel' species for the assessment of ecological status and the presence of certain environmental contaminants. As such they act as bioindicators of exposure. Here we present seminal data regarding dose-response and toxicokinetics of trout hemoglobin adduct formation from exposure to nitro musks that are frequently used as fragrance ingredients in formulations of personal care products. Hemoglobin adducts serve as biomarkers of exposure of the sentinel species as we have shown in previous studies of hemoglobin adducts formed in trout and environmental carp exposed to musk xylene (MX) and musk ketone (MK). Gas chromatography-electron capture negative ion chemical ionization-mass spectrometry (GC-NICI-MS) employing selected ion monitoring is used to measure 4-amino-MX (4-AMX), 2-amino-MX (2-AMX), and 2-amino-MK (2-AMK) released by alkaline hydrolysis from the sulfinamide adducts of hemoglobin. Dose-response and toxicokinetics were investigated using this sensitive method for analysis of these metabolites. In the dose-response investigation, the concentrations of 4-AMX and 2-2AMX are observed to pass through a maximum at 0.10 mg/g. In the case of 2-AMK, the adduct concentration is almost the same at dosages in the range of 0.030 to 0.10 mg/g. For toxicokinetics, the concentration of the metabolites in the Hb reaches a maximum in the 3-day sample after administration of MX or MK. Further elimination of the metabo

  13. Chlorophyllin significantly reduces benzo[a]pyrene [BP]-DNA adduct formation and alters Cytochrome P450 1A1 and 1B1 expression and EROD activity in normal human mammary epithelial cells (NHMECs)

    PubMed Central

    Keshava, Channa; Divi, Rao L.; Einem, Tracey L.; Richardson, Diana L.; Leonard, Sarah L.; Keshava, Nagalakshmi; Poirier, Miriam C.; Weston, Ainsley

    2008-01-01

    We hypothesized that chlorophyllin (CHLN) would reduce BP-DNA adduct levels. Using NHMECs exposed to 4 μM BP for 24 hr in the presence or absence of 5 μM CHLN, we measured BP-DNA adducts by chemiluminescence immunoassay (CIA). The protocol included the following experimental groups: BP alone, BP given simultaneously with CHLN (BP+CHLN) for 24 hr, CHLN given for 24 hr followed by BP for 24 hr (preCHLN, postBP), and CHLN given for 48 hr with BP added for the last 24 hr (preCHLN, postBP+CHLN). Incubation with CHLN decreased BPdG levels in all groups, with 87 % inhibition in the preCHLN, postBP+CHLN group. To examine metabolic mechanisms, we monitored expression by Affymetrix microarray (U133A), and found BP-induced up-regulation of CYP1A1 and CYP1B1 expression, as well as up-regulation of groups of interferon-inducible, inflammation and signal transduction genes. Incubation of cells with CHLN and BP in any combination decreased expression of many of these genes. Using real time PCR (RT-PCR) the maximal inhibition of BP-induced gene expression, >85% for CYP1A1 and >70% for CYP1B1, was observed in the preCHLN, postBP+CHLN group. To explore the relationship between transcription and enzyme activity, the ethoxyresorufin-O-deethylase (EROD) assay was used to measure the combined CYP1A1 and CYP1B1 activities. BP exposure caused the EROD levels to double, compared to the unexposed controls. The CHLN-exposed groups all showed EROD levels similar to the unexposed controls. Therefore, the addition of CHLN to BP-exposed cells reduced BPdG formation and CYP1A1 and CYP1B1 expression, but EROD activity was not significantly reduced. PMID:19152381

  14. Detection of Adriamycin-DNA adducts by accelerator mass spectrometry at clinically relevant Adriamycin concentrations.

    PubMed

    Coldwell, Kate E; Cutts, Suzanne M; Ognibene, Ted J; Henderson, Paul T; Phillips, Don R

    2008-09-01

    Limited sensitivity of existing assays has prevented investigation of whether Adriamycin-DNA adducts are involved in the anti-tumour potential of Adriamycin. Previous detection has achieved a sensitivity of a few Adriamycin-DNA adducts/10(4) bp DNA, but has required the use of supra-clinical drug concentrations. This work sought to measure Adriamycin-DNA adducts at sub-micromolar doses using accelerator mass spectrometry (AMS), a technique with origins in geochemistry for radiocarbon dating. We have used conditions previously validated (by less sensitive decay counting) to extract [(14)C]Adriamycin-DNA adducts from cells and adapted the methodology to AMS detection. Here we show the first direct evidence of Adriamycin-DNA adducts at clinically-relevant Adriamycin concentrations. [(14)C]Adriamycin treatment (25 nM) resulted in 4.4 +/- 1.0 adducts/10(7) bp ( approximately 1300 adducts/cell) in MCF-7 breast cancer cells, representing the best sensitivity and precision reported to date for the covalent binding of Adriamycin to DNA. The exceedingly sensitive nature of AMS has enabled over three orders of magnitude increased sensitivity of Adriamycin-DNA adduct detection and revealed adduct formation within an hour of drug treatment. This method has been shown to be highly reproducible for the measurement of Adriamycin-DNA adducts in tumour cells in culture and can now be applied to the detection of these adducts in human tissues.

  15. Binding of fullerenes to cadmium sulfide and cadmium selenide surfaces, photoluminescence as a probe of strong, lewis acidity-driven, surface adduct formation

    SciTech Connect

    Zhang, J.Z.; Geselbracht, M.J.; Ellis, A.B.

    1993-08-25

    The C{sub 60} and C{sub 70} fullerenes can be adsorbed from toluene solution onto the surfaces of etched, single-crystal n-CdS and n-CdSe [n-CdS(e)] semiconductors. These fullerene adsorbates act as Lewis acids toward the CdS(e) surface, causing quenching of the solids` band-edge photoluminescence (PL) intensity relative to the intensity in a reference ambient of pure toluene. For C{sub 60} adsorbed onto CdSe, the quenching of PL intensity is well fit by a dead-layer model that permits estimation of the adduct-induced expansion in depletion width as being as large as approximately 300 A. The degree of quenching is somewhat larger for C{sub 70} at a wavelength where the two fullerenes can be directly compared. PL quenching by both fullerenes is concentration dependent and can be fit to the Langmuir adsorption isotherm model to yield large equilibrium binding constants in the range of 10{sup 5} to 10{sup 6} M{sup -1}; the fullerenes can be detected by this PL method at submicromolar concentrations. Use of the polar Cd-rich (0001) and Se-rich (0001O) faces of a n-CdSe sample reveals similar binding constants for C{sub 60} and C{sub 70} on the two faces but larger expansions of the dead-layer thickness from adsorption of either fullerene on the Cd-rich face. 15 refs., 7 figs.

  16. Detection of adriamycin-DNA adducts by accelerator mass spectrometry.

    PubMed

    Coldwell, Kate; Cutts, Suzanne M; Ognibene, Ted J; Henderson, Paul T; Phillips, Don R

    2010-01-01

    There have been many attempts in the past to determine whether significant levels of Adriamycin-DNA adducts form in cells and contribute to the anticancer activity of this agent. Supraclincal drug levels have been required to study drug-DNA adducts because of the lack of sensitivity associated with many of the techniques employed, including liquid scintillation counting of radiolabeled drug. The use of accelerator mass spectrometry (AMS) has provided the first direct evidence of Adriamycin-DNA adduct formation in cells at clinically relevant Adriamycin concentrations. The exceedingly sensitive nature of AMS has enabled over three orders of magnitude increased sensitivity of Adriamycin-DNA adduct detection (compared to liquid scintillation counting) and has revealed adduct formation within an hour of drug treatment. The rigorous protocol required for this approach, together with many notes on the precautions and procedures required in order to ensure that absolute levels of Adriamycin-DNA adducts can be determined with good reproducibility, is outlined in this chapter.

  17. A fluorescent-based HPLC assay for quantification of cysteine and cysteamine adducts in Escherichia coli-derived proteins.

    PubMed

    Soriano, Brian D; Tam, Lei-Ting T; Lu, Hsieng S; Valladares, Violeta G

    2012-01-01

    Recombinant proteins expressed in Escherichia coli are often produced as unfolded, inactive forms accumulated in inclusion bodies. Redox-coupled thiols are typically employed in the refolding process in order to catalyze the formation of correct disulfide bonds at maximal folding efficiency. These thiols and the recombinant proteins can form mixed disulfide bonds to generate thiol-protein adducts. In this work, we apply a fluorescent-based assay for the quantification of cysteine and cysteamine adducts as observed in E. coli-derived proteins. The thiols are released by reduction of the adducted protein, collected and labeled with a fluorescent reagent, 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate. The derivatized thiols are separated by reversed-phase HPLC and can be accurately quantified after method optimization. The estimated thiol content represents total amount of adducted forms present in the analyzed samples. The limit of quantification (LOQ) was established; specifically, the lowest amount of quantifiable cysteine adduction is 30 picograms and the lowest amount of quantifiable cysteamine adduction is 60 picograms. The assay is useful for quantification of adducts in final purified products as well as in-process samples from various purification steps. The assay indicates that the purification process accomplishes a decrease in cysteine adduction from 0.19 nmol adduct/nmol protein to 0.03 nmol adduct/nmol protein as well as a decrease in cysteamine adduction from 0.24 nmol adduct/nmol protein to 0.14 nmol adduct/nmol protein.

  18. Structure of adducts of isoindolo[2,1-a]benzimidazole derivatives with maleimides

    NASA Astrophysics Data System (ADS)

    Korolev, Oleksandr; Yegorova, Tatyana; Levkov, Igor; Malytskyy, Volodymyr; Shishkin, Oleg; Zubatyuk, Roman; Palamarchuk, Genadiy; Vedrenne, Marc; Baltas, Michel; Voitenko, Zoia

    2015-03-01

    The selectivity of formation and some mechanistic insights during the synthesis of substituted isoindolo[2,1-a]benzimidazoles are discussed. Furthermore, the reactions of the obtained products with maleimides were carried out. Two types rearrangement adducts together with intermediate Michael type adducts were isolated. The influence of the reaction conditions and reagents ratio is discussed. Specific spectral criteria for the identification of the Michael type adducts are indicated.

  19. Phenol oxidation through its adduct formation with chromium complex of 1,4,8,11-tetrakis(2-pyridylmethyl)-1,4,8,11-tetraazacyclotetradecane: A theoretical study

    NASA Astrophysics Data System (ADS)

    Narayanan, Jayanthi; Guadalupe, Hernández J.; Thangarasu, Pandiyan

    2017-04-01

    Structural and electronic properties of [cis-[Cr(tmpcH)X2]n+ (n = 2 or 4; X = OH-, Cl-, Br- and H2O; tmpcH = 1,4,8,11-tetrakis(2-pyridylmethyl)-1,4,8,11-tetraazacyclotetradecane were analyzed by DFT and TD-DFT methods. The local reactivity active site of the ligand was determined by the condensed-to atom Fukui indexes (CAFI) f(r). In the study, the axial bond distance with metal ion undergoes a considerable change from shorter to longer as OH < Cl- < Br- < H2O, agreeing with the molecular orbital analysis where the dz2 energy is lowered for OH- compared to H2O at the axial position. After analyzing the geometrical data collected from literature for the complexes of Cr(II), Mn(II), Fe(II), Co(II), Ni(II), Cu(II), and Zn (II) with tmpcH, it was found that the bond distance decreases with increasing number of d-electrons in the 3d orbital, suggesting that the over-lapping of oribital (π) from Npy with the metal d-orbital is more effective than those from Ncyclam with metal d-orbital. Therefore, the change of different oxidation states for [cis-[Cr(tmpcH)X2]n+ influences significantly the geometrical and electronic parameters. For cis-[Cr(tmpcH)Cl2]2+ the calculated bands are red shifted except for the lower energy band (595 nm) which agrees qualitatively with the experimental one; in addition, the effect of solvent on the electronic transition was analyzed. Furthermore, we collected the electronic data for several chromium complexes from the literature, and compared with our results by plotting the data against number of chromium compounds. Finally, the phenol oxidation properties of the chromium complexes were studied, and phenol forms an adduct with [Cr(tmpcH)Cl]3+ to yield [Cr(tmpcH)Cl-OPh]2+ which could produce the phenol radical, which is enhanced by the presence of -OCH3 group at para- position in the phenolic ring.

  20. Formation of Metal Clusters or Nitrogen-Bridged Adducts by Reaction of a Bis(amino)stannylene with Halides of Two-Valent Transition Metals.

    PubMed

    Veith, Michael; Müller, Alice; Stahl, Lothar; Nötzel, Martin; Jarczyk, Maria; Huch, Volker

    1996-06-19

    When the cyclic bis(amino)stannylene Me(2)Si(NtBu)(2)Sn is allowed to react with metal halides MX(2) (M = Cr, Fe, Co, Zn; X = Cl, Br [Zn]) adducts of the general formula [Me(2)Si(NtBu)(2)Sn.MX(2)](n) are obtained. The compounds are generally dimeric (n = 2) except the ZnBr(2) adduct, which is monomeric in benzene. The crystal structures of [Me(2)Si(NtBu)(2)Sn.CoCl(2)](2) (triclinic, space group &Pmacr;1; a = 8.620(9) Å, b = 9.160(9) Å, c = 12.280(9) Å, alpha = 101.2(1) degrees, beta = 97.6(1) degrees, gamma = 105.9(1) degrees, Z = 1) and of [Me(2)Si(NtBu)(2)Sn.ZnCl(2)](2) (monoclinic, space group P2(1)/c; a = 8.156(9) Å, b = 16.835(12) Å, c = 13.206(9) Å, beta = 94.27(6) degrees, Z = 2) were determined by X-ray diffraction techniques. The two compounds form similar polycyclic, centrosymmetrical assemblies of metal atoms bridged by chlorine or nitrogen atoms. While in the case of the cobalt compound Co is pentacoordinated by three chlorine and two nitrogen atoms, in the zinc derivative Zn is almost tetrahedrally coordinated by three chlorine atoms and one nitrogen atom. The iron derivative [Me(2)Si(NtBu)(2)Sn.FeCl(2)](2) seems to be isostructural with the cobalt compound as can be deduced from the crystal data (triclinic, a = 8.622(7) Å, b = 9.158(8) Å, c = 12.353(8) Å, alpha = 101.8(1) degrees, beta = 96.9(1) degrees, gamma = 105.9(1) degrees, Z = 1). If NiBr(2), PdCl(2), or PtCl(2) is combined with the stannylene, the reaction product is totally different: 4 equiv of the stannylene are coordinating per metal halide, forming the molecular compound [Me(2)Si(NtBu)(2)Sn](4)MX(2), which crystallizes with half a mole of benzene per molecular formula. The crystal structures of [Me(2)Si(NtBu)(2)Sn](4).NiBr(2).(1)/(2)C(6)H(6) (tetragonal, space group I4(1)/a, a = b = 43.86(4) Å, c = 14.32(2) Å, Z = 16) and [Me(2)Si(NtBu)(2)Sn](4).PdCl(2).(1)/(2)C(6)H(6) (tetragonal, space group I4(1)/a, a = b = 43.99(4) Å, c = 14.318(14) Å, Z = 16) reveal the two compounds to

  1. 32P-postlabeling DNA adduct assay: cigarette smoke-induced dna adducts in the respiratory and nonrespiratory rat tissues. Book chapter

    SciTech Connect

    Gupta, R.C.; Gairola, C.G.

    1990-01-01

    An analysis of the tissue DNA adducts in rats by the sensitive (32)p-postlabeling assay showed one to eight detectable DNA adducts in lung, trachea, larynx, heart and bladder of the sham controls. Chronic exposure of animals to mainstream cigarette smoke showed a remarkable enhancement of most adducts in the lung and heart DNA. Since cigarette smoke contains several thousand chemicals and a few dozen of them are known or potential carcinogens, the difference between the DNA adducts of nasal and the other tissues may reflect the diversity of reactive constituents and their differential absorption in different tissues. In comparison to the lung DNA adducts, the adducts in nasal DNA were less hydrophobic. Identity of the predominant adducts was further investigated by comparison with several reference DNA adducts from 10 PAH and aromatic amines. Since some of these chemicals are present in cigarette smoke, the results suggest that these constituents of cigarette smoke may not be directly responsible for formation of DNA adducts in the lung and heart of the smoke-exposed animals.

  2. Gas phase adduct reactions in MOCVD growth of GaN

    SciTech Connect

    Thon, A.; Kuech, T.F.

    1996-11-01

    Gas phase reactions between trimethylgallium (TMG) and ammonia were studied at high temperatures, characteristic to MOCVD of GaN reactors, by means of in situ mass spectroscopy in a flow tube reactor. It is shown, that a very fast adduct formation followed by elimination of methane occurs. The decomposition of TMG and the adduct-derived compounds are both first order and have similar apparent activation energy. The pre-exponential factor of the adduct decomposition is smaller, and hence is responsible for the higher full decomposition temperature of the adduct relative to that of TMG.

  3. In vitro bioactivation of a selective estrogen receptor modulator (2S,3R)-(+)-3-(3-hydroxyphenyl)-2-[4-(2-pyrrolidin-1-ylethoxy)phenyl]-2,3-dihydro-1,4-benzoxathiin-6-ol (I) in liver microsomes: formation of adenine adducts.

    PubMed

    Li, Ying; Doss, George A; Li, Yan; Chen, Qing; Tang, Wei; Zhang, Zhoupeng

    2012-11-19

    As part of our efforts to develop safer selective estrogen receptor modulators (SERMs), compound I {(2S,3R)-(+)-3-(3-hydroxyphenyl)-2-[4-(2-pyrrolidin-1-ylethoxy)-phenyl]-2,3-dihydro-1,4-benzoxathiin-6-ol} was previously identified as a lead for further development. Subsequent studies showed that compound I is genotoxic in both in vitro Chinese hamster ovary (CHO) cells and in vivo mouse studies. To better understand the possible mechanisms for the observed genetoxicity effects, in vitro incubations of I with liver microsomes of human, monkey, and mouse in the presence of adenine were performed, which led to the detection of five adenine adducts. The formation of these adducts was NADPH-dependent, suggesting the involvement of oxidative bioactivation catalyzed by cytochrome P450 enzymes. The mechanism for the formation of the major adenine adduct (A1) involves the formation of a reactive ring-opened para-quinone intermediate. The formation of four other adenine adducts may involve the formation of a reactive epoxide or ortho-quinone intermediate. Furthermore, incubations of compound I with human hepatocytes showed dose-dependent DNA damages in Comet assays. All of the above suggest that some reactive metabolites of compound I, formed through bioactivation mechanisms, have a potential to interact with DNA molecules in vitro and in vivo. This may be one of the causes of the genotoxicity observed preclinically both in vitro and in vivo. This case study demonstrated an approach using in vitro DNA trapping assays for assessing the genotoxicity potential of drug candidates.

  4. Benzo(a)pyrene (B(a)P) metabolism and in vitro formation of B(a)P-DNA adducts by hepatic microsomes from rats fed diets containing corn and menhaden oils

    SciTech Connect

    Dharwadkar, S.; Bellow, J.; Ramanathan, R.; Wade, A.

    1986-03-01

    Dietary unsaturated fat is required for maximum induction of hepatic mixed function oxidases responsible for activating carcinogens which may bind covalently to DNA. The aim of this study was to assess the influence of dietary fat type on in vitro B(a)P metabolism and B(a)P-DNA adduct formation. Male rats were starved 2 days and refed diet devoid of fat, or containing 20% corn oil (CO) or 20% menhaden oil (MO) for 4 days. Both dietary fats increased Vmax for B(a)P hydroxylation without affecting Km. Phenobarbital (PB) administration increased Vmax in all animals but Km was increased only in rats fed the fat diets. PB resulted in decreased B(a)P metabolism when conducted at 15 =M only in rats fed the two fat diets even in the presence of increased cytochrome P-450 (P-450). This effect was due to a decrease in B(a)P metabolism at low substrate concentrations in PB treated fat-fed animals. Binding of B(a)P to calf-thymus DNA was increased in animals fed both fats which was enhanced further by PB only in rats fed the CO and MO diets. When the data are calculated as B(a)P metabolized per unit of P-450, PB seems to induce a P-450 in fat-fed animals having lower affinity and capacity for B(a)P metabolism and activation.

  5. Chlorophyllin significantly reduces benzo[a]pyrene-DNA adduct formation and alters cytochrome P450 1A1 and 1B1 expression and EROD activity in normal human mammary epithelial cells.

    PubMed

    Keshava, Channa; Divi, Rao L; Einem, Tracey L; Richardson, Diana L; Leonard, Sarah L; Keshava, Nagalakshmi; Poirier, Miriam C; Weston, Ainsley

    2009-03-01

    We hypothesized that chlorophyllin (CHLN) would reduce benzo[a]pyrene-DNA (BP-DNA) adduct levels. Using normal human mammary epithelial cells (NHMECs) exposed to 4 microM BP for 24 hr in the presence or absence of 5 microM CHLN, we measured BP-DNA adducts by chemiluminescence immunoassay (CIA). The protocol included the following experimental groups: BP alone, BP given simultaneously with CHLN (BP+CHLN) for 24 hr, CHLN given for 24 hr followed by BP for 24 hr (preCHLN, postBP), and CHLN given for 48 hr with BP added for the last 24 hr (preCHLN, postBP+CHLN). Incubation with CHLN decreased BPdG levels in all groups, with 87% inhibition in the preCHLN, postBP+CHLN group. To examine metabolic mechanisms, we monitored expression by Affymetrix microarray (U133A), and found BP-induced up-regulation of CYP1A1 and CYP1B1 expression, as well as up-regulation of groups of interferon-inducible, inflammation and signal transduction genes. Incubation of cells with CHLN and BP in any combination decreased expression of many of these genes. Using reverse transcription real time PCR (RT-PCR) the maximal inhibition of BP-induced gene expression, >85% for CYP1A1 and >70% for CYP1B1, was observed in the preCHLN, postBP+CHLN group. To explore the relationship between transcription and enzyme activity, the ethoxyresorufin-O-deethylase (EROD) assay was used to measure the combined CYP1A1 and CYP1B1 activities. BP exposure caused the EROD levels to double, when compared with the unexposed controls. The CHLN-exposed groups all showed EROD levels similar to the unexposed controls. Therefore, the addition of CHLN to BP-exposed cells reduced BPdG formation and CYP1A1 and CYP1B1 expression, but EROD activity was not significantly reduced.

  6. Cytochrome b5 and epoxide hydrolase contribute to benzo[a]pyrene-DNA adduct formation catalyzed by cytochrome P450 1A1 under low NADPH:P450 oxidoreductase conditions.

    PubMed

    Stiborová, Marie; Moserová, Michaela; Černá, Věra; Indra, Radek; Dračínský, Martin; Šulc, Miroslav; Henderson, Colin J; Wolf, C Roland; Schmeiser, Heinz H; Phillips, David H; Frei, Eva; Arlt, Volker M

    2014-04-06

    In previous studies we had administered benzo[a]pyrene (BaP) to genetically engineered mice (HRN) which do not express NADPH:cytochrome P450 oxidoreductase (POR) in hepatocytes and observed higher DNA adduct levels in livers of these mice than in wild-type mice. To elucidate the reason for this unexpected finding we have used two different settings for in vitro incubations; hepatic microsomes from control and BaP-pretreated HRN mice and reconstituted systems with cytochrome P450 1A1 (CYP1A1), POR, cytochrome b5, and epoxide hydrolase (mEH) in different ratios. In microsomes from BaP-pretreated mice, in which Cyp1a1 was induced, higher levels of BaP metabolites were formed, mainly of BaP-7,8-dihydrodiol. At a low POR:CYP1A1 ratio of 0.05:1 in the reconstituted system, the amounts of BaP diones and BaP-9-ol formed were essentially the same as at an equimolar ratio, but formation of BaP-3-ol was ∼ 1.6-fold higher. Only after addition of mEH were BaP dihydrodiols found. Two BaP-DNA adducts were formed in the presence of mEH, but only one when CYP1A1 and POR were present alone. At a ratio of POR:CYP1A1 of 0.05:1, addition of cytochrome b5 increased CYP1A1-mediated BaP oxidation to most of its metabolites indicating that cytochrome b5 participates in the electron transfer from NADPH to CYP1A1 required for enzyme activity of this CYP. BaP-9-ol was formed even by CYP1A1 reconstituted with cytochrome b5 without POR. Our results suggest that in livers of HRN mice Cyp1a1, cytochrome b5 and mEH can effectively activate BaP to DNA binding species, even in the presence of very low amounts of POR.

  7. Glutathione Adduct Patterns of Michael-Acceptor Carbonyls.

    PubMed

    Slawik, Christian; Rickmeyer, Christiane; Brehm, Martin; Böhme, Alexander; Schüürmann, Gerrit

    2017-02-22

    Glutathione (GSH) has so far been considered to facilitate detoxification of soft organic electrophiles through covalent binding at its cysteine (Cys) thiol group, followed by stepwise catalyzed degradation and eventual elimination along the mercapturic acid pathway. Here we show that in contrast to expectation from HSAB theory, Michael-acceptor ketones, aldehydes and esters may form also single, double and triple adducts with GSH involving β-carbon attack at the much harder N-terminus of the γ-glutamyl (Glu) unit of GSH. In particular, formation of the GSH-N single adduct contradicts the traditional view that S alkylation always forms the initial reaction of GSH with Michael-acceptor carbonyls. To this end, chemoassay analyses of the adduct formation of GSH with nine α,β-unsaturated carbonyls employing high performance liquid chromatography and tandem mass spectrometry have been performed. Besides enriching the GSH adductome and potential biomarker applications, electrophilic N-terminus functio-nalization is likely to impair GSH homeostasis substantially through blocking the γ-glutamyl transferase catalysis of the first breakdown step of modified GSH, and thus its timely reconstitution. The discussion includes a comparison with cyclic adducts of GSH and furan metabolites as reported in literature, and quantum chemically calculated thermodynamics of hard-hard, hard-soft and soft-soft adducts.

  8. A mitomycin-N6-deoxyadenosine adduct isolated from DNA.

    PubMed

    Palom, Y; Lipman, R; Musser, S M; Tomasz, M

    1998-03-01

    A minor N6-deoxyadenosine adduct of mitomycin C (MC) was isolated from synthetic oligonucleotides and calf thymus DNA, representing the first adduct of MC and a DNA base other than guanine. The structure of the adduct (8) was elucidated using submilligram quantities of total available material. UV difference spectroscopy, circular dichroism, and electrospray mass spectroscopy as well as chemical transformations were utilized in deriving the structure of 8. A series of synthetic oligonucleotides was designed to probe the specificities of the alkylation of adenine by MC. The nature and frequency of the oligonucleotide-MC adducts formed under conditions of reductive activation of MC were determined by their enzymatic digestion to the nucleoside level followed by quantitative analysis of the products by HPLC. The analyses indicated the following: (i) (A)n sequence is favored over (AT)n for adduct formation; (ii) the alkylation favors the duplex structure; (iii) at adenine sites only monofunctional alkylation occurs; (iv) the adenine-to-alkylation frequency in the model oligonucleotides was 0.3-0.6 relative to guanine alkylation at the 5'-ApG sequence but only 0.02-0.1 relative to guanine alkylation at 5'-CpG. The 5'-phosphodiester linkage of the MC-adenine adduct is resistant to snake venom diesterase. The overall ratio of adenine to guanine alkylation in calf thymus DNA was 0.03, indicating that 8 is a minor MC-DNA adduct relative to MC-DNA adducts at guanine residues in the present experimental residues in the present experimental system. However, the HPLC elution time of 8 coincides with that of a major, unknown MC adduct detected previously in mouse mammary tumor cells treated with radiolabeled MC [Bizanek, R., Chowdary, D., Arai, H., Kasai, M., Hughes, C. S., Sartorelli, A. C., Rockwell, S., and Tomasz, M. (1993) Cancer Res. 53, 5127-5134]. Thus, 8 may be identical or closely related to this major adduct formed in vivo. This possibility can now be tested by

  9. Adducts of mitomycin C and DNA in EMT6 mouse mammary tumor cells: effects of hypoxia and dicumarol on adduct patterns.

    PubMed

    Bizanek, R; Chowdary, D; Arai, H; Kasai, M; Hughes, C S; Sartorelli, A C; Rockwell, S; Tomasz, M

    1993-11-01

    from monofunctionally activated MC was suppressed by DIC under both hypoxic and aerobic conditions. In addition, DIC induced the selective formation of an unknown DNA-associated radiolabeled substance in hypoxic cells; this is hypothesized to be a cytotoxic DNA lesion produced by a DIC-stimulated oxido-reductase. The methodology developed to measure MC adduct patterns may be useful as an indicator of distinct enzymatic activation processes for this drug.

  10. Diallyl sulfide inhibits diethylstilbesterol-induced DNA adducts in the breast of female ACI rats.

    PubMed

    Green, M; Wilson, C; Newell, O; Sadrud-Din, S; Thomas, R

    2005-09-01

    Diethylstilbestrol (DES) is metabolized to reactive intermediates that produce DNA adducts and ultimately cancer. Diallyl sulfide (DAS) has been shown to inhibit the metabolism of several procarcinogens. The ability of DES to produce DNA adducts in microsomal, mitochondrial, and nuclear in vitro metabolic systems and in the breast of female ACI rats, as well as ability of DAS to inhibit DNA adducts were investigated. Microsomes, mitochondria, and nuclei isolated from breast tissue of female ACI rats were used to catalyze oxidation reactions. Female ACI rats were treated i.p. as follows: (1) corn oil, (2) 200mg/kg DES, (3) 200mg/kg DES/200mg/kg of DAS, (4) 200mg/kg DES/400mg/kg DAS. DES produced DNA adducts in each metabolic system. The relative adduct levels were 2.1 x 10(-4), 6.2 x 10(-6), and 2.9 x 10(-7) in microsomal, mitochondrial, and nuclear reactions, respectively. DAS inhibited DNA adducts in each metabolic system. The percent inhibition ranged from 86% in microsomes to 93% in nuclei. DES produced DNA adducts in mtDNA and nDNA. DAS completely inhibited the DES-induced mtDNA adducts and caused a dose dependent decrease in nDNA adduct formation. These findings suggest that DAS could inhibit DES-induced breast cancer by inhibiting its metabolism.

  11. Proton-coupled electron transfer and adduct configuration are important for C4a-hydroperoxyflavin formation and stabilization in a flavoenzyme.

    PubMed

    Wongnate, Thanyaporn; Surawatanawong, Panida; Visitsatthawong, Surawit; Sucharitakul, Jeerus; Scrutton, Nigel S; Chaiyen, Pimchai

    2014-01-08

    Determination of the mechanism of dioxygen activation by flavoenzymes remains one of the most challenging problems in flavoenzymology for which the underlying theoretical basis is not well understood. Here, the reaction of reduced flavin and dioxygen catalyzed by pyranose 2-oxidase (P2O), a flavoenzyme oxidase that is unique in its formation of C4a-hydroperoxyflavin, was investigated by density functional calculations, transient kinetics, and site-directed mutagenesis. Based on work from the 1970s-1980s, the current understanding of the dioxygen activation process in flavoenzymes is believed to involve electron transfer from flavin to dioxygen and subsequent proton transfer to form C4a-hydroperoxyflavin. Our findings suggest that the first step of the P2O reaction is a single electron transfer coupled with a proton transfer from the conserved residue, His548. In fact, proton transfer enhances the electron acceptor ability of dioxygen. The resulting ·OOH of the open-shell diradical pair is placed in an optimal position for the formation of C4a-hydroperoxyflavin. Furthermore, the C4a-hydroperoxyflavin is stabilized by the side chains of Thr169, His548, and Asn593 in a "face-on" configuration where it can undergo a unimolecular reaction to generate H2O2 and oxidized flavin. The computational results are consistent with kinetic studies of variant forms of P2O altered at residues Thr169, His548, and Asn593, and kinetic isotope effects and pH-dependence studies of the wild-type enzyme. In addition, the calculated energy barrier is in agreement with the experimental enthalpy barrier obtained from Eyring plots. This work revealed new insights into the reaction of reduced flavin with dioxygen, demonstrating that the positively charged residue (His548) plays a significant role in catalysis by providing a proton for a proton-coupled electron transfer in dioxygen activation. The interaction around the N5-position of the C4a-hydroperoxyflavin is important for dictating the

  12. Laboratory studies of weakly bound adducts of atmospheric interest

    SciTech Connect

    Wine, P.H.; Nicovich, J.M.; Stickel, R.E.; Hynes, A.J.

    1995-12-31

    It is now well-established that weakly bound adducts, i.e., species whose life-times toward unimolecular decomposition are only fractions of a second under atmospheric conditions, play an important role in tropospheric sulfur chemistry. In this presentation, recent results from our laboratory concerning the existence and atmospheric fates of two such weakly bound species, (CH{sub 3}){sub 2}S-OH and (CH{sub 3}){sub 2}S-Cl, will be discussed. In addition, evidence for the formation of weakly bound adducts in reactions of chlorine atoms with methyl halides will be presented.

  13. Cytochrome P4501A induction, benzo[a]pyrene metabolism, and nucleotide adduct formation in fish hepatoma cells: Effect of preexposure to 3,3',4,4',5-pentachlorobiphenyl

    USGS Publications Warehouse

    Smeets, J.M.W.; Voormolen, A.; Tillitt, D.E.; Everaarts, J.M.; Seinen, W.; Vanden Berg, M.D.

    1999-01-01

    In PLHC-1 hepatoma cells, benzo[a]pyrene (B[a]P) caused a maximum induction of cytochrome P4501A (CYP1A) activity, measured as ethoxyresorufin O-deethylation (EROD), after 4 to 8 h of exposure, depending on the B[a]P concentration. The decline of EROD activity at longer exposure times was probably caused by the rapid metabolism of B[a]P in this system (57% metabolism within 4 h incubation). In subsequent experiments, PLHC-1 cells were preinduced with PCB 126 for 24 h and then received a dose of 10, 100, or 1,000 nM 3H-B[a]P. A 1-nM concentration of PCB 126 caused an 80-fold induction of CYP1A activity, resulting in an increase in B[a]P metabolism of less than 10%, except at the highest concentration of B[a]P (1,000 nM), where a 50% increase was observed. In another experiment, an 80-fold induction of CYP1A activity caused a 20% increase in the metabolism of B[a]P (100 nM), and RNA adduct formation was increased approximately twofold. These results indicate that, at exposure concentrations up to 100 nM B[a]P, CYP1A activity is not rate limiting for B[a]P metabolism. Furthermore, CYP1A seems to also he specifically involved in B[a]P activation in PLHC-1 cells. However, CYP1A induction causes only a relatively small increase in activation, probably because of the action of other enzymes involved in B[a]P activation and deactivation.

  14. NADH:Cytochrome b5 Reductase and Cytochrome b5 Can Act as Sole Electron Donors to Human Cytochrome P450 1A1-Mediated Oxidation and DNA Adduct Formation by Benzo[a]pyrene

    PubMed Central

    2016-01-01

    Benzo[a]pyrene (BaP) is a human carcinogen that covalently binds to DNA after activation by cytochrome P450 (P450). Here, we investigated whether NADH:cytochrome b5 reductase (CBR) in the presence of cytochrome b5 can act as sole electron donor to human P450 1A1 during BaP oxidation and replace the canonical NADPH:cytochrome P450 reductase (POR) system. We also studied the efficiencies of the coenzymes of these reductases, NADPH as a coenzyme of POR, and NADH as a coenzyme of CBR, to mediate BaP oxidation. Two systems containing human P450 1A1 were utilized: human recombinant P450 1A1 expressed with POR, CBR, epoxide hydrolase, and cytochrome b5 in Supersomes and human recombinant P450 1A1 reconstituted with POR and/or with CBR and cytochrome b5 in liposomes. BaP-9,10-dihydrodiol, BaP-7,8-dihydrodiol, BaP-1,6-dione, BaP-3,6-dione, BaP-9-ol, BaP-3-ol, a metabolite of unknown structure, and two BaP-DNA adducts were generated by the P450 1A1-Supersomes system, both in the presence of NADPH and in the presence of NADH. The major BaP-DNA adduct detected by 32P-postlabeling was characterized as 10-(deoxyguanosin-N2-yl)-7,8,9-trihydroxy-7,8,9,10-tetrahydro-BaP (assigned adduct 1), while the minor adduct is probably a guanine adduct derived from 9-hydroxy-BaP-4,5-epoxide (assigned adduct 2). BaP-3-ol as the major metabolite, BaP-9-ol, BaP-1,6-dione, BaP-3,6-dione, an unknown metabolite, and adduct 2 were observed in the system using P450 1A1 reconstituted with POR plus NADPH. When P450 1A1 was reconstituted with CBR and cytochrome b5 plus NADH, BaP-3-ol was the predominant metabolite too, and an adduct 2 was also generated. Our results demonstrate that the NADH/cytochrome b5/CBR system can act as the sole electron donor both for the first and second reduction of P450 1A1 during the oxidation of BaP in vitro. They suggest that NADH-dependent CBR can replace NADPH-dependent POR in the P450 1A1-catalyzed metabolism of BaP. PMID:27404282

  15. Depurinating estrogen–DNA adducts in the etiology and prevention of breast and other human cancers

    PubMed Central

    Cavalieri, Ercole L; Rogan, Eleanor G

    2015-01-01

    Experiments on estrogen metabolism, formation of DNA adducts, mutagenicity, cell transformation and carcinogenicity have led to and supported the hypothesis that the reaction of specific estrogen metabolites, mostly the electrophilic catechol estrogen-3,4-quinones, with DNA can generate the critical mutations to initiate breast and other human cancers. Analysis of depurinating estrogen–DNA adducts in urine demonstrates that women at high risk of, or with breast cancer, have high levels of the adducts, indicating a critical role for adduct formation in breast cancer initiation. Men with prostate cancer or non-Hodgkin lymphoma also have high levels of estrogen–DNA adducts. This knowledge of the first step in cancer initiation suggests the use of specific antioxidants that can block formation of the adducts by chemical and biochemical mechanisms. Two antioxidants, N-acetylcysteine and resveratrol, are prime candidates to prevent breast and other human cancers because in various in vitro and in vivo experiments, they reduce the formation of estrogen–DNA adducts. PMID:20021210

  16. Depurinating acylfulvene-DNA adducts: characterizing cellular chemical reactions of a selective antitumor agent.

    PubMed

    Gong, Jiachang; Vaidyanathan, V G; Yu, Xiang; Kensler, Thomas W; Peterson, Lisa A; Sturla, Shana J

    2007-02-21

    Acylfulvenes (AFs) are a class of semisynthetic agents with high toxicity toward certain tumor cells, and for one analogue, hydroxymethylacylfulvene (HMAF), clinical trials are in progress. DNA alkylation by AFs, mediated by bioreductive activation, is believed to contribute to cytotoxicity, but the structures and chemical properties of corresponding DNA adducts are unknown. This study provides the first structural characterization of AF-specific DNA adducts. In the presence of a reductive enzyme, alkenal/one oxidoreductase (AOR), AF selectively alkylates dAdo and dGuo in reactions with a monomeric nucleoside, as well as in reactions with naked or cellular DNA, with 3-alkyl-dAdo as the apparently most abundant AF-DNA adduct. Characterization of this adduct was facilitated by independent chemical synthesis of the corresponding 3-alkyl-Ade adduct. In addition, in naked or cellular DNA, evidence was obtained for the formation of an additional type of adduct resulting from direct conjugate addition of Ade to AF followed by hydrolytic cyclopropane ring-opening, indicating the potential for a competing reaction pathway involving direct DNA alkylation. The major AF-dAdo and AF-dGuo adducts are unstable under physiologically relevant conditions and depurinate to release an alkylated nucleobase in a process that has a half-life of 8.5 h for 3-alkyladenine and less than approximately 2 h for dGuo adducts. DNA alkylation further leads to single-stranded DNA cleavage, occurring exclusively at dGuo and dAdo sites, in a nonsequence-specific manner. In AF-treated cells that were transfected with either AOR or control vectors, the DNA adducts identified match those from in vitro studies. Moreover, a positive correlation was observed between DNA adduct levels and cell sensitivity to AF. The potential contributing roles of AOR-mediated bioactivation and adduct stability to the cytotoxicity of AF are discussed.

  17. Persistence of benzo[a]pyrene--DNA adducts in hematopoietic tissues and blood of the mummichog, Fundulus heteroclitus.

    PubMed

    Rose, W L; French, B L; Reichert, W L; Faisal, M

    2001-05-01

    The formation and persistence of benzo[a]pyrene (B[a]P)-DNA adducts were investigated in blood, liver and two hematopoietic tissues (anterior kidney and spleen) of the mummichog (Fundulus heteroclitus). Fish were injected with a single, sublethal dose of B[a]P (12 mg/kg body weight) and sampled from 8 to 96 days post-injection. 32P-Postlabeling analysis and storage phosphor imaging were used to resolve and quantify hydrophobic DNA adducts. One major DNA adduct was present in each of the examined tissues at all sampling times. This adduct had similar chromatographic characteristics to those of the adduct standard, 7R,8S,9S-trihydroxy-10S-(N(2)-deoxyguanosyl-3'-phosphate)-7,8,9,10-tetrahydro-benzo[a]pyrene (B[a]PDE-dG). Minor DNA adduct spots, representing less than 2% of the total DNA adducts, were observed in some liver, anterior kidney and spleen samples for up to 32 days post-injection. The B[a]P-DNA adducts reached maximal levels at 32 days post-injection and persisted for at least 96 days in all examined tissues. B[a]P-DNA adduct levels were significantly higher in the liver and anterior kidney than in the spleen from 16 to 96 days (P<0.001), although liver and anterior kidney DNA adduct levels were not significantly different at any time. This is the first controlled study to demonstrate the formation and persistence of B[a]P-DNA adducts in hematopoietic tissues and blood of fishes exposed to the prototypical polycyclic aromatic hydrocarbon, B[a]P. Although persistent DNA adducts are generally recognized as potential initiators of carcinogenic processes, adducts in these vital tissues may also lead to disruption of physiological functions such defense mechanisms and hematopoiesis.

  18. Malondialdehyde-acetaldehyde-adducted protein inhalation causes lung injury.

    PubMed

    Wyatt, Todd A; Kharbanda, Kusum K; McCaskill, Michael L; Tuma, Dean J; Yanov, Daniel; DeVasure, Jane; Sisson, Joseph H

    2012-02-01

    In addition to cigarette smoking, alcohol exposure is also associated with increased lung infections and decreased mucociliary clearance. However, little research has been conducted on the combination effects of alcohol and cigarette smoke on lungs. Previously, we have demonstrated in a mouse model that the combination of cigarette smoke and alcohol exposure results in the formation of a very stable hybrid malondialdehyde-acetaldehyde (MAA)-adducted protein in the lung. In in vitro studies, MAA-adducted protein stimulates bronchial epithelial cell interleukin-8 (IL-8) via the activation of protein kinase C epsilon (PKCɛ). We hypothesized that direct MAA-adducted protein exposure in the lungs would mimic such a combination of smoke and alcohol exposure leading to airway inflammation. To test this hypothesis, C57BL/6J female mice were intranasally instilled with either saline, 30μL of 50μg/mL bovine serum albumin (BSA)-MAA, or unadducted BSA for up to 3 weeks. Likewise, human lung surfactant proteins A and D (SPA and SPD) were purified from human pulmonary proteinosis lung lavage fluid and successfully MAA-adducted in vitro. Similar to BSA-MAA, SPD-MAA was instilled into mouse lungs. Lungs were necropsied and assayed for histopathology, PKCɛ activation, and lung lavage chemokines. In control mice instilled with saline, normal lungs had few inflammatory cells. No significant effects were observed in unadducted BSA- or SPD-instilled mice. However, when mice were instilled with BSA-MAA or SPD-MAA for 3 weeks, a significant peribronchiolar localization of inflammatory cells was observed. Both BSA-MAA and SPD-MAA stimulated increased lung lavage neutrophils and caused a significant elevation in the chemokine, keratinocyte chemokine, which is a functional homologue to human IL-8. Likewise, MAA-adducted protein stimulated the activation of airway and lung slice PKCɛ. These data support that the MAA-adducted protein induces a proinflammatory response in the lungs and

  19. FORMATION OF NITRO MUSK ADDUCTS OF RAINBOW ...

    EPA Pesticide Factsheets

    The high use of nitro musk xylene (MX) and musk ketone (MK) as fragrances, and their persistence and bioaccumulation potential make them ubiquitous environmental contaminants. The 4-amino-MX (AMX) and 2-amino-MK (AMK) metabolites have been detected in trout fish hemoglobin (Hb) samples by gas chromatography-ion trap-mass spectrometry (GC-MS). Twelve Hb samples prepared from rainbow trout that were exposed to MX and MK, over a period of 24 and 72 h, were analyzed. Amino metabolites were liberated by basic hydrolysis and extracted from the fish Hb into n-hexane. The extract was concentrated, analyzed, and spiked with a standard solution (80 pg/uL) of AMX or AMK and reanalyzed. Concentrations of AMX from 10 to 24.7 ng/g were detected in Hb from fish taken 24 and 72 h after MX exposure. At 24 and 72 h after MK exposure, the concentration of AMK was found to be 25.1 to 51, and 9.5 to 25.1 ng/g, respectively. Concentrations of AMK in Hb from two of the three trout were substantially lower after 72 h compared with 24 h exposure. The AMX and AMK metabolites were not detected in four control samples. Average recoveries exceeding 89 and 86% could be achieved for AMX and AMK, respectively, with a coefficient of variation (CV) around 5%. The research focused on in the subtasks is the development and application of state-of the-art technologies to meet the needs of the public, Office of Water, and ORD in the area of Water Quality. Located In the subtasks are the various r

  20. DNA adducts: Mass spectrometry methods and future prospects

    SciTech Connect

    Farmer, P.B. . E-mail: pbf1@le.ac.uk; Brown, K.; Tompkins, E.; Emms, V.L.; Jones, D.J.L.; Singh, R.; Phillips, D.H.

    2005-09-01

    Detection of DNA adducts is widely used for the monitoring of exposure to genotoxic carcinogens. Knowledge of the nature and amounts of DNA adducts formed in vivo also gives valuable information regarding the mutational effects that may result from particular exposures. The power of mass spectrometry (MS) to achieve qualitative and quantitative analyses of human DNA adducts has increased greatly in recent years with the development of improved chromatographic interfaces and ionisation sources. Adducts have been detected on nucleic acid bases, 2'-deoxynucleosides or 2'-deoxynucleotides, with LC-MS/MS being the favoured technique for many of these analyses. Our current applications of this technique include the determination of N7-(2-carbamoyl-2-hydroxyethyl)-guanine, which was postulated to be found as a DNA repair product in urine following exposure to acrylamide, and of 8-oxo-7,8-dihydro-2'-deoxyguanosine and 8-oxo-7,8-dihydro-2'-deoxyadenosine, as markers of oxidative damage in human lymphocyte DNA. Higher sensitivity (with a detection limit of 1-10 adducts/10{sup 12} nucleotides) may be achieved by the use of accelerator mass spectrometry (AMS), although this requires the presence of certain isotopes, such as [{sup 14}C], in the material being analysed. In order to make this technique more amenable for studies of human exposure to environmental carcinogens, new postlabelling techniques, incorporating [{sup 14}C] into specific DNA adducts after formation, are being developed. It is expected that combining the use of advanced MS techniques with existing {sup 32}P-postlabelling and immunochemical methodologies will contribute greatly to the understanding of the burden of human exposure to environmental carcinogens.

  1. Fabrication and electrochemical properties of insoluble fullerene-diamine adduct thin-films as buffer layer by alternate immersion process

    NASA Astrophysics Data System (ADS)

    Saito, Jo; Akiyama, Tsuyoshi; Suzuki, Atsushi; Oku, Takeo

    2017-01-01

    Insoluble fullerene-diamine adduct thin-films consisting of C60 and 1,2-diaminoethane were easily fabricated on an electrode by an alternate immersion process. Formation of the C60-diamine adduct films were confirmed using transmission absorption spectroscopy and atomic force microscopy. An inverted-type organic solar cells were fabricated by using the C60-diamine adduct film as the electron transport layer. The resultant photoelectric conversation performance of the solar cells suggested that photocurrent is generated via the photoexcitation of polythiophene. The result suggests that the present insoluble fullerene-diamine adduct films worked as buffer layer for organic thin-film solar cells.

  2. Benzo(a)pyrene-albumin adducts in humans exposed to polycyclic aromatic hydrocarbons in an industrial area of Poland.

    PubMed Central

    Kure, E H; Andreassen, A; Ovrebø, S; Grzybowska, E; Fiala, Z; Strózyk, M; Chorazy, M; Haugen, A

    1997-01-01

    OBJECTIVES: The interaction of benzo(a)pyrene with serum albumin was measured in an attempt to identify the actual exposure and to evaluate albumin adduct measurements as biomarkers for exposure monitoring. METHODS: Benzo(a)pyrene-diol-epoxide (BPDE)-albumin adducts were measured by competitive enzyme linked immunosorbent assay (ELISA) in plasma of coke oven plant workers from three plants and from people living in a highly industrialised area of Silesia in Poland. Due to the high air concentrations of polycyclic aromatic hydrocarbons (PAHs) in this area, a control group was selected from a rural non-industrialised area in Poland. Breathing zone air measurements of PAHs were collected from some of the participants. RESULTS: Coke oven plant workers and non-occupationally exposed people had similar concentrations of albumin adducts whereas the rural controls were significantly lower (2.74 fmol adducts/microgram albumin (SEM 0.124)). The mean concentration of BPDE-albumin adduct in plasma of both the occupational and the environmental groups were significantly higher in the summer samples (4.34 fmol adducts/microgram albumin (SEM 0.335) and 4.55 fmol adducts/microgram albumin (SEM 0.296), respectively) than in the winter samples (3.06 fmol adducts/microgram albumin (SEM 0.187) and 3.04 fmol adducts/microgram albumin (SEM 0.184), respectively) even though the air measurements showed higher concentrations of PAHs in the winter. The statistical analysis did not show any effects of air exposures on concentrations of BPDE-albumin adduct. CONCLUSIONS: A multiple regression analysis of the measured concentrations of BPDE-albumin adducts for all the groups, during both seasons, indicates that occupational exposures do not contribute significantly to the formation of adducts. In general, the concentrations of albumin adducts found vary within relatively small limits for the two seasons and between the various groups of participants. No extreme differences were found. PMID

  3. The analysis of high explosives by liquid chromatography/electrospray ionization mass spectrometry: multiplexed detection of negative ion adducts.

