Niinemets, Ülo; Fares, Silvano; Harley, Peter; Jardine, Kolby J.
2014-01-01
Biogenic volatile organic compound (BVOC) emissions are widely modeled as inputs to atmospheric chemistry simulations. However, BVOC may interact with cellular structures and neighboring leaves in a complex manner during volatile diffusion from the sites of release to leaf boundary layer and during turbulent transport to the atmospheric boundary layer. Furthermore, recent observations demonstrate that the BVOC emissions are bidirectional, and uptake and deposition of BVOC and their oxidation products are the rule rather than the exception. This review summarizes current knowledge of within-leaf reactions of synthesized volatiles with reactive oxygen species (ROS), uptake, deposition and storage of volatiles and their oxidation products as driven by adsorption on leaf surface and solubilization and enzymatic detoxification inside leaves. The available evidence indicates that due to reactions with ROS and enzymatic metabolism, the BVOC gross production rates are much larger than previously thought. The degree to which volatiles react within leaves and can be potentially taken up by vegetation depends on compound reactivity, physicochemical characteristics, as well as their participation in leaf metabolism. We argue that future models should be based on the concept of bidirectional BVOC exchange and consider modification of BVOC sink/source strengths by within-leaf metabolism and storage. PMID:24635661
Things fall apart: Fragmentation reactions in the oxidative aging of organic species
NASA Astrophysics Data System (ADS)
Kroll, J. H.; Isaacman-VanWertz, G. A.; Wilson, K. R.; Daumit, K. E.; Kessler, S. H.; Lim, C. Y.; Worsnop, D. R.
2016-12-01
The atmospheric oxidation of organic compounds involves a wide array of chemical transformations, including functionalization reactions (addition of polar functional groups to the carbon skeleton), fragmentation reactions (formation of lower carbon-number products via C-C bond scission), and accretion reactions (increases in molecular weight by the combination of two chemical species). Each of these reaction classes can lead to large changes in volatility, and hence can have major implications for atmospheric organic aerosol (OA). For example, the formation of OA is predominantly driven by functionalization and accretion reactions, which generally lead to decreases in volatility. Here we describe a series of laboratory studies of the subsequent organic "aging", the multiday oxidation processes that occur after the initial OA formation and growth. In these studies, the multigenerational oxidation of organic compounds in various phases (the gas phase, the condensed OA phase, and the aqueous phase) is carried out within either an environmental chamber or a flow reactor, and monitored using various high-resolution mass spectrometric techniques. In all cases it is found that fragmentation reactions play a major role in the observed aging chemistry, dominated by the formation of small, volatile oxidation products. These results suggest that multi-day oxidative aging processes do not lead to sustained aerosol growth, but rather may serve as a chemical sink for atmospheric OA.
NASA Astrophysics Data System (ADS)
Yao, Lide; Inkinen, Sampo; van Dijken, Sebastiaan
2017-02-01
Resistive switching in transition metal oxides involves intricate physical and chemical behaviours with potential for non-volatile memory and memristive devices. Although oxygen vacancy migration is known to play a crucial role in resistive switching of oxides, an in-depth understanding of oxygen vacancy-driven effects requires direct imaging of atomic-scale dynamic processes and their real-time impact on resistance changes. Here we use in situ transmission electron microscopy to demonstrate reversible switching between three resistance states in epitaxial La2/3Sr1/3MnO3 films. Simultaneous high-resolution imaging and resistance probing indicate that the switching events are caused by the formation of uniform structural phases. Reversible horizontal migration of oxygen vacancies within the manganite film, driven by combined effects of Joule heating and bias voltage, predominantly triggers the structural and resistive transitions. Our findings open prospects for ionotronic devices based on dynamic control of physical properties in complex oxide nanostructures.
Tomographic Location of Potential Melt-Bearing Phenocrysts in Lunar Glass Spherules
NASA Technical Reports Server (NTRS)
Ebel, D. S.; Fogel, R. A.; Rivers, M. L.
2005-01-01
In 1971, Apollo 17 astronauts collected a 10 cm soil sample (74220) comprised almost entirely of orange glass spherules. Below this, a double drive-tube core sampled a 68 cm thick horizon comprised of orange glass and black beads (crystallized equivalents of orange glass). Primitive lunar glass spherules (e.g.-A17 orange glasses) are thought to represent ejecta from lunar mare fire fountains [1, 2]. The fire-fountains were apparently driven by a combination of C-O gas ex-solution from orange glass melt and the oxidation of graphite [3, 4]. Upon eruption, magmas lost their volatiles (e.g., S, CO, CO2) to space. Evidence for volatile escape remains as volatile-rich coatings on the exteriors of many spherules [e.g., 5,6]. Moreover, [7] showed that Type I and II Fe-Ni-rich metal particles found within orange glass olivine phenocrysts, or free-floating in the glass itself, are powerful evidence for the volatile driving force for lunar fire fountains.
[Solidification of volatile oil with graphene oxide].
Yan, Hong-Mei; Jia, Xiao-Bin; Zhang, Zhen-Hai; Sun, E; Xu, Yi-Hao
2015-02-01
To evaluate the properties of solidifying volatile oil with graphene oxide, clove oil and zedoary turmeric oil were solidified by graphene oxide. The amount of graphene oxide was optimized with the eugenol yield and curcumol yield as criteria. Curing powder was characterized by differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). The effects of graphene oxide on dissolution in vitro and thermal stability of active components were studied. The optimum solidification ratio of graphene oxide to volatile oil was 1:1. Dissolution rate of active components had rare influence while their thermal stability improved after volatile oil was solidified. Solidifying herbal volatile oil with graphene oxide deserves further study.
Effects of gaseous sulphuric acid on diesel exhaust nanoparticle formation and characteristics.
Rönkkö, Topi; Lähde, Tero; Heikkilä, Juha; Pirjola, Liisa; Bauschke, Ulrike; Arnold, Frank; Schlager, Hans; Rothe, Dieter; Yli-Ojanperä, Jaakko; Keskinen, Jorma
2013-10-15
Diesel exhaust gaseous sulphuric acid (GSA) concentrations and particle size distributions, concentrations, and volatility were studied at four driving conditions with a heavy duty diesel engine equipped with oxidative exhaust after-treatment. Low sulfur fuel and lubricant oil were used in the study. The concentration of the exhaust GSA was observed to vary depending on the engine driving history and load. The GSA affected the volatile particle fraction at high engine loads; higher GSA mole fraction was followed by an increase in volatile nucleation particle concentration and size as well as increase of size of particles possessing nonvolatile core. The GSA did not affect the number of nonvolatile particles. At low and medium loads, the exhaust GSA concentration was low and any GSA driven changes in particle population were not observed. Results show that during the exhaust cooling and dilution processes, besides critical in volatile nucleation particle formation, GSA can change the characteristics of all nucleation mode particles. Results show the dual nature of the nucleation mode particles so that the nucleation mode can include simultaneously volatile and nonvolatile particles, and fulfill the previous results for the nucleation mode formation, especially related to the role of GSA in formation processes.
Improved ASTM G72 Test Method for Ensuring Adequate Fuel-to-Oxidizer Ratios
NASA Technical Reports Server (NTRS)
Juarez, Alfredo; Harper, Susana A.
2016-01-01
The ASTM G72/G72M-15 Standard Test Method for Autogenous Ignition Temperature of Liquids and Solids in a High-Pressure Oxygen-Enriched Environment is currently used to evaluate materials for the ignition susceptibility driven by exposure to external heat in an enriched oxygen environment. Testing performed on highly volatile liquids such as cleaning solvents has proven problematic due to inconsistent test results (non-ignitions). Non-ignition results can be misinterpreted as favorable oxygen compatibility, although they are more likely associated with inadequate fuel-to-oxidizer ratios. Forced evaporation during purging and inadequate sample size were identified as two potential causes for inadequate available sample material during testing. In an effort to maintain adequate fuel-to-oxidizer ratios within the reaction vessel during test, several parameters were considered, including sample size, pretest sample chilling, pretest purging, and test pressure. Tests on a variety of solvents exhibiting a range of volatilities are presented in this paper. A proposed improvement to the standard test protocol as a result of this evaluation is also presented. Execution of the final proposed improved test protocol outlines an incremental step method of determining optimal conditions using increased sample sizes while considering test system safety limits. The proposed improved test method increases confidence in results obtained by utilizing the ASTM G72 autogenous ignition temperature test method and can aid in the oxygen compatibility assessment of highly volatile liquids and other conditions that may lead to false non-ignition results.
Catalyst for Oxidation of Volatile Organic Compounds
NASA Technical Reports Server (NTRS)
Wood, George M. (Inventor); Upchurch, Billy T. (Inventor); Schryer, David R. (Inventor); Davis, Patricia P. (Inventor); Kielin, Erik J. (Inventor); Brown, Kenneth G. (Inventor); Schyryer, Jacqueline L. (Inventor); DAmbrosia, Christine M. (Inventor)
2000-01-01
Disclosed is a process for oxidizing volatile organic compounds to carbon dioxide and water with the minimal addition of energy. A mixture of the volatile organic compound and an oxidizing agent (e.g. ambient air containing the volatile organic compound) is exposed to a catalyst which includes a noble metal dispersed on a metal oxide which possesses more than one oxidation state. Especially good results are obtained when the noble metal is platinum, and the metal oxide which possesses more than one oxidation state is tin oxide. A promoter (i.e., a small amount of an oxide of a transition series metal) may be used in association with the tin oxide to provide very beneficial results.
Volatilization of oxides during oxidation of some superalloys at 1200 C
NASA Technical Reports Server (NTRS)
Zaplatynsky, I.
1977-01-01
Volatilization of oxides during cyclic oxidation of commercial Nichrome, Inconel 750, Rene 41, Stellite 6B, and GE-1541 was studied at 1200 C in static air. Quantitative analysis of oxide vapor deposits revealed that oxides of tungsten, molybdenum, niobium, manganese, and chromium volatilized preferentially from the oxide scales. Aluminum and silicon were not detected in vapor deposits. For all the alloys except GE-1541 chromium was found to be the main metallic element in the oxide scales.
Volatilization of oxides during oxidation of some superalloys at 1200 C
NASA Technical Reports Server (NTRS)
Zaplatynsky, I.
1977-01-01
Volatilization of oxides during cyclic oxidation of commercial Nichrome, Inconel 750, Rene 41, Stellite 6B, and GE-1541 was studied at 1200 C in static air. Quantitative analysis of oxide vapor deposits revealed that oxides of tungsten, molybdenum, niobium, manganese, and chromium volatilized preferentially from the oxide scales. Aluminum and silicon were not detected in vapor deposits. For all the alloys except GE-1541, chromium was found to be the main metallic element in the oxide scales.
Market-oriented ethanol and corn-trade policies can reduce climate-induced US corn price volatility
NASA Astrophysics Data System (ADS)
Verma, Monika; Hertel, Thomas; Diffenbaugh, Noah
2014-05-01
Agriculture is closely affected by climate. Over the past decade, biofuels have emerged as another important factor shaping the agricultural sector. We ask whether the presence of the US ethanol sector can play a role in moderating increases in US corn price variability, projected to occur in response to near-term global warming. Our findings suggest that the answer to this question depends heavily on the underlying forces shaping the ethanol industry. If mandate-driven, there is little doubt that the presence of the corn-ethanol sector will exacerbate price volatility. However, if market-driven, then the emergence of the corn-ethanol sector can be a double-edged sword for corn price volatility, possibly cushioning the impact of increased climate driven supply volatility, but also inheriting volatility from the newly integrated energy markets via crude oil price fluctuations. We find that empirically the former effect dominates, reducing price volatility by 27%. In contrast, mandates on ethanol production increase future price volatility by 54% in under future climate after 2020. We also consider the potential for liberalized international corn trade to cushion corn price volatility in the US. Our results suggest that allowing corn to move freely internationally serves to reduce the impact of near-term climate change on US corn price volatility by 8%.
Old Faithful Model for Radiolytic Gas-Driven Cryovolcanism at Enceladus
NASA Technical Reports Server (NTRS)
Cooper, John F.; Cooper, Paul D.; Sittler, Edward; Sturner, Steven J.; Rymer, Abigail M.
2009-01-01
A new model is presented on how chemically driven cryovolcanism might contribute to episodic outgassing at the icy moon Enceladus and potentially elsewhere including Europa and Kuiper Belt Objects. Exposed water ices can become oxidized from radiolytic chemical alteration of near-surface water ice by space environment irradiation. In contact with primordially abundant reductants such as NH3, CH4, and other hydrocarbons, the product oxidants can react exothermically to produce volatile gases driving cryovolcanism via gas-piston forces on any subsurface liquid reservoirs. Radiolytic oxidants such as H2O2 and O2 can continuously accumulate deep in icy regoliths and be conveyed by rheological flows to subsurface chemical reaction zones over million-year time scales indicated by cratering ages for active regions of Enceladus and Europa. Surface blanketing with cryovolcanic plume ejecta would further accelerate regolith burial of radiolytic oxidants. Episodic heating from transient gravitational tides, radioisotope decay, impacts, or other geologic events might occasionally accelerate chemical reaction rates and ignite the exothermic release of cumulative radiolytic oxidant energy. The time history for the suggested "Old Faithful" model of radiolytic gas-driven cryovolcanism at Enceladus and elsewhere therefore consists of long periods of chemical energy accumulation punctuated by much briefer episodes of cryovolcanic activity. The most probable sequence for detection of activity in the current epoch is a long evolutionary phase of slow but continuous oxidant accumulation over billions of years followed by continuous but variable high activity over the past 10(exp 7)-10(exp 8) years. Detectable cryovolcanic activity could then later decline due to near-total oxidation of the rheologically accessible ice crust and depletion the accessible reductant abundances, as may have already occurred for Europa in the more intense radiation environment of Jupiter's magnetosphere. Astrobiological potential of Enceladus could correspondingly be higher than at Europa due to a less extreme state of oxidation and greater residual abundance of organics.
NASA Astrophysics Data System (ADS)
Cain, Kerrigan P.; Pandis, Spyros N.
2017-12-01
Hygroscopicity, oxidation level, and volatility are three crucial properties of organic pollutants. This study assesses the feasibility of a novel measurement and analysis technique to determine these properties and establish their relationship. The proposed experimental setup utilizes a cloud condensation nuclei (CCN) counter to quantify hygroscopic activity, an aerosol mass spectrometer to measure the oxidation level, and a thermodenuder to evaluate the volatility. The setup was first tested with secondary organic aerosol (SOA) formed from the ozonolysis of α-pinene. The results of the first experiments indicated that, for this system, the less volatile SOA contained species that had on average lower O : C ratios and hygroscopicities. In this SOA system, both low- and high-volatility components can have comparable oxidation levels and hygroscopicities. The method developed here can be used to provide valuable insights about the relationships among organic aerosol hygroscopicity, oxidation level, and volatility.
Scaling Effect on Unipolar and Bipolar Resistive Switching of Metal Oxides
Yanagida, Takeshi; Nagashima, Kazuki; Oka, Keisuke; Kanai, Masaki; Klamchuen, Annop; Park, Bae Ho; Kawai, Tomoji
2013-01-01
Electrically driven resistance change in metal oxides opens up an interdisciplinary research field for next-generation non-volatile memory. Resistive switching exhibits an electrical polarity dependent “bipolar-switching” and a polarity independent “unipolar-switching”, however tailoring the electrical polarity has been a challenging issue. Here we demonstrate a scaling effect on the emergence of the electrical polarity by examining the resistive switching behaviors of Pt/oxide/Pt junctions over 8 orders of magnitudes in the areas. We show that the emergence of two electrical polarities can be categorised as a diagram of an electric field and a cell area. This trend is qualitatively common for various oxides including NiOx, CoOx, and TiO2-x. We reveal the intrinsic difference between unipolar switching and bipolar switching on the area dependence, which causes a diversity of an electrical polarity for various resistive switching devices with different geometries. This will provide a foundation for tailoring resistive switching behaviors of metal oxides. PMID:23584551
On the use of thermal NF3 as the fluorination and oxidation agent in treatment of used nuclear fuels
NASA Astrophysics Data System (ADS)
Scheele, Randall; McNamara, Bruce; Casella, Andrew M.; Kozelisky, Anne
2012-05-01
This paper presents results of our investigation on the use of nitrogen trifluoride as a fluorination or fluorination/oxidation agent for separating valuable constituents from used nuclear fuels by exploiting the different volatilities of the constituent fission product and actinide fluorides. Our thermodynamic calculations show that nitrogen trifluoride has the potential to produce volatile fission product and actinide fluorides from oxides and metals that can form volatile fluorides. Simultaneous thermogravimetric and differential thermal analyses show that the oxides of lanthanum, cerium, rhodium, and plutonium are fluorinated but do not form volatile fluorides when treated with nitrogen trifluoride at temperatures up to 550 °C. However, depending on temperature, volatile fluorides or oxyfluorides can form from nitrogen trifluoride treatment of the oxides of niobium, molybdenum, ruthenium, tellurium, uranium, and neptunium. Thermoanalytical studies demonstrate near-quantitative separation of uranium from plutonium in a mixed 80% uranium and 20% plutonium oxide. Our studies of neat oxides and metals suggest that the reactivity of nitrogen trifluoride may be adjusted by temperature to selectively separate the major volatile fuel constituent uranium from minor volatile constituents, such as Mo, Tc, Ru and from the non-volatile fuel constituents based on differences in their reaction temperatures and kinetic behaviors. This reactivity is novel with respect to that reported for other fluorinating reagents F2, BrF5, ClF3.
Oxidation-reduction catalyst and its process of use
NASA Technical Reports Server (NTRS)
Schryer, Jacqueline L. (Inventor); Oglesby, Donald M. (Inventor); Jordan, Jeffrey D. (Inventor); Watkins, Anthony Neal (Inventor)
2008-01-01
This invention relates generally to a ruthenium stabilized oxidation-reduction catalyst useful for oxidizing carbon monoxide, and volatile organic compounds, and reducing nitrogen oxide species in oxidizing environments, substantially without the formation of toxic and volatile ruthenium oxide species upon said oxidizing environment being at high temperatures.
Aerosol chemical vapor deposition of metal oxide films
Ott, K.C.; Kodas, T.T.
1994-01-11
A process of preparing a film of a multicomponent metal oxide including: forming an aerosol from a solution comprised of a suitable solvent and at least two precursor compounds capable of volatilizing at temperatures lower than the decomposition temperature of said precursor compounds; passing said aerosol in combination with a suitable oxygen-containing carrier gas into a heated zone, said heated zone having a temperature sufficient to evaporate the solvent and volatilize said precursor compounds; and passing said volatilized precursor compounds against the surface of a substrate, said substrate having a sufficient temperature to decompose said volatilized precursor compounds whereby metal atoms contained within said volatilized precursor compounds are deposited as a metal oxide film upon the substrate is disclosed. In addition, a coated article comprising a multicomponent metal oxide film conforming to the surface of a substrate selected from the group consisting of silicon, magnesium oxide, yttrium-stabilized zirconium oxide, sapphire, or lanthanum gallate, said multicomponent metal oxide film characterized as having a substantially uniform thickness upon said substrate.
Geologic Evolution of Eastern Hellas, Mars: Styles and Timing of Volatile-driven Activity
NASA Technical Reports Server (NTRS)
Crown, David A.; Bleamaster, Leslie F., III; Mest, Scott C.
2004-01-01
The east rim of the Hellas basin and the surrounding highlands comprise a geologically significant region for evaluating volatile abundance, volatile distribution and cycling, and potential changes in Martian environmental conditions. This region of the Martian surface exhibits landforms shaped by a diversity of geologic processes and has a well-preserved geologic record, with exposures of Noachian, Hesperian, and Amazonian units, as well as spans a wide range in both latitude and elevation due to the magnitude of Hellas basin. In addition, geologically contemporaneous volcanism and volatile-driven activity in the circum-Hellas highlands provide important ingredients for creating habitats for potential Martian life.
NASA Astrophysics Data System (ADS)
Feng, Xi; Ahn, Dong Uk
2016-10-01
Irradiation had little effects on the thiobarbituric acid reactive substances (TBARS) values in ready-to-eat (RTE) turkey meat products, while it increased protein oxidation at 4.5 kGy. The volatile profile analyses indicated that the amount of sulfur compounds increased linearly as doses increased in RTE turkey meat products. By correlation analysis, a positive correlation was found between benzene/ benzene derivatives and alcohols with lipid oxidation, while aldehydes, ketones and alkane, alkenes and alkynes were positively correlated with protein oxidation. Principle component analysis showed that irradiated meat samples can be discriminated by two categories of volatile compounds: Strecker degradation products and radiolytic degradation products. The cluster analysis of volatile data demonstrated that low-dose irradiation had minor effects on the volatile profile of turkey sausages (<1.5 kGy). However, as the doses increased, the differences between the irradiated and non-irradiated cured turkey products became significant.
NASA Astrophysics Data System (ADS)
Ye, Penglin; Zhao, Yunliang; Chuang, Wayne K.; Robinson, Allen L.; Donahue, Neil M.
2018-05-01
We have investigated the production of secondary organic aerosol (SOA) from pinanediol (PD), a precursor chosen as a semi-volatile surrogate for first-generation oxidation products of monoterpenes. Observations at the CLOUD facility at CERN have shown that oxidation of organic compounds such as PD can be an important contributor to new-particle formation. Here we focus on SOA mass yields and chemical composition from PD photo-oxidation in the CMU smog chamber. To determine the SOA mass yields from this semi-volatile precursor, we had to address partitioning of both the PD and its oxidation products to the chamber walls. After correcting for these losses, we found OA loading dependent SOA mass yields from PD oxidation that ranged between 0.1 and 0.9 for SOA concentrations between 0.02 and 20 µg m-3, these mass yields are 2-3 times larger than typical of much more volatile monoterpenes. The average carbon oxidation state measured with an aerosol mass spectrometer was around -0.7. We modeled the chamber data using a dynamical two-dimensional volatility basis set and found that a significant fraction of the SOA comprises low-volatility organic compounds that could drive new-particle formation and growth, which is consistent with the CLOUD observations.
Intraplate mantle oxidation by volatile-rich silicic magmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, Audrey M.; Médard, Etienne; Righter, Kevin
The upper subcontinental lithospheric mantle below the French Massif Central is more oxidized than the average continental lithosphere, although the origin of this anomaly remains unknown. Using iron oxidation analysis in clinopyroxene, oxybarometry, and melt inclusions in mantle xenoliths, we show that widespread infiltration of volatile (HCSO)-rich silicic melts played a major role in this oxidation. We propose the first comprehensive model of magmatism and mantle oxidation at an intraplate setting. Two oxidizing events occurred: (1) a 365–286 Ma old magmatic episode that produced alkaline vaugnerites, potassic lamprophyres, and K-rich calc-alkaline granitoids, related to the N–S Rhenohercynian subduction, and (2)more » < 30 Ma old magmatism related to W–E extension, producing carbonatites and hydrous potassic trachytes. These melts were capable of locally increasing the subcontinental lithospheric mantle fO2 to FMQ + 2.4. Both events originate from the melting of a metasomatized lithosphere containing carbonate + phlogopite ± amphibole. The persistence of this volatile-rich lithospheric source implies the potential for new episodes of volatile-rich magmatism. Similarities with worldwide magmatism also show that the importance of volatiles and the oxidation of the mantle in intraplate regions is underestimated.« less
Intraplate mantle oxidation by volatile-rich silicic magmas
NASA Astrophysics Data System (ADS)
Martin, Audrey M.; Médard, Etienne; Righter, Kevin; Lanzirotti, Antonio
2017-11-01
The upper subcontinental lithospheric mantle below the French Massif Central is more oxidized than the average continental lithosphere, although the origin of this anomaly remains unknown. Using iron oxidation analysis in clinopyroxene, oxybarometry, and melt inclusions in mantle xenoliths, we show that widespread infiltration of volatile (HCSO)-rich silicic melts played a major role in this oxidation. We propose the first comprehensive model of magmatism and mantle oxidation at an intraplate setting. Two oxidizing events occurred: (1) a 365-286 Ma old magmatic episode that produced alkaline vaugnerites, potassic lamprophyres, and K-rich calc-alkaline granitoids, related to the N-S Rhenohercynian subduction, and (2) < 30 Ma old magmatism related to W-E extension, producing carbonatites and hydrous potassic trachytes. These melts were capable of locally increasing the subcontinental lithospheric mantle fO2 to FMQ + 2.4. Both events originate from the melting of a metasomatized lithosphere containing carbonate + phlogopite ± amphibole. The persistence of this volatile-rich lithospheric source implies the potential for new episodes of volatile-rich magmatism. Similarities with worldwide magmatism also show that the importance of volatiles and the oxidation of the mantle in intraplate regions is underestimated.
On the Use of Thermal NF3 as the Fluorination and Oxidation Agent in Treatment of Used Nuclear Fuels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scheele, Randall D.; McNamara, Bruce K.; Casella, Andrew M.
2012-05-01
This paper presents results of our investigation on the use of nitrogen trifluoride as the fluorination or fluorination/oxidation agent for use in a process for separating valuable constituents from used nuclear fuels by employing the volatility of many transition metal and actinide fluorides. Nitrogen trifluoride is less chemically and reactively hazardous than the hazardous and aggressive fluorinating agents used to prepare uranium hexafluoride and considered for fluoride volatility based nuclear fuels reprocessing. In addition, nitrogen trifluoride’s less aggressive character may be used to separate the volatile fluorides from used fuel and from themselves based on the fluorination reaction’s temperature sensitivitymore » (thermal tunability) rather than relying on differences in sublimation/boiling temperature and sorbents. Our thermodynamic calculations found that nitrogen trifluoride has the potential to produce volatile fission product and actinide fluorides from candidate oxides and metals. Our simultaneous thermogravimetric and differential thermal analyses found that the oxides of lanthanum, cerium, rhodium, and plutonium fluorinated but did not form volatile fluorides and that depending on temperature volatile fluorides formed from the oxides of niobium, molybdenum, ruthenium, tellurium, uranium, and neptunium. We also demonstrated near-quantitative removal of uranium from plutonium in a mixed oxide.« less
Aerosol chemical vapor deposition of metal oxide films
Ott, Kevin C.; Kodas, Toivo T.
1994-01-01
A process of preparing a film of a multicomponent metal oxide including: forming an aerosol from a solution comprised of a suitable solvent and at least two precursor compounds capable of volatilizing at temperatures lower than the decomposition temperature of said precursor compounds; passing said aerosol in combination with a suitable oxygen-containing carrier gas into a heated zone, said heated zone having a temperature sufficient to evaporate the solvent and volatilize said precursor compounds; and passing said volatilized precursor compounds against the surface of a substrate, said substrate having a sufficient temperature to decompose said volatilized precursor compounds whereby metal atoms contained within said volatilized precursor compounds are deposited as a metal oxide film upon the substrate is disclosed. In addition, a coated article comprising a multicomponent metal oxide film conforming to the surface of a substrate selected from the group consisting of silicon, magnesium oxide, yttrium-stabilized zirconium oxide, sapphire, or lanthanum gallate, said multicomponent metal oxide film characterized as having a substantially uniform thickness upon said FIELD OF THE INVENTION The present invention relates to the field of film coating deposition techniques, and more particularly to the deposition of multicomponent metal oxide films by aerosol chemical vapor deposition. This invention is the result of a contract with the Department of Energy (Contract No. W-7405-ENG-36).
Oxidation/volatilization rates in air for candidate fusion reactor blanket materials, PCA and HT-9
NASA Astrophysics Data System (ADS)
Piet, S. J.; Kraus, H. G.; Neilson, R. M.; Jones, J. L.
1986-11-01
Large uncertainties exist in the quantity of neutron-induced activation products that can be mobilized in potential fusion accidents. The accidental combination of high temperatures and oxidizing conditions might lead to mobilization of a significant amount of activation products from structural materials. Here, the volatilization of constituents of PCA and HT-9 resulting form oxidation in air was investigated. Tests were conducted in flowing air at temperatures from 600 to 1300°C for 1, 5, or 20 h. Elemental volatility was calculated in terms of the weight fraction of the element volatilized from the initial alloy. Molybdenum and manganese were the radiologically significant primary constituents most volatilized, suggesting that molybdenum and manganese should be minimized in fusion steel compositions. Higher chromium content appears beneficial in reducing hazards from mobile activation products. Scanning electron microscopy and energy dispersive spectroscopy were used to study the oxide layer on samples.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hildebrandt Ruiz, L.; Paciga, A. L.; Cerully, K. M.
Secondary organic aerosol (SOA) is transformed after its initial formation, but this chemical aging of SOA is poorly understood. Experiments were conducted in the Carnegie Mellon environmental chamber to form secondary organic aerosol (SOA) from the photo-oxidation of toluene and other small aromatic volatile organic compounds (VOCs) in the presence of NO x under different oxidizing conditions. The effects of the oxidizing condition on organic aerosol (OA) composition, mass yield, volatility, and hygroscopicity were explored. Higher exposure to the hydroxyl radical resulted in different OA composition, average carbon oxidation state (OS c), and mass yield. The OA oxidation state generallymore » increased during photo-oxidation, and the final OA OS c ranged from –0.29 to 0.16 in the performed experiments. The volatility of OA formed in these different experiments varied by as much as a factor of 30, demonstrating that the OA formed under different oxidizing conditions can have a significantly different saturation concentration. In conclusion, there was no clear correlation between hygroscopicity and oxidation state for this relatively hygroscopic SOA.« less
Yang, Kai-Min; Cheng, Ming-Ching; Chen, Chih-Wei; Tseng, Chin-Yin; Lin, Li-Yun; Chiang, Po-Yuan
2017-02-01
Algae oil and fish oil are n-3 PUFA mainstream commercial products. The various sources for the stability of n-3 PUFA oxidation are influenced by the fatty acid composition, extraction and refined processing. In this study, the oil stability index (OSI) occurs within 2.3 to 7.6 hours with three different n-3 PUFA rich oil. To set the OSI in the Rancimat test as the oil stability limit and observed various degrees of oxidation (0, 25, 50, 75, 100 and 125%). The volatile oxidation compounds were analyzed via headspace-solid phase microextraction (HS-SPME) and GC/MS. We detected 51 volatile compound variations during the oxidation, which were composed of aldehydes, hydrocarbons, cyclic compounds, alcohols, benzene compounds, ketones, furans, ester and pyrrolidine. The off-flavor characteristics can be strongly influenced by the synergy effects of volatile oxidation compounds. Chemometric analysis (PCA and AHC) was applied to identify the sensitive oxidation marker compounds, which included a (E,E)-2,4-heptadienal appropriate marker, via lipid oxidation in the n-3 PUFA rich oil.
Hildebrandt Ruiz, L.; Paciga, A. L.; Cerully, K. M.; ...
2015-07-24
Secondary organic aerosol (SOA) is transformed after its initial formation, but this chemical aging of SOA is poorly understood. Experiments were conducted in the Carnegie Mellon environmental chamber to form secondary organic aerosol (SOA) from the photo-oxidation of toluene and other small aromatic volatile organic compounds (VOCs) in the presence of NO x under different oxidizing conditions. The effects of the oxidizing condition on organic aerosol (OA) composition, mass yield, volatility, and hygroscopicity were explored. Higher exposure to the hydroxyl radical resulted in different OA composition, average carbon oxidation state (OS c), and mass yield. The OA oxidation state generallymore » increased during photo-oxidation, and the final OA OS c ranged from –0.29 to 0.16 in the performed experiments. The volatility of OA formed in these different experiments varied by as much as a factor of 30, demonstrating that the OA formed under different oxidizing conditions can have a significantly different saturation concentration. In conclusion, there was no clear correlation between hygroscopicity and oxidation state for this relatively hygroscopic SOA.« less
Maire, Murielle; Rega, Barbara; Cuvelier, Marie-Elisabeth; Soto, Paola; Giampaoli, Pierre
2013-12-15
This paper investigates the effect of ingredients on the reactions occurring during the making of sponge cake and leading to the generation of volatile compounds related to flavour quality. To obtain systems sensitive to lipid oxidation (LO), a formulation design was applied varying the composition of fatty matter and eggs. Oxidation of polyunsaturated fatty acids (PUFA) and formation of related volatile compounds were followed at the different steps of cake-making. Optimised dynamic Solid Phase Micro Extraction was applied to selectively extract either volatile or semi-volatile compounds directly from the baking vapours. We show for the first time that in the case of alveolar baked products, lipid oxidation occurs very early during the step of dough preparation and to a minor extent during the baking process. The generation of lipid oxidation compounds depends on PUFA content and on the presence of endogenous antioxidants in the raw matter. Egg yolk seemed to play a double role on reactivity: protecting unsaturated lipids from oxidation and being necessary to generate a broad class of compounds of the Maillard reaction during baking and linked to the typical flavour of sponge cake. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kim, Hyun-Wook; Lee, Soo-Yeon; Hwang, Ko-Eun; Song, Dong-Heon; Kim, Yong-Jae; Ham, Yun-Kyung; Lee, Choong-Hee; Choi, Yun-Sang; Lee, Ju-Woon; Kim, Cheon-Jei
2014-10-01
The objective of this study is to determine the effect of soy sauce on volatile compounds and lipid oxidation of cooked irradiated beef patties. Sulfur-containing volatile components, which are produced by irradiation, were not found in all treatments. Volatile components derived from soy sauce, such as 3-hydroxy-2-butanone, acetic acid, 3-methyl-1-butanol and 2-methyl-1-butanol, were detected in beef patties containing soy sauce regardless of irradiation and packaging method. Volatile aldehydes, including hexanal, significantly decreased the irradiated beef patty prepared with soy sauce compared to those of irradiated beef patty made with NaCl at 1 day and 5 days after irradiation. In addition, combined use of vacuum packaging and soy sauce treatments could inhibit the formation of volatile compounds and 2-thiobarbituric acid reactive substances during chilled storage. Therefore, the use of soy sauce in cooked and irradiated beef could reduce the production of volatile components associated with the irradiation-induced off-flavor and lipid oxidation.
Thermal NF3 fluorination/oxidation of cobalt, yttrium, zirconium, and selected lanthanide oxides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scheele, Randall D.; McNamara, Bruce K.; Casella, Andrew M.
2013-02-01
This paper presents results of our continuing investigation on the use of nitrogen trifluoride as a fluorination or fluorination/oxidation agent for separating valuable constituents from used nuclear fuels by exploiting the different volatilities of the constituent fission product and actinide fluorides. This article focuses on fission products that do not have volatile fluorides or oxyfluorides at expected operations temperatures. Our thermodynamic calculations show that nitrogen trifluoride has the potential to completely fluorinate fission product oxides to their fluorides. Simultaneous thermogravimetric and differential thermal analyses show that the oxides of cobalt, zirconium, and the lanthanides are fluorinated but do not formmore » volatile fluorides when treated with nitrogen trifluoride at temperatures up to 550°C. Our studies of gadolinium-doped commercial nuclear fuel indicate that nitrogen trifluoride can extract uranium from the non-volatile gadolinium.« less
NASA Technical Reports Server (NTRS)
Opila, Elizabeth J.
2004-01-01
Many structural materials rely on the formation of chromia, silica or alumina as a protective layer when exposed in high temperature oxidizing environments. The presence of these oxide layers provides a protective diffusion barrier which slows down further oxidation. In atmospheres containing water vapor, however, reactions to form volatile hydroxide species occur which remove the surface oxide, thus, lowering the protective capability of the oxide scale. This paper summarizes the current understanding of volatility of chromia, silica and alumina in water vapor containing combustion environments. In addition unanswered questions in each system are discussed. Th current paper represents an update on the considerable information learned in the past five years for these systems.
NASA Astrophysics Data System (ADS)
Cerully, K. M.; Bougiatioti, A.; Hite, J. R., Jr.; Guo, H.; Xu, L.; Ng, N. L.; Weber, R.; Nenes, A.
2014-12-01
The formation of secondary organic aerosol (SOA) combined with the partitioning of semi-volatile organic components can impact numerous aerosol properties including cloud condensation nuclei (CCN) activity, hygroscopicity and volatility. During the summer 2013 Southern Oxidant and Aerosol Study (SOAS) field campaign in a rural site in the Southeastern United States, a suite of instruments including a CCN counter, a thermodenuder (TD) and a high resolution time-of-flight aerosol mass spectrometer (AMS) were used to measure CCN activity, aerosol volatility, composition and oxidation state. Particles were either sampled directly from ambient or through a Particle Into Liquid Sampler (PILS), allowing the investigation of the water-soluble aerosol component. Ambient aerosol exhibited size-dependent composition with larger particles being more hygroscopic. The hygroscopicity of thermally-denuded aerosol was similar between ambient and PILS-generated aerosol and showed limited dependence on volatilization. Results of AMS 3-factor Positive Matrix Factorization (PMF) analysis for the PILS-generated aerosol showed that the most hygroscopic components are most likely the most and the least volatile features of the aerosol. No clear relationship was found between organic hygroscopicity and oxygen-to-carbon ratio; in fact, Isoprene organic aerosol (Isoprene-OA) was found to be the most hygroscopic factor, while at the same time being the least oxidized and likely most volatile of all PMF factors. Considering the diurnal variation of each PMF factor and its associated hygroscopicity, Isoprene-OA and More Oxidized - Oxidized Oxygenated Organic Aerosol (MO-OOA) are the prime contributors to hygroscopicity and covary with Less Oxidized - Oxidized Oxygenated Organic Aerosol (LO-OOA) in a way that induces the observed diurnal invariance in total organic hygroscopicity. Biomass Burning Organic Aerosol (BBOA) contributed little to aerosol hygroscopicity, which is expected since there was little biomass burning activity during the sampling period examined.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-01
... Volatile Organic Compounds and Nitrogen Oxides AGENCY: Environmental Protection Agency (EPA). ACTION... requirements for stationary sources of volatile organic compounds (VOCs) and nitrogen oxides (NO X ). This... to 310 CMR 7.19, Reasonably Available Control Technology (RACT) for Sources of Oxides of Nitrogen (NO...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-19
... announces that on October 13, 2010, the EPA issued a determination that the proposal to modify the Encina..., volatile organic compounds, and sulfur oxides. ADDRESSES: EPA's determination and other related documents... oxides, carbon monoxide, particulates, volatile organic compounds, and sulfur oxides. Based on our review...
VOLATILE ORGANIC COMPOUNDS AND ISOPRENE OXIDATION PRODUCTS AT A TEMPERATE DECIDUOUS FOREST SITE
Biogenic volatile compounds (BVOCs) and their role in atmospheric oxidant formation were investigated at a forest site near Oak Ridge, Tennessee, as part of the Nashville Southern Oxidants Study (SOS) in July 1995. Of 98 VOCs detected, a major fraction were anthropogenic VOCs suc...
Thermal engine driven heat pump for recovery of volatile organic compounds
Drake, Richard L.
1991-01-01
The present invention relates to a method and apparatus for separating volatile organic compounds from a stream of process gas. An internal combustion engine drives a plurality of refrigeration systems, an electrical generator and an air compressor. The exhaust of the internal combustion engine drives an inert gas subsystem and a heater for the gas. A water jacket captures waste heat from the internal combustion engine and drives a second heater for the gas and possibly an additional refrigeration system for the supply of chilled water. The refrigeration systems mechanically driven by the internal combustion engine effect the precipitation of volatile organic compounds from the stream of gas.
Malheiro, Ricardo; Casal, Susana; Rodrigues, Nuno; Renard, Catherine M G C; Pereira, José Alberto
2018-04-01
This study focused on the volatile changes in cv. Verdeal Transmontana throughout the entire olive oil processing chain, from the drupe to olive oil storage up to 12 months, while correlating it with quality parameters and sensory quality. During crushing and malaxation, the volatiles formed were mainly "green-leaf volatiles" (GLVs), namely (E)-2-hexenal, hexanal, and 1-hexanol. Centrifugation and clarification steps increased the total volatile amounts to 130 mg kg -1 . However, clarification also increased nonanal and (E)-2-decenal contents, two markers of oxidation, with a noticeable loss of phenolic compounds and oxidative stability. During storage, the total volatile amounts reduced drastically (94% at 12 months after extraction), together with the positive sensory attributes fruity, green, bitter, and pungent. Despite being classified as extra-virgin after one year of storage, peroxides and conjugated dienes were significantly higher while there was a reduction in antioxidant capacity as well as in phenolic compounds (less 50%) and oxidative stability (57%). The present work allowed concluding that the extraction process modulates the volatile composition of olive oil, with a concentration of volatiles at the clarification step. During storage, volatiles are lost, mainly eight months after extraction, leading to the loss of important sensory attributes. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Jathar, S. H.; Miracolo, M. A.; Presto, A. A.; Donahue, N. M.; Adams, P. J.; Robinson, A. L.
2012-10-01
We present a methodology to model secondary organic aerosol (SOA) formation from the photo-oxidation of unspeciated low-volatility organics (semi-volatile and intermediate volatile organic compounds) emitted by combustion systems. It is formulated using the volatility basis-set approach. Unspeciated low-volatility organics are classified by volatility and then allowed to react with the hydroxyl radical. The new methodology allows for larger reductions in volatility with each oxidation step than previous volatility basis set models, which is more consistent with the addition of common functional groups and similar to those used by traditional SOA models. The methodology is illustrated using data collected during two field campaigns that characterized the atmospheric evolution of dilute gas-turbine engine emissions using a smog chamber. In those experiments, photo-oxidation formed a significant amount of SOA, much of which could not be explained based on the emissions of traditional speciated precursors; we refer to the unexplained SOA as non-traditional SOA (NT-SOA). The NT-SOA can be explained by emissions of unspeciated low-volatility organics measured using sorbents. We show that the parameterization proposed by Robinson et al. (2007) is unable to explain the timing of the NT-SOA formation in the aircraft experiments because it assumes a very modest reduction in volatility of the precursors with every oxidation reaction. In contrast the new method better reproduces the NT-SOA formation. The NT-SOA yields estimated for the unspeciated low-volatility organic emissions in aircraft exhaust are similar to literature data for large n-alkanes and other low-volatility organics. The estimated yields vary with fuel composition (Jet Propellent-8 versus Fischer-Tropsch) and engine load (ground idle versus non-ground idle). The framework developed here is suitable for modeling SOA formation from emissions from other combustion systems.
Styles and Timing of Volatile-driven Activity in the Eastern Hellas Region of Mars
NASA Technical Reports Server (NTRS)
Crown, David A.; Bleamaster, Leslie F., III; Mest, Scott C.; Teneva, Lida T.
2005-01-01
Hellas basin, the largest well-preserved impact structure on the Martian surface, is Mars deepest depositional sink and has long been recognized as a source for global dust storms. The basin and surrounding highlands span a wide range in latitude and elevation, exhibit landforms shaped by a diversity of geologic processes, and preserve exposures of Noachian, Hesperian, and Amazonian units. Geologically contemporaneous volcanism and volatile-driven activity in the circum-Hellas highlands provide resources for potential Martian life. Hellas is a geologically significant region for evaluating volatile abundance, distribution and cycling and changes in surface conditions on Mars. Current work integrates geologic studies of the basin floor and east rim using Viking Orbiter, Mars Global Surveyor, and Mars Odyssey datasets to provide a synthesis of the history of volatiles in the region.
Volatile compounds in shergottite and nakhlite meteorites
NASA Technical Reports Server (NTRS)
Gooding, James L.; Aggrey, Kwesi E.; Muenow, David W.
1990-01-01
Since discovery of apparent carbonate carbon in Nakhla, significant evidence has accumulated for occurrence of volatile compounds in shergotties and nakhlites. Results are presented from a study of volatile compounds in three shergottites, one nakhlite, and three eucrite control samples. Shergotties ALHA77005, EETA79001, and Shergotty, and the nakhlite Nakhla, all contain oxidized sulfur (sulfate) of preterrestrial origin; sulfur oxidation is most complete in EETA79001/Lith-C. Significant bulk carbonate was confirmed in Nakhla and trace carbonate was substantiated for EETA79001, all of which appears to be preterrestrial in origin. Chlorine covaries with oxidized sulfur, whereas carbonate and sulfate are inversely related. These volatile compounds were probably formed in a highly oxidizing, aqueous environment sometime in the late stage histories of the rocks that are now represented as meteorites. They are consistent with the hypothesis that shergottite and nakhlite meteorites originated on Mars and that Mars has supported aqueous geochemistry during its history.
Gómez-Cortés, Pilar; Brenna, J Thomas; Sacks, Gavin L
2012-06-19
Optimal accuracy and precision in small-molecule profiling by mass spectrometry generally requires isotopically labeled standards chemically representative of all compounds of interest. However, preparation of mixed standards from commercially available pure compounds is often prohibitively expensive and time-consuming, and many labeled compounds are not available in pure form. We used a single-prototype uniformly labeled [U-(13)C]compound to generate [U-(13)C]-labeled volatile standards for use in subsequent experimental profiling studies. [U-(13)C]-α-Linolenic acid (18:3n-3, ALA) was thermally oxidized to produce labeled lipid degradation volatiles which were subsequently characterized qualitatively and quantitatively. Twenty-five [U-(13)C]-labeled volatiles were identified by headspace solid-phase microextraction-gas chromatography/time-of-flight mass spectrometry (HS-SPME-GC/TOF-MS) by comparison of spectra with unlabeled volatiles. Labeled volatiles were quantified by a reverse isotope dilution procedure. Using the [U-(13)C]-labeled standards, limits of detection comparable to or better than those of previous HS-SPME reports were achieved, 0.010-1.04 ng/g. The performance of the [U-(13)C]-labeled volatile standards was evaluated using a commodity soybean oil (CSO) oxidized at 60 °C from 0 to 15 d. Relative responses of n-decane, an unlabeled internal standard otherwise absent from the mixture, and [U-(13)C]-labeled oxidation products changed by up to 8-fold as the CSO matrix was oxidized, demonstrating that reliance on a single standard in volatile profiling studies yields inaccurate results due to changing matrix effects. The [U-(13)C]-labeled standard mixture was used to quantify 25 volatiles in oxidized CSO and low-ALA soybean oil with an average relative standard deviation of 8.5%. Extension of this approach to other labeled substrates, e.g., [U-(13)C]-labeled sugars and amino acids, for profiling studies should be feasible and can dramatically improve quantitative results compared to use of a single standard.
NASA Astrophysics Data System (ADS)
Sarnela, Nina; Jokinen, Tuija; Duplissy, Jonathan; Yan, Chao; Nieminen, Tuomo; Ehn, Mikael; Schobesberger, Siegfried; Heinritzi, Martin; Ehrhart, Sebastian; Lehtipalo, Katrianne; Tröstl, Jasmin; Simon, Mario; Kürten, Andreas; Leiminger, Markus; Lawler, Michael J.; Rissanen, Matti P.; Bianchi, Federico; Praplan, Arnaud P.; Hakala, Jani; Amorim, Antonio; Gonin, Marc; Hansel, Armin; Kirkby, Jasper; Dommen, Josef; Curtius, Joachim; Smith, James N.; Petäjä, Tuukka; Worsnop, Douglas R.; Kulmala, Markku; Donahue, Neil M.; Sipilä, Mikko
2018-02-01
Atmospheric oxidation is an important phenomenon which produces large quantities of low-volatility compounds such as sulfuric acid and oxidized organic compounds. Such species may be involved in the nucleation of particles and enhance their subsequent growth to reach the size of cloud condensation nuclei (CCN). In this study, we investigate α-pinene, the most abundant monoterpene globally, and its oxidation products formed through ozonolysis in the Cosmic Leaving OUtdoor Droplets (CLOUD) chamber at CERN (the European Organization for Nuclear Research). By scavenging hydroxyl radicals (OH) with hydrogen (H2), we were able to investigate the formation of highly oxygenated molecules (HOMs) purely driven by ozonolysis and study the oxidation of sulfur dioxide (SO2) driven by stabilized Criegee intermediates (sCIs). We measured the concentrations of HOM and sulfuric acid with a chemical ionization atmospheric-pressure interface time-of-flight (CI-APi-TOF) mass spectrometer and compared the measured concentrations with simulated concentrations calculated with a kinetic model. We found molar yields in the range of 3.5-6.5 % for HOM formation and 22-32 % for the formation of stabilized Criegee intermediates by fitting our model to the measured sulfuric acid concentrations. The simulated time evolution of the ozonolysis products was in good agreement with measured concentrations except that in some of the experiments sulfuric acid formation was faster than simulated. In those experiments the simulated and measured concentrations met when the concentration reached a plateau but the plateau was reached 20-50 min later in the simulations. The results shown here are consistent with the recently published yields for HOM formation from different laboratory experiments. Together with the sCI yields, these results help us to understand atmospheric oxidation processes better and make the reaction parameters more comprehensive for broader use.
Effects of NOx on the volatility of secondary organic aerosol from isoprene photooxidation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Lu; Kollman, Matthew S.; Song, Chen
2014-01-28
The effects of NOx on the volatility of the secondary organic aerosol (SOA) formed from isoprene photooxidation are investigated in environmental chamber experiments. Two types of experiments are performed. In HO2-dominant experiments, organic peroxy radicals (RO2) primarily react with HO2. In mixed experiments, RO2 reacts through multiple pathways. The volatility and oxidation state of isoprene SOA is sensitive to and displays a non-linear dependence on NOx levels. When initial NO/isoprene ratio is approximately 3 (ppbv:ppbv), SOA are shown to be most oxidized and least volatile, associated with the highest SOA yield. A High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) is appliedmore » to characterize the key chemical properties of aerosols. While the composition of SOA in mixed experiments does not change substantially over time, SOA become less volatile and more oxidized as oxidation progresses in HO2-dominant experiments. Analysis of the SOA composition suggests that the further reactions of organic peroxides and alcohols may produce carboxylic acids, which might play a strong role in SOA aging.« less
Ballard, A.E.; Brigham, H.R.
