Sample records for oxford foot model

  1. Repeatability of the Oxford Foot Model in children with foot deformity.

    PubMed

    McCahill, Jennifer; Stebbins, Julie; Koning, Bart; Harlaar, Jaap; Theologis, Tim

    2018-03-01

    The Oxford Foot Model (OFM) is a multi-segment, kinematic model developed to assess foot motion. It has previously been assessed for repeatability in healthy populations. To determine the OFM's reliability for detecting foot deformity, it is important to know repeatability in pathological conditions. The aim of the study was to assess the repeatability of the OFM in children with foot deformity. Intra-tester repeatability was assessed for 45 children (15 typically developing, 15 hemiplegic, 15 clubfoot). Inter-tester repeatability was assessed in the clubfoot population. The mean absolute differences between testers (clubfoot) and sessions (clubfoot and hemiplegic) were calculated for each of 15 clinically relevant, kinematic variables and compared to typically developing children. Children with clubfoot showed a mean difference between visits of 2.9° and a mean difference between raters of 3.6° Mean absolute differences were within one degree for the intra and inter-rater reliability in 12/15 variables. Hindfoot rotation, forefoot/tibia abduction and forefoot supination were the most variable between testers. Overall the clubfoot data were less variable than the typically developing population. Children with hemiplegia demonstrated slightly higher differences between sessions (mean 4.1°), with the most reliable data in the sagittal plane, and largest differences in the transverse plane. The OFM was designed to measure different types of foot deformity. The results of this study show that it provides repeatable results in children with foot deformity. To be distinguished from measurement artifact, changes in foot kinematics as a result of intervention or natural progression over time must be greater than the repeatability reported here. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Analysis of foot kinematics wearing high heels using the Oxford foot model.

    PubMed

    Wang, Meizi; Gu, Yaodong; Baker, Julien Steven

    2018-04-29

    Wearing high heels is thought to lead to various foot disorders and injuries such as metatarsal pain, Achilles tendon tension, plantar fasciitis and Haglund malformation. However, there is little available information explaining the specific mechanisms and reasons why wearing high heels causes foot deformity. Therefore, the purpose of this study was to investigate the foot kinematics of high heel wearers and compare any differences with barefoot individuals using the Oxford Foot Model (OFM). Fifteen healthy women aged 20-25 years were measured while walking barefoot and when wearing high heels. The peak value of angular motion for the hallux with respect to the forefoot, the forefoot with respect to the hind foot, and the hind foot with respect to the tibia were all analyzed. Compared to the barefoot, participants wearing high heels demonstrated larger hallux dorsiflexion (22.55∘± 1.62∘ VS 26.6∘± 2.33∘ for the barefoot; P= 0.001), and less hallux plantarflexion during the initial stance phase (-4.86∘± 2.32∘ VS -8.68∘± 1.13∘; P< 0.001). There were also greater forefoot adduction (16.15∘± 1.37∘ VS 13.18∘± 0.79∘; P< 0.001), but no significant differences were found in forefoot abduction between the two conditions. The hind foot demonstrated a larger dorsiflexion in the horizontal plane (16.59∘± 1.69∘ VS 12.08∘± 0.9∘; P< 0.001), greater internal rotation (16.72∘± 0.48∘ VS 7.97∘± 0.55∘; P< 0.001), and decreased peak hind foot extension rotation (-5.49∘± 0.69∘ VS -10.73∘± 0.42∘; P= 0.001). These findings complement existing kinematic evidence that wearing high heels can lead to foot deformities and injuries.

  3. A comparison of foot kinematics in people with normal- and flat-arched feet using the Oxford Foot Model.

    PubMed

    Levinger, Pazit; Murley, George S; Barton, Christian J; Cotchett, Matthew P; McSweeney, Simone R; Menz, Hylton B

    2010-10-01

    Foot posture is thought to influence predisposition to overuse injuries of the lower limb. Although the mechanisms underlying this proposed relationship are unclear, it is thought that altered foot kinematics may play a role. Therefore, this study was designed to investigate differences in foot motion between people with normal- and flat-arched feet using the Oxford Foot Model (OFM). Foot posture in 19 participants was documented as normal-arched (n=10) or flat-arched (n=9) using a foot screening protocol incorporating measurements from weightbearing antero-posterior and lateral foot radiographs. Differences between the groups in triplanar motion of the tibia, rearfoot and forefoot during walking were evaluated using a three-dimensional motion analysis system incorporating a multi-segment foot model (OFM). Participants with flat-arched feet demonstrated greater peak forefoot plantar-flexion (-13.7° ± 5.6° vs -6.5° ± 3.7°; p=0.004), forefoot abduction (-12.9° ± 6.9° vs -1.8° ± 6.3°; p=0.002), and rearfoot internal rotation (10.6° ± 7.5° vs -0.2°± 9.9°; p=0.018) compared to those with normal-arched feet. Additionally, participants with flat-arched feet demonstrated decreased peak forefoot adduction (-7.0° ± 9.2° vs 5.6° ± 7.3°; p=0.004) and a trend towards increased rearfoot eversion (-5.8° ± 4.4° vs -2.5° ± 2.6°; p=0.06). These findings support the notion that flat-arched feet have altered motion associated with greater pronation during gait; factors that may increase the risk of overuse injury. Copyright © 2010 Elsevier B.V. All rights reserved.

  4. Translation and cultural adaptation of the Manchester-Oxford Foot Questionnaire (MOXFQ) into Persian language.

    PubMed

    Mousavian, Alireza; Ebrahimzadeh, Mohammad H; Birjandinejad, Ali; Omidi-Kashani, Farzad; Kachooei, Amir Reza

    2015-12-01

    In this study, we aimed to translate and test the validity and reliablity of the Persian version of the Manchester-Oxford Foot Questionnaire in foot and ankle patients. We translated the Manchester-Oxford Foot Questionnaire to Persian language according to the accepted guidelines, then assessed the psychometric properties including the validity and reliability on 308 patients with long-standing foot and ankle problems. To test the reliability, we calculated the intra-class correlation coefficient (ICC) for test-retest reliability and measured Cronbach's alpha to test the internal consistency. To test the construct validity of the Manchester-Oxford Foot Questionnaire we also administered the Short-Form 36 to patients. Construct validity was supported by significant correlation with SF36 subscales except for pain subscale of the persian MOXFQ with mental health of the SF36 (r=0.207). Intraclass correlation coefficient was 0.79 for the total MOXFQ and ranged from 0.83 to 0.89 for the three subscales. Cronbach's alpha for pain, walking/standing, and social interaction was 0.86, 0.88, and 0.89, respectively, and was 0.79 for the total MOXFQ showing good internal consistency in each domain. The Persian Manchester-Oxford Foot Questionnaire health scoring system is a valid and reliable patient-reported instrument for foot and ankle problems. Copyright © 2015. Published by Elsevier Ltd.

  5. Anatomical masking of pressure footprints based on the Oxford Foot Model: validation and clinical relevance.

    PubMed

    Giacomozzi, Claudia; Stebbins, Julie A

    2017-03-01

    Plantar pressure analysis is widely used in the assessment of foot function. In order to assess regional loading, a mask is applied to the footprint to sub-divide it into regions of interest (ROIs). The most common masking method is based on geometric features of the footprint (GM). Footprint masking based on anatomical landmarks of the foot has been implemented more recently, and involves the integration of a 3D motion capture system, plantar pressure measurement device, and a multi-segment foot model. However, thorough validation of anatomical masking (AM) using pathological footprints has not yet been presented. In the present study, an AM method based on the Oxford Foot Model (OFM) was compared to an equivalent GM. Pressure footprints from 20 young healthy subjects (HG) and 20 patients with clubfoot (CF) were anatomically divided into 5 ROIs using a subset of the OFM markers. The same foot regions were also identified by using a standard GM method. Comparisons of intra-subject coefficient of variation (CV) showed that the OFM-based AM was at least as reliable as the GM for all investigated pressure parameters in all foot regions. Clinical relevance of AM was investigated by comparing footprints from HG and CF groups. Contact time, maximum force, force-time integral and contact area proved to be sensitive parameters that were able to distinguish HG and CF groups, using both AM and GM methods However, the AM method revealed statistically significant differences between groups in 75% of measured variables, compared to 62% using a standard GM method, indicating that the AM method is more sensitive for revealing differences between groups. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Minimally important change was estimated for the Manchester-Oxford Foot Questionnaire after foot/ankle surgery.

    PubMed

    Dawson, Jill; Boller, Irene; Doll, Helen; Lavis, Grahame; Sharp, Robert; Cooke, Paul; Jenkinson, Crispin

    2014-06-01

    To ascertain the smallest amounts of change for the three Manchester-Oxford Foot Questionnaire (MOXFQ) domains that are likely to be clinically meaningful and beyond measurement error for conditions affecting the foot/ankle. Estimates were compared with those from the Short-Form 36 (SF-36). A prospective observational study of 671 consecutive patients undergoing foot or ankle surgery at an orthopedic hospital. Before and 9 months after surgery, patients completed the MOXFQ and SF-36; transition items (anchor) asked about perceived changes in foot/ankle pain or problems since the surgery. Four hundred ninety-one patients completed pre- and postoperative questionnaires. Anchor-based minimal clinically important change (MCIC) values were ~13 points for each of the MOXFQ Walking/standing (W/S), Pain, and Social Interaction (S-I) domains [and greater than the standard error of measurement (SEM)]. MCIC values for all SF-36 domains fell within the SEM. Between-group MCIDs for the MOXFQ were W/S, 16.2; Pain, 9.9; S-I, 9.3. Distribution-based minimal detectable change (MDC90) values for the MOXFQ were ~11, ~12, and ~16 score points for the W/S, Pain, and S-I scales, respectively. This article provides information for aiding the interpretability of MOXFQ outcomes data and for planning future studies. The SF-36 is not recommended as a primary outcome for foot/ankle surgery. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. A comparison of two multisegment foot models in high-and low-arched athletes.

    PubMed

    Powell, Douglas W; Williams, D S Blaise; Butler, Robert J

    2013-01-01

    Malalignment and dysfunction of the foot have been associated with an increased propensity for overuse and traumatic injury in athletes. Several multisegment foot models have been developed to investigate motions in the foot. However, it remains unknown whether the kinematics measured by different multisegment foot models are equivocal. The purpose of the present study is to examine the efficacy of two multisegment foot models in tracking aberrant foot function. Ten high-arched and ten low-arched female athletes walked and ran while ground reaction forces and three-dimensional kinematics were tracked using the Leardini and Oxford multisegment foot models. Ground reaction forces and joint angles were calculated with Visual 3D (C-Motion Inc, Germantown, MD). Repeated-measures analyses of variance were used to analyze peak eversion, time to peak eversion, and eversion excursions. The Leardini model was more sensitive to differences in peak eversion angles than the Oxford model. However, the Oxford model detected differences in eversion excursion values that the Leardini model did not detect. Although both models found differences in frontal plane motion between high- and low-arched athletes, the Leardini multisegment foot model is suggested to be more appropriate as it directly tracks frontal plane midfoot motion during dynamic motion.

  8. Reliability, validity and responsiveness of the Spanish Manchester-Oxford Foot Questionnaire (MOXFQ) in patients with foot or ankle surgery.

    PubMed

    Garcés, Juan B Gerstner; Winson, Ian; Goldhahn, Sabine; Castro, Michael D; Swords, Michael P; Grujic, Leslie; Rammelt, Stefan; Sands, Andrew K

    2016-03-01

    The Manchester-Oxford Foot Questionnaire (MOXFQ) has been validated in Spanish for use in patients undergoing foot and ankle surgery. 120 patients completed the MOXFQ and the SF-36 before surgery and 6 and 12 months postoperative. Surgeons completed the American Orthopaedic Foot and Ankle Society (AOFAS) Clinical Rating System. Psychometric properties were assessed for all three MOXFQ dimensions, and for the MOXFQ Index. The Spanish MOXFQ demonstrated consistency with Cronbach's alpha values between 0.65 and 0.90, and reliability ([ICCs] >0.95). It shows a moderate to strong correlation between the Walking/standing dimension and the related domains of the SF-36 (|r|>0.6), the AOFAS Ankle-Hindfoot Scale (|r|>0.47) and Hallux-MTP-IP Scale (|r|>0.64). Responsiveness was excellent, (effect sizes >2.1). The respective minimal detectable change (MDC90) was 14.18 for the MOXFQ Index. The Spanish version of the MOXFQ showed good psychometric properties in patients with foot and ankle disorders. Copyright © 2015 European Foot and Ankle Society. Published by Elsevier Ltd. All rights reserved.

  9. Reliability, validity and responsiveness of the German Manchester-Oxford Foot Questionnaire (MOXFQ) in patients with foot or ankle surgery.

    PubMed

    Arbab, Dariusch; Kuhlmann, Katharina; Ringendahl, Hubert; Bouillon, Bertil; Eysel, Peer; König, Dietmar

    2017-06-13

    Patient-reported outcome measures are a critical tool in evaluating the efficacy of orthopaedic procedures. The intention of this study was to develop and culturally adapt a German version of the Manchester-Oxford Foot Questionnaire (MOXFQ) and to evaluate reliability, validity and responsiveness. According to guidelines forward and backward translation has been performed. The German MOXFQ was investigated in 177 consecutive patients before and 6 months after foot or ankle surgery. All patients completed MOXFQ, Foot and Ankle Outcome Score (FAOS), Short form 36 and numeric scales for pain and disability (NRS). Test-Retest reliability, internal consistency, floor and ceiling effects, construct validity and minimal important change were analyzed. The German MOXFQ demonstrated excellent test-retest reliability with ICC values >0.9 Cronbach's alpha (α) values demonstrated strong internal consistency. No floor or ceiling effects were observed. As hypothesized MOXFQ subscales correlated strongly with corresponding FAOS and SF-36 domains. All subscales showed excellent (ES/SRM >0.8) responsiveness between preoperative assessment and postoperative follow-up. The German version of the MOXFQ demonstrated good psychometric properties. It proofed to be a valid and reliable instrument for use in foot and ankle patients. Copyright © 2017 European Foot and Ankle Society. Published by Elsevier Ltd. All rights reserved.

  10. The Dutch version of the Oxford Ankle and Foot Questionnaire for Children: Useful for evaluation of pediatric foot problems in groups.

    PubMed

    Burger, Elise; Selles, Ruud; van Nieuwkasteele, Shelly; Bessems, Gert; Pollet, Virginie; Hovius, Steven; van Nieuwenhoven, Christianne

    2017-11-04

    The purpose of this study is to develop a Dutch version of the Oxford Ankle and Foot Questionnaire for Children (OxAFQ-c) to allow evaluation of pediatric foot care. The OxAFQ-c was translated into Dutch, according to the ISPOR-guidelines. Children with different foot and ankle complaints completed the OxAFQ-c at baseline, after two weeks, and after 4-6 months. Measurement properties were assessed in terms of reliability, responsiveness, and construct validity. Test-retest reliability showed moderate intraclass correlation coefficients. Bland-Altman plots showed wide limits of agreement. After 4-6 months, the group that experienced improvement also showed improved questionnaire outcomes, indicating responsiveness. Moderate correlation between the OxAFQ-c and the Kidscreen and foot-specific VAS-scores were observed, indicating moderate construct validity. The Dutch OxAFQ-c showed moderate to good measurement properties. However, because we observed limited sensitivity to changes and wide limits of agreement in individual patients, we think the questionnaire should only be used in groups. Copyright © 2017 European Foot and Ankle Society. Published by Elsevier Ltd. All rights reserved.

  11. One- and multi-segment foot models lead to opposite results on ankle joint kinematics during gait: Implications for clinical assessment.

    PubMed

    Pothrat, Claude; Authier, Guillaume; Viehweger, Elke; Berton, Eric; Rao, Guillaume

    2015-06-01

    Biomechanical models representing the foot as a single rigid segment are commonly used in clinical or sport evaluations. However, neglecting internal foot movements could lead to significant inaccuracies on ankle joint kinematics. The present study proposed an assessment of 3D ankle kinematic outputs using two distinct biomechanical models and their application in the clinical flat foot case. Results of the Plug in Gait (one segment foot model) and the Oxford Foot Model (multisegment foot model) were compared for normal children (9 participants) and flat feet children (9 participants). Repeated measures of Analysis of Variance have been performed to assess the Foot model and Group effects on ankle joint kinematics. Significant differences were observed between the two models for each group all along the gait cycle. In particular for the flat feet group, opposite results between the Oxford Foot Model and the Plug in Gait were revealed at heelstrike, with the Plug in Gait showing a 4.7° ankle dorsal flexion and 2.7° varus where the Oxford Foot Model showed a 4.8° ankle plantar flexion and 1.6° valgus. Ankle joint kinematics of the flat feet group was more affected by foot modeling than normal group. Foot modeling appeared to have a strong influence on resulting ankle kinematics. Moreover, our findings showed that this influence could vary depending on the population. Studies involving ankle joint kinematic assessment should take foot modeling with caution. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Sensitivity of the Oxford Foot Model to marker misplacement: A systematic single-case investigation.

    PubMed

    Carty, Christopher P; Walsh, Henry P J; Gillett, Jarred G

    2015-09-01

    The purpose of this paper was to systematically assess the effect of Oxford Foot Model (OFM) marker misplacement on hindfoot relative to tibia, and forefoot relative to hindfoot kinematic calculations during the stance phase of gait. Marker trajectories were recorded with an 8-camera motion analysis system (Vicon Motion Systems Ltd., UK) and ground reaction forces were recorded from three force platforms (AMTI, USA). A custom built marker cluster consisting of 4 markers in a square arrangement (diagonal distance 2 cm) was used to assess the effect of marker misplacement in the superior, inferior, anterior and posterior direction for the sustentaculum tali (STL), the proximal 1st metatarsal (P1M), distal 5th metatarsal (D5M), proximal 5th metatarsal (P5M) and lateral calcaneus (LCA) markers. In addition manual movement of the heel complex 1 cm superiorly, inferiorly, medially and laterally, and also an alignment error of 10° inversion and 10° eversion was assessed. Clinically meaningful effects of marker misplacement were determined using a threshold indicating the minimal clinically important difference. Misplacement of the heel-wand complex had the most pronounced effect on mean kinematic profiles during the stance phase across all degrees-of-freedom with respect to hindfoot-tibia and forefoot-hindfoot angles. Vertical marker misplacement of the D5M and P5M markers affected the sagittal plane, and to a lesser extent frontal plane, forefoot-hindfoot kinematics. In conclusion, the OFM is highly sensitive to misplacement of the heel-wand complex in all directions and the P5M marker in the vertical direction. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.

  13. Comparison of three-dimensional multi-segmental foot models used in clinical gait laboratories.

    PubMed

    Nicholson, Kristen; Church, Chris; Takata, Colton; Niiler, Tim; Chen, Brian Po-Jung; Lennon, Nancy; Sees, Julie P; Henley, John; Miller, Freeman

    2018-05-16

    Many skin-mounted three-dimensional multi-segmented foot models are currently in use for gait analysis. Evidence regarding the repeatability of models, including between trial and between assessors, is mixed, and there are no between model comparisons of kinematic results. This study explores differences in kinematics and repeatability between five three-dimensional multi-segmented foot models. The five models include duPont, Heidelberg, Oxford Child, Leardini, and Utah. Hind foot, forefoot, and hallux angles were calculated with each model for ten individuals. Two physical therapists applied markers three times to each individual to assess within and between therapist variability. Standard deviations were used to evaluate marker placement variability. Locally weighted regression smoothing with alpha-adjusted serial T tests analysis was used to assess kinematic similarities. All five models had similar variability, however, the Leardini model showed high standard deviations in plantarflexion/dorsiflexion angles. P-value curves for the gait cycle were used to assess kinematic similarities. The duPont and Oxford models had the most similar kinematics. All models demonstrated similar marker placement variability. Lower variability was noted in the sagittal and coronal planes compared to rotation in the transverse plane, suggesting a higher minimal detectable change when clinically considering rotation and a need for additional research. Between the five models, the duPont and Oxford shared the most kinematic similarities. While patterns of movement were very similar between all models, offsets were often present and need to be considered when evaluating published data. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Using the Oxford Foot Model to determine the association between objective measures of foot function and results of the AOFAS Ankle-Hindfoot Scale and the Foot Function Index: a prospective gait analysis study in Germany

    PubMed Central

    Kostuj, Tanja; Stief, Felix; Hartmann, Kirsten Anna; Schaper, Katharina; Arabmotlagh, Mohammad; Baums, Mike H; Meurer, Andrea; Krummenauer, Frank; Lieske, Sebastian

    2018-01-01

    Objective After cross-cultural adaption for the German translation of the Ankle-Hindfoot Scale of the American Orthopaedic Foot and Ankle Society (AOFAS-AHS) and agreement analysis with the Foot Function Index (FFI-D), the following gait analysis study using the Oxford Foot Model (OFM) was carried out to show which of the two scores better correlates with objective gait dysfunction. Design and participants Results of the AOFAS-AHS and FFI-D, as well as data from three-dimensional gait analysis were collected from 20 patients with mild to severe ankle and hindfoot pathologies. Kinematic and kinetic gait data were correlated with the results of the total AOFAS scale and FFI-D as well as the results of those items representing hindfoot function in the AOFAS-AHS assessment. With respect to the foot disorders in our patients (osteoarthritis and prearthritic conditions), we correlated the total range of motion (ROM) in the ankle and subtalar joints as identified by the OFM with values identified during clinical examination ‘translated’ into score values. Furthermore, reduced walking speed, reduced step length and reduced maximum ankle power generation during push-off were taken into account and correlated to gait abnormalities described in the scores. An analysis of correlations with CIs between the FFI-D and the AOFAS-AHS items and the gait parameters was performed by means of the Jonckheere-Terpstra test; furthermore, exploratory factor analysis was applied to identify common information structures and thereby redundancy in the FFI-D and the AOFAS-AHS items. Results Objective findings for hindfoot disorders, namely a reduced ROM, in the ankle and subtalar joints, respectively, as well as reduced ankle power generation during push-off, showed a better correlation with the AOFAS-AHS total score—as well as AOFAS-AHS items representing ROM in the ankle, subtalar joints and gait function—compared with the FFI-D score. Factor analysis, however, could not identify FFI

  15. Using the Oxford Foot Model to determine the association between objective measures of foot function and results of the AOFAS Ankle-Hindfoot Scale and the Foot Function Index: a prospective gait analysis study in Germany.

    PubMed

    Kostuj, Tanja; Stief, Felix; Hartmann, Kirsten Anna; Schaper, Katharina; Arabmotlagh, Mohammad; Baums, Mike H; Meurer, Andrea; Krummenauer, Frank; Lieske, Sebastian

    2018-04-05

    After cross-cultural adaption for the German translation of the Ankle-Hindfoot Scale of the American Orthopaedic Foot and Ankle Society (AOFAS-AHS) and agreement analysis with the Foot Function Index (FFI-D), the following gait analysis study using the Oxford Foot Model (OFM) was carried out to show which of the two scores better correlates with objective gait dysfunction. Results of the AOFAS-AHS and FFI-D, as well as data from three-dimensional gait analysis were collected from 20 patients with mild to severe ankle and hindfoot pathologies.Kinematic and kinetic gait data were correlated with the results of the total AOFAS scale and FFI-D as well as the results of those items representing hindfoot function in the AOFAS-AHS assessment. With respect to the foot disorders in our patients (osteoarthritis and prearthritic conditions), we correlated the total range of motion (ROM) in the ankle and subtalar joints as identified by the OFM with values identified during clinical examination 'translated' into score values. Furthermore, reduced walking speed, reduced step length and reduced maximum ankle power generation during push-off were taken into account and correlated to gait abnormalities described in the scores. An analysis of correlations with CIs between the FFI-D and the AOFAS-AHS items and the gait parameters was performed by means of the Jonckheere-Terpstra test; furthermore, exploratory factor analysis was applied to identify common information structures and thereby redundancy in the FFI-D and the AOFAS-AHS items. Objective findings for hindfoot disorders, namely a reduced ROM, in the ankle and subtalar joints, respectively, as well as reduced ankle power generation during push-off, showed a better correlation with the AOFAS-AHS total score-as well as AOFAS-AHS items representing ROM in the ankle, subtalar joints and gait function-compared with the FFI-D score.Factor analysis, however, could not identify FFI-D items consistently related to these three

  16. Foot shape modeling.

    PubMed

    Luximon, Ameersing; Goonetilleke, Ravindra S

    2004-01-01

    This study is an attempt to show how a "standard" foot can be parameterized using foot length, foot width, foot height, and a measure of foot curvature so that foot shape can be predicted using these simple anthropometric measures. The prediction model was generated using 40 Hong Kong Chinese men, and the model was validated using a different group of 25 Hong Kong Chinese men. The results show that each individual foot shape may be predicted to a mean accuracy of 2.1 mm for the left foot and 2.4 mm for the right foot. Application of this research includes the potential design and development of custom footwear without the necessity of expensive 3-D scanning of feet.

  17. Modelling foot height and foot shape-related dimensions.

    PubMed

    Xiong, Shuping; Goonetilleke, Ravindra S; Witana, Channa P; Lee Au, Emily Yim

    2008-08-01

    The application of foot anthropometry to design good-fitting footwear has been difficult due to the lack of generalised models. This study seeks to model foot dimensions so that the characteristic shapes of feet, especially in the midfoot region, can be understood. Fifty Hong Kong Chinese adults (26 males and 24 females) participated in this study. Their foot lengths, foot widths, ball girths and foot heights were measured and then evaluated using mathematical models. The results showed that there were no significant allometry (p > 0.05) effects of foot length on ball girth and foot width. Foot height showed no direct relationship with foot length. However, a normalisation with respect to foot length and foot height resulted in a significant relationship for both males and females with R(2) greater than 0.97. Due to the lack of a direct relationship between foot height and foot length, the current practice of grading shoes with a constant increase in height or proportionate scaling in response to foot length is less than ideal. The results when validated with other populations can be a significant way forward in the design of footwear that has an improved fit in the height dimension.

  18. Reliability and minimal detectable difference in multisegment foot kinematics during shod walking and running.

    PubMed

    Milner, Clare E; Brindle, Richard A

    2016-01-01

    There has been increased interest recently in measuring kinematics within the foot during gait. While several multisegment foot models have appeared in the literature, the Oxford foot model has been used frequently for both walking and running. Several studies have reported the reliability for the Oxford foot model, but most studies to date have reported reliability for barefoot walking. The purpose of this study was to determine between-day (intra-rater) and within-session (inter-trial) reliability of the modified Oxford foot model during shod walking and running and calculate minimum detectable difference for common variables of interest. Healthy adult male runners participated. Participants ran and walked in the gait laboratory for five trials of each. Three-dimensional gait analysis was conducted and foot and ankle joint angle time series data were calculated. Participants returned for a second gait analysis at least 5 days later. Intraclass correlation coefficients and minimum detectable difference were determined for walking and for running, to indicate both within-session and between-day reliability. Overall, relative variables were more reliable than absolute variables, and within-session reliability was greater than between-day reliability. Between-day intraclass correlation coefficients were comparable to those reported previously for adults walking barefoot. It is an extension in the use of the Oxford foot model to incorporate wearing a shoe while maintaining marker placement directly on the skin for each segment. These reliability data for walking and running will aid in the determination of meaningful differences in studies which use this model during shod gait. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. The effect of age and speed on foot and ankle kinematics assessed using a 4-segment foot model.

    PubMed

    van Hoeve, Sander; Leenstra, Bernard; Willems, Paul; Poeze, Martijn; Meijer, Kenneth

    2017-09-01

    The effects of age and speed on foot and ankle kinematics in gait studies using foot models are not fully understood, whereas this can have significant influence. We analyzed these variables with the 4-segment Oxford foot model. Twenty-one healthy subjects (aged 20-65 years) were recruited for gait analysis. The effect of speed on foot and ankle kinematics was assessed by comparing results during slow walking and fast walking. To assess the effect of age, a group of 13 healthy young adults (aged 20-24 years) were compared with a group of 8 older adults (aged 53-65 years). Also, the interaction between age and speed was analyzed. Regarding speed, there was a significant difference between forefoot/hindfoot motion in the sagittal plane (flexion/extension) during both loading- and push-off phase (P = .004, P < .001). Between hindfoot/tibia, there was a significant difference for all parameters except for motion in the sagittal plane (flexion/extension) during push-off phase (P = .5). Age did not significantly influence kinematics. There was no interaction between age and speed. Our analysis found that speed significantly influenced the kinematic outcome parameters. This was more pronounced in the ankle joint. In contrast, no significant differences were found between younger and older healthy subjects.

  20. The effect of age and speed on foot and ankle kinematics assessed using a 4-segment foot model

    PubMed Central

    van Hoeve, Sander; Leenstra, Bernard; Willems, Paul; Poeze, Martijn; Meijer, Kenneth

    2017-01-01

    Abstract Background: The effects of age and speed on foot and ankle kinematics in gait studies using foot models are not fully understood, whereas this can have significant influence. We analyzed these variables with the 4-segment Oxford foot model. Methods: Twenty-one healthy subjects (aged 20–65 years) were recruited for gait analysis. The effect of speed on foot and ankle kinematics was assessed by comparing results during slow walking and fast walking. To assess the effect of age, a group of 13 healthy young adults (aged 20–24 years) were compared with a group of 8 older adults (aged 53–65 years). Also, the interaction between age and speed was analyzed. Results: Regarding speed, there was a significant difference between forefoot/hindfoot motion in the sagittal plane (flexion/extension) during both loading- and push-off phase (P = .004, P < .001). Between hindfoot/tibia, there was a significant difference for all parameters except for motion in the sagittal plane (flexion/extension) during push-off phase (P = .5). Age did not significantly influence kinematics. There was no interaction between age and speed. Conclusion: Our analysis found that speed significantly influenced the kinematic outcome parameters. This was more pronounced in the ankle joint. In contrast, no significant differences were found between younger and older healthy subjects. PMID:28858109

  1. A system for the analysis of foot and ankle kinematics during gait.

    PubMed

    Kidder, S M; Abuzzahab, F S; Harris, G F; Johnson, J E

    1996-03-01

    A five-camera Vicon (Oxford Metrics, Oxford, England) motion analysis system was used to acquire foot and ankle motion data. Static resolution and accuracy were computed as 0.86 +/- 0.13 mm and 98.9%, while dynamic resolution and accuracy were 0.1 +/- 0.89 and 99.4% (sagittal plane). Spectral analysis revealed high frequency noise and the need for a filter (6 Hz Butterworth low-pass) as used in similar clinical situations. A four-segment rigid body model of the foot and ankle was developed. The four rigid body foot model segments were 1) tibia and fibula, 2) calcaneus, talus, and navicular, 3) cuneiforms, cuboid, and metatarsals, and 4) hallux. The Euler method for describing relative foot and ankle segment orientation was utilized in order to maintain accuracy and ease of clinical application. Kinematic data from a single test subject are presented.

  2. The Glasgow-Maastricht foot model, evaluation of a 26 segment kinematic model of the foot.

    PubMed

    Oosterwaal, Michiel; Carbes, Sylvain; Telfer, Scott; Woodburn, James; Tørholm, Søren; Al-Munajjed, Amir A; van Rhijn, Lodewijk; Meijer, Kenneth

    2016-01-01

    Accurately measuring of intrinsic foot kinematics using skin mounted markers is difficult, limited in part by the physical dimensions of the foot. Existing kinematic foot models solve this problem by combining multiple bones into idealized rigid segments. This study presents a novel foot model that allows the motion of the 26 bones to be individually estimated via a combination of partial joint constraints and coupling the motion of separate joints using kinematic rhythms. Segmented CT data from one healthy subject was used to create a template Glasgow-Maastricht foot model (GM-model). Following this, the template was scaled to produce subject-specific models for five additional healthy participants using a surface scan of the foot and ankle. Forty-three skin mounted markers, mainly positioned around the foot and ankle, were used to capture the stance phase of the right foot of the six healthy participants during walking. The GM-model was then applied to calculate the intrinsic foot kinematics. Distinct motion patterns where found for all joints. The variability in outcome depended on the location of the joint, with reasonable results for sagittal plane motions and poor results for transverse plane motions. The results of the GM-model were comparable with existing literature, including bone pin studies, with respect to the range of motion, motion pattern and timing of the motion in the studied joints. This novel model is the most complete kinematic model to date. Further evaluation of the model is warranted.

  3. The Oxford Ankle Foot Questionnaire for children: responsiveness and longitudinal validity.

    PubMed

    Morris, Christopher; Doll, Helen; Davies, Neville; Wainwright, Andrew; Theologis, Tim; Willett, Keith; Fitzpatrick, Ray

    2009-12-01

    To evaluate how scores from the Oxford Ankle Foot Questionnaire change over time and with treatment using both distribution-based and anchor-based approaches. Eighty children aged 5-16 and their parent or career completed questionnaires at orthopaedic or trauma outpatient clinics. They were asked to complete and return a second set of questionnaires again within 2 weeks (retest), and then mailed a third set of questionnaires to complete again after 2 months (follow-up). The follow-up questionnaires included a global rating of change 'transition' item. Child- and parent-reported mean domain scores (Physical, School & Play, and Emotional) were all stable at retest, whereas positive mean changes were observed at follow-up. As we hypothesised, trauma patients had poorer scores than elective patients at baseline, and showed greater improvement at follow-up. For trauma patients, mean changes in per cent scores were large (scores improved between 40 and 56 for the Physical and School & Play domains, and 17 and 21 for Emotional); all effect sizes (ES) were large (>0.8). For elective patients, the mean improvement in per cent scores were more moderate (Physical: child 10, ES = 0.4, parent 11, ES = 0.5; School & Play child 0, ES = 0, parent 9 ES = 0.4; Emotional: child 6, ES = 0.2; parents 8, ES > 0.3). Minimal detectable change (MDC(90)), an indication of measurement error, ranged from 6 to 8. Half the standard deviation of baseline scores ranged from 11 to 18. Minimal important difference could only be calculated for elective patients (9 child and 13 parent ratings), these ranged from 7 to 17. The findings support the responsiveness and longitudinal validity of the scales. Changes in domain scores of, or exceeding, the MDC(90) (6-8) are likely to be beyond measurement error; further work is required to refine the estimate of change that can be considered important.

  4. Does excessive flatfoot deformity affect function? A comparison between symptomatic and asymptomatic flatfeet using the Oxford Foot Model.

    PubMed

    Hösl, Matthias; Böhm, Harald; Multerer, Christel; Döderlein, Leonhard

    2014-01-01

    Treatment of asymptomatic flexible flatfeet is a subject of great controversy. The purpose of this study was to examine foot function during walking in symptomatic (SFF) and asymptomatic (ASFF) flexible flatfeet. Thirty-five paediatric and juvenile patients with idiopathic flexible flatfeet were recruited from an orthopaedic outpatient department (14 SFF and 21 ASFF). Eleven age-matched participants with typically developing feet served as controls (TDF). To study foot function, 3D multi-segment foot kinematics and ankle joint kinetics were captured during barefoot gait analysis. Overall, alterations in foot kinematics in flatfeet were pronounced but differences between SFF and ASFF were not observed. Largest discriminatory effects between flatfeet and TDF were noticed in reduced hindfoot dorsiflexion as well as in increased forefoot supination and abduction. Upon clinical examination, restrictions in passive dorsiflexion in ASFF and SFF were significant. During gait, the hindfoot in flatfeet (both ASFF and SFF) was more everted, but less flexible. In sagittal plane, limited hindfoot dorsiflexion of ASFF and SFF was compensated for by increased forefoot mobility and a hypermobile hallux. Concerning ankle kinetics, SFF lacked positive joint energy for propulsion while ASFF needed to absorb more negative ankle joint energy during loading response. This may risk fatigue and overuse syndrome of anterior shank muscles in ASFF. Hence, despite a lack of symptoms flatfoot deformity in ASFF affected function. Yet, contrary to what was expected, SFF did not show greater deviations in 3D foot kinematics than ASFF. Symptoms may rather depend on tissue wear and subjective pain thresholds. Copyright © 2013. Published by Elsevier B.V.

  5. Radiographic-directed local coordinate systems critical in kinematic analysis of walking in diabetes-related medial column foot deformity.

    PubMed

    Hastings, Mary K; Woodburn, James; Mueller, Michael J; Strube, Michael J; Johnson, Jeffrey E; Beckert, Krista S; Stein, Michelle L; Sinacore, David R

    2014-01-01

    Diabetic foot deformity onset and progression maybe associated with abnormal foot and ankle motion. The modified Oxford multi-segmental foot model allows kinematic assessment of inter-segmental foot motion. However, there are insufficient anatomical landmarks to accurately representation the alignment of the hindfoot and forefoot segments during model construction. This is most notable for the sagittal plane which is referenced parallel to the floor, allowing comparison of inter-segmental excursion but not capturing important sagittal hind-to-forefoot deformity associated with diabetic foot disease and can potentially underestimate true kinematic differences. The purpose of the study was to compare walking kinematics using local coordinate systems derived from the modified Oxford model and the radiographic directed model which incorporated individual calcaneal and 1st metatarsal declination pitch angles for the hindfoot and forefoot. We studied twelve participants in each of the following groups: (1) diabetes mellitus, peripheral neuropathy and medial column foot deformity (DMPN+), (2) DMPN without medial column deformity (DMPN-) and (3) age- and weight-match controls. The modified Oxford model coordinate system did not identify differences between groups in the initial, peak, final, or excursion hindfoot relative to shank or forefoot relative to hindfoot dorsiflexion/plantarflexion during walking. The radiographic coordinate system identified the DMPN+ group to have an initial, peak and final position of the forefoot relative to hindfoot that was more dorsiflexed (lower arch phenotype) than the DMPN- group (p<.05). Use of radiographic alignment in kinematic modeling of those with foot deformity reveals segmental motion occurring upon alignment indicative of a lower arch. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Finite element modeling of a 3D coupled foot-boot model.

    PubMed

    Qiu, Tian-Xia; Teo, Ee-Chon; Yan, Ya-Bo; Lei, Wei

    2011-12-01

    Increasingly, musculoskeletal models of the human body are used as powerful tools to study biological structures. The lower limb, and in particular the foot, is of interest because it is the primary physical interaction between the body and the environment during locomotion. The goal of this paper is to adopt the finite element (FE) modeling and analysis approaches to create a state-of-the-art 3D coupled foot-boot model for future studies on biomechanical investigation of stress injury mechanism, foot wear design and parachute landing fall simulation. In the modeling process, the foot-ankle model with lower leg was developed based on Computed Tomography (CT) images using ScanIP, Surfacer and ANSYS. Then, the boot was represented by assembling the FE models of upper, insole, midsole and outsole built based on the FE model of the foot-ankle, and finally the coupled foot-boot model was generated by putting together the models of the lower limb and boot. In this study, the FE model of foot and ankle was validated during balance standing. There was a good agreement in the overall patterns of predicted and measured plantar pressure distribution published in literature. The coupled foot-boot model will be fully validated in the subsequent works under both static and dynamic loading conditions for further studies on injuries investigation in military and sports, foot wear design and characteristics of parachute landing impact in military. Copyright © 2011 IPEM. Published by Elsevier Ltd. All rights reserved.

  7. A methodological framework for detecting ulcers' risk in diabetic foot subjects by combining gait analysis, a new musculoskeletal foot model and a foot finite element model.

    PubMed

    Scarton, Alessandra; Guiotto, Annamaria; Malaquias, Tiago; Spolaor, Fabiola; Sinigaglia, Giacomo; Cobelli, Claudio; Jonkers, Ilse; Sawacha, Zimi

    2018-02-01

    Diabetic foot is one of the most debilitating complications of diabetes and may lead to plantar ulcers. In the last decade, gait analysis, musculoskeletal modelling (MSM) and finite element modelling (FEM) have shown their ability to contribute to diabetic foot prevention and suggested that the origin of the plantar ulcers is in deeper tissue layers rather than on the plantar surface. Hence the aim of the current work is to develop a methodology that improves FEM-derived foot internal stresses prediction, for diabetic foot prevention applications. A 3D foot FEM was combined with MSM derived force to predict the sites of excessive internal stresses on the foot. In vivo gait analysis data, and an MRI scan of a foot from a healthy subject were acquired and used to develop a six degrees of freedom (6 DOF) foot MSM and a 3D subject-specific foot FEM. Ankle kinematics were applied as boundary conditions to the FEM together with: 1. only Ground Reaction Forces (GRFs); 2. OpenSim derived extrinsic muscles forces estimated with a standard OpenSim MSM; 3. extrinsic muscle forces derived through the (6 DOF) foot MSM; 4. intrinsic and extrinsic muscles forces derived through the 6 DOF foot MSM. For model validation purposes, simulated peak pressures were extracted and compared with those measured experimentally. The importance of foot muscles in controlling plantar pressure distribution and internal stresses is confirmed by the improved accuracy in the estimation of the peak pressures obtained with the inclusion of intrinsic and extrinsic muscle forces. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. A comparison of the readability of two patient-reported outcome measures used to evaluate foot surgery.

    PubMed

    Alvey, James; Palmer, Simon; Otter, Simon

    2012-01-01

    Measuring the outcome of surgical intervention is an integral part of modern-day healthcare provision. The increasing requirement to monitor patient-reported outcomes highlights the need for patients to be able to read and understand health outcomes questionnaires. The present study compared the readability of 2 commonly used, validated, foot surgery outcome questionnaires (the Foot Health Status Questionnaire and the Manchester-Oxford Foot Questionnaire) using the Flesch Reading Ease score and the Flesch-Kincaid grade level score. The Manchester-Oxford Foot Questionnaire had a significantly greater (p < .003) score for reading ease and a significantly lower reading grade score (p < .005) than the Foot Health Status Questionnaire. These findings suggest the Manchester-Oxford Foot Questionnaire is a more suitable instrument in terms of readability and comprehension for a greater proportion of the population undergoing hallux valgus surgery. Copyright © 2012 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  9. Challenging the foundations of the clinical model of foot function: further evidence that the root model assessments fail to appropriately classify foot function.

    PubMed

    Jarvis, Hannah L; Nester, Christopher J; Bowden, Peter D; Jones, Richard K

    2017-01-01

    The Root model of normal and abnormal foot function remains the basis for clinical foot orthotic practice globally. Our aim was to investigate the relationship between foot deformities and kinematic compensations that are the foundations of the model. A convenience sample of 140 were screened and 100 symptom free participants aged 18-45 years were invited to participate. The static biomechanical assessment described by the Root model was used to identify five foot deformities. A 6 segment foot model was used to measure foot kinematics during gait. Statistical tests compared foot kinematics between feet with and without foot deformities and correlated the degree of deformity with any compensatory motions. None of the deformities proposed by the Root model were associated with distinct differences in foot kinematics during gait when compared to those without deformities or each other. Static and dynamic parameters were not correlated. Taken as part of a wider body of evidence, the results of this study have profound implications for clinical foot health practice. We believe that the assessment protocol advocated by the Root model is no longer a suitable basis for professional practice. We recommend that clinicians stop using sub-talar neutral position during clinical assessments and stop assessing the non-weight bearing range of ankle dorsiflexion, first ray position and forefoot alignments and movement as a means of defining the associated foot deformities. The results question the relevance of the Root assessments in the prescription of foot orthoses.

  10. A musculoskeletal foot model for clinical gait analysis.

    PubMed

    Saraswat, Prabhav; Andersen, Michael S; Macwilliams, Bruce A

    2010-06-18

    Several full body musculoskeletal models have been developed for research applications and these models may potentially be developed into useful clinical tools to assess gait pathologies. Existing full-body musculoskeletal models treat the foot as a single segment and ignore the motions of the intrinsic joints of the foot. This assumption limits the use of such models in clinical cases with significant foot deformities. Therefore, a three-segment musculoskeletal model of the foot was developed to match the segmentation of a recently developed multi-segment kinematic foot model. All the muscles and ligaments of the foot spanning the modeled joints were included. Muscle pathways were adjusted with an optimization routine to minimize the difference between the muscle flexion-extension moment arms from the model and moment arms reported in literature. The model was driven by walking data from five normal pediatric subjects (aged 10.6+/-1.57 years) and muscle forces and activation levels required to produce joint motions were calculated using an inverse dynamic analysis approach. Due to the close proximity of markers on the foot, small marker placement error during motion data collection may lead to significant differences in musculoskeletal model outcomes. Therefore, an optimization routine was developed to enforce joint constraints, optimally scale each segment length and adjust marker positions. To evaluate the model outcomes, the muscle activation patterns during walking were compared with electromyography (EMG) activation patterns reported in the literature. Model-generated muscle activation patterns were observed to be similar to the EMG activation patterns. Published by Elsevier Ltd.

  11. Inter-segment foot motion in girls using a three-dimensional multi-segment foot model.

    PubMed

    Jang, Woo Young; Lee, Dong Yeon; Jung, Hae Woon; Lee, Doo Jae; Yoo, Won Joon; Choi, In Ho

    2018-05-06

    Several multi-segment foot models (MFMs) have been introduced for in vivo analyses of dynamic foot kinematics. However, the normal gait patterns of healthy children and adolescents remain uncharacterized. We sought to determine normal foot kinematics according to age in clinically normal female children and adolescents using a Foot 3D model. Fifty-eight girls (age 7-17 years) with normal function and without radiographic abnormalities were tested. Three representative strides from five separate trials were analyzed. Kinematic data of foot segment motion were tracked and evaluated using an MFM with a 15-marker set (Foot 3D model). As controls, 50 symptom-free female adults (20-35 years old) were analyzed. In the hindfoot kinematic analysis, plantar flexion motion in the pre-swing phase was significantly greater in girls aged 11 years or older than in girls aged <11 years, thereby resulting in a larger sagittal range of motion. Coronal plane hindfoot motion exhibited pronation, whereas transverse plane hindfoot motion exhibited increased internal rotation in girls aged <11 years. Hallux valgus angles increased significantly in girls aged 11 years or older. The foot progression angle showed mildly increased internal rotation in the loading response phase and the swing phase in girls aged <11 years old. The patterns of inter-segment foot motion in girls aged 11 years or older showed low-arch kinematic characteristics, whereas those in girls aged 11 years or older were more similar to the patterns in young adult women. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. 75 FR 52484 - Proposed Removal and Amendment of Class E Airspace, Oxford, CT

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-26

    ... Class E airspace extending upward from 700 feet at Oxford, CT. Decommissioning of the Waterbury Non... extension to Class D airspace and amend the description of the Class E airspace extending upward 700 feet... extension to Class D and the Class E 700 foot airspace designations are published in Paragraph 6004 and 6005...

  13. Comparison of foot muscle morphology and foot kinematics between recreational runners with normal feet and with asymptomatic over-pronated feet.

    PubMed

    Zhang, Xianyi; Aeles, Jeroen; Vanwanseele, Benedicte

    2017-05-01

    Over-pronated feet are common in adults and are associated with lower limb injuries. Studying the foot muscle morphology and foot kinematic patterns is important for understanding the mechanism of over-pronation related injuries. The aim of this study is to compare the foot muscle morphology and foot inter-segmental kinematics between recreational runners with normal feet and those with asymptomatic over-pronated feet. A total of 26 recreational runners (17 had normal feet and 9 had over-pronated feet) participated in this study and their foot type was assessed using the 6-item Foot Posture Index. Selected foot muscles were scanned using an ultrasound device and the scanned images were processed to measure the thickness and cross-sectional area of the muscles. Muscles of interest include abductor hallucis, abductor digiti minimi, flexor digitorum brevis and longus, tibialis anterior and peroneus muscles. Foot kinematic data during walking was collected using a 3D motion capture system incorporating the Oxford Foot Model. The results show that individuals with over-pronated feet have larger size of abductor hallucis, flexor digitorum brevis and longus and smaller abductor digiti minimi than controls. Higher rearfoot peak eversion and forefoot peak supination during walking were observed in individuals with over-pronated feet. However, during gait the forefoot peak abduction was comparable. These findings indicate that in active asymptomatic individuals with over-pronated feet, the foot muscle morphology is adapted to increase control of the foot motion. The morphological characteristics of the foot muscles in asymptomatic individuals with over-pronated feet may affect their foot kinematics and benefit prevention from injuries. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. A clinically applicable six-segmented foot model.

    PubMed

    De Mits, Sophie; Segers, Veerle; Woodburn, Jim; Elewaut, Dirk; De Clercq, Dirk; Roosen, Philip

    2012-04-01

    We describe a multi-segmented foot model comprising lower leg, rearfoot, midfoot, lateral forefoot, medial forefoot, and hallux for routine use in a clinical setting. The Ghent Foot Model describes the kinematic patterns of functional units of the foot, especially the midfoot, to investigate patient populations where midfoot deformation or dysfunction is an important feature, for example, rheumatoid arthritis patients. Data were obtained from surface markers by a 6 camera motion capture system at 500 Hz. Ten healthy subjects walked barefoot along a 12 m walkway at self-selected speed. Joint angles (rearfoot to shank, midfoot to rearfoot, lateral and medial forefoot to midfoot, and hallux to medial forefoot) in the sagittal, frontal, and transverse plane are reported according to anatomically based reference frames. These angles were calculated and reported during the foot rollover phases in stance, detected by synchronized plantar pressure measurements. Repeated measurements of each subject revealed low intra-subject variability, varying between 0.7° and 2.3° for the minimum values, between 0.5° and 2.1° for the maximum values, and between 0.8° and 5.8° for the ROM. The described movement patterns were repeatable and consistent with biomechanical and clinical knowledge. As such, the Ghent Foot model permits intersegment, in vivo motion measurement of the foot, which is crucial for both clinical and research applications. Copyright © 2011 Orthopaedic Research Society.

  15. Gait kinematics of subjects with ankle instability using a multisegmented foot model.

    PubMed

    De Ridder, Roel; Willems, Tine; Vanrenterghem, Jos; Robinson, Mark; Pataky, Todd; Roosen, Philip

    2013-11-01

    Many patients who sustain an acute lateral ankle sprain develop chronic ankle instability (CAI). Altered ankle kinematics have been reported to play a role in the underlying mechanisms of CAI. In previous studies, however, the foot was modeled as one rigid segment, ignoring the complexity of the ankle and foot anatomy and kinematics. The purpose of this study was to evaluate stance phase kinematics of subjects with CAI, copers, and controls during walking and running using both a rigid and a multisegmented foot model. Foot and ankle kinematics of 77 subjects (29 subjects with self-reported CAI, 24 copers, and 24 controls) were measured during barefoot walking and running using a rigid foot model and a six-segment Ghent Foot Model. Data were collected on a 20-m-long instrumented runway embedded with a force plate and a six-camera optoelectronic system. Groups were compared using statistical parametric mapping. Both the CAI and the coper group showed similar differences during midstance and late stance compared with the control group (P < 0.05). The rigid foot segment showed a more everted position during walking compared with the control group. Based on the Ghent Foot Model, the rear foot also showed a more everted position during running. The medial forefoot showed a more inverted position for both running and walking compared with the control group. Our study revealed significant midstance and late stance differences in rigid foot, rear foot, and medial forefoot kinematics The multisegmented foot model demonstrated intricate behavior of the foot that is not detectable with rigid foot modeling. Further research using these models is necessary to expand knowledge of foot kinematics in subjects with CAI.

  16. Plug-in-Gait calculation of the knee adduction moment in people with knee osteoarthritis during shod walking: comparison of two different foot marker models.

    PubMed

    Paterson, Kade L; Hinman, Rana S; Metcalf, Ben R; Bennell, Kim L; Wrigley, Tim V

    2017-01-01

    Understanding how kinematic multi-segment foot modelling influences the utility of Plug-in-Gait calculations of the knee adduction moment (KAM) during shod walking is relevant to knee osteoarthritis (OA). Multi-segment foot markers placed on the skin through windows cut in to the shoe provide a more accurate representation of foot mechanics than the traditional marker set used by Plug-in-Gait, which uses fewer markers, placed on the shoe itself. We aimed to investigate whether Plug-in-Gait calculation of the KAM differed when using a kinematic multi-segment foot model compared to the traditional Plug-in-Gait marker set. Twenty people with medial knee OA underwent gait analysis in two test conditions: i) Plug-in-Gait model with its two standard foot markers placed on the shoes and; ii) Plug-in-Gait with the heel marker virtualised from a modified-Oxford Foot Model where 8 ft markers were placed on the skin through windows cut in shoe uppers. Outcomes were the peak KAM, KAM impulse and other knee kinetic and kinematic variables. There were no differences ( P  > 0.05) in any gait variables between conditions. Excellent agreement was found for all outcome variables, with high correlations ( r  > 0.88-0.99, P  < 0.001), narrow limits of agreement and no proportional bias ( R 2  = 0.03-0.14, P  > 0.05). The mean difference and 95% confidence intervals for peak KAM were also within the minimal detectable change range demonstrating equivalence. Plug-in-Gait calculations of the KAM are not altered when using a kinematic multi-segment foot marker model with skin markers placed through windows cut in to the shoe, instead of the traditional marker set placed on top of shoes. Researchers may be confident that applying either foot model does not change the calculation of the KAM using Plug-in-Gait.

  17. Modeling and stress analyses of a normal foot-ankle and a prosthetic foot-ankle complex.

    PubMed

    Ozen, Mustafa; Sayman, Onur; Havitcioglu, Hasan

    2013-01-01

    Total ankle replacement (TAR) is a relatively new concept and is becoming more popular for treatment of ankle arthritis and fractures. Because of the high costs and difficulties of experimental studies, the developments of TAR prostheses are progressing very slowly. For this reason, the medical imaging techniques such as CT, and MR have become more and more useful. The finite element method (FEM) is a widely used technique to estimate the mechanical behaviors of materials and structures in engineering applications. FEM has also been increasingly applied to biomechanical analyses of human bones, tissues and organs, thanks to the development of both the computing capabilities and the medical imaging techniques. 3-D finite element models of the human foot and ankle from reconstruction of MR and CT images have been investigated by some authors. In this study, data of geometries (used in modeling) of a normal and a prosthetic foot and ankle were obtained from a 3D reconstruction of CT images. The segmentation software, MIMICS was used to generate the 3D images of the bony structures, soft tissues and components of prosthesis of normal and prosthetic ankle-foot complex. Except the spaces between the adjacent surface of the phalanges fused, metatarsals, cuneiforms, cuboid, navicular, talus and calcaneus bones, soft tissues and components of prosthesis were independently developed to form foot and ankle complex. SOLIDWORKS program was used to form the boundary surfaces of all model components and then the solid models were obtained from these boundary surfaces. Finite element analyses software, ABAQUS was used to perform the numerical stress analyses of these models for balanced standing position. Plantar pressure and von Mises stress distributions of the normal and prosthetic ankles were compared with each other. There was a peak pressure increase at the 4th metatarsal, first metatarsal and talus bones and a decrease at the intermediate cuneiform and calcaneus bones, in

  18. Women Leaders in Oxford House.

    PubMed

    Timpo, Phyllis; Price, Temple; Salina, Doreen; Witek, Caroline; Pommer, Nicole; Jason, Leonard A

    2014-01-01

    This qualitative study examined women assuming leadership roles in Oxford Houses, which are communal, democratically run recovery settings for substance use disorder. Semi-structured interviews were conducted with 10 women Oxford House leaders who shared their thoughts and experiences on leadership. Several themes emerged from qualitative data analysis, most notably that stepping up and accepting a leadership role in Oxford House had a positive effect on self-esteem, which is vital to women with a history of substance abuse. Barriers to leadership were also identified such as negative interpersonal relationships with other women. A number of methods mentioned to increase the number of women leaders included: developing workshops, providing positive encouragement, and accessing existing female role models. The implications of this study are discussed.

  19. Women Leaders in Oxford House

    PubMed Central

    Timpo, Phyllis; Price, Temple; Salina, Doreen; Witek, Caroline; Pommer, Nicole; Jason, Leonard A.

    2014-01-01

    This qualitative study examined women assuming leadership roles in Oxford Houses, which are communal, democratically run recovery settings for substance use disorder. Semi-structured interviews were conducted with 10 women Oxford House leaders who shared their thoughts and experiences on leadership. Several themes emerged from qualitative data analysis, most notably that stepping up and accepting a leadership role in Oxford House had a positive effect on self-esteem, which is vital to women with a history of substance abuse. Barriers to leadership were also identified such as negative interpersonal relationships with other women. A number of methods mentioned to increase the number of women leaders included: developing workshops, providing positive encouragement, and accessing existing female role models. The implications of this study are discussed. PMID:25419529

  20. Repeatability of a 3D multi-segment foot model protocol in presence of foot deformities.

    PubMed

    Deschamps, Kevin; Staes, Filip; Bruyninckx, Herman; Busschots, Ellen; Matricali, Giovanni A; Spaepen, Pieter; Meyer, Christophe; Desloovere, Kaat

    2012-07-01

    Repeatability studies on 3D multi-segment foot models (3DMFMs) have mainly considered healthy participants which contrasts with the widespread application of these models to evaluate foot pathologies. The current study aimed at establishing the repeatability of the 3DMFM described by Leardini et al. in presence of foot deformities. Foot kinematics of eight adult participants were analyzed using a repeated-measures design including two therapists with different levels of experience. The inter-trial variability was higher compared to the kinematics of healthy subjects. Consideration of relative angles resulted in the lowest inter-session variability. The absolute 3D rotations between the Sha-Cal and Cal-Met seem to have the lowest variability in both therapists. A general trend towards higher σ(sess)/σ(trial) ratios was observed when the midfoot was involved. The current study indicates that not only relative 3D rotations and planar angles can be measured consistently in patients, also a number of absolute parameters can be consistently measured serving as basis for the decision making process. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Foot trajectory approximation using the pendulum model of walking.

    PubMed

    Fang, Juan; Vuckovic, Aleksandra; Galen, Sujay; Conway, Bernard A; Hunt, Kenneth J

    2014-01-01

    Generating a natural foot trajectory is an important objective in robotic systems for rehabilitation of walking. Human walking has pendular properties, so the pendulum model of walking has been used in bipedal robots which produce rhythmic gait patterns. Whether natural foot trajectories can be produced by the pendulum model needs to be addressed as a first step towards applying the pendulum concept in gait orthosis design. This study investigated circle approximation of the foot trajectories, with focus on the geometry of the pendulum model of walking. Three able-bodied subjects walked overground at various speeds, and foot trajectories relative to the hip were analysed. Four circle approximation approaches were developed, and best-fit circle algorithms were derived to fit the trajectories of the ankle, heel and toe. The study confirmed that the ankle and heel trajectories during stance and the toe trajectory in both the stance and the swing phases during walking at various speeds could be well modelled by a rigid pendulum. All the pendulum models were centred around the hip with pendular lengths approximately equal to the segment distances from the hip. This observation provides a new approach for using the pendulum model of walking in gait orthosis design.

  2. Does a foot-drop implant improve kinetic and kinematic parameters in the foot and ankle?

    PubMed

    Daniilidis, Kiriakos; Jakubowitz, Eike; Thomann, Anna; Ettinger, Sarah; Stukenborg-Colsman, Christina; Yao, Daiwei

    2017-04-01

    Unlike the drop foot therapy with ortheses, the therapeutic effect of an implantable peroneus nerve stimulator (iPNS) is not well described. IPNS is a dynamic therapy option which is placed directly to the motoric part of the peroneal nerve and evokes a dorsiflexion of the paralysed foot. This retrospective study evaluates the kinematics and kinetics in drop foot patients who were treated with an iPNS. 18 subjects (mean age 51.3 years) with a chronic stroke-related drop foot were treated with an implantable peroneal nerve stimulator. After a mean follow-up from 12.5 months, kinematics and kinetics as well as spatiotemporal parameters were evaluated and compared in activated and deactivated iPNS. Therefore, a gait analysis with motion capture system (Vicon Motion System Ltd®, Oxford, UK) and Plug-in-Gait model was performed. The study showed significantly improved results in ankle dorsiflexion from 6.8° to 1.8° at the initial contact and from -7.3° to 0.9° during swing phase (p ≤ 0.004 and p ≤ 0.005, respectively). Likewise, we could measure improved kinetics, i.a. with a statistically significant improvement in vertical ground reaction force at loading response from 99.76 to 106.71 N/kg (p = 0.043). Enhanced spatiotemporal results in cadence, douple support, stride length, and walking speed could also be achieved, but without statistical significance (p > 0.05). The results show statistically significant improvement in ankle dorsiflexion and vertical ground reaction forces. These facts indicate a more gait stability and gait efficacy. Therefore, the use of an iPNS appears an encouraging therapeutic option for patients with a stroke-related drop foot.

  3. The chicken foot digital replant training model.

    PubMed

    Athanassopoulos, Thanassi; Loh, Charles Yuen Yung

    2015-01-01

    A simple, readily available digital replantation model in the chicken foot is described. This high fidelity model will hopefully allow trainees in hand surgery to gain further experience in replant surgery prior to clinical application.

  4. Planus Foot Posture and Pronated Foot Function are Associated with Foot Pain: The Framingham Foot Study

    PubMed Central

    Menz, Hylton B.; Dufour, Alyssa B.; Riskowski, Jody L.; Hillstrom, Howard J.; Hannan, Marian T.

    2014-01-01

    Objective To examine the associations of foot posture and foot function to foot pain. Methods Data were collected on 3,378 members of the Framingham Study who completed foot examinations in 2002–2008. Foot pain (generalized and at six locations) was based on the response to the question “On most days, do you have pain, aching or stiffness in either foot?” Foot posture was categorized as normal, planus or cavus using static pressure measurements of the arch index. Foot function was categorized as normal, pronated or supinated using the center of pressure excursion index from dynamic pressure measurements. Sex-specific multivariate logistic regression models were used to examine the effect of foot posture and function on generalized and location-specific foot pain, adjusting for age and weight. Results Planus foot posture was significantly associated with an increased likelihood of arch pain in men (odds ratio [OR] 1.38, 95% confidence interval [CI] 1.01 – 1.90), while cavus foot posture was protective against ball of foot pain (OR 0.74, 95% CI 0.55 – 1.00) and arch pain (OR 0.64, 95% CI 0.48 – 0.85) in women. Pronated foot function was significantly associated with an increased likelihood of generalized foot pain (OR 1.28, 95% CI 1.04 – 1.56) and heel pain (OR 1.54, 95% CI 1.04 – 2.27) in men, while supinated foot function was protective against hindfoot pain in women (OR 0.74, 95% CI 0.55 – 1.00). Conclusion Planus foot posture and pronated foot function are associated with foot symptoms. Interventions that modify abnormal foot posture and function may therefore have a role in the prevention and treatment of foot pain. PMID:23861176

  5. Sagittal plane kinematics of passive dorsiflexion of the foot in adolescent athletes.

    PubMed

    Gatt, Alfred; Chockalingam, Nachiappan; Falzon, Owen

    2013-01-01

    Although assessment of passive maximum foot dorsiflexion angle is performed routinely, there is a paucity of information regarding adolescents' foot and foot segment motion during this procedure. There are currently no trials investigating the kinematics of the adolescent foot during passive foot dorsiflexion. A six-camera optoelectronic motion capture system was used to collect kinematic data using the Oxford Foot Model. Eight female amateur gymnasts 11 to 16 years old (mean age, 13.2 years; mean height, 1.5 m) participated in the study. A dorsiflexing force was applied to the forefoot until reaching maximum resistance with the foot placed in the neutral, pronated, and supinated positions in random order. The maximum foot dorsiflexion angle and the range of movement of the forefoot to hindfoot, tibia to forefoot, and tibia to hindfoot angles were computed. Mean ± SD maximum foot dorsiflexion angles were 36.3° ± 7.2° for pronated, 36.9° ± 4.0° for neutral, and 33.0° ± 4.9° for supinated postures. One-way repeated-measures analysis of variance results were nonsignificant among the 3 groups (P = .70), as were the forefoot to tibia angle and hindfoot to tibia angle variations (P = .091 and P = .188, respectively). Forefoot to hindfoot angle increased with the application of force, indicating that in adolescents, the forefoot does not lock at any particular posture as portrayed by the traditional Rootian paradigm. Participants had very flexible foot dorsiflexion, unlike those in another study assessing adolescent athletes. This finding, together with nonsignificant statistical results, implies that foot dorsiflexion measurement may be performed at any foot posture without notably affecting results.

  6. The reliability of the Adelaide in-shoe foot model.

    PubMed

    Bishop, Chris; Hillier, Susan; Thewlis, Dominic

    2017-07-01

    Understanding the biomechanics of the foot is essential for many areas of research and clinical practice such as orthotic interventions and footwear development. Despite the widespread attention paid to the biomechanics of the foot during gait, what largely remains unknown is how the foot moves inside the shoe. This study investigated the reliability of the Adelaide In-Shoe Foot Model, which was designed to quantify in-shoe foot kinematics and kinetics during walking. Intra-rater reliability was assessed in 30 participants over five walking trials whilst wearing shoes during two data collection sessions, separated by one week. Sufficient reliability for use was interpreted as a coefficient of multiple correlation and intra-class correlation coefficient of >0.61. Inter-rater reliability was investigated separately in a second sample of 10 adults by two researchers with experience in applying markers for the purpose of motion analysis. The results indicated good consistency in waveform estimation for most kinematic and kinetic data, as well as good inter-and intra-rater reliability. The exception is the peak medial ground reaction force, the minimum abduction angle and the peak abduction/adduction external hindfoot joint moments which resulted in less than acceptable repeatability. Based on our results, the Adelaide in-shoe foot model can be used with confidence for 24 commonly measured biomechanical variables during shod walking. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Kinematic repeatability of a multi-segment foot model for dance.

    PubMed

    Carter, Sarah L; Sato, Nahoko; Hopper, Luke S

    2018-03-01

    The purpose of this study was to determine the intra and inter-assessor repeatability of a modified Rizzoli Foot Model for analysing the foot kinematics of ballet dancers. Six university-level ballet dancers performed the movements; parallel stance, turnout plié, turnout stance, turnout rise and flex-point-flex. The three-dimensional (3D) position of individual reflective markers and marker triads was used to model the movement of the dancers' tibia, entire foot, hindfoot, midfoot, forefoot and hallux. Intra and inter-assessor reliability demonstrated excellent (ICC ≥ 0.75) repeatability for the first metatarsophalangeal joint in the sagittal plane. Intra-assessor reliability demonstrated excellent (ICC ≥ 0.75) repeatability during flex-point-flex across all inter-segmental angles except for the tibia-hindfoot and hindfoot-midfoot frontal planes. Inter-assessor repeatability ranged from poor to excellent (0.5 > ICC ≥ 0.75) for the 3D segment rotations. The most repeatable measure was the tibia-foot dorsiflexion/plantar flexion articulation whereas the least repeatable measure was the hindfoot-midfoot adduction/abduction articulation. The variation found in the inter-assessor results is likely due to inconsistencies in marker placement. This 3D dance specific multi-segment foot model provides insight into which kinematic measures can be reliably used to ascertain in vivo technical errors and/or biomechanical abnormalities in a dancer's foot motion.

  8. Development of a patient-specific anatomical foot model from structured light scan data.

    PubMed

    Lochner, Samuel J; Huissoon, Jan P; Bedi, Sanjeev S

    2014-01-01

    The use of anatomically accurate finite element (FE) models of the human foot in research studies has increased rapidly in recent years. Uses for FE foot models include advancing knowledge of orthotic design, shoe design, ankle-foot orthoses, pathomechanics, locomotion, plantar pressure, tissue mechanics, plantar fasciitis, joint stress and surgical interventions. Similar applications but for clinical use on a per-patient basis would also be on the rise if it were not for the high costs associated with developing patient-specific anatomical foot models. High costs arise primarily from the expense and challenges of acquiring anatomical data via magnetic resonance imaging (MRI) or computed tomography (CT) and reconstructing the three-dimensional models. The proposed solution morphs detailed anatomy from skin surface geometry and anatomical landmarks of a generic foot model (developed from CT or MRI) to surface geometry and anatomical landmarks acquired from an inexpensive structured light scan of a foot. The method yields a patient-specific anatomical foot model at a fraction of the cost of standard methods. Average error for bone surfaces was 2.53 mm for the six experiments completed. Highest accuracy occurred in the mid-foot and lowest in the forefoot due to the small, irregular bones of the toes. The method must be validated in the intended application to determine if the resulting errors are acceptable.

  9. Mechanics of the foot Part 2: A coupled solid-fluid model to investigate blood transport in the pathologic foot.

    PubMed

    Mithraratne, K; Ho, H; Hunter, P J; Fernandez, J W

    2012-10-01

    A coupled computational model of the foot consisting of a three-dimensional soft tissue continuum and a one-dimensional (1D) transient blood flow network is presented in this article. The primary aim of the model is to investigate the blood flow in major arteries of the pathologic foot where the soft tissue stiffening occurs. It has been reported in the literature that there could be up to about five-fold increase in the mechanical stiffness of the plantar soft tissues in pathologic (e.g. diabetic) feet compared with healthy ones. The increased stiffness results in higher tissue hydrostatic pressure within the plantar area of the foot when loaded. The hydrostatic pressure acts on the external surface of blood vessels and tend to reduce the flow cross-section area and hence the blood supply. The soft tissue continuum model of the foot was modelled as a tricubic Hermite finite element mesh representing all the muscles, skin and fat of the foot and treated as incompressible with transversely isotropic properties. The details of the mechanical model of soft tissue are presented in the companion paper, Part 1. The deformed state of the soft tissue continuum because of the applied ground reaction force at three foot positions (heel-strike, midstance and toe-off) was obtained by solving the Cauchy equations based on the theory of finite elasticity using the Galerkin finite element method. The geometry of the main arterial network in the foot was represented using a 1D Hermite cubic finite element mesh. The flow model consists of 1D Navier-Stokes equations and a nonlinear constitutive equation to describe vessel radius-transmural pressure relation. The latter was defined as the difference between the fluid and soft tissue hydrostatic pressure. Transient flow governing equations were numerically solved using the two-step Lax-Wendroff finite difference method. The geometry of both the soft tissue continuum and arterial network is anatomically-based and was developed using

  10. Foot posture, foot function and low back pain: the Framingham Foot Study

    PubMed Central

    Menz, Hylton B.; Dufour, Alyssa B.; Riskowski, Jody L.; Hillstrom, Howard J.

    2013-01-01

    Objective. Abnormal foot posture and function have been proposed as possible risk factors for low back pain, but this has not been examined in detail. The objective of this study was to explore the associations of foot posture and foot function with low back pain in 1930 members of the Framingham Study (2002–05). Methods. Low back pain, aching or stiffness on most days was documented on a body chart. Foot posture was categorized as normal, planus or cavus using static weight-bearing measurements of the arch index. Foot function was categorized as normal, pronated or supinated using the centre of pressure excursion index derived from dynamic foot pressure measurements. Sex-specific multivariate logistic regression models were used to examine the associations of foot posture, foot function and asymmetry with low back pain, adjusting for confounding variables. Results. Foot posture showed no association with low back pain. However, pronated foot function was associated with low back pain in women [odds ratio (OR) = 1.51, 95% CI 1.1, 2.07, P = 0.011] and this remained significant after adjusting for age, weight, smoking and depressive symptoms (OR = 1.48, 95% CI 1.07, 2.05, P = 0.018). Conclusion. These findings suggest that pronated foot function may contribute to low back symptoms in women. Interventions that modify foot function, such as orthoses, may therefore have a role in the prevention and treatment of low back pain. PMID:24049103

  11. A76-0634. 1/50 Scale Model Of The 80X120 Foot Wind Tunnel Model (Nfac) In The Test Section Of The 40X80 Foot Wind Tunnel.

    NASA Image and Video Library

    1996-06-27

    (03/12/1976) 1/50 scale model of the 80x120 foot wind tunnel model (NFAC) in the test section of the 40x80 foot wind tunnel. Model mounted on a rotating ground board designed for this test, viewed from the west, oriented for North wind.

  12. Foot Disorders, Foot Posture, and Foot Function: The Framingham Foot Study

    PubMed Central

    Hagedorn, Thomas J.; Dufour, Alyssa B.; Riskowski, Jody L.; Hillstrom, Howard J.; Menz, Hylton B.; Casey, Virginia A.; Hannan, Marian T.

    2013-01-01

    Introduction Foot disorders are common among older adults and may lead to outcomes such as falls and functional limitation. However, the associations of foot posture and foot function to specific foot disorders at the population level remain poorly understood. The purpose of this study was to assess the relation between specific foot disorders, foot posture, and foot function. Methods Participants were from the population-based Framingham Foot Study. Quintiles of the modified arch index and center of pressure excursion index from plantar pressure scans were used to create foot posture and function subgroups. Adjusted odds ratios of having each specific disorder were calculated for foot posture and function subgroups relative to a referent 3 quintiles. Results Pes planus foot posture was associated with increased odds of hammer toes and overlapping toes. Cavus foot posture was not associated with the foot disorders evaluated. Odds of having hallux valgus and overlapping toes were significantly increased in those with pronated foot function, while odds of hallux valgus and hallux rigidus were significantly decreased in those with supinated function. Conclusions Foot posture and foot function were associated with the presence of specific foot disorders. PMID:24040231

  13. Analysis of a kinetic multi-segment foot model. Part I: Model repeatability and kinematic validity.

    PubMed

    Bruening, Dustin A; Cooney, Kevin M; Buczek, Frank L

    2012-04-01

    Kinematic multi-segment foot models are still evolving, but have seen increased use in clinical and research settings. The addition of kinetics may increase knowledge of foot and ankle function as well as influence multi-segment foot model evolution; however, previous kinetic models are too complex for clinical use. In this study we present a three-segment kinetic foot model and thorough evaluation of model performance during normal gait. In this first of two companion papers, model reference frames and joint centers are analyzed for repeatability, joint translations are measured, segment rigidity characterized, and sample joint angles presented. Within-tester and between-tester repeatability were first assessed using 10 healthy pediatric participants, while kinematic parameters were subsequently measured on 17 additional healthy pediatric participants. Repeatability errors were generally low for all sagittal plane measures as well as transverse plane Hindfoot and Forefoot segments (median<3°), while the least repeatable orientations were the Hindfoot coronal plane and Hallux transverse plane. Joint translations were generally less than 2mm in any one direction, while segment rigidity analysis suggested rigid body behavior for the Shank and Hindfoot, with the Forefoot violating the rigid body assumptions in terminal stance/pre-swing. Joint excursions were consistent with previously published studies. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. A superellipsoid-plane model for simulating foot-ground contact during human gait.

    PubMed

    Lopes, D S; Neptune, R R; Ambrósio, J A; Silva, M T

    2016-01-01

    Musculoskeletal models and forward dynamics simulations of human movement often include foot-ground interactions, with the foot-ground contact forces often determined using a constitutive model that depends on material properties and contact kinematics. When using soft constraints to model the foot-ground interactions, the kinematics of the minimum distance between the foot and planar ground needs to be computed. Due to their geometric simplicity, a considerable number of studies have used point-plane elements to represent these interacting bodies, but few studies have provided comparisons between point contact elements and other geometrically based analytical solutions. The objective of this work was to develop a more general-purpose superellipsoid-plane contact model that can be used to determine the three-dimensional foot-ground contact forces. As an example application, the model was used in a forward dynamics simulation of human walking. Simulation results and execution times were compared with a point-like viscoelastic contact model. Both models produced realistic ground reaction forces and kinematics with similar computational efficiency. However, solving the equations of motion with the surface contact model was found to be more efficient (~18% faster), and on average numerically ~37% less stiff. The superellipsoid-plane elements are also more versatile than point-like elements in that they allow for volumetric contact during three-dimensional motions (e.g. rotating, rolling, and sliding). In addition, the superellipsoid-plane element is geometrically accurate and easily integrated within multibody simulation code. These advantages make the use of superellipsoid-plane contact models in musculoskeletal simulations an appealing alternative to point-like elements.

  15. A generic analytical foot rollover model for predicting translational ankle kinematics in gait simulation studies.

    PubMed

    Ren, Lei; Howard, David; Ren, Luquan; Nester, Chris; Tian, Limei

    2010-01-19

    The objective of this paper is to develop an analytical framework to representing the ankle-foot kinematics by modelling the foot as a rollover rocker, which cannot only be used as a generic tool for general gait simulation but also allows for case-specific modelling if required. Previously, the rollover models used in gait simulation have often been based on specific functions that have usually been of a simple form. In contrast, the analytical model described here is in a general form that the effective foot rollover shape can be represented by any polar function rho=rho(phi). Furthermore, a normalized generic foot rollover model has been established based on a normative foot rollover shape dataset of 12 normal healthy subjects. To evaluate model accuracy, the predicted ankle motions and the centre of pressure (CoP) were compared with measurement data for both subject-specific and general cases. The results demonstrated that the ankle joint motions in both vertical and horizontal directions (relative RMSE approximately 10%) and CoP (relative RMSE approximately 15% for most of the subjects) are accurately predicted over most of the stance phase (from 10% to 90% of stance). However, we found that the foot cannot be very accurately represented by a rollover model just after heel strike (HS) and just before toe off (TO), probably due to shear deformation of foot plantar tissues (ankle motion can occur without any foot rotation). The proposed foot rollover model can be used in both inverse and forward dynamics gait simulation studies and may also find applications in rehabilitation engineering. Copyright 2009 Elsevier Ltd. All rights reserved.