    PubMed

    Mathis, John A; McCord, Bruce R

    2005-01-01

    The negative ion electrospray ionization mass spectrometric (ESI-MS) detection of adducts of high explosives with chloride, formate, acetate, and nitrate was used to demonstrate the gas-phase interaction of neutral explosives with these anions. The relative intensities of the adduct species were determined to compare the competitive formation of the selected high explosives and anions. The relative stability of the adduct species varies, yielding preferential formation of certain anionic adducts with different high explosives. To exploit this effect, an isocratic high-performance liquid chromatography (HPLC)/ESI-MS method was developed and used for the simultaneous analysis of high explosives using two different techniques for the addition of the anionic additives; pre- and post-column. The results show that the pre-column approach provides similar results with improved selectivity for specific explosives. By detecting characteristic adduct species for each explosive, this method provides a qualitative and quantitative approach for the analysis and identification of high explosives.

  4. Carcinogen adducts as an indicator for the public health risks of consuming carcinogen-exposed fish and shellfish.

    PubMed Central

    Dunn, B P

    1991-01-01

    A large variety of environmental carcinogens are metabolically activated to electrophilic metabolites that can bind to nucleic acids and protein, forming covalent adducts. The formation of DNA-carcinogen adducts is thought to be a necessary step in the action of most carcinogens. Recently, a variety of new fluorescence, immunochemical, and radioactive-postlabeling procedures have been developed that allow the sensitive measurement of DNA-carcinogen adducts in organisms exposed to environmental carcinogens. In some cases, similar procedures have been developed for protein-carcinogen adducts. In an organism with active metabolic systems for a given carcinogen, adducts are generally much longer lived than the carcinogens that formed them. Thus, the detection of DNA- or protein-carcinogen adducts in aquatic foodstuffs can act as an indicator of prior carcinogen exposure. The presence of DNA adducts would, in addition, suggest a mutagenic/carcinogenic risk to the aquatic organism itself. Vertebrate fish are characterized by high levels of carcinogen metabolism, low body burdens of carcinogen, the formation of carcinogen-macromolecule adducts, and the occurrence of pollution-related tumors. Shellfish, on the other hand, have low levels of carcinogen metabolism, high body burdens of carcinogen, and have little or no evidence of carcinogen-macromolecule adducts or tumors. The consumption of carcinogen adducts in aquatic foodstuffs is unlikely to represent a human health hazard. There are no metabolic pathways by which protein-carcinogen or DNA-carcinogen adducts could reform carcinogens. Incorporation via salvage pathways of preformed nucleoside-carcinogen adducts from foodstuffs into newly synthesized human DNA is theoretically possible.(ABSTRACT TRUNCATED AT 250 WORDS) Images FIGURE 1. FIGURE 1. FIGURE 2. PMID:2050048

  5. Carcinogen adducts as an indicator for the public health risks of consuming carcinogen-exposed fish and shellfish

    SciTech Connect

    Dunn, B.P. )

    1991-01-01

    A large variety of environmental carcinogens are metabolically activated to electrophilic metabolites that can bind to nucleic acids and protein, forming covalent adducts. The formation of DNA-carcinogen adducts is thought to be a necessary step in the action of most carcinogens. Recently, a variety of new fluorescence, immunochemical, and radioactive-postlabeling procedures have been developed that allow the sensitive measurement of DNA-carcinogen adducts in organisms exposed to environmental carcinogens. In some cases, similar procedures have been developed for protein-carcinogen adducts. In an organism with active metabolic systems for a given carcinogen, adducts are generally much longer lived than the carcinogens that formed them. Thus, the detection of DNA- or protein-carcinogen adducts in aquatic foodstuffs can act as an indicator of prior carcinogen exposure. The presence of DNA adducts would, in addition, suggest a mutagenic/carcinogenic risk to the aquatic organism itself. Vertebrate fish are characterized by high levels of carcinogen metabolism, low body burdens of carcinogen, the formation of carcinogen-macromolecule adducts, and the occurrence of pollution-related tumors. Shellfish, on the other hand, have low levels of carcinogen metabolism, high body burdens of carcinogen, and have little or no evidence of carcinogen-macromolecule adducts or tumors. The consumption of carcinogen adducts in aquatic foodstuffs is unlikely to represent a human health hazard. There are no metabolic pathways by which protein-carcinogen or DNA-carcinogen adducts could reform carcinogens. Incorporation via salvage pathways of preformed nucleoside-carcinogen adducts from foodstuffs into newly synthesized human DNA is theoretically possible.

  6. Line narrowing spectroscopic studies of DNA-carcinogen adducts and DNA-dye complexes

    SciTech Connect

    Suh, Myungkoo

    1995-12-06

    Laser-induced fluorescence line narrowing and non-line narrowing spectroscopic methods were applied to conformational studies of stable DNA adducts of the 7β, 8α-dihydoxy-9α, l0α-epoxy-7,8,9, 10-tetrahydrobenzo[α]pyrene (anti-BPDE). Stereochemically distinct (+)-trans-, (-)-trans-, (+)-cis- and (-)-cis adducts of anti-BPDE bound to exocyclic amino group of the central guanine in an 11-mer oligonucleotide, exist in a mixture of conformations in frozen aqueous buffer matrices. The (+)-trans adduct adopts primarily an external conformation with a smaller fraction ( ~25 %) exists in a partially base-stacked conformation. Both cis adducts were found to be intercalated with significant π-π stacking interactions between the pyrenyl residues and the bases. Conformations of the trans-adduct of (+)-anti -BPDE in 11-mer oligonucleotides were studied as a function of flanking bases. In single stranded form the adduct at G2 or G3 (5 ft-flanking, base guanine) adopts a conformation with strong, interaction with the bases. In contrast, the adduct with a 5ft-flanking, thymine exists in a primarily helixexternal conformation. Similar differences were observed in the double stranded oligonucleotides. The nature of the 3ft-flanking base has little influence on the conformational equilibrium of the (+)-trans-anti BPDE-dG adduct. The formation and repair of BPDE-N2-dG in DNA isolated from the skin of mice treated topically with benzo[α]pyrene (BP) was studied. Low-temperature fluorescence spectroscopy of the intact DNA identified the major adduct as (+)-trans-anti-BPDE-N-dG, and the minor adduct fraction consisted mainly of (+)-cis-anti-BPDE-N2-dG.

  7. Analysis of serum PAH`s and PAH adducts by LC/MS

    SciTech Connect

    McClure, P.C.; Barr, J.R.; Maggio, V.L.

    1995-12-31

    Polycyclic aromatic hydrocarbons are an important class of chemical carcinogens. Benzo[a]pyrene is the most extensively studied and best understood carcinogenic PAH It is believed that Benzo[a]pyrene is metabolized in vitro to the diol epoxide, Benzo[a]pyrene-7,8-dihydrodiol-9, 10-epoxide which then can react with various nucleophilic centers on DNA. The major alkylation product appears to be the reaction of the Benzo[a]pyrene diol epoxide with the N{sup 2} position of guanine sites on DNA. Methods that can measure exposure and biological response to carcinogens such as PAH`s are needed. Human Blood can be separated into plasma, lymphocytes, and red blood cells. The plasma should contain native PAH`s which may yield some useful information about recent exposure. The red blood cells contain hemoglobin and adducts of PAH`s. Hemoglobin has an average lifetime of 120 days so quantification of hemoglobin adducts should give an average of a persons exposure over four months. Also, the electrophilic metabolites that react with hemoglobin to form adducts are the same metabolites that form DNA adducts which can lead to mutations and cancer. Lymphocytes contain DNA and therefore DNA adducts. DNA adducts can be repaired by a series of enzymes so quantification of these adducts will only yield information about recent or non-repairable adducts. DNA adduct formation is believed to be the first important step in chemical carcinogenesis so quantification of these adducts should yield some information on exposure and a great deal of important data on biological response and risk from specific PAH`s.

  8. Ultraviolet irradiation of monkey cells enhances the repair of DNA adducts in alpha DNA

    SciTech Connect

    Leadon, S.A.; Hanawalt, P.C.

    1984-11-01

    Excision repair of bulky adducts in alpha DNA of African green monkey cells has previously been shown to be deficient relative to that in the overall genome. We have found that u.v. irradiation of these cells results in the enhanced removal of both aflatoxin B1 (AFB1) and acetylaminofluorene (AAF) adducts from the alpha DNA sequences without affecting repair in the bulk of the DNA. The degree of enhanced removal of AFB1 is dependent upon the u.v. dose and the time interval between irradiation and AFB1 treatment. The u.v. enhancement is not inhibited by cycloheximide. Exposure of the cells to dimethylsulfate or gamma-rays does not affect AFB1 adduct repair. The formation and removal of N-acetoxy-2-acetylaminofluorene (NA-AAF) adducts from alpha and bulk DNA was studied in detail. A higher initial level of the acetylated C8 adduct of guanine was found in alpha DNA than in bulk DNA. Although both the acetylated and deacetylated C8 adducts were removed from the two DNA species, the level of repair was significantly greater in the bulk DNA. Irradiation of cells with u.v. prior to treatment with NA-AAF enhanced the removal of both adducts from alpha DNA with little or no effect on repair in bulk DNA. We conclude that the presence of u.v. photoproducts or some intermediate in their processing alters the chromatin structure of alpha DNA thereby rendering bulky adducts accessible to repair enzymes. In addition, the differential formation and repair of AAF adducts in alpha DNA compared with that in the bulk of the genome supports the hypothesis of an altered chromatin structure for alpha domains.

  9. Immunochemical quantitation of 3-(cystein-S-yl)acetaminophen adducts in serum and liver proteins of acetaminophen-treated mice.

    PubMed

    Pumford, N R; Hinson, J A; Potter, D W; Rowland, K L; Benson, R W; Roberts, D W

    1989-01-01

    Using a recently developed enzyme-linked immunosorbent assay specific for 3-(cystein-S-yl)acetaminophen adducts we have quantitated the formation of these specific adducts in liver and serum protein of B6C3F1 male mice dosed with acetaminophen. Administration of acetaminophen at doses of 50, 100, 200, 300, 400 and 500 mg/kg to mice resulted in evidence of hepatotoxicity (increase in serum levels of alanine aminotransferase and aspartate aminotransferase) at 4 hr in the 300, 400 and 500 mg/kg treatment groups only. The formation of 3-(cystein-S-yl)acetaminophen adducts in liver protein was not observed in the groups receiving 50, 100 and 200 mg/kg doses, but was observed in the groups receiving doses above 300 mg/kg of acetaminophen. Greater levels of adduct formation were observed at the higher doses. 3-(Cystein-S-yl)acetaminophen protein adducts were also observed in serum of mice receiving hepatotoxic doses of acetaminophen. After a 400 mg/kg dose of acetaminophen, 3-(cystein-S-yl)acetaminophen adducts in the liver protein reached peak levels 2 hr after dosing. By 12 hr the levels decreased to approximately 10% of the peak level. In contrast, 3-(cystein-S-yl)acetaminophen adducts in serum protein were delayed, reaching a sustained peak 6 to 12 hr after dosing. The dose-response correlation between the appearance of serum aminotransferases and 3-(cystein-S-yl)acetaminophen adducts in serum protein and the temporal correlation between the decrease in 3-(cystein-S-yl)acetaminophen adducts in liver protein and the appearance of adducts in serum protein are consistent with a hepatic origin of the adducts detected in serum protein.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Estrogen-DNA Adducts as Novel Biomarkers for Ovarian Cancer Risk and for Use in Prevention

    DTIC Science & Technology

    2013-03-01

    the association between ovarian cancer and (1) imbalances in estrogen metabolism that lead to higher levels of estrogen-DNA adducts in urine and/or (2...provides a measure of the imbalance 6 of estrogen metabolism in a person. A high ratio indicates that the person’s estrogen metabolism is...polymorphisms and risk of hormonal cancers. The estrogen quinone resulting from CYP1B1 activity may proceed to adduct formation in the presence of

  11. Polycyclic aromatic hydrocarbon-DNA adducts and the CYP1A1 restriction fragment length polymorphism

    SciTech Connect

    Shields, P.G.; Bowman, E.D.; Weston, A.; Harris, C.C.; Sugimura, H.; Caporaso, N.E.; Petruzzelli, S.F. ); Trump, B.F. )

    1992-11-01

    Human cancer risk assessment at a genetic level involves the investigation of carcinogen metabolism and DNA adduct formation. Wide interindividual differences in metabolism result in different DNA adduct levels. For this and other reasons, many laboratories have considered DNA adducts to be a measure of the biologically effective dose of a carcinogen. Techniques for studying DNA adducts using chemically specific assays are becoming available. A modification of the [sup 32]P-postlabeling assay for polycyclic aromatic hydrocarbon DNA adducts described here provides potential improvements in quantification. DNA adducts, however, reflect only recent exposure to carcinogens; in contrast, genetic testing for metabolic capacity indicates the extent to which carcinogens can be activated and exert genotoxic effects. Such studies may reflect both separate and integrated risk factors together with DNA adduct levels. A recently described restriction fragment length polymorphism for the CYP1A1, which codes for the cytochrome P450 enzyme primarily responsible for the metabolic activation of carcinogenic polycyclic aromatic hydrocarbons, has been found to be associated with lung cancer risk in a Japanese population. In a subset of individuals enrolled in a US lung cancer case-control study, no association with lung cancer was found. 17 refs., 3 figs.

  12. Use of LC-MS/MS and stable isotopes to differentiate hydroxymethyl and methyl DNA adducts from formaldehyde and nitrosodimethylamine.

    PubMed

    Lu, Kun; Craft, Sessaly; Nakamura, Jun; Moeller, Benjamin C; Swenberg, James A

    2012-03-19

    Formaldehyde is a known human and animal carcinogen that forms DNA adducts, and causes mutations. While there is widespread exposure to formaldehyde in the environment, formaldehyde is also an essential biochemical in all living cells. The presence of both endogenous and exogenous sources of formaldehyde makes it difficult to develop exposure-specific DNA biomarkers. Furthermore, chemicals such as nitrosodimethylamine form one mole of formaldehyde for every mole of methylating agent, raising questions about potential cocarcinogenesis. Formaldehyde-induced hydroxymethyl DNA adducts are not stable and need to be reduced to stable methyl adducts for detection, which adds another layer of complexity to identifying the origins of these adducts. In this study, highly sensitive mass spectrometry methods and isotope labeled compounds were used to differentiate between endogenous and exogenous hydroxymethyl and methyl DNA adducts. We demonstrate that N(2)-hydroxymethyl-dG is the primary DNA adduct formed in cells following formaldehyde exposure. In addition, we show that alkylating agents induce methyl adducts at N(2)-dG and N(6)-dA positions, which are identical to the reduced forms of hydroxymethyl adducts arising from formaldehyde. The use of highly sensitive LC-MS/MS and isotope labeled compounds for exposure solves these challenges and provides mechanistic insights on the formation and role of these DNA adducts.

  13. Quantitation of cis-diamminedichloroplatinum II (cisplatin)-DNA-intrastrand adducts in testicular and ovarian cancer patients receiving cisplatin chemotherapy.

    PubMed

    Reed, E; Yuspa, S H; Zwelling, L A; Ozols, R F; Poirier, M C

    1986-02-01

    The antitumor activity of cis-diamminedichloroplatinum II (cisplatin) is believed to be related to its covalent interaction with DNA where a major DNA binding product is an intrastrand N7-bidentate adduct on adjacent deoxyguanosines. A novel immunoassay was used to quantitate this adduct in buffy coat DNA from testicular and ovarian cancer patients undergoing cisplatin therapy. 44 out of 120 samples taken from 45 cisplatin patients had detectable cisplatin-DNA adducts. No adducts were detected in 18 samples of DNA taken from normal controls, patients on other chemotherapy, or patients before treatment. The quantity of measurable adducts increased as a function of cumulative dose of cisplatin. This was observed both during repeated daily infusion of the drug and over long-term, repeated 21-28 d cycles of administration. These results suggested that adduct removal is slow even though the tissue has a relatively rapid turnover. Patients receiving cisplatin for the first time on 56-d cycles, and those given high doses of cisplatin as a "salvage" regimen, did not accumulate adducts as rapidly as patients on first time chemotherapy on 21- or 28-d cycles. Disease response data, evaluated for 33 cisplatin-treated patients, showed a positive correlation between the formation of DNA adducts and response to drug therapy. However, more data will be required to confirm this relationship. These data show that specific immunological probes can readily be applied to quantitate DNA adducts in patients undergoing cancer chemotherapy.

  14. Dose responses for the formation of hemoglobin adducts and urinary metabolites in rats and mice exposed by inhalation to low concentrations of 1,3-[2,3-(14)C]-butadiene.

    PubMed

    Booth, Ewan D; Kilgour, Joanne D; Watson, William P

    2004-03-15

    Blood and urine were obtained from male Sprague-Dawley rats and B6C3F1 mice exposed to either a single 6 h or multiple daily (5 x 6 h) nose-only doses of 1,3-[2,3- (14)C]-butadiene at atmospheric concentrations of 1, 5 or 20 ppM. Globin was isolated from erythrocytes of exposed animals and analyzed for total radioactivity and also for N-(1,2,3-trihydroxybut-4-yl)-valine adducts. The modified Edman degradation procedure coupled with GC-MS was used for the adduct analysis. Linear relationships were observed between the exposures to 1,3-[2,3-(14)C]-butadiene and the total radioactivity measured in globin and the level of trihydroxybutyl valine adducts in globin. A greater level of radioactivity (ca. 1.3-fold) was found in rat globin compared with mouse globin. When analyzed for specific amino acid adducts, higher levels of trihydroxybutyl valine adducts were found in mouse globin compared with rat globin. Average levels of trihydroxybutyl valine adduct measured in globin from rats and mice exposed for 5 x 6 h at 1, 5 and 20 ppM 1,3-[2,3-(14)C]-butadiene were, respectively, for rats: 80, 179, 512 pM/g globin and for mice: 143, 351, 1100 pM/g globin. The profiles of urinary metabolites for rats and mice exposed at the different concentrations of butadiene were obtained by reverse phase HPLC analysis on urine collected 24 h after the start of exposure and were compared with results of a previous similar study carried out for 6 h at 200 ppM butadiene. Whilst there were qualitative and quantitative differences between the profiles for rats and mice, the major metabolites detected in both cases were those representing products of epoxide hydrolase mediated hydrolysis and glutathione (GSH) conjugation of the metabolically formed 1,2-epoxy-3-butene. These were 4-(N-acetyl-l-cysteine-S-yl)-1,2-dihydroxy butane and (R)-2-(N-acetyl-l-cystein-S-yl)-1-hydroxybut-3-ene, 1-(N-acetyl-l-cystein-S-yl)-2-(S)-hydroxybut-3-ene, 1-(N-acetyl-l-cystein-S-yl)-2-(R)-hydroxybut-3-ene, (S)-2-(N

  15. The effect of knockout of sulfotransferases 1a1 and 1d1 and of transgenic human sulfotransferases 1A1/1A2 on the formation of DNA adducts from furfuryl alcohol in mouse models.

    PubMed

    Sachse, Benjamin; Meinl, Walter; Glatt, Hansruedi; Monien, Bernhard H

    2014-10-01

    Furfuryl alcohol is a rodent carcinogen present in numerous foodstuffs. Sulfotransferases (SULTs) convert furfuryl alcohol into the DNA reactive and mutagenic 2-sulfoxymethylfuran. Sensitive techniques for the isotope-dilution ultra performance liquid chromatography-tandem mass spectrometry quantification of resulting DNA adducts, e.g. N (2)-((furan-2-yl)methyl)-2'-deoxyguanosine (N (2)-MF-dG), were developed. To better understand the contribution of specific SULT forms to the genotoxicity of furfuryl alcohol in vivo, we studied the tissue distribution of N (2)-MF-dG in different mouse models. Earlier mutagenicity studies with Salmonella typhimurium strains expressing different human and murine SULT forms indicated that human SULT1A1 and murine Sult1a1 and 1d1 catalyze furfuryl alcohol sulfo conjugation most effectively. Here, we used three mouse lines to study the bioactivation of furfuryl alcohol by murine SULTs, FVB/N wild-type (wt) mice and two genetically modified models lacking either murine Sult1a1 or Sult1d1. The animals received a single dose of furfuryl alcohol, and the levels of the DNA adducts were determined in liver, kidney, lung, colon and small intestine. The effect of Sult1d1 gene disruption on the genotoxicity of furfuryl alcohol was moderate and limited to kidney and small intestine. In contrast, the absence of functional Sult1a1 had a massive influence on the adduct levels, which were lowered by 33-73% in all tissues of the female Sult1a1 null mice compared with the wt animals. The detection of high N (2)-MF-dG levels in a humanized mouse line expressing hSULT1A1/1A2 instead of endogeneous Sult1a1 and Sult1d1 supports the hypothesis that furfuryl alcohol is converted to the mutagenic 2-sulfoxymethylfuran also in humans.

  16. Aristoxazole analogues. Conversion of 8-nitro-1-naphthoic acid to 2-methylnaphtho[1,2-d]oxazole-9-carboxylic acid: comments on the chemical mechanism of formation of DNA adducts by the aristolochic acids.

    PubMed

    Priestap, Horacio A; Barbieri, Manuel A; Johnson, Francis

    2012-07-27

    2-Methylnaphtho[1,2-d]oxazole-9-carboxylic acid was obtained by reduction of 8-nitro-1-naphthoic acid with zinc-acetic acid. This naphthoxazole is a condensation product between an 8-nitro-1-naphthoic acid reduction intermediate and acetic acid and is a lower homologue of aristoxazole, a similar condensation product of aristolochic acid I with acetic acid that was previously reported. Both oxazoles are believed to arise via a common nitrenium/carbocation ion mechanism that is likely related to that which leads to aristolochic acid-DNA-adducts.

  17. 7-Alkylguanine adduct levels in urine, lungs and liver of mice exposed to styrene by inhalation

    SciTech Connect

    Vodicka, Pavel Erik . E-mail: pvodicka@biomed.cas.cz; Linhart, Igor; Novak, Jan; Koskinen, Mikko; Vodickova, Ludmila; Hemminki, Kari

    2006-01-15

    This study describes urinary excretion of two nucleobase adducts derived from styrene 7,8-oxide (SO), i.e., 7-(2-hydroxy-1-phenylethyl)guanine (N7{alpha}G) and 7-(2-hydroxy-2-phenylethyl)guanine (N7{beta}G), as well as a formation of N7-SO-guanine adducts in lungs and liver of two month old male NMRI mice exposed to styrene by inhalation in a 3-week subacute study. Strikingly higher excretion of both isomeric nucleobase adducts in the first day of exposure was recorded, while the daily excretion of nucleobase adducts in following time intervals reached the steady-state level at 4.32 + 1.14 and 6.91 + 1.17 pmol/animal for lower and higher styrene exposure, respectively. {beta}-SO-guanine DNA adducts in lungs increased with exposure in a linear way (F = 13.7 for linearity and 0.17 for non-linearity, respectively), reaching at the 21st day the level of 23.0 adducts/10{sup 8} normal nucleotides, i.e., 0.74 fmol/{mu}g DNA of 7-alkylguanine DNA adducts for the concentration of 1500 mg/m{sup 3}, while no 7-SO-guanine DNA adducts were detected in the liver after 21 days of inhalation exposure to both of styrene concentrations. A comparison of 7-alkylguanines excreted in urine with 7-SO-guanines in lungs (after correction for depurination and for missing {alpha}-isomers) revealed that persisting 7-SO-guanine DNA adducts in lungs account for about 0.5% of the total alkylation at N7 of guanine. The total styrene-specific 7-guanine alkylation accounts for about 1.0 x 10{sup -5}% of the total styrene uptake, while N1-adenine alkylation contributes to this percentage only negligibly.

  18. Abacavir forms novel cross-linking abacavir protein adducts in patients.

    PubMed

    Meng, Xiaoli; Lawrenson, Alexandre S; Berry, Neil G; Maggs, James L; French, Neil S; Back, David J; Khoo, Saye H; Naisbitt, Dean J; Park, B Kevin

    2014-04-21

    Abacavir (ABC), a nucleoside-analogue reverse transcriptase inhibitor, is associated with severe hypersensitivity reactions that are thought to involve the activation of CD8+ T cells in a HLA-B*57:01-restricted manner. Recent studies have claimed that noncovalent interactions of ABC with HLA-B*57:01 are responsible for the immunological reactions associated with ABC. However, the formation of hemoglobin-ABC aldehyde (ABCA) adducts in patients exposed to ABC suggests that protein conjugation might represent a pathway for antigen formation. To further characterize protein conjugation reactions, we used mass spectrometric methods to define ABCA modifications in patients receiving ABC therapy. ABCA formed a novel intramolecular cross-linking adduct on human serum albumin (HSA) in patients and in vitro via Michael addition, followed by nucleophilic adduction of the aldehyde with a neighboring protein nucleophile. Adducts were detected on Lys159, Lys190, His146, and Cys34 residues in the subdomain IB of HSA. Only a cysteine adduct and a putative cross-linking adduct were detected on glutathione S-transferase Pi (GSTP). These findings reveal that ABC forms novel types of antigens in all patients taking the drug. It is therefore vital that the immunological consequences of such pathways of haptenation are explored in the in vitro models that have been used by various groups to define new mechanisms of drug hypersensitivity exemplified by ABC.

  19. Cigarette smoke-induced DNA adducts in the respiratory and nonrespiratory tissues of rats

    SciTech Connect

    Gairola, C.G.; Gupta, R.C. )

    1991-01-01

    Formation of DNA adducts is regarded as an essential initial step in the process of chemical carcinogenesis. To determine how chronic exposure to cigarette smoke affects the distribution of DNA adducts in selected respiratory and nonrespiratory tissues. The authors exposed male Sprague-Dawley rats daily to fresh mainstream smoke from the Univ. of Kentucky reference cigarettes (2R1) in a nose-only exposure system for 32 weeks. Blood carboxyhemoglobin, total particulate matter (TPM) intake, and pulmonary aryl hydrocarbon hydroxylase values indicated effective exposure of animals to cigarette smoke. DNA was extracted from three respiratory (larynx, trachea, and lung) and three nonrespiratory (liver, heart, and bladder) tissues and analyzed for DNA adducts by the {sup 32}P-postlabeling assay under conditions capable of detecting low levels of diverse aromatic/hydrophobic adducts. Data showed that the total DNA adducts in the lung, heart, and trachea, and larynx were increased by 10- to 20-fold in the smoke-exposed group. These data suggest selective formation of DNA adducts in the tissues.

  20. Thermal stability of DNA adducts induced by cyanomorpholinoadriamycin in vitro.

    PubMed Central

    Cullinane, C; Phillips, D R

    1993-01-01

    The Adriamycin derivative, cyanomorpholinoadriamycin (CMA) was reacted with DNA in vitro to form apparent interstrand crosslinks. The extent of interstrand crosslink formation was monitored by a gel electrophoresis assay and maximal crosslinking of DNA was observed within 1 hr with 5 microM of drug. The interstrand crosslinks were heat labile, with a midpoint melting temperature of 70 degrees C (10 min exposure to heat) in 45% formamide. When CMA-induced adducts were detected as blockages of lambda-exonuclease, 12 blockage sites were observed with 8 being prior to 5'-GG sequences, one prior to 5'-CC, one prior to 5'-GC and 2 at unresolved combinations of these sequences. These exonuclease-detected blockages reveal the same sites of CMA-induced crosslinking as detected by in vitro transcription footprinting and primer-extension blockages on single strand DNA, where the blockages at 5'-GG and 5'-CC were identified as sites of intrastrand crosslinking and the 5'-GC blockage as a probable site of interstrand crosslinking. The thermal stability of both types of crosslink (10 min exposure to heat) ranged from 63-70 degrees C at individual sites. High levels of adduct were detected with poly (dG-dC) but not with poly (dI-dC). These results suggest adduct formation involving an aminal linkage between the 3 position of the morpholino moiety and N2 of guanine. Images PMID:8493102

  1. Structural Characterization of Hydroxyl Radical Adducts in Aqueous Media

    NASA Astrophysics Data System (ADS)

    Janik, Ireneusz; Tripathi, G. N. R.

    2015-06-01

    The oxidation by the hydroxyl (OH) radical is one of the most widely studied reactions because of its central role in chemistry, biology, organic synthesis, and photocatalysis in aqueous environments, wastewater treatment, and numerous other chemical processes. Although the redox potential of OH is very high, direct electron transfer (ET) is rarely observed. If it happens, it mostly proceeds through the formation of elusive OH adduct intermediate which facilitates ET and formation of hydroxide anion. Using time resolved resonance Raman technique we structurally characterized variety of OH adducts to sulfur containing organic compounds, halide ions as well as some metal cations. The bond between oxygen of OH radical and the atom of oxidized molecule differs depending on the nature of solute that OH radical reacts with. For most of sulfur containing organics, as well as halide and pseudo-halide ions, our observation suggested that this bond has two-center three-electron character. For several metal aqua ions studied, the nature of the bond depends on type of the cation being oxidized. Discussion on spectral parameters of all studied hydroxyl radical adducts as well as the role solvent plays in their stabilization will be presented.

  2. Incorporation and/or adduction of formic acid with DNA in vivo studied by HPLC-AMS

    NASA Astrophysics Data System (ADS)

    Zhu, Jiadan; Cheng, Yan; Sun, Hongfang; Wang, Haifang; Li, Yuankai; Liu, Yuanfang; Ding, Xingfang; Fu, Dongpo; Liu, Kexin; Wang, Deqing; Deng, Xiaoyong

    2010-04-01

    The contribution of incorporation and/or adduction of formic acid with liver DNA in mouse was investigated using accelerator mass spectrometry (AMS) associated with high performance liquid chromatography (HPLC). Four kinds of 5'-formylated adducts, which were prepared by the reaction of formic acid and deoxyribonucleosides in vitro, were used as references for the HPLC-AMS analysis of in vivo adduction. After the administration of sodium 14C-formate to mice, the liver DNA pellets were isolated and enzymatically digested to deoxyribonucleosides. A precise analysis of the hydrolysate by HPLC-AMS indicates that a majority of formic acid incorporates directly into DNA, whereas less than 1.5% might form instable formylated DNA adducts in vivo. The results greatly support the important perspective that formic acid is not carcinogenic. Moreover, this study demonstrates that a combination of HPLC with AMS is an essential means for the evaluation of DNA adduction.

  3. Phosphorous bonding in PCl3:H2O adducts: A matrix isolation infrared and ab initio computational studies

    NASA Astrophysics Data System (ADS)

    Joshi, Prasad Ramesh; Ramanathan, N.; Sundararajan, K.; Sankaran, K.

    2017-01-01

    Non-covalent interaction between PCl3 and H2O was studied using matrix isolation infrared spectroscopy and ab initio computations. Computations indicated that the adducts are stabilized through novel P⋯O type phosphorus bonding and conventional Psbnd Cl⋯H type hydrogen bonding interactions, where the former adduct is the global minimum. Experimentally, the P⋯O phosphorus bonded adduct was identified in N2 matrix, which was evidenced from the shifts in the vibrational wavenumbers of the modes involving PCl3 and H2O sub-molecules. Atoms in Molecules and Natural Bond Orbital analyses have been performed to understand the nature of interactions in the phosphorus and hydrogen bonded adducts. Interestingly, experimental evidence for the formation of higher PCl3sbnd H2O adduct was also observed in N2 matrix.

  4. Identification and quantification of adducts between oxidized rosmarinic acid and thiol compounds by UHPLC-LTQ-Orbitrap and MALDI-TOF/TOF tandem mass spectrometry.

    PubMed

    Tang, Chang-bo; Zhang, Wan-gang; Dai, Chen; Li, Hui-xia; Xu, Xing-lian; Zhou, Guang-hong

    2015-01-28

    LTQ Orbitrap MS/MS was used to identify the adducts between quinones derived from rosmarinic acid (RosA) and thiol compounds, including cysteine (Cys), glutathione (GSH), and peptides digested from myosin. Two adducts of quinone-RosA/Cys and quinone-RosA/2Cys, one quinone-RosA/GSH adduct, and three quinone-RosA/peptide adducts were identified by extracted ion and MS(2) fragment ion chromatograms. By using MALDI-TOF/TOF MS, the adduction reaction between RosA and myosin in myofibrillar protein isolates was determined, demonstrating that the accurate reaction site was at Cys949 of myosin. The effect of reaction conditions, including stirring time, temperature, and oxidative stress, on the formation of adducts was further investigated. The formation of quinone-RosA/Cys and quinone-RosA/GSH increased with stirring time. Both adducts increased with temperature, whereas the reactivity of the addition reaction of GSH was higher than that of Cys. With increasing oxidation stress, the formation of quinone-RosA/GSH adduct increased and that of quinone-RosA/Cys adduct decreased.

  5. Immunohistochemical localization and quantification of the 3-(cystein-S-yl)-acetaminophen protein adduct in acetaminophen hepatotoxicity.

    PubMed

    Roberts, D W; Bucci, T J; Benson, R W; Warbritton, A R; McRae, T A; Pumford, N R; Hinson, J A

    1991-02-01

    Acetaminophen overdose causes severe hepatotoxicity in humans and laboratory animals, presumably by metabolism to N-acetyl-p-benzoquinone imine: and binding to cysteine groups as 3-(cystein-S-yl)acetaminophen-protein adduct. Antiserum specific for the adduct was used immunohistochemically to demonstrate the formation, distribution, and concentration of this specific adduct in livers of treated mice and was correlated with cell injury as a function of dose and time. Within the liver lobule, immunohistochemically demonstrable adduct occurred in a temporally progressive, central-to-peripheral pattern. There was concordance between immunohistochemical staining and quantification of the adduct in hepatic 10,000g supernate, using a quantitative particle concentration fluorescence immunoassay. Findings include: 1) immunochemically detectable adduct before the appearance of centrilobular necrosis, 2) distinctive lobular zones of adduct localization with subsequent depletion during the progression of toxicity, 3) drug-protein binding in hepatocytes at subhepatotoxic doses and before depletion of total hepatic glutathione, 4) immunohistochemical evidence of drug binding in the nucleus, and 5) adduct in metabolically active and dividing hepatocytes and in macrophagelike cells in the regenerating liver.

  6. Identification of DNA adducts using HPLC/MS/MS following in vitro and in vivo experiments with arylamines and nitroarenes.

    PubMed

    Jones, Christopher R; Sabbioni, Gabriele

    2003-10-01

    Arylamines and nitroarenes are suspected of playing a key role in chemical carcinogenesis. Therefore, the study of DNA adduct formation is an important step to determine the genotoxic potential of these compounds. Calf thymus DNA was modified in vitro by reaction with activated N-hydroxyarylamines: 2-chloroaniline (2CA), 4-chloroaniline (4CA), 2-methylaniline (2MA), 4-methylaniline (4MA), 2,4-dimethylaniline (24DMA), 2,6-dimethylaniline (26DMA), 2-aminobiphenyl (2ABP), 3-aminobiphenyl (3ABP), and 4-aminobiphenyl (4ABP). Female Wistar rats (n = 2) were given a single dose of the above arylamines and their analogous nitro derivatives by oral gavage and sacrificed after 24 h. Hepatic DNA and in vitro modified DNA were hydrolyzed enzymatically to individual 2'-deoxyribonucleosides. Adducts were determined using HPLC/MS/MS by comparison to synthesized standards. The hydrolysis efficiency was monitored by HPLC with UV detection. Each arylamine described above formed adducts to 2'-deoxyguanosine and 2'-deoxyadenosine after in vitro reaction with DNA. DNA adducts were found in rats dosed with 4ABP or with 4-nitrobiphenyl. DNA adducts were not detected in rats dosed with 2CA, 4CA, 2MA, 4MA, 24DMA, 26DMA, 2ABP, 3ABP, 2-chloronitrobenzene, 4-chloronitrobenzene, 2-nitrotoluene, and 4-nitrotoluene. All compounds formed hydrolyzable hemoglobin adducts. Therefore, biologically available N-hydroxyarylamines yielded hemoglobin adducts but not hepatic DNA adducts, except for 4ABP.

  7. Detection and characterization of DNA adducts formed from metabolites of the fungicide ortho-phenylphenol.

    PubMed

    Zhao, Shouxun; Narang, Amarjit; Gierthy, John; Eadon, George

    2002-05-22

    The significance of DNA adduction in ortho-phenylphenol-induced carcinogenesis remains unclear. Establishing adduct structures may contribute to resolving this issue. The chemical structures of the DNA adduction products resulting from the in vitro reaction of phenylbenzoquinone, the putative ultimate carcinogenic metabolite of the fungicide/disinfectant ortho-phenylphenol, are reported here. Three isomeric adducts that resulted from reaction of deoxyguanosine were characterized by UV, LC-ESI-MS, and MS/MS, and 1D and 2D COSY-NMR spectroscopy. The proposed mechanism of product formation is nucleophilic attack by the deoxyguanosine exocyclic amine nitrogen on an electrophilic quinone carbon, followed by stabilization through enolization. Another nucleophilic attack forms a five-membered ring, which aromatizes by dehydration to form the final product. Adducts were also characterized from deoxyadenosine and deoxycytidine, although conversions were at least 10 times lower. Structures are also proposed for these products. Cell culture studies confirmed that HepG2 cells incubated with phenylbenzoquinone at concentrations associated with cytotoxicity form the same DNA adducts.

  8. Malondialdehyde–Deoxyguanosine Adducts among Workers of a Thai Industrial Estate and Nearby Residents

    PubMed Central

    Peluso, Marco; Srivatanakul, Petcharin; Munnia, Armelle; Jedpiyawongse, Adisorn; Ceppi, Marcello; Sangrajrang, Suleeporn; Piro, Sara; Boffetta, Paolo

    2010-01-01

    Background Humans living near industrial point emissions can experience high levels of exposures to air pollutants. Map Ta Phut Industrial Estate in Thailand is the location of the largest steel, oil refinery, and petrochemical factory complexes in Southeast Asia. Air pollution is an important source of oxidative stress and reactive oxygen species, which interact with DNA and lipids, leading to oxidative damage and lipid peroxidation, respectively. Objective We measured the levels of malondialdehyde–deoxyguanosine (dG) adducts, a biomarker of oxidative stress and lipid peroxidation, in petrochemical workers, nearby residents, and subjects living in a control district without proximity to industrial sources. Design We conducted a cross-sectional study to compare the prevalence of malondialdehyde-dG adducts in groups of subjects experiencing various degrees of air pollution. Results The multivariate regression analysis shows that the adduct levels were associated with occupational and environmental exposures to air pollution. The highest adduct level was observed in the steel factory workers. In addition, the formation of DNA damage tended to be associated with tobacco smoking, but without reaching statistical significance. A nonsignificant increase in DNA adducts was observed after 4–6 years of employment among the petrochemical complexes. Conclusions Air pollution emitted from the Map Ta Phut Industrial Estate complexes was associated with increased adduct levels in petrochemical workers and nearby residents. Considering the mutagenic potential of DNA lesions in the carcinogenic process, we recommend measures aimed at reducing the levels of air pollution. PMID:20056580

  9. Implications of acetaldehyde-derived DNA adducts for understanding alcohol-related carcinogenesis.

    PubMed

    Balbo, Silvia; Brooks, Philip J

    2015-01-01

    Among various potential mechanisms that could explain alcohol carcinogenicity, the metabolism of ethanol to acetaldehyde represents an obvious possible mechanism, at least in some tissues. The fundamental principle of genotoxic carcinogenesis is the formation of mutagenic DNA adducts in proliferating cells. If not repaired, these adducts can result in mutations during DNA replication, which are passed on to cells during mitosis. Consistent with a genotoxic mechanism, acetaldehyde does react with DNA to form a variety of different types of DNA adducts. In this chapter we will focus more specifically on N2-ethylidene-deoxyguanosine (N2-ethylidene-dG), the major DNA adduct formed from the reaction of acetaldehyde with DNA and specifically highlight recent data on the measurement of this DNA adduct in the human body after alcohol exposure. Because results are of particular biological relevance for alcohol-related cancer of the upper aerodigestive tract (UADT), we will also discuss the histology and cytology of the UADT, with the goal of placing the adduct data in the relevant cellular context for mechanistic interpretation. Furthermore, we will discuss the sources and concentrations of acetaldehyde and ethanol in different cell types during alcohol consumption in humans. Finally, in the last part of the chapter, we will critically evaluate the concept of carcinogenic levels of acetaldehyde, which has been raised in the literature, and discuss how data from acetaldehyde genotoxicity are and can be utilized in physiologically based models to evaluate exposure risk.

  10. Acetaldehyde and the genome: beyond nuclear DNA adducts and carcinogenesis.

    PubMed

    Brooks, Philip J; Zakhari, Samir

    2014-03-01

    The designation of acetaldehyde associated with the consumption of alcoholic beverages as "carcinogenic to humans" (Group 1) by the International Agency for Research on Cancer (IARC) has brought renewed attention to the biological effects of acetaldehyde, as the primary oxidative metabolite of alcohol. Therefore, the overall focus of this review is on acetaldehyde and its direct and indirect effects on the nuclear and mitochondrial genome. We first consider different acetaldehyde-DNA adducts, including a critical assessment of the evidence supporting a role for acetaldehyde-DNA adducts in alcohol related carcinogenesis, and consideration of additional data needed to make a conclusion. We also review recent data on the role of the Fanconi anemia DNA repair pathway in protecting against acetaldehyde genotoxicity and carcinogenicity, as well as teratogenicity. We also review evidence from the older literature that acetaldehyde may impact the genome indirectly, via the formation of adducts with proteins that are themselves critically involved in the maintenance of genetic and epigenetic stability. Finally, we note the lack of information regarding acetaldehyde effects on the mitochondrial genome, which is notable since aldehyde dehydrogenase 2 (ALDH2), the primary acetaldehyde metabolic enzyme, is located in the mitochondrion, and roughly 30% of East Asian individuals are deficient in ALDH2 activity due to a genetic variant in the ALDH2 gene. In summary, a comprehensive understanding of all of the mechanisms by which acetaldehyde impacts the function of the genome has implications not only for alcohol and cancer, but types of alcohol related pathologies as well.

  11. Metabolic activation of 2‐amino‐1‐methyl‐6‐phenylimidazo [4,5‐b]pyridine and DNA adduct formation depends on p53: Studies in T rp53(+/+),T rp53(+/−) and T rp53(−/−) mice

    PubMed Central

    Krais, Annette M.; Speksnijder, Ewoud N.; Melis, Joost P.M.; Singh, Rajinder; Caldwell, Anna; Gamboa da Costa, Gonçalo; Luijten, Mirjam; Phillips, David H.

    2015-01-01

    The expression of the tumor suppressor p53 can influence the bioactivation of, and DNA damage induced by, the environmental carcinogen benzo[a]pyrene, indicating a role for p53 in its cytochrome P450 (CYP)‐mediated biotransformation. The carcinogen 2‐amino‐1‐methyl‐6‐phenylimidazo[4,5‐b]pyridine (PhIP), which is formed during the cooking of food, is also metabolically activated by CYP enzymes, particularly CYP1A2. We investigated the potential role of p53 in PhIP metabolism in vivo by treating Trp53(+/+), Trp53(+/−) and Trp53(−/−) mice with a single oral dose of 50 mg/kg body weight PhIP. N‐(Deoxyguanosin‐8‐yl)‐2‐amino‐1‐methyl‐6‐phenylimidazo[4,5‐b]pyridine (PhIP‐C8‐dG) levels in DNA, measured by liquid chromatography‐tandem mass spectrometry, were significantly lower in liver, colon, forestomach and glandular stomach of Trp53(−/−) mice compared to Trp53(+/+) mice. Lower PhIP‐DNA adduct levels in the livers of Trp53(−/−) mice correlated with lower Cyp1a2 enzyme activity (measured by methoxyresorufin‐O‐demethylase activity) in these animals. Interestingly, PhIP‐DNA adduct levels were significantly higher in kidney and bladder of Trp53(−/−) mice compared to Trp53(+/+) mice, which was accompanied by higher sulfotransferase (Sult) 1a1 protein levels and increased Sult1a1 enzyme activity (measured by 2‐naphthylsulfate formation from 2‐naphthol) in kidneys of these animals. Our study demonstrates a role for p53 in the metabolism of PhIP in vivo, extending previous results on a novel role for p53 in xenobiotic metabolism. Our results also indicate that the impact of p53 on PhIP biotransformation is tissue‐dependent and that in addition to Cyp1a enzymes, Sult1a1 can contribute to PhIP‐DNA adduct formation. PMID:26335255

  12. Malondialdehyde-acetaldehyde (MAA) adducted proteins bind to scavenger receptor A in airway epithelial cells

    PubMed Central

    Berger, John P.; Simet, Samantha M.; DeVasure, Jane M.; Boten, Jessica A.; Sweeter, Jenea M.; Kharbanda, Kusum K.; Sisson, Joseph H.; Wyatt, Todd A.

    2014-01-01

    Co-exposure to cigarette smoke and ethanol generates malondialdehyde and acetaldehyde, which can subsequently lead to the formation of aldehyde-adducted proteins. We have previously shown that exposure of bronchial epithelial cells to malondialdehyde-acetaldehyde (MAA) adducted protein increases protein kinase C (PKC) activity and proinflammatory cytokine release. A specific ligand to scavenger receptor A (SRA), fucoidan, blocks this effect. We hypothesized that MAA-adducted protein binds to bronchial epithelial cells via SRA. Human bronchial epithelial cells (BEAS-2B) were exposed to MAA-adducted protein (either bovine serum albumin [BSA-MAA] or surfactant protein D [SPD-MAA]) and SRA examined using confocal microscopy, fluorescent activated cell sorting (FACS), and immunoprecipitation. Differentiated mouse tracheal epithelial cells (MTEC) cultured by air-liquid interface were assayed for MAA-stimulated PKC activity and keratinocyte-derived chemokine (KC) release. Specific cell surface membrane dye co-localized with upregulated SRA after exposure to MAA for 3–7 min and subsided by 20 min. Likewise, MAA-adducted protein co-localized to SRA from 3–7 min with a subsequent internalization of MAA by 10 min. These results were confirmed using FACS analysis and revealed a reduced mean fluorescence of SRA after 3 min. Furthermore, increased amounts of MAA-adducted protein could be detected by Western blot in immunoprecipitated SRA samples after 3 min treatment with MAA. MAA stimulated PKCε-mediated KC release in wild type, but not SRA knockout mice. These data demonstrate that aldehyde-adducted proteins in the lungs rapidly bind to SRA and internalize this receptor prior to the MAA-adducted protein stimulation of PKC-dependent inflammatory cytokine release in airway epithelium. PMID:24880893

  13. Malondialdehyde-acetaldehyde (MAA) adducted proteins bind to scavenger receptor A in airway epithelial cells.

    PubMed

    Berger, John P; Simet, Samantha M; DeVasure, Jane M; Boten, Jessica A; Sweeter, Jenea M; Kharbanda, Kusum K; Sisson, Joseph H; Wyatt, Todd A

    2014-08-01

    Co-exposure to cigarette smoke and ethanol generates malondialdehyde and acetaldehyde, which can subsequently lead to the formation of aldehyde-adducted proteins. We have previously shown that exposure of bronchial epithelial cells to malondialdehyde-acetaldehyde (MAA) adducted protein increases protein kinase C (PKC) activity and proinflammatory cytokine release. A specific ligand to scavenger receptor A (SRA), fucoidan, blocks this effect. We hypothesized that MAA-adducted protein binds to bronchial epithelial cells via SRA. Human bronchial epithelial cells (BEAS-2B) were exposed to MAA-adducted protein (either bovine serum albumin [BSA-MAA] or surfactant protein D [SPD-MAA]) and SRA examined using confocal microscopy, fluorescent activated cell sorting (FACS), and immunoprecipitation. Differentiated mouse tracheal epithelial cells (MTEC) cultured by air-liquid interface were assayed for MAA-stimulated PKC activity and keratinocyte-derived chemokine (KC) release. Specific cell surface membrane dye co-localized with upregulated SRA after exposure to MAA for 3-7 min and subsided by 20 min. Likewise, MAA-adducted protein co-localized to SRA from 3 to 7 min with a subsequent internalization of MAA by 10 min. These results were confirmed using FACS analysis and revealed a reduced mean fluorescence of SRA after 3 min. Furthermore, increased amounts of MAA-adducted protein could be detected by Western blot in immunoprecipitated SRA samples after 3 min treatment with MAA. MAA stimulated PKCε-mediated KC release in wild type, but not SRA knockout mice. These data demonstrate that aldehyde-adducted proteins in the lungs rapidly bind to SRA and internalize this receptor prior to the MAA-adducted protein stimulation of PKC-dependent inflammatory cytokine release in airway epithelium.

  14. Detection of DNA adducts by bioluminescence

    NASA Astrophysics Data System (ADS)

    Xu, Shunqing; Tan, Xianglin; Yao, Qunfeng; He, Min; Zhou, Yikai; Chen, Jian

    2001-09-01

    Luminescent assay for detection ATP is very sensitive with limitation of 10-17 moles. ATP using styrene oxide as a model carcinogen we currently apply a luminescence technique to detect the very low levels of carcinogen-DNA adducts in vitro and in vivo. The bioluminescent assay of DNA adducts entails three consecutive steps: digestion of modified DNA to adducted dinucleoside monophosphate and normal nucleotide are hydrolyzed to nucleosides (N) by nuclease P1 and prostatic acid phosphomonesterase (PAP); incorporation of (gamma) -P of ATP into normal nucleoside(N); detection of consumption of ATP by luminescence. This assay does not require separate manipulation because of the selective property of nuclease P1. One fmol of carcinogen- DNA adducts was detected by luminescent assay. A good correlation between results of luminescent assay and 32P-postlabeling procedures has been observed. We detect 1 adduct in 108 nucleotides for 10(mu) g DNA sample. The procedures of luminescent method is very simple and low- cost. IT appears applicable to the ultra sensitive detection of low levels of DNA adducts without radioactive isotope.