1958-10-28
An apparatus whereby relatlvely volatile solvents may be contacted with volatile or non-volatile material without certaln attendant hazards is described. A suitable apparatus for handling relatively volatlle liqulds may be constructed comprising a tank, and a closure covering the tank and adapted to be securely attached to an external suppont. The closure is provided with a rigidly mounted motor-driven agitator. This agitator is connected from the driving motor lnto the lnterlor of the tank through a gland adapted to be cooled witb inert gas thereby eliminating possible hazard due to frictional heat. The closure is arranged so that the tank may be removed from it without materially dlsturbing the closure which, as described, carrles the motor driven agitator and other parts.
[Studies on the chemical constituents of the volatiles of Clerodendron bungei].
Yu, Ai-nong
2004-02-01
To analyse chemical constituents of the volatiles of Clerodendron bungei. The volatiles of C. bungei were extracted through steam distillation, and then the constituents were separated by GC and identified by MS. 33 Compounds were identified. The principal chemical constituents of the volatiles of C. bungei are ethanol, acetone, 1-penten-3-ol,2-pentanol, (Z)-2-penten-1-ol, 3-furaldehyde, 3-hexen-1-ol, 4-hexen-1-ol, 1-hexanol, 1-octen-3-ol, 3-octanol, benzenemethanol, linal-ool oxide, trans-Linalool oxide, linalool,2,5-dimethylcyclohexanol, phenylethyl alcohol, etc.
NASA Astrophysics Data System (ADS)
Jathar, S. H.; Miracolo, M. A.; Presto, A. A.; Adams, P. J.; Robinson, A. L.
2012-04-01
We present a methodology to model secondary organic aerosol (SOA) formation from the photo-oxidation of low-volatility organics (semi-volatile and intermediate volatility organic compounds). The model is parameterized and tested using SOA data collected during two field campaigns that characterized the atmospheric evolution of dilute gas-turbine engine emissions using a smog chamber. Photo-oxidation formed a significant amount of SOA, much of which cannot be explained based on the emissions of traditional, speciated precursors; we refer to this as non-traditional SOA (NT-SOA). The NT-SOA can be explained by emissions of low-volatility organic vapors measured using sorbents. Since these vapors could not be speciated, we employ a volatility-based approach to model NT-SOA formation. We show that the method proposed by Robinson et al. (2007) is unable to explain the timing of NT-SOA formation because it assumes a very modest reduction in volatility of the precursors with every oxidation reaction. In contrast, a Hybrid method, similar to models of traditional SOA formation, assumes a larger reduction in volatility with each oxidation step and results in a better reproduction of NT-SOA formation. The NT-SOA yields estimated for the low-volatility organic vapor emissions are similar to literature data for large n-alkanes and other low-volatility organics. The yields vary with fuel composition (JP8 versus Fischer-Tropsch) and engine load (idle versus non-idle). These differences are consistent with the expected contribution of high (aromatics and n-alkanes) and low (branched alkanes and oxygenated species) SOA forming species to the exhaust.
Plant volatiles in a polluted atmosphere: stress response and signal degradation
Blande, James D.; Holopainen, Jarmo K.; Niinemets, Ülo
2014-01-01
Plants emit a plethora of volatile organic compounds, which provide detailed information on the physiological condition of emitters. Volatiles induced by herbivore-feeding are among the best studied plant responses to stress and may constitute an informative message to the surrounding community and function in the process of plant defence. However, under natural conditions, plants are potentially exposed to multiple concurrent stresses, which can have complex effects on the volatile emissions. Atmospheric pollutants are an important facet of the abiotic environment and can impinge on a plant’s volatile-mediated defences in multiple ways at multiple temporal scales. They can exert changes in volatile emissions through oxidative stress, as is the case with ozone pollution. They may also react with volatiles in the atmosphere; such is the case for ozone, nitrogen oxides, hydroxyl radicals and other oxidizing atmospheric species. These reactions result in breakdown products, which may themselves be perceived by community members as informative signals. In this review we demonstrate the complex interplay between stress, emitted signals and modification in signal strength and composition by the atmosphere, collectively determining the responses of the biotic community to elicited signals. PMID:24738697
VOLATILE LOSS AND CLASSIFICATION OF KUIPER BELT OBJECTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, R. E.; Schmidt, C.; Oza, A.
Observations indicate that some of the largest Kuiper Belt Objects (KBOs) have retained volatiles in the gas phase (e.g., Pluto), while others have surface volatiles that might support a seasonal atmosphere (e.g., Eris). Since the presence of an atmosphere can affect their reflectance spectra and thermal balance, Schaller and Brown examined the role of volatile escape driven by solar heating of the surface. Guided by recent simulations, we estimate the loss of primordial N{sub 2} for several large KBOs, accounting for escape driven by UV/EUV heating of the upper atmosphere as well as by solar heating of the surface. Formore » the latter we present new simulations and for the former we scale recent detailed simulations of escape from Pluto using the energy limited escape model validated recently by molecular kinetic simulations. Unlike what has been assumed to date, we show that unless the N{sub 2} atmosphere is thin (<∼10{sup 18} N{sub 2} cm{sup −2}) and/or the radius small (<∼200–300 km), escape is primarily driven by the UV/EUV radiation absorbed in the upper atmosphere. This affects the discussion of the relationship between atmospheric loss and the observed surface properties for a number of the KBOs examined. Our long-term goal is to connect detailed atmospheric loss simulations with a model for volatile transport for individual KBOs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zolotareva, N.I.; Kuzyakov, Yu.Ya.; Khlystova, A.D.
1986-10-20
The authors have studied the effect of traditional halogenating additives, AgCl, CdF/sub 2/, PTFE and that of an effective additive they have selected, ZnF/sub 2/, on the volatility of impurity elements, viz. tungsten, molybdenum, titanium, and zirconium from nickel (II) oxide, and determined the constants for the average relative volatility of the elements by the method of Kantor and Pungor. The results have been used to lower the limits of detection of the impurities cited in nickel(II) oxide.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-11
... nitrogen oxides (NO X ), volatile organic compounds (VOCs), PM 2.5 , coarse particles (PM 10 ), ammonia (NH... oxides (NO X ), volatile organic compounds (VOCs), PM 2.5 , coarse particles (PM 10 ), ammonia (NH 3...
Investigations of Volcanic and Volatile-Driven Processes Northeast of Hellas Basin, Mars
NASA Astrophysics Data System (ADS)
Mest, S. C.; Crown, D. A.; Michalski, J.; Chuang, F. C.; Price Blount, K.; Bleamaster, L. F.
2018-06-01
We are mapping the geologic units and features in three MTM quadrangles northeast of Hellas basin at 1:1M scale. The area displays evidence for volcanism and widespread volatile-related modification of the surface.
VOLATILE CHLORIDE PROCESS FOR THE RECOVERY OF METAL VALUES
Hanley, W.R.
1959-01-01
A process is presented for recovering uranium, iron, and aluminum from centain shale type ores which contain uranium in minute quantities. The ore is heated wiih a chlorinating agent. such as chlorine, to form a volatilized stream of metal chlorides. The chloride stream is then passed through granular alumina which preferentially absorbs the volatile uranium chloride and from which the uranium may later be recovered. The remaining volatilized chlorides, chiefly those of iron and aluminum, are further treated to recover chlorine gas for recycle, and to recover ferric oxide and aluminum oxide as valuable by-products.
NASA Astrophysics Data System (ADS)
Kostenidou, Evangelia; Karnezi, Eleni; Hite, James R., Jr.; Bougiatioti, Aikaterini; Cerully, Kate; Xu, Lu; Ng, Nga L.; Nenes, Athanasios; Pandis, Spyros N.
2018-04-01
The volatility distribution of the organic aerosol (OA) and its sources during the Southern Oxidant and Aerosol Study (SOAS; Centreville, Alabama) was constrained using measurements from an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) and a thermodenuder (TD). Positive matrix factorization (PMF) analysis was applied on both the ambient and thermodenuded high-resolution mass spectra, leading to four factors: more oxidized oxygenated OA (MO-OOA), less oxidized oxygenated OA (LO-OOA), an isoprene epoxydiol (IEPOX)-related factor (isoprene-OA) and biomass burning OA (BBOA). BBOA had the highest mass fraction remaining (MFR) at 100 °C, followed by the isoprene-OA, and the LO-OOA. Surprisingly the MO-OOA evaporated the most in the TD. The estimated effective vaporization enthalpies assuming an evaporation coefficient equal to unity were 58 ± 13 kJ mol-1 for the LO-OOA, 89 ± 10 kJ mol-1 for the MO-OOA, 55 ± 11 kJ mol-1 for the BBOA, and 63 ± 15 kJ mol-1 for the isoprene-OA. The estimated volatility distribution of all factors covered a wide range including both semi-volatile and low-volatility components. BBOA had the lowest average volatility of all factors, even though it had the lowest O : C ratio among all factors. LO-OOA was the more volatile factor and its high MFR was due to its low enthalpy of vaporization according to the model. The isoprene-OA factor had intermediate volatility, quite higher than suggested by a few other studies. The analysis suggests that deducing the volatility of a factor only from its MFR could lead to erroneous conclusions. The oxygen content of the factors can be combined with their estimated volatility and hygroscopicity to provide a better view of their physical properties.
Chemical evolution of atmospheric organic carbon over multiple generations of oxidation
NASA Astrophysics Data System (ADS)
Isaacman-VanWertz, Gabriel; Massoli, Paola; O'Brien, Rachel; Lim, Christopher; Franklin, Jonathan P.; Moss, Joshua A.; Hunter, James F.; Nowak, John B.; Canagaratna, Manjula R.; Misztal, Pawel K.; Arata, Caleb; Roscioli, Joseph R.; Herndon, Scott T.; Onasch, Timothy B.; Lambe, Andrew T.; Jayne, John T.; Su, Luping; Knopf, Daniel A.; Goldstein, Allen H.; Worsnop, Douglas R.; Kroll, Jesse H.
2018-02-01
The evolution of atmospheric organic carbon as it undergoes oxidation has a controlling influence on concentrations of key atmospheric species, including particulate matter, ozone and oxidants. However, full characterization of organic carbon over hours to days of atmospheric processing has been stymied by its extreme chemical complexity. Here we study the multigenerational oxidation of α-pinene in the laboratory, characterizing products with several state-of-the-art analytical techniques. Although quantification of some early generation products remains elusive, full carbon closure is achieved (within measurement uncertainty) by the end of the experiments. These results provide new insights into the effects of oxidation on organic carbon properties (volatility, oxidation state and reactivity) and the atmospheric lifecycle of organic carbon. Following an initial period characterized by functionalization reactions and particle growth, fragmentation reactions dominate, forming smaller species. After approximately one day of atmospheric aging, most carbon is sequestered in two long-lived reservoirs—volatile oxidized gases and low-volatility particulate matter.
Chemical evolution of atmospheric organic carbon over multiple generations of oxidation.
Isaacman-VanWertz, Gabriel; Massoli, Paola; O'Brien, Rachel; Lim, Christopher; Franklin, Jonathan P; Moss, Joshua A; Hunter, James F; Nowak, John B; Canagaratna, Manjula R; Misztal, Pawel K; Arata, Caleb; Roscioli, Joseph R; Herndon, Scott T; Onasch, Timothy B; Lambe, Andrew T; Jayne, John T; Su, Luping; Knopf, Daniel A; Goldstein, Allen H; Worsnop, Douglas R; Kroll, Jesse H
2018-04-01
The evolution of atmospheric organic carbon as it undergoes oxidation has a controlling influence on concentrations of key atmospheric species, including particulate matter, ozone and oxidants. However, full characterization of organic carbon over hours to days of atmospheric processing has been stymied by its extreme chemical complexity. Here we study the multigenerational oxidation of α-pinene in the laboratory, characterizing products with several state-of-the-art analytical techniques. Although quantification of some early generation products remains elusive, full carbon closure is achieved (within measurement uncertainty) by the end of the experiments. These results provide new insights into the effects of oxidation on organic carbon properties (volatility, oxidation state and reactivity) and the atmospheric lifecycle of organic carbon. Following an initial period characterized by functionalization reactions and particle growth, fragmentation reactions dominate, forming smaller species. After approximately one day of atmospheric aging, most carbon is sequestered in two long-lived reservoirs-volatile oxidized gases and low-volatility particulate matter.
The magnitudes, distributions, controlling processes and uncertainties associated with North American natural emissions of oxidant precursors are reviewed. Natural emissions are repsonsible for a major portion of the compounds, including non-methane volatile organic compounds (N...
Nitrate radicals and biogenic volatile organic compounds: oxidation, mechanisms, and organic aerosol
Oxidation of biogenic volatile organic compounds (BVOC) by the nitrate radical (NO3) represents one of the important interactions between anthropogenic emissions related to combustion and natural emissions from the biosphere. This interaction has been recognized for more than 3 d...
Paradiso, Vito M; Caponio, Francesco; Summo, Carmine; Gomes, Tommaso
2014-04-01
The combined effect of natural antioxidants and packaging materials on the quality decay of breakfast cereals during storage was evaluated. Corn flakes were produced on industrial scale, using different packages and adding natural tocopherols to the ingredients, and stored for 1 year. The samples were then submitted to sensory analysis and HS-solid phase microextraction/gas chromatography/mass spectrometry (SPME/GC/MS) analysis. The packaging had a significant influence on the sensory profile of the aged product: metallized polypropylene gave the highest levels of oxidation compounds and sensory defects. The sensory profile was improved using polypropylene and especially high-density polyethylene. Natural tocopherols reduced the sensory decay of the flakes and the oxidative evolution of the volatile profile. They gave the most remarkable improvement in polypropylene (either metallized or not) packs. Polypropylene showed a barrier effect on the scalping of volatiles outside of the pack. This led to higher levels of oxidation volatiles and faster rates of the further oxidative processes involving the volatiles.
Volatility of methylglyoxal cloud SOA formed through OH radical oxidation and droplet evaporation
NASA Astrophysics Data System (ADS)
Ortiz-Montalvo, Diana L.; Schwier, Allison N.; Lim, Yong B.; McNeill, V. Faye; Turpin, Barbara J.
2016-04-01
The volatility of secondary organic aerosol (SOA) formed through cloud processing (aqueous hydroxyl radical (radOH) oxidation and droplet evaporation) of methylglyoxal (MGly) was studied. Effective vapor pressure and effective enthalpy of vaporization (ΔHvap,eff) were determined using 1) droplets containing MGly and its oxidation products, 2) a Vibrating Orifice Aerosol Generator (VOAG) system, and 3) Temperature Programmed Desorption Aerosol-Chemical Ionization Mass Spectrometry (TPD Aerosol-CIMS). Simulated in-cloud MGly oxidation (for 10-30 min) produces an organic mixture of higher and lower volatility components with an overall effective vapor pressure of (4 ± 7) × 10-7 atm at pH 3. The effective vapor pressure decreases by a factor of 2 with addition of ammonium hydroxide (pH 7). The fraction of organic material remaining in the particle-phase after drying was smaller than for similar experiments with glycolaldehyde and glyoxal SOA. The ΔHvap,eff of pyruvic acid and oxalic acid + methylglyoxal in the mixture (from TPD Aerosol-CIMS) were smaller than the theoretical enthalpies of the pure compounds and smaller than that estimated for the entire precursor/product mix after droplet evaporation. After 10-30 min of aqueous oxidation (one cloud cycle) the majority of the MGly + radOH precursor/product mix (even neutralized) will volatilize during droplet evaporation; neutralization and at least 80 min of oxidation at 10-12 M radOH (or >12 h at 10-14 M) is needed before low volatility ammonium oxalate exceeds pyruvate.
Styles and Timing of Volatile-driven Activity in the Eastern Hellas Region of Mars
NASA Astrophysics Data System (ADS)
Crown, D. A.; Bleamaster, L. F., III; Mest, S. C.; Teneva, L. T.
2005-03-01
Current research integrates geologic studies of the basin floor and east rim using Viking Orbiter, Mars Global Surveyor, and Mars Odyssey datasets to provide a synthesis of the history of volatiles in the region.
NASA Astrophysics Data System (ADS)
Goldstein, A. H.; Isaacman, G. A.; Misztal, P. K.; Yee, L.; Olson, K. F.; Moss, J.; Kreisberg, N. M.; Hering, S. V.; Park, J. H.; Kaser, L.; Seco, R.; Guenther, A. B.; Su, L.; Mak, J. E.; Holzinger, R.; Hu, W.; Campuzano Jost, P.; Palm, B. B.; Day, D. A.; Jimenez, J. L.; Koss, A.; De Gouw, J. A.
2014-12-01
Our overarching goals in the SOAS 2013 campaign were to 1) quantify biogenic VOC emission and VOC deposition to understand the processes controlling these bi-directional exchanges, 2) observe a broad suite of primary VOC and their oxidation products in the field and in controlled laboratory experiments, and 3) investigate their fate to understand how anthropogenic pollution alters oxidation pathways and secondary organic aerosol (SOA) formation. We pursued these goals through measurement of atmospheric organics ranging from very volatile (using in-situ GC-MS and proton transfer reaction time-of-flight MS, PTR-ToF-MS) to semi-volatile gas and particle phase compounds (using the Semi-Volatile Thermal desorption Aerosol Gas chromatograph, SV-TAG). Measured concentrations and fluxes of VOCs at the top of the SEARCH tower were coordinated with concentration gradients and fluxes at the AABC flux tower site, and vertical profiles using the Long-EZ aircraft to provide equivalent observations across sites. These results are informed through measurements using the same instrument during the FIXIT controlled laboratory oxidation study at CalTech that investigated oxidation pathways of BVOC with varying levels of anthropogenic pollutants. Measurements by SV-TAG of particle-phase and total gas-plus-particle-phase compounds at the SEARCH tower provide hourly quantification of semi-volatile compounds, including the oxidation products of measured VOCs. Derivatization of hydroxyl groups prior to GC analysis allows analysis of highly oxidized chemicals, including most known tracers. Methyl tetrols, an oxidation product of isoprene, had a significant day-time gas-phase component, and their abundance was strongly correlated with particle-phase sulfate, indicative of anthropogenic influence on the formation or partitioning processes. Similar observations of pinic acid (monterpene oxidation product) and many other BVOC oxidation products were made in both the gas and particle phases. Through measurements of specific chemical tracers across a wide range of volatilities, we explore the chemical lifecycle of BVOCs to understand anthropogenic-biogenic interactions in aerosol formation.
Spring and summer contrast in new particle formation over nine forest areas in North America
Recent laboratory chamber studies indicate a significant role for highly oxidized low volatility organics in new particle formation (NPF), but the actual role of these highly oxidized low volatility organics in atmospheric NPF remains uncertain. Here, particle size distributions ...
No-arbitrage, leverage and completeness in a fractional volatility model
NASA Astrophysics Data System (ADS)
Vilela Mendes, R.; Oliveira, M. J.; Rodrigues, A. M.
2015-02-01
When the volatility process is driven by fractional noise one obtains a model which is consistent with the empirical market data. Depending on whether the stochasticity generators of log-price and volatility are independent or are the same, two versions of the model are obtained with different leverage behaviors. Here, the no-arbitrage and completeness properties of the models are rigorously studied.
Water Vapor Effects on Silica-Forming Ceramics
NASA Technical Reports Server (NTRS)
Opila, E. J.; Greenbauer-Seng, L. (Technical Monitor)
2000-01-01
Silica-forming ceramics such as SiC and Si3N4 are proposed for applications in combustion environments. These environments contain water vapor as a product of combustion. Oxidation of silica-formers is more rapid in water vapor than in oxygen. Parabolic oxidation rates increase with the water vapor partial pressure with a power law exponent value close to one. Molecular water vapor is therefore the mobile species in silica. Rapid oxidation rates and large amounts of gases generated during the oxidation reaction in high water vapor pressures may result in bubble formation in the silica and nonprotective scale formation. It is also shown that silica reacts with water vapor to form Si(OH)4(g). Silica volatility has been modeled using a laminar flow boundary layer controlled reaction equation. Silica volatility depends on the partial pressure of water vapor, the total pressure, and the gas velocity. Simultaneous oxidation and volatilization reactions have been modeled with paralinear kinetics.
The magnitudes, distributions, controlling processes and uncertainties associated with North American natural emissions of oxidant precursors are reviewed. Natural emissions are responsible for a major portion of the compounds, including non-methane volatile o...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jantzen, C. M.; Williams, M. S.; Edwards, T. B.
Control of the REDuction/OXidation (REDOX) state of glasses containing high concentrations of transition metals, such as High Level Waste (HLW) glasses, is critical in order to eliminate processing difficulties caused by overly reduced or overly oxidized melts. Operation of a HLW melter at Fe +2/ΣFe ratios of between 0.09 and 0.33, retains radionuclides in the melt and thus the final glass. Specifically, long-lived radioactive 99Tc species are less volatile in the reduced Tc 4+ state as TcO 2 than as NaTcO 4 or Tc 2O 7, and ruthenium radionuclides in the reduced Ru 4+ state are insoluble RuO 2 inmore » the melt which are not as volatile as NaRuO 4 where the Ru is in the +7 oxidation state. Similarly, hazardous volatile Cr 6+ occurs in oxidized melt pools as Na 2CrO 4 or Na 2Cr 2O 7, while the Cr +3 state is less volatile and remains in the melt as NaCrO 2 or precipitates as chrome rich spinels. The melter REDOX control balances the oxidants and reductants from the feed and from processing additives such as antifoam.« less
2014-01-01
The effects of two levels (1.4 vs 2.8%) of fresh garlic on lipid oxidation and microbial growth in pork patties were evaluated. Hunter color (L, a, b), pH, thiobarbituric acid reactive substances (TBARS), oxidative volatile compounds, total bacteria and Enterobacteriaceae in the pork patties with or without fresh garlic were measured during storage at 4℃. Addition of fresh garlic decreased redness (a), while increased pH and yellowness (b) values of the fresh pork patties were observed, regardless of the levels added. The TBARS values of the pork patties were increased with the addition of fresh garlic (p<0.05). Similar results were observed in oxidative volatile compounds. A total of 13 volatile compounds were detected in the patties (5 sulfur-containing compounds, including allyl mercaptan, allyl methyl sulfide, diallyl sulfide, methyl-(E)-propenyl-disulfide, and diallyl disulfide, and the 8 other oxidative compounds, including 1-pentanol, hexanal, 1-hexanol, heptanal, (E)-2-heptenal, 1-octen-3-ol, (E)-2-octenal and nonanal). Fresh garlic accelerated development of oxidative products in the pork patties, especially hexanal and the total oxidative volatile compounds. However, the addition of 1.4 and 2.8% of fresh garlic inhibited the growth of total bacteria and Enterobacteriaceae, indicating low total bacterial counts and Enterobacteriaceae than the controls. PMID:26761498
Photochemical Aging of Organic Aerosols: A Laboratory Study
NASA Astrophysics Data System (ADS)
Papanastasiou, Dimitrios K.; Kostenidou, Evangelia; Gkatzelis, Georgios I.; Psichoudaki, Magdalini; Louvaris, Evangelos; Pandis, Spyros N.
2014-05-01
Organic aerosols (OA) are either emitted directly (primary OA) or formed (secondary OA) in the atmosphere and consist of an extremely complex mixture of thousands of organic compounds. Although the scientific community has put significant effort, in the past few decades, to understand organic aerosol (OA) formation, evolution and fate in the atmosphere, traditional models often fail to reproduce the ambient OA levels. Secondary organic aerosol (SOA) formed, in traditional laboratory chamber experiments, from the gas phase oxidation of known precursors, such as α-pinene, is semi-volatile and with an O:C ratio of around 0.4. In contrast, OA found in the atmosphere is significantly less volatile, while the O:C ratio often ranges from 0.5 to 1. In conclusion, there is a significant gap of knowledge in our understanding of OA formation and photochemical transformation in the atmosphere. There is increased evidence that homogeneous gas phase aging by OH radicals might be able to explain, at least in part, the significantly higher OA mass loadings observed and also the oxidation state and volatility of OA in the atmosphere. In this study, laboratory chamber experiments were performed to study the role of the continued oxidation of first generation volatile and semi-volatile species by OH radicals in the evolution of the SOA characteristics (mass concentration, volatility, and oxidation state). Ambient air mixtures or freshly formed SOA from α-pinene ozonolysis were used as the source of organic aerosols and semi-volatile species. The initial mixture of organic aerosols and gas phase species (volatile and semi-volatile) was then exposed to atmospheric concentrations of OH radicals to study the aging of aerosols. Experiments were performed with various OH radical sources (H2O2 or HONO) and under various NOx conditions. A suite of instruments was employed to characterize both the gas and the aerosol phase. A Scanning Mobility Particle Sizer (SMPS) and a High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) were used to measure the organic aerosol mass production and oxidation degree (O:C ratio) following OH aging. A thermodenuder system was used to measure the volatility distribution change as organic aerosol aged upon continuous oxidation. Organic gas phase species were characterized with a Proton Transfer Reaction - Mass Spectrometer (PTR-MS) while NOx and O3 were measured with the use of corresponding analyzers. Results from this study show that organic mass production occurs upon exposure to OH radicals indicating that continuous OH aging of semi-volatile is probably responsible for at least some of the gap between observed and modeled OA levels in the atmosphere. Additionally, this chemical aging process leads to a decrease in volatility and an increase in O:C ratio while the level of change in both properties depends on OH exposure. The atmospheric implications of this study are discussed.
Styles and timing of volatile-driven activity in the eastern Hellas region of Mars
NASA Astrophysics Data System (ADS)
Crown, David A.; Bleamaster, Leslie F.; Mest, Scott C.
2005-12-01
Recent analyses of Mars Global Surveyor and Mars Odyssey data sets provide new insights into the geologic evolution of the eastern Hellas region of Mars, in particular, the role of volatiles. Here, we present results of our recent work and integrate these with previous studies by various investigators to provide a synthesis of the history of volatile-driven activity of the region. We utilize high-resolution images from the Mars Orbiter Camera and Thermal Emission Imaging System combined with Mars Orbiter Laser Altimeter digital elevation models and profiles to examine fluvial systems that dissect the circum-Hellas highlands, to characterize stages in the development of the Dao, Niger, Harmakhis, and Reull Valles canyon systems, and to evaluate evidence for ancient lakes in Hellas Planitia. The occurrence of valley networks, dissected highland crater rims, and crater interior deposits such as layered plateaus suggests widespread ancient degradation of the circum-Hellas highlands. Canyon development, which represents subsequent more localized activity, may have included an early fluvial phase followed by the collapse and sapping dominated stages that, along with recent wall erosion and floor resurfacing, produced the currently observed morphologies. The prominent role of collapse and sapping along the east rim of Hellas, along with the presence of numerous channels extending toward the basin and sequences of finely layered deposits along the basin rim, suggests a volatile-rich substrate across a broad depositional shelf. The east rim of the basin was an accumulation zone for atmospheric volatiles and/or the edge of volatile-rich deposits associated with the basin floor. This evidence combined with topographic data and cratered terrain preservation around the basin is consistent with a lacustrine period or periods in early Martian history. The style, magnitude, and spatial extent of volatile-driven activity in eastern Hellas have varied considerably with time, and these variations may represent a transition from a water- to an ice-dominated surface environment.
NASA Astrophysics Data System (ADS)
Ahn, D. U.; Nam, K. C.
2004-09-01
Beef loins with 3 different aging times after slaughter were ground, added with none, 0.1% ascorbic acid, 0.01% sesamol+0.01% α-tocopherol, or 0.1% ascorbic acid+0.01% sesamol+0.01% tocopherol. The meats were packaged in oxygen-permeable bags, irradiated at 2.5 kGy, and color, oxidation-reduction potential (ORP), lipid oxidation and volatile profiles were determined. Irradiation decreased the redness of ground beef, and visible color of beef changed from a bright red to a green/brown depending on the age of meat. Addition of ascorbic acid prevented color changes in irradiated beef, and the effect of ascorbic acid became greater as the age of meat or storage time after irradiation increased. The ground beef added with ascorbic acid had lower ORP than control, and the low ORP of meat helped maintaining the heme pigments in reduced form. During aerobic storage, S-volatiles disappeared while volatile aldehydes significantly increased in irradiated beef. Addition of ascorbic acid at 0.1% or sesamol+α-tocopherol at each 0.01% level to ground beef prior to irradiation were effective in reducing lipid oxidation and S-volatiles. As storage time increased, however, the antioxidant effect of sesamol+tocopherol in irradiated ground beef was superior to that of ascorbic acid.
Jardine, Kolby J.; Gimenez, Bruno O.; Araujo, Alessandro C.; ...
2016-01-01
Oil palm plantations are rapidly expanding in the tropics because of insatiable global demand for fruit oil to be used in food, biofuels and cosmetics. Here we show that three tissue-specific volatiles can be quantified in ambient air above an African-American hybrid oil palm plantation in Brazil and linked photosynthesis (isoprene), floral scent (estragole), and for the first time, fruit oil processing (6-methyl-5-hepten-2-one, MHO). Plant enclosure techniques verified their tissue specific emission sources with ambient concentrations displaying distinct diurnal patterns above the canopy. Isoprene concentrations were near zero at night, but dramatically increased during the day while estragole showed elevatedmore » concentrations at night suggesting a light-independent, temperature-driven emission pattern from flowers. MHO also showed elevated concentrations at night and both estragole and MHO increased during the day. Our observations demonstrate that the African-American oil palm hybrid is strong isoprene emitter and suggest that MHO is a specific oxidation product of lycopene released during the industrial processing of palm oil. This study highlights the potential value of quantifying volatile oil palm signals in the atmosphere as a novel, non-invasive method to better understand biological functioning and its interactions with the environment including carbon assimilation, floral-insect interactions, and fruit oil production/processing.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jardine, Kolby J.; Gimenez, Bruno O.; Araujo, Alessandro C.
Oil palm plantations are rapidly expanding in the tropics because of insatiable global demand for fruit oil to be used in food, biofuels and cosmetics. Here we show that three tissue-specific volatiles can be quantified in ambient air above an African-American hybrid oil palm plantation in Brazil and linked photosynthesis (isoprene), floral scent (estragole), and for the first time, fruit oil processing (6-methyl-5-hepten-2-one, MHO). Plant enclosure techniques verified their tissue specific emission sources with ambient concentrations displaying distinct diurnal patterns above the canopy. Isoprene concentrations were near zero at night, but dramatically increased during the day while estragole showed elevatedmore » concentrations at night suggesting a light-independent, temperature-driven emission pattern from flowers. MHO also showed elevated concentrations at night and both estragole and MHO increased during the day. Our observations demonstrate that the African-American oil palm hybrid is strong isoprene emitter and suggest that MHO is a specific oxidation product of lycopene released during the industrial processing of palm oil. This study highlights the potential value of quantifying volatile oil palm signals in the atmosphere as a novel, non-invasive method to better understand biological functioning and its interactions with the environment including carbon assimilation, floral-insect interactions, and fruit oil production/processing.« less
Guanylyl cyclase-dependent chemotaxis of endothelial cells in response to nitric oxide gradients.
Isenberg, Jeff S; Ridnour, Lisa A; Thomas, Douglas D; Wink, David A; Roberts, David D; Espey, Michael Graham
2006-03-15
Nitric oxide (NO) is an important regulator of angiogenesis and neovascularization. The nature of endothelial cell motility responses to NO was examined using a Boyden chamber method. NO generated via decomposition of either DEA/NO or DETA/NO produced increases in human umbilical vein endothelial cell (HUVEC) chemotaxis, which were completely abrogated by ODQ, a soluble guanylyl cyclase inhibitor. Measurements of NO either directly by chemiluminescence or its chemistry with diaminofluorescein revealed that chemotaxis was driven by subtle NO gradients between the lower and the upper wells in this system. In addition to diffusion and volatilization from the upper chambers, the data showed that HUVEC consumption of NO contributed to these sustained gradients. Comparison of DEA/NO- and DETA/NO-mediated responses suggested that the persistence of spatial NO gradients is as significant as the absolute magnitude of NO exposure per unit time. The findings suggest that subnanomolar NO gradients are sufficient to mobilize endothelial cell migration into hypoxic tissue during neovascularization events, such as in wound healing and cancer.
Cioanca, Oana; Hancianu, Monica; Mihasan, Marius; Hritcu, Lucian
2015-05-01
Juniper volatile oil is extracted from Juniperus communis L., of the Cupressaceae family, also known as common juniper. Also, in aromatherapy the juniper volatile oil is used against anxiety, nervous tension and stress-related conditions. In the present study, we identified the effects of the juniper volatile oil on amyloid beta (1-42)-induced oxidative stress in the rat hippocampus. Rats received a single intracerebroventricular injection of amyloid beta (1-42) (400 pmol/rat) and then were exposed to juniper volatile oil (200 μl, either 1 or 3 %) for controlled 60 min period, daily, for 21 continuous days. Also, the antioxidant activity in the hippocampus was assessed using superoxide dismutase, glutathione peroxidase and catalase specific activities, the total content of the reduced glutathione, protein carbonyl and malondialdehyde levels. Additionally, the acetylcholinesterase activity in the hippocampus was assessed. The amyloid beta (1-42)-treated rats exhibited the following: increase of the acetylcholinesterase, superoxide dismutase and catalase specific activities, decrease of glutathione peroxidase specific activity and the total content of the reduced glutathione along with an elevation of malondialdehyde and protein carbonyl levels. Inhalation of the juniper volatile oil significantly decreases the acetylcholinesterase activity and exhibited antioxidant potential. These findings suggest that the juniper volatile oil may be a potential candidate for the development of therapeutic agents to manage oxidative stress associated with Alzheimer's disease through decreasing the activity of acetylcholinesterase and anti-oxidative mechanism.
NASA Astrophysics Data System (ADS)
Nguyen, Quynhgiao N.
Titanium (Ti) containing materials are of high interest to the aerospace industry due to its high temperature capability, strength, and light weight. As with most metals an exterior oxide layer naturally exists in environments that contain oxygen (i.e. air). At high temperatures, water vapor plays a key role in the volatility of materials including oxide surfaces. This study first evaluates several hot-pressed Ti-containing compositions at high temperatures as a function of oxidation resistance. This study will also evaluate cold pressed titanium dioxide (TiO2) powder pellets at a temperature range of 1400°C--1200°C in water containing environments to determine the volatile hydoxyl species using the transpiration method. The water content ranged from 0-76 mole % and the oxygen content range was 0-100 mole % during the 20-250 hour exposure times. Preliminary results indicate that oxygen is not a key contributor at these temperatures and the following reaction is the primary volatile equation at all three temperatures: TiO 2 (s) + H2O (g) = TiO(OH)2 (g).
Additive Effects on Si3n4 Oxidation/Volatilization in Water Vapor
NASA Technical Reports Server (NTRS)
Opila, Elizabeth J.; Robinson, R. Craig; Fox, Dennis S.; Wenglarz, Richard A.; Ferber, Mattison K.
2002-01-01
Two commercially available additive-containing silicon nitride materials were exposed in four environments which range in severity from dry oxygen at 1 atm pressure, and low gas velocity to an actual turbine engine. Oxidation and volatilization kinetics were monitored at temperatures ranging from 1066 to 1400 C. The main purpose of this paper is to examine the surface oxide morphology resulting from the exposures. It was found that the material surface was enriched in rare earth silicate phases in combustion environments when compared to the oxides formed on materials exposed in dry oxygen. However, the in situ formation of rare earth disilicate phases offered little additional protection from the volatilization of silica observed in combustion environments. It was concluded that externally applied environmental barrier coatings are needed to protect additive-containing silicon nitride materials from volatilization reactions in combustion environments. Introduction Si3N4 is proposed for use as components, such as vanes, in turbine applications. Tens of thousands of hours of life are needed for both land-based turbines and aeropropulsion applications. Additive-containing SisN4 materials are
Range-based volatility, expected stock returns, and the low volatility anomaly
2017-01-01
One of the foundations of financial economics is the idea that rational investors will discount stocks with more risk (volatility), which will result in a positive relation between risk and future returns. However, the empirical evidence is mixed when determining how volatility is related to future returns. In this paper, we examine this relation using a range-based measure of volatility, which is shown to be theoretically, numerically, and empirically superior to other measures of volatility. In a variety of tests, we find that range-based volatility is negatively associated with expected stock returns. These results are robust to time-series multifactor models as well as cross-sectional tests. Our findings contribute to the debate about the direction of the relationship between risk and return and confirm the presence of the low volatility anomaly, or the anomalous finding that low volatility stocks outperform high volatility stocks. In other tests, we find that the lower returns associated with range-based volatility are driven by stocks with lottery-like characteristics. PMID:29190652
Range-based volatility, expected stock returns, and the low volatility anomaly.
Blau, Benjamin M; Whitby, Ryan J
2017-01-01
One of the foundations of financial economics is the idea that rational investors will discount stocks with more risk (volatility), which will result in a positive relation between risk and future returns. However, the empirical evidence is mixed when determining how volatility is related to future returns. In this paper, we examine this relation using a range-based measure of volatility, which is shown to be theoretically, numerically, and empirically superior to other measures of volatility. In a variety of tests, we find that range-based volatility is negatively associated with expected stock returns. These results are robust to time-series multifactor models as well as cross-sectional tests. Our findings contribute to the debate about the direction of the relationship between risk and return and confirm the presence of the low volatility anomaly, or the anomalous finding that low volatility stocks outperform high volatility stocks. In other tests, we find that the lower returns associated with range-based volatility are driven by stocks with lottery-like characteristics.
Hierarchical Carbon Fibers with ZnO Nanowires for Volatile Sensing in Composite Curing (Postprint)
2014-07-01
needed to demonstrate the use of Zinc Oxide (ZnO) nanowire coated carbon fibers as a volatile sensor. ZnO nanowires are demonstrated to function as...processing. For this work, we report on the foundational study needed to demonstrate the use of Zinc Oxide (ZnO) nanowire coated carbon fibers as a...array of ZnO nanowires. Zinc oxide nanowires become more conductive in the presence of ethanol – as analyte sorbs to the surface, electron density
The fractional volatility model: An agent-based interpretation
NASA Astrophysics Data System (ADS)
Vilela Mendes, R.
2008-06-01
Based on the criteria of mathematical simplicity and consistency with empirical market data, a model with volatility driven by fractional noise has been constructed which provides a fairly accurate mathematical parametrization of the data. Here, some features of the model are reviewed and extended to account for leverage effects. Using agent-based models, one tries to find which agent strategies and (or) properties of the financial institutions might be responsible for the features of the fractional volatility model.
Heuberger, Adam L; Broeckling, Corey D; Lewis, Matthew R; Salazar, Lauren; Bouckaert, Peter; Prenni, Jessica E
2012-12-01
The effect of temperature on non-volatile compounds in beer has not been well characterised during storage. Here, a metabolomics approach was applied to characterise the effect of storage temperature on non-volatile metabolite variation after 16weeks of storage, using fresh beer as a control. The metabolite profile of room temperature stored (RT) and cold temperature stored (CT) beer differed significantly from fresh, with the most substantial variation observed between RT and fresh beer. Metabolites that changed during storage included prenylated flavonoids, purines, and peptides, and all showed reduced quantitative variation under the CT storage conditions. Corresponding sensory panel observations indicated significant beer oxidation after 12 and 16weeks of storage, with higher values reported for RT samples. These data support that temperature affected beer oxidation during short-term storage, and reveal 5-methylthioadenosine (5-MTA) as a candidate non-volatile metabolite marker for beer oxidation and staling. Copyright © 2012 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ebbinghaus, B.B.; Krikorian, O.H.
The purpose of this report is to provide input of thermodynamic data on actinide volatilities to EERC for use in their computer code for modeling of metal volatilities in incinerators. It is also anticipated that the data may be documented later in an EPA sponsored ``Metals Bible.`` It should be noted that only upper limits for the volatility of PuO{sub 2}(s) due to PuO{sub 3}(g) and PuO{sub 2}(OH){sub 2}(g) and the volatility of AmO{sub 2} in PuO{sub 2}(s) due to AmO{sub 3}(g) and AmO{sub 2}(OH){sub 2}(g) could be set. The data on the americium vapor species are intended for calculationsmore » where AmO{sub 2} is present as a solid solution in PuO{sub 2}(s).« less
Pulse-driven micro gas sensor fitted with clustered Pd/SnO2 nanoparticles.
Suematsu, Koichi; Shin, Yuka; Ma, Nan; Oyama, Tokiharu; Sasaki, Miyuki; Yuasa, Masayoshi; Kida, Tetsuya; Shimanoe, Kengo
2015-08-18
Real-time monitoring of specific gas concentrations with a compact and portable gas sensing device is required to sense potential health risk and danger from toxic gases. For such purposes, we developed an ultrasmall gas sensor device, where a micro sensing film was deposited on a micro heater integrated with electrodes fabricated by the microelectromechanical system (MEMS) technology. The developed device was operated in a pulse-heating mode to significantly reduce the heater power consumption and make the device battery-driven and portable. Using clustered Pd/SnO2 nanoparticles, we succeeded in introducing mesopores ranging from 10 to 30 nm in the micro gas sensing film (area: ϕ 150 μm) to detect large volatile organic compounds (VOCs). The micro sensor showed quick, stable, and high sensor responses to toluene at ppm (parts per million) concentrations at 300 °C even by operating the micro heater in a pulse-heating mode where switch-on and -off cycles were repeated at one-second intervals. The high performance of the micro sensor should result from the creation of efficient diffusion paths decorated with Pd sensitizers by using the clustered Pd/SnO2 nanoparticles. Hence we demonstrate that our pulse-driven micro sensor using nanostructured oxide materials holds promise as a battery-operable, portable gas sensing device.
NASA Astrophysics Data System (ADS)
Semushina, Yu. P.; Pechenyuk, S. I.; Kuzmich, L. F.; Knyazeva, A. I.
2017-01-01
The rate of the gas-phase oxidation of ethanol, 2-propanol, acetone, ethyl acetate, dioxane, and benzene with atmospheric oxygen is studied on surfaces of bimetallic oxide catalysts Co-Fe, Cu-Fe, Cr-Co, and Ni-Fe, prepared via thermal decomposition of double complex compounds in air. It is found that the rate of oxidation of volatile compounds depends on the volume of the transient pores in the catalyst sample. The rate of oxidation on the same catalyst at 350°C depends on the nature of the substance in the order: acetone > ethyl acetate > ethanol > propanol > dioxane, benzene.
Domeño, Celia; Rodríguez-Lafuente, Angel; Martos, J M; Bilbao, Rafael; Nerín, Cristina
2010-04-01
The efficiency of photo-oxidation, chemical oxidation by sodium hypochlorite, and ozonization for the industrial-scale removal of volatile organic compounds (VOCs) and odors from gaseous emissions was studied by applying these treatments (in an experimental system) to substances passing through an emission stack of a factory producing maize derivatives. Absorption and ozonization were the most efficient treatment, removing 75% and 98% of VOCs, respectively, while photo-oxidation only removed about 59%. The emitted chemical compounds and odors were identified and quantified by gas chromatography-mass spectrometry (in full-scan mode). In addition to presenting the results, their implications for selecting optimal processes for treating volatile emissions are discussed.
Bao, Zhongwen; Haberer, Christina M; Maier, Uli; Beckingham, Barbara; Amos, Richard T; Grathwohl, Peter
2016-11-01
Temperature changes can drive cycling of semi-volatile pollutants between different environmental compartments (e.g. atmosphere, soil, plants). To evaluate the impact of daily temperature changes on atmospheric concentration fluctuations we employed a physically based model coupling soil, plants and the atmosphere, which accounts for heat transport, effective gas diffusion, sorption and biodegradation in the soil as well as eddy diffusion and photochemical oxidation in the atmospheric boundary layer of varying heights. The model results suggest that temperature-driven re-volatilization and uptake in soils cannot fully explain significant diurnal concentration fluctuations of atmospheric pollutants as for example observed for polychlorinated biphenyls (PCBs). This holds even for relatively low water contents (high gas diffusivity) and high sorption capacity of the topsoil (high organic carbon content and high pollutant concentration in the topsoil). Observed concentration fluctuations, however, can be easily matched if a rapidly-exchanging environmental compartment, such as a plant layer, is introduced. At elevated temperatures, plants release organic pollutants, which are rapidly distributed in the atmosphere by eddy diffusion. For photosensitive compounds, e.g. some polycyclic aromatic hydrocarbons (PAHs), decreasing atmospheric concentrations would be expected during daytime for the bare soil scenario. This decline is buffered by a plant layer, which acts as a ground-level reservoir. The modeling results emphasize the importance of a rapidly-exchanging compartment above ground to explain short-term atmospheric concentration fluctuations. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Jathar, S. H.; Cappa, C. D.; Wexler, A. S.; Seinfeld, J. H.; Kleeman, M. J.
2015-09-01
Multi-generational oxidation of volatile organic compound (VOC) oxidation products can significantly alter the mass, chemical composition and properties of secondary organic aerosol (SOA) compared to calculations that consider only the first few generations of oxidation reactions. However, the most commonly used state-of-the-science schemes in 3-D regional or global models that account for multi-generational oxidation (1) consider only functionalization reactions but do not consider fragmentation reactions, (2) have not been constrained to experimental data; and (3) are added on top of existing parameterizations. The incomplete description of multi-generational oxidation in these models has the potential to bias source apportionment and control calculations for SOA. In this work, we used the Statistical Oxidation Model (SOM) of Cappa and Wilson (2012), constrained by experimental laboratory chamber data, to evaluate the regional implications of multi-generational oxidation considering both functionalization and fragmentation reactions. SOM was implemented into the regional UCD/CIT air quality model and applied to air quality episodes in California and the eastern US. The mass, composition and properties of SOA predicted using SOM are compared to SOA predictions generated by a traditional "two-product" model to fully investigate the impact of explicit and self-consistent accounting of multi-generational oxidation. Results show that SOA mass concentrations predicted by the UCD/CIT-SOM model are very similar to those predicted by a two-product model when both models use parameters that are derived from the same chamber data. Since the two-product model does not explicitly resolve multi-generational oxidation reactions, this finding suggests that the chamber data used to parameterize the models captures the majority of the SOA mass formation from multi-generational oxidation under the conditions tested. Consequently, the use of low and high NOx yields perturbs SOA concentrations by a factor of two and are probably a much stronger determinant in 3-D models than constrained multi-generational oxidation. While total predicted SOA mass is similar for the SOM and two-product models, the SOM model predicts increased SOA contributions from anthropogenic (alkane, aromatic) and sesquiterpenes and decreased SOA contributions from isoprene and monoterpene relative to the two-product model calculations. The SOA predicted by SOM has a much lower volatility than that predicted by the traditional model resulting in better qualitative agreement with volatility measurements of ambient OA. On account of its lower-volatility, the SOA mass produced by SOM does not appear to be as strongly influenced by the inclusion of oligomerization reactions, whereas the two-product model relies heavily on oligomerization to form low volatility SOA products. Finally, an unconstrained contemporary hybrid scheme to model multi-generational oxidation within the framework of a two-product model in which "ageing" reactions are added on top of the existing two-product parameterization is considered. This hybrid scheme formed at least three times more SOA than the SOM during regional simulations as a result of excessive transformation of semi-volatile vapors into lower volatility material that strongly partitions to the particle phase. This finding suggests that these "hybrid" multi-generational schemes should be used with great caution in regional models.
NASA Astrophysics Data System (ADS)
Jathar, S. H.; Cappa, C. D.; Wexler, A. S.; Seinfeld, J. H.; Kleeman, M. J.
2016-02-01
Multi-generational oxidation of volatile organic compound (VOC) oxidation products can significantly alter the mass, chemical composition and properties of secondary organic aerosol (SOA) compared to calculations that consider only the first few generations of oxidation reactions. However, the most commonly used state-of-the-science schemes in 3-D regional or global models that account for multi-generational oxidation (1) consider only functionalization reactions but do not consider fragmentation reactions, (2) have not been constrained to experimental data and (3) are added on top of existing parameterizations. The incomplete description of multi-generational oxidation in these models has the potential to bias source apportionment and control calculations for SOA. In this work, we used the statistical oxidation model (SOM) of Cappa and Wilson (2012), constrained by experimental laboratory chamber data, to evaluate the regional implications of multi-generational oxidation considering both functionalization and fragmentation reactions. SOM was implemented into the regional University of California at Davis / California Institute of Technology (UCD/CIT) air quality model and applied to air quality episodes in California and the eastern USA. The mass, composition and properties of SOA predicted using SOM were compared to SOA predictions generated by a traditional two-product model to fully investigate the impact of explicit and self-consistent accounting of multi-generational oxidation.Results show that SOA mass concentrations predicted by the UCD/CIT-SOM model are very similar to those predicted by a two-product model when both models use parameters that are derived from the same chamber data. Since the two-product model does not explicitly resolve multi-generational oxidation reactions, this finding suggests that the chamber data used to parameterize the models captures the majority of the SOA mass formation from multi-generational oxidation under the conditions tested. Consequently, the use of low and high NOx yields perturbs SOA concentrations by a factor of two and are probably a much stronger determinant in 3-D models than multi-generational oxidation. While total predicted SOA mass is similar for the SOM and two-product models, the SOM model predicts increased SOA contributions from anthropogenic (alkane, aromatic) and sesquiterpenes and decreased SOA contributions from isoprene and monoterpene relative to the two-product model calculations. The SOA predicted by SOM has a much lower volatility than that predicted by the traditional model, resulting in better qualitative agreement with volatility measurements of ambient OA. On account of its lower-volatility, the SOA mass produced by SOM does not appear to be as strongly influenced by the inclusion of oligomerization reactions, whereas the two-product model relies heavily on oligomerization to form low-volatility SOA products. Finally, an unconstrained contemporary hybrid scheme to model multi-generational oxidation within the framework of a two-product model in which ageing reactions are added on top of the existing two-product parameterization is considered. This hybrid scheme formed at least 3 times more SOA than the SOM during regional simulations as a result of excessive transformation of semi-volatile vapors into lower volatility material that strongly partitions to the particle phase. This finding suggests that these hybrid multi-generational schemes should be used with great caution in regional models.