  16. Flow simulations on an organ pipe foot model.

    PubMed

    Vaik, István; Paál, György

    2013-02-01

    The present paper shows numerical simulations of the flow responsible for the sound generation in an organ pipe. Only the foot model of the organ pipe (i.e., with the resonator detached) is investigated by two-dimensional incompressible CFD simulations. It is shown that in spite of the moderately high Reynolds number (Re≈2350) no turbulence modeling is necessary. Free jet simulation (foot model without the upper lip) showed that the jet oscillates due to its natural instability. The velocity profile, the centerline and the width of the jet is determined at different heights above the flue. Edge tone simulations (foot model with the upper lip) were carried out having the upper lip at a constant height but at different x positions. It was found that the strongest and most stable edge tone oscillation occurs if the lower left corner of the upper lip is in the centerline of the jet (optimum position). When the upper lip is far from its optimum position the oscillation of the jet is rather due to the natural instability of the jet than the edge tone phenomenon. The results agree well with the experimental results of Außerlechner et al. [J. Acoust. Soc. Am. 126, 878-886 (2009)] and Außerlechner (Ph.D. thesis, Universität Stuttgart, Stuttgart, Germany) and with former results of the authors [Paál and Vaik, Int. J. Heat Fluid Flow 28, 575-586 (2007); Paál and Vaik, in Conference on Modelling Fluid Flow (CMFF'09), Budapest, Hungary].

  17. Airborne spread of foot-and-mouth disease - model intercomparison

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gloster, J; Jones, A; Redington, A

    2008-09-04

    Foot-and-mouth disease is a highly infectious vesicular disease of cloven-hoofed animals caused by foot-and-mouth disease virus. It spreads by direct contact between animals, by animal products (milk, meat and semen), by mechanical transfer on people or fomites and by the airborne route - with the relative importance of each mechanism depending on the particular outbreak characteristics. Over the years a number of workers have developed or adapted atmospheric dispersion models to assess the risk of foot-and-mouth disease virus spread through the air. Six of these models were compared at a workshop hosted by the Institute for Animal Health/Met Office duringmore » 2008. A number of key issues emerged from the workshop and subsequent modelling work: (1) in general all of the models predicted similar directions for 'at risk' livestock with much of the remaining differences strongly related to differences in the meteorological data used; (2) determination of an accurate sequence of events is highly important, especially if the meteorological conditions vary substantially during the virus emission period; and (3) differences in assumptions made about virus release, environmental fate, and subsequent infection can substantially modify the size and location of the downwind risk area. Close relationships have now been established between participants, which in the event of an outbreak of disease could be readily activated to supply advice or modelling support.« less

  18. Relationship between static foot posture and foot mobility

    PubMed Central

    2011-01-01

    Background It is not uncommon for a person's foot posture and/or mobility to be assessed during a clinical examination. The exact relationship, however, between static posture and mobility is not known. Objective The purpose of this study was to determine the degree of association between static foot posture and mobility. Method The static foot posture and foot mobility of 203 healthy individuals was assessed and then analyzed to determine if low arched or "pronated" feet are more mobile than high arched or "supinated" feet. Results The study demonstrated that those individuals with a lower standing dorsal arch height and/or a wider standing midfoot width had greater mobility in their foot. In addition, those individuals with higher Foot Posture Index (FPI) values demonstrated greater mobility and those with lower FPI values demonstrated less mobility. Finally, the amount of foot mobility that an individual has can be predicted reasonably well using either a 3 or 4 variable linear regression model. Conclusions Because of the relationship between static foot posture and mobility, it is recommended that both be assessed as part of a comprehensive evaluation of a individual with foot problems. PMID:21244705

  19. A finite element model of the foot and ankle for automotive impact applications.

    PubMed

    Shin, Jaeho; Yue, Neng; Untaroiu, Costin D

    2012-12-01

    A finite element (FE) model of the foot and leg was developed to improve understanding of injury mechanisms of the ankle and subtalar joints during vehicle collisions and to aid in the design of injury countermeasures. The FE model was developed based on the reconstructed geometry of a male volunteer close to the anthropometry of a 50th percentile male and a commercial anatomical database. While the forefoot bones were defined as rigid bodies connected by ligament models, the surrounding bones of the ankle and subtalar joints and the leg bones were modeled as deformable structures. The material and structural properties were selected based on a synthesis of current knowledge of the constitutive models for each tissue. The whole foot and leg model was validated in different loading conditions including forefoot impact, axial rotation, dorsiflexion, and combined loadings. Overall results obtained in the model validation indicated improved biofidelity relative to previous FE models. The developed model was used to investigate the injury tolerance of the ankle joint under brake pedal loading for internally and externally rotated feet. Ligament failures were predicted as the main source of injury in this loading condition. A 12% variation of failure moment was observed in the range of axial foot rotations (±15°). The most vulnerable position was the internally rotated (15°) posture among three different foot positions. Furthermore, the present foot and ankle model will be coupled together with other body region FE models into the state-of-art human FE model to be used in the field of automotive safety.

  20. The feasibility of a modified shoe for multi-segment foot motion analysis: a preliminary study.

    PubMed

    Halstead, J; Keenan, A M; Chapman, G J; Redmond, A C

    2016-01-01

    The majority of multi-segment kinematic foot studies have been limited to barefoot conditions, because shod conditions have the potential for confounding surface-mounted markers. The aim of this study was to investigate whether a shoe modified with a webbed upper can accommodate multi-segment foot marker sets without compromising kinematic measurements under barefoot and shod conditions. Thirty participants (15 controls and 15 participants with midfoot pain) underwent gait analysis in two conditions; barefoot and wearing a shoe (shod) in a random order. The shod condition employed a modified shoe (rubber plimsoll) with a webbed upper, allowing skin mounted reflective markers to be visualised through slits in the webbed material. Three dimensional foot kinematics were captured using the Oxford multi-segment foot model whilst participants walked at a self-selected speed. The foot pain group showed greater hindfoot eversion and less hindfoot dorsiflexion than controls in the barefoot condition and these differences were maintained when measured in the shod condition. Differences between the foot pain and control participants were also observed for walking speed in the barefoot and in the shod conditions. No significant differences between foot pain and control groups were demonstrated at the forefoot in either condition. Subtle differences between pain and control groups, which were found during barefoot walking are retained when wearing the modified shoe. The novel properties of the modified shoe offers a potential solution for the use of passive infrared based motion analysis for shod applications, for instance to investigate the kinematic effect of foot orthoses.

  1. Development of a Subject-Specific Foot-Ground Contact Model for Walking.

    PubMed

    Jackson, Jennifer N; Hass, Chris J; Fregly, Benjamin J

    2016-09-01

    Computational walking simulations could facilitate the development of improved treatments for clinical conditions affecting walking ability. Since an effective treatment is likely to change a patient's foot-ground contact pattern and timing, such simulations should ideally utilize deformable foot-ground contact models tailored to the patient's foot anatomy and footwear. However, no study has reported a deformable modeling approach that can reproduce all six ground reaction quantities (expressed as three reaction force components, two center of pressure (CoP) coordinates, and a free reaction moment) for an individual subject during walking. This study proposes such an approach for use in predictive optimizations of walking. To minimize complexity, we modeled each foot as two rigid segments-a hindfoot (HF) segment and a forefoot (FF) segment-connected by a pin joint representing the toes flexion-extension axis. Ground reaction forces (GRFs) and moments acting on each segment were generated by a grid of linear springs with nonlinear damping and Coulomb friction spread across the bottom of each segment. The stiffness and damping of each spring and common friction parameter values for all springs were calibrated for both feet simultaneously via a novel three-stage optimization process that used motion capture and ground reaction data collected from a single walking trial. The sequential three-stage process involved matching (1) the vertical force component, (2) all three force components, and finally (3) all six ground reaction quantities. The calibrated model was tested using four additional walking trials excluded from calibration. With only small changes in input kinematics, the calibrated model reproduced all six ground reaction quantities closely (root mean square (RMS) errors less than 13 N for all three forces, 25 mm for anterior-posterior (AP) CoP, 8 mm for medial-lateral (ML) CoP, and 2 N·m for the free moment) for both feet in all walking trials. The

  2. Development of a Subject-Specific Foot-Ground Contact Model for Walking

    PubMed Central

    Jackson, Jennifer N.; Hass, Chris J.; Fregly, Benjamin J.

    2016-01-01

    Computational walking simulations could facilitate the development of improved treatments for clinical conditions affecting walking ability. Since an effective treatment is likely to change a patient's foot-ground contact pattern and timing, such simulations should ideally utilize deformable foot-ground contact models tailored to the patient's foot anatomy and footwear. However, no study has reported a deformable modeling approach that can reproduce all six ground reaction quantities (expressed as three reaction force components, two center of pressure (CoP) coordinates, and a free reaction moment) for an individual subject during walking. This study proposes such an approach for use in predictive optimizations of walking. To minimize complexity, we modeled each foot as two rigid segments—a hindfoot (HF) segment and a forefoot (FF) segment—connected by a pin joint representing the toes flexion–extension axis. Ground reaction forces (GRFs) and moments acting on each segment were generated by a grid of linear springs with nonlinear damping and Coulomb friction spread across the bottom of each segment. The stiffness and damping of each spring and common friction parameter values for all springs were calibrated for both feet simultaneously via a novel three-stage optimization process that used motion capture and ground reaction data collected from a single walking trial. The sequential three-stage process involved matching (1) the vertical force component, (2) all three force components, and finally (3) all six ground reaction quantities. The calibrated model was tested using four additional walking trials excluded from calibration. With only small changes in input kinematics, the calibrated model reproduced all six ground reaction quantities closely (root mean square (RMS) errors less than 13 N for all three forces, 25 mm for anterior–posterior (AP) CoP, 8 mm for medial–lateral (ML) CoP, and 2 N·m for the free moment) for both feet in all walking

  3. Foot Modeling and Smart Plantar Pressure Reconstruction from Three Sensors

    PubMed Central

    Ghaida, Hussein Abou; Mottet, Serge; Goujon, Jean-Marc

    2014-01-01

    In order to monitor pressure under feet, this study presents a biomechanical model of the human foot. The main elements of the foot that induce the plantar pressure distribution are described. Then the link between the forces applied at the ankle and the distribution of the plantar pressure is established. Assumptions are made by defining the concepts of a 3D internal foot shape, which can be extracted from the plantar pressure measurements, and a uniform elastic medium, which describes the soft tissues behaviour. In a second part, we show that just 3 discrete pressure sensors per foot are enough to generate real time plantar pressure cartographies in the standing position or during walking. Finally, the generated cartographies are compared with pressure cartographies issued from the F-SCAN system. The results show 0.01 daN (2% of full scale) average error, in the standing position. PMID:25400713

  4. Foot modeling and smart plantar pressure reconstruction from three sensors.

    PubMed

    Ghaida, Hussein Abou; Mottet, Serge; Goujon, Jean-Marc

    2014-01-01

    In order to monitor pressure under feet, this study presents a biomechanical model of the human foot. The main elements of the foot that induce the plantar pressure distribution are described. Then the link between the forces applied at the ankle and the distribution of the plantar pressure is established. Assumptions are made by defining the concepts of a 3D internal foot shape, which can be extracted from the plantar pressure measurements, and a uniform elastic medium, which describes the soft tissues behaviour. In a second part, we show that just 3 discrete pressure sensors per foot are enough to generate real time plantar pressure cartographies in the standing position or during walking. Finally, the generated cartographies are compared with pressure cartographies issued from the F-SCAN system. The results show 0.01 daN (2% of full scale) average error, in the standing position.

  5. Progress in detailed modelling of low foot and high foot implosion experiments on the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Clark, D. S.; Weber, C. R.; Eder, D. C.; Haan, S. W.; Hammel, B. A.; Hinkel, D. E.; Jones, O. S.; Kritcher, A. L.; Marinak, M. M.; Milovich, J. L.; Patel, P. K.; Robey, H. F.; Salmonson, J. D.; Sepke, S. M.

    2016-05-01

    Several dozen high convergence inertial confinement fusion ignition experiments have now been completed on the National Ignition Facility (NIF). These include both “low foot” experiments from the National Ignition Campaign (NIC) and more recent “high foot” experiments. At the time of the NIC, there were large discrepancies between simulated implosion performance and experimental data. In particular, simulations over predicted neutron yields by up to an order of magnitude, and some experiments showed clear evidence of mixing of ablator material deep into the hot spot that could not be explained at the time. While the agreement between data and simulation improved for high foot implosion experiments, discrepancies nevertheless remain. This paper describes the state of detailed modelling of both low foot and high foot implosions using 1-D, 2-D, and 3-D radiation hydrodynamics simulations with HYDRA. The simulations include a range of effects, in particular, the impact of the plastic membrane used to support the capsule in the hohlraum, as well as low-mode radiation asymmetries tuned to match radiography measurements. The same simulation methodology is applied to low foot NIC implosion experiments and high foot implosions, and shows a qualitatively similar level of agreement for both types of implosions. While comparison with the experimental data remains imperfect, a reasonable level of agreement is emerging and shows a growing understanding of the high-convergence implosions being performed on NIF.

  6. An Examination of the First Oxford House in the UK: A Preliminary Investigation

    PubMed Central

    Majer, John M.; Beers, Kim; Jason, Leonard A.

    2014-01-01

    An exploratory investigation was conducted to examine the implementation of the first self-run, communal-living setting based on the Oxford House model, in the United Kingdom (UK). A cross-sectional, mixed methods design was used to examine the Oxford House model’s total abstinence approach to recovery from substance use disorders among residents (n = 7) living in the first Oxford House established in the UK. Several measures commonly used in addiction research and personal narratives were used to assess residents’ response to Oxford House living. Findings suggest that the Oxford House model is a post-treatment intervention that meets the needs of individuals seeking an abstinence-based recovery from alcohol and/or drug dependence in the UK. PMID:25368450

  7. Calcaneal Scoring as an Adjunct to Modified Oxford Hip Scores: Prediction of Contralateral Slipped Capital Femoral Epiphysis.

    PubMed

    Nicholson, Allen D; Huez, Coridon M; Sanders, James O; Liu, Raymond W; Cooperman, Daniel R

    2016-03-01

    In 2 recent studies, modified Oxford hip scores of 16 through 18 have been shown to predict an extremely high risk of contralateral slipping in unilateral slipped capital femoral epiphysis (SCFE). However, the modified Oxford system is not widely used. This may be due, in part, to the complexity of the scoring system, difficulty in viewing all 5 radiographic features on a single x-ray and phenotypic variation in the features. Ossification of the calcaneal apophysis provides an osteologic marker of skeletal maturation in relation to peak height velocity and has been described previously. We examine the value of the calcaneal apophyseal ossification sequence for predicting modified Oxford hip scores. We examined 279 pelvis and matching foot x-rays that were taken at the same session from 94 healthy children aged 3 to 18 years. A fellowship-trained pediatric orthopaedist determined the modified Oxford hip score for each hip radiograph. The calcaneal x-rays had been previously graded. Modified Oxford hip scores were compared with calcaneal scores for each set of matched hip and calcaneal x-rays. Stage 0 to 2 calcanei had 94% of corresponding hip radiographs rated as modified Oxford scores of 16 to 18. Stage 3 calcanei had 54% rated as 16 to 18 and 31% rated as scores 19 to 21. Stage 4 calcanei had 31% rated as scores 19 to 21, and 68% rated as scores 22 to 26. Stage 5 calcanei had 100% rated as 22 to 26. Using data from Popejoy and colleagues' study, the weighted risk of contralateral SCFE was 94% for calcaneal stage 0, 86.5% for calcaneal stage 1, 90.3% for calcaneal stage 2, 55.8% for calcaneal stage 3, 6.1% for calcaneal stage 4, and 0 for calcaneal stage 5. Calcaneal stages 0 to 3 correspond entirely to modified Oxford scores indicating elevated risk of contralateral SCFE. The calcaneal scoring system has potential for adjunctive use with the modified Oxford score for prediction of contralateral SCFE.

  8. COMPARING 3D FOOT SHAPE MODELS BETWEEN TAIWANESE AND JAPANESE FEMALES.

    PubMed

    Lee, Yu-Chi; Kouchi, Makiko; Mochimaru, Masaaki; Wang, Mao-Jiun

    2015-06-01

    This study compares foot shape and foot dimensions between Taiwanese and Japanese females. One hundred Taiwanese and 100 Japanese female 3D foot scanning data were used for comparison. To avoid the allometry effect, data from 23 Taiwanese and 19 Japanese with foot length between 233 to 237 mm were used for shape comparison. Homologous models created for the right feet of the 42 subjects were analyzed by Multidimensional Scaling. The results showed that there were significant differences in the forefoot shape between the two groups, and Taiwanese females had slightly wider feet with straighter big toe than Japanese females. The results of body and foot dimension comparison indicated that Taiwanese females were taller, heavier and had larger feet than Japanese females, while Japanese females had significantly larger toe 1 angle. Since some Taiwanese shoemakers adopt the Japanese shoe sizing system for making shoes, appropriateness of the shoe sizing system was also discussed. The present results provide very useful information for improving shoe last design and footwear fit for Taiwanese females.

  9. A three-dimensional model to assess the effect of ankle joint axis misalignments in ankle-foot orthoses.

    PubMed

    Fatone, Stefania; Johnson, William Brett; Tucker, Kerice

    2016-04-01

    Misalignment of an articulated ankle-foot orthosis joint axis with the anatomic joint axis may lead to discomfort, alterations in gait, and tissue damage. Theoretical, two-dimensional models describe the consequences of misalignments, but cannot capture the three-dimensional behavior of ankle-foot orthosis use. The purpose of this project was to develop a model to describe the effects of ankle-foot orthosis ankle joint misalignment in three dimensions. Computational simulation. Three-dimensional scans of a leg and ankle-foot orthosis were incorporated into a link segment model where the ankle-foot orthosis joint axis could be misaligned with the anatomic ankle joint axis. The leg/ankle-foot orthosis interface was modeled as a network of nodes connected by springs to estimate interface pressure. Motion between the leg and ankle-foot orthosis was calculated as the ankle joint moved through a gait cycle. While the three-dimensional model corroborated predictions of the previously published two-dimensional model that misalignments in the anterior -posterior direction would result in greater relative motion compared to misalignments in the proximal -distal direction, it provided greater insight showing that misalignments have asymmetrical effects. The three-dimensional model has been incorporated into a freely available computer program to assist others in understanding the consequences of joint misalignments. Models and simulations can be used to gain insight into functioning of systems of interest. We have developed a three-dimensional model to assess the effect of ankle joint axis misalignments in ankle-foot orthoses. The model has been incorporated into a freely available computer program to assist understanding of trainees and others interested in orthotics. © The International Society for Prosthetics and Orthotics 2014.

  10. Economic costs of Oxford House inpatient treatment and incarceration: a preliminary report.

    PubMed

    Olson, Bradley D; Viola, Judah; Jason, Leonard A; Davis, Margaret I; Ferrari, Joseph R; Rabin-Belyaev, Olga

    2006-01-01

    The Oxford House model for substance abuse recovery has potential economic advantages associated with the low cost of opening up and maintaining the settings. In the present study, annual program costs per person were estimated for Oxford House based on federal loan information and data collected from Oxford House Inc. In addition, annual treatment and incarceration costs were approximated based on participant data prior to Oxford House residence in conjunction with normative costs for these settings. Societal costs associated with the Oxford House program were relatively low, whereas estimated costs associated with inpatient and incarceration history were high. The implications of these findings are discussed.

  11. Bipedal gait model for precise gait recognition and optimal triggering in foot drop stimulator: a proof of concept.

    PubMed

    Shaikh, Muhammad Faraz; Salcic, Zoran; Wang, Kevin I-Kai; Hu, Aiguo Patrick

    2018-03-10

    Electrical stimulators are often prescribed to correct foot drop walking. However, commercial foot drop stimulators trigger inappropriately under certain non-gait scenarios. Past researches addressed this limitation by defining stimulation control based on automaton of a gait cycle executed by foot drop of affected limb/foot only. Since gait is a collaborative activity of both feet, this research highlights the role of normal foot for robust gait detection and stimulation triggering. A novel bipedal gait model is proposed where gait cycle is realized as an automaton based on concurrent gait sub-phases (states) from each foot. The input for state transition is fused information from feet-worn pressure and inertial sensors. Thereafter, a bipedal gait model-based stimulation control algorithm is developed. As a feasibility study, bipedal gait model and stimulation control are evaluated in real-time simulation manner on normal and simulated foot drop gait measurements from 16 able-bodied participants with three speed variations, under inappropriate triggering scenarios and with foot drop rehabilitation exercises. Also, the stimulation control employed in commercial foot drop stimulators and single foot gait-based foot drop stimulators are compared alongside. Gait detection accuracy (98.9%) and precise triggering under all investigations prove bipedal gait model reliability. This infers that gait detection leveraging bipedal periodicity is a promising strategy to rectify prevalent stimulation triggering deficiencies in commercial foot drop stimulators. Graphical abstract Bipedal information-based gait recognition and stimulation triggering.

  12. Modelling of human walking to optimise the function of ankle-foot orthosis in Guillan-Barré patients with drop foot.

    PubMed

    Jamshidi, N; Rostami, M; Najarian, S; Menhaj, M B; Saadatnia, M; Firooz, S

    2009-04-01

    This paper deals with the dynamic modelling of human walking. The main focus of this research was to optimise the function of the orthosis in patients with neuropathic feet, based on the kinematics data from different categories of neuropathic patients. The patient's body on the sagittal plane was modelled for calculating the torques generated in joints. The kinematics data required for mathematical modelling of the patients were obtained from the films of patients captured by high speed camera, and then the films were analysed through a motion analysis software. An inverse dynamic model was used for estimating the spring coefficient. In our dynamic model, the role of muscles was substituted by adding a spring-damper between the shank and ankle that could compensate for their weakness by designing ankle-foot orthoses based on the kinematics data obtained from the patients. The torque generated in the ankle was varied by changing the spring constant. Therefore, it was possible to decrease the torque generated in muscles which could lead to the design of more comfortable and efficient orthoses. In this research, unlike previous research activities, instead of studying the abnormal gait or modelling the ankle-foot orthosis separately, the function of the ankle-foot orthosis on the abnormal gait has been quantitatively improved through a correction of the torque.

  13. Foot Pain and Pronated Foot Type are Associated with Self-Reported Mobility Limitations in Older Adults: the Framingham Foot Study

    PubMed Central

    Menz, Hylton B.; Dufour, Alyssa B.; Katz, Patricia; Hannan, Marian T.

    2015-01-01

    Background The foot plays an important role in supporting the body when undertaking weight bearing activities. Aging is associated with an increased prevalence of foot pain and a lowering of the arch of the foot, both of which may impair mobility. Objective To examine the associations of foot pain, foot posture and dynamic foot function with self-reported mobility limitations in community-dwelling older adults. Methods Foot examinations were conducted on 1,860 members of the Framingham Study in 2002–2005. Foot posture was categorized as normal, planus or cavus using static pressure measurements, and foot function was categorized as normal, pronated or supinated using dynamic pressure measurements. Participants were asked whether they had foot pain and any difficulty performing a list of nine weight bearing tasks. Multivariate logistic regression and linear regression models were used to examine the associations of foot pain, posture, function and ability to perform these activities. Results After adjusting for age, sex, height and weight, foot pain was significantly associated with difficulty performing all nine weight bearing activities. Compared to those with normal foot posture and function, participants with planus foot posture were more likely to report difficulty remaining balanced (odds ratio [OR] = 1.40, 95% confidence interval [CI] 1.06 to 1.85; p=0.018) and individuals with pronated foot function were more likely to report difficulty walking across a small room (OR = 2.07, 95% CI 1.02 to 4.22; p=0.045). Foot pain and planus foot posture were associated with an overall mobility limitation score combining performances on each measure. Conclusion Foot pain, planus foot posture and pronated foot function are associated with self-reported difficulty undertaking common weight bearing tasks. Interventions to reduce foot pain and improve foot posture and function may therefore have a role in improving mobility in older adults. PMID:26645379

  14. Mercury Capsule Model in the 1- by 1-Foot Supersonic Wind Tunnel

    NASA Image and Video Library

    1959-10-21

    National Aeronautics and Space Administration (NASA) researchers install a small-scale model of the capsule for Project Mercury in the 1- by 1-Foot Supersonic Wind Tunnel at the Lewis Research Center. NASA Lewis conducted a variety of tests for Project Mercury, including retrorocket calibration, escape tower engine performance, and separation of the capsule from simulated Atlas and Redstone boosters. The test of this capsule and escape tower model in the 1- by 1-foot tunnel were run in January and February 1960. The 1-by 1-Foot Supersonic Wind Tunnel had a 15-inch long test section, seen here, that was one foot wide and one foot high. The sides were made of glass to allow cameras to capture the supersonic air flow over the models. The tunnel could generate air flows from Mach 1.3 to 3.0. At the time, it was one of nine small supersonic wind tunnels at Lewis. These tunnels used the exhauster and compressor equipment of the larger facilities. The 1- by 1 tunnel, which began operating in the early 1950s, was built inside a test cell in the expansive Engine Research Building. During the 1950s the 1- by 1 was used to study a variety of inlets, nozzles, and cones for missiles and scramjets. The Mercury capsule tests were among the last at the facility for many years. The tunnel was mothballed in 1960. The 1- by 1 was briefly restored in 1972, then brought back online for good in 1979. The facility has maintained a brisk operating schedule ever since.

  15. 3D finite element model of the diabetic neuropathic foot: a gait analysis driven approach.

    PubMed

    Guiotto, Annamaria; Sawacha, Zimi; Guarneri, Gabriella; Avogaro, Angelo; Cobelli, Claudio

    2014-09-22

    Diabetic foot is an invalidating complication of diabetes that can lead to foot ulcers. Three-dimensional (3D) finite element analysis (FEA) allows characterizing the loads developed in the different anatomical structures of the foot in dynamic conditions. The aim of this study was to develop a subject specific 3D foot FE model (FEM) of a diabetic neuropathic (DNS) and a healthy (HS) subject, whose subject specificity can be found in term of foot geometry and boundary conditions. Kinematics, kinetics and plantar pressure (PP) data were extracted from the gait analysis trials of the two subjects with this purpose. The FEM were developed segmenting bones, cartilage and skin from MRI and drawing a horizontal plate as ground support. Materials properties were adopted from previous literature. FE simulations were run with the kinematics and kinetics data of four different phases of the stance phase of gait (heel strike, loading response, midstance and push off). FEMs were then driven by group gait data of 10 neuropathic and 10 healthy subjects. Model validation focused on agreement between FEM-simulated and experimental PP. The peak values and the total distribution of the pressures were compared for this purpose. Results showed that the models were less robust when driven from group data and underestimated the PP in each foot subarea. In particular in the case of the neuropathic subject's model the mean errors between experimental and simulated data were around the 20% of the peak values. This knowledge is crucial in understanding the aetiology of diabetic foot. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Finite element modelling of the foot for clinical application: A systematic review.

    PubMed

    Behforootan, Sara; Chatzistergos, Panagiotis; Naemi, Roozbeh; Chockalingam, Nachiappan

    2017-01-01

    Over the last two decades finite element modelling has been widely used to give new insight on foot and footwear biomechanics. However its actual contribution for the improvement of the therapeutic outcome of different pathological conditions of the foot, such as the diabetic foot, remains relatively limited. This is mainly because finite element modelling has only been used within the research domain. Clinically applicable finite element modelling can open the way for novel diagnostic techniques and novel methods for treatment planning/optimisation which would significantly enhance clinical practice. In this context this review aims to provide an overview of modelling techniques in the field of foot and footwear biomechanics and to investigate their applicability in a clinical setting. Even though no integrated modelling system exists that could be directly used in the clinic and considerable progress is still required, current literature includes a comprehensive toolbox for future work towards clinically applicable finite element modelling. The key challenges include collecting the information that is needed for geometry design, the assignment of material properties and loading on a patient-specific basis and in a cost-effective and non-invasive way. The ultimate challenge for the implementation of any computational system into clinical practice is to ensure that it can produce reliable results for any person that belongs in the population for which it was developed. Consequently this highlights the need for thorough and extensive validation of each individual step of the modelling process as well as for the overall validation of the final integrated system. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.

  17. Foot Type Biomechanics Part 1: Structure and Function of the Asymptomatic Foot

    PubMed Central

    Hillstrom, Howard J.; Song, Jinsup; Kraszewski, Andrew P.; Hafer, Jocelyn F.; Mootanah, Rajshree; Dufour, Alyssa B.; PT, Betty (Shingpui) Chow; Deland, Jonathan T.

    2012-01-01

    Background Differences in foot structure are thought to be associated with differences in foot function during movement. Many foot pathologies are of a biomechanical nature and often associated with foot type. Fundamental to the understanding of foot pathomechanics is the question: do different foot types have distinctly different structure and function? Aim To determine if objective measures of foot structure and function differ between planus, rectus and cavus foot types in asymptomatic individuals. Methods Sixty-one asymptomatic healthy adults between 18 and 77 years old, that had the same foot type bilaterally (44 planus feet, 54 rectus feet, and 24 cavus feet), were recruited. Structural and functional measurements were taken using custom equipment, an emed-x plantar pressure measuring device, a GaitMatII gait pattern measurement system, and a goniometer. Generalized Estimation Equation modeling was employed to determine if each dependent variable of foot structure and function was significantly different across foot type while accounting for potential dependencies between sides. Post hoc testing was performed to assess pairwise comparisons. Results Several measures of foot structure (malleolar valgus index and arch height index) were significantly different between foot types. Gait pattern parameters were invariant across foot types. Peak pressure, maximum force, pressure-time-integral, force-time-integral and contact area were significantly different in several medial forefoot and arch locations between foot types. Planus feet exhibited significantly different center of pressure excursion indices compared to rectus and cavus feet. Conclusions Planus, rectus and cavus feet exhibited significantly different measures of foot structure and function. PMID:23107625

  18. Foot type biomechanics part 1: structure and function of the asymptomatic foot.

    PubMed

    Hillstrom, Howard J; Song, Jinsup; Kraszewski, Andrew P; Hafer, Jocelyn F; Mootanah, Rajshree; Dufour, Alyssa B; Chow, Betty Shingpui; Deland, Jonathan T

    2013-03-01

    Differences in foot structure are thought to be associated with differences in foot function during movement. Many foot pathologies are of a biomechanical nature and often associated with foot type. Fundamental to the understanding of foot pathomechanics is the question: do different foot types have distinctly different structure and function? To determine if objective measures of foot structure and function differ between planus, rectus and cavus foot types in asymptomatic individuals. Sixty-one asymptomatic healthy adults between 18 and 77 years old, that had the same foot type bilaterally (44 planus feet, 54 rectus feet, and 24 cavus feet), were recruited. Structural and functional measurements were taken using custom equipment, an emed-x plantar pressure measuring device, a GaitMat II gait pattern measurement system, and a goniometer. Generalized Estimation Equation modeling was employed to determine if each dependent variable of foot structure and function was significantly different across foot type while accounting for potential dependencies between sides. Post hoc testing was performed to assess pair wise comparisons. Several measures of foot structure (malleolar valgus index and arch height index) were significantly different between foot types. Gait pattern parameters were invariant across foot types. Peak pressure, maximum force, pressure-time-integral, force-time-integral and contact area were significantly different in several medial forefoot and arch locations between foot types. Planus feet exhibited significantly different center of pressure excursion indices compared to rectus and cavus feet. Planus, rectus and cavus feet exhibited significantly different measures of foot structure and function. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. A multi-segment foot model based on anatomically registered technical coordinate systems: method repeatability in pediatric feet.

    PubMed

    Saraswat, Prabhav; MacWilliams, Bruce A; Davis, Roy B

    2012-04-01

    Several multi-segment foot models to measure the motion of intrinsic joints of the foot have been reported. Use of these models in clinical decision making is limited due to lack of rigorous validation including inter-clinician, and inter-lab variability measures. A model with thoroughly quantified variability may significantly improve the confidence in the results of such foot models. This study proposes a new clinical foot model with the underlying strategy of using separate anatomic and technical marker configurations and coordinate systems. Anatomical landmark and coordinate system identification is determined during a static subject calibration. Technical markers are located at optimal sites for dynamic motion tracking. The model is comprised of the tibia and three foot segments (hindfoot, forefoot and hallux) and inter-segmental joint angles are computed in three planes. Data collection was carried out on pediatric subjects at two sites (Site 1: n=10 subjects by two clinicians and Site 2: five subjects by one clinician). A plaster mold method was used to quantify static intra-clinician and inter-clinician marker placement variability by allowing direct comparisons of marker data between sessions for each subject. Intra-clinician and inter-clinician joint angle variability were less than 4°. For dynamic walking kinematics, intra-clinician, inter-clinician and inter-laboratory variability were less than 6° for the ankle and forefoot, but slightly higher for the hallux. Inter-trial variability accounted for 2-4° of the total dynamic variability. Results indicate the proposed foot model reduces the effects of marker placement variability on computed foot kinematics during walking compared to similar measures in previous models. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. [Model of multiple seasonal autoregressive integrated moving average model and its application in prediction of the hand-foot-mouth disease incidence in Changsha].

    PubMed

    Tan, Ting; Chen, Lizhang; Liu, Fuqiang

    2014-11-01

    To establish multiple seasonal autoregressive integrated moving average model (ARIMA) according to the hand-foot-mouth disease incidence in Changsha, and to explore the feasibility of the multiple seasonal ARIMA in predicting the hand-foot-mouth disease incidence. EVIEWS 6.0 was used to establish multiple seasonal ARIMA according to the hand-foot- mouth disease incidence from May 2008 to August 2013 in Changsha, and the data of the hand- foot-mouth disease incidence from September 2013 to February 2014 were served as the examined samples of the multiple seasonal ARIMA, then the errors were compared between the forecasted incidence and the real value. Finally, the incidence of hand-foot-mouth disease from March 2014 to August 2014 was predicted by the model. After the data sequence was handled by smooth sequence, model identification and model diagnosis, the multiple seasonal ARIMA (1, 0, 1)×(0, 1, 1)12 was established. The R2 value of the model fitting degree was 0.81, the root mean square prediction error was 8.29 and the mean absolute error was 5.83. The multiple seasonal ARIMA is a good prediction model, and the fitting degree is good. It can provide reference for the prevention and control work in hand-foot-mouth disease.

  1. Reform and Resistance at Oxford

    ERIC Educational Resources Information Center

    Labi, Aisha

    2006-01-01

    In recent years, both Harvard and Oxford Universities have been rattled by reform-minded--some say brash--leaders determined to question the status quo. At Harvard, President Lawrence H. Summers proved too controversial for his own good and is scheduled to step down this month after five contentious years in office. But at Oxford, John Hood, who…

  2. Cavus Foot (High-Arched Foot)

    MedlinePlus

    ... the heel tilting inward, which can lead to ankle sprains Some people with cavus foot may also experience foot drop, a weakness of the muscles in the foot and ankle that results in dragging the foot when taking ...

  3. Non-linear finite element model to assess the effect of tendon forces on the foot-ankle complex.

    PubMed

    Morales-Orcajo, Enrique; Souza, Thales R; Bayod, Javier; Barbosa de Las Casas, Estevam

    2017-11-01

    A three-dimensional foot finite element model with actual geometry and non-linear behavior of tendons is presented. The model is intended for analysis of the lower limb tendon forces effect in the inner foot structure. The geometry of the model was obtained from computational tomographies and magnetic resonance images. Tendon tissue was characterized with the first order Ogden material model based on experimental data from human foot tendons. Kinetic data was employed to set the load conditions. After model validation, a force sensitivity study of the five major foot extrinsic tendons was conducted to evaluate the function of each tendon. A synergic work of the inversion-eversion tendons was predicted. Pulling from a peroneus or tibialis tendon stressed the antagonist tendons while reducing the stress in the agonist. Similar paired action was predicted for the Achilles tendon with the tibialis anterior. This behavior explains the complex control motion performed by the foot. Furthermore, the stress state at the plantar fascia, the talocrural joint cartilage, the plantar soft tissue and the tendons were estimated in the early and late midstance phase of walking. These estimations will help in the understanding of the functional role of the extrinsic muscle-tendon-units in foot pronation-supination. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  4. Estimation of foot joint kinetics in three and four segment foot models using an existing proportionality scheme: Application in paediatric barefoot walking.

    PubMed

    Deschamps, Kevin; Eerdekens, Maarten; Desmet, Dirk; Matricali, Giovanni Arnoldo; Wuite, Sander; Staes, Filip

    2017-08-16

    Recent studies which estimated foot segment kinetic patterns were found to have inconclusive data on one hand, and did not dissociate the kinetics of the chopart and lisfranc joint. The current study aimed therefore at reproducing independent, recently published three-segment foot kinetic data (Study 1) and in a second stage expand the estimation towards a four-segment model (Study 2). Concerning the reproducibility study, two recently published three segment foot models (Bruening et al., 2014; Saraswat et al., 2014) were reproduced and kinetic parameters were incorporated in order to calculate joint moments and powers of paediatric cohorts during gait. Ground reaction forces were measured with an integrated force/pressure plate measurement set-up and a recently published proportionality scheme was applied to determine subarea total ground reaction forces. Regarding Study 2, moments and powers were estimated with respect to the Instituto Ortopedico Rizzoli four-segment model. The proportionality scheme was expanded in this study and the impact of joint centre location on kinetic data was evaluated. Findings related to Study 1 showed in general good agreement with the kinetic data published by Bruening et al. (2014). Contrarily, the peak ankle, midfoot and hallux powers published by Saraswat et al. (2014) are disputed. Findings of Study 2 revealed that the chopart joint encompasses both power absorption and generation, whereas the Lisfranc joint mainly contributes to power generation. The results highlights the necessity for further studies in the field of foot kinetic models and provides a first estimation of the kinetic behaviour of the Lisfranc joint. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Compilation of Test Data on 111 Free-Spinning Airplane Models Tested in the Langley 15-Foot and 20-Foot Free-Spinning Tunnels

    NASA Technical Reports Server (NTRS)

    Malvestuto, Frank S.; Gale, Lawrence J.; Wood, John H.

    1947-01-01

    A compilation of free-spinning-airplane model data on the spin and recovery characteristics of 111 airplanes is presented. These data were previously published in separate memorandum reports and were obtained from free-spinning tests in the Langley 15-foot and the Langley 20-foot free-spinning tunnels. The model test data presented include the steady-spin and recovery characteristics of each model for various combinations of aileron and elevator deflections and for various loadings and dimensional configurations. Dimensional data, mass data, and a three-view drawing of the corresponding free-spinning tunnel model are also presented for each airplane. The data presented should be of value to designers and should facilitate the design of airplanes incorporating satisfactory spin-recovery characteristics.

  6. Foot Function, Foot Pain, and Falls in Older Adults: the Framingham Foot Study

    PubMed Central

    Awale, Arunima; Hagedorn, Thomas J.; Dufour, Alyssa B.; Menz, Hylton B.; Casey, Virginia A.; Hannan, Marian T.

    2017-01-01

    Background Although foot pain has been linked to fall risk, contributions of pain severity, foot posture or foot function are unclear. These factors were examined in a cohort of older adults. Objective The purpose of this study was to examine the associations of foot pain, severity of foot pain and measures of foot posture and dynamic foot function with reported falls in a large, well-described cohort of older adults from the Framingham Foot Study. Methods Foot pain, posture and function were collected from Framingham Foot Study participants who were queried about falls over the past year (0, 1, 2+ falls). Logistic regression was used to calculate odds ratios (OR) and 95% confidence intervals (CI) for the relation of falls with foot pain, pain severity, foot posture, and foot function adjusting for covariates. Results Of 1375 participants, mean age was 69y; 57% were female; 21% reported foot pain (40% mild pain, 47% moderate, 13% severe pain). One-third reported falls in past year (1 fall: n=263, 2+ falls: n=152). Foot pain was associated with a 62% increased odds of recurrent falls. Those with moderate and severe foot pain showed increased odds of 2+ falls (OR=1.78, CI 1.06–2.99, and OR = 3.25, CI 1.65–7.48, respectively) compared to no foot pain. Foot function was not associated with falls. Compared to normal foot posture, those with planus foot posture had 78% higher odds of 2+ falls. Conclusion Higher odds of recurrent falls were observed in individuals with foot pain, especially severe foot pain, as well as individuals with planus foot posture, indicating that both foot pain and foot posture may play a role in increasing the risk of falls among older adults. PMID:28482340

  7. Foot Function, Foot Pain, and Falls in Older Adults: The Framingham Foot Study.

    PubMed

    Awale, Arunima; Hagedorn, Thomas J; Dufour, Alyssa B; Menz, Hylton B; Casey, Virginia A; Hannan, Marian T

    2017-01-01

    Although foot pain has been linked to fall risk, contributions of pain severity, foot posture, or foot function are unclear. These factors were examined in a cohort of older adults. The purpose of this study was to examine the associations of foot pain, severity of foot pain, and measures of foot posture and dynamic foot function with reported falls in a large, well-described cohort of older adults from the Framingham Foot Study. Foot pain, posture, and function were collected from Framingham Foot Study participants who were queried about falls over the past year (0, 1, and ≥2 falls). Logistic regression was used to calculate odds ratios (ORs) and 95% confidence intervals (CIs) for the relation of falls with foot pain, pain severity, foot posture, and foot function adjusting for covariates. The mean age of the 1,375 participants was 69 years; 57% were female, and 21% reported foot pain (40% mild pain, 47% moderate pain, and 13% severe pain). One-third reported falls in the past year (1 fall: n = 263, ≥2 falls: n = 152). Foot pain was associated with a 62% increased odds of recurrent falls. Those with moderate and severe foot pain showed increased odds of ≥2 falls (OR 1.78, CI 1.06-2.99, and OR 3.25, CI 1.65-7.48, respectively) compared to those with no foot pain. Foot function was not associated with falls. Compared to normal foot posture, those with planus foot posture had 78% higher odds of ≥2 falls. Higher odds of recurrent falls were observed in individuals with foot pain, especially severe foot pain, as well as in individuals with planus foot posture, indicating that both foot pain and foot posture may play a role in increasing the risk of falls among older adults. © 2017 S. Karger AG, Basel.

  8. Modelling of gecko foot for future robot application

    NASA Astrophysics Data System (ADS)

    Kamaruddin, A.; Ong, N. R.; Aziz, M. H. A.; Alcain, J. B.; Haimi, W. M. W. N.; Sauli, Z.

    2017-09-01

    Every gecko has an approximately million microscale hairs called setae which made it easy for them to cling from different surfaces at any orientation with the aid of Van der Waals force as the primary mechanism used to adhere to any contact surfaces. In this paper, a strain simulation using Comsol Multiphysic Software was conducted on a 3D MEMS model of an actuated gecko foot with the aim of achieving optimal sticking with various polymetric materials for future robots application. Based on the stress and strain analyses done on the seven different polymers, it was found that polysilicon had the best result which was nearest to 0%, indicating the strongest elasticity among the others. PDMS on the hand, failed in the simulation due to its bulk-like nature. Thus, PDMS was not suitable to be used for further study on gecko foot robot.

  9. The association of foot structure and footwear fit with disability in children and adolescents with Down syndrome.

    PubMed

    Lim, Polly Qx; Shields, Nora; Nikolopoulos, Nikolaos; Barrett, Joanna T; Evans, Angela M; Taylor, Nicholas F; Munteanu, Shannon E

    2015-01-01

    Foot deformity, flat feet, and the use of ill-fitting footwear are common in children and adolescents with Down syndrome (DS). The aim of this study was to determine whether these observations are associated with foot-specific disability in this group. A cross-sectional study design. Foot structure (foot posture determined using the Arch Index, presence of hallux valgus and lesser toe deformities) and footwear fit (determined by length and width percentage differences between the participant's foot and footwear) were assessed in 50 participants with DS (22 females, 28 males) aged five to 18 with a mean (SD) age of 10.6 (3.9) years. Foot-specific disability was determined using the parent-reported Oxford Ankle Foot Questionnaire for Children (OxAFQ-C). Associations between foot structure and footwear fit with the four domains (Physical, School and play, Emotional and Footwear) of the OxAFQ-C were determined using multivariate regression modelling. The mean (SD) Arch Index was 0.29 (0.08), and the prevalence of flat feet, hallux valgus and lesser toe deformities was 76%, 10% and 12% respectively. Few participants wore footwear that was too short (10%), but the use of footwear that was too narrow was common (58%). The presence of hallux valgus was significantly associated with increased disability for the OxAFQ-C School and play domain scores. The use of narrow-fitting footwear was significantly associated with increased levels of disability for the OxAFQ-C Physical, School and play, and Emotional domains. However, these variables only explained between 10% to 14% of the variance in the OxAFQ-C domain scores. There were no significant associations between foot structure and footwear fit with the OxAFQ-C Footwear domain scores. Flatter feet and lesser toe deformities are not associated with foot-specific disability in children and adolescents with DS. Hallux valgus is associated with foot-specific disability during school and play activities. Ill-fitting footwear (too

  10. Evaluating habitat for black-footed ferrets: Revision of an existing model

    USGS Publications Warehouse

    Biggins, Dean E.; Lockhart, J. Michael; Godbey, Jerry L.

    2006-01-01

    Black-footed ferrets (Mustela nigripes) are highly dependent on prairie dogs (Cynomys spp.) as prey, and prairie dog colonies are the only known habitats that sustain black-footed ferret populations. An existing model used extensively for evaluating black-footed ferret reintroduction habitat defined complexes by interconnecting colonies with 7-km line segments. Although the 7-km complex remains a useful construct, we propose additional, smaller-scale evaluations that consider 1.5-km subcomplexes. The original model estimated the carrying capacity of complexes based on energy requirements of ferrets and density estimates of their prairie dog prey. Recent data have supported earlier contentions of intraspecific competition and intrasexual territorial behavior in ferrets. We suggest a revised model that retains the fixed linear relationship of the existing model when prairie dog densities are <18/ha and uses a curvilinear relationship that reflects increasing effects of ferret territoriality when there are 18–42 prairie dogs per hectare. We discuss possible effects of colony size and shape, interacting with territoriality, as justification for the exclusion of territorial influences if a prairie dog colony supports only a single female ferret. We also present data to support continued use of active prairie dog burrow densities as indices suitable for broad-scale estimates of prairie dog density. Calculation of percent of complexes that are occupied by prairie dog colonies was recommended as part of the original habitat evaluation process. That attribute has been largely ignored, resulting in rating anomalies.

  11. Clinical workflow for personalized foot pressure ulcer prevention.

    PubMed

    Bucki, M; Luboz, V; Perrier, A; Champion, E; Diot, B; Vuillerme, N; Payan, Y

    2016-09-01

    Foot pressure ulcers are a common complication of diabetes because of patient's lack of sensitivity due to neuropathy. Deep pressure ulcers appear internally when pressures applied on the foot create high internal strains nearby bony structures. Monitoring tissue strains in persons with diabetes is therefore important for an efficient prevention. We propose to use personalized biomechanical foot models to assess strains within the foot and to determine the risk of ulcer formation. Our workflow generates a foot model adapted to a patient's morphology by deforming an atlas model to conform it to the contours of segmented medical images of the patient's foot. Our biomechanical model is composed of rigid bodies for the bones, joined by ligaments and muscles, and a finite element mesh representing the soft tissues. Using our registration algorithm to conform three datasets, three new patient models were created. After applying a pressure load below these foot models, the Von Mises equivalent strains and "cluster volumes" (i.e. volumes of contiguous elements with strains above a given threshold) were measured within eight functionally meaningful foot regions. The results show the variability of both location and strain values among the three considered patients. This study also confirms that the anatomy of the foot has an influence on the risk of pressure ulcer. Copyright © 2016. Published by Elsevier Ltd.

  12. Parametric study of orthopedic insole of valgus foot on partial foot amputation.

    PubMed

    Guo, Jun-Chao; Wang, Li-Zhen; Chen, Wei; Du, Cheng-Fei; Mo, Zhong-Jun; Fan, Yu-Bo

    2016-01-01

    Orthopedic insole was important for partial foot amputation (PFA) to achieve foot balance and avoid foot deformity. The inapposite insole orthosis was thought to be one of the risk factors of reamputation for foot valgus patient, but biomechanical effects of internal tissues on valgus foot had not been clearly addressed. In this study, plantar pressure on heel and metatarsal regions of PFA was measured using F-Scan. The three-dimensional finite element (FE) model of partial foot evaluated different medial wedge angles (MWAs) (0.0°-10.0°) of orthopedic insole on valgus foot. The effect of orthopedic insole on the internal bone stress, the medial ligament tension of ankle, plantar fascia tension, and plantar pressure was investigated. Plantar pressure on medial heel region was about 2.5 times higher than that of lateral region based on the F-Scan measurements. FE-predicted results showed that the tension of medial ankle ligaments was the lowest, and the plantar pressure was redistributed around the heel, the first metatarsal, and the lateral longitudinal arch regions when MWA of orthopedic insole ranged from 7.5° to 8.0°. The plantar fascias maintained about 3.5% of the total load bearing on foot. However, the internal stresses from foot bones increased. The simulation in this study would provide the suggestion of guiding optimal design of orthopedic insole and therapeutic planning to pedorthist.

  13. Leadership Styles of Oxford House Officers

    PubMed Central

    Komer, Anne C; Jason, Leonard A; Harvey, Ronald; Olson, Brad

    2015-01-01

    Oxford House recovery homes are unusual compared to most recovery homes in that they function entirely without the use of staff; instead members are elected to officer positions. The aim of this study was to perform preliminary analysis of the types of leadership styles utilized by members of oxford house. Twentynine house residents of five Oxford Houses were asked to rate their own leadership styles using the leader behavior description questionnaire and the multifactor leader questionnaire. Results showed that participants were more likely to use person-oriented behaviors above task-oriented actions. Transformational leadership was associated with higher outcomes than Transactional leadership. Implications for future research are discussed. PMID:26380329

  14. Leadership Styles of Oxford House Officers.

    PubMed

    Komer, Anne C; Jason, Leonard A; Harvey, Ronald; Olson, Brad

    Oxford House recovery homes are unusual compared to most recovery homes in that they function entirely without the use of staff; instead members are elected to officer positions. The aim of this study was to perform preliminary analysis of the types of leadership styles utilized by members of oxford house. Twentynine house residents of five Oxford Houses were asked to rate their own leadership styles using the leader behavior description questionnaire and the multifactor leader questionnaire. Results showed that participants were more likely to use person-oriented behaviors above task-oriented actions. Transformational leadership was associated with higher outcomes than Transactional leadership. Implications for future research are discussed.

  15. Optimal foot shape for a passive dynamic biped.

    PubMed

    Kwan, Maxine; Hubbard, Mont

    2007-09-21

    Passive walking dynamics describe the motion of a biped that is able to "walk" down a shallow slope without any actuation or control. Instead, the walker relies on gravitational and inertial effects to propel itself forward, exhibiting a gait quite similar to that of humans. These purely passive models depend on potential energy to overcome the energy lost when the foot impacts the ground. Previous research has demonstrated that energy loss at heel-strike can vary widely for a given speed, depending on the nature of the collision. The point of foot contact with the ground (relative to the hip) can have a significant effect: semi-circular (round) feet soften the impact, resulting in much smaller losses than point-foot walkers. Collisional losses are also lower if a single impulse is broken up into a series of smaller impulses that gradually redirect the velocity of the center of mass rather than a single abrupt impulse. Using this principle, a model was created where foot-strike occurs over two impulses, "heel-strike" and "toe-strike," representative of the initial impact of the heel and the following impact as the ball of the foot strikes the ground. Having two collisions with the flat-foot model did improve efficiency over the point-foot model. Representation of the flat-foot walker as a rimless wheel helped to explain the optimal flat-foot shape, driven by symmetry of the virtual spoke angles. The optimal long period foot shape of the simple passive walking model was not very representative of the human foot shape, although a reasonably anthropometric foot shape was predicted by the short period solution.

  16. Wind tunnel tests on a one-foot diameter SR-7L propfan model

    NASA Technical Reports Server (NTRS)

    Aljabri, Abdullah S.

    1987-01-01

    Wind tunnel tests have been conducted on a one-foot diameter model of the SR-7L propfan in the Langley 16-Foot and 4 x 7 Meter Wind Tunnels as part of the Propfan Test Assessment (PTA) Program. The model propfan was sized to be used on a 1/9-scale model of the PTA testbed aircraft. The model propeller was tested in isolation and wing-mounted on the aircraft configuration at various Mach numbers and blade pitch angles. Agreement between data obtained from these tests and data from Hamilton Standard validate that the 1/9-scale propeller accurately simulates the aerodynamics of the SR-7L propfan. Predictions from an analytical computer program are presented and show good agreement with the experimental data.

  17. Development and validation of a computational model to study the effect of foot constraint on ankle injury due to external rotation.

    PubMed

    Wei, Feng; Hunley, Stanley C; Powell, John W; Haut, Roger C

    2011-02-01

    Recent studies, using two different manners of foot constraint, potted and taped, document altered failure characteristics in the human cadaver ankle under controlled external rotation of the foot. The posterior talofibular ligament (PTaFL) was commonly injured when the foot was constrained in potting material, while the frequency of deltoid ligament injury was higher for the taped foot. In this study an existing multibody computational modeling approach was validated to include the influence of foot constraint, determine the kinematics of the joint under external foot rotation, and consequently obtain strains in various ligaments. It was hypothesized that the location of ankle injury due to excessive levels of external foot rotation is a function of foot constraint. The results from this model simulation supported this hypothesis and helped to explain the mechanisms of injury in the cadaver experiments. An excessive external foot rotation might generate a PTaFL injury for a rigid foot constraint, and an anterior deltoid ligament injury for a pliant foot constraint. The computational models may be further developed and modified to simulate the human response for different shoe designs, as well as on various athletic shoe-surface interfaces, so as to provide a computational basis for optimizing athletic performance with minimal injury risk.

  18. Corner Office Interviews: Oxford's Casper Grathwohl

    ERIC Educational Resources Information Center

    Roncevic, Mirela

    2009-01-01

    This article presents an interview with Casper Grathwohl, VP and publisher of reference at Oxford University Press (OUP), regarding his background of reference publishing, his role in OUP, and his plans of moving on with Oxford Bibliographies Online (OBO). Over the past 12 years, Grathwohl, has led a successful transition of the venerable…

  19. Custom-Molded Foot-Orthosis Intervention and Multisegment Medial Foot Kinematics During Walking

    PubMed Central

    Cobb, Stephen C.; Tis, Laurie L.; Johnson, Jeffrey T.; Wang, Yong “Tai”; Geil, Mark D.

    2011-01-01

    Context: Foot-orthosis (FO) intervention to prevent and treat numerous lower extremity injuries is widely accepted clinically. However, the results of quantitative gait analyses have been equivocal. The foot models used, participants receiving intervention, and orthoses used might contribute to the variability. Objective: To investigate the effect of a custom-molded FO intervention on multisegment medial foot kinematics during walking in participants with low-mobile foot posture. Design: Crossover study. Setting: University biomechanics and ergonomics laboratory. Patients or Other Participants: Sixteen participants with low-mobile foot posture (7 men, 9 women) were assigned randomly to 1 of 2 FO groups. Interventions : After a 2-week period to break in the FOs, individuals participated in a gait analysis that consisted of 5 successful walking trials (1.3 to 1.4 m/s) during no-FO and FO conditions. Main Outcome Measure(s): Three-dimensional displacements during 4 subphases of stance (loading response, mid-stance, terminal stance, preswing) were computed for each multisegment foot model articulation. Results: Repeated-measures analyses of variance (ANOVAs) revealed that rearfoot complex dorsiflexion displacement during midstance was greater in the FO than the no-FO condition (F1,14 = 5.24, P = .04, partial η2 = 0.27). Terminal stance repeated-measures ANOVA results revealed insert-by-insert condition interactions for the first metatarsophalangeal joint complex (F1,14 = 7.87, P = .01, partial η2 = 0.36). However, additional follow-up analysis did not reveal differences between the no-FO and FO conditions for the balanced traditional orthosis (F1,14 = 4.32, P = .08, partial η2 = 0.38) or full-contact orthosis (F1,14 = 4.10, P = .08, partial η2 = 0.37). Conclusions: Greater rearfoot complex dorsiflexion during midstance associated with FO intervention may represent improved foot kinematics in people with low-mobile foot postures. Furthermore, FO intervention might

  20. Heat removal using microclimate foot cooling: a thermal foot manikin study.

    PubMed

    Castellani, John W; Demes, Robert; Endrusick, Thomas L; Cheuvront, Samuel N; Montain, Scott J

    2014-04-01

    It has been proposed that microclimate cooling systems exploit the peripheral extremities because of more efficient heat transfer. The purpose of this study was to quantify, using a patented microclimate cooling technique, the heat transfer from the plantar surface of the foot for comparison to other commonly cooled body regions. A military boot was fitted with an insole embedded with a coiled, 1.27 m length of hollow tubing terminating in inlet and outlet valves. A thermal foot manikin with a surface temperature of 34 degrees C was placed in the boot and the valves were connected to a system that circulated water through the insole at a temperature of 20 degrees C and flow rate of 120 ml x min(-1). The manikin foot served as a constant heat source to determine heat transfer provided by the insole. Testing was done with the foot model dry and sweating at a rate of 500 ml x h(- 1) x m(-2). Climatic chamber conditions were 30 degrees C with 30% RH. Heat loss was approximately 4.1 +/- 0.1 and approximately 7.7 +/- 0.3 W from the dry and sweating foot models, respectively. On a relative scale, the heat loss was 3.0 W and 5.5 W per 1% (unit) body surface area, respectively, for the dry and sweating conditions. The relative heat loss afforded by plantar foot cooling was similar compared to other body regions, but the absolute amount of heat removal is unlikely to make an impact on whole body heat balance.

  1. General Dynamics YF-16 Model in the 8- by 6-Foot Supersonic Wind Tunnel

    NASA Image and Video Library

    1974-01-21

    A model of the General Dynamics YF-16 Fighting Falcon in the test section of the 8- by 6-Foot Supersonic Wind Tunnel at the National Aeronautics and Space Administration (NASA) Lewis Research Center. The YF-16 was General Dynamics response to the military’s 1972 request for proposals to design a new 20,000-pound fighter jet with exceptional acceleration, turn rate, and range. The aircraft included innovative design elements to help pilots survive turns up to 9Gs, a new frameless bubble canopy, and a Pratt and Whitney 24,000-pound thrust F-100 engine. The YF-16 made its initial flight in February 1974, just six weeks before this photograph, at Edwards Air Force Base. Less than a year later, the Air Force ordered 650 of the aircraft, designated as F-16 Fighting Falcons. The March and April 1974 tests in the 8- by 6-foot tunnel analyzed the aircraft’s fixed-shroud ejector nozzle. The fixed-nozzle area limited drag, but also limited the nozzle’s internal performance. NASA researchers identified and assessed aerodynamic and aerodynamic-propulsion interaction uncertainties associated the prototype concept. YF-16 models were also tested extensively in the 11- by 11-Foot Transonic Wind Tunnel and 9- by 7-Foot Supersonic Wind Tunnel at Ames Research Center and the 12-Foot Pressure Wind Tunnel at Langley Research Center.

  2. Associations of Region-Specific Foot Pain and Foot Biomechanics: The Framingham Foot Study

    PubMed Central

    Hagedorn, Thomas J.; Dufour, Alyssa B.; Hannan, Marian T.

    2015-01-01

    Background. Specific regions of the foot are responsible for the gait tasks of weight acceptance, single-limb support, and forward propulsion. With region foot pain, gait abnormalities may arise and affect the plantar pressure and force pattern utilized. Therefore, this study’s purpose was to evaluate plantar pressure and force pattern differences between adults with and without region-specific foot pain. Methods. Plantar pressure and force data were collected on Framingham Foot Study members while walking barefoot at a self-selected pace. Foot pain was evaluated by self-report and grouped by foot region (toe, forefoot, midfoot, or rearfoot) or regions (two or three or more regions) of pain. Unadjusted and adjusted linear regression with generalized estimating equations was used to determine associations between feet with and without foot pain. Results. Individuals with distal foot (forefoot or toes) pain had similar maximum vertical forces under the pain region, while those with proximal foot (rearfoot or midfoot) pain had different maximum vertical forces compared to those without regional foot pain (referent). During walking, there were significant differences in plantar loading and propulsion ranging from 2% to 4% between those with and without regional foot pain. Significant differences in normalized maximum vertical force and plantar pressure ranged from 5.3% to 12.4% and 3.4% to 24.1%, respectively, between those with and without regional foot pain. Conclusions. Associations of regional foot pain with plantar pressure and force were different by regions of pain. Region-specific foot pain was not uniformly associated with an increase or decrease in loading and pressure patterns regions of pain. PMID:25995291

  3. A 640 foot per second impact test of a two foot diameter model nuclear reactor containment system without fracture

    NASA Technical Reports Server (NTRS)

    Puthoff, R. L.

    1971-01-01

    An impact test was conducted on an 1142 pound 2 foot diameter sphere model. The purpose of this test was to determine the feasibility of containing the fission products of a mobile reactor in an impact. The model simulated the reactor core, energy absorbing gamma shielding, neutron shielding and the containment vessel. It was impacted against an 18,000 pound reinforced concrete block. The model was significantly deformed and the concrete block demolished. No leaks were detected nor cracks observed in the model after impact.

  4. Foot speed, foot-strike and footwear: linking gait mechanics and running ground reaction forces.

    PubMed

    Clark, Kenneth P; Ryan, Laurence J; Weyand, Peter G

    2014-06-15

    Running performance, energy requirements and musculoskeletal stresses are directly related to the action-reaction forces between the limb and the ground. For human runners, the force-time patterns from individual footfalls can vary considerably across speed, foot-strike and footwear conditions. Here, we used four human footfalls with distinctly different vertical force-time waveform patterns to evaluate whether a basic mechanical model might explain all of them. Our model partitions the body's total mass (1.0 Mb) into two invariant mass fractions (lower limb=0.08, remaining body mass=0.92) and allows the instantaneous collisional velocities of the former to vary. The best fits achieved (R(2) range=0.95-0.98, mean=0.97 ± 0.01) indicate that the model is capable of accounting for nearly all of the variability observed in the four waveform types tested: barefoot jog, rear-foot strike run, fore-foot strike run and fore-foot strike sprint. We conclude that different running ground reaction force-time patterns may have the same mechanical basis. © 2014. Published by The Company of Biologists Ltd.

  5. Foot posture is associated with kinematics of the foot during gait: A comparison of normal, planus and cavus feet.

    PubMed

    Buldt, Andrew K; Levinger, Pazit; Murley, George S; Menz, Hylton B; Nester, Christopher J; Landorf, Karl B

    2015-06-01

    Variations in foot posture are associated with the development of some lower limb injuries. However, the mechanisms underlying this relationship are unclear. The objective of this study was to compare foot kinematics between normal, pes cavus and pes planus foot posture groups using a multi-segment foot model. Ninety-seven healthy adults, aged 18-47 were classified as either normal (n=37), pes cavus (n=30) or pes planus (n=30) based on normative data for the Foot Posture Index, Arch Index and normalised navicular height. A five segment foot model was used to measure tri-planar motion of the rearfoot, midfoot, medial forefoot, lateral forefoot and hallux during barefoot walking at a self-selected speed. Angle at heel contact, peak angle, time to peak angle and range of motion was measured for each segment. One way ANOVAs with post-hoc analyses of mean differences were used to compare foot posture groups. The pes cavus group demonstrated a distinctive pattern of motion compared to the normal and pes planus foot posture groups. Effect sizes of significant mean differences were large and comparable to similar studies. Three key differences in overall foot function were observed between the groups: (i) altered frontal and transverse plane angles of the rearfoot in the pes cavus foot; (ii) Less midfoot motion in the pes cavus foot during initial contact and midstance; and (iii) reduced midfoot frontal plane ROM in the pes planus foot during pre-swing. These findings indicate that foot posture does influence motion of the foot. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Space Shuttle Pressure Data Model in the 10- by 10-Foot Supersonic Wind Tunnel

    NASA Image and Video Library

    1978-04-21

    Technicians examine a scale model of the space shuttle used to obtain pressure data during tests in the 10- by 10-Foot Supersonic Wind Tunnel at the National Aeronautics and Space Administration (NASA) Lewis Research Center. Lewis researchers used the 10- by 10 tunnel extensively in the 1970s to study shuttle configurations in order to forecast conditions during an actual flight. These tests included analysis of the solid rocket boosters’ aerodynamics, orbiter forebody angle -of -attack and air speed, base heating for entire shuttle, and engine-out loads. The test seen in this photograph used a 3.5- percent scale aluminum alloy model of the entire launch configuration. The program was designed to obtain aerodynamic pressure data. The tests were part of a larger program to study possible trouble areas for the shuttle’s new Advanced Flexible Reusable Surface Insulation. The researchers obtained aeroacoustic data and pressure distributions from five locations on the model. Over 100 high-temperature pressure transducers were attached to the model. Other portions of the test program were conducted at Lewis’ 8- by 6-Foot Supersonic Wind Tunnel and the 11- by 11-Foot Transonic Wind Tunnel at Ames Research Center.

  7. Usage Notes in the Oxford American Dictionary.

    ERIC Educational Resources Information Center

    Berner, R. Thomas

    1981-01-01

    Compares the "Oxford American Dictionary" with the "American Heritage Dictionary." Examines the dictionaries' differences in philosophies of language, introductory essays, and usage notes. Concludes that the "Oxford American Dictionary" is too conservative, paternalistic, and dogmatic for the 1980s. (DMM)

  8. Analysis of a kinetic multi-segment foot model part II: kinetics and clinical implications.

    PubMed

    Bruening, Dustin A; Cooney, Kevin M; Buczek, Frank L

    2012-04-01

    Kinematic multi-segment foot models have seen increased use in clinical and research settings, but the addition of kinetics has been limited and hampered by measurement limitations and modeling assumptions. In this second of two companion papers, we complete the presentation and analysis of a three segment kinetic foot model by incorporating kinetic parameters and calculating joint moments and powers. The model was tested on 17 pediatric subjects (ages 7-18 years) during normal gait. Ground reaction forces were measured using two adjacent force platforms, requiring targeted walking and the creation of two sub-models to analyze ankle, midtarsal, and 1st metatarsophalangeal joints. Targeted walking resulted in only minimal kinematic and kinetic differences compared with walking at self selected speeds. Joint moments and powers were calculated and ensemble averages are presented as a normative database for comparison purposes. Ankle joint powers are shown to be overestimated when using a traditional single-segment foot model, as substantial angular velocities are attributed to the mid-tarsal joint. Power transfer is apparent between the 1st metatarsophalangeal and mid-tarsal joints in terminal stance/pre-swing. While the measurement approach presented here is limited to clinical populations with only minimal impairments, some elements of the model can also be incorporated into routine clinical gait analysis. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Dynamically adjustable foot-ground contact model to estimate ground reaction force during walking and running.

    PubMed

    Jung, Yihwan; Jung, Moonki; Ryu, Jiseon; Yoon, Sukhoon; Park, Sang-Kyoon; Koo, Seungbum

    2016-03-01

    Human dynamic models have been used to estimate joint kinetics during various activities. Kinetics estimation is in demand in sports and clinical applications where data on external forces, such as the ground reaction force (GRF), are not available. The purpose of this study was to estimate the GRF during gait by utilizing distance- and velocity-dependent force models between the foot and ground in an inverse-dynamics-based optimization. Ten males were tested as they walked at four different speeds on a force plate-embedded treadmill system. The full-GRF model whose foot-ground reaction elements were dynamically adjusted according to vertical displacement and anterior-posterior speed between the foot and ground was implemented in a full-body skeletal model. The model estimated the vertical and shear forces of the GRF from body kinematics. The shear-GRF model with dynamically adjustable shear reaction elements according to the input vertical force was also implemented in the foot of a full-body skeletal model. Shear forces of the GRF were estimated from body kinematics, vertical GRF, and center of pressure. The estimated full GRF had the lowest root mean square (RMS) errors at the slow walking speed (1.0m/s) with 4.2, 1.3, and 5.7% BW for anterior-posterior, medial-lateral, and vertical forces, respectively. The estimated shear forces were not significantly different between the full-GRF and shear-GRF models, but the RMS errors of the estimated knee joint kinetics were significantly lower for the shear-GRF model. Providing COP and vertical GRF with sensors, such as an insole-type pressure mat, can help estimate shear forces of the GRF and increase accuracy for estimation of joint kinetics. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Development of a finite element model of female foot for high-heeled shoe design.

    PubMed

    Yu, Jia; Cheung, Jason Tak-Man; Fan, Yubo; Zhang, Yan; Leung, Aaron Kam-Lun; Zhang, Ming

    2008-01-01

    Wearing high-heeled shoes may produce deleterious effects on the musculoskeletal system while elevation of the shoe heel with arch insole insert is used as a treatment strategy for plantar fasciitis. Due to limitations of the experimental approaches, direct measurements of internal stress/strain of the foot are impossible or invasive. This study aims at developing a finite element model for evaluating the biomechanical effects of high-heeled support on the ankle-foot complex. A 3D anatomically detailed FE model of the female foot and ankle together with a high-heeled support was developed and used to investigate the plantar contact pressure and internal loading responses of the bony and soft tissue structures of the foot with varying heel heights during simulated balanced standing. In the balanced standing position with high-heeled support, a pronounced increase in von Mises stress at the first metatarsophalangeal (MTP) joint was predicted. The strain on plantar fascia decreased compared to the flat horizontal support and valgus deformity of the hallux was not significant. The increased stress in forefoot especially at the first MTP segment during prolonged high-heeled standing may contribute to progressive hallux valgus (HV) deformity. However, the reduced tensile strain in the plantar fascia with heel elevation may help relieve plantar fasciitis related pain and inflammation.

  11. Capsule modeling of high foot implosion experiments on the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, D. S.; Kritcher, A. L.; Milovich, J. L.

    This study summarizes the results of detailed, capsule-only simulations of a set of high foot implosion experiments conducted on the National Ignition Facility (NIF). These experiments span a range of ablator thicknesses, laser powers, and laser energies, and modeling these experiments as a set is important to assess whether the simulation model can reproduce the trends seen experimentally as the implosion parameters were varied. Two-dimensional (2D) simulations have been run including a number of effects—both nominal and off-nominal—such as hohlraum radiation asymmetries, surface roughness, the capsule support tent, and hot electron pre-heat. Selected three-dimensional simulations have also been run tomore » assess the validity of the 2D axisymmetric approximation. As a composite, these simulations represent the current state of understanding of NIF high foot implosion performance using the best and most detailed computational model available. While the most detailed simulations show approximate agreement with the experimental data, it is evident that the model remains incomplete and further refinements are needed. Nevertheless, avenues for improved performance are clearly indicated.« less

  12. Capsule modeling of high foot implosion experiments on the National Ignition Facility

    DOE PAGES

    Clark, D. S.; Kritcher, A. L.; Milovich, J. L.; ...

    2017-03-21

    This study summarizes the results of detailed, capsule-only simulations of a set of high foot implosion experiments conducted on the National Ignition Facility (NIF). These experiments span a range of ablator thicknesses, laser powers, and laser energies, and modeling these experiments as a set is important to assess whether the simulation model can reproduce the trends seen experimentally as the implosion parameters were varied. Two-dimensional (2D) simulations have been run including a number of effects—both nominal and off-nominal—such as hohlraum radiation asymmetries, surface roughness, the capsule support tent, and hot electron pre-heat. Selected three-dimensional simulations have also been run tomore » assess the validity of the 2D axisymmetric approximation. As a composite, these simulations represent the current state of understanding of NIF high foot implosion performance using the best and most detailed computational model available. While the most detailed simulations show approximate agreement with the experimental data, it is evident that the model remains incomplete and further refinements are needed. Nevertheless, avenues for improved performance are clearly indicated.« less

  13. Estimation of Foot Plantar Center of Pressure Trajectories with Low-Cost Instrumented Insoles Using an Individual-Specific Nonlinear Model.

    PubMed

    Hu, Xinyao; Zhao, Jun; Peng, Dongsheng; Sun, Zhenglong; Qu, Xingda

    2018-02-01

    Postural control is a complex skill based on the interaction of dynamic sensorimotor processes, and can be challenging for people with deficits in sensory functions. The foot plantar center of pressure (COP) has often been used for quantitative assessment of postural control. Previously, the foot plantar COP was mainly measured by force plates or complicated and expensive insole-based measurement systems. Although some low-cost instrumented insoles have been developed, their ability to accurately estimate the foot plantar COP trajectory was not robust. In this study, a novel individual-specific nonlinear model was proposed to estimate the foot plantar COP trajectories with an instrumented insole based on low-cost force sensitive resistors (FSRs). The model coefficients were determined by a least square error approximation algorithm. Model validation was carried out by comparing the estimated COP data with the reference data in a variety of postural control assessment tasks. We also compared our data with the COP trajectories estimated by the previously well accepted weighted mean approach. Comparing with the reference measurements, the average root mean square errors of the COP trajectories of both feet were 2.23 mm (±0.64) (left foot) and 2.72 mm (±0.83) (right foot) along the medial-lateral direction, and 9.17 mm (±1.98) (left foot) and 11.19 mm (±2.98) (right foot) along the anterior-posterior direction. The results are superior to those reported in previous relevant studies, and demonstrate that our proposed approach can be used for accurate foot plantar COP trajectory estimation. This study could provide an inexpensive solution to fall risk assessment in home settings or community healthcare center for the elderly. It has the potential to help prevent future falls in the elderly.

  14. Estimation of Foot Plantar Center of Pressure Trajectories with Low-Cost Instrumented Insoles Using an Individual-Specific Nonlinear Model

    PubMed Central

    Hu, Xinyao; Zhao, Jun; Peng, Dongsheng

    2018-01-01

    Postural control is a complex skill based on the interaction of dynamic sensorimotor processes, and can be challenging for people with deficits in sensory functions. The foot plantar center of pressure (COP) has often been used for quantitative assessment of postural control. Previously, the foot plantar COP was mainly measured by force plates or complicated and expensive insole-based measurement systems. Although some low-cost instrumented insoles have been developed, their ability to accurately estimate the foot plantar COP trajectory was not robust. In this study, a novel individual-specific nonlinear model was proposed to estimate the foot plantar COP trajectories with an instrumented insole based on low-cost force sensitive resistors (FSRs). The model coefficients were determined by a least square error approximation algorithm. Model validation was carried out by comparing the estimated COP data with the reference data in a variety of postural control assessment tasks. We also compared our data with the COP trajectories estimated by the previously well accepted weighted mean approach. Comparing with the reference measurements, the average root mean square errors of the COP trajectories of both feet were 2.23 mm (±0.64) (left foot) and 2.72 mm (±0.83) (right foot) along the medial–lateral direction, and 9.17 mm (±1.98) (left foot) and 11.19 mm (±2.98) (right foot) along the anterior–posterior direction. The results are superior to those reported in previous relevant studies, and demonstrate that our proposed approach can be used for accurate foot plantar COP trajectory estimation. This study could provide an inexpensive solution to fall risk assessment in home settings or community healthcare center for the elderly. It has the potential to help prevent future falls in the elderly. PMID:29389857

  15. Foot model for tracking temperature of safety boot insoles: application to different insole materials in firefighter boots.

    PubMed

    García-Hernández, César; Sánchez-Álvarez, Eduardo J; Huertas-Talón, José-Luis

    2016-01-01

    This research is based on the development of a human foot model to study the temperature conditions of a foot bottom surface under extreme external conditions. This foot model is made by combining different manufacturing techniques to enable the simulation of bones and tissues, allowing the placement of sensors on its surface to track the temperature values of different points inside a shoe. These sensors let researchers capture valuable data during a defined period of time, making it possible to compare the features of different safety boots, socks or soles, among others. In this case, it has been applied to compare different plantar insole materials, placed into safety boots on a high-temperature surface.

  16. Towards the generation of a parametric foot model using principal component analysis: A pilot study.

    PubMed

    Scarton, Alessandra; Sawacha, Zimi; Cobelli, Claudio; Li, Xinshan

    2016-06-01

    There have been many recent developments in patient-specific models with their potential to provide more information on the human pathophysiology and the increase in computational power. However they are not yet successfully applied in a clinical setting. One of the main challenges is the time required for mesh creation, which is difficult to automate. The development of parametric models by means of the Principle Component Analysis (PCA) represents an appealing solution. In this study PCA has been applied to the feet of a small cohort of diabetic and healthy subjects, in order to evaluate the possibility of developing parametric foot models, and to use them to identify variations and similarities between the two populations. Both the skin and the first metatarsal bones have been examined. Besides the reduced sample of subjects considered in the analysis, results demonstrated that the method adopted herein constitutes a first step towards the realization of a parametric foot models for biomechanical analysis. Furthermore the study showed that the methodology can successfully describe features in the foot, and evaluate differences in the shape of healthy and diabetic subjects. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.