  15. Involvement of lipid peroxidation-derived aldehyde-protein adducts in autoimmunity mediated by trichloroethene.

    PubMed

    Wang, Gangduo; Ansari, G A S; Khan, M Firoze

    2007-12-01

    Lipid peroxidation, a major contributor to cellular damage, is also implicated in the pathogenesis of autoimmune diseases (AD). The focus of this study was to elucidate the role of lipid peroxidation-derived aldehydes in autoimmunity induced and/or exacerbated by chemical exposure. Previous studies showed that trichloroethene (TCE) is capable of inducing/accelerating autoimmunity. To test whether TCE-induced lipid peroxidation might be involved in the induction/exacerbation of autoimmune responses, groups of autoimmune-prone female MRL +/+ mice were treated with TCE (10 mmol/kg, i.p., every 4th day) for 6 or 12 wk. Significant increases of the formation of malondialdehyde (MDA)- and 4-hydroxynonenal (HNE)-protein adducts were found in the livers of TCE-treated mice at both 6 and 12 wk, but the response was greater at 12 wk. Further characterization of these adducts in liver microsomes showed increased formation of MDA-protein adducts with molecular masses of 86, 65, 56, 44, and 32 kD, and of HNE-protein adducts with molecular masses of 87, 79, 46, and 17 kD in TCE-treated mice. In addition, significant induction of anti-MDA- and anti-HNE-protein adduct-specific antibodies was observed in the sera of TCE-treated mice, and showed a pattern similar to MDA- or HNE-protein adducts. The increases in anti-MDA- and anti-HNE-protein adduct antibodies were associated with significant elevation in serum anti-nuclear-, anti-ssDNA- and anti-dsDNA-antibodies at 6 wk and, to a greater extent, at 12 wk. These studies suggest that TCE-induced lipid peroxidation is associated with induction/exacerbation of autoimmune response in MRL+/+ mice, and thus may play an important role in disease pathogenesis. Further interventional studies are needed to establish a causal relationship between lipid peroxidation and TCE-induced autoimmune response.

  16. Reduction of metal adducts in oligonucleotide mass spectra in ion‐pair reversed‐phase chromatography/mass spectrometry analysis

    PubMed Central

    Gilar, Martin; Shion, Henry; Yu, Ying Qing; Chen, Weibin

    2016-01-01

    Rationale Electrospray ionization mass spectrometry (ESI‐MS)‐based techniques commonly used in oligonucleotide analyses are known to be sensitive to alkali metal adduct formation. Adducts directly impact the sensitivity of MS‐based analyses as the available charge is distributed across the parent peak and adduct(s). The current study systematically evaluated common liquid chromatography (LC) components in LC/ESI‐MS configurations used in oligonucleotide analysis to identify metal adduct contributions from LC instrumentation. Methods A UPLC liquid chromatography system was configured with a single quadrupole MS detector (ACQUITY QDa, Waters Corp.) to monitor adduct formation in oligonucleotide separations. An ion‐pairing mobile phase comprised of 15 mM triethylamine and 400 mM hexafluoro‐2‐propanol was used in conjunction with an oligonucleotide separation column (Waters OST BEH C18, 2.1 mm × 50 mm) for all separations. A 10‐min method was used to provide statistical figures of merit and evaluate adduct formation over time. Results Trace alkali metal salts in the mobile phase and reagents were determined to be the main source of metal salt adducts in LC/ESI‐MS‐based configurations. Non‐specific adsorption sites located throughout the fluidic path contribute to adduct formation in oligonucleotide analyses. Ion‐pairing mobile phases prepared at neutral or slightly basic pH result in up to a 57% loss of spectral abundance to adduct formation in the current study. Conclusions Implementation of a short low pH reconditioning step was observed to effectively displace trace metal salts non‐specifically adsorbed to surfaces in the fluidic path and was able to maintain an average MS spectral abundance ≥94% with a high degree of repeatability (relative standard deviation (R.S.D.) 0.8%) over an extended time study. The proposed method offers the ability to rapidly regenerate adsorption sites with minimal impact on productivity while retaining

  17. Feasibility of Biomonitoring of Exposure to Permethrin Through Analysis of Long-Lived (Metabolite) Adducts to Proteins

    DTIC Science & Technology

    2006-09-01

    transacylation mechanism 21 Figure 8. Adduct formation by acyl glucuronides via the glycation Mechanism 22 Figure 9. Identity of presumed...adduct of permethrin-derived O-acyl glucuronide, according to the glycation mechanism 22 Figure 10. Chemical structure of glutathione 3-PBA...ASSAKQR, formed by the glycation mechanism 25 Figure 14. Tandem ES(+) MS spectrum of Cl2CA-glucuronide to Glutathione 26 Appendix

  18. FTIR adsorption studies of H2O and CH3OH in the isostructural H-SSZ-13 and H-SAPO-34: formation of H-bonded adducts and protonated clusters.

    PubMed

    Bordiga, Silvia; Regli, Laura; Lamberti, Carlo; Zecchina, Adriano; Bjørgen, Morten; Lillerud, Karl Petter

    2005-04-28

    The acidity of the isostructural H-SSZ-13 and H-SAPO-34 has been investigated by transmission FTIR spectroscopy using H2O and CH3OH as molecular probes. Interactions between the zeolitic samples and the probe molecules led to perturbations and proton transfers directly related to the acidity of the materials. The entire set of acidic sites in H-SSZ-13 interacts with H2O and CH3OH to give H-bonded adducts or protonated species. H3O+ is not formed in appreciable amounts upon H2O adsorption on H-SSZ-13, but at high coverages H2O generates clusters that have a proton affinity sufficiently high to abstract protons from the zeolite framework. Parallel experiments carried out for H-SAPO-34 showed that the H2O clusters abstract protons from Brønsted sites only to a minor extent. Moving to CH3OH, even if it has a higher proton affinity than H2O and should expectingly experience an easier protonation, proton transfer is totally absent in H-SAPO-34 under our set of conditions. The clear evidence of methanol protonation in H-SSZ-13 definitely states the strong acidic character of this material. When irreversibly adsorbed CH3OH is present in H-SSZ-13, an appreciable amount of (CH3)2O is formed upon heating to 573 K. Compared to its SAPO analogue, the present set of data indisputably points to H-SSZ-13 as the strongest Brønsted acidic material.

  19. The analysis of DNA adducts: The transition from 32P-postlabeling to mass spectrometry

    PubMed Central

    Klaene, Joshua J.; Sharma, Vaneet K.; Glick, James; Vouros, Paul

    2012-01-01

    The technique of 32P-postlabeling, which was introduced in 1982 for the analysis of DNA adducts, has long been the method of choice for in vivo studies because of its high sensitivity as it requires only <10 μg DNA to achieve the detection of 1 adduct in 1010 normal bases. 32P-postlabeling has therefore been utilized in numerous human and animal studies of DNA adduct formation. Like all techniques 32P-postlabeling does have several disadvantages including the use of radioactive phosphorus, lack of internal standards, and perhaps most significantly does not provide any structural information for positive identification of unknown adducts, a shortcoming that could significantly hamper progress in the field. Structural methods have since been developed to allow for positive identification of DNA adducts, but to this day, the same level of sensitivity and low sample requirements provided by 32P-postlabeling have not been matched. In this mini review we will discuss the 32P-postlabeling method and chronicle the transition to mass spectrometry via the hyphenation of gas chromatography, capillary electrophoresis, and ultimately liquid chromatography which, some 30 years later, is only just starting to approach the sensitivity and low sample requirements of 32P-postlabeling. This paper focuses on the detection of bulky carcinogen-DNA adducts, with no mention of oxidative damage or small alkylating agents. This is because the 32P-postlabeling assay is most compatible with bulky DNA adducts. This will also allow a more comprehensive focus on a subject that has been our particular interest since 1990. PMID:22960573

  20. Conformational, IR spectroscopic and electronic properties of conium alkaloids and their adducts with C60 fullerene

    NASA Astrophysics Data System (ADS)

    Zabolotnyi, M. A.; Prylutskyy, Yu I.; Poluyan, N. A.; Evstigneev, M. P.; Dovbeshko, G. I.

    2016-08-01

    Conformational, IR spectroscopic and electronic properties of the components of Conium alkaloids (Conium maculatum) in aqueous environment were determined by model calculations and experiment. With the help of FT-IR spectroscopy the possibility of formation of an adduct between γ-coniceine alkaloid and C60 fullerene was demonstrated, which is important for further application of conium analogues in biomedical purposes.

  1. DNA adducts induced by in vitro activation of extracts of diesel and biodiesel exhaust particles

    EPA Science Inventory

    AbstractContext: Biodiesel and biodiesel-blend fuels offer a renewable alternative to petroleum diesel, but few data are available concerning the carcinogenic potential of biodiesel exhausts. Objectives: We compared the formation of covalent DNA adducts by the in vitro metabol...

  2. Selective synthesis of mono- and bis-butenolide α-aminomethyl adducts.

    PubMed

    Talbi, Arbia; Arfaoui, Aïcha; Bsaibess, Talia; Lotfi Efrit, Mohamed; Gaucher, Anne; Prim, Damien; M Rabet, Hédi

    2017-03-30

    The selective installation of α-methylamine residues at the butenolide core is described using α-bromomethylene-γ-butenolide and primary as well as secondary amines in methanol at 0 °C. The preparation of mono- and bis-butenolide α-adducts is described. Bis-γ-butenolide adducts as well as mono α-aminomethyl-γ-butenolides can be selectively obtained depending on the nature of the reacting primary amine. In contrast, the use of secondary amines allows two different pathways leading either to the expected amino derivatives or to the formation of a C-O bond.

  3. The localization of DMPO spin adducts of OH in endothelial cells exposed to hydrogen peroxide.

    PubMed

    Kaneko, M; Kodama, M; Inoue, F

    1995-11-01

    Examination by electron spin resonance (ESR) spectroscopy revealed the localization of 5,5-dimethyl-l-pyrroline-N-oxide (DMPO) spin adducts of hydroxyl radicals (.OH) produced by bovine endothelial cells exposed to hydrogen peroxide. Addition of 10 mM chromium oxalate, a line-broadening agent, to the reaction mixture virtually abolished the signal of DMPO-OH spin adducts. Moreover, the spin adducts were recovered in the filtrated fraction of the cell suspension. We, therefore, concluded that the location of DMPO-OH due to .OH radicals produced by endothelial cells was extracellular. Contrastingly, the site of formation of DMPO-OH was confirmed to be intracellular by the effect of Desferal, an iron chelator, and the effect of poly(ethylene glycol), an extracellular scavenger of OH radicals, as previously reported. The DMPO-OH adducts in the cell suspension mixture were degraded by a cyanide sensitive pathway and they were apparently more unstable than in the extracellular fraction. The initial amount of DMPO-OH adducts formed in endothelial cells could potentially be monitored by the DMPO-OH signals in the extracellular reaction mixture better than those in the cell suspension mixture.

  4. DNA Adduct Profiles Predict in Vitro Cell Viability after Treatment with the Experimental Anticancer Prodrug PR104A

    PubMed Central

    2017-01-01

    PR104A is an experimental DNA-alkylating hypoxia-activated prodrug that can also be activated in an oxygen-independent manner by the two-electron aldo-keto reductase 1C3. Nitroreduction leads to the formation of cytotoxic hydroxylamine (PR104H) and amine (PR104M) metabolites, which induce DNA mono and cross-linked adducts in cells. PR104A-derived DNA adducts can be utilized as drug-specific biomarkers of efficacy and as a mechanistic tool to elucidate the cellular and molecular effects of PR104A. Toward this goal, a mass spectrometric bioanalysis approach based on a stable isotope-labeled adduct mixture (SILAM) and selected reaction monitoring (SRM) data acquisition for relative quantitation of PR104A-derived DNA adducts in cells was developed. Use of this SILAM-based approach supported simultaneous relative quantitation of 33 PR104A-derived DNA adducts in the same sample, which allowed testing of the hypothesis that the enhanced cytotoxicity, observed by preconditioning cells with the transcription-activating isothiocyanate sulforaphane, is induced by an increased level of DNA adducts induced by PR104H and PR104M, but not PR104A. By applying the new SILAM-SRM approach, we found a 2.4-fold increase in the level of DNA adducts induced by PR104H and PR104M in HT-29 cells preconditioned with sulforaphane and a corresponding 2.6-fold increase in cytotoxicity. These results suggest that DNA adduct levels correlate with drug potency and underly the possibility of monitoring PR104A-derived DNA adducts as biomarkers of efficacy. PMID:28140568

  5. Repair of furocoumarin adducts in mammalian cells

    SciTech Connect

    Zolan, M.E.; Smith, C.A.; Hanawalt, P.C.

    1984-12-01

    DNA repair was studied in cultured mammalian cells treated with the furocoumarins 8-methoxypsoralen (8-MOP), aminomethyl trioxsalen, or angelicin and irradiated with near UV light. The amount of DNA cross-linked by 8-MOP in normal human cells decreased by about one-half in 24 hours after treatment; no decrease was observed in xeroderma pigmentosum cells, group A. At present, it is not known to what extent this decrease represents complete repair events at the sites of cross-links. Furocoumarin adducts elicited excision repair in normal human and monkey cells but not in xeroderma pigmentosum group A cells. This excision repair resembled in several aspects that elicited by pyrimidine dimers, formed in DNA by irradiation with 254-nm UV light; however, it appeared that for at least 8-MOP and aminomethyl trioxsalen, removal of adducts was not as efficient as was the removal of pyrimidine dimers. A comparison was also made of repair in the 172-base-pair repetitive alpha-DNA component of monkey cells to repair in the bulk of the genome. Although repair elicited by pyrimidine dimers in alpha-DNA was the same as in the bulk DNA, that following treatment of cells with either aminomethyl trioxsalen or angelicin and near UV was markedly deficient in alpha-DNA. This deficiency reflected the removal of fewer adducts from alpha-DNA after the same initial adduct frequencies. These results could mean that each furocoumarin may produce several structurally distinct adducts to DNA in cells and that the capacity of cellular repair systems to remove these various adducts may vary greatly.

  6. Synthesis of Mitomycin C and Decarbamoylmitomycin C N(2) deoxyguanosine-adducts.

    PubMed

    Champeil, Elise; Cheng, Shu-Yuan; Huang, Bik Tzu; Conchero-Guisan, Marta; Martinez, Thibaut; Paz, Manuel M; Sapse, Anne-Marie

    2016-04-01

    Mitomycin C (MC) and Decarbamoylmitomycin C (DMC) - a derivative of MC lacking the carbamate on C10 - are DNA alkylating agents. Their cytotoxicity is attributed to their ability to generate DNA monoadducts as well as intrastrand and interstrand cross-links (ICLs). The major monoadducts generated by MC and DMC in tumor cells have opposite stereochemistry at carbon one of the guanine-mitosene bond: trans (or alpha) for MC and cis (or beta) for DMC. We hypothesize that local disruptions of DNA structure from trans or cis adducts are responsible for the different biochemical responses produced by MC and DMC. Access to DNA substrates bearing cis and trans MC/DMC lesions is essential to verify this hypothesis. Synthetic oligonucleotides bearing trans lesions can be obtained by bio-mimetic methods. However, this approach does not yield cis adducts. This report presents the first chemical synthesis of a cis mitosene DNA adduct. We also examined the stereopreference exhibited by the two drugs at the mononucleotide level by analyzing the formation of cis and trans adducts in the reaction of deoxyguanosine with MC or DMC using a variety of activation conditions. In addition, we performed Density Functional Theory calculations to evaluate the energies of these reactions. Direct alkylation under autocatalytic or bifunctional conditions yielded preferentially alpha adducts with both MC and DMC. DFT calculations showed that under bifunctional activation, the thermodynamically favored adducts are alpha, trans, for MC and beta, cis, for DMC. This suggests that the duplex DNA structure may stabilize/oriente the activated pro-drugs so that, with DMC, formation of the thermodynamically favored beta products are possible in a cellular environment.

  7. Tumors and DNA adducts in mice exposed to benzo[a]pyrene and coal tars: implications for risk assessment.

    PubMed Central

    Goldstein, L S; Weyand, E H; Safe, S; Steinberg, M; Culp, S J; Gaylor, D W; Beland, F A; Rodriguez, L V

    1998-01-01

    Current methods to estimate the quantitative cancer risk of complex mixtures of polycyclic aromatic hydrocarbons (PAH) such as coal tar assume that overall potency can be derived from knowledge of the concentration of a few carcinogenic components such as benzo[a]pyrene (B[a]P). Genotoxic damage, such as DNA adducts, is thought to be an essential aspect of PAH-induced tumorigenesis and could be a biomarker for exposure useful for estimating risk. However, the role of B[a]P and the relationship of adduct formation in tumorigenesis have not been tested rigorously in models appropriate for human health risk assessment. Therefore, we directly compared tumor induction and adduct formation by B[a]P and coal tars in several experimental protocols, including one broadly accepted and used by regulators. We found that B[a]P content did not account for tumor incidences after exposure to coal tars. DNA adducts were found in both tumors and tumor-free tissue and tumor outcomes were not predicted by either quantitation of total DNA adducts or by the DNA adduct formed by B[a]P. These data suggest that risk assessments based on B[a]P content may not predict accurately risk to human health posed by environmental PAH. PMID:9860888

  8. Adducts with haemoglobin and with DNA in epichlorohydrin-exposed rats.

    PubMed

    Landin, H H; Segerbäck, D; Damberg, C; Osterman-Golkar, S

    1999-01-01

    Epichlorohydrin (1-chloro-2,3-epoxypropane; ECH) is an important industrial chemical and a carcinogen in experimental animals. The main aims of the present study were to characterize the adduct formation in female Wistar rats and to identify adducts that could potentially be used in human biomonitoring studies. The total binding of radioactivity to haemoglobin in rats administered 0, 0. 11, 0.22, 0.43, or 0.97 mmol [3H]ECH/kg body weight by i.p. injection, and sacrificed 24 h after treatment, was linearly related to a dose up to 0.43 mmol/kg body weight. The binding at the highest dose was higher than predicted by extrapolation from lower doses, indicating saturation of a metabolic process for elimination of ECH. Ion-exchange chromatography of a globin hydrolysate showed one major radioactivity peak corresponding to S-(3-chloro-2-hydroxypropyl)cysteine. The half-life of this adduct was estimated as about 4 days by analysis of globin from rats administered 0.43 mmol/kg body weight and sacrificed after 1, 2 and 9 days. Crosslinking of the adduct, presumably with glutathione, appeared to be the predominant secondary reaction. Hydrolysis of N-(3-chloro-2-hydroxypropyl)valine, the primary reaction product of ECH with N-terminal valine, would give N-(2,3-dihydroxypropyl)valine. A sensitive gas chromatography/mass spectrometry method for the dihydroxypropyl adduct was used to follow its formation and removal after administration of nonlabelled ECH (0.11 mmol/kg body weight). The level of this adduct reached a maximum of about 20 pmol/g globin after a few weeks, corresponding to about 0.1% of the initial binding of ECH to globin. N-7-(3-Chloro-2-hydroxypropyl)guanine was detected in rats administered 0.97 mmol [3H]ECH/kg body weight and sacrificed 6 h after treatment. The adduct levels in haemoglobin and DNA were compared with previously reported adduct levels in male Fischer 344 rats exposed to propylene oxide. Despite its higher chemical reactivity, the capacity of ECH

  9. 32P-post-labelling analysis of DNA adducts formed in the upper gastrointestinal tissue of mice fed bracken extract or bracken spores.

    PubMed Central

    Povey, A. C.; Potter, D.; O'Connor, P. J.

    1996-01-01

    Bracken toxicity to both domestic and laboratory animals is well established and tumours are formed when rodents are treated with either bracken extracts or bracken spores. In this study we have administered bracken spores and extract to mice in order to investigate whether such exposure leads to the formation of DNA adducts. DNA, isolated from the upper gastrointestinal tract and liver, was digested to 3'-nucleotides. Adducts were extracted with butanol, 32P-post-labelled, separated by thin layer chromatography (TLC) and visualised and quantified using storage-phosphor technology. A cluster of adducts was clearly seen in the DNA of the upper gastrointestinal tract, but not liver, 5 and 24 h after treatment with bracken extract or bracken spores. These adducts were not observed in DNA extracted from vehicle-treated animals. Whereas, after 5 h adduct levels in extract and spore-treated animals were similar, after 24 h adduct levels in the extract-treated animals had diminished by > 75%, but levels in spore-treated animals remained similar to those found after 5 h. This suggests that the DNA-reactive compounds were being released slowly from the spores, even though the spores had been sonicated before administration. Adducts were also quantified after the addition of an internal standard (deoxyinosine 3'-monophosphate) by comparing the amount of label incorporated into the adducts with that found in a known amount of the internal standard. Adduct levels using this internal standard approach were similar to those found by direct measurement of radioactivity incorporated into the adduct, indicating that the labelling of adducts was quantitative. We have tried, unsuccessfully, to synthesise ptaquiloside, the principal carcinogenic component present within bracken. However, similar patterns of adducts were observed when two other compounds, (1-(4-chlorophenyl sulphonyl)-l-cyclopropane carbonitrile and 3-cyclopropylindeno [1,2-c] pyrazol-4-(O-methyl)oxime), which both

  10. Quantitation of the DNA Adduct of Semicarbazide in Organs of Semicarbazide-Treated Rats by Isotope-Dilution Liquid Chromatography-Tandem Mass Spectrometry: A Comparative Study with the RNA Adduct.

    PubMed

    Wang, Yinan; Wong, Tin-Yan; Chan, Wan

    2016-09-19

    Semicarbazide is a widespread food contaminant that is produced by multiple pathways. However, the toxicity of semicarbazide to human health remains unclear. Using a highly accurate and sensitive isotope-dilution liquid chromatography-tandem mass spectrometry method, we identified and quantitated in this study for the first time the DNA and RNA adduct of semicarbazide in DNA/RNA isolated from the internal organs of semicarbazide-exposed rats. The analysis revealed a dose-dependent formation of the adducts in the internal organs of the semicarbazide-dosed rats and with the highest adduct levels identified in the stomach and small intestine. Furthermore, results showed significantly higher levels of the RNA adduct (4.1-7.0 times) than that of the DNA adducts. By analyzing DNA/RNA samples isolated from rat organs in semicarbazide-dosed rats at different time points postdosing, the adduct stability in vivo was also investigated. These findings suggest that semicarbazide could have exerted its toxicity by affecting both the transcription and translation processes of the cell.

  11. Immunochemical quantitation of 3-(cystein-S-yl)acetaminophen protein adducts in subcellular liver fractions following a hepatotoxic dose of acetaminophen.

    PubMed

    Pumford, N R; Roberts, D W; Benson, R W; Hinson, J A

    1990-08-01

    The hepatotoxicity of acetaminophen correlates with the formation of 3-(cystein-S-yl)acetaminophen protein adducts. Using a sensitive and specific immunochemical assay, we quantitated the formation of these protein adducts in liver fractions and serum after administration of a hepatotoxic dose of acetaminophen (400 mg/kg) to B6C3F1 mice. Adducts in the cytosolic fraction increased to 3.6 nmol/mg protein at 2 hr and then decreased to 1.1 nmol/mg protein by 8 hr. Concomitant with the decrease in adducts in the cytosol, 3-(cystein-S-yl)acetaminophen protein adducts appeared in serum and their levels paralleled increases in serum alanine aminotransferase. Microsomal protein adducts peaked at 1 hr (0.7 nmol/mg protein) and subsequently decreased to 0.2 nmol/mg at 8 hr. The 4000 g pellet (nuclei, plasma membranes, and cell debris) had the highest level of adducts (3.5 nmol/mg protein), which remained constant from 1 to 8 hr. Evaluation of fractions purified from a 960 g pellet indicated that the highest concentration of 3-(cystein-S-yl)acetaminophen protein adducts was located in plasma membranes and mitochondria; peak levels were 10.3 and 5.1 nmol/mg respectively. 3-(Cystein-S-yl)acetaminophen protein adducts were detected in nuclei only after enzymatic hydrolysis of the proteins. The localization of high levels of 3-(cystein-S-yl)acetaminophen protein adducts in plasma membranes and mitochondria may play a critical role in acetaminophen toxicity.

  12. The long persistence of pyrrolizidine alkaloid-derived DNA adducts in vivo: kinetic study following single and multiple exposures in male ICR mice.

    PubMed

    Zhu, Lin; Xue, Junyi; Xia, Qingsu; Fu, Peter P; Lin, Ge

    2017-02-01

    Pyrrolizidine alkaloid (PA)-containing plants are widespread in the world and the most common poisonous plants affecting livestock, wildlife, and humans. Our previous studies demonstrated that PA-derived DNA adducts can potentially be a common biological biomarker of PA-induced liver tumor formation. In order to validate the use of these PA-derived DNA adducts as a biomarker, it is necessary to understand the basic kinetics of the PA-derived DNA adducts formed in vivo. In this study, we studied the dose-dependent response and kinetics of PA-derived DNA adduct formation and removal in male ICR mice orally administered with a single dose (40 mg/kg) or multiple doses (10 mg/kg/day) of retrorsine, a representative carcinogenic PA. In the single-dose exposure, the PA-derived DNA adducts exhibited dose-dependent linearity and persisted for up to 4 weeks. The removal of the adducts following a single-dose exposure to retrorsine was biphasic with half-lives of 9 h (t 1/2α) and 301 h (~12.5 days, t 1/2β). In the 8-week multiple exposure study, a marked accumulation of PA-derived DNA adducts without attaining a steady state was observed. The removal of adducts after the multiple exposure also demonstrated a biphasic pattern but with much extended half-lives of 176 h (~7.33 days, t 1/2α) and 1736 h (~72.3 days, t 1/2β). The lifetime of PA-derived DNA adducts was more than 8 weeks following the multiple-dose treatment. The significant persistence of PA-derived DNA adducts in vivo supports their role in serving as a biomarker of PA exposure.

  13. Identification of a novel glutathione adduct of diclofenac, 4'-hydroxy-2'-glutathion-deschloro-diclofenac, upon incubation with human liver microsomes.

    PubMed

    Yu, Li J; Chen, Yue; Deninno, Michael P; O'Connell, Thomas N; Hop, Cornelis E C A

    2005-04-01

    Clinical use of the nonsteroidal anti-inflammatory drug diclofenac (DF) is associated with an incidence of idiosyncratic hepatoxicity. The formation of reactive metabolites of DF in vivo has been proposed to be responsible for such toxicity. One type of reactive metabolite, a benzoquinone imine of DF formed through oxidation by cytochromes P450, can be trapped by glutathione in vitro in liver microsomes to form glutathione (GS) adducts. Three GS adducts from DF were reported in the literature, namely, 5-hydroxy (OH)-4-glutathione-DF, 4'-OH-3'-glutathione-DF and 5-OH-6-glutathione-DF, and they all have the same molecular weight of 616. Recently, we developed a sensitive and high throughput method for the detection of GS adducts from liver microsome incubation. This method uses a constant neutral loss scan of m/z 129, a "structure-characteristic" fragment for GS adduct, on an automated chip-based nanoelectrospray (Advion NanoMate 100) attached to a tandem mass spectrometer (Sciex API 3000). The analysis of GS adducts from human liver microsome incubation with DF by the NanoMate 100-API 3000 method unambiguously revealed a new adduct ion with m/z 583 (MH+), in addition to the known adduct peak with m/z 617 (MH+). This new adduct was further confirmed to be 4'-OH-2'-glutathion-deschloro-diclofenac by liquid chromatography (LC) tandem mass spectrometry (MS), LC/MS-NMR, and comparison to a synthetic standard.

  14. Stereoselective release of polycyclic aromatic hydrocarbon-deoxyadenosine adducts from DNA by the 32P postlabeling and deoxyribonuclease I/snake venom phosphodiesterase digestion methods

    SciTech Connect

    Cheh, A.M.; Yagi, H.; Jerina, D.M. )

    1990-11-01

    The restricted ability of deoxyribonuclease I/snake venom phosphodiesterase digestion to liberate deoxyadenosine (dA) nucleotide adducts of polycyclic aromatic hydrocarbons from DNA, first observed by Dipple and Pigott with the bay-region diol epoxide adducts of 7,12-dimethylbenz(a)anthracene, has been observed with the dA adducts of benz(a)anthracene and benzo(c)phenanthrene diol epoxides. The micrococcal nuclease/spleen phosphodiesterase digestion used in the original 32P postlabeling procedure developed by Randerath to determine DNA adducts also failed to liberate dA nucleotide adducts quantitatively. Thus either method can potentially lead to an underestimation of the extent to which dA has been modified in DNA. The two digestion procedures exhibit systematic and mostly opposite stereoselectivity in the pattern of which dA adducts are resistant to digestion, which suggest that these adducts may have preferred orientations within modified DNA that are determined by whether they have the R or S configuration at C-1, the point of attachment between the exocyclic amino group of dA and the hydrocarbon; this in turn is dictated by the configuration about the precursor benzylic epoxide carbon and the cis versus trans nature of epoxide opening during adduct formation.

  15. Hydroxynonenal inactivates cathepsin B by forming Michael adducts with active site residues.

    PubMed

    Crabb, John W; O'Neil, June; Miyagi, Masaru; West, Karen; Hoff, Henry F

    2002-04-01

    Oxidation of plasma low-density lipoprotein (oxLDL) generates the lipid peroxidation product 4-hydroxy-2 nonenal (HNE) and also reduces proteolytic degradation of oxLDL and other proteins internalized by mouse peritoneal macrophages in culture. This leads to accumulation of undegraded material in lysosomes and formation of ceroid, a component of foam cells in atherosclerotic lesions. To explore the possibility that HNE contributes directly to the inactivation of proteases, structure-function studies of the lysosomal protease cathepsin B have been pursued. We found that treatment of mouse macrophages with HNE reduces degradation of internalized maleyl bovine serine albumin and cathepsin B activity. Purified bovine cathepsin B treated briefly with 15 microM HNE lost approximately 76% of its protease activity and also developed immunoreactivity with antibodies to HNE adducts in Western blot analysis. After stabilization of the potential Michael adducts by sodium borohydride reduction, modified amino acids were localized within the bovine cathepsin B protein structure by mass spectrometric analysis of tryptic peptides. Michael adducts were identified by tandem mass spectrometry at cathepsin B active site residues Cys 29 (mature A chain) and His 150 (mature B chain). Thus, covalent interaction between HNE and critical active site residues inactivates cathepsin B. These results support the hypothesis that the accumulation of undegraded macromolecules in lysosomes after oxidative damage are caused in part by direct protease inactivation by adduct formation with lipid peroxidation products such as HNE.

  16. Repair of O6-methylguanine adducts in human telomeric G-quadruplex DNA by O6-alkylguanine-DNA alkyltransferase

    PubMed Central

    Hellman, Lance M.; Spear, Tyler J.; Koontz, Colton J.; Melikishvili, Manana; Fried, Michael G.

    2014-01-01

    O6-alkylguanine-DNA alkyltransferase (AGT) is a single-cycle DNA repair enzyme that removes pro-mutagenic O6-alkylguanine adducts from DNA. Its functions with short single-stranded and duplex substrates have been characterized, but its ability to act on other DNA structures remains poorly understood. Here, we examine the functions of this enzyme on O6-methylguanine (6mG) adducts in the four-stranded structure of the human telomeric G-quadruplex. On a folded 22-nt G-quadruplex substrate, binding saturated at 2 AGT:DNA, significantly less than the ∼5 AGT:DNA found with linear single-stranded DNAs of similar length, and less than the value found with the telomere sequence under conditions that inhibit quadruplex formation (4 AGT:DNA). Despite these differences, AGT repaired 6mG adducts located within folded G-quadruplexes, at rates that were comparable to those found for a duplex DNA substrate under analogous conditions. Repair was kinetically biphasic with the amplitudes of rapid and slow phases dependent on the position of the adduct within the G-quadruplex: in general, adducts located in the top or bottom tetrads of a quadruplex stack exhibited more rapid-phase repair than did adducts located in the inner tetrad. This distinction may reflect differences in the conformational dynamics of 6mG residues in G-quadruplex DNAs. PMID:25080506

  17. Pyrrolizidine alkaloid-derived DNA adducts as a common biological biomarker of pyrrolizidine alkaloid-induced tumorigenicity.

    PubMed

    Xia, Qingsu; Zhao, Yuewei; Von Tungeln, Linda S; Doerge, Daniel R; Lin, Ge; Cai, Lining; Fu, Peter P

    2013-09-16

    pyrrolizidine alkaloid-induced liver tumor formation. To date, this is the first finding that a set of exogenous DNA adducts are commonly formed from a series of tumorigenic xenobiotics.

  18. Accumulation of DNA adducts of 2-amino-3-methylimidazo[4,5-f] quinoline (IQ) in tissues and white blood cells of the Fischer-344 rat after multiple oral dosing.

    PubMed

    Schut, H A; Herzog, C R; Cummings, D A

    1994-07-01

    The genotoxic effect of an environmental chemical may be estimated from the concentration of its DNA adducts in peripheral white blood cells (WBCs). The food mutagen 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) is carcinogenic in the Fischer-344 rat, affecting principally the liver, small intestine and large intestine. In the present study we have determined whether DNA adducts of IQ are present in circulating WBCs of rats after single or multiple oral doses of IQ and how these adducts are related to those in internal organs. Male Fischer-344 rats received IQ as an oral dose (5 or 50 mg/kg, starting on day 0) by daily gavage (1, 8 or 15 days of treatment). Using 32P-postlabeling assays, IQ-DNA adducts were isolated and quantitated in organs and WBCs on days 1, 8 and 15. Adduct patterns in WBCs were qualitatively similar to those in the organs and adduct formation was highest in the liver, followed by the lungs, kidneys, stomach, large intestine, WBC and small intestine. Accumulation of adducts occurred in all organs and in WBCs in a dose- and time-dependent manner. For all organs, IQ-DNA adduct formation was strongly correlated with those in WBCs. It is concluded that IQ-DNA adducts in WBCs are qualitatively and quantitatively directly related to those in internal organs, independent of the target organ specificity of the carcinogenic effect of IQ.

  19. Synthesis and structures of Se analogues of the antithyroid drug 6-n-propyl-2-thiouracil and its alkyl derivatives: formation of dimeric Se-Se compounds and deselenation reactions of charge-transfer adducts of diiodine.

    PubMed

    Antoniadis, Constantinos D; Hadjikakou, Sotiris K; Hadjiliadis, Nick; Papakyriakou, Athanasios; Baril, Martin; Butler, Ian S

    2006-09-06

    Four selenium analogues of the antithyroid drug 6-n-propyl-2-thiouracil (PTU), of formulae RSeU, (R = methyl (Me) (1), ethyl (Et) (2), n-propyl (nPr) (3), and isopropyl (iPr) 4), have been synthesized. Reaction of 1-4 with diiodine in a 1:1 molar ratio in dichloromethane results in the formation of [(RSeU)I(2)] (R = methyl (5), ethyl (6), n-propyl (7) and isopropyl (8)). All compounds have been characterized by elemental analysis, FT-Raman, FT-IR, UV/Vis, (1)H-, (13)C-, (77)Se-1D and -2D NMR spectroscopy, and ESI-MS spectrometric techniques. Recrystallization of 4 from dichloromethane afforded (4CH(2)Cl(2)). Crystals of [(nPrSeU)I(2)] (7), a charge-transfer complex, were obtained from chloroform solutions, while crystallization of 6 and 7 from acetone afforded the diselenides [N-(6-Et-4-pyrimidone)(6-EtSeU)(2)] (92 H(2)O) and [N-(6-nPr-4-pyrimidone)(6-nPrSeU)(2)] (10) as oxidation products. Recrystallization of 7 from methanol/acetonitrile solutions led to deselenation with the formation of 6-n-propyl-2-uracil (nPrU) (11). [(nPrSeU)I(2)] (7) was found to be a charge-transfer complex with a Se--I bond. These results are discussed in relation to the mechanism of action of antithyroid drugs.

  20. Cytochrome c Adducts with PCB Quinoid Metabolites

    PubMed Central

    Li, Miao; Teesch, Lynn M.; Murry, Daryl J.; Pope, R. Marshal; Li, Yalan; Robertson, Larry W.; Ludewig, Gabriele

    2015-01-01

    PCBs are a group of 209 individual congeners widely used as industrial chemicals. PCBs are found as by-products in dye and paint manufacture and are legacy, ubiquitous and persistent as human and environmental contaminants. PCBs with fewer chlorine atoms may be metabolized to hydroxy- and dihydroxy- metabolites and further oxidized to quinoid metabolites both in vitro and in vivo. Specifically, quinoid metabolites may form adducts on nucleophilic sites within cells. We hypothesized that the PCB-quinones covalently bind to cytochrome c and thereby cause defects in the function of cytochrome c. In this study synthetic PCB quinones (2-(4’-chlorophenyl)-1,4-benzoquinone, 2-(3’, 5’-dichlorophenyl)-1,4-benzoquinone, 2-(3’,4’, 5’-trichlorophenyl)-1,4-benzoquinone, and 2-(4’-chlorophenyl)-3,6-dichloro-1,4-benzoquinone) were incubated with cytochrome c, and adducts were detected by LC-MS and MALDI TOF. SDS PAGE gel electrophoresis was employed to separate the adducted proteins, while trypsin digestion and LC-MS/MS were applied to identify the amino acid binding sites on cytochrome c. Conformation change of cytochrome c after binding with PCB3-para-quinone was investigated by SYBYL-X simulation and cytochrome c function was examined. We found that more than one molecule of PCB-quinone may bind to one molecule of cytochrome c. Lysine and glutamic acid were identified as the predominant binding sites. Software simulation showed conformation changes of adducted cytochrome c. Additionally, cross-linking of cytochrome c was observed on the SDS PAGE gel. Cytochrome c was found to be in the reduced form after incubation with PCB quinones. These data provide evidence that the covalent binding of PCB quinone metabolites to cytochrome c may be included among the toxic effects of PCBs. PMID:26062463

  1. Development of an immunoassay to detect benzene adducts in hemoglobin

    SciTech Connect

    Grassman, J.A.

    1993-01-01

    The purpose of this project was to develop an immunoassay to detect the adducts formed in hemoglobin after exposure to benzene, which is known to cause bone marrow degeneration and acute myelogenous leukemia. The use of benzene-adduct detection as a biological monitoring method would permit measurement of low exposures and exposures sustained weeks earlier. The reactivity of hydroquinone, an important benzene metabolite, with blood proteins and amino acids was investigated in order to decide which antigens and analytes were likely to be suitable for immunoassay development. The second section determined the combination of benzene-metabolite and antigen need to produce an immunoassay with the requisite low detection limit and specificity. The immunoassays with the best performance were tested on hemoglobin from benzene-exposed mice. In vitro studies showed that hydroquinone efficiently formed adducts with erythrocyte membranes and hemoglobin but not with albumin. Adduction efficiency was greater in incubations using purified hemoglobin than whole blood. Cysteine accounted for 15 to 27% of the adducts formed by hydroquinone. The site of the other adducts were not identified although there was evidence that the hemoglobin heme was adducted. Adducts were found on only 1 of the 2 globin chains. Tryptic digestion of the globin failed to associate the adducts with a specific peptide. Antigens made from hydroquinone-adducted hemoglobin but not hydroquinone-adducted cysteines coupled to carrier proteins effectively elicited adduct-specific antibodies. Interference due to reactivity to hemoglobin was controlled by using uniform quantities of hemoglobin in all wells. The mid-range of the best assays were approximately 12 pmoles HQ per well. Antibodies directed toward hemoglobin adducted with the benzene metabolites phenol, catechol and 1,2,4-trihydroxybenzene were also made. The performance of the anti-1,2,4-trihydroxybenzene were suitable for quantitative immunoassays.

  2. Aromatic DNA adducts and polymorphisms in metabolic genes in healthy adults: findings from the EPIC-Spain cohort.

    PubMed

    Agudo, Antonio; Peluso, Marco; Sala, Núria; Capellá, Gabriel; Munnia, Armelle; Piro, Sara; Marín, Fátima; Ibáñez, Raquel; Amiano, Pilar; Tormo, M José; Ardanaz, Eva; Barricarte, Aurelio; Chirlaque, M Dolores; Dorronsoro, Miren; Larrañaga, Nerea; Martínez, Carmen; Navarro, Carmen; Quirós, J Ramón; Sánchez, M José; González, Carlos A

    2009-06-01

    Aromatic compounds such as polycyclic aromatic hydrocarbons, arylamines and heterocyclic amines require metabolic activation to form metabolites able to bind to DNA, a process mediated by polymorphic enzymes. We measured aromatic DNA adducts in white blood cells by the (32)P-post-labelling assay in a sample of 296 healthy adults (147 men and 149 women) from five regions of Spain. We also analyzed functional polymorphisms in the metabolic genes CYP1A1, CYP1A2, EPHX1, GSTM1, GSTT1, NAT2 and SULT1A1. A significant increased level of DNA aromatic adducts was found related to the fast oxidation-hydrolysis phenotype defined by the polymorphism I462V in CYP1A1, the allele A in IVS1-154C>A of CYP1A2 and the combination Tyrosine-Arginine for Y113H and H139R of EPHX1. Geometric means (adducts per 10(-9) normal nucleotides) were 2.17, 4.04 and 6.30 for slow, normal and fast phenotypes, respectively (P-trend = 0.01). Slow acetylation by NAT2 was associated with a significant decrease in adduct level; subjects with slow alleles *5A and *7A/B had in average 1.56 x 10(-9)adducts, as compared with 5.60 for those with normal NAT2 activity (P-value = 0.01). No association was seen with polymorphisms of other metabolic genes such as GSTM1, GSTT1 or SULT1A1. We concluded that the metabolic pathways of oxidation, hydrolysis and acetylation are relevant to the formation of bulky DNA adducts. This could suggest a potential involvement of aromatic compounds in the formation of such adducts; however, given lack of specificity of the post-labeling assay, a firm conclusion cannot be drawn.

  3. Characterization of isomeric VX nerve agent adducts on albumin in human plasma using liquid chromatography-tandem mass spectrometry.

    PubMed

    Saeidian, Hamid; Mirkhani, Valioallah; Mousavi Faraz, Sajjad; Taghi Naseri, Mohammad; Babri, Mehran

    2015-01-01

    This study includes the characterization of isomeric VX organophosphorus adducts on albumin in human plasma using liquid chromatography-tandem mass spectrometry (LC-MS/MS). VX or its structural isomers were spiked into a vial containing plasma in order to obtain phosphorylated albumin. After pronase and trypsin digestion, the resulting solutions were analyzed to confirm adduct formation with the amino acid tyrosine on the albumin in human plasma. The LC-MS/MS experiments show that VX and its isomers can be attached to tyrosine on the albumin in human blood. Mass spectrometric studies revealed some interesting fragmentation pathways during the ionization process, such as ethylene, formic acid and ammonia elimination and an intermolecular electrophilic aromatic substitution reaction. The proposed mechanisms for the formation of the fragments were confirmed through the analysis of fragments of deuterated adducts.

  4. Immunoblot analysis of protein containing 3-(cystein-S-yl)acetaminophen adducts in serum and subcellular liver fractions from acetaminophen-treated mice.

    PubMed

    Pumford, N R; Hinson, J A; Benson, R W; Roberts, D W

    1990-07-01

    The hepatotoxicity of acetaminophen is believed to be mediated by the metabolic activation of acetaminophen to N-acetyl-p-benzoquinone imine which covalently binds to cysteinyl residues on proteins as 3-(cystein-S-yl)acetaminophen adducts. The formation of these adducts in hepatic protein correlates with the hepatotoxicity. In this study, the formation of 3-(cystein-S-yl)acetaminophen adducts in specific cellular proteins was investigated using sodium dodecyl sulfate-polyacrylamide gel electrophoresis and detected using affinity-purified antisera specific for 3-(cystein-S-yl)acetaminophen adducts on immunoblots. These techniques were used to investigate the liver 10,000g supernatant and serum from B6C3F1 mice that received hepatotoxic doses of acetaminophen. More than 15 proteins containing 3-(cystein-S-yl)acetaminophen adducts were detected in the liver 10,000g supernatant. The most prominent protein containing 3-(cystein-S-yl)acetaminophen adducts in the hepatic 10,000g supernatant had a relative molecular mass of 55 kDa. Serum proteins containing 3-(cystein-S-yl)acetaminophen adducts had molecular masses similar to those found in the liver 10,000g supernatant (55, 87, and approximately 102 kDa). These data, combined with our previous findings describing the temporal relationship between the appearance of 3-(cystein-S-yl)acetaminophen adducts in protein in the serum and the decrease in the levels of 3-(cystein-S-yl)acetaminophen adducts in protein in the liver, suggested that liver adducts were released into the serum following lysis of hepatocytes. The temporal relationship between the formation of specific adducts and hepatotoxicity in mice following a hepatotoxic dose of acetaminophen was examined using immunoblots of mitochondria, microsomes, cytosol, and plasma membranes. Hepatotoxicity indicated by serum alanine aminotransferase levels was increased at 2 and 4 hr after dosing. The cytosolic fraction contained numerous proteins with 3-(cystein

  5. Determination and applications of the molar absorptivity of phenolic adducts with captopril and mesna.

    PubMed

    García-Molina, F; Muñoz-Muñoz, J L; García-Molina, M; Molina-Alarcon, M; García-Ruíz, P A; Tudela, J; Rodríguez-López, J N

    2009-02-25

    Captopril and mesna are molecules with a free thiol group, used as active ingredients due to their hypotensor and mucolytic properties, respectively. These compounds cross the hematoencephalic barrier and, due to the reactivity of their thiol group, can form adducts with the o-quinones formed during the oxidation of mono- and o-diphenols. Polyphenol oxidase from plants and fungi can be used as a tool for generating o-quinones in their action on o-diphenols and facilitate the formation of adducts in the presence of captopril or mesna. The spectrophotometric characterization of these adducts is useful from several points of view. Here, using the end-point method, which involves the exhaustion of oxygen in the medium, we determined the molar absorptivity of the adducts of different o-diphenols with captopril and mesna. Besides the analytical interest of this approach, we also use it to make a kinetic characterization of polyphenol oxidase as it acts on o-diphenolic substrates that produce unstable o-quinones.

  6. Quantification of acylfulvene- and illudin S-DNA adducts in cells with variable bioactivation capacities

    PubMed Central

    Pietsch, Kathryn E.; van Midwoud, Paul M.; Villalta, Peter W.; Sturla, Shana J.

    2013-01-01

    Illudin S and its semi-synthetic analogue acylfulvene are structurally similar but elicit different biological responses. AF is a bioreductive alkylating anti-cancer agent with a favorable therapeutic index, while illudin S is in general highly toxic. AF toxicity is dependent on the reductase enzyme prostaglandin reductase 1 (PTGR1) for activation to a cytotoxic reactive intermediate. While illudin S can be metabolized by PTGR1, available data suggest that its toxicity does not correspond with PTGR1 function. The goal of this study was to understand how drug cytotoxicity relates to cellular bioactivation capacity, and the identity and quantity of AF- or illudin S-DNA adducts. The strategy involved identification of novel illudin S-DNA adducts and their quantitation in a newly engineered SW-480 colon cancer cell line that stably overexpresses PTGR1 (PTGR1-480). These data were compared with cytotoxicity data for both compounds in PTGR1-480 vs. normal SW-480 cells, demonstrating that AF forms more DNA adducts and is more cytotoxic in cells with higher levels of PTGR1, whereas illudin S cytotoxicity and adduct formation is not influenced by PTGR1 levels. Results are discussed in the context of an overall model for how changes in relative propensities of these compounds to undergo cellular processes, such as bioactivation, contribute to DNA damage and cytotoxicity. PMID:23227857

  7. DNA Adducts from Anticancer Drugs as Candidate Predictive Markers for Precision Medicine

    PubMed Central

    2016-01-01

    Biomarker-driven drug selection plays a central role in cancer drug discovery and development, and in diagnostic strategies to improve the use of traditional chemotherapeutic drugs. DNA-modifying anticancer drugs are still used as first line medication, but drawbacks such as resistance and side effects remain an issue. Monitoring the formation and level of DNA modifications induced by anticancer drugs is a potential strategy for stratifying patients and predicting drug efficacy. In this perspective, preclinical and clinical data concerning the relationship between drug-induced DNA adducts and biological response for platinum drugs and combination therapies, nitrogen mustards and half-mustards, hypoxia-activated drugs, reductase-activated drugs, and minor groove binding agents are presented and discussed. Aspects including measurement strategies, identification of adducts, and biological factors that influence the predictive relationship between DNA modification and biological response are addressed. A positive correlation between DNA adduct levels and response was observed for the majority of the studies, demonstrating the high potential of using DNA adducts from anticancer drugs as mechanism-based biomarkers of susceptibility, especially as bioanalysis approaches with higher sensitivity and throughput emerge. PMID:27936622

  8. Adduct supported analysis of γ-hydroxybutyrate in human serum with LC-MS/MS.

    PubMed

    Dziadosz, Marek; Weller, Jens-Peter; Klintschar, Michael; Teske, Jörg

    2013-08-01

    To avoid the detection of small fragmentation products of γ-hydroxybutyrate (GHB), a liquid chromatography-tandem mass spectrometry GHB quantification method in human serum supported by adduct formation was developed and validated. The continuous infusion of GHB/GHB-D6 made the identification of two adducts possible and GHB/GHB-D6 sodium acetate adduct fragmentation was used as target mass transition. A Luna 5 μm C18 (2) 100 A, 150 mm × 2 mm analytical column and elution with a programmed flow of the mobile phase consisting of 10% A (H2O/methanol = 95/5, v/v) and 90% B (H2O/methanol = 3/97, v/v), both with 10 mM ammonium acetate and 0.1% acetic acid (pH = 3.2), were used. Protein precipitation with 1 mL of the mobile phase B was used as the sample preparation. The calculated limit of detection/quantification was 1 μg/mL. The presented study shows that the fragmentation of GHB sodium acetate adducts is an effective way of quantification of this small molecule and is an interesting alternative to other methods based on the detection of ions smaller than 85 Da. This fact together with the short analysis time of 3 min and the fast sample preparation make this method very attractive for forensic/clinical application.