Lu, F S H; Nielsen, N S; Baron, C P; Diehl, B W K; Jacobsen, C
2013-11-15
The main objective of this study was to investigate the oxidative stability and non-enzymatic browning reactions of marine PL in the presence or in the absence of primary amine group from aminophospholipids and amino acids. Marine phospholipids liposomal dispersions were prepared from two authentic standards (phosphatidylcholine and phosphatidylethanolamine) and two purified PL from marine sources with and without addition of amino acids (leucine, methionine and lysine). Samples were incubated at 60°C for 0, 2, 4 and 6days. Non-enzymatic browning reactions were investigated through measurement of (i) Strecker derived volatiles, (ii) yellowness index (YI), (iii) hydrophobic and (iv) hydrophilic pyrroles content. The oxidative stability of the samples was assessed through measurement of secondary lipid derived volatile oxidation products. The result showed that the presence of PE and amino acids caused the formation of pyrroles, generated Strecker derived volatiles, decreased the YI development and lowered lipid oxidation. The lower degree of lipid oxidation in liposomal dispersions containing amino acids might be attributed to antioxidative properties of pyrroles or amino acids. Copyright © 2013 Elsevier Ltd. All rights reserved.
Paralinear Oxidation of CVD SiC in Water Vapor
NASA Technical Reports Server (NTRS)
Opila, Elizabeth J.; Hann, Raiford E., Jr.
1997-01-01
The oxidation kinetics of CVD SiC were monitored by thermogravimetric analysis (TGA) in a 50% H2O/50% O2 gas mixture flowing at 4.4 cm/s for temperatures between 1200 and 1400 C. Paralinear weight change kinetics were observed as the water vapor oxidized the SiC and simultaneously volatilized the silica scale. The long-term degradation rate of SiC is determined by the volatility of the silica scale. Rapid SiC surface recession rates were estimated from these data for actual aircraft engine combustor conditions.
Efficient growth of HTS films with volatile elements
Siegal, M.P.; Overmyer, D.L.; Dominguez, F.
1998-12-22
A system is disclosed for applying a volatile element-HTS layer, such as Tl-HTS, to a substrate in a multiple zone furnace, said method includes heating at higher temperature, in one zone of the furnace, a substrate and adjacent first source of Tl-HTS material, to sublimate Tl-oxide from the source to the substrate; and heating at lower temperature, in a separate zone of the furnace, a second source of Tl-oxide to replenish the first source of Tl-oxide from the second source. 3 figs.
Integrated system for the destruction of organics by hydrolysis and oxidation with peroxydisulfate
Cooper, John F.; Balazs, G. Bryan; Hsu, Peter; Lewis, Patricia R.; Adamson, Martyn G.
2000-01-01
An integrated system for destruction of organic waste comprises a hydrolysis step at moderate temperature and pressure, followed by direct chemical oxidation using peroxydisulfate. This system can be used to quantitatively destroy volatile or water-insoluble halogenated organic solvents, contaminated soils and sludges, and the organic component of mixed waste. The hydrolysis step results in a substantially single phase of less volatile, more water soluble hydrolysis products, thus enabling the oxidation step to proceed rapidly and with minimal loss of organic substrate in the off-gas.
Galstyan, Vardan; Comini, Elisabetta; Kholmanov, Iskandar; Ponzoni, Andrea; Sberveglieri, Veronica; Poli, Nicola; Faglia, Guido; Sberveglieri, Giorgio
2016-01-01
A hybrid nanostructure based on reduced graphene oxide and ZnO has been obtained for the detection of volatile organic compounds. The sensing properties of the hybrid structure have been studied for different concentrations of ethanol and acetone. The response of the hybrid material is significantly higher compared to pristine ZnO nanostructures. The obtained results have shown that the nanohybrid is a promising structure for the monitoring of environmental pollutants and for the application of breath tests in assessment of exposure to volatile organic compounds.
Effect of the type of oil on the evolution of volatile compounds of taralli during storage.
Giarnetti, Mariagrazia; Caponio, Francesco; Paradiso, Vito M; Summo, Carmine; Gomes, Tommaso
2012-03-01
Baking process leads to a huge quantity of newly formed volatile compounds, which play a major role in developing the flavor of the final product. The aim of this work was to investigate on the evolution of the volatile profile of taralli as a function of both the kind of oil used in the dough and the storage time. The volatile compounds from the taralli were extracted by headspace solid-phase microextraction and analyzed by gas-chromatography/mass spectrometry (GC/MS). Forty-four volatile compounds were identified in taralli, most of which produced by thermically induced reactions occurring during baking process, such as volatiles deriving from Maillard reaction and/or sugar degradation and lipid oxidation. The results obtained demonstrated the essential role played by the type of oil on the formation and on the release of volatile compounds. The volatile compounds significantly increased during storage and their individual levels were in most cases significantly lower in taralli made with extra virgin olive oil than in those made with refined oils. Finally, the taralli made with extra virgin olive oil, compared with those prepared with other vegetable oils, showed to be more resistant to oxidation, probably due to the presence of natural antioxidants. © 2012 Institute of Food Technologists®
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldstein, A. H.; Yee, L. D.; Issacman-VanWertz, G.
In areas where biogenic emissions are oxidized in the presence of anthropogenic pollutants such as SO2, NOx, and black carbon, it has become increasingly apparent that secondary organic aerosol (SOA) formation from biogenic volatile organic compounds (VOCs) is substantially enhanced. Research is urgently needed to elucidate fundamental processes of natural and anthropogenically influenced VOC oxidation and the contribution of these processes to SOA formation. GoAmazon 2014/15 afforded study of the chemical transformations in the region downwind of Manaus, Brazil, where local biogenic VOC emissions are high, and their chemical oxidation can be studied both inside and outside of the urbanmore » plume to differentiate the role of anthropogenic influence on secondary aerosol formation during oxidation of these natural VOC emissions. To understand the connection between primary biogenic VOC emissions and their secondary products that form aerosols, we made time-resolved molecular level measurements by deploying a Semi-Volatile Thermal Desorption Aerosol Gas Chromatograph (SV-TAG) and a sequential filter sampler during two intensive operational periods (IOPs) of the GoAmazon 2014/15 field campaign. The SV-TAG measured semi-volatile organic compounds in both the gas and particle phases and the sequential filter sampler collected aerosols on quartz fiber filters in four-hour increments used for offline analysis. SV-TAG employed novel online derivatization that provided chemical speciation of highly oxygenated or functionalized compounds that comprise a substantial fraction of secondary organic aerosols, yet are poorly characterized. It also provided partitioning of these compounds between the vapor and particle phases at sufficient time resolution to define the importance of competing atmospheric processes. These measurements were supported by offline analysis of the filters using two-dimensional gas chromatography (GC x GC) with high-resolution time-of-flight mass spectrometry (HR-TOF-MS) using both electron impact (EI) and soft vacuum ultraviolet (VUV) ionization with derivatization. Speciated chemical data from SV-TAG and filter measurements were used to elucidate the relative importance of potential oxidation pathways by providing detailed information on the product distribution from atmospheric reactions and the quantification of known tracers for various oxidation pathways. Together, these techniques provided unequivocal molecular identification of a wide range of atmospheric organic compounds spanning the volatile, semi-volatile, and non-volatile phases. This level of chemical characterization provided insight into the chemical and physical processes that control the atmospheric oxidation of biogenic VOC and subsequent formation of SOA.« less
Inomata, Y; Matsunaga, K; Murai, Y; Osada, K; Iwasaka, Y
1999-12-09
A method for the simultaneous measurement of volatile sulfur compounds (COS, H2S, CS2, CH3SH, DMS) is established with preconcentration and GC-flame photometric detection (FPD). Prior to preconcentration of ambient air, it was necessary to remove SO2, water vapor and atmospheric oxidant. SO2 and water vapor were removed using a glass fiber filter and a cooled PTFE water trap loop, respectively. In order to remove atmospheric oxidant, the efficiency of an ascorbic acid scrubber was examined. It was found that an ascorbic acid scrubber enabled measurement of volatile sulfur compounds without adsorption and reaction loss. The detection limits for COS, H2S, CS2, CH3SH and DMS were 20, 34, 35, 263 and 44 pg of S, respectively.
Domínguez, Rubén; Gómez, María; Fonseca, Sonia; Lorenzo, José M
2014-06-01
The influence of four different cooking methods (roasting, grilling, microwaving and frying) on cooking loss, lipid oxidation and volatile profile of foal meat was studied. Cooking loss were significantly (P<0.001) affected by thermal treatment, being higher (32.5%) after microwaving and lower after grilling (22.5%) and frying (23.8%). As expected, all the cooking methods increased TBARs content, since high temperature during cooking causes increased oxidation in foal steaks, this increase was significantly (P<0.001) higher when foal steaks were microwaved or roasted. The four different cooking methods led to increased total volatile compounds (between 366.7 and 633.1AU×10(6)/g dry matter) compared to raw steaks (216.4AU×10(6)/g dry matter). The roasted steaks showed the highest volatile content, indicating that increased cooking temperature increases the formation of volatile compounds. Aldehydes were the most abundant compounds in cooked samples, with amounts of 217.2, 364.5, 283.5 and 409.1AU×10(6)/g dry matter in grilled, microwaved, fried and roasted samples, respectively, whereas esters were the most abundant compounds in raw samples, with mean amounts of 98.8AU×10(6)/g dry matter. Copyright © 2014 Elsevier Ltd. All rights reserved.
Fang, Yi; Umasankar, Yogeswaran; Ramasamy, Ramaraja P
2014-08-07
Nanoparticles of TiO(2) or SnO(2) on screen-printed carbon (SP) electrodes have been developed for evaluating their potential application in the electrochemical sensing of volatiles in fruits and plants. These metal oxide nanoparticle-modified electrodes possess high sensitivity and low detection limit for the detection of p-ethylguaiacol, a fingerprint compound present in the volatile signature of fruits and plants infected with a pathogenic fungus Phytophthora cactorum. The electroanalytical data obtained using cyclic voltammetry and differential pulse voltammetry showed that both SnO(2) and TiO(2) exhibited high sensitivity (174-188 μA cm(-2) mM(-1)) and low detection limits (35-62 nM) for p-ethylguaiacol detection. The amperometric detection was highly repeatable with RSD values ranging from 2.48 to 4.85%. The interference studies show that other common plant volatiles do not interfere in the amperometric detection signal of p-ethylguaiacol. The results demonstrate that metal oxides are a reasonable alternative to expensive electrode materials such as gold or platinum for amperometric sensor applications.
High Temperature Corrosion of Silicon Carbide and Silicon Nitride in Water Vapor
NASA Technical Reports Server (NTRS)
Opila, E. J.; Robinson, Raymond C.; Cuy, Michael D.; Gray, Hugh R. (Technical Monitor)
2002-01-01
Silicon carbide (SiC) and silicon nitride (Si3N4) are proposed for applications in high temperature combustion environments containing water vapor. Both SiC and Si3N4 react with water vapor to form a silica (SiO2) scale. It is therefore important to understand the durability of SiC, Si3N4 and SiO2 in water vapor. Thermogravimetric analyses, furnace exposures and burner rig results were obtained for these materials in water vapor at temperatures between 1100 and 1450 C and water vapor partial pressures ranging from 0.1 to 3.1 atm. First, the oxidation of SiC and Si3N4 in water vapor is considered. The parabolic kinetic rate law, rate dependence on water vapor partial pressure, and oxidation mechanism are discussed. Second, the volatilization of silica to form Si(OH)4(g) is examined. Mass spectrometric results, the linear kinetic rate law and a volatilization model based on diffusion through a gas boundary layer are discussed. Finally, the combined oxidation and volatilization reactions, which occur when SiC or Si3N4 are exposed in a water vapor-containing environment, are presented. Both experimental evidence and a model for the paralinear kinetic rate law are shown for these simultaneous oxidation and volatilization reactions.
Aljawhary, Dana; Zhao, Ran; Lee, Alex K Y; Wang, Chen; Abbatt, Jonathan P D
2016-03-10
Formation of secondary organic aerosol (SOA) involves atmospheric oxidation of volatile organic compounds (VOCs), the majority of which are emitted from biogenic sources. Oxidation can occur not only in the gas-phase but also in atmospheric aqueous phases such as cloudwater and aerosol liquid water. This study explores for the first time the aqueous-phase OH oxidation chemistry of oxidation products of α-pinene, a major biogenic VOC species emitted to the atmosphere. The kinetics, reaction mechanisms, and formation of SOA compounds in the aqueous phase of two model compounds, cis-pinonic acid (PIN) and tricarballylic acid (TCA), were investigated in the laboratory; TCA was used as a surrogate for 3-methyl-1,2,3-butanetricarboxylic acid (MBTCA), a known α-pinene oxidation product. Aerosol time-of-flight chemical ionization mass spectrometry (Aerosol-ToF-CIMS) was used to follow the kinetics and reaction mechanisms at the molecular level. Room-temperature second-order rate constants of PIN and TCA were determined to be 3.3 (± 0.5) × 10(9) and 3.1 (± 0.2) × 10(8) M(-1) s(-1), respectively, from which were estimated their condensed-phase atmospheric lifetimes. Aerosol-ToF-CIMS detected a large number of products leading to detailed reaction mechanisms for PIN and MBTCA. By monitoring the particle size distribution after drying, the amount of SOA material remaining in the particle phase was determined. An aqueous SOA yield of 40 to 60% was determined for PIN OH oxidation. Although recent laboratory studies have focused primarily on aqueous-phase processing of isoprene-related compounds, we demonstrate that aqueous formation of SOA materials also occurs from monoterpene oxidation products, thus representing an additional source of biogenically driven aerosol formation.
Agregán, Rubén; Lorenzo, José M; Munekata, Paulo E S; Dominguez, Ruben; Carballo, Javier; Franco, Daniel
2017-09-01
In this research the antioxidant activity of water extracts of Bifurcaria bifurcata (BBE) at different dose against butylated hydroxytoluene (BHT) was evaluated in canola oil. Water extracts were firstly characterized in terms of total solid and polyphenolic compound contents, and their antioxidant activity together with that of BHT was evaluated using several in vitro tests (DPPH, ABTS, ORAC and FRAP). Next, the progress of lipid oxidation was assessed in canola oil added with five BBE concentrations (200, 400, 600, 800 and 1000ppm) and two BHT concentrations (50 and 200ppm) using an accelerated oxidation test. The progress in lipid oxidation was monitored by assessing some chemical indices (peroxide value, p-anisidine value, and conjugated dienes) during oil storage and some volatile compounds at the end of the storage period. BBE showed a significant antioxidant effect, being this ability concentration-dependent. The extent of lipid oxidation was inversely related to BBE dose, specially with regard to primary oxidation products. At the highest level of BBE, significant decreases of primary and secondary oxidation products, with respect to the control, were obtained with reduction percentages of 71.53%, 72.78%, 68.17% and 71.3% for peroxides, conjugated dienes, p-anisidine and TOTOX values, respectively. A level of 600ppm or higher concentration of the extract inhibits the lipid oxidation in a similar way than BHT at 200ppm. Regarding the inhibition of the formation of volatile compounds, both BBE and BHT strongly inhibited the formation of volatiles during oil storage, being this inhibition similar for all the concentrations of BBE and BHT essayed. Overall, results indicated that BBE can be used as a potential natural additive for improving oxidative stability of canola oil. Copyright © 2016 Elsevier Ltd. All rights reserved.
Gayoso, Lucía; Poyato, Candelaria; Calvo, María Isabel; Cavero, Rita Yolanda; Ansorena, Diana; Astiasarán, Iciar
2017-08-01
Gelled emulsions with carrageenan are a novel type of emulsion that could be used as a carrier of unsaturated fatty acids in functional foods formulations. Lipid degradation through volatile compounds was studied in gelled emulsions which were high in polyunsaturated oils (sunflower or algae oil) after 49 days of storage. Aqueous Lavandula latifolia extract was tested as a natural antioxidant. Analysis of the complete volatile profile of the samples resulted in a total of 40 compounds, classified in alkanes, alkenes, aldehydes, ketones, acids, alcohols, furans, terpenes and aromatic hydrocarbons. During storage, the formation of the volatile compounds was mostly related to the oxidation of the main fatty acids of the sunflower oil (linolenic acid) and the algae oil (docosahexaenoic acid). Despite the antioxidant capacity shown by the L. latifolia extract, its influence in the oxidative stability in terms of total volatiles was only noticed in sunflower oil gels ( p < 0.05), where a significant decrease in the aldehydes fraction was found.
Tungsten Oxides for Photocatalysis, Electrochemistry, and Phototherapy.
Huang, Zhen-Feng; Song, Jiajia; Pan, Lun; Zhang, Xiangwen; Wang, Li; Zou, Ji-Jun
2015-09-23
The conversion, storage, and utilization of renewable energy have all become more important than ever before as a response to ever-growing energy and environment concerns. The performance of energy-related technologies strongly relies on the structure and property of the material used. The earth-abundant family of tungsten oxides (WOx ≤3 ) receives considerable attention in photocatalysis, electrochemistry, and phototherapy due to their highly tunable structures and unique physicochemical properties. Great breakthroughs have been made in enhancing the optical absorption, charge separation, redox capability, and electrical conductivity of WOx ≤3 through control of the composition, crystal structure, morphology, and construction of composite structures with other materials, which significantly promotes the efficiency of processes and devices based on this material. Herein, the properties and synthesis of WOx ≤3 family are reviewed, and then their energy-related applications are highlighted, including solar-light-driven water splitting, CO2 reduction, and pollutant removal, electrochromism, supercapacitors, lithium batteries, solar and fuel cells, non-volatile memory devices, gas sensors, and cancer therapy, from the aspect of function-oriented structure design and control. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-09
... prices of financial products that have maturity dates in the future as part of the volatility model in... Volatility Model in Its Clearing Fund Formula July 2, 2012. I. Introduction On May 15, 2012, the Fixed Income... simulation model currently used to calculate the VaR Charge in GSD's Clearing Fund formula is driven by...
NASA Astrophysics Data System (ADS)
Singh, Kirandeep; Kaur, Davinder
2017-02-01
The manipulation of magnetic states and materials' spin degree-of-freedom via a control of an electric (E-) field has been recently pursued to develop magnetoelectric (ME) coupling-driven electronic data storage devices with high read/write endurance, fast dynamic response, and low energy dissipation. One major hurdle for this approach is to develop reliable materials which should be compatible with prevailing silicon (Si)-based complementary metal-oxide-semiconductor (CMOS) technology, simultaneously allowing small voltage for the tuning of magnetization switching. In this regard, multiferroic heterostructures where ferromagnetic (FM) and ferroelectric (FE) layers are alternatively grown on conventional Si substrates are promising as the piezoelectric control of magnetization switching is anticipated to be possible by an E-field. In this work, we study the ferromagnetic shape memory alloys based PbZr0.52Ti0.48O3/Ni50Mn35In15 (PZT/Ni-Mn-In) multiferroic heterostructures, and investigate their potential for CMOS compatible non-volatile magnetic data storage applications. We demonstrate the voltage-impulse controlled nonvolatile, reversible, and bistable magnetization switching at room temperature in Si-integrated PZT/Ni-Mn-In thin film multiferroic heterostructures. We also thoroughly unveil the various intriguing features in these materials, such as E-field tuned ME coupling and magnetocaloric effect, shape memory induced ferroelectric modulation, improved fatigue endurance as well as Refrigeration Capacity (RC). This comprehensive study suggests that these novel materials have a great potential for the development of unconventional nanoscale memory and refrigeration devices with self-cooling effect and enhanced refrigeration efficiency, thus providing a new venue for their applications.
Landform Erosion and Volatile Redistribution on Ganymede and Callisto
NASA Technical Reports Server (NTRS)
Moore, Jeffrey Morgan; Howard, Alan D.; McKinnon, William B.; Schenk, Paul M.; Wood, Stephen E.
2009-01-01
We have been modeling landscape evolution on the Galilean satellites driven by volatile transport. Our work directly addresses some of the most fundamental issues pertinent to deciphering icy Galilean satellite geologic histories by employing techniques currently at the forefront of terrestrial, martian, and icy satellite landscape evolution studies [e.g., 1-6], including modeling of surface and subsurface energy and volatile exchanges, and computer simulation of long-term landform evolution by a variety of processes. A quantitative understanding of the expression and rates of landform erosion, and of volatile redistribution on landforms, is especially essential in interpreting endogenic landforms that have, in many cases, been significantly modified by erosion [e.g., 7-9].
Oxidation and Volatilization of Silica-Formers in Water Vapor
NASA Technical Reports Server (NTRS)
Opila, E. J.; Gray, Hugh R. (Technical Monitor)
2002-01-01
At high temperatures SiC and Si3N4 react with water vapor to form a silica scale. Silica scales also react with water vapor to form a volatile Si(OH)4 species. These simultaneous reactions, one forming silica and the other removing silica, are described by paralinear kinetics. A steady state, in which these reactions occur at the same rate, is eventually achieved, After steady state is achieved, the oxide found on the surface is a constant thickness and recession of the underlying material occurs at a linear rate. The steady state oxide thickness, the time to achieve steady state, and the steady state recession rate can all be described in terms of the rate constants for the oxidation and volatilization reactions. In addition, the oxide thickness, the time to achieve steady state, and the recession rate can also be determined from parameters that describe a water vapor-containing environment. Accordingly, maps have been developed to show these steady state conditions as a function of reaction rate constants, pressure, and gas velocity. These maps can be used to predict the behavior of silica formers in water-vapor containing environments such as combustion environments. Finally, these maps are used to explore the limits of the paralinear oxidation model for SiC and Si3N4
Control of Fine Particulate (PM2.5) Emissions from Restaurant Operations.
Whynot, Jill; Quinn, Gary; Perryman, Pamela; Votlucka, Peter
1999-09-01
This paper describes efforts to reduce particulate matter (PM) emissions from restaurant operations, including application of an existing control method to a new equipment type. Commercial charbroiling in the South Coast Air Basin results in emissions of approximately 10 tons/day of fine particulate matter ( PM 2.5) and 1.3 tons/day of volatile organic compounds (VOCs). Over a seven-year period, the South Coast Air Quality Management District worked with industry to develop test methods for measuring emissions from various cooking operations, evaluate control technologies, and develop a rule to reduce these emissions. Of the two basic types of charbroilers-chain-driven and underfired-underfired produce four times the emissions when equivalent amounts of product are cooked. Cost-effective control technology is currently available only for chain-driven charbroilers. The application of flameless catalytic oxidizers to chain-driven charbroilers was found to effectively reduce emissions by at least 83% and is cost-effective. The catalysts have been used worldwide at restaurants for several years. Research efforts are underway to identify control options for underfired charbroilers. Implementation of Rule 1138, Control of Emissions from Restaurant Operations, adopted November 14, 1997, will result in reductions of 0.5 tons/day of PM 2.5 and 0.2 tons/day of VOCs. Future rules will result in reductions from underfired charbroilers and possibly other restaurant equipment when cost-effective solutions are available.
Control of fine particulate (PM2.5) emissions from restaurant operations.
Whynot, J; Quinn, G; Perryman, P; Votlucka, P
1999-09-01
This paper describes efforts to reduce particulate matter (PM) emissions from restaurant operations, including application of an existing control method to a new equipment type. Commercial charbroiling in the South Coast Air Basin results in emissions of approximately 10 tons/day of fine particulate matter (PM2.5) and 1.3 tons/day of volatile organic compounds (VOCs). Over a seven-year period, the South Coast Air Quality Management District worked with industry to develop test methods for measuring emissions from various cooking operations, evaluate control technologies, and develop a rule to reduce these emissions. Of the two basic types of charbroilers--chain-driven and underfired--underfired produce four times the emissions when equivalent amounts of product are cooked. Cost-effective control technology is currently available only for chain-driven charbroilers. The application of flameless catalytic oxidizers to chain-driven charbroilers was found to effectively reduce emissions by at least 83% and is cost-effective. The catalysts have been used worldwide at restaurants for several years. Research efforts are underway to identify control options for underfired charbroilers. Implementation of Rule 1138, Control of Emissions from Restaurant Operations, adopted November 14, 1997, will result in reductions of 0.5 tons/day of PM2.5 and 0.2 tons/day of VOCs. Future rules will result in reductions from underfired charbroilers and possibly other restaurant equipment when cost-effective solutions are available.
Wrona, Magdalena; Pezo, Davinson; Canellas, Elena; Nerín, Cristina
2016-02-05
61 different non-volatile compounds were determined in Agaricus Bisporus sliced mushrooms using UHPLC/Q-TOF with MS(E) technology. Both positive and negative electrospray ionization were applied. Chemical profile of three parts of mushroom was created: cap, gills and stipe. The analysed mushrooms were oxidized to identify the non-volatile markers in their parts. MarkerLynx(®) was proposed as a powerful tool to distinguish mushrooms purchased in different countries (Spain and Portugal) by determining their non-volatile markers. Some metabolites were identified. Surprisingly a mix of polyethylene glycols (PEGs) was detected in cap and gills of mushrooms. Whole mushrooms were considered as vegetable resistant to migration from packaging compounds. Additionally migration tests were performed to determine the source of migrating compounds. Copyright © 2016 Elsevier B.V. All rights reserved.
Titanium Dioxide Volatility in High Temperature Water Vapor
NASA Technical Reports Server (NTRS)
Nguyen, QynhGiao N.
2008-01-01
Titanium (Ti) containing materials are of high interest to the aerospace industry due to its high temperature capability, strength, and light weight. As with most metals an exterior oxide layer naturally exists in environments that contain oxygen (i.e. air). At high temperatures, water vapor plays a key role in the volatility of materials including oxide surfaces. This study will evaluate cold pressed titanium dioxide (TiO2) powder pellets at a temperature range of 1400 C - 1200 C in water containing environments to determine the volatile hydroxyl species using the transpiration method. The water content ranged from 0-76 mole% and the oxygen content range was 0-100 mole % during the 20-250 hour exposure times. Preliminary results indicate that oxygen is not a key contributor at these temperatures and the following reaction is the primary volatile equation for all three temperatures: TiO2 (s) + H2O (g) = TiO(OH)2 (g).
Edible Oil Barriers for Treatment of Chlorinated Solvent Contaminated Groundwater
2009-07-01
CF Chloroform Cl# Chlorine Number CO Carbon Monoxide CT Carbon Tetrachloride CVOC Chlorinated Volatile Organic Compound 1,2-DCA 1,2...As Safe HCl Hydrochloric Acid HRC® Hydrogen Release Compound IDW Investigation-Derived Waste ISCO In Situ Chemical Oxidation LEL Lower...Total Organic Carbon VC Vinyl Chloride VFA Volatile Fatty Acid VOC Volatile Organic Compound ZVI Zero Valent Iron viii ACKNOWLEDGEMENTS
Volatility measurement of atmospheric submicron aerosols in an urban atmosphere in southern China
NASA Astrophysics Data System (ADS)
Cao, Li-Ming; Huang, Xiao-Feng; Li, Yuan-Yuan; Hu, Min; He, Ling-Yan
2018-02-01
Aerosol pollution has been a very serious environmental problem in China for many years. The volatility of aerosols can affect the distribution of compounds in the gas and aerosol phases, the atmospheric fates of the corresponding components, and the measurement of the concentration of aerosols. Compared to the characterization of chemical composition, few studies have focused on the volatility of aerosols in China. In this study, a thermodenuder aerosol mass spectrometer (TD-AMS) system was deployed to study the volatility of non-refractory submicron particulate matter (PM1) species during winter in Shenzhen. To our knowledge, this paper is the first report of the volatilities of aerosol chemical components based on a TD-AMS system in China. The average PM1 mass concentration during the experiment was 42.7±20.1 µg m-3, with organic aerosol (OA) being the most abundant component (43.2 % of the total mass). The volatility of chemical species measured by the AMS varied, with nitrate showing the highest volatility, with a mass fraction remaining (MFR) of 0.57 at 50 °C. Organics showed semi-volatile characteristics (the MFR was 0.88 at 50 °C), and the volatility had a relatively linear correlation with the TD temperature (from the ambient temperature to 200 °C), with an evaporation rate of 0.45 % °C-1. Five subtypes of OA were resolved from total OA using positive matrix factorization (PMF) for data obtained under both ambient temperature and high temperatures through the TD, including a hydrocarbon-like OA (HOA, accounting for 13.5 %), a cooking OA (COA, 20.6 %), a biomass-burning OA (BBOA, 8.9 %), and two oxygenated OAs (OOAs): a less-oxidized OOA (LO-OOA, 39.1 %) and a more-oxidized OOA (MO-OOA, 17.9 %). Different OA factors presented different volatilities, and the volatility sequence of the OA factors at 50 °C was HOA (MFR of 0.56) > LO-OOA (0.70) > COA (0.85) ≈ BBOA (0.87) > MO-OOA (0.99), which was not completely consistent with the sequence of their O / C ratios. The high volatility of HOA implied that it had a high potential to be oxidized to secondary species in the gas phase. The aerosol volatility measurement results in this study provide useful parameters for the modeling work of aerosol evolution in China and are also helpful in understanding the formation mechanisms of secondary aerosols.
NASA Astrophysics Data System (ADS)
Guberman, S.; Yoon, S.; Guagenti, M. C.; Sheesley, R. J.; Usenko, S.
2017-12-01
Urban areas are literal hot spots of mosquito-borne disease transmission and air pollution during the summer months. Public health authorities release aerosolized adulticides to target adult mosquitoes directly in to the atmosphere to control mosquito populations and reduce the threat of diseases (e.g. Zika). Permethrin and malathion are the primary adulticides for controlling adult mosquito populations in Houston, TX and are typically sprayed at night. After being released into the atmosphere adulticides are subject to atmospheric oxidation initiated by atmospheric oxidants (e.g. O3 and NO3) which are driven by anthropogenic air pollutants (e.g. NOx; NO and NO2). Particulate matter (PM) samples were measured at both application and downwind locations. Sampling sites were determined using the combination of atmospheric plume transport models and adulticide application data provided by Harris County Public Health Mosquito Division. Atmospheric PM samples were taken using a Mobile Laboratory, equipped with total suspended PM and PM2.5 (PM with diameter <2.5 um) samplers, as well as real-time instruments that made congruent measurements of O3, NOx, and wind speed and direction. Nighttime atmospheric half-lives of malathion were calculated to be 40-90% lower than malathion half-lives measured in previous studies; these half-lives were determined using diurnal atmospheric concentrations of malathion and its oxidation product, malaoxon. Interestingly, during malathion-use periods, atmospheric malaoxon concentrations measured in the PM2.5 samples were similar to corresponding TSP samples. This suggests that the majority of the malathion (and malaoxon) was associated with fine PM. During permethrin-use periods, atmospheric permethrin concentrations measured in the PM2.5 samples were an order and half lower in magnitude. This suggests that permethrin may be undergoing less volatilization into the gas phase after application as compared to malathion (and or malaoxon). Unlike permethrin, malathion was not sprayed with a carrier or a synergistic compound. As a result, malathion may be more prone to volatilization. The atmospheric oxidation and migration to fine PM may result in decreased efficacy and increase atmospheric transport, both of which have environmental and human health consequences.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-13
... ), volatile organic compounds (VOCs), ammonia (NH 3 ), and sulfur dioxide (SO 2 ). EPA has reviewed the... , coarse particles (PM 10 ), nitrogen oxides (NO X ), volatile organic compounds (VOCs), ammonia (NH 3...
Volatile products from the interaction of KCl(g) with Cr2O3 and LaCrO3 in oxidizing environments
NASA Technical Reports Server (NTRS)
Kohl, F. J.; Miller, R. A.; Stearns, C. A.; Fryburg, G. C.; Dillard, J. G.
1977-01-01
Cooled target collection techniques and high pressure mass spectrometric sampling were used to measure the relative rates of oxidative vaporization and to identify the volatile products emanating from samples of chromia and Mg-doped lanthanum chromite. The materials were exposed to partial pressures of KCl with and without H2O in one atmosphere of slowly flowing oxygen at elevated temperatures. Chromia and fresh samples of lanthanum chromite exhibited enhanced rates of oxidative vaporization upon exposure to these reactants. Mass spectrometric identification showed that the enhancements resulted from the heterogeneous formation of complex molecules of the type KCl sub 1,2,3 CrO3 and KOH sub l,2 CrO3. Lanthanum chromite that had undergone prolonged oxidative vaporization exhibited no enhanced oxidation upon exposure to the reactants.
Measurement and Modeling of Volatile Particle Emissions from Military Aircraft
2011-10-01
cruise load (expt #4). (a,d) CO2, ozone , and chamber temperature, (b,e) Concentrations of toluene and acetaldehyde (note scale is not to zero for left...background air containing ozone . NO oxidizes to HNO2 while NO2 oxidizes to HNO3. HNO3 and HNO2 may contribute to 6 volatile PM, but their...contribution is currently not well understood. Under the relatively warm conditions of the lower troposphere relevant to the PM2.5 NAAQS, HNO3 condenses into
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-04
... nitrogen oxides (NO X ), volatile organic compounds (VOCs), PM 2.5 , coarse particles (PM 10 ), ammonia (NH... X ), volatile organic compounds (VOCs), PM 2.5 , coarse particles (PM 10 ), ammonia (NH 3 ), and...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-10
... X ), volatile organic compounds (VOCs), PM 2.5 , coarse particles (PM 10 ), ammonia (NH 3 ), and... oxides (NO X ), volatile organic compounds (VOCs), PM 2.5 , coarse particles (PM 10 ), ammonia (NH 3...
78 FR 37973 - Change of Address for Region 7; Technical Correction
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-25
... recordkeeping requirements, Sulfur oxides, Volatile organic compounds. 40 CFR Part 59 Environmental protection... requirements, Volatile organic compounds. 40 CFR Part 60 Environmental protection, Administrative practice and..., Cement industry, Chemicals, Coal, Copper, Dry cleaners, Electric power plants, Fertilizers, Fluoride...
Evaporation of iodine-containing off-gas scrubber solution
Partridge, J.A.; Bosuego, G.P.
1980-07-14
Mercuric nitrate-nitric acid scrub solutions containing radioiodine may be reduced in volume without excessive loss of volatile iodine. The use of concentrated nitric acid during an evaporation process oxidizes the mercury-iodide complex to a less volatile mercuric iodate precipitate.
NASA Astrophysics Data System (ADS)
Hinks, Mallory L.; Montoya-Aguilera, Julia; Ellison, Lucas; Lin, Peng; Laskin, Alexander; Laskin, Julia; Shiraiwa, Manabu; Dabdub, Donald; Nizkorodov, Sergey A.
2018-02-01
The effect of relative humidity (RH) on the chemical composition of secondary organic aerosol (SOA) formed from low-NOx toluene oxidation in the absence of seed particles was investigated. SOA samples were prepared in an aerosol smog chamber at < 2 % RH and 75 % RH, collected on Teflon filters, and analyzed with nanospray desorption electrospray ionization high-resolution mass spectrometry (nano-DESI-HRMS). Measurements revealed a significant reduction in the fraction of oligomers present in the SOA generated at 75 % RH compared to SOA generated under dry conditions. In a separate set of experiments, the particle mass concentrations were measured with a scanning mobility particle sizer (SMPS) at RHs ranging from < 2 to 90 %. It was found that the particle mass loading decreased by nearly an order of magnitude when RH increased from < 2 to 75-90 % for low-NOx toluene SOA. The volatility distributions of the SOA compounds, estimated from the distribution of molecular formulas using the molecular corridor
approach, confirmed that low-NOx toluene SOA became more volatile on average under high-RH conditions. In contrast, the effect of RH on SOA mass loading was found to be much smaller for high-NOx toluene SOA. The observed increase in the oligomer fraction and particle mass loading under dry conditions were attributed to the enhancement of condensation reactions, which produce water and oligomers from smaller compounds in low-NOx toluene SOA. The reduction in the fraction of oligomeric compounds under humid conditions is predicted to partly counteract the previously observed enhancement in the toluene SOA yield driven by the aerosol liquid water chemistry in deliquesced inorganic seed particles.
Lesot, Agnès; Ginglinger, Jean-François; Beran, Franziska; Schneider, Bernd; Leiss, Kirsten; Werck-Reichhart, Danièle
2015-01-01
The acyclic monoterpene alcohol linalool is one of the most frequently encountered volatile compounds in floral scents. Various linalool oxides are usually emitted along with linalool, some of which are cyclic, such as the furanoid lilac compounds. Recent work has revealed the coexistence of two flower-expressed linalool synthases that produce the (S)- or (R)-linalool enantiomers and the involvement of two P450 enzymes in the linalool oxidation in the flowers of Arabidopsis thaliana. Partially redundant enzymes may also contribute to floral linalool metabolism. Here, we provide evidence that CYP76C1 is a multifunctional enzyme that catalyzes a cascade of oxidation reactions and is the major linalool metabolizing oxygenase in Arabidopsis flowers. Based on the activity of the recombinant enzyme and mutant analyses, we demonstrate its prominent role in the formation of most of the linalool oxides identified in vivo, both as volatiles and soluble conjugated compounds, including 8-hydroxy, 8-oxo, and 8-COOH-linalool, as well as lilac aldehydes and alcohols. Analysis of insect behavior on CYP76C1 mutants and in response to linalool and its oxygenated derivatives demonstrates that CYP76C1-dependent modulation of linalool emission and production of linalool oxides contribute to reduced floral attraction and favor protection against visitors and pests. PMID:26475865
Paralinear Oxidation of CVD SiC in Simulated Fuel-Rich Combustion
NASA Technical Reports Server (NTRS)
Fox, Dennis S.; Opila, Elizabeth J.; Hann, Raiford E.
2000-01-01
The oxidation kinetics of CVD SiC were measured by thermogravimetric analysis (TGA) in a 4H2 (central dot) 12H2O (central dot) 10CO (central dot) 7CO2 (central dot) 67N2 gas mixture flowing at 0.44 cm/s at temperatures between 1300 and 1450 C in fused quartz furnace tubes at I atm total pressure. The SiC was oxidized to form solid SiO2. At less than or = 1350 C, the SiO2 was in turn volatilized. Volatilization kinetics were consistent with the thermodynamic predictions based on SiO formation. These two simultaneous reactions resulted in overall paralinear kinetics. A curve fitting technique was used to determine the linear and parabolic rate constants from the paralinear kinetic data. Volatilization of the protective SiO2 scale resulted in accelerated consumption of SiC. Recession rates under conditions more representative of actual combustors were estimated from the furnace data.
Mercuric iodate precipitation from radioiodine-containing off-gas scrubber solution
Partridge, Jerry A.; Bosuego, Gail P.
1982-01-01
Mercuric nitrate-nitric acid scrub solutions containing radioiodine may be reduced in volume without excessive loss of volatile iodine. The use of concentrated nitric acid during an evaporation process oxidizes the mercury-iodide complex to a less volatile mercuric iodate precipitate.
SUPERCRITICAL FLUID EXTRACTION OF SEMI-VOLATILE ORGANIC COMPOUNDS FROM PARTICLES
A nitrogen oxide flux chamber was modified to measure the flux of semi-volatile organic compounds (SVOCs). Part of the modification involved the development of methods to extract SVOCs from polyurethane foam (PUF), sand, and soil. Breakthroughs and extraction efficiencies were ...
NASA Astrophysics Data System (ADS)
Ciarelli, Giancarlo; El Haddad, Imad; Bruns, Emily; Aksoyoglu, Sebnem; Möhler, Ottmar; Baltensperger, Urs; Prévôt, André S. H.
2017-06-01
In this study, novel wood combustion aging experiments performed at different temperatures (263 and 288 K) in a ˜ 7 m3 smog chamber were modelled using a hybrid volatility basis set (VBS) box model, representing the emission partitioning and their oxidation against OH. We combine aerosol-chemistry box-model simulations with unprecedented measurements of non-traditional volatile organic compounds (NTVOCs) from a high-resolution proton transfer reaction mass spectrometer (PTR-MS) and with organic aerosol measurements from an aerosol mass spectrometer (AMS). Due to this, we are able to observationally constrain the amounts of different NTVOC aerosol precursors (in the model) relative to low volatility and semi-volatile primary organic material (OMsv), which is partitioned based on current published volatility distribution data. By comparing the NTVOC / OMsv ratios at different temperatures, we determine the enthalpies of vaporization of primary biomass-burning organic aerosols. Further, the developed model allows for evaluating the evolution of oxidation products of the semi-volatile and volatile precursors with aging. More than 30 000 box-model simulations were performed to retrieve the combination of parameters that best fit the observed organic aerosol mass and O : C ratios. The parameters investigated include the NTVOC reaction rates and yields as well as enthalpies of vaporization and the O : C of secondary organic aerosol surrogates. Our results suggest an average ratio of NTVOCs to the sum of non-volatile and semi-volatile organic compounds of ˜ 4.75. The mass yields of these compounds determined for a wide range of atmospherically relevant temperatures and organic aerosol (OA) concentrations were predicted to vary between 8 and 30 % after 5 h of continuous aging. Based on the reaction scheme used, reaction rates of the NTVOC mixture range from 3.0 × 10-11 to 4. 0 × 10-11 cm3 molec-1 s-1. The average enthalpy of vaporization of secondary organic aerosol (SOA) surrogates was determined to be between 55 000 and 35 000 J mol-1, which implies a yield increase of 0.03-0.06 % K-1 with decreasing temperature. The improved VBS scheme is suitable for implementation into chemical transport models to predict the burden and oxidation state of primary and secondary biomass-burning aerosols.
Aqueous organic chemistry in the atmosphere: sources and chemical processing of organic aerosols.
McNeill, V Faye
2015-02-03
Over the past decade, it has become clear that aqueous chemical processes occurring in cloud droplets and wet atmospheric particles are an important source of organic atmospheric particulate matter. Reactions of water-soluble volatile (or semivolatile) organic gases (VOCs or SVOCs) in these aqueous media lead to the formation of highly oxidized organic particulate matter (secondary organic aerosol; SOA) and key tracer species, such as organosulfates. These processes are often driven by a combination of anthropogenic and biogenic emissions, and therefore their accurate representation in models is important for effective air quality management. Despite considerable progress, mechanistic understanding of some key aqueous processes is still lacking, and these pathways are incompletely represented in 3D atmospheric chemistry and air quality models. In this article, the concepts, historical context, and current state of the science of aqueous pathways of SOA formation are discussed.
Nitrogen transformations in modern agriculture and the role of biological nitrification inhibition.
Coskun, Devrim; Britto, Dev T; Shi, Weiming; Kronzucker, Herbert J
2017-06-06
The nitrogen (N)-use efficiency of agricultural plants is notoriously poor. Globally, about 50% of the N fertilizer applied to cropping systems is not absorbed by plants, but lost to the environment as ammonia (NH 3 ), nitrate (NO 3 - ), and nitrous oxide (N 2 O, a greenhouse gas with 300 times the heat-trapping capacity of carbon dioxide), raising agricultural production costs and contributing to pollution and climate change. These losses are driven by volatilization of NH 3 and by a matrix of nitrification and denitrification reactions catalysed by soil microorganisms (chiefly bacteria and archaea). Here, we discuss mitigation of the harmful and wasteful process of agricultural N loss via biological nitrification inhibitors (BNIs) exuded by plant roots. We examine key recent discoveries in the emerging field of BNI research, focusing on BNI compounds and their specificity and transport, and discuss prospects for their role in improving agriculture while reducing its environmental impact.
Hot money and China's stock market volatility: Further evidence using the GARCH-MIDAS model
NASA Astrophysics Data System (ADS)
Wei, Yu; Yu, Qianwen; Liu, Jing; Cao, Yang
2018-02-01
This paper investigates the influence of hot money on the return and volatility of the Chinese stock market using a nonlinear Granger causality test and a new GARCH-class model based on mixed data sampling regression (GARCH-MIDAS). The empirical results suggest that no linear or nonlinear causality exists between the growth rate of hot money and the Chinese stock market return, implying that the Chinese stock market is not driven by hot money and vice versa. However, hot money has a significant positive impact on the long-term volatility of the Chinese stock market. Furthermore, the dependence between the long-term volatility caused by hot money and the total volatility of the Chinese stock market is time-variant, indicating that huge volatilities in the stock market are not always triggered by international speculation capital flow and that Chinese authorities should further focus on more systemic reforms in the trading rules and on effectively regulating the stock market.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sidheswaran, Meera A.; Destaillats, Hugo; Fisk, William J.
The present invention provides for a device for reducing a volatile organic compound (VOC) content of a gas comprising a manganese oxide (MnO.sub.x) catalyst. The manganese oxide (MnO.sub.x) catalyst is capable of catalyzing formaldehyde at room temperature, with complete conversion, to CO.sub.2 and water vapor. The manganese oxide (MnO.sub.x) catalyst itself is not consumed by the reaction of formaldehyde into CO.sub.2 and water vapor. The present invention also provides for a device for reducing or removing a particle, a VOC and/or ozone from a gas comprising an activated carbon filter (ACF) on a media that is capable of being periodicallymore » regenerated.« less
Nitrogen Trifluoride-Based Fluoride- Volatility Separations Process: Initial Studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
McNamara, Bruce K.; Scheele, Randall D.; Casella, Andrew M.
2011-09-28
This document describes the results of our investigations on the potential use of nitrogen trifluoride as the fluorinating and oxidizing agent in fluoride volatility-based used nuclear fuel reprocessing. The conceptual process uses differences in reaction temperatures between nitrogen trifluoride and fuel constituents that produce volatile fluorides to achieve separations and recover valuable constituents. We provide results from our thermodynamic evaluations, thermo-analytical experiments, kinetic models, and provide a preliminary process flowsheet. The evaluations found that nitrogen trifluoride can effectively produce volatile fluorides at different temperatures dependent on the fuel constituent.
Catalysts Based on Earth-Abundant Metals for Visible Light-Driven Water Oxidation Reaction.
Lin, Junqi; Han, Qing; Ding, Yong
2018-06-04
Exploration of water oxidation catalyst (WOC) with excellent performance is the key for the overall water splitting reaction, which is a feasible strategy to convert solar energy to chemical energy. Although some compounds composed of noble metals, mainly Ru and Ir, have been reported to catalyze water oxidation with high efficiency, catalysts based on low-cost and earth-abundant transition metals are essential for realizing economical and large-scale light-driven water splitting. Various WOCs containing earth-abundant metals (mainly Mn, Fe, Co, Ni, Cu) have been utilized for visible light-driven water oxidation in recent years. In this Personal Account, we summarize our recent developments in WOCs based on earth-abundant transition metals including polyoxometalates (POMs), metal oxides or bimetal oxides, and metal complexes containing multidentate ligand scaffolds for visible light-driven water oxidation reaction. © 2018 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Biotransformation of natural gas and oil compounds associated with marine oil discharges.
Brakstad, Odd Gunnar; Almås, Inger K; Krause, Daniel Franklin
2017-09-01
Field data from the Deepwater Horizon (DWH) oil spill in the Gulf of Mexico (GoM) suggested that oxidation of gas compounds stimulated biodegradation of oil compounds in the deep sea plume. We performed experiments with local seawater from a Norwegian fjord to examine if the presence of dissolved gas compounds (methane, ethane and propane) affected biodegradation of volatile oil compounds, and if oil compounds likewise affected gas compound oxidation. The results from the experiment showed comparable oil compound biotransformation rates in seawater at 5 °C between seawater with and without soluble gases. Gas oxidation was not affected by the presence of volatile oil compounds. Contrary to DWH deep sea plume data, propane oxidation was not faster than methane oxidation. These data may reflect variations between biodegradation of oil and gas in seawater environments with different history of oil and gas exposure. Copyright © 2017 Elsevier Ltd. All rights reserved.
Nitrous oxide emissions from open-lot cattle feedyards: A review
USDA-ARS?s Scientific Manuscript database
Nitrous oxide volatilization from concentrated animal feeding operations (CAFO), including cattle feedyards, has become an important research topic. However, there are limitations to current measurement techniques, uncertainty in the magnitude of feedyard nitrous oxide fluxes and a lack of effective...
Lopez-Hilfiker, F. D.; Mohr, C.; Ehn, M.; ...
2015-07-16
We measured a large suite of gas- and particle-phase multi-functional organic compounds with a Filter Inlet for Gases and AEROsols (FIGAERO) coupled to a high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS) developed at the University of Washington. The instrument was deployed on environmental simulation chambers to study monoterpene oxidation as a secondary organic aerosol (SOA) source. We focus here on results from experiments utilizing an ionization method most selective towards acids (acetate negative ion proton transfer), but our conclusions are based on more general physical and chemical properties of the SOA. Hundreds of compounds were observed in both gas andmore » particle phases, the latter being detected by temperature-programmed thermal desorption of collected particles. Particulate organic compounds detected by the FIGAERO–HR-ToF-CIMS are highly correlated with, and explain at least 25–50 % of, the organic aerosol mass measured by an Aerodyne aerosol mass spectrometer (AMS). Reproducible multi-modal structures in the thermograms for individual compounds of a given elemental composition reveal a significant SOA mass contribution from high molecular weight organics and/or oligomers (i.e., multi-phase accretion reaction products). Approximately 50 % of the HR-ToF-CIMS particle-phase mass is associated with compounds having effective vapor pressures 4 or more orders of magnitude lower than commonly measured monoterpene oxidation products. The relative importance of these accretion-type and other extremely low volatility products appears to vary with photochemical conditions. We present a desorption-temperature-based framework for apportionment of thermogram signals into volatility bins. The volatility-based apportionment greatly improves agreement between measured and modeled gas-particle partitioning for select major and minor components of the SOA, consistent with thermal decomposition during desorption causing the conversion of lower volatility components into the detected higher volatility compounds.« less
Lopez-Hilfiker, F. D.; Mohr, C.; Ehn, M.; ...