  17. Investigation of the mechanical behaviour of the foot skin.

    PubMed

    Fontanella, C G; Carniel, E L; Forestiero, A; Natali, A N

    2014-11-01

    The aim of this work was to provide computational tools for the characterization of the actual mechanical behaviour of foot skin, accounting for results from experimental testing and histological investigation. Such results show the typical features of skin mechanics, such as anisotropic configuration, almost incompressible behaviour, material and geometrical non linearity. The anisotropic behaviour is mainly determined by the distribution of collagen fibres along specific directions, usually identified as cleavage lines. To evaluate the biomechanical response of foot skin, a refined numerical model of the foot is developed. The overall mechanical behaviour of the skin is interpreted by a fibre-reinforced hyperelastic constitutive model and the orientation of the cleavage lines is implemented by a specific procedure. Numerical analyses that interpret typical loading conditions of the foot are performed. The influence of fibres orientation and distribution on skin mechanics is outlined also by a comparison with results using an isotropic scheme. A specific constitutive formulation is provided to characterize the mechanical behaviour of foot skin. The formulation is applied within a numerical model of the foot to investigate the skin functionality during typical foot movements. Numerical analyses developed accounting for the actual anisotropic configuration of the skin show lower maximum principal stress fields than results from isotropic analyses. The developed computational models provide reliable tools for the investigation of foot tissues functionality. Furthermore, the comparison between numerical results from anisotropic and isotropic models shows the optimal configuration of foot skin. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Athlete's Foot

    MedlinePlus

    ... this page. Please enable Javascript in your browser. Athlete's Foot Athlete's foot is a skin infection caused by fungus. A ... the body; on the foot, it is called athlete’s foot, or tinea pedis. Fungus commonly attacks the feet ...

  19. Modeling black-footed ferret energetics: Are southern release sites better?

    USGS Publications Warehouse

    Harrington, Lauren A.; Biggins, Dean E.; Alldredge, A. William

    2006-01-01

    Several models have been developed to estimate prey requirements and to assess habitat suitability of release sites for the black-footed ferret (Mustela nigripes) (e.g., Stromberg and others, 1983; Powell and others, 1985; Biggins and others, 1993). None of these models, however, addressed possible differences in energetic requirements between sites due to climatic differences within the ferret’s historical range. We used a simplified energetics model to examine the effect of variation in environmental conditions on ferret energetic requirements. The aim of the study was to determine whether the ferret might be more successful in one area than another.

  20. This is my neighborhood: comparing United States and Australian Oxford House Neighborhoods.

    PubMed

    Ferrari, Joseph R; Jason, Leonard A; Blake, Ron; Davis, Margaret I; Olson, Bradley D

    2006-01-01

    The number of Oxford Houses, communal-living, mutual help settings for persons in recovery of alcohol and substance abuse, has spread across the United States and recently in and around Melbourne, Australia. In this study 55 US and 6 AU Houses were compared descriptively for their neighborhood characteristics. Across settings, there were greater similarities than significant differences in the locations. Results imply that Australian Oxford Houses are "safe and sober" settings for persons in recovery consistent with the original United States model in physical dwelling settings.

  1. Examination of a muscular activity estimation model using a Bayesian network for the influence of an ankle foot orthosis.

    PubMed

    Inoue, Jun; Kawamura, Kazuya; Fujie, Masakatsu G

    2012-01-01

    In the present paper, we examine the appropriateness of a new model to examine the activity of the foot in gait. We developed an estimation model for foot-ankle muscular activity in the design of an ankle-foot orthosis by means of a statistical method. We chose three muscles for measuring muscular activity and built a Bayesian network model to confirm the appropriateness of the estimation model. We experimentally examined the normal gait of a non-disabled subject. We measured the muscular activity of the lower foot muscles using electromyography, the joint angles, and the pressure on each part of the sole. From these data, we obtained the causal relationship at every 10% level for these factors and built models for the stance phase, control term, and propulsive term. Our model has three advantages. First, it can express the influences that change during gait because we use 10% level nodes for each factor. Second, it can express the influences of factors that differ for low and high muscular-activity levels. Third, we created divided models that are able to reflect the actual features of gait. In evaluating the new model, we confirmed it is able to estimate all muscular activity level with an accuracy of over 90%.

  2. A technique for evaluating black-footed ferret habitat

    USGS Publications Warehouse

    Biggins, Dean E.; Miller, Brian J.; Hanebury, Louis R.; Oakleaf, Bob; Farmer, Adrian H.; Crete, Ron; Dood, Arnold

    1993-01-01

    In this paper, we provide a model and step-by-step procedures for rating a prairie dog (Cynomys sp.) complex for the reintroduction of black-footed ferrets (Mustela nigripes). An important factor in the model is an estimate of the number of black-footed ferret families a prairie dog complex can support for a year; thus, the procedures prescribe how to estimate the size of a prairie dog complex and the density of prairie dogs. Other attributes of the model are qualitative: arrangement of colonies, potential for plague and canine distemper, potential for prairie dog expansion, abundance of predators, future resource conflicts and ownership stability, and public and landowner attitudes about prairie dogs and black-footed ferrets. Because of the qualitative attributes in the model, a team approach is recommended for ranking complexes of prairie dogs for black-footed ferret reintroduction.

  3. Effects of spinal cord injury-induced changes in muscle activation on foot drag in a computational rat ankle model

    PubMed Central

    Hillen, Brian K.; Jindrich, Devin L.; Abbas, James J.; Yamaguchi, Gary T.

    2015-01-01

    Spinal cord injury (SCI) can lead to changes in muscle activation patterns and atrophy of affected muscles. Moderate levels of SCI are typically associated with foot drag during the swing phase of locomotion. Foot drag is often used to assess locomotor recovery, but the causes remain unclear. We hypothesized that foot drag results from inappropriate muscle coordination preventing flexion at the stance-to-swing transition. To test this hypothesis and to assess the relative contributions of neural and muscular changes on foot drag, we developed a two-dimensional, one degree of freedom ankle musculoskeletal model with gastrocnemius and tibialis anterior muscles. Anatomical data collected from sham-injured and incomplete SCI (iSCI) female Long-Evans rats as well as physiological data from the literature were used to implement an open-loop muscle dynamics model. Muscle insertion point motion was calculated with imposed ankle trajectories from kinematic analysis of treadmill walking in sham-injured and iSCI animals. Relative gastrocnemius deactivation and tibialis anterior activation onset times were varied within physiologically relevant ranges based on simplified locomotor electromyogram profiles. No-atrophy and moderate muscle atrophy as well as normal and injured muscle activation profiles were also simulated. Positive moments coinciding with the transition from stance to swing phase were defined as foot swing and negative moments as foot drag. Whereas decreases in activation delay caused by delayed gastrocnemius deactivation promote foot drag, all other changes associated with iSCI facilitate foot swing. Our results suggest that even small changes in the ability to precisely deactivate the gastrocnemius could result in foot drag after iSCI. PMID:25673734

  4. Effects of spinal cord injury-induced changes in muscle activation on foot drag in a computational rat ankle model.

    PubMed

    Hillen, Brian K; Jindrich, Devin L; Abbas, James J; Yamaguchi, Gary T; Jung, Ranu

    2015-04-01

    Spinal cord injury (SCI) can lead to changes in muscle activation patterns and atrophy of affected muscles. Moderate levels of SCI are typically associated with foot drag during the swing phase of locomotion. Foot drag is often used to assess locomotor recovery, but the causes remain unclear. We hypothesized that foot drag results from inappropriate muscle coordination preventing flexion at the stance-to-swing transition. To test this hypothesis and to assess the relative contributions of neural and muscular changes on foot drag, we developed a two-dimensional, one degree of freedom ankle musculoskeletal model with gastrocnemius and tibialis anterior muscles. Anatomical data collected from sham-injured and incomplete SCI (iSCI) female Long-Evans rats as well as physiological data from the literature were used to implement an open-loop muscle dynamics model. Muscle insertion point motion was calculated with imposed ankle trajectories from kinematic analysis of treadmill walking in sham-injured and iSCI animals. Relative gastrocnemius deactivation and tibialis anterior activation onset times were varied within physiologically relevant ranges based on simplified locomotor electromyogram profiles. No-atrophy and moderate muscle atrophy as well as normal and injured muscle activation profiles were also simulated. Positive moments coinciding with the transition from stance to swing phase were defined as foot swing and negative moments as foot drag. Whereas decreases in activation delay caused by delayed gastrocnemius deactivation promote foot drag, all other changes associated with iSCI facilitate foot swing. Our results suggest that even small changes in the ability to precisely deactivate the gastrocnemius could result in foot drag after iSCI. Copyright © 2015 the American Physiological Society.

  5. Foot morphometric phenomena.

    PubMed

    Agić, Ante

    2007-06-01

    Knowledge of the foot morphometry is important for proper foot structure and function. Foot structure as a vital part of human body is important for many reasons. The foot anthropometric and morphology phenomena are analyzed together with hidden biomechanical descriptors in order to fully characterize foot functionality. For Croatian student population the scatter data of the individual foot variables were interpolated by multivariate statistics. Foot morphometric descriptors are influenced by many factors, such as life style, climate, and things of great importance in human society. Dominant descriptors related to fit and comfort are determined by the use 3D foot shape and advanced foot biomechanics. Some practical recommendations and conclusions for medical, sportswear and footwear practice are highlighted.

  6. Nurses' foot care activities in home health care.

    PubMed

    Stolt, Minna; Suhonen, Riitta; Puukka, Pauli; Viitanen, Matti; Voutilainen, Päivi; Leino-Kilpi, Helena

    2013-01-01

    This study described the basic foot care activities performed by nurses and factors associated with these in the home care of older people. Data were collected from nurses (n=322) working in nine public home care agencies in Finland using the Nurses' Foot Care Activities Questionnaire (NFAQ). Data were analyzed statistically using descriptive statistics and multivariate liner models. Although some of the basic foot care activities of nurses reported using were outdated, the majority of foot care activities were consistent with recommendations in foot care literature. Longer working experience, referring patients with foot problems to a podiatrist and physiotherapist, and patient education in wart and nail care were associated with a high score for adequate foot care activities. Continuing education should focus on updating basic foot care activities and increasing the use of evidence-based foot care methods. Also, geriatric nursing research should focus in intervention research to improve the use of evidence-based basic foot care activities. Copyright © 2013 Mosby, Inc. All rights reserved.

  7. The 12-foot pressure wind tunnel restoration project model support systems

    NASA Technical Reports Server (NTRS)

    Sasaki, Glen E.

    1992-01-01

    The 12 Foot Pressure Wind Tunnel is a variable density, low turbulence wind tunnel that operates at subsonic speeds, and up to six atmospheres total pressure. The restoration of this facility is of critical importance to the future of the U.S. aerospace industry. As part of this project, several state of the art model support systems are furnished to provide an optimal balance between aerodynamic and operational efficiency parameters. Two model support systems, the Rear Strut Model Support, and the High Angle of Attack Model Support are discussed. This paper covers design parameters, constraints, development, description, and component selection.

  8. Subject-specific finite element modelling of the human foot complex during walking: sensitivity analysis of material properties, boundary and loading conditions.

    PubMed

    Akrami, Mohammad; Qian, Zhihui; Zou, Zhemin; Howard, David; Nester, Chris J; Ren, Lei

    2018-04-01

    The objective of this study was to develop and validate a subject-specific framework for modelling the human foot. This was achieved by integrating medical image-based finite element modelling, individualised multi-body musculoskeletal modelling and 3D gait measurements. A 3D ankle-foot finite element model comprising all major foot structures was constructed based on MRI of one individual. A multi-body musculoskeletal model and 3D gait measurements for the same subject were used to define loading and boundary conditions. Sensitivity analyses were used to investigate the effects of key modelling parameters on model predictions. Prediction errors of average and peak plantar pressures were below 10% in all ten plantar regions at five key gait events with only one exception (lateral heel, in early stance, error of 14.44%). The sensitivity analyses results suggest that predictions of peak plantar pressures are moderately sensitive to material properties, ground reaction forces and muscle forces, and significantly sensitive to foot orientation. The maximum region-specific percentage change ratios (peak stress percentage change over parameter percentage change) were 1.935-2.258 for ground reaction forces, 1.528-2.727 for plantar flexor muscles and 4.84-11.37 for foot orientations. This strongly suggests that loading and boundary conditions need to be very carefully defined based on personalised measurement data.

  9. A model to calculate the progression of the centre of pressure under the foot during gait analysis.

    PubMed

    Louey, Melissa Gar Yee; Mudge, Anita; Wojciechowski, Elizabeth; Sangeux, Morgan

    2017-09-01

    Pedobarography and the centre of pressure (COP) progression is useful to understand foot function. Pedobarography is often unavailable in gait laboratories or completed asynchronously to kinematic and kinetic data collection. This paper presents a model that allows calculation of COP progression synchronously using force plate data. The model is an adjunct to Plug-In-Gait and was applied to 49 typically developing children to create reference COP data. COP progressions were noted to spend 8% of stance behind the ankle joint centre, traverse lateral of the longitudinal axis of the foot through the midfoot for 76% of stance and finishing past the second metatarsal head on the medial side for 16% of stance. It is hoped the model will bridge the information gap for gait laboratories lacking pedobarography during foot assessments and will open up the possibility of retrospective research into COP progression based indices on kinematic data. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. The Association Between Geographic Density of Infectious Disease Physicians and Limb Preservation in Patients With Diabetic Foot Ulcers.

    PubMed

    Brennan, Meghan B; Allen, Glenn O; Ferguson, Patrick D; McBride, Joseph A; Crnich, Christopher J; Smith, Maureen A

    2017-01-01

    Avoiding major (above-ankle) amputation in patients with diabetic foot ulcers is best accomplished by multidisciplinary care teams with access to infectious disease specialists. However, access to infectious disease physicians is partially influenced by geography. We assessed the effect of living in a hospital referral region with a high geographic density of infectious disease physicians on major amputation for patients with diabetic foot ulcers. We studied geographic density, rather than infectious disease consultation, to capture both the direct and indirect (eg, informal consultation) effects of access to these providers on major amputation. We used a national retrospective cohort of 56440 Medicare enrollees with incident diabetic foot ulcers. Cox proportional hazard models were used to assess the relationship between infectious disease physician density and major amputation, while controlling for patient demographics, comorbidities, and ulcer severity. Living in hospital referral regions with high geographic density of infectious disease physicians was associated with a reduced risk of major amputation after controlling for demographics, comorbidities, and ulcer severity (hazard ratio, .83; 95% confidence interval, .75-.91; P < .001). The relationship between the geographic density of infectious disease physicians and major amputation was not different based on ulcer severity and was maintained when adjusting for socioeconomic factors and modeling amputation-free survival. Infectious disease physicians may play an important role in limb salvage. Future studies should explore whether improved access to infectious disease physicians results in fewer major amputations. © The Author 2017. Published by Oxford University Press on behalf of Infectious Diseases Society of America.

  11. ARES Modeling of High-foot Implosions (NNSA Milestone #5466)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hurricane, O. A.

    ARES “capsule only” simulations demonstrated results of applying an ASC code to a suite of high-foot ICF implosion experiments. While a capability to apply an asymmetric FDS drive to the capsule-only model using add-on Python routines exists, it was not exercised here. The ARES simulation results resemble the results from HYDRA simulations documented in A. Kritcher, et al., Phys. Plasmas, 23, 052709 (2016); namely, 1D simulation and data are in reasonable agreement for the lowest velocity experiments, but diverge from each other at higher velocities.

  12. Common foot problems in diabetic foot clinic.

    PubMed

    Tantisiriwat, Natthiya; Janchai, Siriporn

    2008-07-01

    To study common foot problems presented in diabetic foot clinic. A retrospectively review of out patient department records and diabetic foot evaluation forms of patients who visited the diabetic foot clinic at King Chulalongkorn Memorial Hospital between 2004 and 2006. Of all diabetic patients, 70 men and 80 women with the average age of 63.8 years were included in this study. About 32% of all reported cases had lower extremity amputation in which the toe was the most common level. Foot problems were evaluated and categorized in four aspects, dermatological, neurological, musculoskeletal, and vascular, which were 67.30%, 79.3%, 74.0%, and 39.3% respectively. More than half of the patients had skin dryness, nail problem and callus formation. Fifty six percent had the abnormal plantar pressure area, which was presented as callus. The great toe was the most common site of callus formation, which was correlated with gait cycle. The current ulcer was 18.8%, which was presented mostly at heel and great toe. Three-fourth of the patients (75.3%) had lost protective sensation, measured by the 5.07 monofilament testing. The most common problem found in musculoskeletal system was limited motion of the joint (44.0%). Claw toe or hammer toe were reported as 32.0% whereas the other deformities were bunnion (12.0%), charcot joint (6.0%) and flat feet (5.3%). The authors classified patients based on category risk to further lower extremity amputation into four groups. Forty-seven percent had highest risk for having further amputation because they had lost protective sensation from monofilament testing, previous current ulcer, or history of amputation. Only half of the patients had previous foot care education. Multidisciplinary diabetic foot care including patient education (proper foot care and footwear), early detection, effective management of foot problems, and scheduled follow-up must be emphasized to prevent diabetes-related lower extremities amputation.

  13. Obese older adults suffer foot pain and foot-related functional limitation.

    PubMed

    Mickle, Karen J; Steele, Julie R

    2015-10-01

    There is evidence to suggest being overweight or obese places adults at greater risk of developing foot complications such as osteoarthritis, tendonitis and plantar fasciitis. However, no research has comprehensively examined the effects of overweight or obesity on the feet of individuals older than 60 years of age. Therefore we investigated whether foot pain, foot structure, and/or foot function is affected by obesity in older adults. Three hundred and twelve Australian men and women, aged over 60 years, completed validated questionnaires to establish the presence of foot pain and health related quality of life. Foot structure (anthropometrics and soft tissue thickness) and foot function (ankle dorsiflexion strength and flexibility, toe flexor strength, plantar pressures and spatiotemporal gait parameters) were also measured. Obese participants (BMI >30) were compared to those who were overweight (BMI=25-30) and not overweight (BMI <25). Obese participants were found to have a significantly higher prevalence of foot pain and scored significantly lower on the SF-36. Obesity was also associated with foot-related functional limitation whereby ankle dorsiflexion strength, hallux and lesser toe strength, stride/step length and walking speed were significantly reduced in obese participants compared to their leaner counterparts. Therefore, disabling foot pain and altered foot structure and foot function are consequences of obesity for older adults, and impact upon their quality of life. Interventions designed to reduce excess fat mass may relieve loading of the foot structures and, in turn, improve foot pain and quality of life for older obese individuals. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Foot Health

    MedlinePlus

    ... straight across and not too short Your foot health can be a clue to your overall health. For example, joint stiffness could mean arthritis. Tingling ... foot checks are an important part of your health care. If you have foot problems, be sure ...

  15. Analysis and test of a 16-foot radial rib reflector developmental model

    NASA Technical Reports Server (NTRS)

    Birchenough, Shawn A.

    1989-01-01

    Analytical and experimental modal tests were performed to determine the vibrational characteristics of a 16-foot diameter radial rib reflector model. Single rib analyses and experimental tests provided preliminary information relating to the reflector. A finite element model predicted mode shapes and frequencies of the reflector. The analyses correlated well with the experimental tests, verifying the modeling method used. The results indicate that five related, characteristic mode shapes form a group. The frequencies of the modes are determined by the relative phase of the radial ribs.

  16. Analysis of joint force and torque for the human and non-human ape foot during bipedal walking with implications for the evolution of the foot.

    PubMed

    Wang, Weijie; Abboud, Rami J; Günther, Michael M; Crompton, Robin H

    2014-08-01

    The feet of apes have a different morphology from those of humans. Until now, it has merely been assumed that the morphology seen in humans must be adaptive for habitual bipedal walking, as the habitual use of bipedal walking is generally regarded as one of the most clear-cut differences between humans and apes. This study asks simply whether human skeletal proportions do actually enhance foot performance during human-like bipedalism, by examining the influence of foot proportions on force, torque and work in the foot joints during simulated bipedal walking. Skeletons of the common chimpanzee, orangutan, gorilla and human were represented by multi-rigid-body models, where the components of the foot make external contact via finite element surfaces. The models were driven by identical joint motion functions collected from experiments on human walking. Simulated contact forces between the ground and the foot were found to be reasonably comparable with measurements made during human walking using pressure- and force-platforms. Joint force, torque and work in the foot were then predicted. Within the limitations of our model, the results show that during simulated human-like bipedal walking, (1) the human and non-human ape (NHA) feet carry similar joint forces, although the distributions of the forces differ; (2) the NHA foot incurs larger joint torques than does the human foot, although the human foot has higher values in the first tarso-metatarsal and metatarso-phalangeal joints, whereas the NHA foot incurs higher values in the lateral digits; and (3) total work in the metatarso-phalangeal joints is lower in the human foot than in the NHA foot. The results indicate that human foot proportions are indeed well suited to performance in normal human walking. © 2014 Anatomical Society.

  17. Analysis of joint force and torque for the human and non-human ape foot during bipedal walking with implications for the evolution of the foot

    PubMed Central

    Wang, Weijie; Abboud, Rami J; Günther, Michael M; Crompton, Robin H

    2014-01-01

    The feet of apes have a different morphology from those of humans. Until now, it has merely been assumed that the morphology seen in humans must be adaptive for habitual bipedal walking, as the habitual use of bipedal walking is generally regarded as one of the most clear-cut differences between humans and apes. This study asks simply whether human skeletal proportions do actually enhance foot performance during human-like bipedalism, by examining the influence of foot proportions on force, torque and work in the foot joints during simulated bipedal walking. Skeletons of the common chimpanzee, orangutan, gorilla and human were represented by multi-rigid-body models, where the components of the foot make external contact via finite element surfaces. The models were driven by identical joint motion functions collected from experiments on human walking. Simulated contact forces between the ground and the foot were found to be reasonably comparable with measurements made during human walking using pressure- and force-platforms. Joint force, torque and work in the foot were then predicted. Within the limitations of our model, the results show that during simulated human-like bipedal walking, (1) the human and non-human ape (NHA) feet carry similar joint forces, although the distributions of the forces differ; (2) the NHA foot incurs larger joint torques than does the human foot, although the human foot has higher values in the first tarso-metatarsal and metatarso-phalangeal joints, whereas the NHA foot incurs higher values in the lateral digits; and (3) total work in the metatarso-phalangeal joints is lower in the human foot than in the NHA foot. The results indicate that human foot proportions are indeed well suited to performance in normal human walking. PMID:24925580

  18. 3D foot shape generation from 2D information.

    PubMed

    Luximon, Ameersing; Goonetilleke, Ravindra S; Zhang, Ming

    2005-05-15

    Two methods to generate an individual 3D foot shape from 2D information are proposed. A standard foot shape was first generated and then scaled based on known 2D information. In the first method, the foot outline and the foot height were used, and in the second, the foot outline and the foot profile were used. The models were developed using 40 participants and then validated using a different set of 40 participants. Results show that each individual foot shape can be predicted within a mean absolute error of 1.36 mm for the left foot and 1.37 mm for the right foot using the first method, and within a mean absolute error of 1.02 mm for the left foot and 1.02 mm for the right foot using the second method. The second method shows somewhat improved accuracy even though it requires two images. Both the methods are relatively cheaper than using a scanner to determine the 3D foot shape for custom footwear design.

  19. The Oxford Handbook of the Development of Play. First Edition. Oxford Library of Psychology

    ERIC Educational Resources Information Center

    Pellegrini, Anthony D., Ed.

    2010-01-01

    The role of play in human development has long been the subject of controversy. Despite being championed by many of the foremost scholars of the twentieth century, play has been dogged by underrepresentation and marginalization in literature across the scientific disciplines. "The Oxford Handbook of the Development of Play" marks the first attempt…

  20. Repeatability of a 3D multi-segment foot model during anterior and lateral step down tests.

    PubMed

    Lucareli, Paulo Roberto Garcia; Contani, Luciane Beatriz Grohs; Lima, Bruna; Rabelo, Nayra Deise dos Anjos; Ferreira, Cintia Lopes; Lima, Fernanda Pulpio Silva; Correa, João Carlos Ferrari; Politti, Fabiano

    2016-01-01

    The aim of the present study was to analyse the reproducibility of the Oxford Foot Model (OFM) when used with healthy adults during two clinical tests, i.e., the Anterior Step Down Test (SDA) and the Lateral Step Down Test (SDL). Five healthy participants (one male and four females, 10 limbs in total) with a mean age of 22.2 (19-30) years were assessed in four sessions of tests conducted at intervals of one week. Two independent examiners performed two of the sessions of each of the tests. For each session (intra-day), nine repetitions of each clinical test (SDA and SDL) were performed. After an interval of three hours, the data were collected again. The tests were conducted again after an interval of one week using the same experimental conditions. The intra- and inter-session repeatabilities of the ranges of motion of the feet were determined according to the standard error of measurement (SEM) for each examiner and for the differences between the examiners. The repeatabilities of the results were high for both of the conducted tests. The SEM results were as follows: 0.47-1.94° for the intra-examiner assessment (SDA), 0.55-2.01° for the inter-examiner comparison (SDA), 0.44-2.43° for the intra-examiner assessment (SDL), and 0.54-1.89° for the inter-examiner comparison (SDL). The OFM model was shown to be reproducible in terms of assessing the range of motion of healthy adults during functional tests (SDA and SDL). Copyright © 2015 Elsevier B.V. All rights reserved.

  1. METHODOLOGICAL PLURALISM AND MIXED METHODOLOGY TO STRENGTHEN COMMUNITY PSYCHOLOGY RESEARCH: AN EXAMPLE FROM OXFORD HOUSE

    PubMed Central

    May, Emily M.; Hunter, Bronwyn A.; Jason, Leonard A.

    2017-01-01

    This article evaluates how a plurality of research methods has served a research program that has functioned in a much-needed area of research: the role of housing and recovery residences in addiction recovery. The review focuses on one mutually supportive recovery residence model, called Oxford House, which represents more than 1,700 democratic, self-governing residences. To date, there has been no comprehensive evaluation of the research methods used with Oxford House or any other recovery residence. In this article, research methods, including study designs and data analyses, are summarized for 114 peer-reviewed empirical studies that included data on Oxford Houses or Oxford House residents. This review of a pluralistic research program can inform community researchers about the value of recovery residences, the many ways in which recovery residences may be assessed, and the benefits of using multiple methods. Implications for future recovery residence research are discussed. PMID:28839344

  2. METHODOLOGICAL PLURALISM AND MIXED METHODOLOGY TO STRENGTHEN COMMUNITY PSYCHOLOGY RESEARCH: AN EXAMPLE FROM OXFORD HOUSE.

    PubMed

    May, Emily M; Hunter, Bronwyn A; Jason, Leonard A

    2017-01-01

    This article evaluates how a plurality of research methods has served a research program that has functioned in a much-needed area of research: the role of housing and recovery residences in addiction recovery. The review focuses on one mutually supportive recovery residence model, called Oxford House, which represents more than 1,700 democratic, self-governing residences. To date, there has been no comprehensive evaluation of the research methods used with Oxford House or any other recovery residence. In this article, research methods, including study designs and data analyses, are summarized for 114 peer-reviewed empirical studies that included data on Oxford Houses or Oxford House residents. This review of a pluralistic research program can inform community researchers about the value of recovery residences, the many ways in which recovery residences may be assessed, and the benefits of using multiple methods. Implications for future recovery residence research are discussed.

  3. Foot Type Biomechanics Part 2: are structure and anthropometrics related to function?

    PubMed

    Mootanah, Rajshree; Song, Jinsup; Lenhoff, Mark W; Hafer, Jocelyn F; Backus, Sherry I; Gagnon, David; Deland, Jonathan T; Hillstrom, Howard J

    2013-03-01

    Many foot pathologies are associated with specific foot types. If foot structure and function are related, measurement of either could assist with differential diagnosis of pedal pathologies. Biomechanical measures of foot structure and function are related in asymptomatic healthy individuals. Sixty-one healthy subjects' left feet were stratified into cavus (n=12), rectus (n=27) and planus (n=22) foot types. Foot structure was assessed by malleolar valgus index, arch height index, and arch height flexibility. Anthropometrics (height and weight), age, and walking speed were measured. Foot function was assessed by center of pressure excursion index, peak plantar pressure, maximum force, and gait pattern parameters. Foot structure and anthropometric variables were entered into stepwise linear regression models to identify predictors of function. Measures of foot structure and anthropometrics explained 10-37% of the model variance (adjusted R(2)) for gait pattern parameters. When walking speed was included, the adjusted R(2) increased to 45-77% but foot structure was no longer a factor. Foot structure and anthropometrics predicted 7-47% of the model variance for plantar pressure and 16-64% for maximum force parameters. All multivariate models were significant (p<0.05), supporting acceptance of the hypothesis. Foot structure and function are related in asymptomatic healthy individuals. The structural parameters employed are basic measurements that do not require ionizing radiation and could be used in a clinical setting. Further research is needed to identify additional predictive parameters (plantar soft tissue characteristics, skeletal alignment, and neuromuscular control) and to include individuals with pathology. Copyright © 2012. Published by Elsevier B.V.

  4. Foot Placement Modulation Diminishes for Perturbations Near Foot Contact.

    PubMed

    Vlutters, Mark; Van Asseldonk, Edwin H F; van der Kooij, Herman

    2018-01-01

    Whenever a perturbation occurs during walking we have to maintain our balance using the recovery strategies that are available to us. Foot placement adjustment is often considered an important recovery strategy. However, because this strategy takes time it is likely a poor option if the foot is close to contact at the instant a perturbation occurs. The main goal of this study is to gain a better understanding of how humans deal with balance perturbations during walking if foot placement adjustments are constrained by time. Ten healthy subjects walked on an instrumented treadmill and received mediolateral and anteroposterior pelvis perturbations at various instances during the single support phase. The results show that foot placement modulation in the first recovery step following anteroposterior perturbations is fairly invariant of the perturbation magnitude and direction, regardless of the onset instance. For mediolateral perturbations, foot placement adjustments strongly modulate with the perturbation magnitude and direction, but these effects diminish when the perturbation onset is closer to the instant of foot contact. For most perturbations the first recovery step was consistent across subjects for all onset instances. However, in the second step various strategies arose that were not consistent across subjects, nor within subjects, especially for perturbations applied close to foot contact. Despite these different strategies, the COP location following foot contact strongly related to the COM velocity throughout these strategies. The results show that humans have various ways to compensate for limited availability of a foot placement strategy, with strategy selection highly dependent on the instant during the gait phase at which the perturbation is applied.

  5. Predictive Behavior of a Computational Foot/Ankle Model through Artificial Neural Networks.

    PubMed

    Chande, Ruchi D; Hargraves, Rosalyn Hobson; Ortiz-Robinson, Norma; Wayne, Jennifer S

    2017-01-01

    Computational models are useful tools to study the biomechanics of human joints. Their predictive performance is heavily dependent on bony anatomy and soft tissue properties. Imaging data provides anatomical requirements while approximate tissue properties are implemented from literature data, when available. We sought to improve the predictive capability of a computational foot/ankle model by optimizing its ligament stiffness inputs using feedforward and radial basis function neural networks. While the former demonstrated better performance than the latter per mean square error, both networks provided reasonable stiffness predictions for implementation into the computational model.

  6. Research on the Integration of Bionic Geometry Modeling and Simulation of Robot Foot Based on Characteristic Curve

    NASA Astrophysics Data System (ADS)

    He, G.; Zhu, H.; Xu, J.; Gao, K.; Zhu, D.

    2017-09-01

    The bionic research of shape is an important aspect of the research on bionic robot, and its implementation cannot be separated from the shape modeling and numerical simulation of the bionic object, which is tedious and time-consuming. In order to improve the efficiency of shape bionic design, the feet of animals living in soft soil and swamp environment are taken as bionic objects, and characteristic skeleton curve, section curve, joint rotation variable, position and other parameters are used to describe the shape and position information of bionic object’s sole, toes and flipper. The geometry modeling of the bionic object is established by using the parameterization of characteristic curves and variables. Based on this, the integration framework of parametric modeling and finite element modeling, dynamic analysis and post-processing of sinking process in soil is proposed in this paper. The examples of bionic ostrich foot and bionic duck foot are also given. The parametric modeling and integration technique can achieve rapid improved design based on bionic object, and it can also greatly improve the efficiency and quality of robot foot bionic design, and has important practical significance to improve the level of bionic design of robot foot’s shape and structure.

  7. SKITTER foot design

    NASA Technical Reports Server (NTRS)

    Choi, Gene; Jones, David L.; Morris, James; Parham, Martin; Stephens, Jim; Yancey, Gregg

    1987-01-01

    A mechanical design team was formed to design a foot for the lunar utility vehicle SKITTER. The primary design was constrained to be a ski pole design compatible with the existing femur-tibia design legs. The lunar environment had several important effects on the foot design. Three materials were investigated for the SKITTER foot: aluminum alloys, cold worked stainless steel alloys, and titanium alloys. Thin film coatings were investigated as a method of wear reduction for the foot. The performance of the foot is dependent on the action of the legs. The range of motion for the legs was determined to be vertical to 15 degrees above horizontal. An impact analysis was performed for the foot movement, but the results were determined to be inconclusive due to unknown soil parameters. The initial foot design configuration consisted of an annulus attached to the pointed pole. The annulus was designed to prevent excess sinkage. Later designs call for a conical shaped foot with a disk at the point of the tibia attachment. The conical design was analyzed for strength and deflection by two different approaches. A deformable body analysis was performed for the foot under crane load in crane position, and also under actuator load in the vertical position. In both cases, the deflection of the foot was insignificant and the stresses well below the strength of the titanium alloy.

  8. [Application of R-based multiple seasonal ARIMA model, in predicting the incidence of hand, foot and mouth disease in Shaanxi province].

    PubMed

    Liu, F; Zhu, N; Qiu, L; Wang, J J; Wang, W H

    2016-08-10

    To apply the ' auto-regressive integrated moving average product seasonal model' in predicting the number of hand, foot and mouth disease in Shaanxi province. In Shaanxi province, the trend of hand, foot and mouth disease was analyzed and tested, under the use of R software, between January 2009 and June 2015. Multiple seasonal ARIMA model was then fitted under time series to predict the number of hand, foot and mouth disease in 2016 and 2017. Seasonal effect was seen in hand, foot and mouth disease in Shaanxi province. A multiple seasonal ARIMA (2,1,0)×(1,1,0)12 was established, with the equation as (1 -B)(1 -B12)Ln (Xt) =((1-1.000B)/(1-0.532B-0.363B(2))*(1-0.644B12-0.454B12(2)))*Epsilont. The mean of absolute error and the relative error were 531.535 and 0.114, respectively when compared to the simulated number of patients from Jun to Dec in 2015. RESULTS under the prediction of multiple seasonal ARIMA model showed that the numbers of patients in both 2016 and 2017 were similar to that of 2015 in Shaanxi province. Multiple seasonal ARIMA (2,1,0)×(1,1,0)12 model could be used to successfully predict the incidence of hand, foot and mouth disease in Shaanxi province.

  9. Foot Type Biomechanics Part 2: Are structure and anthropometrics related to function?

    PubMed Central

    Mootanah, Rajshree; Song, Jinsup; Lenhoff, Mark W.; Hafer, Jocelyn F.; Backus, Sherry I.; Gagnon, David; Deland, Jonathan T.; Hillstrom, Howard J.

    2013-01-01

    Background Many foot pathologies are associated with specific foot types. If foot structure and function are related, measurement of either could assist with differential diagnosis of pedal pathologies. Hypothesis Biomechanical measures of foot structure and function are related in asymptomatic healthy individuals. Methods Sixty-one healthy subjects' left feet were stratified into cavus (n = 12), rectus (n = 27) and planus (n = 22) foot types. Foot structure was assessed by malleolar valgus index, arch height index, and arch height flexibility. Anthropometrics (height and weight), age, and walking speed were measured. Foot function was assessed by center of pressure excursion index, peak plantar pressure, maximum force, and gait pattern parameters. Foot structure and anthropometric variables were entered into stepwise linear regression models to identify predictors of function. Results Measures of foot structure and anthropometrics explained 10–37% of the model variance (adjusted R2) for gait pattern parameters. When walking speed was included, the adjusted R2 increased to 45–77% but foot structure was no longer a factor. Foot structure and anthropometrics predicted 7–47% of the model variance for plantar pressure and 16–64% for maximum force parameters. All multivariate models were significant (p < 0.05), supporting acceptance of the hypothesis. Discussion and conclusion Foot structure and function are related in asymptomatic healthy individuals. The structural parameters employed are basic measurements that do not require ionizing radiation and could be used in a clinical setting. Further research is needed to identify additional predictive parameters (plantar soft tissue characteristics, skeletal alignment, and neuromuscular control) and to include individuals with pathology. PMID:23107624

  10. A national approach to diabetes foot risk stratification and foot care.

    PubMed

    Leese, G P; Stang, D; Pearson, D W

    2011-08-01

    The Scottish Diabetes Foot Action Group (SDG) has developed and introduced a national strategy plan for diabetic foot care across Scotland. This has involved the implementation of an evidence-based national foot screening and risk stratification programme that has already covered 61% of the population in just the first two years. Nationally agreed patient information foot leaflets and professional education material have been introduced, and a consensus for antibiotic use in the diabetic foot has been published. Information on multidisciplinary specialist foot services has been collected, indicating that 58% of Health Board areas have consultants with dedicated sessions in their job plan to a foot clinic, and 42% had integrated orthotic involvement. The SDG aims to increase these figures. Work has been undertaken to support local podiatry networks and improve communication between the specialist centre and the community. At a national level the SDG is working with Foot in Diabetes UK (FDUK) to recognize key podiatry skills by developing core competencies and a competency framework for the diabetes podiatrist and diabetes orthotist. The annual Scottish Diabetes Survey indicates some improvement in amputation rates with prevalence decreasing from 0.8% to 0.5%, and improved recording of foot ulceration at a national level. This national strategy has helped highlight the importance and difficulties facing diabetes foot care and should help to continue to improve the quality of care of people with diabetes who have foot-related problems.

  11. Crk1/2-dependent signaling is necessary for podocyte foot process spreading in mouse models of glomerular disease

    PubMed Central

    George, Britta; Verma, Rakesh; Soofi, Abdulsalam A.; Garg, Puneet; Zhang, Jidong; Park, Tae-Ju; Giardino, Laura; Ryzhova, Larisa; Johnstone, Duncan B.; Wong, Hetty; Nihalani, Deepak; Salant, David J.; Hanks, Steven K.; Curran, Tom; Rastaldi, Maria Pia; Holzman, Lawrence B.

    2012-01-01

    The morphology of healthy podocyte foot processes is necessary for maintaining the characteristics of the kidney filtration barrier. In most forms of glomerular disease, abnormal filter barrier function results when podocytes undergo foot process spreading and retraction by remodeling their cytoskeletal architecture and intercellular junctions during a process known as effacement. The cell adhesion protein nephrin is necessary for establishing the morphology of the kidney podocyte in development by transducing from the specialized podocyte intercellular junction phosphorylation-mediated signals that regulate cytoskeletal dynamics. The present studies extend our understanding of nephrin function by showing that nephrin activation in cultured podocytes induced actin dynamics necessary for lamellipodial protrusion. This process required a PI3K-, Cas-, and Crk1/2-dependent signaling mechanism distinct from the previously described nephrin-Nck1/2 pathway necessary for assembly and polymerization of actin filaments. Our present findings also support the hypothesis that mechanisms governing lamellipodial protrusion in culture are similar to those used in vivo during foot process effacement in a subset of glomerular diseases. In mice, podocyte-specific deletion of Crk1/2 prevented foot process effacement in one model of podocyte injury and attenuated foot process effacement and associated proteinuria in a delayed fashion in a second model. In humans, focal adhesion kinase and Cas phosphorylation — markers of focal adhesion complex–mediated Crk-dependent signaling — was induced in minimal change disease and membranous nephropathy, but not focal segmental glomerulosclerosis. Together, these observations suggest that activation of a Cas-Crk1/2–dependent complex is necessary for foot process effacement observed in distinct subsets of human glomerular diseases. PMID:22251701

  12. Foot ulcer risk and location in relation to prospective clinical assessment of foot shape and mobility among persons with diabetes.

    PubMed

    Cowley, Matthew S; Boyko, Edward J; Shofer, Jane B; Ahroni, Jessie H; Ledoux, William R

    2008-11-01

    We assessed baseline clinical foot shape for 2939 feet of diabetic subjects who were monitored prospectively for foot ulceration. Assessments included hammer/claw toes, hallux valgus, hallux limitus, prominent metatarsal heads, bony prominences, Charcot deformity, plantar callus, foot type, muscle atrophy, ankle and hallux mobility, and neuropathy. Risk factors were linked to ulcer occurrence and location via a Cox proportional hazards model. Hammer/claw toes (hazard ratio [HR] (95% confidence interval [CI])=1.43 (1.06, 1.94) p=0.02), marked hammer/claw toes (HR=1.77 (1.18, 2.66) p=0.006), bony prominences (HR=1.38 (1.02, 1.88), p=0.04), and foot type (Charcot or drop foot vs. neutrally aligned) (HR=2.34 (1.33, 4.10), p=0.003) were significant risk factors for ulceration adjusting for age, body mass index, insulin medication, ulcer history and amputation history. With adjustment for neuropathy only hammer/claw toes (HR=1.40 (1.03, 1.90), p=0.03) and foot type (HR=1.76 (1.04, 3.04), p=0.05) were significantly related to ulceration. However, there was no relationship between ulcer location and foot deformity. Certain foot deformities were predictive of ulceration, although there was no relationship between clinical foot deformity and ulcer location.

  13. Correlation between static radiographic measurements and intersegmental angular measurements during gait using a multisegment foot model.

    PubMed

    Lee, Dong Yeon; Seo, Sang Gyo; Kim, Eo Jin; Kim, Sung Ju; Lee, Kyoung Min; Farber, Daniel C; Chung, Chin Youb; Choi, In Ho

    2015-01-01

    Radiographic examination is a widely used evaluation method in the orthopedic clinic. However, conventional radiography alone does not reflect the dynamic changes between foot and ankle segments during gait. Multiple 3-dimensional multisegment foot models (3D MFMs) have been introduced to evaluate intersegmental motion of the foot. In this study, we evaluated the correlation between static radiographic indices and intersegmental foot motion indices. One hundred twenty-five females were tested. Static radiographs of full-leg and anteroposterior (AP) and lateral foot views were performed. For hindfoot evaluation, we measured the AP tibiotalar angle (TiTA), talar tilt (TT), calcaneal pitch, lateral tibiocalcaneal angle, and lateral talcocalcaneal angle. For the midfoot segment, naviculocuboid overlap and talonavicular coverage angle were calculated. AP and lateral talo-first metatarsal angles and metatarsal stacking angle (MSA) were measured to assess the forefoot. Hallux valgus angle (HVA) and hallux interphalangeal angle were measured. In gait analysis by 3D MFM, intersegmental angle (ISA) measurements of each segment (hallux, forefoot, hindfoot, arch) were recorded. ISAs at midstance phase were most highly correlated with radiography. Significant correlations were observed between ISA measurements using MFM and static radiographic measurements in the same segment. In the hindfoot, coronal plane ISA was correlated with AP TiTA (P < .001) and TT (P = .018). In the hallux, HVA was strongly correlated with transverse ISA of the hallux (P < .001). The segmental foot motion indices at midstance phase during gait measured by 3D MFM gait analysis were correlated with the conventional radiographic indices. The observed correlation between MFM measurements at midstance phase during gait and static radiographic measurements supports the fundamental basis for the use of MFM in analysis of dynamic motion of foot segment during gait. © The Author(s) 2014.

  14. Comparison of Foot Bathing and Foot Massage in Chemotherapy-Induced Peripheral Neuropathy.

    PubMed

    Park, Ranhee; Park, Chaisoon

    2015-01-01

    In a clinical setting, patients have been observed to complain of discomfort and to discontinue treatment because of chemotherapy-induced peripheral neuropathy (CIPN), but few data exist regarding the quality of life in these patients in Korea. The purpose of this quasi-experimental study was to analyze the effects of foot bathing and massage in patients with CIPN. Subjects included 48 patients with CIPN, who were hospitalized in C University Hospital. The subjects were alternately assigned to 1 of 2 groups according to their registration order. The interventions consisted of 8 treatments of foot bathing or massage over a period of 2 weeks, at 30 minutes per session, every other day. The foot skin temperature increased significantly in the foot bathing group, whereas it decreased significantly in the massage group. Quality of life was significantly increased in the foot bathing group, whereas it was significantly decreased in the massage group. Although foot bathing and foot massage are both supportive care techniques for CIPN patients, foot bathing was more effective than foot massage on skin temperature, grade of neurotoxicity, and quality of life. Additional well-designed studies are recommended, so that the effectiveness of foot bathing and foot massage is confirmed. Foot bathing is more useful as supportive care with respect to nonpharmacologic interventions for alleviating CIPN and promoting the quality of life in cancer patients.

  15. Determining the maximum diameter for holes in the shoe without compromising shoe integrity when using a multi-segment foot model.

    PubMed

    Shultz, Rebecca; Jenkyn, Thomas

    2012-01-01

    Measuring individual foot joint motions requires a multi-segment foot model, even when the subject is wearing a shoe. Each foot segment must be tracked with at least three skin-mounted markers, but for these markers to be visible to an optical motion capture system holes or 'windows' must be cut into the structure of the shoe. The holes must be sufficiently large avoiding interfering with the markers, but small enough that they do not compromise the shoe's structural integrity. The objective of this study was to determine the maximum size of hole that could be cut into a running shoe upper without significantly compromising its structural integrity or changing the kinematics of the foot within the shoe. Three shoe designs were tested: (1) neutral cushioning, (2) motion control and (3) stability shoes. Holes were cut progressively larger, with four sizes tested in all. Foot joint motions were measured: (1) hindfoot with respect to midfoot in the frontal plane, (2) forefoot twist with respect to midfoot in the frontal plane, (3) the height-to-length ratio of the medial longitudinal arch and (4) the hallux angle with respect to first metatarsal in the sagittal plane. A single subject performed level walking at her preferred pace in each of the three shoes with ten repetitions for each hole size. The largest hole that did not disrupt shoe integrity was an oval of 1.7cm×2.5cm. The smallest shoe deformations were seen with the motion control shoe. The least change in foot joint motion was forefoot twist in both the neutral shoe and stability shoe for any size hole. This study demonstrates that for a hole smaller than this size, optical motion capture with a cluster-based multi-segment foot model is feasible for measure foot in shoe kinematics in vivo. Copyright © 2011. Published by Elsevier Ltd.

  16. Ramjet Model and Technicians in the 8- by 6-Foot Supersonic Wind Tunnel

    NASA Image and Video Library

    1952-02-21

    A researcher at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory checks the setup of a RJM-2 ramjet model in the test section of the 8- by 6-Foot Supersonic Wind Tunnel. The 8- by 6 was not only the laboratory’s first large supersonic wind tunnel, but it was also the NACA’s first facility capable of testing an operating engine at supersonic speeds. The 8- by 6-foot tunnel has been used to study engine inlets, fuel injectors, flameholders, exit nozzles, and controls on ramjet and turbojet propulsion systems. The 8-foot wide and 6-foot tall test section consisted of 1-inch thick steel plates with hatches on the floor and ceiling to facilitate the installation of the test article. The two windows seen on the right wall allowed photographic equipment to be set up. The test section was modified in 1956 to accommodate transonic research. NACA engineers drilled 4,700 holes into the test section walls to reduce transonic pressure disturbances and shock waves. NACA Lewis undertook an extensive research program on ramjets in the 1940s using several of its facilities. Ramjets provide a very simple source of propulsion. They are basically a tube which ingests high speed air, ignites it, and then expels the heated air at a significantly higher velocity. Ramjets are extremely efficient and powerful but can only operate at high speeds. Therefore, they require a booster rocket or aircraft drop to accelerate them to high speeds before they can operate.

  17. Measurement system for 3-D foot coordinates and parameters

    NASA Astrophysics Data System (ADS)

    Liu, Guozhong; Li, Yunhui; Wang, Boxiong; Shi, Hui; Luo, Xiuzhi

    2008-12-01

    The 3-D foot-shape measurement system based on laser-line-scanning principle and the model of the measurement system were presented. Errors caused by nonlinearity of CCD cameras and caused by installation can be eliminated by using the global calibration method for CCD cameras, which based on nonlinear coordinate mapping function and the optimized method. A local foot coordinate system is defined with the Pternion and the Acropodion extracted from the boundaries of foot projections. The characteristic points can thus be located and foot parameters be extracted automatically by the local foot coordinate system and the related sections. Foot measurements for about 200 participants were conducted and the measurement results for male and female participants were presented. 3-D foot coordinates and parameters measurement makes it possible to realize custom-made shoe-making and shows great prosperity in shoe design, foot orthopaedic treatment, shoe size standardization, and establishment of a feet database for consumers.

  18. Effect of foot shape on the three-dimensional position of foot bones.

    PubMed

    Ledoux, William R; Rohr, Eric S; Ching, Randal P; Sangeorzan, Bruce J

    2006-12-01

    To eliminate some of the ambiguity in describing foot shape, we developed three-dimensional (3D), objective measures of foot type based on computerized tomography (CT) scans. Feet were classified via clinical examination as pes cavus (high arch), neutrally aligned (normal arch), asymptomatic pes planus (flat arch with no pain), or symptomatic pes planus (flat arch with pain). We enrolled 10 subjects of each foot type; if both feet were of the same foot type, then each foot was scanned (n=65 total). Partial weightbearing (20% body weight) CT scans were performed. We generated embedded coordinate systems for each foot bone by assuming uniform density and calculating the inertial matrix. Cardan angles were used to describe five bone-to-bone relationships, resulting in 15 angular measurements. Significant differences were found among foot types for 12 of the angles. The angles were also used to develop a classification tree analysis, which determined the correct foot type for 64 of the 65 feet. Our measure provides insight into how foot bone architecture differs between foot types. The classification tree analysis demonstrated that objective measures can be used to discriminate between feet with high, normal, and low arches. Copyright (c) 2006 Orthopaedic Research Society.

  19. Effects of ankle-foot orthoses on mediolateral foot-placement ability during post-stroke gait.

    PubMed

    Zissimopoulos, Angelika; Fatone, Stefania; Gard, Steven

    2015-10-01

    Accurate and precise mediolateral foot placement is important for balance during gait, but is impaired post stroke. Mediolateral foot placement may be improved with ankle-foot orthosis use. The purpose of this study was to determine whether an ankle-foot orthosis improves mediolateral foot-placement ability during post-stroke ambulation. Crossover trial with randomized order of conditions tested. The accuracy and precision of mediolateral foot placement was quantified while subjects targeted four different randomized step widths. Subjects were tested with and without their regular non-rigid ankle-foot orthosis in two separate visits (order randomized). While ankle-foot orthosis use corrected foot and ankle alignment (i.e. significantly decreased mid-swing plantar flexion, p = 0.000), effects of ankle-foot orthosis use on hip hiking (p = 0.545), circumduction (p = 0.179), coronal plane hip range of motion (p = 0.06), and mediolateral foot-placement ability (p = 0.537) were not significant. While ankle-foot orthosis-mediated equinovarus correction of the affected foot and ankle was not associated with improved biomechanics of walking (i.e. proximal ipsilateral hip kinematics or mediolateral foot-placement ability), it may affect other aspects of balance that were not tested in this study (e.g. proprioception, cerebellar, vestibular, and cognitive mechanisms). Studies that investigate the effect of ankle-foot orthosis on gait can help advance stroke rehabilitation by documenting the specific gait benefits of ankle-foot orthosis use. In this study, we investigated the effect of ankle-foot orthosis use on mediolateral foot-placement ability, an aspect of gait important for maintaining balance. © The International Society for Prosthetics and Orthotics 2014.

  20. The foot core system: a new paradigm for understanding intrinsic foot muscle function.

    PubMed

    McKeon, Patrick O; Hertel, Jay; Bramble, Dennis; Davis, Irene

    2015-03-01

    The foot is a complex structure with many articulations and multiple degrees of freedom that play an important role in static posture and dynamic activities. The evolutionary development of the arch of the foot was coincident with the greater demands placed on the foot as humans began to run. The movement and stability of the arch is controlled by intrinsic and extrinsic muscles. However, the intrinsic muscles are largely ignored by clinicians and researchers. As such, these muscles are seldom addressed in rehabilitation programmes. Interventions for foot-related problems are more often directed at externally supporting the foot rather than training these muscles to function as they are designed. In this paper, we propose a novel paradigm for understanding the function of the foot. We begin with an overview of the evolution of the human foot with a focus on the development of the arch. This is followed by a description of the foot intrinsic muscles and their relationship to the extrinsic muscles. We draw the parallels between the small muscles of the trunk region that make up the lumbopelvic core and the intrinsic foot muscles, introducing the concept of the foot core. We then integrate the concept of the foot core into the assessment and treatment of the foot. Finally, we call for an increased awareness of the importance of the foot core stability to normal foot and lower extremity function. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  1. Foot roll-over evaluation based on 3D dynamic foot scan.

    PubMed

    Samson, William; Van Hamme, Angèle; Sanchez, Stéphane; Chèze, Laurence; Van Sint Jan, Serge; Feipel, Véronique

    2014-01-01

    Foot roll-over is commonly analyzed to evaluate gait pathologies. The current study utilized a dynamic foot scanner (DFS) to analyze foot roll-over. The right feet of ten healthy subjects were assessed during gait trials with a DFS system integrated into a walkway. A foot sole picture was computed by vertically projecting points from the 3D foot shape which were lower than a threshold height of 15 mm. A 'height' value of these projected points was determined; corresponding to the initial vertical coordinates prior to projection. Similar to pedobarographic analysis, the foot sole picture was segmented into anatomical regions of interest (ROIs) to process mean height (average of height data by ROI) and projected surface (area of the projected foot sole by ROI). Results showed that these variables evolved differently to plantar pressure data previously reported in the literature, mainly due to the specificity of each physical quantity (millimeters vs Pascals). Compared to plantar pressure data arising from surface contact by the foot, the current method takes into account the whole plantar aspect of the foot, including the parts that do not make contact with the support surface. The current approach using height data could contribute to a better understanding of specific aspects of foot motion during walking, such as plantar arch height and the windlass mechanism. Results of this study show the underlying method is reliable. Further investigation is required to validate the DFS measurements within a clinical context, prior to implementation into clinical practice. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Contributions of foot muscles and plantar fascia morphology to foot posture.

    PubMed

    Angin, Salih; Mickle, Karen J; Nester, Christopher J

    2018-03-01

    The plantar foot muscles and plantar fascia differ between different foot postures. However, how each individual plantar structure contribute to foot posture has not been explored. The purpose of this study was to investigate the associations between static foot posture and morphology of plantar foot muscles and plantar fascia and thus the contributions of these structures to static foot posture. A total of 111 participants were recruited, 43 were classified as having pes planus and 68 as having normal foot posture using Foot Posture Index assessment tool. Images from the flexor digitorum longus (FDL), flexor hallucis longus (FHL), peroneus longus and brevis (PER), flexor hallucis brevis (FHB), flexor digitorum brevis (FDB) and abductor hallucis (AbH) muscles, and the calcaneal (PF1), middle (PF2) and metatarsal (PF3) regions of the plantar fascia were obtained using a Venue 40 ultrasound system with a 5-13 MHz transducer. In order of decreasing contribution, PF3 > FHB > FHL > PER > FDB were all associated with FPI and able to explain 69% of the change in FPI scores. PF3 was the highest contributor explaining 52% of increases in FPI score. Decreased thickness was associated with increased FPI score. Smaller cross sectional area (CSA) in FHB and PER muscles explained 20% and 8% of increase in FPI score. Larger CSA of FDB and FHL muscles explained 4% and 14% increase in FPI score respectively. The medial plantar structures and the plantar fascia appear to be the major contributors to static foot posture. Elucidating the individual contribution of multiple muscles of the foot could provide insight about their role in the foot posture. Copyright © 2018. Published by Elsevier B.V.

  3. A multi-segment foot model based on anatomically registered technical coordinate systems: method repeatability and sensitivity in pediatric planovalgus feet.

    PubMed

    Saraswat, Prabhav; MacWilliams, Bruce A; Davis, Roy B; D'Astous, Jacques L

    2013-01-01

    Several multisegment foot models have been proposed and some have been used to study foot pathologies. These models have been tested and validated on typically developed populations; however application of such models to feet with significant deformities presents an additional set of challenges. For the first time, in this study, a multisegment foot model is tested for repeatability in a population of children with symptomatic abnormal feet. The results from this population are compared to the same metrics collected from an age matched (8-14 years) typically developing population. The modified Shriners Hospitals for Children, Greenville (mSHCG) foot model was applied to ten typically developing children and eleven children with planovalgus feet by two clinicians. Five subjects in each group were retested by both clinicians after 4-6 weeks. Both intra-clinician and inter-clinician repeatability were evaluated using static and dynamic measures. A plaster mold method was used to quantify variability arising from marker placement error. Dynamic variability was measured by examining trial differences from the same subjects when multiple clinicians carried out the data collection multiple times. For hindfoot and forefoot angles, static and dynamic variability in both groups was found to be less than 4° and 6° respectively. The mSHCG model strategy of minimal reliance on anatomical markers for dynamic measures and inherent flexibility enabled by separate anatomical and technical coordinate systems resulted in a model equally repeatable in typically developing and planovalgus populations. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Repeatability of stance phase kinematics from a multi-segment foot model in people aged 50 years and older.

    PubMed

    Arnold, John B; Mackintosh, Shylie; Jones, Sara; Thewlis, Dominic

    2013-06-01

    Confidence in 3D multi-segment foot models has been limited by a lack of repeatability data, particularly in older populations that may display unique functional foot characteristics. This study aimed to determine the intra and inter-observer repeatability of stance phase kinematic data from a multi-segment foot model described by Leardini et al. [2] in people aged 50 years or older. Twenty healthy adults participated (mean age 65.4 years SD 8.4). A repeated measures study design was used with data collected from four testing sessions on two days from two observers. Intra (within-day and between-day) and inter-observer coefficient of multiple correlations revealed moderate to excellent similarity of stance phase joint range of motion (0.621-0.975). Relative to the joint range of motion (ROM), mean differences (MD) between sessions were highest for the within-day comparison for all planar ROM at the metatarsus-midfoot articulation (sagittal plane ROM 5.2° vs. 3.9°, MD 3.1°; coronal plane ROM 3.9 vs. 3.1°, MD 2.3°; transverse plane ROM 6.8° vs. 5.16°, MD 3.5°). Consequently, data from the metatarsus-midfoot articulation in the Istituto Ortopedico Rizzoli (IOR) foot model in adults aged over 50 years needs to be considered with respect to the findings of this study. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.

  5. [Foot growth and foot types in children and adolescents: a narrative review].

    PubMed

    Xu, Miaomiao; Wang, Lin

    2017-08-01

    Foot shape and size are important for footwear design and production. Information about important foot characteristics helps not only to improve shoe comfort but to maintain the proper physiological development of the feet. What's more, plenty of studies have suggested that the shape of the shoe must closely resemble the shape of the foot to create a properly fitted shoe. This means that the differences between various populations should be considered and that footwear should be designed according to the measurements of users. Childhood and adolescent are important periods of human growth. During these periods, foot shape changes with human growth and can be influenced by extrinsic factors. Therefore, the foot shape characteristics of children and adolescents should be investigated. The results from these investigations can contribute to developing appropriate shoe for children and adolescents, improving perceived comfort of children shoes and preventing pedopathy among children and adolescents. This review aims to discuss measuring methods of foot shape, types of foot shape, and factors influencing foot shape. The results of the review can provide recommendations for investigating growth development of foot shape and useful information for consumers and shoe manufacturers.

  6. Foot structure is significantly associated to subtalar joint kinetics and mechanical energetics.

    PubMed

    Maharaj, Jayishni N; Cresswell, Andrew G; Lichtwark, Glen A

    2017-10-01

    Foot structure has been implicated as a risk factor of numerous overuse injuries, however, the mechanism linking foot structure and the development of soft-tissue overuse injuries are not well understood. The aim of this study was to identify factors that could predict foot function during walking. A total of eleven variables (including measures of foot structure, anthropometry and spatiotemporal gait characteristics) were investigated for their predictive ability on identifying kinematic, kinetic and energetic components of the foot. Three-dimensional motion capture and force data were collected at preferred walking speed on an instrumented treadmill. Mechanical measures were subsequently assessed using a custom multi-segment foot model in Opensim. Factors with significant univariate associations were entered into multiple linear regression models to identify a group of factors independently associated with the mechanical measures. Although no model could be created for any of the kinematic measures analysed, approximately 46% and 37% of the variance in the kinetic and energetic measures were associated with three or two factors respectively. Arch-height ratio, foot length and step width were associated with peak subtalar joint (STJ) moment, while greater STJ negative work was correlated to a low arch-height ratio and greater foot mobility. The models presented in this study suggest that the soft-tissue structures of a flat-arched, mobile foot are at a greater risk of injury as they have greater requirements to absorb energy and generate larger forces. However, as these associations are only moderate, other measures may also have an influence. Copyright © 2017. Published by Elsevier B.V.

  7. The characterization of a full-thickness excision open foot wound model in n5-streptozotocin (STZ)-induced type 2 diabetic rats that mimics diabetic foot ulcer in terms of reduced blood circulation, higher C-reactive protein, elevated inflammation, and reduced cell proliferation.

    PubMed

    Yu, Caroline Oi-Ling; Leung, Kwok-Sui; Fung, Kwok-Pui; Lam, Francis Fu-Yuen; Ng, Ethel Sau-Kuen; Lau, Kit-Man; Chow, Simon Kwoon-Ho; Cheung, Wing-Hoi

    2017-08-05

    Delayed foot wound healing is a major complication attributed to hyperglycemia in type 2 diabetes mellitus (DM) patients, and these wounds may develop into foot ulcers. There are at least two types of DM wound models used in rodents to study delayed wound healing. However, clinically relevant animal models are not common. Most models use type 1 DM rodents or wounds created on the back rather than on the foot. An open full-thickness excision wound on the footpad of type 2 DM rats is more clinically relevant, but such a model has not yet been characterized systematically. The objective of this study was to investigate and characterize how DM affected a full-thickness excision open foot wound in n5-streptozotocin (n5-STZ)-induced type 2 DM rats. We hypothesized that elevated inflammation, reduced blood circulation, and cell proliferation due to hyperglycemia could delay the wound healing of DM rats. The wounds of DM rats were compared with those of non-DM rats (Ctrl) at Days 1 and 8 post wounding. The wound healing process of the DM rats was significantly delayed compared with that of the Ctrl rats. The DM rats also had higher C-reactive protein (CRP) and lower blood circulation and proliferating cell nuclear antigen (PCNA) in DM wounds. This confirmed that elevated inflammation and reduced blood flow and cell proliferation delayed foot wound healing in the n5-STZ rats. Hence, this open foot wound animal model provides a good approach to study the process of delayed wound healing.

  8. The characterization of a full-thickness excision open foot wound model in n5-streptozotocin (STZ)-induced type 2 diabetic rats that mimics diabetic foot ulcer in terms of reduced blood circulation, higher C-reactive protein, elevated inflammation, and reduced cell proliferation

    PubMed Central

    Yu, Caroline Oi-Ling; Leung, Kwok-Sui; Fung, Kwok-Pui; Lam, Francis Fu-Yuen; Ng, Ethel Sau-Kuen; Lau, Kit-Man; Chow, Simon Kwoon-Ho; Cheung, Wing-Hoi

    2017-01-01

    Delayed foot wound healing is a major complication attributed to hyperglycemia in type 2 diabetes mellitus (DM) patients, and these wounds may develop into foot ulcers. There are at least two types of DM wound models used in rodents to study delayed wound healing. However, clinically relevant animal models are not common. Most models use type 1 DM rodents or wounds created on the back rather than on the foot. An open full-thickness excision wound on the footpad of type 2 DM rats is more clinically relevant, but such a model has not yet been characterized systematically. The objective of this study was to investigate and characterize how DM affected a full-thickness excision open foot wound in n5-streptozotocin (n5-STZ)-induced type 2 DM rats. We hypothesized that elevated inflammation, reduced blood circulation, and cell proliferation due to hyperglycemia could delay the wound healing of DM rats. The wounds of DM rats were compared with those of non-DM rats (Ctrl) at Days 1 and 8 post wounding. The wound healing process of the DM rats was significantly delayed compared with that of the Ctrl rats. The DM rats also had higher C-reactive protein (CRP) and lower blood circulation and proliferating cell nuclear antigen (PCNA) in DM wounds. This confirmed that elevated inflammation and reduced blood flow and cell proliferation delayed foot wound healing in the n5-STZ rats. Hence, this open foot wound animal model provides a good approach to study the process of delayed wound healing. PMID:28413186

  9. Metatarsal Shape and Foot Type: A Geometric Morphometric Analysis.

    PubMed

    Telfer, Scott; Kindig, Matthew W; Sangeorzan, Bruce J; Ledoux, William R

    2017-03-01

    Planus and cavus foot types have been associated with an increased risk of pain and disability. Improving our understanding of the geometric differences between bones in different foot types may provide insights into injury risk profiles and have implications for the design of musculoskeletal and finite-element models. In this study, we performed a geometric morphometric analysis on the geometry of metatarsal bones from 65 feet, segmented from computed tomography (CT) scans. These were categorized into four foot types: pes cavus, neutrally aligned, asymptomatic pes planus, and symptomatic pes planus. Generalized procrustes analysis (GPA) followed by permutation tests was used to determine significant shape differences associated with foot type and sex, and principal component analysis was used to find the modes of variation for each metatarsal. Significant shape differences were found between foot types for all the metatarsals (p < 0.01), most notably in the case of the second metatarsal which showed significant pairwise differences across all the foot types. Analysis of the principal components of variation showed pes cavus bones to have reduced cross-sectional areas in the sagittal and frontal planes. The first (p = 0.02) and fourth metatarsals (p = 0.003) were found to have significant sex-based differences, with first metatarsals from females shown to have reduced width, and fourth metatarsals from females shown to have reduced frontal and sagittal plane cross-sectional areas. Overall, these findings suggest that metatarsal bones have distinct morphological characteristics that are associated with foot type and sex, with implications for our understanding of anatomy and numerical modeling of the foot.

  10. Oxford International Conference on the Mechanical Properties of Materials at High Rates of Strain (4th) Held in Oxford, United Kingdom on 19-22 March 1989

    DTIC Science & Technology

    1989-03-22

    models are used in the computer program EPIC2 to describe the structural response in the cylinder impact test are compared and the differences are...Inc. 8600 Le Salle Road Suite 614, Oxford Building Towson, Maryland 21204 This paper describes the development and application of a computer program ...performed using a dynamic viscoplastic finite element computer program . The resolution of the procedure has been investigated by obtaining replicate

  11. Athlete's Foot

    MedlinePlus

    ... Athlete's Foot? Athlete's foot, or tinea pedis (say: TIN-ee-uh PEH-dus), is a common skin ... doctor. © 1995- The Nemours Foundation. All rights reserved. Images provided by The Nemours Foundation, iStock, Getty Images, ...

  12. Can static foot posture measurements predict regional plantar surface area?

    PubMed

    McPoil, Thomas G; Haager, Mathew; Hilt, John; Klapheke, John; Martinez, Ray; VanSteenwyk, Cory; Weber, Nicholas; Cornwall, Mark W; Bade, Michael

    2014-12-01

    The intent of this study was to determine if the use of a single or combination of static foot posture measurements can be used to predict rearfoot, midfoot, and forefoot plantar surface area in individuals with pronated or normal foot types. Twelve foot measurements were collected on 52 individuals (mean age 25.8 years) with the change in midfoot width used to place subjects in a pronated or normal foot mobility group. Dynamic plantar contact area was collected during walking with a pressure sensor platform. The 12 measures were entered into a stepwise regression analysis to determine the optimal set of measures associated with regional plantar surface area. A two variable model was found to describe the relationship between the foot measurements and forefoot plantar contact area (r(2)=0.79, p<0.0001). A four variable model was found to describe the relationship between the foot measurements and midfoot plantar contact area (r(2)=0.85, p<0.0001) in those individuals with a 1.26cm or greater change in midfoot width. The results indicate that clinicians can use a combination of simple, reliable and time efficient foot measures to explain 79% and 85% of the plantar surface area in the forefoot and midfoot, respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Convair XF-102 Model in the 8- by 6-Foot Supersonic Wind Tunnel

    NASA Image and Video Library

    1953-08-21

    A .10-scale model of Convair’s XF-102 in the 8- by 6-Foot Supersonic Wind Tunnel at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory for jet exit studies. The XF-102 was a prototype of the F-102 Delta Dagger. The F-102 served as an interceptor against long range bombers from the Soviet Union. The aircraft was powered by a Pratt and Whitney J57 turbojet. The first prototype crashed two weeks after is first flight on October 24, 1953, just months after this photograph. Engineers then incorporated the fixed-wing design to reduce drag at supersonic speeds. The production model F-102 became the first delta-wing supersonic aircraft in operation. The 8- by 6-Foot Supersonic Wind Tunnel is used to study propulsion systems, including inlets and exit nozzles, combustion fuel injectors, flame holders, exit nozzles, and controls on ramjet and turbojet engines. Flexible sidewalls alter the tunnel’s nozzle shape to vary the Mach number during operation. A seven-stage axial compressor, driven by three electric motors that yield a total of 87,000 horsepower, generates air speeds from Mach 0.36 to 2.0.

  14. Muscle-driven finite element simulation of human foot movements.

    PubMed

    Spyrou, L A; Aravas, N

    2012-01-01

    This paper describes a finite element scheme for realistic muscle-driven simulation of human foot movements. The scheme is used to simulate human ankle plantar flexion. A three-dimensional anatomically detailed finite element model of human foot and lower leg is developed and the idea of generating natural foot movement based entirely on the contraction of the plantar flexor muscles is used. The bones, ligaments, articular cartilage, muscles, tendons, as well as the rest soft tissues of human foot and lower leg are included in the model. A realistic three-dimensional continuum constitutive model that describes the biomechanical behaviour of muscles and tendons is used. Both the active and passive properties of muscle tissue are accounted for. The materials for bones and ligaments are considered as homogeneous, isotropic and linearly elastic, whereas the articular cartilage and the rest soft tissues (mainly fat) are defined as hyperelastic materials. The model is used to estimate muscle tissue deformations as well as stresses and strains that develop in the lower leg muscles during plantar flexion of the ankle. Stresses and strains that develop in Achilles tendon during such a movement are also investigated.

  15. Is the foot elevation the optimal position for wound healing of a diabetic foot?

    PubMed

    Park, D J; Han, S K; Kim, W K

    2010-03-01

    In managing diabetic foot ulcers, foot elevation has generally been recommended to reduce oedema and prevent other sequential problems. However, foot elevation may decrease tissue oxygenation of the foot more than the dependent position since the dependent position is known to increase blood flow within the arterial system. In addition, diabetic foot ulcers, which have peripheral vascular insufficiency, generally have less oedema than other wounds. Therefore, we argue that foot elevation may not be helpful for healing of vascularly compromised diabetic foot ulcers since adequate tissue oxygenation is an essential factor in diabetic wound healing. The purpose of this study was to evaluate the influence of foot height on tissue oxygenation and to determine the optimal foot position to accelerate wound healing of diabetic foot ulcers. This study included 122 cases (73 males and 47 females; two males had bilateral disease) of diabetic foot ulcer patients aged 40-93 years. Trans-cutaneous partial oxygen tension (TcpO(2)) values of diabetic feet were measured before and after foot elevation (n=21). Elevation was achieved by placing a foot over four cushions. We also measured foot TcpO(2) values before and after lowering the feet (n=122). Feet were lowered to the patient's tibial height, approximately 30-35 cm, beside a bed handrail. Due to the large number of lowering measurements, we divided them into five sub-groups according to initial TcpO(2.) Tissue oxygenation values were compared. Foot-elevation-lowered TcpO(2) values before and after elevation were 32.5+/-22.2 and 23.8+/-23.1 mmHg (p<0.01), respectively. Foot-lowering-augmented TcpO(2) values before and after lowering were 44.6+/-23.8 and 58.0+/-25.9 mmHg (p<0.01), respectively. The lower the initial TcpO(2) level, the more the TcpO(2) level increased. The foot lowering, rather than elevation, significantly augments TcpO(2) and may stimulate healing of diabetic foot ulcers. (c) 2008 British Association of Plastic

  16. The "New Oxford English Dictionary" Project.

    ERIC Educational Resources Information Center

    Fawcett, Heather

    1993-01-01

    Describes the conversion of the 22,000-page Oxford English Dictionary to an electronic version incorporating a modified Standard Generalized Markup Language (SGML) syntax. Explains that the database designers chose structured markup because it supports users' data searching needs, allows textual components to be extracted or modified, and allows…

  17. Validation of anthropometry and foot-to-foot bioelectrical resistance against a three-component model to assess total body fat in children: the IDEFICS study.

    PubMed

    Bammann, K; Huybrechts, I; Vicente-Rodriguez, G; Easton, C; De Vriendt, T; Marild, S; Mesana, M I; Peeters, M W; Reilly, J J; Sioen, I; Tubic, B; Wawro, N; Wells, J C; Westerterp, K; Pitsiladis, Y; Moreno, L A

    2013-04-01

    To compare different field methods for estimating body fat mass with a reference value derived by a three-component (3C) model in pre-school and school children across Europe. Multicentre validation study. Seventy-eight preschool/school children aged 4-10 years from four different European countries. A standard measurement protocol was carried out in all children by trained field workers. A 3C model was used as the reference method. The field methods included height and weight measurement, circumferences measured at four sites, skinfold measured at two-six sites and foot-to-foot bioelectrical resistance (BIA) via TANITA scales. With the exception of height and neck circumference, all single measurements were able to explain at least 74% of the fat-mass variance in the sample. In combination, circumference models were superior to skinfold models and height-weight models. The best predictions were given by trunk models (combining skinfold and circumference measurements) that explained 91% of the observed fat-mass variance. The optimal data-driven model for our sample includes hip circumference, triceps skinfold and total body mass minus resistance index, and explains 94% of the fat-mass variance with 2.44 kg fat mass limits of agreement. In all investigated models, prediction errors were associated with fat mass, although to a lesser degree in the investigated skinfold models, arm models and the data-driven models. When studying total body fat in childhood populations, anthropometric measurements will give biased estimations as compared to gold standard measurements. Nevertheless, our study shows that when combining circumference and skinfold measurements, estimations of fat mass can be obtained with a limit of agreement of 1.91 kg in normal weight children and of 2.94 kg in overweight or obese children.

  18. Women leadership in Oxford House: examining their strengths and challenges.

    PubMed

    Davis, Margaret I; Dziekan, Marta M; Horin, Elizabeth V; Jason, Leonard A; Ferrari, Joseph R; Olson, Bradley D

    2006-01-01

    This study examined the perspectives and definition of leadership by women and mothers with children (n = 40) affiliated with Oxford Houses, a communal mutual-help recovery setting. Participants were asked questions relating to their experiences living in an Oxford House including the strengths and challenges encountered and how leadership impacted the stability in their house. Results illustrated the value of female leadership and highlighted the characteristics deemed important for women leaders in Oxford House, as well as some differences between these women's perception of leadership and the standard definition of leadership. The implications of the findings and how they may be useful to women's and mothers' with children houses are discussed.