  9. Noni juice reduces lipid peroxidation-derived DNA adducts in heavy smokers.

    PubMed

    Wang, Mian-Ying; Peng, Lin; Jensen, Claude J; Deng, Shixin; West, Brett J

    2013-03-01

    Food plants provide important phytochemicals which help improve or maintain health through various biological activities, including antioxidant effects. Cigarette smoke-induced oxidative stress leads to the formation of lipid hydroperoxides (LOOHs) and their decomposition product malondialdehyde (MDA), both of which cause oxidative damage to DNA. Two hundred forty-five heavy cigarette smokers completed a randomized, double-blind, placebo-controlled clinical trial designed to investigate the effect of noni juice on LOOH- and MDA-DNA adducts in peripheral blood lymphocytes (PBLs). Volunteers drank noni juice or a fruit juice placebo every day for 1 month. DNA adducts were measured by (32)P postlabeling analysis. Drinking 29.5-118 mL of noni juice significantly reduced adducts by 44.6-57.4%. The placebo, which was devoid of iridoid glycosides, did not significantly influence LOOH- and MDA-DNA adduct levels in current smokers. Noni juice was able to mitigate oxidative damage of DNA in current heavy smokers, an activity associated with the presence of iridoids.

  10. Fragmentation patterns of DNA-benzo(a)pyrene diol epoxide adducts characterized by nanoflow LC/quadrupole time-of-flight mass spectrometry

    NASA Astrophysics Data System (ADS)

    Wang, Jin J.; Marshall, William D.; Law, Brandon; Lewis, Daniel M.

    2003-11-01

    Polycyclic aromatic hydrocarbons are a pervasive and abundant class of environmental and workplace pollutants. Formation of covalent DNA adducts has been considered to be a useful dosimeter or molecular biomarker for assessing the exposure to such pollutants. The establishment of prospective models for the formation of DNA adducts may help to understand the mechanisms of the effects. To identify the DNA adducts in this study, the fragmentation patterns of DNA-benzo(a)pyrene diol epoxide adducts were characterized by nanoflow liquid chromatography (LC) coupled to hybrid quadrupole orthogonal acceleration time-of-flight mass spectrometry (Q-TOF-MS). In the experiment, the DNA adducts were synthesized by reaction of calf thymus DNA with anti-benzo(a)pyrene-r-7,t-8-dihydrodiol-t-9,10-epoxide(+/-) (anti-BPDE). The major adducts of N2-deoxyguanosine-benzo(a)pyrene-7,8-dihydrodiol-9,10-epoxide (N2-dG-BPDE), N6-deoxyadenosine-benzo(a)pyrene-7,8-dihydrodiol-9,10-epoxide (N6-dA-BPDE), N4-deoxycytidine-benzo(a)pyrene-7,8-epoxide (N4-dC-BPDE), and N3-deoxythymidine-benzo(a)pyrene-7,8-dihydrodiol-9,10-epoxide adduct (N3-dT-BPDE) were identified by electrospray positive ionization with TOF-MS/MS scan mode. The results of this study demonstrated that the approach that utilizes collision-induced dissociation leading to a characteristic fragmentation pattern offers a distinct advantage for identification and elucidation of molecular structural features of the DNA adducts. The fragmentation patterns established in this study may be applied to identify DNA adducts in biological systems.

  11. Methylthiodeoxynivalenol (MTD): insight into the chemistry, structure and toxicity of thia-Michael adducts of trichothecenes.

    PubMed

    Fruhmann, Philipp; Weigl-Pollack, Theresa; Mikula, Hannes; Wiesenberger, Gerlinde; Adam, Gerhard; Varga, Elisabeth; Berthiller, Franz; Krska, Rudolf; Hametner, Christian; Fröhlich, Johannes

    2014-07-28

    Methylthiodeoxynivalenol (MTD), a novel derivative of the trichothecene mycotoxin deoxynivalenol (DON), was prepared by applying a reliable procedure for the formal Michael addition of methanethiol to the conjugated double bond of DON. Structure elucidation revealed the preferred formation of the hemiketal form of MTD by intramolecular cyclisation between C8 and C15. Computational investigations showed a negative total reaction energy for the hemiketalisation step and its decrease in comparison with theoretical model compounds. Therefore, this structural behaviour seems to be a general characteristic of thia-Michael adducts of type B trichothecenes. MTD was shown to be less inhibitory for a reticulocyte lysate based in vitro translation system than the parent compound DON, which supports the hypothesis that trichothecenes are detoxified through thia-adduct formation during xenobiotic metabolism.

  12. Mass Spectrometric Evidence of Malonaldehyde and 4-Hydroxynonenal Adductions to Radical-Scavenging Soy Peptides

    PubMed Central

    Zhao, Jing; Chen, Jing; Zhu, Haining; Xiong, Youling L.

    2012-01-01

    Antioxidative peptides in food systems are potential targets of lipid oxidation-generated reactive aldehydes, such as malonaldehyde (MDA) and 4-hydroxynonenal (HNE). In this study, covalent modifications on radical-scavenging peptides prepared from soy protein hydrolysate by MDA and HNE were characterized by liquid chromatography–electrospray ionization-mass spectrometry (LC-ESI-MS/MS). MS/MS analyses detected the formation of Schiff base type adducts of MDA on the side chain groups of lysine, histidine, arginine, glutamine, and asparagine residues as well as the N-termini of peptides. MDA also formed a fluorescent product with lysine residues. HNE adducted on lysine residues through Schiff base formation and on histidine, arginine, glutamine, and asparagine residues mainly through Michael addition. In spite of the extensive MDA modification, peptide cross-linking by this potential mechanism was undetectable. PMID:22946674

  13. Quantitation of carcinogen bound protein adducts by fluorescence measurements

    NASA Astrophysics Data System (ADS)

    Gan, Liang-Shang; Otteson, Michael S.; Doxtader, Mark M.; Skipper, Paul L.; Dasari, Ramachandra R.; Tannenbaum, Steven R.

    1989-01-01

    A highly significant correlation of aflatoxin B 1 serum albumin adduct level with daily aflatoxin B 1 intake was observed in a molecular epidemiological study of aflatoxin carcinogenesis which used conventional fluorescence spectroscopy methods for adduct quantitation. Synchronous fluorescence spectroscopy and laser induced fluorescence techniques have been employed to quantitate antibenzo[ a]pyrene diol epoxide derived globin peptide adducts. Fast and efficient methods to isolate the peptide adducts as well as eliminate protein fluorescence background are described. A detection limit of several femtomoles has been achieved. Experimental and technical considerations of low temperature synchronous fluorescence spectroscopy and fluorescence line narrowing to improve the detection sensitivities are also presented.

  14. Electrospray ionization mass spectrometric characterization of acrylamide adducts to hemoglobin

    SciTech Connect

    Springer, D.L.; Goheen, S.C.; Edmonds, C.G. ); Bull, R.J.; Sylvester, D.M. )

    1993-01-01

    The most common procedure to identify hemoglobin adducts has been to cleave the adducts from the protein and characterize the adducting species, by, for example, derivatization and gas chromatography/mass spectrometry. To extend these approaches we used electrospray ionization mass spectrometry (ESI-MS) to characterize adducted hemoglobin. For this we incubated [[sup 14]C]acrylamide with the purified human hemoglobin (type A[sub 0]) under conditions that yielded high adduct levels. When the hemoglobin was separated by reversed-phase high-performance liquid chromatography (HPLC), 65% of the radioactivity copurified with the [beta]-subunit. Three adducted species were prominent in the ESI mass spectrum of the intact [beta]-subunit, indicating acrylamide adduction (i.e., mass increase of 71 Da) and two addition unidentified moieties with mass increments of 102 and 135 Da. Endoproteinase Glu-C digestion of the adducted [beta]-subunit resulted in a peptide mixture that, upon reversed-phase HPLC separation, provided several radiolabeled peptides. Using ESI-MS we identified these as the V[sub 91-101] and V[sub 102-122] peptides that represent the cysteine-containing peptides of the [beta]-subunit. These results provide definitive information on acrylamide-modified human hemoglobin and demonstrate that ESI-MS provides valuable structure information on chemically adducted proteins. 30 refs., 9 figs., 3 tabs.

  15. Contributions of aryl hydrocarbon receptor genetic variants to the risk of glioma and PAH-DNA adducts.

    PubMed

    Gu, Aihua; Ji, Guixiang; Jiang, Tao; Lu, Ailin; You, Yongping; Liu, Ning; Luo, Chengzhang; Yan, Wei; Zhao, Peng

    2012-08-01

    The aryl hydrocarbon receptor (AHR) gene is involved in the response to polycyclic aromatic hydrocarbon (PAH) exposure. To investigate the hypothesis that the genetic variants in the AHR gene might be a causal genetic susceptibility to PAH-DNA adduct formation and glioma risk, we conducted a case-control study of 384 glioma cases and 384 cancer-free controls to explore the association between six common single-nucleotide polymorphisms of the AHR gene and glioma risk. Using PAH-DNA adducts as biomarkers, we then evaluated the association between PAH-DNA adduct levels and glioma risk based on a tissue microarray including 11 controls and 77 glioma patients. We further explored the contributions of the glioma risk-associated AHR polymorphisms to the levels of PAH-DNA adducts in glioma tissues based on 77 glioma patients. We found that PAH-DNA adduct staining existed in normal brain tissues and grades I-IV gliomas, and the staining intensity was significantly associated with the glioma grade. Two AHR polymorphisms (rs2066853 and rs2158041) demonstrated significant association with glioma risk. Intriguingly, we also found statistically significant associations between these two variants and PAH-DNA adduct levels in glioma tissue. These data suggest the contributions of AHR rs2066853 and rs2158041 to glioma risk and the PAH-DNA adduct levels, which shed new light on gene-environment interactions in the etiology of glioma. Further studies with a larger sample size and ethnically diverse populations are required to elucidate the potential biological mechanism for, as well as the impact of, the susceptibility to glioma due to genetic variants of AHR.

  16. Detection of human butyrylcholinesterase-nerve gas adducts by liquid chromatography-mass spectrometric analysis after in gel chymotryptic digestion.

    PubMed

    Tsuge, Kouichiro; Seto, Yasuo

    2006-06-21

    To verify the exposure to nerve gas, a method for detecting human butyrylcholinesterase (BuChE)-nerve gas adduct was developed using LC-electrospray mass spectrometry (ESI-MS). Purified human serum BuChE was incubated with sarin, soman or VX, and the adduct was purified by sodium dodecylsulfate polyacrylamide gel electrophoresis (SDS-PAGE) and digested in gel by treatment with chymotrypsin. The resulting peptide mixture was subjected to LC-ESI-MS. From the chymotryptic digest of untreated human BuChE, one peak corresponding to the peptide fragment containing the active center serine residue was detected on the extracted ion chromatogram at m/z 948.5, and the sequence was ascertained to be "GESAGAASVSL" by MS/MS analysis. From the chymotryptic digest of the human BuChE-sarin adduct, a singly charged peptide peak was detected on the extracted ion chromatogram at m/z 1,069.5, and the sequence was ascertained to be "GEXAGAASVSL" by MS/MS analysis (X denotes isopropylmethylphosphonylated serine). The difference in molecular weight (120.0 Da) between the active center peptide fragments corresponding to the untreated BuChE and BuChE-sarin adduct was assumed to be derived from the addition of an isopropyl methylphosphonyl moiety to the serine residue. The formation of human BuChE adducts with soman, VX and an aged soman adduct was confirmed by detecting the respective active center peptide fragments using LC-ESI-MS. To apply the established method to an actual biological sample, human serum was incubated with VX, and the adduct was purified by procainamide affinity chromatography followed by SDS-PAGE. After chymotryptic in gel digestion, the ethylphosphonylated active center peptide fragment could be detected, and the structure of the residue was ascertained by LC-ESI-MS analysis.

  17. Inhibition by resistant starch of red meat-induced promutagenic adducts in mouse colon.

    PubMed

    Winter, Jean; Nyskohus, Laura; Young, Graeme P; Hu, Ying; Conlon, Michael A; Bird, Anthony R; Topping, David L; Le Leu, Richard K

    2011-11-01

    Population studies have shown that high red meat intake may increase colorectal cancer risk. Our aim was to examine the effect of different amounts and sources of dietary protein on induction of the promutagenic adduct O(6)-methyl-2-deoxyguanosine (O(6)MeG) in colonocytes, to relate these to markers of large bowel protein fermentation and ascertain whether increasing colonic carbohydrate fermentation modified these effects. Mice (n = 72) were fed 15% or 30% protein as casein or red meat or 30% protein with 10% high amylose maize starch as the source of resistant starch. Genetic damage in distal colonocytes was detected by immunohistochemical staining for O(6)MeG and apoptosis. Feces were collected for measurement of pH, ammonia, phenols, p-cresol, and short-chain fatty acids (SCFA). O(6)MeG and fecal p-cresol concentrations were significantly higher with red meat than with casein (P < 0.018), with adducts accumulating in cells at the crypt apex. DNA adducts (P < 0.01) and apoptosis (P < 0.001) were lower and protein fermentation products (fecal ammonia, P < 0.05; phenol, P < 0.0001) higher in mice fed resistant starch. Fecal SCFA levels were also higher in mice fed resistant starch (P < 0.0001). This is the first demonstration that high protein diets increase promutagenic adducts (O(6)MeG) in the colon and dietary protein type seems to be the critical factor. The delivery of fermentable carbohydrate to the colon (as resistant starch) seems to switch from fermentation of protein to that of carbohydrate and a reduction in adduct formation, supporting previous observations that dietary resistant starch opposes the mutagenic effects of dietary red meat.

  18. Correlations between Photodegradation of Bisretinoid Constituents of Retina and Dicarbonyl Adduct Deposition*

    PubMed Central

    Zhou, Jilin; Ueda, Keiko; Zhao, Jin; Sparrow, Janet R.

    2015-01-01

    Non-enzymatic collagen cross-linking and carbonyl adduct deposition are features of Bruch's membrane aging in the eye, and disturbances in extracellular matrix turnover are considered to contribute to Bruch's membrane thickening. Because bisretinoid constituents of the lipofuscin of retinal pigment epithelial (RPE) cells are known to photodegrade to mixtures of aldehyde-bearing fragments and small dicarbonyls (glyoxal (GO) and methylglyoxal (MG)), we investigated RPE lipofuscin as a source of the reactive species that covalently modify protein side chains. Abca4−/− and Rdh8−/−/Abca4−/− mice that are models of accelerated bisretinoid formation were studied and pre-exposure of mice to 430 nm light enriched for dicarbonyl release by bisretinoid photodegradation. MG protein adducts were elevated in posterior eyecups of mutant mice, whereas carbonylation of an RPE-specific protein was observed in Abca4−/− but not in wild-type mice under the same conditions. Immunolabeling of cryostat-sectioned eyes harvested from Abca4−/− mice revealed that carbonyl adduct deposition in Bruch's membrane was accentuated. Cell-based assays corroborated these findings in mice. Moreover, the receptor for advanced glycation end products that recognizes MG and GO adducts and glyoxylase 1 that metabolizes MG and GO were up-regulated in Abca4−/− mice. Additionally, in acellular assays, peptides were cross-linked in the presence of A2E (adduct of two vitamin A aldehyde and ethanolamine) photodegradation products, and in a zymography assay, reaction of collagen IV with products of A2E photodegradation resulted in reduced cleavage by the matrix metalloproteinases MMP2 and MMP9. In conclusion, these mechanistic studies demonstrate a link between the photodegradation of RPE bisretinoid fluorophores and aging changes in underlying Bruch's membrane that can confer risk of age-related macular degeneration. PMID:26400086

  19. DNA adducts, benzo(a)pyrene monooxygenase activity, and lysosomal membrane stability in Mytilus galloprovincialis from different areas in Taranto coastal waters (Italy).

    PubMed

    Pisoni, M; Cogotzi, L; Frigeri, A; Corsi, I; Bonacci, S; Iacocca, A; Lancini, L; Mastrototaro, F; Focardi, S; Svelto, M

    2004-10-01

    The aim of this study was to investigate the impact of environmental pollution at different stations along the Taranto coastline (Ionian Sea, Puglia, Italy) using several biomarkers of exposure and the effect on mussels, Mytilus galloprovincialis, collected in October 2001 and October 2002. Five sampling sites were compared with a "cleaner" reference site in the Aeronautics Area. In this study we also investigated the differences between adduct levels in gills and digestive gland. This Taranto area is the most significant industrial settlement on the Ionian Sea known to be contaminated by polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls, heavy metals, etc. Exposure to PAHs was evaluated by measuring DNA adduct levels and benzo(a)pyrene monooxygenase activity (B(a)PMO); DNA adducts were analyzed by 32P-postlabeling with nuclease P1 enhancement in both gills and digestive glands to evaluate differences between DNA adduct levels in the two tissues. B(a)PMO was assayed in the microsomal fraction of the digestive glands as a result of the high expression of P450-metabolizing enzymes in this tissue. Lysosomal membrane stability, a potential biomarker of anthropogenic stress, was also evaluated in the digestive glands of mussels, by measuring the latent activity of beta-N-acetylhexosaminidase. Induction of DNA adducts was evident in both tissues, although the results revealed large tissue differences in DNA adduct formation. In fact, gills showed higher DNA adduct levels than did digestive gland. No significant differences were found in DNA adduct levels over time, with both tissues providing similar results in both years. DNA adduct levels were correlated with B(a)PMO activity in digestive gland in both years (r = 0.60 in 2001; r = 0.73 in 2002). Increases were observed in B(a)PMO activity and DNA adduct levels at different stations; no statistical difference was observed in B(a)PMO activity over the two monitoring campaigns. The membrane labilization

  20. An abnormal N-heterocyclic carbene-carbon dioxide adduct from imidazolium acetate ionic liquids: the importance of basicity.

    PubMed

    Kelemen, Zsolt; Péter-Szabó, Barbara; Székely, Edit; Hollóczki, Oldamur; Firaha, Dzmitry S; Kirchner, Barbara; Nagy, József; Nyulászi, László

    2014-09-26

    In the reaction of 1-ethyl-3-methylimidazolium acetate [C2C1Im][OAc] ionic liquid with carbon dioxide at 125 °C and 10 MPa, not only the known N-heterocyclic carbene (NHC)-CO2 adduct I, but also isomeric aNHC-CO2 adducts II and III were obtained. The abnormal NHC-CO2 adducts are stabilized by the presence of the polarizing basic acetate anion, according to static DFT calculations and ab initio molecular dynamics studies. A further possible reaction pathway is facilitated by the high basicity of the system, deprotonating the initially formed NHC-CO2 adduct I, which can then be converted in the presence of the excess of CO2 to the more stable 2-deprotonated anionic abnormal NHC-CO2 adduct via the anionic imidazolium-2,4-dicarboxylate according to DFT calculations on model compounds. This suggests a generalizable pathway to abnormal NHC complex formation.

  1. Mass spectrometry-based quantification of myocardial protein adducts with acrolein in an in vivo model of oxidative stress

    PubMed Central

    Wu, Jianyong; Stevens, Jan F.; Maier, Claudia S.

    2012-01-01

    Acrolein exposure leads to the formation of protein-acrolein adducts. Protein modification by acrolein has been associated with various chronic diseases including cardiovascular and neurodegenerative diseases. Here we report an analytical strategy that enables the quantification of Michael-type protein adducts of acrolein in mitochondrial proteome samples using liquid chromatography in combination with tandem mass spectrometry and selected ion monitoring (LC-MS/MS SRM) analysis. Our approach combines site-specific identification and relative quantification at the peptide level of protein–acrolein adducts in relation to the unmodified protein thiol pool. Treatment of 3-month old rats with CCl4, an established in vivo model of acute oxidative stress, resulted in significant increases in the ratios of distinct acrolein-adducted peptides to the corresponding unmodified thiol-peptides obtained from proteins that were isolated from cardiac mitochondria. The mitochondrial proteins that were found adducted by acrolein were malate dehydrogenase, NADH dehydrogenase [ubiquinone] flavoprotein 1, cytochrome c oxidase subunit VIb isoform 1, ATP synthase d chain, and ADP/ATP translocase 1. The findings indicate that protein modification by acrolein has potential value as an index of mitochondrial oxidative stress. PMID:21809440

  2. Bypass of Aflatoxin B[subscript 1] Adducts by the Sulfolobus solfataricus DNA Polymerase IV

    SciTech Connect

    Banerjee, Surajit; Brown, Kyle L.; Egli, Martin; Stone, Michael P.

    2012-07-18

    Aflatoxin B{sub 1} (AFB{sub 1}) is oxidized to an epoxide in vivo, which forms an N7-dG DNA adduct (AFB{sub 1}-N7-dG). The AFB{sub 1}-N7-dG can rearrange to a formamidopyrimidine (AFB{sub 1}-FAPY) derivative. Both AFB{sub 1}-N7-dG and the {beta}-anomer of the AFB{sub 1}-FAPY adduct yield G {yields} T transversions in Escherichia coli, but the latter is more mutagenic. We show that the Sulfolobus solfataricus P2 DNA polymerase IV (Dpo4) bypasses AFB{sub 1}-N7-dG in an error-free manner but conducts error-prone replication past the AFB{sub 1}-FAPY adduct, including misinsertion of dATP, consistent with the G {yields} T mutations observed in E. coli. Three ternary (Dpo4-DNA-dNTP) structures with AFB{sub 1}-N7-dG adducted template:primers have been solved. These demonstrate insertion of dCTP opposite the AFB{sub 1}-N7-dG adduct, and correct vs incorrect insertion of dATP vs dTTP opposite the 5'-template neighbor dT from a primed AFB{sub 1}-N7-dG:dC pair. The insertion of dTTP reveals hydrogen bonding between the template N3 imino proton and the O{sup 2} oxygen of dTTP, and between the template T O{sup 4} oxygen and the N3 imino proton of dTTP, perhaps explaining why this polymerase does not efficiently catalyze phosphodiester bond formation from this mispair. The AFB{sub 1}-N7-dG maintains the 5'-intercalation of the AFB{sub 1} moiety observed in DNA. The bond between N7-dG and C8 of the AFB{sub 1} moiety remains in plane with the alkylated guanine, creating a 16{sup o} inclination of the AFB{sub 1} moiety with respect to the guanine. A binary (Dpo4-DNA) structure with an AFB{sub 1}-FAPY adducted template:primer also maintains 5'-intercalation of the AFB{sub 1} moiety. The {beta}-deoxyribose anomer is observed. Rotation about the FAPY C5-N{sup 5} bond orients the bond between N{sup 5} and C8 of the AFB{sub 1} moiety out of plane in the 5'-direction, with respect to the FAPY base. The formamide group extends in the 3'-direction. This improves stacking of the AFB{sub 1

  3. The antimicrobial activities of the cinnamaldehyde adducts with amino acids.

    PubMed

    Wei, Qing-Yi; Xiong, Jia-Jun; Jiang, Hong; Zhang, Chao; Wen Ye

    2011-11-01

    Cinnamaldehyde is a well-established natural antimicrobial compound. It is probable for cinnamaldehyde to react with amino acid forming Schiff base adduct in real food system. In this paper, 9 such kind of adducts were prepared by the direct reaction of amino acids with cinnamaldehyde at room temperature. Their antimicrobial activities against Bacillus subtilis, Escherichia coli and Saccharomyces cerevisiae were evaluated with benzoic acid as a reference. The adducts showed a dose-dependent activities against the three microbial strains. Both cinnamaldehyde and their adducts were more active against B. subtilis than on E. coli, and their antimicrobial activities were higher at lower pH. Both cinnamaldehyde and its adducts were more active than benzoic acid at the same conditions. The adduct compound A was non-toxic by primary oral acute toxicity study in mice. However, in situ effect of the adduct compound A against E. coli was a little lower than cinnamaldehyde in fish meat. This paper for the first time showed that the cinnamaldehyde adducts with amino acids had similar strong antimicrobial activities as cinnamaldehyde, which may provide alternatives to cinnamaldehyde in food to avoid the strong unacceptable odor of cinnamaldehyde.

  4. Xenobiotic metabolism induction and bulky DNA adducts generated by particulate matter pollution in BEAS-2B cell line: geographical and seasonal influence.

    PubMed

    Lepers, Capucine; André, Véronique; Dergham, Mona; Billet, Sylvain; Verdin, Anthony; Garçon, Guillaume; Dewaele, Dorothée; Cazier, Fabrice; Sichel, François; Shirali, Pirouz

    2014-06-01

    Airborne particulate matter (PM) toxicity is of growing interest as diesel exhaust particles have been classified as carcinogenic to humans. However, PM is a mixture of chemicals, and respective contribution of organic and inorganic fractions to PM toxicity remains unclear. Thus, we analysed the link between chemical composition of PM samples and bulky DNA adduct formation supported by CYP1A1 and 1B1 genes induction and catalytic activities. We used six native PM samples, collected in industrial, rural or urban areas, either during the summer or winter, and carried out our experiments on the human bronchial epithelial cell line BEAS-2B. Cell exposure to PM resulted in CYP1A1 and CYP1B1 genes induction. This was followed by an increase in EROD activity, leading to bulky DNA adduct formation in exposed cells. Bulky DNA adduct intensity was associated to global EROD activity, but this activity was poorly correlated with CYPs mRNA levels. However, EROD activity was correlated with both metal and polycyclic aromatic hydrocarbon (PAH) content. Finally, principal components analysis revealed three clusters for PM chemicals, and suggested synergistic effects of metals and PAHs on bulky DNA adduct levels. This study showed the ability of PM samples from various origins to generate bulky DNA adducts in BEAS-2B cells. This formation was promoted by increased expression and activity of CYPs involved in PAHs activation into reactive metabolites. However, our data highlight that bulky DNA adduct formation is only partly explained by PM content in PAHs, and suggest that inorganic compounds, such as iron, may promote bulky DNA adduct formation by supporting CYP activity.

  5. A computational study of the activation of allenoates by Lewis bases and the reactivity of intermediate adducts.

    PubMed

    Huang, Gou-Tao; Lankau, Timm; Yu, Chin-Hui

    2014-10-07

    Several chemical properties of Lewis base-allenoate adducts (LB·allenoate), such as solvent effect, basicity, nucleophilicity and cycloaddition, are studied to provide a detailed foundation for the analysis of LB-catalyzed reactions of allenoates. The zwitterionic LB·allenoates formed between methyl allenoate and Lewis bases, such as N-heterocyclic carbenes (NHCs), phosphines, amines and aza-heterocycles, are studied at the M06-2X/6-31+G* level. The addition of the LBs to the allenoate can yield Z- or E-type adducts. The formation of the Z-type adducts is more favorable in the gas phase due to electrostatic interactions. The yield of the E-type adducts increases with the permittivity of the solvent. The lowest barriers for the addition and the most stable adducts are observed with NHCs as catalysts. It is also shown that the α-carbon atom of the allenic moiety in LB·allenoate is more nucleophilic than the γ-carbon atom. Aza-arenes, phosphines and NHCs stabilize the [3 + 2]-ylides formed by the cycloaddition of LB·allenoate to ethylene; therefore, these LBs thermodynamically support the [3 + 2] cycloadditions. The detailed analysis of [3 + 2]-, [2 + 4]-, [2 + 2]- and [2 + 2 + 2]-cycloadditions with enones/ketones shows that the amine-catalyzed reactions follow the kinetically preferred path, and that the exergonic formation of the P-ylide favors the [3 + 2] cycloaddition in the phosphine-catalyzed reaction. The thermodynamically preferred pathway is followed with NHCs whereas the high stability of NHC·allenoate adducts reduces the overall catalytic efficiency of NHCs.

  6. Role of methylglyoxal adducts in the development of vascular complications in diabetes mellitus.

    PubMed

    Bourajjaj, M; Stehouwer, C D A; van Hinsbergh, V W M; Schalkwijk, C G

    2003-12-01

    Various theories have been proposed to explain the hyperglycaemia-induced pathogenesis of vascular complications of diabetes, including detrimental effects of AGEs (advanced glycation end products) on vascular tissues. Increased formation of the very reactive dicarbonyl compound MGO (methylglyoxal), one of the side-products of glycolysis, and MGO-derived AGEs seem to be implicated in the development of diabetic vascular complications. Although the exact role of MGO and MGO adducts in the development of vascular complications is unknown, receptor-mediated activation of vascular cells by the MGO-arginine adduct hydroimidazolone, as well as intracellular modifications of protein by MGO, seem to be involved. The aim of this mini-review is to assess to what extent MGO is related to vascular complications in diabetes.

  7. Role of retinoic acid in the modulation of benzo(a)pyrene-DNA adducts in human hepatoma cells: Implications for cancer prevention

    SciTech Connect

    Zhou Guodong; Richardson, Molly; Fazili, Inayat S.; Wang, Jianbo; Donnelly, Kirby C.; Wang Fen; Amendt, Brad; Moorthy, Bhagavatula

    2010-12-15

    Carcinogen-DNA adducts could lead to mutations in critical genes, eventually resulting in cancer. Many studies have shown that retinoic acid (RA) plays an important role in inducing cell apoptosis. Here we have tested the hypothesis that levels of carcinogen-DNA adducts can be diminished by DNA repair and/or by eliminating damaged cells through apoptosis. Our results showed that the levels of total DNA adducts in HepG2 cells treated with benzo(a)pyrene (BP, 2 {mu}M) + RA (1 {mu}M) were significantly reduced compared to those treated with BP only (P = 0.038). In order to understand the mechanism of attenuation of DNA adducts, further experiments were performed. Cells were treated with BP (4 {mu}M) for 24 h to initiate DNA adduct formation, following which the medium containing BP was removed, and fresh medium containing 1 {mu}M RA was added. The cells were harvested 24 h after RA treatment. Interestingly, the levels of total DNA adducts were lower in the BP/RA group (390 {+-} 34) than those in the BP/DMSO group (544 {+-} 33), P = 0.032. Analysis of cell apoptosis showed an increase in BP + RA group, compared to BP or RA only groups. Our results also indicated that attenuation of BP-DNA adducts by RA was not primarily due to its effects on CYP1A1 expression. In conclusion, our results suggest a mechanistic link between cellular apoptosis and DNA adduct formation, phenomena that play important roles in BP-mediated carcinogenesis. Furthermore, these results help understand the mechanisms of carcinogenesis, especially in relation to the chemopreventive properties of nutritional apoptosis inducers.

  8. Comprehensive High-Resolution Mass Spectrometric Analysis of DNA Phosphate Adducts Formed by the Tobacco-Specific Lung Carcinogen 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone.

    PubMed

    Ma, Bin; Villalta, Peter W; Zarth, Adam T; Kotandeniya, Delshanee; Upadhyaya, Pramod; Stepanov, Irina; Hecht, Stephen S

    2015-11-16

    The tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK, 1) is a potent lung carcinogen in laboratory animals and is believed to play a key role in the development of lung cancer in smokers. Metabolic activation of NNK leads to the formation of pyridyloxobutyl DNA adducts, a critical step in its mechanism of carcinogenesis. In addition to DNA nucleobase adducts, DNA phosphate adducts can be formed by pyridyloxobutylation of the oxygen atoms of the internucleotidic phosphodiester linkages. We report the use of a liquid chromatography-nanoelectrospray ionization-high-resolution tandem mass spectrometry technique to characterize 30 novel pyridyloxobutyl DNA phosphate adducts in calf thymus DNA (CT-DNA) treated with 4-(acetoxymethylnitrosamino)-1-(3-pyridyl)-1-butanone (NNKOAc, 2), a regiochemically activated form of NNK. A (15)N3-labeled internal standard was synthesized for one of the most abundant phosphate adducts, dCp[4-oxo-4-(3-pyridyl)butyl]dC (CpopC), and this standard was used to quantify CpopC and to estimate the levels of other adducts in the NNKOAc-treated CT-DNA. Formation of DNA phosphate adducts by NNK in vivo was further investigated in rats treated with NNK acutely (0.1 mmol/kg once daily for 4 days by subcutaneous injection) and chronically (5 ppm in drinking water for 10, 30, 50, and 70 weeks). This study provides the first comprehensive structural identification and quantitation of a panel of DNA phosphate adducts of a structurally complex carcinogen and chemical support for future mechanistic studies of tobacco carcinogenesis in humans.

  9. Prolonged Acetaminophen-Protein Adduct Elimination During Renal Failure, Lack of Adduct Removal by Hemodiafiltration, and Urinary Adduct Concentrations After Acetaminophen Overdose.

    PubMed

    Curry, Steven C; Padilla-Jones, Angela; O'Connor, Ayrn D; Ruha, Anne-Michelle; Bikin, Dale S; Wilkins, Diana G; Rollins, Douglas E; Slawson, Matthew H; Gerkin, Richard D

    2015-06-01

    Elevated concentrations of serum acetaminophen-protein adducts, measured as protein-derived acetaminophen-cysteine (APAP-CYS), have been used to support a diagnosis of APAP-induced liver injury when histories and APAP levels are unhelpful. Adducts have been reported to undergo first-order elimination, with a terminal half-life of about 1.6 days. We wondered whether renal failure would affect APAP-CYS elimination half-life and whether continuous venovenous hemodiafiltration (CVVHDF), commonly used in liver failure patients, would remove adducts to lower their serum concentrations. Terminal elimination half-lives of serum APAP-CYS were compared between subjects with and without renal failure in a prospective cohort study of 168 adults who had ingested excessive doses of APAP. APAP-CYS concentrations were measured in plasma ultrafiltrate during CVVHDF at times of elevated serum adduct concentrations. Paired samples of urine and serum APAP-CYS concentrations were examined to help understand the potential importance of urinary elimination of serum adducts. APAP-CYS elimination half-life was longer in 15 renal failure subjects than in 28 subjects with normal renal function (41.3 ± 2.2 h versus 26.8 ± 1.1 h [mean ± SEM], respectively, p < 0.001). CVVHDF failed to remove detectable amounts of APAP-CYS in any of the nine subjects studied. Sixty-eight percent of 557 urine samples from 168 subjects contained no detectable APAP-CYS, despite levels in serum up to 16.99 μM. Terminal elimination half-life of serum APAP-CYS was prolonged in patients with renal failure for reasons unrelated to renal urinary adduct elimination, and consideration of prolonged elimination needs to be considered if attempting back-extrapolation of adduct concentrations. CVVHDF did not remove detectable APAP-CYS, suggesting approximate APAP-protein adduct molecular weights ≥ 50,000 Da. The presence of urinary APAP-CYS in the minority of instances was most compatible with renal

  10. Immunodetection of Serum Albumin Adducts as Biomarkers for Organophosphorus Exposure

    PubMed Central

    Chen, Sigeng; Zhang, Jun; Lumley, Lucille

    2013-01-01

    A major challenge in organophosphate (OP) research has been the identification and utilization of reliable biomarkers for the rapid, sensitive, and efficient detection of OP exposure. Although Tyr 411 OP adducts to human serum albumin (HSA) have been suggested to be one of the most robust biomarkers in the detection of OP exposure, the analysis of HSA-OP adduct detection has been limited to techniques using mass spectrometry. Herein, we describe the procurement of two monoclonal antibodies (mAb-HSA-GD and mAb-HSA-VX) that recognized the HSA Tyr 411 adduct of soman (GD) or S-[2-(diisopropylamino)ethyl]-O-ethyl methylphosphonothioate (VX), respectively, but did not recognize nonphosphonylated HSA. We showed that mAb-HSA-GD was able to detect the HSA Tyr 411 OP adduct at a low level (i.e., human blood plasma treated with 180 nM GD) that could not be detected by mass spectrometry. mAb-HSA-GD and mAb-HSA-VX showed an extremely low-level detection of GD adducted to HSA (on the order of picograms). mAb-HSA-GD could also detect serum albumin OP adducts in blood plasma samples from different animals administered GD, including rats, guinea pigs, and monkeys. The ability of the two antibodies to selectively recognize nerve agents adducted to serum albumin suggests that these antibodies could be used to identify biomarkers of OP exposure and provide a new biologic approach to detect OP exposure in animals. PMID:23192655

  11. Characterization of glycidol-hemoglobin adducts as biomarkers of exposure and in vivo dose

    SciTech Connect

    Honda, Hiroshi; Törnqvist, Margareta; Nishiyama, Naohiro; Kasamatsu, Toshio

    2014-03-15

    Hemoglobin adducts have been used as biomarkers of exposure to reactive chemicals. Glycidol, an animal carcinogen, has been reported to form N-(2,3-dihydroxy-propyl)valine adducts to hemoglobin (diHOPrVal). To support the use of these adducts as markers of glycidol exposure, we investigated the kinetics of diHOPrVal formation and its elimination in vitro and in vivo. Five groups of rats were orally administered a single dose of glycidol ranging from 0 to 75 mg/kg bw, and diHOPrVal levels were measured 24 h after administration. A dose-dependent increase in diHOPrVal levels was observed with high linearity (R{sup 2} = 0.943). Blood sampling at different time points (1, 10, 20, or 40 days) from four groups administered glycidol at 12 mg/kg bw suggested a linear decrease in diHOPrVal levels compatible with the normal turnover of rat erythrocytes (life span, 61 days), with the calculated first-order elimination rate constant (k{sub el}) indicating that the diHOPrVal adduct was chemically stable. Then, we measured the second-order rate constant (k{sub val}) for the reaction of glycidol with N-terminal valine in rat and human hemoglobin in in vitro experiments with whole blood. The k{sub val} was 6.7 ± 1.1 and 5.6 ± 1.3 (pmol/g globin per μMh) in rat and human blood, respectively, indicating no species differences. In vivo doses estimated from k{sub val} and diHOPrVal levels were in agreement with the area under the (concentration–time) curve values determined in our earlier toxicokinetic study in rats. Our results indicate that diHOPrVal is a useful biomarker for quantification of glycidol exposure and for risk assessment. - Highlight: • Glycidol-hemoglobin adduct (diHOPrVal) was characterized for exposure evaluation. • We studied the kinetics of diHOPrVal formation and elimination in vitro and in vivo. • Dose dependent formation and chemical stability were confirmed in the rat study. • In vivo dose (AUC) of glycidol could be estimated from diHOPrVal levels

  12. Hydroxyl radical-induced oxidation of a phenolic C-linked 2'-deoxyguanosine adduct yields a reactive catechol.

    PubMed

    Witham, Aaron A; Beach, Daniel G; Gabryelski, Wojciech; Manderville, Richard A

    2012-02-20

    Phenolic toxins stimulate oxidative stress and generate C-linked adducts at the C8-site of 2'-deoxyguanosine (dG). We previously reported that the C-linked adduct 8-(4″-hydroxyphenyl)-dG (p-PhOH-dG) undergoes oxidation in the presence of Na(2)IrCl(6) or horseradish peroxidase (HRP)/H(2)O(2) to generate polymeric adducts through phenoxyl radical production [ Weishar ( 2008 ) Org. Lett. 10 , 1839 - 1842 ]. We now report on reaction of p-PhOH-dG with two radical-generating systems, Cu(II)/H(2)O(2) or Fe(II)-EDTA/H(2)O(2), which were utilized to study the fate of the C-linked adduct in the presence of hydroxyl radical (HO(•)). The radical-generating systems facilitate (i) hydroxylation of the phenolic ring to afford the catechol adduct 8-(3″,4″-dihydroxyphenyl)-dG (3″,4″-DHPh-dG) and (ii) H-atom abstraction from the sugar moiety to generate the deglycosylated base p-PhOH-G. The ratios of 3″,4″-DHPh-dG to p-PhOH-G were ∼1 for Cu(II)/H(2)O(2) and ∼0.13 for Fe(II)-EDTA/H(2)O(2). The formation of 3″,4″-DHPh-dG was found to have important consequences in terms of reactivity. The catechol adduct has a lower oxidation potential than p-PhOH-dG and is sensitive to aqueous basic media, undergoing decomposition to generate a dicarboxylic acid derivative. In the presence of excess N-acetylcysteine (NAC), oxidation of 3″,4″-DHPh-dG produced mono-NAC and di-NAC conjugates. Our results imply that secondary oxidative pathways of phenolic-dG lesions are likely to contribute to toxicity.

  13. Benzene-derived N2-(4-hydroxyphenyl)-deoxyguanosine adduct: UvrABC incision and its conformation in DNA

    SciTech Connect

    Hang, Bo; Rodriguez, Ben; Yang, Yanu; Guliaev, Anton B.; Chenna, Ahmed

    2010-06-14

    Benzene, a ubiquitous human carcinogen, forms DNA adducts through its metabolites such as p-benzoquinone (p-BQ) and hydroquinone (HQ). N(2)-(4-Hydroxyphenyl)-2'-deoxyguanosine (N(2)-4-HOPh-dG) is the principal adduct identified in vivo by (32)P-postlabeling in cells or animals treated with p-BQ or HQ. To study its effect on repair specificity and replication fidelity, we recently synthesized defined oligonucleotides containing a site-specific adduct using phosphoramidite chemistry. We here report the repair of this adduct by Escherichia coli UvrABC complex, which performs the initial damage recognition and incision steps in the nucleotide excision repair (NER) pathway. We first showed that the p-BQ-treated plasmid was efficiently cleaved by the complex, indicating the formation of DNA lesions that are substrates for NER. Using a 40-mer substrate, we found that UvrABC incises the DNA strand containing N(2)-4-HOPh-dG in a dose- and time-dependent manner. The specificity of such repair was also compared with that of DNA glycosylases and damage-specific endonucleases of E. coli, both of which were found to have no detectable activity toward N(2)-4-HOPh-dG. To understand why this adduct is specifically recognized and processed by UvrABC, molecular modeling studies were performed. Analysis of molecular dynamics trajectories showed that stable G:C-like hydrogen bonding patterns of all three Watson-Crick hydrogen bonds are present within the N(2)-4-HOPh-G:C base pair, with the hydroxyphenyl ring at an almost planar position. In addition, N(2)-4-HOPh-dG has a tendency to form more stable stacking interactions than a normal G in B-type DNA. These conformational properties may be critical in differential recognition of this adduct by specific repair enzymes.

  14. Optimized sample preparation strategy for the analysis of low molecular mass adducts of a fluorescent cisplatin analogue in cancer cell lines by CE-dual-LIF.

    PubMed

    Zabel, Robert; Kullmann, Maximilian; Kalayda, Ganna V; Jaehde, Ulrich; Weber, Günther

    2015-02-01

    Pt-based anticancer drugs, such as cisplatin, are known to undergo several (bio-)chemical transformation steps after administration. Hydrolysis and adduct formation with small nucleophiles and larger proteins are their most relevant reactions on the way to the final reaction site (DNA), but there are still many open questions regarding the identity and pharmacological relevance of various proposed adducts and intermediates. Furthermore, the role of buffer components or additives, which are inevitably added to samples during any type of analytical measurement, has been frequently neglected in previous studies. Here, we report on adduct formation reactions of the fluorescent cisplatin analogue carboxyfluorescein diacetate platinum (CFDA-Pt) in commonly used buffers and cell culture medium. Our results indicate that chelation reactions with noninnocent buffers (e.g., Tris) and components of the cell culture/cell lysis medium must be taken into account when interpreting results. Adduct formation kinetics was followed up to 60 h at nanomolar concentrations of CFDA-Pt by using CE-LIF. CE-MS enabled the online identification of such unexpected adducts down to the nanomolar concentration range. By using an optimized sample preparation strategy, unwanted adducts can be avoided and several fluorescent adducts of CFDA-Pt are detectable in sensitive and cisplatin-resistant cancer cell lines. By processing samples rapidly after incubation, we could even identify the initial, but transient, Pt species in the cells as deacetylated CFDA-Pt with unaltered complexing environment at Pt. Overall, the proposed procedure enables a very sensitive and accurate analysis of low molecular mass Pt species in cancer cells, involving a fast CE-LIF detection within 5 min.

  15. Structural analysis of naphthoquinone protein adducts with liquid chromatography/tandem mass spectrometry and the scoring algorithm for spectral analysis (SALSA).

    PubMed

    Zhang, Fagen; Bartels, Michael J

    2004-01-01

    The relative reactivities of various naphthoquinone isomers (1,4-, 1,2- and 2-methyl-1,4-naphthoquinone) to two test proteins, apomyoglobin and human hemoglobin, were evaluated via liquid chromatography/electrospray ionization mass spectrometry (LC/ESI-MS). The structural characterization of the resulting adducts was also obtained by LC/ESI-MS analysis of the intact proteins. The reactive sites of apomyoglobin and human hemoglobin with 1,4-naphthoquinone and 1,2-naphthoquinone were also identified through characterization of adducted tryptic peptides by use of high-pressure liquid chromatography/electrospray ionization with tandem mass spectrometry (HPLC/ESI-MS/MS), TurboSEQUEST, and the scoring algorithm for spectral analysis (SALSA). Four adducted peptides, which were formed by nucleophilic addition of a lysine amino acid residue to 1,4-naphthoquinone, were also identified, as was an adducted peptide from incubation of 1,2-naphthoquinone with apomyoglobin. In the case of incubation of human hemoglobin with the two naphthoquinones, two adducted peptides were identified from the N-terminal valine modification of the alpha and beta chains of human hemoglobin. The adducted protein formation may imply that naphthalene produces its in vivo toxicity through 1,2- and 1,4-naphthoquinone metabolites reacting with biomolecular proteins.

  16. Cigarette side-stream smoke lung and bladder carcinogenesis: inducing mutagenic acrolein-DNA adducts, inhibiting DNA repair and enhancing anchorage-independent-growth cell transformation.

    PubMed

    Lee, Hyun-Wook; Wang, Hsiang-Tsui; Weng, Mao-wen; Chin, Chiu; Huang, William; Lepor, Herbert; Wu, Xue-Ru; Rom, William N; Chen, Lung-Chi; Tang, Moon-shong

    2015-10-20

    Second-hand smoke (SHS) is associated with 20-30% of cigarette-smoke related diseases, including cancer. Majority of SHS (>80%) originates from side-stream smoke (SSS). Compared to mainstream smoke, SSS contains more tumorigenic polycyclic aromatic hydrocarbons and acrolein (Acr). We assessed SSS-induced benzo(a)pyrene diol epoxide (BPDE)- and cyclic propano-deoxyguanosine (PdG) adducts in bronchoalveolar lavage (BAL), lung, heart, liver, and bladder-mucosa from mice exposed to SSS for 16 weeks. In SSS exposed mice, Acr-dG adducts were the major type of PdG adducts formed in BAL (p < 0.001), lung (p < 0.05), and bladder mucosa (p < 0.001), with no significant accumulation of Acr-dG adducts in heart or liver. SSS exposure did not enhance BPDE-DNA adduct formation in any of these tissues. SSS exposure reduced nucleotide excision repair (p < 0.01) and base excision repair (p < 0.001) in lung tissue. The levels of DNA repair proteins, XPC and hOGG1, in lung tissues of exposed mice were significantly (p < 0.001 and p < 0.05) lower than the levels in lung tissues of control mice. We found that Acr can transform human bronchial epithelial and urothelial cells in vitro. We propose that induction of mutagenic Acr-DNA adducts, inhibition of DNA repair, and induction of cell transformation are three mechanisms by which SHS induces lung and bladder cancers.

  17. Activation of proinflammatory signaling by 4-hydroxynonenal-Src adducts in aged kidneys

    PubMed Central

    Lee, Bonggi; Lee, Eun Kyeong; Chung, Ki Wung; Moon, Kyoung Mi; Kim, Min Jo; An, Hye Jin; Jeong, Ji Won; Kim, Ye Ra; Yu, Byung Pal; Chung, Hae Young

    2016-01-01

    In our previous study, reactive 4-hydroxy-2-nonenal (4-HNE) was shown to activate Src (a non-receptor tyrosine kinase) by forming an adduct on binding with a specific residue of Src, leading to the activation of proinflammatory signaling pathways in cultured cells. However, to date, the deleterious roles of 4-HNE in inflammatory signaling activation in kidneys during aging have not been explored. The purpose of the present study was to document the mechanisms by which 4-HNE induces inflammation in the kidney during aging. Initial experiments revealed that activated nuclear factor-κB (NF-κB) expression was caused by 4-HNE activation, which suppressed transcriptional activity in the aged kidney. Treatment of human umbilical vein endothelial cells with 4-HNE revealed that Src caused senescence via NF-κB activation. Furthermore, our immunohistochemistry data showed that 4-HNE-adducted Src significantly increased in aged kidney tissues. The data showed age-related upregulation of downstream signaling molecules such as mitogen activated protein kinases (MAPKs), activator protein-1 (AP-1), NF-κB, and COX-2 in a cell culture cell system. Taken together, the results of this study show that the formation of adducts between 4-HNE and Src activates inflammatory signaling pathways in the aged kidney, contributing to age-related nephropathy. PMID:27472463

  18. The reversibility of the glutathionyl-quercetin adduct spreads oxidized quercetin-induced toxicity

    SciTech Connect

    Boots, Agnes W. . E-mail: a.boots@farmaco.unimaas.nl; Balk, Jiska M.; Bast, Aalt; Haenen, Guido R.M.M.

    2005-12-16

    Quercetin is one of the most prominent dietary antioxidants. During its antioxidant activity, quercetin becomes oxidized into its o-quinone/quinone methide QQ. QQ is toxic since it instantaneously reacts with thiols of, e.g., proteins. In cells, QQ will initially form an adduct with glutathione (GSH), giving GSQ. We have found that GSQ is not stable; it dissociates continuously into GSH and QQ with a half life of 2 min. Surprisingly, GSQ incubated with 2-mercapto-ethanol (MSH), a far less reactive thiol, results in the conversion of GSQ into the MSH-adduct MSQ. A similar conversion of GSQ into relatively stable protein thiol-quercetin adducts is expected. With the dithiol dihydrolipoic acid (L(SH){sub 2}), quercetin is formed out of GSQ. These results indicate that GSQ acts as transport and storage of QQ. In that way, the initially highly focussed toxicity of QQ is dispersed by the formation of GSQ that finally spreads QQ-induced toxicity, probably even over cells.