2015-02-18
We measured a large suite of gas and particle phase multi-functional organic compounds with a Filter Inlet for Gases and AEROsols (FIGAERO) coupled to a high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS) developed at the University of Washington. The instrument was deployed on environmental simulation chambers to study monoterpene oxidation as a secondary organic aerosol (SOA) source. We focus here on results from experiments utilizing an ionization method most selective towards acids (acetate negative ion proton transfer), but our conclusions are based on more general physical and chemical properties of the SOA. Hundreds of compounds were observed in both gasmore » and particle phases, the latter being detected upon temperature programmed thermal desorption of collected particles. Particulate organic compounds detected by the FIGAERO HR-ToF-CIMS are highly correlated with, and explain at least 25–50% of, the organic aerosol mass measured by an Aerodyne Aerosol Mass Spectrometer (AMS). Reproducible multi-modal structures in the thermograms for individual compounds of a given elemental composition reveal a significant SOA mass contribution from large molecular weight organics and/or oligomers (i.e. multi-phase accretion reaction products). Approximately 50% of the HR-ToF-CIMS particle phase mass is associated with compounds having effective vapor pressures 4 or more orders of magnitude lower than commonly measured monoterpene oxidation products. The relative importance of these accretion-type and other extremely low volatility products appears to vary with photochemical conditions. We present a desorption temperature based framework for apportionment of thermogram signals into volatility bins. The volatility-based apportionment greatly improves agreement between measured and modeled gas–particle partitioning for select major and minor components of the SOA, consistent with thermal decomposition during desorption causing the conversion of lower volatility components into the detected higher volatility compounds.« less
Breeds of risk-adjusted fundamentalist strategies in an order-driven market
NASA Astrophysics Data System (ADS)
LiCalzi, Marco; Pellizzari, Paolo
2006-01-01
This paper studies an order-driven stock market where agents have heterogeneous estimates of the fundamental value of the risky asset. The agents are budget-constrained and follow a value-based trading strategy which buys or sells depending on whether the price of the asset is below or above its risk-adjusted fundamental value. This environment generates returns that are remarkably leptokurtic and fat-tailed. By extending the study over a grid of different parameters for the fundamentalist trading strategy, we exhibit the existence of monotone relationships between the bid-ask spread demanded by the agents and several statistics of the returns. We conjecture that this effect, coupled with positive dependence of the risk premium on the volatility, generates positive feedbacks that might explain volatility bursts.
Role of metal oxides in the thermal degradation of poly(vinyl chloride)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, M.C.; Viswanath, S.G.
Thermal degradation of poly(vinyl chloride) has been studied in the presence of metal oxides by a thermogravimetric method. It follows a two-step mechanism. In the first step chlorine free radical is formed as in the case of pure PVC, and in the second step chlorine free radical replaces oxygen from metal oxide to form metal chloride and oxygen free radical. Subsequently, the oxygen free radical abstracts hydrogen from PVC. Formation of metal chloride is the rate-controlling step. The metal chlorides formed during the thermal degradation either volatilize or decompose simultaneously to lower metallic chlorides depending on the boiling point ormore » the volatilization temperature.« less
Advances in fruit aroma volatile research.
El Hadi, Muna Ahmed Mohamed; Zhang, Feng-Jie; Wu, Fei-Fei; Zhou, Chun-Hua; Tao, Jun
2013-07-11
Fruits produce a range of volatile compounds that make up their characteristic aromas and contribute to their flavor. Fruit volatile compounds are mainly comprised of esters, alcohols, aldehydes, ketones, lactones, terpenoids and apocarotenoids. Many factors affect volatile composition, including the genetic makeup, degree of maturity, environmental conditions, postharvest handling and storage. There are several pathways involved in volatile biosynthesis starting from lipids, amino acids, terpenoids and carotenoids. Once the basic skeletons are produced via these pathways, the diversity of volatiles is achieved via additional modification reactions such as acylation, methylation, oxidation/reduction and cyclic ring closure. In this paper, we review the composition of fruit aroma, the characteristic aroma compounds of several representative fruits, the factors affecting aroma volatile, and the biosynthetic pathways of volatile aroma compounds. We anticipate that this review would provide some critical information for profound research on fruit aroma components and their manipulation during development and storage.
NASA Astrophysics Data System (ADS)
Knipping, J. L.; Simon, A. C.; Fiege, A.; Webster, J. D.; Reich, M.; Barra, F.; Holtz, F.; Oeser-Rabe, M.
2017-12-01
Trace-element characteristics of magnetite from Kiruna-type iron oxide-apatite deposits indicate a magmatic origin. A possible scenario currently considered for the magmatic formation, apart from melt immiscibility, is related to degassing of volatile-rich magmas. Decompression, e.g., induced by magma ascent, results in volatile exsolution and the formation of a magmatic volatile phase. Volatile bubbles are expected to nucleate preferentially on the surface of oxides like magnetite which is due to a relatively low surface tension of oxide-bubble interfaces [1]. The "bulk" density of these magnetite-bubble pairs is typically lower than the surrounding magma and thus, they are expected to migrate upwards. Considering that magnetite is often the liquidus phase in fluid-saturated, oxidized andesitic arc magmas, this process may lead to the formation of a rising magnetite-bubble suspension [2]. To test this hypothesis, complementary geochemical analyses and high pressure experimental studies are in progress. The core to rim Fe isotopic signature of magnetite grains from the Los Colorados deposit in the Chilean Iron Belt was determined by Laser Ablation-MC-ICP-MS. The δ56Fe data reveal a systematic zonation from isotopically heavy Fe (δ56Fe: 0.25 ±0.07 ‰) in the core of magnetite grains to relatively light Fe (δ56Fe: 0.15 ±0.05 ‰) toward grain rims. This variation indicates crystallization of the magnetite cores at early magmatic stages from a silicate melt and subsequent growth of magnetite rims at late magmatic - hydrothermal stages from a free volatile phase. These signatures agree with the core to rim trace-element signatures of the same magnetite grains. The presence of Cl in the exsolved volatile phase and the formation of FeCl2 complexes is expected to enhance the transport of Fe in fluids and the formation of magmatic-hydrothermal magnetite [3]. First experiments (975 °C, 350 to 100 MPa, 0.025 MPa/s) show certain magnetite accumulation only 15 minutes after decompression in the upper part of the experimental products, indicating that magnetite flotation can be an efficient mechanism to separate and accumulate magnetite. [1] Hurwitz and Navon (1994) Earth Planet. Sci. Lett.122, 267-280 [2] Edmonds et al. (2014) Geol. Soc. London, Spec. Pub. 410. [3] Simon et al. (2004) Geochim. Cosmochim. Acta 68, 4905-4914.
FLUORINATION OF OXIDIC NUCLEAR FUEL
Mecham, W.J.; Gabor, J.D.
1963-07-23
A process of volatilizing fissionable material away from fission products, present together in neutron-bombarded uranium oxide, by reaction with an oxygen-fluorine mixture at 350 to 500 deg C is described. (AEC)
NASA Astrophysics Data System (ADS)
Watne, Ågot K.; Westerlund, Jonathan; Hallquist, Åsa M.; Brune, William H.; Hallquist, Mattias
2017-12-01
The behaviour of secondary organic aerosols (SOA) in the atmosphere is highly dependent on their thermal properties. Here we investigate the volatility of SOA formed from alpha-pinene, beta-pinene and limonene upon ozone- and OH-induced oxidation, and the effect of OH-induced ageing on the initially produced SOA. For all three terpenes, the ozone-induced SOA was less volatile than the OH-induced SOA. The thermal properties of the SOA were described using three parameters extracted from the volatility measurements: the temperature at which 50 per cent of the volume has evaporated (TVFR0.5), which is used as a general volatility indicator; a slope factor (SVFR), which describes the volatility distribution; and TVFR0.1, which measures the volatility of the least volatile particle fraction. Limonene-derived SOA generally had higher TVFR0.5 values and shallower slopes than SOA derived from alpha- and beta-pinene. This was especially true for the ozone-induced SOA, partially because the ozonolysis of limonene has a strong tendency to cause SOA formation and to produce extremely low volatility VOCs (ELVOCs). Ageing by OH exposure did not reduce TVFR0.5 for any of the studied terpenes but did increase the breadth of the volatility distribution by increasing the aerosols heterogeneity and contents of substances with different vapour pressures, also leading to increases in TVFR0.1. This stands in contrast to previously reported results from smog chamber experiments, in which TVFR0.5 always increased with ageing. These results demonstrate that there are two opposing processes that influence the evolution of SOAs thermal properties as they age, and that results from both flow reactors and static chambers are needed to fully understand the temporal evolution of atmospheric SOA thermal properties.
Oxidation And Hot Corrosion Of ODS Alloy
NASA Technical Reports Server (NTRS)
Lowell, Carl E.; Barrett, Charles A.
1993-01-01
Report reviews oxidation and hot corrosion of oxide-dispersion-strengthened (ODS) alloys, intended for use at high temperatures. Classifies environmental resistances of such alloys by rates of growth of oxides, volatilities of oxides, spalling of oxides, and limitations imposed by hot corrosion. Also discusses environmentally resistant coatings for ODS materials. Concludes ODS NICrAl and FeCrAl alloys highly resistant to oxidation and corrosion and can be used uncoated.
The oxidation and corrosion of ODS alloys
NASA Technical Reports Server (NTRS)
Lowell, Carl E.; Barrett, Charles A.
1990-01-01
The oxidation and hot corrosion of high temperature oxide dispersion strengthened (ODS) alloys are reviewed. The environmental resistance of such alloys are classified by oxide growth rate, oxide volatility, oxide spalling, and hot corrosion limitations. Also discussed are environmentally resistant coatings for ODS materials. It is concluded that ODS NiCrAl and FeCrAl alloys are highly oxidation and corrosion resistant and can probably be used uncoated.
Giolando, Dean M.
2003-09-30
Novel ligated compounds of tin, titanium, and zinc are useful as metal oxide CVD precursor compounds without the detriments of extreme reactivity yet maintaining the ability to produce high quality metal oxide coating by contact with heated substrates.
2009-01-01
lactate, citric acid , or ethanol have been used in field applications. Biomass grows rapidly during the active phase when high concentrations of...6.7.4 Results of Oxidation Reduction Potential (ORP) Monitoring.............39 6.7.5 Results of Volatile Fatty Acids (VFA) Analysis...trinitrotoluene USEPA U.S. Environmental Protection Agency VC vinyl chloride VFA volatile fatty acid VOC volatile organic compounds Technical
NASA Technical Reports Server (NTRS)
Lowell, C. E.; Probst, H. B.
1974-01-01
Four cast nickel-base superalloys were oxidized at 1000 and 1100 C for times up to 100 hr in static air and a Mach 1 gas stream. The oxidation resistance was judged by weight change, metal thickness loss, depletion-zone formation, and oxide formation and morphology. The alloys which formed mostly nickel aluminate (NiAl2O4) and aluminum oxide (Al2O3) (B-1900, VIA, and to a lesser extent 713C) were more oxidation resistant. Poorer oxidation resistance was associated with the appearance of chromium sesquioxide (Cr2O3) and chromite spinel (738X). Refractory metal content had little effect on oxidation resistance. Refractory metals appeared in the scale as tapiolite (NiM2O6, where M represents the refractory metal). Thermal cycling in static air appeared to supply sufficient data for the evaluation of oxidation resistance, especially for alloys which form oxides of low volatility. For alloys of higher chromium levels with high propensities toward forming a chromium-bearing scale of higher volatility, testing under conditions of high gas velocity is necessary to assess fully the behavior of the alloy.
Pattamayutanon, Praetinee; Angeli, Sergio; Thakeow, Prodpran; Abraham, John; Disayathanoowat, Terd; Chantawannakul, Panuwan
2017-01-01
The volatile organic compounds (VOCs) of four monofloral and one multifloral of Thai honeys produced by Apis cerana, Apis dorsata and Apis mellifera were analyzed by headspace solid-phase microextraction (HS-SPME) followed by gas chromatography and mass spectrometry (GC-MS). The floral sources were longan, sunflower, coffee, wild flowers (wild) and lychee. Honey originating from longan had more VOCs than all other floral sources. Sunflower honey had the least numbers of VOCs. cis-Linalool oxide, trans-linalool oxide, ho-trienol, and furan-2,5-dicarbaldehyde were present in all the honeys studied, independent of their floral origin. Interestingly, 2-phenylacetaldehyde was detected in all honey sample except longan honey produced by A. cerana. Thirty-two VOCs were identified as possible floral markers. After validating differences in honey volatiles from different floral sources and honeybee species, the results suggest that differences in quality and quantity of honey volatiles are influenced by both floral source and honeybee species. The group of honey volatiles detected from A. cerana was completely different from those of A. mellifera and A. dorsata. VOCs could therefore be applied as chemical markers of honeys and may reflect preferences of shared floral sources amongst different honeybee species.
Role of hydrogen in volatile behaviour of defects in SiO2-based electronic devices
NASA Astrophysics Data System (ADS)
Wimmer, Yannick; El-Sayed, Al-Moatasem; Gös, Wolfgang; Grasser, Tibor; Shluger, Alexander L.
2016-06-01
Charge capture and emission by point defects in gate oxides of metal-oxide-semiconductor field-effect transistors (MOSFETs) strongly affect reliability and performance of electronic devices. Recent advances in experimental techniques used for probing defect properties have led to new insights into their characteristics. In particular, these experimental data show a repeated dis- and reappearance (the so-called volatility) of the defect-related signals. We use multiscale modelling to explain the charge capture and emission as well as defect volatility in amorphous SiO2 gate dielectrics. We first briefly discuss the recent experimental results and use a multiphonon charge capture model to describe the charge-trapping behaviour of defects in silicon-based MOSFETs. We then link this model to ab initio calculations that investigate the three most promising defect candidates. Statistical distributions of defect characteristics obtained from ab initio calculations in amorphous SiO2 are compared with the experimentally measured statistical properties of charge traps. This allows us to suggest an atomistic mechanism to explain the experimentally observed volatile behaviour of defects. We conclude that the hydroxyl-E' centre is a promising candidate to explain all the observed features, including defect volatility.
Volatile molecule PuO 3 observed from subliming plutonium dioxide
NASA Astrophysics Data System (ADS)
Ronchi, C.; Capone, F.; Colle, J. Y.; Hiernaut, J. P.
2000-06-01
Mass spectrometric measurements of effusing vapours over PuO 2 and (U, Pu)O 2 indicate the presence of volatile PuO 3 (g) molecules. The formation of plutonium trioxide vapour is due to a chemical process involving oxygen adsorbed during oxidation of the sample. Although in the examined samples, the fraction of trioxide effusing in vacuo was of the order of 0.02 ppm of the plutonium content, under steady-state oxidation conditions it has been shown that the process can have a relevant effect on the sublimation rate of the dioxide.
Wang, Xia; Xu, Shengjun; Wu, Shanghua; Feng, Shugeng; Bai, Zhihui; Zhuang, Guoqiang; Zhuang, Xuliang
2018-04-01
Ammonia (NH 3 ) volatilization is one of the primary pathways of nitrogen (N) loss from soils after chemical fertilizer is applied, especially from the alkaline soils in Northern China, which results in lower efficiency for chemical fertilizers. Therefore, we conducted an incubation experiment using an alkaline soil from Tianjin (pH8.37-8.43) to evaluate the suppression effect of Trichoderma viride (T. viride) biofertilizer on NH 3 volatilization, and compared the differences in microbial community structure among all samples. The results showed that viable T. viride biofertilizer (T) decreased NH 3 volatilization by 42.21% compared with conventional fertilizer ((CK), urea), while nonviable T. viride biofertilizer (TS) decreased NH 3 volatilization by 32.42%. NH 3 volatilization was significantly higher in CK and sweet potato starch wastewater (SPSW) treatments during the peak period. T. viride biofertilizer also improved the transfer of ammonium from soil to sweet sorghum. Plant dry weights increased 91.23% and 61.08% for T and TS, respectively, compared to CK. Moreover, T. viride biofertilizer enhanced nitrification by increasing the abundance of ammonium-oxidizing archaea (AOA) and ammonium-oxidizing bacteria (AOB). The results of high-throughput sequencing indicated that the microbial community structure and composition were significantly changed by the application of T. viride biofertilizer. This study demonstrated the immense potential of T. viride biofertilizer in reducing NH 3 volatilization from alkaline soil and simultaneously improving the utilization of fertilizer N by sweet sorghum. Copyright © 2017. Published by Elsevier B.V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jantzen, C. M.; Williams, M. S.; Zamecnik, J. R.
Control of the REDuction/OXidation (REDOX) state of glasses containing high concentrations of transition metals, such as High Level Waste (HLW) glasses, is critical in order to eliminate processing difficulties caused by overly reduced or overly oxidized melts. Operation of a HLW melter at Fe +2/ΣFe ratios of between 0.09 and 0.33, a range which is not overly oxidizing or overly reducing, helps retain radionuclides in the melt, i.e. long-lived radioactive 99Tc species in the less volatile reduced Tc 4+ state, 104Ru in the melt as reduced Ru +4 state as insoluble RuO 2, and hazardous volatile Cr 6+ in themore » less soluble and less volatile Cr +3 state in the glass. The melter REDOX control balances the oxidants and reductants from the feed and from processing additives such as antifoam. Currently, the Defense Waste Processing Facility (DWPF) is running a formic acid-nitric acid (FN) flowsheet where formic acid is the main reductant and nitric acid is the main oxidant. During decomposition formate and formic acid releases H 2 gas which requires close control of the melter vapor space flammability. A switch to a nitric acid-glycolic acid (GN) flowsheet is desired as the glycolic acid flowsheet releases considerably less H 2 gas upon decomposition. This would greatly simplify DWPF processing. Development of an EE term for glycolic acid in the GN flowsheet is documented in this study.« less
Groundwater Sampling at ISCO Sites: Binary Mixtures of Volatile Organic Compounds and Persulfate
In-situ chemical oxidation involves the introduction of a chemical oxidant into the subsurface for the purpose of transforming ground-water contaminants into less harmful byproducts. Due to oxidant persistence, ground water samples collected at hazardous waste sites may contain o...
DEVELOPMENT OF TRANSITION METAL OXIDE-ZEOLITE CATALYSTS TO CONTROL CHLORINATED VOC AIR EMISSIONS
The paper discusses the development of transition metal oxide (TMO)-zeolite oxidation catalysts to control chlorinated volatile organic compound (CVOC) air emissions. esearch has been initiated to enhance the utility of these catalysts by the development of a sorption-catalyst sy...
It's the little things that matter most: The role of volatiles in volcanoes and their magmatic roots
NASA Astrophysics Data System (ADS)
Keller, T.; Suckale, J.
2017-12-01
Many volcanic eruptions are driven by volatiles - mostly H2O and CO2 - that degas from magmas rising up beneath the volcano. Gas expands during ascent, thus frequently creating lavas with upward of 50% vesicularity. That is a particularly compelling observation considering that volatiles are only present at concentrations of order 100 ppm in the mantle source. Yet, even at these small concentrations, volatiles significantly lower the peridotite solidus. That leads to the production of reactive volatile-rich melts at depth, which has important consequences for melt transport in the asthenosphere. Thus, volatiles have a pivotal role both at the beginning and the end of the magmatic storyline. A growing amount of observational evidence provides various perspectives on these systems. Volcanic products are characterised increasingly well by geochemical and petrological data. And, volcano monitoring now often provides continuous records of degassing flux and composition. What is missing to better interpret these data are coupled fluid mechanic and thermodynamic models that link melt production and reactive transport in the mantle and crust with degassing-driven volcanic activity at the surface. Such models need to describe the deformation and segregation of multiple material phases (liquids, solids, gases) and track the reactive transport of diverse chemical components (major elements, trace elements, volatiles). I will present progress towards a generalization of existing two-phase model for melt transport in the mantle, extending them to three-phase flows appropriate for magma circulation and degassing in volcanoes. What sets the two environments apart is the presence of a compressible vapor in volcanoes. Also, volcanic degassing may occur by convecting suspensions as well as porous segregation. The model framework we are developing for these processes is based on mixture theory. Uncovering the underlying physics that connects these diverse expressions of magma transport will provide an opportunity to gain deeper insights into magmatic and volcanic phenomena as related rather than separate processes. In time we may thus come to more fully understand how it is that the little things that are mantle volatiles do matter most in volcanoes and their magmatic roots.
NASA Astrophysics Data System (ADS)
Kristensen, Kasper; Normann Jensen, Louise; Bilde, Merete
2016-04-01
The oxidation of volatile organic compounds (VOC) is considered a major source of secondary organic aerosols (SOA) in the atmosphere. Recently, extremely low volatility organic compounds, or ELVOC, formed from the oxidation of VOCs have been shown to play a crucial role in new particle formation (Ehn et al., 2014). In addition, higher molecular weight dimer esters originating from the oxidation of the biogenic VOC alpha-pinene have been observed in both laboratory-generated and ambient SOA (Kristensen et al., 2013). The low volatility of the dimer esters along with an observed rapid formation makes these high molecular weight compounds likely candidates involved in new particle formation from the oxidation of alpha-pinene. Furthermore, laboratory experiments show that the dimer esters only form in the presence of ozone, thus may be used as tracers for the ozone-initiated oxidation of alpha-pinene, and are therefore indicative of enhanced anthropogenic activities. In this work, we present the results of a series of oxidation experiments performed in the newly constructed cold-room smog chamber at Aarhus University. This unique and state-of-the-art Teflon chamber allows for atmospheric simulations of the oxidation VOCs and subsequent SOA formation at temperatures down to -16 °C. In this study, ozonolysis and photochemical oxidations of alpha-pinene are performed at temperatures ranging from +20 to -16 °C. Chemical characterization of the formed SOA is performed using liquid chromatography coupled to quadrupole time-of-flight mass spectrometry. The results show significant differences in the chemical composition related to the experiment temperature. In particularly, the concentration of the high molecular weight dimer esters showed to be highly affected by temperature. Interestingly, preliminary results show higher formation of dimer esters related to increased SOA formation rate, thus indicating that these particle-phase ELVOCs may be linked with new particle formation. Ehn, M., Thornton, J. A., Kleist, E., Sipila, M., Junninen, H., Pullinen, I., Springer, M., Rubach, F., Tillmann, R., Lee, B., Lopez-Hilfiker, F., Andres, S., Acir, I. H., Rissanen, M., Jokinen, T., Schobesberger, S., Kangasluoma, J., Kontkanen, J., Nieminen, T., Kurten, T., Nielsen, L. B., Jorgensen, S., Kjaergaard, H. G., Canagaratna, M., Dal Maso, M., Berndt, T., Petaja, T., Wahner, A., Kerminen, V. M., Kulmala, M., Worsnop, D. R., Wildt, J., and Mentel, T. F.: A large source of low-volatility secondary organic aerosol, Nature, 506, 476-+, 10.1038/nature13032, 2014. Kristensen, K., Enggrob, K. L., King, S. M., Worton, D. R., Platt, S. M., Mortensen, R., Rosenoern, T., Surratt, J. D., Bilde, M., Goldstein, A. H., and Glasius, M.: Formation and occurrence of dimer esters of pinene oxidation products in atmospheric aerosols, Atmospheric Chemistry and Physics, 13, 3763-3776, 2013.
Sohaib, Muhammad; Anjum, Faqir Muhammad; Arshad, Muhammad Sajid; Imran, Muhammad; Imran, Ali; Hussain, Shahzad
2017-02-01
Chicken meat contains higher percentage of polyunsaturated fatty acids that are susceptible to oxidative deterioration ultimately leading towards lower consumer acceptability for chicken meat products. Accordingly, meat processing industries are looking for combinations of natural antioxidants to enhance the oxidative stability and consumer acceptability of meat based products. The present study aimed to investigate the influence of directly added quercetin dihydrate in combination with α-tocopherol on oxidative stability, color characteristics, total carbonyls and flavor volatile compounds in chicken meat patties. Considering the preliminary studies, 3 levels of quercetin dihdrate @ 25, 50 and 100 mg/kg meat in combination with α-tocopherol at the rate 100 and 200 mg/kg meat were added to develop chicken meat patties and were stored at refrigeration temperature for 7 days. The oxidative stability of the antioxidant treated patties was determined by measuring malonaldehydes using TBARS and total carbonyls assay. The color (Lightness, redness and yellowness) of the patties was determined by using Konica Minolta Color Meter. Moreover, the volatile compounds were measured through gas chromatography at various storage intervals. The results elucidated that quercetin dehydrate inclusion at the rate of 50 mg/kg meat as well as particularly 100 mg/kg meat decreased the oxidation by reducing generation of malonaldehydes and total carbonyls in treated patties. Highest value for TBARS at initiation of storage was reported in (T 0 ) as 1.93 ± 0.02 whereas lowest were reported in T 6 and T 5 as 0.37 ± 0.01 and 0.38 ± 0.03 that were increased to 3.47 ± 0.14, 0.90 ± 0.05 and 0.94 ± 0.34 at the completion of storage. Moreover, the lowest carbonyls also reported in T6 and the values at various storage intervals (1st, 3rd and 7th) were as 0.59 ± 0.025, 0.77 ± 0.015 and 1.02 ± 0.031, respectively. The antioxidants inclusion also inhibited volatile flavoring compounds particularly aldehydes like hexanal and pentanal in a dose dependent manner (p ≤ 0.05). Lowest hexanal values reported in T 6 as 2488 ± 103 followed by T 4 (3701 ± 111) at the start of the trial whereas highest in T 0 (control) as 54,768 ± 431 that were increased to 9569 ± 607, 112,550 ± 897 and 359,826 ± 1285, correspondingly. The hexanal, as a critical indicator for the determination of volatiles in meat based products, was decreased with the addition of antioxidants and its highest values were reported in control group. Quercetin dihydrate addition along with alpha tocopherol is a pragmatic choice to improve oxidative storability and volatile flavor compounds in cooked meat patties. The data obtained will help meat processor to better develop antioxidant enriched formulations to augment oxidative stability and quality of processed meat products.
NASA Astrophysics Data System (ADS)
Liu, J.; Chen, Z.; Horowitz, L. W.; Carlton, A. M. G.; Fan, S.; Cheng, Y.; Ervens, B.; Fu, T. M.; He, C.; Tao, S.
2014-12-01
Secondary organic aerosols (SOA) have a profound influence on air quality and climate, but large uncertainties exist in modeling SOA on the global scale. In this study, five SOA parameterization schemes, including a two-product model (TPM), volatility basis-set (VBS) and three cloud SOA schemes (Ervens et al. (2008, 2014), Fu et al. (2008) , and He et al. (2013)), are implemented into the global chemical transport model (MOZART-4). For each scheme, model simulations are conducted with identical boundary and initial conditions. The VBS scheme produces the highest global annual SOA production (close to 35 Tg·y-1), followed by three cloud schemes (26-30 Tg·y-1) and TPM (23 Tg·y-1). Though sharing a similar partitioning theory to the TPM scheme, the VBS approach simulates the chemical aging of multiple generations of VOCs oxidation products, resulting in a much larger SOA source, particularly from aromatic species, over Europe, the Middle East and Eastern America. The formation of SOA in VBS, which represents the net partitioning of semi-volatile organic compounds from vapor to condensed phase, is highly sensitivity to the aging and wet removal processes of vapor-phase organic compounds. The production of SOA from cloud processes (SOAcld) is constrained by the coincidence of liquid cloud water and water-soluble organic compounds. Therefore, all cloud schemes resolve a fairly similar spatial pattern over the tropical and the mid-latitude continents. The spatiotemporal diversity among SOA parameterizations is largely driven by differences in precursor inputs. Therefore, a deeper understanding of the evolution, wet removal, and phase partitioning of semi-volatile organic compounds, particularly above remote land and oceanic areas, is critical to better constrain the global-scale distribution and related climate forcing of secondary organic aerosols.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-27
... reasonably available control technology (RACT) for oxides of nitrogen (NO X ) and volatile organic compounds.... I. Background and Purpose II. Connecticut's Reasonably Available Control Technology Certification... controlling volatile organic compound emissions that Connecticut submitted to EPA on July 20, 2007. \\1\\ The...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-05
... Kentucky, through the Kentucky Energy and Environment Cabinet, Division for Air Quality (DAQ), to... (MVEBs) for nitrogen oxides (NO X ) and volatile organic compounds (VOC) for Northern Kentucky. This... control, Incorporation by reference, Nitrogen dioxide, Ozone, Intergovernmental relations, and Volatile...
Chromium exists in sediments in two oxidation states: Cr(III) is relatively insoluble and nontoxic, whereas Cr(VI) is much more soluble and toxic. Cr(VI) is not thermodynamically favored in anoxic sediments. Acid-volatile sulfide (AVS) is formed only in anoxic sediments, therefor...
NASA Astrophysics Data System (ADS)
Hansel, Amie K.; Ehrenhauser, Franz S.; Richards-Henderson, Nicole K.; Anastasio, Cort; Valsaraj, Kalliat T.
2015-02-01
Green leaf volatiles (GLVs) are a group of biogenic volatile organic compounds (BVOCs) released into the atmosphere by vegetation. BVOCs produce secondary organic aerosol (SOA) via gas-phase reactions, but little is known of their aqueous-phase oxidation as a source of SOA. GLVs can partition into atmospheric water phases, e.g., fog, mist, dew or rain, and be oxidized by hydroxyl radicals (˙OH). These reactions in the liquid phase also lead to products that have higher molecular weights, increased polarity, and lower vapor pressures, ultimately forming SOA after evaporation of the droplet. To examine this process, we investigated the aqueous, ˙OH-mediated oxidation of methyl jasmonate (MeJa) and methyl salicylate (MeSa), two GLVs that produce aqueous-phase SOA. High performance liquid chromatography/electrospray ionization mass spectrometry (HPLC-ESI-MS) was used to monitor product formation. The oxidation products identified exhibit higher molecular mass than their parent GLV due to either dimerization or the addition of oxygen and hydroxyl functional groups. The proposed structures of potential products are based on mechanistic considerations combined with the HPLC/ESI-MS data. Based on the structures, the vapor pressure and the Henry's law constant were estimated with multiple methods (SPARC, SIMPOL, MPBPVP, Bond and Group Estimations). The estimated vapor pressures of the products identified are significantly (up to 7 orders of magnitude) lower than those of the associated parent compounds, and therefore, the GLV oxidation products may remain as SOA after evaporation of the water droplet. The contribution of the identified oxidation products to SOA formation is estimated based on measured HPLC-ESI/MS responses relative to previous aqueous SOA mass yield measurements.
Lee, Dong-Hyun; Kang, Bo-Sik; Park, Hyun-Jin
2011-11-09
The oxidation of Cabernet Sauvignon wines during secondary shelf life was studied by headspace solid-phase microextraction (HS-SPME) coupled to gas chromatography-quadrupole mass spectrometry (GC-qMS) and sensory tests, with the support of multivariate statistical analyses such as OPLS-DA loading plot and PCA score plot. Four different oxidation conditions were established during a 1-week secondary shelf life. Samples collected on a regular basis were analyzed to determine the changes of volatile chemicals, with sensory characteristics evaluated through pattern recognition models. During secondary shelf life the separation among collected samples depended on the degree of oxidation in wine. Isoamyl acetate, ethyl decanoate, nonanoic acid, n-decanoic acid, undecanoic acid, 2-furancarboxylic acid, dodecanoic acid, and phenylacetaldehyde were determined to be associated with the oxidation of the wine. PCA sensory evaluation revealed that least oxidized wine and fresh wine was well-separated from more oxidized wines, demonstrating that sensory characteristics of less oxidized wines tend toward "fruity", "citrous", and "sweetness", while those of more oxidized wines are positively correlated with "animal", "bitterness", and "dairy". The study also demonstrates that OPLS-DA and PCA are very useful statistical tools for the understanding of wine oxidation.
Relationship between sensory attributes and volatile compounds of polish dry-cured loin
Górska, Ewa; Nowicka, Katarzyna; Jaworska, Danuta; Przybylski, Wiesław; Tambor, Krzysztof
2017-01-01
Objective The aim of this work was to determine the relationship between objective sensory descriptors and volatile flavour compound composition of Polish traditional dry-cured loin. Methods The volatile compounds were investigated by using solid phase microextraction (SPME) and gas chromatography–mass spectrometry (GC–MS). For sensory assessment, the quantitative descriptive analysis (QDA) method was used. Results A total of 50 volatile compounds were found and assigned to 17 chemical families. Most of the detected volatile compounds derived from smoking, lipid oxidative reactions and seasoning (46.8%, 21.7%, and 18.9%, respectively). The dominant compounds were: aromatic hydrocarbon (toluene); alkanes (hexane, heptane, and 2,2,4-trimethylpentane); aldehyde (hexanal); alcohol (2-furanmethanol); ketone (3-hydroxy-2-butanone); phenol (guaiacol); and terpenes (eucalyptol, cymene, γ-terpinen, and limonene). Correlation analysis showed that some compounds derived from smoking were positively correlated with the intensity of cured meat odour and flavour and negatively with the intensity of dried meat odour and flavour, while terpenes were strongly correlated with odour and flavour of added spices. Conclusion The analysed dry-cured loins were characterized by specific and unique sensory profile. Odour and flavour of studied loins was mainly determined by volatile compounds originating from smoking, seasoning and lipid oxidation. Obtained results suggest that smoking process is a crucial stage during Polish traditional dry-cured loins production. PMID:27456422
NASA Astrophysics Data System (ADS)
Edleman, Nikki Lynn
A new class of volatile, low-melting, fluorine-free lanthanide metal-organic chemical vapor deposition (MOCVD) precursors has been developed. The neutral, monomeric cerium, neodymium, gadolinium, and erbium complexes are coordinatively saturated by a versatile, multidentate, ether-functionalized beta-ketoiminate ligand, and complex melting point and volatility characteristics can be tuned by altering the alkyl substituents on the ligand periphery. Direct comparison with lanthanide beta-diketonate complexes reveals that the present precursor class is a superior choice for lanthanide oxide MOCVD. Epitaxial CeO 2 buffer layer films have been grown on (001) YSZ substrates by MOCVD at significantly lower temperatures than previously reported using one of the newly developed cerium precursors. High-quality YBCO films grown on these CeO2 buffer layers by POMBE exhibit very good electrical transport properties. The cerium complex has therefore been explicitly demonstrated to be a stable and volatile precursor and is attractive for low-temperature growth of coated conductor multilayer structures by MOCVD. Gallium-indium-oxide thin films (GaxIn2-xO 3), x = 0.0˜1.1, have been grown by MOCVD using the volatile metal-organic precursors In(dpm)3 and Ga(dpm)3. The films have a homogeneously Ga-substituted, cubic In2O3 microstructure randomly oriented on quartz or heteroepitaxial on (100) YSZ single-crystal substrates. The highest conductivity of the as-grown films is found at x = 0.12. The optical transmission window and absolute transparency of the films rivals or exceeds that of the most transparent conductive oxides known. Reductive annealing results in improved charge transport characteristics with little loss of optical transparency. No significant difference in electrical properties is observed between randomly oriented and heteroepitaxial films, thus arguing that carrier scattering effects at high-angle grain boundaries play a minor role in the film conductivity mechanism. The synthesis and characterization of a new magnesium MOCVD precursor, Mg(dpm)2(TMEDA) is detailed. It is shown that the donating ligand TMEDA prevents oligomerization and subsequent volatility depression as observed in the commonly used [Mg(dpm)2]2. The superiority of Mg(dpm)2(TMEDA) as an MOCVD precursor is explicitly demonstrated by growth of epitaxial MgO thin films on single-crystal SrTiO3 substrates.
Effect of atmospheric ageing on volatility and ROS of biodiesel exhaust nano-particles
NASA Astrophysics Data System (ADS)
Pourkhesalian, A. M.; Stevanovic, S.; Rahman, M. M.; Faghihi, E. M.; Bottle, S. E.; Masri, A. R.; Brown, R. J.; Ristovski, Z. D.
2015-03-01
In the prospect of limited energy resources and climate change, effects of alternative biofuels on primary emissions are being extensively studied. Our two recent studies have shown that biodiesel fuel composition has a~significant impact on primary particulate matter emissions. It was also shown that particulate matter caused by biodiesels was substantially different from the emissions due to petroleum diesel. Emissions appeared to have higher oxidative potential with the increase in oxygen content and decrease of carbon chain length and unsaturation levels of fuel molecules. Overall, both studies concluded that chemical composition of biodiesel is more important than its physical properties in controlling exhaust particle emissions. This suggests that the atmospheric ageing processes, including secondary organic aerosol formation, of emissions from different fuels will be different as well. In this study, measurements were conducted on a modern common-rail diesel engine. To get more information on realistic properties of tested biodiesel particulate matter once they are released into the atmosphere, particulate matter was exposed to atmospheric oxidants, ozone and ultra-violet light; and the change in their properties was monitored for different biodiesel blends. Upon the exposure to oxidative agents, the chemical composition of the exhaust changes. It triggers the cascade of photochemical reactions resulting in the partitioning of semi-volatile compounds between the gas and particulate phase. In most of the cases, aging lead to the increase in volatility and oxidative potential, and the increment of change was mainly dependent on the chemical composition of fuels as the leading cause for the amount and the type of semi-volatile compounds present in the exhaust.
Determination of lithium in rocks by distillation
Fletcher, M.H.
1949-01-01
A method for the quantitative extraction and recovery of lithium from rocks is based on a high temperature volatilization procedure. The sample is sintered with a calcium carbonate-calcium chloride mixture at 1200?? C. for 30 minutes in a platinum ignition tube, and the volatilization product is collected in a plug of Pyrex glass wool in a connecting Pyrex tube. The distillate, which consists of the alkali chlorides with a maximum of 5 to 20 mg. of calcium oxide and traces of a few other elements, is removed from the apparatus by dissolving in dilute hydrochloric acid and subjected to standard analytiaal procedures. The sinter residues contained less than 0.0005% lithium oxide. Lithium oxide was recovered from synthetic samples with an average error of 1.1%.
Ground water samples collected at sites where in-situ chemical oxidation (ISCO) has been deployed may contain binary mixtures of ground water contaminants and permanganate (MnO4-), an oxidant injected into the subsurface to destroy the contaminant. Commingling of the oxidant and ...
NASA Astrophysics Data System (ADS)
Feng, Xi; Moon, Sun Hee; Lee, Hyun Yong; Ahn, Dong Uk
2017-01-01
This study was designed to elucidate the mechanisms of quality changes in raw turkey breast meat by irradiation. Raw turkey breast meat was irradiated at 0 kGy, 1.5 kGy, 3.0 kGy and 4.5 kGy, and changes in quality parameters including color, lipid and protein oxidation, and off-odor volatiles were determined. Irradiation accelerated lipid and protein oxidation, and increased redness in raw turkey breast meat. However, irradiation had less effect on the volatile profiles of salt-soluble muscle extract than water-soluble muscle extract because the primary radiolytic product from water (hydroxyl radical) had higher chances to react with the water-soluble molecules nearby. The radiolytic degradation products from sulfur-containing amino acids and aldehydes from lipid oxidation were two major volatile compounds responsible for the off-odor of irradiated raw turkey breast meat. Dimethyl disulfide was found only in irradiated raw turkey breast meat, and the amount of dimethyl disulfide linearly increased as the irradiation dose increased, indicating that this compound can be used as a marker for irradiate meat.
NASA Astrophysics Data System (ADS)
Wentzell, J. J.; Liggio, J.; Li, S.; Brook, J.; Staebler, R. M.; Evans, G. J.; Jeong, C.; Sheppard, A.; Lu, G.; Gordon, M.; Mihele, C.
2010-12-01
The volatility of the organic aerosol fraction has received a great deal of attention recently in light of new volatility-based modelling approaches and due to the inability of current models to fully account for secondary organic aerosol (SOA). In this regard, evaporation of primary organic aerosol species and their subsequent oxidation may contribute significantly to SOA downwind of sources. This implies that moderate ambient temperature fluctuations can significantly increase or decrease the aerosol bound fraction of semi-volatile and intermediate volatility (SVOC + IVOC) compounds. In order to examine the importance of these more volatile organic components, a temperature controlled inlet was developed with the ability to heat and cool the aerosol in 2 C increments to 15 C above or below ambient temperature. The inlet was coupled to an Aerodyne High Resolution Time of Flight Aerosol Mass Spectrometer (HR-ToF-AMS) and deployed on a mobile platform upwind and downwind of a major Southern Ontario highway as part of the Fast Evolution of Vehicle Emissions near Roadways (FEVER 2010) campaign. Preliminary results suggest that changes in temperature of 5-10 C can alter the partitioning of volatile organic aerosol components by up to 30%. Although the largest affect was observed 10-13 meters downwind of the vehicle emissions, a measurable affect was observed beyond 500 m and in aerosol upwind of the highway. These results suggest that a significant pool of semi-volatile organics exist, which can condense onto particles at slightly lower temperatures or evaporate to the gas phase and be further oxidized. The nature of these organic species at locations upwind and downwind of vehicle emissions will be discussed.
Biogenic volatile organic compounds in the Earth system.
Laothawornkitkul, Jullada; Taylor, Jane E; Paul, Nigel D; Hewitt, C Nicholas
2009-01-01
Biogenic volatile organic compounds produced by plants are involved in plant growth, development, reproduction and defence. They also function as communication media within plant communities, between plants and between plants and insects. Because of the high chemical reactivity of many of these compounds, coupled with their large mass emission rates from vegetation into the atmosphere, they have significant effects on the chemical composition and physical characteristics of the atmosphere. Hence, biogenic volatile organic compounds mediate the relationship between the biosphere and the atmosphere. Alteration of this relationship by anthropogenically driven changes to the environment, including global climate change, may perturb these interactions and may lead to adverse and hard-to-predict consequences for the Earth system.
On the origin of resistive switching volatility in Ni/TiO{sub 2}/Ni stacks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cortese, Simone, E-mail: simone.cortese@soton.ac.uk; Trapatseli, Maria; Khiat, Ali
2016-08-14
Resistive switching and resistive random access memories have attracted huge interest for next generation nonvolatile memory applications, also thought to be able to overcome flash memories limitations when arranged in crossbar arrays. A cornerstone of their potential success is that the toggling between two distinct resistance states, usually a High Resistive State (HRS) and a Low Resistive State (LRS), is an intrinsic non-volatile phenomenon with the two states being thermodynamically stable. TiO{sub 2} is one of the most common materials known to support non-volatile RS. In this paper, we report a volatile resistive switching in a titanium dioxide thin filmmore » sandwiched by two nickel electrodes. The aim of this work is to understand the underlying physical mechanism that triggers the volatile effect, which is ascribed to the presence of a NiO layer at the bottom interface. The NiO layer alters the equilibrium between electric field driven filament formation and thermal enhanced ion diffusion, resulting in the volatile behaviour. Although the volatility is not ideal for non-volatile memory applications, it shows merit for access devices in crossbar arrays due to its high LRS/HRS ratio, which are also briefly discussed.« less
Lu, F S H; Bruheim, I; Haugsgjerd, B O; Jacobsen, C
2014-08-15
The main objective of this study was to investigate the effect of temperature towards lipid oxidation and non-enzymatic browning reactions in krill oil upon storage. Krill oil was incubated at two different temperatures (20 and 40 °C) for 28 or 42 days. The oxidative stability of krill oil was assessed by peroxide value and anisidine value, measurement of lipid derived volatiles, lipid classes and antioxidants. The non-enzymatic browning reactions were assessed through the measurement of pyrroles, free amino acids content and Strecker-derived volatiles. The increase of incubation temperature firstly increased the lipid oxidation in krill oil and subsequently the non-enzymatic browning reactions. The occurrence of these reactions was most likely due to the reaction between α-dicarbonyl or carbonyl compounds with amino acids or ammonia. In addition to tocopherol and astaxanthin esters, the formation of pyrroles might help to protect the krill oil against lipid oxidation. Copyright © 2014 Elsevier Ltd. All rights reserved.
Feed gas contaminant removal in ion transport membrane systems
Carolan, Michael Francis [Allentown, PA; Miller, Christopher Francis [Macungie, PA
2008-09-16
Method for gas purification comprising (a) obtaining a feed gas stream containing one or more contaminants selected from the group consisting of volatile metal oxy-hydroxides, volatile metal oxides, and volatile silicon hydroxide; (b) contacting the feed gas stream with a reactive solid material in a guard bed and reacting at least a portion of the contaminants with the reactive solid material to form a solid reaction product in the guard bed; and (c) withdrawing from the guard bed a purified gas stream.
Micro- and Nanostructured Metal Oxide Chemical Sensors for Volatile Organic Compounds
NASA Technical Reports Server (NTRS)
Alim, M. A.; Penn, B. G.; Currie, J. R., Jr.; Batra, A. K.; Aggarwal, M. D.
2008-01-01
Aeronautic and space applications warrant the development of chemical sensors which operate in a variety of environments. This technical memorandum incorporates various kinds of chemical sensors and ways to improve their performance. The results of exploratory investigation of the binary composite polycrystalline thick-films such as SnO2-WO3, SnO2-In2O3, SnO2-ZnO for the detection of volatile organic compound (isopropanol) are reported. A short review of the present status of the new types of nanostructured sensors such as nanobelts, nanorods, nanotube, etc. based on metal oxides is presented.
77 FR 44560 - Revisions to the Nevada State Implementation Plan, Washoe County Air Quality District
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-30
... emissions of criteria pollutants such as volatile organic compounds (VOC), oxides of nitrogen (NO X ), and... to, mass balance types of analysis, be made by the operator. Section 030.970A, Part 70 Permit... relations, Nitrogen dioxide, Ozone, Particulate matter, Reporting and recordkeeping requirements, Volatile...
Chromium exists in sediments in two oxidation states: Cr(III) is relatively insoluble and nontoxic, whereas Cr(VI) is much more soluble and toxic. Cr(VI) is not thermodynamically favored in anoxic sediments. Acid-volatile sulfide (A VS) is formed only in anoxic sediments, therefo...
Chen, Jian Yan; Ye, Zheng Mei; Huang, Tian Yi; Chen, Xiao Dan; Li, Yong Yu; Wu, Shao Hua
2014-07-01
Alpinia zerumbet 'Variegata' is an aromatic medicinal plant, its foliage producing an intense, unique fragrant odor. This study identified 46 volatile compounds in the leaf tissue of this plant using headspace solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS). The major compounds included 1, 8-cineole (43.5%), p-cymene (14.7%), humulene (5.5%), camphor (5.3%), linalool (4.7%), (E)-methyl cinnamate (3.8%), gamma-cadinene (3.3%), humulene oxide II (2.1%) and a-terpineol (1.5%). The majority of the volatiles were terpenoids of which oxygenated monoterpenes were the most abundant, accounting for 57.2% of the total volatiles. Alcohols made up the largest (52.8%) and aldehydes the smallest (0.2%) portions of the volatiles. Many bioactive compounds were present in the volatiles.
NASA Astrophysics Data System (ADS)
Ye, Q.; Robinson, E. S.; Mahfouz, N.; Sullivan, R. C.; Donahue, N. M.
2016-12-01
Secondary organic aerosols (SOA) dominate the mass of fine particles in the atmosphere. Their formation involves both oxidation of volatile organics from various sources that produce products with uncertain volatilities, and diffusion of these products into the condensed phase. Therefore, constraining volatility distribution and diffusion timescales of the constituents in SOA are important in predicting size, concentration and composition of SOA, as well as how these properties of SOA evolve in the atmosphere. In this work, we demonstrate how carefully designed laboratory isothermal dilution experiments in smog chambers can shed light into the volatility distribution and any diffusion barriers of common types of SOA over time scales relevant to atmospheric transport and diurnal cycling. We choose SOA made from mono-terpenes (alpha-pinene and limonene) and toluene to represent biogenic and anthropogenic SOA. We look into how moisture content can alter any evaporation behaviors of SOA by varying relative humidity during SOA generation and during dilution process. This provides insight into whether diffusion in the condensed phase is rate limiting in reaching gas/particle equilibrium of semi-volatile organic compounds. Our preliminary results show that SOA from alpha-pinene evaporates continuously over several hours of experiments, and there is no substantial discernible differences over wide ranges of the chamber humidity. SOA from toluene oxidation shows slower evaporation. We fit these experimental data using absorptive partitioning theory and a particle dynamic model to obtain volatility distributions and to predict particle size evolution. This in the end will help us to improve representation of SOA in large scale chemical transport models.
Effect of oxygen partial pressure on oxidation of Mo-metal
NASA Astrophysics Data System (ADS)
Sharma, Rabindar Kumar; Kumar, Prabhat; Singh, Megha; Gopal, Pawar; Reddy, G. B.