  19. Revalidation of the Score for Neonatal Acute Physiology in the Vermont Oxford Network.

    PubMed

    Zupancic, John A F; Richardson, Douglas K; Horbar, Jeffrey D; Carpenter, Joseph H; Lee, Shoo K; Escobar, Gabriel J

    2007-01-01

    Our specific objectives were (1) to document the performance of the revised Score for Neonatal Acute Physiology and the revised Score for Neonatal Acute Physiology Perinatal Extension in predicting death in the Vermont Oxford Network, compared with published normative values; (2) to determine whether this performance could be improved through recalibration of the weights for individual score items; (3) to determine the impact of including congenital anomalies in the predictive model; and (4) to compare performance against that of the Vermont Oxford Network risk adjustment, separately and in combination. Fifty-eight Vermont Oxford Network centers collected data prospectively for the revised Score for Neonatal Acute Physiology in the first 12 hours after admission of infants in 2002. Data were collected for 10,469 infants, and analyses were undertaken for 9897 who met inclusion criteria. The median revised Score for Neonatal Acute Physiology was 5, and the mean birth weight was 1951 g. Recalibration of the revised Score for Neonatal Acute Physiology and revised Score for Neonatal Acute Physiology Perinatal Extension resulted in minimal changes in their discriminatory abilities. The Vermont Oxford Network risk adjustment performed similarly, compared with the revised Score for Neonatal Acute Physiology Perinatal Extension. Current score performance was similar to that observed previously, which suggests that the revised Score for Neonatal Acute Physiology and revised Score for Neonatal Acute Physiology Perinatal Extension have not decalibrated over the 7 years since the first cohort was assembled, despite advances in neonatal care during that period. Addition of congenital anomalies to the revised Score for Neonatal Acute Physiology Perinatal Extension improved discrimination significantly, particularly for infants with birth weights of >1500 g. The Vermont Oxford Network risk adjustment performed similarly, compared with the revised Score for Neonatal Acute

  20. Hyperspectral Imaging in Diabetic Foot Wound Care

    PubMed Central

    Yudovsky, Dmitry; Nouvong, Aksone; Pilon, Laurent

    2010-01-01

    Diabetic foot ulceration is a major complication of diabetes and afflicts as many as 15 to 25% of type 1 and 2 diabetes patients during their lifetime. If untreated, diabetic foot ulcers may become infected and require total or partial amputation of the affected limb. Early identification of tissue at risk of ulcerating could enable proper preventive care, thereby reducing the incidence of foot ulceration. Furthermore, noninvasive assessment of tissue viability around already formed ulcers could inform the diabetes caregiver about the severity of the wound and help assess the need for amputation. This article reviews how hyperspectral imaging between 450 and 700 nm can be used to assess the risk of diabetic foot ulcer development and to predict the likelihood of healing noninvasively. Two methods are described to analyze the in vivo hyperspectral measurements. The first method is based on the modified Beer-Lambert law and produces a map of oxyhemoglobin and deoxyhemoglobin concentrations in the dermis of the foot. The second is based on a two-layer optical model of skin and can retrieve not only oxyhemoglobin and deoxyhemoglobin concentrations but also epidermal thickness and melanin concentration along with skin scattering properties. It can detect changes in the diabetic foot and help predict and understand ulceration mechanisms. PMID:20920429

  1. The Making of the "Oxford English Dictionary."

    ERIC Educational Resources Information Center

    Winchester, Simon

    2003-01-01

    Summarizes remarks made to open the Gallaudet University conference on Dictionaries and the Standardization of languages. It concerns the making of what is arguably the world's greatest dictionary, "The Oxford English Dictionary." (VWL)

  2. An Elaborate Data Set Characterizing the Mechanical Response of the Foot

    PubMed Central

    Erdemir, Ahmet; Sirimamilla, Pavana A.; Halloran, Jason P.; van den Bogert, Antonie J.

    2010-01-01

    Background Mechanical properties of the foot are responsible for its normal function and play a role in various clinical problems. Specifically, we are interested in quantification of foot mechanical properties to assist the development of computational models for movement analysis and detailed simulations of tissue deformation. Current available data are specific to a foot region and the loading scenarios are limited to a single direction. A data set that incorporates regional response, to quantify individual function of foot components, as well as overall response, to illustrate their combined operation, does not exist. Furthermore, combined three-dimensional loading scenarios while measuring the complete three-dimensional deformation response are lacking. When combined with an anatomical image data set, development of anatomically realistic and mechanically validated models becomes possible. Therefore, the goal of this study was to record and disseminate the mechanical response of a foot specimen, supported by imaging data. Method of Approach Robotic testing was conducted at the rear foot, forefoot, metatarsal heads, and the foot as a whole. Complex foot deformations were induced by single mode loading, e.g. compression, and combined loading, e.g. compression and shear. Small and large indenters were used for heel and metatarsal head loading; an elevated platform was utilized to isolate the rear foot and forefoot; and a full platform compressed the whole foot. Three-dimensional tool movements and reaction loads were recorded simultaneously. Computed tomography scans of the same specimen were collected for anatomical reconstruction a-priori. Results Three-dimensional mechanical response of the specimen was nonlinear and viscoelastic. A low stiffness region was observed starting with contact between the tool and foot regions, increasing with loading. Loading and unloading response portrayed hysteresis. Loading range ensured capturing the toe and linear regions of

  3. Mechanical and energetic consequences of rolling foot shape in human walking

    PubMed Central

    Adamczyk, Peter G.; Kuo, Arthur D.

    2013-01-01

    SUMMARY During human walking, the center of pressure under the foot progresses forward smoothly during each step, creating a wheel-like motion between the leg and the ground. This rolling motion might appear to aid walking economy, but the mechanisms that may lead to such a benefit are unclear, as the leg is not literally a wheel. We propose that there is indeed a benefit, but less from rolling than from smoother transitions between pendulum-like stance legs. The velocity of the body center of mass (COM) must be redirected in that transition, and a longer foot reduces the work required for the redirection. Here we develop a dynamic walking model that predicts different effects from altering foot length as opposed to foot radius, and test it by attaching rigid, arc-like foot bottoms to humans walking with fixed ankles. The model suggests that smooth rolling is relatively insensitive to arc radius, whereas work for the step-to-step transition decreases approximately quadratically with foot length. We measured the separate effects of arc-foot length and radius on COM velocity fluctuations, work performed by the legs and metabolic cost. Experimental data (N=8) show that foot length indeed has much greater effect on both the mechanical work of the step-to-step transition (23% variation, P=0.04) and the overall energetic cost of walking (6%, P=0.03) than foot radius (no significant effect, P>0.05). We found the minimum metabolic energy cost for an arc foot length of approximately 29% of leg length, roughly comparable to human foot length. Our results suggest that the foot's apparently wheel-like action derives less benefit from rolling per se than from reduced work to redirect the body COM. PMID:23580717

  4. Mechanical and energetic consequences of rolling foot shape in human walking.

    PubMed

    Adamczyk, Peter G; Kuo, Arthur D

    2013-07-15

    During human walking, the center of pressure under the foot progresses forward smoothly during each step, creating a wheel-like motion between the leg and the ground. This rolling motion might appear to aid walking economy, but the mechanisms that may lead to such a benefit are unclear, as the leg is not literally a wheel. We propose that there is indeed a benefit, but less from rolling than from smoother transitions between pendulum-like stance legs. The velocity of the body center of mass (COM) must be redirected in that transition, and a longer foot reduces the work required for the redirection. Here we develop a dynamic walking model that predicts different effects from altering foot length as opposed to foot radius, and test it by attaching rigid, arc-like foot bottoms to humans walking with fixed ankles. The model suggests that smooth rolling is relatively insensitive to arc radius, whereas work for the step-to-step transition decreases approximately quadratically with foot length. We measured the separate effects of arc-foot length and radius on COM velocity fluctuations, work performed by the legs and metabolic cost. Experimental data (N=8) show that foot length indeed has much greater effect on both the mechanical work of the step-to-step transition (23% variation, P=0.04) and the overall energetic cost of walking (6%, P=0.03) than foot radius (no significant effect, P>0.05). We found the minimum metabolic energy cost for an arc foot length of approximately 29% of leg length, roughly comparable to human foot length. Our results suggest that the foot's apparently wheel-like action derives less benefit from rolling per se than from reduced work to redirect the body COM.

  5. Exploitation of Stereophotogrammetric Measurement of a Foot in Analysis of Plantar Pressure Distribution

    NASA Astrophysics Data System (ADS)

    Pankova, B.; Koudelka, T.; Pavelka, K.; Janura, M.; Jelen, K.

    2016-06-01

    Stereophotogrammetry as a method for the surface scanning can be used to capture some properties of the human body parts. The objective of this study is to quantify the foot stress distribution in 3D during its quasi-static stand using a footprint into an imprinting material when knowing its mechanical properties. One foot of a female, having the mass of 65kg, was chosen for the FEM foot model construction. After obtaining her foot imprint to the dental imprinting material, its positive plaster cast was created, whose surface was possible to scan using stereophotogrammetry. The imprint surface digital model was prepared with the help of the Konica-Minolta Vivid 9i triangulation scanner. This procedure provides the measured object models in a high resolution. The resulting surface mesh of the foot imprint involved 9.600 nodes and 14.000 triangles, approximately, after reduction due to the FEM analysis. Simulation of foot imprint was solved as the 3D time dependent nonlinear mechanical problem in the ADINA software. The sum of vertical reactions calculated at the contact area nodes was 320.5 N, which corresponds to the mass of 32.67 kg. This value is in a good agreement with the subject half weight - the load of one foot during its quasi-static stand. The partial pressures resulting from this mathematical model match the real pressures on the interface of the foot and imprinting material quite closely. Principally, these simulations can be used to assess the contact pressures in practical cases, e.g., between a foot and its footwear.

  6. A portable foot-parameter-extracting system

    NASA Astrophysics Data System (ADS)

    Zhang, MingKai; Liang, Jin; Li, Wenpan; Liu, Shifan

    2016-03-01

    In order to solve the problem of automatic foot measurement in garment customization, a new automatic footparameter- extracting system based on stereo vision, photogrammetry and heterodyne multiple frequency phase shift technology is proposed and implemented. The key technologies applied in the system are studied, including calibration of projector, alignment of point clouds, and foot measurement. Firstly, a new projector calibration algorithm based on plane model has been put forward to get the initial calibration parameters and a feature point detection scheme of calibration board image is developed. Then, an almost perfect match of two clouds is achieved by performing a first alignment using the Sampled Consensus - Initial Alignment algorithm (SAC-IA) and refining the alignment using the Iterative Closest Point algorithm (ICP). Finally, the approaches used for foot-parameterextracting and the system scheme are presented in detail. Experimental results show that the RMS error of the calibration result is 0.03 pixel and the foot parameter extracting experiment shows the feasibility of the extracting algorithm. Compared with the traditional measurement method, the system can be more portable, accurate and robust.

  7. Combined Ankle-Foot Energetics are Conserved When Distal Foot Energy Absorption is Minimized.

    PubMed

    Arch, Elisa S; Fylstra, Bretta L

    2016-12-01

    The large, late-stance energy generated by the ankle is believed to be critical during gait. However, the distal foot absorbs/dissipates a considerable amount of energy during the same phase. Thus, the energy generated by the combined ankle-foot system is more modest, which raises questions regarding the necessity of such a large ankle power and the interplay between foot and ankle energetics. This study aimed to evaluate our conservation of energy hypothesis, which predicted if distal foot energy absorption/dissipation was reduced, then less energy would be generated at the ankle and thus the same combined ankle-foot energetics would be achieved. Motion analysis data were collected as healthy subjects walked under 2 conditions (Shoes, Footplate). In the Footplate condition, the shoe was replaced with a customized, rigid footplate with a rocker profile. In support of the hypothesis, there was significantly less positive ankle and less negative distal foot work with footplate use, resulting in very similar combined ankle-foot work between conditions. These findings suggest that there is an interplay between the energy generated by the ankle and absorbed by the foot. This interplay should be considered when designing orthotic and prosthetic ankle-foot systems and rehabilitation programs for individuals with weakened ankle muscles.

  8. Estimation of end point foot clearance points from inertial sensor data.

    PubMed

    Santhiranayagam, Braveena K; Lai, Daniel T H; Begg, Rezaul K; Palaniswami, Marimuthu

    2011-01-01

    Foot clearance parameters provide useful insight into tripping risks during walking. This paper proposes a technique for the estimate of key foot clearance parameters using inertial sensor (accelerometers and gyroscopes) data. Fifteen features were extracted from raw inertial sensor measurements, and a regression model was used to estimate two key foot clearance parameters: First maximum vertical clearance (m x 1) after toe-off and the Minimum Toe Clearance (MTC) of the swing foot. Comparisons are made against measurements obtained using an optoelectronic motion capture system (Optotrak), at 4 different walking speeds. General Regression Neural Networks (GRNN) were used to estimate the desired parameters from the sensor features. Eight subjects foot clearance data were examined and a Leave-one-subject-out (LOSO) method was used to select the best model. The best average Root Mean Square Errors (RMSE) across all subjects obtained using all sensor features at the maximum speed for m x 1 was 5.32 mm and for MTC was 4.04 mm. Further application of a hill-climbing feature selection technique resulted in 0.54-21.93% improvement in RMSE and required fewer input features. The results demonstrated that using raw inertial sensor data with regression models and feature selection could accurately estimate key foot clearance parameters.

  9. Reliability of a Seven-Segment Foot Model with Medial and Lateral Midfoot and Forefoot Segments During Walking Gait.

    PubMed

    Cobb, Stephen C; Joshi, Mukta N; Pomeroy, Robin L

    2016-12-01

    In-vitro and invasive in-vivo studies have reported relatively independent motion in the medial and lateral forefoot segments during gait. However, most current surface-based models have not defined medial and lateral forefoot or midfoot segments. The purpose of the current study was to determine the reliability of a 7-segment foot model that includes medial and lateral midfoot and forefoot segments during walking gait. Three-dimensional positions of marker clusters located on the leg and 6 foot segments were tracked as 10 participants completed 5 walking trials. To examine the reliability of the foot model, coefficients of multiple correlation (CMC) were calculated across the trials for each participant. Three-dimensional stance time series and range of motion (ROM) during stance were also calculated for each functional articulation. CMCs for all of the functional articulations were ≥ 0.80. Overall, the rearfoot complex (leg-calcaneus segments) was the most reliable articulation and the medial midfoot complex (calcaneus-navicular segments) was the least reliable. With respect to ROM, reliability was greatest for plantarflexion/dorsiflexion and least for abduction/adduction. Further, the stance ROM and time-series patterns results between the current study and previous invasive in-vivo studies that have assessed actual bone motion were generally consistent.

  10. Foot placement during error and pedal applications in naturalistic driving.

    PubMed

    Wu, Yuqing; Boyle, Linda Ng; McGehee, Daniel; Roe, Cheryl A; Ebe, Kazutoshi; Foley, James

    2017-02-01

    Data from a naturalistic driving study was used to examine foot placement during routine foot pedal movements and possible pedal misapplications. The study included four weeks of observations from 30 drivers, where pedal responses were recorded and categorized. The foot movements associated with pedal misapplications and errors were the focus of the analyses. A random forest algorithm was used to predict the pedal application types based the video observations, foot placements, drivers' characteristics, drivers' cognitive function levels and anthropometric measurements. A repeated multinomial logit model was then used to estimate the likelihood of the foot placement given various driver characteristics and driving scenarios. The findings showed that prior foot location, the drivers' seat position, and the drive sequence were all associated with incorrect foot placement during an event. The study showed that there is a potential to develop a driver assistance system that can reduce the likelihood of a pedal error. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. If You Build It, They Will Scan: Oxford University's Exploration of Community Collections

    ERIC Educational Resources Information Center

    Lee, Stuart D.; Lindsay, Kate

    2009-01-01

    Traditional large digitization projects demand massive resources from the central unit (library, museum, or university) that has acquired funding for them. Another model, enabled by easy access to cameras, scanners, and web tools, calls for public contributions to community collections of artifacts. In 2009, the University of Oxford ran a…

  12. Physics in Oxford, 1839-1939 - Laboratories, Learning, and College Life

    NASA Astrophysics Data System (ADS)

    Fox, Robert; Gooday, Graeme

    2005-08-01

    Physics in Oxford 1839-1939 offers a challenging new interpretation of pre-war physics at the University of Oxford, which was far more dynamic than most historians and physicists have been prepared to believe. It explains, on the one hand, how attempts to develop the University's Clarendon Laboratory by Robert Clifton, Professor of Experimental Philosophy from 1865 to 1915, were thwarted by academic politics and funding problems, and latterly by Clifton's idiosyncratic concern with precision instrumentation. Conversely, by examining in detail the work of college fellows and their laboratories, the book reconstructs the decentralized environment that allowed physics to enter on a period of conspicuous vigor in the late nineteenth and early twentieth centuries, especially at the characteristically Oxonian intersections between physics, physical chemistry, mechanics, and mathematics. Whereas histories of Cambridge physics have tended to focus on the self-sustaining culture of the Cavendish Laboratory, it was Oxford's college-trained physicists who enabled the discipline to flourish in due course in university as well as college facilities, notably under the newly appointed professors, J. S. E. Townsend from 1900 and F. A. Lindemann from 1919. This broader perspective allows us to understand better the vitality with which physicists in Oxford responded to the demands of wartime research on radar and techniques relevant to atomic weapons and laid the foundations for the dramatic post-war expansion in teaching and research that has endowed Oxford with one of the largest and most dynamic schools of physics in the world.

  13. Kinematic foot types in youth with equinovarus secondary to hemiplegia.

    PubMed

    Krzak, Joseph J; Corcos, Daniel M; Damiano, Diane L; Graf, Adam; Hedeker, Donald; Smith, Peter A; Harris, Gerald F

    2015-02-01

    Elevated kinematic variability of the foot and ankle segments exists during gait among individuals with equinovarus secondary to hemiplegic cerebral palsy (CP). Clinicians have previously addressed such variability by developing classification schemes to identify subgroups of individuals based on their kinematics. To identify kinematic subgroups among youth with equinovarus secondary to CP using 3-dimensional multi-segment foot and ankle kinematics during locomotion as inputs for principal component analysis (PCA), and K-means cluster analysis. In a single assessment session, multi-segment foot and ankle kinematics using the Milwaukee Foot Model (MFM) were collected in 24 children/adolescents with equinovarus and 20 typically developing children/adolescents. PCA was used as a data reduction technique on 40 variables. K-means cluster analysis was performed on the first six principal components (PCs) which accounted for 92% of the variance of the dataset. The PCs described the location and plane of involvement in the foot and ankle. Five distinct kinematic subgroups were identified using K-means clustering. Participants with equinovarus presented with variable involvement ranging from primary hindfoot or forefoot deviations to deformtiy that included both segments in multiple planes. This study provides further evidence of the variability in foot characteristics associated with equinovarus secondary to hemiplegic CP. These findings would not have been detected using a single segment foot model. The identification of multiple kinematic subgroups with unique foot and ankle characteristics has the potential to improve treatment since similar patients within a subgroup are likely to benefit from the same intervention(s). Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Kinematic foot types in youth with equinovarus secondary to hemiplegia

    PubMed Central

    Krzak, Joseph J.; Corcos, Daniel M.; Damiano, Diane L.; Graf, Adam; Hedeker, Donald; Smith, Peter A.; Harris, Gerald F.

    2015-01-01

    Background Elevated kinematic variability of the foot and ankle segments exists during gait among individuals with equinovarus secondary to hemiplegic cerebral palsy (CP). Clinicians have previously addressed such variability by developing classification schemes to identify subgroups of individuals based on their kinematics. Objective To identify kinematic subgroups among youth with equinovarus secondary to CP using 3-dimensional multi-segment foot and ankle kinematics during locomotion as inputs for principal component analysis (PCA), and K-means cluster analysis. Methods In a single assessment session, multi-segment foot and ankle kinematics using the Milwaukee Foot Model (MFM) were collected in 24 children/adolescents with equinovarus and 20 typically developing children/adolescents. Results PCA was used as a data reduction technique on 40 variables. K-means cluster analysis was performed on the first six principal components (PCs) which accounted for 92% of the variance of the dataset. The PCs described the location and plane of involvement in the foot and ankle. Five distinct kinematic subgroups were identified using K-means clustering. Participants with equinovarus presented with variable involvement ranging from primary hindfoot or forefoot deviations to deformtiy that included both segments in multiple planes. Conclusion This study provides further evidence of the variability in foot characteristics associated with equinovarus secondary to hemiplegic CP. These findings would not have been detected using a single segment foot model. The identification of multiple kinematic subgroups with unique foot and ankle characteristics has the potential to improve treatment since similar patients within a subgroup are likely to benefit from the same intervention(s). PMID:25467429

  15. Effectiveness of off-the-shelf, extra-depth footwear in reducing foot pain in older people: a randomized controlled trial.

    PubMed

    Menz, Hylton B; Auhl, Maria; Ristevski, Sonja; Frescos, Nicoletta; Munteanu, Shannon E

    2015-04-01

    Foot pain is highly prevalent in older people and in many cases is associated with inappropriate footwear. This study evaluated the effectiveness of off-the-shelf, extra-depth footwear in reducing foot pain. Community-dwelling older people with disabling foot pain (72 men and 48 women aged 65 to 96 years; mean age 82 [SD 8]) were randomly allocated to an intervention group (n = 59) or control group (n = 61). The intervention group was provided with off-the-shelf, extra-depth footwear. Participants in the control group received their footwear at the completion of the study. Both groups continued to receive usual podiatry care for the study period. The primary outcome measure was the Foot Health Status Questionnaire (FHSQ), measured at baseline and 16 weeks. There was a significant improvement in the FHSQ pain domain (ANCOVA-adjusted mean difference 11.5 points, 95% confidence interval 4.2 to 18.8, p = .002) and FHSQ function domain (10.0 points, 0.9 to 19.1, p = .032) in the intervention group compared to the control group. The intervention group also developed fewer keratotic lesions (mean difference -1.4, -2.5 to -0.2, p = .021), were less likely to report the use of co-interventions (relative risk [RR] 0.74, 0.56 to 0.98, p = .026) and were more likely to report that their foot pain had moderately or markedly improved during the study (RR = 7.93, 2.51 to 25.00, p < .001; number needed to treat = 3, 2 to 5). Off-the-shelf, extra-depth footwear significantly reduces foot pain, improves foot function and is associated with the development of fewer keratotic lesions in older people. © The Author 2014. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Preliminary Computational Study for Future Tests in the NASA Ames 9 foot' x 7 foot Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Pearl, Jason M.; Carter, Melissa B.; Elmiligui, Alaa A.; WInski, Courtney S.; Nayani, Sudheer N.

    2016-01-01

    The NASA Advanced Air Vehicles Program, Commercial Supersonics Technology Project seeks to advance tools and techniques to make over-land supersonic flight feasible. In this study, preliminary computational results are presented for future tests in the NASA Ames 9 foot x 7 foot supersonic wind tunnel to be conducted in early 2016. Shock-plume interactions and their effect on pressure signature are examined for six model geometries. Near- field pressure signatures are assessed using the CFD code USM3D to model the proposed test geometries in free-air. Additionally, results obtained using the commercial grid generation software Pointwise Reigistered Trademark are compared to results using VGRID, the NASA Langley Research Center in-house mesh generation program.

  17. The Oxford Picture Dictionary. Beginning Workbook.

    ERIC Educational Resources Information Center

    Fuchs, Marjorie

    The beginning workbook of the Oxford Picture Dictionary is in full color and offers vocabulary reinforcement activities that correspond page for page with the dictionary. Clear and simple instructions with examples make it suitable for independent use in the classroom or at home. The workbook has up-to-date art and graphics, explaining over 3700…

  18. Maintenance of longitudinal foot arch after different mid/hind-foot arthrodesis procedures in a cadaveric model.

    PubMed

    Chen, Yanxi; Zhang, Kun; Qiang, Minfei; Hao, Yini

    2014-02-01

    Currently, the optimal treatment of flatfoot remains inconclusive. Our objectives were to understand the effect of different arthrodeses on maintenance of foot arch and provide experimental basis for rational selection in treatment of flatfoot. Sixteen fresh-frozen cadaver feet amputated above the ankle along with a section of leg were studied from ten males and six females. We used standard clinical techniques and hardware for making the arthrodeses. Plantar pressure in the medial and lateral longitudinal arch distribution was measured with a plantar pressure mapping system under different loading conditions. Values of plantar pressure reaction, mean and maximum dynamic peak pressure between all group pairs were statistically significant (P<0.05). The plantar pressure reaction appeared at the load of 960 N in the medial arch of the unoperated foot, compared with 1080 N after subtalar arthrodesis, 1200 N after talonavicular arthrodesis, 1080 N after calcaneocuboid arthrodesis, 1320 N after double arthrodesis, and 1560 N after triple arthrodesis. The plantar pressure reaction appeared at the load of 360 N in the lateral arch of the unoperated foot, compared with 600 N after subtalar arthrodesis, 600 N after talonavicular arthrodesis, 840 N after calcaneocuboid arthrodesis, 960 N after double arthrodesis, and 1440 N after triple arthrodesis. The triple arthrodesis provided the highest support to both arches; the double arthrodesis appeared to be similar to talonavicular arthrodesis in supporting the medial arch and similar to calcaneocuboid arthrodesis in supporting the lateral arch; subtalar arthrodesis was less effective in supporting both arches. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. The Influence of Foot-Strike Technique on the Neuromechanical Function of the Foot.

    PubMed

    Kelly, Luke A; Farris, Dominic J; Lichtwark, Glen A; Cresswell, Andrew G

    2018-01-01

    The aim of this study was to investigate the influence of foot-strike technique on longitudinal arch mechanics and intrinsic foot muscle function during running. Thirteen healthy participants ran barefoot on a force-instrumented treadmill at 2.8 ms with a forefoot (FFS) and rearfoot (RFS; habitual) running technique, whereas kinetic, kinematic, and electromyographic data from the intrinsic foot muscles were collected simultaneously. The longitudinal arch was modeled as a single "midfoot" joint representing motion of the rearfoot (calcaneus) relative to the forefoot (metatarsals). An inverse dynamic analysis was performed to estimate joint moments generated about the midfoot, as well as mechanical work and power. The midfoot was more plantar flexed (higher arch) at foot contact when running with a forefoot running technique (RFS 0.2 ± 1.8 vs FFS 6.9 ± 3.0°, effect size (ES) = 2.7); however, there was no difference in peak midfoot dorsiflexion in stance (RFS -11.6 ± 3.0 vs FFS -11.4 ± 3.4°, ES = 0.63). When running with a forefoot technique, participants generated greater moments about the midfoot (27% increase, ES = 1.1) and performed more negative work (240% increase, ES = 2.2) and positive work (42% increase, ES = 1.1) about the midfoot. Average stance-phase muscle activation was greater for flexor digitorum brevis (20% increase, ES = 0.56) and abductor hallucis (17% increase, ES = 0.63) when running with a forefoot technique. Forefoot running increases loading about the longitudinal arch and also increases the mechanical work performed by the intrinsic foot muscles. These findings have substantial implications in terms of injury prevention and management for runners who transition from a rearfoot to a forefoot running technique.

  20. Oxford NOTECHS II: a modified theatre team non-technical skills scoring system.

    PubMed

    Robertson, Eleanor R; Hadi, Mohammed; Morgan, Lauren J; Pickering, Sharon P; Collins, Gary; New, Steve; Griffin, Damian; Griffin, Damien; McCulloch, Peter; Catchpole, Ken C

    2014-01-01

    We previously developed and validated the Oxford NOTECHS rating system for evaluating the non-technical skills of an entire operating theatre team. Experience with the scale identified the need for greater discrimination between levels of performance within the normal range. We report here the development of a modified scale (Oxford NOTECHS II) to facilitate this. The new measure uses an eight-point instead of a four point scale to measure each dimension of non-technical skills, and begins with a default rating of 6 for each element. We evaluated this new scale in 297 operations at five NHS sites in four surgical specialities. Measures of theatre process reliability (glitch count) and compliance with the WHO surgical safety checklist were scored contemporaneously, and relationships with NOTECHS II scores explored. Mean team Oxford NOTECHS II scores was 73.39 (range 37-92). The means for surgical, anaesthetic and nursing sub-teams were 24.61 (IQR 23, 27); 24.22 (IQR 23, 26) and 24.55 (IQR 23, 26). Oxford NOTECHS II showed good inter-rater reliability between human factors and clinical observers in each of the four domains. Teams with high WHO compliance had higher mean Oxford NOTECHS II scores (74.5) than those with low compliance (71.1) (p = 0.010). We observed only a weak correlation between Oxford NOTECHS II scores and glitch count; r = -0.26 (95% CI -0.36 to -0.15). Oxford NOTECHS II scores did not vary significantly between 5 different hospital sites, but a significant difference was seen between specialities (p = 0.001). Oxford NOTECHS II provides good discrimination between teams while retaining reliability and correlation with other measures of teamwork performance, and is not confounded by technical performance. It is therefore suitable for combined use with a technical performance scale to provide a global description of operating theatre team performance.

  1. Medial Longitudinal Arch Angle Presents Significant Differences Between Foot Types: A Biplane Fluoroscopy Study.

    PubMed

    Balsdon, Megan E R; Bushey, Kristen M; Dombroski, Colin E; LeBel, Marie-Eve; Jenkyn, Thomas R

    2016-10-01

    The structure of the medial longitudinal arch (MLA) affects the foot's overall function and its ability to dissipate plantar pressure forces. Previous research on the MLA includes measuring the calcaneal-first metatarsal angle using a static sagittal plane radiograph, a dynamic height-to-length ratio using marker clusters with a multisegment foot model, and a contained angle using single point markers with a multisegment foot model. The objective of this study was to use biplane fluoroscopy to measure a contained MLA angle between foot types: pes planus (low arch), pes cavus (high arch), and normal arch. Fifteen participants completed the study, five from each foot type. Markerless fluoroscopic radiostereometric analysis (fRSA) was used with a three-dimensional model of the foot bones and manually matching those bones to a pair of two-dimensional radiographic images during midstance of gait. Statistically significant differences were found between barefoot arch angles of the normal and pes cavus foot types (p = 0.036), as well as between the pes cavus and pes planus foot types (p = 0.004). Dynamic walking also resulted in a statistically significant finding compared to the static standing trials (p = 0.014). These results support the classification of individuals following a physical assessment by a foot specialist for those with pes cavus and planus foot types. The differences between static and dynamic kinematic measurements were also supported using this novel method.

  2. Prevention of foot blisters.

    PubMed

    Knapik, Joseph J

    2014-01-01

    Foot blisters are the most common medical problem faced by Soldiers during foot march operations and, if untreated, they can lead to infection. Foot blisters are caused by boots rubbing on the foot (frictional forces), which separates skin layers and allows fluid to seep in. Blisters can be prevented by wearing properly sized boots, conditioning feet through regular road marching, wearing socks that reduce reduce friction and moisture, and possibly applying antiperspirants to the feet. 2014.

  3. The influence of body mass on foot dimensions during pregnancy.

    PubMed

    Chiou, Wen-Ko; Chiu, Hsin-Tzu; Chao, An-Shine; Wang, Ming-Hsu; Chen, Yi-Lang

    2015-01-01

    In this study, a time-series approach was used to measure women's feet to accurately analyze changes in foot size and body mass during pregnancy. One-hundred women who were pregnant for the first time were asked to respond to questions on subjective complaints of foot discomfort listed in a questionnaire. Among these 100 women, a sample of 30 was obtained and used to measure the women's feet from the twentieth week of the gestation period until labor. The data (from 5 of the 30 women) were used to establish a prediction model for the influence of body mass on changes in foot size during pregnancy. The results indicate that the women subjectively complained that their shoes were too tight, resulting in foot discomfort. From the twentieth to the thirty-eighth week of pregnancy, the average increase in foot length, width, and back foot surface was 0.86 cm (3.6%), 0.25 cm (2.6%), and 18.36 cm(2) (11.9%), respectively. The height of the arch decreased by an average of 0.52 cm (-24.2%). Body mass accounted for more than 90% of the variation (R(2)) in foot dimensions during pregnancy and, thus indicated satisfactory predictive ability. The prediction model developed in this study can serve as a reference for clinical applications and shoe design to prevent women from experiencing extreme discomfort in their feet during pregnancy. Copyright © 2014 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  4. Associations of Foot Posture and Function to Lower Extremity Pain: The Framingham Foot Study

    PubMed Central

    Riskowski, JL; Dufour, AB; Hagedorn, TJ; Hillstrom, Howard; Casey, VA; Hannan, MT

    2014-01-01

    Objective Studies have implicated foot posture and foot function as risk factors for lower extremity pain. Empirical population-based evidence for this assertion is lacking; therefore, the purpose of this study was to evaluate cross-sectional associations of foot posture and foot function to lower extremity joint pain in a population-based study of adults. Methods Participants were members of the Framingham Foot Study. lower extremity joint pain was determined by the response to the NHANES-type question, “On most days do you have pain, aching or stiffness in your [hips, knees, ankles, or feet]?” Modified Arch Index (MAI) classified participants as having planus, rectus (referent) or cavus foot posture. Center of Pressure Excursion Index (CPEI) classified participants as having over-pronated, normal (referent) or over-supinated foot function. Crude and adjusted (age, gender, BMI) logistic regression determined associations of foot posture and function to lower extremity pain. Results Participants with planus structure had higher odds of knee (1.57, 95% CI: 1.24– 1.99) or ankle (1.47, 95% CI: 1.05–2.06) pain, whereas those with a cavus foot structure had increased odds of ankle pain only (7.56, 95% CI: 1.99–28.8) and pain at one lower extremity site (1.37, 95% CI: 1.04–1.80). Associations between foot function and lower extremity joint pain were not statistically significant, except for a reduced risk of hip pain in those with an over-supinated foot function (0.69, 95% CI: 0.51–0.93). Conclusions These findings offer a link between foot posture and lower extremity pain, highlighting the need for longitudinal or intervention studies. PMID:24591410

  5. Oxford and the Mandarin Culture: The Past that Is Gone

    ERIC Educational Resources Information Center

    Bogdanor, Vernon

    2006-01-01

    Why was Oxford the home of the mandarin and why has the era of the mandarin come to an end? The era of the mandarin was inaugurated by T. H. Green, who sought, through the gospel of citizenship, to provide a philosophy for an age of religious doubt. Green's moralism served in Oxford as a substitute for the social sciences, which came to be…

  6. X-Ray Exam: Foot

    MedlinePlus

    ... Staying Safe Videos for Educators Search English Español X-Ray Exam: Foot KidsHealth / For Parents / X-Ray Exam: Foot What's in this article? What ... Have Questions Print What It Is A foot X-ray is a safe and painless test that ...

  7. Predicting body composition using foot-to-foot bioelectrical impedance analysis in healthy Asian individuals.

    PubMed

    Wu, Chun-Shien; Chen, Yu-Yawn; Chuang, Chih-Lin; Chiang, Li-Ming; Dwyer, Gregory B; Hsu, Ying-Lin; Huang, Ai-Chun; Lai, Chung-Liang; Hsieh, Kuen-Chang

    2015-05-19

    The objectives of this study were to develop a regression model for predicting fat-free mass (FFM) in a population of healthy Taiwanese individuals using standing foot-to-foot bioelectrical impedance analysis (BIA) and to test the model's performance in predicting FFM with different body fat percentages (BF%). We used dual-energy X-ray absorptiometry (DXA) to measure the FFM of 554 healthy Asian subjects (age, 16-75 y; body mass index, 15.8-43.1 kg/m(2)). We also evaluated the validity of the developed multivariate model using a double cross-validation technique and assessed the accuracy of the model in an all-subjects sample and subgroup samples with different body fat levels. Predictors in the all-subjects multivariate model included height(2)/impedance, weight, year, and sex (FFM = 13.055 + 0.204 weight + 0.394 height(2)/Impedance - 0.136 age + 8.125 sex (sex: Female = 0, Male = 1), r(2) = 0.92, standard error of the estimate = 3.17 kg). The correlation coefficients between predictive FFM by BIA (FFMBIA) and DXA-measured FFM (FFMDXA) in female subjects with a total-subjects BF%DXA of <20 %, 20 %-30 %, 30 %-40 % and >40 % were r = 0.87, 0.90, 0.91, 0.89, and 0.94, respectively, with bias ± 2SD of 0.0 ± 3.0 kg, -2.6 ± 1.7 kg, -1.5 ± 2.8 kg, 0.5 ± 2.7 kg, and 2.0 ± 2.9 kg, respectively. The correlation coefficients between FFMBIA and FFMDXA in male subjects with a total-subjects BF%DXA of <10 %, 10 %-20 %, 20 %-30 %, and >30 % were r = 0.89, 0.89, 0.90, 0.93, and 0.91, respectively, with bias ± 2SD of 0.0 ± 3.2 kg, -2.3 ± 2.5 kg, -0.5 ± 3.2 kg, 0.4 ± 3.1 kg, and 2.1 ± 3.2 kg, respectively. The standing foot-to-foot BIA method developed in this study can accurately predict FFM in healthy Asian individuals with different levels of body fat.

  8. Diabetic neuropathy and foot complications.

    PubMed

    Boulton, Andrew J M

    2014-01-01

    Foot ulceration and Charcot neuroarthropathy (CN) are well recognized and documented late sequelae of diabetic peripheral, somatic, and sympathetic autonomic neuropathy. The neuropathic foot, however, does not ulcerate spontaneously: it is a combination of loss of sensation due to neuropathy together with other factors such as foot deformity and external trauma that results in ulceration and indeed CN. The commonest trauma leading to foot ulcers in the neuropathic foot in Western countries is from inappropriate footwear. Much of the management of the insensate foot in diabetes has been learned from leprosy which similarly gives rise to insensitive foot ulceration. No expensive equipment is required to identify the high risk foot and recently developed tests such as the Ipswich Touch Test and the Vibratip have been shown to be useful in identifying the high risk foot. A comprehensive screening program, together with education of high risk patients, should help to reduce the all too high incidence of ulceration in diabetes. More recently another very high risk group has been identified, namely patients on dialysis, who are at extremely high risk of developing foot ulceration; this should be preventable. The most important feature in management of neuropathic foot ulceration is offloading as patients can easily walk on active foot ulcers due to the loss of pain sensation. Infection should be treated aggressively and if there is any evidence of peripheral vascular disease, arteriography and appropriate surgical management is also indicated. CN often presents with a unilateral hot, swollen foot and any patient presenting with these features known to have neuropathy should be treated as a Charcot until this is proven otherwise. Most important in the management of acute CN is offloading, often in a total contact cast.

  9. Oxford dictionary of Physics

    NASA Astrophysics Data System (ADS)

    Isaacs, Alan

    The dictionary is derived from the Concise Science Dictionary, first published by Oxford University Press in 1984 (third edition, 1996). It consists of all the entries relating to physics in that dictionary, together with some of those entries relating to astronomy that are required for an understanding of astrophysics and many entries that relate to physical chemistry. It also contains a selection of the words used in mathematics that are relevant to physics, as well as the key words in metal science, computing, and electronics. For this third edition a number of words from quantum field physics and statistical mechanics have been added. Cosmology and particle physics have been updated and a number of general entries have been expanded.

  10. The development of a model to predict the effects of worker and task factors on foot placements in manual material handling tasks.

    PubMed

    Wagner, David W; Reed, Matthew P; Chaffin, Don B

    2010-11-01

    Accurate prediction of foot placements in relation to hand locations during manual materials handling tasks is critical for prospective biomechanical analysis. To address this need, the effects of lifting task conditions and anthropometric variables on foot placements were studied in a laboratory experiment. In total, 20 men and women performed two-handed object transfers that required them to walk to a shelf, lift an object from the shelf at waist height and carry the object to a variety of locations. Five different changes in the direction of progression following the object pickup were used, ranging from 45° to 180° relative to the approach direction. Object weights of 1.0 kg, 4.5 kg, 13.6 kg were used. Whole-body motions were recorded using a 3-D optical retro-reflective marker-based camera system. A new parametric system for describing foot placements, the Quantitative Transition Classification System, was developed to facilitate the parameterisation of foot placement data. Foot placements chosen by the subjects during the transfer tasks appeared to facilitate a change in the whole-body direction of progression, in addition to aiding in performing the lift. Further analysis revealed that five different stepping behaviours accounted for 71% of the stepping patterns observed. More specifically, the most frequently observed behaviour revealed that the orientation of the lead foot during the actual lifting task was primarily affected by the amount of turn angle required after the lift (R(2) = 0.53). One surprising result was that the object mass (scaled by participant body mass) was not found to significantly affect any of the individual step placement parameters. Regression models were developed to predict the most prevalent step placements and are included in this paper to facilitate more accurate human motion simulations and ergonomics analyses of manual material lifting tasks. STATEMENT OF RELEVANCE: This study proposes a method for parameterising the steps

  11. The role of foot morphology on foot function in diabetic subjects with or without neuropathy.

    PubMed

    Guiotto, Annamaria; Sawacha, Zimi; Guarneri, Gabriella; Cristoferi, Giuseppe; Avogaro, Angelo; Cobelli, Claudio

    2013-04-01

    The aim of this study was to investigate the role of foot morphology, related with respect to diabetes and peripheral neuropathy in altering foot kinematics and plantar pressure during gait. Healthy and diabetic subjects with or without neuropathy with different foot types were analyzed. Three dimensional multisegment foot kinematics and plantar pressures were assessed on 120 feet: 40 feet (24 cavus, 20 with valgus heel and 11 with hallux valgus) in the control group, 80 feet in the diabetic (25 cavus 13 with valgus heel and 13 with hallux valgus) and the neuropathic groups (28 cavus, 24 with valgus heel and 18 with hallux valgus). Subjects were classified according to their foot morphology allowing further comparisons among the subgroups with the same foot morphology. When comparing neuropathic subjects with cavus foot, valgus heel with controls with the same foot morphology, important differences were noticed: increased dorsiflexion and peak plantar pressure on the forefoot (P<0.05), decreased contact surface on the hindfoot (P<0.03). While results indicated the important role of foot morphology in altering both kinematics and plantar pressure in diabetic subjects, diabetes appeared to further contribute in altering foot biomechanics. Surprisingly, all the diabetic subjects with normal foot arch or with valgus hallux were no more likely to display significant differences in biomechanics parameters than controls. This data could be considered a valuable support for future research on diabetic foot function, and in planning preventive interventions. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. The reliability, accuracy and minimal detectable difference of a multi-segment kinematic model of the foot-shoe complex.

    PubMed

    Bishop, Chris; Paul, Gunther; Thewlis, Dominic

    2013-04-01

    Kinematic models are commonly used to quantify foot and ankle kinematics, yet no marker sets or models have been proven reliable or accurate when wearing shoes. Further, the minimal detectable difference of a developed model is often not reported. We present a kinematic model that is reliable, accurate and sensitive to describe the kinematics of the foot-shoe complex and lower leg during walking gait. In order to achieve this, a new marker set was established, consisting of 25 markers applied on the shoe and skin surface, which informed a four segment kinematic model of the foot-shoe complex and lower leg. Three independent experiments were conducted to determine the reliability, accuracy and minimal detectable difference of the marker set and model. Inter-rater reliability of marker placement on the shoe was proven to be good to excellent (ICC=0.75-0.98) indicating that markers could be applied reliably between raters. Intra-rater reliability was better for the experienced rater (ICC=0.68-0.99) than the inexperienced rater (ICC=0.38-0.97). The accuracy of marker placement along each axis was <6.7 mm for all markers studied. Minimal detectable difference (MDD90) thresholds were defined for each joint; tibiocalcaneal joint--MDD90=2.17-9.36°, tarsometatarsal joint--MDD90=1.03-9.29° and the metatarsophalangeal joint--MDD90=1.75-9.12°. These thresholds proposed are specific for the description of shod motion, and can be used in future research designed at comparing between different footwear. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Body weight and the medial longitudinal foot arch: high-arched foot, a hidden problem?

    PubMed

    Woźniacka, R; Bac, A; Matusik, S; Szczygieł, E; Ciszek, E

    2013-05-01

    This study had two objectives. First, to determine the prevalence of hollow (high-arched) and flat foot among primary school children in Cracow (Poland). Second, to evaluate the relationship between the type of medial longitudinal arch (MLA; determined by the Clarke's angle) and degree of fatness. The prevalence of underweight, overweight, and obesity was determined by means of IOTF cut-offs with respect to age and gender. A sample of 1,115 children (564 boys and 551 girls) aged between 3 and 13 years was analyzed. In all age groups, regardless of gender, high-arched foot was diagnosed in the majority of children. A distinct increase in the number of children with high-arched foot was observed between 7- and 8-year olds. Regardless of the gender, high-arched foot was more common among underweight children. In the group of obese children, the biggest differences were attributed to gender. High-arched foot was the most frequently observed among boys. In all gender and obesity level groups, the flat foot was more common among boys than among girls. High-arched foot is the most common foot defect among children 3-13 years old regardless of gender. Flat foot is least frequently observed in children 3-13 years old. A statistic correlation between MLA and adiposity is observed. Stronger correlation is observed among girls.

  14. Footwear and foot care knowledge as risk factors for foot problems in Indian diabetics

    PubMed Central

    Chandalia, H. B.; Singh, D.; Kapoor, V.; Chandalia, S. H.; Lamba, P. S.

    2008-01-01

    We assessed 300 diabetic and 100 age- and sex-matched controls for correlating foot wear practices and foot care knowledge and the presence of foot complications. A structured questionnaire evaluated the knowledge about foot care, type of footwear used, education level, association of tobacco abuse, and any associated symptoms of foot disease. Clinical evaluation was done by inspection of feet for presence of any external deformities, assessment of sensory function (vibration perception threshold, VPT), vascular status (foot pulses and ankle brachial ratio) and presence of any infection. In the diabetes category, 44.7% patients had not received previous foot care education. 0.6% walked barefoot outdoors and 45% walked barefoot indoors. Fourteen (4.7%) patients gave history of foot ulceration in the past and comprised the high risk group; only 2 out of 14 had received foot care education, 6 gave history of tobacco abuse, 8 had symptoms of claudication, 9 had paresthesias, 2 walked barefoot indoors. Average duration of diabetes in the high-risk and low-risk diabetes group was 10.85 ± 6.53 and 9.83 ± 7.99 years, respectively. In the high- and low-risk diabetic groups, VPT was 19.57 ± 11.26 and 15.20 ± 10.21V (P < 0.02), ankle brachial ratio was 1.05 ± 0.19 and 1.14 ± 0.18 (P < 0.05), and the questionnaire scores was 40.8% and 57%, respectively. In the diabetic and the control group, VPT was 15.62 ± 10.39 and 8.36 ± 3.61 V (P < 0.01), ankle brachial ratio was 1.14 ± 0.18 and 1.15 ± 0.12, and the questionnaire scores were 57% and 40.3%, respectively. In conclusion, poor knowledge of foot care and poor footwear practices were important risk factors for foot problems in diabetes. PMID:20165597

  15. High-resolution, detailed simulations of low foot and high foot implosion experiments on the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Clark, Daniel

    2015-11-01

    In order to achieve the several hundred Gbar stagnation pressures necessary for inertial confinement fusion ignition, implosion experiments on the National Ignition Facility (NIF) require the compression of deuterium-tritium fuel layers by a convergence ratio as high as forty. Such high convergence implosions are subject to degradation by a range of perturbations, including the growth of small-scale defects due to hydrodynamic instabilities, as well as longer scale modulations due to radiation flux asymmetries in the enclosing hohlraum. Due to the broad range of scales involved, and also the genuinely three-dimensional (3-D) character of the flow, accurately modeling NIF implosions remains at the edge of current radiation hydrodynamics simulation capabilities. This talk describes the current state of progress of 3-D, high-resolution, capsule-only simulations of NIF implosions aimed at accurately describing the performance of specific NIF experiments. Current simulations include the effects of hohlraum radiation asymmetries, capsule surface defects, the capsule support tent and fill tube, and use a grid resolution shown to be converged in companion two-dimensional simulations. The results of detailed simulations of low foot implosions from the National Ignition Campaign are contrasted against results for more recent high foot implosions. While the simulations suggest that low foot performance was dominated by ablation front instability growth, especially the defect seeded by the capsule support tent, high foot implosions appear to be dominated by hohlraum flux asymmetries, although the support tent still plays a significant role. Most importantly, it is found that a single, standard simulation methodology appears adequate to model both implosion types and gives confidence that such a model can be used to guide future implosion designs toward ignition. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory

  16. The Relationship Between Neighborhood Criminal Behavior and Oxford Houses

    PubMed Central

    Deaner, Jeffrey; Jason, Leonard A.; Aase, Darrin M.; Mueller, David G.

    2013-01-01

    The present study investigated crime rates in areas surrounding 42 Oxford Houses and 42 control houses in a large city in the Northwestern United States. A city-run Global Information Systems’ (GIS) website was used to gather crime data including assault, arson, burglary, larceny, robbery, sexual assault, homicide, and vehicle theft over a calendar year. Findings indicated that there were no significant differences between the crime rates around Oxford Houses and the control houses. These results suggest that well-managed and governed recovery homes pose minimal risks to neighbors in terms of criminal behavior. PMID:23487588

  17. Aiming at "de feet" and diabetes: a rural model to increase annual foot examinations.

    PubMed

    Beem, Susie E; Machala, Margaret; Holman, Craig; Wraalstad, Randal; Bybee, Ann

    2004-10-01

    Something is afoot in south central Idaho. After 2 years of work, the percentage of people with diabetes receiving recommended annual foot examinations has increased by 13.8%, exceeding the state average. This turnaround, from being the region with the lowest percentage of foot examinations in the state, was made possible when South Central District Health joined diabetes coalition members to develop a comprehensive program that maximizes limited resources in the rural, 8-county service area. Key program components include (1) development of a curriculum on CD-ROM called 2 Minute Diabetes Foot Examination, (2) training area physicians and nurses in the curriculum, (3) incorporating the curriculum into the nursing program at the local college, (4) offering free foot-screening clinics to targeted populations, and (5) conducting public education and outreach.

  18. Foot anthropometry and morphology phenomena.

    PubMed

    Agić, Ante; Nikolić, Vasilije; Mijović, Budimir

    2006-12-01

    Foot structure description is important for many reasons. The foot anthropometric morphology phenomena are analyzed together with hidden biomechanical functionality in order to fully characterize foot structure and function. For younger Croatian population the scatter data of the individual foot variables were interpolated by multivariate statistics. Foot structure descriptors are influenced by many factors, as a style of life, race, climate, and things of the great importance in human society. Dominant descriptors are determined by principal component analysis. Some practical recommendation and conclusion for medical, sportswear and footwear practice are highlighted.

  19. Gender differences of foot characteristics in older Japanese adults using a 3D foot scanner.

    PubMed

    Saghazadeh, Mahshid; Kitano, Naruki; Okura, Tomohiro

    2015-01-01

    Knowledge of gender differences in foot shape assists shoe manufactures with designing appropriate shoes for men and women. Although gender differences in foot shapes are relatively known among young men and women, less is known about how the older men and women's feet differ in shape. A recent development in foot shape assessment is the use of 3D foot scanners. To our knowledge this technology has yet to be used to examine gender differences in foot shape of Japanese older adults. This cross-sectional study included 151 older men (74.5 ± 5.6 years) and 140 older women (73.9 ± 5.1 years) recruited in Kasama City, Japan. Foot variables were measured in sitting and standing positions using Dream GP Incorporated's 3D foot scanner, Footstep PRO (Osaka, Japan). Scores were analyzed as both raw and normalized to truncated foot length using independent samples t-test and analysis of covariance, respectively. In men, the measurement values for navicular height, first and fifth toe and instep heights, ball and heel width, ball girth, arch height index (just standing), arch rigidity index and instep girth were significantly greater than the women's, whereas the first toe angle, in both sitting and standing positions was significantly smaller. However, after normalizing, the differences in ball width, heel width, height of first and fifth toes in both sitting and standing and ball girth in sitting position were nonsignificant. According to Cohen's d, among all the foot variables, the following had large effect sizes in both sitting and standing positions: truncated foot length, instep, navicular height, foot length, ball girth, ball width, heel width and instep girth. This study provides evidence of anthropometric foot variations between older men and women. These differences need to be considered when manufacturing shoes for older adults.

  20. A Yankee at Oxford: John William Draper at the British Association for the Advancement of Science at Oxford, 30 June 1860

    PubMed Central

    Ungureanu, James C.

    2016-01-01

    This paper contributes to the revisionist historiography on the legendary encounter between Samuel Wilberforce and Thomas Henry Huxley at the 1860 meeting in Oxford of the British Association for the Advancement of Science. It discusses the contents of a series of letters written by John William Draper and his family reflecting on his experience at that meeting. The letters have recently been rediscovered and have been neither published nor examined at full length. After a preliminary discussion on the historiography of the Oxford debate, the paper discloses the contents of the letters and then assesses them in the light of other contemporary accounts. The letters offer a nuanced reinterpretation of the event that supports the growing move towards a revisionist account. PMID:27386714

  1. Infant welfare in inter-war Oxford.

    PubMed

    Peretz, E

    1995-01-01

    State provision of welfare increased in the 1930s in Great Britain, especially the welfare of mothers and babies. The national picture hid many local nuances and practices concerned with the implementation of policies. Using Oxford and Oxfordshire as a case study, this paper examines the ways in which local authorities chose to interpret national policies and to insist on a mixture of personal responsibility, public philanthropy and professional involvement.

  2. The neuropathic foot.

    PubMed

    Jernberger, A

    1993-12-01

    The neuropathic foot is described with relation to cause, presentation, dysfunction and identification. The various mechanisms of neuropathic foot lesions are outlined--overload, diabetic gangrene, continuous pressure, direct injury and cutting and temperature effects. The orthotic treatment of the foot is discussed and in particular the importance of proper shoe provision and patient education and indoctrination emphasised. The use of plaster casts and fenestrations to control pressure distribution is described. Finally results of an intensive treatment programme are presented to identify the effect on outcome, as measured by delay in amputation.

  3. The foot of Homo naledi.

    PubMed

    Harcourt-Smith, W E H; Throckmorton, Z; Congdon, K A; Zipfel, B; Deane, A S; Drapeau, M S M; Churchill, S E; Berger, L R; DeSilva, J M

    2015-10-06

    Modern humans are characterized by a highly specialized foot that reflects our obligate bipedalism. Our understanding of hominin foot evolution is, although, hindered by a paucity of well-associated remains. Here we describe the foot of Homo naledi from Dinaledi Chamber, South Africa, using 107 pedal elements, including one nearly-complete adult foot. The H. naledi foot is predominantly modern human-like in morphology and inferred function, with an adducted hallux, an elongated tarsus, and derived ankle and calcaneocuboid joints. In combination, these features indicate a foot well adapted for striding bipedalism. However, the H. naledi foot differs from modern humans in having more curved proximal pedal phalanges, and features suggestive of a reduced medial longitudinal arch. Within the context of primitive features found elsewhere in the skeleton, these findings suggest a unique locomotor repertoire for H. naledi, thus providing further evidence of locomotor diversity within both the hominin clade and the genus Homo.

  4. The foot of Homo naledi

    PubMed Central

    Harcourt-Smith, W. E. H.; Throckmorton, Z.; Congdon, K. A.; Zipfel, B.; Deane, A. S.; Drapeau, M. S. M.; Churchill, S. E.; Berger, L. R.; DeSilva, J. M.

    2015-01-01

    Modern humans are characterized by a highly specialized foot that reflects our obligate bipedalism. Our understanding of hominin foot evolution is, although, hindered by a paucity of well-associated remains. Here we describe the foot of Homo naledi from Dinaledi Chamber, South Africa, using 107 pedal elements, including one nearly-complete adult foot. The H. naledi foot is predominantly modern human-like in morphology and inferred function, with an adducted hallux, an elongated tarsus, and derived ankle and calcaneocuboid joints. In combination, these features indicate a foot well adapted for striding bipedalism. However, the H. naledi foot differs from modern humans in having more curved proximal pedal phalanges, and features suggestive of a reduced medial longitudinal arch. Within the context of primitive features found elsewhere in the skeleton, these findings suggest a unique locomotor repertoire for H. naledi, thus providing further evidence of locomotor diversity within both the hominin clade and the genus Homo. PMID:26439101

  5. Movement coordination patterns between the foot joints during walking.

    PubMed

    Arnold, John B; Caravaggi, Paolo; Fraysse, François; Thewlis, Dominic; Leardini, Alberto

    2017-01-01

    In 3D gait analysis, kinematics of the foot joints are usually reported via isolated time histories of joint rotations and no information is provided on the relationship between rotations at different joints. The aim of this study was to identify movement coordination patterns in the foot during walking by expanding an existing vector coding technique according to an established multi-segment foot and ankle model. A graphical representation is also described to summarise the coordination patterns of joint rotations across multiple patients. Three-dimensional multi-segment foot kinematics were recorded in 13 adults during walking. A modified vector coding technique was used to identify coordination patterns between foot joints involving calcaneus, midfoot, metatarsus and hallux segments. According to the type and direction of joints rotations, these were classified as in-phase (same direction), anti-phase (opposite directions), proximal or distal joint dominant. In early stance, 51 to 75% of walking trials showed proximal-phase coordination between foot joints comprising the calcaneus, midfoot and metatarsus. In-phase coordination was more prominent in late stance, reflecting synergy in the simultaneous inversion occurring at multiple foot joints. Conversely, a distal-phase coordination pattern was identified for sagittal plane motion of the ankle relative to the midtarsal joint, highlighting the critical role of arch shortening to locomotor function in push-off. This study has identified coordination patterns between movement of the calcaneus, midfoot, metatarsus and hallux by expanding an existing vector cording technique for assessing and classifying coordination patterns of foot joints rotations during walking. This approach provides a different perspective in the analysis of multi-segment foot kinematics, and may be used for the objective quantification of the alterations in foot joint coordination patterns due to lower limb pathologies or following injuries.

  6. A database of virtual healthy subjects to assess the accuracy of foot-to-foot pulse wave velocities for estimation of aortic stiffness.

    PubMed

    Willemet, Marie; Chowienczyk, Phil; Alastruey, Jordi

    2015-08-15

    While central (carotid-femoral) foot-to-foot pulse wave velocity (PWV) is considered to be the gold standard for the estimation of aortic arterial stiffness, peripheral foot-to-foot PWV (brachial-ankle, femoral-ankle, and carotid-radial) are being studied as substitutes of this central measurement. We present a novel methodology to assess theoretically these computed indexes and the hemodynamics mechanisms relating them. We created a database of 3,325 virtual healthy adult subjects using a validated one-dimensional model of the arterial hemodynamics, with cardiac and arterial parameters varied within physiological healthy ranges. For each virtual subject, foot-to-foot PWV was computed from numerical pressure waveforms at the same locations where clinical measurements are commonly taken. Our numerical results confirm clinical observations: 1) carotid-femoral PWV is a good indicator of aortic stiffness and correlates well with aortic PWV; 2) brachial-ankle PWV overestimates aortic PWV and is related to the stiffness and geometry of both elastic and muscular arteries; and 3) muscular PWV (carotid-radial, femoral-ankle) does not capture the stiffening of the aorta and should therefore not be used as a surrogate for aortic stiffness. In addition, our analysis highlights that the foot-to-foot PWV algorithm is sensitive to the presence of reflected waves in late diastole, which introduce errors in the PWV estimates. In this study, we have created a database of virtual healthy subjects, which can be used to assess theoretically the efficiency of physiological indexes based on pulse wave analysis. Copyright © 2015 the American Physiological Society.

  7. A database of virtual healthy subjects to assess the accuracy of foot-to-foot pulse wave velocities for estimation of aortic stiffness

    PubMed Central

    Chowienczyk, Phil; Alastruey, Jordi

    2015-01-01

    While central (carotid-femoral) foot-to-foot pulse wave velocity (PWV) is considered to be the gold standard for the estimation of aortic arterial stiffness, peripheral foot-to-foot PWV (brachial-ankle, femoral-ankle, and carotid-radial) are being studied as substitutes of this central measurement. We present a novel methodology to assess theoretically these computed indexes and the hemodynamics mechanisms relating them. We created a database of 3,325 virtual healthy adult subjects using a validated one-dimensional model of the arterial hemodynamics, with cardiac and arterial parameters varied within physiological healthy ranges. For each virtual subject, foot-to-foot PWV was computed from numerical pressure waveforms at the same locations where clinical measurements are commonly taken. Our numerical results confirm clinical observations: 1) carotid-femoral PWV is a good indicator of aortic stiffness and correlates well with aortic PWV; 2) brachial-ankle PWV overestimates aortic PWV and is related to the stiffness and geometry of both elastic and muscular arteries; and 3) muscular PWV (carotid-radial, femoral-ankle) does not capture the stiffening of the aorta and should therefore not be used as a surrogate for aortic stiffness. In addition, our analysis highlights that the foot-to-foot PWV algorithm is sensitive to the presence of reflected waves in late diastole, which introduce errors in the PWV estimates. In this study, we have created a database of virtual healthy subjects, which can be used to assess theoretically the efficiency of physiological indexes based on pulse wave analysis. PMID:26055792

  8. Link Between Foot Pain Severity and Prevalence of Depressive Symptoms.

    PubMed

    Awale, Arunima; Dufour, Alyssa B; Katz, Patricia; Menz, Hylton B; Hannan, Marian T

    2016-06-01

    Associations between pain and depression are well known, yet foot pain, common in populations, has been understudied. This cross-sectional study examined foot pain and severity of foot pain with depressive symptoms in adults. Framingham Foot Study (2002-2008) participants completed questionnaires that included questions about foot pain (yes/no; none, mild, moderate, or severe pain) and the Center for Epidemiologic Studies Depression Scale (scores ≥16 indicated depressive symptoms). Age and body mass index (BMI) were also assessed. Sex-specific logistic regression was used to calculate odds ratios (ORs) and 95% confidence intervals (95% CIs) for associations of foot pain with depressive symptoms, adjusting for age and BMI. In a subset, further models adjusted for leg pain, back pain, or other joint pain. Of 1,464 men and 1,857 women, the mean ± SD age was 66 ± 10 years. Depressive symptoms were reported in 21% of men and 27% of women. Compared to those with no foot pain and independent of age and BMI, both men and women with moderate foot pain had approximately a 2-fold increased odds of depressive symptoms (men with severe foot pain OR of 4 [95% CI 2.26-8.48], women with severe foot pain OR of 3 [95% CI 2.02-4.68]). Considering other pain regions attenuated ORs, but the pattern of results remained unchanged. Even after we adjusted for age, BMI, and other regions of pain, those reporting worse foot pain were more likely to report depressive symptoms. These findings suggest that foot pain may be a part of a broader pain spectrum, with an impact beyond localized pain and discomfort. © 2016, American College of Rheumatology.

  9. The Oxford English Dictionary: A Brief History.

    ERIC Educational Resources Information Center

    Fritze, Ronald H.

    1989-01-01

    Reviews the development of English dictionaries in general and the Oxford English Dictionary (OED) in particular. The discussion covers the decision by the Philological Society to create the dictionary, the principles that guided its development, the involvement of James Augustus Henry Murray, the magnitude and progress of the project, and the…

  10. Effect of Custom-Molded Foot Orthoses on Foot Pain and Balance in Children With Symptomatic Flexible Flat Feet

    PubMed Central

    Lee, Hong-Jae; Lim, Kil-Byung; Yoo, JeeHyun; Yun, Hyun-Ju; Jeong, Tae-Ho

    2015-01-01

    Objective To evaluate the effect of custom-molded foot orthoses on foot pain and balance in children with symptomatic flexible flat foot 1 month and 3 months after fitting foot orthosis. Method A total of 24 children over 6 years old with flexible flat feet and foot pain for at least 6 months were recruited for this study. Their resting calcaneal stance position and calcaneal pitch angle were measured. Individual custom-molded rigid foot orthoses were prescribed using inverted orthotic technique to control foot overpronation. Pain questionnaire was used to obtain pain sites, degree, and frequency. Balancing ability was determined using computerized posturography. These evaluations were performed prior to custom-molded foot orthoses, 1 month, and 3 months after fitting foot orthoses. Result Of 24 children with symptomatic flexible flat feet recruited for this study, 20 completed the study. Significant (p<0.001) improvements in pain degree and frequency were noted after 1 and 3 months of custom-molded foot orthoses. In addition, significant (p<0.05) improvement in balancing ability was found after 3 months of custom-molded foot orthoses. Conclusion Short-term use of custom-molded foot orthoses significantly improved foot pain and balancing ability in children with symptomatic flexible flat foot. PMID:26798604

  11. Estimation of stature from the foot and its segments in a sub-adult female population of North India.

    PubMed

    Krishan, Kewal; Kanchan, Tanuj; Passi, Neelam

    2011-11-21

    Establishing personal identity is one of the main concerns in forensic investigations. Estimation of stature forms a basic domain of the investigation process in unknown and co-mingled human remains in forensic anthropology case work. The objective of the present study was to set up standards for estimation of stature from the foot and its segments in a sub-adult female population. The sample for the study constituted 149 young females from the Northern part of India. The participants were aged between 13 and 18 years. Besides stature, seven anthropometric measurements that included length of the foot from each toe (T1, T2, T3, T4, and T5 respectively), foot breadth at ball (BBAL) and foot breadth at heel (BHEL) were measured on both feet in each participant using standard methods and techniques. The results indicated that statistically significant differences (p < 0.05) between left and right feet occur in both the foot breadth measurements (BBAL and BHEL). Foot length measurements (T1 to T5 lengths) did not show any statistically significant bilateral asymmetry. The correlation between stature and all the foot measurements was found to be positive and statistically significant (p-value < 0.001). Linear regression models and multiple regression models were derived for estimation of stature from the measurements of the foot. The present study indicates that anthropometric measurements of foot and its segments are valuable in the estimation of stature. Foot length measurements estimate stature with greater accuracy when compared to foot breadth measurements. The present study concluded that foot measurements have a strong relationship with stature in the sub-adult female population of North India. Hence, the stature of an individual can be successfully estimated from the foot and its segments using different regression models derived in the study. The regression models derived in the study may be applied successfully for the estimation of stature in sub

  12. Sex determination from hand and foot dimensions in a North Indian population.

    PubMed

    Krishan, Kewal; Kanchan, Tanuj; Sharma, Abhilasha

    2011-03-01

    Hands and feet are often recovered from the site of natural as well as man-made disasters because of bomb blasts, train accidents, plane crashes, or mass homicides. This study is intended to establish standards for determination of sex from the dimensions of hands and feet in a North Indian population. The data for this study comprise 123 men and 123 women aged between 17 and 20 years from the "Rajput" population of Himachal Pradesh in North India. Four anthropometric measurements viz. hand length, hand breadth, foot length, and foot breadth have been taken on both sides of each subject following international anthropometric standards. The hand index (hand breadth/hand length × 100) and the foot index (foot breadth/foot length × 100) were calculated. Sectioning points and regression models are derived for the hand and foot dimensions and the derived indices. The hand and foot dimensions show a higher accuracy in sex determination by sectioning point analysis when compared to hand and foot index. Of the hand and the foot dimensions, hand breadth and foot breadth showed better accuracy in sex determination. Hand index and foot index remain poor sex discriminators in the study. © 2011 American Academy of Forensic Sciences.

  13. Neural Network Optimization of Ligament Stiffnesses for the Enhanced Predictive Ability of a Patient-Specific, Computational Foot/Ankle Model.

    PubMed

    Chande, Ruchi D; Wayne, Jennifer S

    2017-09-01

    Computational models of diarthrodial joints serve to inform the biomechanical function of these structures, and as such, must be supplied appropriate inputs for performance that is representative of actual joint function. Inputs for these models are sourced from both imaging modalities as well as literature. The latter is often the source of mechanical properties for soft tissues, like ligament stiffnesses; however, such data are not always available for all the soft tissues nor is it known for patient-specific work. In the current research, a method to improve the ligament stiffness definition for a computational foot/ankle model was sought with the greater goal of improving the predictive ability of the computational model. Specifically, the stiffness values were optimized using artificial neural networks (ANNs); both feedforward and radial basis function networks (RBFNs) were considered. Optimal networks of each type were determined and subsequently used to predict stiffnesses for the foot/ankle model. Ultimately, the predicted stiffnesses were considered reasonable and resulted in enhanced performance of the computational model, suggesting that artificial neural networks can be used to optimize stiffness inputs.

  14. Subtalar neutral position as an offset for a kinematic model of the foot during walking.

    PubMed

    Houck, Jeff R; Tome, Josh M; Nawoczenski, Deborah A

    2008-07-01

    The lack of a common reference position when defining foot postures may underestimate the ability to differentiate foot function in subjects with pathology. The effect of using the subtalar neutral (STN) position as an offset for both rearfoot and forefoot through comparison of the kinematic walking patterns of subjects classified as normal (n=7) and abnormally pronated (n=14) foot postures was completed. An Optotrak Motion Analysis System (Northern Digital, Inc.) integrated with Motion Monitor Software (Innovative Sports, Inc.) was used to track three-dimensional movement of the leg, rearfoot and first metatarsal segments. Intrarater reliability of positioning the foot into STN using clinical guidelines was determined for a single rater for 21 subjects. Walking data were subsequently compared before and after an offset was applied to the rearfoot and first metatarsal segments. Repeated measures of foot positioning found the STN position to be highly repeatable (intraclass correlation coefficients>0.9), with peak errors ranging from 1.9 degrees to 4.3 degrees . Utilizing STN as the offset resulted in a significant increase in rearfoot eversion (p=0.019) during early stance, and greater first metatarsal dorsiflexion (p<0.007) across stance in the pronated foot groups that was not observed prior to applying the offset. When applied to subjects with differing foot postures, the selection of a common reference position that is both clinically appropriate and reliable may distinguish kinematic patterns during walking that are consistent with theories of abnormal pronation.

  15. Correlations between ankle-foot impairments and dropped foot gait deviations among stroke survivors.

    PubMed

    Chisholm, Amanda E; Perry, Stephen D; McIlroy, William E

    2013-01-01

    The purpose of this paper is to 1) evaluate the relationship between ankle kinematics during gait and standardized measures of ankle impairments among sub-acute stroke survivors, and 2) compare the degree of stroke-related ankle impairment between individuals with and without dropped foot gait deviations. Fifty-five independently ambulating stroke survivors participated in this study. Dropped foot was defined as decreased peak dorsiflexion during the swing phase and reduced ankle joint motion in stance. Standardized outcome measures included the Chedoke-McMaster Stroke Assessment (motor impairment), Modified Ashworth Scale (spasticity), Medical Research Council (muscle strength), passive and active range of motion, and isometric muscle force. Foot impairment was not related to peak dorsiflexion during swing (r=-0.17, P=0.247) and joint motion during stance (r=0.05, P=0.735). Active (r=0.45, P<0.001) and passive (r=0.48, P<0.001) range of motion was associated with stance phase joint motion. Peak dorsiflexion during swing was related to isometric dorsiflexor muscle force (r=-0.32, P=0.039). Individuals with dropped foot demonstrated greater motor impairment, plantarflexor spasticity and ankle muscle weakness compared to those without dropped foot. Our investigation suggests that ankle-foot impairments are related to ankle deviations during gait, as indicated by greater impairment among individuals with dropped foot. These findings contribute to a better understanding of gait-specific ankle deviations, and may lead to the development of a more effective clinical assessment of dropped foot impairment. © 2013.

  16. Beyond the Bottom of the Foot: Topographic Organization of the Foot Dorsum in Walking.

    PubMed

    Klarner, Taryn; Pearcey, Gregory E P; Sun, Yao; Barss, Trevor S; Kaupp, Chelsea; Munro, Bridget; Frank, Nick; Zehr, E Paul

    2017-12-01

    Sensory feedback from the foot dorsum during walking has only been studied globally by whole nerve stimulation. Stimulating the main nerve innervating the dorsal surface produces a functional stumble corrective response that is phase-dependently modulated. We speculated that effects evoked by activation of discrete skin regions on the foot dorsum would be topographically organized, as with the foot sole. Nonnoxious electrical stimulation was delivered to five discrete locations on the dorsal surface of the foot during treadmill walking. Muscle activity from muscles acting at the ankle, knee, hip, and shoulder were recorded along with ankle, knee, and hip kinematics and kinetic information from forces under the foot. All data were sorted on the basis of stimulus occurrence in 12 step cycle phases, before being averaged together within a phase for subsequent analysis. Results reveal dynamic changes in reflex amplitudes and kinematics that are site specific and phase dependent. Most responses from discrete sites on the foot dorsum were seen in the swing phase suggesting function to conform foot trajectory to maintain stability of the moving limb. In general, responses from lateral stimulation differed from medial stimulation, and effects were largest from stimulation at the distal end of the foot at the metatarsals; that is, in anatomical locations where actual impact with an object in the environment is most likely during swing. Responses to stimulation extend to include muscles at the hip and shoulder. We reveal that afferent feedback from specific cutaneous locations on the foot dorsum influences stance and swing phase corrective responses. This emphasizes the critical importance of feedback from the entire foot surface in locomotor control and has application for rehabilitation after neurological injury and in footwear development.

  17. Diabetes - foot ulcers

    MedlinePlus

    ... produce chemicals that help the ulcer heal. Taking Pressure off Your Foot Ulcer Foot ulcers are partly caused by too much ... ulcer has healed. These devices will take the pressure off of the ulcer area. This will help speed healing. Be sure ...

  18. Robust Foot Clearance Estimation Based on the Integration of Foot-Mounted IMU Acceleration Data

    PubMed Central

    Benoussaad, Mourad; Sijobert, Benoît; Mombaur, Katja; Azevedo Coste, Christine

    2015-01-01

    This paper introduces a method for the robust estimation of foot clearance during walking, using a single inertial measurement unit (IMU) placed on the subject’s foot. The proposed solution is based on double integration and drift cancellation of foot acceleration signals. The method is insensitive to misalignment of IMU axes with respect to foot axes. Details are provided regarding calibration and signal processing procedures. Experimental validation was performed on 10 healthy subjects under three walking conditions: normal, fast and with obstacles. Foot clearance estimation results were compared to measurements from an optical motion capture system. The mean error between them is significantly less than 15% under the various walking conditions. PMID:26703622

  19. Full-Span Tiltrotor Aeroacoustic Model (TRAM) Overview and 40- by 80-Foot Wind Tunnel Test. [conducted in the 40- by 80-Foot Wind Tunnel at Ames Research Center

    NASA Technical Reports Server (NTRS)

    McCluer, Megan S.; Johnson, Jeffrey L.; Rutkowski, Michael (Technical Monitor)

    2001-01-01

    Most helicopter data trends cannot be extrapolated to tiltrotors because blade geometry and aerodynamic behavior, as well as rotor and fuselage interactions, are significantly different for tiltrotors. A tiltrotor model has been developed to investigate the aeromechanics of tiltrotors, to develop a comprehensive database for validating tiltrotor analyses, and to provide a research platform for supporting future tiltrotor designs. The Full-Span Tiltrotor Aeroacoustic Model (FS TRAM) is a dual-rotor, powered aircraft model with extensive instrumentation for measurement of structural and aerodynamic loads. This paper will present the Full-Span TRAM test capabilities and the first set of data obtained during a 40- by 80-Foot Wind Tunnel test conducted in late 2000 at NASA Ames Research Center. The Full-Span TRAM is a quarter-scale representation of the V-22 Osprey aircraft, and a heavily instrumented NASA and U.S. Army wind tunnel test stand. Rotor structural loads are monitored and recorded for safety-of-flight and for information on blade loads and dynamics. Left and right rotor balance and fuselage balance loads are monitored for safety-of-flight and for measurement of vehicle and rotor aerodynamic performance. Static pressure taps on the left wing are used to determine rotor/wing interactional effects and rotor blade dynamic pressures measure blade airloads. All of these measurement capabilities make the FS TRAM test stand a unique and valuable asset for validation of computational codes and to aid in future tiltrotor designs. The Full-Span TRAM was tested in the NASA Ames Research Center 40- by 80-Foot Wind Tunnel from October through December 2000. Rotor and vehicle performance measurements were acquired in addition to wing pressures, rotor acoustics, and Laser Light Sheet (LLS) flow visualization data. Hover, forward flight, and airframe (rotors off) aerodynamic runs were performed. Helicopter-mode data were acquired during angle of attack and thrust sweeps for

  20. FOOT experiment (Foot/Ground Reaction Forces during Space Flight)

    NASA Image and Video Library

    2005-06-29

    ISS011-E-09831 (29 June 2005) --- Astronaut John L. Phillips, Expedition 11 NASA Space Station science officer and flight engineer, works at the Canadarm2 controls while participating in the Foot/Ground Reaction Forces During Spaceflight (FOOT) experiment in the Destiny laboratory of the International Space Station. Phillips wore the specially instrumented Lower Extremity Monitoring Suit (LEMS), cycling tights outfitted with sensors, during the experiment.

  1. FOOT experiment (Foot/Ground Reaction Forces during Space Flight)

    NASA Image and Video Library

    2005-06-29

    ISS011-E-09825 (29 June 2005) --- Astronaut John L. Phillips, Expedition 11 NASA Space Station science officer and flight engineer, enters data into a computer while participating in the Foot/Ground Reaction Forces During Spaceflight (FOOT) experiment in the Destiny laboratory of the International Space Station. Phillips wore the specially instrumented Lower Extremity Monitoring Suit (LEMS), cycling tights outfitted with sensors, during the experiment.