  19. Microfluidic array for simultaneous detection of DNA oxidation and DNA-adduct damage.

    PubMed

    Song, Boya; Shen, Min; Jiang, Di; Malla, Spundana; Mosa, Islam M; Choudhary, Dharamainder; Rusling, James F

    2016-10-21

    Exposure to chemical pollutants and pharmaceuticals may cause health issues caused by metabolite-related toxicity. This paper reports a new microfluidic electrochemical sensor array with the ability to simultaneously detect common types of DNA damage including oxidation and nucleobase adduct formation. Sensors in the 8-electrode screen-printed carbon array were coated with thin films of metallopolymers osmium or ruthenium bipyridyl-poly(vinylpyridine) chloride (OsPVP, RuPVP) along with DNA and metabolic enzymes by layer-by-layer electrostatic assembly. After a reaction step in which test chemicals and other necessary reagents flow over the array, OsPVP selectively detects oxidized guanines on the DNA strands, and RuPVP detects DNA adduction by metabolites on nucleobases. We demonstrate array performance for test chemicals including 17β-estradiol (E2), its metabolites 4-hydroxyestradiol (4-OHE2), 2-hydroxyestradiol (2-OHE2), catechol, 2-nitrosotoluene (2-NO-T), 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), and 2-acetylaminofluorene (2-AAF). Results revealed DNA-adduct and oxidation damage in a single run to provide a metabolic-genotoxic chemistry screen. The array measures damage directly in unhydrolyzed DNA, and is less expensive, faster, and simpler than conventional methods to detect DNA damage. The detection limit for oxidation is 672 8-oxodG per 10(6) bases. Each sensor requires only 22 ng of DNA, so the mass detection limit is 15 pg (∼10 pmol) 8-oxodG.

  20. Molecular structures of five adducts assembled from p-dimethylaminobenzaldehyde and organic acids

    NASA Astrophysics Data System (ADS)

    Jin, Shouwen; Wang, Lanqing; Liu, Hui; Liu, Li; Zhang, Huan; Wang, Daqi; Li, Minghui; Guo, Jianzhong; Guo, Ming

    2016-07-01

    Five adducts 1-5 derived from p-dimethylaminobenzaldehyde have been prepared and characterized by X-ray diffraction analysis, IR, mp, and elemental analysis. Of the five adducts two are organic salts (1, and 2) and the other three (3-5) are cocrystals. In salts 1, and 2, the L molecules are protonated. The supramolecular architectures of the adducts 1-5 involve extensive intermolecular N-H⋯O, O-H⋯O, O-H⋯S, and C-H⋯O hydrogen bonds as well as other non-covalent interactions. The role of weak and strong non-covalent interactions in the crystal packing is ascertained. The complexes displayed 2D/3D framework structure for the synergistic effect of the various non-covalent interactions. The results presented herein tell that the strength and directionality of the N-H⋯O, O-H⋯O, and O-H⋯S hydrogen bonds between organic acids and p-dimethylaminobenzaldehyde are sufficient to bring about the formation of binary cocrystals or organic salts.

  1. The carcinogen 1-methylpyrene forms benzylic DNA adducts in mouse and rat tissues in vivo via a reactive sulphuric acid ester.

    PubMed

    Bendadani, Carolin; Meinl, Walter; Monien, Bernhard H; Dobbernack, Gisela; Glatt, Hansruedi

    2014-03-01

    The common polycyclic aromatic hydrocarbon 1-methylpyrene is hepatocarcinogenic in the newborn mouse assay. In vitro studies showed that it is metabolically activated via benzylic hydroxylation and sulphation to a reactive ester, which forms benzylic DNA adducts, N(2)-(1-methylpyrenyl)-2'-deoxyguanosine (MPdG) and N(6)-(1-methylpyrenyl)-2'-deoxyadenosine (MPdA). Formation of these adducts was also observed in animals treated with the metabolites, 1-hydroxymethylpyrene and 1-sulphooxymethylpyrene (1-SMP), whereas corresponding data are missing for 1-methylpyrene. In the present study, we treated mice with 1-methylpyrene and subsequently analysed blood serum for the presence of the reactive metabolite 1-SMP and tissue DNA for the presence of MPdG and MPdA adducts. We used wild-type mice and a mouse line transgenic for human sulphotransferases (SULT) 1A1 and 1A2, males and females. All analyses were conducted using ultra-performance liquid chromatography coupled with tandem mass spectrometry, for the adducts with isotope-labelled internal standards. 1-SMP was detected in all treated animals. Its serum level was higher in transgenic mice than in the wild-type (p < 0.001). Likewise, both adducts were detected in liver, kidney and lung DNA of all exposed animals. The transgene significantly enhanced the level of each adduct in each tissue of both sexes (p < 0.01-0.001). Adduct levels were highest in the liver, the target tissue of carcinogenesis, in each animal model used. MPdG and MPdA adducts were also observed in rats treated with 1-methylpyrene. Our findings corroborate the hypothesis that 1-SMP is indeed the ultimate carcinogen of 1-methylpyrene and that human SULT are able to mediate the terminal activation in vivo.

  2. DNA Polymerases η and ζ Combine to Bypass O(2)-[4-(3-Pyridyl)-4-oxobutyl]thymine, a DNA Adduct Formed from Tobacco Carcinogens.

    PubMed

    Gowda, A S Prakasha; Spratt, Thomas E

    2016-03-21

    4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and N'-nitrosonornicotine (NNN) are important human carcinogens in tobacco products. They are metabolized to produce a variety 4-(3-pyridyl)-4-oxobutyl (POB) DNA adducts including O(2)-[4-(3-pyridyl)-4-oxobut-1-yl]thymidine (O(2)-POB-dT), the most abundant POB adduct in NNK- and NNN-treated rodents. To evaluate the mutagenic properties of O(2)-POB-dT, we measured the rate of insertion of dNTPs opposite and extension past O(2)-POB-dT and O(2)-Me-dT by purified human DNA polymerases η, κ, ι, and yeast polymerase ζ in vitro. Under conditions of polymerase in excess, polymerase η was most effective at the insertion of dNTPs opposite O(2)-alkyl-dTs. The time courses were biphasic suggesting the formation of inactive DNA-polymerase complexes. The kpol parameter was reduced approximately 100-fold in the presence of the adduct for pol η, κ, and ι. Pol η was the most reactive polymerase for the adducts due to a higher burst amplitude. For all three polymerases, the nucleotide preference was dATP > dTTP ≫ dGTP and dCTP. Yeast pol ζ was most effective in bypassing the adducts; the kcat/Km values were reduced only 3-fold in the presence of the adducts. The identity of the nucleotide opposite the O(2)-alkyl-dT did not significantly affect the ability of pol ζ to bypass the adducts. The data support a model in which pol η inserts ATP or dTTP opposite O(2)-POB-dT, and then, pol ζ extends past the adduct.

  3. DNA adducts as a dosimeter for risk estimation

    SciTech Connect

    Belinsky, S.A.; White, C.M.; Devereux, T.R.; Anderson, M.W.

    1987-12-01

    The dose response for O/sup 6/-methylguanine (O/sup 6/MG) formation and cytotoxicity was determined in lung and nasal mucosa from Fischer 344 rats during multiple dose administration of the tobacco-specific nitrosamine 4-(N-methyl-N-nitrosamino)-1-(3-pyridyl)-1-butanone (NNK). O/sup 6/MG accumulated in the lung following treatment for 12 days with doses of NNK from 0.3 to 100 mgkgday. The dose response for NNK was nonlinear; the O/sup 6/MG-to-dose ratio, an index of alkylation efficiency, increased dramatically as the dose of carcinogen decreased. These data suggest that low- and high-K/sub m/ pathways may exist for activation to NNK to a methylating agent. Marked differences in O/sup 6/MG concentration were observed in specific lung cell populations. The presence of a high-affinity pathway in the Clara cell for activation of NNK may contribute to the potent carcinogenicity observed following low-dose exposure to this tobacco-specific carcinogen. The dose response for O/sup 6/MG formation differed considerably between the respiratory and olfactory mucosa from the nasal passages of the rat. These studies suggest that a low K/sub m/ pathway for NNK activation is also present in the nose and that this pathway is localized predominantly in the respiratory region. These data suggest that both the formation of promutagenic adducts and cell proliferation secondary to toxicity are required for the induction of neoplasia by NNK within the nose.

  4. Cellulose based hybrid hydroxylated adducts for polyurethane foams

    NASA Astrophysics Data System (ADS)

    De Pisapia, Laura; Verdolotti, Letizia; Di Mauro, Eduardo; Di Maio, Ernesto; Lavorgna, Marino; Iannace, Salvatore

    2012-07-01

    Hybrid flexible polyurethane foams (HPU) were synthesized by using a hybrid hydroxilated adduct (HHA) based on renewable resources. In particular the HHA was obtained by dispersing cellulose wastes in colloidal silica at room temperature, pressure and humidity. The colloidal silica was selected for its ability of modifying the cellulose structure, by inducing a certain "destructurization" of the crystalline phase, in order to allow cellulose to react with di-isocyanate for the final synthesis of the polyurethane foam. In fact, cellulose-polysilicate complexes are engaged in the reaction with the isocyanate groups. This study provides evidence of the effects of the colloidal silica on the cellulose structure, namely, a reduction of the microfiber cellulose diameter and the formation of hydrogen bonds between the polysilicate functional groups and the hydroxyl groups of the cellulose, as assessed by IR spectroscopy and solid state NMR. The HHA was added to a conventional polyol in different percentages (between 5 and 20%) to synthesize HPU in presence of catalysts, silicone surfactant and diphenylmethane diisocyanate (MDI). The mixture was expanded in a mold and cured for two hours at room temperature. Thermal analysis, optical microscopy and mechanical tests were performed on the foams. The results highlighted an improvement of thermal stability and a decrease of the cell size with respect neat polyurethane foam. Mechanical tests showed an improvement of the elastic modulus and of the damping properties with increasing HHA amount.

  5. Screening for DNA adducts in ovarian follicles exposed to benzo[a]pyrene and cigarette smoke condensate using liquid chromatography-tandem mass spectrometry.

    PubMed

    Yao, Chunhe; Foster, Warren G; Sadeu, Jean C; Siddique, Shabana; Zhu, Jiping; Feng, Yong-Lai

    2017-01-01

    A rapid mass spectrometric method was applied to non-targeted screening of DNA adducts in follicular cells (granulosa cells and theca cells) from isolated ovarian follicles that were exposed in-vitro to benzo[a]pyrene (B[a]P) and cigarette smoke condensate (CSC) for 13days of culture. The method employed a constant neutral loss (CNL) scan to identify chromatographic peaks associated to a neutral loss of deoxyribose moiety of DNA nucleosides. These peaks were subsequently analyzed by a product ion scan in tandem mass spectrometry to elucidate structures of DNA adducts. The identification was further confirmed through synthesis of proposed DNA adducts where possible. Three DNA adducts, benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide-dG (BPDE-dG), phenanthrene 1,2-quinone-dG (PheQ-dG) and B[a]P-7,8-quinone-dG (BPQ-dG) were identified in the follicular cells from isolated ovarian follicles exposed to B[a]P. Along with these three, an additional DNA adduct, 4-aminobiphenyl-dG, was identified in the follicular cells from isolated ovarian follicles exposed to CSC. The amounts of the identified DNA adducts in follicular cells increased in a dose-dependent manner for both B[a]P (0, 1.5, 5, 15 and 45ng/mL) and CSC (0, 30, 60, 90 and 130μg/mL). The results revealed that B[a]P-related DNA adducts were the major adducts in the ovarian follicular cells exposed to CSC. The results also revealed that two oxidative biomarkers, 8-hydroxy-2-deoxy guanosine (8-OH-dG) and 8-isoprostane (8-IsoP), in both B[a]P-exposed and CSC-exposed ovarian follicles had strong correlations with the three DNA adducts, BPDE-dG, BPQ-dG and PheQ-dG. A pathway to describe formation of DNA adducts was proposed based on the DNA adducts observed.

  6. Induction of ovarian cancer and DNA adducts by dibenzo[a,l]pyrene in the mouse

    PubMed Central

    Chen, Kun-Ming; Zhang, Shang-Min; Aliaga, Cesar; Sun, Yuan-Wan; Cooper, Timothy; Gowdahalli, Krishnegowda; Zhu, Junjia; Amin, Shantu; El-Bayoumy, Karam

    2011-01-01

    Tobacco smoking is an etiological factor of ovarian cacner; however, the mechanisms remain largely undefined. Therefore, as an initial investigation we examined the carcinogenicity and DNA adducts formation in the ovary of mice treated with DB[a,l]P, a tobacco smoke constituent and environmental pollutant. Ovarian tumors in B6C3F1 mice were induced by direct application of DB[a,l]P (24, 12, 6, and 3 nmol/mouse, 3 times a week for 38 weeks) into the oral cavity of mice. At 6 nmol, DB[a,l]P induced the highest total ovarian tumor incidence (79%), but the incidence of malignancy was only 15%. However, at the dose of 12 nmol, the total ovarian tumor incidence was 75%, and the incidence of malignancy was 65%. In addition to ovarian tumors, at the dose of 24 nmol, DB[a,l]P induced lesions in sites distal from the ovaries including the skin, mammary, lung, and oral tissues which were rare at doses lower than 24 nmol. Another bioassay was conducted to detect and quantify DNA-adducts induced by DB[a,l]P (24 nmol, 3 times a week for 5 weeks) in the ovary at 48 h, 1, 2 and 4 weeks after the last administration of DB[a,l]P. DNA was isolated, and the dibenzo[a,l]pyrene-11,12-dihydrodiol-13,14-epoxide (DB[a,l]PDE)-DNA adducts were analyzed by a LC-MS/MS method. DB[a,l]P resulted in the formation of (−)-anti-cis-DB[a,l]PDE-dA and (−)-anti-trans-DB[a,l]PDE-dA adducts, which were 0.8 and 1.6 fmol/106 dA respectively in ovaries of mice within 48 h, and the level of adducts decreased over a week. Our results indicated that DB[a,l]P can be metabolized to form (−)-anti-DB[a,l]PDE; the latter may, in part, account for DB[a,l]P-induced ovarian cancer. This animal model should assist to better understand the mechanisms, account for the induction of ovarian cancer by tobacco carcinogens, and facilitate the development of chemopreventive agents against ovarian cancer. PMID:22107356

  7. Lack of contribution of covalent benzo[a]pyrene-7,8-quinone-DNA adducts in benzo[a]pyrene-induced mouse lung tumorigenesis.

    PubMed

    Nesnow, Stephen; Nelson, Garret; Padgett, William T; George, Michael H; Moore, Tanya; King, Leon C; Adams, Linda D; Ross, Jeffrey A

    2010-07-30

    Benzo[a]pyrene (B[a]P) is a potent human and rodent lung carcinogen. This activity has been ascribed in part to the formation of anti-trans-7,8-dihydroxy-7,8-dihydroB[a]P-9,10-epoxide (BPDE)-DNA adducts. Other carcinogenic mechanisms have been proposed: (1) the induction of apurinic sites from radical cation processes, and (2) the metabolic formation of B[a]P-7,8-quinone (BPQ) that can form covalent DNA adducts or reactive oxygen species which can damage DNA. The studies presented here sought to examine the role of stable BPQ-DNA adducts in B[a]P-induced mouse lung tumorigenesis. Male strain A/J mice were injected intraperitoneally once with BPQ or trans-7,8-dihydroxy-7,8-dihydroB[a]P (BP-7,8-diol) at 30, 10, 3, or 0mg/kg. Lungs and livers were harvested after 24h, the DNA extracted and subjected to (32)P-postlabeling analysis. Additional groups of mice were dosed once with BPQ or BP-7,8-diol each at 30 mg/kg and tissues harvested 48 and 72 h later, or with B[a]P (50mg/kg, a tumorigenic dose) and tissues harvested 72 h later. No BPQ or any other DNA adducts were observed in lung or liver tissues 24, 48, or 72 h after the treatment with 30 mg/kg BPQ. BP-7,8-diol gave BPDE-DNA adducts at all time points in both tissues and B[a]P treatment gave BPDE-DNA adducts in the lung. In each case, no BPQ-DNA adducts were detected. Mouse body weights significantly decreased over time after BPQ or BP-7,8-diol treatments suggesting that systemic toxicity was induced by both agents. Model studies with BPQ and N-acetylcysteine suggested that BPQ is rapidly inactivated by sulfhydryl-containing compounds and not available for DNA adduction. We conclude that under these treatment conditions BPQ does not form stable covalent DNA adducts in the lungs or livers of strain A/J mice, suggesting that stable BPQ-covalent adducts are not a part of the complex of mechanisms involved in B[a]P-induced mouse lung tumorigenesis.

  8. Kinds and spectrum of mutations induced by 1-nitrosopyrene adducts during plasmid replication in human cells.

    PubMed Central

    Yang, J L; Maher, V M; McCormick, J J

    1988-01-01

    1-Nitropyrene has been shown in bacterial assays to be the principal mutagenic agent in diesel emission particulates. It has also been shown to be mutagenic in human fibroblasts and carcinogenic in animals. To investigate the kinds of mutations induced by this carcinogen and compare them with those induced by a structurally related carcinogen, (+/-)-7 beta,8 alpha-dihydroxy-9 alpha,10 alpha-epoxy-7,8,9,10-tetra-hydrobenzo [a]pyrene (BPDE) (J.-L. Yang, V. M. Maher, and J. J. McCormick, Proc. Natl. Acad. Sci. USA 84:3787-3791, 1987), we treated a shuttle vector with tritiated 1-nitrosopyrene (1-NOP), a carcinogenic mutagenic intermediate metabolite of 1-nitropyrene which forms the same DNA adduct as the parent compound, and introduced the plasmids into a human embryonic kidney cell line, 293, for DNA replication to take place. The treated plasmid, pZ189, carrying a bacterial suppressor tRNA target gene, supF, was allowed 48 h to replicate in the human cells. Progeny plasmids were then rescued, purified, and introduced into bacteria carrying an amber mutation in the beta-galactosidase gene in order to detect those carrying mutations in the supF gene. The frequency of mutants increased in direct proportion to the number of DNA-1-NOP adducts formed per plasmid. At the highest level of adduct formation tested, the frequency of supF mutants was 26 times higher than the background frequency of 1.4 X 10(-4). DNA sequencing of 60 unequivocally independent mutant derived from 1-NOP-treated plasmids indicated that 80% contained a single base substitution, 5% had two base substitutions, 4% had small insertions or deletions (1 or 2 base pairs), and 11% showed a deletion or insertion of 4 or more base pairs. Sequence data from 25 supF mutants derived from untreated plasmids showed that 64% contained deletions of 4 or more base pairs. The majority (83%) of the base substitution in mutants from 1-NOP-treated plasmids were transversions, with 73% of these being G . C --> T . A. This

  9. Isolation and identification of the adducts of mitomycin C and porfiromycin with DNA formed in vitro and in vivo

    SciTech Connect

    Chowdary, D.R.

    1989-01-01

    The antitumor antibiotics, mitomycin C (MC) and porfiromycin (PM), are shown to form covalent complexes with DNA in vitro, under reductive activation conditions (both chemical and enzymatic). Three major covalent adducts have been isolated and identified as (1) N{sup 2}-guanine adduct with MC (structure 4a), (2) N{sup 2}-guanine adduct with 10-decarbamoyl mitomycin ((10-DMC); structure 16a), and a bisadduct of MC linked to two Gs at their N{sup 2}-positions (structure 6). The adducts of PM with DNA formed in vitro are analogous (structures 19, 20, and 21). Formation of adducts 6 and 16a in CHO mammalian cells has been shown after exposing them to MC or 10-DMC, whereas formation of crosslink 6 in vivo has been demonstrated after injecting rats with MC. The experiments done in tissue cultures with (1a-{sup 3}H)-polyfiromycin show ({sup 3}H)-label in the unmodified A, G, and T thus suggesting the demethylation of PM to MC in cells. The methyl group containing ({sup 3}H) label was incorporated into nucleosides via de novo purine and thymidylate biosynthesis. A consolidated enzymatic scheme for the hydrolysis of MC-modified DNA has been established and the resistance of such DNA to cleavage by several nucleases has been shown. Thus, only DNase I/SVD/alkaline phosphatase or nuclease P{sub 1}/SVD/alkaline phosphatase combinations can degrade MC-modified DNA into nucleosides. A modified version of {sup 32}P-postlabeling has been developed with in vitro authentic standards and this can be conveniently used in the future to detect MC-modified lesions obtained in vivo. By utilizing the alkaline ethidium bromide fluorescence assay, the crosslinking effect of MC, PM, and 10-DMC has been shown to occur in cells.

  10. Insight on mendable resin made by combining Diels-Alder epoxy adducts with DGEBA

    NASA Astrophysics Data System (ADS)

    Dello Iacono, S.; Martone, A.; Filippone, G.; Acierno, D.; Zarrelli, M.; Giordano, M.; Amendola, E.

    2016-05-01

    Formation of micro-cracks is a critical problem in polymers and polymer composites during their service in structural applications. In this context, materials endowed with self-healing features would lead to the next polymers generation. In the present paper, an epoxy system integrating Diels-Alder epoxy adducts is investigated by thermal and spectroscopic analysis. The direct and retro D-A reaction have been studied by FTIR and specific absorption bands have been identified. Finally, mechanical tests have been performed on the system. The polymer is able to heal fracture and micro-cracks recovering its stiffness after a thermal treatment.

  11. Ozone-derived Oxysterols Affect Liver X Receptor (LXR) Signaling: A POTENTIAL ROLE FOR LIPID-PROTEIN ADDUCTS.

    PubMed

    Speen, Adam M; Kim, Hye-Young H; Bauer, Rebecca N; Meyer, Megan; Gowdy, Kymberly M; Fessler, Michael B; Duncan, Kelly E; Liu, Wei; Porter, Ned A; Jaspers, Ilona

    2016-11-25

    When inhaled, ozone (O3) interacts with cholesterols of airway epithelial cell membranes or the lung-lining fluid, generating chemically reactive oxysterols. The mechanism by which O3-derived oxysterols affect molecular function is unknown. Our data show that in vitro exposure of human bronchial epithelial cells to O3 results in the formation of oxysterols, epoxycholesterol-α and -β and secosterol A and B (Seco A and Seco B), in cell lysates and apical washes. Similarly, bronchoalveolar lavage fluid obtained from human volunteers exposed to O3 contained elevated levels of these oxysterol species. As expected, O3-derived oxysterols have a pro-inflammatory effect and increase NF-κB activity. Interestingly, expression of the cholesterol efflux pump ATP-binding cassette transporter 1 (ABCA1), which is regulated by activation of the liver X receptor (LXR), was suppressed in epithelial cells exposed to O3 Additionally, exposure of LXR knock-out mice to O3 enhanced pro-inflammatory cytokine production in the lung, suggesting LXR inhibits O3-induced inflammation. Using alkynyl surrogates of O3-derived oxysterols, our data demonstrate adduction of LXR with Seco A. Similarly, supplementation of epithelial cells with alkynyl-tagged cholesterol followed by O3 exposure causes observable lipid-LXR adduct formation. Experiments using Seco A and the LXR agonist T0901317 (T09) showed reduced expression of ABCA1 as compared with stimulation with T0901317 alone, indicating that Seco A-LXR protein adduct formation inhibits LXR activation by traditional agonists. Overall, these data demonstrate that O3-derived oxysterols have pro-inflammatory functions and form lipid-protein adducts with LXR, thus leading to suppressed cholesterol regulatory gene expression and providing a biochemical mechanism mediating O3-derived formation of oxidized lipids in the airways and subsequent adverse health effects.

  12. Feasibility of Biomonitoring of Exposure to Permethrin Through Analysis of Long-Lived (Metabolite) Adducts to Proteins

    DTIC Science & Technology

    2007-09-01

    Cl2CA The synthesis was carried out on a PHB -S-TG resin (Rapp Polymere; 0.24 mmol/g resin) containing immobilized Boc-Lys(Fmoc) on a 36 µmol scale. The...was attempted to quantify adduct formation by using [14C] labelled 3-PBA glucuronides, obtained by combined chemical and enzymatic synthesis ...quantitated by using [14C] labelled 3-PBA glucuronide, which was obtained by enzymatic synthesis . The binding studies were thwarted by non-covalent

  13. Quantification of DNA adducts formed in liver, lungs, and isolated lung cells of rats and mice exposed to (14)C-styrene by nose-only inhalation.

    PubMed

    Boogaard, P J; de Kloe, K P; Wong, B A; Sumner, S C; Watson, W P; van Sittert, N J

    2000-10-01

    , these values indicate that styrene has only very weak adduct-forming potency. The overall results of this study indicate that DNA adduct formation does not play an important role in styrene tumorigenicity in chronically exposed mice.

  14. Correlation between production of benzo(A)pyrene metabolites and BPDE I-DG adduct levels in human epithelial cells in vitro pretreated with cytochrome P450 inhibitors or inducer

    SciTech Connect

    Lehman, T.A.; Milo, G.E.

    1987-05-01

    Human epidermal keratinocytes were established from neonatal foreskins. Cultures were pretreated for 24 hr with either butylated hydroxyanisole (BHA), methyl butylated hydroxyanisole (MeBHA) or 7,8 benzoflavone (7,8BF). For metabolite detection studies, cultures were treated with radiolabeled benzo(a)pyrene (BP) for 24 hr. Ethyl acetate soluble metabolites were extracted for HPLC analysis. BHA and 7,8BF pretreatment both significantly decreased intracellular production of 7,8 diol BP compared to cultures treated only with radiolabeled BP. MeBHA pretreatment greatly increased intracellular 7,8 diol BP formation compared to BP treated controls. For DNA adduct analysis, cultures were pretreated as described above, and then treated for 24 hr with non-radiolabeled BP. Cellular DNA was isolated and /sup 32/P-postlabeled for adduct analysis. Cultures pretreated with either BHA or 7,8BF formed significantly fewer BPDE I-dG adducts than nonpretreated cultures, while cultures pretreated with MeBHa formed more BPDE I-dG adducts. Thus, BHA and 7,8BF act similarly in reducing BP activation and adduct formation while MeBHa, a structural analog of BHA, increases BP activation and adduct formation in human keratinocyte cultures in vitro.

  15. Effect of Increased Water Intake on Urinary DNA Adduct Levels and Mutagenicity in Smokers: A Randomized Study

    PubMed Central

    Buendia Jimenez, Inmaculada; Richardot, Pascaline; Picard, Pascaline; Lepicard, Eve M.; De Meo, Michel; Talaska, Glenn

    2015-01-01

    The association between fluid intake and bladder cancer risk remains controversial. Very little is known about to which extent the amount of water intake influences the action of excreting toxics upon the urinary system. This proof of concept trial investigates the effect of water intake on mutagenesis in smokers, a high risk population for bladder cancer. Methods. Monocentric randomized controlled trial. Inclusion Criteria. Male subjects aged 2045–45 y/o, smokers, and small drinkers (24-hour urinary volume <1 L and osmolality >700 mOsmol/kg). Outcomes. 4-ABP DNA adducts formation in exfoliated bladder cells in 24-hour urine collection and urinary mutagenicity in 24-hour urine. Test Group. Subjects consumed 1.5 L daily of the study product (EVIAN) on top of their usual water intake for 50 days. Control Group. Subjects continued their usual lifestyle habits. Results. 65 subjects were randomized. Mean age was 30 y/o and mean cigarettes per day were 20. A slight decrease in adducts formation was observed between baseline and last visit but no statistically significant difference was demonstrated between the groups. Urinary mutagenicity significantly decreased. The study shows that increasing water intake decreases urinary mutagenicity. It is not confirmed by urinary adducts formation. Further research would be necessary. PMID:26357419

  16. Complex relationships between occupation, environment, DNA adducts, genetic polymorphisms and bladder cancer in a case-control study using a structural equation modeling.

    PubMed

    Porru, Stefano; Pavanello, Sofia; Carta, Angela; Arici, Cecilia; Simeone, Claudio; Izzotti, Alberto; Mastrangelo, Giuseppe

    2014-01-01

    DNA adducts are considered an integrate measure of carcinogen exposure and the initial step of carcinogenesis. Their levels in more accessible peripheral blood lymphocytes (PBLs) mirror that in the bladder tissue. In this study we explore whether the formation of PBL DNA adducts may be associated with bladder cancer (BC) risk, and how this relationship is modulated by genetic polymorphisms, environmental and occupational risk factors for BC. These complex interrelationships, including direct and indirect effects of each variable, were appraised using the structural equation modeling (SEM) analysis. Within the framework of a hospital-based case/control study, study population included 199 BC cases and 213 non-cancer controls, all Caucasian males. Data were collected on lifetime smoking, coffee drinking, dietary habits and lifetime occupation, with particular reference to exposure to aromatic amines (AAs) and polycyclic aromatic hydrocarbons (PAHs). No indirect paths were found, disproving hypothesis on association between PBL DNA adducts and BC risk. DNA adducts were instead positively associated with occupational cumulative exposure to AAs (p = 0.028), whereas XRCC1 Arg 399 (p<0.006) was related with a decreased adduct levels, but with no impact on BC risk. Previous findings on increased BC risk by packyears (p<0.001), coffee (p<0.001), cumulative AAs exposure (p = 0.041) and MnSOD (p = 0.009) and a decreased risk by MPO (p<0.008) were also confirmed by SEM analysis. Our results for the first time make evident an association between occupational cumulative exposure to AAs with DNA adducts and BC risk, strengthening the central role of AAs in bladder carcinogenesis. However the lack of an association between PBL DNA adducts and BC risk advises that these snapshot measurements are not representative of relevant exposures. This would envisage new scenarios for biomarker discovery and new challenges such as repeated measurements at different critical life

  17. "Best match" model and effect of Na+/H+ exchange on anion attachment to peptides and stability of formed adducts in negative ion electrospray mass spectrometry.

    PubMed

    Liu, Xiaohua; Cole, Richard B

    2014-02-01

    The "Best Match" model has been extended to account for the role that Na(+)/H(+) exchange plays on anion attachment in negative ion electrospray. Without any Na(+)/H(+) exchange on (Glu) fibrinopeptide B, the higher basicity anions F(-) and CH3COO(-) can hardly form observable adducts; however, after multiple Na(+)/H(+) exchanges, adduct formation is enabled. Moreover, dissociation pathways of CF3COO(-) adducts with singly deprotonated peptides that have undergone 0 to 3 Na(+)/H(+) exchanges exhibit a shift in CID product ions from losing predominately CF3COOH (case of 0 Na(+)/H(+) exchanges) to losing predominately CF3COO(-) (case of 3 Na(+)/H(+) exchanges). These phenomena can be rationalized by considering that Na(+) cations exchange at, and serve to "block", the most acidic sites, thereby forcing implicated anions to attach to lower acidity protons. In addition to forming ion pairs with carboxylate groups, Na(+) also participates in formation of tri-atomic ions of the form ANaA(-) during adduct dissociation. The fact that low gas-phase basicity (GB) anions preferentially form ANaA(-) species, even though high GB anions form more stable tri-atomic species, indicates that the monatomic ions were not in close contact in the initial adduct. The propensity for formation of stable anionic adducts is dependent on the degree of matching between anion GBs and GBapp of deprotonated sites on the peptide. The GBapp is raised dramatically as the charge state of the peptide increases via a through-space effect. The presence of Na(+) on carboxylate sites substantially decreases the GBapp by neutralizing these sites, while slightly increasing the intrinsic GBs by an inductive effect.

  18. Quantification of phase I / II metabolizing enzyme gene expression and polycyclic aromatic hydrocarbon-DNA adduct levels in human prostate

    PubMed Central

    John, Kaarthik; Ragavan, Narasimhan; Pratt, M. Margaret; Singh, Paras B.; Al-Buheissi, Salah; Matanhelia, Shyam S.; Phillips, David H.; Poirier, Miriam C.; Martin, Francis L.

    2008-01-01

    BACKGROUND Studies of migrant populations suggest that dietary and/or environmental factors play a crucial role in the aetiology of prostatic adenocarcinoma (CaP). The human prostate consists of the peripheral zone (PZ), transition zone (TZ) and central zone (CZ); CaP occurs most often in the PZ. METHODS To investigate the notion that an underlying differential expression of phase I/II genes, and/or the presence of polycyclic aromatic hydrocarbon (PAH)-DNA adducts might explain the elevated PZ susceptibility, we examined prostate tissues (matched tissue sets consisting of PZ and TZ) from men undergoing radical retropubic prostatectomy for CaP (n=26) or cystoprostatectomy (n=1). Quantitative gene expression analysis was employed for cytochrome P450 (CYP) isoforms CYP1A1, CYP1B1 and CYP1A2, as well as N-acetyltransferase 1 and 2 (NAT1 and NAT2) and catechol-O-methyl transferase (COMT). RESULTS CYP1B1, NAT1 and COMT were expressed in all tissue sets; levels of CYP1B1 and NAT1 were consistently higher in the PZ compared to TZ. Immunohistochemistry confirmed the presence of CYP1B1 (nuclear-associated and primarily in basal epithelial cells) and NAT1. Tissue sections from 23 of these aforementioned 27 matched tissue sets were analyzed for PAH-DNA adduct levels using antiserum elicited against DNA modified with r7, t8-dihydroxy-t-9,10-oxy-7,8,9,10-tetrahydro-benzo[a]pyrene (BPDE). PAH-DNA adduct levels were highest in glandular epithelial cells, but a comparison of PZ and TZ showed no significant differences. CONCLUSION Although expression of activating and/or detoxifying enzymes may be higher in the PZ, PAH-DNA adduct levels appear to be similar in both zones. Therefore, factors other than PAH-DNA adducts may be responsible for promotion of tumour formation in the human prostate. PMID:19143007

  19. Antitumor Trans Platinum Adducts of GMP and AMP

    PubMed Central

    Liu, Yangzhong; Sivo, Maria F.; Natile, Giovanni

    2000-01-01

    Recently it has been shown that several analogues of the clinically ineffective trans-DDP exhibit antitumor activity comparable to that of cis-DDP. The present paper describes the binding of antitumor trans-[PtCl2(E-iminoether)2] (trans-EE) to guanosinemonophosphate (GMP) and adenosinemonophosphate (AMP). We have used HPLC and 1H and 15N NMR to characterize the different adducts. In the case of a 1:1 mixture of trans-EE and GMP, at an early stage of the reaction, a monofunctional adduct is formed which, subsequently, is partly converted into a monosolvated monofunctional species. After about 70 hours an equilibrium is established between chloro and solvato monofunctional adducts at a ratio of 30/70. In the presence of excess GMP (4:1) the initially formed monofunctional adducts react further to give two bifunctional adducts, one with the iminoether ligands in their original E configurations and the other with the iminoether ligands having one E and the other, Z configurations. The coordination geometry obtained by energy minimization calculations is in qualitative agreement with 2D NMR data. PMID:18475942

  20. PROTEIN ADDUCTS AS BIOMAKERS OF EXPOSURE TO ORGANOPHOSPHORUS COMPOUNDS

    PubMed Central

    Marsillach, Judit; Costa, Lucio G.; Furlong, Clement E.

    2013-01-01

    Exposure to organophosphorus (OP) compounds can lead to serious neurological damage or death. Following bioactivation by the liver cytochromes P450, the OP metabolites produced are potent inhibitors of serine active-site enzymes including esterases, proteases and lipases. OPs may form adducts on other cellular proteins. Blood cholinesterases (ChEs) have long served as biomarkers of OP exposure in humans. However, the enzymatic assays used for biomonitoring OP exposures have several drawbacks. A more useful approach will focus on multiple biomarkers and avoid problems with the enzymatic activity assays. OP inhibitory effects result from a covalent bond with the active-site serine of the target enzymes. The serine OP adducts become irreversible following a process referred to as aging where one alkyl group dissociates over variable lengths of time depending on the OP adduct. The OP-adducted enzyme then remains in circulation until it is degraded, allowing for a longer window of detection compared with direct analysis of OPs or their metabolites. Mass spectrometry (MS) provides a very sensitive method for identification of post-translational protein modifications. MS analyses of the percentage adduction of the active-site serine of biomarker proteins such as ChEs will eliminate the need for basal activity levels of the individual and will provide for a more accurate determination of OP exposure. MS analysis of biomarker proteins also provides information about the OP that has caused inhibition. Other useful biomarker proteins include other serine hydrolases, albumin, tubulin and transferrin. PMID:23261756

  1. Organocatalytic removal of formaldehyde adducts from RNA and DNA bases

    NASA Astrophysics Data System (ADS)

    Karmakar, Saswata; Harcourt, Emily M.; Hewings, David S.; Lovejoy, Alexander F.; Kurtz, David M.; Ehrenschwender, Thomas; Barandun, Luzi J.; Roost, Caroline; Alizadeh, Ash A.; Kool, Eric T.

    2015-09-01

    Formaldehyde is universally used to fix tissue specimens, where it forms hemiaminal and aminal adducts with biomolecules, hindering the ability to retrieve molecular information. Common methods for removing these adducts involve extended heating, which can cause extensive degradation of nucleic acids, particularly RNA. Here, we show that water-soluble bifunctional catalysts (anthranilates and phosphanilates) speed the reversal of formaldehyde adducts of mononucleotides over standard buffers. Studies with formaldehyde-treated RNA oligonucleotides show that the catalysts enhance adduct removal, restoring unmodified RNA at 37 °C even when extensively modified, while avoiding the high temperatures that promote RNA degradation. Experiments with formalin-fixed, paraffin-embedded cell samples show that the catalysis is compatible with common RNA extraction protocols, with detectable RNA yields increased by 1.5-2.4-fold using a catalyst under optimized conditions and by 7-25-fold compared with a commercial kit. Such catalytic strategies show promise for general use in reversing formaldehyde adducts in clinical specimens.

  2. Lack of contribution of covalent benzo[a]pyrene-7,8-quinone-DNA adducts in benzo[a]pyrene-induced mouse lung tumorigenesis

    EPA Science Inventory

    Benzo[a]pyrene (B[a]P) is a potent human and rodent lung carcinogen. This activity has been ascribed in part to the formation of anti-trans-B[a]P-7,8-diol-9,10-epoxide (BPDE)-DNA adducts. Other carcinogenic mechanisms have been proposed: 1.] The induction of apurinic sites from r...

  3. Increased accumulation of 4-hydroxynonenal adducts in male GSTA4/PPAR alpha double knockout mice enhances injury during early stages of alcoholic liver disease

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hepatic lipid peroxidation and accumulation of aldehyde-adducted proteins occur early in alcohol-mediated injury and are postulated to mediate the subsequent pro-inflammatory and fibrotic responses observed in alcoholic liver disease. To test the significance of lipid peroxidation formation in the ...

  4. DNA adducts in human and mouse skin maintained in short-term culture and treated with petrol and diesel engine lubricating oils.

    PubMed

    Carmichael, P L; Ni Shé, M; Phillips, D H

    1991-05-24

    Human and mouse skin samples maintained in short-term organ culture were treated topically with used engine oils from petrol- and diesel-powered vehicles. Mice were also treated topically in vivo for comparison. DNA was isolated and analysed by 32P-postlabelling and the labeled DNA digests were resolved on polyethyleneimine-cellulose tlc sheets. A large number of radioactive adduct spots were observed in DNA from skin treated with the used petrol-engine oil, indicating the formation of adducts by many components of the complex oil mixture. Total adduct levels were similar in mouse skin (both in vivo and in vitro) and in human skin, although qualitative differences in the adduct maps were apparent between the human and mouse skin DNA. Treatment with the used diesel engine oil produced adduct levels no greater than that of control samples in mouse skin (in vivo and in vitro), although significant levels were found in human skin DNA from one donor. The results correlate well with the carcinogenic activity of these oils in experimental animals, helping to substantiate the conclusion that petrol engine oils (but not diesel engine oils) may present a carcinogenic risk to man if appropriate measures to minimise skin contact are not observed.

  5. Nitro-fatty Acid Metabolome: Saturation, Desaturation, β-Oxidation, and Protein Adduction*

    PubMed Central

    Rudolph, Volker; Schopfer, Francisco J.; Khoo, Nicholas K. H.; Rudolph, Tanja K.; Cole, Marsha P.; Woodcock, Steven R.; Bonacci, Gustavo; Groeger, Alison L.; Golin-Bisello, Franca; Chen, Chen-Shan; Baker, Paul R. S.; Freeman, Bruce A.

    2009-01-01

    Nitrated derivatives of fatty acids (NO2-FA) are pluripotent cell-signaling mediators that display anti-inflammatory properties. Current understanding of NO2-FA signal transduction lacks insight into how or if NO2-FA are modified or metabolized upon formation or administration in vivo. Here the disposition and metabolism of nitro-9-cis-octadecenoic (18:1-NO2) acid was investigated in plasma and liver after intravenous injection in mice. High performance liquid chromatography-tandem mass spectrometry analysis showed that no 18:1-NO2 or metabolites were detected under basal conditions, whereas administered 18:1-NO2 is rapidly adducted to plasma thiol-containing proteins and glutathione. NO2-FA are also metabolized via β-oxidation, with high performance liquid chromatography-tandem mass spectrometry analysis of liver lipid extracts of treated mice revealing nitro-7-cis-hexadecenoic acid, nitro-5-cis-tetradecenoic acid, and nitro-3-cis-dodecenoic acid and corresponding coenzyme A derivatives of 18:1-NO2 as metabolites. Additionally, a significant proportion of 18:1-NO2 and its metabolites are converted to nitroalkane derivatives by saturation of the double bond, and to a lesser extent are desaturated to diene derivatives. There was no evidence of the formation of nitrohydroxyl or conjugated ketone derivatives in organs of interest, metabolites expected upon 18:1-NO2 hydration or nitric oxide (•NO) release. Plasma samples from treated mice had significant extents of protein-adducted 18:1-NO2 detected by exchange to added β-mercaptoethanol. This, coupled with the observation of 18:1-NO2 release from glutathione-18:1-NO2 adducts, supports that reversible and exchangeable NO2-FA-thiol adducts occur under biological conditions. After administration of [3H]18:1-NO2, 64% of net radiolabel was recovered 90 min later in plasma (0.2%), liver (18%), kidney (2%), adipose tissue (2%), muscle (31%), urine (6%), and other tissue compartments, and may include metabolites not yet

  6. Possible rare congenital dysinnervation disorder: congenital ptosis associated with adduction.

    PubMed

    Mendes, Sílvia; Beselga, Diana; Campos, Sónia; Neves, Arminda; Campos, Joana; Carvalho, Sílvia; Silva, Eduardo; Castro Sousa, João Paulo

    2015-01-01

    Ptosis is defined as an abnormally low position of the upper eyelid margin. It can be congenital or acquired, uni or bilateral, and isolated or associated with other ocular and nonocular defects. We report a case of a female child, aged 8 years, with congenital right ptosis increased on right adduction and with left ptosis on left adduction. There was no horizontal ocular movement limitation. Apparent underaction of the right inferior oblique muscle was also present. We believe that within the possible mechanisms it is more likely that it is a congenital innervation dysgenesis syndrome (CID)/congenital cranial dysinnervation disorder (CCDD).

  7. Chemistry and Biology of Aflatoxin-DNA Adducts

    SciTech Connect

    Stone, Michael P.; Banerjee, Surajit; Brown, Kyle L.; Egli, Martin

    2012-03-27

    Aspergillus flavus is a fungal contaminant of stored rice, wheat, corn, and other grainstuffs, and peanuts. This is of concern to human health because it produces the mycotoxin aflatoxin B{sub 1} (AFB{sub 1}), which is genotoxic and is implicated in the etiology of liver cancer. AFB{sub 1} is oxidized in vivo by cytochrome P450 to form aflatoxin B{sub 1} epoxide, which forms an N7-dG adduct (AFB{sub 1}-N7-dG) in DNA. The latter rearranges to a formamidopyrimidine (AFB{sub 1}-FAPY) derivative that equilibrates between {alpha} and {beta} anomers of the deoxyribose. In DNA, both the AFB{sub 1}-N7-dG and AFB{sub 1}-{beta}-FAPY adducts intercalate above the 5'-face of the damaged guanine. Each produces G {yields} T transversions in Escherichia coli, but the AFB{sub 1}-{beta}-FAPY adduct is more mutagenic. The Sulfolobus solfataricus P2 DNA polymerase IV (Dpo4) provides a model for understanding error-prone bypass of the AFB{sub 1}-N7-dG and AFB{sub 1}-{beta}-FAPY adducts. It bypasses the AFB{sub 1}-N7-dG adduct, but it conducts error-prone replication past the AFB{sub 1}-FAPY adduct, including mis-insertion of dATP, consistent with the G {yields} T mutations characteristic of AFB{sub 1} mutagenesis in E. coli. Crystallographic analyses of a series of binary and ternary complexes with the Dpo4 polymerase revealed differing orientations of the N7-C8 bond of the AFB{sub 1}-N7-dG adduct as compared to the N{sup 5}-C8 bond in the AFB{sub 1}-{beta}-FAPY adduct, and differential accommodation of the intercalated AFB{sub 1} moieties within the active site. These may modulate AFB{sub 1} lesion bypass by this polymerase.

  8. Quantitation of DNA Adducts Induced by 1,3-Butadiene

    NASA Astrophysics Data System (ADS)

    Sangaraju, Dewakar; Villalta, Peter W.; Wickramaratne, Susith; Swenberg, James; Tretyakova, Natalia

    2014-07-01

    Human exposure to 1,3-butadiene (BD) present in automobile exhaust, cigarette smoke, and forest fires is of great concern because of its potent carcinogenicity. The adverse health effects of BD are mediated by its epoxide metabolites such as 3,4-epoxy-1-butene (EB), which covalently modify genomic DNA to form promutagenic nucleobase adducts. Because of their direct role in cancer, BD-DNA adducts can be used as mechanism-based biomarkers of BD exposure. In the present work, a mass spectrometry-based methodology was developed for accurate, sensitive, and precise quantification of EB-induced N-7-(1-hydroxy-3-buten-2-yl) guanine (EB-GII) DNA adducts in vivo. In our approach, EB-GII adducts are selectively released from DNA backbone by neutral thermal hydrolysis, followed by ultrafiltration, offline HPLC purification, and isotope dilution nanoLC/ESI+-HRMS3 analysis on an Orbitrap Velos mass spectrometer. Following method validation, EB-GII lesions were quantified in human fibrosarcoma (HT1080) cells treated with micromolar concentrations of EB and in liver tissues of rats exposed to sub-ppm concentrations of BD (0.5-1.5 ppm). EB-GII concentrations increased linearly from 1.15 ± 0.23 to 10.11 ± 0.45 adducts per 106 nucleotides in HT1080 cells treated with 0.5-10 μM DEB. EB-GII concentrations in DNA of laboratory rats exposed to 0.5, 1.0, and 1.5 ppm BD were 0.17 ± 0.05, 0.33 ± 0.08, and 0.50 ± 0.04 adducts per 106 nucleotides, respectively. We also used the new method to determine the in vivo half-life of EB-GII adducts in rat liver DNA (2.20 ± 0.12 d) and to detect EB-GII in human blood DNA. To our knowledge, this is the first application of nanoLC/ESI+-HRMS3 Orbitrap methodology to quantitative analysis of DNA adducts in vivo.

  9. Novel Fragmentation Pathways of Anionic Adducts of Steroids Formed by Electrospray Anion Attachment Involving Regioselective Attachment, Regiospecific Decompositions, Charge-Induced Pathways, and Ion-Dipole Complex Intermediates

    NASA Astrophysics Data System (ADS)

    Rannulu, Nalaka S.; Cole, Richard B.

    2012-09-01

    The analysis of several bifunctional neutral steroids, 5-α-pregnane diol (5-α-pregnane-3α-20βdiol), estradiol (3,17α-dihydroxy-1,3,5(10)-estratriene), progesterone (4-pregnene-3,20-dione), lupeol (3β-hydroxy-20(29)-lupene), pregnenolone (5-pregnen-3β-ol-20-one), and pregnenolone acetate (5-pregnen-3β-ol-20-one acetate) was accomplished by negative ion electrospray mass spectrometry (ESI-MS) employing adduct formation with various anions: fluoride, bicarbonate, acetate, and chloride. Fluoride yielded higher abundances of anionic adducts and more substantial abundances of deprotonated molecules compared with other investigated anions. Collision-induced dissociation (CID) of precursor [M + anion]- adducts of these steroids revealed that fluoride adduct [M + F]- precursors first lose HF to produce [M - H]- and then undergo consecutive decompositions to yield higher abundances of structurally-informative product ions than the other tested anions. In addition to charge-remote fragmentations, the majority of CID pathways of estradiol are deduced to occur via charge-induced fragmentation. Most interestingly, certain anions exhibit preferential attachment to a specific site on these bifunctional steroid molecules, which we are calling "regioselective anion attachment." Regioselective anion attachment is evidenced by subsequent regiospecific decomposition. Regioselective attachment of fluoride (and acetate) anions to low (and moderate) acidity functional groups of pregnenolone, respectively, is demonstrated using deuterated compounds. Moreover, the formation of unique intermediate ion-dipole complexes leading to novel fragmentation pathways of fluoride adducts of pregnenolone acetate, and bicarbonate adducts of d4-pregnenolone, are also discussed.

  10. A phenylacetaldehyde-flavonoid adduct, 8-C-(E-phenylethenyl)-norartocarpetin, exhibits intrinsic apoptosis and MAPK pathways-related anticancer potential on HepG2, SMMC-7721 and QGY-7703.

    PubMed

    Zheng, Zong-Ping; Yan, Yan; Xia, Ji; Zhang, Shuang; Wang, Mingfu; Chen, Jie; Xu, Yang

    2016-04-15

    Norartocarpetin, quercetin and naringenin were found to effectively inhibit 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) formation through trapping its phenylacetaldehyde and form their adducts in roast beef patties. Six adducts [8-C- or 6-C-(E-phenylethenyl) flavonoids] formed between phenylacetaldehyde and three flavonoids were detected in roast beef patties by UPLC-MS analyses and compared with their synthetic references. These flavonoid-phenylacetaldehyde adducts were synthesised and further subjected to cytotoxicity tests on three liver cancer cell lines HepG2, SMMC-7721 and QGY-7703. The adduct 8-C-(E-phenylethenyl)norartocarpetin (NARA1) was found to significantly induce cancer cell death with IC50 values about 7 μM. After pre-treating with MAPK and caspase inhibitors, alteration of the cell morphology and cleaved-PARP were detected in liver cancer cell lines administered with NARA1. These data indicated that norartocarpetin could inhibit PhIP formation in roast beef patties and form norartocarpetin-phenylacetaldehyde adducts. The adduct NARA1 has anticancer potential via intrinsic caspase-dependent and cell context-dependent MAPKs pathways.