2018-05-01
This report explains the effect of oxygen partial pressure (PO2 ) on oxidation of Mo-metal in oxygen plasma. XRD results indulge that oxide layers formed on Mo-surfaces at different oxygen partial pressures have two different oxide phases (i.e. orthorhombic MoO3 and monoclinic Mo8O23). Intense XRD peaks at high pressure (i.e. 2.0×10-1 Torr) points out the formation of thick oxide layer on Mo-surface due to presence of large oxygen species in chamber and less oxide volatilization. Whereas, at low PO2 (6.5×10-2 and 7.5×10-2 Torr.) the reduced peak strength is owing to high oxide volatilization rate. SEM micrographs and thickness measurements also support XRD results and confirm that the optimum -2value of PO2 to deposited thicker and uniform oxide film on glass substrate is 7.5×10-2 Torr through plasma assistedoxidation process. Further to study the compositional properties, EDX of the sample M2 (the best sample) is carried out, which confirms that the stoichiometric ratio is less than 3 (i.e. 2.88). Less stoichiometric ratio again confirms the presence of sub oxides in oxide layers on Mo metal as evidenced by XRD results. All the observed results are well in consonance with each other.
Geologic Mapping of the NW Rim of Hellas Basin, Mars
NASA Astrophysics Data System (ADS)
Crown, D. A.; Bleamaster, L. F.; Mest, S. C.; Mustard, J. F.
2009-03-01
Geologic mapping of the NW rim of Hellas basin is providing new constraints on the magnitudes, extents, and history of volatile-driven processes as well as a geologic context for mineralogic identifications.
Hădărugă, Daniel I; Hădărugă, Nicoleta G; Costescu, Corina I; David, Ioan; Gruia, Alexandra T
2014-01-01
Ocimum basilicum L. essential oil and its β-cyclodextrin (β-CD) complex have been investigated with respect to their stability against the degradative action of air/oxygen and temperature. This supramolecular system was obtained by a crystallization method in order to achieve the equilibrium of complexed-uncomplexed volatile compounds in an ethanol/water solution at 50 °C. Both the raw essential oil and its β-CD complex have been subjected to thermal and oxidative degradation conditions in order to evaluate the protective capacity of β-CD. The relative concentration of the O. basilicum L. essential oil compounds, as determined by GC-MS, varies accordingly with their sensitivity to the thermal and/or oxidative degradation conditions imposed. Furthermore, the relative concentration of the volatile O. basilicum L. compounds found in the β-CD complex is quite different in comparison with the raw material. An increase of the relative concentration of linalool oxide from 0.3% to 1.1%, in addition to many sesquiterpene oxides, has been observed. β-CD complexation of the O. basilicum essential oil modifies the relative concentration of the encapsulated volatile compounds. Thus, linalool was better encapsulated in β-CD, while methylchavicol (estragole) was encapsulated in β-CD at a concentration close to that of the raw essential oil. Higher relative concentrations from the degradation of the oxygenated compounds such as linalool oxide and aromadendren oxide were determined in the raw O. basilicum L. essential oil in comparison with the corresponding β-CD complex. For the first time, the protective capability of natural β-CD for labile basil essential oil compounds has been demonstrated.
Hădărugă, Nicoleta G; Costescu, Corina I; David, Ioan; Gruia, Alexandra T
2014-01-01
Summary Ocimum basilicum L. essential oil and its β-cyclodextrin (β-CD) complex have been investigated with respect to their stability against the degradative action of air/oxygen and temperature. This supramolecular system was obtained by a crystallization method in order to achieve the equilibrium of complexed–uncomplexed volatile compounds in an ethanol/water solution at 50 °C. Both the raw essential oil and its β-CD complex have been subjected to thermal and oxidative degradation conditions in order to evaluate the protective capacity of β-CD. The relative concentration of the O. basilicum L. essential oil compounds, as determined by GC–MS, varies accordingly with their sensitivity to the thermal and/or oxidative degradation conditions imposed. Furthermore, the relative concentration of the volatile O. basilicum L. compounds found in the β-CD complex is quite different in comparison with the raw material. An increase of the relative concentration of linalool oxide from 0.3% to 1.1%, in addition to many sesquiterpene oxides, has been observed. β-CD complexation of the O. basilicum essential oil modifies the relative concentration of the encapsulated volatile compounds. Thus, linalool was better encapsulated in β-CD, while methylchavicol (estragole) was encapsulated in β-CD at a concentration close to that of the raw essential oil. Higher relative concentrations from the degradation of the oxygenated compounds such as linalool oxide and aromadendren oxide were determined in the raw O. basilicum L. essential oil in comparison with the corresponding β-CD complex. For the first time, the protective capability of natural β-CD for labile basil essential oil compounds has been demonstrated. PMID:25550747
Stability of Materials in High Temperature Water Vapor: SOFC Applications
NASA Technical Reports Server (NTRS)
Opila, E. J.; Jacobson, N. S.
2010-01-01
Solid oxide fuel cell material systems require long term stability in environments containing high-temperature water vapor. Many materials in fuel cell systems react with high-temperature water vapor to form volatile hydroxides which can degrade cell performance. In this paper, experimental methods to characterize these volatility reactions including the transpiration technique, thermogravimetric analysis, and high pressure mass spectrometry are reviewed. Experimentally determined data for chromia, silica, and alumina volatility are presented. In addition, data from the literature for the stability of other materials important in fuel cell systems are reviewed. Finally, methods for predicting material recession due to volatilization reactions are described.
A catalytic stripper (CS) is a device used to remove the semi-volatile, typically organic carbon, fraction by passing raw or diluted exhaust over an oxidation catalyst heated to 300˚C. The oxidation catalyst used in this study is a commercially available diesel oxidation ca...
Fermentation as a first step in carbon and nutrient recovery in regenerative life support systems
NASA Astrophysics Data System (ADS)
Luther, Amanda; Lasseur, Christophe; Rebeyre, Pierre; Clauwaert, Peter; Rabaey, Korneel; Ronsse, Frederik; Zhang, Dong Dong; López Barreiro, Diego; Prins, Wolter
2016-07-01
Long term manned space missions, such as the establishment of a base on Mars, will require a regenerative means of supplying the basic resources (i.e., food, water, oxygen) necessary to support human life. The MELiSSA-loop is a closed loop compartmentalized artificial aquatic ecosystem designed to recover water, carbon, and nutrients from solid organic wastes (e.g., inedible food waste and feces) for the regeneration of food and oxygen for humans. The first step in this loop is a strictly anaerobic fermentation unit operated as a membrane bioreactor. In this step the aim is to maximize the hydrolysis of complex organic compounds into simple molecules (CO2, ammonia, volatile fatty acids, …) which can be consumed by plants and bacteria downstream to produce food again. Optimal steady state fermentation of a standardized homogeneous mixture of beets, lettuce, wheat straw, toilet paper, feces, and water was demonstrated to recover approximately 50% of the influent carbon as soluble organics in the effluent through anaerobic fermentation. Approximately 10% of the influent COD was converted to CO2, with the remaining ~40% retained as a mixture of undigested solids and biomass. Approximately 50% of the influent nitrogen was recovered in the effluent, 97% of which was in the form of ammonia. Similar results have been obtained at both lab and pilot scale. With only 10% of the carbon driven to CO2 through this fermentation, a major challenge at this moment for the MELiSSA-loop is closing the carbon cycle, by completely oxidizing the carbon in the organic waste and non-edible parts of the plant into CO2 for higher plants and algae to fix again for food production. To further improve the overall degradation we are investigating the integration of a high temperature and pressure, sub- or near critical water conditions to improve the degradation of fibrous material with the addition of an oxidant (hydrogen peroxide, H2O2) under sub- or near critical conditions to further enhanced the oxidation to CO2. The conversion of the soluble organic compounds (mainly volatile fatty acids) into CO2 is being investigated with bio-anodic oxidation in a microbial electrolysis cell. In this way, the energy present in the organic compounds is recovered without excessive biological sludge production.
NASA Astrophysics Data System (ADS)
Stirnweis, Lisa; Marcolli, Claudia; Dommen, Josef; Barmet, Peter; Frege, Carla; Platt, Stephen M.; Bruns, Emily A.; Krapf, Manuel; Slowik, Jay G.; Wolf, Robert; Prévôt, Andre S. H.; Baltensperger, Urs; El-Haddad, Imad
2017-04-01
Secondary organic aerosol (SOA) yields from the photo-oxidation of α-pinene were investigated in smog chamber (SC) experiments at low (23-29 %) and high (60-69 %) relative humidity (RH), various NOx / VOC ratios (0.04-3.8) and with different aerosol seed chemical compositions (acidic to neutralized sulfate-containing or hydrophobic organic). A combination of a scanning mobility particle sizer and an Aerodyne high-resolution time-of-flight aerosol mass spectrometer was used to determine SOA mass concentration and chemical composition. We used a Monte Carlo approach to parameterize smog chamber SOA yields as a function of the condensed phase absorptive mass, which includes the sum of OA and the corresponding bound liquid water content. High RH increased SOA yields by up to 6 times (1.5-6.4) compared to low RH. The yields at low NOx / VOC ratios were in general higher compared to yields at high NOx / VOC ratios. This NOx dependence follows the same trend as seen in previous studies for α-pinene SOA. A novel approach of data evaluation using volatility distributions derived from experimental data served as the basis for thermodynamic phase partitioning calculations of model mixtures in this study. These calculations predict liquid-liquid phase separation into organic-rich and electrolyte phases. At low NOx conditions, equilibrium partitioning between the gas and liquid phases can explain most of the increase in SOA yields observed at high RH, when in addition to the α-pinene photo-oxidation products described in the literature, fragmentation products are added to the model mixtures. This increase is driven by both the increase in the absorptive mass and the solution non-ideality described by the compounds' activity coefficients. In contrast, at high NOx, equilibrium partitioning alone could not explain the strong increase in the yields with RH. This suggests that other processes, e.g. reactive uptake of semi-volatile species into the liquid phase, may occur and be enhanced at higher RH, especially for compounds formed under high NOx conditions, e.g. carbonyls.
TECHNOLOGY EVALUATION REPORT: PEROX-PURE CHEMICAL OXIDATION TECHNOLOGY
The report evaluates the perox-pure™ chemical oxidation technology's ability to remove volatile organic compounds (VOC) and other organic contaminants present in liquid wastes. The report also presents economic data from the Superfund Innovative Technology Evaluation (SITE) demon...
Juhari, Nurul Hanisah; Petersen, Mikael Agerlin
2018-02-11
Milled Roselle ( Hibiscus sabdariffa L.) seeds of the UMKL cultivar were analyzed for proximate composition, water and oil absorption capacity, and the influence of storage conditions on storage stability. The storage stability was determined under four types of conditions: light/oxygen (air) (LO), light/nitrogen (LN), darkness/oxygen (air) (DO), and darkness/nitrogen (DN) while monitoring for seven consecutive months. During the storage period, the formation of volatiles was determined using dynamic headspace sampling and Gas Chromatography-Mass Spectrometry (GC-MS) analysis. In total, 85 volatiles were identified, mainly aldehydes, alcohols, ketones, furans, and acids indicating lipid oxidation. It is recommended that milled Roselle seeds should be flushed with nitrogen and stored in darkness. Under these conditions, the seeds can be stored for at least three months without changes in volatile profile. This is important to ensure the good quality of milled Roselle seeds for further commercialization.
An FPGA-Based Test-Bed for Reliability and Endurance Characterization of Non-Volatile Memory
NASA Technical Reports Server (NTRS)
Rao, Vikram; Patel, Jagdish; Patel, Janak; Namkung, Jeffrey
2001-01-01
Memory technologies are divided into two categories. The first category, nonvolatile memories, are traditionally used in read-only or read-mostly applications because of limited write endurance and slow write speed. These memories are derivatives of read only memory (ROM) technology, which includes erasable programmable ROM (EPROM), electrically-erasable programmable ROM (EEPROM), Flash, and more recent ferroelectric non-volatile memory technology. Nonvolatile memories are able to retain data in the absence of power. The second category, volatile memories, are random access memory (RAM) devices including SRAM and DRAM. Writing to these memories is fast and write endurance is unlimited, so they are most often used to store data that change frequently, but they cannot store data in the absence of power. Nonvolatile memory technologies with better future potential are FRAM, Chalcogenide, GMRAM, Tunneling MRAM, and Silicon-Oxide-Nitride-Oxide-Silicon (SONOS) EEPROM.
Meta-Analysis of the Core Aroma Components of Grape and Wine Aroma
Ilc, Tina; Werck-Reichhart, Danièle; Navrot, Nicolas
2016-01-01
Wine aroma strongly influences wine quality, yet its composition and its evolution during the winemaking process are poorly understood. Volatile compounds that constitute wine aroma are traditionally divided into three classes according to their origin: grape, fermentation, and maturation aroma. We challenge this view with meta-analysis and review of grape and wine volatiles and their precursors from 82 profiling experiments. We compiled a list of 141 common grape and wine volatiles and quantitatively compared 43 of them. Our work offers insight into complex relationships between biosynthesis of aroma in grapes and the changes during the winemaking process. Monoterpenes are one of the largest and most researched wine aroma compounds. We show that their diversity in wines is mainly due to the oxidative metabolism of linalool in grapes. Furthermore, we demonstrate that most of the linalool produced in grapes is converted to these oxidized derivatives. PMID:27746799
Use of olive leaf extract to reduce lipid oxidation of baked snacks.
Difonzo, Graziana; Pasqualone, Antonella; Silletti, Roccangelo; Cosmai, Lucrezia; Summo, Carmine; Paradiso, Vito M; Caponio, Francesco
2018-06-01
Olive leaves are a waste of the olive oil processing industry and represent a good source of phenolic compounds. The aim of this work was to assess the influence of olive leaf extract (OLE) on lipid oxidation of baked snacks, like breadsticks, made with wheat flour, extra virgin olive oil (EVO), white wine, and salt. Two EVOs having different peroxide value and antioxidant profile (total phenol content, tocopherols, carotenoids, and antioxidant activity) were considered. The snacks were subjected to oven test or stored in the usual conditions of retailer shelves. The obtained data highlighted that EVO plays a key role both for the quality and for the shelf-life of baked snacks and the use of OLE is recommended especially when baked snacks are produced with low quality EVO which therefore does not have a good content of natural antioxidants. The OLE addition significantly reduced the forced oxidative degradation during oven test, as evidenced by a decrease of 27% in oxidation-related volatile compounds and of 42% in triacylglycerol oligopolymers compared to control snacks (CTR) without OLE. Moreover, OLE effectively acted also in normal storage conditions, improving sensory data, induction times, antioxidant activity, and volatile compounds compared to CTR (i.e. hexanal 165.49 vs 38.31 μg g -1 in OLE-added). The amount of oxidation-related volatile compounds showed an opposite trend with the quality level of oil used. Copyright © 2018 Elsevier Ltd. All rights reserved.
Aqueous Oxidation of Green Leaf Volatiles as a Source of Secondary Organic Aerosol
NASA Astrophysics Data System (ADS)
Richards-Henderson, N. K.; Hansel, A.; Pham, A. T.; Vempati, H. S.; Valsaraj, K. T.; Anastasio, C.
2013-12-01
Vegetation emits volatile oxygenated hydrocarbons - the green leaf volatiles (GLVs) - which are formed from the biochemical conversion of linoleic and linolenic acids within plant cells. Stress or damage to vegetation can significantly elevate emission fluxes of these compounds, some of which are fairly water soluble. Aqueous-phase reactions of the GLVs with photochemically generated oxidants - such as hydroxyl radical (OH), singlet oxygen (1O2) and excited triplet states of organic compounds (3C*) _ might then form low-volatility products that can act as secondary organic aerosol (SOA). In order to determine if GLVs can be a significant source of secondary organic carbon in fogwater, studies of GLVs in laboratory solutions are needed to elucidate the oxidation kinetics and the corresponding SOA mass yields. In this study we are determining the second-order rate constants, and SOA mass yields, for five GLVs (cis-3-hexen-1-ol, cis-3-hexenylacetate, methyl salicylate, methyl jasmonate, and 2-methyl-3-butene-2-ol) reacting with OH,1O2 and 3C*. Experiments are performed at relevant fog water pHs, temperatures, and oxidant concentrations. Rate constants are determined using a relative rate approach in which the decay of GLVs and reference compounds are monitored as function of time by HPLC. The capacity of GLVs to form aqueous SOA was determined by following the formation of their decomposition products with HPLC-UV/DAD and HPLC-ESI/MS. SOA mass yields are measured gravimetrically from laboratory solutions containing atmospherically relevant concentrations of photooxidants and GLVs, and irradiated with simulated sunlight. We will use our results to assess the potential contribution of aqueous GLV reactions as a source of SOA in cloudy or foggy atmospheres.
NASA Astrophysics Data System (ADS)
Pourkhesalian, A. M.; Stevanovic, S.; Rahman, M. M.; Faghihi, E. M.; Bottle, S. E.; Masri, A. R.; Brown, R. J.; Ristovski, Z. D.
2015-08-01
In the prospect of limited energy resources and climate change, effects of alternative biofuels on primary emissions are being extensively studied. Our two recent studies have shown that biodiesel fuel composition has a significant impact on primary particulate matter emissions. It was also shown that particulate matter caused by biodiesels was substantially different from the emissions due to petroleum diesel. Emissions appeared to have higher oxidative potential with the increase in oxygen content and decrease of carbon chain length and unsaturation levels of fuel molecules. Overall, both studies concluded that chemical composition of biodiesel is more important than its physical properties in controlling exhaust particle emissions. This suggests that the atmospheric aging processes, including secondary organic aerosol formation, of emissions from different fuels will be different as well. In this study, measurements were conducted on a modern common-rail diesel engine. To get more information on realistic properties of tested biodiesel particulate matter once they are released into the atmosphere, particulate matter was exposed to atmospheric oxidants, ozone and ultra-violet light; and the change in their properties was monitored for different biodiesel blends. Upon the exposure to oxidative agents, the chemical composition of the exhaust changes. It triggers the cascade of photochemical reactions resulting in the partitioning of semi-volatile compounds between the gas and particulate phase. In most of the cases, aging lead to the increase in volatility and oxidative potential, and the increment of change was mainly dependent on the chemical composition of fuels as the leading cause for the amount and the type of semi-volatile compounds present in the exhaust.
Adhikary, P; Mukherjee, A; Barik, A
2015-04-01
Callosobruchus maculatus (F.) (Coleoptera: Bruchidae) is an important stored grain pest of Lathyrus sativus L. (Leguminosae), commonly known as khesari, in India, Bangladesh and Ethiopia. Volatiles were collected from four varieties, i.e., Bio L 212 Ratan, Nirmal B-1, WBK-14-7 and WBK-13-1 of uninfested khesari seeds, and subsequently identified and quantified by gas chromatography mass spectrometry and gas chromatography flame ionization detector analyses, respectively. A total of 23 volatiles were identified in the four varieties of khesari seeds. In Bio L 212 Ratan and WBK-13-1 seeds, nonanal was the most abundant followed by farnesyl acetone; whereas farnesyl acetone was predominant followed by nonanal in Nirmal B-1 and WBK-14-7 khesari seeds. The olfactory responses of female C. maculatus toward volatile blends from four varieties of khesari seeds, and individual synthetic compounds and their combinations were examined through Y-shaped glass tube olfactometer bioassays. Callosobruchus maculatus showed significant preference for the whole volatile blends from Bio L 212 Ratan seeds compared to whole volatile blends from other three varieties. The insect exhibited attraction to five individual synthetic compounds, 3-octanone, 3-octanol, linalool oxide, 1-octanol and nonanal. A synthetic blend of 448, 390, 1182, 659 and 8114 ng/20 μl methylene chloride of 3-octanone, 3-octanol, linalool oxide, 1-octanol and nonanal, respectively, was most attractive to C. maculatus, and this combination might be used for insect pest management program such as baited traps.
A Catalytic Method for the Conversion of Silanes to Stannanes
1994-10-08
tributyltin )oxide in tetrahydrofuran. The stannanes are isolated in -quantitative yields after removal of the volatile bis(trimethylsilyl)oxide in vacuc...conditions, and the resulting anion would react with bis( tributyltin )oxide. This reaction would generate a new alkoxide, and the cycle would be...This reaction utilizes inexpensive bis( tributyltin )oxide rather than the more costly and moisture-sensitive tributyltin chloride.5 The reaction allows
The Photocatalytic Destruction of Volatile Organic Compounds in Water
1991-12-10
some common oxidants. It can be seen that the hydroxyl radical is only second to the fluorine ion in oxidation potential. 5 Table 2.1 Dissociation...Potential of Oxidants (Bernardin, 1991) Relative Oxidation Oxidative Power, Chlorine = 1 Species Potential (volts) 2.23 Fluorine 3.03 2.06 Hydroxyl... varnishes . It is used as a universal degreaser, in drycleaning, and in the manufacture of organic chemicals. On military bases it is used as a universal
Study of volatile contaminants in reclaimed water. [by distillation from urine
NASA Technical Reports Server (NTRS)
Mckee, H. C.; Millar, J. D.; Swynnerton, N. F.
1975-01-01
Different methods were evaluated for reducing the volatile contaminants found in water recovered from urine by distillation. The use of activated carbon, addition of potassium permanganate, and the use of oxidation catalyst are described along with laboratory tests. It is concluded that catalytic decomposition appears to be feasible, and further investigation is recommended.
Aerosol from Organic Nitrogen in the Southeast United States
Biogenic volatile organic compounds (BVOCs) contribute significantly to organic aerosol in the southeastern United States. During the Southern Oxidant and Aerosol Study (SOAS), a portion of ambient organic aerosol was attributed to isoprene oxidation and organic nitrogen from BVO...
Yang, Ji; Chen, Yufeng; Cao, Limei; Guo, Yuling; Jia, Jinping
2012-01-03
The combined concentrator/oxidizer system has been proposed as an effective physical-chemical option and proven to be a viable solution that enables Volatile Organic Carbons (VOCs) emitters to comply with the regulations. In this work, a field scale honeycomb zeolite rotor concentrator combined with a recuperative oxidizer was developed and applied for the treatment of the VOC waste gas. The research shows the following: (1) for the adsorption rotor, zeolite is a more appropriate material than Granular Activated Carbon (GAC). The designing and operation parameters of the concentrator were discussed in detail including the size and the optimal rotation speed of rotor. Also the developed rotor performance's was evaluated in the field; (2) Direct Fired Thermal Oxidizer (DFTO), Recuperative Oxidizer (RO), Regenerative Thermal Oxidizer (RTO) and Regenerative Catalytic oxidizer (RCO) are the available incinerators and the RO was selected as the oxidizer in this work; (3) The overall performance of the developed rotor/oxidizer was explored in a field scale under varying conditions; (4) The energy saving strategy was fulfilled by reducing heat loss from the oxidizer and recovering heat from the exhaust gas. Data shows that the developed rotor/oxidizer could remove over 95% VOCs with reasonable cost and this could be helpful for similar plants when considering VOC abatement.
Legako, J F; Brooks, J C; O'Quinn, T G; Hagan, T D J; Polkinghorne, R; Farmer, L J; Miller, M F
2015-02-01
Proximate data, consumer palatability scores and volatile compounds were investigated for four beef muscles (Longissimus lumborum, Psoas major, Semimembranosus and Gluteus medius) and five USDA quality grades(Prime, Upper 2/3 Choice, Low Choice, Select, and Standard). Quality grade did not directly affect consumer scores or volatiles but interactions (P < 0.05) between muscle and grade were determined. Consumer scores and volatiles differed (P < 0.05) between muscles. Consumers scored Psoas major highest for tenderness, juiciness, flavor liking and overall liking, followed by Longissimus lumborum, Gluteus medius, and Semimembranosus (P < 0.05). Principal component analysis revealed clustering of compound classes, formed by related mechanisms. Volatile n-aldehydes were inversely related to percent fat. Increases in lipid oxidation compounds were associated with Gluteus medius and Semimembranosus, while greater quantities of sulfur-containing compounds were associated with Psoas major. Relationships between palatability scores and volatile compound classes suggest that differences in the pattern of volatile compounds may play a valuable role in explaining consumer liking.
40 CFR 52.770 - Identification of plan.
Code of Federal Regulations, 2014 CFR
2014-07-01
.../1980 11/5/1981, 46 FR 54943. 1-2-88 “Vapor balance system″ defined 9/26/1980 11/5/1981, 46 FR 54943. 1... Specific testing procedures; particulate matter; PM10; PM2.5; sulfur dioxide; nitrogen oxides; volatile.../2002 11/30/2004, 69 FR 69531. Article 10. Nitrogen Oxides Rules 10-1 Nitrogen Oxides Control in Clark...
Apgar, Brent A; Lee, Sungki; Schroeder, Lauren E; Martin, Lane W
2013-11-20
n-n Schottky, n-n ohmic, and p-n Schottky heterojunctions based on TiO2 /correlated "metallic" oxide couples exhibit strong solar-light absorption driven by the unique electronic structure of the "metallic" oxides. Photovoltaic and photocatalytic responses are driven by hot electron injection from the "metallic" oxide into the TiO2 , enabling new modalities of operation for energy systems. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Bharti, Veni; Vasudeva, Neeru; Kumar, Suresh
2014-01-01
Background: Origanum is one of the over 200 genera in the Lamiaceae (mint family), and this genus includes culinary, fragrant, and medicinal properties. The plant is reported to contain anti-microbial properties, but it lacks combination studies with that of synthetic antibiotics. Aim: To investigate the anti-oxidant and anti-microbial interaction studies of Origanum vulgare with standard drugs against Bacillus species of bacteria and Aspergillus niger. Materials and Methods: The anti-oxidant properties of phenolic, non-phenolic fractions of chloroform extract and volatile oil were evaluated by free radical-scavenging, hydrogen peroxide radical-scavenging assay, reducing power, and metal chelating assays. Results: The minimum inhibitory concentration and fractional inhibitory concentration index were determined which demonstrates the behavior of volatile oil, phenolic, and non-phenolic fractions of volatile oil with that of ciprofloxacin and fluconazole. The IC50 value for volatile oil was found to be 15, 30, and 30 μg/ml and that of phenolic fraction was 60, 120, and 120 μg/ml for free radical-scavenging, hydrogen peroxide-scavenging, and metal chelating assays respectively. Non-phenolic fraction was found to act antagonistically along with ciprofloxacin against B. cereus and B. subtilis, while the phenolic fraction exhibited indifferent activity along with ciprofloxacin against both the bacterial strains. Conclusion: This combination of drug therapy will not only prove effective in antibiotic resistance, but these natural constituents will also help in preventing body from harmful radicals which lead to fatal diseases. PMID:25364204
Influence of storage on volatile profiles in roasted almonds (Prunus dulcis).
Lee, Jihyun; Xiao, Lu; Zhang, Gong; Ebeler, Susan E; Mitchell, Alyson E
2014-11-19
Hexanal, peroxide value, and lipid hydroperoxides are common indicators of lipid oxidation in food products. However, these markers are not always reliable as levels are dynamic and often can be detected only after significant oxidation has occurred. Changes in the volatile composition of light- and dark-roast almonds were evaluated during storage over 24 weeks at 25 or 35 °C using headspace solid phase microextraction (HS-SPME) gas chromatography-mass spectrometry (GC-MS). Several volatile changes were identified in association with early oxidation events in roasted almonds. Hexenal decreased significantly during the first 6 weeks of storage and did not increase above initial levels until 20-24 weeks of storage depending upon the degree of roast. In contrast, levels of 1-heptanol and 1-octanol increased at 16-20 weeks, depending upon the degree of roast, and no initial losses were observed. Seventeen new compounds, absent in raw and freshly roasted almonds but detectable after 6 weeks of storage, were identified. Of these, 2-octanone, 2-nonanone, 3-octen-2-one, 2-decanone, (E)-2-decenal, 2,4-nonadienal, pentyl oxirane, and especially acetic acid increased significantly (that is, >10 ng/g). The degree of roasting did not correlate with the levels of these compounds. Significant decreases in roasting-related aroma volatiles such as 2-methylbutanal, 3-methylbutanal, furfural, 2-phenylacetaldehyde, 2,3-butanedione, 2-methylpyrazine, and 1-methylthio-2-propanol were observed by 4 weeks of storage independent of the degree of roast or storage conditions.
Electrode structure and methods of making same
Ruud, James Anthony; Browall, Kenneth Walter; Rehg, Timothy Joseph; Renou, Stephane; Striker, Todd-Michael
2010-04-06
A method of making an electrode structure is provided. The method includes disposing an electrocatalytic material on an electrode, applying heat to the electrocatalytic material to form a volatile oxide of the electrocatalytic material, and applying a voltage to the electrode to reduce the volatile oxide to provide a number of nano-sized electrocatalytic particles on or proximate to a triple phase boundary, where the number of nano-sized electrocatalytic particles is greater on or proximate to the triple phase boundary than in an area that is not on or proximate to the triple phase boundary, and where the triple phase boundary is disposed on the electrode.
Cyclodextrin-based microsensor for volatile organic compounds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swanson, B.I.; Li, D.Q.
1996-12-31
The direct covalent attachment of modified {alpha}- and {beta}-cyclodextrin on oxide surfaces has been studied for application in chemical sensors. First, oxide surfaces were treated with a silane coupling layer followed by the addition of cyclodextrin to form a self-assembled monolayer (SAM) of host receptors. Second, the oxide surfaces were reacted with a sol-gel (SG) precursor based on cyclodextrin structure to form a thick film with defined hydrophobic cyclodextrin cavities. The sensing properties of both films (SAM and SG) were examined with surface acoustic wave (SAW) measurement platform. Molecular interactions between an organic guest and a host thin-film on amore » 200 MHZ SAW resonator are being studied as a method of tracking and recognizing the presence of volatile organics. Surface acoustic wave sensors based on the inclusion chemistry of the bucket-type (cyclodextrin) molecules, were capable of detecting volatile organic compounds (VOCs) down to ppb levels. Because the nature of the interactions is moderate but noncovalent, detection of these VOCs was possible using a reversible real-time mode. Pattern recognition with an array of complementary microsensors appears to be a viable approach for identifying and quantifying VOCs. Recent results using optical waveguides for sensor transduction will also be discussed.« less
Ferreira, Valquíria C S; Morcuende, David; Hérnandez-López, Silvia H; Madruga, Marta S; Silva, Fábio A P; Estévez, Mario
2017-03-01
This study evaluated the impact of a phenolic-rich acorn extract (200 ppm gallic acid equivalents) and the concentration of oxygen in the packaging system (low-oxygen modified atmosphere; 5% vs. normal-oxygen; 21%) on lipid and protein oxidation and consumers acceptance of the ready-to-eat chicken patties. Samples were subjected to cooking (electric oven, 170 °C/16 min), cold storage (14 d at 4 °C), and reheating (microwave, 600 mW/1 min). Samples treated with acorn extract kept thiobarbituric acid-reactive substances numbers and lipid-derived volatiles at basal levels throughout the whole processing irrespective of the oxygen concentration in the packaging atmosphere. Consistently, treated patties had lower protein carbonyls than control ones. The acorn extract also controlled color and texture deterioration during chilled storage and reheating and improved the color and odor acceptance of the products. Formulating with acorn extract is a feasible strategy to inhibit the oxidation-driven changes and preserve the quality of reheated samples as if there were freshly cooked. Compared to the effect of the antioxidant extract, the concentration of oxygen in the packaging system was negligible in terms of quality preservation. © 2017 Institute of Food Technologists®.
CATALYTIC OXIDATION OF AIR POLLUTANTS FROM PULP AND PAPER INDUSTRY USING OZONE
Major pollutants from pulp and paper mills include volatile organic compounds (VOCs) such as methanol and total reduced sulfur compounds (TRS) such as dimethyl sulfide. The conventional treatment technologies including incineration or catalytic thermal oxidation are energy intens...
May 6, 2005, Transportation Conformity Rule That Addresses PM2.5 Precursors
This final rule, published by EPA on May 6, 2005, adds the following transportation-related PM2.5 precursors to the transportation conformity regulations: nitrogen oxides (NOx), volatile organic compounds (VOCs), sulfur oxides (SOx), and ammonia (NH3).
PEROX-PURE CHEMICAL OXIDATION TECHNOLOGY PEROXIDATION SYSTEMS, INC. - APPLICATIONS ANALYSIS REPORT
This report evaluates the perox-pure™ chemical oxidation technology’s ability to remove volatile organic compounds (VOC) and other organic contaminants present in liquid wastes. This report also presents economic data from the Superfund Innovative Technology Evaluation (SITE) dem...
Nitrous oxide and ammonia emissions from injected and broadcast applied dairy slurry
USDA-ARS?s Scientific Manuscript database
Trade-offs associated with surface application or injection of manure pose important environmental and agronomic concerns. Manure injection can conserve nitrogen (N) by decreasing ammonia volatilization. However, the injection band also creates conditions, which potentially favor nitrous oxide produ...
Response of corn markets to climate volatility under alternative energy futures.
Diffenbaugh, Noah S; Hertel, Thomas W; Scherer, Martin; Verma, Monika
2012-07-01
Recent price spikes(1,2) have raised concern that climate change could increase food insecurity by reducing grain yields in the coming decades(3,4). However, commodity price volatility is also influenced by other factors(5,6), which may either exacerbate or buffer the effects of climate change. Here we show that US corn price volatility exhibits higher sensitivity to near-term climate change than to energy policy influences or agriculture-energy market integration, and that the presence of a biofuels mandate enhances the sensitivity to climate change by more than 50%. The climate change impact is driven primarily by intensification of severe hot conditions in the primary corn-growing region of the US, which causes US corn price volatility to increase sharply in response to global warming projected over the next three decades. Closer integration of agriculture and energy markets moderates the effects of climate change, unless the biofuels mandate becomes binding, in which case corn price volatility is instead exacerbated. However, in spite of the substantial impact on US corn price volatility, we find relatively small impact on food prices. Our findings highlight the critical importance of interactions between energy policies, energy-agriculture linkages, and climate change.
Response of corn markets to climate volatility under alternative energy futures
Diffenbaugh, Noah S.; Hertel, Thomas W.; Scherer, Martin; Verma, Monika
2012-01-01
Recent price spikes1,2 have raised concern that climate change could increase food insecurity by reducing grain yields in the coming decades3,4. However, commodity price volatility is also influenced by other factors5,6, which may either exacerbate or buffer the effects of climate change. Here we show that US corn price volatility exhibits higher sensitivity to near-term climate change than to energy policy influences or agriculture-energy market integration, and that the presence of a biofuels mandate enhances the sensitivity to climate change by more than 50%. The climate change impact is driven primarily by intensification of severe hot conditions in the primary corn-growing region of the US, which causes US corn price volatility to increase sharply in response to global warming projected over the next three decades. Closer integration of agriculture and energy markets moderates the effects of climate change, unless the biofuels mandate becomes binding, in which case corn price volatility is instead exacerbated. However, in spite of the substantial impact on US corn price volatility, we find relatively small impact on food prices. Our findings highlight the critical importance of interactions between energy policies, energy-agriculture linkages, and climate change. PMID:23243468
NASA Technical Reports Server (NTRS)
Poppa, H.
1976-01-01
Existing work on gas-solid reactions making use of thin film technologies is reviewed. The discussion concentrates on two major areas of gas-metal interactions: chemisorption and the early stages of oxidation of metals (characterized by a non-volatile reaction product) and catalytic surface reactions (featuring volatile reaction products). A brief survey of oxide formation on metals is presented. Here it is of importance to distinguish between reactions on continuous thin film substrates and reactions on particulate deposits. Small particle-gas interactions also affect the nucleation, growth and sintering processes of thin films. It is shown that various combinations of UHV and high resolution electron microscopy techniques, which include in situ experimentation, can provide the appropriate tools for studying angstrom particle chemistry.
Chen, Gui; Chen, Lingjing; Ng, Siu-Mui; Lau, Tai-Chu
2014-01-01
Chemical and visible-light-driven water oxidation catalyzed by a number of Ni complexes and salts have been investigated at pH 7-9 in borate buffer. For chemical oxidation, [Ru(bpy)3](3+) (bpy = 2,2'-bipyridine) was used as the oxidant, with turnover numbers (TONs) >65 and a maximum turnover frequency (TOFmax) >0.9 s(-1). Notably, simple Ni salts such as Ni(NO3 )2 are more active than Ni complexes that bear multidentate N-donor ligands. The Ni complexes and salts are also active catalysts for visible-light-driven water oxidation that uses [Ru(bpy)3](2+) as the photosensitizer and S2 O8 (2-) as the sacrificial oxidant; a TON>1200 was obtained at pH 8.5 by using Ni(NO3)2 as the catalyst. Dynamic light scattering measurements revealed the formation of nanoparticles in chemical and visible-light-driven water oxidation by the Ni catalysts. These nanoparticles aggregated during water oxidation to form submicron particles that were isolated and shown to be partially reduced β-NiOOH by various techniques, which include SEM, energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, XRD, and IR spectroscopy. These results suggest that the Ni complexes and salts act as precatalysts that decompose under oxidative conditions to form an active nickel oxide catalyst. The nature of this active oxide catalyst is discussed. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Darwin; WipaCharles; Cord-Ruwisch, Ralf
2018-01-01
Organic acid analysis of fermentation samples can be readily achieved by gas chromatography (GC), which detects volatile organic acids. However, lactic acid, a key fermentation acid is non-volatile and can hence not be quantified by regular GC analysis. However the addition of periodic acid to organic acid samples has been shown to enable lactic acid analysis by GC, as periodic acid oxidizes lactic acid to the volatile acetaldehyde. Direct GC injection of lactic acid standards and periodic acid generated inconsistent and irreproducible peaks, possibly due to incomplete lactic acid oxidation to acetaldehyde. The described method is developed to improve lactic acid analysis by GC by using a heat treated derivatization pre-treatment, such that it becomes independent of the retention time and temperature selection of the GC injector. Samples containing lactic acid were amended by periodic acid and heated in a sealed test tube at 100°C for at least 45 min before injecting it to the GC. Reproducible and consistent peaks of acetaldehyde were obtained. Simultaneous determination of lactic acid, acetone, ethanol, butanol, volatile fatty acids could also be accomplished by applying this GC method, enabling precise and convenient organic acid analysis of biological samples such as anaerobic digestion and fermentation processes. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Hong, Augustin Jinwoo
Non-volatile memory devices have attracted much attention because data can be retained without power consumption more than a decade. Therefore, non-volatile memory devices are essential to mobile electronic applications. Among state of the art non-volatile memory devices, NAND flash memory has earned the highest attention because of its ultra-high scalability and therefore its ultra-high storage capacity. However, human desire as well as market competition requires not only larger storage capacity but also lower power consumption for longer battery life time. One way to meet this human desire and extend the benefits of NAND flash memory is finding out new materials for storage layer inside the flash memory, which is called floating gate in the state of the art flash memory device. In this dissertation, we study new materials for the floating gate that can lower down the power consumption and increase the storage capacity at the same time. To this end, we employ various materials such as metal nanodot, metal thin film and graphene incorporating complementary-metal-oxide-semiconductor (CMOS) compatible processes. Experimental results show excellent memory effects at relatively low operating voltages. Detailed physics and analysis on experimental results are discussed. These new materials for data storage can be promising candidates for future non-volatile memory application beyond the state of the art flash technologies.
Sorbent for use in hot gas desulfurization
Gasper-Galvin, Lee D.; Atimtay, Aysel T.
1993-01-01
A multiple metal oxide sorbent supported on a zeolite of substantially silicon oxide is used for the desulfurization of process gas streams, such as from a coal gasifier, at temperatures in the range of about 1200.degree. to about 1600.degree. F. The sorbent is provided by a mixture of copper oxide and manganese oxide and preferably such a mixture with molybdenum oxide. The manganese oxide and the molybdenum are believed to function as promoters for the reaction of hydrogen sulfide with copper oxide. Also, the manganese oxide inhibits the volatilization of the molybdenum oxide at the higher temperatures.
[Research on improving memory impairment of blue lavender volatile oil].
Zhu, Li-Yun; Gao, Yong-Sheng; Song, Lin-Zhen; Li, Su-Fang; Qian, Jun-Qing
2017-12-01
In order to study the potential application value of lavender volatile oil (LVO), the chemical composition of the volatile oil of lavender was analyzed by GC-MS, and the mouse model of Alzheimer's disease (AD) was established. Additionally, the antioxidant enzymes activity of T-SOD, GSH-PX, CAT and MDA content were studied. Experimental results showed that 55 kinds of chemical constituents including terpene, terpene alcohol and ester compounds from LVO were identified, and the content of linalool and linalyl acetate was the highest, accounting for 49.71% of the total volatile oil. The ability of mouse platform memory was improved significantly. The levels of GSH-PX, CAT and T-SOD of mouse brain tissue in the treatment group were significantly higher than those in the model group (P<0.05). The level of MDA reached the maximum value in the model group, while there was no notable difference between the levels of MDA in the drug group and the normal group. The result indicated the significant oxidative activity of LVO, the possibility of induced oxidative stress reduction in neurons, and the reversal effect of memory acquired disorder. Copyright© by the Chinese Pharmaceutical Association.
Fruet, A P B; Trombetta, F; Stefanello, F S; Speroni, C S; Donadel, J Z; De Souza, A N M; Rosado Júnior, A; Tonetto, C J; Wagner, R; De Mello, A; Nörnberg, J L
2018-06-01
Pasture-finished beef is becoming more popular among consumers due to concerns related to fatty acid content and sustainable practices. The effects of finishing crossbred steers on legume-grass pasture comprised of oats, ryegrass, and clover (PAST), legume-grass pasture plus whole corn grain (WCG) supplementation (SUPP), and only with WCG (GRAIN) on fatty acids profile, volatile compounds, sensory, and texture attributes were studied. Pasture diets (PAST and SUPP) led to lower n-6/n-3 ratio (P < 0.001), and highest deposition of C18:2 cis-9 trans-11 (P < 0.001) in the lean. Beef from steers fed GRAIN had the highest values of volatile compounds associated with lipid oxidation. Off-flavor intensity was significantly greater on beef from steers fed GRAIN when compared to PAST. Overall, muscles from steers finished on PAST and SUPP showed similar attributes but differ when compared to GRAIN. The presence of forage is essential to improve fatty acid profile, decrease volatile compounds associated with lipid oxidation, and minimize off-flavor. Copyright © 2018 Elsevier Ltd. All rights reserved.
Deng, Chunhui; Song, Guoxin; Hu, Yaoming
2004-12-01
Headspace solid-phase microextraction (HS-SPME) combined with gas chromatography-mass spectrometry (GC-MS) was developed for characterization of volatile compounds emitted from two varieties Osmanthus flowers of O. fragrans var. latifolius and O. fragrans var. thunbergii. The SPME parameters were studied, the optimum conditions of a 65 microm carbowax/divinylbenzene (CW/DVB), extraction temperature of 22 degrees C and extraction time of 10 min were obtained and applied to extraction of the volatile emissions. Fourteen compounds released from both varieties of Osmanthus flowers were separated and identified by GC-MS, which mainly included alpha-linalool, beta-linalool, trans-linalool oxide, cis-linalool oxide, alpha-lonone, beta-lonone, capraldehyde and decalactone. By comparing their peak areas, we found that the sums of the fourteen compounds from the two Osmanthus flowers were very close, while the relative contents of individual volatile compounds in the two emissions were very different. The relative content of alpha-linalool and beta-linalool in O. fragrans var. latifolius were 39.46% and 0.51%, while in O. fragrans var. thunbergii were 9.53% and 27.71%. Due to their different relative contents, the two varieties of flower have different fragrances.
Pérez-Palacios, Trinidad; Ruiz-Carrascal, Jorge; Jiménez-Martín, Estefanía; Solomando, Juan Carlos; Antequera, Teresa
2018-04-15
The omega-3 enrichment of ready-to-cook meat products by microencapsulated fish oil (MFO) addition was analyzed. Accordingly, three batches of chicken nuggets were prepared: (i) control (C); (ii) enriched in bulk fish oil (BFO); and (iii) with added MFO. Sensory features, acceptability, oxidative stability and volatile compounds were analyzed. MFO nuggets did not differ from C ones with respect to any sensory trait. BFO showed increased juiciness and saltiness but decreased meat flavor. Acceptability was not affected by enrichment. Consumers were not able to differentiate between C and MFO in a triangle test, although they could clearly identify BFO nuggets. Higher levels of lipid and protein oxidation indicators and of volatile compounds from fatty acid oxidation were found in BFO nuggets compared to C and MFO nuggets. Enrichment of ready-to-cook meat products in omega-3 fatty acids with MFO provides both lipid and protein oxidative protection without changes in sensory quality. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.
Michl, Thomas D; Coad, Bryan R; Doran, Michael; Osiecki, Michael; Kafshgari, Morteza Hasanzadeh; Voelcker, Nicolas H; Hüsler, Amanda; Vasilev, Krasimir; Griesser, Hans J
2015-04-25
We report a stable plasma polymer coating, using isopentyl nitrite as a volatile precursor, which releases nitric oxide at bacteriostatic concentrations when contacted with water, inhibiting bacterial growth without cytotoxic side effects to human mesenchymal stem/stromal cells.
LABORATORY MICROCOSM EXPERIMENTS OF OXIDATION PROCESSES AFTER STEAM INJECTION
Aggressive thermal methods such as steam injection or resistive heating are known to be effective for the recovery of many types of volatile and semivolatile compounds. It has been suggested that oxidation or other chemical reactions that occur at remediation temperatures can ai...
Major uncertainties remain in our ability to identify the key reactions and primary oxidation products of volatile hydrocarbons that contribute to ozone formation in the troposphere. To reduce these uncertainties, computational chemistry, mechanistic and process analysis techniqu...
Enhanced 99 Tc retention in glass waste form using Tc(IV)-incorporated Fe minerals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Um, Wooyong; Luksic, Steven A.; Wang, Guohui
Technetium (99Tc) immobilization by doping into iron oxide mineral phases may alleviate the problems with Tc volatility during vitrification of nuclear waste. Reduced Tc, Tc(IV), substitutes for Fe(III) in the crystal structure by a process of Tc reduction from Tc(VII) to Tc(IV) followed by co-precipitation of Fe oxide minerals. Two Tc-incorporated Fe minerals (Tc-goethite and Tc-magnetite/maghemite) were prepared and tested for Tc retention in glass melt samples at temperatures between 600 – 1,000 oC. After being cooled, the solid glass specimens prepared at different temperatures were analyzed for Tc oxidation state using Tc K-edge XANES. In most samples, Tc wasmore » partially oxidized from Tc(IV) to Tc(VII) as the melt temperature increased. However, Tc retention in glass melt samples prepared using Tc-incorporated Fe minerals were moderately higher than in glass prepared using KTcO4 because of limited and delayed Tc volatilization.« less
Clark, Christopher H; Kacarab, Mary; Nakao, Shunsuke; Asa-Awuku, Akua; Sato, Kei; Cocker, David R
2016-06-07
Isoprene is globally the most ubiquitous nonmethane hydrocarbon. The biogenic emission is found in abundance and has a propensity for SOA formation in diverse climates. It is important to characterize isoprene SOA formation with varying reaction temperature. In this work, the effect of temperature on SOA formation, physical properties, and chemical nature is probed. Three experimental systems are probed for temperature effects on SOA formation from isoprene, NO + H2O2 photo-oxidation, H2O2 only photo-oxidation, and dark ozonolysis. These experiments show that isoprene readily forms SOA in unseeded chamber experiments, even during dark ozonolysis, and also reveal that temperature affects SOA yield, volatility, and density formed from isoprene. As temperature increases SOA yield is shown to generally decrease, particle density is shown to be stable (or increase slightly), and formed SOA is shown to be less volatile. Chemical characterization is shown to have a complex trend with both temperature and oxidant, but extensive chemical speciation are provided.
Effect of pasteurization on the protein composition and oxidative stability of beer during storage.
Lund, Marianne N; Hoff, Signe; Berner, Torben S; Lametsch, René; Andersen, Mogens L
2012-12-19
The impacts of pasteurization of a lager beer on protein composition and the oxidative stability were studied during storage at 22 °C for 426 days in the dark. Pasteurization clearly improved the oxidative stability of beer determined by ESR spectroscopy, whereas it had a minor negative effect on the volatile profile by increasing volatile compounds that is generally associated with heat treatment and a loss of fruity ester aroma. A faster rate of radical formation in unpasteurized beer was consistent with a faster consumption of sulfite. Beer proteins in the unpasteurized beer were more degraded, most likely due to proteolytic enzyme activity of yeast remnants and more precipitation of proteins was also observed. The differences in soluble protein content and composition are suggested to result in differences in the contents of prooxidative metals as a consequence of the proteins ability to bind metals. This also contributes to the differences in oxidative stabilities of the beers.
Changes in volatile compound composition of Antrodia camphorata during solid state fermentation.