  2. Shape characteristics of the foot arch: dynamics in the pregnancy period.

    PubMed

    Jelen, Karel; Tetkova, Zuzana; Halounova, Lena; Pavelka, Karel; Koudelka, Tomas; Ruzicka, Pavel

    2005-12-01

    The aim is data detection and finding some load consequences generated by various mechanical or physiological changes in the interaction of the end segment of the body--the foot--and the environment. Shape instability of the foot caused by e.g. loading of the foot by long-term frequency loads--walking, by extreme loads--sport, by hormonal changes--pregnancy, by aging, by pathologies, etc. The footprint surface was numerically described in 3D by means of stereo-photo-gram-metrical method--DMR digital relief model. Density of discrete points--250-400 per one print. Detailed DMR was constructed by means of triangular web including contour picture with the use of Atlas program. The specified generated web is characterized by triangles with a cca 1 mm side in the number of up to 4,500 elements per one footprint model. The results enable us to deduce shape characteristics of DMR--the shape of the interactive boundary of the foot--the rest surface, to solve foot arch straining, to solve issues of discomfort and distribution of the pressure at the boundary of the foot--the rest surface, the shoe, etc. The gained findings can be interpreted in the field of prevention, therapy, orthopedics, podology, and enable us to come up with recommendations for the orthopedic practice and industrial use in the footwear production, etc. THE MAIN FINDINGS: The difference between volume reductions of the space under the foot arch characterizes the level of "fall" of the arch. This criterion is independent of the foot size, and is in 3D. Shape characteristics of footprints in pregnant women and in the period after childbirth were calculated on the basis of the defined criterion. The results of the group of four women tested in three periods suggest that there is no clear tendency towards the foot arch falling/increasing of the foot arch "fall" during the pregnancy period.

  3. Bipedal vs. unipedal: a comparison between one-foot and two-foot driving in a driving simulator.

    PubMed

    Wang, Dong-Yuan Debbie; Richard, F Dan; Cino, Cullen R; Blount, Trevin; Schmuller, Joseph

    2017-04-01

    Is it better to drive with one foot or with two feet? Although two-foot driving has fostered interminable debate in the media, no scientific and systematic research has assessed this issue and federal and local state governments have provided no answers. The current study compared traditional unipedal (one-foot driving, using the right foot to control the accelerator and the brake pedal) with bipedal (two-foot driving, using the right foot to control the accelerator and the left foot to control the brake pedal) responses to a visual stimulus in a driving simulator study. Each of 30 undergraduate participants drove in a simulated driving scenario. They responded to a STOP sign displayed on the centre of the screen by bringing their vehicle to a complete stop. Brake RT was shorter under the bipedal condition, while throttle RT showed advantage under the unipedal condition. Stopping time and distance showed a bipedal advantage, however. We discuss further limitations of the current study and implications in a driving task. Before drawing any conclusions from the simulator study, further on-road driving tests are necessary to confirm these obtained bipedal advantages. Practitioner Summary: Traditional unipedal (using the right foot to control the accelerator and the brake pedal) with bipedal (using the right foot to control the accelerator and the left foot to control the brake pedal) responses to a visual stimulus in a driving simulator were compared. Our results showed a bipedal advantage. Promotion: Although two-foot driving has fostered interminable debate in the media, no scientific and systematic research has assessed this issue and federal and local state governments have provided no answers. Traditional (one-foot driving, using the right foot to control the accelerator and the brake pedal) with bipedal (using the right foot to control the accelerator and the left foot to control the brake pedal) responses to a visual stimulus in a simulated driving study were

  4. OxfordGrid: a web interface for pairwise comparative map views.

    PubMed

    Yang, Hongyu; Gingle, Alan R

    2005-12-01

    OxfordGrid is a web application and database schema for storing and interactively displaying genetic map data in a comparative, dot-plot, fashion. Its display is composed of a matrix of cells, each representing a pairwise comparison of mapped probe data for two linkage groups or chromosomes. These are arranged along the axes with one forming grid columns and the other grid rows with the degree and pattern of synteny/colinearity between the two linkage groups manifested in the cell's dot density and structure. A mouse click over the selected grid cell launches an image map-based display for the selected cell. Both individual and linear groups of mapped probes can be selected and displayed. Also, configurable links can be used to access other web resources for mapped probe information. OxfordGrid is implemented in C#/ASP.NET and the package, including MySQL schema creation scripts, is available at ftp://cggc.agtec.uga.edu/OxfordGrid/.

  5. The influence of foot orthoses on foot mobility magnitude and arch height index in adults with flexible flat feet.

    PubMed

    Sheykhi-Dolagh, Roghaye; Saeedi, Hassan; Farahmand, Behshid; Kamyab, Mojtaba; Kamali, Mohammad; Gholizadeh, Hossein; Derayatifar, Amir A; Curran, Sarah

    2015-06-01

    Flexible flat foot is described as a reduction in the height of the medial longitudinal arch and may occur from abnormal foot pronation. A foot orthosis is thought to modify and control excessive pronation and improve arch height. To compare the immediate effect of three types of orthoses on foot mobility and the arch height index in subjects with flexible flat feet. A quasi-experimental study. The dorsal arch height, midfoot width, foot mobility and arch height index were assessed in 20 participants with flexible flat feet (mean age = 23.2 ± 3 years) for three different foot orthosis conditions: soft, semi-rigid and rigid University of California Biomechanics Laboratory (UCBL). Maximum midfoot width at 90% with arch mobility in the coronal plane was shown in the semi-rigid orthosis condition. The semi-rigid orthosis resulted in the highest mean foot mobility in 90% of weight bearing, and the rigid orthosis (UCBL) had the lowest mean foot mobility. The soft orthosis resulted in foot mobility between that of the rigid and the semi-rigid orthosis. UCBL orthosis showed the highest arch height index, and the semi-rigid orthosis showed the lowest mean arch height index. Due to its rigid structure and long medial-lateral walls, the UCBL orthosis appears to limit foot mobility. Therefore, it is necessary to make an orthosis that facilitates foot mobility in the normal range of the foot arch. Future studies should address the dynamic mobility of the foot with using various types of foot orthoses. Although there are many studies focussed on flat foot and the use of foot orthoses, the mechanism of action is still unclear. This study explored foot mobility and the influence of foot orthoses and showed that a more rigid foot orthosis should be selected based on foot mobility. © The International Society for Prosthetics and Orthotics 2014.

  6. 3D Multi-segment foot kinematics in children: A developmental study in typically developing boys.

    PubMed

    Deschamps, Kevin; Staes, Filip; Peerlinck, Kathelijne; Van Geet, Christel; Hermans, Cedric; Matricali, Giovanni Arnoldo; Lobet, Sebastien

    2017-02-01

    The relationship between age and 3D rotations objectivized with multisegment foot models has not been quantified until now. The purpose of this study was therefore to investigate the relationship between age and multi-segment foot kinematics in a cross-sectional database. Barefoot multi-segment foot kinematics of thirty two typically developing boys, aged 6-20 years, were captured with the Rizzoli Multi-segment Foot Model. One-dimensional statistical parametric mapping linear regression was used to examine the relationship between age and 3D inter-segment rotations of the dominant leg during the full gait cycle. Age was significantly correlated with sagittal plane kinematics of the midfoot and the calcaneus-metatarsus inter-segment angle (p<0.0125). Age was also correlated with the transverse plane kinematics of the calcaneus-metatarsus angle (p<0.0001). Gait labs should consider age related differences and variability if optimal decision making is pursued. It remains unclear if this is of interest for all foot models, however, the current study highlights that this is of particular relevance for foot models which incorporate a separate midfoot segment. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. The forgotten survey: social services in the Oxford district: 1935-40.

    PubMed

    Peretz, Elizabeth

    2011-01-01

    This article describes one of the lesser known social surveys of the first half of the twentieth century in Britain and looks at its origins and its outcomes. Funded by the Rockefeller grant to Oxford University to enhance social studies there, the Oxford Survey published in two volumes in 1938 and 1940 engaged Oxford academics from agricultural economics, economics, statistics, and government, as well as Barnett House members involved in voluntary organizations, adult education, settlements, citizenship, and social work. It was a far-reaching study that aimed to analyse all aspects of public services, in the context of a thorough-going description of the geography, industry, and population statistics of the local area. It was also designed to have national relevance, because of the development of the motor industry in Cowley. The Oxford Survey differed from Booth and Rowntree's exploration of the habits and circumstances of the urban poor. Instead, it had more affinity to surveys of industrial and regional planning and work coming from the Le Play school, in which the act of surveying communities was perceived as a way of enhancing citizenship.

  8. A pelvic motion driven electrical stimulator for drop-foot treatment.

    PubMed

    Chen, Shih-Wei; Chen, Shih-Ching; Chen, Chiun-Fan; Lai, Jin-Shin; Kuo, Te-Son

    2009-01-01

    Foot switches operating with force sensitive resistors placed in the shoe sole were considered as an effective way for driving FES assisted walking systems in gait restoration. However, the reliability and durability of the foot switches run down after a certain number of steps. As an alternative for foot switches, a simple, portable, and easy to handle motion driven electrical stimulator (ES) is provided for drop foot treatment. The device is equipped with a single tri-axis accelerometer worn on the pelvis, a commercial dual channel electrical stimulator, and a controller unit. By monitoring the pelvic rotation and acceleration during a walking cycle, the events including heel strike and toe off of each step is thereby predicted by a post-processing neural network model.

  9. 3D Measurement of Anatomical Cross-sections of Foot while Walking

    NASA Astrophysics Data System (ADS)

    Kimura, Makoto; Mochimaru, Masaaki; Kanade, Takeo

    Recently, techniques for measuring and modeling of human body are taking attention, because human models are useful for ergonomic design in manufacturing. We aim to measure accurate shape of human foot that will be useful for the design of shoes. For such purpose, shape measurement of foot in motion is obviously important, because foot shape in the shoe is deformed while walking or running. In this paper, we propose a method to measure anatomical cross-sections of foot while walking. No one had ever measured dynamic shape of anatomical cross-sections, though they are very basic and popular in the field of biomechanics. Our proposed method is based on multi-view stereo method. The target cross-sections are painted in individual colors (red, green, yellow and blue), and the proposed method utilizes the characteristic of target shape in the camera captured images. Several nonlinear conditions are introduced in the process to find the consistent correspondence in all images. Our desired accuracy is less than 1mm error, which is similar to the existing 3D scanners for static foot measurement. In our experiments, the proposed method achieved the desired accuracy.

  10. FOOT experiment (Foot/Ground Reaction Forces during Space Flight)

    NASA Image and Video Library

    2005-06-29

    ISS011-E-09822 (29 June 2005) --- Astronaut John L. Phillips, Expedition 11 NASA Space Station science officer and flight engineer, uses the Cycle Ergometer with Vibration Isolation System (CEVIS) while participating in the Foot/Ground Reaction Forces During Spaceflight (FOOT) experiment in the Destiny laboratory of the International Space Station. Phillips wore the specially instrumented Lower Extremity Monitoring Suit (LEMS), cycling tights outfitted with sensors, during the experiment.

  11. From the diabetic foot ulcer and beyond: how do foot infections spread in patients with diabetes?

    PubMed Central

    Aragón-Sánchez, Javier; Lázaro-Martínez, Jose Luis; Pulido-Duque, Juan; Maynar, Manuel

    2012-01-01

    A diabetic foot infection is usually the result of a pre-existing foot ulceration and is the leading cause of lower extremity amputation in patients with diabetes. It is widely accepted that diabetic foot infections may be challenging to treat for several reasons. The devastating effects of hyperglycemia on host defense, ischemia, multi-drug resistant bacteria and spreading of infection through the foot may complicate the course of diabetic foot infections. Understanding the ways in which infections spread through the diabetic foot is a pivotal factor in order to decide the best approach for the patient's treatment. The ways in which infections spread can be explained by the anatomical division of the foot into compartments, the tendons included in the compartments, the initial location of the point of entry of the infection and the type of infection that the patient has. The aim of this paper is to further comment on the existed and proposed anatomical principles of the spread of infection through the foot in patients with diabetes. PMID:23050067

  12. 1/50 Scale Model Of The 80x120 Foot Wind Tunnel Model (NFAC) In The Test Section Of The 40x80 Wind Tunnel.

    NASA Image and Video Library

    1996-06-27

    (03/12/1976) 1/50 scale model of the 80x120 foot wind tunnel model (NFAC) in the test section of the 40x80 wind tunnel. Model viewed from the west, mounted on a rotating ground board designed for this test. Ramp leading to ground board includes a generic building placed in front of the 80x120 inlet.

  13. Advanced Technology Transport Model in the 8- by 6-Foot Supersonic Wind Tunnel

    NASA Image and Video Library

    1973-06-21

    A researcher examines an Advanced Technology Transport model installed in the 8- by 6-Foot Supersonic Wind Tunnel at the National Aeronautics and Space Administration (NASA) Lewis Research Center. The Advanced Technology Transport concept was a 200-person supersonic transport aircraft that could cruise at Mach 0.9 to 0.98 with low noise and pollution outputs. General Electric and Pratt and Whitney responded to NASA Lewis’ call to design a propulsion system for the aircraft. The integration of the propulsion system with the airframe was one of the greatest challenges facing the designers of supersonic aircraft. The aircraft’s flow patterns and engine nacelles could significantly affect the performance of the engines. NASA Lewis researchers undertook a study of this 0.30-scale model of the Advanced Technology Transport in the 8- by 6-foot tunnel. The flow-through nacelles were located near the rear of the fuselage during the initial tests, seen here, and then moved under the wings for ensuing runs. Different engine cowl shapes were also analyzed. The researchers determined that nacelles mounted at the rear of the aircraft produced more efficient airflow patterns during cruising conditions at the desired velocities. The concept of the Advanced Technology Transport, nor any other US supersonic transport, has ever come to fruition. The energy crisis, environmental concerns, and inadequate turbofan technology of the 1970s were among the most significant reasons.

  14. Leonardo da Vinci's foot: historical evidence of concept.

    PubMed

    Jastifer, James R; Toledo-Pereyra, Luis H

    2012-10-01

    Leonardo da Vinci (1452-1519), world-renowned Italian renaissance master, is known for his contributions to, and broad interests in science and art. The objective of this work is to demonstrate the extent of his science by applying the use of his concepts to current models of foot and ankle mechanics. The art and science of Leonardo Da Vinci were extensively analyzed by reviewing his original drawings and hand written notebooks as well as their English translation. Current medical journals including the topics of foot, ankle, and biomechanics were reviewed for modern evidence and application of his concepts. The library of Michigan State University and the electronic library of the Royal Library at Windsor Castle were extensively utilized. From the depths of Santa Maria Nuova Hospital in Florence and Santo Spirito Hospital in Rome, through his commentary and anatomical drawings of around 30 cadaver dissections he performed, Leonardo da Vinci expressed his concept of foot and ankle anatomy and mechanics. He laid forth concepts, which vary little from current theories including those of proportion, statics and joint stability, sesamoid biomechanics, and structural support of the foot. Leonardo da Vinci, by combining an interest in anatomy and a gift of genius and artistic ability laid a foundation of foot and ankle anatomy and mechanics that have been applied in modern clinical sciences. Leonardo in this way made important contributions to the practice of foot and ankle orthopedics.

  15. Impact and intrusion of the foot of a lizard running rapidly on sand

    NASA Astrophysics Data System (ADS)

    Li, Chen; Hsieh, Tonia; Umbanhowar, Paul; Goldman, Daniel

    2012-11-01

    The desert-dwelling zebra-tailed lizard (Callisaurus draconoides, 10 cm, 10 g) runs rapidly (~10 BL/s) on granular media (GM) like sand and gravel. On loosely packed GM, its large hind feet penetrate into the substrate during each step. Based on above-ground observation, a previous study (Li et al., JEB 2012) hypothesized that the hind foot rotated in the vertical plane subsurface to generate lift. To explain the observed center-of-mass dynamics, the model assumed that ground reaction force was dominated by speed-independent frictional drag. Here we use x-ray high speed video to obtain subsurface foot kinematics of the lizard running on GM, which confirms the hypothesized subsurface foot rotation following rapid foot impact at touchdown. However, using impact force measurements, a resistive force model, and the observed foot kinematics, we find that impact force during initial foot touchdown and speed-independent frictional drag during rotation only account for part of the required lift to support locomotion. This suggests that the rapid foot rotation further allows the lizard to utilize inertial forces from the local acceleration of the substrate (particles), similar to small robots running on GM (Qian et al., RSS 2012) and the basilisk (Jesus) lizard running on water.

  16. Effect of taping on foot kinematics in persons with chronic ankle instability.

    PubMed

    Deschamps, Kevin; Dingenen, Bart; Pans, Femke; Van Bavel, Isabelle; Matricali, Giovanni Arnoldo; Staes, Filip

    2016-07-01

    To investigate differences in rigid-foot and multi-segmental foot kinematics between healthy (control) and chronic ankle instability (CAI) participants during running and to evaluate the effect of low-Dye (LD) and high-Dye (HD) taping on foot kinematics of CAI subjects. Cross-sectional, comparative study. Kinematic data of 12 controls and 15 CAI participants were collected by a 3D motion analysis system during running. CAI participants performed barefoot (CAI_BF) running trials as well as trials with taping. A rigid Plug-in gait Model and the Rizzoli 3D Multi-Segment Foot Model were used. Groups were compared using one-dimensional statistical parametric mapping. An increased inversion, a decreased dorsiflexion between the foot and tibia and a decreased external foot progression angle were found during terminal swing and early stance in the CAI_BF group. With respect to the taped conditions, post-hoc SPM{t} calculations highlighted a more dorsiflexed rearfoot (38-46% running cycle) in the CAI_HD compared to the CAI_LD, and a more inverted Mid-Met angle (6-24% running cycle) in the CAI_LD compared to the CAI_BF condition. This study revealed significant differences in rigid foot and multi-segmental foot kinematics between all groups. As high-dye taping embraces shank-rearfoot and forefoot, it seems to have better therapeutic features with respect to low-dye taping as the latter created a more inverted forefoot which may not be recommended in this population. Copyright © 2015 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  17. Estimation of stature from the foot and its segments in a sub-adult female population of North India

    PubMed Central

    2011-01-01

    Background Establishing personal identity is one of the main concerns in forensic investigations. Estimation of stature forms a basic domain of the investigation process in unknown and co-mingled human remains in forensic anthropology case work. The objective of the present study was to set up standards for estimation of stature from the foot and its segments in a sub-adult female population. Methods The sample for the study constituted 149 young females from the Northern part of India. The participants were aged between 13 and 18 years. Besides stature, seven anthropometric measurements that included length of the foot from each toe (T1, T2, T3, T4, and T5 respectively), foot breadth at ball (BBAL) and foot breadth at heel (BHEL) were measured on both feet in each participant using standard methods and techniques. Results The results indicated that statistically significant differences (p < 0.05) between left and right feet occur in both the foot breadth measurements (BBAL and BHEL). Foot length measurements (T1 to T5 lengths) did not show any statistically significant bilateral asymmetry. The correlation between stature and all the foot measurements was found to be positive and statistically significant (p-value < 0.001). Linear regression models and multiple regression models were derived for estimation of stature from the measurements of the foot. The present study indicates that anthropometric measurements of foot and its segments are valuable in the estimation of stature. Foot length measurements estimate stature with greater accuracy when compared to foot breadth measurements. Conclusions The present study concluded that foot measurements have a strong relationship with stature in the sub-adult female population of North India. Hence, the stature of an individual can be successfully estimated from the foot and its segments using different regression models derived in the study. The regression models derived in the study may be applied successfully for the

  18. 1/50 Scale Model Of The 80X120 Foot Wind Tunnel Model (NFAC) In The Test Section Of The 40X80 Wind Tunnel At Nasa Ames.

    NASA Image and Video Library

    1976-03-12

    (03/12/1976) Overhead view of 1/50 scale model of the 80x120 foot wind tunnel model (NFAC) in the test section of the 40x80 wind tunnel at NASA Ames. Model mounted on a rotating ground board designed for this test.

  19. An 810 ft/sec soil impact test of a 2-foot diameter model nuclear reactor containment system

    NASA Technical Reports Server (NTRS)

    Puthoff, R. L.

    1972-01-01

    A soil impact test was conducted on a 880-pound 2-foot diameter sphere model. The impact area consisted of back filled desert earth and rock. The impact generated a crater 5 feet in diameter by 5 feet deep. It buried itself a total of 15 feet - as measured to the bottom of the model. After impact the containment vessel was pressure checked. No leaks were detected nor cracks observed.

  20. Aiming at “De Feet” and Diabetes: A Rural Model to Increase Annual Foot Examinations

    PubMed Central

    Beem, Susie E.; Machala, Margaret; Holman, Craig; Wraalstad, Randal; Bybee, Ann

    2004-01-01

    Something is afoot in south central Idaho. After 2 years of work, the percentage of people with diabetes receiving recommended annual foot examinations has increased by 13.8%, exceeding the state average. This turnaround, from being the region with the lowest percentage of foot examinations in the state, was made possible when South Central District Health joined diabetes coalition members to develop a comprehensive program that maximizes limited resources in the rural, 8-county service area. Key program components include (1) development of a curriculum on CD-ROM called 2 Minute Diabetes Foot Examination, (2) training area physicians and nurses in the curriculum, (3) incorporating the curriculum into the nursing program at the local college, (4) offering free foot-screening clinics to targeted populations, and (5) conducting public education and outreach. PMID:15451726

  1. A comparison of subtalar joint motion during anticipated medial cutting turns and level walking using a multi-segment foot model.

    PubMed

    Jenkyn, T R; Shultz, R; Giffin, J R; Birmingham, T B

    2010-02-01

    The weight-bearing in-vivo kinematics and kinetics of the talocrural joint, subtalar joint and joints of the foot were quantified using optical motion analysis. Twelve healthy subjects were studied during level walking and anticipated medial turns at self-selected pace. A multi-segment model of the foot using skin-mounted marker triads tracked four foot segments: the hindfoot, midfoot, lateral and medial forefoot. The lower leg and thigh were also tracked. Motion between each of the segments could occur in three degrees of rotational freedom, but only six inter-segmental motions were reported in this study: (1) talocrural dorsi-plantar-flexion, (2) subtalar inversion-eversion, (3) frontal plane hindfoot motion, (4) transverse plane hindfoot motion, (5) forefoot supination-pronation twisting and (6) the height-to-length ratio of the medial longitudinal arch. The motion at the subtalar joint during stance phase of walking (eversion then inversion) was reversed during a turning task (inversion then eversion). The external subtalar joint moment was also changed from a moderate eversion moment during walking to a larger inversion moment during the turn. The kinematics of the talocrural joint and the joints of the foot were similar between these two tasks. During a medial turn, the subtalar joint may act to maintain the motions in the foot and talocrural joint that occur during level walking. This is occurring despite the conspicuously different trajectory of the centre of mass of the body. This may allow the foot complex to maintain its function of energy absorption followed by energy return during stance phase that is best suited to level walking. Copyright 2009 Elsevier B.V. All rights reserved.

  2. Magnitude and Spatial Distribution of Impact Intensity Under the Foot Relates to Initial Foot Contact Pattern.

    PubMed

    Breine, Bastiaan; Malcolm, Philippe; Segers, Veerle; Gerlo, Joeri; Derie, Rud; Pataky, Todd; Frederick, Edward C; De Clercq, Dirk

    2017-12-01

    In running, foot contact patterns (rear-, mid-, or forefoot contact) influence impact intensity and initial ankle and foot kinematics. The aim of the study was to compare impact intensity and its spatial distribution under the foot between different foot contact patterns. Forty-nine subjects ran at 3.2 m·s -1 over a level runway while ground reaction forces (GRF) and shoe-surface pressures were recorded and foot contact pattern was determined. A 4-zone footmask (forefoot, midfoot, medial and lateral rearfoot) assessed the spatial distribution of the vertical GRF under the foot. We calculated peak vertical instantaneous loading rate of the GRF (VILR) per foot zone as the impact intensity measure. Midfoot contact patterns were shown to have the lowest, and atypical rearfoot contact patterns the highest impact intensities, respectively. The greatest local impact intensity was mainly situated under the rear- and midfoot for the typical rearfoot contact patterns, under the midfoot for the atypical rearfoot contact patterns, and under the mid- and forefoot for the midfoot contact patterns. These findings indicate that different foot contact patterns could benefit from cushioning in different shoe zones.

  3. Can foot anthropometric measurements predict dynamic plantar surface contact area?

    PubMed

    McPoil, Thomas G; Vicenzino, Bill; Cornwall, Mark W; Collins, Natalie

    2009-10-28

    Previous studies have suggested that increased plantar surface area, associated with pes planus, is a risk factor for the development of lower extremity overuse injuries. The intent of this study was to determine if a single or combination of foot anthropometric measures could be used to predict plantar surface area. Six foot measurements were collected on 155 subjects (97 females, 58 males, mean age 24.5 +/- 3.5 years). The measurements as well as one ratio were entered into a stepwise regression analysis to determine the optimal set of measurements associated with total plantar contact area either including or excluding the toe region. The predicted values were used to calculate plantar surface area and were compared to the actual values obtained dynamically using a pressure sensor platform. A three variable model was found to describe the relationship between the foot measures/ratio and total plantar contact area (R2 = 0.77, p < 0.0001)). A three variable model was also found to describe the relationship between the foot measures/ratio and plantar contact area minus the toe region (R2 = 0.76, p < 0.0001). The results of this study indicate that the clinician can use a combination of simple, reliable, and time efficient foot anthropometric measurements to explain over 75% of the plantar surface contact area, either including or excluding the toe region.

  4. Can foot anthropometric measurements predict dynamic plantar surface contact area?

    PubMed Central

    2009-01-01

    Background Previous studies have suggested that increased plantar surface area, associated with pes planus, is a risk factor for the development of lower extremity overuse injuries. The intent of this study was to determine if a single or combination of foot anthropometric measures could be used to predict plantar surface area. Methods Six foot measurements were collected on 155 subjects (97 females, 58 males, mean age 24.5 ± 3.5 years). The measurements as well as one ratio were entered into a stepwise regression analysis to determine the optimal set of measurements associated with total plantar contact area either including or excluding the toe region. The predicted values were used to calculate plantar surface area and were compared to the actual values obtained dynamically using a pressure sensor platform. Results A three variable model was found to describe the relationship between the foot measures/ratio and total plantar contact area (R2 = 0.77, p < 0.0001)). A three variable model was also found to describe the relationship between the foot measures/ratio and plantar contact area minus the toe region (R2 = 0.76, p < 0.0001). Conclusion The results of this study indicate that the clinician can use a combination of simple, reliable, and time efficient foot anthropometric measurements to explain over 75% of the plantar surface contact area, either including or excluding the toe region. PMID:19863799

  5. The experience of foot problems and decisions to access foot care in patients with rheumatoid arthritis: a qualitative study.

    PubMed

    Wilson, Oonagh; Kirwan, John; Dures, Emma; Quest, Enid; Hewlett, Sarah

    2017-01-01

    Although foot problems are common in rheumatoid arthritis (RA), the consequences of foot problems from the patient perspective have not been fully explored. The aims of this study were to explore the experience of foot problems and decisions to access foot care services or not in patients with RA. Semi structured, one-to-one interviews with patients recruited from 2 UK rheumatology units, purposively sampled for self-reported foot problems and a range of personal/disease characteristics. Inductive thematic analysis was used, with rigour provided by multiple independent analysers. Emerging themes were discussed and agreed by all authors. Twelve patients participated: 7 female; mean age 56 years (29-72); mean disease duration 12 years (2-27), 5 had accessed foot care services. The 'Impact' of foot problems was substantial and formed the underpinning theme, comprising three organising themes: 'Foot symptoms'; 'Consequences'; and 'Cost'. Foot symptoms such as pain and numbness required self-management, and affected daily life (walking, working) leading to social and emotional costs. The global theme, 'Decision to access foot care or not', also comprised three organising themes: 'Access perceived unnecessary' (no problem, can cope); 'Access hindered by patients' perception'; and 'Access supported by patient and clinician'. Decisions to access foot care or not were complex and influenced by patient beliefs regarding possible treatments and how to access these, and hindered by patient perceptions that their feet were ignored by rheumatology clinicians. Positive experience of foot care encouraged continued utilisation but negative experiences contributed to patients' decisions to discontinue foot care services. Foot problems are important issues for patients and impact on many aspects of their physical, social and emotional lives. Patients who had accessed foot care services prioritised their foot problems as an important health care need. However, for others who would

  6. A shift in priority in diabetic foot care and research: 75% of foot ulcers are preventable.

    PubMed

    Bus, Sicco A; van Netten, Jaap J

    2016-01-01

    Diabetic foot ulceration poses a heavy burden on the patient and the healthcare system, but prevention thereof receives little attention. For every euro spent on ulcer prevention, ten are spent on ulcer healing, and for every randomized controlled trial conducted on prevention, ten are conducted on healing. In this article, we argue that a shift in priorities is needed. For the prevention of a first foot ulcer, we need more insight into the effect of interventions and practices already applied globally in many settings. This requires systematic recording of interventions and outcomes, and well-designed randomized controlled trials that include analysis of cost-effectiveness. After healing of a foot ulcer, the risk of recurrence is high. For the prevention of a recurrent foot ulcer, home monitoring of foot temperature, pressure-relieving therapeutic footwear, and certain surgical interventions prove to be effective. The median effect size found in a total of 23 studies on these interventions is large, over 60%, and further increases when patients are adherent to treatment. These interventions should be investigated for efficacy as a state-of-the-art integrated foot care approach, where attempts are made to assure treatment adherence. Effect sizes of 75-80% may be expected. If such state-of-the-art integrated foot care is implemented, the majority of problems with foot ulcer recurrence in diabetes can be resolved. It is therefore time to act and to set a new target in diabetic foot care. This target is to reduce foot ulcer incidence with at least 75%. Copyright © 2016 John Wiley & Sons, Ltd.

  7. Shoes alter the spring-like function of the human foot during running.

    PubMed

    Kelly, Luke A; Lichtwark, Glen A; Farris, Dominic J; Cresswell, Andrew

    2016-06-01

    The capacity to store and return energy in legs and feet that behave like springs is crucial to human running economy. Recent comparisons of shod and barefoot running have led to suggestions that modern running shoes may actually impede leg and foot-spring function by reducing the contributions from the leg and foot musculature. Here we examined the effect of running shoes on foot longitudinal arch (LA) motion and activation of the intrinsic foot muscles. Participants ran on a force-instrumented treadmill with and without running shoes. We recorded foot kinematics and muscle activation of the intrinsic foot muscles using intramuscular electromyography. In contrast to previous assertions, we observed an increase in both the peak (flexor digitorum brevis +60%) and total stance muscle activation (flexor digitorum brevis +70% and abductor hallucis +53%) of the intrinsic foot muscles when running with shoes. Increased intrinsic muscle activation corresponded with a reduction in LA compression (-25%). We confirm that running shoes do indeed influence the mechanical function of the foot. However, our findings suggest that these mechanical adjustments are likely to have occurred as a result of increased neuromuscular output, rather than impaired control as previously speculated. We propose a theoretical model for foot-shoe interaction to explain these novel findings. © 2016 The Author(s).

  8. Flip-flop footwear with a moulded foot-bed for the treatment of foot pain: a randomised controlled trial.

    PubMed

    Chuter, Vivienne Helaine; Searle, Angela; Spink, Martin J

    2016-11-11

    Foot pain is a common problem affecting up to 1 in 5 adults and is known to adversely affect activities of daily living and health related quality of life. Orthopaedic footwear interventions are used as a conservative treatment for foot pain, although adherence is known to be low, in part due to the perception of poor comfort and unattractiveness of the footwear. The objective of this trial was to assess the efficacy of flip-flop style footwear (Foot Bio-Tec©) with a moulded foot-bed in reducing foot pain compared to participant's usual footwear. Two-arm parallel randomised controlled trial using computer generated random allocation schedule at an Australian university podiatry clinic. 108 volunteers with disabling foot pain were enrolled after responding to an advertisement and eligibility screening. Participants were randomly allocated to receive footwear education and moulded flip-flop footwear to wear as much as they were comfortable with for the next 12 weeks (n = 54) or footwear education and instructions to wear their normal footwear for the next 12 weeks (n = 54). Primary outcome was the pain domain of the Foot Health Status Questionnaire (FHSQ). Secondary outcomes were the foot function and general foot health domains of the FHSQ, a visual analogue scale (VAS) for foot pain and perceived comfort of the intervention footwear. Compared to the control group, the moulded flip-flop group showed a significant improvement in the primary outcome measure of the FHSQ pain domain (adjusted mean difference 8.36 points, 95 % CI 5.58 to 13.27, p < 0.01). Statistical and clinically significant differences were observed for the secondary measure of foot pain assessed by a VAS and the FSHQ domains of foot function and general foot health. None of the participants reported any pain or discomfort from the intervention footwear and six (footwear group = 4) were lost to follow up. Our results demonstrate that flip-flop footwear with a moulded foot-bed can

  9. The Foot's Arch and the Energetics of Human Locomotion.

    PubMed

    Stearne, Sarah M; McDonald, Kirsty A; Alderson, Jacqueline A; North, Ian; Oxnard, Charles E; Rubenson, Jonas

    2016-01-19

    The energy-sparing spring theory of the foot's arch has become central to interpretations of the foot's mechanical function and evolution. Using a novel insole technique that restricted compression of the foot's longitudinal arch, this study provides the first direct evidence that arch compression/recoil during locomotion contributes to lowering energy cost. Restricting arch compression near maximally (~80%) during moderate-speed (2.7 ms(-1)) level running increased metabolic cost by + 6.0% (p < 0.001, d = 0.67; unaffected by foot strike technique). A simple model shows that the metabolic energy saved by the arch is largely explained by the passive-elastic work it supplies that would otherwise be done by active muscle. Both experimental and model data confirm that it is the end-range of arch compression that dictates the energy-saving role of the arch. Restricting arch compression had no effect on the cost of walking or incline running (3°), commensurate with the smaller role of passive-elastic mechanics in these gaits. These findings substantiate the elastic energy-saving role of the longitudinal arch during running, and suggest that arch supports used in some footwear and orthotics may increase the cost of running.

  10. Effects of foot posture on fifth metatarsal fracture healing: a finite element study.

    PubMed

    Brilakis, Emmanuel; Kaselouris, Evaggelos; Xypnitos, Frank; Provatidis, Christopher G; Efstathopoulos, Nicolas

    2012-01-01

    The goal of this study was to evaluate the effects of maintaining different foot postures during healing of proximal fifth metatarsal fractures for each of 3 common fracture types. A 3-dimensional (3D) finite element model of a human foot was developed and 3 loading situations were evaluated, including the following: (1) normal weightbearing, (2) standing with the affected foot in dorsiflexion at the ankle, and (3) standing with the affected foot in eversion. Three different stages of the fracture-healing process were studied, including: stage 1, wherein the material interposed between the fractured edges was the initial connective tissue; stage 2, wherein connective tissue had been replaced by soft callus; and stage 3, wherein soft callus was replaced by mature bone. Thus, 30 3D finite element models were analyzed that took into account fracture type, foot posture, and healing stage. Different foot postures did not statistically significantly affect the peak-developed strains on the fracture site. When the fractured foot was everted or dorsiflexed, it developed a slightly higher strain within the fracture than when it was in the normal weightbearing position. In Jones fractures, eversion of the foot caused further torsional strain and we believe that this position should be avoided during foot immobilization during the treatment of fifth metatarsal base fractures. Tuberosity avulsion fractures and Jones fractures seem to be biomechanically stable fractures, as compared with shaft fractures. Our understanding of the literature and experience indicate that current clinical observations and standard therapeutic options are in accordance with the results that we observed in this investigation, with the exception of Jones fractures. Copyright © 2012 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  11. Advanced Turboprop Model in the 8- by 6-Foot Supersonic Wind Tunnel

    NASA Image and Video Library

    1979-08-21

    NASA Lewis Research Center researcher, John S. Sarafini, uses a laser doppler velocimeter to analyze a Hamilton Standard SR-2 turboprop design in the 8- by 6-Foot foot Supersonic Wind Tunnel. Lewis researchers were analyzing a series of eight-bladed propellers in their wind tunnels to determine their operating characteristics at speeds up to Mach 0.8. The program, which became the Advanced Turboprop (ATP), was part of a NASA-wide Aircraft Energy Efficiency Program undertaken to reduce aircraft fuel costs by 50 percent. The ATP concept was different from the turboprops in use in the 1950s. The modern versions had at least eight blades and were swept back for better performance. Bell Laboratories developed the laser doppler velocimeter technology in the 1960s to measure velocity of transparent fluid flows or vibration motion on reflective surfaces. Lewis researchers modified the device to measure the flow field of turboprop configurations in the transonic speed region. The modifications were necessary to overcome the turboprop’s vibration and noise levels. The laser beam was split into two beams which were crossed at a specific point. This permits researchers to measure two velocity components simultaneously. This data measures speeds both ahead and behind the propeller blades. Researchers could use this information as they sought to advance flow fields and to verify computer modeling codes.

  12. Diabetic foot disease: From the evaluation of the “foot at risk” to the novel diabetic ulcer treatment modalities

    PubMed Central

    Amin, Noha; Doupis, John

    2016-01-01

    The burden of diabetic foot disease (DFD) is expected to increase in the future. The incidence of DFD is still rising due to the high prevalence of DFD predisposing factors. DFD is multifactorial in nature; however most of the diabetic foot amputations are preceded by foot ulceration. Diabetic peripheral neuropathy (DPN) is a major risk factor for foot ulceration. DPN leads to loss of protective sensation resulting in continuous unconscious traumas. Patient education and detection of high risk foot are essential for the prevention of foot ulceration and amputation. Proper assessment of the diabetic foot ulceration and appropriate management ensure better prognosis. Management is based on revascularization procedures, wound debridement, treatment of infection and ulcer offloading. Management and type of dressing applied are tailored according to the type of wound and the foot condition. The scope of this review paper is to describe the diabetic foot syndrome starting from the evaluation of the foot at risk for ulceration, up to the new treatment modalities. PMID:27076876

  13. Alain LeRoy Locke at Oxford: The First African-American Rhodes Scholar.

    ERIC Educational Resources Information Center

    Stewart, Jeffrey C.

    2001-01-01

    Alain LeRoy Locke was the first African American chosen as a Rhodes scholar. He went to Oxford University planning to leave issues of race behind him in the United States. Oxford's selection committee was shocked to discover he was black. Locke found that racism followed him everywhere, and he dedicated himself to advancing the cause of the black…

  14. Differences in foot kinematics between young and older adults during walking.

    PubMed

    Arnold, John B; Mackintosh, Shylie; Jones, Sara; Thewlis, Dominic

    2014-02-01

    Our understanding of age-related changes to foot function during walking has mainly been based on plantar pressure measurements, with little information on differences in foot kinematics between young and older adults. The purpose of this study was to investigate the differences in foot kinematics between young and older adults during walking using a multi-segment foot model. Joint kinematics of the foot and ankle for 20 young (mean age 23.2 years, standard deviation (SD) 3.0) and 20 older adults (mean age 73.2 years, SD 5.1) were quantified during walking with a 12 camera Vicon motion analysis system using a five segment kinematic model. Differences in kinematics were compared between older adults and young adults (preferred and slow walking speeds) using Student's t-tests or if indicated, Mann-Whitney U tests. Effect sizes (Cohen's d) for the differences were also computed. The older adults had a less plantarflexed calcaneus at toe-off (-9.6° vs. -16.1°, d = 1.0, p = <0.001), a smaller sagittal plane range of motion (ROM) of the midfoot (11.9° vs. 14.8°, d = 1.3, p = <0.001) and smaller coronal plane ROM of the metatarsus (3.2° vs. 4.3°, d = 1.1, p = 0.006) compared to the young adults. Walking speed did not influence these differences, as they remained present when groups walked at comparable speeds. The findings of this study indicate that independent of walking speed, older adults exhibit significant differences in foot kinematics compared to younger adults, characterised by less propulsion and reduced mobility of multiple foot segments. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Associations of foot posture and function to lower extremity pain: results from a population-based foot study.

    PubMed

    Riskowski, Jody L; Dufour, Alyssa B; Hagedorn, Thomas J; Hillstrom, Howard J; Casey, Virginia A; Hannan, Marian T

    2013-11-01

    Studies have implicated foot posture and foot function as risk factors for lower extremity pain. Empirical population-based evidence for this assertion is lacking; therefore, the purpose of this study was to evaluate cross-sectional associations of foot posture and foot function to lower extremity joint pain in a population-based study of adults. Participants were members of the Framingham Foot Study. Lower extremity joint pain was determined by the response to the National Health and Nutrition Examination Survey-type question, "On most days do you have pain, aching or stiffness in your (hips, knees, ankles, or feet)?" The Modified Arch Index classified participants as having planus, rectus (referent), or cavus foot posture. The Center of Pressure Excursion Index classified participants as having overpronated, normal (referent), or oversupinated foot function. Crude and adjusted (age, sex, and body mass index) logistic regression determined associations of foot posture and function to lower extremity pain. Participants with planus structure had higher odds of knee (odds ratio [OR] 1.57, 95% confidence interval [95% CI] 1.24-1.99) or ankle (OR 1.47, 95% CI 1.05-2.06) pain, whereas those with a cavus foot structure had increased odds of ankle pain only (OR 7.56, 95% CI 1.99-28.8) and pain at 1 lower extremity site (OR 1.37, 95% CI 1.04-1.80). Associations between foot function and lower extremity joint pain were not statistically significant except for a reduced risk of hip pain in those with an oversupinated foot function (OR 0.69, 95% CI 0.51-0.93). These findings offer a link between foot posture and lower extremity pain, highlighting the need for longitudinal or intervention studies. Copyright © 2013 by the American College of Rheumatology.

  16. Investigations of Potential Phenotypes of Foot Osteoarthritis: Cross‐Sectional Analysis From the Clinical Assessment Study of the Foot

    PubMed Central

    Marshall, Michelle; Thomas, Martin J.; Menz, Hylton B.; Myers, Helen L.; Thomas, Elaine; Downes, Thomas; Peat, George; Roddy, Edward

    2016-01-01

    Objective To investigate the existence of distinct foot osteoarthritis (OA) phenotypes based on pattern of joint involvement and comparative symptom and risk profiles. Methods Participants ages ≥50 years reporting foot pain in the previous year were drawn from a population‐based cohort. Radiographs were scored for OA in the first metatarsophalangeal (MTP) joint, first and second cuneometatarsal, navicular first cuneiform, and talonavicular joints according to a published atlas. Chi‐square tests established clustering, and odds ratios (ORs) examined symmetry and pairwise associations of radiographic OA in the feet. Distinct underlying classes of foot OA were investigated by latent class analysis (LCA) and their association with symptoms and risk factors was assessed. Results In 533 participants (mean age 64.9 years, 55.9% female) radiographic OA clustered across both feet (P < 0.001) and was highly symmetrical (adjusted OR 3.0, 95% confidence interval 2.1, 4.2). LCA identified 3 distinct classes of foot OA: no or minimal foot OA (64%), isolated first MTP joint OA (22%), and polyarticular foot OA (15%). After adjustment for age and sex, polyarticular foot OA was associated with nodal OA, increased body mass index, and more pain and functional limitation compared to the other classes. Conclusion Patterning of radiographic foot OA has provided insight into the existence of 2 forms of foot OA: isolated first MTP joint OA and polyarticular foot OA. The symptom and risk factor profiles in individuals with polyarticular foot OA indicate a possible distinctive phenotype of foot OA, but further research is needed to explore the characteristics of isolated first MTP joint and polyarticular foot OA. PMID:26238801

  17. The role of hot spot mix in the low-foot and high-foot implosions on the NIF

    NASA Astrophysics Data System (ADS)

    Ma, T.; Patel, P. K.; Izumi, N.; Springer, P. T.; Key, M. H.; Atherton, L. J.; Barrios, M. A.; Benedetti, L. R.; Bionta, R.; Bond, E.; Bradley, D. K.; Caggiano, J.; Callahan, D. A.; Casey, D. T.; Celliers, P. M.; Cerjan, C. J.; Church, J. A.; Clark, D. S.; Dewald, E. L.; Dittrich, T. R.; Dixit, S. N.; Döppner, T.; Dylla-Spears, R.; Edgell, D. H.; Epstein, R.; Field, J.; Fittinghoff, D. N.; Frenje, J. A.; Gatu Johnson, M.; Glenn, S.; Glenzer, S. H.; Grim, G.; Guler, N.; Haan, S. W.; Hammel, B. A.; Hatarik, R.; Herrmann, H. W.; Hicks, D.; Hinkel, D. E.; Berzak Hopkins, L. F.; Hsing, W. W.; Hurricane, O. A.; Jones, O. S.; Kauffman, R.; Khan, S. F.; Kilkenny, J. D.; Kline, J. L.; Kozioziemski, B.; Kritcher, A.; Kyrala, G. A.; Landen, O. L.; Lindl, J. D.; Le Pape, S.; MacGowan, B. J.; Mackinnon, A. J.; MacPhee, A. G.; Meezan, N. B.; Merrill, F. E.; Moody, J. D.; Moses, E. I.; Nagel, S. R.; Nikroo, A.; Pak, A.; Parham, T.; Park, H.-S.; Ralph, J. E.; Regan, S. P.; Remington, B. A.; Robey, H. F.; Rosen, M. D.; Rygg, J. R.; Ross, J. S.; Salmonson, J. D.; Sater, J.; Sayre, D.; Schneider, M. B.; Shaughnessy, D.; Sio, H.; Spears, B. K.; Smalyuk, V.; Suter, L. J.; Tommasini, R.; Town, R. P. J.; Volegov, P. L.; Wan, A.; Weber, S. V.; Widmann, K.; Wilde, C. H.; Yeamans, C.; Edwards, M. J.

    2017-05-01

    Hydrodynamic mix of the ablator into the DT fuel layer and hot spot can be a critical performance limitation in inertial confinement fusion implosions. This mix results in increased radiation loss, cooling of the hot spot, and reduced neutron yield. To quantify the level of mix, we have developed a simple model that infers the level of contamination using the ratio of the measured x-ray emission to the neutron yield. The principal source for the performance limitation of the "low-foot" class of implosions appears to have been mix. Lower convergence "high-foot" implosions are found to be less susceptible to mix, allowing velocities of >380 km/s to be achieved.

  18. A Patient-Specific Foot Model for the Estimate of Ankle Joint Forces in Patients with Juvenile Idiopathic Arthritis.

    PubMed

    Prinold, Joe A I; Mazzà, Claudia; Di Marco, Roberto; Hannah, Iain; Malattia, Clara; Magni-Manzoni, Silvia; Petrarca, Maurizio; Ronchetti, Anna B; Tanturri de Horatio, Laura; van Dijkhuizen, E H Pieter; Wesarg, Stefan; Viceconti, Marco

    2016-01-01

    Juvenile idiopathic arthritis (JIA) is the leading cause of childhood disability from a musculoskeletal disorder. It generally affects large joints such as the knee and the ankle, often causing structural damage. Different factors contribute to the damage onset, including altered joint loading and other mechanical factors, associated with pain and inflammation. The prediction of patients' joint loading can hence be a valuable tool in understanding the disease mechanisms involved in structural damage progression. A number of lower-limb musculoskeletal models have been proposed to analyse the hip and knee joints, but juvenile models of the foot are still lacking. This paper presents a modelling pipeline that allows the creation of juvenile patient-specific models starting from lower limb kinematics and foot and ankle MRI data. This pipeline has been applied to data from three children with JIA and the importance of patient-specific parameters and modelling assumptions has been tested in a sensitivity analysis focused on the variation of the joint reaction forces. This analysis highlighted the criticality of patient-specific definition of the ankle joint axes and location of the Achilles tendon insertions. Patient-specific detection of the Tibialis Anterior, Tibialis Posterior, and Peroneus Longus origins and insertions were also shown to be important.

  19. Oxford and Cambridge Boat Race: Performance, Pacing and Tactics Between 1890 and 2014.

    PubMed

    Edwards, Andrew M; Guy, Joshua H; Hettinga, Florentina J

    2016-10-01

    Currently no studies have examined the historical performances of Oxford and Cambridge Boat Race crews in the context of performance, pacing and tactics which is surprising as the event has routinely taken place annually for over 150 years on the same course. The purpose of this study was twofold, to firstly examine the historical development of performances and physical characteristics of crews over 124 years of the Oxford and Cambridge Boat Race between 1890 and 2014 and secondly to investigate the pacing and tactics employed by crews over that period. Linear regression modelling was applied to investigate the development of performance and body size for crews of eight male individuals over time from Boat Race archive data. Performance change over time was further assessed in 10-year clusters while four intra-race checkpoints were used to examine pacing and tactics. Significant correlations were observed between performance and time (1890-2014) for both Oxford (r = -0.67; p < 0.01) and Cambridge (r = -0.64; p < 0.01). There was no difference in mean performance times for Oxford (1170 ± 88 s) and Cambridge (1168 ± 89.8 s) during 1890-2014. Crew performance times improved over time with significant gains from baseline achieved in the 1950s (Cambridge) and the 1960s (Oxford), which coincided with significant change in the physicality of the competing crews (p < 0.01). There was no tactical advantage from commencing on either the Surrey or Middlesex station beyond chance alone; however, all crews (n = 228) adopted a fast-start strategy, with 81 % of victories achieved by the crew leading the race at the first intra-race checkpoint (24 % of total distance). Crews leading the race at the final checkpoint (83 % of total distance; 1143 m) achieved victory on 94 % of occasions. Performances and physical characteristics of the crews have changed markedly since 1890, with faster heavier crews now common. Tactically, gaining the early lead position

  20. Drop foot corrective device

    NASA Technical Reports Server (NTRS)

    Deis, B. C. (Inventor)

    1986-01-01

    A light weight, economical device to alleviate a plurality of difficulties encountered in walking by a victim suffering from a drop foot condition is discussed. A legband girdles the leg below the knee and above the calf providing an anchor point for the upper end of a ligament having its lower end attached to a toe of a shoe or a toe on the foot. The ligament is of such length that the foot is supported thereby and retained in a normal position during walking.

  1. What Is a Foot and Ankle Surgeon?

    MedlinePlus

    ... Foot & Ankle Surgeon? A A A | Print | Share What is a Foot & Ankle Surgeon? Foot and ankle ... of conditions that affect people of every age. What education has a foot and ankle surgeon received? ...

  2. Foot Complications in a Representative Australian Inpatient Population

    PubMed Central

    Hurn, Sheree E.; Kamp, Maarten C.; Ng, Vanessa; Thomas, Courtney; Jen, Scott; Wills, Jude; Kinnear, Ewan M.; d'Emden, Michael C.; Reed, Lloyd F.

    2017-01-01

    We investigated the prevalence and factors independently associated with foot complications in a representative inpatient population (adults admitted for any reason with and without diabetes). We analysed data from the Foot disease in inpatients study, a sample of 733 representative inpatients. Previous amputation, previous foot ulceration, peripheral arterial disease (PAD), peripheral neuropathy (PN), and foot deformity were the foot complications assessed. Sociodemographic, medical, and foot treatment history were collected. Overall, 46.0% had a foot complication with 23.9% having multiple; those with diabetes had higher prevalence of foot complications than those without diabetes (p < 0.01). Previous amputation (4.1%) was independently associated with previous foot ulceration, foot deformity, cerebrovascular accident, and past surgeon treatment (p < 0.01). Previous foot ulceration (9.8%) was associated with PN, PAD, past podiatry, and past nurse treatment (p < 0.02). PAD (21.0%) was associated with older age, males, indigenous people, cancer, PN, and past surgeon treatment (p < 0.02). PN (22.0%) was associated with older age, diabetes, mobility impairment, and PAD (p < 0.05). Foot deformity (22.4%) was associated with older age, mobility impairment, past podiatry treatment, and PN (p < 0.01). Nearly half of all inpatients had a foot complication. Those with foot complications were older, male, indigenous, had diabetes, cerebrovascular accident, mobility impairment, and other foot complications or past foot treatment. PMID:29164152

  3. Sex-related differences in foot shape.

    PubMed

    Krauss, I; Grau, S; Mauch, M; Maiwald, C; Horstmann, T

    2008-11-01

    The purpose of the study was to investigate sex-related differences in foot morphology. In total, 847 subjects were scanned using a 3-D-footscanner. Three different analysis methods were used: (1) comparisons were made for absolute foot measures within 250-270 mm foot length (FL); (2) and for averaged measures (% FL) across all sizes; (3) the feet were then classified using a cluster analysis. Within 250-270 mm FL, male feet were wider and higher (mean differences (MD) 1.3-5.9 mm). No relevant sex-related differences could be found in the comparison of averaged measures (MD 0.3-0.6% FL). Foot types were categorised into voluminous, flat-pointed and slender. Shorter feet were more often voluminous, longer feet were more likely to be narrow and flat. However, the definition of 'short' and 'long' was sex-related; thus, allometry of foot measures was different. For shoe design, measures should be derived for each size and sex separately. Different foot types should be considered to account for the variety in foot shape. Improper footwear can cause foot pain and deformity. Therefore, knowledge of sex-related differences in foot measures is important to assist proper shoe fit in both men and women. The present study supplements the field of knowledge within this context with recommendations for the manufacturing of shoes.

  4. Foot force models of crowd dynamics on a wobbly bridge

    PubMed Central

    Belykh, Igor; Jeter, Russell; Belykh, Vladimir

    2017-01-01

    Modern pedestrian and suspension bridges are designed using industry standard packages, yet disastrous resonant vibrations are observed, necessitating multimillion dollar repairs. Recent examples include pedestrian-induced vibrations during the opening of the Solférino Bridge in Paris in 1999 and the increased bouncing of the Squibb Park Bridge in Brooklyn in 2014. The most prominent example of an unstable lively bridge is the London Millennium Bridge, which started wobbling as a result of pedestrian-bridge interactions. Pedestrian phase locking due to footstep phase adjustment is suspected to be the main cause of its large lateral vibrations; however, its role in the initiation of wobbling was debated. We develop foot force models of pedestrians’ response to bridge motion and detailed, yet analytically tractable, models of crowd phase locking. We use biomechanically inspired models of crowd lateral movement to investigate to what degree pedestrian synchrony must be present for a bridge to wobble significantly and what is a critical crowd size. Our results can be used as a safety guideline for designing pedestrian bridges or limiting the maximum occupancy of an existing bridge. The pedestrian models can be used as “crash test dummies” when numerically probing a specific bridge design. This is particularly important because the U.S. code for designing pedestrian bridges does not contain explicit guidelines that account for the collective pedestrian behavior. PMID:29296679

  5. Foot force models of crowd dynamics on a wobbly bridge.

    PubMed

    Belykh, Igor; Jeter, Russell; Belykh, Vladimir

    2017-11-01

    Modern pedestrian and suspension bridges are designed using industry standard packages, yet disastrous resonant vibrations are observed, necessitating multimillion dollar repairs. Recent examples include pedestrian-induced vibrations during the opening of the Solférino Bridge in Paris in 1999 and the increased bouncing of the Squibb Park Bridge in Brooklyn in 2014. The most prominent example of an unstable lively bridge is the London Millennium Bridge, which started wobbling as a result of pedestrian-bridge interactions. Pedestrian phase locking due to footstep phase adjustment is suspected to be the main cause of its large lateral vibrations; however, its role in the initiation of wobbling was debated. We develop foot force models of pedestrians' response to bridge motion and detailed, yet analytically tractable, models of crowd phase locking. We use biomechanically inspired models of crowd lateral movement to investigate to what degree pedestrian synchrony must be present for a bridge to wobble significantly and what is a critical crowd size. Our results can be used as a safety guideline for designing pedestrian bridges or limiting the maximum occupancy of an existing bridge. The pedestrian models can be used as "crash test dummies" when numerically probing a specific bridge design. This is particularly important because the U.S. code for designing pedestrian bridges does not contain explicit guidelines that account for the collective pedestrian behavior.

  6. In Search of Happier Times: Horton Foote's "The Trip to Bountiful."

    ERIC Educational Resources Information Center

    Novak, Glenn D.

    1986-01-01

    Horton Foote was among the television writers who helped make NBC's "Television Playhouse" the most popular live dramatic program on the air during the "Golden Age" of television drama, the period between 1952 and 1957. Foote felt a strong affinity for the land and people of his youth, and modeled the imaginary towns of…

  7. Diabetic Foot - Multiple Languages

    MedlinePlus

    ... Are Here: Home → Multiple Languages → All Health Topics → Diabetic Foot URL of this page: https://medlineplus.gov/languages/ ... V W XYZ List of All Topics All Diabetic Foot - Multiple Languages To use the sharing features on ...

  8. Nonlinear MHD Waves in a Prominence Foot

    NASA Astrophysics Data System (ADS)

    Ofman, L.; Knizhnik, K.; Kucera, T.; Schmieder, B.

    2015-11-01

    We study nonlinear waves in a prominence foot using a 2.5D MHD model motivated by recent high-resolution observations with Hinode/Solar Optical Telescope in Ca ii emission of a prominence on 2012 October 10 showing highly dynamic small-scale motions in the prominence material. Observations of Hα intensities and of Doppler shifts show similar propagating fluctuations. However, the optically thick nature of the emission lines inhibits a unique quantitative interpretation in terms of density. Nevertheless, we find evidence of nonlinear wave activity in the prominence foot by examining the relative magnitude of the fluctuation intensity (δI/I ˜ δn/n). The waves are evident as significant density fluctuations that vary with height and apparently travel upward from the chromosphere into the prominence material with quasi-periodic fluctuations with a typical period in the range of 5-11 minutes and wavelengths <2000 km. Recent Doppler shift observations show the transverse displacement of the propagating waves. The magnetic field was measured with the THEMIS instrument and was found to be 5-14 G. For the typical prominence density the corresponding fast magnetosonic speed is ˜20 km s-1, in qualitative agreement with the propagation speed of the detected waves. The 2.5D MHD numerical model is constrained with the typical parameters of the prominence waves seen in observations. Our numerical results reproduce the nonlinear fast magnetosonic waves and provide strong support for the presence of these waves in the prominence foot. We also explore gravitational MHD oscillations of the heavy prominence foot material supported by dipped magnetic field structure.

  9. The role of foot self-care behavior on developing foot ulcers in diabetic patients with peripheral neuropathy: a prospective study.

    PubMed

    Chin, Yen-Fan; Liang, Jersey; Wang, Woan-Shyuan; Hsu, Brend Ray-Sea; Huang, Tzu-Ting

    2014-12-01

    Although foot self-care behavior is viewed as beneficial for the prevention of diabetic foot ulceration, the effect of foot self-care behavior on the development of diabetic foot ulcer has received little empirical investigation. To explore the relationship between foot self-care practice and the development of diabetic foot ulcers among diabetic neuropathy patients in northern Taiwan. A longitudinal study was conducted at one medical center and one teaching hospital in northern Taiwan. A total of 295 diabetic patients who lacked sensitivity to a monofilament were recruited. Five subjects did not provide follow-up data; thus, only the data of 290 subjects were analyzed. The mean age was 67.0 years, and 72.1% had six or fewer years of education. Data were collected by a modified version of the physical assessment portion of the Michigan Neuropathy Screening Instrument and the Diabetes Foot Self-Care Behavior Scale. Cox regression was used to analyze the predictive power of foot self-care behaviors. A total of 29.3% (n=85) of diabetic neuropathy patients developed a diabetic foot ulcer by the one-year follow-up. The total score on the Diabetes Foot Self-Care Behavior Scale was significantly associated with the risk of developing foot ulcers (HR=1.04, 95% CI=1.01-1.07, p=0.004). After controlling for the demographic variables and the number of diabetic foot ulcer hospitalizations, however, the effect was non-significant (HR=1.03, 95% CI=1.00-1.06, p=0.061). Among the foot self-care behaviors, lotion-applying behavior was the only variable that significantly predicted the occurrence of diabetic foot ulcer, even after controlling for demographic variables and diabetic foot ulcer predictors (neuropathy severity, number of diabetic foot ulcer hospitalizations, insulin treatment, and peripheral vascular disease; HR=1.19, 95% CI=1.04-1.36, p=0.012). Among patients with diabetic neuropathy, foot self-care practice may be insufficient to prevent the occurrence of diabetic

  10. Starting off on the right foot: strong right-footers respond faster with the right foot to positive words and with the left foot to negative words

    PubMed Central

    de la Vega, Irmgard; Graebe, Julia; Härtner, Leonie; Dudschig, Carolin; Kaup, Barbara

    2015-01-01

    Recent studies have provided evidence for an association between valence and left/right modulated by handedness, which is predicted by the body-specificity hypothesis (Casasanto, 2009) and also reflected in response times. We investigated whether such a response facilitation can also be observed with foot responses. Right-footed participants classified positive and negative words according to their valence by pressing a key with their left or right foot. A significant interaction between valence and foot only emerged in the by-items analysis. However, when dividing participants into two groups depending on the strength of their footedness, an interaction between valence and left/right was observed for strong right-footers, who responded faster with the right foot to positive words, and with the left foot to negative words. No interaction emerged for weak right-footers. The results strongly support the assumption that fluency lies at the core of the association between valence and left/right. PMID:25852609

  11. Shoes alter the spring-like function of the human foot during running

    PubMed Central

    Kelly, Luke A.; Lichtwark, Glen A.; Farris, Dominic J.; Cresswell, Andrew

    2016-01-01

    The capacity to store and return energy in legs and feet that behave like springs is crucial to human running economy. Recent comparisons of shod and barefoot running have led to suggestions that modern running shoes may actually impede leg and foot-spring function by reducing the contributions from the leg and foot musculature. Here we examined the effect of running shoes on foot longitudinal arch (LA) motion and activation of the intrinsic foot muscles. Participants ran on a force-instrumented treadmill with and without running shoes. We recorded foot kinematics and muscle activation of the intrinsic foot muscles using intramuscular electromyography. In contrast to previous assertions, we observed an increase in both the peak (flexor digitorum brevis +60%) and total stance muscle activation (flexor digitorum brevis +70% and abductor hallucis +53%) of the intrinsic foot muscles when running with shoes. Increased intrinsic muscle activation corresponded with a reduction in LA compression (−25%). We confirm that running shoes do indeed influence the mechanical function of the foot. However, our findings suggest that these mechanical adjustments are likely to have occurred as a result of increased neuromuscular output, rather than impaired control as previously speculated. We propose a theoretical model for foot–shoe interaction to explain these novel findings. PMID:27307512

  12. Stature estimation from the lengths of the growing foot-a study on North Indian adolescents.

    PubMed

    Krishan, Kewal; Kanchan, Tanuj; Passi, Neelam; DiMaggio, John A

    2012-12-01

    Stature estimation is considered as one of the basic parameters of the investigation process in unknown and commingled human remains in medico-legal case work. Race, age and sex are the other parameters which help in this process. Stature estimation is of the utmost importance as it completes the biological profile of a person along with the other three parameters of identification. The present research is intended to formulate standards for stature estimation from foot dimensions in adolescent males from North India and study the pattern of foot growth during the growing years. 154 male adolescents from the Northern part of India were included in the study. Besides stature, five anthropometric measurements that included the length of the foot from each toe (T1, T2, T3, T4, and T5 respectively) to pternion were measured on each foot. The data was analyzed statistically using Student's t-test, Pearson's correlation, linear and multiple regression analysis for estimation of stature and growth of foot during ages 13-18 years. Correlation coefficients between stature and all the foot measurements were found to be highly significant and positively correlated. Linear regression models and multiple regression models (with age as a co-variable) were derived for estimation of stature from the different measurements of the foot. Multiple regression models (with age as a co-variable) estimate stature with greater accuracy than the regression models for 13-18 years age group. The study shows the growth pattern of feet in North Indian adolescents and indicates that anthropometric measurements of the foot and its segments are valuable in estimation of stature in growing individuals of that population. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Classic Classroom Activities: The Oxford Picture Dictionary Program.

    ERIC Educational Resources Information Center

    Weiss, Renee; Adelson-Goldstein, Jayme; Shapiro, Norma

    This teacher resource book offers over 100 reproducible communicative practice activities and 768 picture cards based on the vocabulary of the Oxford Picture Dictionary. Teacher's notes and instructions, including adaptations for multilevel classes, are provided. The activities book has up-to-date art and graphics, explaining over 3700 words. The…

  14. Health education programmes to improve foot self-care practices and foot problems among older people with diabetes: a systematic review.

    PubMed

    Ahmad Sharoni, Siti Khuzaimah; Minhat, Halimatus Sakdiah; Mohd Zulkefli, Nor Afiah; Baharom, Anisah

    2016-09-01

    To assess the effectiveness of health education programmes to improve foot self-care practices and foot problems among older people with diabetes. The complications of diabetes among older people are a major health concern. Foot problems such as neuropathy, ulcer and ultimately amputation are a great burden on older people with diabetes. Diabetes foot education programmes can influence the behaviour of older people in practising foot self-care and controlling the foot problems. However, the educational approaches used by the educators are different. Therefore, it is important to assess the education programmes from various evidence-based practices. Six databases, EBSCOhost medical collections (MEDLINE, CINAHL, Psychology and Behavioral Sciences Collection), SAGE, Wiley Online Library, ScienceDirect, SpringerLink and Web of Science, were used to search for articles published from January 2000 to March 2015. The search was based on the inclusion criteria and keywords including 'foot', 'care' and 'diabetes'. Fourteen studies were assessed and reviewed in the final stage. Health education programmes varied according to their design, setting, approach, outcome measured and results. Foot assessment, verbal and written instructions and discussion were proved to improve the foot self-care and foot problems. Subsequent follow-ups and evaluations had a significant effect. An improvement was observed in foot self-care scores and foot problems (such as neuropathy, foot disability, lesion, ulcer, tinea pedis and callus grade) after implementation of the health education programme. The findings of this study support the claim that a health education programme increases the foot self-care scores and reduces the foot problems. However, there were certain methodological concerns in the reviewed articles, indicating the need for further evaluation. In future, researchers and practitioners must implement a vigorous education programme focusing on diabetes foot self-care among the

  15. Experiences with a high-blockage model tested in the NASA Ames 12-foot pressure wind tunnel

    NASA Technical Reports Server (NTRS)

    Coder, D. W.

    1984-01-01

    Representation of the flow around full-scale ships was sought in the subsonic wind tunnels in order to a Hain Reynolds numbers as high as possible. As part of the quest to attain the largest possible Reynolds number, large models with high blockage are used which result in significant wall interference effects. Some experiences with such a high blockage model tested in the NASA Ames 12-foot pressure wind tunnel are summarized. The main results of the experiment relating to wind tunnel wall interference effects are also presented.

  16. Athlete's foot.

    PubMed

    Crawford, Fay

    2006-11-01

    Around 15-25% of people are likely to have athlete's foot at any one time. The infection can spread to other parts of the body and to other people. We conducted a systematic review and aimed to answer the following clinical question: What are the effects of topical treatments for athlete's foot? We searched: Medline, Embase, The Cochrane Library and other important databases up to April 2006 (Clinical Evidence reviews are updated periodically, please check our website for the most up-to-date version of this review). We included harms alerts from relevant organisations such as the US Food and Drug Administration (FDA) and the UK Medicines and Healthcare products Regulatory Agency (MHRA). We found 11 systematic reviews, RCTs, or observational studies that met our inclusion criteria. We performed a GRADE evaluation of the quality of evidence for interventions. In this systematic review we present information relating to the effectiveness and safety of the following interventions: improved foot hygiene, including socks, and hosiery; topical allylamines (naftifine, terbinafine); topical azoles; and topical ciclopirox olamine.

  17. Ertapenem for diabetic foot infections.

    PubMed

    Rogers, Lee C; Bevilacqua, Nicholas J; Armstrong, David G

    2006-11-01

    Foot infections are a common cause of hospitalization in people with diabetes. Diabetic foot infections are associated with increased risk of amputation and death. This monograph reviews the diagnosis and treatment of diabetic foot infections with particular attention to a new carbapenem antibiotic, ertapenem, which has the potential to reduce inpatient length of stay and hospital-associated costs. (c) 2006 Prous Science. All rights reserved.

  18. Biomechanics of the Ankle-Foot System during Stair Ambulation: Implications for Design of Advanced Ankle-Foot Prostheses

    DTIC Science & Technology

    2011-12-15

    Biomechanics of the ankle–foot system during stair ambulation: Implications for design of advanced ankle–foot prostheses$ Emily H. Sinitski a, Andrew...Wilken). Please cite this article as: Sinitski, E.H., et al., Biomechanics of the ankle–foot system during stair ambulation: Implications for design of...REPORT TYPE 3. DATES COVERED 00-00-2011 to 00-00-2011 4. TITLE AND SUBTITLE Biomechanics Of The Ankle-Foot System During Stair Ambulation

  19. Evaluation of a black-footed ferret resource utilization function model

    USGS Publications Warehouse

    Eads, D.A.; Millspaugh, J.J.; Biggins, D.E.; Jachowski, D.S.; Livieri, T.M.

    2011-01-01

    Resource utilization function (RUF) models permit evaluation of potential habitat for endangered species; ideally such models should be evaluated before use in management decision-making. We evaluated the predictive capabilities of a previously developed black-footed ferret (Mustela nigripes) RUF. Using the population-level RUF, generated from ferret observations at an adjacent yet distinct colony, we predicted the distribution of ferrets within a black-tailed prairie dog (Cynomys ludovicianus) colony in the Conata Basin, South Dakota, USA. We evaluated model performance, using data collected during post-breeding spotlight surveys (2007-2008) by assessing model agreement via weighted compositional analysis and count-metrics. Compositional analysis of home range use and colony-level availability, and core area use and home range availability, demonstrated ferret selection of the predicted Very high and High occurrence categories in 2007 and 2008. Simple count-metrics corroborated these findings and suggested selection of the Very high category in 2007 and the Very high and High categories in 2008. Collectively, these results suggested that the RUF was useful in predicting occurrence and intensity of space use of ferrets at our study site, the 2 objectives of the RUF. Application of this validated RUF would increase the resolution of habitat evaluations, permitting prediction of the distribution of ferrets within distinct colonies. Additional model evaluation at other sites, on other black-tailed prairie dog colonies of varying resource configuration and size, would increase understanding of influences upon model performance and the general utility of the RUF. ?? 2011 The Wildlife Society.

  20. Gastrocnemius operating length with ankle foot orthoses in cerebral palsy.

    PubMed

    Choi, Hwan; Wren, Tishya Anne Leong; Steele, Katherine Muterspaugh

    2017-06-01

    Many individuals with cerebral palsy wear ankle foot orthoses during daily life. Orthoses influence joint motion, but how they impact muscle remains unclear. In particular, the gastrocnemius is commonly stiff in cerebral palsy. Understanding whether orthoses stretch or shorten this muscle during daily life may inform orthosis design and rehabilitation. This study investigated the impact of different ankle foot orthoses on gastrocnemius operating length during walking in children with cerebral palsy. Case series, within subject comparison of gastrocnemius operating length while walking barefoot and with two types of ankle foot orthoses. We performed gait analyses for 11 children with cerebral palsy. Each child was fit with two types of orthoses: a dynamic ankle foot orthosis (Cascade dynamic ankle foot orthosis) and an adjustable dynamic response ankle foot orthosis (Ultraflex ankle foot orthosis). Musculoskeletal modeling was used to quantify gastrocnemius musculotendon operating length and velocity with each orthosis. Walking with ankle foot orthoses could stretch the gastrocnemius more than barefoot walking for some individuals; however, there was significant variability between participants and orthoses. At least one type of orthosis stretched the gastrocnemius during walking for 4/6 and 3/5 of the Gross Motor Functional Classification System Level I and III participants, respectively. AFOs also reduced peak gastrocnemius lengthening velocity compared to barefoot walking for some participants, with greater reductions among the Gross Motor Functional Classification System Level III participants. Changes in gastrocnemius operating length and lengthening velocity were related to changes in ankle and knee kinematics during gait. Ankle foot orthoses impact gastrocnemius operating length during walking and, with proper design, may assist with stretching tight muscles in daily life. Clinical relevance Determining whether ankle foot orthoses stretch tight muscles can

  1. A Dynamic Finite Element Analysis of Human Foot Complex in the Sagittal Plane during Level Walking

    PubMed Central

    Qian, Zhihui; Ren, Lei; Ding, Yun; Hutchinson, John R.; Ren, Luquan

    2013-01-01

    The objective of this study is to develop a computational framework for investigating the dynamic behavior and the internal loading conditions of the human foot complex during locomotion. A subject-specific dynamic finite element model in the sagittal plane was constructed based on anatomical structures segmented from medical CT scan images. Three-dimensional gait measurements were conducted to support and validate the model. Ankle joint forces and moment derived from gait measurements were used to drive the model. Explicit finite element simulations were conducted, covering the entire stance phase from heel-strike impact to toe-off. The predicted ground reaction forces, center of pressure, foot bone motions and plantar surface pressure showed reasonably good agreement with the gait measurement data over most of the stance phase. The prediction discrepancies can be explained by the assumptions and limitations of the model. Our analysis showed that a dynamic FE simulation can improve the prediction accuracy in the peak plantar pressures at some parts of the foot complex by 10%–33% compared to a quasi-static FE simulation. However, to simplify the costly explicit FE simulation, the proposed model is confined only to the sagittal plane and has a simplified representation of foot structure. The dynamic finite element foot model proposed in this study would provide a useful tool for future extension to a fully muscle-driven dynamic three-dimensional model with detailed representation of all major anatomical structures, in order to investigate the structural dynamics of the human foot musculoskeletal system during normal or even pathological functioning. PMID:24244500

  2. A dynamic finite element analysis of human foot complex in the sagittal plane during level walking.

    PubMed

    Qian, Zhihui; Ren, Lei; Ding, Yun; Hutchinson, John R; Ren, Luquan

    2013-01-01

    The objective of this study is to develop a computational framework for investigating the dynamic behavior and the internal loading conditions of the human foot complex during locomotion. A subject-specific dynamic finite element model in the sagittal plane was constructed based on anatomical structures segmented from medical CT scan images. Three-dimensional gait measurements were conducted to support and validate the model. Ankle joint forces and moment derived from gait measurements were used to drive the model. Explicit finite element simulations were conducted, covering the entire stance phase from heel-strike impact to toe-off. The predicted ground reaction forces, center of pressure, foot bone motions and plantar surface pressure showed reasonably good agreement with the gait measurement data over most of the stance phase. The prediction discrepancies can be explained by the assumptions and limitations of the model. Our analysis showed that a dynamic FE simulation can improve the prediction accuracy in the peak plantar pressures at some parts of the foot complex by 10%-33% compared to a quasi-static FE simulation. However, to simplify the costly explicit FE simulation, the proposed model is confined only to the sagittal plane and has a simplified representation of foot structure. The dynamic finite element foot model proposed in this study would provide a useful tool for future extension to a fully muscle-driven dynamic three-dimensional model with detailed representation of all major anatomical structures, in order to investigate the structural dynamics of the human foot musculoskeletal system during normal or even pathological functioning.

  3. Foot Conditions among Homeless Persons: A Systematic Review

    PubMed Central

    To, Matthew J.; Brothers, Thomas D.; Van Zoost, Colin

    2016-01-01

    Introduction Foot problems are common among homeless persons, but are often overlooked. The objectives of this systematic review are to summarize what is known about foot conditions and associated interventions among homeless persons. Methods A literature search was conducted on MEDLINE (1966–2016), EMBASE (1947–2016), and CINAHL (1982–2016) and complemented by manual searches of reference lists. Articles that described foot conditions in homeless persons or associated interventions were included. Data were independently extracted on: general study characteristics; participants; foot assessment methods; foot conditions and associated interventions; study findings; quality score assessed using the Downs and Black checklist. Results Of 333 articles screened, 17 articles met criteria and were included in the study. Prevalence of any foot problem ranged from 9% to 65% across study populations. Common foot-related concerns were corns and calluses, nail pathologies, and infections. Foot pathologies related to chronic diseases such as diabetes were identified. Compared to housed individuals across studies, homeless individuals were more likely to have foot problems including tinea pedis, foot pain, functional limitations with walking, and improperly-fitting shoes. Discussion Foot conditions were highly prevalent among homeless individuals with up to two thirds reporting a foot health concern, approximately one quarter of individuals visiting a health professional, and one fifth of individuals requiring further follow-up due to the severity of their condition. Homeless individuals often had inadequate foot hygiene practices and improperly-fitting shoes. These findings have service provision and public health implications, highlighting the need for evidence-based interventions to improve foot health in this population. An effective interventional approach could include optimization of foot hygiene and footwear, provision of comprehensive medical treatment, and

  4. Dobson total ozone series of Oxford: Reevaluation and applications

    NASA Astrophysics Data System (ADS)

    Vogler, C.; BröNnimann, S.; Staehelin, J.; Griffin, R. E. M.