  11. Neurotoxic thioether adducts of 3,4-methylenedioxymethamphetamine identified in human urine after ecstasy ingestion.

    PubMed

    Perfetti, Ximena; O'Mathúna, Brian; Pizarro, Nieves; Cuyàs, Elisabet; Khymenets, Olha; Almeida, Bruno; Pellegrini, Manuela; Pichini, Simona; Lau, Serrine S; Monks, Terrence J; Farré, Magí; Pascual, Jose Antonio; Joglar, Jesús; de la Torre, Rafael

    2009-07-01

    3,4-Methylenedioxymethamphetamine (MDMA, Ecstasy) is a widely misused synthetic amphetamine derivative and a serotonergic neurotoxicant in animal models and possibly humans. The underlying mechanism of neurotoxicity involves the formation of reactive oxygen species although their source remains unclear. It has been postulated that MDMA-induced neurotoxicity is mediated via the formation of bioreactive metabolites. In particular, the primary catechol metabolites, 3,4-dihydroxymethamphetamine (HHMA) and 3,4-dihydroxyamphetamine (HHA), subsequently cause the formation of glutathione and N-acetylcysteine conjugates, which retain the ability to redox cycle and are serotonergic neurotoxicants in rats. Although the presence of such metabolites has been recently demonstrated in rat brain microdialysate, their formation in humans has not been reported. The present study describes the detection of 5-(N-acetylcystein-S-yl)-3,4-dihydroxymethamphetamine (N-Ac-5-Cys-HHMA) and 5-(N-acetylcystein-S-yl)-3,4-dihydroxyamphetamine (N-Ac-5-Cys-HHA) in human urine of 15 recreational users of MDMA (1.5 mg/kg) in a controlled setting. The results reveal that in the first 4 h after MDMA ingestion approximately 0.002% of the administered dose was recovered as thioether adducts. Genetic polymorphisms in CYP2D6 and catechol-O-methyltransferase expression, the combination of which are major determinants of steady-state levels of HHMA and 4-hydroxy-3-methoxyamphetamine, probably explain the interindividual variability seen in the recovery of N-Ac-5-Cys-HHMA and N-Ac-5-Cys-HHA. In summary, the formation of neurotoxic thioether adducts of MDMA has been demonstrated for the first time in humans. The findings lend weight to the hypothesis that the bioactivation of MDMA to neurotoxic metabolites is a relevant pathway to neurotoxicity in humans.

  12. Strategy for identifying unknown hemoglobin adducts using adductome LC-MS/MS data: Identification of adducts corresponding to acrylic acid, glyoxal, methylglyoxal, and 1-octen-3-one.

    PubMed

    Carlsson, Henrik; Törnqvist, Margareta

    2016-06-01

    Electrophilic compounds have the ability to form adducts with nucleophilic sites in proteins and DNA in tissues, and thereby constitute risks for toxic effects. Adductomic approaches are developed for systematic screening of adducts to DNA and blood proteins, with the aim to detect unknown internal exposures to electrophiles. In a previous adductomic screening of adducts to N-terminals in hemoglobin, using LC-MS/MS, 19 unknown adducts were detected in addition to seven previously identified adducts. The present paper describes the identification of four of these unknown adducts, as well as the strategy used to identify them. Using LC-MS data from the screening, hypotheses about adduct identities were formulated: probable precursor electrophiles with matching molecular weights were suggested based on the molecular weights of the modifications and the retention times of the analytes, in combination with comparisons of theoretical Log P calculations and databases. Reference adducts were generated by incubation of blood samples with the hypothesized precursor electrophiles. The four identified precursor electrophiles, corresponding to the observed unknown adducts, were glyoxal, methylglyoxal, acrylic acid and 1-octen-3-one. Possible origins/exposure sources and toxicological information concerning the electrophilic precursors are discussed. The identified adducts could be explored as possible biomarkers for exposure.

  13. Semiconductor-olefin adducts. Photoluminescent properties of cadmium sulfide and cadmium selenide in the presence of butenes

    SciTech Connect

    Meyer, G.J.; Leung, L.K.; Ellis, A.B. ); Yu, J.C. ); Lisensky, G.C. )

    1989-07-05

    Direct evidence for adduct formation between butenes and etched, single-crystal n-CdS and n-CdSe (CdS(e)) surfaces has been obtained from photoluminescence (PL) measurements. Exposure of CdS(e) to butenes causes enhancement of the solids' band edge PL relative to a N{sub 2} ambient. For 30% mixtures of the olefins in N{sub 2}, the magnitude of the enhancement follows the order 1,3-butadiene > cis-2-butene {approximately} trans-2-butene > isobutylene {approximately} 1-butene and correlates with the olefin basicities, on the basis of photoionization potentials. Enhancements in PL intensity can be fit to a dead-layer model, allowing the determination of the reduction in depletion width in the semiconductor resulting from olefin exposure; depletion width reductions reach a few hundred angstroms for adducts of 1,3-butadiene with CdS(e). The PL changes were used in conjunction with the Langmuir adsorption isotherm model to yield equilibrium constants for adduct formation of 1,3-butadiene with CdS(e) of 9 {plus minus} 4 atm{sup {minus}1} at 293 K. Surface interactions that may contribute to the observed PL changes are discussed.

  14. 2-Amino-9H-pyrido[2,3-b]indole (AαC) Adducts and Thiol Oxidation of Serum Albumin as Potential Biomarkers of Tobacco Smoke*

    PubMed Central

    Pathak, Khyatiben V.; Bellamri, Medjda; Wang, Yi; Langouët, Sophie; Turesky, Robert J.

    2015-01-01

    2-Amino-9H-pyrido[2,3-b]indole (AαC) is a carcinogenic heterocyclic aromatic amine formed during the combustion of tobacco. AαC undergoes bioactivation to form electrophilic N-oxidized metabolites that react with DNA to form adducts, which can lead to mutations. Many genotoxicants and toxic electrophiles react with human serum albumin (albumin); however, the chemistry of reactivity of AαC with proteins has not been studied. The genotoxic metabolites, 2-hydroxyamino-9H-pyrido[2,3-b]indole (HONH-AαC), 2-nitroso-9H-pyrido[2,3-b]indole (NO-AαC), N-acetyloxy-2-amino-9H-pyrido[2,3-b]indole (N-acetoxy-AαC), and their [13C6]AαC-labeled homologues were reacted with albumin. Sites of adduction of AαC to albumin were identified by data-dependent scanning and targeted bottom-up proteomics approaches employing ion trap and Orbitrap MS. AαC-albumin adducts were formed at Cys34, Tyr140, and Tyr150 residues when albumin was reacted with HONH-AαC or NO-AαC. Sulfenamide, sulfinamide, and sulfonamide adduct formation occurred at Cys34 (AαC-Cys34). N-Acetoxy-AαC also formed an adduct at Tyr332. Albumin-AαC adducts were characterized in human plasma treated with N-oxidized metabolites of AαC and human hepatocytes exposed to AαC. High levels of N-(deoxyguanosin-8-yl)-AαC (dG-C8-AαC) DNA adducts were formed in hepatocytes. The Cys34 was the sole amino acid of albumin to form adducts with AαC. Albumin also served as an antioxidant and scavenged reactive oxygen species generated by metabolites of AαC in hepatocytes; there was a strong decrease in reduced Cys34, whereas the levels of Cys34 sulfinic acid (Cys-SO2H), Cys34-sulfonic acid (Cys-SO3H), and Met329 sulfoxide were greatly increased. Cys34 adduction products and Cys-SO2H, Cys-SO3H, and Met329 sulfoxide may be potential biomarkers to assess exposure and oxidative stress associated with AαC and other arylamine toxicants present in tobacco smoke. PMID:25953894

  15. Identification of 4-(3-Pyridyl)-4-oxobutyl-2'-deoxycytidine Adducts Formed in the Reaction of DNA with 4-(Acetoxymethylnitrosamino)-1-(3-pyridyl)-1-butanone: A Chemically Activated Form of Tobacco-Specific Carcinogens.

    PubMed

    Michel, Anna K; Zarth, Adam T; Upadhyaya, Pramod; Hecht, Stephen S

    2017-03-31

    Metabolic activation of the carcinogenic tobacco-specific nitrosamines 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK, 1) and N'-nitrosonornicotine (NNN, 2) results in the formation of 4-(3-pyridyl)-4-oxobutyl (POB)-DNA adducts, several of which have been previously identified both in vitro and in tissues of laboratory animals treated with NNK or NNN. However, 2'-deoxycytidine adducts formed in this process have been incompletely examined in previous studies. Therefore, in this study we prepared characterized standards for the identification of previously unknown 2'-deoxycytidine and 2'-deoxyuridine adducts that could be produced in these reactions. The formation of these products in reactions of 4-(acetoxymethylnitrosamino)-1-(3-pyridyl)-1-butanone (NNKOAc, 3), a model 4-(3-pyridyl)-4-oxobutylating agent, with DNA was investigated. The major 2'-deoxycytidine adduct, identified as its stable cytosine analogue O(2)-[4-(3-pyridyl)-4-oxobut-1-yl]-cytosine (12), was O(2)-[4-(3-pyridyl)-4-oxobut-1-yl]-2'-deoxycytidine (13), whereas lesser amounts of 3-[4-(3-pyridyl)-4-oxobut-1-yl]-2'-deoxycytidine (14) and N(4)-[4-(3-pyridyl)-4-oxobut-1-yl]-2'-deoxycytidine (15) were also observed. The potential conversion of relatively unstable 2'-deoxycytidine adducts to stable 2'-deoxyuridine adducts by treatment of the adducted DNA with bisulfite was also investigated, but the harsh conditions associated with this approach prevented quantitation. The results of this study provide new validated standards for the study of 4-(3-pyridyl)-4-oxobutylation of DNA, a critical reaction in the carcinogenesis by 1 and 2, and demonstrate the presence of previously unidentified 2'-deoxycytidine adducts in this DNA.

  16. Identification of 4-(3-Pyridyl)-4-oxobutyl-2′-deoxycytidine Adducts Formed in the Reaction of DNA with 4-(Acetoxymethylnitrosamino)-1-(3-pyridyl)-1-butanone: A Chemically Activated Form of Tobacco-Specific Carcinogens

    PubMed Central

    2017-01-01

    Metabolic activation of the carcinogenic tobacco-specific nitrosamines 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK, 1) and N′-nitrosonornicotine (NNN, 2) results in the formation of 4-(3-pyridyl)-4-oxobutyl (POB)-DNA adducts, several of which have been previously identified both in vitro and in tissues of laboratory animals treated with NNK or NNN. However, 2′-deoxycytidine adducts formed in this process have been incompletely examined in previous studies. Therefore, in this study we prepared characterized standards for the identification of previously unknown 2′-deoxycytidine and 2′-deoxyuridine adducts that could be produced in these reactions. The formation of these products in reactions of 4-(acetoxymethylnitrosamino)-1-(3-pyridyl)-1-butanone (NNKOAc, 3), a model 4-(3-pyridyl)-4-oxobutylating agent, with DNA was investigated. The major 2′-deoxycytidine adduct, identified as its stable cytosine analogue O2-[4-(3-pyridyl)-4-oxobut-1-yl]-cytosine (12), was O2-[4-(3-pyridyl)-4-oxobut-1-yl]-2′-deoxycytidine (13), whereas lesser amounts of 3-[4-(3-pyridyl)-4-oxobut-1-yl]-2′-deoxycytidine (14) and N4-[4-(3-pyridyl)-4-oxobut-1-yl]-2′-deoxycytidine (15) were also observed. The potential conversion of relatively unstable 2′-deoxycytidine adducts to stable 2′-deoxyuridine adducts by treatment of the adducted DNA with bisulfite was also investigated, but the harsh conditions associated with this approach prevented quantitation. The results of this study provide new validated standards for the study of 4-(3-pyridyl)-4-oxobutylation of DNA, a critical reaction in the carcinogenesis by 1 and 2, and demonstrate the presence of previously unidentified 2′-deoxycytidine adducts in this DNA. PMID:28393135

  17. 40 CFR 721.1850 - Toluene sulfonamide bis-phe-nol A epoxy adduct.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... epoxy adduct. 721.1850 Section 721.1850 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.1850 Toluene sulfonamide bis-phe-nol A epoxy adduct. (a) Chemical... as toluene sulfonamide bisphenol A epoxy adduct (PMN P-90-113) is subject to reporting under...

  18. 40 CFR 721.1850 - Toluene sulfonamide bis-phe-nol A epoxy adduct.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... epoxy adduct. 721.1850 Section 721.1850 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.1850 Toluene sulfonamide bis-phe-nol A epoxy adduct. (a) Chemical... as toluene sulfonamide bisphenol A epoxy adduct (PMN P-90-113) is subject to reporting under...

  19. 40 CFR 721.1850 - Toluene sulfonamide bis-phe-nol A epoxy adduct.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... epoxy adduct. 721.1850 Section 721.1850 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.1850 Toluene sulfonamide bis-phe-nol A epoxy adduct. (a) Chemical... as toluene sulfonamide bisphenol A epoxy adduct (PMN P-90-113) is subject to reporting under...

  20. 40 CFR 721.1850 - Toluene sulfonamide bis-phe-nol A epoxy adduct.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... epoxy adduct. 721.1850 Section 721.1850 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.1850 Toluene sulfonamide bis-phe-nol A epoxy adduct. (a) Chemical... as toluene sulfonamide bisphenol A epoxy adduct (PMN P-90-113) is subject to reporting under...

  1. 40 CFR 721.1850 - Toluene sulfonamide bis-phe-nol A epoxy adduct.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... epoxy adduct. 721.1850 Section 721.1850 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.1850 Toluene sulfonamide bis-phe-nol A epoxy adduct. (a) Chemical... as toluene sulfonamide bisphenol A epoxy adduct (PMN P-90-113) is subject to reporting under...

  2. Volatile Barium Beta-Diketonate Polyether Adducts. Synthesis, Characterization and Metalorganic Chemical Vapor Deposition

    DTIC Science & Technology

    1991-05-31

    Volatile Barium 13- Diketonate Polyether Adducts.... Synthesis , Characterization and Metalorganic Chemical Vapor Deposition by Robin A. Gardiner...has been approved for public release and sale: its distribution is unlimited. Volatile, Barium B- Diketonate Polyether Adducts. Synthesis ...NO. NO. INO. ACCESSION NO. Arlington, VA 22217 II 11. TITLE (include Security Classification) Volatile Barium B- Diketonate Polyether Adducts

  3. 40 CFR 721.3680 - Ethylene oxide adduct of fatty acid ester with pentaerythritol.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Ethylene oxide adduct of fatty acid... New Uses for Specific Chemical Substances § 721.3680 Ethylene oxide adduct of fatty acid ester with... identified generically as ethylene oxide adduct of fatty acid ester with pentaerythritol (PMN P-91-442)...

  4. 40 CFR 721.3680 - Ethylene oxide adduct of fatty acid ester with pentaerythritol.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Ethylene oxide adduct of fatty acid... New Uses for Specific Chemical Substances § 721.3680 Ethylene oxide adduct of fatty acid ester with... identified generically as ethylene oxide adduct of fatty acid ester with pentaerythritol (PMN P-91-442)...

  5. 40 CFR 721.3680 - Ethylene oxide adduct of fatty acid ester with pentaerythritol.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Ethylene oxide adduct of fatty acid... New Uses for Specific Chemical Substances § 721.3680 Ethylene oxide adduct of fatty acid ester with... identified generically as ethylene oxide adduct of fatty acid ester with pentaerythritol (PMN P-91-442)...

  6. 40 CFR 721.3680 - Ethylene oxide adduct of fatty acid ester with pentaerythritol.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Ethylene oxide adduct of fatty acid... New Uses for Specific Chemical Substances § 721.3680 Ethylene oxide adduct of fatty acid ester with... identified generically as ethylene oxide adduct of fatty acid ester with pentaerythritol (PMN P-91-442)...

  7. 40 CFR 721.3680 - Ethylene oxide adduct of fatty acid ester with pentaerythritol.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Ethylene oxide adduct of fatty acid... New Uses for Specific Chemical Substances § 721.3680 Ethylene oxide adduct of fatty acid ester with... identified generically as ethylene oxide adduct of fatty acid ester with pentaerythritol (PMN P-91-442)...

  8. Infrared spectroscopy of fullerene C60/anthracene adducts

    NASA Astrophysics Data System (ADS)

    García-Hernández, D. A.; Cataldo, F.; Manchado, A.

    2013-09-01

    Recent Spitzer Space Telescope observations of several astrophysical environments such as planetary nebulae, reflection nebulae and R Coronae Borealis stars show the simultaneous presence of mid-infrared features attributed to neutral fullerene molecules (i.e. C60) and polycyclic aromatic hydrocarbons (PAHs). If C60 fullerenes and PAHs coexist in fullerene-rich space environments, then C60 may easily form adducts with a number of different PAH molecules, at least with catacondensed PAHs. Here we present the laboratory infrared spectra (˜2-25 μm) of C60 fullerene and anthracene Diels-Alder mono- and bis-adducts as produced by sonochemical synthesis. We find that C60/anthracene Diels-Alder adducts display spectral features strikingly similar to those from C60 (and C70) fullerenes and other unidentified infrared emission features. Thus, fullerene adducts - if formed under astrophysical conditions and are stable/abundant enough - may contribute to the infrared emission features observed in fullerene-containing circumstellar/interstellar environments.

  9. NMR at the Picomole Level of a DNA Adduct

    PubMed Central

    Kautz, Roger; Wang, Poguang; Giese, Roger W.

    2014-01-01

    We investigate the limit of detection for obtaining NMR data of a DNA adduct using modern microscale NMR instrumentation, once the adduct has been isolated at the pmol level. Eighty nanograms (130 pmol) of a DNA adduct standard, N-(2′-deoxyguanosin-8-yl)-2-acetylaminofluorene 5′-monophosphate (AAF-dGMP), in 1.5 μL of D2O with 10% methanol-d4, in a vial, was completely picked up as a droplet suspended in a fluorocarbon liquid, and loaded efficiently into a microcoil probe. This work demonstrates a practical manual method of droplet microfluidic sample loading, previously demonstrated using automated equipment, which provides a several-fold advantage over conventional flow injection. Eliminating dilution during injection and confining the sample into the observed volume realizes the full theoretical mass sensitivity of a microcoil, comparable to a micro-cryo probe. With 80 ng, an NMR spectrum acquired over 40 hr showed all of the resonances seen in a standard spectrum of AAF-dGMP, with a S/N of at least 10, despite broadening due to previously-noted effects of conformational exchange. Also a 2D TOCSY spectrum (total correlation spectroscopy) was acquired on 1.6 μg in 18 hr. This work helps to define the utility of NMR in combination with other analytical methods for the structural characterization of a small amount of a DNA adduct. PMID:24028148

  10. Conformations of DNA adducts with polycyclic aromatic carcinogens

    SciTech Connect

    Broyde, S.; Hingerty, B.

    1984-01-01

    Minimized semi-empirical potential energy calculations for a number of carcinogen adducts with dCpdG have yielded molecular views of the adduct conformations. The base displaced and Z type conformations of acetylaminofluorene (AAF) adducts to guanine C-8 have been detailed. Model building shows that base displacement causes kinking and denaturation in the B helix, while the Z helix is largely unperturbed by modification with AAF, in agreement with experimental findings. The minor AAF adduct linked to quanine N/sup 2/ can reside at a B-Z junction, with the carcinogen buried in a groove in the Z direction, without causing denaturation. The syn guanine in these modified Z forms could be mutagenic, the lesion escaping repair because the helix is undeformed, while the distorted base-displaced conformers are repaired. Aminofluorene (AF) and 4-aminobiphenyl (ABP) linked to guanine N/sup 2/ are currently believed to be critical lesions. They all have a pair of A or B type low energy states, one of which has base-base stacking with carcinogen at the helix exterior, and a second with carcinogen-base stacking. The two states are easily interconvertible. It is possible that the carcinogen may reside primarily at the unperturbed helix exterior where it escapes repair, but that carcinogen-base stacking may occur at a critical time during replication, leading to a mutation. 49 references, 8 figures.

  11. Chloroethyinitrosourea-derived ethano cytosine and adenine adducts are substrates for escherichia coli glycosylases excising analogous etheno adducts

    SciTech Connect

    Guliaev, Anton B.; Singer, B.; Hang, Bo

    2004-05-05

    Exocyclic ethano DNA adducts are saturated etheno ring derivatives formed mainly by therapeutic chloroethylnitrosoureas (CNUs), which are also mutagenic and carcinogenic. In this work, we report that two of the ethano adducts, 3,N{sup 4}-ethanocytosine (EC) and 1,N{sup 6}-ethanoadenine (EA), are novel substrates for the Escherichia coli mismatch-specific uracil-DNA glycosylase (Mug) and 3-methyladenine DNA glycosylase II (AlkA), respectively. It has been shown previously that Mug excises 3,N{sup 4}-ethenocytosine ({var_epsilon}C) and AlkA releases 1,N{sup 6}-ethenoadenine ({var_epsilon}A). Using synthetic oligonucleotides containing a single ethano or etheno adduct, we found that both glycosylases had a {approx}20-fold lower excision activity toward EC or EA than that toward their structurally analogous {var_epsilon}C or {var_epsilon}A adduct. Both enzymes were capable of excising the ethano base paired with any of the four natural bases, but with varying efficiencies. The Mug activity toward EC could be stimulated by E. coli endonuclease IV and, more efficiently, by exonuclease III. Molecular dynamics (MD) simulations showed similar structural features of the etheno and ethano derivatives when present in DNA duplexes. However, also as shown by MD, the stacking interaction between the EC base and Phe 30 in the Mug active site is reduced as compared to the {var_epsilon}C base, which could account for the lower EC activity observed in this study.

  12. Photochemistry of psoralen-DNA adducts, biological effects of psoralen-DNA adducts, applications of psoralen-DNA photochemistry

    SciTech Connect

    Shi, Yun-bo

    1988-03-01

    This thesis consists of three main parts and totally eight chapters. In Part I, The author will present studies on the photochemistry of psoralen-DNA adducts, specifically, the wavelength dependencies for the photoreversals of thymidine-HMT (4'-hydroxymethyl-4, 5', 8-trimenthylpsoralen) monoadducts and diadduct and the same adducts incorporated in DNA helices and the wavelength dependecies for the photocrossslinking of thymidine-HMT monoadducts in double-stranded helices. In Part II, The author will report some biological effects of psoralen-DNA adducts, i.e., the effects on double-stranded DNA stability, DNA structure, and transcription by E. coli and T7 RNA polymerases. Finally, The author will focus on the applications of psoralen-DNA photochemistry to investigation of protein-DNA interaction during transcription, which includes the interaction of E. coli and T7 RNA polymerases with DNA in elongation complexes arrested at specific psoralen-DNA adduct sites as revealed by DNase I footprinting experiments. 123 refs., 52 figs., 12 tabs.

  13. Removal of aflatoxin B1-DNA adducts and in vitro transformation in mouse embryo fibroblasts C3H/10T1 1/2

    SciTech Connect

    Amstad, P.A.; Wang, T.V.; Cerutti, P.A.

    1983-01-01

    The mechanism of in vitro transformation of the mouse embryo fibroblast C3H/10T 1/2 clone 8 by aflatoxin B1 (AFB1) was studied in confluent holding (CH) experiments. Confluent cultures of C3H/10T 1/2 cells were treated with AFB1 for 16 hours, and the DNA adduct composition and concentration were determined by chromatographic procedures after 0, 8, 16, and 40 hours of CH when the cells were replated at low density for the expression of their colony-forming ability and the formation of transformed foci. Total adduct concentration and the concentration of the major primary adduct 2,3-dihydro-2-(N7-guanyl)-3-hydroxyaflatoxin B1 (AFB1-N7-Gua) decreased continuously during CH due to spontaneous decomposition and probably also due to enzymatic repair processes. In contrast, the more chemically stable secondary product 2,3-dihydro-2-(N5-formyl-2',5',6'-triamino-4'-oxo-N5-pyrimidyl)-3-hydroxyaflatoxin B1 (AFB1-triamino-Py) accumulated in the DNA and reached its maximum concentration after 16 hours of CH. While the loss of total AFB1-DNA adducts during CH was reflected in recovery of viability, the potential to form transformed foci reached a maximum after 16 hours of CH and then decreased with continued CH below the initial value. Therefore, no simple relationship exists between the concentration of the total adducts AFB1-N7-Gua and AFB1-triamino-Py at the time of release from CH and the potential to form transformed foci. However, DNA lesions or abnormal DNA configurations formed during CH as a consequence of the cellular processing of AFB1-DNA adducts may play a role in the transformation process.

  14. Equilibrium Dynamics of β-N-Methylamino-L-Alanine (BMAA) and Its Carbamate Adducts at Physiological Conditions

    PubMed Central

    Zimmerman, David; Goto, Joy J.; Krishnan, Viswanathan V

    2016-01-01

    Elevated incidences of Amyotrophic Lateral Sclerosis/Parkinsonism Dementia complex (ALS/PDC) is associated with β-methylamino-L-alanine (BMAA), a non-protein amino acid. In particular, the native Chamorro people living in the island of Guam were exposed to BMAA by consuming a diet based on the cycad seeds. Carbamylated forms of BMAA are glutamate analogues. The mechanism of neurotoxicity of the BMAA is not completely understood, and BMAA acting as a glutamate receptor agonist may lead to excitotoxicity that interferes with glutamate transport systems. Though the interaction of BMAA with bicarbonate is known to produce carbamate adducts, here we demonstrate that BMAA and its primary and secondary adducts coexist in solution and undergoes a chemical exchange among them. Furthermore, we determined the rates of formation/cleavage of the carbamate adducts under equilibrium conditions using two-dimensional proton exchange NMR spectroscopy (EXSY). The coexistence of the multiple forms of BMAA at physiological conditions adds to the complexity of the mechanisms by which BMAA functions as a neurotoxin. PMID:27513925

  15. Equilibrium Dynamics of β-N-Methylamino-L-Alanine (BMAA) and Its Carbamate Adducts at Physiological Conditions.

    PubMed

    Zimmerman, David; Goto, Joy J; Krishnan, Viswanathan V

    2016-01-01

    Elevated incidences of Amyotrophic Lateral Sclerosis/Parkinsonism Dementia complex (ALS/PDC) is associated with β-methylamino-L-alanine (BMAA), a non-protein amino acid. In particular, the native Chamorro people living in the island of Guam were exposed to BMAA by consuming a diet based on the cycad seeds. Carbamylated forms of BMAA are glutamate analogues. The mechanism of neurotoxicity of the BMAA is not completely understood, and BMAA acting as a glutamate receptor agonist may lead to excitotoxicity that interferes with glutamate transport systems. Though the interaction of BMAA with bicarbonate is known to produce carbamate adducts, here we demonstrate that BMAA and its primary and secondary adducts coexist in solution and undergoes a chemical exchange among them. Furthermore, we determined the rates of formation/cleavage of the carbamate adducts under equilibrium conditions using two-dimensional proton exchange NMR spectroscopy (EXSY). The coexistence of the multiple forms of BMAA at physiological conditions adds to the complexity of the mechanisms by which BMAA functions as a neurotoxin.

  16. Apoptosis and age-dependant induction of nuclear and mitochondrial etheno-DNA adducts in Long-Evans Cinnamon (LEC) rats: enhanced DNA damage by dietary curcumin upon copper accumulation.

    PubMed

    Nair, Jagadeesan; Strand, Susanne; Frank, Norbert; Knauft, Jutta; Wesch, Horst; Galle, Peter R; Bartsch, Helmut

    2005-07-01

    Long-Evans Cinnamon (LEC) rats, a model for human Wilson's disease, develop chronic hepatitis and liver tumors owing to accumulation of copper and induced oxidative stress. Lipid peroxidation (LPO)-induced etheno-DNA adducts in nuclear- and mitochondrial-DNA along with apoptosis was measured in LEC rat liver. Levels of etheno-DNA adducts (1,N6-ethenodeoxyadenosine and 3,N4-ethenodeoxycytidine) increased with age reaching a peak at 8 and 12 weeks in nuclear and mitochondrial DNA, respectively. This is the first demonstration that etheno-DNA adducts are also formed in mitochondrial DNA. Apoptosis was assessed by TUNEL+ cells in liver sections. CD95L RNA expression was also measured by in situ hybridization in the same sections. The highest nuclear DNA adduct levels coincided with a reduced apoptotic rate at 8 weeks. Mitochondrial-DNA adducts peaked at 12 weeks that coincided with the highest apoptotic rate, suggesting a link of etheno-DNA adducts in mitochondrial DNA to apoptosis. The DNA damage in liver was further enhanced and sustained by 0.5% curcumin in the diet. Treatment for 2 weeks elevated etheno-DNA adducts 9- to 25-fold in nuclear DNA and 3- to 4-fold in mitochondrial-DNA, providing a plausible explanation as to why in our earlier study [Frank et al. (2003) Mutat. Res., 523-524, 127-135], curcumin failed to prevent liver tumors in LEC rats. Our results also confirm the reported in vitro DNA damaging potential of curcumin in the presence of copper ions by reactive oxygen species. LPO-induced adduct formation in nuclear and mitochondrial DNA appear as early lesions in LEC rat liver carcinogenesis and are discussed in relation to apoptotic events in the progression of malignant disease.

  17. Mechanisms of the different DNA adduct forming potentials of the urban air pollutants 2-nitrobenzanthrone and carcinogenic 3-nitrobenzanthrone.

    PubMed

    Stiborová, Marie; Martínek, Václav; Svobodová, Martina; Sístková, Jana; Dvorák, Zdenek; Ulrichová, Jitka; Simánek, Vilím; Frei, Eva; Schmeiser, Heinz H; Phillips, David H; Arlt, Volker M

    2010-07-19

    2-Nitrobenzanthrone (2-NBA) has recently been detected in ambient air particulate matter. Its isomer 3-nitrobenzanthrone (3-NBA) is a potent mutagen and suspected human carcinogen identified in diesel exhaust. We compared the efficiencies of human enzymatic systems [hepatic microsomes and cytosols, NAD(P)H:quinone oxidoreductase 1 (NQO1), xanthine oxidase, NADPH:cytochrome P450 reductase, N,O-acetyltransferases, and sulfotransferases] and human primary hepatocytes to activate 2-NBA and its isomer 3-NBA to species forming DNA adducts. In contrast to 3-NBA, 2-NBA was not metabolized at detectable levels by the tested human enzymatic systems and enzymes expressed in human hepatocytes, and no DNA adducts detectable by (32)P-postlabeling were generated by 2-NBA. Even NQO1, the most efficient human enzyme to bioactive 3-NBA, did not activate 2-NBA. Molecular docking of 2-NBA and 3-NBA to the active site of NQO1 showed similar binding affinities; however, the binding orientation of 2-NBA does not favor the reduction of the nitro group. This was in line with the inhibition of 3-NBA-DNA adduct formation by 2-NBA, indicating that 2-NBA can compete with 3-NBA for binding to NQO1, thereby decreasing the metabolic activation of 3-NBA. In addition, the predicted equilibrium conditions favor a 3 orders of magnitude higher dissociation of N-OH-3-ABA in comparison to N-OH-2-ABA. These findings explain the very different genotoxicity, mutagenicity, and DNA adduct forming potential of the two compounds. Collectively, our results suggest that 2-NBA possesses a relatively lower risk to humans than 3-NBA.

  18. DNA bulky adducts in a Mediterranean population correlate with environmental ozone concentration, an indicator of photochemical smog.

    PubMed

    Palli, Domenico; Saieva, Calogero; Grechi, Daniele; Masala, Giovanna; Zanna, Ines; Barbaro, Antongiulio; Decarli, Adriano; Munnia, Armelle; Peluso, Marco

    2004-03-01

    Ozone (O(3)), the major oxidant component in photochemical smog, mostly derives from photolysis of nitrogen dioxide. O(3) may have biologic effects directly and/or via free radicals reacting with other primary pollutants and has been reported to influence daily mortality and to increase lung cancer risk. Although DNA damage may be caused by ozone itself, only other photochemical reaction products (as oxidised polycyclic aromatic hydrocarbons) may form bulky DNA adducts, a reliable biomarker of genotoxic damage and cancer risk, showing a seasonal trend. In a large series consisting of 320 residents in the metropolitan area of Florence, Italy, enrolled in a prospective study for the period 1993-1998 (206 randomly sampled volunteers, 114 traffic-exposed workers), we investigated the correlation between individual levels of DNA bulky adducts and a cumulative O(3) exposure score. The average O(3) concentrations were calculated for different time windows (0-5 to 0-90 days) prior to blood drawing for each participant, based on daily measurements provided by the local monitoring system. Significant correlations between DNA adduct levels and O3 cumulative exposure scores in the last 2-8 weeks before enrollment emerged in never smokers. Correlations were highest in the subgroup of never smokers residing in the urban area and not occupationally exposed to vehicle traffic pollution, with peak values for average concentrations 4-6 weeks before enrollment (r = 0.34). Our current findings indicate that DNA adduct formation may be modulated by individual characteristics and by the cumulative exposure to environmental levels of ozone in the last 4-6 weeks, possibly through ozone-associated reactive pollutants.

  19. Determination of ginsenoside compound K in human plasma by liquid chromatography–tandem mass spectrometry of lithium adducts

    PubMed Central

    Chen, Yunhui; Lu, Youming; Yang, Yong; Chen, Xiaoyan; Zhu, Liang; Zhong, Dafang

    2015-01-01

    Ginsenoside compound K (GCK), the main metabolite of protopanaxadiol constituents of Panax ginseng, easily produces alkali metal adduct ions during mass spectrometry particularly with lithium. Accordingly, we have developed a rapid and sensitive liquid chromatography–tandem mass spectrometric method for analysis of GCK in human plasma based on formation of a lithium adduct. The analyte and paclitaxel (internal standard) were extracted from 50 µL human plasma using methyl tert-butyl ether. Chromatographic separation was performed on a Phenomenex Gemini C18 column (50 mm×2.0 mm; 5 μm) using stepwise gradient elution with acetonitrile–water and 0.2 mmol/L lithium carbonate at a flow rate of 0.5 mL/min. Detection was performed in the positive ion mode using multiple reaction monitoring of the transitions at m/z 629→449 for the GCK-lithium adduct and m/z 860→292 for the adduct of paclitaxel. The assay was linear in the concentration range 1.00–1000 ng/mL (r2>0.9988) with intra- and inter-day precision of ±8.4% and accuracy in the range of −4.8% to 6.5%. Recovery, stability and matrix effects were all satisfactory. The method was successfully applied to a pharmacokinetic study involving administration of a single GCK 50 mg tablet to healthy Chinese volunteers. PMID:26579476

  20. Effects of dietary fish oil on the depletion of carcinogenic PAH-DNA adduct levels in the liver of B6C3F1 mouse.

    PubMed

    Zhou, Guo-Dong; Zhu, Huiping; Phillips, Tracie D; Wang, Jianbo; Wang, Shi-Zhou; Wang, Fen; Amendt, Brad A; Couroucli, Xanthi I; Donnelly, Kirby C; Moorthy, Bhagavatula

    2011-01-01

    Many carcinogenic polycyclic aromatic hydrocarbons (PAHs) and their metabolites can bind covalently to DNA. Carcinogen-DNA adducts may lead to mutations in critical genes, eventually leading to cancer. In this study we report that fish oil (FO) blocks the formation of DNA adducts by detoxification of PAHs. B6C3F1 male mice were fed a FO or corn oil (CO) diet for 30 days. The animals were then treated with seven carcinogenic PAHs including benzo(a)pyrene (BaP) with one of two doses via a single intraperitoneal injection. Animals were terminated at 1, 3, or 7 d after treatment. The levels of DNA adducts were analyzed by the (32)P-postlabeling assay. Our results showed that the levels of total hepatic DNA adducts were significantly decreased in FO groups compared to CO groups with an exception of low PAH dose at 3 d (P = 0.067). Total adduct levels in the high dose PAH groups were 41.36±6.48 (Mean±SEM) and 78.72±8.03 in 10(9) nucleotides (P = 0.011), respectively, for the FO and CO groups at 7 d. Animals treated with the low dose (2.5 fold lower) PAHs displayed similar trends. Total adduct levels were 12.21±2.33 in the FO group and 24.07±1.99 in the CO group, P = 0.008. BPDE-dG adduct values at 7 d after treatment of high dose PAHs were 32.34±1.94 (CO group) and 21.82±3.37 (FO group) in 10(9) nucleotides with P value being 0.035. Low dose groups showed similar trends for BPDE-dG adduct in the two diet groups. FO significantly enhanced gene expression of Cyp1a1 in both the high and low dose PAH groups. Gstt1 at low dose of PAHs showed high levels in FO compared to CO groups with P values being 0.014. Histological observations indicated that FO played a hepatoprotective role during the early stages. Our results suggest that FO has a potential to be developed as a cancer chemopreventive agent.

  1. Proteomic analysis of adducted butyrylcholinesterase for biomonitoring organophosphorus exposures

    PubMed Central

    Marsillach, Judit; Hsieh, Edward J.; Richter, Rebecca J.; MacCoss, Michael J.; Furlong, Clement E.

    2014-01-01

    Organophosphorus (OP) compounds include a broad group of toxic chemicals such as insecticides, chemical warfare agents and antiwear agents. The liver cytochromes P450 bioactivate many OPs to potent inhibitors of serine hydrolases. Cholinesterases were the first OP targets discovered and are the most studied. They are used to monitor human exposures to OP compounds. However, the assay that is currently used has limitations. The mechanism of action of OP compounds is the inhibition of serine hydrolases by covalently modifying their active-site serine. After structural rearrangement, the complex OP inhibitor-enzyme is irreversible and will remain in circulation until the modified enzyme is degraded. Mass spectrometry is a sensitive technology for analyzing protein modifications, such as OP-adducted enzymes. These analyses also provide some information about the nature of the OP adduct. Our aim is to develop high-throughput protocols for monitoring OP exposures using mass spectrometry. PMID:23123252

  2. Biocidal properties of metal oxide nanoparticles and their halogen adducts

    NASA Astrophysics Data System (ADS)

    Haggstrom, Johanna A.; Klabunde, Kenneth J.; Marchin, George L.

    2010-03-01

    Nanosized metal oxide halogen adducts possess high surface reactivities due to their unique surface morphologies. These adducts have been used as reactive materials against vegetative cells, such as Escherichia coli as well as bacterial endospores, including Bacillus subtilis and Bacillus anthracis (Δ Sterne strain). Here we report high biocidal activities against gram-positive bacteria, gram-negative bacteria, and endospores. The procedure consists of a membrane method. Transmission electron micrographs are used to compare nanoparticle-treated and untreated cells and spores. It is proposed that the abrasive character of the particles, the oxidative power of the halogens/interhalogens, and the electrostatic attraction between the metal oxides and the biological material are responsible for high biocidal activities. While some activity was demonstrated, bacterial endospores were more resistant to nanoparticle treatment than the vegetative bacteria.

  3. Detection of DNA Adducts in Human Breast Tissues

    DTIC Science & Technology

    1997-07-01

    techniques employed are kept simple, which in turn limits the resolution and characterization. Fourth, the limited resolution can make it difficult to...PROCEDURES Our basic scheme for detecting DNA adducts in human samples consists of three general steps. In step I, standard techniques are used to isolate...this adjustment was done without changing the pH. Buffer A was added to part B to keep the volume the same. The samples were stored at room temperature

  4. 2' and 3' Carboranyl uridines and their diethyl ether adducts

    DOEpatents

    Soloway, Albert H.; Barth, Rolf F.; Anisuzzaman, Abul K.; Alam, Fazlul; Tjarks, Werner

    1992-01-01

    There is disclosed a process for preparing carboranyl uridine nucleoside compounds and their diethyl ether adducts, which exhibit a tenfold increase in boron content over prior art boron containing nucleoside compounds. Said carboranyl uridine nucleoside compounds exhibit enhanced lipophilicity and hydrophilic properties adequate to enable solvation in aqueous media for subsequent incorporation of said compounds in methods for boron neutron capture therapy in mammalian tumor cells.

  5. Ion Pairs or Neutral Molecule Adducts? Cooperativity in Hydrogen Bonding

    ERIC Educational Resources Information Center

    DeKock, Roger L.; Schipper, Laura A.; Dykhouse, Stephanie C.; Heeringa, Lee P.; Brandsen, Benjamin M.

    2009-01-01

    We performed theoretical studies on the systems NH[subscript 3] times HF times mH[subscript 2]O, NH[subscript 3] times HCl times mH[subscript 2]O, with m = 0, 1, 2, and 6. The molecules with m = 0 form hydrogen-bonded adducts with little tendency to form an ion-pair structure. The molecule NH[subscript 3] times HCl times H[subscript 2]O cannot be…

  6. Protein tyrosine adduct in humans self-poisoned by chlorpyrifos

    SciTech Connect

    Li, Bin; Eyer, Peter; Eddleston, Michael; Jiang, Wei; Schopfer, Lawrence M.; Lockridge, Oksana

    2013-06-15

    Studies of human cases of self-inflicted poisoning suggest that chlorpyrifos oxon reacts not only with acetylcholinesterase and butyrylcholinesterase but also with other blood proteins. A favored candidate is albumin because in vitro and animal studies have identified tyrosine 411 of albumin as a site covalently modified by organophosphorus poisons. Our goal was to test this proposal in humans by determining whether plasma from humans poisoned by chlorpyrifos has adducts on tyrosine. Plasma samples from 5 self-poisoned humans were drawn at various time intervals after ingestion of chlorpyrifos for a total of 34 samples. All 34 samples were analyzed for plasma levels of chlorpyrifos and chlorpyrifos oxon (CPO) as a function of time post-ingestion. Eleven samples were analyzed for the presence of diethoxyphosphorylated tyrosine by mass spectrometry. Six samples yielded diethoxyphosphorylated tyrosine in pronase digests. Blood collected as late as 5 days after chlorpyrifos ingestion was positive for CPO-tyrosine, consistent with the 20-day half-life of albumin. High plasma CPO levels did not predict detectable levels of CPO-tyrosine. CPO-tyrosine was identified in pralidoxime treated patients as well as in patients not treated with pralidoxime, indicating that pralidoxime does not reverse CPO binding to tyrosine in humans. Plasma butyrylcholinesterase was a more sensitive biomarker of exposure than adducts on tyrosine. In conclusion, chlorpyrifos oxon makes a stable covalent adduct on the tyrosine residue of blood proteins in humans who ingested chlorpyrifos. - Highlights: • Chlorpyrifos-poisoned patients have adducts on protein tyrosine. • Diethoxyphosphate-tyrosine does not lose an alkyl group. • Proteins in addition to AChE and BChE are modified by organophosphates.

  7. Crystal and molecular structure of adduct of 6-benzylaminopurine and 5-sulfosalicylic acid

    SciTech Connect

    Xia Min Ma Kuirong

    2010-12-15

    The crystal structure of adduct of 6-benzylaminopurine and 5-sulfosalicylic acid C{sub 19}H{sub 25}N{sub 5}O{sub 10}S 1 is studied using single-crystal diffraction (R = 0.0482 for 2852 reflections with I > 2{sigma}(I)). The asymmetric unit of 1 contains one 6-benzylaminopurine molecule and one 5-sulfosalicylic acid molecule, as well as four lattice water molecules. Hydrogen bonds, formed by 6-benzylaminopurine and 5-sulfosalicylic acid, link the two molecules into one-dimensional chain (omitting four water molecules), further joined to two-dimensional layer network. Short ring-interactions with intra-chain {pi}-{pi} stacking are observed. The data of IR spectroscopy confirm the formation of the two-dimensional supramolecular layer structure. At last, a 3D supramolecular network constructs via hydrogen bonds.

  8. Protein tyrosine adduct in humans self-poisoned by chlorpyrifos

    PubMed Central

    Li, Bin; Eyer, Peter; Eddleston, Michael; Jiang, Wei; Schopfer, Lawrence M.; Lockridge, Oksana

    2013-01-01

    Studies of human cases of self-inflicted poisoning suggest that chlorpyrifos oxon reacts not only with acetylcholinesterase and butyrylcholinesterase but also with other blood proteins. A favored candidate is albumin because in vitro and animal studies have identified tyrosine 411 of albumin as a site covalently modified by organophosphorus poisons. Our goal was to test this proposal in humans by determining whether plasma from humans poisoned by chlorpyrifos has adducts on tyrosine. Plasma samples from 5 self-poisoned humans were drawn at various time intervals after ingestion of chlorpyrifos for a total of 34 samples. All 34 samples were analyzed for plasma levels of chlorpyrifos and chlorpyrifos oxon (CPO) as a function of time post-ingestion. Eleven samples were analyzed for the presence of diethoxyphosphorylated tyrosine by mass spectrometry. Six samples yielded diethoxyphosphorylated tyrosine in pronase digests. Blood collected as late as 5 days after chlorpyrifos ingestion was positive for CPO-tyrosine, consistent with the 20-day half-life of albumin. High plasma CPO levels did not predict detectable levels of CPO-tyrosine. CPO-tyrosine was identified in pralidoxime treated patients as well as in patients not treated with pralidoxime, indicating that pralidoxime does not reverse CPO binding to tyrosine in humans. Plasma butyrylcholinesterase was a more sensitive biomarker of exposure than adducts on tyrosine. In conclusion, chlorpyrifos oxon makes a stable covalent adduct on the tyrosine residue of blood proteins in humans who ingested chlorpyrifos. PMID:23566956

  9. Malondialdehyde-acetaldehyde adducts decrease bronchial epithelial wound repair.

    PubMed

    Wyatt, Todd A; Kharbanda, Kusum K; Tuma, Dean J; Sisson, Joseph H; Spurzem, John R

    2005-05-01

    Most people who abuse alcohol are cigarette smokers. Previously, we have shown that malondialdehyde, an inflammation product of lipid peroxidation, and acetaldehyde, a component of both ethanol metabolism and cigarette smoke, form protein adducts that stimulate protein kinase C (PKC) activation in bronchial epithelial cells. We have also shown that PKC can regulate bronchial epithelial cell wound repair. We hypothesize that bovine serum albumin adducted with malondialdehyde and acetaldehyde (BSA-MAA) decreases bronchial epithelial cell wound repair via binding to scavenger receptors on bronchial epithelial cells. To test this, confluent monolayers of bovine bronchial epithelial cells were grown in serum-free media prior to wounding the cells. Bronchial epithelial cell wound closure was inhibited in a dose-dependent manner (up to 60%) in the presence of BSA-MAA than in media treated cells (Laboratory of Human Carcinogenesis [LHC]-9-Roswell Park Memorial Institute [RPMI]). The specific scavenger receptor ligand, fucoidan, also stimulated PKC activation and decreased wound repair. Pretreatment with fucoidan blocked malondialdehyde-acetaldehyde binding to bronchial epithelial cells. When bronchial epithelial cells were preincubated with a PKC alpha inhibitor, Gö 6976, the inhibition of wound closure by fucoidan and BSA-MAA was blocked. Western blot demonstrated the presence of several scavenger receptors on bronchial epithelial cell membranes, including SRA, SRBI, SRBII, and CD36. Scavenger receptor-mediated activation of PKC alpha may function to reduce wound healing under conditions of alcohol and cigarette smoke exposure where malondialdehyde-acetaldehyde adducts may be present.

  10. Tunable degradation of maleimide-thiol adducts in reducing environments

    PubMed Central

    Baldwin, Aaron D.; Kiick, Kristi L.

    2011-01-01

    Addition chemistries are widely used in preparing biological conjugates, and in particular, maleimide-thiol adducts have been widely employed. Here we show that the resulting succinimide thioether formed by a Michael type addition of a thiol to N-ethylmaleimide (NEM), generally accepted as stable, can in fact undergo retro and exchange reactions in the presence of other thiol compounds at physiological pH and temperature, offering a novel strategy for controlled release. Model studies (1H NMR, HPLC) of NEM conjugated to 4-mercaptophenylacetic acid (MPA), N-acetylcysteine, or 3-mercaptopropionic acid (MP) incubated with glutathione showed half lives of conversion from 20–80 hrs, with extents of conversion from 20–90% for MPA and N-acetylcysteine conjugates. Ring-opened the resultant succinimide thioether as well as any MP adduct did not show retro and exchange reactions. The kinetics of the retro reactions can be modulated by the Michael donor’s reactivity; therefore the degradation of maleimide-thiol adducts could be tuned for controlled release of drugs or degradation of materials at timescales different than those currently possible via disulfide-mediated release. Such approaches may find a new niche for controlled release in reducing environments relevant in chemotherapy and sub-cellular trafficking. PMID:21863904

  11. Hepatic DNA adducts and production of mutagenic urine in 2,6-dinitrotoluene-treated B6C3F1 male mice.

    PubMed

    George, S E; Kohan, M J; Warren, S H

    1996-04-19

    The hepatocarcinogen 2,6-dinitrotoluene (2,6-DNT) is an intermediate in the chemical synthesis of 2,4,6-trinitrotoluene and polyurethane products and can contaminate the waste stream emitted by these industries. In this study, the production of mutagenic urine metabolites and the formation of hepatic DNA adducts is examined in the B6C3F1 male mouse. Animals were administered 50 mg/kg 2,6-DNT by gavage for 3 consecutive days. No body or liver weight effects were observed in treated animals. Following sacrifice, the livers were excised and DNA isolated for examination of 2,6-DNT-derived DNA adducts. During 2,6-DNT treatment, urine was collected, concentrated, and tested for mutagenicity in the Salmonella reversion bioassay. Mutagenic urine metabolites (469+/-53 revertants/ml urine) were excreted from B6C3F1 mice treated with 2,6-DNT and were comparable to results obtained for CD-1 mice and Fischer 344 rats. Two distinct hepatic DNA adducts (0.8+/-0.1 and 0.6+/-0.1 RAL/10(8) nucleotides) were detected in B6C3F1 mice by (32)P-postlabeling and thin layer chromatography which differed from the four adducts observed in hepatic DNA from 2,6-DNT-treated Fischer 344 rats.