Xia, Yongjun; Zhang, Baorong; Li, Weijiang; Xu, Ganrong
2011-10-01
Although the volatiles present in mushrooms and fungi have been investigated by many researchers, including Antrodia camphorata in submerged fermentation, there are few data available regarding changes in volatile compounds during fermentation. Our research has revealed that solid state fermentation of A. camphorata is highly odiferous compared with submerged cultures and the odor changed with increasing culture time. Therefore the aim of this study was to investigate the changes in volatile compound composition of A. camphorata during solid state fermentation. Altogether, 124 major volatile compounds were identified. The volatile compounds produced by A. camphorata during growth in solid state fermentation were quite different. Oct-1-en-3-ol, octan-3-one and methyl 2-phenylacetate were predominant in exponential growth phase production, while the dominant volatiles produced in stationary phase were octan-3-one and methyl 2-phenylacetate. In stationary phase, lactone compounds in A. camphorata, such as 5-butyloxolan-2-one, 5-heptyloxolan-2-one, 6-heptyloxan-2-one, contributed greatly to peach and fruit-like flavor. Terpene and terpene alcohol compounds, such as 1-terpineol, L-linalool, T-cadinol, (E, E)-farnesol, β-elemene, cis-α-bisabolene and α-muurolene, made different contributions to herbal fresh aroma in A. camphorata. Nineteen volatile sesquiterpenes were detected from solid state fermentation of A. camphorata. The compounds 5-n-butyl-5H-furan-2-one, β-ionone, (-)-caryophyllene oxide, aromadendrene oxide, diepi-α-cedrene epoxide, β-elemene, α-selinene, α-muurolene, azulene, germacrene D, γ-cadinene and 2-methylpyrazine have not hitherto been reported in A. camphorata. The preliminary results suggest that the aroma-active compounds produced by A camphorata in solid state fermentation might serve as an important source of natural aroma compounds for the food and cosmetic industries or antibiotic activity compounds. The sesquiterpenes could be identified as possible taxonomic markers for A. camphorata. Copyright © 2011 Society of Chemical Industry.
NASA Technical Reports Server (NTRS)
Guo, Boyun
2005-01-01
Volatile Removal Assembly (VRA) is a subsystem of the Closed Environment Life Support System (CELSS) installed in the International Space Station. It is used for removing contaminants (volatile organics) in the wastewater produced by the space station crews. The major contaminants are formic acid, ethanol, and propylene glycol. The VRA contains a slim packbed reactor (3.5 cm diameter and four 28 cm long tubes in series) to perform catalyst oxidation of wastewater at elevated pressure and temperature under microgravity conditions. In the reactor, the contaminants are burned with oxygen gas (O2) to form water and carbon dioxide (CO2) that dissolves in the water stream. Optimal design of the reactor requires a thorough understanding about how the reactor performs under microgravity conditions. The objective of this study was to develop a mathematical model to interpret experimental data obtained from normal and microgravity conditions, and to predict the performance of VRA reactor under microgravity conditions. Catalyst oxidation kinetics and the total oxygen-water contact area control the efficiency of catalyst oxidation for mass transfer, which depends on oxygen gas holdup and distribution in the reactor. The process involves bubbly flow in porous media with chemical reactions in microgravity environment. This presents a unique problem in fluid dynamics that has not been studied. Guo et al. (2004) developed a mathematical model that predicts oxygen holdup in the VRA reactor. No mathematical model has been found in the literature that can be used to predict the efficiency of catalyst oxidation under microgravity conditions.
Formation of highly oxygenated low-volatility products from cresol oxidation
NASA Astrophysics Data System (ADS)
Schwantes, Rebecca H.; Schilling, Katherine A.; McVay, Renee C.; Lignell, Hanna; Coggon, Matthew M.; Zhang, Xuan; Wennberg, Paul O.; Seinfeld, John H.
2017-03-01
Hydroxyl radical (OH) oxidation of toluene produces ring-retaining products: cresol and benzaldehyde, and ring-opening products: bicyclic intermediate compounds and epoxides. Here, first- and later-generation OH oxidation products from cresol and benzaldehyde are identified in laboratory chamber experiments. For benzaldehyde, first-generation ring-retaining products are identified, but later-generation products are not detected. For cresol, low-volatility (saturation mass concentration, C* ˜ 3.5 × 104 - 7.7 × 10-3 µg m-3), first- and later-generation ring-retaining products are identified. Subsequent OH addition to the aromatic ring of o-cresol leads to compounds such as hydroxy, dihydroxy, and trihydroxy methyl benzoquinones and dihydroxy, trihydroxy, tetrahydroxy, and pentahydroxy toluenes. These products are detected in the gas phase by chemical ionization mass spectrometry (CIMS) and in the particle phase using offline direct analysis in real-time mass spectrometry (DART-MS). Our data suggest that the yield of trihydroxy toluene from dihydroxy toluene is substantial. While an exact yield cannot be reported as authentic standards are unavailable, we find that a yield for trihydroxy toluene from dihydroxy toluene of ˜ 0.7 (equal to the reported yield of dihydroxy toluene from o-cresol; Olariu et al., 2002) is consistent with experimental results for o-cresol oxidation under low-NO conditions. These results suggest that even though the cresol pathway accounts for only ˜ 20 % of the oxidation products of toluene, it is the source of a significant fraction (˜ 20-40 %) of toluene secondary organic aerosol (SOA) due to the formation of low-volatility products.
Rababah, T; Hettiarachchy, N S; Horax, R; Cho, M J; Davis, B; Dickson, J
2006-06-01
The effect of irradiation on thiobarbituric acid reactive substances (TBARS) and volatile compounds in raw and cooked nonirradiated and irradiated chicken breast meat infused with green tea and grape seed extracts was investigated. Chicken breast meat was vacuum infused with green tea extract (3,000 ppm), grape seed extract (3,000 ppm), or their combination (at a total of 6,000 ppm), irradiated with an electron beam, and stored at 5 degrees C for 12 d. The targeted irradiation dosage was 3.0 kGy and the average absorbed dosage was 3.12 kGy. Values of TBARS and volatile compound contents of raw and cooked chicken meat were determined during the 12-d storage period. Thiobarbituric acid reactive substances values ranged from 15.5 to 71.4 mg of malondialdehyde/kg for nonirradiated raw chicken and 17.3 to 80.1 mg of malondialdehyde/kg for irradiated raw chicken. Values for cooked chicken ranged from 31.4 to 386.2 and 38.4 to 504.1 mg of malondialdehyde/kg for nonirradiated and irradiated chicken, respectively. Irradiation increased TBARS and hexanal values of controls and meat infused with plant extracts. Hexanal had the highest intensity of volatiles followed by pentanal and other volatiles. Cooking the samples significantly (P < 0.05) increased the amounts of TBARS and volatiles. Addition of plant extracts decreased the amount of TBARS as well as hexanal and pentanal values. Although irradiation increases lipid oxidation, infusion of chicken meat with plant extracts could reduce lipid oxidation caused by irradiation.
Kakuta, Shoji; Yamashita, Toshiyuki; Nishiumi, Shin; Yoshida, Masaru; Fukusaki, Eiichiro; Bamba, Takeshi
2015-01-01
A dynamic headspace extraction method (DHS) with high-pressure injection is described. This dynamic extraction method has superior sensitivity to solid phase micro extraction, SPME and is capable of extracting the entire gas phase by purging the headspace of a vial. Optimization of the DHS parameters resulted in a highly sensitive volatile profiling system with the ability to detect various volatile components including alcohols at nanogram levels. The average LOD for a standard volatile mixture was 0.50 ng mL−1, and the average LOD for alcohols was 0.66 ng mL−1. This method was used for the analysis of volatile components from biological samples and compared with acute and chronic inflammation models. The method permitted the identification of volatiles with the same profile pattern as in vitro oxidized lipid-derived volatiles. In addition, the concentration of alcohols and aldehydes from the acute inflammation model samples were significantly higher than that for the chronic inflammation model samples. The different profiles between these samples could also be identified by this method. Finally, it was possible to analyze alcohols and low-molecular-weight volatiles that are difficult to analyze by SPME in high sensitivity and to show volatile profiling based on multi-volatile simultaneous analysis. PMID:26819905
Kakuta, Shoji; Yamashita, Toshiyuki; Nishiumi, Shin; Yoshida, Masaru; Fukusaki, Eiichiro; Bamba, Takeshi
2015-01-01
A dynamic headspace extraction method (DHS) with high-pressure injection is described. This dynamic extraction method has superior sensitivity to solid phase micro extraction, SPME and is capable of extracting the entire gas phase by purging the headspace of a vial. Optimization of the DHS parameters resulted in a highly sensitive volatile profiling system with the ability to detect various volatile components including alcohols at nanogram levels. The average LOD for a standard volatile mixture was 0.50 ng mL(-1), and the average LOD for alcohols was 0.66 ng mL(-1). This method was used for the analysis of volatile components from biological samples and compared with acute and chronic inflammation models. The method permitted the identification of volatiles with the same profile pattern as in vitro oxidized lipid-derived volatiles. In addition, the concentration of alcohols and aldehydes from the acute inflammation model samples were significantly higher than that for the chronic inflammation model samples. The different profiles between these samples could also be identified by this method. Finally, it was possible to analyze alcohols and low-molecular-weight volatiles that are difficult to analyze by SPME in high sensitivity and to show volatile profiling based on multi-volatile simultaneous analysis.
High Temperature Oxidation of Boron Nitride. Part 1; Monolithic Boron Nitride
NASA Technical Reports Server (NTRS)
Jacobson, Nathan; Farmer, Serene; Moore, Arthur; Sayir, Haluk
1997-01-01
High temperature oxidation of monolithic boron nitride (BN) is examined. Hot pressed BN and both low and high density CVD BN were studied. It is shown that oxidation rates are quite sensitive to microstructural factors such as orientation, porosity, and degree of crystallinity. In addition small amounts of water vapor lead to volatilization of the B2O3 oxide as H(x)B(y)O(z). For these reasons, very different oxidation kinetics were observed for each type of BN.
Incorporation of noble metals into aerogels
Hair, L.M.; Sanner, R.D.; Coronado, P.R.
1998-12-22
Aerogels or xerogels containing atomically dispersed noble metals for applications such as environmental remediation are disclosed. New noble metal precursors, such as Pt--Si or Pd(Si--P){sub 2}, have been created to bridge the incompatibility between noble metals and oxygen, followed by their incorporation into the aerogel or xerogel through sol-gel chemistry and processing. Applications include oxidation of hydrocarbons and reduction of nitrogen oxide species, complete oxidation of volatile organic carbon species, oxidative membranes for photocatalysis and partial oxidation for synthetic applications.
Incorporation of noble metals into aerogels
Hair, Lucy M.; Sanner, Robert D.; Coronado, Paul R.
1998-01-01
Aerogels or xerogels containing atomically dispersed noble metals for applications such environmental remediation. New noble metal precursors, such as Pt--Si or Pd(Si--P).sub.2, have been created to bridge the incompatibility between noble metals and oxygen, followed by their incorporation into the aerogel or xerogel through sol-gel chemistry and processing. Applications include oxidation of hydrocarbons and reduction of nitrogen oxide species, complete oxidation of volatile organic carbon species, oxidative membranes for photocatalysis and partial oxidation for synthetic applications.
2008-10-01
Quality Standards NEPA National Environmental Policy Act of 1969 NOx Nitrogen Oxides OO-ALC Ogden Air Logistics Center OSHA Occupational Safety...current NAAQS. These standards regulate six common pollutants: carbon monoxide, lead, nitrogen oxides, sulfur oxides, ozone, and particulate matter...with the state plan. The conformity threshold emission level for ozone in maintenance areas is 100 tons per year for nitrogen oxide (NOx) and volatile
Agila, Amal; Barringer, Sheryl
2012-04-01
Microwave, oven, and oil roasting of almonds were used to promote almond flavor and color formation. Raw pasteurized almonds were roasted in a microwave for 1 to 3 min, in an oven at 177 °C for 5, 10, 15, and 20 min; and at 135 and 163 °C for 20 min, and in oil at 135, 163, and 177 °C for 5 min and 177 °C for 10 min. Volatile compounds were quantified in the headspace of ground almonds, both raw and roasted, by selected ion flow tube mass spectrometry. Strong correlations were found between L value, chroma, and 5-(hydroxy methyl)-2- furfural; and were independent of roasting method. Raw almonds had lower concentrations of most volatiles than roasted almonds. Conditions that produced color equivalent to commercial samples were 2 min in the microwave, 5 min at 177 °C in the oven, and 5 min at 135 °C in oil. Microwave heating produced higher levels of most volatiles than oven and oil roasting at commercial color. Sensory evaluation indicated that microwave-roasted almonds had the strongest aroma and were the most preferred. Oil-roasted almonds showed significantly lower levels of volatiles than other methods, likely due to loss of these volatiles into the oil. Alcohols such as benzyl alcohols and strecker aldehydes including benzaldehyde and methional were at higher concentrations than other volatiles in roasted almonds. The oxidation of lipids to form alkanals such as nonanal and degradation of sugars to form furan type compounds was also observed. The Maillard reaction contributed to the formation of more of the total volatiles in almonds than the lipid oxidation reaction. The level of 5-(hydroxy methyl)-2- furfural (HMF), color, volatile profile, and sensory perception can be used to develop the best roasting method, time, and temperature for almonds. The rate of color development and the production of volatiles differ under different roasting conditions. Based on the color, volatile, and sensory assessments of the 3 almonds, the use of microwave technology as a process for roasting almonds reduces processing time and leads to an almond product with better flavor than oven or oil roasting. © 2012 Institute of Food Technologists®
Long-range correlations in an online betting exchange for a football tournament
NASA Astrophysics Data System (ADS)
Hardiman, Stephen J.; Richmond, Peter; Hutzler, Stefan
2010-10-01
We analyze the changes in the market odds of football matches in an online betting exchange, Betfair.com. We identify the statistical differences between the returns that occur when the game play is under way, which we argue are driven by match events, and the returns that occur during half-time, which we ascribe to a trader-driven noise. Furthermore, using detrended fluctuation analysis we identify anti-persistence (Hurst exponent H<0.5) in odds returns and long memory (H>0.5) in the volatilities, which we attribute to the trader-driven noise. The time series of trading volume are found to be short-memory processes.
40 CFR 63.365 - Test methods and procedures.
Code of Federal Regulations, 2011 CFR
2011-07-01
... for Volatile Alcohols in Water By Direct Aqueous-Injection Gas Chromatography, (incorporated by... be determined by either: (A) Weighing the ethylene oxide gas cylinder(s) used to charge the... mass of gas charged by the weight percent ethylene oxide present in the gas. (B) Installing calibrated...
Derrick, Jaye L.; Houston, Rebecca J.; Quigley, Brian M.; Testa, Maria; Kubiak, Audrey; Levitt, Ash; Homish, Gregory G.; Leonard, Kenneth E.
2016-01-01
Impulsivity is negatively associated with relationship satisfaction, but whether relationship functioning is harmed or helped when both partners are high in impulsivity is unclear. The influence of impulsivity might be exacerbated (the Volatility Hypothesis) or reversed (the Compatibility Hypothesis). Alternatively, discrepancies in impulsivity might be particularly problematic (the Incompatibility Hypothesis). Behavioral and self-report measures of impulsivity were collected from a community sample of couples. Mixed effect polynomial regressions with response surface analysis provide evidence in favor of both the Compatibility Hypothesis and the Incompatibility Hypothesis, but not the Volatility Hypothesis. Mediation analyses suggest results for satisfaction are driven by perceptions of the partner's negative behavior and responsiveness. Implications for the study of both impulsivity and relationship functioning are discussed. PMID:26949275
Order-splitting and long-memory in an order-driven market
NASA Astrophysics Data System (ADS)
Yamamoto, R.; LeBaron, B.
2010-01-01
Recent empirical research has documented long-memories of trading volume, volatility, and order-signs in stock markets. We conjecture that traders' order-splitting is related to these empirical features. This study conducts simulations on an order-driven economy where agents split their orders into small pieces and execute piece by piece to reduce price impact. We demonstrate that we can replicate the long-memories in our order-splitting economy and conclude that order-splitting can be a possible cause for these empirical properties.
NASA Technical Reports Server (NTRS)
Fryburg, G. C.; Miller, R. A.; Kohl, F. J.; Stearns, C. A.
1977-01-01
Cooled target collection techniques were used to study the formation of volatile products when samples of Cr, Ti, IN-738, 713C, NASA-TRW VIA and B-1900 were exposed, at elevated temperatures, to oxidizing environments containing H2O(g) and NaCl(g). Samples were heated to 1050 C in one atmosphere of slowly flowing oxygen, saturated with water at 21 C, and containing about 50 ppm NaCl(g). Volatile products were detected for all materials except B-1900 and Ti. High pressure mass spectrometric sampling was used to directly identify volatile products emanating from samples of Cr and IN-738 subject to the above environments.
Career Advising in a VUCA Environment
ERIC Educational Resources Information Center
Shaffer, Leigh S.; Zalewski, Jacqueline M.
2011-01-01
Recent developments in the knowledge-driven, postindustrial economy have radically affected college students' prospects for entering and completing successful careers. In this volatile, uncertain, complex, and ambiguous (VUCA) environment, fewer organizations find profitability in hiring, training, and retaining workers. Over the last 20 years,…
Effect of fat content on aroma generation during processing of dry fermented sausages.
Olivares, Alicia; Navarro, José Luis; Flores, Mónica
2011-03-01
Dry fermented sausages with different fat contents were produced (10%, 20% and 30%). The effect of fat content and ripening time on sensory characteristics, lipolysis, lipid oxidation and volatile compounds generation was studied. Also, the key aroma components were identified using gas chromatography (GC) and olfactometry. High fat sausages showed the highest lipolysis and lipid oxidation, determined by free fatty acid content and thiobarbituric acid reactive substances (TBARS), respectively. A total of 95 volatile compounds were identified using SPME, GC and mass spectrometry (MS). Fat reduction decreased the generation of lipid derived volatile compounds during processing while those generated from bacterial metabolism increased, although only at the first stages of processing. The consumers preference in aroma and overall quality of high and medium fat sausages was related to the aroma compounds hexanal, 2-nonenal, 2,4-nonadienal, ethyl butanoate and 1-octen-3-ol which contributed green, medicinal, tallowy, fruity and mushroom notes. Copyright © 2010 The American Meat Science Association. Published by Elsevier Ltd. All rights reserved.
Experimental and Theoretical Studies of Volatile Metal Hydroxides
NASA Technical Reports Server (NTRS)
Myers, Dwight L.; Jacobson, Nathan S.
2015-01-01
Modern superalloys used in the construction of turbomachinery contain a wide range of metals in trace quantities. In addition, metal oxides and silicon dioxide are used to form Thermal Barrier Coatings (TBC) to protect the underlying metal in turbine blades. Formation of volatile hydroxides at elevated temperatures is an important mechanism for corrosion of metal alloys or oxides in combustion environments (N. Jacobson, D. Myers, E. Opila, and E. Copland, J. Phys. Chem. Solids 66, 471-478, 2005). Thermodynamic data is essential to proper design of components of modern gas turbines. It is necessary to first establish the identity of volatile hydroxides formed from the reaction of a given system with high temperature water vapor, and then to determine the equilibrium pressures of the species under operating conditions. Theoretical calculations of reaction energies are an important check of experimental results. This presentation reports results for several important systems: Si-O-H, Cr-O-H, Al-O-H, Ti-O-H, and ongoing studies of Ta-O-H.
A Water Recovery System Evolved for Exploration
NASA Technical Reports Server (NTRS)
ORourke, Mary Jane E.; Perry, Jay L.; Carter, Donald L.
2006-01-01
A new water recovery system designed towards fulfillment of NASA's Vision for Space Exploration is presented. This water recovery system is an evolution of the current state-of-the-art system. Through novel integration of proven technologies for air and water purification, this system promises to elevate existing technology to higher levels of optimization. The novel aspect of the system is twofold: Volatile organic contaminants will be removed from the cabin air via catalytic oxidation in the vapor phase, prior to their absorption into the aqueous phase, and vapor compression distillation technology will be used to process the condensate and hygiene waste streams in addition to the urine waste stream. Oxidation kinetics dictate that removal of volatile organic contaminants from the vapor phase is more efficient. Treatment of the various waste streams by VCD will reduce the load on the expendable ion exchange and adsorption media which follow, and on the aqueous-phase volatile removal assembly further downstream. Incorporating these advantages will reduce the weight, volume, and power requirements of the system, as well as resupply.
Hinkle, M.E.; Ryder, J.L.; Sutley, S.J.; Botinelly, T.
1990-01-01
Samples of ground drill cores from the southern part of the Santa Cruz porphyry copper deposit, Casa Grande, Arizona, were oxidized in simulated weathering experiments. The samples were also separated into various mineral fractions and analyzed for contents of metals and sulfide minerals. The principal sulfide mineral present was pyrite. Gases produced in the weathering experiments were measured by gas chromatography. Carbon dioxide, oxygen, carbonyl sulfide, sulfur dioxide and carbon disulfide were found in the gases; no hydrogen sulfide, organic sulfides, or mercaptans were detected. Oxygen concentration was very important for production of the volatiles measured; in general, oxygen concentration was more important to gas production than were metallic element content, sulfide mineral content, or mineral fraction (oxide or sulfide) of the sample. The various volatile species also appeared to be interactive; some of the volatiles measured may have been formed through gas reactions. ?? 1990.
A Novel Inlet System for On-line Chemical Analysis of Semi-Volatile Submicron Particulate Matter
NASA Astrophysics Data System (ADS)
Wisthaler, A.; Eichler, P.; Müller, M.
2015-12-01
Semi-volatile organic molecules bound to particles are difficult to measure, especially if they are reactive in nature. Any technique based on aerosol collection onto a substrate generates sampling artifacts due to surface reactions and ad- and desorption of semi-volatile analytes. On-line sampling without sample pre-collection, as for example implemented in the AMS, has greatly reduced many sampling artifacts. AMS measurements of organics do, however, suffer from the drawback that molecular-level information is, in most cases, lost during hard ionization events. As a consequence, only little speciated and thus mechanistically informative data on organic matter is obtained. PTR-ToF-MS is a well-established on-line measurement technique for gas-phase organics. Soft ionization via gas-phase hydronium ions preserves, to a large extent, molecular-level information and thus allows identifying organic compounds at an elemental composition level. We have recently developed a particle inlet system for PTR-ToF-MS instruments (doi:10.5194/amt-8-1353-2015). The CHARON ("Chemical Analysis of Aerosol On-line") inlet consists of a gas-phase denuder, an aerodynamic lens and a thermodesorption unit. In its latest version, it includes a heatable tube upstream of the denuder to form a thermodenuder. Over the last year, the CHARON PTR-ToF-MS system has been successfully used in a series of measurement campaigns to characterize i) POA emitted from a marine diesel engine, ii) SOA generated from the photo-oxidation of toluene, iii) SOA generated from the photo-oxidation of selected amines, iv) ambient aerosol in two major European cities and v) SOA generated from the photo-oxidation of biogenic VOCs. These measurements have demonstrated that the CHARON PTR-ToF-MS system i) generates on-line and real-time elemental composition information of semi-volatile organics in submicron particles (both POA and SOA), ii) detects 80-100 % of the organic mass as measured by the AMS and iii) generates volatility information of semi-volatile organics at an elemental composition level. Selected application examples will be shown.
Potential Signatures of Semi-volatile Compounds Associated With Nuclear Processing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Probasco, Kathleen M.; Birnbaum, Jerome C.; Maughan, A. D.
2002-06-01
Semi-volatile chemicals associated with nuclear processes (e.g., the reprocessing of uranium to produce plutonium for nuclear weapons, or the separation of actinides from processing waste streams), can provide sticky residues or signatures that will attach to piping, ducting, soil, water, or other surface media. Volatile compounds, that are more suitable for electro-optical sensing, have been well studied. However, the semi-volatile compounds have not been well documented or studied. A majority of these semi-volatile chemicals are more robust than typical gaseous or liquid chemicals and can have lifetimes of several weeks, months, or years in the environment. However, large data gapsmore » exist concerning these potential signature compounds and more research is needed to fill these data gaps so that important signature information is not overlooked or discarded. This report investigates key semi-volatile compounds associated with nuclear separations, identifies available chemical and physical properties, and discusses the degradation products that would result from hydrolysis, radiolysis and oxidation reactions on these compounds.« less
Urcan, Delia Elena; Giacosa, Simone; Torchio, Fabrizio; Río Segade, Susana; Raimondi, Stefano; Bertolino, Marta; Gerbi, Vincenzo; Pop, Nastasia; Rolle, Luca
2017-03-15
The impact of postharvest dehydration on the volatile composition of Malvasia moscata grapes and fortified wines produced from them was assessed. The ripeness effect of fresh grapes on volatile compounds of dehydrated grapes was evaluated for the first time in this study. Fresh grape berries were densimetrically sorted, and more represented density classes were selected. Dehydration of riper berries (20.5 °Brix) led to volatile profiles richer in terpenes, particularly linalool and geraniol. The effect of dehydration rate on the volatile composition of dehydrated grapes and fortified wines was also evaluated. Fast dehydration grapes were richer in total free terpenes, and the resulting wines contained greater amounts of volatile compounds. The predominant compounds were free esters, but linalool, rose oxide, citronellol and geraniol can also contribute to wine aroma, particularly for fast dehydration. β-Damascenone can be an active odorant, although its contribution was greater in wines made from slow dehydrated grapes. Copyright © 2016 Elsevier Ltd. All rights reserved.
Lusebrink, Inka; Girling, Robbie D; Farthing, Emily; Newman, Tracey A; Jackson, Chris W; Poppy, Guy M
2015-10-01
There is growing evidence of a substantial decline in pollinators within Europe and North America, most likely caused by multiple factors such as diseases, poor nutrition, habitat loss, insecticides, and environmental pollution. Diesel exhaust could be a contributing factor to this decline, since we found that diesel exhaust rapidly degrades floral volatiles, which honey bees require for flower recognition. In this study, we exposed eight of the most common floral volatiles to diesel exhaust in order to investigate whether it can affect volatile mediated plant-pollinator interaction. Exposure to diesel exhaust altered the blend of common flower volatiles significantly: myrcene was considerably reduced, β-ocimene became undetectable, and β-caryophyllene was transformed into its cis-isomer isocaryophyllene. Proboscis extension response (PER) assays showed that the alterations of the blend reduced the ability of honey bees to recognize it. The chemically reactive nitrogen oxides fraction of diesel exhaust gas was identified as capable of causing degradation of floral volatiles.
Hachicha Hbaieb, Rim; Kotti, Faten; Gargouri, Mohamed; Msallem, Monji; Vichi, Stefania
2016-07-15
The distinctive aroma of virgin olive oil is mainly attributed to its volatile profile including components responsible for positive attributes and others for sensory defects resulting from chemical oxidation and exogenous enzymes. For this reason, the evolution of volatile compounds from Chétoui and Arbequina virgin olive oils during olive ripening and storage (at 4 and 25 °C during 4 weeks) was investigated. The profile of volatile phenols during olive storage was also studied. Quantitative differences in the volatile compounds during olive storage at 4 and 25 °C according to olive cultivar was determined. Concerning the volatile phenols, the Arbequina olives were the most affected by high storage temperature, as the formation of these compounds, especially 4-ethyl and 4-vinyl derivatives of phenol and guaiacol were more noticeable in Arbequina oils extracted from stored fruits at 25 °C. Copyright © 2016 Elsevier Ltd. All rights reserved.
Marchini, Marie; Charvoz, Céline; Dujourdy, Laurence; Baldovini, Nicolas; Filippi, Jean-Jacques
2014-11-28
The volatile constituents of drug samples derived from Cannabis sativa L. were investigated by means of headspace solid phase microextraction (HS-SPME) and gas chromatography techniques (GC-MS, GC×GC-MS). Samples of cannabis herb and hashish showed clear differences in their volatile chemical profiles, mostly resulting from photo-oxidation processes occurring during the transformation of fresh cannabis herb into hashish. Most unexpectedly, we could demonstrate hashish samples as containing remarkable amounts of a rare and unusual monoterpene - 5,5-dimethyl-1-vinylbicyclo[2.1.1]hexane - among the volatile compounds detected in their headspaces. We gave evidence for the formation of this compound from the light induced rearrangement of β-myrcene during the manufacture of hashish. In view of its high abundance among volatile constituents of cannabis resin and its scarce occurrence in other natural volatile extracts, we propose to rename this specific monoterpene hashishene. Copyright © 2014 Elsevier B.V. All rights reserved.
Indium-oxide nanoparticles for RRAM devices compatible with CMOS back-end-off-line
NASA Astrophysics Data System (ADS)
León Pérez, Edgar A. A.; Guenery, Pierre-Vincent; Abouzaid, Oumaïma; Ayadi, Khaled; Brottet, Solène; Moeyaert, Jérémy; Labau, Sébastien; Baron, Thierry; Blanchard, Nicholas; Baboux, Nicolas; Militaru, Liviu; Souifi, Abdelkader
2018-05-01
We report on the fabrication and characterization of Resistive Random Access Memory (RRAM) devices based on nanoparticles in MIM structures. Our approach is based on the use of indium oxide (In2O3) nanoparticles embedded in a dielectric matrix using CMOS-full-compatible fabrication processes in view of back-end-off-line integration for non-volatile memory (NVM) applications. A bipolar switching behavior has been observed using current-voltage measurements (I-V) for all devices. Very high ION/IOFF ratios have been obtained up to 108. Our results provide insights for further integration of In2O3 nanoparticles-based devices for NVM applications. He is currently a Postdoctoral Researcher in the Institute of Nanotechnologies of Lyon (INL), INSA de Lyon, France, in the Electronics Department. His current research include indium oxide nanoparticles for non-volatile memory applications, and the integrations of these devices in CMOS BEOL.
Nitrous oxide from aerated dairy manure slurries: Effects of aeration rates and oxic/anoxic phasing.
Molodovskaya, Marina; Singurindy, Olga; Richards, Brian K; Steenhuis, Tammo S
2008-12-01
Small-scale laboratory research was conducted to compare the effects of different aeration rates and oxic/anoxic phasing on nitrous oxide (N(2)O) formation from dairy manure slurries. Manure slurry samples were incubated in triplicate for three-weeks under a range of continuous sweep gas flows (0.01-0.23L min(-1)kg(-1) slurry) with and without oxygen (air and dinitrogen gas). The net release of N(2)O-N was affected by both aeration rates and oxic/anoxic conditions, whereas ammonia volatilization depended mainly on gas flow rates. Maximum N(2)O-N losses after three-weeks incubation were 4.2% of total slurry N. Major N losses (up to 50% of total slurry N) were caused by ammonia volatilization that increased with increasing gas flow rates. The lowest nitrous oxide and ammonia production was observed from low flow phased oxic/anoxic treatment.
Fenton- and Persulfate-driven Regeneration of Contaminant-spent Granular Activated Carbon
Fenton- or persulfate-driven chemical oxidation regeneration of spent granular activated carbon (GAC) involves the combined, synergistic use of two treatment technologies: adsorption of organic chemicals onto GAC and chemical oxidation regeneration of the spent-GAC. Environmental...
Method for removing oxide contamination from titanium diboride powder
Brynestad, J.; Bamberger, C.E.
A method for removing oxide contamination from titanium diboride powder involves the direct chemical treatment of TiB/sub 2/ powders with a gaseous boron halide, such as BCl/sub 3/, at temperatures in the range of 500 to 800/sup 0/C. The BCl/sub 3/ reacts with the oxides to form volatile species which are removed by the BCl/sub 3/ exit stream.
Method for removing oxide contamination from titanium diboride powder
Brynestad, Jorulf; Bamberger, Carlos E.
1984-01-01
A method for removing oxide contamination from titanium diboride powder involves the direct chemical treatment of TiB.sub.2 powders with a gaseous boron halide, such as BCl.sub.3, at temperatures in the range of 500.degree.-800.degree. C. The BCl.sub.3 reacts with the oxides to form volatile species which are removed by the BCl.sub.3 exit stream.
Option pricing for stochastic volatility model with infinite activity Lévy jumps
NASA Astrophysics Data System (ADS)
Gong, Xiaoli; Zhuang, Xintian
2016-08-01
The purpose of this paper is to apply the stochastic volatility model driven by infinite activity Lévy processes to option pricing which displays infinite activity jumps behaviors and time varying volatility that is consistent with the phenomenon observed in underlying asset dynamics. We specially pay attention to three typical Lévy processes that replace the compound Poisson jumps in Bates model, aiming to capture the leptokurtic feature in asset returns and volatility clustering effect in returns variance. By utilizing the analytical characteristic function and fast Fourier transform technique, the closed form formula of option pricing can be derived. The intelligent global optimization search algorithm called Differential Evolution is introduced into the above highly dimensional models for parameters calibration so as to improve the calibration quality of fitted option models. Finally, we perform empirical researches using both time series data and options data on financial markets to illustrate the effectiveness and superiority of the proposed method.
FIELD STUDY: IN SITU OXIDATION OF 1,4-DIOXANE WITH OZONE AND HYDROGEN PEROXIDE
A pilot-scale field evaluation is underway to assess the effectiveness of in situ oxidation (using ozone with and without hydrogen peroxide) for remediation of 1,4-dioxane and chlorinated volatile organic compounds in groundwater at the Cooper Drum Company Superfund Site located ...
VANADIA CATALYZED VAPOR PHASE OXIDATION OF METHANOL IN THE PRESENCE OF OZONE
Catalytic oxidation of methanol was carried out in the presence of ozone using vanadia based catalysts. The process can be used to selectively convert alcohols to aldehydes or ketones. It can also be used to control emissions of volatile organic compounds from Kraft mill and ot...
Influence of volatile terpenes on the capacity of leaves to uptake and detoxify ozone. (Invited)
NASA Astrophysics Data System (ADS)
Loreto, F.; Fares, S.
2009-12-01
Tropospheric ozone is considered the most dangerous air pollutant for plant ecosystems, and its concentration is increasing throughout the earth. Oxidative damage takes place when ozone penetrates inside the leaves through the stomata and the cuticles. The latest guidelines suggest considering the dose entering stomata to evaluate ozone risk on vegetation. We have shown that this metric may not consider important detoxification mechanisms activated by the production of volatile antioxidants, especially terpenes. We review here how volatile terpenes may increase ozone uptake by leaves yet reducing the risk of damage to internal leaf structures. We also argue that volatile terpene production by plants phases-in with episodes on high ozone whereas other detoxification mechanisms are phased-out. Our results suggests that volatile isoprenoids play a major role in determining the capacity of ozone removal and detoxification by vegetation.
Limited effect of anthropogenic nitrogen oxides on Secondary Organic Aerosol formation
NASA Astrophysics Data System (ADS)
Zheng, Y.; Unger, N.; Hodzic, A.; Emmons, L.; Knote, C.; Tilmes, S.; Lamarque, J.-F.; Yu, P.
2015-08-01
Globally, secondary organic aerosol (SOA) is mostly formed from emissions of biogenic volatile organic compounds (VOCs) by vegetation, but can be modified by human activities as demonstrated in recent research. Specifically, nitrogen oxides (NOx = NO + NO2) have been shown to play a critical role in the chemical formation of low volatility compounds. We have updated the SOA scheme in the global NCAR Community Atmospheric Model version 4 with chemistry (CAM4-chem) by implementing a 4-product Volatility Basis Set (VBS) scheme, including NOx-dependent SOA yields and aging parameterizations. The predicted organic aerosol amounts capture both the magnitude and distribution of US surface annual mean measurements from the Interagency Monitoring of Protected Visual Environments (IMPROVE) network by 50 %, and the simulated vertical profiles are within a factor of two compared to Aerosol Mass Spectrometer (AMS) measurements from 13 aircraft-based field campaigns across different region and seasons. We then perform sensitivity experiments to examine how the SOA loading responds to a 50 % reduction in anthropogenic nitric oxide (NO) emissions in different regions. We find limited SOA reductions of 0.9 to 5.6, 6.4 to 12.0 and 0.9 to 2.8 % for global, the southeast US and the Amazon NOx perturbations, respectively. The fact that SOA formation is almost unaffected by changes in NOx can be largely attributed to buffering in chemical pathways (low- and high-NOx pathways, O3 versus NO3-initiated oxidation) and to offsetting tendencies in the biogenic versus anthropogenic SOA responses.
Acevedo, Francisca; Torres, Paulina; Oomah, B Dave; de Alencar, Severino Matias; Massarioli, Adna Prado; Martín-Venegas, Raquel; Albarral-Ávila, Vicenta; Burgos-Díaz, César; Ferrer, Ruth; Rubilar, Mónica
2017-04-01
Ulmo honey originating from Eucryphia cordifolia tree, known locally in the Araucania region as the Ulmo tree is a natural product with valuable nutritional and medicinal qualities. It has been used in the Mapuche culture to treat infections. This study aimed to identify the volatile and non-volatile/semi-volatile compounds of Ulmo honey and elucidate its in vitro biological properties by evaluating its antioxidant, antibacterial, antiproliferative and hemolytic properties and cytotoxicity in Caco-2 cells. Headspace volatiles of Ulmo honey were isolated by solid-phase microextraction (SPME); non-volatiles/semi-volatiles were obtained by removing all saccharides with acidified water and the compounds were identified by GC/MS analysis. Ulmo honey volatiles consisted of 50 compounds predominated by 20 flavor components. Two of the volatile compounds, lyrame and anethol have never been reported before as honey compounds. The non-volatile/semi-volatile components of Ulmo honey comprised 27 compounds including 13 benzene derivatives accounting 75% of the total peak area. Ulmo honey exhibited weak antioxidant activity but strong antibacterial activity particularly against gram-negative bacteria and methicillin-resistant Staphylococcus aureus (MRSA), the main strain involved in wounds and skin infections. At concentrations >0.5%, Ulmo honey reduced Caco-2 cell viability, released lactate dehydrogenase (LDH) and increased reactive oxygen species (ROS) production in a dose dependent manner in the presence of foetal bovine serum (FBS). The wide array of volatile and non-volatile/semi-volatile constituents of Ulmo honey rich in benzene derivatives may partly account for its strong antibacterial and antiproliferative properties important for its therapeutic use. Our results indicate that Ulmo honey can potentially inhibit cancer growth at least partly by modulating oxidative stress. Copyright © 2017 Elsevier Ltd. All rights reserved.
Suzuki, Hajime; Sakabe, Takahiro; Hirose, Yuu; Eki, Toshihiko
2017-01-01
We aimed to develop the bioassays for genotixicity and/or oxidative damage using the recombinant yeast. A genotoxicity assay was developed using recombinant Saccharomyces cerevisiae strain BY4741 with a green fluorescent protein (GFP) reporter plasmid, driven by the DNA damage-responsive RNR3 promoter. Enhanced fluorescence induction was observed in DNA repair-deficient strains treated with methyl methanesulfonate, but not with hydrogen peroxide. A GFP reporter yeast strain driven by the oxidative stress-responsive TRX2 promoter was newly developed to assess oxidative damage, but fluorescence was poorly induced by oxidants. In place of GFP, yeast strains with luciferase gene reporter plasmids (luc2 and luc2CP, encoding stable and unstable luciferase, respectively) were prepared. Transient induction of luciferase activity was clearly detected only in a TRX2 promoter-driven luc2CP reporter strain within 90 min of oxidant exposure. However, luciferase was strongly induced by hydroxyurea in the RNR3 promoter-driven luc2 and GFP reporter strains over 8 h after the exposure, suggesting that the RNR3 promoter is continuously upregulated by DNA damage, whereas the TRX2 promoter is transiently activated by oxidative agents. Luciferase activity levels were also increased in a TRX2-promoter-driven luc2CP reporter strain treated with tert-butyl hydroperoxide and menadione and weakly induced with diamide and diethyl maleate. Weakly enhanced luciferase activity induction was detected in the sod1Δ, sod2Δ, and rad27Δ strains treated with hydrogen peroxide compared with that in the wild-type strain. In conclusion, tests using GFP and stable luciferase reporters are useful for genotoxicity, and oxidative damage can be clearly detected by assay with an unstable luciferase reporter.
Modeling SOA formation from the oxidation of intermediate volatility n-alkanes
NASA Astrophysics Data System (ADS)
Aumont, B.; Valorso, R.; Mouchel-Vallon, C.; Camredon, M.; Lee-Taylor, J.; Madronich, S.
2012-08-01
The chemical mechanism leading to SOA formation and ageing is expected to be a multigenerational process, i.e. a successive formation of organic compounds with higher oxidation degree and lower vapor pressure. This process is here investigated with the explicit oxidation model GECKO-A (Generator of Explicit Chemistry and Kinetics of Organics in the Atmosphere). Gas phase oxidation schemes are generated for the C8-C24 series of n-alkanes. Simulations are conducted to explore the time evolution of organic compounds and the behavior of secondary organic aerosol (SOA) formation for various preexisting organic aerosol concentration (COA). As expected, simulation results show that (i) SOA yield increases with the carbon chain length of the parent hydrocarbon, (ii) SOA yield decreases with decreasing COA, (iii) SOA production rates increase with increasing COA and (iv) the number of oxidation steps (i.e. generations) needed to describe SOA formation and evolution grows when COA decreases. The simulated oxidative trajectories are examined in a two dimensional space defined by the mean carbon oxidation state and the volatility. Most SOA contributors are not oxidized enough to be categorized as highly oxygenated organic aerosols (OOA) but reduced enough to be categorized as hydrocarbon like organic aerosols (HOA), suggesting that OOA may underestimate SOA. Results show that the model is unable to produce highly oxygenated aerosols (OOA) with large yields. The limitations of the model are discussed.
Modeling SOA formation from the oxidation of intermediate volatility n-alkanes
NASA Astrophysics Data System (ADS)
Aumont, B.; Valorso, R.; Mouchel-Vallon, C.; Camredon, M.; Lee-Taylor, J.; Madronich, S.
2012-06-01
The chemical mechanism leading to SOA formation and ageing is expected to be a multigenerational process, i.e. a successive formation of organic compounds with higher oxidation degree and lower vapor pressure. This process is here investigated with the explicit oxidation model GECKO-A (Generator of Explicit Chemistry and Kinetics of Organics in the Atmosphere). Gas phase oxidation schemes are generated for the C8-C24 series of n-alkanes. Simulations are conducted to explore the time evolution of organic compounds and the behavior of secondary organic aerosol (SOA) formation for various preexisting organic aerosol concentration (COA). As expected, simulation results show that (i) SOA yield increases with the carbon chain length of the parent hydrocarbon, (ii) SOA yield decreases with decreasing COA, (iii) SOA production rates increase with increasing COA and (iv) the number of oxidation steps (i.e. generations) needed to describe SOA formation and evolution grows when COA decreases. The simulated oxidative trajectories are examined in a two dimensional space defined by the mean carbon oxidation state and the volatility. Most SOA contributors are not oxidized enough to be categorized as highly oxygenated organic aerosols (OOA) but reduced enough to be categorized as hydrocarbon like organic aerosols (HOA), suggesting that OOA may underestimate SOA. Results show that the model is unable to produce highly oxygenated aerosols (OOA) with large yields. The limitations of the model are discussed.
Nonhazardous Urine Pretreatment Method
NASA Technical Reports Server (NTRS)
Akse, James R.; Holtsnider, John T.
2012-01-01
A method combines solid phase acidification with two non-toxic biocides to prevent ammonia volatilization and microbial proliferation. The safe, non-oxidizing biocide combination consists of a quaternary amine and a food preservative. This combination has exhibited excellent stabilization of both acidified and unacidified urine. During pretreatment tests, composite urine collected from donors was challenged with a microorganism known to proliferate in urine, and then was processed using the nonhazardous urine pre-treatment method. The challenge microorganisms included Escherichia coli, a common gram-negative bacteria; Enterococcus faecalis, a ureolytic gram-positive bacteria; Candida albicans, a yeast commonly found in urine; and Aspergillus niger, a problematic mold that resists urine pre-treatment. Urine processed in this manner remained microbially stable for over 57 days. Such effective urine stabilization was achieved using non-toxic, non-oxidizing biocides at higher pH (3.6 to 5.8) than previous methods in use or projected for use aboard the International Space Station (ISS). ISS urine pretreatment methods employ strong oxidants including ozone and hexavalent chromium (Cr(VI)), a carcinogenic material, under very acidic conditions (pH = 1.8 to 2.4). The method described here offers a much more benign chemical environment than previous pretreatment methods, and will lower equivalent system mass (ESM) by reducing containment volume and mass, system complexity, and crew time needed to handle pre-treatment chemicals. The biocides, being non-oxidizing, minimize the potential for chemical reactions with urine constituents to produce volatile, airborne contaminants such as cyanogen chloride. Additionally, the biocides are active under significantly less acidic conditions than those used in the current system, thereby reducing the degree of required acidification. A simple flow-through solid phase acidification (SPA) bed is employed to overcome the natural buffering capacity of urine, and to lower the pH to levels that fix ammoniacal nitrogen in the non-volatile and highly water soluble NH4 + form. Citric acid, a highly soluble, solid tricarboxylic acid essential to cellular metabolism, and typically used as a food preservative, has also been shown to efficiently acidify urine in conjunction with non-oxidizing biocides to provide effective stabilization with respect to both microbial growth and ammonia volatilization.
Al-Hijazeen, Marwan; Lee, Eun Joo; Mendonca, Aubrey; Ahn, Dong Uk
2016-01-01
The objective of this study was to determine the effect of tannic acid (TA) on the oxidative stability and the quality characteristics of ground chicken breast meat. Five treatments including (1) control (none added), (2) 2.5 ppm TA, (3) 5 ppm TA, (4) 10 ppm TA, and (5) 5 ppm butylated hydroxyanisole (BHA) were added to boneless, skinless ground chicken breast meat, and used for both raw and cooked meat studies. For the raw meat study, the ground chicken breast meat was packaged in oxygen-permeable bags and stored at 4 °C for 7 days. For the cooked study, raw ground meat samples were vacuum-packaged in oxygen-impermeable vacuum bags, cooked in-bag to the internal temperature of 75 °C, re-packaged in oxygen-permeable bags, and then stored. Both raw and cooked meats were analyzed for lipid and protein oxidation, color, and volatiles (cooked meat only) at 0, 3, and 7 days of storage. Raw meats with 10 ppm of TA added had significantly (p ≤ 0.05) lower lipid and protein oxidation than other treatments during storage. In addition, TA at 10 ppm level maintained the highest color a*- and L*-values during storage. Cooked chicken breast meat with 5 and 10 ppm TA added produced significantly (p ≤ 0.05) lower amounts of off-odor volatiles than other treatments. Among the volatile compounds, the amount of hexanal increased rapidly during storage for cooked meat. However, meats with 5 and 10 ppm TA added showed the lowest amount of hexanal and other aldehydes related to lipid oxidation, indicating a strong antioxidant effect of TA in cooked chicken breast meat. Furthermore, the differences in aldehydes among the treatments were bigger in cooked than in raw meat, indicating that the antioxidant effect of TA in cooked meat was greater than that in raw meat. Therefore, TA at >5 ppm can be used as a good natural preservative in cooked chicken meat to maintain its quality during storage. PMID:27304971
NASA Astrophysics Data System (ADS)
Li, Haitao; Liu, Ruihua; Lian, Suoyuan; Liu, Yang; Huang, Hui; Kang, Zhenhui
2013-03-01
Selective oxidation of alcohols is a fundamental and significant transformation for the large-scale production of fine chemicals, UV and visible light driven photocatalytic systems for alcohol oxidation have been developed, however, the long wavelength near infrared (NIR) and infrared (IR) light have not yet fully utilized by the present photocatalytic systems. Herein, we reported carbon quantum dots (CQDs) can function as an effective near infrared (NIR) light driven photocatalyst for the selective oxidation of benzyl alcohol to benzaldehyde. Based on the NIR light driven photo-induced electron transfer property and its photocatalytic activity for H2O2 decomposition, this metal-free catalyst could realize the transformation from benzyl alcohol to benzaldehyde with high selectivity (100%) and conversion (92%) under NIR light irradiation. HO&z.rad; is the main active oxygen specie in benzyl alcohol selective oxidative reaction confirmed by terephthalic acid photoluminescence probing assay (TA-PL), selecting toluene as the substrate. Such metal-free photocatalytic system also selectively converts other alcohol substrates to their corresponding aldehydes with high conversion, demonstrating a potential application of accessing traditional alcohol oxidation chemistry.Selective oxidation of alcohols is a fundamental and significant transformation for the large-scale production of fine chemicals, UV and visible light driven photocatalytic systems for alcohol oxidation have been developed, however, the long wavelength near infrared (NIR) and infrared (IR) light have not yet fully utilized by the present photocatalytic systems. Herein, we reported carbon quantum dots (CQDs) can function as an effective near infrared (NIR) light driven photocatalyst for the selective oxidation of benzyl alcohol to benzaldehyde. Based on the NIR light driven photo-induced electron transfer property and its photocatalytic activity for H2O2 decomposition, this metal-free catalyst could realize the transformation from benzyl alcohol to benzaldehyde with high selectivity (100%) and conversion (92%) under NIR light irradiation. HO&z.rad; is the main active oxygen specie in benzyl alcohol selective oxidative reaction confirmed by terephthalic acid photoluminescence probing assay (TA-PL), selecting toluene as the substrate. Such metal-free photocatalytic system also selectively converts other alcohol substrates to their corresponding aldehydes with high conversion, demonstrating a potential application of accessing traditional alcohol oxidation chemistry. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr00092c
Molecular structure impacts on secondary organic aerosol formation from glycol ethers
NASA Astrophysics Data System (ADS)
Li, Lijie; Cocker, David R.