    2007-10-01

    We have reevaluated the original total ozone measurements made in Oxford between 1924 and 1957, with a view to extending backward in time the existing total ozone series from 1957 to 1975. The Oxford measurements are the oldest Dobson observations in the world. Their prime importance, when coupled with the series from Arosa (since 1926) and Tromsø (since 1935), is for increasing basic understanding of stratospheric ozone and dynamics, while in relation to studies of the recent ozone depletion they constitute a baseline of considerable (and unique) significance and value. However, the reevaluation was made difficult on account of changes to the instruments and wavelengths as the early data collection methods evolved, while unknowns due to the influence of aerosols and the possible presence of dioxides of sulphur and nitrogen created additional problems. Our reevaluation was based on statistical procedures (comparisons with meteorological upper air data and ozone series from Arosa) and also on corrections suggested by Dobson himself. The comparisons demonstrate that the data are internally consistent and of good quality. Nevertheless, as post-1957 data were not assessed in this study, the series cannot be recommended at present for trend analysis, though the series can be used for climatological studies. By supplementing the Oxford data with other existing series, we present a European total ozone climatology for 1924-1939, 1950-1965, and 1988-2000 and analyze the data with respect to variables measuring the strength and the temperature of the polar vortex.

  5. Assessment of foot perfusion in patients with a diabetic foot ulcer.

    PubMed

    Forsythe, Rachael O; Hinchliffe, Robert J

    2016-01-01

    Assessment of foot perfusion is a vital step in the management of patients with diabetic foot ulceration, in order to understand the risk of amputation and likelihood of wound healing. Underlying peripheral artery disease is a common finding in patients with foot ulceration and is associated with poor outcomes. Assessment of foot perfusion should therefore focus on identifying the presence of peripheral artery disease and to subsequently estimate the effect this may have on wound healing. Assessment of perfusion can be difficult because of the often complex, diffuse and distal nature of peripheral artery disease in patients with diabetes, as well as poor collateralisation and heavy vascular calcification. Conventional methods of assessing tissue perfusion in the peripheral circulation may be unreliable in patients with diabetes, and it may therefore be difficult to determine the extent to which poor perfusion contributes to foot ulceration. Anatomical data obtained on cross-sectional imaging is important but must be combined with measurements of tissue perfusion (such as transcutaneous oxygen tension) in order to understand the global and regional perfusion deficit present in a patient with diabetic foot ulceration. Ankle-brachial pressure index is routinely used to screen for peripheral artery disease, but its use in patients with diabetes is limited in the presence of neuropathy and medial arterial calcification. Toe pressure index may be more useful because of the relative sparing of pedal arteries from medial calcification but may not always be possible in patients with ulceration. Fluorescence angiography is a non-invasive technique that can provide rapid quantitative information about regional tissue perfusion; capillaroscopy, iontophoresis and hyperspectral imaging may also be useful in assessing physiological perfusion but are not widely available. There may be a future role for specialized perfusion imaging of these patients, including magnetic resonance

  6. Control of human gait stability through foot placement.

    PubMed

    Bruijn, Sjoerd M; van Dieën, Jaap H

    2018-06-01

    During human walking, the centre of mass (CoM) is outside the base of support for most of the time, which poses a challenge to stabilizing the gait pattern. Nevertheless, most of us are able to walk without substantial problems. In this review, we aim to provide an integrative overview of how humans cope with an underactuated gait pattern. A central idea that emerges from the literature is that foot placement is crucial in maintaining a stable gait pattern. In this review, we explore this idea; we first describe mechanical models and concepts that have been used to predict how foot placement can be used to control gait stability. These concepts, such as for instance the extrapolated CoM concept, the foot placement estimator concept and the capture point concept, provide explicit predictions on where to place the foot relative to the body at each step, such that gait is stabilized. Next, we describe empirical findings on foot placement during human gait in unperturbed and perturbed conditions. We conclude that humans show behaviour that is largely in accordance with the aforementioned concepts, with foot placement being actively coordinated to body CoM kinematics during the preceding step. In this section, we also address the requirements for such control in terms of the sensory information and the motor strategies that can implement such control, as well as the parts of the central nervous system that may be involved. We show that visual, vestibular and proprioceptive information contribute to estimation of the state of the CoM. Foot placement is adjusted to variations in CoM state mainly by modulation of hip abductor muscle activity during the swing phase of gait, and this process appears to be under spinal and supraspinal, including cortical, control. We conclude with a description of how control of foot placement can be impaired in humans, using ageing as a primary example and with some reference to pathology, and we address alternative strategies available to

  7. A. H. Halsey: Oxford as a Base for Social Research and Educational Reform

    ERIC Educational Resources Information Center

    Smith, George; Smith, Teresa

    2006-01-01

    A. H. Halsey has been a professorial fellow (now emeritus) at Nuffield College in Oxford University since his appointment in 1962 as Director of Oxford's Department of Social and Administrative Studies. This paper explores his contribution to education throughout his career, as an academic and as a national and international policy advisor, and…

  8. Optimal Control Based Stiffness Identification of an Ankle-Foot Orthosis Using a Predictive Walking Model

    PubMed Central

    Sreenivasa, Manish; Millard, Matthew; Felis, Martin; Mombaur, Katja; Wolf, Sebastian I.

    2017-01-01

    Predicting the movements, ground reaction forces and neuromuscular activity during gait can be a valuable asset to the clinical rehabilitation community, both to understand pathology, as well as to plan effective intervention. In this work we use an optimal control method to generate predictive simulations of pathological gait in the sagittal plane. We construct a patient-specific model corresponding to a 7-year old child with gait abnormalities and identify the optimal spring characteristics of an ankle-foot orthosis that minimizes muscle effort. Our simulations include the computation of foot-ground reaction forces, as well as the neuromuscular dynamics using computationally efficient muscle torque generators and excitation-activation equations. The optimal control problem (OCP) is solved with a direct multiple shooting method. The solution of this problem is physically consistent synthetic neural excitation commands, muscle activations and whole body motion. Our simulations produced similar changes to the gait characteristics as those recorded on the patient. The orthosis-equipped model was able to walk faster with more extended knees. Notably, our approach can be easily tuned to simulate weakened muscles, produces physiologically realistic ground reaction forces and smooth muscle activations and torques, and can be implemented on a standard workstation to produce results within a few hours. These results are an important contribution toward bridging the gap between research methods in computational neuromechanics and day-to-day clinical rehabilitation. PMID:28450833

  9. Passive-dynamic ankle-foot orthosis replicates soleus but not gastrocnemius muscle function during stance in gait: Insights for orthosis prescription.

    PubMed

    Arch, Elisa S; Stanhope, Steven J; Higginson, Jill S

    2016-10-01

    Passive-dynamic ankle-foot orthosis characteristics, including bending stiffness, should be customized for individuals. However, while conventions for customizing passive-dynamic ankle-foot orthosis characteristics are often described and implemented in clinical practice, there is little evidence to explain their biomechanical rationale. To develop and combine a model of a customized passive-dynamic ankle-foot orthosis with a healthy musculoskeletal model and use simulation tools to explore the influence of passive-dynamic ankle-foot orthosis bending stiffness on plantar flexor function during gait. Dual case study. The customized passive-dynamic ankle-foot orthosis characteristics were integrated into a healthy musculoskeletal model available in OpenSim. Quasi-static forward dynamic simulations tracked experimental gait data under several passive-dynamic ankle-foot orthosis conditions. Predicted muscle activations were calculated through a computed muscle control optimization scheme. Simulations predicted that the passive-dynamic ankle-foot orthoses substituted for soleus but not gastrocnemius function. Induced acceleration analyses revealed the passive-dynamic ankle-foot orthosis acts like a uniarticular plantar flexor by inducing knee extension accelerations, which are counterproductive to natural knee kinematics in early midstance. These passive-dynamic ankle-foot orthoses can provide plantar flexion moments during mid and late stance to supplement insufficient plantar flexor strength. However, the passive-dynamic ankle-foot orthoses negatively influenced knee kinematics in early midstance. Identifying the role of passive-dynamic ankle-foot orthosis stiffness during gait provides biomechanical rationale for how to customize passive-dynamic ankle-foot orthoses for patients. Furthermore, these findings can be used in the future as the basis for developing objective prescription models to help drive the customization of passive-dynamic ankle-foot orthosis

  10. Mechanism and Design Analysis of Articulated Ankle Foot Orthoses for Drop-Foot

    PubMed Central

    Choudhury, Imtiaz Ahmed; Mamat, Azuddin Bin

    2014-01-01

    Robotic technologies are being employed increasingly in the treatment of lower limb disabilities. Individuals suffering from stroke and other neurological disorders often experience inadequate dorsiflexion during swing phase of the gait cycle due to dorsiflexor muscle weakness. This type of pathological gait, mostly known as drop-foot gait, has two major complications, foot-slap during loading response and toe-drag during swing. Ankle foot orthotic (AFO) devices are mostly prescribed to resolve these complications. Existing AFOs are designed with or without articulated joint with various motion control elements like springs, dampers, four-bar mechanism, series elastic actuator, and so forth. This paper examines various AFO designs for drop-foot, discusses the mechanism, and identifies limitations and remaining design challenges. Along with two commercially available AFOs some designs possess promising prospective to be used as daily-wear device. However, the design and mechanism of AFO must ensure compactness, light weight, low noise, and high efficiency. These entailments present significant engineering challenges to develop a new design with wide consumer adoption. PMID:24892102

  11. Foot and Ankle Kinematics During Descent From Varying Step Heights.

    PubMed

    Gerstle, Emily E; O'Connor, Kristian; Keenan, Kevin G; Cobb, Stephen C

    2017-12-01

    In the general population, one-third of incidences during step negotiation occur during the transition to level walking. Furthermore, falls during curb negotiation are a common cause of injury in older adults. Distal foot kinematics may be an important factor in determining injury risk associated with transition step negotiation. The purpose of this study was to identify foot and ankle kinematics of uninjured individuals during descent from varying step heights. A 7-segment foot model was used to quantify kinematics as participants walked on a level walkway, stepped down a single step (heights: 5 cm, 15 cm, 25 cm), and continued walking. As step height increased, landing strategy transitioned from the rearfoot to the forefoot, and the rearfoot, lateral and medial midfoot, and medial forefoot became more plantar flexed. During weight acceptance, sagittal plane range of motion of the rearfoot, lateral midfoot, and medial and lateral forefoot increased as step height increased. The changes in landing strategy and distal foot function suggest a less stable ankle position at initial contact and increased demand on the distal foot at initial contact and through the weight acceptance phase of transition step negotiation as step height increases.

  12. A new US-UK diagnostic project: mood elevation and depression in first-year undergraduates at Oxford and Stanford universities.

    PubMed

    Chandler, R A; Wang, P W; Ketter, T A; Goodwin, G M

    2008-07-01

    To investigate differences in prevalence of mood elevation, distress and depression among first-year undergraduates at Oxford and Stanford universities. An online survey was sent to Oxford and Stanford first-year undergraduate students for two consecutive years in the winter of 2005 and 2006. Students completed a survey that assessed mood symptoms and medication use. Both universities had similar rates of distress by General Health Questionnaire (Oxford - 42.4%; Stanford - 38.3%), depression by Primary Care Evaluation of Mental Disorders (Oxford - 6.2%; Stanford - 6.6%), and psychotropic and non-psychotropic medication usage (psychotropic: Oxford - 1.5%; Stanford 3.5%; nonpsychotropic: Oxford - 13.3%; Stanford - 18%). Oxford had higher rates of mood elevation by Mood Disorder Questionnaire (MDQ) (Oxford - 4%; Stanford - 1.7%). Oxford and Stanford students have similar rates of mood distress, depression and general medication usage. Students at Oxford have a higher prevalence of MDQ scores that possibly indicate a bipolar disorder, while Stanford students are prescribed more psychotropics.

  13. Foot index: is it a tool for sex determination?

    PubMed

    Moudgil, Rohan; Kaur, Ramneet; Menezes, Ritesh G; Kanchan, Tanuj; Garg, Rakesh K

    2008-05-01

    Identification of an individual is of paramount importance in forensic investigations. The dimensions of the foot can be used for the determination of sex and stature of an individual in forensic investigations. No systematic studies are available on the determination of sex from foot measurements of North Indians. Therefore, foot index is derived to determine the sex of an individual in a single community of North India. The foot index for both genders is derived by dividing the foot breadth by foot length and multiplying it by hundred. In the present investigation, the foot index is found to be slightly higher in females in the right foot and males in the left foot. The study suggests that although foot length and foot breadth show significant sex differences, sex determination cannot be made conclusively from the foot index.

  14. Stress distribution of the foot during mid-stance to push-off in barefoot gait: a 3-D finite element analysis.

    PubMed

    Chen, W P; Tang, F T; Ju, C W

    2001-08-01

    To quantify stress distribution of the foot during mid-stance to push-off in barefoot gait using 3-D finite element analysis. To simulate the foot structure and facilitate later consideration of footwear. Finite element model was generated and loading condition simulating barefoot gait during mid-stance to push-off was used to quantify the stress distributions. A computational model can provide overall stress distributions of the foot subject to various loading conditions. A preliminary 3-D finite element foot model was generated based on the computed tomography data of a male subject and the bone and soft tissue structures were modeled. Analysis was performed for loading condition simulating barefoot gait during mid-stance to push-off. The peak plantar pressure ranged from 374 to 1003 kPa and the peak von Mises stress in the bone ranged from 2.12 to 6.91 MPa at different instants. The plantar pressure patterns were similar to measurement result from previous literature. The present study provides a preliminary computational model that is capable of estimating the overall plantar pressure and bone stress distributions. It can also provide quantitative analysis for normal and pathological foot motion. This model can identify areas of increased pressure and correlate the pressure with foot pathology. Potential applications can be found in the study of foot deformities, footwear, surgical interventions. It may assist pre-treatment planning, design of pedorthotic appliances, and predict the treatment effect of foot orthosis.

  15. Shear-reducing insoles to prevent foot ulceration in high-risk diabetic patients.

    PubMed

    Lavery, Lawrence A; LaFontaine, Javier; Higgins, Kevin R; Lanctot, Dan R; Constantinides, George

    2012-11-01

    To enhance the learner's competence with knowledge of the effectiveness of shear-reducing insoles for prevention of foot ulceration in patients with high-risk diabetes. This continuing education activity is intended for physicians and nurses with an interest in skin and wound care. After participating in this educational activity, the participant should be better able to:1. Demonstrate knowledge of foot ulceration risk, risk factors, incidence, and prevention.2. Apply knowledge gained from reviewing this study and a literature review about the use of shear-reducing insoles to patient scenarios. The objective of this study was to evaluate the effectiveness of a shear-reducing insole compared with a standard insole design to prevent foot ulceration in high-risk patients with diabetes. A total of 299 patients with diabetic neuropathy and loss of protective sensation, foot deformity, or history of foot ulceration were randomized into a standard therapy group (n = 150) or a shear-reducing insole group (n = 149). Patients were evaluated for 18 months. Standard therapy group consisted of therapeutic footwear, diabetic foot education, and regular foot evaluation by a podiatrist. The shear-reducing insole group included a novel insole designed to reduce both pressure and shear on the sole of the foot. Insoles were replaced every 4 months in both groups. The primary clinical outcome was foot ulceration. The authors used Cox proportional hazards regression to evaluate time to ulceration. There were 2 significant factors from the Cox regression model: insole treatment and history of a foot complication. The standard therapy group was about 3.5 times more likely to develop an ulcer compared with shear-reducing insole group (hazard ratio, 3.47; 95% confidence interval, 0.96-12.67). These results suggest that a shear-reducing insole is more effective than traditional insoles to prevent foot ulcers in high-risk persons with diabetes.

  16. Evaluation of a new geriatric foot versus the Solid Ankle Cushion Heel foot for low-activity amputees.

    PubMed

    Bonnet, Xavier; Adde, Jean N; Blanchard, François; Gedouin-Toquet, Annick; Eveno, Dominique

    2015-04-01

    It is always a challenge to rehabilitate geriatric amputees to perform self-care skills at home with limited ambulation. A new geriatric foot (with a lower effective foot length) has been specifically designed to reduce residual limb stress and to ease the step completion. The aim of this study is to evaluate the benefit of a new geriatric foot versus a Solid Ankle Cushion Heel foot for low-activity persons with transtibial amputation. Crossover study. A total of 12 patients were included in this study. 2-min walking test, Quebec User Evaluation of Satisfaction with Assistive Technology 2.0 questionnaire and pressure socket measurements. The geriatric foot allows for greater patient satisfaction. The maximal pressure was significantly lower in the proximal anterior stump area. No statistical differences were obtained from the 2-min walking test. A geriatric foot designed with a low effective foot length improves the satisfaction and reduces proximal anterior socket pressures for poor-performing persons with transtibial amputation. The development and evaluation of feet specifically designed for geriatric persons with transtibial amputation could improve their specific requirements and satisfaction. © The International Society for Prosthetics and Orthotics 2014.

  17. The potential of ultrasonography in the evaluation of foot orthotics therapy.

    PubMed

    Petcu, Daniel; Mitrea, Delia Alexandrina; Bondor, Cosmina Ioana; Perciun, Elena Rodica

    2017-11-29

    Foot orthotics prescription is based on the foot functioning paradigms with tissue stress theory being in avant-garde. The main goal of orthotic therapy is to reduce the internal tissue's pathological stresses in the foot structures. Traditionally, ultrasound scanning technique depicts anatomic related data of both common and uncommon pathology encountered in the clinical practice, helping in diagnosing, treating and evaluating, which are equally important for the practitioners. Its accessibility, compared to biomechanical modelling, makes this technique a valuable tool in the field of foot and ankle disorders. Despite its user-dependent limitation, the ongoing technical progress improves the ability of ultrasonography as a highly advanced procedure in musculoskeletal imaging, being also a valuable searching tool for musculotendinous mechanics or morphological changes as a result of a conservative intervention. The aim of the present work was to perform a review of the state of the art concerning the usefulness of ultrasonography in the study of foot orthotic therapy and to analyze its effectiveness.

  18. Prevention and treatment of diabetic foot ulcers.

    PubMed

    Lim, Jonathan Zhang Ming; Ng, Natasha Su Lynn; Thomas, Cecil

    2017-03-01

    The rising prevalence of diabetes estimated at 3.6 million people in the UK represents a major public health and socioeconomic burden to our National Health Service. Diabetes and its associated complications are of a growing concern. Diabetes-related foot complications have been identified as the single most common cause of morbidity among diabetic patients. The complicating factor of underlying peripheral vascular disease renders the majority of diabetic foot ulcers asymptomatic until latter evidence of non-healing ulcers become evident. Therefore, preventative strategies including annual diabetic foot screening and diabetic foot care interventions facilitated through a multidisciplinary team have been implemented to enable early identification of diabetic patients at high risk of diabetic foot complications. The National Diabetes Foot Care Audit reported significant variability and deficiencies of care throughout England and Wales, with emphasis on change in the structure of healthcare provision and commissioning, improvement of patient education and availability of healthcare access, and emphasis on preventative strategies to reduce morbidities and mortality of this debilitating disease. This review article aims to summarise major risk factors contributing to the development of diabetic foot ulcers. It also considers the key evidence-based strategies towards preventing diabetic foot ulcer. We discuss tools used in risk stratification and classifications of foot ulcer.

  19. Athlete's foot

    PubMed Central

    2009-01-01

    Introduction Around 15% to 25% of people are likely to have athlete's foot at any one time. The infection can spread to other parts of the body and to other people. Methods and outcomes We conducted a systematic review and aimed to answer the following clinical question: What are the effects of topical treatments for athlete's foot? We searched: Medline, Embase, The Cochrane Library, and other important databases up to July 2008 (Clinical Evidence reviews are updated periodically; please check our website for the most up-to-date version of this review). We included harms alerts from relevant organisations such as the US Food and Drug Administration (FDA) and the UK Medicines and Healthcare products Regulatory Agency (MHRA). Results We found 14 systematic reviews, RCTs, or observational studies that met our inclusion criteria. We performed a GRADE evaluation of the quality of evidence for interventions. Conclusions In this systematic review we present information relating to the effectiveness and safety of the following interventions: improved foot hygiene, including socks and hosiery; topical allylamines (naftifine and terbinafine); topical azoles (bifonazole, clotrimazole, econazole nitrate, miconazole nitrate, sulconazole nitrate, and tioconazole); and topical ciclopirox olamine. PMID:21696646

  20. Athlete's foot.

    PubMed

    Crawford, Fay

    2009-07-20

    Around 15% to 25% of people are likely to have athlete's foot at any one time. The infection can spread to other parts of the body and to other people. We conducted a systematic review and aimed to answer the following clinical question: What are the effects of topical treatments for athlete's foot? We searched: Medline, Embase, The Cochrane Library, and other important databases up to July 2008 (Clinical Evidence reviews are updated periodically; please check our website for the most up-to-date version of this review). We included harms alerts from relevant organisations such as the US Food and Drug Administration (FDA) and the UK Medicines and Healthcare products Regulatory Agency (MHRA). We found 14 systematic reviews, RCTs, or observational studies that met our inclusion criteria. We performed a GRADE evaluation of the quality of evidence for interventions. In this systematic review we present information relating to the effectiveness and safety of the following interventions: improved foot hygiene, including socks and hosiery; topical allylamines (naftifine and terbinafine); topical azoles (bifonazole, clotrimazole, econazole nitrate, miconazole nitrate, sulconazole nitrate, and tioconazole); and topical ciclopirox olamine.

  1. Aerodynamic characteristics of the modified 40- by 80-foot wind tunnel as measured in a 1/50th-scale model

    NASA Technical Reports Server (NTRS)

    Smith, Brian E.; Naumowicz, Tim

    1987-01-01

    The aerodynamic characteristics of the 40- by 80-Foot Wind Tunnel at Ames Research Center were measured by using a 1/50th-scale facility. The model was configured to closely simulate the features of the full-scale facility when it became operational in 1986. The items measured include the aerodynamic effects due to changes in the total-pressure-loss characteristics of the intake and exhaust openings of the air-exchange system, total-pressure distributions in the flow field at locations around the wind tunnel circuit, the locations of the maximum total-pressure contours, and the aerodynamic changes caused by the installation of the acoustic barrier in the southwest corner of the wind tunnel. The model tests reveal the changes in the aerodynamic performance of the 1986 version of the 40- by 80-Foot Wind Tunnel compared with the performance of the 1982 configuration.

  2. Effect of static foot posture on the dynamic stiffness of foot joints during walking.

    PubMed

    Sanchis-Sales, E; Sancho-Bru, J L; Roda-Sales, A; Pascual-Huerta, J

    2018-05-01

    The static foot posture has been related to the development of lower limb injuries. This study aimed to investigate the dynamic stiffness of foot joints during gait in the sagittal plane to understand the role of the static foot posture in the development of injuries. Seventy healthy adult male subjects with different static postures, assessed by the Foot Posture Index (FPI) (30 normal, 20 highly pronated and 20 highly supinated), were recruited. Kinematic and kinetic data were recorded using an optical motion capture system and a pressure platform, and dynamic stiffness at the different stages of the stance was calculated from the slopes of the linear regression on the flexion moment-angle curves. The effect of foot type on dynamic stiffness and on ranges of motion and moments was analysed using ANOVAs and post-hoc tests, and linear correlation between dynamic stiffness and FPI was also tested. Highly pronated feet showed a significantly smaller range of motion at the ankle and metatarsophalangeal joints and also a larger range of moments at the metatarsophalangeal joint than highly supinated feet. Dynamic stiffness during propulsion was significantly greater at all foot joints for highly pronated feet, with positive significant correlations with the squared FPI. Highly supinated feet showed greater dynamic stiffness than normal feet, although to a lesser extent. Highly pronated feet during normal gait experienced the greatest decrease in the dorsiflexor moments during propulsion, normal feet being the most balanced regarding work generated and absorbed. Extreme static foot postures show greater dynamic stiffness during propulsion and greater absorbed work, which increases the risk of developing injuries. The data presented may be used when designing orthotics or prostheses, and also when planning surgery that modifies joint stiffness. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Foot placement relies on state estimation during visually guided walking.

    PubMed

    Maeda, Rodrigo S; O'Connor, Shawn M; Donelan, J Maxwell; Marigold, Daniel S

    2017-02-01

    As we walk, we must accurately place our feet to stabilize our motion and to navigate our environment. We must also achieve this accuracy despite imperfect sensory feedback and unexpected disturbances. In this study we tested whether the nervous system uses state estimation to beneficially combine sensory feedback with forward model predictions to compensate for these challenges. Specifically, subjects wore prism lenses during a visually guided walking task, and we used trial-by-trial variation in prism lenses to add uncertainty to visual feedback and induce a reweighting of this input. To expose altered weighting, we added a consistent prism shift that required subjects to adapt their estimate of the visuomotor mapping relationship between a perceived target location and the motor command necessary to step to that position. With added prism noise, subjects responded to the consistent prism shift with smaller initial foot placement error but took longer to adapt, compatible with our mathematical model of the walking task that leverages state estimation to compensate for noise. Much like when we perform voluntary and discrete movements with our arms, it appears our nervous systems uses state estimation during walking to accurately reach our foot to the ground. Accurate foot placement is essential for safe walking. We used computational models and human walking experiments to test how our nervous system achieves this accuracy. We find that our control of foot placement beneficially combines sensory feedback with internal forward model predictions to accurately estimate the body's state. Our results match recent computational neuroscience findings for reaching movements, suggesting that state estimation is a general mechanism of human motor control. Copyright © 2017 the American Physiological Society.

  4. Development and application of 3-D foot-shape measurement system under different loads

    NASA Astrophysics Data System (ADS)

    Liu, Guozhong; Wang, Boxiong; Shi, Hui; Luo, Xiuzhi

    2008-03-01

    The 3-D foot-shape measurement system under different loads based on laser-line-scanning principle was designed and the model of the measurement system was developed. 3-D foot-shape measurements without blind areas under different loads and the automatic extraction of foot-parameter are achieved with the system. A global calibration method for CCD cameras using a one-axis motion unit in the measurement system and the specialized calibration kits is presented. Errors caused by the nonlinearity of CCD cameras and other devices and caused by the installation of the one axis motion platform, the laser plane and the toughened glass plane can be eliminated by using the nonlinear coordinate mapping function and the Powell optimized method in calibration. Foot measurements under different loads for 170 participants were conducted and the statistic foot parameter measurement results for male and female participants under non-weight condition and changes of foot parameters under half-body-weight condition, full-body-weight condition and over-body-weight condition compared with non-weight condition are presented. 3-D foot-shape measurement under different loads makes it possible to realize custom-made shoe-making and shows great prosperity in shoe design, foot orthopaedic treatment, shoe size standardization, and establishment of a feet database for consumers and athletes.

  5. 29 CFR 1917.94 - Foot protection.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 7 2011-07-01 2011-07-01 false Foot protection. 1917.94 Section 1917.94 Labor Regulations...) MARINE TERMINALS Personal Protection § 1917.94 Foot protection. (a) The employer shall ensure that each affected employee wears protective footwear when working in areas where there is a danger of foot injuries...

  6. Foot Plantar Pressure Measurement System: A Review

    PubMed Central

    Razak, Abdul Hadi Abdul; Zayegh, Aladin; Begg, Rezaul K.; Wahab, Yufridin

    2012-01-01

    Foot plantar pressure is the pressure field that acts between the foot and the support surface during everyday locomotor activities. Information derived from such pressure measures is important in gait and posture research for diagnosing lower limb problems, footwear design, sport biomechanics, injury prevention and other applications. This paper reviews foot plantar sensors characteristics as reported in the literature in addition to foot plantar pressure measurement systems applied to a variety of research problems. Strengths and limitations of current systems are discussed and a wireless foot plantar pressure system is proposed suitable for measuring high pressure distributions under the foot with high accuracy and reliability. The novel system is based on highly linear pressure sensors with no hysteresis. PMID:23012576

  7. Validation of hand and foot anatomical feature measurements from smartphone images

    NASA Astrophysics Data System (ADS)

    Amini, Mohammad; Vasefi, Fartash; MacKinnon, Nicholas

    2018-02-01

    A smartphone mobile medical application, previously presented as a tool for individuals with hand arthritis to assess and monitor the progress of their disease, has been modified and expanded to include extraction of anatomical features from the hand (joint/finger width, and angulation) and foot (length, width, big toe angle, and arch height index) from smartphone camera images. Image processing algorithms and automated measurements were validated by performing tests on digital hand models, rigid plastic hand models, and real human hands and feet to determine accuracy and reproducibility compared to conventional measurement tools such as calipers, rulers, and goniometers. The mobile application was able to provide finger joint width measurements with accuracy better than 0.34 (+/-0.25) millimeters. Joint angulation measurement accuracy was better than 0.50 (+/-0.45) degrees. The automatically calculated foot length accuracy was 1.20 (+/-1.27) millimeters and the foot width accuracy was 1.93 (+/-1.92) millimeters. Hallux valgus angle (used in assessing bunions) accuracy was 1.30 (+/-1.29) degrees. Arch height index (AHI) measurements had an accuracy of 0.02 (+/-0.01). Combined with in-app documentation of symptoms, treatment, and lifestyle factors, the anatomical feature measurements can be used by both healthcare professionals and manufacturers. Applications include: diagnosing hand osteoarthritis; providing custom finger splint measurements; providing compression glove measurements for burn and lymphedema patients; determining foot dimensions for custom shoe sizing, insoles, orthotics, or foot splints; and assessing arch height index and bunion treatment effectiveness.

  8. Foot preferences during resting in wildfowl and waders.

    PubMed

    Randler, Christoph

    2007-03-01

    Footedness in birds has been reported, e.g., in parrots and chickens, but the direction of footedness remained unclear. Is a bird left-footed because it uses its left foot for holding and handling food, or is it right-footed because it uses the right foot for stabilisation and balancing while perching? In 2004 and 2006 I examined footedness in wildfowl and waders while the birds were performing a single task: roosting on the ground on one foot. Avocet (Recurvirostra avosetta), northern shoveller (Anas clypeata), oystercatcher (Haematopus ostralegus), and Eurasian curlew (Numenius arquata) were right-footed. Another 21 species did not show any significant foot preferences. This study provides some evidence that asymmetries in preferential foot use in birds may be triggered by a preference during postural control.

  9. [Minor foot amputations in diabetic foot syndrome].

    PubMed

    Biehl, C; Eckhard, M; Szalay, G; Heiss, C

    2016-10-01

    The treatment strategy for diabetic foot syndrome must take into account protective sensibility of the foot, open wounds, infection status, and the rules of septic bone surgery. Interventions are classified as elective, prophylactic, curative, or emergency. Amputations in the forefoot and midfoot region are performed as ray amputations (including metatarsal), which can often be carried out as "inner" amputations. Gentle tissue treatment mandatory because of greater risk of revision with re-amputation compared to classical amputation. Good demarcation of infection, acute osteomyelitis, osteolytic lesions, neurotropic ulcer, arterial and venous blood flow to the other toes, gangrene of other toes with metatarsal affection. Arterial occlusive disease, infection of neighboring areas, avoidable amputations, poorly healing ulcers on the lower leg. Primary dorsal approach; minimal incisional distance (5 cm) to minimize skin necrosis risk. Atraumatic preparation, minimize hemostasis to not compromise the borderline perfusion situation. In amputations, plantar skin preparation and longer seams placed as dorsal as possible, either disarticulated and maintain cartilage, or round the cortical metatarsal bone after resection. Diabetes control. Braun splint, mobilization in a shoe with forefoot decompression and hindfoot support, physiotherapy. Antibiotics based on resistance testing. If no complications, dressing change on postoperative day 1. Optimal wound drainage by lowering foot several times a day; drainage removal after 12-24 h. Insoles and footwear optimization. Amputations require continued attention and if necessary treatment to avoid sequelae. Insufficient treatment associated with recurrent ulceration and altered anatomy.

  10. The Oxford Companion to the Earth

    NASA Astrophysics Data System (ADS)

    Hancock, Paul L.

    2001-06-01

    Here is a wealth of information on planet Earth, ranging from the heights of the ionsphere down to the red-hot molten core. Written by some 200 expert contributors, and illustrated with over 600 pictures, including 16 pages of color plates, The Oxford Companion to the Earth offers 900 alphabetically arranged entries that cover everything from deserts and wetlands to mountains, caves, glaciers, and coral reefs. There are articles on natural phenomena such as tornadoes and tsunamis, volcanoes and earthquakes, jet streams and weather fronts; on the history of Earth, including the origin of life, Burgess Shale fauna, dinosaurs, and the Ice Ages; on key figures, such as Agassiz, Cuvier, Darwin, and Lamarck; and on such important ecological concerns as acid rain, the ozone layer, industrial waste disposal, and the greenhouse effect. The Companion also examines the great sources of wealth to be found in the Earth, from coal and oil to gold, silver, and diamonds, and many curious land formations, from sinkholes and fiords to yardangs and quicksand. There are brief entries on rock types, from amber to travertine, and extensive essays on cutting-edge aspects of the earth sciences, such as seismology and marine geology. The Companion includes extensive cross-references, suggested further reading, an index, and many useful appendices, with a geological timescale, facts and figures about the Earth, and a table of chemical elements. The Oxford Companion to the Earth is a unique reference work, offering unrivaled coverage of our home planet. Generously illustrated and vividly written, it is a treasure house of information for all lovers of natural history, geology, and ecology, whether professional or amateur.

  11. Comparing 3D foot scanning with conventional measurement methods.

    PubMed

    Lee, Yu-Chi; Lin, Gloria; Wang, Mao-Jiun J

    2014-01-01

    Foot dimension information on different user groups is important for footwear design and clinical applications. Foot dimension data collected using different measurement methods presents accuracy problems. This study compared the precision and accuracy of the 3D foot scanning method with conventional foot dimension measurement methods including the digital caliper, ink footprint and digital footprint. Six commonly used foot dimensions, i.e. foot length, ball of foot length, outside ball of foot length, foot breadth diagonal, foot breadth horizontal and heel breadth were measured from 130 males and females using four foot measurement methods. Two-way ANOVA was performed to evaluate the sex and method effect on the measured foot dimensions. In addition, the mean absolute difference values and intra-class correlation coefficients (ICCs) were used for precision and accuracy evaluation. The results were also compared with the ISO 20685 criteria. The participant's sex and the measurement method were found (p < 0.05) to exert significant effects on the measured six foot dimensions. The precision of the 3D scanning measurement method with mean absolute difference values between 0.73 to 1.50 mm showed the best performance among the four measurement methods. The 3D scanning measurements showed better measurement accuracy performance than the other methods (mean absolute difference was 0.6 to 4.3 mm), except for measuring outside ball of foot length and foot breadth horizontal. The ICCs for all six foot dimension measurements among the four measurement methods were within the 0.61 to 0.98 range. Overall, the 3D foot scanner is recommended for collecting foot anthropometric data because it has relatively higher precision, accuracy and robustness. This finding suggests that when comparing foot anthropometric data among different references, it is important to consider the differences caused by the different measurement methods.

  12. Illiteracy and diabetic foot complications.

    PubMed

    Al-Kaabi, Juma M; Al Maskari, Fatma; Cragg, Paul; Afandi, Bachar; Souid, Abdul-Kader

    2015-12-01

    Diabetes is especially common in the United Arab Emirates. Its complications in patients residing in the region have yet to be fully explored. This study reports on foot problems in our diabetic patients, with emphasis on the impact of illiteracy on foot care and complications due to diabetes. Adults were randomly recruited from the Diabetes Center at Tawam-John Hopkins affiliated hospital. A questionnaire addressing foot care and problems was completed for all patients. In addition, an examination was performed by a trained nurse, an endocrinologist, and a podiatrist. Four hundred twenty-two adults with type 2 (93%) or type 1 (7%) diabetes were enrolled; 67% were females. Patients' mean age was 52 ± 13 years and duration of diabetes ≥ 1 year. Illiterate patients were 51% and were less likely to practice foot care (p=0.002), recognize foot risk factors (p=0.004), use proper footwear (p=0.010), and being physically active (p<0.001). In addition, they were more likely to have diabetic complications, such as neuropathy (p=0.027), eye disease (p=0.032), hypertension (p<0.001), obesity (p=0.003), increased body fat percentage (p<0.001), reduced capillary refill time (p=0.002), reduced monofilament (p=0.003), and reduced vibration (p<0.001). Logistic regression analysis revealed literates [OR=2.4, CI=1.1-5.4, p=0.031], female gender [OR=2.7, CI=1.1-6.2, p=0.023], and history of foot ulcer [OR=6.0, CI=2.1-17.2, p=0.001] were predictors of practicing foot care. Illiteracy invoked significant challenges to diabetic attentiveness and imposed increased foot complications. Physicians should realize that illiterate patients are vulnerable and require effective strategies to improve their education about the disease and reduce their diabetic complications. Copyright © 2015 Primary Care Diabetes Europe. Published by Elsevier Ltd. All rights reserved.

  13. Revalidation of the NASA Ames 11-by 11-Foot Transonic Wind Tunnel with a Commercial Airplane Model

    NASA Technical Reports Server (NTRS)

    Kmak, Frank J.; Hudgins, M.; Hergert, D.; George, Michael W. (Technical Monitor)

    2001-01-01

    The 11-By 11-Foot Transonic leg of the Unitary Plan Wind Tunnel (UPWT) was modernized to improve tunnel performance, capability, productivity, and reliability. Wind tunnel tests to demonstrate the readiness of the tunnel for a return to production operations included an Integrated Systems Test (IST), calibration tests, and airplane validation tests. One of the two validation tests was a 0.037-scale Boeing 777 model that was previously tested in the 11-By 11-Foot tunnel in 1991. The objective of the validation tests was to compare pre-modernization and post-modernization results from the same airplane model in order to substantiate the operational readiness of the facility. Evaluation of within-test, test-to-test, and tunnel-to-tunnel data repeatability were made to study the effects of the tunnel modifications. Tunnel productivity was also evaluated to determine the readiness of the facility for production operations. The operation of the facility, including model installation, tunnel operations, and the performance of tunnel systems, was observed and facility deficiency findings generated. The data repeatability studies and tunnel-to-tunnel comparisons demonstrated outstanding data repeatability and a high overall level of data quality. Despite some operational and facility problems, the validation test was successful in demonstrating the readiness of the facility to perform production airplane wind tunnel%, tests.

  14. Research on the Effect of the Foot Bath and Foot Massage on Residual Schizophrenia Patients.

    PubMed

    Kito, Kazuko; Suzuki, Keiko

    2016-06-01

    Researchers performed foot baths and massages for residual schizophrenia patients to gauge the effects on psychiatric symptoms. Subjects were six residual schizophrenia patients hospitalized in a psychiatric hospital. Three times a week for 4weeks, they received an 8-minute effleurage massage to their legs after a 10-minute foot bath. The effect of physiological relaxation was identified by a significant decline in heart rate in all cases. The results of the Positive and Negative Symptom Scale are as follows: a mean score of 29.0 was measured before treatment, which lowered to 21.5 after treatment, indicating that foot care improved their negative symptoms (p<0.05).The results of the Quality of Life Scale before the foot care intervention, were 10.5 and increased to 34.0 after the intervention, indicating improvement in their quality of life (p<0.05). The results of the two measurements indicate that foot baths and massages were effective in improving psychiatric symptoms. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. The Relationship with Balance, Foot Posture, and Foot Size in School of Physical Education and Sports Students

    ERIC Educational Resources Information Center

    Irez, Gonul Babayigit

    2014-01-01

    The aim of this study is to investigate the relationship of foot posture and foot size with balance. A hundred and thirteen healthy volunteers were recruited from undergraduate students (Male = 74, Female = 37, age range 18-22). The Foot Posture Index (FPI-6), anthropometric measurements, dynamic balance and static balance measurements were done…

  16. Effects of Taping and Orthoses on Foot Biomechanics in Adults with Flat-Arched Feet.

    PubMed

    Bishop, Christopher; Arnold, John B; May, Thomas

    2016-04-01

    There is a paucity of evidence on the biomechanical effects of foot taping and foot orthoses in realistic conditions. This study aimed to determine the immediate effect and relationships between changes in multisegment foot biomechanics with foot taping and customized foot orthoses in adults with flat-arched feet. Multisegment foot biomechanics were measured in 18 adults with flat-arched feet (age 25.1 ± 2.8 yr; height 1.73 ± .13 m, body mass 70.3 ± 15.7 kg) during walking in four conditions in random order: neutral athletic shoe, neutral shoe with tape (low-Dye method and modified method) and neutral shoe with customized foot orthoses. In-shoe foot biomechanics were compared between conditions using a purpose developed foot model with three-dimensional kinematic analysis and inverse dynamics. Foot orthoses significantly delayed peak eversion compared to the neutral shoe (44% stance vs 39%, P = 0.002). Deformation across the midfoot and medial longitudinal arch was reduced with both the low-Dye taping (2.4°, P < 0.001) and modified taping technique (5.5°, P < 0.001). All interventions increased peak dorsiflexion of the first metatarsophalangeal joint (1.4°-3.2°, P < 0.001-0.023). Biomechanical responses to taping significantly predicted corresponding changes to foot orthoses (R2 = 0.08-0.52, P = 0.006 to <0.001). Foot orthoses more effectively altered timing of hindfoot motion whereas taping was superior in supporting the midfoot and medial longitudinal arch. The biomechanical response to taping was significantly related to the subsequent change observed with the use of foot orthoses.

  17. User's manual for the model interface and plugboard cabinets in the 14- by 22-foot subsonic tunnel

    NASA Technical Reports Server (NTRS)

    Askew, Robert B.; Quinto, P. Frank

    1994-01-01

    The primary method of connection between the wind tunnel model instrumentation and the data acquisition system in the 14- by 22-Foot Subsonic Tunnel is through the Model Interface (MIF) and Plugboard cabinets. The MIF and Plugboard cabinets allow versatility in the connection of the instrumentation to the different data systems in the facility. The User's Manual describes the components inside the MIF cabinet, the input and output of the MIF, and the MIF patchboard, and the Plugboard cabinets. There are examples of standard connections for most of the instrumentation used in the facility.

  18. A model to estimate cost-savings in diabetic foot ulcer prevention efforts.

    PubMed

    Barshes, Neal R; Saedi, Samira; Wrobel, James; Kougias, Panos; Kundakcioglu, O Erhun; Armstrong, David G

    2017-04-01

    Sustained efforts at preventing diabetic foot ulcers (DFUs) and subsequent leg amputations are sporadic in most health care systems despite the high costs associated with such complications. We sought to estimate effectiveness targets at which cost-savings (i.e. improved health outcomes at decreased total costs) might occur. A Markov model with probabilistic sensitivity analyses was used to simulate the five-year survival, incidence of foot complications, and total health care costs in a hypothetical population of 100,000 people with diabetes. Clinical event and cost estimates were obtained from previously-published trials and studies. A population without previous DFU but with 17% neuropathy and 11% peripheral artery disease (PAD) prevalence was assumed. Primary prevention (PP) was defined as reducing initial DFU incidence. PP was more than 90% likely to provide cost-savings when annual prevention costs are less than $50/person and/or annual DFU incidence is reduced by at least 25%. Efforts directed at patients with diabetes who were at moderate or high risk for DFUs were very likely to provide cost-savings if DFU incidence was decreased by at least 10% and/or the cost was less than $150 per person per year. Low-cost DFU primary prevention efforts producing even small decreases in DFU incidence may provide the best opportunity for cost-savings, especially if focused on patients with neuropathy and/or PAD. Mobile phone-based reminders, self-identification of risk factors (ex. Ipswich touch test), and written brochures may be among such low-cost interventions that should be investigated for cost-savings potential. Published by Elsevier Inc.

  19. Effects of Ankle Arthrodesis on Biomechanical Performance of the Entire Foot

    PubMed Central

    Wang, Yan; Li, Zengyong; Wong, Duo Wai-Chi; Zhang, Ming

    2015-01-01

    Background/Methodology Ankle arthrodesis is one popular surgical treatment for ankle arthritis, chronic instability, and degenerative deformity. However, complications such as foot pain, joint arthritis, and bone fracture may cause patients to suffer other problems. Understanding the internal biomechanics of the foot is critical for assessing the effectiveness of ankle arthrodesis and provides a baseline for the surgical plan. This study aimed to understand the biomechanical effects of ankle arthrodesis on the entire foot and ankle using finite element analyses. A three-dimensional finite element model of the foot and ankle, involving 28 bones, 103 ligaments, the plantar fascia, major muscle groups, and encapsulated soft tissue, was developed and validated. The biomechanical performances of a normal foot and a foot with ankle arthrodesis were compared at three gait instants, first-peak, mid-stance, and second-peak. Principal Findings/Conclusions Changes in plantar pressure distribution, joint contact pressure and forces, von Mises stress on bone and foot deformation were predicted. Compared with those in the normal foot, the peak plantar pressure was increased and the center of pressure moved anteriorly in the foot with ankle arthrodesis. The talonavicular joint and joints of the first to third rays in the hind- and mid-foot bore the majority of the loading and sustained substantially increased loading after ankle arthrodesis. An average contact pressure of 2.14 MPa was predicted at the talonavicular joint after surgery and the maximum variation was shown to be 80% in joints of the first ray. The contact force and pressure of the subtalar joint decreased after surgery, indicating that arthritis at this joint was not necessarily a consequence of ankle arthrodesis but rather a progression of pre-existing degenerative changes. Von Mises stress in the second and third metatarsal bones at the second-peak instant increased to 52 MPa and 34 MPa, respectively, after

  20. Effects of Ankle Arthrodesis on Biomechanical Performance of the Entire Foot.

    PubMed

    Wang, Yan; Li, Zengyong; Wong, Duo Wai-Chi; Zhang, Ming

    2015-01-01

    Ankle arthrodesis is one popular surgical treatment for ankle arthritis, chronic instability, and degenerative deformity. However, complications such as foot pain, joint arthritis, and bone fracture may cause patients to suffer other problems. Understanding the internal biomechanics of the foot is critical for assessing the effectiveness of ankle arthrodesis and provides a baseline for the surgical plan. This study aimed to understand the biomechanical effects of ankle arthrodesis on the entire foot and ankle using finite element analyses. A three-dimensional finite element model of the foot and ankle, involving 28 bones, 103 ligaments, the plantar fascia, major muscle groups, and encapsulated soft tissue, was developed and validated. The biomechanical performances of a normal foot and a foot with ankle arthrodesis were compared at three gait instants, first-peak, mid-stance, and second-peak. Changes in plantar pressure distribution, joint contact pressure and forces, von Mises stress on bone and foot deformation were predicted. Compared with those in the normal foot, the peak plantar pressure was increased and the center of pressure moved anteriorly in the foot with ankle arthrodesis. The talonavicular joint and joints of the first to third rays in the hind- and mid-foot bore the majority of the loading and sustained substantially increased loading after ankle arthrodesis. An average contact pressure of 2.14 MPa was predicted at the talonavicular joint after surgery and the maximum variation was shown to be 80% in joints of the first ray. The contact force and pressure of the subtalar joint decreased after surgery, indicating that arthritis at this joint was not necessarily a consequence of ankle arthrodesis but rather a progression of pre-existing degenerative changes. Von Mises stress in the second and third metatarsal bones at the second-peak instant increased to 52 MPa and 34 MPa, respectively, after surgery. These variations can provide indications for

  1. The process of implementing a rural VA wound care program for diabetic foot ulcer patients.

    PubMed

    Reiber, Gayle E; Raugi, Gregory J; Rowberg, Donald

    2007-10-01

    Delivering and documenting evidence-based treatment to all Department of Veterans Affairs (VA) foot ulcer patients has wide appeal. However, primary and secondary care medical centers where 52% of these patients receive care are at a disadvantage given the frequent absence of trained specialists to manage diabetic foot ulcers. A retrospective review of diabetic foot ulcer patient records and a provider survey were conducted to document the foot ulcer problem and to assess practitioner needs. Results showed of the 125 persons with foot ulcers identified through administrative data, only, 21% of diabetic foot patients were correctly coded. Chronic Care and Microsystem models were used to prepare a tailored intervention in a VA primary care medical center. The site Principal Investigators, a multidisciplinary site wound care team, and study investigators jointly implemented a diabetic foot ulcer program. Intervention components include wound care team education and training, standardized good wound care practices based on strong scientific evidence, and a wound care template embedded in the electronic medical record to facilitate data collection, clinical decision making, patient ordering, and coding. A strategy for delivering offloading pressure devices, regular case management support, and 24/7 emergency assistance also was developed. It took 9 months to implement the model. Patients were enrolled and followed for 1 year. Process and outcome evaluations are on-going.

  2. Foot abnormalities of wild birds

    USGS Publications Warehouse

    Herman, C.M.; Locke, L.N.; Clark, G.M.

    1962-01-01

    The various foot abnormalities that occur in birds, including pox, scaly-leg, bumble-foot, ergotism and freezing are reviewed. In addition, our findings at the Patuxent Wildlife Research Center include pox from dove, mockingbird, cowbird, grackle and several species of sparrows. Scaly-leg has been particularly prevalent on icterids. Bumble foot has been observed in a whistling swan and in a group of captive woodcock. Ergotism is reported from a series of captive Canada geese from North Dakota. Several drug treatments recommended by others are presented.

  3. The Influence of Beliefs About Health and Illness on Foot Care in Ugandan Persons with Diabetic Foot Ulcers

    PubMed Central

    Hjelm, Katarina; Beebwa, Esther

    2013-01-01

    Diabetes mellitus is becoming pandemic, particularly affecting Sub-Saharan Africa, and the prevalence of complications is increasing. Diabetic foot disorders are a major source of morbidity and disability. Delay in the health care process due to patients’ beliefs may have deleterious consequences for limb and life in persons with diabetic foot ulcers. No previous studies of beliefs about health and illness in persons with diabetic foot ulcers living in Africa have been found. The aim of the study was to explore beliefs about health and illness among Ugandans with diabetic foot ulcers that might affect self-care and care seeking behaviour. In an explorative study with consecutive sample semi-structured interviews were held with 14 Ugandan men and women, aged 40-79, with diabetic foot ulcer. Knowledge was limited about causes, management and prevention of diabetic foot ulcers. Foot ulcers were often detected as painful sores, perceived to heal or improve, and led to stress and social isolation due to smell and reduced mobility. Most lacked awareness of the importance of complete daily foot care and seldom practised self-care. Health was described as absence of disease and pain. Many feared future health and related it to contact with nurses in the professional sector from whom they sought information, blood tests and wound dressings and desired better organised diabetes clinics offering health education and more opening hours. Many have an underutilised potential for self-care and need education urgently, delivered in well-organised diabetes clinics working to raise awareness of the threat and prevent foot ulcers. PMID:24039644

  4. A framework for parametric modeling of ankle ligaments to determine the in situ response under gross foot motion.

    PubMed

    Nie, Bingbing; Panzer, Matthew Brian; Mane, Adwait; Mait, Alexander Ritz; Donlon, John-Paul; Forman, Jason Lee; Kent, Richard Wesley

    2016-09-01

    Ligament sprains account for a majority of injuries to the foot and ankle complex, but ligament properties have not been understood well due to the difficulties in replicating the complex geometry, in situ stress state, and non-uniformity of the strain. For a full investigation of the injury mechanism, it is essential to build up a foot and ankle model validated at the level of bony kinematics and ligament properties. This study developed a framework to parameterize the ligament response for determining the in situ stress state and heterogeneous force-elongation characteristics using a finite element ankle model. Nine major ankle ligaments and the interosseous membrane were modeled as discrete elements corresponding functionally to the ligamentous microstructure of collagen fibers and having parameterized toe region and stiffness at the fiber level. The range of the design variables in the ligament model was determined from existing experimental data. Sensitivity of the bony kinematics to each variable was investigated by design of experiment. The results highlighted the critical role of the length of the toe region of the ligamentous fibers on the bony kinematics with the cumulative influence of more than 95%, while the fiber stiffness was statistically insignificant with an influence of less than 1% under the given variable range and loading conditions. With the flexibility of variable adjustment and high computational efficiency, the presented ankle model was generic in nature so as to maximize its applicability to capture the individual ligament behaviors in future studies.

  5. Illness beliefs predict self-care behaviours in patients with diabetic foot ulcers: a prospective study.

    PubMed

    Vedhara, Kavita; Dawe, Karen; Wetherell, Mark A; Miles, Jeremy N V; Cullum, Nicky; Dayan, Colin; Drake, Nicola; Price, Patricia; Tarlton, John; Weinman, John; Day, Andrew; Campbell, Rona

    2014-10-01

    Patients' illness beliefs are known to be influential determinants of self-care behaviours in many chronic conditions. In a prospective observational study we examined their role in predicting foot self-care behaviours in patients with diabetic foot ulcers. Patients (n=169) were recruited from outpatient podiatry clinics. Clinical and demographic factors, illness beliefs and foot self-care behaviours were assessed as baseline (week 0). Foot self-care behaviours were assessed again 6, 12 and 24 weeks later. Linear regressions examined the contribution of beliefs at baseline to subsequent foot self-care behaviours, controlling for past behaviour (i.e., foot self-care at baseline) and clinical and demographic factors that may affect foot self-care (i.e., age and ulcer size). Our models accounted for between 42 and 58% of the variance in foot self-care behaviours. Even after controlling for past foot-care behaviours, age and ulcer size; patients' beliefs regarding the symptoms associated with ulceration, their understanding of ulceration and their perceived personal control over ulceration emerged as independent determinants of foot self-care. Patients' beliefs are important determinants of foot-care practices. They may, therefore, also be influential in determining ulcer outcomes. Interventions aimed at modifying illness beliefs may offer a means for promoting self-care and improving ulcer outcomes. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  6. Foot-to-foot bioelectrical impedance analysis: a valuable tool for the measurement of body composition in children.

    PubMed

    Tyrrell, V J; Richards, G; Hofman, P; Gillies, G F; Robinson, E; Cutfield, W S

    2001-02-01

    To determine the accuracy of foot-to-foot bioelectrical impedance analysis (BIA) and anthropometric indices as measures of body composition in children. Comparison of foot-to-foot BIA and anthropometry to dual-energy X-ray absorptiometry (DEXA)-derived body composition in a multi-ethnic group of children. : Eighty-two European, NZ Maori and Pacific Island children aged 4.9-10.9 y. DEXA body composition, foot-to-foot bioelectrical impedance, height, weight, hip and waist measurements. Using a BIA prediction equation derived from our study population we found a high correlation between DEXA and BIA in the estimation of fat-free mass (FFM), fat mass (FM) and percentage body fat (PBF) (r=0.98, 0.98 and 0.94, respectively). BIA-FFM underestimated DEXA-FFM by a mean of 0.75 kg, BIA-FM overestimated DEXA-FM by a mean of 1.02 kg and BIA-PBF overestimated DEXA-PBF by a mean of 2.53%. The correlation between six anthropometric indices (body mass index (BMI), ponderal index, Chinn's weight-for-height index, BMI standard deviation score, weight-for-length index and Cole's weight-for-height index) and DEXA were also examined. The correlation of these indices with PBF was remarkably similar (r=0.85-0.87), more variable with FM (r=0.77-0.94) and poor with FFM (r=0.41-0.75). BIA correlated better than anthropometric indices in the estimation of FFM, FM and PBF. Foot-to-foot BIA is an accurate technique in the measurement of body composition.

  7. Oxford House: Deaf-Affirmative Support for Substance Abuse Recovery

    ERIC Educational Resources Information Center

    Alvarez, Josefina; Adebanjo, Aderonke M.; Davidson, Michelle K.; Jason, Leonard A.; Davis, Margaret I.

    2006-01-01

    Deaf individuals seeking substance abuse recovery are less likely to have access to treatment and aftercare services because of a lack of culturally and linguistically specific programs and insufficient information about existing services. Previous research indicates that Oxford House, a network of resident-run recovery homes, serves a diverse…

  8. Age-related differences in women's foot shape.

    PubMed

    Ansuategui Echeita, Jone; Hijmans, Juha M; Smits, Sharon; Van der Woude, Lucas H V; Postema, Klaas

    2016-12-01

    Describe age-related differences in women's foot shape using a wide range of measurements and ages. Cross-sectional, observational study. Six foot-shape measurements of each foot: foot lengths, ball widths, ball circumferences, low instep circumferences, high instep circumferences, and heel instep circumference. 168 women from 20 to over 80 years of age, divided into seven age categories, were included. Older women had significantly greater foot-shape measurements, even after adjusting for Body Mass Index. Ball widths increased 3.1-4.0mm per decade, ball circumferences 5.6-7.4mm per decade, high instep circumferences 0.4-4.8mm per decade, and heel instep circumferences 1.8-1.9mm per decade. Ball widths, ball circumferences, and left high instep circumference plateaued in the 70-75 years-of-age category, and decreased in the oldest age category. For low instep circumference, age did not prevail significantly over Body Mass Index. Foot length was not associated with age. This study described women's progressive foot-shape changes with age. The findings provide a better understanding of foot-shape changes, mainly found in the forefoot. It demonstrates that for a good fit, shoe design for older adults and for younger adults should differ. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. Estimation of foot pressure from human footprint depths using 3D scanner

    NASA Astrophysics Data System (ADS)

    Wibowo, Dwi Basuki; Haryadi, Gunawan Dwi; Priambodo, Agus

    2016-03-01

    The analysis of normal and pathological variation in human foot morphology is central to several biomedical disciplines, including orthopedics, orthotic design, sports sciences, and physical anthropology, and it is also important for efficient footwear design. A classic and frequently used approach to study foot morphology is analysis of the footprint shape and footprint depth. Footprints are relatively easy to produce and to measure, and they can be preserved naturally in different soils. In this study, we need to correlate footprint depth with corresponding foot pressure of individual using 3D scanner. Several approaches are used for modeling and estimating footprint depths and foot pressures. The deepest footprint point is calculated from z max coordinate-z min coordinate and the average of foot pressure is calculated from GRF divided to foot area contact and identical with the average of footprint depth. Evaluation of footprint depth was found from importing 3D scanner file (dxf) in AutoCAD, the z-coordinates than sorted from the highest to the lowest value using Microsoft Excel to make footprinting depth in difference color. This research is only qualitatif study because doesn't use foot pressure device as comparator, and resulting the maximum pressure on calceneus is 3.02 N/cm2, lateral arch is 3.66 N/cm2, and metatarsal and hallux is 3.68 N/cm2.

  10. Three-dimensional simulations of low foot and high foot implosion experiments on the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, D. S.; Weber, C. R.; Milovich, J. L.

    In order to achieve the several hundred Gbar stagnation pressures necessary for inertial confinement fusion ignition, implosion experiments on the National Ignition Facility (NIF) [E. I. Moses et al., Phys. Plasmas 16, 041006 (2009)] require the compression of deuterium-tritium fuel layers by a convergence ratio as high as forty. Such high convergence implosions are subject to degradation by a range of perturbations, including the growth of small-scale defects due to hydrodynamic instabilities, as well as longer scale modulations due to radiation flux asymmetries in the enclosing hohlraum. Due to the broad range of scales involved, and also the genuinely three-dimensionalmore » (3D) character of the flow, accurately modeling NIF implosions remains at the edge of current simulation capabilities. This study describes the current state of progress of 3D capsule-only simulations of NIF implosions aimed at accurately describing the performance of specific NIF experiments. Current simulations include the effects of hohlraum radiation asymmetries, capsule surface defects, the capsule support tent and fill tube, and use a grid resolution shown to be converged in companion two-dimensional simulations. The results of detailed simulations of low foot implosions from the National Ignition Campaign are contrasted against results for more recent high foot implosions. While the simulations suggest that low foot performance was dominated by ablation front instability growth, especially the defect seeded by the capsule support tent, high foot implosions appear to be dominated by hohlraum flux asymmetries, although the support tent still plays a significant role. Finally, for both implosion types, the simulations show reasonable, though not perfect, agreement with the data and suggest that a reliable predictive capability is developing to guide future implosions toward ignition.« less

  11. Three-dimensional simulations of low foot and high foot implosion experiments on the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, D. S.; Weber, C. R.; Milovich, J. L.

    In order to achieve the several hundred Gbar stagnation pressures necessary for inertial confinement fusion ignition, implosion experiments on the National Ignition Facility (NIF) [E. I. Moses et al., Phys. Plasmas 16, 041006 (2009)] require the compression of deuterium-tritium fuel layers by a convergence ratio as high as forty. Such high convergence implosions are subject to degradation by a range of perturbations, including the growth of small-scale defects due to hydrodynamic instabilities, as well as longer scale modulations due to radiation flux asymmetries in the enclosing hohlraum. Due to the broad range of scales involved, and also the genuinely three-dimensionalmore » (3D) character of the flow, accurately modeling NIF implosions remains at the edge of current simulation capabilities. This paper describes the current state of progress of 3D capsule-only simulations of NIF implosions aimed at accurately describing the performance of specific NIF experiments. Current simulations include the effects of hohlraum radiation asymmetries, capsule surface defects, the capsule support tent and fill tube, and use a grid resolution shown to be converged in companion two-dimensional simulations. The results of detailed simulations of low foot implosions from the National Ignition Campaign are contrasted against results for more recent high foot implosions. While the simulations suggest that low foot performance was dominated by ablation front instability growth, especially the defect seeded by the capsule support tent, high foot implosions appear to be dominated by hohlraum flux asymmetries, although the support tent still plays a significant role. For both implosion types, the simulations show reasonable, though not perfect, agreement with the data and suggest that a reliable predictive capability is developing to guide future implosions toward ignition.« less

  12. Three-dimensional simulations of low foot and high foot implosion experiments on the National Ignition Facility

    DOE PAGES

    Clark, D. S.; Weber, C. R.; Milovich, J. L.; ...

    2016-03-14

    In order to achieve the several hundred Gbar stagnation pressures necessary for inertial confinement fusion ignition, implosion experiments on the National Ignition Facility (NIF) [E. I. Moses et al., Phys. Plasmas 16, 041006 (2009)] require the compression of deuterium-tritium fuel layers by a convergence ratio as high as forty. Such high convergence implosions are subject to degradation by a range of perturbations, including the growth of small-scale defects due to hydrodynamic instabilities, as well as longer scale modulations due to radiation flux asymmetries in the enclosing hohlraum. Due to the broad range of scales involved, and also the genuinely three-dimensionalmore » (3D) character of the flow, accurately modeling NIF implosions remains at the edge of current simulation capabilities. This study describes the current state of progress of 3D capsule-only simulations of NIF implosions aimed at accurately describing the performance of specific NIF experiments. Current simulations include the effects of hohlraum radiation asymmetries, capsule surface defects, the capsule support tent and fill tube, and use a grid resolution shown to be converged in companion two-dimensional simulations. The results of detailed simulations of low foot implosions from the National Ignition Campaign are contrasted against results for more recent high foot implosions. While the simulations suggest that low foot performance was dominated by ablation front instability growth, especially the defect seeded by the capsule support tent, high foot implosions appear to be dominated by hohlraum flux asymmetries, although the support tent still plays a significant role. Finally, for both implosion types, the simulations show reasonable, though not perfect, agreement with the data and suggest that a reliable predictive capability is developing to guide future implosions toward ignition.« less

  13. Pathophysiology diabetic foot ulcer

    NASA Astrophysics Data System (ADS)

    Syafril, S.

    2018-03-01

    Diabetes Mellitus (DM) is known to have many complications. Diabetes and its complications are rapidly becoming the world’s most significant cause of morbidity and mortality, and one of the most distressing is Diabetic Foot Ulcer (DFU). Chronic wound complications are a growing concern worldwide, and the effect is a warning to public health and the economy. The etiology of a DFU is multifaceted, and several components cause added together create a sufficient impact on ulceration: neuropathy, vasculopathy, immunopathy, mechanical stress, and neuroarthropathy. There are many classifications of the diabetic foot. About 50% of patients with foot ulcers due to DM present clinical signs of infection. It is essential to manage multifactorial etiology of DFU to get a good outcome.

  14. The 'ABC' of examining foot radiographs.

    PubMed

    Pearse, Eyiyemi O; Klass, Benjamin; Bendall, Stephen P

    2005-11-01

    We report a simple systematic method of assessing foot radiographs that improves diagnostic accuracy and can reduce the incidence of inappropriate management of serious forefoot and midfoot injuries, particularly the Lisfranc-type injury. Five recently appointed senior house officers (SHOs), with no casualty or Orthopaedic experience prior to their appointment, were shown a set of 10 foot radiographs and told the history and examination findings recorded in the casualty notes of each patient within 6 weeks of taking up their posts. They were informed that the radiographs might or might not demonstrate an abnormality. They were asked to make a diagnosis and decide on a management plan. The test was repeated after they were taught the 'ABC' method of evaluating foot radiographs. Diagnostic accuracy improved after SHOs were taught a systematic method of assessing foot radiographs. The proportion of correct diagnoses increased from 0.64 to 0.78 and the probability of recognising Lisfranc injuries increased from 0 to 0.6. The use of this simple method of assessing foot radiographs can reduce the incidence of inappropriate management of serious foot injuries by casualty SHOs, in particular the Lisfranc type injury.

  15. Foot function is well preserved in children and adolescents with juvenile idiopathic arthritis who are optimally managed

    PubMed Central

    Hendry, Gordon J.; Rafferty, Danny; Barn, Ruth; Gardner-Medwin, Janet; Turner, Debbie E.; Woodburn, James

    2013-01-01

    Purpose The objective of this study was to compare disease activity, impairments, disability, foot function and gait characteristics between a well described cohort of juvenile idiopathic arthritis (JIA) patients and normal healthy controls using a 7-segment foot model and three-dimensional gait analysis. Methods Fourteen patients with JIA (mean (standard deviation) age of 12.4 years (3.2)) and a history of foot disease and 10 healthy children (mean (standard deviation) age of 12.5 years (3.4)) underwent three-dimensional gait analysis and plantar pressure analysis to measure biomechanical foot function. Localised disease impact and foot-specific disease activity were determined using the juvenile arthritis foot disability index, rear- and forefoot deformity scores, and clinical and musculoskeletal ultrasound examinations respectively. Mean differences between groups with associated 95% confidence intervals were calculated using the t distribution. Results Mild-to-moderate foot impairments and disability but low levels of disease activity were detected in the JIA group. In comparison with healthy subjects, minor trends towards increased midfoot dorsiflexion and reduced lateral forefoot abduction within a 3–5° range were observed in patients with JIA. The magnitude and timing of remaining kinematic, kinetic and plantar pressure distribution variables during the stance phase were similar for both groups. Conclusion In children and adolescents with JIA, foot function as determined by a multi-segment foot model did not differ from that of normal age- and gender-matched subjects despite moderate foot impairments and disability scores. These findings may indicate that tight control of active foot disease may prevent joint destruction and associated structural and functional impairments. PMID:23142184

  16. Changes in foot and shank coupling due to alterations in foot strike pattern during running.

    PubMed

    Pohl, Michael B; Buckley, John G

    2008-03-01

    Determining if and how the kinematic relationship between adjacent body segments changes when an individual's gait pattern is experimentally manipulated can yield insight into the robustness of the kinematic coupling across the associated joint(s). The aim of this study was to assess the effects on the kinematic coupling between the forefoot, rearfoot and shank during ground contact of running with alteration in foot strike pattern. Twelve subjects ran over-ground using three different foot strike patterns (heel strike, forefoot strike, toe running). Kinematic data were collected of the forefoot, rearfoot and shank, which were modelled as rigid segments. Coupling at the ankle-complex and midfoot joints was assessed using cross-correlation and vector coding techniques. In general good coupling was found between rearfoot frontal plane motion and transverse plane shank rotation regardless of foot strike pattern. Forefoot motion was also strongly coupled with rearfoot frontal plane motion. Subtle differences were noted in the amount of rearfoot eversion transferred into shank internal rotation in the first 10-15% of stance during heel strike running compared to forefoot and toe running, and this was accompanied by small alterations in forefoot kinematics. These findings indicate that during ground contact in running there is strong coupling between the rearfoot and shank via the action of the joints in the ankle-complex. In addition, there was good coupling of both sagittal and transverse plane forefoot with rearfoot frontal plane motion via the action of the midfoot joints.

  17. Room for improvement: patient, parent, and practitioners' perceptions of foot problems and foot care in juvenile idiopathic arthritis.

    PubMed

    Hendry, Gordon J; Turner, Debbie E; Lorgelly, Paula K; Woodburn, James

    2012-11-01

    To explore the perceived impact of disease-related foot problems and foot care in juvenile idiopathic arthritis (JIA) from the perspectives of patients, parents, pediatric rheumatologists, and health professionals. A qualitative study using an interpretative phenomenological approach. Outpatients department, public health service children's hospital. Patients (N=15; 4 adult patients, 2 parents of children with JIA, 3 pediatric rheumatologists, and 6 health professionals) from 2 National Health Service rheumatology centers (1 pediatric and 1 adult). Not applicable. Qualitative outcomes were participants' perceptions elicited using semistructured interviews (telephone or face-to-face) and focus groups using an interpretative phenomenological approach. A data-driven inductive approach to coding and theme development was adopted for transcript analysis. Participants volunteered to take part in a total of 7 interviews and 2 focus groups. The analysis revealed 6 key themes related to the impact of foot problems and perceptions of foot care from respective groups. These were the following: (1) pain, (2) mobility impairment, (3) reduced ability to perform activities of daily living, (4) footwear difficulties, (5) poor referral pathways/delayed access to care, and (6) lack of evidence in support of conservative foot care. Several areas for development of foot care services were identified including a need for improved referral pathways, shorter waiting times for initial consultations, greater attention to patient compliance, and a need for better evidence in support of customized foot orthoses. Several key foot health-related outcomes were identified, which may be of importance for measuring therapeutic response to foot-related interventions. Copyright © 2012 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  18. Deliberate Self-Harm in Adolescents in Oxford, 1985-1995.

    ERIC Educational Resources Information Center

    Hawton, Keith; Fagg, Joan; Simkin, Sue; Bale, Elizabeth; Bond, Alison

    2000-01-01

    Reviews data collected by the Oxford Monitoring System for Attempted Suicide in teenagers between 1985-1995 to determine trends in acts of deliberate self-harm. Notes substantial increase in number of episodes of deliberate self-harm for both males and females. Discusses implications for hospital and counseling professionals and well as…

  19. The experimental verification on the shear bearing capacity of exposed steel column foot

    NASA Astrophysics Data System (ADS)

    Xijin, LIU

    2017-04-01

    In terms of the shear bearing capacity of the exposed steel column foot, there are many researches both home and abroad. However, the majority of the researches are limited to the theoretical analysis sector and few of them make the experimental analysis. In accordance with the prototype of an industrial plant in Beijing, this paper designs the experimental model. The experimental model is composed of six steel structural members in two groups, with three members without shear key and three members with shear key. The paper checks the shear bearing capacity of two groups respectively under different axial forces. The experiment shows: The anchor bolt of the exposed steel column foot features relatively large shear bearing capacity which could not be neglected. The results deducted through calculation methods proposed by this paper under two situations match the experimental results in terms of the shear bearing capacity of the steel column foot. Besides, it also proposed suggestions on revising the Code for Design of Steel Structure in the aspect of setting the shear key in the steel column foot.

  20. Geohydrology of the Valley-Fill Aquifer in the Norwich-Oxford-Brisben Area, Chenango County, New York

    USGS Publications Warehouse

    Hetcher, Kari K.; Miller, Todd S.; Garry, James D.; Reynolds, Richard J.

    2003-01-01

    This set of maps and geohydrologic sections depicts the geology and hydrology of aquifers in the 21.9-square-mile reach of the Chenango River valley between Brisben and North Norwich, N.Y. This report depicts the principal geographic features of the study area; locations of domestic, commercial, and municipal wells from which data were obtained to construct water-table and saturated-thickness maps and five geohydrologic sections; surficial geology; water-table altitude; generalized saturated thickness of the unconfined (water-table) aquifer; generalized thickness of the discontinuous series of confined aquifers; and five geohydrologic sections, all of which are in the northern part of the study area.The unconsolidated material in the Chenango River valley consists primarily of three types of deposits: (1) glaciofluvial material consisting of stratified coarse-grained sediment (sand and gravel) that was deposited by meltwater streams flowing above, below, or next to a glacier; (2) glaciolacustrine material consisting of stratified fine-grained sediment (very fine sand, silt, and clay) that was deposited in lakes that formed at the front of a glacier; and (3) recent alluvial material consisting of stratified fine-to-medium grained sediment (fine-to-medium sand and silt) that was deposited on flood plains.The water-table map was compiled from water-level data obtained from wells completed in the unconfined aquifer, and from altitudes of stream and river surfaces indicated on 1:24,000-scale topographic maps. Depth to the water table ranged from less than 5 feet below land surface near major streams to more than 75 feet on some of the kame terraces along the valley walls. Saturated thickness of the unconfined aquifer ranged from less than 1 foot near Norwich to more than 200 feet at a kame delta north of Oxford.A discontinuous series of confined aquifers is present throughout much of the Chenango River valley north of Oxford. These aquifers consist of kame deposits

  1. The clinical assessment study of the foot (CASF): study protocol for a prospective observational study of foot pain and foot osteoarthritis in the general population

    PubMed Central

    2011-01-01

    Background Symptomatic osteoarthritis (OA) affects approximately 10% of adults aged over 60 years. The foot joint complex is commonly affected by OA, yet there is relatively little research into OA of the foot, compared with other frequently affected sites such as the knee and hand. Existing epidemiological studies of foot OA have focussed predominantly on the first metatarsophalangeal joint at the expense of other joints. This three-year prospective population-based observational cohort study will describe the prevalence of symptomatic radiographic foot OA, relate its occurrence to symptoms, examination findings and life-style-factors, describe the natural history of foot OA, and examine how it presents to, and is diagnosed and managed in primary care. Methods All adults aged 50 years and over registered with four general practices in North Staffordshire, UK, will be invited to participate in a postal Health Survey questionnaire. Respondents to the questionnaire who indicate that they have experienced foot pain in the preceding twelve months will be invited to attend a research clinic for a detailed clinical assessment. This assessment will consist of: clinical interview; physical examination; digital photography of both feet and ankles; plain x-rays of both feet, ankles and hands; ultrasound examination of the plantar fascia; anthropometric measurement; and a further self-complete questionnaire. Follow-up will be undertaken in consenting participants by postal questionnaire at 18 months (clinic attenders only) and three years (clinic attenders and survey participants), and also by review of medical records. Discussion This three-year prospective epidemiological study will combine survey data, comprehensive clinical, x-ray and ultrasound assessment, and review of primary care records to identify radiographic phenotypes of foot OA in a population of community-dwelling older adults, and describe their impact on symptoms, function and clinical examination findings

  2. Estimation of stature from hand and foot dimensions in a Korean population.

    PubMed

    Kim, Wonjoon; Kim, Yong Min; Yun, Myung Hwan

    2018-04-01

    The estimation of stature using foot and hand dimensions is essential in the process of personal identification. The shapes of feet and hands vary depending on races and gender, and it is of great importance to design an adequate equation in consideration of variances to estimate stature. This study is based on a total of 5,195 South Korean males and females, aged from 20 to 59 years. Body dimensions of stature, hand length, hand breadth, foot length, and foot breadth were measured according to standard anthropometric procedures. The independent t-test was performed in order to verify significant gender-induced differences and the results showed that there was significant difference between males and females for all the foot-hand dimensions (p<0.01). All dimensions showed a positive and statistically significant relation with stature in both genders (p<0.01). For both genders, the foot length showed highest correlation, whereas the hand breadth showed least correlation. The stepwise regression analysis was conducted, and the results showed that males had the highest prediction accuracy in the regression equation consisting of foot length and hand length (R 2 =0.532), whereas females had the highest accuracy in the regression model consisting of foot length and hand breadth (R 2 =0.437) The findings of this study indicated that hand and foot dimensions can be used to predict the stature of South Korean in the forensic science field. Copyright © 2018 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  3. New Model Exhaust System Supports Testing in NASA Lewis' 10- by 10-Foot Supersonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Roeder, James W., Jr.

    1998-01-01

    In early 1996, the ability to run NASA Lewis Research Center's Abe Silverstein 10- by 10- Foot Supersonic Wind Tunnel (10x10) at subsonic test section speeds was reestablished. Taking advantage of this new speed range, a subsonic research test program was scheduled for the 10x10 in the fall of 1996. However, many subsonic aircraft test models require an exhaust source to simulate main engine flow, engine bleed flows, and other phenomena. This was also true of the proposed test model, but at the time the 10x10 did not have a model exhaust capability. So, through an in-house effort over a period of only 5 months, a new model exhaust system was designed, installed, checked out, and made ready in time to support the scheduled test program.

  4. Taiwanese adult foot shape classification using 3D scanning data.

    PubMed

    Lee, Yu-Chi; Wang, Mao-Jiun

    2015-01-01

    This study classifies the foot shapes of Taiwanese using 3D foot scanning data from 2000 males and 1000 females. Nine foot dimensions relative to foot length and absolute measures in the common foot length categories were applied to compare the gender differences. Using foot breadth in % foot length (% FL), ball of foot length in % FL and arch height in % FL as feature parameters, three foot shape types for males and females can be classified. Significant gender differences were found in seven of the nine foot dimensions. Females had greater ball of foot length than males (0.2% FL). When comparing feet of the same foot length, males had greater breadth, girth and height dimensions than females, except for toe height. In addition, ethnic differences in foot shape were also observed. The findings can provide very useful information for building gender-specific shoe lasts and designing footwear insoles. 3D foot scanning data of 2000 males and 1000 females were classified into three different footshapes for males and females, respectively. Gender and ethnic differences on foot shape were also compared. The finding scan provide very useful information for gender-specific shoe last design and footwear production.