  12. Serological characterization of polycyclic aromatic hydrocarbon diolepoxide-DNA adducts using monoclonal antibodies.

    PubMed

    Newman, M J; Weston, A; Carver, D C; Mann, D L; Harris, C C

    1990-11-01

    Polycyclic aromatic hydrocarbons (PAHs) are a group of structurally related compounds that are present in the environment in complex mixtures as common pollutants. These compounds have been studied extensively because of their carcinogenic and toxic properties to humans. We reported previously that humans exposed to certain PAHs produce antibodies that bind to different PAH diolepoxide-DNA (PAH-DNA) adducts. The ability to detect and measure antibodies to PAH-DNA adducts in human blood samples could prove useful as a biological dosimeter for identifying persons that have been exposed to high levels of PAHs, i.e. persons who may be at high cancer risk. In our initial studies we found that it was common for persons who were exposed to PAH to produce antibodies against PAH-DNA adducts. However, we were unable to identify the actual chemical types of PAH-DNA adducts that were recognized by the serum antibodies because many serum samples contained antibody activity to more than one adduct. These data indicate that different PAH-DNA adducts may be serologically similar or that humans actually produce immune responses against more than a single PAH-DNA adduct. We have used monoclonal antibody technology to determine the extent to which different PAH-DNA adducts share serologically recognized epitopes. Monoclonal antibodies were produced against two different PAH-DNA adducts, benzo[a]pyrene diolepoxide-DNA (BPDE-DNA) and benz[a]anthracene diolepoxide-DNA (BADE-DNA). The binding of these antibodies to five PAH-DNA adduct preparations and to soluble PAHs was assessed. We found that most monoclonal antibodies bound to more than a single type of PAH-DNA adduct, documenting the serological relatedness of different PAH-DNA adducts. However, two monoclonal antibodies were produced that bound only to BPDE-DNA. Soluble non-metabolized PAHs and PAH tetraols were not recognized by these antibodies, thus demonstrating their specificity for PAH-DNA adducts and not the PAHs alone

  13. Hydrolytic Cleavage Products of Globin Adducts in Urine as Possible Biomarkers of Cumulative Dose: Proof of Concept Using Styrene Oxide as a Model Adduct-Forming Compound.

    PubMed

    Mráz, Jaroslav; Hanzlíková, Iveta; Moulisová, Alena; Dušková, Šárka; Hejl, Kamil; Bednářová, Aneta; Dabrowská, Ludmila; Linhart, Igor

    2016-04-18

    A new experimental model was designed to study the fate of globin adducts with styrene 7,8-oxide (SO), a metabolic intermediate of styrene and a model electrophilic compound. Rat erythrocytes were incubated with SO at 7 or 22 °C. Levels of specific amino acid adducts in globin were determined by LC/MS analysis of the globin hydrolysate, and erythrocytes with known adduct content were administered intravenously to recipient rats. The course of adduct elimination from the rat blood was measured over the following 50 days. In the erythrocytes incubated at 22 °C, a rapid decline in the adduct levels on the first day post-transfusion followed by a slow phase of elimination was observed. In contrast, the adduct elimination in erythrocytes incubated at 7 °C was nearly linear, copying elimination of intact erythrocytes. In the urine of recipient rats, regioisomeric SO adducts at cysteine, valine, lysine, and histidine in the form of amino acid adducts and/or their acetylated metabolites as well as SO-dipeptide adducts were identified by LC/MS supported by synthesized reference standards. S-(2-Hydroxy-1-phenylethyl)cysteine and S-(2-hydroxy-2-phenylethyl)cysteine, the most abundant globin adducts, were excreted predominantly in the form of the corresponding urinary mercapturic acids (HPEMAs). Massive elimination of HPEMAs via urine occurred within the first day from the erythrocytes incubated at both 7 and 22 °C. However, erythrocytes incubated at 7 °C also showed a slow second phase of elimination such that HPEMAs were detected in urine up to 50 days post-transfusion. These results indicate for the first time that globin adducts can be cleaved in vivo to modified amino acids and dipeptides. The cleavage products and/or their predictable metabolites are excreted in urine over the whole life span of erythrocytes. Some of the urinary adducts may represent a new type of noninvasive biomarker for exposure to adduct-forming chemicals.

  14. Detection and quantification of 4-ABP adducts in DNA from bladder cancer patients.

    PubMed

    Zayas, Beatriz; Stillwell, Sara W; Wishnok, John S; Trudel, Laura J; Skipper, Paul; Yu, Mimi C; Tannenbaum, Steven R; Wogan, Gerald N

    2007-02-01

    We analyzed bladder DNA from 27 cancer patients for dG-C8-4-aminobiphenyl (dG-C8-ABP) adducts using the liquid chromatography tandem mass spectrometry method with a 700 attomol (1 adduct in 10(9) bases) detection limit. Hemoglobin (Hb) 4-aminobiphenyl (4-ABP) adduct levels were measured by gas chromatography-mass spectrometry. After isolation of dG-C8-ABP by immunoaffinity chromatography and further purification, deuterated (d9) dG-C8-ABP (MW=443 Da) was added to each sample. Structural evidence and adduct quantification were determined by selected reaction monitoring, based on the expected adduct ion [M+H+]+1, at m/z 435 with fragmentation to the product ion at m/z 319, and monitoring of the transition for the internal standard, m/z 444-->328. The method was validated by analysis of DNA (100 microg each) from calf thymus; livers from ABP-treated and untreated rats; human placentas; and TK6 lymphoblastoid cells. Adduct was detected at femtomol levels in DNA from livers of ABP-treated rats and calf thymus, but not in other controls. The method was applied to 41 DNA samples (200 microg each) from 27 human bladders; 28 from tumor and 14 from surrounding non-tumor tissue. Of 27 tissues analyzed, 44% (12) contained 5-80 dG-C8-ABP adducts per 10(9) bases; only 1 out of 27 (4%) contained adduct in both tumor and surrounding tissues. The Hb adduct was detected in samples from all patients, at levels of 12-1960 pg per gram Hb. There was no correlation between levels of DNA and Hb adducts. The presence of DNA adducts in 44% of the subjects and high levels of Hb adducts in these non-smokers indicate environmental sources of exposure to 4-ABP.

  15. Biological significance of DNA adducts: comparison of increments over background for various biomarkers of genotoxicity in L5178Y tk(+/-) mouse lymphoma cells treated with hydrogen peroxide and cumene hydroperoxide.

    PubMed

    Brink, Andreas; Richter, Ingrid; Lutz, Ursula; Wanek, Paul; Stopper, Helga; Lutz, Werner K

    2009-08-01

    DNA is affected by background damage of the order of one lesion per one hundred thousand nucleotides, with depurination and oxidative damage accounting for a major part. This damage contributes to spontaneous mutation and cancer. DNA adducts can be measured with high sensitivity, with limits of detection lower than one adduct per one billion nucleotides. Minute exposures to an exogenous DNA-reactive agent may therefore result in measurable adduct formation, although, as an increment over total DNA damage, a small increment in mutation cannot be measured and would be considered negligible. Here, we investigated whether this discrepancy also holds for adducts that are present as background induced by oxidative stress. L5178Y tk(+/-) mouse lymphoma cells were incubated for 4h with hydrogen peroxide (0, 0.8, 4, 20, 100, 500muM) or cumene hydroperoxide (0, 0.37, 1.1, 3.3, 10muM). Five endpoints of genotoxicity were measured in parallel from aliquots of three replicates of large batches of cells: Two DNA adducts, 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo) and 1,N(6)-etheno-2'-deoxyadenosine (varepsilondAdo) measured by LC-MS/MS, as well as strand breaks assessed with the comet assay and in vitro micronucleus test, and gene mutation as assessed using the thymidine kinase gene mutation assay. Background measures of 8-oxodGuo and varepsilondAdo were 500-1000 and 50-90 adducts per 10(9) nucleotides. Upon treatment, neither hydrogen peroxide nor cumene hydroperoxide significantly increased the DNA adduct levels above control. In contrast, dose-related increases above background were observed with both oxidants in the comet assay, the micronucleus test and the gene mutation assay. Differences in sensitivity of the assays were quantified by estimating the concentration of oxidant that resulted in a doubling of the background measure. We conclude that the increase in DNA breakage and mutation induced by hydrogen peroxide and cumene hydroperoxide observed in our in vitro

  16. DNA Adducts of the Tobacco Carcinogens 2-Amino-9H-pyrido[2,3-b]indole and 4-Aminobiphenyl are Formed at Environmental Exposure levels and Persist in Human Hepatocytes

    PubMed Central

    Nauwelaërs, Gwendoline; Bellamri, Medjda; Fessard, Valérie; Turesky, Robert J.; Langouët, Sophie

    2013-01-01

    Aromatic amines and structurally related heterocyclic aromatic amines (HAAs) are produced during the combustion of tobacco or during the high-temperature cooking of meat. Exposure to some of these chemicals may contribute to the etiology of several common types of human cancers. 2-Amino-9H-pyrido[2,3-b]indole (AαC) is the most abundant HAA formed in mainstream tobacco smoke: it arises in amounts that are 25–100 times greater than the levels of the arylamine, 4-aminobiphenyl (4-ABP), a human carcinogen. 2-Amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) is a prevalent HAA formed in cooked meats. AαC and MeIQx are rodent carcinogens; however, their carcinogenic potency in humans is unknown. A preliminary assessment of the carcinogenic potential of these HAAs in humans was conducted by examining the capacity of primary human hepatocytes to form DNA adducts of AαC and MeIQx, in comparison to 4-ABP, followed by the kinetics of DNA adduct removal by cellular enzyme repair systems. The principal DNA adducts formed were N-(deoxyguanosin-8-yl) (dG-C8) adducts. Comparable levels of DNA adducts were formed with AαC and 4-ABP, whereas adduct formation was ~5-fold lower for MeIQx. dG-C8-AαC and dG-C8-4-ABP were formed at comparable levels in a concentration-dependent manner in human hepatocytes treated with procarcinogens over a ten thousand-fold concentration range (1 nM – 10 µM). Pretreatment of hepatocytes with furafylline, a selective inhibitor of cytochrome P450 1A2, resulted in a strong diminution of DNA adducts signifying that P450 1A2 is a major P450 isoform involved in bioactivation of these procarcinogens. The kinetics of adduct removal varied for each hepatocyte donor. Approximately half of the DNA adducts were removed within 24 h of treatment; however, the remaining lesions persisted over 5 days. The high levels of AαC present in tobacco smoke and its propensity to form persistent DNA adducts in human hepatocytes, suggests that AαC can contribute to

  17. DNA adducts of the tobacco carcinogens 2-amino-9H-pyrido[2,3-b]indole and 4-aminobiphenyl are formed at environmental exposure levels and persist in human hepatocytes.

    PubMed

    Nauwelaërs, Gwendoline; Bellamri, Medjda; Fessard, Valérie; Turesky, Robert J; Langouët, Sophie

    2013-09-16

    Aromatic amines and structurally related heterocyclic aromatic amines (HAAs) are produced during the combustion of tobacco or during the high-temperature cooking of meat. Exposure to some of these chemicals may contribute to the etiology of several common types of human cancers. 2-Amino-9H-pyrido[2,3-b]indole (AαC) is the most abundant HAA formed in mainstream tobacco smoke: it arises in amounts that are 25-100 times greater than the levels of the arylamine, 4-aminobiphenyl (4-ABP), a human carcinogen. 2-Amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) is a prevalent HAA formed in cooked meats. AαC and MeIQx are rodent carcinogens; however, their carcinogenic potency in humans is unknown. A preliminary assessment of the carcinogenic potential of these HAAs in humans was conducted by examining the capacity of primary human hepatocytes to form DNA adducts of AαC and MeIQx, in comparison to 4-ABP, followed by the kinetics of DNA adduct removal by cellular enzyme repair systems. The principal DNA adducts formed were N-(deoxyguanosin-8-yl) (dG-C8) adducts. Comparable levels of DNA adducts were formed with AαC and 4-ABP, whereas adduct formation was ∼5-fold lower for MeIQx. dG-C8-AαC and dG-C8-4-ABP were formed at comparable levels in a concentration-dependent manner in human hepatocytes treated with procarcinogens over a 10,000-fold concentration range (1 nM-10 μM). Pretreatment of hepatocytes with furafylline, a selective inhibitor of cytochrome P450 1A2, resulted in a strong diminution of DNA adducts signifying that P450 1A2 is a major P450 isoform involved in bioactivation of these procarcinogens. The kinetics of adduct removal varied for each hepatocyte donor. Approximately half of the DNA adducts were removed within 24 h of treatment; however, the remaining lesions persisted over 5 days. The high levels of AαC present in tobacco smoke and its propensity to form persistent DNA adducts in human hepatocytes suggest that AαC can contribute to DNA damage

  18. Lifetimes and stabilities of familiar explosives molecular adduct complexes during ion mobility measurements

    PubMed Central

    McKenzie, Alan; DeBord, John Daniel; Ridgeway, Mark; Park, Melvin; Eiceman, Gary; Fernandez-Lima, Francisco

    2015-01-01

    Trapped ion mobility spectrometry coupled to mass spectrometry (TIMS-MS) was utilized for the separation and identification of familiar explosives in complex mixtures. For the first time, molecular adduct complex lifetimes, relative stability, binding energies and candidate structures are reported for familiar explosives. Experimental and theoretical results showed that the adduct size and reactivity, complex binding energy and the explosive structure tailors the stability of the molecular adduct complex. TIMS flexibility to adapt the mobility separation as a function of the molecular adduct complex stability (i.e., short or long IMS experiments / low or high IMS resolution) permits targeted measurements of explosives in complex mixtures with higher confidence levels. PMID:26153567

  19. Regiochemically controlled synthesis of a β-4-β' [70]fullerene bis-adduct

    DOE PAGES

    Cerón, Maira R.; Castro, Edison; Neti, Venkata S. Pavan K.; ...

    2016-12-22

    A β-4-β' C70 bis-adduct regioisomer and an uncommon mono-adduct β-malonate C70 derivative were synthesized by using a Diels–Alder cycloaddition followed by an addition–elimination of bromo-ethylmalonate and a retro-Diels–Alder cycloaddition reaction. Here, we also report the regioselective synthesis and spectroscopic characterization of Cs-symmetric tris- and C2v-symmetric tetra-adducts of C70, which are the precursors of the mono- and bis-adduct final products.

  20. Regiochemically controlled synthesis of a β-4-β' [70]fullerene bis-adduct

    SciTech Connect

    Cerón, Maira R.; Castro, Edison; Neti, Venkata S. Pavan K.; Dunk, Paul W.; Echegoyen, Luis A.

    2016-12-22

    A β-4-β' C70 bis-adduct regioisomer and an uncommon mono-adduct β-malonate C70 derivative were synthesized by using a Diels–Alder cycloaddition followed by an addition–elimination of bromo-ethylmalonate and a retro-Diels–Alder cycloaddition reaction. Here, we also report the regioselective synthesis and spectroscopic characterization of Cs-symmetric tris- and C2v-symmetric tetra-adducts of C70, which are the precursors of the mono- and bis-adduct final products.

  1. Mass spectrometry for the assessment of the occurrence and biological consequences of DNA adducts

    PubMed Central

    Liu, Shuo; Wang, Yinsheng

    2016-01-01

    Exogenous and endogenous sources of chemical species can react, directly or after metabolic activation, with DNA to yield DNA adducts. If not repaired, DNA adducts may compromise cellular functions by blocking DNA replication and/or inducing mutations. Unambiguous identification of the structures and accurate measurements of the levels of DNA adducts in cellular and tissue DNA constitute the first and important step towards understanding the biological consequences of these adducts. The advances in mass spectrometry (MS) instrumentation in the past 2–3 decades have rendered MS an important tool for structure elucidation, quantification, and revelation of the biological consequences of DNA adducts. In this review, we summarized the development of MS techniques on these fronts for DNA adduct analysis. We placed our emphasis of discussion on sample preparation, the combination of MS with gas chromatography-or liquid chromatography (LC)-based separation techniques for the quantitative measurement of DNA adducts, and the use of LC-MS along with molecular biology tools for understanding the human health consequences of DNA adducts. The applications of mass spectrometry-based DNA adduct analysis for predicting the therapeutic outcome of anti-cancer agents, for monitoring the human exposure to endogenous and environmental genotoxic agents, and for DNA repair studies were also discussed. PMID:26204249

  2. Correlation between Quadriceps Endurance and Adduction Moment in Medial Knee Osteoarthritis

    PubMed Central

    Ahn, Sung-Eun; Park, Min-Ji; Lee, Dae-Hee

    2015-01-01

    It is not clear whether the strength or endurance of thigh muscles (quadriceps and hamstring) is positively or negatively correlated with the adduction moment of osteoarthritic knees. This study therefore assessed the relationships between the strength and endurance of the quadriceps and hamstring muscles and adduction moment in osteoarthritic knees and evaluated predictors of the adduction moment. The study cohort comprised 35 patients with unilateral medial osteoarthritis and varus deformity who were candidates for open wedge osteotomy. The maximal torque (60°/sec) and total work (180°/sec) of the quadriceps and hamstring muscles and knee adduction moment were evaluated using an isokinetic testing device and gait analysis system. The total work of the quadriceps (r = 0.429, P = 0.037) and hamstring (r = 0.426, P = 0.045) muscles at 180°/sec each correlated with knee adduction moment. Preoperative varus deformity was positively correlated with adduction moment (r = 0.421, P = 0.041). Multiple linear regression analysis showed that quadriceps endurance at 180°/sec was the only factor independently associated with adduction moment (β = 0.790, P = 0.032). The adduction moment of osteoarthritic knees correlated with the endurance, but not the strength, of the quadriceps muscle. However, knee adduction moment did not correlate with the strength or endurance of the hamstring muscle. PMID:26539830

  3. Specific function of the Met-Tyr-Trp adduct radical and residues Arg-418 and Asp-137 in the atypical catalase reaction of catalase-peroxidase KatG.

    PubMed

    Zhao, Xiangbo; Khajo, Abdelahad; Jarrett, Sanchez; Suarez, Javier; Levitsky, Yan; Burger, Richard M; Jarzecki, Andrzej A; Magliozzo, Richard S

    2012-10-26

    Catalase activity of the dual-function heme enzyme catalase-peroxidase (KatG) depends on several structural elements, including a unique adduct formed from covalently linked side chains of three conserved amino acids (Met-255, Tyr-229, and Trp-107, Mycobacterium tuberculosis KatG numbering) (MYW). Mutagenesis, electron paramagnetic resonance, and optical stopped-flow experiments, along with calculations using density functional theory (DFT) methods revealed the basis of the requirement for a radical on the MYW-adduct, for oxyferrous heme, and for conserved residues Arg-418 and Asp-137 in the rapid catalase reaction. The participation of an oxyferrous heme intermediate (dioxyheme) throughout the pH range of catalase activity is suggested from our finding that carbon monoxide inhibits the activity at both acidic and alkaline pH. In the presence of H(2)O(2), the MYW-adduct radical is formed normally in KatG[D137S] but this mutant is defective in forming dioxyheme and lacks catalase activity. KatG[R418L] is also catalase deficient but exhibits normal formation of the adduct radical and dioxyheme. Both mutants exhibit a coincidence between MYW-adduct radical persistence and H(2)O(2) consumption as a function of time, and enhanced subunit oligomerization during turnover, suggesting that the two mutations disrupting catalase turnover allow increased migration of the MYW-adduct radical to protein surface residues. DFT calculations showed that an interaction between the side chain of residue Arg-418 and Tyr-229 in the MYW-adduct radical favors reaction of the radical with the adjacent dioxyheme intermediate present throughout turnover in WT KatG. Release of molecular oxygen and regeneration of resting enzyme are thereby catalyzed in the last step of a proposed catalase reaction.

  4. Analysis of Dibenzo[def,p]chrysene-Deoxyadenosine Adducts in Wild-Type and Cytochrome P450 1b1 Knockout Mice using Stable-Isotope Dilution UHPLC-MS/MS

    PubMed Central

    Harper, Tod A.; Morré, Jeff; Lauer, Fredine T.; McQuistan, Tammie J.; Hummel, Jessica M.; Burchiel, Scott W.; Williams, David E.

    2015-01-01

    The polycyclic aromatic hydrocarbon (PAH), dibenzo[def,p]chrysene (DBC; also known as dibenzo[a,l]pyrene), is a potent carcinogen in animal models and a class 2A human carcinogen. Recent investigations into DBC-mediated toxicity identified DBC as a potent immunosuppressive agent similar to the well-studied immunotoxicant 7,12-dimethylbenz[a]anthracene (DMBA). DBC, like DMBA, is bioactivated by cytochrome P450 (CYP) 1B1 and forms the reactive metabolite DBC-11,12-diol-13,14-epoxide (DBCDE). DBCDE is largely responsible for the genotoxicity associated with DBC exposure. The immunosuppressive properties of several PAHs are also linked to genotoxic mechanisms. Therefore, this study was designed to identify DBCDE-DNA adduct formation in the spleen and thymus of wild-type and cytochrome P450 1b1 (Cyp1b1) knockout (KO) mice using a highly sensitive stable-isotope dilution UHPLC-MS/MS method. Stable-isotope dilution UHPLC-MS/MS identified the major DBC adducts (±)-anti-cis-DBCDE-dA and (±)-anti-trans-DBCDE-dA in the lung, liver, and spleen of both WT and Cyp1b1 KO mice. However, adduct formation in the thymus was below the level of quantitation for our method. Additionally, adduct formation in Cyp1b1 KO mice was significantly reduced compared to wild-type (WT) mice receiving DBC via oral gavage. In conclusion, the current study identifies for the first time DBCDE-dA adducts in the spleen of mice supporting the link between genotoxicity and immunosuppression, in addition to supporting previous studies identifying Cyp1b1 as the primary CYP involved in DBC bioactivation to DBCDE. The high levels of DBC-DNA adducts identified in the spleen, along with the known high levels of Cyp1b1 expression in this organ, supports further investigation into DBC-mediated immunotoxicity. PMID:25868132

  5. Effect of 3-methylcholanthrene induction on the distribution and DNA adduction of 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) in F344 rats.

    PubMed

    Snyderwine, E G; Nouso, K; Schut, H A

    1993-06-01

    3-Methylcholanthrene (3MC) is a potent inducer of the cytochrome P450IA family of enzymes that catalyses the metabolic activation of the food mutagen/carcinogen 2-amino-3-methylimidazo[4,5-f]quinoline (IQ). We have examined the effect of pretreatment with 3MC on the distribution and DNA adduct formation of IQ in male Fischer F344 rats. 3 hr after a single dose of [14C]IQ (10 mg/kg body weight, by gavage), the level of radioactivity in extrahepatic tissues was 30-70% less in 3MC-pretreated rats than in vehicle control rats. Although the level of radioactivity in the liver did not change after 3MC pretreatment, IQ-DNA adduct levels, measured by the 32P-postlabelling method, were 60% lower in the livers of 3MC-pretreated rats than those of control rats, and 83-97% lower in extrahepatic tissues such as the kidneys, colon, small intestine, bladder, heart and lung. IQ-DNA adducts in the testes and brain were found in control rats but were not detected in 3MC-pretreated rats. The rate of removal of IQ-DNA adducts from the livers of control and 3MC-pretreated animals was the same from 3 to 48 hr. At 48 hr, the adduct level in 3MC-pretreated rats remained lower than that seen in the control rats. The data suggest that 3MC induction of the P450IA family of cytochromes in vivo results in an increased rate of IQ detoxification.

  6. Urinary Metabolites of the Dietary Carcinogen PhIP are Predictive of Colon DNA Adducts After a Low Dose Exposure in Humans

    SciTech Connect

    Malfatti, M; Dingley, K; Nowell, S; Ubick, E; Mulakken, N; Nelson, D; Lang, N; Felton, J; Turteltaub, K

    2006-04-28

    Epidemiologic evidence indicates that exposure to heterocyclic amines (HAs) in the diet is an important risk factor for the development of colon cancer. Well-done cooked meats contain significant levels of HAs which have been shown to cause cancer in laboratory animals. To better understand the mechanisms of HA bioactivation in humans, the most mass abundant HA, 2-amino-l-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), was used to assess the relationship between PhIP metabolism and DNA adduct formation. Ten human volunteers were administered a dietary relevant dose of [{sup 14}C]PhIP 48-72 h prior to surgery to remove colon tumors. Urine was collected for 24 h after dosing for metabolite analysis, and DNA was extracted from colon tissue and analyzed by accelerator mass spectrometry for DNA adducts. All ten subjects were phenotyped for CYP1A2, NAT2, and SULT1A1 enzyme activity. Twelve PhIP metabolites were detected in the urine samples. The most abundant metabolite in all volunteers was N-hydroxy-PhIP-N{sup 2}-glucuronide. Metabolite levels varied significantly between the volunteers. Interindividual differences in colon DNA adducts levels were observed between each individual. The data showed that individuals with a rapid CYP1A2 phenotype and high levels of urinary N-hydroxy-PhIP-N{sup 2}-glucuronide, had the lowest level of colon PhIP-DNA adducts. This suggests that glucuronidation plays a significant role in detoxifying N-hydroxy-PhIP. The levels of urinary N-hydroxy-PhIP-N{sup 2}-glucuronide were negatively correlated to colon DNA adduct levels. Although it is difficult to make definite conclusions from a small data set, the results from this pilot study have encouraged further investigations using a much larger study group.

  7. BENZO[A]PYRENE-7,8-QUINONE FORMS COVALENT-DNA ADDUCTS IN VITRO BUT NONE WERE DETECTED IN THE LUNGS OR LIVERS OF STRAIN A/J MICE IN VIVO

    EPA Science Inventory

    Benzo[a]pyrene (B[a]P) is a potent human and rodent lung carcinogen. This activity has been ascribed in part to the formation of B[a]P-7,8-dio1-9,10-epoxide (BPDE)-DNA adducts. Other carcinogenic mechanisms have been proposed: 1.] The induction of apurinic sites from radical cati...

  8. BENZO[ A ]PYRENE-7,8-QUINONE FORMS COVALENT-DNA ADDUCTS IN VITRO BUT NONE WERE DETECTED IN THE LUNGS OR LIVERS OF STRAIN A/J MICE IN VIVO

    EPA Science Inventory

    Benzo[a]pyrene (B[a]P) is a potent human and rodent lung carcinogen. This activity has been ascribed in part to the formation of B[a]P-7,8-diol-9,10-epoxide (BPDE)-DNA adducts. Other carcinogenic mechanisms have been proposed: 1.] The induction of apurinic si...

  9. Adducts of rare-earth pivaloyltrifluoroacetonates with macrocyclic polyethers

    SciTech Connect

    Martynova, T.N.; Korchkov, V.P.; Nikulina, L.D.

    1986-07-01

    Adducts of lanthanide tris(pivaloyltrifluoroacetonates) with crown ethers having the formulas Ln(PTA)/sub 3/ x 18-crown-6 (Ln = La, Nd, Tb, Er, Lu) and Ln(PTA)/sub 3/ x dibenzo-18-crown-6 (Ln = Nd, Tb, Er) have been synthesized. The compounds obtained have been studied by the methods of elemental analysis, UV and IR spectroscopy, PMR, and mass spectroscopy. On the basis of the physicochemical properties and the spectra studied it has been concluded that the lanthanide tris(..beta..-diketonates) interact with the crown ethers.

  10. Acute adduction deficit in a 7-week-old infant.

    PubMed

    Jain, Sunila; Goulstine, David; Gottlob, Irene

    2002-12-01

    A 7-week-old infant with sudden onset adduction deficit and proptosis is reported. The main differential diagnoses included orbital myositis, orbital cellulitis, capillary haemangioma and rhabdomyosarcoma. A CT scan revealed a postseptal cellulitis-like picture with thickening of the medial rectus muscle. He was given a course of antibiotics, withholding steroids and biopsy. His condition resolved completely on high-dose antibiotics alone. To our knowledge this is the youngest patient with infectious orbital myositis and postseptal cellulitis described in the literature. The clinical course emphasizes the importance of administering sufficiently high doses of antibiotics.

  11. Bulky DNA adducts in white blood cells: a pooled analysis of 3600 subjects

    PubMed Central

    Ricceri, Fulvio; Godschalk, Roger; Peluso, Marco; Phillips, David H.; Agudo, Antonio; Georgiadis, Panos; Loft, Steffen; Tjonneland, Anne; Raaschou-Nielsen, Ole; Palli, Domenico; Perera, Frederica; Vermeulen, Roel; Taioli, Emanuela; Sram, Radim J.; Munnia, Armelle; Rosa, Fabio; Allione, Alessandra; Matullo, Giuseppe; Vineis, Paolo

    2013-01-01

    Background Bulky DNA adducts are markers of exposure to genotoxic aromatic compounds, which reflect an individual’s ability to metabolically activate carcinogens and to repair DNA damage. Polycyclic aromatic hydrocarbons (PAH) represent a major class of carcinogens that are capable of forming such adducts. Factors that have been reported to be related to DNA adduct levels include smoking, diet, body mass index (BMI), genetic polymorphisms, the season of collection of biologic material, and air pollutants. Methods We pooled eleven studies (3,600 subjects) in which bulky DNA adducts were measured in human white blood cells with similar 32P-postlabelling techniques and for which a similar set of variables was available, including individual data on age, gender, ethnicity, batch, smoking habits, BMI, season of blood collection and a limited set of gene variants. Results Lowest DNA adduct levels were observed in the spring (median 0.50 adducts per 108 nucleotides), followed by summer (0.64), autumn (0.70) and winter (0.85) (p=0.006). The same pattern emerged in multivariate analysis, but only among never smokers (p=0.02). Adduct levels were significantly lower (p=0.001) in Northern Europe (the Netherlands, Denmark) (mean 0.60, median 0.40) than in Southern Europe (Italy, Spain, France, Greece) (mean 0.79, median 0.60). Conclusions In this large pooled analysis, we have found only weak associations between bulky DNA adducts and exposure variables. Seasonality (with higher adducts levels in winter) and air pollution may partly explain some of the inter-area differences (North vs South Europe), but most inter-area and inter-individual variation in adduct levels still remain unexplained. Impact Our study describes the largest pooled analysis of bulky DNA adducts so far, showing that inter-individual variation is still largely unexplained, though seasonality appears to play a role. PMID:20921335

  12. Tyrosine-lipid peroxide adducts from radical termination: para coupling and intramolecular Diels-Alder cyclization.

    PubMed

    Shchepin, Roman; Möller, Matias N; Kim, Hye-young H; Hatch, Duane M; Bartesaghi, Silvina; Kalyanaraman, Balaraman; Radi, Rafael; Porter, Ned A

    2010-12-15

    Free radical co-oxidation of polyunsaturated lipids with tyrosine or phenolic analogues of tyrosine gave rise to lipid peroxide-tyrosine (phenol) adducts in both aqueous micellar and organic solutions. The novel adducts were isolated and characterized by 1D and 2D NMR spectroscopy as well as by mass spectrometry (MS). The spectral data suggest that the polyunsaturated lipid peroxyl radicals give stable peroxide coupling products exclusively at the para position of the tyrosyl (phenoxy) radicals. These adducts have characteristic (13)C chemical shifts at 185 ppm due to the cross-conjugated carbonyl of the phenol-derived cyclohexadienone. The primary peroxide adducts subsequently undergo intramolecular Diels-Alder (IMDA) cyclization, affording a number of diastereomeric tricyclic adducts that have characteristic carbonyl (13)C chemical shifts at ~198 ppm. All of the NMR HMBC and HSQC correlations support the structure assignments of the primary and Diels-Alder adducts, as does MS collision-induced dissociation data. Kinetic rate constants and activation parameters for the IMDA reaction were determined, and the primary adducts were reduced with cuprous ion to give a phenol-derived 4-hydroxycyclohexa-2,5-dienone. No products from adduction of peroxyls at the phenolic ortho position were found in either the primary or cuprous reduction product mixtures. These studies provide a framework for understanding the nature of lipid-protein adducts formed by peroxyl-tyrosyl radical-radical termination processes. Coupling of lipid peroxyl radicals with tyrosyl radicals leads to cyclohexenone and cyclohexadienone adducts, which are of interest in and of themselves since, as electrophiles, they are likely targets for protein nucleophiles. One consequence of lipid peroxyl reactions with tyrosyls may therefore be protein-protein cross-links via interprotein Michael adducts.

  13. Site specific synthesis and polymerase bypass of oligonucleotides containing a 6-hydroxy-3,5,6,7-tetrahydro-9H-imidazo[1,2-a]purin-9-one base, an intermediate in the formation of 1,N2-etheno-2'-deoxyguanosine.

    PubMed

    Goodenough, Angela K; Kozekov, Ivan D; Zang, Hong; Choi, Jeong-Yun; Guengerich, F Peter; Harris, Thomas M; Rizzo, Carmelo J

    2005-11-01

    The reaction of DNA with certain bis-electrophiles such as chlorooxirane and chloroacetaldehyde produces etheno adducts. These lesions are highly miscoding, and some of the chemical agents that produce them have been shown to be carcinogenic in laboratory animals and in humans. An intermediate in the formation of 1,N2-ethenoguanine is 6-hydroxy-3,5,6,7-tetrahydro-9H-imidazo[1,2-a]purin-9-one (6-hydroxyethanoguanine), which undergoes conversion to the etheno adduct. The chemical properties and miscoding potential of the hydroxyethano adduct have not been previously studied. A synthesis of the hydroxyethano-adducted nucleoside was developed, and it was site specifically incorporated into oligonucleotides. This adduct had a half-life of between 24 and 48 h at neutral pH and 25 degrees C at the nucleoside and oligonucleotide levels. The miscoding potential of the hydroxyethano adduct was examined by primer extension reactions with the DNA polymerases Dpo4 and pol T7-, and the results were compared to the corresponding etheno-adducted oligonucleotide. Dpo4 preferentially incorporated dATP opposite the hydroxyethano adduct and dGTP opposite the etheno adduct; pol T7- preferentially incorporated dATP opposite the etheno adduct while dGTP and dATP were incorporated opposite the hydroxyethano adduct with nearly equal catalytic efficiencies. Collectively, these results indicate that the hydroxyethano adduct has a sufficient lifetime and miscoding properties to contribute to the mutagenic spectrum of chlorooxirane and related genotoxic species.

  14. Turned head--adducted hip--truncal curvature syndrome.

    PubMed Central

    Hamanishi, C; Tanaka, S

    1994-01-01

    One hundred and eight neonates and infants who showed the clinical triad of a head turned to one side, adduction contracture of the hip joint on the occipital side of the turned head, and truncal curvature, which we named TAC syndrome, were studied. These cases included seven with congenital and five with late infantile dislocations of the hip joint and 14 who developed muscular torticollis. Forty one were among 7103 neonates examined by one of the authors. An epidemiological analysis confirmed the aetiology of the syndrome to be environmental. The side to which the head was turned and that of the adducted hip contracture showed a high correlation with the side of the maternal spine on which the fetus had been lying. TAC syndrome is an important asymmetrical deformity that should be kept in mind during neonatal examination, and may be aetiologically related to the unilateral dislocation of the hip joint, torticollis, and infantile scoliosis which develop after a vertex presentation. Images PMID:8048823

  15. Nonstoichiometric Adduct Approach for High-Efficiency Perovskite Solar Cells.

    PubMed

    Park, Nam-Gyu

    2017-01-03

    Since the groundbreaking report on a solid-state perovskite solar cell employing a methylammonium lead iodide-sensitized mesoporous TiO2 film and an organic hole conducting layer in 2012 by our group, the swift surge of perovskite photovoltaics opens a new paradigm in solar-cell research. As a result, ca. 1300 peer-reviewed research articles were published in 2015. In this Inorganic Chemistry Forum on Halide Perovskite, the researches with highlights of work on perovskite solar cells in my laboratory are reviewed. We have developed a size-controllable two-step spin-coating method and found that minimal nonradiative recombination in perovskite crystals could lead to high photovoltaic performance. A Lewis acid based adduct method and self-formed grain boundary process were developed for high-efficiency devices with reproducibility. A power conversion efficiency of 20.4% was achieved via grain boundary engineering based on a nonstoichiometric adduct approach. The incorporation of cesium in a formamidinium lead iodide perovskite was found to show better photostability and moisture-stability. A reduction in the dimensionality from a three-dimensitonal nanocrystal to a one-dimensional nanowire led to a hypsochromic shift of absorption and fluorescence. To enhance the charge-carrier transport and light-harvesting efficiency, a nanoarchitecture of oxide layers was proposed.

  16. Detection, characterization, and decay kinetics of ROS and thiyl adducts of mito-DEPMPO spin trap.

    PubMed

    Hardy, Micaël; Rockenbauer, Antal; Vásquez-Vivar, Jeannette; Felix, Christopher; Lopez, Marcos; Srinivasan, Satish; Avadhani, Narayan; Tordo, Paul; Kalyanaraman, B

    2007-07-01

    We report here the detection and characterization of spin adducts formed from the trapping of reactive oxygen species (superoxide and hydroxyl radicals) and glutathiyl and carbon-centered radicals by a newly synthesized nitrone, Mito-DEPMPO. This is a cationic nitrone spin trap with a triphenyl phosphonium cation conjugated to the DEPMPO analogue. The Mito-DEPMPO-OOH adduct, formed from the trapping of superoxide by Mito-DEPMPO, was enzymatically generated using xanthine/xanthine oxidase and neuronal nitric oxide synthase, and chemically generated by KO2 in 18-crown-6. The Mito-DEPMPO-OOH adduct exhibits an eight-line EPR spectrum with partial asymmetry arising from the alternate line-width effect. The half-life of the Mito-DEPMPO-OOH adduct is 2-2.5-times greater than that of the DEPMPO-OOH. The Mito-DEPMPO-SG adduct, formed from the trapping of glutathiyl radicals by Mito-DEPMPO, is 3-times more persistent than the analogue DEPMPO-SG adduct. In this study, we describe the EPR characterization of spin adducts formed from Mito-DEPMPO. The EPR parameters of Mito-DEPMPO adducts are distinctly different and highly characteristic. The detection of superoxide from an intact mitochondrion was feasible with Mito-DEPMPO but not with DEPMPO. We conclude that Mito-DEPMPO nitrone and its analogues are more effective than most nitrone spin traps for trapping superoxide, hydroxyl, and thiyl radicals formed in biological systems, including mitochondria.

  17. 40 CFR 721.3700 - Fatty acid, ester with styrenated phenol, ethylene oxide adduct.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... phenol, ethylene oxide adduct. 721.3700 Section 721.3700 Protection of Environment ENVIRONMENTAL..., ethylene oxide adduct. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified generically as fatty acid, ester with styrenated phenol, ethylene...

  18. 40 CFR 721.3700 - Fatty acid, ester with styrenated phenol, ethylene oxide adduct.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... phenol, ethylene oxide adduct. 721.3700 Section 721.3700 Protection of Environment ENVIRONMENTAL..., ethylene oxide adduct. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified generically as fatty acid, ester with styrenated phenol, ethylene...

  19. 40 CFR 721.3700 - Fatty acid, ester with styrenated phenol, ethylene oxide adduct.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... phenol, ethylene oxide adduct. 721.3700 Section 721.3700 Protection of Environment ENVIRONMENTAL..., ethylene oxide adduct. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified generically as fatty acid, ester with styrenated phenol, ethylene...

  20. 40 CFR 721.3700 - Fatty acid, ester with styrenated phenol, ethylene oxide adduct.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... phenol, ethylene oxide adduct. 721.3700 Section 721.3700 Protection of Environment ENVIRONMENTAL..., ethylene oxide adduct. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified generically as fatty acid, ester with styrenated phenol, ethylene...

  1. 40 CFR 721.3700 - Fatty acid, ester with styrenated phenol, ethylene oxide adduct.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... phenol, ethylene oxide adduct. 721.3700 Section 721.3700 Protection of Environment ENVIRONMENTAL..., ethylene oxide adduct. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified generically as fatty acid, ester with styrenated phenol, ethylene...

  2. Quantitation of 4,4′-methylene diphenyl diisocyanate human serum albumin adducts

    PubMed Central

    Luna, Leah G.; Green, Brett J.; Zhang, Fagen; Arnold, Scott M.; Siegel, Paul D.; Bartels, Michael J.

    2016-01-01

    4,4′-Methylene diphenyl diisocyanate (herein 4,4′-MDI) is used in the production of polyurethane foams, elastomers, coatings, adhesives and the like for a wide range of commercial products. Occupational exposure to MDI levels above current airborne exposure limits can elicit immune mediated hypersensitivity reactions such as occupational asthma in sensitive individuals. To accurately determine exposure, there has been increasing interest in developing analytical methods to measure internal biomarkers of exposure to MDI. Previous investigators have reported methodologies for measuring MDI diamine metabolites and MDI-Lysine (4,4′-MDI-Lys) adducts. The purpose of this study was to develop and validate an ultra performance liquid chromatography isotope dilution tandem mass spectrometry (UPLC-ID/MS/MS) quantitation method via a signature peptide approach to enable biomonitoring of 4,4′-MDI adducted to human serum albumin (HSA) in plasma. A murine, anti-4,4′-MDI monoclonal IgM antibody was bound to magnetic beads and utilized for enrichment of the MDI adducted HSA. Following enrichment, trypsin digestion was performed to generate the expected 414 site (primary site of adduction) 4,4′-MDI-adducted HSA signature peptide that was quantified by UPLC-ID/MS/MS. An Agilent 6530 UPLC/quadrupole time of flight MS (QTOF) system was utilized for intact adducted protein analysis and an Agilent 6490 UPLC/MS/MS system operated in multiple reaction monitoring (MRM) mode was utilized for quantification of the adducted signature peptide biomarker both for in chemico and worker serum samples. Worker serum samples were initially screened utilizing the previously developed 4,4′-MDI-Lys amino acid method and results showed that 12 samples were identified as quantifiable for 4,4′-MDI-Lys adducts. The signature peptide adduct approach was applied to the 12 worker samples identified as quantifiable for 4,4′-MDI-Lys adducts. Results indicated no positive results were obtained

  3. Neurotoxic Thioether Adducts of 3,4-Methylenedioxymethamphetamine Identified in Human Urine After Ecstasy IngestionS⃞

    PubMed Central

    Perfetti, Ximena; O'Mathúna, Brian; Pizarro, Nieves; Cuyàs, Elisabet; Khymenets, Olha; Almeida, Bruno; Pellegrini, Manuela; Pichini, Simona; Lau, Serrine S.; Monks, Terrence J.; Farré, Magí; Pascual, Jose Antonio; Joglar, Jesús; de la Torre, Rafael

    2009-01-01

    3,4-Methylenedioxymethamphetamine (MDMA, Ecstasy) is a widely misused synthetic amphetamine derivative and a serotonergic neurotoxicant in animal models and possibly humans. The underlying mechanism of neurotoxicity involves the formation of reactive oxygen species although their source remains unclear. It has been postulated that MDMA-induced neurotoxicity is mediated via the formation of bioreactive metabolites. In particular, the primary catechol metabolites, 3,4-dihydroxymethamphetamine (HHMA) and 3,4-dihydroxyamphetamine (HHA), subsequently cause the formation of glutathione and N-acetylcysteine conjugates, which retain the ability to redox cycle and are serotonergic neurotoxicants in rats. Although the presence of such metabolites has been recently demonstrated in rat brain microdialysate, their formation in humans has not been reported. The present study describes the detection of 5-(N-acetylcystein-S-yl)-3,4-dihydroxymethamphetamine (N-Ac-5-Cys-HHMA) and 5-(N-acetylcystein-S-yl)-3,4-dihydroxyamphetamine (N-Ac-5-Cys-HHA) in human urine of 15 recreational users of MDMA (1.5 mg/kg) in a controlled setting. The results reveal that in the first 4 h after MDMA ingestion ∼0.002% of the administered dose was recovered as thioether adducts. Genetic polymorphisms in CYP2D6 and catechol-O-methyltransferase expression, the combination of which are major determinants of steady-state levels of HHMA and 4-hydroxy-3-methoxyamphetamine, probably explain the interindividual variability seen in the recovery of N-Ac-5-Cys-HHMA and N-Ac-5-Cys-HHA. In summary, the formation of neurotoxic thioether adducts of MDMA has been demonstrated for the first time in humans. The findings lend weight to the hypothesis that the bioactivation of MDMA to neurotoxic metabolites is a relevant pathway to neurotoxicity in humans. PMID:19349378

  4. Liquid chromatography-thermospray mass spectrometry of DNA adducts formed with mitomycin C, porfiromycin and thiotepa.

    PubMed

    Musser, S M; Pan, S S; Callery, P S

    1989-07-14

    High-performance liquid chromatography (HPLC) and thermospray mass spectrometry were combined for the analysis of DNA adducts formed from the interaction of the anticancer drugs mitomycin C, porfiromycin and thiotepa with calf thymus DNA. The adducts formed from reaction of mitomycin C and porfiromycin with DNA were separated from unmodified nucleosides by HPLC on a C18 column and identified by thermospray mass spectrometry. Thiotepa DNA adducts readily depurinated from DNA and were chromatographed and identified by thermospray liquid chromatography-mass spectrometry as the modified bases without the ribose moiety attached. The utility of thermospray mass spectrometry for the identification of microgram quantities of nucleoside adducts and depurinated base adducts of these anticancer drugs was demonstrated.

  5. DNA adducts in marine mussel and fresh water fishes living in polluted and unpolluted environments

    SciTech Connect

    Kurelec, B.; Checko, M.; Krca, S.; Garg, A.; Gupta, R.C. Baylor College of Medicine, Houston, TX )

    1988-09-01

    {sup 32}P-postlabeling analysis of DNA adducts in the digestive gland of marine mussel Mytilus galloprovincialis from polluted and unpolluted sites near Rovinj, Northern Adriatic, revealed that majority of adducts are caused by natural environmental factors rather than by man-made chemicals. The only pollutant-specific adducts were observed in a mussel exposed to seawater experimentally polluted with aminofluorene, and in a population of mussel living at a site heavily polluted with a waste waters of an oil refinery. Fresh water fish species Leuciscus cephalus, Barbus barbus, Abramis brama and Rutilus pigus virgo living in a polluted Sava River, Yugoslavia, or in its unpolluted tributary Korana River, have induced in their livers qualitatively identical and quantitatively similar DNA adducts. These DNA adducts had a species-specific patterns and their appearance was seasonally-dependent.

  6. MRN, CtIP, and BRCA1 mediate repair of topoisomerase II-DNA adducts.

    PubMed

    Aparicio, Tomas; Baer, Richard; Gottesman, Max; Gautier, Jean

    2016-02-15

    Repair of DNA double-strand breaks (DSBs) with complex ends poses a special challenge, as additional processing is required before DNA ligation. For example, protein-DNA adducts must be removed to allow repair by either nonhomologous end joining or homology-directed repair. Here, we investigated the processing of topoisomerase II (Top2)-DNA adducts induced by treatment with the chemotherapeutic agent etoposide. Through biochemical analysis in Xenopus laevis egg extracts, we establish that the MRN (Mre11, Rad50, and Nbs1) complex, CtIP, and BRCA1 are required for both the removal of Top2-DNA adducts and the subsequent resection of Top2-adducted DSB ends. Moreover, the interaction between CtIP and BRCA1, although dispensable for resection of endonuclease-generated DSB ends, is required for resection of Top2-adducted DSBs, as well as for cellular resistance to etoposide during genomic DNA replication.

  7. Enhanced Stability of Blood Matrices Using a Dried Sample Spot Assay to Measure Human Butyrylcholinesterase Activity and Nerve Agent Adducts

    PubMed Central

    Perez, Jonas W.; Pantazides, Brooke G.; Watson, Caroline M.; Thomas, Jerry D.; Blake, Thomas A.; Johnson, Rudolph C.

    2015-01-01

    Dried matrix spots are safer to handle and easier to store than wet blood products, but factors such as intra-spot variability and unknown sample volumes have limited their appeal as a sampling format for quantitative analyses. In this work, we introduce a dried spot activity assay for quantifying butyrylcholinesterase (BChE) specific activity which is BChE activity normalized to the total protein content in a sample spot. The method was demonstrated with blood, serum, and plasma spotted on specimen collection devices (cards) which were extracted to measure total protein and BChE activity using a modified Ellman assay. Activity recovered from dried spots was ∼80% of the initial spotted activity for blood and >90% for plasma and serum. Measuring total protein in the sample and calculating specific activity substantially improved quantification and reduced intra-spot variability. Analyte stability of nerve agent adducts was also evaluated, and the results obtained via BChE-specific activity measurements were confirmed by quantification of BChE adducts using a previously established LC-MS/MS method. The spotted samples were up to 10-times more resistant to degradation compared to unspotted control samples when measuring BChE inhibition by the nerve agents sarin and VX. Using this method, both BChE activity and adducts can be accurately measured from a dried sample spot. This use of a dried sample spot with normalization to total protein is robust, demonstrates decreased intra-spot variability without the need to control for initial sample volume, and enhances analyte stability. PMID:25955132

  8. Tamoxifen Forms DNA Adducts In Human Colon After Administration Of A Single [14C]-Labeled Therapeutic Dose.

    SciTech Connect

    Brown, K; Tompkins, E M; Boocock, D J; Martin, E A; Farmer, P B; Turteltaub, K W; Ubick, E; Hemingway, D; Horner-Glister, E; White, I H

    2007-05-23

    Tamoxifen is widely prescribed for the treatment of breast cancer and is also licensed in the U.S. for the prevention of this disease. However, tamoxifen therapy is associated with an increased occurrence of endometrial cancer in women and there is also evidence that it may elevate the risk of colorectal cancer. The underlying mechanisms responsible for tamoxifen-induced carcinogenesis in women have not yet been elucidated but much interest has focussed on the role of DNA adduct formation. We investigated the propensity of tamoxifen to bind irreversibly to colorectal DNA when given to ten women as a single [{sup 14}C]-labeled therapeutic (20 mg) dose, {approx}18 h prior to undergoing colon resections. Using the sensitive technique of accelerator mass spectrometry, coupled with HPLC separation of enzymatically digested DNA, a peak corresponding to authentic dG-N{sup 2}-tamoxifen adduct was detected in samples from three patients, at levels ranging from 1-7 adducts/10{sup 9} nucleotides. No [{sup 14}C]-radiolabel associated with tamoxifen or its major metabolites was detected. The presence of detectable CYP3A4 protein in all colon samples suggests this tissue has the potential to activate tamoxifen to {alpha}-hydroxytamoxifen, in addition to that occurring in the systemic circulation, and direct interaction of this metabolite with DNA could account for the binding observed. Although the level of tamoxifeninduced damage displayed a degree of inter-individual variability, when present it was {approx}10-100 times higher than that reported for other suspect human colon carcinogens such as PhIP. These findings provide a mechanistic basis through which tamoxifen could increase the incidence of colon cancers in women.