2018-05-01
Glycol ethers, a class of widely used solvents in consumer products, are often considered exempt as volatile organic compounds based on their vapor pressure or boiling points by regulatory agencies. However, recent studies found that glycol ethers volatilize at ambient conditions nearly as rapidly as the traditional high-volatility solvents indicating the potential of glycol ethers to form secondary organic aerosol (SOA). This is the first work on SOA formation from glycol ethers. The impact of molecular structure, specifically -OH, on SOA formation from glycol ethers and related ethers are investigated in the work. Ethers with and without -OH, with methyl group hindrance on -OH and with -OH at different location are studied in the presence of NOX and under "NOX free" conditions. Photooxidation experiments under different oxidation conditions confirm that the processing of ethers is a combination of carbonyl formation, cyclization and fragmentation. Bulk SOA chemical composition analysis and oxidation products identified in both gas and particle phase suggests that the presence and location of -OH in the carbon bond of ethers determine the occurrence of cyclization mechanism during ether oxidation. The cyclization is proposed as a critical SOA formation mechanism to prevent the formation of volatile compounds from fragmentation during the oxidation of ethers. Glycol ethers with -CH2-O-CH2CH2OH structure is found to readily form cyclization products, especially with the presence of NOx, which is more relevant to urban atmospheric conditions than without NOx. Glycol ethers are evaluated as dominating SOA precursors among all ethers studied. It is estimated that the contribution of glycol ethers to anthropogenic SOA is roughly 1% of the current organic aerosol from mobile sources. The contribution of glycol ethers to anthropogenic SOA is roughly 1% of the current organic aerosol from mobile sources and will play a more important role in future anthropogenic SOA formation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okada, Takashi, E-mail: t-okada@u-fukui.ac.jp; Tomikawa, Hiroki
2013-03-15
Highlights: ► Separation of Pb and Zn from Fe and Cu in ash-melting of municipal solid waste. ► Molar ratio of Cl to Na and K in fly ash affected the metal-separation efficiency. ► The low molar ratio and a non-oxidative atmosphere were better for the separation. - Abstract: In the process of metal separation by ash-melting, Fe and Cu in the incineration residue remain in the melting furnace as molten metal, whereas Pb and Zn in the residue are volatilized. This study investigated the effects of the chemical composition of incineration fly ash on the metal-separation efficiency of themore » ash-melting process. Incineration fly ash with different chemical compositions was melted with bottom ash in a lab-scale reactor, and the efficiency with which Pb and Zn were volatilized preventing the volatilization of Fe and Cu was evaluated. In addition, the behavior of these metals was simulated by thermodynamic equilibrium calculations. Depending on the exhaust gas treatment system used in the incinerator, the relationships among Na, K, and Cl concentrations in the incineration fly ash differed, which affected the efficiency of the metal separation. The amounts of Fe and Cu volatilized decreased by the decrease in the molar ratio of Cl to Na and K in the ash, promoting metal separation. The thermodynamic simulation predicted that the chlorination volatilization of Fe and Cu was prevented by the decrease in the molar ratio, as mentioned before. By melting incineration fly ash with the low molar ratio in a non-oxidative atmosphere, most of the Pb and Zn in the ash were volatilized leaving behind Fe and Cu.« less
Deodorization of garlic breath volatiles by food and food components.
Munch, Ryan; Barringer, Sheryl A
2014-04-01
The ability of foods and beverages to reduce allyl methyl disulfide, diallyl disulfide, allyl mercaptan, and allyl methyl sulfide on human breath after consumption of raw garlic was examined. The treatments were consumed immediately following raw garlic consumption for breath measurements, or were blended with garlic prior to headspace measurements. Measurements were done using a selected ion flow tube-mass spectrometer. Chlorophyllin treatment demonstrated no deodorization in comparison to the control. Successful treatments may be due to enzymatic, polyphenolic, or acid deodorization. Enzymatic deodorization involved oxidation of polyphenolic compounds by enzymes, with the oxidized polyphenols causing deodorization. This was the probable mechanism in raw apple, parsley, spinach, and mint treatments. Polyphenolic deodorization involved deodorization by polyphenolic compounds without enzymatic activity. This probably occurred for microwaved apple, green tea, and lemon juice treatments. When pH is below 3.6, the enzyme alliinase is inactivated, which causes a reduction in volatile formation. This was demonstrated in pH-adjusted headspace measurements. However, the mechanism for volatile reduction on human breath (after volatile formation) is unclear, and may have occurred in soft drink and lemon juice breath treatments. Whey protein was not an effective garlic breath deodorant and had no enzymatic activity, polyphenolic compounds, or acidity. Headspace concentrations did not correlate well to breath treatments. © 2014 Institute of Food Technologists®
Chemical reaction path modeling of hydrothermal processes on Mars: Preliminary results
NASA Technical Reports Server (NTRS)
Plumlee, Geoffrey S.; Ridley, W. Ian
1992-01-01
Hydrothermal processes are thought to have had significant roles in the development of surficial mineralogies and morphological features on Mars. For example, a significant proportion of the Martian soil could consist of the erosional products of hydrothermally altered impact melt sheets. In this model, impact-driven, vapor-dominated hydrothermal systems hydrothermally altered the surrounding rocks and transported volatiles such as S and Cl to the surface. Further support for impact-driven hydrothermal alteration on Mars was provided by studies of the Ries crater, Germany, where suevite deposits were extensively altered to montmorillonite clays by inferred low-temperature (100-130 C) hydrothermal fluids. It was also suggested that surface outflow from both impact-driven and volcano-driven hydrothermal systems could generate the valley networks, thereby eliminating the need for an early warm wet climate. We use computer-driven chemical reaction path calculation to model chemical processes which were likely associated with postulated Martian hydrothermal systems.
Water Photo-oxidation Initiated by Surface-Bound Organic Chromophores.
Eberhart, Michael S; Wang, Degao; Sampaio, Renato N; Marquard, Seth L; Shan, Bing; Brennaman, M Kyle; Meyer, Gerald J; Dares, Christopher; Meyer, Thomas J
2017-11-15
Organic chromophores can be synthesized by established methods and offer an opportunity to expand overall solar spectrum utilization for dye-sensitized photoelectrosynthesis cells. However, there are complications in the use of organic chromophores arising from the instability of their oxidized forms, the inability of their oxidized forms to activate a water oxidation catalyst, or the absence of a sufficiently reducing excited state for electron injection into appropriate semiconductors. Three new triarylamine donor-acceptor organic dyes have been investigated here for visible-light-driven water oxidation. They offer highly oxidizing potentials (>1 V vs NHE in aqueous solution) that are sufficient to drive a water oxidation catalyst and excited-state potentials (∼-1.2 V vs NHE) sufficient to inject into TiO 2 . The oxidized form of one of the chromophores is sufficiently stable to exhibit reversible electrochemistry in aqueous solution. The chromophores also have favorable photophysics. Visible-light-driven oxygen production by an organic chromophore for up to 1 h of operation has been demonstrated with reasonable faradaic efficiencies for measured O 2 production. The properties of organic chromophores necessary for successfully driving water oxidation in a light-driven system are explored along with strategies for improving device performance.
Enhanced 99Tc retention in glass waste form using Tc(IV)-incorporated Fe minerals
Um, Wooyong; Luksic, Steven A.; Wang, Guohui; ...
2017-09-07
We present that technetium ( 99Tc) immobilization by doping into iron oxide mineral phases may alleviate the problems with Tc volatility during vitrification of nuclear waste. Because reduced Tc, Tc(IV), substitutes for Fe(III) in the crystal structure by a process of Tc reduction from Tc(VII) to Tc(IV) followed by co-precipitation of Fe oxide minerals, two Tc-incorporated Fe minerals (Tc-goethite and Tc-magnetite/maghemite) were prepared and tested for Tc retention in glass melt samples at temperatures between 600 and 1000 °C. After being cooled, the solid glass specimens prepared at different temperatures at 600, 800, and 1000 °C were analyzed for Tcmore » oxidation state using Tc K-edge XANES. In most samples, Tc was partially (<60%) oxidized from Tc(IV) to Tc(VII) as the melt temperature increased up to 600 °C. However, most of Tc(IV) was completely (>95%) oxidized to Tc(VII) at temperature above 800 °C. Tc retention in glass melt samples prepared using Tc-incorporated Fe minerals were slightly higher (~10%) than in glass prepared using KTcO4 because of limited and delayed Tc volatilization.« less
Enhanced 99Tc retention in glass waste form using Tc(IV)-incorporated Fe minerals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Um, Wooyong; Luksic, Steven A.; Wang, Guohui
We present that technetium ( 99Tc) immobilization by doping into iron oxide mineral phases may alleviate the problems with Tc volatility during vitrification of nuclear waste. Because reduced Tc, Tc(IV), substitutes for Fe(III) in the crystal structure by a process of Tc reduction from Tc(VII) to Tc(IV) followed by co-precipitation of Fe oxide minerals, two Tc-incorporated Fe minerals (Tc-goethite and Tc-magnetite/maghemite) were prepared and tested for Tc retention in glass melt samples at temperatures between 600 and 1000 °C. After being cooled, the solid glass specimens prepared at different temperatures at 600, 800, and 1000 °C were analyzed for Tcmore » oxidation state using Tc K-edge XANES. In most samples, Tc was partially (<60%) oxidized from Tc(IV) to Tc(VII) as the melt temperature increased up to 600 °C. However, most of Tc(IV) was completely (>95%) oxidized to Tc(VII) at temperature above 800 °C. Tc retention in glass melt samples prepared using Tc-incorporated Fe minerals were slightly higher (~10%) than in glass prepared using KTcO4 because of limited and delayed Tc volatilization.« less
Lin, Jin; Li, Zhi; Kan, Jian; Huang, Shijun; Su, Weiping; Li, Yadong
2017-01-01
Catalytic oxidative C–H bond functionalization reactions that proceed without requiring stoichiometric amounts of external oxidants or pre-functionalized oxidizing reagents could maximize the atom- and step-economy in chemical syntheses. However, such a transformation remains elusive. Here, we report that a photo-driven catalytic process enables decarboxylative C–H trifluoromethylation of (hetero)arenes with trifluoroacetic acid as a trifluoromethyl source in good yields in the presence of an external oxidant in far lower than stoichiometric amounts (for example, 0.2 equivalents of Na2S2O8) using Rh-modified TiO2 nanoparticles as a photocatalyst, in which H2 release is an important driving force for the reaction. Our findings not only provide an approach to accessing valuable decarboxylative C–H trifluoromethylations via activation of abundant but inert trifluoroacetic acid towards oxidative decarboxylation and trifluoromethyl radical formation, but also demonstrate that a photo-driven catalytic process is a promising way to achieve external oxidant-free C–H functionalization reactions. PMID:28165474
Lin, Jin; Li, Zhi; Kan, Jian; Huang, Shijun; Su, Weiping; Li, Yadong
2017-02-06
Catalytic oxidative C-H bond functionalization reactions that proceed without requiring stoichiometric amounts of external oxidants or pre-functionalized oxidizing reagents could maximize the atom- and step-economy in chemical syntheses. However, such a transformation remains elusive. Here, we report that a photo-driven catalytic process enables decarboxylative C-H trifluoromethylation of (hetero)arenes with trifluoroacetic acid as a trifluoromethyl source in good yields in the presence of an external oxidant in far lower than stoichiometric amounts (for example, 0.2 equivalents of Na 2 S 2 O 8 ) using Rh-modified TiO 2 nanoparticles as a photocatalyst, in which H 2 release is an important driving force for the reaction. Our findings not only provide an approach to accessing valuable decarboxylative C-H trifluoromethylations via activation of abundant but inert trifluoroacetic acid towards oxidative decarboxylation and trifluoromethyl radical formation, but also demonstrate that a photo-driven catalytic process is a promising way to achieve external oxidant-free C-H functionalization reactions.
NASA Astrophysics Data System (ADS)
Lin, Jin; Li, Zhi; Kan, Jian; Huang, Shijun; Su, Weiping; Li, Yadong
2017-02-01
Catalytic oxidative C-H bond functionalization reactions that proceed without requiring stoichiometric amounts of external oxidants or pre-functionalized oxidizing reagents could maximize the atom- and step-economy in chemical syntheses. However, such a transformation remains elusive. Here, we report that a photo-driven catalytic process enables decarboxylative C-H trifluoromethylation of (hetero)arenes with trifluoroacetic acid as a trifluoromethyl source in good yields in the presence of an external oxidant in far lower than stoichiometric amounts (for example, 0.2 equivalents of Na2S2O8) using Rh-modified TiO2 nanoparticles as a photocatalyst, in which H2 release is an important driving force for the reaction. Our findings not only provide an approach to accessing valuable decarboxylative C-H trifluoromethylations via activation of abundant but inert trifluoroacetic acid towards oxidative decarboxylation and trifluoromethyl radical formation, but also demonstrate that a photo-driven catalytic process is a promising way to achieve external oxidant-free C-H functionalization reactions.
Cohesiveness in Financial News and its Relation to Market Volatility
Piškorec, Matija; Antulov-Fantulin, Nino; Novak, Petra Kralj; Mozetič, Igor; Grčar, Miha; Vodenska, Irena; Šmuc, Tomislav
2014-01-01
Motivated by recent financial crises, significant research efforts have been put into studying contagion effects and herding behaviour in financial markets. Much less has been said regarding the influence of financial news on financial markets. We propose a novel measure of collective behaviour based on financial news on the Web, the News Cohesiveness Index (NCI), and we demonstrate that the index can be used as a financial market volatility indicator. We evaluate the NCI using financial documents from large Web news sources on a daily basis from October 2011 to July 2013 and analyse the interplay between financial markets and finance-related news. We hypothesise that strong cohesion in financial news reflects movements in the financial markets. Our results indicate that cohesiveness in financial news is highly correlated with and driven by volatility in financial markets. PMID:24849598
The history of Martian volatiles
NASA Astrophysics Data System (ADS)
Jakosky, Bruce M.; Jones, John H.
The behavior of water and other volatiles on Mars is key to understanding the evolution of the climate. The early climate played a fundamental role in producing the observed surface morphology and possibly in enabling the existence of an early biosphere. Geochemical and isotopic data can be used to infer the history of volatiles. On the basis of the isotopic data from the atmosphere and from components of the surface (as measured in meteorites that come from Mars), there appear to be at least two reservoirs of volatiles, one that has undergone exchange with the atmosphere and has been isotopically fractionated, and a second that is unfractionated and may represent juvenile gases. The fractionation of the atmospheric component has occurred primarily through the escape of gas to space. In addition, the atmospheric gases have mixed substantially with crustal reservoirs of volatiles. Such exchange may have occurred in aqueous or hydrothermal environments. The history of escape to space, as driven by the properties of the Sun through time, is consistent with the surface geomorphology. Together, they suggest an early environment that was substantially different from the present one and the evolution through time to a colder, dryer climate.
PREPARATION OF HIGH-DENSITY, COMPACTIBLE THORIUM OXIDE PARTICLES
McCorkle, K.H.; Kleinsteuber, A.T.; Schilling, C.E.; Dean, O.C.
1962-05-22
A method is given for preparing millimeter-size, highdensity thorium oxide particles suitable for fabrication into nuclear reactor feel elements by means of vibratory compaction. A thorium oxide gel containing 3.7 to 7 weight per cent residual volatile nitrate and water is prepared by drying a thorium oxide sol. The gel is then slowly heated to a temperature of about 450DEC, and the resulting gel fragments are calcined. The starting sol is prepared by repeated dispersion of oxalate-source thorium oxide in a nitrate system or by dispersion of steam-denitrated thorium oxide in water. (AEC)
USDA-ARS?s Scientific Manuscript database
Soil amendment with biochar has shown the potential to improve nitrogen (N) availability for plant uptake and reduce environmental losses via ammonia (NH3) and nitrous oxide (N2O) emissions. There are still many unknowns on how biochar type and soil conditions affect N dynamics and processes associa...
A cost comparison has been conducted of 1 m3/s indoor air cleaners using granular activated carbon (GAC) vs. photocatalytic oxidation (PCO) for treating a steady-state inlet volatile organic compound (VOC) concentration of 0.3 mg/m3. The commercial GAC unit was costed assuming t...
Lightning-induced nitrogen oxides (LNOX), in the presence of sunlight, volatile organic compounds and water, can be a relatively large but uncertain source for ozone (O3) and hydroxyl radical (OH) in the atmosphere. Using lightning flash data from the National Lightning Detection...
USDA-ARS?s Scientific Manuscript database
Food emulsions are particularly susceptible to lipid oxidation, which leads to the formation of off-flavors and odors, and ultimately, shorter product shelf lives. Here we examine antioxidants for use in emulsions from a variety of different sources, including natural product extracts as well as rat...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-13
... precursors. They also establish nitrogen oxides (NO X ) and sulfur dioxide (SO 2 ) as precursors to PM 2.5... recordkeeping requirements, Sulfur oxides, Volatile organic compounds. Dated: June 26, 2012. W.C. Early, Acting..., modified document begins]. definitions of ``regulated NSR pollutant'' and ``significant,'' and removed...
The influence of aging on susceptibility to environmental contaminants is not well understood. To extend knowledge in this area, we examined effects in rat brain of the volatile organic compound toluene. The objective was to test whether oxidative stress plays a role in the adver...
USDA-ARS?s Scientific Manuscript database
The effect of differing concentrations and ratios of alpha- and gamma-TOH on oxidative stability over time was determined by measuring the development of hydroperoxides and volatile secondary oxidation products (hexanal) within a series of oil-in-water (o/w) emulsion systems produced from both canol...
In-Situ Chemical Reduction and Oxidation of VOCs in Groundwater: Groundwater Treatability Studies
NASA Technical Reports Server (NTRS)
Keith, Amy; Glasgow, Jason; McCaleh, Rececca C. (Technical Monitor)
2001-01-01
This paper presents NASA Marshall Space Flight Center's treatability studies for volatile organic compounds in groundwater. In-Situ groundwater treatment technologies include: 1) Chemical Reduction(Ferox); 2) Chemical Oxidation (Fenton Reagents, Permanganate, and Persulfate); and 3) Thermal (Dynamic Underground Stripping, Six-Phase Heating). This paper is presented in viewgraph form.
Natural extracts versus sodium ascorbate to extend the shelf life of meat-based ready-to-eat meals.
Price, Alejandra; Díaz, Pedro; Bañón, Sancho; Garrido, Maria Dolores
2013-10-01
The effect of grape seed and green tea extracts was compared with effect of sodium ascorbate on bacterial spoilage, lipid stability and sensory quality in cooked pork meatballs during refrigerated storage. Meatballs were stored at 4 in aerobic packaging for 0, 4, 8, 12 and 16 days under retail display conditions. Lipid oxidation was evaluated as thiobarbituric acid reactive substances, volatile compounds and cholesterol oxidation products. Colour stability was assessed through CIELab parameters. Microbiological spoilage was determined through total viable, mould and yeast and coliform counts. The samples containing green tea and grape seed extracts showed lower levels of thiobarbituric acid reacting substances, major volatile compounds and microbiological counts than the samples with sodium ascorbate. Formation of cholesterol oxidation products was also inhibited to a greater extent. Colour of meatballs and pork meatballs was not affected by refrigerated storage; however, the addition of extracts provided brown shades. The addition of antioxidants did not modify the sensory attributes except for the colour. Green tea and grape seed extracts were more effective than sodium ascorbate at preventing lipid oxidation.
Tin in a chondritic interplanetary dust particle
NASA Technical Reports Server (NTRS)
Rietmeijer, Frans J. M.
1989-01-01
Submicron platey Sn-rich grains are present in chondritic porous interplanetary dust particle (IDP) W7029 A and it is the second occurrence of a tin mineral in a stratospheric micrometeorite. Selected Area Electron Diffraction data for the Sn-rich grains match with Sn2O3 and Sn3O4. The oxide(s) may have formed in the solar nebula when tin metal catalytically supported reduction of CO or during flash heating on atmospheric entry of the IDP. The presence of tin is consistent with enrichments for other volatile trace elements in chondritic IDPs and may signal an emerging trend toward nonchondritic volatile element abundances in chondritic IDPs. The observation confirms small-scale mineralogical heterogeneity in fine-grained chondritic porous interplanetary dust.
Reprint of "How do components of real cloud water affect aqueous pyruvate oxidation?"
NASA Astrophysics Data System (ADS)
Boris, Alexandra J.; Desyaterik, Yury; Collett, Jeffrey L.
2015-01-01
Chemical oxidation of dissolved volatile or semi-volatile organic compounds within fog and cloud droplets in the atmosphere could be a major pathway for secondary organic aerosol (SOA) formation. This proposed pathway consists of: (1) dissolution of organic chemicals from the gas phase into a droplet; (2) reaction with an aqueous phase oxidant to yield low volatility products; and (3) formation of particle phase organic matter as the droplet evaporates. The common approach to simulating aqueous SOA (aqSOA) reactions is photo-oxidation of laboratory standards in pure water. Reactions leading to aqSOA formation should be studied within real cloud and fog water to determine whether additional competing processes might alter apparent rates of reaction as indicated by rates of reactant loss or product formation. To evaluate and identify the origin of any cloud water matrix effects on one example of observed aqSOA production, pyruvate oxidation experiments simulating aqSOA formation were monitored within pure water, real cloud water samples, and an aqueous solution of inorganic salts. Two analysis methods were used: online electrospray ionization high-resolution time-of-flight mass spectrometry (ESI-HR-ToF-MS), and offline anion exchange chromatography (IC) with quantitative conductivity and qualitative ESI-HR-ToF-MS detection. The apparent rate of oxidation of pyruvate was slowed in cloud water matrices: overall measured degradation rates of pyruvate were lower than in pure water. This can be at least partially accounted for by the observed formation of pyruvate from reactions of other cloud water components. Organic constituents of cloud water also compete for oxidants and/or UV light, contributing to the observed slowed degradation rates of pyruvate. The oxidation of pyruvate was not significantly affected by the presence of inorganic anions (nitrate and sulfate) at cloud-relevant concentrations. Future bulk studies of aqSOA formation reactions using simplified simulated cloud solutions and model estimates of generated aqSOA mass should take into account possible generation of, or competition for, oxidant molecules by organic components found in the complex matrices typically associated with real atmospheric water droplets. Additionally, it is likely that some components of real atmospheric waters have not yet been identified as aqSOA precursors, but could be distinguished through further simplified bulk oxidations of known atmospheric water components.
Differences in BVOC oxidation and SOA formation above and below the forest canopy
NASA Astrophysics Data System (ADS)
Schulze, Benjamin C.; Wallace, Henry W.; Flynn, James H.; Lefer, Barry L.; Erickson, Matt H.; Jobson, B. Tom; Dusanter, Sebastien; Griffith, Stephen M.; Hansen, Robert F.; Stevens, Philip S.; VanReken, Timothy; Griffin, Robert J.
2017-02-01
Gas-phase biogenic volatile organic compounds (BVOCs) are oxidized in the troposphere to produce secondary pollutants such as ozone (O3), organic nitrates (RONO2), and secondary organic aerosol (SOA). Two coupled zero-dimensional models have been used to investigate differences in oxidation and SOA production from isoprene and α-pinene, especially with respect to the nitrate radical (NO3), above and below a forest canopy in rural Michigan. In both modeled environments (above and below the canopy), NO3 mixing ratios are relatively small (< 0.5 pptv); however, daytime (08:00-20:00 LT) mixing ratios below the canopy are 2 to 3 times larger than those above. As a result of this difference, NO3 contributes 12 % of total daytime α-pinene oxidation below the canopy while only contributing 4 % above. Increasing background pollutant levels to simulate a more polluted suburban or peri-urban forest environment increases the average contribution of NO3 to daytime below-canopy α-pinene oxidation to 32 %. Gas-phase RONO2 produced through NO3 oxidation undergoes net transport upward from the below-canopy environment during the day, and this transport contributes up to 30 % of total NO3-derived RONO2 production above the canopy in the morning (˜ 07:00). Modeled SOA mass loadings above and below the canopy ultimately differ by less than 0.5 µg m-3, and extremely low-volatility organic compounds dominate SOA composition. Lower temperatures below the canopy cause increased partitioning of semi-volatile gas-phase products to the particle phase and up to 35 % larger SOA mass loadings of these products relative to above the canopy in the model. Including transport between above- and below-canopy environments increases above-canopy NO3-derived α-pinene RONO2 SOA mass by as much as 45 %, suggesting that below-canopy chemical processes substantially influence above-canopy SOA mass loadings, especially with regard to monoterpene-derived RONO2.
Code of Federal Regulations, 2011 CFR
2011-07-01
... different users. RFP baseline means the total of actual volatile organic compounds or nitrogen oxides..., industrial equipment, construction vehicles, off-road motorcycles, and marine vessels). National ambient air...
Tutorial on Atomic Oxygen Effects and Contamination
NASA Technical Reports Server (NTRS)
Miller, Sharon K.
2017-01-01
Atomic oxygen is the most predominant specie in low Earth orbit (LEO) and is contained in the upper atmosphere of many other planetary bodies. Formed by photo-dissociation of molecular oxygen, it is highly reactive and energetic enough to break chemical bonds on the surface of many materials and react with them to form either stable or volatile oxides. The extent of the damage for spacecraft depends a lot on how much atomic oxygen arrives at the surface, the energy of the atoms, and the reactivity of the material that is exposed to it. Oxide formation can result in shrinkage, cracking, or erosion which can also result in changes in optical, thermal, or mechanical properties of the materials exposed. The extent of the reaction can be affected by mechanical loading, temperature, and other environmental components such as ultraviolet radiation or charged particles. Atomic oxygen generally causes a surface reaction, but it can scatter under coatings and into crevices causing oxidation much farther into a spacecraft surface or structure than would be expected. Contamination can also affect system performance. Contamination is generally caused by arrival of volatile species that condense on spacecraft surfaces. The volatiles are typically a result of outgassing of materials that are on the spacecraft. Once the volatiles are condensed on a surface, they can then be fixed on the surface by ultraviolet radiation andor atomic oxygen reaction to form stable surface contaminants that can change optical and thermal properties of materials in power systems, thermal systems, and sensors. This tutorial discusses atomic oxygen erosion and contaminate formation, and the effect they have on typical spacecraft materials. Scattering of atomic oxygen, some effects of combined environments and examples of effects of atomic oxygen and contamination on spacecraft systems and components will also be presented.
Short communication: The effect of liquid storage on the flavor of whey protein concentrate.
Park, Curtis W; Parker, Megan; Drake, MaryAnne
2016-06-01
Unit operations in dried dairy ingredient manufacture significantly influence sensory properties and, consequently, their use and consumer acceptance in a variety of ingredient applications. In whey protein concentrate (WPC) manufacture, liquid can be stored as whey or WPC before spray drying. The objective of this study was to determine the effect of storage, composition, and bleaching on the flavor of spray-dried WPC80. Liquid whey was manufactured and subjected to the following treatments: bleached or unbleached and liquid whey or liquid WPC storage. The experiment was replicated 3 times and included a no-storage control. All liquid storage was performed at 4°C for 24h. Flavor of the final spray-dried WPC80 was evaluated by a trained panel and volatile compound analyses. Storage of liquids increased cardboard flavor, decreased sweet aromatic flavor, and resulted in increased volatile lipid oxidation products. Bleaching altered the effect of liquid storage. Storage of unbleached liquid whey decreased sweet aromatic flavor and increased cardboard flavor and volatile lipid oxidation products compared with liquid WPC80 and no storage. In contrast, storage of bleached liquid WPC decreased sweet aromatic flavor and increased cardboard flavor and associated volatile lipid oxidation products compared with bleached liquid whey or no storage. These results confirm that liquid storage increases off-flavors in spray-dried protein but to a variable degree, depending on whether bleaching has been applied. If liquid storage is necessary, bleached WPC80 should be stored as liquid whey and unbleached WPC80 should be stored as liquid WPC to mitigate off-flavors. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Volatile species of technetium and rhenium during waste vitrification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Dongsang; Kruger, Albert A.
Volatile loss of technetium (Tc) during vitrification of low-activity wastes is a technical challenge for treating and immobilizing the large volumes of radioactive and hazardous wastes stored at the U.S. Department of Energy's Hanford Site. There are various research efforts being pursued to develop technologies that can be implemented for cost effective management of Tc, including studies to understand the behavior of Tc during vitrification, with the goal of eventually increasing Tc retention in glass. Furthermore, one of these studies has focused on identifying the form or species of Tc and Re (surrogate for Tc) that evolve during the waste-to-glassmore » conversion process. This information is important for understanding the mechanism of Tc volatilization. In this paper, available information collected from the literature is critically evaluated to clarify the volatile species of Tc and Re and, more specifically, whether they volatilize as alkali pertechnetate and perrhenate or as technetium and rhenium oxides after decomposition of alkali pertechnetate and perrhenate. The evaluated data ranged from mass spectrometric identification of species volatilized from pure and binary alkali pertechnetate and perrhenate salts to structural and chemical analyses of volatilized materials during crucible melting and scaled melter processing of simulated wastes.« less
Volatile species of technetium and rhenium during waste vitrification
Kim, Dongsang; Kruger, Albert A.
2017-10-26
Volatile loss of technetium (Tc) during vitrification of low-activity wastes is a technical challenge for treating and immobilizing the large volumes of radioactive and hazardous wastes stored at the U.S. Department of Energy's Hanford Site. There are various research efforts being pursued to develop technologies that can be implemented for cost effective management of Tc, including studies to understand the behavior of Tc during vitrification, with the goal of eventually increasing Tc retention in glass. Furthermore, one of these studies has focused on identifying the form or species of Tc and Re (surrogate for Tc) that evolve during the waste-to-glassmore » conversion process. This information is important for understanding the mechanism of Tc volatilization. In this paper, available information collected from the literature is critically evaluated to clarify the volatile species of Tc and Re and, more specifically, whether they volatilize as alkali pertechnetate and perrhenate or as technetium and rhenium oxides after decomposition of alkali pertechnetate and perrhenate. The evaluated data ranged from mass spectrometric identification of species volatilized from pure and binary alkali pertechnetate and perrhenate salts to structural and chemical analyses of volatilized materials during crucible melting and scaled melter processing of simulated wastes.« less
Volatile flavor compounds in yogurt: a review.
Cheng, Hefa
2010-11-01
Considerable knowledge has been accumulated on the volatile compounds contributing to the aroma and flavor of yogurt. This review outlines the production of the major flavor compounds in yogurt fermentation and the analysis techniques, both instrumental and sensory, for quantifying the volatile compounds in yogurt. The volatile compounds that have been identified in plain yogurt are summarized, with the few key aroma compounds described in detail. Most flavor compounds in yogurt are produced from lipolysis of milkfat and microbiological transformations of lactose and citrate. More than 100 volatiles, including carbonyl compounds, alcohols, acids, esters, hydrocarbons, aromatic compounds, sulfur-containing compounds, and heterocyclic compounds, are found in yogurt at low to trace concentrations. Besides lactic acid, acetaldehyde, diacetyl, acetoin, acetone, and 2-butanone contribute most to the typical aroma and flavor of yogurt. Extended storage of yogurt causes off-flavor development, which is mainly attributed to the production of undesired aldehydes and fatty acids during lipid oxidation. Further work on studying the volatile flavor compounds-matrix interactions, flavor release mechanisms, and the synergistic effect of flavor compounds, and on correlating the sensory properties of yogurt with the compositions of volatile flavor compounds are needed to fully elucidate yogurt aroma and flavor.
Mapping fault-controlled volatile migration in equatorial layered deposits on Mars
NASA Astrophysics Data System (ADS)
Okubo, C. H.
2006-12-01
Research in terrestrial settings shows that clastic sedimentary deposits are productive host rocks for underground volatile reservoirs because of their high porosity and permeability. Within such reservoirs, faults play an important role in controlling pathways for volatile migration, because faults act as either barriers or conduits. Therefore faults are important volatile concentrators, which means that evidence of geochemical, hydrologic and biologic processes are commonly concentrated at these locations. Accordingly, faulted sedimentary deposits on Mars are plausible areas to search for evidence of past volatile activity and associated processes. Indeed, evidence for volatile migration through layered sedimentary deposits on Mars has been documented in detail by the Opportunity rover in Meridiani Planum. Thus evidence for past volatile- driven processes that could have occurred within the protective depths of these deposits may now exposed at the surface and more likely found around faults. Owing to the extensive distribution of layered deposits on Mars, a major challenge in looking for and investigating evidence of past volatile processes in these deposits is identifying and prioritizing study areas. Toward this end, this presentation details initial results of a multiyear project to develop quantitative maps of latent pathways for fault-controlled volatile migration through the layered sedimentary deposits on Mars. Available MOC and THEMIS imagery are used to map fault traces within equatorial layered deposits, with an emphasis on proposed regions for MSL landing sites. These fault maps define regions of interest for stereo imaging by HiRISE and identify areas to search for existing MOC stereo coverage. Stereo coverage of identified areas of interest allows for the construction of digital elevation models and ultimately extraction of fault plane and displacement vector orientations. These fault and displacement data will be fed through numerical modeling techniques that are developed for exploring terrestrial geologic reservoirs. This will yield maps of latent pathways for volatile migration through the faulted layered deposits and provide insight into the geologic history of volatiles on Mars.
Limited effect of anthropogenic nitrogen oxides on Secondary Organic Aerosol formation
Zheng, Y.; Unger, N.; Hodzic, A.; ...
2015-08-28
Globally, secondary organic aerosol (SOA) is mostly formed from emissions of biogenic volatile organic compounds (VOCs) by vegetation, but can be modified by human activities as demonstrated in recent research. Specifically, nitrogen oxides (NO x = NO + NO 2) have been shown to play a critical role in the chemical formation of low volatility compounds. We have updated the SOA scheme in the global NCAR Community Atmospheric Model version 4 with chemistry (CAM4-chem) by implementing a 4-product Volatility Basis Set (VBS) scheme, including NO x-dependent SOA yields and aging parameterizations. The predicted organic aerosol amounts capture both the magnitudemore » and distribution of US surface annual mean measurements from the Interagency Monitoring of Protected Visual Environments (IMPROVE) network by 50 %, and the simulated vertical profiles are within a factor of two compared to Aerosol Mass Spectrometer (AMS) measurements from 13 aircraft-based field campaigns across different region and seasons. We then perform sensitivity experiments to examine how the SOA loading responds to a 50 % reduction in anthropogenic nitric oxide (NO) emissions in different regions. We find limited SOA reductions of 0.9 to 5.6, 6.4 to 12.0 and 0.9 to 2.8 % for global, the southeast US and the Amazon NO x perturbations, respectively. The fact that SOA formation is almost unaffected by changes in NO x can be largely attributed to buffering in chemical pathways (low- and high-NO x pathways, O 3 versus NO 3-initiated oxidation) and to offsetting tendencies in the biogenic versus anthropogenic SOA responses.« less
Smith, Alicia L; Perry, Jennifer J; Marshall, Julie A; Yousef, Ahmed E; Barringer, Sheryl A
2014-08-01
Peanut safety and quality were evaluated for different roasting technologies. Shelled raw peanuts were roasted using an oven at 163 to 204 °C, microwave, or oven and microwave combinations. The lethal effect of these treatments was investigated on peanuts inoculated with the Salmonella surrogate, Enterococcus faecium and stored at room temperature for 1 h, 24 h, or 7 d before roasting. Roasted peanut color, odor activity values (OAVs), descriptive sensory panel analysis, free fatty acid, and peroxide values were determined. Color and OAVs were also analyzed on 2 commercial peanut butters. OAVs were calculated using volatile levels quantified with selected ion flow tube mass spectrometry and known odor thresholds. All treatments resulted in a minimum of 3 log reduction of inoculated bacterial population. Resistance to the process was not influenced by storage of inoculated peanuts prior to treatment. Roasting by different methods produced equivalent, commercially ideal L* color. Based on the OAVs, treatments had similar volatiles important to flavor compared to the commercial samples. Descriptive sensory analysis showed no significant difference between the roasting treatments for most of the sensory attributes. Lipid oxidation was not significantly different between the roasting methods, displaying no evidence that roasting time or temperature affected lipid oxidation, when ideal color was produced. These results suggest that oven, microwave, or combination roasting should be sufficient to mitigate the threat of Salmonella contamination and produce similar color, OAVs, sensory attributes, and lipid oxidation results. © 2014 Institute of Food Technologists®
Parkison, Adam J.; Nelson, Andrew Thomas
2016-01-11
An analytical technique is presented with the goal of measuring reaction kinetics during steam oxidation reactions for three cases in which obtaining kinetics information often requires a prohibitive amount of time and cost. The technique presented relies on coupling thermogravimetric analysis (TGA) with a quantitative hydrogen measurement technique using quadrupole mass spectrometry (QMS). The first case considered is in differentiating between the kinetics of steam oxidation reactions and those for simultaneously reacting gaseous impurities such as nitrogen or oxygen. The second case allows one to independently measure the kinetics of oxide and hydride formation for systems in which both ofmore » these reactions are known to take place during steam oxidation. The third case deals with measuring the kinetics of formation for competing volatile and non-volatile oxides during certain steam oxidation reactions. In order to meet the requirements of the coupled technique, a methodology is presented which attempts to provide quantitative measurement of hydrogen generation using QMS in the presence of an interfering fragmentation species, namely water vapor. This is achieved such that all calibrations and corrections are performed during the TGA baseline and steam oxidation programs, making system operation virtually identical to standard TGA. Benchmarking results showed a relative error in hydrogen measurement of 5.7–8.4% following the application of a correction factor. Lastly, suggestions are made for possible improvements to the presented technique so that it may be better applied to the three cases presented.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parkison, Adam J.; Nelson, Andrew Thomas
An analytical technique is presented with the goal of measuring reaction kinetics during steam oxidation reactions for three cases in which obtaining kinetics information often requires a prohibitive amount of time and cost. The technique presented relies on coupling thermogravimetric analysis (TGA) with a quantitative hydrogen measurement technique using quadrupole mass spectrometry (QMS). The first case considered is in differentiating between the kinetics of steam oxidation reactions and those for simultaneously reacting gaseous impurities such as nitrogen or oxygen. The second case allows one to independently measure the kinetics of oxide and hydride formation for systems in which both ofmore » these reactions are known to take place during steam oxidation. The third case deals with measuring the kinetics of formation for competing volatile and non-volatile oxides during certain steam oxidation reactions. In order to meet the requirements of the coupled technique, a methodology is presented which attempts to provide quantitative measurement of hydrogen generation using QMS in the presence of an interfering fragmentation species, namely water vapor. This is achieved such that all calibrations and corrections are performed during the TGA baseline and steam oxidation programs, making system operation virtually identical to standard TGA. Benchmarking results showed a relative error in hydrogen measurement of 5.7–8.4% following the application of a correction factor. Lastly, suggestions are made for possible improvements to the presented technique so that it may be better applied to the three cases presented.« less
Torchio, Fabrizio; Giacosa, Simone; Vilanova, Mar; Río Segade, Susana; Gerbi, Vincenzo; Giordano, Manuela; Rolle, Luca
2016-12-01
The changes in the volatile composition of Moscato bianco grapes were evaluated during ripening. Grape berries were sampled for five weeks (16-20 °Brix) and sorted for each date in ten density classes (1.05-1.12g/cm(3)). The highest total concentration of free terpenes was found at 19.3 °Brix; however, total concentration of the bound fraction increased significantly throughout ripening. Response surface methodology was used to assess the simultaneous effect of sampling time and berry density on the volatile composition, which was satisfactorily fitted to regression models for some key terpene compounds. Total free and bound terpenes were more affected by grape density than by sampling date. The same behaviour was observed for free and bound linalool and bound nerol, whereas the stronger effect of sampling date was exhibited for bound t-rose oxide, c-rose oxide and geraniol. The results showed that the sampling strategy impacted strongly on the aroma quality of berries. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Yu, Huili; Zhang, Jieting
2012-04-01
In this study, formaldehyde, one of the major volatile organic compounds, is chosen as the target pollutant. The polytetrafluoroethylene (PTFE) filter, a low cost and commonly used material in industry, is employed as the substrate for nano TiO2 photocatalyst coating at room temperature, which has been scarcely used compared to ceramics or glass beads. Furthermore, a specific experimental set-up that is similar to actual air purification system is developed for the testing. The degradation mechanisms of photolysis reaction, adsorption and photocatalytic oxidation reaction on volatile organic compounds are present respectively. The influences of three aspects mentioned above are compared by a serial of experimental data. The high efficiency of volatile organic compounds on the degradation of formaldehyde is assured. Furthermore, the purification characteristics of three kinds of activated carbon filters and PTFE filter with nano TiO2 are evaluated with the method of fuzzy mathematics. In the end, the result shows that the filter with nano TiO2 has the optimal comprehensive performances.
NASA Astrophysics Data System (ADS)
Yu, Huili; Zhang, Jieting
2011-11-01
In this study, formaldehyde, one of the major volatile organic compounds, is chosen as the target pollutant. The polytetrafluoroethylene (PTFE) filter, a low cost and commonly used material in industry, is employed as the substrate for nano TiO2 photocatalyst coating at room temperature, which has been scarcely used compared to ceramics or glass beads. Furthermore, a specific experimental set-up that is similar to actual air purification system is developed for the testing. The degradation mechanisms of photolysis reaction, adsorption and photocatalytic oxidation reaction on volatile organic compounds are present respectively. The influences of three aspects mentioned above are compared by a serial of experimental data. The high efficiency of volatile organic compounds on the degradation of formaldehyde is assured. Furthermore, the purification characteristics of three kinds of activated carbon filters and PTFE filter with nano TiO2 are evaluated with the method of fuzzy mathematics. In the end, the result shows that the filter with nano TiO2 has the optimal comprehensive performances.
NASA Astrophysics Data System (ADS)
Zhang, Qi; Tan, Shengwei; Ren, Mengyuan; Yang, Hsiwen; Tang, Dian; Chen, Kongfa; Zhang, Teng; Jiang, San Ping
2018-04-01
Boron volatility is one of the most important properties of borosilicate-based glass sealants in solid oxide fuel cells (SOFCs), as boron contaminants react with lanthanum-containing cathodes, forming LaBO3 and degrading the activity of SOFCs. Here, we report that the reaction between the volatile boron and a La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) cathode during polarization can be significantly reduced by doping aluminoborosilicate glass with Gd2O3. Specifically, the Gd cations in glass with 2 mol.% Gd2O3 dissolve preferentially in the borate-rich environment to form more Gd-metaborate structures and promote the formation of calcium metaborate (CaB2O4); they also condense the B-O network after heat treatment, which suppresses poisoning by boron contaminants on the LSCF cathode. The results provide insights into design and development of a reliable sealing glass for SOFC applications.
Wang, Dong; Duan, Chang-Qing; Shi, Ying; Zhu, Bao-Qing; Javed, Hafiz Umer; Wang, Jun
2017-08-01
The conditions of sample pretreatments and HS-SPME for extracting volatile compounds from raisins were optimized, and the method was validated in the study. Free and glycosidically bound volatile compounds in three different fragrance intensities raisins were analysed using this method. There were 91 compounds identified, and 72, 26 and 8 of these compounds came from fresh grapes, the auto-oxidation of unsaturated fatty acids (UFAO) and the Maillard reaction, respectively. The aroma profiles of Thompson Seedless raisins (TSRs) and Centennial Seedless raisins (CSRs) were similar, while the floral, fruity, green and roasted aromas of CSRs were higher than those of TSRs due to the contributions of benzeneacetaldehyde, 2-pentylfuran, (E)-2-nonenal and 3-ethyl-2,5-dimethyl pyrazine. Decanal, rose oxide, geraniol, linalool and β-damascenone made the floral and fruity aromas of Zixiang Seedless raisins (ZSRs) greater than those in TSRs and CSRs, but the green and roasted aroma intensities of ZSRs were lower. Copyright © 2017 Elsevier Ltd. All rights reserved.
Dynamics of a magnetic skyrmionium driven by spin waves
NASA Astrophysics Data System (ADS)
Li, Sai; Xia, Jing; Zhang, Xichao; Ezawa, Motohiko; Kang, Wang; Liu, Xiaoxi; Zhou, Yan; Zhao, Weisheng
2018-04-01
A magnetic skyrmionium is a skyrmion-like structure, but carries a zero net skyrmion number which can be used as a building block for non-volatile information processing devices. Here, we study the dynamics of a magnetic skyrmionium driven by propagating spin waves. It is found that the skyrmionium can be effectively driven into motion by spin waves showing a tiny skyrmion Hall effect, whose mobility is much better than that of the skyrmion at the same condition. We also show that the skyrmionium mobility depends on the nanotrack width and the damping coefficient and can be controlled by an external out-of-plane magnetic field. In addition, we demonstrate that the skyrmionium motion driven by spin waves is inertial. Our results indicate that the skyrmionium is a promising building block for building spin-wave spintronic devices.
Lung, Ildikó; Soran, Maria-Loredana; Opriş, Ocsana; Truşcă, Mihail Radu Cătălin; Niinemets, Ülo; Copolovici, Lucian
2016-11-01
Exposure to sustained low intensity microwaves can constitute a stress for the plants, but its effects on plant secondary chemistry are poorly known. We studied the influence of GSM and WLAN-frequency microwaves on emissions of volatile organic compounds and content of essential oil in the aromatic plant Ocimum basilicum L. hypothesizing that microwave exposure leads to enhanced emissions of stress volatiles and overall greater investment in secondary compounds. Compared to the control plants, microwave irradiation led to decreased emissions of β-pinene, α-phellandrene, bornyl acetate, β-myrcene, α-caryophyllene and benzaldehyde, but increased emissions of eucalyptol, estragole, caryophyllene oxide, and α-bergamotene. The highest increase in emission, 21 times greater compared to control, was observed for caryophyllene oxide. The irradiation resulted in increases in the essential oil content, except for the content of phytol which decreased by 41% in the case of GSM-frequency, and 82% in the case of WLAN-frequency microwave irradiation. The strongest increase in response to WLAN irradiation, >17 times greater, was observed for hexadecane and octane contents. Comparisons of volatile compositions by multivariate analyses demonstrated a clear separation of different irradiance treatments, and according to the changes in the volatile emissions, the WLAN-frequency irradiation represented a more severe stress than the GSM-frequency irradiation. Overall, these results demonstrating important modifications in the emission rates, essential oil content and composition indicate that microwave irradiation influences the quality of herbage of this economically important spice plant. Copyright © 2016 Elsevier B.V. All rights reserved.
The effect of oxygen pressure on volatility and morphology of LaB6 single crystal cathodes
NASA Technical Reports Server (NTRS)
Davis, P. R.; Schwind, G. A.; Swanson, L. W.
1986-01-01
The effect of oxygen pressure on the volatility and morphology of single crystal LaB6 cathodes, heated to different temperatures, was investigated. At a temperature of 1600 K, an increase of oxygen pressure from 1 x 10 to the -8th torr to 1 x 10 to the -6th torr has led to a 100-fold enhancement in cathode volatility. The enhancement effect of oxygen pressure diminished with increasing temperature: at a cathode operating temperature of 1900 K, the volatility enhancement due to the same oxygen pressure was negligible. It was shown that the faceting frequently observed during evaporation of conically shaped emitters is due to a crystallograpic anisotropy of the oxidation rate of LaB6. No facet formation occurs during evaporation at oxygen pressures below -110 to the -8th torr.
DOE Office of Scientific and Technical Information (OSTI.GOV)
D’Ambro, Emma L.; Møller, Kristian H.; Lopez-Hilfiker, Felipe D.
2017-04-11
We report chamber measurements of secondary organic aerosol (SOA) formation from isoprene photochemical oxidation, where radical concentrations were systematically varied and the molecular composition of semi to low volatility gases and SOA were measured online. Using a detailed chemical mechanism, we find that to explain the behavior of low volatility products and SOA mass yields relative to input H2O2 concentrations, the second generation dihydroxy hydroperoxy peroxy radical (C5H11O6•) must undergo an intra-molecular H-shift with a net forward rate constant of order 0.1 s-1 or higher, consistent with quantum chemical calculations which suggest a net forward rate constant of 0.3-0.9 s-1.more » Furthermore, these calculations suggest the dominant product of this isomerization is a dihydroxy hydroperoxy epoxide (C5H10O5) which is expected to have a saturation vapor pressure ~2 orders of magnitude higher than the dihydroxy dihydroperoxide, ISOP(OOH)2 (C5H12O6), a major product of the peroxy radical reacting with HO2. These results provide strong constraints on the likely volatility distribution of isoprene oxidation products under atmospheric conditions and thus on the importance of non-reactive gas-particle partitioning of isoprene oxidation products as an SOA source.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, F.; Luo, G.; Pryor, S. C.
Recent laboratory chamber studies indicate a significant role for highly oxidized low-volatility organics in new particle formation (NPF), but the actual role of these highly oxidized low-volatility organics in atmospheric NPF remains uncertain. Here, particle size distributions (PSDs) measured in nine forest areas in North America are used to characterize the occurrence and intensity of NPF and to evaluate model simulations using an empirical formulation in which formation rate is a function of the concentrations of sulfuric acid and low-volatility organics from alpha-pinene oxidation (Nucl-Org), and using an ion-mediated nucleation mechanism (excluding organics) (Nucl-IMN). On average, NPF occurred on ~more » 70 % of days during March for the four forest sites with springtime PSD measurements, while NPF occurred on only ~ 10 % of days in July for all nine forest sites. Both Nucl-Org and Nucl-IMN schemes capture the observed high frequency of NPF in spring, but the Nucl-Org scheme significantly overpredicts while the Nucl-IMN scheme slightly underpredicts NPF and particle number concentrations in summer. Statistical analyses of observed and simulated ultrafine particle number concentrations and frequency of NPF events indicate that the scheme without organics agrees better overall with observations. The two schemes predict quite different nucleation rates (including their spatial patterns), concentrations of cloud condensation nuclei, and aerosol first indirect radiative forcing in North America, highlighting the need to reduce NPF uncertainties in regional and global earth system models.« less
Diagnosis of aged prescribed burning plumes impacting an urban area.