  5. [Foot reflexology massage: a clinical study].

    PubMed

    Kesselring, A

    1999-02-01

    The aim of the study was to investigate the possible usefulness of foot reflexology on the recovery after a surgical intervention. 130 patients participated in the study. They underwent abdominal surgery under full anesthesia for different, but exclusively gynecological reasons. Foot reflexology investigated in this study was applied only for a few days for each patient. The following parameters were recorded: the subjective, self-assessed, general condition, pain intensity, movement of the bowels, micturition and sleep, beginning on the day before operation until day 10. Two other treatments served as controls, a simple massage of the foot or a personal conversation. The simple massage turned out to be a relaxing, positive experience, whereas foot reflexology had various effects, some of them were even negative. The conclusion was that foot reflexology is not recommended for acute, abdominal postsurgical situations in gynecology because it can occasionally trigger abdominal pain. This project is one of the few studies planned, conducted and performed by the nursing staff.

  6. Foot osteoarthritis: latest evidence and developments

    PubMed Central

    Roddy, Edward; Menz, Hylton B.

    2018-01-01

    Foot osteoarthritis (OA) is a common problem in older adults yet is under-researched compared to knee or hand OA. Most existing studies focus on the first metatarsophalangeal joint, with evidence relating to midfoot OA being particularly sparse. Symptomatic radiographic foot OA affects 17% of adults aged 50 years and over. The first metatarsophalangeal joint is most commonly affected, followed by the second cuneometatarsal and talonavicular joints. Epidemiological studies suggest the existence of distinct first metatarsophalangeal joint and polyarticular phenotypes, which have differing clinical and risk factor profiles. There are few randomized controlled trials in foot OA. Existing trials provide some evidence of the effectiveness for pain relief of physical therapy, rocker-sole shoes, foot orthoses and surgical interventions in first metatarsophalangeal joint OA and prefabricated orthoses in midfoot OA. Prospective epidemiological studies and randomized trials are needed to establish the incidence, progression and prognosis of foot OA and determine the effectiveness of both commonly used and more novel interventions. PMID:29619094

  7. Implementation of foot thermometry plus mHealth to prevent diabetic foot ulcers: study protocol for a randomized controlled trial.

    PubMed

    Lazo-Porras, Maria; Bernabe-Ortiz, Antonio; Sacksteder, Katherine A; Gilman, Robert H; Malaga, German; Armstrong, David G; Miranda, J Jaime

    2016-04-19

    Diabetic foot neuropathy (DFN) is one of the most important complications of diabetes mellitus; its early diagnosis and intervention can prevent foot ulcers and the need for amputation. Thermometry, measuring the temperature of the feet, is a promising emerging modality for diabetic foot ulcer prevention. However, patient compliance with at-home monitoring is concerning. Delivering messages to remind patients to perform thermometry and foot care might be helpful to guarantee regular foot monitoring. This trial was designed to compare the incidence of diabetic foot ulcers (DFUs) between participants who receive thermometry alone and those who receive thermometry as well as mHealth (SMS and voice messaging) over a year-long study period. This is an evaluator-blinded, randomized, 12-month trial. Individuals with a diagnosis of type 2 diabetes mellitus, aged between 18-80 years, having a present dorsalis pedis pulse in both feet, are in risk group 2 or 3 using the diabetic foot risk classification system (as specified by the International Working Group on the Diabetic Foot), have an operating cell phone or a caregiver with an operating cell phone, and have the ability to provide informed consent will be eligible to participate in the study. Recruitment will be performed in diabetes outpatient clinics at two Ministry of Health tertiary hospitals in Lima, Peru. participants in both groups will receive education about foot care at the beginning of the study and they will be provided with a thermometry device (TempStat™). TempStat™ is a tool that captures a thermal image of the feet, which, depending on the temperature of the feet, shows different colors. In this study, if a participant notes a single yellow image or variance between one foot and the contralateral foot, they will be prompted to notify a nurse to evaluate their activity within the previous 2 weeks and make appropriate recommendations. In addition to thermometry, participants in the intervention arm

  8. Continuity and Change: The Integration of Oxford University's Libraries

    ERIC Educational Resources Information Center

    Moran, Barbara B.

    2005-01-01

    Prior to 1997, the University of Oxford in Great Britain had approximately one hundred autonomous libraries with little coordination of services, collection development, or management among them. In that year a new director was hired with the mandate to integrate many of these libraries into one centralized system. Over the past seven years…

  9. A rasch analysis of the Manchester foot pain and disability index

    PubMed Central

    Muller, Sara; Roddy, Edward

    2009-01-01

    Background There is currently no interval-level measure of foot-related disability and this has hampered research in this area. The Manchester Foot Pain and Disability Index (FPDI) could potentially fill this gap. Objective To assess the fit of the three subscales (function, pain, appearance) of the FPDI to the Rasch unidimensional measurement model in order to form interval-level scores. Methods A two-stage postal survey at a general practice in the UK collected data from 149 adults aged 50 years and over with foot pain. The 17 FPDI items, in three subscales, were assessed for their fit to the Rasch model. Checks were carried out for differential item functioning by age and gender. Results The function and pain items fit the Rasch model and interval-level scores can be constructed. There were too few people without extreme scores on the appearance subscale to allow fit to the Rasch model to be tested. Conclusion The items from the FPDI function and pain subscales can be used to obtain interval level scores for these factors for use in future research studies in older adults. Further work is needed to establish the interval nature of these subscale scores in more diverse populations and to establish the measurement properties of these interval-level scores. PMID:19878536

  10. Delving into foot mechanics and related problems.

    PubMed

    Zanni, Guido R; Wick, Jeannette Y

    2011-12-01

    Foot problems are common in elders, stemming from age-related podiatric mechanical problems or disease-induced pathology. Common mechanical problems include hammertoe, arthritis, bunions, and metatarsalgia. Disease-induced conditions include onychomycosis, athlete's foot, plantar warts, gout, and diabetes. Treatment is case-specific and often involves multiple interventions, including lifestyle changes. Prevention and treatment strategies are presented. Patient education on proper foot care is effective.When patients are unable to reach or see their feet, staff assumes responsibility for foot care.

  11. Comparison of plantar pressure distribution in CAD-CAM and prefabricated foot orthoses in patients with flexible flatfeet.

    PubMed

    Khodaei, Banafsheh; Saeedi, Hassan; Jalali, Maryam; Farzadi, Maede; Norouzi, Ehsan

    2017-12-01

    The effect of foot orthoses on plantar pressure distribution has been proven by researchers but there are some controversies about advantages of custom-made foot orthoses to less expensive prefabricated foot orthoses. Nineteen flatfeet adults between 18 and 45 participated in this study. CAD-CAM foot orthoses were made for these patients according to their foot scan. Prefabricated foot orthoses were prepared according to their foot size. Plantar pressure, force and contact area were measured using pedar ® -x in-shoe system wearing shoe alone, wearing CAD-CAM foot orthoses and wearing prefabricated foot orthoses. Repeated measures ANOVA model with post-hoc, Bonferroni comparison were used to test differences. CAD-CAM and prefabricated foot orthoses both decreased pressure and force under 2nd, 3-5 metatarsal and heel regions comparing to shoe alone condition. CAD-CAM foot orthosis increased pressure under lateral toe region in comparison to shoe alone and prefabricated foot orthosis. Both foot orthoses increased pressure and contact area in medial midfoot region comparing to shoe alone condition. Increased forces were seen at hallux and lateral toes by prefabricated foot orthoses in comparison with CAD-CAM foot orthoses and control condition, respectively. According to the results, both foot orthoses could decrease the pressure under heel and metatarsal area. It seems that the special design of CAD-CAM foot orthoses could not make great differences in plantar pressure distribution in this sample. Further research is required to determine whether these results are associated with different scan systems or design software. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Foot burns: epidemiology and management.

    PubMed

    Hemington-Gorse, S; Pellard, S; Wilson-Jones, N; Potokar, T

    2007-12-01

    This is a retrospective study of the epidemiology and management of isolated foot burns presenting to the Welsh Centre for Burns from January 1998 to December 2002. A total of 289 were treated of which 233 were included in this study. Approximately 40% were in the paediatric age group and the gender distribution varied dramatically for adults and children. In the adult group the male:female ratio was 3.5:1, however in the paediatric group the male:female ratio was more equal (1.6:1). Scald burns (65%) formed the largest group in children and scald (35%) and chemical burns (32%) in adults. Foot burns have a complication rate of 18% and prolonged hospital stay. Complications include hypertrophic scarring, graft loss/delayed healing and wound infection. Although isolated foot burns represent a small body surface area, over half require treatment as in patients to allow for initial aggressive conservative management of elevation and regular wound cleansing to avoid complications. This study suggests a protocol for the initial acute management of foot burns. This protocol states immediate referral of all foot burns to a burn centre, admission of these burns for 24-48 h for elevation, regular wound cleansing with change of dressings and prophylactic antibiotics.

  13. Physical management of the Charcot foot.

    PubMed

    Crews, Ryan T; Wrobel, James S

    2008-01-01

    Charcot arthropathy places individuals at risk of developing diabetic foot ulcers and potentially subsequent limb amputation by means of altering the anatomy of the foot and ankle. Physical trauma is an important component to the etiology of the condition. The physical management of the Charcot foot is concerned with minimizing the stress applied to the affected foot and ankle skeletal structure. The most appropriate device is temporally dependent on the progression of the disease. At the initiation of Charcot arthropathy, care by total contact cast is recommended. As the affected bones begin to heal, use of a removable cast walker may be implemented. When the bones reach a fixed state, appropriate footwear is dictated by the degree of deformity.

  14. The High-Foot Implosion Campaign on the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Hurricane, Omar

    2013-10-01

    The `High-Foot' platform manipulates the laser pulse-shape coming from the National Ignition Facility (NIF) laser to create an indirect drive 3-shock implosion that is significantly more robust against instability growth involving the ablator and also modestly reduces implosion convergence ratio. This tactic gives up on theoretical high-gain in an inertial confinement fusion implosion in order to obtain better control of the implosion and bring experimental performance in-line with calculated performance, yet keeps the absolute capsule performance relatively high. This approach is generally consistent with the philosophy laid out in a recent international workshop on the topic of ignition science on NIF [``Workshop on the Science of Fusion Ignition on NIF,'' Lawrence Livermore National Laboratory Report, LLNL-TR-570412 (2012). Op cit. V. Gocharov and O.A. Hurricane, ``Panel 3 Report: Implosion Hydrodynamics,'' LLNL-TR-562104 (2012)]. Side benefits our the High-Foot pulse-shape modification appear to be improvements in hohlraum behavior--less wall motion achieved through higher pressure He gas fill and improved inner cone laser beam propagation. Another consequence of the `High-Foot' is a higher fuel adiabat, so there is some relation to direct-drive experiments performed at the Laboratory for Laser Energetics (LLE). In this talk, we will cover the various experimental and theoretical motivations for the High-Foot drive as well as cover the experimental results that have come out of the High-Foot experimental campaign. Most notably, at the time of this writing record DT layer implosion performance with record low levels of inferred mix and excellent agreement with one-dimensional implosion models without the aid of mix models. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  15. Prediction of anthropometric foot characteristics in children.

    PubMed

    Morrison, Stewart C; Durward, Brian R; Watt, Gordon F; Donaldson, Malcolm D C

    2009-01-01

    The establishment of growth reference values is needed in pediatric practice where pathologic conditions can have a detrimental effect on the growth and development of the pediatric foot. This study aims to use multiple regression to evaluate the effects of multiple predictor variables (height, age, body mass, and gender) on anthropometric characteristics of the peripubescent foot. Two hundred children aged 9 to 12 years were recruited, and three anthropometric measurements of the pediatric foot were recorded (foot length, forefoot width, and navicular height). Multiple regression analysis was conducted, and coefficients for gender, height, and body mass all had significant relationships for the prediction of forefoot width and foot length (P < or = .05, r > or = 0.7). The coefficients for gender and body mass were not significant for the prediction of navicular height (P > or = .05), whereas height was (P < or = .05). Normative growth reference values and prognostic regression equations are presented for the peripubescent foot.

  16. Narrative review: Diabetic foot and infrared thermography

    NASA Astrophysics Data System (ADS)

    Hernandez-Contreras, D.; Peregrina-Barreto, H.; Rangel-Magdaleno, J.; Gonzalez-Bernal, J.

    2016-09-01

    Diabetic foot is one of the major complications experienced by diabetic patients. An early identification and appropriate treatment of diabetic foot problems can prevent devastating consequences such as limb amputation. Several studies have demonstrated that temperature variations in the plantar region can be related to diabetic foot problems. Infrared thermography has been successfully used to detect complication related to diabetic foot, mainly because it is presented as a rapid, non-contact and non-invasive technique to visualize the temperature distribution of the feet. In this review, an overview of studies that relate foot temperature with diabetic foot problems through infrared thermography is presented. Through this research, it can be appreciated the potential of infrared thermography and the benefits that this technique present in this application. This paper also presents the different methods for thermogram analysis and the advantages and disadvantages of each one, being the asymmetric analysis the method most used so far.

  17. Trends in lumber processing in the western United States. Part I: board foot Scribner volume per cubic foot of timber

    Treesearch

    Charles E. Keegan; Todd A. Morgan; Keith A. Blatner; Jean M. Daniels

    2010-01-01

    This article describes trends in board foot Scribner volume per cubic foot of timber for logs processed by sawmills in the western United States. Board foot to cubic foot (BF/CF) ratios for the period from 2000 through 2006 ranged from 3.70 in Montana to 5.71 in the Four Corners Region (Arizona, Colorado, New Mexico, and Utah). Sawmills in the Four Corners Region,...

  18. Athlete's Foot.

    PubMed

    Brodin, M B

    1979-03-01

    The term athlete's foot doesn't accurately describe all maladies that afflict athletes' feet. Recognizing clinical characteristics and laboratory work will help physicians correctly diagnose and treat tineapedis, contact dermatitis, and eczema.

  19. Welcome to Journal of Foot and Ankle Research: a new open access journal for foot health professionals

    PubMed Central

    Menz, Hylton B; Potter, Mike J; Borthwick, Alan M; Landorf, Karl B

    2008-01-01

    Journal of Foot and Ankle Research (JFAR) is a new, open access, peer-reviewed online journal that encompasses all aspects of policy, organisation, delivery and clinical practice related to the assessment, diagnosis, prevention and management of foot and ankle disorders. JFAR will cover a wide range of clinical subject areas, including diabetology, paediatrics, sports medicine, gerontology and geriatrics, foot surgery, physical therapy, dermatology, wound management, radiology, biomechanics and bioengineering, orthotics and prosthetics, as well the broad areas of epidemiology, policy, organisation and delivery of services related to foot and ankle care. The journal encourages submission from all health professionals who manage lower limb conditions, including podiatrists, nurses, physical therapists and physiotherapists, orthopaedists, manual therapists, medical specialists and general medical practitioners, as well as health service researchers concerned with foot and ankle care. All manuscripts will undergo open peer review, and all accepted manuscripts will be freely available on-line using the open access platform of BioMed Central. PMID:18822156

  20. Board-Foot and cubic-foot volume tables for Alaska-cedar in southeast Alaska.

    Treesearch

    Donald J. DeMars

    1996-01-01

    Four tables give cubic-foot and board-foot volume estimates for Alaska-cedar given breast-height diameter outside bark (DBHOB) and either total tree height or number of logs to a 6-inch top. The values for DBHOB and total tree height (or number of logs in the tree) that are in the tables have been limited to the ranges these variables had in the sample data.

  1. Evaluation of the Oxford Classification of IgA nephropathy: a systematic review and meta-analysis.

    PubMed

    Lv, Jicheng; Shi, Sufang; Xu, Damin; Zhang, Hong; Troyanov, Stéphan; Cattran, Daniel C; Wang, Haiyan

    2013-11-01

    The Oxford Classification of the pathology of immunoglobulin A (IgA) nephropathy, developed in 2009, is highly predictive of renal prognosis. It has been validated in different populations, but the results remain inconsistent. Systematic review and meta-analysis. Patients with biopsy-proven primary IgA nephropathy. Studies assessing the Oxford Classification of IgA nephropathy published between January 2009 and December 2012 were included following systematic searching of the MEDLINE and EMBASE databases. 4 pathologic lesions of the Oxford Classification: mesangial hypercellularity (M), endocapillary hypercellularity (E), segmental glomerulosclerosis (S), and tubular atrophy/interstitial fibrosis (T). Kidney failure defined as doubled serum creatinine level, 50% decline in estimated glomerular filtration rate, or end-stage kidney disease. 16 retrospective cohort studies with 3,893 patients and 570 kidney failure events were included. In a multivariate model, HRs for kidney failure were 0.6 (95% CI, 0.5-0.8; P < 0.001), 1.8 (95% CI, 1.4-2.4; P < 0.001), and 3.2 (95% CI, 1.8-5.6; P < 0.001) for scores of M0 (mesangial hypercellularity score ≤0.5), S1 (presence of segmental glomerulosclerosis), and T1/2 (>25% tubular atrophy/interstitial fibrosis), respectively, without evidence of heterogeneity. Pooled results showed that E lesions were not associated with kidney failure (HR, 1.4; 95% CI, 0.9-2.0; P = 0.1), with evidence of heterogeneity (I(2) = 54.1%; P = 0.01). Crescent (C) lesions were associated with kidney failure (HR, 2.3; 95% CI, 1.6-3.4; P < 0.001), with no evidence of heterogeneity (I(2) = 14.7%; P = 0.3). All studies were retrospective. This was not an individual-patient-data meta-analysis. This study suggests that M, S, T, and C lesions, but not E lesions, are associated strongly with progression to kidney failure and thus should be included in the Oxford Classification system. Copyright © 2013 National Kidney Foundation, Inc. Published by Elsevier Inc

  2. Foot and ankle problems in Muay Thai kickboxers.

    PubMed

    Vaseenon, Tanawat; Intharasompan, Piyapong; Wattanarojanapom, Thongaek; Theeraamphon, Nipon; Auephanviriyakul, Sansanee; Phisitkul, Phinit

    2015-01-01

    Muay Thai kickboxing is a common sport that uses the foot and ankle in fighting. Muay Thai kickboxing trainees usually receive training in Thailand Foot and ankle problems in this group ofpeople who usually train barefoot remain unexplored To evaluate the prevalence of common foot and ankle problems in Muay Thai kick boxers. The present study is a cross-sectional survey of Muay Thai kick boxers practicing in northern Thailand. Interviews were conducted and foot and ankle examinations were evaluated Foot morphology was examined using a Harris mat footprint. One hundred and twenty-three Muay Thai kickbox ersinnine training gyms were included in this study. Common foot and ankle problems found in the Muay Thai kick boxers were callosity (59%), gastrocnemius contracture (57%), toe deformities (49.3%), wounds (10%) and heel pain (9%). Callosity was most commonly found on the forefoot (77.5%), on the plantar first metatarsal (55.3%) and on the big toe (33.3%). An association was found between a tight heel cord and a history of foot injury with prolonged periods of weekly training. Toe deformities such as hallux rigidus (37.6%) were also associated with prolonged periods of training (p = 0.001). No correlation was found between type of foot arch and foot and ankle problems. Plantar forefoot callosities and wounds as well as toe deformities including tight heel cords are some of the foot and ankle problems commonly found in Muay Thai kick boxers. They are associated with prolonged periods of barefoot training. The unique pattern of training and of the kicks in Muay Thai might be a path mechanism, leading to the development of foot and ankle problems.

  3. [Effects of foot reflexology on essential hypertension patients].

    PubMed

    Park, Hyoung-Sook; Cho, Gyoo-Yeong

    2004-08-01

    This study was to evaluate the effects of foot reflexology on blood pressure, serum lipids level and life satisfaction in essential hypertension patients. The research design used was a nonequivalent control group pretest-posttest design. Foot Reflexology was used as the experimental treatment from June 23rd, 2003 until August 31st, 2003. Thirty-four subjects were assigned to an experimental group(18) and control group(16). Foot Reflexology was administered twice a week for 6 weeks and self foot Reflexology was administered twice a week for 4 weeks on the experimental group. There was a significant decrease in systolic blood pressure but no significant decrease in diastolic pressure in the experimental group compared to the control group. The total cholesterol level in the experimental group compared to the control group was not significantly decreased after foot reflexology. However, the triglyceride level in the experimental group compared to the control group was significantly decreased after foot reflexology. On the other hand, high density lipoprotein and low density lipoprotein levels in the experimental group compared to the control group was not significantly decreased after foot reflexology. Life satisfaction in the experimental group compared to the control group was significantly improved after foot reflexology. The results proved that foot reflexology was an effective nursing intervention to decrease systolic pressure, and triglyceride but not for the blood cholesterol and to improve life satisfaction. Therefore, blood cholesterol should be further evaluated in a larger group of subjects and for a longer period. Further research is regarded as necessary to evaluate and to compare effects of self-foot reflexology and foot reflexology.

  4. Outcome of orthoses intervention in the rheumatoid foot.

    PubMed

    Kavlak, Yasemin; Uygur, Fatma; Korkmaz, Cengiz; Bek, Nilgün

    2003-06-01

    This study was carried out to determine the effect of foot orthoses on pain, gait, and energy expenditure in patients with rheumatoid arthritis. Eighteen patients were evaluated for these parameters. Each patient was given a foot insert or shoe modification suitable for his or her foot deformity. Following 3 months of orthosis use, a significant difference was found in regards to pain (p < .05), step length and stride length (p < .05), and physiological cost index (p < .05). The results suggest that foot orthoses are an important feature in the rehabilitation of the rheumatoid foot.

  5. Diagnostic considerations of lateral column foot pain in athletes.

    PubMed

    Traister, Eric; Simons, Stephen

    2014-01-01

    Foot maladies are often classified descriptively by general foot locations, i.e., forefoot, midfoot, and rearfoot. However, common vernacular verbiage, implicating a common biomechanical purpose, also applies pathology to the medial or lateral foot column. Although imprecisely defined, lateral column injuries to the foot encompass conditions that affect any of the lateral side of the foot from the calcaneus to the toes. The lateral column of the foot includes the calcaneus, the cuboid, the fourth and fifth metatarsals as well as the calcaneocuboid, cuboido-metatarsal, and intermetatarsal joints. It may be helpful to think in a "lateral column" fashion when evaluating and treating certain lateral foot injuries, load patterns, and biomechanical or anatomical faults. Misdiagnosed injuries in this area of the foot can be a source of great morbidity to the athlete. It is important for the clinician to be aware of common conditions presenting as pain to the lateral side of the foot.

  6. Three dimensional design, simulation and optimization of a novel, universal diabetic foot offloading orthosis

    NASA Astrophysics Data System (ADS)

    Sukumar, Chand; Ramachandran, K. I.

    2016-09-01

    Leg amputation is a major consequence of aggregated foot ulceration in diabetic patients. A common sense based treatment approach for diabetic foot ulceration is foot offloading where the patient is required to wear a foot offloading orthosis during the entire treatment course. Removable walker is an excellent foot offloading modality compared to the golden standard solution - total contact cast and felt padding. Commercially available foot offloaders are generally customized with huge cost and less patient compliance. This work suggests an optimized 3D model of a new type light weight removable foot offloading orthosis for diabetic patients. The device has simple adjustable features which make this suitable for wide range of patients with weight of 35 to 74 kg and height of 137 to 180 cm. Foot plate of this orthosis is unisexual, with a size adjustability of (US size) 6 to 10. Materials like Aluminum alloy 6061-T6, Acrylonitrile Butadiene Styrene (ABS) and Polyurethane acted as the key player in reducing weight of the device to 0.804 kg. Static analysis of this device indicated that maximum stress developed in this device under a load of 1000 N is only 37.8 MPa, with a small deflection of 0.150 cm and factor of safety of 3.28, keeping the safety limits, whereas dynamic analysis results assures the load bearing capacity of this device. Thus, the proposed device can be safely used as an orthosis for offloading diabetic ulcerated foot.

  7. Effects of kinesiotaping on foot posture in participants with pronated foot: a quasi-randomised, double-blind study.

    PubMed

    Luque-Suarez, Alejandro; Gijon-Nogueron, Gabriel; Baron-Lopez, Francisco Javier; Labajos-Manzanares, Maria Teresa; Hush, Julia; Hancock, Mark Jonathan

    2014-03-01

    To investigate whether kinesiotaping improves excessive foot pronation compared with sham kinesiotaping. Quasi-randomised, double-blind study. One primary care centre. One hundred and thirty participants were screened for inclusion. Sixty-eight participants with pronated feet [Foot Posture Index (FPI)≥ 6] were enrolled, and the follow-up rate was 100%. Participants were allocated into one of two groups: an experimental kinesiotaping group (KT1) and a sham taping group (KT2). Measures were collected by a blinded assessor at baseline, and 1 minute, 10 minutes, 60 minutes and 24 hours after taping. The primary outcome was total FPI score, and the secondary outcome was rear-foot FPI score. There were no significant differences in total FPI score between kinesiotaping and sham taping at any time point. Similarly, there were no significant differences in rear-foot FPI score, apart from at 60-minute follow-up when the difference between groups was significant (P=0.04) but the effect size was very small (0.85 points on the rear-foot FPI score between -6 and +6). Kinesiotaping does not correct foot pronation compared with sham kinesiotaping in people with pronated feet. Copyright © 2013 Chartered Society of Physiotherapy. All rights reserved.

  8. Vertical/Short Takeoff and Landing Model in the 10- by 10-Foot Supersonic Wind Tunnel

    NASA Image and Video Library

    1979-05-21

    A technician checks a 0.25-scale engine model of a Vought Corporation V-530 engine in the test section of the 10- by 10-Foot Supersonic Wind Tunnel at the National Aeronautics and Space Administration (NASA) Lewis Research Center. Vought created a low-drag tandem-fan Vertical/Short and Takeoff and Landing (V/STOL) engine in the mid-1970s, designated as the V-530. The first fan on the tandem-fan engine was supplied with air through a traditional subsonic inlet, seen on the lower front of the engine. The air was exhausted through the nacelle during normal flight and directed down during takeoffs. The rear fan was supplied by the oval-shaped top inlet during all phases of the flight. The second fan exhausted its air through a rear vectorable nozzle. NASA Lewis and Vought partnered in the late 1970s to collect an array of inlet and nozzle design information on the tandem fan engines for the Navy. Vought created this .25-scale model of the V-530 for extensive testing in Lewis' 10- by 10-foot tunnel. During an early series of tests, the front fan was covered, and a turbofan simulator was used to supply air to the rear fan. The researchers then analyzed the performance of only the front fan inlet. During the final series of tests, the flow from the front fan was used to supply airflow to the rear fan. The researchers studied the inlet's recovery, distortion, and angle-of-attack limits over various flight conditions.

  9. Scale Model of Agena/Mariner-C in the 8- by 6-Foot Supersonic Wind Tunnel

    NASA Image and Video Library

    1964-02-21

    Researcher Bobby Sanders examines a 0.10-scale model of the Mariner-C shroud and Agena rocket in the 8- by 6-Foot Supersonic Wind Tunnel at the National Aeronautics and Space Administration (NASA) Lewis Research Center. Mariner-C and Mariner-D were identical spacecraft designed by the Jet Propulsion Laboratory to flyby Mars and photograph the Martian surface. The two Mariner spacecraft were launched by Atlas-Agena-D rockets. Lewis had taken over management of the Agena Program in October 1962. Lewis researchers investigated two different types of shrouds for the Mariner missions—an over-the-nose design and a backup pyrotechnic design. The new shroud was wider in diameter than the Agena rocket, so there was concern that this disparity might create air flow instability that could damage the shroud or destroy the vehicle. The tests in the 8- by 6 tunnel simulated launch speeds from Mach 0.56 to 1.96. Afterwards the Agena-Mariner-C model was studied in the 10- by 10-Foot Supersonic Wind Tunnel at speeds of Mach 2.0 to 3.5. Mariner-C was launched on November 4, 1964, but the payload shroud did not jettison properly and the spacecraft’s battery power did not function. The mission ended unsuccessfully two days later. Mariner-D was launched on November 28, 1964 and became the first successful mission to Mars. It was the first time a planet was photographed from space. Mariner-D’s 21 photographs revealed an inhospitable and barren landscape.

  10. Comparison of foot pain and foot care among rheumatoid arthritis patients taking and not taking anti-TNFα therapy: an epidemiological study.

    PubMed

    Otter, S J; Lucas, K; Springett, K; Moore, A; Davies, K; Young, A; Walker-Bone, K

    2011-11-01

    Epidemiological studies report foot pain affects more than 90% of people with rheumatoid arthritis (RA). Most data about foot involvement in RA were collected prior to the availability of novel treatments such as biologics. The objective of this study is to compare the prevalence of foot symptoms, frequency of foot examination, and access to foot care services among RA patients currently treated with anti-TNFα to those not receiving biologics. This study is a cross-sectional epidemiological study: a 28-item self-administered questionnaire was posted to 1,040 people with RA throughout the UK. Overall, 585 (55%) useable replies were received, and 120 (20.5%) respondents were currently taking anti-TNFα medication. Prevalence of current foot pain was 99% among the biologics group compared with 76% not treated with biologics. Stiffness, swelling, and numbness in the feet were all significantly more common in the anti-TNFα group (P < 0.05). Most respondents (90%) taking biologics discussed their foot pain with their rheumatologist, but only 70% were receiving podiatry (compared to 78% not taking anti-TNFα). Subjects reported that their feet were examined significantly less frequently (P < 0.001) than their hands. Foot complaints are common in this group, and allied health professions could enhance rheumatological care by undertaking foot assessment.

  11. Athlete's foot

    MedlinePlus

    ... you: Wear closed shoes, especially if they are plastic-lined Keep your feet wet for long periods ... can completely dry between wearings. Do not wear plastic-lined shoes. If athlete's foot does not get ...

  12. Biomechanics of ramp descent in unilateral trans-tibial amputees: Comparison of a microprocessor controlled foot with conventional ankle-foot mechanisms.

    PubMed

    Struchkov, Vasily; Buckley, John G

    2016-02-01

    Walking down slopes and/or over uneven terrain is problematic for unilateral trans-tibial amputees. Accordingly, 'ankle' devices have been added to some dynamic-response feet. This study determined whether use of a microprocessor controlled passive-articulating hydraulic ankle-foot device improved the gait biomechanics of ramp descent in comparison to conventional ankle-foot mechanisms. Nine active unilateral trans-tibial amputees repeatedly walked down a 5° ramp, using a hydraulic ankle-foot with microprocessor active or inactive or using a comparable foot with rubber ball-joint (elastic) 'ankle' device. When inactive the hydraulic unit's resistances were those deemed to be optimum for level-ground walking, and when active, the plantar- and dorsi-flexion resistances switched to a ramp-descent mode. Residual limb kinematics, joints moments/powers and prosthetic foot power absorption/return were compared across ankle types using ANOVA. Foot-flat was attained fastest with the elastic foot and second fastest with the active hydraulic foot (P<0.001). Prosthetic shank single-support mean rotation velocity (p =0.006), and the flexion (P<0.001) and negative work done at the residual knee (P=0.08) were reduced, and negative work done by the ankle-foot increased (P<0.001) when using the active hydraulic compared to the other two ankle types. The greater negative 'ankle' work done when using the active hydraulic compared to other two ankle types, explains why there was a corresponding reduction in flexion and negative work at the residual knee. These findings suggest that use of a microprocessor controlled hydraulic foot will reduce the biomechanical compensations used to walk down slopes. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Diabetic foot ulcers. Pathophysiology, assessment, and therapy.

    PubMed Central

    Bowering, C. K.

    2001-01-01

    OBJECTIVE: To review underlying causes of diabetic foot ulceration, provide a practical assessment of patients at risk, and outline an evidence-based approach to therapy for diabetic patients with foot ulcers. QUALITY OF EVIDENCE: A MEDLINE search was conducted for the period from 1979 to 1999 for articles relating to diabetic foot ulcers. Most studies found were case series or small controlled trials. MAIN MESSAGE: Foot ulcers in diabetic patients are common and frequently lead to lower limb amputation unless a prompt, rational, multidisciplinary approach to therapy is taken. Factors that affect development and healing of diabetic patients' foot ulcers include the degree of metabolic control, the presence of ischemia or infection, and continuing trauma to feet from excessive plantar pressure or poorly fitting shoes. Appropriate wound care for diabetic patients addresses these issues and provides optimal local ulcer therapy with débridement of necrotic tissue and provision of a moist wound-healing environment. Therapies that have no known therapeutic value, such as foot soaking and topical antiseptics, can actually be harmful and should be avoided. CONCLUSION: Family physicians are often primary medical contacts for patients with diabetes. Patients should be screened regularly for diabetic foot complications, and preventive measures should be initiated for those at risk of ulceration. PMID:11398715

  14. Diabetic foot ulcers. Pathophysiology, assessment, and therapy.

    PubMed

    Bowering, C K

    2001-05-01

    To review underlying causes of diabetic foot ulceration, provide a practical assessment of patients at risk, and outline an evidence-based approach to therapy for diabetic patients with foot ulcers. A MEDLINE search was conducted for the period from 1979 to 1999 for articles relating to diabetic foot ulcers. Most studies found were case series or small controlled trials. Foot ulcers in diabetic patients are common and frequently lead to lower limb amputation unless a prompt, rational, multidisciplinary approach to therapy is taken. Factors that affect development and healing of diabetic patients' foot ulcers include the degree of metabolic control, the presence of ischemia or infection, and continuing trauma to feet from excessive plantar pressure or poorly fitting shoes. Appropriate wound care for diabetic patients addresses these issues and provides optimal local ulcer therapy with débridement of necrotic tissue and provision of a moist wound-healing environment. Therapies that have no known therapeutic value, such as foot soaking and topical antiseptics, can actually be harmful and should be avoided. Family physicians are often primary medical contacts for patients with diabetes. Patients should be screened regularly for diabetic foot complications, and preventive measures should be initiated for those at risk of ulceration.

  15. Diabetic Foot Complications Despite Successful Pancreas Transplantation.

    PubMed

    Seo, Dong-Kyo; Lee, Ho Seong; Park, Jungu; Ryu, Chang Hyun; Han, Duck Jong; Seo, Sang Gyo

    2017-06-01

    It is known that successful pancreas transplantation enables patients with diabetes to maintain a normal glucose level without insulin and reduces diabetes-related complications. However, we have little information about the foot-specific morbidity in patients who have undergone successful pancreas transplantation. The purpose of this study was to investigate the prevalence and predisposing factors for foot complications after successful pancreas transplantation. This retrospective study included 218 patients (91 males, 127 females) who had undergone pancreas transplantation for diabetes. The mean age was 40.7 (range, 15-76) years. Diabetes type, transplantation type, body mass index, and diabetes duration before transplantation were confirmed. After pancreas transplantation, the occurrence and duration of foot and ankle complications were assessed. Twenty-two patients (10.1%) had diabetic foot complications. Fifteen patients (6.9%) had diabetic foot ulcer and 7 patients (3.2%) had Charcot arthropathy. Three patients had both diabetic foot ulcer and Charcot arthropathy. Three insufficiency fractures (1.4%) were included. Mean time of complications after transplantation was 18.5 (range, 2-77) months. Creatinine level 1 year after surgery was higher in the complication group rather than the noncomplication group ( P = .02). Complications of the foot and ankle still occurred following pancreas transplantation in patients with diabetes. Level III, comparative study.

  16. The Impact of Three-month Training Programme on Foot Care and Self-efficacy of Patients with Diabetic Foot Ulcers.

    PubMed

    Bahador, Raziyeh Sadat; Afrazandeh, Seyedeh Sara; Ghanbarzehi, Nezar; Ebrahimi, Maryam

    2017-07-01

    Patient's self-efficacy in disease management and foot care is considered as an important indicator in controlling the complications of diabetes. This study was aimed to determine the effect of three-month training programme on foot care and self-efficacy of patients with diabetic foot ulcers. A quasi-experimental study was conducted on 60 patients with diabetic foot ulcers in Jiroft Imam Khomeini hospital from January 2016 to May 2016. These patients were randomly divided into intervention and control groups (30 patients in each group). The research instrument was a questionnaire on demographic data, self-efficacy questions for patients with diabetes and a researcher made questionnaire of diabetic foot care. Training programmes for foot ulcers care and prevention of new ulcers formation and other aspects of the disease were implemented during three months in the test group. Data were analysed using descriptive and analytic statistical tests (Mann-Whitney U, paired t-test and Pearson correlation coefficient) by SPSS version 18.0 software. The results showed statistically significant difference (p<0.001) in the score of self-efficacy between intervention group (182.25) and control group (93.56), and the foot care score was 47.43 in the intervention group and 30.18 in control group after the intervention. The average scores of self-efficacy and foot ulcers care significantly increased in the intervention group after training programme (p<0.001). The results showed that the implementation of training programme has been able to increase the self-efficacy of patients and the rate of their foot ulcers care and the prevention of new ulcers and effectively reduce the complications in diabetic patients.

  17. Multi-segment foot landing kinematics in subjects with chronic ankle instability.

    PubMed

    De Ridder, Roel; Willems, Tine; Vanrenterghem, Jos; Robinson, Mark A; Palmans, Tanneke; Roosen, Philip

    2015-07-01

    Chronic ankle instability has been associated with altered joint kinematics at the ankle, knee and hip. However, no studies have investigated possible kinematic deviations at more distal segments of the foot. The purpose of this study was to evaluate if subjects with ankle instability and copers show altered foot and ankle kinematics and altered kinetics during a landing task when compared to controls. Ninety-six subjects (38 subjects with chronic ankle instability, 28 copers and 30 controls) performed a vertical drop and side jump task. Foot kinematics were obtained using the Ghent Foot Model and a single-segment foot model. Group differences were evaluated using statistical parametric mapping and analysis of variance. Subjects with ankle instability had a more inverted midfoot position in relation to the rearfoot when compared to controls during the side jump. They also had a greater midfoot inversion/eversion range of motion than copers during the vertical drop. Copers exhibited less plantar flexion/dorsiflexion range of motion in the lateral and medial forefoot. Furthermore, the ankle instability and coper group exhibited less ankle plantar flexion at touchdown. Additionally, the ankle instability group demonstrated a decreased plantar flexion/dorsiflexion range of motion at the ankle compared to the control group. Analysis of ground reaction forces showed a higher vertical peak and loading rate during the vertical drop in subjects with ankle instability. Subjects with chronic ankle instability displayed an altered, stiffer kinematic landing strategy and related alterations in landing kinetics, which might predispose them for episodes of giving way and actual ankle sprains. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Role of neuropathy and high foot pressures in diabetic foot ulceration.

    PubMed

    Frykberg, R G; Lavery, L A; Pham, H; Harvey, C; Harkless, L; Veves, A

    1998-10-01

    High plantar foot pressures in association with peripheral neuropathy have been ascertained to be important risk factors for ulceration in the diabetic foot. Most studies investigating these parameters have been limited by their size and the homogeneity of study subjects. The objective of this study was therefore to ascertain the risk of ulceration associated with high foot pressures and peripheral neuropathy in a large and diverse diabetic population. We studied a cross-sectional group of 251 diabetic patients of Caucasian (group C) (n=121), black (group B) (n=36), and Hispanic (group H) (n=94) racial origins with an overall age of 58.5+/-12.5 years (range 20-83). There was an equal distribution of men and women across the entire study population. All patients underwent a complete medical history and lower extremity evaluation for neuropathy and foot pressures. Neuropathic parameters were dichotomized (0/1) into two high-risk variables: patients with a vibration perception threshold (VPT) > or =25 V were categorized as HiVPT (n=132) and those with Semmes-Weinstein monofilament tests > or =5.07 were classified as HiSWF (n=190). The mean dynamic foot pressures of three footsteps were measured using the F-scan mat system with patients walking without shoes. Maximum plantar pressures were dichotomized into a high-pressure variable (Pmax6) indicating those subjects with pressures > or =6 kg/cm2 (n=96). A total of 99 patients had a current or prior history of ulceration at baseline. Joint mobility was significantly greater in the Hispanic cohort compared with the other groups at the first metatarsal-phalangeal joint (C 67+/-23 degrees, B 69+/-23 degrees, H 82+/-23 degrees, P=0.000), while the subtalar joint mobility was reduced in the Caucasian group (C 21+/-8 degrees, B 26+/-7 degrees, H 27+/-11 degrees, P=0.000). Maximum plantar foot pressures were significantly higher in the Caucasian group (C 6.7+/-2.9 kg/cm2, B 5.7+/-2.8 kg/cm2, H 4.4+/-1.9 kg/cm2, P=0

  19. Geriatric Foot Care: A Model Educational Program for Mid-Level Practitioners.

    ERIC Educational Resources Information Center

    Suggs, Patricia K.; Krissak, Ruth; Caruso, Frank; Teasdall, Robert

    2002-01-01

    An educational program on geriatric foot care was completed by 59 nurse practitioners, 12 physicians' assistants, and 1 physician. The 3 1/2 day program included interactive sessions, observation, and hands-on patient care. Posttest results and 6-month follow-up showed significant knowledge increases and incorporation of learning into practice.…

  20. 24 CFR 3285.312 - Footings.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... section. Footings must be placed on undisturbed soil or fill compacted to 90 percent of maximum relative... (psi). Site-specific soil conditions or design load requirements may also require the use of... footings must consist of a minimum of two layers of nominal 2-inch thick pressure-treated wood, a single...

  1. 24 CFR 3285.312 - Footings.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... section. Footings must be placed on undisturbed soil or fill compacted to 90 percent of maximum relative... (psi). Site-specific soil conditions or design load requirements may also require the use of... footings must consist of a minimum of two layers of nominal 2-inch thick pressure-treated wood, a single...

  2. 24 CFR 3285.312 - Footings.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... section. Footings must be placed on undisturbed soil or fill compacted to 90 percent of maximum relative... (psi). Site-specific soil conditions or design load requirements may also require the use of... footings must consist of a minimum of two layers of nominal 2-inch thick pressure-treated wood, a single...

  3. 24 CFR 3285.312 - Footings.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... section. Footings must be placed on undisturbed soil or fill compacted to 90 percent of maximum relative... (psi). Site-specific soil conditions or design load requirements may also require the use of... footings must consist of a minimum of two layers of nominal 2-inch thick pressure-treated wood, a single...

  4. 24 CFR 3285.312 - Footings.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... section. Footings must be placed on undisturbed soil or fill compacted to 90 percent of maximum relative... (psi). Site-specific soil conditions or design load requirements may also require the use of... footings must consist of a minimum of two layers of nominal 2-inch thick pressure-treated wood, a single...

  5. Athlete's foot and fungally infected toenails

    PubMed Central

    Crawford, Fay; Hart, Rachel; Bell-Syer, Sally E M; Torgerson, David J; Young, Philip; Russell, Ian

    2001-01-01

    Definition Athlete's foot is a cutaneous fungal infection that causes the skin to itch, flake, and fissure. Nail involvement is characterised by ungual thickening and discoloration. Incidence/prevalence In the United Kingdom, athlete's foot is present in about 15% of the general population,1 and 1.2 million people have fungally infected toenails.2 Aetiology/risk factors Swimming pool users and industrial workers may have increased risk of fungal foot infection. However, one survey found fungal foot infection in only 8.5% of swimmers, with the highest incidence (20%) in men aged 16 years and over.1 Prognosis Fungal infections of the foot are not life threatening in people with normal immunity, but in some people they cause persistent symptoms. Other people seem to be oblivious of persistent infection. The infection can spread to other parts of the body and to other people. Aims To control symptoms and prevent recurrence, with minimal adverse effects. Outcomes Rates of fungal eradication, shown by negative microscopy and culture, and resolution of clinical signs and symptoms at follow up. PMID:11157535

  6. Evaluation of the effect of nurse education on patient-reported foot checks and foot care behaviour of people with diabetes receiving haemodialysis.

    PubMed

    Brand, S L; Musgrove, A; Jeffcoate, W J; Lincoln, N B

    2016-02-01

    To assess whether a programme of nurse education increased the frequency with which nurses conducted foot checks on people with diabetes undergoing haemodialysis and to evaluate whether this influenced self-reported foot care behaviour. A non-randomized stepped-wedge design was used to evaluate a nurse education programme implemented in four UK National Health Service dialysis units. People with diabetes undergoing haemodialysis were invited to complete a questionnaire on the frequency of foot examination by health professionals, on the presence of foot problems and on their own foot care behaviour, using the Nottingham Assessment of Functional Foot-care (NAFF). An education session for nurses, including procedures for foot examination, was conducted sequentially in each of four haemodialysis units. The questionnaire was repeated at 2-monthly intervals. The education session resulted in a significant increase in the reported number of foot examinations by nurses (P = 0.007). There was also a significant improvement in reported foot care behaviour (P < 0.001), but this occurred between the first and second 2-monthly assessments and was unrelated to the timing of the intervention. A single education session can improve the routine checking of the feet of people with diabetes undergoing haemodialysis. The administration of the Nottingham Assessment of Functional Foot-care questionnaire was associated with improved self-reported foot care behaviour, reflecting greater awareness of risk in this population. © 2015 The Authors. Diabetic Medicine © 2015 Diabetes UK.

  7. Foot and ankle function after tibial overlengthening.

    PubMed

    Emara, Khaled M; Diab, Ramy Ahmed; El Ghazali, Sherif; Farouk, Amr; El Kersh, Mohamed Ahmed

    2014-01-01

    Lengthening the tibia more than 25% of its original length can be indicated for proximal femoral deficiency, poliomyelitis, or femoral infected nonunion. Such lengthening of the tibia can adversely affect the ankle or foot shape and function. The present study aimed to assess the effect of tibial lengthening of more than 25% of its original length on the foot and ankle shape and function compared with the preoperative condition. This was a retrospective study of 13 children with severe proximal focal femoral deficiency, Aitken classification type D, who had undergone limb lengthening from June 2000 to June 2008 using Ilizarov external fixators. The techniques used in tibial lengthening included lengthening without intramedullary rodding and lengthening over a nail. The foot assessment was done preoperatively, at fixator removal, and then annually for 3 years, documenting the range of motion and deformity of the ankle and subtalar joints and big toe and the navicular height, calcaneal pitch angle, and talo-first metatarsal angle. At fixator removal, all cases showed equinocavovarus deformity, with decreased ankle, subtalar, and big toe motion. The mean American Orthopedic Foot and Ankle Society score was significantly reduced. During follow-up, the range of motion, foot deformity, and American Orthopedic Foot and Ankle Society score improved, reaching nearly to the preoperative condition by 2 years of follow-up. The results of our study have shown that tibial overlengthening has an adverse effect on foot and ankle function. This effect was reversible in the patients included in the present study. Lengthening of more than 25% can be safely done after careful discussion with the patients and their families about the probable effects of lengthening on foot and ankle function. Copyright © 2014 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  8. Numerical simulation of the plantar pressure distribution in the diabetic foot during the push-off stance.

    PubMed

    Actis, Ricardo L; Ventura, Liliana B; Smith, Kirk E; Commean, Paul K; Lott, Donovan J; Pilgram, Thomas K; Mueller, Michael J

    2006-08-01

    The primary objective of conservative care for the diabetic foot is to protect the foot from excessive pressures. Pressure reduction and redistribution may be achieved by designing and fabricating orthotic devices based on foot structure, tissue mechanics, and external loads on the diabetic foot. The purpose of this paper is to describe the process used for the development of patient-specific mathematical models of the second and third rays of the foot, their solution by the finite element method, and their sensitivity to model parameters and assumptions. We hypothesized that the least complex model to capture the pressure distribution in the region of the metatarsal heads would include the bony structure segmented as toe, metatarsal and support, with cartilage between the bones, plantar fascia and soft tissue. To check the hypothesis, several models were constructed with different levels of details. The process of numerical simulation is comprised of three constituent parts: model definition, numerical solution and prediction. In this paper the main considerations relating model selection and computation of approximate solutions by the finite element method are considered. The fit of forefoot plantar pressures estimated using the FEA models and those explicitly tested were good as evidenced by high Pearson correlations (r=0.70-0.98) and small bias and dispersion. We concluded that incorporating bone support, metatarsal and toes with linear material properties, tendon and fascia with linear material properties, soft tissue with nonlinear material properties, is sufficient for the determination of the pressure distribution in the metatarsal head region in the push-off position, both barefoot and with shoe and total contact insert. Patient-specific examples are presented.

  9. 'Real angiosome' assessment from peripheral tissue perfusion using tissue oxygen saturation foot-mapping in patients with critical limb ischemia.

    PubMed

    Kagaya, Y; Ohura, N; Suga, H; Eto, H; Takushima, A; Harii, K

    2014-04-01

    The "tissue oxygen saturation (StO2) foot-mapping" method was developed using a non-invasive near-infrared tissue oximeter monitor to classify the foot regions as ischemic and non-ischemic areas. The purpose of this study was to evaluate StO2 foot-mapping as a reliable method to detect ischemic areas in the feet of patients with critical limb ischemia (CLI), and to compare the results with assessments from the angiosome model. The foot areas of 20 CLI patients and 20 healthy controls were classified into four regions: (1) 0 ≤ StO2 < 30%, (2) 30 ≤ StO2 < 50%, (3) 50 ≤ StO2 < 70%, and (4) 70 ≤ StO2 ≤ 100% to perform StO2 foot-mapping. Each area occupancy rate was compared between the two groups, and the threshold StO2 value for detecting ischemia was set. Next, the locations of ulcers (in 16 patients) were compared to the predicted ischemic regions by the StO2 foot-mapping and by the angiosome model and angiography. In regions (1) and (2) (StO2 < 50%), the area occupancy rate was significantly higher in the CLI group and almost zero in the control group, so that the threshold StO2 value for detecting ischemia was set at 50%. The locations of ulcers were compatible with StO2 foot-mapping in 87.5% of the cases (14/16), while they were compatible with the assessment from the angiosome model in 68.8% of the cases (11/16). This study suggests that StO2 foot-mapping can successfully and non-invasively detect ischemic areas in the peripheral tissue of the foot, and also more appropriately than the assessment provided by the angiosome model. StO2 foot-mapping can be used to evaluate the real angiosome: the real distribution of the peripheral tissue perfusion in the CLI patient's foot, which is determined by the peripheral microvascular blood flow, rather than the main arterial blood flow. Copyright © 2013 European Society for Vascular Surgery. Published by Elsevier Ltd. All rights reserved.

  10. 29 CFR 1917.94 - Foot protection.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... affected employee wears protective footwear when working in areas where there is a danger of foot injuries... Test Methods for Foot Protection,” and ASTM F-2413-2005, “Standard Specification for Performance...

  11. 29 CFR 1915.156 - Foot protection.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... protective footwear when working in areas where there is a danger of foot injuries due to falling or rolling... Foot Protection,” and ASTM F-2413-2005, “Standard Specification for Performance Requirements for...

  12. Subjective and quantitative scintigraphic assessment of the equine foot and its relationship with foot pain.

    PubMed

    Dyson, S J

    2002-03-01

    It was hypothesised that in solar bone images of the front feet of clinically normal horses, or horses with lameness unrelated to the front feet, there would be less than a 10% difference in the ratio of uptake of radiopharmaceutical in either the region of the navicular bone, or the region of insertion of the deep digital flexor tendon (DDFT), compared to the peripheral regions of the distal phalanx. Nuclear scintigraphic examination of the front feet of 15 Grand Prix show jumping horses, all of which were free from detectable lameness, was performed using dorsal, lateral and solar images. The results were compared with the examinations of 53 horses with primary foot pain, 21 with foot pain accompanying another more severe cause of lameness and 49 with lameness or poor performance unrelated to foot pain. None of the horses with foot pain had radiological changes compatible with navicular disease. All the images were evaluated subjectively. The solar views were assessed quantitatively using regions of interest around the navicular bone, the region of insertion of the deep digital flexor tendon and the toe, medial and lateral aspects of the distal phalanx. In 97% of the feet of normal showjumpers, there was <10% variance of uptake of the radiopharmaceutical in the navicular bone, the region of insertion of the DDFT and the peripheral regions of the distal phalanx. There was a significant difference in uptake of radiopharmaceutical in the region of the navicular bone in horses with foot pain compared to normal horses. There was a large incidence of false positive results related to the region of insertion of the DDFT. Lateral pool phase images appeared more sensitive in identifying potentially important DDFT lesions. There was a good correlation between a positive response to intra-articular analgesia of the distal interphalangeal joint and intrathecal analgesia of the navicular bursa and increased uptake of radiopharmaceutical in the region of the navicular bone in

  13. Ranking current and prospective NO2 pollution mitigation strategies: An environmental and economic modelling investigation in Oxford Street, London.

    PubMed

    Jeanjean, A P R; Gallagher, J; Monks, P S; Leigh, R J

    2017-06-01

    Air pollution continues to be a problem in the urban environment. A range of different pollutant mitigation strategies that promote dispersion and deposition exist, but there is little evidence with respect to their comparative performance from both an environmental and economic perspective. This paper focuses on examining different NO 2 mitigation strategies such as trees, buildings facades coated with photocatalytic paint and solid barriers in Oxford Street in London. The case study findings will support ranking the environmental and economic impacts of these different strategies to improve personal exposure conditions on the footpath and on the road in a real urban street canyon. CFD simulations of airflow and NO 2 dispersion in Oxford Street in London were undertaken using the OpenFOAM software platform with the k-ε model, taking into account local prevailing wind conditions. Trees are shown to be the most cost-effective strategy, with a small reduction in NO 2 concentrations of up to 0.7% on the road. However, solid barriers with and without the application of photocatalytic paint and an innovative material (20 times more expensive than trees) can improve air quality on the footpaths more substantially, up to 7.4%, yet this has a significant detrimental impact on NO 2 concentrations (≤23.8%) on the road. Photocatalytic paint on building surfaces presented a minimal environmental reductions (1.2%) and economic (>100 times more expensive than trees) mitigation strategy. The findings recognised the differences between footpath and road concentrations occurred and that a focused examination of three pollution hotspots can provide more cost effective pollution mitigation. This study considers how a number of pollutant mitigation measures can be applied in a single street canyon and demonstrates the strengths and weaknesses of these strategies from economic and environmental perspectives. Further research is required to extrapolate the findings presented here to

  14. The detailed measurement of foot clearance by young adults during stair descent.

    PubMed

    Telonio, A; Blanchet, S; Maganaris, C N; Baltzopoulos, V; McFadyen, B J

    2013-04-26

    Foot clearance is an important variable for understanding safe stair negotiation, but few studies have provided detailed measures of it. This paper presents a new method to calculate minimal shoe clearance during stair descent and compares it to previous literature. Seventeen healthy young subjects descended a five step staircase with step treads of 300 mm and step heights of 188 mm. Kinematic data were collected with an Optotrak system (model 3020) and three non-colinear infrared markers on the feet. Ninety points were digitized on the foot sole prior to data collection using a 6 marker probe and related to the triad of markers on the foot. The foot sole was reconstructed using the Matlab (version 7.0) "meshgrid" function and minimal distance to each step edge was calculated for the heel, toe and foot sole. Results showed significant differences in minimum clearance between sole, heel and toe, with the shoe sole being the closest and the toe the furthest. While the hind foot sole was closest for 69% of the time, the actual minimum clearance point on the sole did vary across subjects and staircase steps. This new method, and the findings on healthy young subjects, can be applied to future studies of other populations and staircase dimensions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Multi-functional foot use during running in the zebra-tailed lizard (Callisaurus draconoides).

    PubMed

    Li, Chen; Hsieh, S Tonia; Goldman, Daniel I

    2012-09-15

    A diversity of animals that run on solid, level, flat, non-slip surfaces appear to bounce on their legs; elastic elements in the limbs can store and return energy during each step. The mechanics and energetics of running in natural terrain, particularly on surfaces that can yield and flow under stress, is less understood. The zebra-tailed lizard (Callisaurus draconoides), a small desert generalist with a large, elongate, tendinous hind foot, runs rapidly across a variety of natural substrates. We use high-speed video to obtain detailed three-dimensional running kinematics on solid and granular surfaces to reveal how leg, foot and substrate mechanics contribute to its high locomotor performance. Running at ~10 body lengths s(-1) (~1 m s(-1)), the center of mass oscillates like a spring-mass system on both substrates, with only 15% reduction in stride length on the granular surface. On the solid surface, a strut-spring model of the hind limb reveals that the hind foot saves ~40% of the mechanical work needed per step, significant for the lizard's small size. On the granular surface, a penetration force model and hypothesized subsurface foot rotation indicates that the hind foot paddles through fluidized granular medium, and that the energy lost per step during irreversible deformation of the substrate does not differ from the reduction in the mechanical energy of the center of mass. The upper hind leg muscles must perform three times as much mechanical work on the granular surface as on the solid surface to compensate for the greater energy lost within the foot and to the substrate.

  16. Segmentation and determination of joint space width in foot radiographs

    NASA Astrophysics Data System (ADS)

    Schenk, O.; de Muinck Keizer, D. M.; Bernelot Moens, H. J.; Slump, C. H.

    2016-03-01

    Joint damage in rheumatoid arthritis is frequently assessed using radiographs of hands and feet. Evaluation includes measurements of the joint space width (JSW) and detection of erosions. Current visual scoring methods are timeconsuming and subject to inter- and intra-observer variability. Automated measurement methods avoid these limitations and have been fairly successful in hand radiographs. This contribution aims at foot radiographs. Starting from an earlier proposed automated segmentation method we have developed a novel model based image analysis algorithm for JSW measurements. This method uses active appearance and active shape models to identify individual bones. The model compiles ten submodels, each representing a specific bone of the foot (metatarsals 1-5, proximal phalanges 1-5). We have performed segmentation experiments using 24 foot radiographs, randomly selected from a large database from the rheumatology department of a local hospital: 10 for training and 14 for testing. Segmentation was considered successful if the joint locations are correctly determined. Segmentation was successful in only 14%. To improve results a step-by-step analysis will be performed. We performed JSW measurements on 14 randomly selected radiographs. JSW was successfully measured in 75%, mean and standard deviation are 2.30+/-0.36mm. This is a first step towards automated determination of progression of RA and therapy response in feet using radiographs.

  17. Experimental and model-based analysis of differences in perception of cutaneous electrical stimulation across the sole of the foot.

    PubMed

    Frahm, Ken Steffen; Mørch, Carsten Dahl; Grill, Warren M; Andersen, Ole Kæseler

    2013-09-01

    During electrocutaneous stimulations, variation in skin properties across locations can lead to differences in neural activation. However, little focus has been given to the effect of different skin thicknesses on neural activation. Electrical stimulation was applied to six sites across the sole of the foot. The intensities used were two and four times perception threshold. The subjects (n = 8) rated the perception quality and intensity using the McGill Pain Questionnaire and a visual analog scale (VAS). A finite element model was developed and combined with the activation function (AF) to estimate neural activation. Electrical stimulation was perceived as significantly less sharp at the heel compared to all other sites, except one site in the forefoot (logistic regression, p < 0.05). The VAS scores were significantly higher in the arch than at the heel (RM ANOVA, p < 0.05). The model showed that the AF was between 91 and 231 % higher at the five other sites than at the heel. The differences in perception across the sole of the foot indicated that the CNS received different inputs depending on the stimulus site. The lower AF at the heel indicated that the skin thicknesses could contribute to the perceived differences.

  18. The Metrical Foot in Diyari.

    ERIC Educational Resources Information Center

    Poser, William

    1989-01-01

    Considers the metrical foot in Diyari, a South Australian Language, and concludes that, on the basis of stress alone, an argument can be made for the constituency of the metrical stress foot under certain theoretical assumptions. This conclusion is reinforced by the occupance in Diyari of other less theory-dependant phenomena. (46 references) (JL)

  19. The relationship between foot posture index, ankle equinus, body mass index and intermetatarsal neuroma.

    PubMed

    Naraghi, Reza; Bremner, Alexandra; Slack-Smith, Linda; Bryant, Alan

    2016-01-01

    The main purpose of this study was to investigate the presence of an association between intermetatarsal neuroma and foot type, as measured by the Foot Posture Index. The study also examined whether there was a relationship between foot type and the interspace affected with intermetatarsal neuroma, and whether ankle equinus or body mass index had an effect. In total, 100 participants were recruited from The University of Western Australia's Podiatry Clinic, 68 of whom were diagnosed with inter-metatarsal neuroma from 2009 to 2015. There were 32 control participants recruited from 2014 to 2015. The age of subjects was recorded, as were weight and height, which were used to calculate body mass index. The foot posture index and ankle dorsiflexion were measured using standard technique. Independent t-tests and Kruskal-Wallis tests were used to compare differences in foot posture index, body mass index and ankle dorsiflexion between the inter-metatarsal neuroma and control groups. Multivariable logistic regression was also used to model relationships for outcome. The 68 intermetatarsal neuroma subjects had a mean age of 52 years (range 20 to 74 years) and comprised of 56 females and 12 males. The 32 control subjects had a mean age of 49 years (range 24 to 67 years) with 26 females and six males. There were no significant differences between the control and the intermetatarsal neuroma groups with respect to the mean foot posture index scores of the left and right foot ( p =  0.21 and 0.87, respectively). Additionally no significant differences were detected between the affected intermetatarsal neuroma interspace and foot posture index ( p  = 0.27 and 0.47, respectively). There was no significant difference in mean body mass index between the intermetatarsal neuroma (26.9 ± 5.7) and control groups (26.5 ± 4.1) ( p  = 0.72). There was, however, a significant difference in mean ankle dorsiflexion between the intermetatarsal neuroma and control

  20. Ultrasound evaluation of foot deformities in infants.

    PubMed

    Miron, Marie-Claude; Grimard, Guy

    2016-02-01

    Foot deformity in infants is the most common congenital musculoskeletal condition. A precise diagnosis can sometimes be impossible to establish clinically. Radiologic imaging plays a major role in the evaluation of musculoskeletal abnormalities. However conventional imaging techniques, such as plain radiographs of the foot, are of very little help in this age group because of the lack of ossification of the tarsal bones. US presents a significant advantage because it permits the visualization of cartilaginous structures. This leads to the detailed assessment of foot deformities in infants. Furthermore, US can also be used as a dynamic imaging modality. Different scanning views are beneficial to evaluate the complete anatomy of the foot; depending on the suspected clinical diagnosis, some planes are more informative to display the pathological features of a specific deformity. We describe the US findings of five of the most common foot deformities referred to our pediatric orthopedic clinic (clubfoot, simple metatarsus adductus, skewfoot, and oblique and vertical talus). For each deformity we propose a specific imaging protocol based on US to provide an accurate diagnosis. US is a complementary tool to the clinical examination for determining the diagnosis and the severity of the deformity and also for monitoring the efficacy of treatment. Radiologists investigating foot deformities in infants should consider using US for the detailed assessment of the foot in this age group.

  1. Factors associated with combined hand and foot eczema.

    PubMed

    Agner, T; Aalto-Korte, K; Andersen, K E; Foti, C; Gimenéz-Arnau, A; Goncalo, M; Goossens, A; Le Coz, C; Diepgen, T L

    2017-05-01

    As for hand eczema, the aetiology of foot eczema is multifactorial and not very well understood. The aim of the present study was to identify factors associated with foot eczema in a cohort of hand eczema patients being classified into different subgroups. Associations between foot and hand eczema were studied in a cross-sectional design in a cohort of hand eczema patients. Consecutive patients were recruited from nine different European Centres during the period October 2011-September 2012. Data on demographic factors, presence of foot eczema, hand eczema duration and severity, and whether the hand eczema was work-related or not were available, as well as patch-test results. Of a total of 427 hand eczema patients identified, information on foot eczema was available in 419 patients who were included in the present study. A total of 125 patients (29.8%) had concomitant foot and hand eczema. It was found more often in association with hyperkeratotic hand eczema (P = 0.007) and was less often associated with irritant hand eczema (P < 0.001). However, foot eczema was nevertheless found in 18% of patient with irritant hand eczema and in 25% of patients with occupational hand eczema. Combined foot and hand eczema was associated with more severe and long-standing hand eczema (P < 0.001 and P = 0.004, respectively). Contact allergy was found in 51.8% with no difference between patients with combined foot and hand eczema and patients with hand eczema only. Occurrence of combined foot and hand eczema is a common finding and not restricted to endogenous hand eczema. © 2016 European Academy of Dermatology and Venereology.

  2. Foot-strike pattern and performance in a marathon

    PubMed Central

    Kasmer, Mark E.; Liu, Xue-cheng; Roberts, Kyle G.; Valadao, Jason M.

    2016-01-01

    Purpose To: 1) determine prevalence of heel-strike in a mid-size city marathon, 2) determine if there is an association between foot-strike classification and race performance, and 3) determine if there is an association between foot-strike classification and gender. Methods Foot-strike classification (fore-foot strike, mid-foot strike, heel strike, or split-strike), gender, and rank (position in race) were recorded at the 8.1 kilometer (km) mark for 2,112 runners at the 2011 Milwaukee Lakefront Marathon. Results 1,991 runners were classified by foot-strike pattern, revealing a heel-strike prevalence of 93.67% (n=1,865). A significant difference between foot-strike classification and performance was found using a Kruskal-Wallis test (p < 0.0001), with more elite performers being less likely to heel-strike. No significant difference between foot-strike classification and gender was found using a Fisher’s exact test. Additionally, subgroup analysis of the 126 non-heel strikers found no significant difference between shoe wear and performance using a Kruskal-Wallis test. Conclusions The high prevalence of heel-striking observed in this study reflects the foot-strike pattern of the majority of mid- to long-distance runners and more importantly, may predict their injury profile based on the biomechanics of a heel strike running pattern. This knowledge can aid the clinician in the appropriate diagnosis, management, and training modifications of the injured runner. PMID:23006790

  3. Find an Orthopaedic Foot and Ankle MD/DO

    MedlinePlus

    ... All Site Content AOFAS / FootCareMD / Find a Surgeon Find a Foot & Ankle Orthopaedic Surgeon Page Content Who ... your prescribed treatment (surgical and/or non-surgical) ​ Find a Surgeon ​ Click here to find a foot ...

  4. Foot Problems

    MedlinePlus

    ... Falls Prevention Pain Management Join our e-newsletter! Aging & Health A to Z Foot Problems Basic Facts & ... April 2017 Posted: March 2012 © 2018 Health in Aging. All rights reserved. Feedback • Site Map • Privacy Policy • ...

  5. Turboprop Model in the 8- by 6-Foot Supersonic Wind Tunnel

    NASA Image and Video Library

    1976-08-21

    National Aeronautics and Space Administration (NASA) engineer Robert Jeracki prepares a Hamilton Standard SR-1 turboprop model in the test section of the 8- by 6-Foot Supersonic Wind Tunnel at the Lewis Research Center. Lewis researchers were analyzing a series of eight-bladed propellers in their wind tunnels to determine their operating characteristics at speeds up to Mach 0.8. The program, which became the Advanced Turboprop, was part of a NASA-wide Aircraft Energy Efficiency Program which was designed to reduce aircraft fuel costs by 50 percent. The ATP concept was different from the turboprops in use in the 1950s. The modern versions had at least eight blades and were swept back for better performance. After Lewis researchers developed the advanced turboprop theory and established its potential performance capabilities, they commenced an almost decade-long partnership with Hamilton Standard to develop, verify, and improve the concept. A series of 24-inch scale models of the SR-1 with different blade shapes and angles were tested in Lewis’ wind tunnels. A formal program was established in 1978 to examine associated noise levels, aerodynamics, and the drive system. The testing of the large-scale propfan was done on test rigs, in large wind tunnels, and, eventually, on aircraft.

  6. Stennis hosts NASA Night in Oxford

    NASA Technical Reports Server (NTRS)

    2010-01-01

    A young visitor to the Powerhouse Community Arts and Cultural Center in Oxford, Miss., enjoys a balloon rocket transportation activity during a NASA Night in the Neighborhood on March 29. NASA's John C. Stennis Space Center near Bay St. Louis visited the center with a variety of space-related displays and educational activities. Events targeted for children included moon phasers and build-your-own rocket transportation exercises, as well as an astronaut ice cream tasting station. Visitors also were able to take photos in the astronaut suit display. Displays focused on the 40th anniversaries of the Apollo 11 and Apollo 13 lunar missions, the International Space Station, and various aspects of Stennis work. The event was sponsored by the NASA Office of External Affairs and Education at Stennis.

  7. Northeastern forest survey revised cubic-foot volume equations

    Treesearch

    Charles T. Scott

    1981-01-01

    Cubic-foot volume equations are presented for the 17 species groups used in the forest survey of the 14 northeastern states. The previous cubic- foot volume equations were simple linear in form; the revised cubic-foot volume equations are nonlinear.

  8. Brain-computer interface controlled functional electrical stimulation device for foot drop due to stroke.

    PubMed

    Do, An H; Wang, Po T; King, Christine E; Schombs, Andrew; Cramer, Steven C; Nenadic, Zoran

    2012-01-01

    Gait impairment due to foot drop is a common outcome of stroke, and current physiotherapy provides only limited restoration of gait function. Gait function can also be aided by orthoses, but these devices may be cumbersome and their benefits disappear upon removal. Hence, new neuro-rehabilitative therapies are being sought to generate permanent improvements in motor function beyond those of conventional physiotherapies through positive neural plasticity processes. Here, the authors describe an electroencephalogram (EEG) based brain-computer interface (BCI) controlled functional electrical stimulation (FES) system that enabled a stroke subject with foot drop to re-establish foot dorsiflexion. To this end, a prediction model was generated from EEG data collected as the subject alternated between periods of idling and attempted foot dorsiflexion. This prediction model was then used to classify online EEG data into either "idling" or "dorsiflexion" states, and this information was subsequently used to control an FES device to elicit effective foot dorsiflexion. The performance of the system was assessed in online sessions, where the subject was prompted by a computer to alternate between periods of idling and dorsiflexion. The subject demonstrated purposeful operation of the BCI-FES system, with an average cross-correlation between instructional cues and BCI-FES response of 0.60 over 3 sessions. In addition, analysis of the prediction model indicated that non-classical brain areas were activated in the process, suggesting post-stroke cortical re-organization. In the future, these systems may be explored as a potential therapeutic tool that can help promote positive plasticity and neural repair in chronic stroke patients.

  9. Foot loading characteristics during three fencing-specific movements.

    PubMed

    Trautmann, Caroline; Martinelli, Nicolo; Rosenbaum, Dieter

    2011-12-01

    Plantar pressure characteristics during fencing movements may provide more specific information about the influence of foot loading on overload injury patterns. Twenty-nine experienced fencers participated in the study. Three fencing-specific movements (lunge, advance, retreat) and normal running were performed with three different shoe models: Ballestra (Nike, USA), Adistar Fencing Lo (Adidas, Germany), and the fencers' own shoes. The Pedar system (Novel, Munich, Germany) was used to collect plantar pressures at 50 Hz. Peak pressures, force-time integrals and contact times for five foot regions were compared between four athletic tasks in the lunge leg and supporting leg. Plantar pressure analysis revealed characteristic pressure distribution patterns for the fencing movements. For the lunge leg, during the lunge and advance movements the heel is predominantly loaded; during retreat, it is the hallux. For the supporting leg, during the lunge and advance movements the forefoot is predominantly loaded; during retreat, it is the hallux. Fencing-specific movements load the plantar surface in a distinct way compared with running. An effective cushioning in the heel and hallux region would help to minimize foot loading during fencing-specific movements.

  10. Board-foot and cubic-foot volume tables for western red cedar in southeast Alaska.

    Treesearch

    Donald J. DeMars

    1996-01-01

    Four tables give cubic-foot and board-foot volume estimates for western redcedar given breast height diameter outside bark (DBHOB) and either total tree height or number of logs to a 6-inch top. The values for DBHOB and total tree height (or number of logs in the tree) that are in the tables have been limited to the ranges these variables had in the sample data.

  11. BigFoot: Bayesian alignment and phylogenetic footprinting with MCMC.

    PubMed

    Satija, Rahul; Novák, Adám; Miklós, István; Lyngsø, Rune; Hein, Jotun

    2009-08-28

    We have previously combined statistical alignment and phylogenetic footprinting to detect conserved functional elements without assuming a fixed alignment. Considering a probability-weighted distribution of alignments removes sensitivity to alignment errors, properly accommodates regions of alignment uncertainty, and increases the accuracy of functional element prediction. Our method utilized standard dynamic programming hidden markov model algorithms to analyze up to four sequences. We present a novel approach, implemented in the software package BigFoot, for performing phylogenetic footprinting on greater numbers of sequences. We have developed a Markov chain Monte Carlo (MCMC) approach which samples both sequence alignments and locations of slowly evolving regions. We implement our method as an extension of the existing StatAlign software package and test it on well-annotated regions controlling the expression of the even-skipped gene in Drosophila and the alpha-globin gene in vertebrates. The results exhibit how adding additional sequences to the analysis has the potential to improve the accuracy of functional predictions, and demonstrate how BigFoot outperforms existing alignment-based phylogenetic footprinting techniques. BigFoot extends a combined alignment and phylogenetic footprinting approach to analyze larger amounts of sequence data using MCMC. Our approach is robust to alignment error and uncertainty and can be applied to a variety of biological datasets. The source code and documentation are publicly available for download from http://www.stats.ox.ac.uk/~satija/BigFoot/

  12. Phillips during FOOT experiment

    NASA Image and Video Library

    2005-09-16

    ISS011-E-13101 (16 Sept. 2005) --- Astronaut John L. Phillips, Expedition 11 NASA space station science officer and flight engineer, balances on the footplate of a special track attached to the Human Research Facility (HRF) rack in the Destiny laboratory on the International Space Station to perform Foot/Ground Reaction Forces During Spaceflight (FOOT) / Electromyography (EMG) calibration operations. Phillips is wearing the Lower Extremity Monitoring Suit (LEMS), the cycling tights outfitted with 20 sensors, which measures forces on joints and muscle activity.

  13. Athlete's Foot: Clinical Update.

    PubMed

    Ramsey, M L

    1989-10-01

    In brief: Athletes are particularly prone to athlete's foot because they are generally more exposed than others to conditions that encourage fungal growth, eg, communal showers and locker rooms. Diagnosis of athlete's foot rests on clinical suspicion and laboratory testing. Treatment may consist of topical antifungal agents and, for more resistant cases, oral griseofulvin. Preventive measures include keeping the feet dry, wearing nonocclusive leather shoes or sandals and absorbent cotton socks, and applying talcum or antifungal powder at least twice daily.

  14. Detection of In Vivo Foot and Ankle Implants by Walkthrough Metal Detectors.

    PubMed

    Chan, Jeremy Y; Mani, Sriniwasan B; Williams, Phillip N; O'Malley, Martin J; Levine, David S; Roberts, Matthew M; Ellis, Scott J

    2014-08-01

    Heightened security concerns have made metal detectors a standard security measure in many locations. While prior studies have investigated the detection rates of various hip and knee implants, none have looked specifically at the detection of foot and ankle implants in an in vivo model. Our goals were to identify which commonly used foot and ankle implants would be detected by walkthrough metal detectors both in vivo and ex vivo. Over a 7-month period, 153 weightbearing patients with foot and ankle hardware were recruited to walk through a standard airport metal detector at 3 different program settings (buildings, airports, and airports enhanced) with a base sensitivity of 165 (arbitrary units), as currently used by the Transportation Security Administration. The number of implants, location and type, as well as the presence of concomitant hardware outside of the foot and ankle were recorded. To determine the detection rate of common foot and ankle implants ex vivo, different hardware sets were walked through the detector at all 3 program settings. Seventeen patients were found to have detectable hardware at the buildings, airports, and airports enhanced settings. An additional 3 patients had hardware only detected at the airports enhanced setting. All 20 of these patients had concomitant metal implants outside of the foot and ankle from other orthopaedic procedures. All patients with foot and ankle implants alone passed through undetected. Seven hardware sets were detected ex vivo at the airports enhanced setting. Our results indicate that patients with foot and ankle implants alone are unlikely to be detected by walkthrough metal detectors at standard airport settings. When additional hardware is present from orthopaedic procedures outside of the foot and ankle, metal detection rates were higher. We believe that these results are important for surgeons in order to educate patients on how they might be affected when walking through a metal detector such as while

  15. Foot Problems

    MedlinePlus

    ... Over-the-counter anti-inflammatory medication or ice massages may help relieve the pain. Start OverDiagnosisYou may have an infection called CELLULITIS. If you have diabetes, an infection of your foot may be more common and more dangerous. Self ...