  9. Accurate characterization of carcinogenic DNA adducts using MALDI tandem time-of-flight mass spectrometry

    NASA Astrophysics Data System (ADS)

    Barnes, Charles A.; Chiu, Norman H. L.

    2009-01-01

    Many chemical carcinogens and their in vivo activated metabolites react readily with genomic DNA, and form covalently bound carcinogen-DNA adducts. Clinically, carcinogen-DNA adducts have been linked to various cancer diseases. Among the current methods for DNA adduct analysis, mass spectroscopic method allows the direct measurement of unlabeled DNA adducts. The goal of this study is to explore the use of matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry (MALDI-TOF/TOF MS) to determine the identity of carcinogen-DNA adducts. Two of the known carcinogenic DNA adducts, namely N-(2'-deoxyguanosin-8-yl)-2-amino-1-methyl-6-phenyl-imidazo [4,5-b] pyridine (dG-C8-PhIP) and N-(2'-deoxyguanosin-8yl)-4-aminobiphenyl (dG-C8-ABP), were selected as our models. In MALDI-TOF MS measurements, the small matrix ion and its cluster ions did not interfere with the measurements of both selected dG adducts. To achieve a higher accuracy for the characterization of selected dG adducts, 1 keV collision energy in MALDI-TOF/TOF MS/MS was used to measure the adducts. In comparison to other MS/MS techniques with lower collision energies, more extensive precursor ion dissociations were observed. The detection of the corresponding fragment ions allowed the identities of guanine, PhIP or ABP, and the position of adduction to be confirmed. Some of the fragment ions of dG-C8-PhIP have not been reported by other MS/MS techniques.

  10. Recoveries of DNA adducts of polycyclic aromatic hydrocarbons in the 32P-postlabelling assay.

    PubMed

    Segerbäck, D; Vodicka, P

    1993-12-01

    The 32P-postlabelling assay for analysis of DNA adducts of chemical carcinogens has been applied in a large number of experimental animal and human studies. Most human studies have dealt with occupational and environmental exposures to polycyclic aromatic hydrocarbons (PAHs). The postlabelling assay does not allow direct chemical identification, and most studies with this method have not been performed in a quantitative way. Very little is therefore known about the identity and absolute levels of adducts, which are important contributors to the process of risk identification and quantitation. In the present study it was, therefore, decided to test some parameters suspected to affect recoveries of adducts in the phosphorylation step of the assay. For this purpose 12 different PAHs were reacted individually and in a mixture with DNA in the presence of a rat liver S9 metabolizing system. Different concentrations of ATP, calcium chloride and polynucleotide kinase were tested using the nuclease P1 enhancement. We found that each factor contributed to adduct recovery and that optimal conditions could be defined. Diluting the modified DNA samples up to 1000 times had little influence on the recoveries of adducts. Comparing the nuclease P1 and the butanol extraction procedures for adduct purification showed that both methods gave similar patterns and levels of major adducts. The absolute recoveries in postlabelling, based on 3H-binding of radiolabelled compounds, were for most of the tested compounds relatively low. The fact that the nuclease P1 and the butanol extraction procedures gave similar recoveries points towards common factor(s) involved in the reduction of the recovered adduct levels. Based on the observed recoveries the conclusion can be drawn that when postlabelling related adducts in human samples the true total adduct levels can be considerably underestimated, even if optimal conditions are used.

  11. ON BENZO[A]PYRENE DERIVED DNA ADDUCTS FORMED IN LUNG TISSUE OF MICE

    EPA Science Inventory

    On Benzo [a] pyrene Derived DNA Adducts Formed in Lung Tissue of Mice
    The previously identified major DNA adducts of benzo[a]pyrene (BP) in vitro and in vivo are the stable and unstable adducts formed by reaction of the bay-region diol epoxide of BP (BPDE) and BP radical catio...

  12. CYCLOPENTA-FUSED POLYCYCLIC AROMATIC HYDROCARBONS IN STRAIN A/J MOUSE LUNG: DNA ADDUCTS, ONCOGENE MUTATIONS, & TUMORIGENESIS

    EPA Science Inventory

    Cyclopenta-fused Polycyclic Aromatic Hydrocarbons in Strain AJJ Mouse Lung: DNA Adducts, Oncogene Mutations, and Tumorigenesis.

    We have examined the relationships between DNA adducts, Ki-ras oncogene mutations, DNA adducts, and adenoma induction in the lungs of strain A/J...

  13. Acetaminophen-induced liver injury in rats and mice: Comparison of protein adducts, mitochondrial dysfunction, and oxidative stress in the mechanism of toxicity

    SciTech Connect

    McGill, Mitchell R.; Williams, C. David; Xie, Yuchao; Ramachandran, Anup; Jaeschke, Hartmut

    2012-11-01

    Acetaminophen (APAP) overdose is the most common cause of acute liver failure in the West. In mice, APAP hepatotoxicity can be rapidly induced with a single dose. Because it is both clinically relevant and experimentally convenient, APAP intoxication has become a popular model of liver injury. Early data demonstrated that rats are resistant to APAP toxicity. As a result, mice are the preferred species for mechanistic studies. Furthermore, recent work has shown that the mechanisms of APAP toxicity in humans are similar to mice. Nevertheless, some investigators still use rats. New mechanistic information from the last forty years invites a reevaluation of the differences between these species. Comparison may provide interesting insights and confirm or exclude the rat as an option for APAP studies. To this end, we treated rats and mice with APAP and measured parameters of liver injury, APAP metabolism, oxidative stress, and activation of the c-Jun N-terminal kinase (JNK). Consistent with earlier data, we found that rats were highly resistant to APAP toxicity. Although overall APAP metabolism was similar in both species, mitochondrial protein adducts were significantly lower in rats. Accordingly, rats also had less oxidative stress. Finally, while mice showed extensive activation and mitochondrial translocation of JNK, this could not be detected in rat livers. These data support the hypothesis that mitochondrial dysfunction is critical for the development of necrosis after APAP treatment. Because mitochondrial damage also occurs in humans, rats are not a clinically relevant species for studies of APAP hepatotoxicity. Highlights: ► Acetaminophen overdose causes severe liver injury only in mice but not in rats. ► APAP causes hepatic GSH depletion and protein adduct formation in rats and mice. ► Less protein adducts were measured in rat liver mitochondria compared to mouse. ► No oxidant stress, peroxynitrite formation or JNK activation was present in rats. ► The

  14. DNA adducts in hematopoietic tissues and blood of the mummichog (Fundulus heteroclitus) from a creosote-contaminated site in the Elizabeth River, Virginia.

    PubMed

    Rose, W L; French, B L; Reichert, W L; Faisal, M

    2000-01-01

    Hydrophobic DNA adducts were examined in liver, anterior kidney, spleen, and blood of tumor-prone mummichog (Fundulus heterclitus) from the creosote-contaminated Atlantic Wood (AW) site (Elizabeth River, Virginia). DNA adducts eluted in a diagonal radioactive zone, characteristic of polycyclic aromatic hydrocarbon exposure, in all examined tissues of AW fish. Mummichog demonstrated significantly higher levels of DNA adducts in spleen (394 +/- 109 nmol adducts/mol nucleotides) than in liver (201 +/- 77 nmol adducts/mol nucleotides) or anterior kidney (211 +/- 68 nmol adducts/mol nucleotides; P = 0.036). The levels of DNA adducts in the pooled blood (pool of four) were 142 nmol adducts/mol nucleotides. DNA adducts were not detected in the liver, anterior kidney, spleen and blood of fish collected from the reference site (< 2 nmol adducts/mol nucleotides). The high levels of DNA adducts detected in tissues of AW mummichog may be linked to the increased cancer incidence and immunosuppression in this population.

  15. Environmental pollutant and potent mutagen 3-nitrobenzanthrone forms DNA adducts after reduction by NAD(P)H:quinone oxidoreductase and conjugation by acetyltransferases and sulfotransferases in human hepatic cytosols.

    PubMed

    Arlt, Volker M; Stiborova, Marie; Henderson, Colin J; Osborne, Martin R; Bieler, Christian A; Frei, Eva; Martinek, Vaclav; Sopko, Bruno; Wolf, C Roland; Schmeiser, Heinz H; Phillips, David H

    2005-04-01

    3-Nitrobenzanthrone (3-nitro-7H-benz[de]anthracen-7-one, 3-NBA) is a potent mutagen and suspected human carcinogen identified in diesel exhaust and air pollution. We compared the ability of human hepatic cytosolic samples to catalyze DNA adduct formation by 3-NBA. Using the (32)P-postlabeling method, we found that 12/12 hepatic cytosols activated 3-NBA to form multiple DNA adducts similar to those formed in vivo in rodents. By comparing 3-NBA-DNA adduct formation in the presence of cofactors of NAD(P)H:quinone oxidoreductase (NQO1) and xanthine oxidase, most of the reductive activation of 3-NBA in human hepatic cytosols was attributed to NQO1. Inhibition of adduct formation by dicoumarol, an NQO1 inhibitor, supported this finding and was confirmed with human recombinant NQO1. When cofactors of N,O-acetyltransferases (NAT) and sulfotransferases (SULT) were added to cytosolic samples, 3-NBA-DNA adduct formation increased 10- to 35-fold. Using human recombinant NQO1 and NATs or SULTs, we found that mainly NAT2, followed by SULT1A2, NAT1, and, to a lesser extent, SULT1A1 activate 3-NBA. We also evaluated the role of hepatic NADPH:cytochrome P450 oxidoreductase (POR) in the activation of 3-NBA in vivo by treating hepatic POR-null mice and wild-type littermates i.p. with 0.2 or 2 mg/kg body weight of 3-NBA. No difference in DNA binding was found in any tissue examined (liver, lung, kidney, bladder, and colon) between null and wild-type mice, indicating that 3-NBA is predominantly activated by cytosolic nitroreductases rather than microsomal POR. Collectively, these results show the role of human hepatic NQO1 to reduce 3-NBA to species being further activated by NATs and SULTs.

  16. Biotransformation of the double bond in allyl glycidyl ether to an epoxide ring. Evidence from hemoglobin adducts in mice.

    PubMed

    Pérez, H L; Osterman-Golkar, S

    2000-02-15

    Allyl glycidyl ether (AGE) is used industrially in the production of various epoxy resins. The compound is mutagenic and evidence for carcinogenicity in mice and rats has been reported. A previous study in mice showed that AGE reacts directly, without metabolic activation, with N-terminal valine in hemoglobin to form adducts (AGEVal). Metabolism of AGE may lead to formation of diglycidyl ether (I) through epoxidation of the double bond or 1-allyloxy-2,3-dihydroxypropane (II) through hydrolysis of the epoxide ring. 2,3-Dihydroxypropyl glycidyl ether (III) may be formed either by hydrolysis of I or epoxidation of II. The main aim of the present study was to investigate if AGE is metabolized to the reactive epoxides I or III by analysis of adducts with hemoglobin. Nine male mice (C3H/Hej) were administered AGE dissolved in tricaprylin, 4 mg/mouse, by intraperitoneal (i.p.) injection. Eleven male mice were administered 4 mg/mouse of AGE dissolved in acetone, by skin application. Adducts of I or III with N-terminal valine, N-(2-hydroxy-3-(2,3-dihydroxy)propyloxy)propylvaline (diOHPrGEVal), were demonstrated in mice administered AGE by i.p. injection. The levels were in the range 1600-5600 pmol/g globin. The level of diOHPrGEVal in mice administered AGE by skin application (n = 5) was below the detection limit of the analytical method, 20 pmol/g globin. The level of AGEVal, analyzed in mice administered AGE by skin application (n = 6), was about 20 pmol/g globin (median value), as compared with 1600 pmol/g globin previously found in mice administered AGE by i.p. injection. Neither AGEVal nor diOHPrGEVal were detected in control animals. Both adducts were analyzed using a modified Edman method for derivatization and using gas chromatography/tandem mass spectrometry for detection. The hydroxyl groups of the Edman derivative of diOHPrGEVal were protected by acetylation.

  17. Rotational Spectra of Adducts of Formaldehyde with Freons

    NASA Astrophysics Data System (ADS)

    Qian, Gou; Feng, Gang; Evangelisti, Luca; Caminati, W.; Lopez, Montserrat Vallejo; Lesarri, Alberto; Cocinero, Emilio

    2013-06-01

    The rotational spectra of three 1:1 complexes of formaldehyde (H_{2}CO) with freons, i.e. difluoromethane (CH_{2}F_{2}), fluorochloromethane (CH_{2}FCl) and trifluorochloromethane (CF_{3}Cl), have been observed and assigned using pulsed jet Fourier transform microwave technique. Several isotopologues (including some ^{13}C species) have been measured in natural abundance. The tunnelling splittings have been measured in the first two adducts with relative intensity 1:3, due to the internal rotation of the formaldehyde moity along its symmetry axis. The barriers to this motion have been estimated by using a flexible model. For the latter two complexes, each of transition displays the hyperfine structures due to the quadrupolar effects of ^{35}Cl (^{37}Cl) nucleus. The dissociation energy has been estimated within the pseudo-diatomic approximation for all three complexes.

  18. Vitamin A-aldehyde adducts: AMD risk and targeted therapeutics

    PubMed Central

    Sparrow, Janet R.

    2016-01-01

    Although currently available treatment options for age-related macular degeneration (AMD) are limited, particularly for atrophic AMD, the identification of predisposing genetic variations has informed clinical studies addressing therapeutic options such as complement inhibitors and anti-inflammatory agents. To lower risk of early AMD, recommended lifestyle interventions such as the avoidance of smoking and the intake of low glycemic antioxidant-rich diets have largely followed from the identification of nongenetic modifiable factors. On the other hand, the challenge of understanding the complex relationship between aging and cumulative damage leading to AMD has fueled investigations of the visual cycle adducts that accumulate in retinal pigment epithelial (RPE) cells and are a hallmark of aging retina. These studies have revealed properties of these compounds that provide insights into processes that may compromise RPE and could contribute to disease mechanisms in AMD. This work has also led to the design of targeted therapeutics that are currently under investigation. PMID:27071115

  19. Structural phase transitions and adduct release in calcium borohydride

    SciTech Connect

    Paolone, A.; Palumbo, O.; Rispoli, P.; Miriametro, A.; Cantelli, R.; Luedtke, A.; Rönnebro, E.; Chandra, D.

    2011-09-01

    Ca(BH4)2 compounds were investigated above room temperature by anelastic spectroscopy (AS) and concomitant measurements of thermogravimetry and mass spectrometry (TGA/MS). Both AS and TGA/MS indicate that even after a thermal treatment at 125 °C for 20 h, a non-negligible residual of THF adduct is still present in the sample, which can be removed on a subsequent thermal treatment at temperatures lower than 250 °C. Above 250 °C dehydrogenation takes place. Moreover, AS sensitively detects the occurrence of the α → α’ structural phase transition around 180 °C, and the α’ → β transformation, which is completed around 330 °C. Finally, we also show that both transitions are irreversible and are not accompanied by a latent heat.

  20. Non Covalent Interactions and Internal Dynamics in Adducts of Freons

    NASA Astrophysics Data System (ADS)

    Caminati, Walther; Gou, Qian; Evangelisti, Luca; Feng, Gang; Spada, Lorenzo; Vallejo-López, Montserrat; Lesarri, Alberto; Cocinero, Emilio J.

    2014-06-01

    The complexation of chlorofluorocarbons (CFCs) with atmospheric water and pollutants of the atmosphere affects their reactivity and it seems to accelerate, for example, the decomposition rate of freons in the atmosphere [1]. For this reason we characterized shapes, stabilities, nature of the non-covalent interactions, structures and internal dynamics of a number of complexes of CFCs with water and of their dimers or oligomers by rotational spectroscopy. It has been found that hydrogenated CFCs form adducts with other molecules through weak hydrogen bonds (WHBs). Their C-H groups can act as proton donors, enhanced by the electron withdrawing of the halogen atoms, interacting with the electron rich regions of the partner molecules [2]. Also in adducts or oligomers of hydrogenated CFCs the monomer units are held together by nets of WHBs [3]. When CFCs are perhalogenated, the positive electrostatic region ("σ-hole") can interact electrostatically with negative sites of another, or of the same molecular entity, giving rise, according to IUPAC, to the so called halogen bond (HaB). However, it has been observed that when the perhalogenated CFCs has a Π electron system, a lone pair•••Π interaction (Bürgi-Dunitz) is favoured [4]. We describe here the HaBs that CF4 and CF3Cl form with a variety of partner molecules such as water, ammonia, dimethyl ether, etc. Important spectroscopic features outline strong dynamics effects taking place in this kind of complex. References [1] V. Vaida, H. G. Kjaergaard, K. J. Feierabend, Int. Rev. Phys. Chem. 22 (2003) 203. [2] See, for example: W. Caminati, S. Melandri, A. Maris, P. Ottaviani, Angew. Chem. Int. Ed. 45 (2006) 2438. [3] G. Feng, L. Evangelisti, I. Cacelli, L. Carbonaro, G. Prampolini, W. Caminati, Chem. Commun. 50 (2014) 171. [4] Q. Gou, G. Feng, L. Evangelisti, W. Caminati, Angew. Chem. Int. Ed. 52 (2013) 52 11888.

  1. Benzo[b]fluoranthene: tumorigenicity in strain A/J mouse lungs, DNA adducts and mutations in the Ki-ras oncogene.

    PubMed

    Mass, M J; Abu-Shakra, A; Roop, B C; Nelson, G; Galati, A J; Stoner, G D; Nesnow, S; Ross, J A

    1996-08-01

    The polycyclic aromatic hydrocarbon benzo[b]fluoranthene (B[b]F) is a pervasive constituent of environmental combustion products. We sought to examine the lung tumorigenic activity of B[b]F in strain A/J mice, to study the relationship between formation and decay of B[b]F-DNA adducts and to examine mutations in the Ki-ras proto-oncogene in DNA from B[b]F-induced tumors. Mice were given i.p. injections of 0, 10, 50, 100 or 200 mg/kg body wt and lung adenomas were scored after 8 months. B[b]F induced significant numbers of mouse lung adenomas in a dose-related fashion, with the highest dose (200 mg/kg) yielding 6.95 adenomas/ mouse, with 100% of the mice exhibiting an adenoma. In mice given tricaprylin, the vehicle control, there were 0.60 adenomas/mouse, with 55% of the mice exhibiting an adenoma. Based on dose, B[b]F was less active than benzo[a]pyrene. DNA adducts were analyzed qualitatively and quantitatively by 32P-post-labeling in lungs of strain A/J mice 1, 3, 5, 7, 14 and 21 days after i.p. injection. Maximal levels of adduction occurred 5 days after treatment with the 200 mg/kg dose group, producing 1230 amol B[b]F-DNA adducts/microgram DNA. The major B[b]F-DNA adduct was identified by co-chromatography as trans-9, 10-dihydroxy-anti-11, 12-epoxy-5-hydroxy-9, 10, 11, 12-tetra-hydro-B[b]F-deoxyguanosine. Approximately 86% of the tumors had a mutation in codon 12 of the Ki-ras oncogene, as determined by direct DNA sequencing of PCR-amplified exon 1 and single-stranded conformation polymorphism analysis. Analysis of the Ki-ras mutation spectrum in 25 of 29 B[b]F-induced tumors revealed the predominant mutation to be a G-->T transversion in the first or second base of codon 12, congruous with the DNA adduct data. Our data are consistent with previous reports in mouse skin implicating a phenolic diol epoxide as the proximate carcinogenic form of B[b]F that binds to guanine.

  2. Metabolic activation of the antibacterial agent triclocarban by cytochrome P450 1A1 yielding glutathione adducts.

    PubMed

    Schebb, Nils Helge; Muvvala, Jaya B; Morin, Dexter; Buckpitt, Alan R; Hammock, Bruce D; Rice, Robert H

    2014-07-01

    Triclocarban (3,4,4'-trichlorocarbanilide; TCC) is an antibacterial agent used in personal care products such as bar soaps. Small amounts of chemical are absorbed through the epidermis. Recent studies show that residues of reactive TCC metabolites are bound covalently to proteins in incubations with keratinocytes, raising concerns about the potential toxicity of this antimicrobial agent. To obtain additional information on metabolic activation of TCC, this study characterized the reactive metabolites trapped as glutathione conjugates. Incubations were carried out with (14)C-labeled TCC, recombinant CYP1A1 or CYP1B1, coexpressed with cytochrome P450 reductase, glutathione-S-transferases (GSH), and an NADPH-generating system. Incubations containing CYP1A1, but not 1B1, led to formation of a single TCC-GSH adduct with a conversion rate of 1% of parent compound in 2 hours. Using high-resolution mass spectrometry and diagnostic fragmentation, the adduct was tentatively identified as 3,4-dichloro-3'-glutathionyl-4'-hydroxycarbanilide. These findings support the hypothesis that TCC is activated by oxidative dehalogenation and oxidation to a quinone imine. Incubations of TCDD-induced keratinocytes with (14)C-TCC yielded a minor radioactive peak coeluting with TCC-GSH. Thus, we conclude that covalent protein modification by TCC in TCDD-induced human keratinocyte incubations is mainly caused by activation of TCC by CYP1A1 via a dehalogenated TCC derivative as reactive species.

  3. A mathematical model for intracellular effects of toxins on DNA adduction and repair

    SciTech Connect

    Gaver, D.P.; Jacobs, P.A.; Carpenter, R.L.; Burkhart, J.G.

    1997-01-01

    The processes by which certain classes of toxic compounds or their metabolites may react with DNA to alter the genetic information contained in subsequent generations of cells or organisms are a major component of hazard associated with exposure to chemicals in the environment. Many classes of chemicals may form DNA adducts and there may or may not be a defined mechanism to remove a particular adduct from DNA independent of replication. Many compounds and metabolites that bind DNA also readily bind existing proteins; some classes of toxins and DNA adducts have the capacity to inactive a repair enzyme and divert the repair process competitively. This paper formulates an intracellular dynamic model for one aspect of the action of toxins that form DNA adducts, recognizing a capacity for removal of those adducts by a repair enzyme combined with reaction of the toxin and/or the DNA adduct to inactive the repair enzyme. This particular model illustrates the possible saturation of repair enzyme capacity by the toxin dosage and shows that bistable behavior can occur, with the potential to induce abrupt shifts away from steady-state equilibria. The model suggests that bistable behavior, dose and variation between individuals or tissues may combine under certain conditions to amplify the biological effect of dose observed as DNA adduction and its consequences as mutation. A model recognizing stochastic phenomena also indicates that variation in within-cell toxin concentration may promote jumps between stable equilibria.

  4. Effect of exercise and gait retraining on knee adduction moment in people with knee osteoarthritis.

    PubMed

    Khalaj, Nafiseh; Abu Osman, Noor A; Mokhtar, Abdul H; Mehdikhani, Mahboobeh; Wan Abas, Wan A B

    2014-02-01

    The knee adduction moment represents the medial knee joint load, and greater value is associated with higher load. In people with knee osteoarthritis, it is important to apply proper treatment with the least side effects to reduce knee adduction moment and, consequently, reduce medial knee joint load. This reduction may slow the progression of knee osteoarthritis. The research team performed a literature search of electronic databases. The search keywords were as follows: knee osteoarthritis, knee adduction moment, exercise program, exercise therapy, gait retraining, gait modification and knee joint loading. In total, 12 studies were selected, according to the selection criteria. Findings from previous studies illustrated that exercise and gait retraining programs could alter knee adduction moment in people with knee osteoarthritis. These treatments are noninvasive and nonpharmacological which so far have no or few side effects, as well as being low cost. The results of this review revealed that gait retraining programs were helpful in reducing the knee adduction moment. In contrast, not all the exercise programs were beneficial in reducing knee adduction moment. Future studies are needed to indicate best clinical exercise and gait retraining programs, which are most effective in reducing knee adduction moment in people with knee osteoarthritis.

  5. DNA adducts in carp exposed to artificial diesel-2 oil slicks.

    PubMed

    Kurelec, B; Garg, A; Krca, S; Britvić, S; Lucić, D; Gupta, R C

    1992-05-01

    In attempts to mimic field exposure, oil slicks prepared from diesel-2 oil/water emulsions were poured onto the surface of water in tanks prepared fresh every day and liver DNA adducts were analyzed by 32P-postlabeling in carp free-swimming in these tanks. 'Clusters' of lipophilic DNA adducts were detected, with five major and numerous minor adducts. Essentially a similar adduct pattern was found in the liver DNA of carp exposed to crude oil-polluted water. Diesel-2 adduct induction was observed slowly with a steady increase to greater than 3000 amol/microgram DNA at day 12. After this time fish were transferred to clean water. Adduct levels continued to increase through day 17 (approximately 10,000 amol/microgram DNA) despite the cessation of exposure, but a 30% and 80% decline was evident at day 22 and day 27, respectively. All major adducts were distinct from the known benzo[a]pyrene diolepoxide-dG. These results indicate that diesel-2 oil can cause extensive DNA damage in carp in vivo and the damage accumulates proportionately with time of exposure.

  6. Detection and characterization of human serum antibodies to polycyclic aromatic hydrocarbon diol-epoxide DNA adducts.

    PubMed Central

    Newman, M J; Light, B A; Weston, A; Tollurud, D; Clark, J L; Mann, D L; Blackmon, J P; Harris, C C

    1988-01-01

    The presence of serum antibodies to the diol-epoxide DNA adducts of representative polycyclic aromatic hydrocarbons (PAH), chrysene, benz[a]anthracene and benzo[a]pyrene, was determined by ELISA using serum samples obtained from normal healthy individuals. Antibodies that reacted against PAH adducted-DNA, but not against PAH-adducted protein, were found in the serum of approximately 40% of the test individuals. Specificity analysis of the antibodies demonstrated that serological cross-reactions between the benzo[a]pyrene and the chrysene diol-epoxide adducts were present. Similar cross-reactivity between the benz[a]anthracene and the chrysene adducts was observed. Sera containing antibodies that were apparently specific for each of the three PAH-DNA adducts were also identified. The presence of antibodies to PAH-DNA adducts indicates both past exposure to these carcinogenic PAH and their metabolic activation to the DNA damaging metabolites. These antibodies may prove to be useful in both retrospective and prospective epidemiological studies of various diseases associated with PAH exposure. PMID:3392204

  7. Knee adduction moment and medial contact force--facts about their correlation during gait.

    PubMed

    Kutzner, Ines; Trepczynski, Adam; Heller, Markus O; Bergmann, Georg

    2013-01-01

    The external knee adduction moment is considered a surrogate measure for the medial tibiofemoral contact force and is commonly used to quantify the load reducing effect of orthopedic interventions. However, only limited and controversial data exist about the correlation between adduction moment and medial force. The objective of this study was to examine whether the adduction moment is indeed a strong predictor for the medial force by determining their correlation during gait. Instrumented knee implants with telemetric data transmission were used to measure tibiofemoral contact forces in nine subjects. Gait analyses were performed simultaneously to the joint load measurements. Skeletal kinematics, as well as the ground reaction forces and inertial parameters, were used as inputs in an inverse dynamics approach to calculate the external knee adduction moment. Linear regression analysis was used to analyze the correlation between adduction moment and medial force for the whole stance phase and separately for the early and late stance phase. Whereas only moderate correlations between adduction moment and medial force were observed throughout the whole stance phase (R(2) = 0.56) and during the late stance phase (R(2) = 0.51), a high correlation was observed at the early stance phase (R(2) = 0.76). Furthermore, the adduction moment was highly correlated to the medial force ratio throughout the whole stance phase (R(2) = 0.75). These results suggest that the adduction moment is a surrogate measure, well-suited to predicting the medial force ratio throughout the whole stance phase or medial force during the early stance phase. However, particularly during the late stance phase, moderate correlations and high inter-individual variations revealed that the predictive value of the adduction moment is limited. Further analyses are necessary to examine whether a combination of other kinematic, kinetic or neuromuscular factors may lead to a more reliable

  8. Polycyclic aromatic hydrocarbon-DNA adducts and survival among women with breast cancer

    SciTech Connect

    Sagiv, Sharon K. Gaudet, Mia M.; Eng, Sybil M.; Abrahamson, Page E.; Shantakumar, Sumitra; Teitelbaum, Susan L.; Bell, Paula; Thomas, Joyce A.; Neugut, Alfred I.; Santella, Regina M.; Gammon, Marilie D.

    2009-04-15

    Polycyclic aromatic hydrocarbons (PAH) are mammary carcinogens in animal studies, and a few epidemiologic studies have suggested a link between elevated levels of PAH-DNA adducts and breast cancer incidence. An association between PAH-DNA adducts and survival among breast cancer cases has not been previously reported. We conducted a survival analysis among women with newly diagnosed invasive breast cancer between 1996 and 1997, enrolled in the Long Island Breast Cancer Study Project. DNA was isolated from blood samples that were obtained from cases shortly after diagnosis and assayed for PAH-DNA adducts using ELISA. Among the 722 cases with PAH-DNA adduct measurements, 97 deaths (13.4%) from all causes and 54 deaths (7.5%) due to breast cancer were reported to National Death Index (NDI) by December 31, 2002. Using Cox proportional hazards models and controlling for age at diagnosis, we did not find evidence that all-cause mortality (hazard ratio (HR)=0.88; 95% confidence interval (CI): 0.57-1.37), or breast cancer mortality (HR=1.20; 95% CI: 0.63-2.28) was strongly associated with detectable PAH-DNA adduct levels compared with non-detectable adducts; additionally, no dose-response association was observed. Among a subgroup with treatment data (n=520), adducts were associated with over a two-fold higher mortality among those receiving radiation, but mortality for adducts was reduced among hormone therapy users. Results from this large population-based study do not provide strong support for an association between detectable PAH-DNA adducts and survival among women with breast cancer, except perhaps among those receiving radiation treatment.

  9. Knee Adduction Moment and Medial Contact Force – Facts about Their Correlation during Gait

    PubMed Central

    Kutzner, Ines; Trepczynski, Adam; Heller, Markus O.; Bergmann, Georg

    2013-01-01

    The external knee adduction moment is considered a surrogate measure for the medial tibiofemoral contact force and is commonly used to quantify the load reducing effect of orthopedic interventions. However, only limited and controversial data exist about the correlation between adduction moment and medial force. The objective of this study was to examine whether the adduction moment is indeed a strong predictor for the medial force by determining their correlation during gait. Instrumented knee implants with telemetric data transmission were used to measure tibiofemoral contact forces in nine subjects. Gait analyses were performed simultaneously to the joint load measurements. Skeletal kinematics, as well as the ground reaction forces and inertial parameters, were used as inputs in an inverse dynamics approach to calculate the external knee adduction moment. Linear regression analysis was used to analyze the correlation between adduction moment and medial force for the whole stance phase and separately for the early and late stance phase. Whereas only moderate correlations between adduction moment and medial force were observed throughout the whole stance phase (R2 = 0.56) and during the late stance phase (R2 = 0.51), a high correlation was observed at the early stance phase (R2 = 0.76). Furthermore, the adduction moment was highly correlated to the medial force ratio throughout the whole stance phase (R2 = 0.75). These results suggest that the adduction moment is a surrogate measure, well-suited to predicting the medial force ratio throughout the whole stance phase or medial force during the early stance phase. However, particularly during the late stance phase, moderate correlations and high inter-individual variations revealed that the predictive value of the adduction moment is limited. Further analyses are necessary to examine whether a combination of other kinematic, kinetic or neuromuscular factors may lead to a more reliable prediction of

  10. Evolution of Research on the DNA Adduct Chemistry of N-Nitrosopyrrolidine and Related Aldehydes

    PubMed Central

    Hecht, Stephen S.; Upadhyaya, Pramod; Wang, Mingyao

    2011-01-01

    This perspective reviews our work on the identification of DNA adducts of N-nitrosopyrrolidine and some related aldehydes. The research began as a focused project to investigate mechanisms of cyclic nitrosamine carcinogenesis but expanded into other areas as aldehyde metabolites of NPYR were shown to have their own diverse DNA adduct chemistry. A total of 69 structurally distinct DNA adducts were identified and some of these, found in human tissues, have provided intriguing leads for investigating carcinogenesis mechanisms in humans due to exposure to both endogenous and exogenous agents. PMID:21480629

  11. The role of polycyclic aromatic hydrocarbon-DNA adducts in inducing mutations in mouse skin

    PubMed Central

    Chakravarti, Dhrubajyoti; Venugopal, Divya; Mailander, Paula C.; Meza, Jane L.; Higginbotham, Sheila; Cavalieri, Ercole L.; Rogan, Eleanor G.

    2008-01-01

    Polycyclic aromatic hydrocarbons (PAH) form stable and depurinating DNA adducts in mouse skin to induce preneoplastic mutations. Some mutations transform cells, which then clonally expand to establish tumors. Strong clues about the mutagenic mechanism can be obtained if the PAH-DNA adducts can be correlated with both preneoplastic and tumor mutations. To this end, we studied mutagenesis in PAH-treated early preneoplastic skin (1 day after exposure) and in the induced papillomas in SENCAR mice. Papillomas were studied by PCR amplification of the H-ras gene and sequencing. For benzo[a]pyrene (BP), BP-7,8-dihydrodiol (BPDHD), 7,12-dimethylbenz[a]anthracene (DMBA) and dibenzo[a,l]pyrene (DB[a,l]P), the codon 13 (GGC to GTC) and codon 61 (CAA to CTA) mutations in papillomas corresponded to the relative levels of Gua and Ade-depurinating adducts, despite BP and BPDHD forming significant amounts of stable DNA adducts. Such a relationship was expected for DMBA and DB[a,l]P, as they formed primarily depurinating adducts. These results suggest that depurinating adducts play a major role in forming the tumorigenic mutations. To validate this correlation, preneoplastic skin mutations were studied by cloning H-ras PCR products and sequencing individual clones. DMBA- and DB[a,l]P-treated skin showed primarily A.T to G.C mutations, which correlated with the high ratio of the Ade/Gua-depurinating adducts. Incubation of skin DNA with T.G-DNA glycosylase eliminated most of these A.T to G.C mutations, indicating that they existed as G.T heteroduplexes, as would be expected if they were formed by errors in the repair of abasic sites generated by the depurinating adducts. BP and its metabolites induced mainly G.C to T.A mutations in preneoplastic skin. However, PCR over unrepaired anti-BPDE-N2dG adducts can generate similar mutations as artifacts of the study protocol, making it difficult to establish an adduct-mutation correlation for determining which BP-DNA adducts induce the early

  12. Base-Displaced Intercalated Structure of the N-(2'-Deoxyguanosin-8-yl)-3-aminobenzanthrone DNA Adduct.

    PubMed

    Politica, Dustin A; Malik, Chanchal K; Basu, Ashis K; Stone, Michael P

    2015-12-21

    3-Nitrobenzanthrone (3-NBA), an environmental mutagen found in diesel exhaust and a suspected carcinogen, undergoes metabolic reduction followed by reaction with DNA to form aminobenzanthrone (ABA) adducts, with the major alkylation product being N-(2'-deoxyguanosin-8-yl)-3-aminobenzanthrone (C8-dG-ABA). Site-specific synthesis of the C8-dG-ABA adduct in the oligodeoxynucleotide 5'-d(GTGCXTGTTTGT)-3':5'-d(ACAAACACGCAC)-3'; X = C8-dG-ABA adduct, including codons 272-275 of the p53 gene, has allowed for investigation into the structural and thermodynamic properties of this adduct. The conformation of the C8-dG-ABA adduct was determined using NMR spectroscopy and was refined using molecular dynamics (MD) calculations restrained by experimentally determined interproton distance restraints obtained from NOE experiments. The refined structure revealed that the C8-dG-ABA adduct formed a base-displaced intercalated conformation. The adducted guanine was shifted into the syn conformation about the glycosidic bond. The 5'- and 3'-neighboring base pairs remained intact. While this facilitated π-stacking interactions between the ABA moiety and neighboring bases, the thermal melting temperature (Tm) of the adduct-containing duplex showed a decrease of 11 °C as compared to the corresponding unmodified oligodeoxynucleotide duplex. Overall, in this sequence, the base-displaced intercalated conformation of the C8-dG-ABA lesion bears similarity to structures of other arylamine C8-dG adducts. However, in this sequence, the base-displaced intercalated conformation for the C8-dG-ABA adduct differs from the conformation of the N(2)-dG-ABA adduct reported by de los Santos and co-workers, in which it is oriented in the minor groove toward the 5' end of the duplex, with the modified guanine remaining in the anti conformation about the glyosidic torsion angle, and the complementary base remaining within the duplex. The results are discussed in relationship to differences between the C8-d

  13. Structural analysis of diacyl peroxides by electrospray tandem mass spectrometry with ammonium acetate: bond homolysis of peroxide-ammonium and peroxide-proton adducts.

    PubMed

    Yin, H; Hachey, D L; Porter, N A

    2000-01-01

    Organic peroxides have significant implications in organic chemistry and biological processes. The weak O-O bond makes them extremely difficult to characterize by conventional analytical methods. Diacyl peroxides are one of the major radical sources in polymerization and organic synthesis. It is well known that diacyl peroxides are thermal labile and thus are not amenable to study by gas chromatography/mass spectrometry (GC/MS). Electrospray tandem mass spectrometry (ESI-MS/MS) has been applied to the structural analysis of diacyl peroxides by formation of ammonium adducts. Collision induced dissociation (CID) studies of the ammonium adducts of the peroxide [M + NH(4)](+) give collision energy dependent fragments. For most diacyl peroxides, homolysis of the peroxy bond predominates the fragmentation pathways of the peroxide-ammonium adducts. Deuterated substrates have been employed to provide evidence for typical fragmentation pathways. The CID studies were also used to locate the O-18 in some O-18 specifically labeled diacyl peroxides. For branched alkyl or alkoxy substrates, McLafferty rearrangement and decarboxylation become a major pathway. By comparison with some anhydride analogues, ESI-MS/MS can also be used to study this class of compounds.

  14. Mechanism of Error-Free Bypass of the Environmental Carcinogen N-(2'-Deoxyguanosin-8-yl)-3-aminobenzanthrone Adduct by Human DNA Polymerase η.

    PubMed

    Patra, Amritraj; Politica, Dustin A; Chatterjee, Arindom; Tokarsky, E John; Suo, Zucai; Basu, Ashis K; Stone, Michael P; Egli, Martin

    2016-11-03

    The environmental pollutant 3-nitrobenzanthrone produces bulky aminobenzanthrone (ABA) DNA adducts with both guanine and adenine nucleobases. A major product occurs at the C8 position of guanine (C8-dG-ABA). These adducts present a strong block to replicative polymerases but, remarkably, can be bypassed in a largely error-free manner by the human Y-family polymerase η (hPol η). Here, we report the crystal structure of a ternary Pol⋅DNA⋅dCTP complex between a C8-dG-ABA-containing template:primer duplex and hPol η. The complex was captured at the insertion stage and provides crucial insight into the mechanism of error-free bypass of this bulky lesion. Specifically, bypass involves accommodation of the ABA moiety inside a hydrophobic cleft to the side of the enzyme active site and formation of an intra-nucleotide hydrogen bond between the phosphate and ABA amino moiety, allowing the adducted guanine to form a standard Watson-Crick pair with the incoming dCTP.

  15. Oligomerization and Membrane-binding Properties of Covalent Adducts Formed by the Interaction of α-Synuclein with the Toxic Dopamine Metabolite 3,4-Dihydroxyphenylacetaldehyde (DOPAL).

    PubMed

    Follmer, Cristian; Coelho-Cerqueira, Eduardo; Yatabe-Franco, Danilo Y; Araujo, Gabriel D T; Pinheiro, Anderson S; Domont, Gilberto B; Eliezer, David

    2015-11-13

    Oxidative deamination of dopamine produces the highly toxic aldehyde 3,4-dihydroxyphenylacetaldehyde (DOPAL), enhanced production of which is found in post-mortem brains of Parkinson disease patients. When injected into the substantia nigra of rat brains, DOPAL causes the loss of dopaminergic neurons accompanied by the accumulation of potentially toxic oligomers of the presynaptic protein α-synuclein (aS), potentially explaining the synergistic toxicity described for dopamine metabolism and aS aggregation. In this work, we demonstrate that DOPAL interacts with aS via formation of Schiff-base and Michael-addition adducts with Lys residues, in addition to causing oxidation of Met residues to Met-sulfoxide. DOPAL modification leads to the formation of small aS oligomers that may be cross-linked by DOPAL. Both monomeric and oligomeric DOPAL adducts potently inhibit the formation of mature amyloid fibrils by unmodified aS. The binding of aS to either lipid vesicles or detergent micelles, which results in a gain of α-helix structure in its N-terminal lipid-binding domain, protects the protein against DOPAL adduct formation and, consequently, inhibits DOPAL-induced aS oligomerization. Functionally, aS-DOPAL monomer exhibits a reduced affinity for small unilamellar vesicles with lipid composition similar to synaptic vesicles, in addition to diminished membrane-induced α-helical content in comparison with the unmodified protein. These results suggest that DOPAL could compromise the functionality of aS, even in the absence of protein oligomerization, by affecting the interaction of aS with lipid membranes and hence its role in the regulation of synaptic vesicle traffic in neurons.

  16. Oligomerization and Membrane-binding Properties of Covalent Adducts Formed by the Interaction of α-Synuclein with the Toxic Dopamine Metabolite 3,4-Dihydroxyphenylacetaldehyde (DOPAL)*

    PubMed Central

    Follmer, Cristian; Coelho-Cerqueira, Eduardo; Yatabe-Franco, Danilo Y.; Araujo, Gabriel D. T.; Pinheiro, Anderson S.; Domont, Gilberto B.; Eliezer, David

    2015-01-01

    Oxidative deamination of dopamine produces the highly toxic aldehyde 3,4-dihydroxyphenylacetaldehyde (DOPAL), enhanced production of which is found in post-mortem brains of Parkinson disease patients. When injected into the substantia nigra of rat brains, DOPAL causes the loss of dopaminergic neurons accompanied by the accumulation of potentially toxic oligomers of the presynaptic protein α-synuclein (aS), potentially explaining the synergistic toxicity described for dopamine metabolism and aS aggregation. In this work, we demonstrate that DOPAL interacts with aS via formation of Schiff-base and Michael-addition adducts with Lys residues, in addition to causing oxidation of Met residues to Met-sulfoxide. DOPAL modification leads to the formation of small aS oligomers that may be cross-linked by DOPAL. Both monomeric and oligomeric DOPAL adducts potently inhibit the formation of mature amyloid fibrils by unmodified aS. The binding of aS to either lipid vesicles or detergent micelles, which results in a gain of α-helix structure in its N-terminal lipid-binding domain, protects the protein against DOPAL adduct formation and, consequently, inhibits DOPAL-induced aS oligomerization. Functionally, aS-DOPAL monomer exhibits a reduced affinity for small unilamellar vesicles with lipid composition similar to synaptic vesicles, in addition to diminished membrane-induced α-helical content in comparison with the unmodified protein. These results suggest that DOPAL could compromise the functionality of aS, even in the absence of protein oligomerization, by affecting the interaction of aS with lipid membranes and hence its role in the regulation of synaptic vesicle traffic in neurons. PMID:26381411

  17. Structural elucidation of isocyanate-peptide adducts using tandem mass spectrometry.

    PubMed

    Hettick, Justin M; Ruwona, Tinashe B; Siegel, Paul D

    2009-08-01

    Diisocyanates are highly reactive chemical compounds widely used in the manufacture of polyurethanes. Although diisocyanates have been identified as causative agents of allergic respiratory diseases, the specific mechanism by which these diseases occur is largely unknown. To better understand the chemical species produced when isocyanates are reacted with model peptides, tandem mass spectrometry was employed to unambiguously identify the binding site of four commercially-relevant isocyanates on model peptides. In each case, the isocyanates react preferentially with the N-terminus of the peptide. No evidence of side-chain/isocyanate adduct formation exclusive of the N-terminus was observed. However, significant intra-molecular diisocyanate crosslinking was observed between the N-terminal amine and a side-chain amine of arginine, when Arg was located within two residues of the N-terminus. Addition of multiple isocyanates to the peptide occurs via polymerization of the isocyanate at the N-terminus, rather than via addition of multiple isocyanate molecules to varied residues within the peptide. The direct observation of isocyanate binding to the N-terminus of peptides under these experimental conditions is in good agreement with previous studies on the relative reaction rate of isocyanate with amino acid functional groups.

  18. 32P-postlabelling of diastereomeric 7-alkylguanine adducts of butadiene monoepoxide.

    PubMed

    Kumar, R; Vodicka, P; Koivisto, P; Peltonen, K; Hemminki, K

    1996-06-01

    The reaction of 3,4-epoxy-1-butene (BMO) with deoxyguanosine-3'-monophosphate (3'-dGMP) resulted in the formation of two pairs of diastereomeric 7-alkyl-3'-dGMP derivatives corresponding to two isomers C¿-1 and C¿-2. The T4 polynucleotide kinase-mediated phosphorylation with [gamma-32P]-ATP showed preferential labelling of diastereo- mers of the C¿-1 isomer. The diastereomers 1 and 2 of the C¿-1 isomer had labelling efficiencies of 42%. However, the labelling efficiencies of diastereomers 3 and 4 of the C¿-2 isomer were 11 and 10%, respectively. The 32P-postlabelling of BMO-modified DNA yielded four isomers in the ratio of 4:4:1:1 with overall recoveries being 14%. The two isomers had a half-life of 270 min (C¿-1 isomer) and 300 min (C¿-2 isomer) which is in accordance with the stability predicted by other similar adduct experiments. The molecular modelling experiments showed more pronounced restricted rotation of butadiene residue in C¿-2 isomers due to steric interaction between butadiene residue at N-7 and O(6) atom of guanine than in C¿-1 isomer. The butadiene residue also leads to steric overcrowding at 3'-phosphate in C¿-2 isomer which probably restricts the access to the active site of T4 polynucleotide kinase.

  19. Auranofin disrupts selenium metabolism in Clostridium difficile by forming a stable Au-Se adduct.

    PubMed

    Jackson-Rosario, Sarah; Cowart, Darin; Myers, Andrew; Tarrien, Rebecca; Levine, Rodney L; Scott, Robert A; Self, William Thomas

    2009-05-01

    Clostridium difficile is a nosocomial pathogen whose incidence and importance are on the rise. Previous work in our laboratory characterized the central role of selenoenzyme-dependent Stickland reactions in C. difficile metabolism. In this work we have identified, using mass spectrometry, a stable complex formed upon reaction of auranofin (a gold-containing drug) with selenide in vitro. X-ray absorption spectroscopy supports the structure that we proposed on the basis of mass-spectrometric data. Auranofin potently inhibits the growth of C. difficile but does not similarly affect other clostridia that do not utilize selenoproteins to obtain energy. Moreover, auranofin inhibits the incorporation of radioisotope selenium ((75)Se) in selenoproteins in both Escherichia coli, the prokaryotic model for selenoprotein synthesis, and C. difficile without impacting total protein synthesis. Auranofin blocks the uptake of selenium and results in the accumulation of the auranofin-selenide adduct in the culture medium. Addition of selenium in the form of selenite or L-selenocysteine to the growth medium significantly reduces the inhibitory action of auranofin on the growth of C. difficile. On the basis of these results, we propose that formation of this complex and the subsequent deficiency in available selenium for selenoprotein synthesis is the mechanism by which auranofin inhibits C. difficile growth. This study demonstrates that targeting selenium metabolism provides a new avenue for antimicrobial development against C. difficile and other selenium-dependent pathogens.

  20. Exocyclic Deoxyadenosine Adducts of 1,2,3,4-Diepoxybutane: Synthesis, Structural Elucidation, and Mechanistic Studies

    PubMed Central

    Seneviratne, Uthpala; Antsypovich, Sergey; Goggin, Melissa; Dorr, Danae Quirk; Guza, Rebecca; Moser, Adam; Thompson, Carrie; York, Darrin M.; Tretyakova, Natalia

    2009-01-01

    1,2,3,4-Diepoxybutane (DEB)1 is considered the ultimate carcinogenic metabolite of 1,3-butadiene, an important industrial chemical and environmental pollutant present in urban air. Although it preferentially modifies guanine within DNA, DEB induces a large number of A → T transversions, suggesting that it forms strongly mispairing lesions at adenine nucleobases. We now report the discovery of three potentially mispairing exocyclic adenine lesions of DEB: N6,N6-(2,3-dihydroxybutan-1,4-diyl)-2′-deoxyadenosine (compound 2), 1,N6-(2-hydroxy-3-hydroxymethylpropan-1,3-diyl)-2′-deoxyadenosine (compound 3), and 1,N6-(1-hydroxymethyl-2-hydroxypropan-1,3-diyl)-2′-deoxyadenosine (compound 4). The structures and stereochemistry of the novel DEB-dA adducts were determined by a combination of UV and NMR spectroscopy, tandem mass spectrometry, and independent synthesis. We found that synthetic N6-(2-hydroxy-3,4-epoxybut-1-yl)-2′-deoxyadenosine (compound 1) representing the product of N6-adenine alkylation by DEB spontaneously cyclizes to form 3 under aqueous conditions or 2 under anhydrous conditions in the presence of organic base. Compound 3 can be interconverted with 4 by a reversible unimolecular pericyclic reaction favoring 4 as a more thermodynamically stable product. Both 3 and 4 are present in double stranded DNA treated with DEB in vitro and in liver DNA of laboratory mice exposed to 1,3-butadiene by inhalation. We propose that in DNA under physiological conditions, DEB alkylates the N-1 position of adenine in DNA to form N1-(2-hydroxy-3,4-epoxybut-1-yl)-adenine adducts, which undergo an SN2-type intramolecular nucleophilic substitution and rearrangement to give 3 (minor) and 4 (major). Formation of exocyclic DEB-adenine lesions following exposure to 1,3-butadiene provides a possible mechanism of mutagenesis at the A:T base pairs. PMID:19883087