  16. Standardizing Foot-Type Classification Using Arch Index Values

    PubMed Central

    Weil, Rich; de Boer, Emily

    2012-01-01

    ABSTRACT Purpose: The lack of a reliable classification standard for foot type makes drawing conclusions from existing research and clinical decisions difficult, since different foot types may move and respond to treatment differently. The purpose of this study was to determine interrater agreement for foot-type classification based on photo-box-derived arch index values. Method: For this correlational study with two raters, a sample of 11 healthy volunteers with normal to obese body mass indices was recruited from both a community weight-loss programme and a programme in physical therapy. Arch index was calculated using AutoCAD software from footprint photographs obtained via mirrored photo-box. Classification as high-arched, normal, or low-arched foot type was based on arch index values. Reliability of the arch index was determined with intra-class correlations; agreement on foot-type classification was determined using quadratic weighted kappa (κw). Results: Average arch index was 0.215 for one tester and 0.219 for the second tester, with an overall range of 0.017 to 0.370. Both testers classified 6 feet as low-arched, 9 feet as normal, and 7 feet as high-arched. Interrater reliability for the arch index was ICC=0.90; interrater agreement for foot-type classification was κw=0.923. Conclusions: Classification of foot type based on arch index values derived from plantar footprint photographs obtained via mirrored photo-box showed excellent reliability in people with varying BMI. Foot-type classification may help clinicians and researchers subdivide sample populations to better differentiate mobility, gait, or treatment effects among foot types. PMID:23729964

  17. Cosmetic Foot Surgery: Fashion's Pandora's Box

    MedlinePlus

    ... Fashion’s Pandora’s Box? A A A | Print | Share Cosmetic Foot Surgery: Fashion’s Pandora’s Box? Foot and ankle surgeons warn ... extreme and imprudent as it may sound, the cosmetic surgery craze is not just for faces anymore—it ...

  18. Biomechanical analysis of fatigue-related foot injury mechanisms in athletes and recruits during intensive marching.

    PubMed

    Gefen, A

    2002-05-01

    An integrative analysis, comprising radiographic imaging of the foot, plantar pressure measurements, surface electromyography (EMG) and finite element (FE) modelling of the three-dimensional (3D) foot structure, was used to determine the effects of muscular fatigue induced by intensive athletic or military marching on the structural stability of the foot and on its internal stress state during the stance phase. The medial/lateral (M/L) tendency towards instability of the foot structure during marching in fatigue conditions was experimentally characterised by measuring the M/L deviations of the foot-ground centre of pressure (COP) and correlating these data with fatigue of specific lower-limb muscles, as demonstrated by the EMG spectra. The results demonstrated accelerated fatigue of the peroneus longus muscle in marching conditions (treadmill march of 2 km completed by four subjects at an approximately constant velocity of 8 km h-1). Severe fatigue of the peroneus longus is apparently the dominant cause of lack of foot stability, which was manifested by abnormal lateral deviations of the COP during the stance phase. Under these conditions, ankle sprain injuries are likely to occur. The EMG analysis further revealed substantial fatigue of the pre-tibial and triceps surae muscles during intensive marching (averaged decreases of 36% and 40% in the median frequency of their EMG signal spectra, respectively). Incorporation of this information into the 3D FE model of the foot resulted in a substantial rise in the levels of calcaneal and metatarsal stress concentrations, by 50% and 36%, respectively. This may point to the mechanism by which stress fractures develop and provide the biomechanical tools for future clinical investigations.

  19. Foot deformation during walking: differences between static and dynamic 3D foot morphology in developing feet.

    PubMed

    Barisch-Fritz, Bettina; Schmeltzpfenning, Timo; Plank, Clemens; Grau, Stefan

    2014-01-01

    The complex functions of feet require a specific composition, which is progressively achieved by developmental processes. This development should take place without being affected by footwear. The aim of this study is to evaluate differences between static and dynamic foot morphology in developing feet. Feet of 2554 participants (6-16 years) were recorded using a new scanner system (DynaScan4D). Each foot was recorded in static half and full weight-bearing and during walking. Several foot measures corresponding to those used in last construction were calculated. The differences were identified by one-way ANOVA and paired Student's t-test. Static and dynamic values of each foot measure must be considered to improve the fit of footwear. In particular, footwear must account for the increase of forefoot width and the decrease of midfoot girth. Furthermore, the toe box should have a more rounded shape. The findings are important for the construction of footwear for developing feet.

  20. Infrared Thermal Imaging for Automated Detection of Diabetic Foot Complications

    PubMed Central

    van Netten, Jaap J.; van Baal, Jeff G.; Liu, Chanjuan; van der Heijden, Ferdi; Bus, Sicco A.

    2013-01-01

    Background Although thermal imaging can be a valuable technology in the prevention and management of diabetic foot disease, it is not yet widely used in clinical practice. Technological advancement in infrared imaging increases its application range. The aim was to explore the first steps in the applicability of high-resolution infrared thermal imaging for noninvasive automated detection of signs of diabetic foot disease. Methods The plantar foot surfaces of 15 diabetes patients were imaged with an infrared camera (resolution, 1.2 mm/pixel): 5 patients had no visible signs of foot complications, 5 patients had local complications (e.g., abundant callus or neuropathic ulcer), and 5 patients had diffuse complications (e.g., Charcot foot, infected ulcer, or critical ischemia). Foot temperature was calculated as mean temperature across pixels for the whole foot and for specified regions of interest (ROIs). Results No differences in mean temperature >1.5 °C between the ipsilateral and the contralateral foot were found in patients without complications. In patients with local complications, mean temperatures of the ipsilateral and the contralateral foot were similar, but temperature at the ROI was >2 °C higher compared with the corresponding region in the contralateral foot and to the mean of the whole ipsilateral foot. In patients with diffuse complications, mean temperature differences of >3 °C between ipsilateral and contralateral foot were found. Conclusions With an algorithm based on parameters that can be captured and analyzed with a high-resolution infrared camera and a computer, it is possible to detect signs of diabetic foot disease and to discriminate between no, local, or diffuse diabetic foot complications. As such, an intelligent telemedicine monitoring system for noninvasive automated detection of signs of diabetic foot disease is one step closer. Future studies are essential to confirm and extend these promising early findings. PMID:24124937

  1. Infrared thermal imaging for automated detection of diabetic foot complications.

    PubMed

    van Netten, Jaap J; van Baal, Jeff G; Liu, Chanjuan; van der Heijden, Ferdi; Bus, Sicco A

    2013-09-01

    Although thermal imaging can be a valuable technology in the prevention and management of diabetic foot disease, it is not yet widely used in clinical practice. Technological advancement in infrared imaging increases its application range. The aim was to explore the first steps in the applicability of high-resolution infrared thermal imaging for noninvasive automated detection of signs of diabetic foot disease. The plantar foot surfaces of 15 diabetes patients were imaged with an infrared camera (resolution, 1.2 mm/pixel): 5 patients had no visible signs of foot complications, 5 patients had local complications (e.g., abundant callus or neuropathic ulcer), and 5 patients had diffuse complications (e.g., Charcot foot, infected ulcer, or critical ischemia). Foot temperature was calculated as mean temperature across pixels for the whole foot and for specified regions of interest (ROIs). No differences in mean temperature >1.5 °C between the ipsilateral and the contralateral foot were found in patients without complications. In patients with local complications, mean temperatures of the ipsilateral and the contralateral foot were similar, but temperature at the ROI was >2 °C higher compared with the corresponding region in the contralateral foot and to the mean of the whole ipsilateral foot. In patients with diffuse complications, mean temperature differences of >3 °C between ipsilateral and contralateral foot were found. With an algorithm based on parameters that can be captured and analyzed with a high-resolution infrared camera and a computer, it is possible to detect signs of diabetic foot disease and to discriminate between no, local, or diffuse diabetic foot complications. As such, an intelligent telemedicine monitoring system for noninvasive automated detection of signs of diabetic foot disease is one step closer. Future studies are essential to confirm and extend these promising early findings. © 2013 Diabetes Technology Society.

  2. Real-time subject-specific monitoring of internal deformations and stresses in the soft tissues of the foot: a new approach in gait analysis.

    PubMed

    Yarnitzky, G; Yizhar, Z; Gefen, A

    2006-01-01

    No technology is presently available to provide real-time information on internal deformations and stresses in plantar soft tissues of individuals during evaluation of the gait pattern. Because internal deformations and stresses in the plantar pad are critical factors in foot injuries such as diabetic foot ulceration, this severely limits evaluation of patients. To allow such real-time subject-specific analysis, we developed a hierarchal modeling system which integrates a two-dimensional gross structural model of the foot (high-order model) with local finite element (FE) models of the plantar tissue padding the calcaneus and medial metatarsal heads (low-order models). The high-order whole-foot model provides real-time analytical evaluations of the time-dependent plantar fascia tensile forces during the stance phase. These force evaluations are transferred, together with foot-shoe local reaction forces, also measured in real time (under the calcaneus, medial metatarsals and hallux), to the low-order FE models of the plantar pad, where they serve as boundary conditions for analyses of local deformations and stresses in the plantar pad. After careful verification of our custom-made FE solver and of our foot model system with respect to previous literature and against experimental results from a synthetic foot phantom, we conducted human studies in which plantar tissue loading was evaluated in real time during treadmill gait in healthy individuals (N = 4). We concluded that internal deformations and stresses in the plantar pad during gait cannot be predicted from merely measuring the foot-shoe force reactions. Internal loading of the plantar pad is constituted by a complex interaction between the anatomical structure and mechanical behavior of the foot skeleton and soft tissues, the body characteristics, the gait pattern and footwear. Real-time FE monitoring of internal deformations and stresses in the plantar pad is therefore required to identify elevated deformation

  3. Type 2 diabetes–related foot care knowledge and foot self-care practice interventions in the United States: a systematic review of the literature

    PubMed Central

    Bonner, Timethia; Foster, Margaret; Spears-Lanoix, Erica

    2016-01-01

    Introduction The purpose of this systematic literature review is to review published studies on foot care knowledge and foot care practice interventions as part of diabetic foot care self-management interventions. Methods Medline, CINAHL, CENTRAL, and Cochrane Central Register of Controlled Trials databases were searched. References from the included studies were reviewed to identify any missing studies that could be included. Only foot care knowledge and foot care practice intervention studies that focused on the person living with type 2 diabetes were included in this review. Author, study design, sample, intervention, and results were extracted. Results Thirty studies met the inclusion criteria and were classified according to randomized controlled trial (n=9), survey design (n=13), cohort studies (n=4), cross-sectional studies (n=2), qualitative studies (n=2), and case series (n=1). Improving lower extremity complications associated with type 2 diabetes can be done through effective foot care interventions that include foot care knowledge and foot care practices. Conclusion Preventing these complications, understanding the risk factors, and having the ability to manage complications outside of the clinical encounter is an important part of a diabetes foot self-care management program. Interventions and research studies that aim to reduce lower extremity complications are still lacking. Further research is needed to test foot care interventions across multiple populations and geographic locations. PMID:26899439

  4. Type 2 diabetes-related foot care knowledge and foot self-care practice interventions in the United States: a systematic review of the literature.

    PubMed

    Bonner, Timethia; Foster, Margaret; Spears-Lanoix, Erica

    2016-01-01

    The purpose of this systematic literature review is to review published studies on foot care knowledge and foot care practice interventions as part of diabetic foot care self-management interventions. Medline, CINAHL, CENTRAL, and Cochrane Central Register of Controlled Trials databases were searched. References from the included studies were reviewed to identify any missing studies that could be included. Only foot care knowledge and foot care practice intervention studies that focused on the person living with type 2 diabetes were included in this review. Author, study design, sample, intervention, and results were extracted. Thirty studies met the inclusion criteria and were classified according to randomized controlled trial (n=9), survey design (n=13), cohort studies (n=4), cross-sectional studies (n=2), qualitative studies (n=2), and case series (n=1). Improving lower extremity complications associated with type 2 diabetes can be done through effective foot care interventions that include foot care knowledge and foot care practices. Preventing these complications, understanding the risk factors, and having the ability to manage complications outside of the clinical encounter is an important part of a diabetes foot self-care management program. Interventions and research studies that aim to reduce lower extremity complications are still lacking. Further research is needed to test foot care interventions across multiple populations and geographic locations.

  5. Hybrid imaging in foot and ankle disorders.

    PubMed

    García Jiménez, R; García-Gómez, F J; Noriega Álvarez, E; Calvo Morón, C; Martín-Marcuartu, J J

    Disorders of the foot and ankle are some of the most frequent ones affecting the musculoskeletal system and have a great impact on patients' quality of life. Accurate diagnosis is an important clinical challenge because of the complex anatomy and function of the foot, that make it difficult to locate the source of the pain by routine clinical examination. In the study of foot pathology, anatomical imaging (radiography, magnetic resonance imaging [MRI], ultrasound and computed tomography [CT]) and functional imaging (bone scan, positron emission tomography [PET] and MRI) techniques have been used. Hybrid imaging combines the advantages of morphological and functional studies in a synergistic way, helping the clinician manage complex problems. In this article we delve into the anatomy and biomechanics of the foot and ankle and describe the potential indications for the current hybrid techniques available for the study of foot and ankle disease. Copyright © 2017 Elsevier España, S.L.U. y SEMNIM. All rights reserved.

  6. 11 Foot Unitary Plan Tunnel Facility Optical Improvement Large Window Analysis

    NASA Technical Reports Server (NTRS)

    Hawke, Veronica M.

    2015-01-01

    The test section of the 11 by 11-foot Unitary Plan Transonic Wind Tunnel (11-foot UPWT) may receive an upgrade of larger optical windows on both the North and South sides. These new larger windows will provide better access for optical imaging of test article flow phenomena including surface and off body flow characteristics. The installation of these new larger windows will likely produce a change to the aerodynamic characteristics of the flow in the Test Section. In an effort understand the effect of this change, a computational model was employed to predict the flows through the slotted walls, in the test section and around the model before and after the tunnel modification. This report documents the solid CAD model that was created and the inviscid computational analysis that was completed as a preliminary estimate of the effect of the changes.

  7. Divergent receiver responses to components of multimodal signals in two foot-flagging frog species.

    PubMed

    Preininger, Doris; Boeckle, Markus; Sztatecsny, Marc; Hödl, Walter

    2013-01-01

    Multimodal communication of acoustic and visual signals serves a vital role in the mating system of anuran amphibians. To understand signal evolution and function in multimodal signal design it is critical to test receiver responses to unimodal signal components versus multimodal composite signals. We investigated two anuran species displaying a conspicuous foot-flagging behavior in addition to or in combination with advertisement calls while announcing their signaling sites to conspecifics. To investigate the conspicuousness of the foot-flagging signals, we measured and compared spectral reflectance of foot webbings of Micrixalus saxicola and Staurois parvus using a spectrophotometer. We performed behavioral field experiments using a model frog including an extendable leg combined with acoustic playbacks to test receiver responses to acoustic, visual and combined audio-visual stimuli. Our results indicated that the foot webbings of S. parvus achieved a 13 times higher contrast against their visual background than feet of M. saxicola. The main response to all experimental stimuli in S. parvus was foot flagging, whereas M. saxicola responded primarily with calls but never foot flagged. Together these across-species differences suggest that in S. parvus foot-flagging behavior is applied as a salient and frequently used communicative signal during agonistic behavior, whereas we propose it constitutes an evolutionary nascent state in ritualization of the current fighting behavior in M. saxicola.

  8. The effect of foot arch on plantar pressure distribution during standing.

    PubMed

    Periyasamy, R; Anand, Sneh

    2013-07-01

    The aim of this study was to explore how foot type affects plantar pressure distribution during standing. In this study, 32 healthy subjects voluntarily participated and the subject feet were classified as: normal feet (n = 23), flat feet (n = 14) and high arch feet (n = 27) according to arch index (AI) values obtained from foot pressure intensity image analysis. Foot pressure intensity images were acquired by a pedopowergraph system to obtain a foot pressure distribution parameter-power ratio (PR) during standing in eight different regions of the foot. Contact area and mean PR were analysed in hind foot, mid-foot and fore foot regions. One-way analysis of variance was used to determine statistical differences between groups. The contact area and mean PR value beneath the mid-foot was significantly increased in the low arch foot when compared to the normal arch foot and high arch foot (p < 0.001) in both feet. However, subjects with low-arch feet had significantly higher body mass index (BMI) compared to subjects with high-arch feet (p < 0.05) and subjects with normal arch feet (p < 0.05) in both feet. In addition, subjects with low-arch feet had significant differences in arch index (AI) value as compared to subjects with high-arch feet (p < 0.001) and subjects with normal arch feet (p < 0.05) in both feet. Mean mid-foot PR value were positively (r = 0.54) correlated with increased arch index (AI) value. A significant (p < 0.05) change was obtained in PR value beneath the mid-foot of low arch feet when compared with other groups in both feet. The findings suggest that there is an increased mid-foot PR value in the low arch foot as compared to the normal arch foot and high arch foot during standing. Therefore, individuals with low arch feet could be at high risk for mid-foot collapse and Charcot foot problems, indicating that foot type should be assessed when determining an individual's risk for foot injury.

  9. Fusion in posttraumatic foot and ankle reconstruction.

    PubMed

    Thordarson, David B

    2004-01-01

    Despite appropriate acute treatment, many foot and ankle injuries result in posttraumatic arthritis. Arthrodesis remains the mainstay of treatment of end-stage arthritis of the foot and ankle. An understanding of the biomechanics of the foot and ankle, particularly which joints are most responsible for optimal function of the foot, can help guide reconstructive efforts. A careful history and physical examination, appropriate radiographs, and, when necessary, differential selective anesthetic blocks help limit fusion to only those joints that are causing pain. Compression fixation, when possible, remains the treatment of choice. When bone defects are present, however, neutralization fixation may be necessary to prevent a secondary deformity that could result from impaction into a bone defect.

  10. Fleet of Foot: Adolescent Foot and Ankle Mobility

    ERIC Educational Resources Information Center

    Legacy, Kelly Bromley

    2018-01-01

    In today's world of advanced technologies, accessible transportation, and fingertip talking, adolescents are spending too many hours each day sedentary. The purpose of this article is to underscore the importance of foot and ankle mobility in an adolescent population that spends very little time on their feet. Physical educators and athletic…

  11. Thyrotoxicosis Presenting as Unilateral Drop Foot

    PubMed Central

    Hara, Kenju; Miyata, Hajime; Motegi, Takahide; Shibano, Ken; Ishiguro, Hideaki

    2017-01-01

    Neuromuscular disorders associated with hyperthyroidism have several variations in their clinical phenotype, such as ophthalmopathy, periodic paralysis, and thyrotoxic myopathy. We herein report an unusual case of thyrotoxic myopathy presenting as unilateral drop foot. Histopathological examinations of the left tibialis anterior muscle showed marked variation in the fiber size, mild inflammatory cell infiltration, and necrotic and regenerated muscle fibers with predominantly type 1 fiber atrophy. Medical treatment with propylthiouracil resulted in complete improvement of the left drop foot. This case expands the phenotype of thyrotoxicosis and suggests that thyrotoxicosis be considered as a possible cause of unilateral drop foot. PMID:28768980

  12. Thyrotoxicosis Presenting as Unilateral Drop Foot.

    PubMed

    Hara, Kenju; Miyata, Hajime; Motegi, Takahide; Shibano, Ken; Ishiguro, Hideaki

    2017-01-01

    Neuromuscular disorders associated with hyperthyroidism have several variations in their clinical phenotype, such as ophthalmopathy, periodic paralysis, and thyrotoxic myopathy. We herein report an unusual case of thyrotoxic myopathy presenting as unilateral drop foot. Histopathological examinations of the left tibialis anterior muscle showed marked variation in the fiber size, mild inflammatory cell infiltration, and necrotic and regenerated muscle fibers with predominantly type 1 fiber atrophy. Medical treatment with propylthiouracil resulted in complete improvement of the left drop foot. This case expands the phenotype of thyrotoxicosis and suggests that thyrotoxicosis be considered as a possible cause of unilateral drop foot.

  13. Treatment options for diabetic foot osteomyelitis.

    PubMed

    Senneville, Eric; Robineau, Olivier

    2017-06-01

    Diabetic foot osteomyelitis therapeutical options are based on antibiotic therapy and surgical resection of the infected bone(s). Surgical and medical approaches of patients suffering from a diabetic foot osteomyelitis do not oppose but are complementary and need to be discussed as a tailored manner. Areas covered: The aim of the present article is to discuss data issued from the most recent guidelines of the Infectious Diseases Society of America and the International Working Group on the Diabetic Foot on the management of the diabetic foot infection and from a search in the current literature using the terms diabetic foot osteomyelitis and treatment/therapy/therapeutical in both PubMed and Medline, restricted to the last five years. Expert opinion: Surgical removal of the entire infected bone(s) has been considered in the past as the standard treatment but medical approach of these patients has now proven efficacy in selected situations. The current emergence of bacteria, especially among Gram negative rods, resistant to almost all the available antibiotics gradually augments the complexity of the management of these patients and is likely to decrease the place of the medical approach and to worsen the outcome of these infections in the next future.

  14. Getting rid of athlete's foot.

    PubMed

    2002-07-01

    At any one time, around 17% of adults in the UK have athlete's foot. While such fungal infection is not usually dangerous, it can cause discomfort, may be resistant to treatment, and may spread to other parts of the body or to other people. Affected feet can also become secondarily infected by bacteria. Here, we review the topical and systemic treatment of athlete's foot.

  15. The in vivo plantar soft tissue mechanical property under the metatarsal head: implications of tissues׳ joint-angle dependent response in foot finite element modeling.

    PubMed

    Chen, Wen-Ming; Lee, Sung-Jae; Lee, Peter Vee Sin

    2014-12-01

    Material properties of the plantar soft tissue have not been well quantified in vivo (i.e., from life subjects) nor for areas other than the heel pad. This study explored an in vivo investigation of the plantar soft tissue material behavior under the metatarsal head (MTH). We used a novel device collecting indentation data at controlled metatarsophalangeal joint angles. Combined with inverse analysis, tissues׳ joint-angle dependent material properties were identified. The results showed that the soft tissue under MTH exhibited joint-angle dependent material responses, and the computed parameters using the Ogden material model were 51.3% and 30.9% larger in the dorsiflexed than in the neutral positions, respectively. Using derived parameters in subject-specific foot finite element models revealed only those models that used tissues׳ joint-dependent responses could reproduce the known plantar pressure pattern under the MTH. It is suggested that, to further improve specificity of the personalized foot finite element models, quantitative mechanical properties of the tissue inclusive of the effects of metatarsophalangeal joint dorsiflexion are needed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Parametric design of pressure-relieving foot orthosis using statistics-based finite element method.

    PubMed

    Cheung, Jason Tak-Man; Zhang, Ming

    2008-04-01

    Custom-molded foot orthoses are frequently prescribed in routine clinical practice to prevent or treat plantar ulcers in diabetes by reducing the peak plantar pressure. However, the design and fabrication of foot orthosis vary among clinical practitioners and manufacturers. Moreover, little information about the parametric effect of different combinations of design factors is available. As an alternative to the experimental approach, therefore, computational models of the foot and footwear can provide efficient evaluations of different combinations of structural and material design factors on plantar pressure distribution. In this study, a combined finite element and Taguchi method was used to identify the sensitivity of five design factors (arch type, insole and midsole thickness, insole and midsole stiffness) of foot orthosis on peak plantar pressure relief. From the FE predictions, the custom-molded shape was found to be the most important design factor in reducing peak plantar pressure. Besides the use of an arch-conforming foot orthosis, the insole stiffness was found to be the second most important factor for peak pressure reduction. Other design factors, such as insole thickness, midsole stiffness and midsole thickness, contributed to less important roles in peak pressure reduction in the given order. The statistics-based FE method was found to be an effective approach in evaluating and optimizing the design of foot orthosis.

  17. Foot care behaviors among adults with type 2 diabetes.

    PubMed

    D'Souza, Melba Sheila; Ruppert, Susan D; Parahoo, Kader; Karkada, Subrahmanya Nairy; Amirtharaj, Anandhi; Jacob, Devakirubai; Balachandran, Shreedevi; Al Salmi, Nasser Majid Dhabi

    2016-12-01

    The aim of the study was to determine factors influencing foot care behaviors among adults with type 2 diabetes. A correlational descriptive study was conducted with a random sample of 160 adults with type 2 diabetes from the public hospital between April and July 2014. Just over 15% of the sample had a history of foot ulcers and almost 42% had numbness/tingling and pain in their feet. Positive foot care behaviors were correlated with higher income, higher educational attainment, lower body weight, positive attitude and higher awareness of diabetes and its management. Targeting type 2 diabetes people with low level of education, low income and overweight may help to enhance their foot care and reduce foot complications in similar populations, Implications. Those most at risk of foot problems should be targeted for education to increase their awareness of ways to prevent and to manage foot problems. Copyright © 2016 Primary Care Diabetes Europe. Published by Elsevier Ltd. All rights reserved.

  18. Gait ground reaction force characteristics of low back pain patients with pronated foot and able-bodied individuals with and without foot pronation.

    PubMed

    Farahpour, Nader; Jafarnezhad, AmirAli; Damavandi, Mohsen; Bakhtiari, Abbas; Allard, Paul

    2016-06-14

    The link between gait parameters and foot abnormalities in association with low back pain is not well understood. The objective of this study was to investigate the effects of excessive foot pronation as well as the association of LBP with excessive foot pronation on the GRF components during shod walking. Forty-five subjects were equally divided into a control group, a group of subjects with pronated feet only, and another group with pronated feet and LBP. Ground reaction forces were analyzed during shod walking. Foot pronation without low back pain was associated with increased lateral-medial ground reaction force, impulse, and time to peak of all reaction forces in heel contact phase (p<0.03). In low back pain patients with pronated foot, greater vertical reaction forces (p=0.001) and loading rate, and time to peak on propulsion force were observed compared to pronated foot without low back pain group. Impulse in posterior-anterior reaction force was smaller in the able-bodied group with normal foot than in the other groups (p<0.05). Positive peak of free moments of the LBP group was significantly greater than that in other groups (p<0.05). In conclusion, foot pronation alone was not associated with elevated vertical ground reaction forces. While, low back pain patients with foot pronation displayed higher vertical ground reaction force as well as higher loading rate. Present results reveal that gait ground reaction force components in low back pain patients with pronated foot may have clinical values on the prognosis and rehabilitation of mechanical LBP patients. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. One-stop microvascular screening service: an effective model for the early detection of diabetic peripheral neuropathy and the high-risk foot.

    PubMed

    Binns-Hall, O; Selvarajah, D; Sanger, D; Walker, J; Scott, A; Tesfaye, S

    2018-04-02

    To evaluate the feasibility of a one-stop microvascular screening service for the early diagnosis of diabetic distal symmetrical polyneuropathy, painful distal symmetrical polyneuropathy and the at-risk diabetic foot. People with diabetes attending retinal screening in hospital and community settings had their feet examined by a podiatrist. Assessment included: Toronto Clinical Neuropathy Score evaluation; a 10-g monofilament test; and two validated, objective and quick measures of neuropathy obtained using the point-of-care devices 'DPN-Check', a hand-held device that measures sural nerve conduction velocity and amplitude, and 'Sudoscan', a device that measures sudomotor function. The diagnostic utility of these devices was assessed against the Toronto Clinical Neuropathy Score as the 'gold standard'. A total of 236 consecutive people attending the retinal screening service, 18.9% of whom had never previously had their feet examined, were evaluated. The prevalence of distal symmetrical polyneuropathy, assessed using the Toronto Clinical Neuropathy Score, was 30.9%, and was underestimated by 10-g monofilament test (14.4%). The prevalence of distal symmetrical polyneuropathy using DPN-check was 51.5% (84.3% sensitivity, 68.3% specificity), 38.2% using Sudoscan foot electrochemical skin conductance (77.4% sensitivity, 68.3% specificity), and 61.9% using abnormality in either of the results (93.2% sensitivity, 52.8% specificity). The results of both devices correlated with Toronto Clinical Neuropathy Score (P<0.001). A new diagnosis of painful distal symmetrical polyneuropathy was made in 59 participants (25%), and 56.6% had moderate- or high-risk foot. Participants rated the service very highly. Combined, eye, foot and renal screening is feasible, has a high uptake, reduces clinic visits, and identifies painful distal symmetrical polyneuropathy and the at-risk foot. Combined large- and small-nerve-fibre assessment using non-invasive, quantitative and quick point

  20. 29 CFR 1910.136 - Foot protection.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 5 2012-07-01 2012-07-01 false Foot protection. 1910.136 Section 1910.136 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Personal Protective Equipment § 1910.136 Foot protection. (a) General...

  1. 33 CFR 142.33 - Foot protection.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Foot protection. 142.33 Section 142.33 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES WORKPLACE SAFETY AND HEALTH Personal Protective Equipment § 142.33 Foot...

  2. 33 CFR 142.33 - Foot protection.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Foot protection. 142.33 Section 142.33 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES WORKPLACE SAFETY AND HEALTH Personal Protective Equipment § 142.33 Foot...

  3. Athlete's foot and onychomycosis caused by Hendersonula toruloidea.

    PubMed

    Abramson, C

    1990-08-01

    Fungi other than the dermatophytes can cause infections of the foot, toes and toenails that simulate classic "athlete's foot." Unless diagnosed culturally and morphologically by the clinical laboratory, treatment failures may occur. The saprophyte Hendersonula toruloidea as well as other fungi and yeasts reported to cause such infections have been shown to be clinically indistinguishable from classic dermatophytic "athlete's foot." The clinical and laboratory diagnosis of these types of foot infections caused by Hendersonula toruloidea are described. Specific transport media required for laboratory diagnosis and therapeutic alternatives are reviewed.

  4. The effects of prolonged running on foot posture: a repeated measures study of half marathon runners using the foot posture index and navicular height

    PubMed Central

    2013-01-01

    Background Different foot postures are associated with alterations in foot function, kinetics and the subsequent occurrence of injury. Little is known about changes in foot posture following prolonged weightbearing exercise. This study aimed to identify changes in foot posture after running a half marathon. Methods Foot posture was measured using the Foot Posture Index (FPI-6) and navicular height in thirty volunteer participants before and after running a half marathon. FPI-6 scores were converted to Rasch logit values and means compared for these and navicular height using an ANOVA. Results There was a 5 mm drop in navicular height in both feet when measured after the half marathon (P < 0.05). The FPI-6 showed a side x time interaction with an increase in score indicating a more ‘pronated’ position in the left foot of + 2 [Rasch value + 1.7] but no change in the right foot (+ 0.4 [+ 0.76]) following the half marathon. Conclusion The apparent differences between the FPI-6 and navicular height on the right foot may be because the FPI-6 takes soft tissue contour changes into consideration whilst the navicular height focuses on skeletal changes. The changes in foot posture towards a more pronated position may have implications for foot function, and therefore risk of injury; shoe fit and comfort and also the effect of therapeutic orthoses worn during prolonged running. PMID:23705863

  5. Evaluating vaccination strategies to control foot-and-mouth disease: a model comparison study.

    PubMed

    Roche, S E; Garner, M G; Sanson, R L; Cook, C; Birch, C; Backer, J A; Dube, C; Patyk, K A; Stevenson, M A; Yu, Z D; Rawdon, T G; Gauntlett, F

    2015-04-01

    Simulation models can offer valuable insights into the effectiveness of different control strategies and act as important decision support tools when comparing and evaluating outbreak scenarios and control strategies. An international modelling study was performed to compare a range of vaccination strategies in the control of foot-and-mouth disease (FMD). Modelling groups from five countries (Australia, New Zealand, USA, UK, The Netherlands) participated in the study. Vaccination is increasingly being recognized as a potentially important tool in the control of FMD, although there is considerable uncertainty as to how and when it should be used. We sought to compare model outputs and assess the effectiveness of different vaccination strategies in the control of FMD. Using a standardized outbreak scenario based on data from an FMD exercise in the UK in 2010, the study showed general agreement between respective models in terms of the effectiveness of vaccination. Under the scenario assumptions, all models demonstrated that vaccination with 'stamping-out' of infected premises led to a significant reduction in predicted epidemic size and duration compared to the 'stamping-out' strategy alone. For all models there were advantages in vaccinating cattle-only rather than all species, using 3-km vaccination rings immediately around infected premises, and starting vaccination earlier in the control programme. This study has shown that certain vaccination strategies are robust even to substantial differences in model configurations. This result should increase end-user confidence in conclusions drawn from model outputs. These results can be used to support and develop effective policies for FMD control.

  6. The reliability and validity of a three-camera foot image system for obtaining foot anthropometrics.

    PubMed

    O'Meara, Damien; Vanwanseele, Benedicte; Hunt, Adrienne; Smith, Richard

    2010-08-01

    The purpose was to develop a foot image capture and measurement system with web cameras (the 3-FIS) to provide reliable and valid foot anthropometric measures with efficiency comparable to that of the conventional method of using a handheld anthropometer. Eleven foot measures were obtained from 10 subjects using both methods. Reliability of each method was determined over 3 consecutive days using the intraclass correlation coefficient and root mean square error (RMSE). Reliability was excellent for both the 3-FIS and the handheld anthropometer for the same 10 variables, and good for the fifth metatarsophalangeal joint height. The RMSE values over 3 days ranged from 0.9 to 2.2 mm for the handheld anthropometer, and from 0.8 to 3.6 mm for the 3-FIS. The RMSE values between the 3-FIS and the handheld anthropometer were between 2.3 and 7.4 mm. The 3-FIS required less time to collect and obtain the final variables than the handheld anthropometer. The 3-FIS provided accurate and reproducible results for each of the foot variables and in less time than the conventional approach of a handheld anthropometer.

  7. Structural and functional predictors of regional peak pressures under the foot during walking.

    PubMed

    Morag, E; Cavanagh, P R

    1999-04-01

    The objective of this study was to identify structural and functional factors which are predictors of peak pressure underneath the human foot during walking. Peak plantar pressure during walking and eight data sets of structural and functional measures were collected on 55 asymptomatic subjects between 20 and 70 yr. A best subset regression approach was used to establish models which predicted peak regional pressure under the foot. Potential predictor variables were chosen from physical characteristics, anthropometric data, passive range of motion (PROM), measurements from standardized weight bearing foot radiographs, mechanical properties of the plantar soft tissue, stride parameters, foot motion in 3D, and EMG during walking. Peak pressure values under the rearfoot, midfoot, MTH1, and hallux were measured. Heel pressure was a function of linear kinematics, longitudinal arch structure, thickness of plantar soft tissue, and age. Midfoot pressure prediction was dominated by arch structure, while MTH1 pressure was a function of radiographic measurements, talo-crural joint motion, and gastrocnemius activity. Hallux pressure was a function of structural measures and MTP1 joint motion. Foot structure and function predicted only approximately 50% of the variance in peak pressure, although the relative contributions in different anatomical regions varied dramatically. Structure was dominant in predicting peak pressure under the midfoot and MTH1, while both structure and function were important at the heel and hallux. The predictive models developed in this study give insight into potential etiological factors associated with elevated plantar pressure. They also provide direction for future studies designed to reduce elevated pressure in "at-risk" patients.

  8. Foot-strike pattern and performance in a marathon.

    PubMed

    Kasmer, Mark E; Liu, Xue-Cheng; Roberts, Kyle G; Valadao, Jason M

    2013-05-01

    To determine prevalence of heel strike in a midsize city marathon, if there is an association between foot-strike classification and race performance, and if there is an association between foot-strike classification and gender. Foot-strike classification (forefoot, midfoot, heel, or split strike), gender, and rank (position in race) were recorded at the 8.1-km mark for 2112 runners at the 2011 Milwaukee Lakefront Marathon. 1991 runners were classified by foot-strike pattern, revealing a heel-strike prevalence of 93.67% (n = 1865). A significant difference between foot-strike classification and performance was found using a Kruskal-Wallis test (P < .0001), with more elite performers being less likely to heel strike. No significant difference between foot-strike classification and gender was found using a Fisher exact test. In addition, subgroup analysis of the 126 non-heel strikers found no significant difference between shoe wear and performance using a Kruskal-Wallis test. The high prevalence of heel striking observed in this study reflects the foot-strike pattern of most mid-distance to long-distance runners and, more important, may predict their injury profile based on the biomechanics of a heel-strike running pattern. This knowledge can help clinicians appropriately diagnose, manage, and train modifications of injured runners.

  9. The effect of ankle foot orthosis stiffness on the energy cost of walking: a simulation study.

    PubMed

    Bregman, D J J; van der Krogt, M M; de Groot, V; Harlaar, J; Wisse, M; Collins, S H

    2011-11-01

    In stroke and multiple sclerosis patients, gait is frequently hampered by a reduced ability to push-off with the ankle caused by weakness of the plantar-flexor muscles. To enhance ankle push-off and to decrease the high energy cost of walking, spring-like carbon-composite Ankle Foot Orthoses are frequently prescribed. However, it is unknown what Ankle Foot Orthoses stiffness should be used to obtain the most efficient gait. The aim of this simulation study was to gain insights into the effect of variation in Ankle Foot Orthosis stiffness on the amount of energy stored in the Ankle Foot Orthosis and the energy cost of walking. We developed a two-dimensional forward-dynamic walking model with a passive spring at the ankle representing the Ankle Foot Orthosis and two constant torques at the hip for propulsion. We varied Ankle Foot Orthosis stiffness while keeping speed and step length constant. We found an optimal stiffness, at which the energy delivered at the hip joint was minimal. Energy cost decreased with increasing energy storage in the ankle foot orthosis, but the most efficient gait did not occur with maximal energy storage. With maximum storage, push-off occurred too late to reduce the impact of the contralateral leg with the floor. Maximum return prior to foot strike was also suboptimal, as push-off occurred too early and its effects were subsequently counteracted by gravity. The optimal Ankle Foot Orthosis stiffness resulted in significant push-off timed just prior to foot strike and led to greater ankle plantar-flexion velocity just before contralateral foot strike. Our results suggest that patient energy cost might be reduced by the proper choice of Ankle Foot Orthosis stiffness. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. A survey of foot problems in juvenile idiopathic arthritis.

    PubMed

    Hendry, G; Gardner-Medwin, J; Watt, G F; Woodburn, J

    2008-12-01

    Evidence suggests that foot problems are common in juvenile idiopathic arthritis (JIA), with prevalence estimates over 90%. The aim of this survey was to describe foot-related impairment and disability associated with JIA and foot-care provision in patients managed under modern treatment paradigms, including disease-modifying anti-rheumatic drugs (DMARDs) and biologic therapies. The Juvenile Arthritis Foot Disability Index (JAFI), Child Health Assessment Questionnaire (CHAQ), and pain visual analogue scale (VAS) were recorded in 30 consecutive established JIA patients attending routine outpatient clinics. Foot deformity score, active/limited joint counts, walking speed, double-support time (s) (DS) and step length symmetry index % (SI) were also measured. Foot-care provision in the preceding 12 months was determined from medical records. Sixty-three per cent of children reported some foot impairment, with a median (range) JAFI subscale score of 1 (0-3); 53% reported foot-related activity limitation, with a JAFI subscale score of 1 (0-4); and 60% reported participation restriction, with a JAFI subscale score of 1 (0-3). Other reported variables were CHAQ 0.38 (0-2), VAS pain 22 (0-79), foot deformity 6 (0-20), active joints 0 (0-7), limited joints 0 (0-31), walking speed 1.09 m/s (0.84-1.38 m/s), DS 0.22 s (0.08-0.26 s) and SI +/-4.0% (+/-0.2-+/-31.0%). A total of 23/30 medical records were reviewed and 15/23 children had received DMARDS, 8/23 biologic agents and 20/23 multiple intra-articular corticosteroid injections. Ten children received specialist podiatry care comprising footwear advice, orthotic therapy and silicone digital splints together with intrinsic muscle strengthening exercises. Despite frequent use of DMARD/biologic therapy and specialist podiatry-led foot care, foot-related impairment and disability persists in some children with JIA.

  11. Gross Motor Skills in Children With Idiopathic Clubfoot and the Association Between Gross Motor Skills, Foot Involvement, Gait, and Foot Motion.

    PubMed

    Lööf, Elin; Andriesse, Hanneke; André, Marie; Böhm, Stephanie; Iversen, Maura D; Broström, Eva W

    2017-02-24

    Little is known regarding gross motor skills (GMS) in children with idiopathic clubfoot (IC). This study describes GMS, specifically foot involvement and asymmetries, and analyses the association between GMS, gait, and foot status in children with IC. Gross motor tasks and gait were analyzed in children with IC and typically developed (TD) children. GMS were assessed using videotapes and the Clubfoot Assessment Protocol (CAP). The Gait Deviation Index (GDI) and GDI-Kinetic were calculated from gait analyses. Children were divided into bilateral, unilateral clubfoot, or TD groups. To analyze asymmetries, feet within each group were further classified into superior or inferior foot, depending on their CAP scores. Correlations identified associations between CAP and GDI, GDI-Kinetic, passive foot motion, and Dimeglio Classification Scores at birth in the clubfeet. In total, 75 children (mean age, 5 years) were enrolled (bilateral n=22, unilateral clubfoot n=25, TD=28). Children with clubfeet demonstrated significantly lower GMS, gait, and foot motion compared with TD children. One leg standing and hopping deviated in 84% and 91%, respectively, in at least one foot in children with clubfoot. Gross motor asymmetries were evident in both children with bilateral and unilateral involvement. In children with unilateral clubfoot, contralateral feet showed few deviations in GMS compared with TD; however, differences existed in gait and foot motion. The association between GMS and gait, foot motion, and initial foot status varied between poor and moderate. Gross motor deficits and asymmetries are present in children with both bilateral and unilateral IC. Development of GMS of the contralateral foot mirrors that of TD children, but modifies to the clubfoot in gait and foot motion. The weak association with gait, foot motion, and initial clubfoot severity indicates that gross motor measurements represent a different outcome entity in clubfoot treatment. We therefore, recommend

  12. Gender differences in foot shape: a study of Chinese young adults.

    PubMed

    Hong, Youlian; Wang, Lin; Xu, Dong Qing; Li, Jing Xian

    2011-06-01

    One important extrinsic factor that causes foot deformity and pain in women is footwear. Women's sports shoes are designed as smaller versions of men's shoes. Based on this, the current study aims to identify foot shape in 1,236 Chinese young adult men and 1,085 Chinese young adult women. Three-dimensional foot shape data were collected through video filming. Nineteen foot shape variables were measured, including girth (4 variables), length (4 variables), width (3 variables), height (7 variables), and angle (1 variable). A comparison of foot measures within the range of the common foot length (FL) categories indicates that women showed significantly smaller values of foot measures in width, height, and girth than men. Three foot types were classified, and distributions of different foot shapes within the same FL were found between women and men. Foot width, medial ball length, ball angle, and instep height showed significant differences among foot types in the same FL for both genders. There were differences in the foot shape between Chinese young women and men, which should be considered in the design of Chinese young adults' sports shoes.

  13. Foot anatomy specialization for postural sensation and control

    PubMed Central

    Ivanenko, Y. P.; Gurfinkel, V. S.

    2012-01-01

    Anthropological and biomechanical research suggests that the human foot evolved a unique design for propulsion and support. In theory, the arch and toes must play an important role, however, many postural studies tend to focus on the simple hinge action of the ankle joint. To investigate further the role of foot anatomy and sensorimotor control of posture, we quantified the deformation of the foot arch and studied the effects of local perturbations applied to the toes (TOE) or 1st/2nd metatarsals (MT) while standing. In sitting position, loading and lifting a 10-kg weight on the knee respectively lowered and raised the foot arch between 1 and 1.5 mm. Less than 50% of this change could be accounted for by plantar surface skin compression. During quiet standing, the foot arch probe and shin sway revealed a significant correlation, which shows that as the tibia tilts forward, the foot arch flattens and vice versa. During TOE and MT perturbations (a 2- to 6-mm upward shift of an appropriate part of the foot at 2.5 mm/s), electromyogram (EMG) measures of the tibialis anterior and gastrocnemius revealed notable changes, and the root-mean-square (RMS) variability of shin sway increased significantly, these increments being greater in the MT condition. The slow return of RMS to baseline level (>30 s) suggested that a very small perturbation changes the surface reference frame, which then takes time to reestablish. These findings show that rather than serving as a rigid base of support, the foot is compliant, in an active state, and sensitive to minute deformations. In conclusion, the architecture and physiology of the foot appear to contribute to the task of bipedal postural control with great sensitivity. PMID:22157121

  14. The shod foot and its implications for American women.

    PubMed

    Rudicel, S A

    1994-01-01

    Throughout history, members of human societies have gone barefoot, and those societies seemingly had a low incidence of foot deformities and pain. Only one study has addressed the problem of infection through injury to the bare foot; otherwise, the unshod foot seems to have had minimal problems. Initially shoes were made in the shape of the foot and were sandals. Over time, shoes became decorative items and symbols of status and vanity. As the shape of shoes changed, they became deforming forces on the foot and the source of pain. Recent studies by the Council on Women's Footwear of the American Orthopaedic Foot and Ankle Society have tried to document the problems caused by shoes on the feet of American women. Attempts should continue to educate women on appropriate shoes and proper fit.

  15. Association of Fat Mass and Adipokines With Foot Pain in a Community Cohort.

    PubMed

    Walsh, Tom P; Gill, Tiffany K; Evans, Angela M; Yaxley, Alison; Shanahan, E Michael; Hill, Catherine L

    2016-04-01

    To determine, first, if fat mass index (FMI) or fat-free mass index (FFMI) and serum adipokines tumor necrosis factor (TNF) and interleukin-6 (IL-6) are associated with prevalent (stage 2) foot pain, and, second, if they are predictive of future (stage 3) foot pain. A subset of participants ages ≥50 years (n = 1,462) from the North West Adelaide Health Study were used for this study. Participants from this community cohort were asked in stage 2 (2004-2006) and stage 3 (2008-2010) if they had foot pain, aching, or stiffness. In stage 2, serum adipokines and anthropometry were measured, while body composition was analyzed with dual x-ray absorptiometry. These variables, along with comorbidities and social history, were used in logistic regression analyses to determine if FMI, FFMI, and serum adipokines were associated with foot pain. Prevalent foot pain was present in 20.2% of participants, and future foot pain in 36.4%. Following multivariate modeling, the odds of having pain at stage 2 increased by 8% for each FMI unit (odds ratio [OR] 1.08, 95% confidence interval [95% CI] 1.04-1.12), while the odds of having pain at stage 3 increased by 6% for each FMI unit at stage 2 (OR 1.06, 95% CI 1.02-1.11). TNF level, IL-6 level, and FFMI were not associated with pain. Increased FMI, but not body mass index, FFMI, or TNF or IL-6 level, was associated with both prevalent and future foot pain. These results suggest that body fat may be more important than body weight with respect to foot pain. The role played by other adipokines requires further investigation. © 2016, American College of Rheumatology.

  16. The prevalence of diabetic foot disease in the Waikato region.

    PubMed

    O'Shea, C; McClintock, J; Lawrenson, R

    2017-07-01

    The aim of this study was to establish the prevalence of diabetic foot disease by utilising the retinal eye screening register in the Waikato region of New Zealand. Understanding both the prevalence and the degree of foot disease across the general diabetes population will help to determine what podiatry services are required for people with diabetes. 2192 people aged 15years and over, who attended the Waikato Regional Diabetes Service mobile retinal photo screening service for the six-month period between May and November 2014, consented to a foot screen including testing for sensation and pedal pulses. A digital image was taken of the dorsal and plantar aspect of each foot for review by a registered Podiatrist. Thirteen percent of the study sample was identified as having a high-risk foot including active foot complications. 65% were categorised as low risk and a further 22% at moderate risk of diabetic foot disease. Factors identified as significant included age, type of diabetes, duration of diabetes, and smoking. These factors placed people at greater risk of diabetic foot disease. A significant number of people with diabetes are at risk of diabetic foot disease. This study has highlighted the need for targeted podiatry services to address diabetic foot disease. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Comparative analysis and quantitative evaluation of ankle-foot orthoses for foot drop in chronic hemiparetic patients.

    PubMed

    Zollo, L; Zaccheddu, N; Ciancio, A L; Morrone, M; Bravi, M; Santacaterina, F; Laineri Milazzo, M; Guglielmelli, E; Sterzi, S

    2015-04-01

    Ankle-foot-orthoses (AFOs) are frequently prescribed for hemiparetic patients to compensate for the foot drop syndrome. However, there is not a systematic study either on the effectiveness of AFOs in the gait recovery process or pointing out the therapeutic differences among the various types of AFOs available on the market. To perform a comparative evaluation of solid and dynamic Ankle-Foot-Orthoses (AFOs) on hemiparetic patients affected by foot drop syndrome by means of spatio-temporal, kinematic and electromyographic indicators. Crossover design with randomization for the interventions. A rehabilitation center for adults with neurologic disorders. Ten chronic hemiparetic patients with foot drop syndrome met inclusion criteria and volunteered to participate. Biomechanical gait analysis was carried out on hemiparetic subjects with foot drop syndrome under 3 conditions with randomized sequences: 1) without AFO; 2) wearing a solid AFO; 3) wearing a dynamic AFO. Significant changes in spatio-temporal, kinematic and electromyographic features of gait were investigated. Gait analysis outcomes showed that there were no significant differences among the solid and the dynamic AFO on the spatio-temporal parameters. Both AFOs led to a reduction of the range of motion of the ankle dorsi-plantar-flexion during stance with respect to the ambulation without AFO. They also had the effect of reducing the asymmetry between the paretic and the contralateral limb in terms of ankle angle at initial contact and hip flexion. The solid AFO generally led to an increase of the co-contraction of the couples of muscles involved in the gait. The proposed set of indicators showed that the AFOs were capable of limiting the effect of the foot-drop in hemiparetic patients and balancing the two limbs. Main differences between the two orthoses were related to muscular activity, being the level of co-contraction of the two couples of analysed muscles typically lower when the dynamic AFO was worn

  18. Trench foot: the medical response in the first World War 1914-18.

    PubMed

    Atenstaedt, Robert L

    2006-01-01

    The approaching 90-year anniversary of United States entry into the Great War is an apt time to examine the response to trench foot (now called nonfreezing cold injury [NFCI]) in this conflict. Trench foot appeared in the winter of 1914, characterized by pedal swelling, numbness, and pain. It was quickly recognized by military-medical authorities. There was little debate over whether it was frostbite or new condition, and it was quickly accepted as a specific disease. The major etiologies proposed were exposure, diet, and infection. The opinion emerged that it was caused by circulatory changes in the foot caused by cold, wet, and pressure. Predisposing factors included dietary inadequacy and fatigue. A number of labels were first given to the disease. However, the name "trench foot" was eventually officially sanctioned. Trench foot became a serious problem for the Allies, leading to 75 000 casualties in the British and 2000 in the American forces. Therapy for trench foot involved a number of conventional, tried-and-tested, and conservative methods. Some more innovative techniques were used. Amputation was only used as a last resort. Prevention involved general measures to improve the trench environment; modification of the footwear worn by the men; and the provision of greases to protect them from moisture. The medical reaction to this condition seems to have been relatively effective. The causation was identified, and prophylactic measures were introduced to fit this model; these seem to have been successful in reducing the prevalence of the condition by 1917-18.

  19. [The gold standard in diabetic foot treatment: total contact cast].

    PubMed

    Lozano-Platonoff, Adriana; Florida Mejía-Mendoza, Melissa Desireé; Ibáñez-Doria, Mónica; Contreras-Ruiz, José

    2014-01-01

    In patients with diabetes, foot complications remain one of the main health issues, with ulcers representing one of the most common. These ulcerations originate from repetitive trauma on a foot with neuropathy. Inadequate care of the diabetic foot may lead to one of the gravest complications of the diabetic foot: amputation. The key to the treatment of the diabetic foot is the control of comorbidities (glucose levels and vascular disease), debridement, exudate control with the available modern dressings, treatment of infection, and offloading the affected foot. A common error in this basic treatment is the method used for offloading, leading to delayed healing as a result, and maybe even amputation. For this purpose we propose the total contact cast considered the "gold standard" in diabetic foot offloading. The objective of the present review is to present the existing evidence in the medical literature on the effectiveness of its use for healing diabetic foot ulcers and hence preventing amputations.

  20. Application of 3D reconstruction system in diabetic foot ulcer injury assessment

    NASA Astrophysics Data System (ADS)

    Li, Jun; Jiang, Li; Li, Tianjian; Liang, Xiaoyao

    2018-04-01

    To deal with the considerable deviation of transparency tracing method and digital planimetry method used in current clinical diabetic foot ulcer injury assessment, this paper proposes a 3D reconstruction system which can be used to get foot model with good quality texture, then injury assessment is done by measuring the reconstructed model. The system uses the Intel RealSense SR300 depth camera which is based on infrared structured-light as input device, the required data from different view is collected by moving the camera around the scanned object. The geometry model is reconstructed by fusing the collected data, then the mesh is sub-divided to increase the number of mesh vertices and the color of each vertex is determined using a non-linear optimization, all colored vertices compose the surface texture of the reconstructed model. Experimental results indicate that the reconstructed model has millimeter-level geometric accuracy and texture with few artificial effect.

  1. Twelve Foot Subsatellite

    NASA Image and Video Library

    1958-04-25

    Engineer and 12 foot Beacon showing NACA emblem on inflated satelloon . For related information see, Spaceflight Revolution, NASA from Sputnik to Apollo, by James R. Hansen. NASA SP-4308, 1995. p. 173.

  2. Investigation of very low blockage ratio boattail models in the Langley 16-foot transonic tunnel

    NASA Technical Reports Server (NTRS)

    Reubush, D. E.

    1976-01-01

    An investigation at an angle of attack of 0 deg was conducted in a 16 foot transonic tunnel at Mach numbers from 0.4 to 1.05 to determine the limits in Mach number at which valid boattail pressure drag data may be obtained with very low blockage ratio bodies. Extreme care was exercised when examining any data taken at subsonic Mach numbers very near 1.0 and lower than the supersonic Mach number at which shock reflections miss the model. Boattail pressure coefficient distributions did not indicate any error, but when integrated boattail pressure drag data was plotted as a function of Mach number, data which were in error were identified.

  3. McDonnell Model XV-1 Convertiplane in the Ames 40x80 Foot Wind Tunnel.

    NASA Image and Video Library

    1954-05-17

    Foreword, front view of McDonnell Model XV-1 Convertiplane in the Ames 40x80 Foot Wind Tunnel. The McDonnell XV-1 was an experimental compound gyroplane developed for a joint research program between the United States Air Force and the United States Army to explore technologies to develop an aircraft that could take off and land like a helicopter but fly at faster airspeeds, similar to a conventional airplane. The XV-1 would reach a speed of 200 mph (322 km/h), faster than any previous rotorcraft, but the program was terminated due to the tip-jet noise and complexity of the technology which gave only a modest gain in performance.

  4. Associations of health literacy with diabetic foot outcomes: a systematic review and meta-analysis.

    PubMed

    Chen, P Y; Elmer, S; Callisaya, M; Wills, K; Greenaway, T M; Winzenberg, T M

    2018-05-26

    People with diabetes have low health literacy, but the role of the latter in diabetic foot disease is unclear. To determine, through a systematic review and meta-analysis, if health literacy is associated with diabetic foot disease, its risk factors, or foot care. We searched PubMed, EMBASE, CINAHL, Web of Science, Scopus and Science Direct. All studies were screened and data extracted by two independent reviewers. Studies in English with valid and reliable measures of health literacy and published tests of association were included. Data were extracted on the associations between the outcomes and health literacy. Meta-analyses were performed using random effects models. Sixteen articles were included in the systematic review, with 11 in the meta-analysis. In people with inadequate health literacy, the odds of having diabetic foot disease were twice those in people with adequate health literacy, but this was not statistically significant [odds ratio 1.99 (95% CI 0.83, 4.78); two studies in 1278 participants]. There was no statistically significant difference in health literacy levels between people with and without peripheral neuropathy [standardized mean difference -0.14 (95% CI -0.47, 0.18); two studies in 399 participants]. There was no association between health literacy and foot care [correlation coefficient 0.01 (95% CI -0.07, 0.10); seven studies in 1033 participants]. There were insufficient data to exclude associations between health literacy and diabetic foot disease and its risk factors, but health literacy appears unlikely to have a role in foot care. The contribution of low health literacy to diabetic foot disease requires definitive assessment through robust longitudinal studies. © 2018 Diabetes UK.

  5. Achilles tendon moment arm in humans is not affected by inversion/eversion of the foot: a short report.

    PubMed

    Wolfram, Susann; Morse, Christopher I; Winwood, Keith L; Hodson-Tole, Emma; McEwan, Islay M

    2018-01-01

    The triceps surae primarily acts as plantarflexor of the ankle joint. However, the group also causes inversion and eversion at the subtalar joint. Despite this, the Achilles tendon moment arm is generally measured without considering the potential influence of inversion/eversion of the foot during plantarflexion. This study investigated the effect of foot inversion and eversion on the plantarflexion Achilles tendon moment arm. Achilles tendon moment arms were determined using the centre-of-rotation method in magnetic resonance images of the left ankle of 11 participants. The foot was positioned at 15° dorsiflexion, 0° or 15° plantarflexion using a Styrofoam wedge. In each of these positions, the foot was either 10° inverted, neutral or 10° everted using an additional Styrofoam wedge. Achilles tendon moment arm in neutral foot position was 47.93 ± 4.54 mm and did not differ significantly when the foot was positioned in 10° inversion and 10° eversion. Hence, inversion/eversion position of the foot may not considerably affect the length of the Achilles tendon moment arm. This information could be useful in musculoskeletal models of the human lower leg and foot and when estimating Achilles tendon forces during plantarflexion with the foot positioned in inversion or eversion.

  6. Joint moments and contact forces in the foot during walking.

    PubMed

    Kim, Yongcheol; Lee, Kyoung Min; Koo, Seungbum

    2018-06-06

    The net force and moment of a joint have been widely used to understand joint disease in the foot. Meanwhile, it does not reflect the physiological forces on muscles and contact surfaces. The objective of the study is to estimate active moments by muscles, passive moments by connective tissues and joint contact forces in the foot joints during walking. Joint kinematics and external forces of ten healthy subjects (all males, 24.7 ± 1.2 years) were acquired during walking. The data were entered into the five-segment musculoskeletal foot model to calculate muscle forces and joint contact forces of the foot joints using an inverse dynamics-based optimization. Joint reaction forces and active, passive and net moments of each joint were calculated from muscle and ligament forces. The maximum joint reaction forces were 8.72, 4.31, 2.65, and 3.41 body weight (BW) for the ankle, Chopart's, Lisfranc and metatarsophalangeal joints, respectively. Active and passive moments along with net moments were also obtained. The maximum net moments were 8.6, 8.4, 5.4 and 0.8%BW∙HT, respectively. While the trend of net moment was very similar between the four joints, the magnitudes and directions of the active and passive moments varied between joints. The active and passive moments during walking could reveal the roles of muscles and ligaments in each of the foot joints, which was not obvious in the net moment. This method may help narrow down the source of joint problems if applied to clinical studies. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Botulinum Toxin Type A Injection for Spastic Equinovarus Foot in Children with Spastic Cerebral Palsy: Effects on Gait and Foot Pressure Distribution

    PubMed Central

    Choi, Ja Young; Jung, Soojin; Rha, Dong-wook

    2016-01-01

    Purpose To investigate the effect of intramuscular Botulinum toxin type A (BoNT-A) injection on gait and dynamic foot pressure distribution in children with spastic cerebral palsy (CP) with dynamic equinovarus foot. Materials and Methods Twenty-five legs of 25 children with CP were investigated in this study. BoNT-A was injected into the gastrocnemius (GCM) and tibialis posterior (TP) muscles under the guidance of ultrasonography. The effects of the toxin were clinically assessed using the modified Ashworth scale (MAS) and modified Tardieu scale (MTS), and a computerized gait analysis and dynamic foot pressure measurements using the F-scan system were also performed before injection and at 1 and 4 months after injection. Results Spasticity of the ankle plantar-flexor in both the MAS and MTS was significantly reduced at both 1 and 4 months after injection. On dynamic foot pressure measurements, the center of pressure index and coronal index, which represent the asymmetrical weight-bearing of the medial and lateral columns of the foot, significantly improved at both 1 and 4 months after injection. The dynamic foot pressure index, total contact area, contact length and hind foot contact width all increased at 1 month after injection, suggesting better heel contact. Ankle kinematic data were significantly improved at both 1 and 4 months after injection, and ankle power generation was significantly increased at 4 months after injection compared to baseline data. Conclusion Using a computerized gait analysis and foot scan, this study revealed significant benefits of BoNT-A injection into the GCM and TP muscles for dynamic equinovarus foot in children with spastic CP. PMID:26847306

  8. Footwear interventions for foot pain, function, impairment and disability for people with foot and ankle arthritis: A literature review.

    PubMed

    Frecklington, Mike; Dalbeth, Nicola; McNair, Peter; Gow, Peter; Williams, Anita; Carroll, Matthew; Rome, Keith

    2017-11-03

    To conduct a literature review on the effectiveness of footwear on foot pain, function, impairment and disability for people with foot and ankle arthritis. A search of the electronic databases Scopus, Medline, CINAHL, SportDiscus and the Cochrane Library was undertaken in September 2017. The key inclusion criteria were studies reporting on findings of footwear interventions for people with arthritis with foot pain, function, impairment and/or disability. The Quality Index Tool was used to assess the methodological quality of studies included in the qualitative synthesis. The methodological variation of the included studies was assessed to determine the suitability of meta-analysis and the grading of recommendations, assessment, development and evaluation (GRADE) system. Between and within group effect sizes were calculated using Cohen's d. 1440 studies were identified for screening with 11 studies included in the review. Mean (range) quality scores were 67% (39-96%). The majority of studies investigated rheumatoid arthritis (n = 7), but also included gout (n = 2), and 1st metatarsophalangeal joint osteoarthritis (n = 2). Meta-analysis and GRADE assessment were not deemed appropriated based on methodological variation. Footwear interventions included off-the-shelf footwear, therapeutic footwear and therapeutic footwear with foot orthoses. Key footwear characteristics included cushioning and a wide toe box for rheumatoid arthritis; cushioning, midsole stability and a rocker-sole for gout; and a rocker-sole for 1st metatarsophalangeal joint osteoarthritis. Between group effect sizes for outcomes ranged from 0.01 to 1.26. Footwear interventions were associated with reductions in foot pain, impairment and disability for people with rheumatoid arthritis. Between group differences were more likely to be observed in studies with shorter follow-up periods in people with rheumatoid arthritis (12 weeks). Footwear interventions improved foot pain, function and disability in

  9. Foot health and self-care activities of older people in home care.

    PubMed

    Stolt, Minna; Suhonen, Riitta; Puukka, Pauli; Viitanen, Matti; Voutilainen, Päivi; Leino-Kilpi, Helena

    2012-11-01

    To assess the foot health of older people and their self-care activities in home care. The ultimate goal is to prevent foot problems in older people and to develop the assessment skills of nurses working in home care. Foot health problems are one reason why older people seek home care services. These problems are prevalent in older people, and they can impair performance of daily activities and threaten functional ability. However, studies in this field have concentrated on foot problems related to specific diseases. Non-disease-related research on foot health from the preventative perspective is lacking. A descriptive explorative design was used. The foot health of older people was assessed by visiting home nurses with the Foot Health Assessment Instrument, and older people's foot self-care activities were evaluated with the Foot Self-Care Activities Structured Interview in 2010. The data were analysed statistically. Older people in home care have multiple foot health problems. The most prevalent problems were oedema, dry skin, thickened and discoloured toenails and hallux valgus. Caring for one's feet was a problem for many older people. Older people's foot health needs to be assessed regularly to recognise foot health and self-care problems. Health care professionals have a vital role in preventing, recognising and caring for foot health in older people. The foot health of older people needs to be improved by supporting older people in foot self-care and developing preventive nursing interventions. Regular foot health assessments and their documentation are crucial in preventing serious foot problems in older people. Moreover, multiprofessional collaboration is important to promote foot health in older people. © 2012 Blackwell Publishing Ltd.

  10. Care of Patients with Diabetic Foot Disease in Oman.

    PubMed

    Al-Busaidi, Ibrahim S; Abdulhadi, Nadia N; Coppell, Kirsten J

    2016-08-01

    Diabetes mellitus is a major public health challenge and causes substantial morbidity and mortality worldwide. Diabetic foot disease is one of the most debilitating and costly complications of diabetes. While simple preventative foot care measures can reduce the risk of lower limb ulcerations and subsequent amputations by up to 85%, they are not always implemented. In Oman, foot care for patients with diabetes is mainly provided in primary and secondary care settings. Among all lower limb amputations performed in public hospitals in Oman between 2002-2013, 47.3% were performed on patients with diabetes. The quality of foot care among patients with diabetes in Oman has not been evaluated and unidentified gaps in care may exist. This article highlights challenges in the provision of adequate foot care to Omani patients with diabetes. It concludes with suggested strategies for an integrated national diabetic foot care programme in Oman.

  11. Care of Patients with Diabetic Foot Disease in Oman

    PubMed Central

    Al-Busaidi, Ibrahim S.; Abdulhadi, Nadia N.; Coppell, Kirsten J.

    2016-01-01

    Diabetes mellitus is a major public health challenge and causes substantial morbidity and mortality worldwide. Diabetic foot disease is one of the most debilitating and costly complications of diabetes. While simple preventative foot care measures can reduce the risk of lower limb ulcerations and subsequent amputations by up to 85%, they are not always implemented. In Oman, foot care for patients with diabetes is mainly provided in primary and secondary care settings. Among all lower limb amputations performed in public hospitals in Oman between 2002–2013, 47.3% were performed on patients with diabetes. The quality of foot care among patients with diabetes in Oman has not been evaluated and unidentified gaps in care may exist. This article highlights challenges in the provision of adequate foot care to Omani patients with diabetes. It concludes with suggested strategies for an integrated national diabetic foot care programme in Oman. PMID:27606104

  12. PEOPLE IN PHYSICS: Interview with Scott Durow, Software Engineer, Oxford

    NASA Astrophysics Data System (ADS)

    Burton, Conducted by Paul

    1998-05-01

    Scott Durow was educated at Bootham School, York. He studied Physics, Mathematics and Chemistry to A-level and went on to Nottingham University to read Medical Physics. After graduating from Nottingham he embarked on his present career as a Software Engineer based in Oxford. He is a musician in his spare time, as a member of a band and playing the French horn.

  13. Plantar pressures are elevated in people with longstanding diabetes-related foot ulcers during follow-up

    PubMed Central

    Fernando, Malindu E.; Crowther, Robert G.; Lazzarini, Peter A.; Yogakanthi, Saiumaeswar; Sangla, Kunwarjit S.; Buttner, Petra; Jones, Rhondda; Golledge, Jonathan

    2017-01-01

    Objective High plantar pressures are implicated in the development of diabetes-related foot ulcers. Whether plantar pressures remain high in patients with chronic diabetes-related foot ulcers over time is uncertain. The primary aim of this study was to compare plantar pressures at baseline and three and six months later in participants with chronic diabetes-related foot ulcers (cases) to participants without foot ulcers (controls). Methods Standardised protocols were used to measure mean peak plantar pressure and pressure-time integral at 10 plantar foot sites (the hallux, toes, metatarsals 1 to 5, mid-foot, medial heel and lateral heel) during barefoot walking. Measurements were performed at three study visits: baseline, three and six months. Linear mixed effects random-intercept models were utilised to assess whether plantar pressures differed between cases and controls after adjusting for age, sex, body mass index, neuropathy status and follow-up time. Standardised mean differences (Cohen’s d) were used to measure effect size. Results Twenty-one cases and 69 controls started the study and 16 cases and 63 controls completed the study. Cases had a higher mean peak plantar pressure at several foot sites including the toes (p = 0.005, Cohen’s d = 0.36) and mid-foot (p = 0.01, d = 0.36) and a higher pressure-time integral at the hallux (p<0.001, d = 0.42), metatarsal 1 (p = 0.02, d = 0.33) and mid-foot (p = 0.04, d = 0.64) compared to controls throughout follow-up. A reduction in pressure-time integral at multiple plantar sites over time was detected in all participants (p<0.05, respectively). Conclusions Plantar pressures assessed during gait are higher in diabetes patients with chronic foot ulcers than controls at several plantar sites throughout prolonged follow-up. Long term offloading is needed in diabetes patients with diabetes-related foot ulcers to facilitate ulcer healing. PMID:28859075

  14. Optimizing DNA nanotechnology through coarse-grained modeling: a two-footed DNA walker.

    PubMed

    Ouldridge, Thomas E; Hoare, Rollo L; Louis, Ard A; Doye, Jonathan P K; Bath, Jonathan; Turberfield, Andrew J

    2013-03-26

    DNA has enormous potential as a programmable material for creating artificial nanoscale structures and devices. For more complex systems, however, rational design and optimization can become difficult. We have recently proposed a coarse-grained model of DNA that captures the basic thermodynamic, structural, and mechanical changes associated with the fundamental process in much of DNA nanotechnology, the formation of duplexes from single strands. In this article, we demonstrate that the model can provide powerful insight into the operation of complex nanotechnological systems through a detailed investigation of a two-footed DNA walker that is designed to step along a reusable track, thereby offering the possibility of optimizing the design of such systems. We find that applying moderate tension to the track can have a large influence on the operation of the walker, providing a bias for stepping forward and helping the walker to recover from undesirable overstepped states. Further, we show that the process by which spent fuel detaches from the walker can have a significant impact on the rebinding of the walker to the track, strongly influencing walker efficiency and speed. Finally, using the results of the simulations, we propose a number of modifications to the walker to improve its operation.

  15. Space Shuttle Model in the 10- by 10-Foot Supersonic Wind Tunnel

    NASA Image and Video Library

    1975-07-21

    Ken Baskin, an engineer from the Facilities and Engineering Branch at the National Aeronautics and Space Administration’s (NASA) Lewis Research Center checks a complete 2.25-scale model of the shuttle in the 10- by 10-Foot Supersonic Wind Tunnel. Baskin’s space shuttle project began in July 1976 during the run-up to the shuttle’s first lift-off scheduled for 1979. The space shuttle was expected to experience multifaceted heating and pressure distributions during the first and second stages of its launch. Rockwell International engineers needed to understand these issues in order to design proper thermal protection. The 10- by 10 tests evaluated the base heating and pressure. The test’s specific objectives were to measure heat transfer and pressure distributions around the orbiter’s external tank and solid rocket booster afterbody caused by rocket exhaust recirculation and impingement, to measure the heat transfer and pressure distributions due to rocket exhaust-induced flow separation, and determine gas recovery temperatures using gas temperature probes and heated model base components. The shuttle model’s main engines and solid rockets were fired during the tests, then just the main engines in an effort to simulate a launch. The researchers conducted 163 runs in the 10- by 10 during the test program.

  16. Spatial optimization of prairie dog colonies for black-footed ferret recovery

    Treesearch

    Michael Bevers; John G. Hof; Daniel W. Uresk; Gregory L. Schenbeck

    1997-01-01

    A discrete-time reaction-diffusion model for black-footed ferret release, population growth, and dispersal is combined with ferret carrying capacity constraints based on prairie dog population management decisions to form a spatial optimization model. Spatial arrangement of active prairie dog colonies within a ferret reintroduction area is optimized over time for...

  17. Foot Morphological Difference between Habitually Shod and Unshod Runners.

    PubMed

    Shu, Yang; Mei, Qichang; Fernandez, Justin; Li, Zhiyong; Feng, Neng; Gu, Yaodong

    2015-01-01

    Foot morphology and function has received increasing attention from both biomechanics researchers and footwear manufacturers. In this study, 168 habitually unshod runners (90 males whose age, weight & height were 23±2.4 years, 66±7.1 kg & 1.68±0.13 m and 78 females whose age, weight & height were 22±1.8 years, 55±4.7 kg & 1.6±0.11 m) (Indians) and 196 shod runners (130 males whose age, weight & height were 24±2.6 years, 66±8.2 kg & 1.72±0.18 m and 66 females whose age, weight & height were 23±1.5 years, 54±5.6 kg & 1.62±0.15 m) (Chinese) participated in a foot scanning test using the easy-foot-scan (a three-dimensional foot scanning system) to obtain 3D foot surface data and 2D footprint imaging. Foot length, foot width, hallux angle and minimal distance from hallux to second toe were calculated to analyze foot morphological differences. This study found that significant differences exist between groups (shod Chinese and unshod Indians) for foot length (female p = 0.001), width (female p = 0.001), hallux angle (male and female p = 0.001) and the minimal distance (male and female p = 0.001) from hallux to second toe. This study suggests that significant differences in morphology between different ethnicities could be considered for future investigation of locomotion biomechanics characteristics between ethnicities and inform last shape and design so as to reduce injury risks and poor performance from mal-fit shoes.

  18. Foot ulcers in the diabetic patient, prevention and treatment.

    PubMed

    Wu, Stephanie C; Driver, Vickie R; Wrobel, James S; Armstrong, David G

    2007-01-01

    Lower extremity complications in persons with diabetes have become an increasingly significant public health concern in both the developed and developing world. These complications, beginning with neuropathy and subsequent diabetic foot wounds frequently lead to infection and lower extremity amputation even in the absence of critical limb ischemia. In order to diminish the detrimental consequences associated with diabetic foot ulcers, a common-sense-based treatment approach must be implemented. Many of the etiological factors contributing to the formation of diabetic foot ulceration may be identified using simple, inexpensive equipment in a clinical setting. Prevention of diabetic foot ulcers can be accomplished in a primary care setting with a brief history and screening for loss of protective sensation via the Semmes-Weinstein monofilament. Specialist clinics may quantify neuropathy, plantar foot pressure, and assess vascular status with Doppler ultrasound and ankle-brachial blood pressure indices. These measurements, in conjunction with other findings from the history and physical examination, may enable clinicians to stratify patients based on risk and help determine the type of intervention. Other effective clinical interventions may include patient education, optimizing glycemic control, smoking cessation, and diligent foot care. Recent technological advanced combined with better understanding of the wound healing process have resulted in a myriad of advanced wound healing modalities in the treatment of diabetic foot ulcers. However, it is imperative to remember the fundamental basics in the healing of diabetic foot ulcers: adequate perfusion, debridement, infection control, and pressure mitigation. Early recognition of the etiological factors along with prompt management of diabetic foot ulcers is essential for successful outcome.

  19. Methicillin-Resistant Staphylococcus aureus in Foot Osteomyelitis.

    PubMed

    Ashong, Chester N; Raheem, Shazia A; Hunter, Andrew S; Mindru, Cezarina; Barshes, Neal R

    Conflicting studies exist regarding the impact of methicillin-resistant Staphylococcus aureus (MRSA) on increased time to wound healing, future need for surgical procedures, and likelihood of treatment failure in patients with diabetic foot osteomyelitis. The purpose of this study is to determine the overall significance of MRSA in predicting treatment failure in bone infections of the foot and to determine an appropriate pre-operative and empiric post-operative antibiotic regimen. Patients presenting with an initial episode of "probable" or "definite" foot osteomyelitis were included for review and analysis if the following criteria were met: (1) Osteomyelitis occurred in the foot (i.e., distal to the malleoli of the ankle); episodes occurring above the ankle were excluded. (2) Patients received either no antibiotics or only oral antibiotics for long-term treatment; episodes managed with long-term parenteral antibiotics were excluded. (3) The infection was managed initially with medical therapy or conservative surgical therapy; episodes managed with major (above-ankle) amputation as the initial treatment were excluded. The primary objective of this study was to assess whether episodes of foot osteomyelitis associated with MRSA resulted in treatment failure more frequently than not. Of 178 episodes included in the study, 50 (28.1%) episodes had treatment failure. Median time-to-treatment failure was 60 days (range 7-598 days). In 28.1% (9/32 episodes) in which treatment failure occurred and 39.0% (41/105) episodes in which no treatment failure occurred, MRSA was present. The presence of MRSA was not significantly associated with treatment failure (p = 0.99). The presence of MRSA in bone culture and whether antibiotic use had anti-MRSA activity was not associated with increased treatment failure of diabetic foot osteomyelitis in our institution. Empiric antibiotic coverage of MRSA may not be necessary for many patients presenting with foot osteomyelitis.

  20. Foot Comfort for the Fashionable

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Modellista Footwear's new shoe line uses Tempur(TM) material, which conforms to each wearer's unique foot shape to absorb shock and cushion the foot. The foam's properties allow the shoe to change with the wearer's foot as it shrinks and swells throughout the day. Scientists at NASA's Ames Research Center originally developed temper foam in the early 1970s to relieve the intense pressure of G-forces experienced by astronauts during rocket launches. Tempur-Pedic, Inc., further developed the foam and granted Modellista a license to use it in footwear. The Modellista collection is the first shoe design and construction to be certified by the Space Awareness Alliance. The shoes, with designs ranging from traditional clog shapes to sling backs and open-toe sandals, are currently available nationwide at select specialty shoe stores and through catalogs. Tempur(TM) is a registered trademark of Tempur-Pedic, Inc.