Lee, Sangil; Kim, Hyeon K; Yan, Bo; Cobb, Charles E; Hennigan, Chris; Nichols, Sara; Chamber, Michael; Edgerton, Eric S; Jansen, John J; Hu, Yongtao; Zheng, Mei; Weber, Rodney J; Russell, Armistead G
2008-03-01
An unanticipated wind shift led to the advection of plumes from two prescribed burning sites that impacted Atlanta, GA, producing a heavy smoke event late in the afternoon on February 28, 2007. Observed PM2.5 concentrations increased to over 140 microg/m3 and O3 concentrations up to 30 ppb in a couple of hours, despite the late hour in February when photochemistry is less vigorous. A detailed investigation of PM2.5 chemical composition and source apportionment analysis showed that the increase in PM2.5 mass was driven mainly by organic carbon (OC). However, both results from source apportionment and an observed nonlinear relationship between OC and PM2.5 potassium (K) indicate that the increased OC was not due solely to primary emissions. Most of the OC was water-soluble organic carbon (WSOC) and was dominated by hydrophobic compounds. The data are consistent with large enhancements in isoprenoid (isoprene and monoterpenes) and other volatile organic compounds emitted from prescribed burning that led to both significant O3 and secondary organic aerosol (SOA) production. Formation of oligomers from oxidation products of isoprenoid compounds or condensation of volatile organic compounds (VOCs) with multiple functional groups emitted during prescribed burning appears to be a major component of the secondary organic contributor of the SOA. The results from this study imply that enhanced emissions due to the fire itself and elevated temperature in the burning region should be considered in air quality models (e.g., receptor and emission-based models) to assess impacts of prescribed burning emissions on ambient air quality.
Diffuse degassing through magmatic arc crust (Invited)
NASA Astrophysics Data System (ADS)
Manning, C. E.; Ingebritsen, S.
2013-12-01
The crust of magmatic arcs plays an important role in the volatile cycle at convergent margins. The fluxes of subduction- and arc-related volatiles such as H2O, C, Cl, S are poorly known. It is commonly believed that gases emitted from volcanoes account nearly quantitatively for the volatiles that cross the Moho beneath the volcanic front. This volcanic degassing may occur during eruption, emission from summit fumaroles and hot springs, or more 'diffuse' delivery to volcano flanks. However, several observations suggest that volatiles also transit arc crust by even more diffuse pathways, which could account for significant volatile loss on long time and length scales. Active metamorphism of arc crust produces crustal-scale permeability that is sufficient to transport a large volume of subducted volatiles (Ingebritsen and Manning, 2002, PNAS, 99, 9113). Arc magmas may reach volatile saturation deeper than the maximum depths recorded by melt inclusions (e.g., Blundy et al., 2010, EPSL, 290, 289), and exhumed sections of magmatic arc crust typically record voluminous plutons reflecting magma crystallization and volatile loss at depths well below the volcanic edifice. At shallower depths, topographically driven meteoric groundwater systems can absorb magmatic volatiles and transport them laterally by tens of km (e.g., James et al., 1999, Geology, 27, 823; Evans et al., 2002, JVGR, 114, 291). Hydrothermal ore deposits formed at subvolcanic depths sequester vast amounts of volatiles, especially sulfur, that are only returned to the surface on the time scale of exhumation and/or erosion. Water-rich metamorphic fluids throughout the crust can readily carry exsolved volcanic gases because the solubilities of volatile bearing minerals such as calcite, anhydrite, and fluorite are quite high at elevated pressure and temperature (e.g., Newton and Manning, 2002, Am Min, 87, 1401; 2005, J Pet, 46, 701; Tropper and Manning, 2007, Chem Geol, 242, 299). Taken together, these considerations dictate that volatile entrainment in the metamorphic/meteoric fluid-flow system represents a highly diffuse pathway for degassing through arc crust which must be taken into account in models of volatile cycling at convergent margins.
Lightning-induced nitrogen oxides (LNOX), in the presence of sunlight, volatile organic compounds and water, can be a relatively large but uncertain source for ozone (O3) and hydroxyl radical (OH) in the atmosphere. Using lightning flash data from the National Lightning Detection...
Ozone is produced by chemical interactions involving nitrogen oxides (NOx) and Volatile Organic Compounds (VOCs) in the presence of sunlight. At high concentrations, ground-level ozone has been shown to be harmful to human health and the environment. It has been reco...
Greed, fear and stock market dynamics
NASA Astrophysics Data System (ADS)
Westerhoff, Frank H.
2004-11-01
We present a behavioral stock market model in which traders are driven by greed and fear. In general, the agents optimistically believe in rising markets and thus buy stocks. But if stock prices change too abruptly, they panic and sell stocks. Our model mimics some stylized facts of stock market dynamics: (1) stock prices increase over time, (2) stock markets sometimes crash, (3) stock prices show little pair correlation between successive daily changes, and (4) periods of low volatility alternate with periods of high volatility. A strong feature of the model is that stock prices completely evolve according to a deterministic low-dimensional nonlinear law of motion.
Volatiles and water- and fat-soluble precursors of Saanen goat and cross Suffolk lamb flavour.
Madruga, Marta; Dantas, Ingrid; Queiroz, Angela; Brasil, Luciana; Ishihara, Yuri
2013-02-07
This paper evaluates the concentrations of water- and fat-soluble precursors of meat flavour, with the aim of characterising the effect of species on the volatile profile of grilled goat and lamb meat. Compared to goat, lamb meat had higher levels of saturated fatty acids--SFA, monounsaturated fatty acids--MUFA and polyunsaturated fatty acids--PUFA and similar levels of sugars and free amino acids, except for lysine and glycine, which were higher in goat. Major differences were detected in lipid-derived volatiles; only pyrazine, thiazole, and some Strecker aldehydes were at different concentrations in these species. Volatile compounds derived from the oxidation of linoleic acid were at higher levels in meat from lamb due to the higher concentration of the latter, while compounds formed from α-linolenic acid were at higher levels in goat. It can be concluded that lamb meat has a stronger flavour profile compared to goat meat because it has the highest concentrations of lipid-derived volatile compounds, primarily straight saturated alkanals, pyrazines and thiazole.
Park, Byeoung-Soo; Lee, Kwang-Geun; Shibamoto, Takayuki; Lee, Sung-Eun; Takeoka, Gary R
2003-01-01
Volatiles were isolated from the dried inner bark of Tabebuia impetiginosa using steam distillation under reduced pressure followed by continuous liquid-liquid extraction. The extract was analyzed by gas chromatography and gas chromatography-mass spectrometry. The major volatile constituents of T. impetiginosa were 4-methoxybenzaldehyde (52.84 microg/g), 4-methoxyphenol (38.91 microg/g), 5-allyl-1,2,3-trimethoxybenzene (elemicin; 34.15 microg/g), 1-methoxy-4-(1E)-1-propenylbenzene (trans-anethole; 33.75 microg/g), and 4-methoxybenzyl alcohol (30.29 microg/g). The antioxidant activity of the volatiles was evaluated using two different assays. The extract exhibited a potent inhibitory effect on the formation of conjugated diene hydroperoxides (from methyl linoleate) at a concentration of 1000 microg/mL. The extract also inhibited the oxidation of hexanal for 40 days at a level of 5 microg/mL. The antioxidative activity of T. impetiginosa volatiles was comparable with that of the well-known antioxidants, alpha-tocopherol, and butylated hydroxytoluene.
Volatile compound profile of sous-vide cooked lamb loins at different temperature-time combinations.
Roldán, Mar; Ruiz, Jorge; Del Pulgar, José Sánchez; Pérez-Palacios, Trinidad; Antequera, Teresa
2015-02-01
Lamb loins were subjected to sous-vide cooking at different combinations of temperature (60 and 80°C) and time (6 and 24h) to assess the effect on the volatile compound profile. Major chemical families in cooked samples were aliphatic hydrocarbons and aldehydes. The volatile compound profile in sous-vide cooked lamb loin was affected by the cooking temperature and time. Volatile compounds arising from lipid oxidation presented a high abundance in samples cooked at low or moderate cooking conditions (60°C for 6 and 24h, 80°C for 6h), while a more intense time and temperature combination (80°C for 24h) resulted on a higher concentration of volatile compounds arising from Strecker degradations of amino acids, as 2-methylpropanal and 3-methylbutanal. Therefore, sous-vide cooking at moderately high temperatures for long times would result in the formation of a stronger meaty flavor and roast notes in lamb meat. Copyright © 2014 Elsevier Ltd. All rights reserved.
Biogenic Emission Inventory System (BEIS)
Biogenic Emission Inventory System (BEIS) estimates volatile organic compound (VOC) emissions from vegetation and nitric oxide (NO) emission from soils. Recent BEIS development has been restricted to the SMOKE system
Generation of volatile compounds in litchi wine during winemaking and short-term bottle storage.
Wu, Yuwen; Zhu, Baoqing; Tu, Cui; Duan, Changqing; Pan, Qiuhong
2011-05-11
Evolution of volatile components during litchi (Litchi chinensis Sonn.) winemaking was monitored, and aroma profiles of litchi wines bottle aged for 5 months at ambient temperature (25-28 °C) and low temperature (8-10 °C) were compared via headspace solid phase microextraction (SPME) coupled with gas chromatography-mass spectrometry (GC-MS). The majority of terpenoids deriving from litchi juice decreased, even disappeared along with alcoholic fermentation, while terpenol oxides, ethers, and acetates came into being and increased. Ethyl octanote, isoamyl acetate, ethyl hexanoate, ethyl butanoate, cis-rose oxide, and trans-rose oxide had the highest odor activity values (OAVs) in young litchi wines. Six aromatic series were obtained by grouping OAVs of odor-active compounds with similar odor descriptions to establish the aroma profile for young litchi wines, and floral and fruity attributes were two major aroma series. Compared to ambient temperature when bottle aging, lower temperature benefited key aroma retention and expectantly extended the shelf life of young litchi wines.
Simultaneous photodegradation of VOC mixture by TiO2 powders.
Stucchi, Marta; Galli, Federico; Bianchi, Claudia L; Pirola, Carlo; Boffito, Daria C; Biasioli, Franco; Capucci, Valentino
2018-02-01
Volatile and semi volatile organic compounds' concentration have dramatically increased in indoor environments in recent years. UV light promotes titanium dioxide, which oxidises various molecules; however, most of the studies report the degradation of a single VOC. Here, we investigate the photo-oxidation of 17 molecules in mixture to have a realistic test of TiO 2 efficacy. We compare P25, a nanometric catalyst, and 1077, a micrometric sample, that poses less health concerns. A proton-transfer-reaction mass spectrometer measured online the concentration of all the pollutants simultaneously. Aldehydes compete for the adsorption on both the catalyst's active sites and thus they degrade 70% and 55% with P25 and 1077 respectively. Considering the single pollutant oxidation, instead, aldehydes fully oxidize. Even though benzene is recalcitrant to degradation, P25 and 1077 reduced toluene's concentration to 97% and 96% in 55 min, respectively. Acetonitrile is refractory to photocatalysis. Copyright © 2017. Published by Elsevier Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bom, N. M., E-mail: nicolau.bom@ufrgs.br; Soares, G. V.; Hartmann, S.
2014-10-06
Deuterium (D) incorporation in GeO{sub 2}/Ge structures following D{sub 2} annealing was investigated. Higher D concentrations were obtained for GeO{sub 2}/Ge samples in comparison to their SiO{sub 2}/Si counterparts annealed in the same conditions. Oxygen vacancies produced during the annealing step in D{sub 2} constitute defect sites for D incorporation, analogous to defects at the SiO{sub 2}/Si interfacial region. Besides D incorporation, volatilization of the oxide layer is also observed as a consequence of D{sub 2} annealing, especially in the high temperature regime of the present study (>450 °C). In parallel to this volatilization, the stoichiometry and chemical structure of remnantmore » oxide are modified as well. These results evidence the broader impact of forming gas annealing in dielectric/Ge structures with respect to SiO{sub 2}/Si counterparts.« less
Severini, C; Gomes, T; De Pilli, T; Romani, S; Massini, R
2000-10-01
Shelled almonds of two Italian varieties, Romana and Pizzuta, peeled and unpeeled, were roasted and packed under different conditions: air (control), vacuum, and Maillard reaction volatile compounds (MRVc) derived from the roasting process. Samples were stored for approximately 8 months at room temperature, without light, and, at regular intervals, were collected and analyzed to evaluate the progress of lipid oxidation. Peroxide values, triglyceride oligopolymers, and oxidized triglycerides were evaluated during the storage time. Results showed that, although the MRVc atmosphere did not protect the lipid fraction of almonds as well as the vacuum condition; nevertheless, it was more protective than the control atmosphere, showing an antioxidant effect. The effect of the natural coating was a strong protection against lipid oxidation; in fact, only the unpeeled samples showed peroxide values lower than the threshold of acceptability (25 milliequiv of O(2)/kg of oil). Moreover, at the end of the storage period, Pizzuta almonds showed a greater deterioration than those of the Romana variety.
Ichimura, Takashi; Fujiwara, Kohei; Tanaka, Hidekazu
2014-07-24
Controlling the electronic properties of functional oxide materials via external electric fields has attracted increasing attention as a key technology for next-generation electronics. For transition-metal oxides with metallic carrier densities, the electric-field effect with ionic liquid electrolytes has been widely used because of the enormous carrier doping capabilities. The gate-induced redox reactions revealed by recent investigations have, however, highlighted the complex nature of the electric-field effect. Here, we use the gate-induced conductance modulation of spinel ZnxFe₃₋xO₄ to demonstrate the dual contributions of volatile and non-volatile field effects arising from electronic carrier doping and redox reactions. These two contributions are found to change in opposite senses depending on the Zn content x; virtual electronic and chemical field effects are observed at appropriate Zn compositions. The tuning of field-effect characteristics via composition engineering should be extremely useful for fabricating high-performance oxide field-effect devices.
NASA Astrophysics Data System (ADS)
Wang, Dawei; Li, Zhiwei; Zhou, Jian; Fang, Hong; He, Xiang; Jena, Puru; Zeng, Jing-Bin; Wang, Wei-Ning
2018-03-01
The detection and removal of volatile organic compounds (VOCs) are of great importance to reduce the risk of indoor air quality concerns. This study reports the rational synthesis of a dual-functional Janus nanostructure and its feasibility for simultaneous detection and removal of VOCs. The Janus nanostructure was synthesized via an anisotropic growth method, composed of plasmonic nanoparticles, semiconductors, and metal organic frameworks (e.g., Au@ZnO@ZIF-8). It exhibits excellent selective detection to formaldehyde (HCHO, as a representative VOC) at room temperature over a wide range of concentrations (from 0.25 to 100 ppm), even in the presence of water and toluene molecules as interferences. In addition, HCHO was also found to be partially oxidized into non-toxic formic acid simultaneously with detection. The mechanism underlying this technology was unraveled by both experimental measurements and theoretical calculations: ZnO maintains the conductivity, while ZIF-8 improves the selective gas adsorption; the plasmonic effect of Au nanorods enhances the visible-light-driven photocatalysis of ZnO at room temperature. [Figure not available: see fulltext.
Wang, Dawei; Li, Zhiwei; Zhou, Jian; ...
2017-10-09
The detection and removal of volatile organic compounds (VOCs) are of great importance to reduce the risk of indoor air quality concerns. Our study reports the rational synthesis of a dual-functional Janus nanostructure and its feasibility for simultaneous detection and removal of VOCs. The Janus nanostructure was synthesized via an anisotropic growth method, composed of plasmonic nanoparticles, semiconductors, and metal organic frameworks (e.g., Au@ZnO@ZIF-8). It exhibits excellent selective detection to formaldehyde (HCHO, as a representative VOC) at room temperature over a wide range of concentrations (from0.25 to 100 ppm), even in the presence of water and toluene molecules as interferences.more » Additionally, HCHOwas also found to be partially oxidized into non-toxic formic acid simultaneously with detection. The mechanism underlying this technology was unraveled by both experimental measurements and theoretical calculations: ZnO maintains the conductivity, while ZIF-8 improves the selective gas adsorption; the plasmonic effect of Au nanorods enhances the visible-light-driven photocatalysis of ZnO at room temperature.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Dawei; Li, Zhiwei; Zhou, Jian
The detection and removal of volatile organic compounds (VOCs) are of great importance to reduce the risk of indoor air quality concerns. Our study reports the rational synthesis of a dual-functional Janus nanostructure and its feasibility for simultaneous detection and removal of VOCs. The Janus nanostructure was synthesized via an anisotropic growth method, composed of plasmonic nanoparticles, semiconductors, and metal organic frameworks (e.g., Au@ZnO@ZIF-8). It exhibits excellent selective detection to formaldehyde (HCHO, as a representative VOC) at room temperature over a wide range of concentrations (from0.25 to 100 ppm), even in the presence of water and toluene molecules as interferences.more » Additionally, HCHOwas also found to be partially oxidized into non-toxic formic acid simultaneously with detection. The mechanism underlying this technology was unraveled by both experimental measurements and theoretical calculations: ZnO maintains the conductivity, while ZIF-8 improves the selective gas adsorption; the plasmonic effect of Au nanorods enhances the visible-light-driven photocatalysis of ZnO at room temperature.« less
Schrenk, Matthew O; Kelley, Deborah S; Bolton, Sheryl A; Baross, John A
2004-10-01
The recently discovered Lost City Hydrothermal Field (LCHF) represents a new type of submarine hydrothermal system driven primarily by exothermic serpentinization reactions in ultramafic oceanic crust. Highly reducing, alkaline hydrothermal environments at the LCHF produce considerable quantities of hydrogen, methane and organic molecules through chemo- and biosynthetic reactions. Here, we report the first analyses of microbial communities inhabiting carbonate chimneys awash in warm, high pH fluids at the LCHF and the predominance of a single group of methane-metabolizing Archaea. The predominant phylotype, related to the Methanosarcinales, formed tens of micrometre-thick biofilms in regions adjacent to hydrothermal flow. Exterior portions of active structures harboured a diverse microbial community composed primarily of filamentous Eubacteria that resembled sulphide-oxidizing species. Inactive samples, away from regions of hydrothermal flow, contained phylotypes related to pelagic microorganisms. The abundance of organisms linked to the volatile chemistry at the LCHF hints that similar metabolic processes may operate in the subseafloor. These results expand the range of known geological settings that support biological activity to include submarine hydrothermal systems that are not dependent upon magmatic heat sources.
Temperature-dependent mechanisms in the Fenton-driven chemical oxidation of methyl tert-butyl ether (MTBE)-spent granular activated carbon (GAC) was investigated. Prior to iron (Fe) amendment to the GAC, acid-treatment altered the surface chemistry of the GAC and lowered the pH ...
Temperature-dependent mechanisms in the Fenton-driven chemical oxidation of methyl tert-butyl ether (MTBE)-spent granular activated carbon (GAC) was investigated. Prior to iron (Fe) amendment to the GAC, acid-treatment altered the surface chemistry of the GAC and lowered the p...
Volatile organic compounds and isoprene oxidation products at a temperate deciduous forest site
NASA Astrophysics Data System (ADS)
Helmig, Detlev; Greenberg, Jim; Guenther, Alex; Zimmerman, Pat; Geron, Chris
1998-09-01
Biogenic volatile organic compounds (BVOCs) and their role in atmospheric oxidant formation were investigated at a forest site near Oak Ridge, Tennessee, as part of the Nashville Southern Oxidants Study (SOS) in July 1995. Of 98 VOCs detected, a major fraction were anthropogenic VOCs such as chlorofluorocarbons (CFCs), alkanes, alkenes and aromatic compounds. Isoprene was the dominant BVOC during daytime. Primary products from BVOC oxidation were methylvinylketone, methacrolein and 3-methylfuran. Other compounds studied include the BVOCs α-pinene, camphene, β-pinene, p-cymene, limonene and cis-3-hexenyl acetate and a series of light alkanes, aromatic hydrocarbons and seven of the CFCs. The correlation of meteorological parameters, with the mixing ratios of these different compounds, reveals information on atmospheric oxidation processes and transport. Long-lived VOCs show very steady mixing ratio time series. Regionally and anthropogenically emitted VOCs display distinct diurnal cycles with a strong mixing ratio decrease in the morning from the breakup of the nocturnal boundary layer. Nighttime mixing ratio increases of CFCs and anthropogenic VOCs are suspected to derive from emissions within the Knoxville urban area into the shallow nocturnal boundary layer. In contrast, the time series of BVOCs and their oxidation products are determined by a combination of emission control, atmospheric oxidation and deposition, and boundary layer dynamics. Mixing ratio time series data for monoterpenes and cis-3-hexenyl acetate suggest a temporarily emission rate increase during and after heavy rain events. The isoprene oxidation products demonstrate differences in the oxidation pathways during night and day and in their dry and wet deposition rates.
NASA Astrophysics Data System (ADS)
Zhang, Q.; Zhou, S.; Collier, S.; Jaffe, D. A.; Onasch, T. B.; Kleinman, L. I.; Sedlacek, A. J., III
2017-12-01
Biomass burning (BB) is one of the most important contributors to atmospheric aerosols on a global scale and the environmental impacts of BB aerosols are strongly correlated with their properties. In this study, we investigated the characteristics and aging of aerosols from wildfires in the Western US from the Mt. Bachelor Observatory (MBO; 2700 m a.s.l.) in Central Oregon, as part of the DOE Biomass Burning Observation Project (BBOP) conducted in summer 2013. Plumes transported from forest fires in N California and SW Oregon were frequently observed and organic aerosol (OA) was a dominant component of the smoke. Three types of BBOA were identified: a less oxidized (O/C = 0.35), semivolatile BBOA-1 ( 20% of OA mass) and two more oxidized BBOAs (BBOA-2 and BBOA-3). BBOA-1 was enriched of levoglucosan and was chemically similar to POA in fresh BB emissions. BBOA-2 was more oxidized (O/C = 0.6) and displayed tight correlations with tracers for carboxylic acids. BBOA-3 was highly oxidized (O/C = 1.06; 31% of OA mass), contained no levoglucosan, showed very low volatility, and had a similar mass spectrum as low-volatility oxygenated OA (LV-OOA) commonly observed in regional air masses. This finding highlights the possibility that the influence of BB emission could be underestimated in those regional air masses characterized by the presence of highly oxidized BBOA. Increases of BBOA oxidation occurred in more aged fire plumes but the enhancement ratios of BBOA relative to CO were nearly constant independent of plume aging. The chemical evolution of BBOA was investigated for fire plumes that originated from a single fire source during a continuous 36-hr sampling period. The degree of oxidation of BBOA and the mass fraction of aged BBOA (= BBOA-2 + BBOA-3) in smokes correlated positively with the cumulative solar irradiance during transport, but the OA/CO ratios were similar between plumes transported during daytime and those in the dark. A possible explanation is that BB SOA formation was balanced by BBOA volatilization, leading to almost no net amount of OA mass added during aging in wildfire plumes. This study also revealed that aged BBOA sampled at MBO were considerably more oxidized than aged BBOA from laboratory studies where fresh BB emissions were subjected to similar level of OH oxidation.
Zhao, Bin; Wang, Shuxiao; Donahue, Neil M.; Jathar, Shantanu H.; Huang, Xiaofeng; Wu, Wenjing; Hao, Jiming; Robinson, Allen L.
2016-01-01
Secondary organic aerosol (SOA) is one of the least understood constituents of fine particles; current widely-used models cannot predict its loadings or oxidation state. Recent laboratory experiments demonstrated the importance of several new processes, including aging of SOA from traditional precursors, aging of primary organic aerosol (POA), and photo-oxidation of intermediate volatility organic compounds (IVOCs). However, evaluating the effect of these processes in the real atmosphere is challenging. Most models used in previous studies are over-simplified and some key reaction trajectories are not captured, and model parameters are usually phenomenological and lack experimental constraints. Here we comprehensively assess the effect of organic aerosol (OA) aging and intermediate-volatility emissions on regional-scale OA pollution with a state-of-the-art model framework and experimentally constrained parameters. We find that OA aging and intermediate-volatility emissions together increase OA and SOA concentrations in Eastern China by about 40% and a factor of 10, respectively, thereby improving model-measurement agreement significantly. POA and IVOCs both constitute over 40% of OA concentrations, and IVOCs constitute over half of SOA concentrations; this differs significantly from previous apportionment of SOA sources. This study facilitates an improved estimate of aerosol-induced climate and health impacts, and implies a shift from current fine-particle control policies. PMID:27350423
2018-01-01
The objectives of the present study were: (a) to evaluate the aroma evolution of raw lamb packaged in multi-layer coating film and stored at 4 ± 1 °C, with respect to storage time and (b) to investigate whether specific aldehyde ratios could serve as markers of lamb meat freshness and degree of oxidation. Volatile compounds were determined using headspace solid phase microextraction coupled to gas chromatography/mass spectrometry. Results showed that the most dominant volatiles were 2,2,4,6,6-pentamethyl-heptane, hexanal, 1-octen-3-ol, 1-hexanol, carbon disulfide and p-cymene. Volatile compound content was increased during storage time. However, statistically significant differences were recorded only for hexanal, heptanal, and nonanal (p < 0.05). Additionally, the evolution of aldehydes during storage recorded a positive Pearson’s correlation (r) (p < 0.05), whereas hexanal to nonanal, heptanal to nonanal, octanal to nonanal ratios, along with the sum of aldehydes to nonanal ratio, were positively correlated (r = 0.83–1.00) with the degree of oxidation (mg malonic dialdehyde per kg of lamb meat). A perfect Pearson’s correlation (r = 1) was obtained for the ratio hexanal to nonanal. Therefore, this ratio is proposed as an indicator of lamb meat freshness and overall quality. PMID:29547528
The important role of water in growth of monolayer transition metal dichalcogenides
NASA Astrophysics Data System (ADS)
Kastl, Christoph; Chen, Christopher T.; Kuykendall, Tevye; Shevitski, Brian; Darlington, Thomas P.; Borys, Nicholas J.; Krayev, Andrey; Schuck, P. James; Aloni, Shaul; Schwartzberg, Adam M.
2017-06-01
2D transition metal dichalcogenides (TMDs) are commonly grown by chemical vapor deposition using transition metal oxides as solid precursors. Despite the widespread use of this technique, challenges in reproducibility, coverage, and material quality are pervasive, suggestive of unknown and uncontrolled process parameters. In this communication, we demonstrate the impact of water vapor on this growth process. Our results show a direct correlation between gas phase water content and the morphology of TMD films. In particular, we show that the presence of water enhances volatilization, and therefore the vapor transport of tungsten and molybdenum oxide. Surprisingly, we find that water not only plays an important role in volatilization but is also compatible with TMD growth. In fact, carefully controlled humidity can consistently produce high quality, luminescent materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jokinen, Tuija; Berndt, Torsten; Makkonen, Risto
2015-06-09
Extremely low volatility organic compounds (ELVOC) are suggested to promote aerosol particle formation and cloud condensation nuclei (CCN) production in the atmosphere. We show that the capability of biogenic VOC (BVOC) to produce ELVOC depends strongly on their chemical structure and relative oxidant levels. BVOC with an endocyclic double bond, representative emissions from, e.g., boreal forests, efficiently produce ELVOC from ozonolysis. Compounds with exocyclic double bonds or acyclic compounds including isoprene, emission representative of the tropics, produce minor quantities of ELVOC, and the role of OH radical oxidation is relatively larger. Implementing these findings into a global modeling framework showsmore » that detailed assessment of ELVOC production pathways is crucial for understanding biogenic secondary organic aerosol and atmospheric CCN formation.« less
Highly efficient and robust molecular ruthenium catalysts for water oxidation.
Duan, Lele; Araujo, Carlos Moyses; Ahlquist, Mårten S G; Sun, Licheng
2012-09-25
Water oxidation catalysts are essential components of light-driven water splitting systems, which could convert water to H(2) driven by solar radiation (H(2)O + hν → 1/2O(2) + H(2)). The oxidation of water (H(2)O → 1/2O(2) + 2H(+) + 2e(-)) provides protons and electrons for the production of dihydrogen (2H(+) + 2e(-) → H(2)), a clean-burning and high-capacity energy carrier. One of the obstacles now is the lack of effective and robust water oxidation catalysts. Aiming at developing robust molecular Ru-bda (H(2)bda = 2,2'-bipyridine-6,6'-dicarboxylic acid) water oxidation catalysts, we carried out density functional theory studies, correlated the robustness of catalysts against hydration with the highest occupied molecular orbital levels of a set of ligands, and successfully directed the synthesis of robust Ru-bda water oxidation catalysts. A series of mononuclear ruthenium complexes [Ru(bda)L(2)] (L = pyridazine, pyrimidine, and phthalazine) were subsequently synthesized and shown to effectively catalyze Ce(IV)-driven [Ce(IV) = Ce(NH(4))(2)(NO(3))(6)] water oxidation with high oxygen production rates up to 286 s(-1) and high turnover numbers up to 55,400.
Cheepsattayakorn, Attapon; Cheepsattayakorn, Ruangrong
2013-01-01
Today, exhaled nitric oxide has been studied the most, and most researches have now focusd on asthma. More than a thousand different volatile organic compounds have been observed in low concentrations in normal human breath. Alkanes and methylalkanes, the majority of breath volatile organic compounds, have been increasingly used by physicians as a novel method to diagnose many diseases without discomforts of invasive procedures. None of the individual exhaled volatile organic compound alone is specific for disease. Exhaled breath analysis techniques may be available to diagnose and monitor the diseases in home setting when their sensitivity and specificity are improved in the future. PMID:24151617
Tomographic location of potential melt-bearing phenocrysts in lunar glass spherules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ebel, D.S.; Fogel, R.A.; Rivers, M.L.
2005-02-04
Apollo 17 orange glass spherules contain olivine phenocrysts with melt inclusions from depth. Tomography (<2micron/pxl) of >200 spherules located 1 phenocryst. We will try to find melt inclusions and obtain original magma volatiles and compositions. In 1971, Apollo 17 astronauts collected a 10 cm soil sample (74220) comprised almost entirely of orange glass spherules. Below this, a double drive-tube core sampled a 68 cm thick horizon comprised of orange glass and black beads (crystallized equivalents of orange glass). Primitive lunar glass spherules (e.g.-A17 orange glasses) are thought to represent ejecta from lunar mare fire fountains. The fire-fountains were apparently drivenmore » by a combination of C-O gas exsolution from orange glass melt and the oxidation of graphite. Upon eruption, magmas lost their volatiles (e.g., S, CO, CO{sub 2}) to space. Evidence for volatile escape remains as volatile-rich coatings on the exteriors of many spherules. Moreover, it showed that Type I and II Fe-Ni-rich metal particles found within orange glass olivine phenocrysts, or free-floating in the glass itself, are powerful evidence for the volatile driving force for lunar fire fountains. More direct evidence for the volatile mechanism has yet to be uncovered. Issues remaining include: the exact composition of magmatic volatiles; the hypothesized existence of graphite in the magma; the oxygen fugacity of the magma and of the lunar interior. In 1996 reported a single {approx}450 micron, equant olivine phenocryst, containing four glassy melt inclusions (or inclusion cores), the largest {approx}30micron in size, in a thin section of the 74001/2 drill core. The melt is assumed to sample the parent magma of the lunar basalts at depth, evidenced by the S content of the inclusion (600 ppm) which is 400 ppm greater than that of the orange glass host. Such melts potentially contain a full complement of the volatile components of the parent magma, which can be analyzed by infrared spectroscopy. Although the A17 orange glass magma is thought to derive from {approx} 400 km depth, the calculations imply a 4 km depth of graphite oxidation (and melt saturation in C-O volatiles) during ascent. We have imaged several hundred similar orange glass spherules, from sample 74220,764, using synchrotron x-ray computer-aided microtomography (XRCMT). Our goals: (1) locate similar phenocrysts containing melt inclusions; (2) analyze phenocrysts to understand the evolution of the magma; (3) analyze melt and fluid inclusions using EPMA and FTIR to obtain direct evidence of magmatic volatiles and pristine bulk compositions.« less
Caetano-Silva, Maria Elisa; Barros Mariutti, Lilian Regina; Bragagnolo, Neura; Bertoldo-Pacheco, Maria Teresa; Netto, Flavia Maria
2018-02-28
Food fortification with iron may favor lipid oxidation in both food matrices and the human body. This study aimed at evaluating the effect of peptide-iron complexation on lipid oxidation catalyzed by iron, using oil-in-water (O/W) emulsions as a model system. The extent of lipid oxidation of emulsions containing iron salts (FeSO 4 or FeCl 2 ) or iron complexes (peptide-iron complexes or ferrous bisglycinate) was evaluated during 7 days, measured as primary (peroxide value) and secondary products (TBARS and volatile compounds). Both salts catalyzed lipid oxidation, leading to peroxide values 2.6- to 4.6-fold higher than the values found for the peptide-iron complexes. The addition of the peptide-iron complexes resulted in the formation of lower amounts of secondary volatiles of lipid oxidation (up to 78-fold) than those of iron salts, possibly due to the antioxidant activity of the peptides and their capacity to keep iron apart from the lipid phase, since the iron atom is coordinated and takes part in a stable structure. The peptide-iron complexes showed potential to reduce the undesirable sensory changes in food products and to decrease the side effects related to free iron and the lipid damage of cell membranes in the organism, due to the lower reactivity of iron in the complexed form.
Implementation of an evaporative oxidation process for treatment of aqueous mixed wastes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bounini, L.; Stelmach, J.
1995-12-31
The US Department of Energy and Rust Geotech conducted treatability tests for mixed wastes with a pilot-scale evaporative oxidation unit known as the mini-PO*WW*ER unit. In the evaporative oxidation process, water and volatile organic compounds are vaporized and passed through a catalytic oxidizer to destroy the organic compounds. Nonvolatiles are concentrated into a brine that may be solidified. Ten experiment runs were made. The oxidation of the unit was calculated using total organic carbon analyses of feed and composite product condensate samples. These data indicate that the technology is capable of achieving oxidation efficiencies as high as 99.999 percent onmore » mixed wastes when the bed temperature is near 600 C, residence times are about 0.2 seconds, and adequate oxygen flow is maintained. Concentrations of the tested volatile organic compounds in the product-condensate composite samples were well below standards for wastewaters. Combined gross alpha and beta radioactivity levels in the samples were below detection limites of 12.5 pico-Cu/l, so the liquid would not qualify as a radioactive waste. Thus, the product condensate process by the process is not restricted as either hazardous or mixed waste and is suitable for direct disposal. The brines produced were not considered mixed waste and could be handled and disposed of as radioactive waste.« less
Oxidation of volatile organic vapours in air by solid potassium permanganate.
Mahmoodlu, Mojtaba Ghareh; Hartog, Niels; Majid Hassanizadeh, S; Raoof, Amir
2013-06-01
Volatile organic compounds (VOCs) may frequently contaminate groundwater and pose threat to human health when migrating into the unsaturated soil zone and upward to the indoor air. The kinetic of chemical oxidation has been investigated widely for dissolved VOCs in the saturated zone. But, so far there have been few studies on the use of in situ chemical oxidation (ISCO) of vapour phase contaminants. In this study, batch experiments were carried out to evaluate the oxidation of trichloroethylene (TCE), ethanol, and toluene vapours by solid potassium permanganate. Results revealed that solid potassium permanganate is able to transform the vapour of these compounds into harmless oxidation products. The degradation rates for TCE and ethanol were higher than for toluene. The degradation process was modelled using a kinetic model, linear in the gas concentration of VOC [ML(-3)] and relative surface area of potassium permanganate grains (surface area of potassium permanganate divided by gas volume) [L(-1)]. The second-order reaction rate constants for TCE, ethanol, and toluene were found to be equal to 2.0×10(-6) cm s(-1), 1.7×10(-7) cm s(-1), and 7.0×10(-8) cm s(-1), respectively. Copyright © 2013 Elsevier Ltd. All rights reserved.
Chemical and Photochemical Water Oxidation Mediated by an Efficient Single-Site Ruthenium Catalyst.
Abdel-Magied, Ahmed F; Shatskiy, Andrey; Liao, Rong-Zhen; Laine, Tanja M; Arafa, Wael A A; Siegbahn, Per E M; Kärkäs, Markus D; Åkermark, Björn; Johnston, Eric V
2016-12-20
Water oxidation is a fundamental step in artificial photosynthesis for solar fuels production. In this study, we report a single-site Ru-based water oxidation catalyst, housing a dicarboxylate-benzimidazole ligand, that mediates both chemical and light-driven oxidation of water efficiently under neutral conditions. The importance of the incorporation of the negatively charged ligand framework is manifested in the low redox potentials of the developed complex, which allows water oxidation to be driven by the mild one-electron oxidant [Ru(bpy) 3 ] 3+ (bpy=2,2'-bipyridine). Furthermore, combined experimental and DFT studies provide insight into the mechanistic details of the catalytic cycle. © 2016 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kilpinen, P.; Kallio, S.; Hupa, M.
1999-07-01
This paper describes work-in-progress aimed at developing an emission model for circulating fluidized bed combustors using detailed homogeneous and heterogeneous chemical kinetics. The main emphasis is on nitrogen oxides (NO{sub x}, N{sub 2}O) but also unburned gases (CO, C{sub x}H{sub y}) and sulfur dioxide (SO{sub 2}) will be investigated in the long run. The hydrodynamics is described by a 1.5-dimensional model where the riser is divided into three regions: a dense bubbling bed at the bottom, a vigorously mixed splash zone, and a transport zone. The two latter zones are horizontally split into a core region and an annular region.more » The solids circulation rate is calculated from the known solids inventory and the pressure and mass balances over the entire circulation loop. The solids are divided into classes according to size and type or particle. The model assumes instantaneous fuel devolatilization at the bottom and an even distribution of volatiles in the suspension phase of the dense bed. For addition of secondary air, a complete penetration and an instantaneous mixing with the combustor gases in the core region is assumed. The temperature distribution is assumed to be known, and no energy balance is solved. A comprehensive kinetic scheme of about 300 elementary gas-phase reactions is used to describe the homogeneous oxidation of the volatiles including both hydrocarbon and volatile-nitrogen components (NH{sub 3}, HCN). Heterogeneous char combustion to CO and CO{sub 2}, and char-nitrogen conversion to NO, N{sub 2}O, and N{sub 2} are described by a single particle model that includes 15 reaction steps given in the form of 6 net reaction paths. In the paper, the model is briefly described. A special emphasis is put on the evaluation of chemistry submodels. Modeling results on nitrogen oxides' formation are compared with measured concentration profiles in a 12 MW CFBC riser from literature. The importance of accurate chemistry description on predictions is illustrated by comparing modeling results using detailed kinetics to those obtained when hydrocarbon and volatile-nitrogen oxidation are described with empirical, global kinetic rate expressions from literature. Submodels that need further improvements are discussed.« less
Mao, J.-D.; Schimmelmann, A.; Mastalerz, Maria; Hatcher, P.G.; Li, Y.
2010-01-01
Quantitative and advanced 13C solid-state NMR techniques were employed to investigate (i) the chemical structure of a high volatile bituminous coal, as well as (ii) chemical structural changes of this coal after evacuation of adsorbed gases, (iii) during oxidative air exposure at room temperature, and (iv) after oxidative heating in air at 75 ??C. The solid-state NMR techniques employed in this study included quantitative direct polarization/magic angle spinning (DP/MAS) at a high spinning speed of 14 kHz, cross polarization/total sideband suppression (CP/TOSS), dipolar dephasing, CH, CH2, and CHn selection, 13C chemical shift anisotropy (CSA) filtering, two-dimensional (2D) 1H-13C heteronuclear correlation NMR (HETCOR), and 2D HETCOR with 1H spin diffusion. With spectral editing techniques, we identified methyl CCH 3, rigid and mobile methylene CCH2C, methine CCH, quaternary Cq, aromatic CH, aromatic carbons bonded to alkyls, small-sized condensed aromatic moieties, and aromatic C-O groups. With direct polarization combined with spectral-editing techniques, we quantified 11 different types of functional groups. 1H-13C 2D HETCOR NMR experiments indicated spatial proximity of aromatic and alkyl moieties in cross-linked structures. The proton spin diffusion experiments indicated that the magnetization was not equilibrated at a 1H spin diffusion time of 5 ms. Therefore, the heterogeneity in spatial distribution of different functional groups should be above 2 nm. Recoupled C-H long-range dipolar dephasing showed that the fraction of large charcoal-like clusters of polycondensed aromatic rings was relatively small. The exposure of this coal to atmospheric oxygen at room temperature for 6 months did not result in obvious chemical structural changes of the coal, whereas heating at 75 ??C in air for 10 days led to oxidation of coal and generated some COO groups. Evacuation removed most volatiles and caused a significant reduction in aliphatic signals in its DP/MAS spectrum. DP/MAS, but not CP/MAS, allowed us to detect the changes during low-temperature oxidation and loss of volatiles. These results demonstrate the applicability of advanced solid-state NMR techniques in chemical characterization of coal. ?? 2010 American Chemical Society.
Wang, Jiaming; Gambetta, Joanna M; Jeffery, David W
2016-05-18
Two rosé wines, representing a tropical and a fruity/floral style, were chosen from a previous study for further exploration by aroma extract dilution analysis (AEDA) and quantitative analysis. Volatiles were extracted using either liquid-liquid extraction (LLE) followed by solvent-assisted flavor evaporation (SAFE) or a recently developed dynamic headspace (HS) sampling method utilizing solid-phase extraction (SPE) cartridges. AEDA was conducted using gas chromatography-mass spectrometry/olfactometry (GC-MS/O) and a total of 51 aroma compounds with a flavor dilution (FD) factor ≥3 were detected. Quantitative analysis of 92 volatiles was undertaken in both wines for calculation of odor activity values. The fruity and floral wine style was mostly driven by 2-phenylethanol, β-damascenone, and a range of esters, whereas 3-SHA and several volatile acids were seen as essential for the tropical style. When extraction methods were compared, HS-SPE was as efficient as SAFE for extracting most esters and higher alcohols, which were associated with fruity and floral characters, but it was difficult to capture volatiles with greater polarity or higher boiling point that may still be important to perceived wine aroma.
Pascual, Javier; von Hoermann, Christian; Rottler-Hoermann, Ann-Marie; Nevo, Omer; Geppert, Alicia; Sikorski, Johannes; Huber, Katharina J; Steiger, Sandra; Ayasse, Manfred; Overmann, Jörg
2017-08-01
The decomposition of dead mammalian tissue involves a complex temporal succession of epinecrotic bacteria. Microbial activity may release different cadaveric volatile organic compounds which in turn attract other key players of carcass decomposition such as scavenger insects. To elucidate the dynamics and potential functions of epinecrotic bacteria on carcasses, we monitored bacterial communities developing on still-born piglets incubated in different forest ecosystems by combining high-throughput Illumina 16S rRNA sequencing with gas chromatography-mass spectrometry of volatiles. Our results show that the community structure of epinecrotic bacteria and the types of cadaveric volatile compounds released over the time course of decomposition are driven by deterministic rather than stochastic processes. Individual cadaveric volatile organic compounds were correlated with specific taxa during the first stages of decomposition which are dominated by bacteria. Through best-fitting multiple linear regression models, the synthesis of acetic acid, indole and phenol could be linked to the activity of Enterobacteriaceae, Tissierellaceae and Xanthomonadaceae, respectively. These conclusions are also commensurate with the metabolism described for the dominant taxa identified for these families. The predictable nature of in situ synthesis of cadaveric volatile organic compounds by epinecrotic bacteria provides a new basis for future chemical ecology and forensic studies. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.
Current use of nitrous oxide in public hospitals in Scandinavian countries.
Husum, B; Stenqvist, O; Alahuhta, S; Sigurdsson, G H; Dale, O
2013-10-01
The use of nitrous oxide in modern anaesthesia has been questioned. We surveyed changes in use of nitrous oxide in Scandinavia and its justifications during the last two decades. All 191 departments of anaesthesia in the Scandinavian countries were requested by email to answer an electronic survey in SurveyMonkey. One hundred and twenty-five (64%) of the departments responded; four were excluded. The 121 departments provided 807.520 general anaesthetics annually. The usage of nitrous oxide was reported in 11.9% of cases, ranging from 0.6% in Denmark to 38.6% in Iceland while volatile anaesthetics were employed in 48.9%, lowest in Denmark (22.6%) and highest in Iceland (91.9%). Nitrous oxide was co-administered with volatile anaesthetics in 21.5% of general anaesthetics [2.4% (Denmark) -34.5% (Iceland)]. Use of nitrous oxide was unchanged in five departments (4%), decreasing in 75 (62%) and stopped in 41 (34%). Reasons for decreasing or stopping use of nitrous oxide were fairly uniform in the five countries, the most important being that other agents were 'better', whereas few put weight on its potential risk for increasing morbidity. Decision to stop using nitrous oxide was made by the departments except in four cases. Of 87 maternity wards, nitrous oxide was used in 72, whereas this was the case in 42 of 111 day-surgery units. The use of nitrous oxide has decreased in the Scandinavian countries, apparently because many now prefer other agents. Difference in practices between the five countries were unexpected and apparently not justified on anticipated evidence only. © 2013 The Acta Anaesthesiologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.
Shi, Z-H; Sun, J-H
2010-06-01
The red turpentine beetle (RTB), Dendroctonus valens LeConte, is a destructive invasive forest pest in China. For such tree-killing species, how to initiate a volatile-mediated mass attack is of great importance during the course of establishment. To understand the hindgut volatile production mechanism underlying mass attack initiated by RTB, coupled gas chromatography-mass spectrometry and 13C-labelled precursors were applied to explore the quantitative variation and biosynthesis of volatiles associated with RTB at different attack phases. Five previously described volatiles, trans-verbenol, myrtenol, cis-verbenol, myrtenal and verbenone, were identified and quantified from extracts of female and male hindguts, with the first two compounds as the major components and the latter three as minor constituents. In newly emerged females and males, only minute amounts of these compounds were detected. The quantity of volatiles from female adults significantly increased after they fed on bolts. Male adults also yielded larger quantities of volatiles after they joined females in galleries, which suggested that RTB males could accelerate the mass colonization on host trees. We also confirmed that RTB produced the five volatiles through oxidizing the major host monoterpene, alpha-pinene, but not synthesized de novo since products were labeled without 13C. The implication of this study in understanding the successful invasion of RTB is discussed.
Schneider, Ludovic; Mekmouche, Yasmina; Rousselot-Pailley, Pierre; Simaan, A Jalila; Robert, Viviane; Réglier, Marius; Aukauloo, Ally; Tron, Thierry
2015-09-21
Oxidation reactions are highly important chemical transformations that still require harsh reaction conditions and stoichiometric amounts of chemical oxidants that are often toxic. To circumvent these issues, olefins oxidation is achieved in mild conditions upon irradiation of an aqueous solution of the complex [Ru(bpy)3 ](2+) and the enzyme laccase. Epoxide formation is coupled to the light-driven reduction of O2 by [Ru(bpy)3 ](2+) /laccase system. The reactivity can be explained by dioxygen acting both as an oxidative agent and as renewable electron acceptor, avoiding the use of a sacrificial electron acceptor. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Sun, Ke; Saadi, Fadl H; Lichterman, Michael F; Hale, William G; Wang, Hsin-Ping; Zhou, Xinghao; Plymale, Noah T; Omelchenko, Stefan T; He, Jr-Hau; Papadantonakis, Kimberly M; Brunschwig, Bruce S; Lewis, Nathan S
2015-03-24
Reactively sputtered nickel oxide (NiOx) films provide transparent, antireflective, electrically conductive, chemically stable coatings that also are highly active electrocatalysts for the oxidation of water to O2(g). These NiOx coatings provide protective layers on a variety of technologically important semiconducting photoanodes, including textured crystalline Si passivated by amorphous silicon, crystalline n-type cadmium telluride, and hydrogenated amorphous silicon. Under anodic operation in 1.0 M aqueous potassium hydroxide (pH 14) in the presence of simulated sunlight, the NiOx films stabilized all of these self-passivating, high-efficiency semiconducting photoelectrodes for >100 h of sustained, quantitative solar-driven oxidation of water to O2(g).
Palm, Brett B.; Campuzano-Jost, Pedro; Ortega, Amber M.; ...
2016-03-08
An oxidation flow reactor (OFR) is a vessel inside which the concentration of a chosen oxidant can be increased for the purpose of studying SOA formation and aging by that oxidant. During the BEACHON-RoMBAS (Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H 2O, Organics & Nitrogen–Rocky Mountain Biogenic Aerosol Study) field campaign, ambient pine forest air was oxidized by OH radicals in an OFR to measure the amount of SOA that could be formed from the real mix of ambient SOA precursor gases, and how that amount changed with time as precursors changed. High OH concentrations and short residence times allowedmore » for semicontinuous cycling through a large range of OH exposures ranging from hours to weeks of equivalent (eq.) atmospheric aging. A simple model is derived and used to account for the relative timescales of condensation of low-volatility organic compounds (LVOCs) onto particles; condensational loss to the walls; and further reaction to produce volatile, non-condensing fragmentation products. More SOA production was observed in the OFR at nighttime (average 3 µg m –3 when LVOC fate corrected) compared to daytime (average 0.9 µg m –3 when LVOC fate corrected), with maximum formation observed at 0.4–1.5 eq. days of photochemical aging. SOA formation followed a similar diurnal pattern to monoterpenes, sesquiterpenes, and toluene+ p-cymene concentrations, including a substantial increase just after sunrise at 07:00 local time. Higher photochemical aging (>10 eq. days) led to a decrease in new SOA formation and a loss of preexisting OA due to heterogeneous oxidation followed by fragmentation and volatilization. When comparing two different commonly used methods of OH production in OFRs (OFR185 and OFR254-70), similar amounts of SOA formation were observed. We recommend the OFR185 mode for future forest studies. Concurrent gas-phase measurements of air after OH oxidation illustrate the decay of primary VOCs, production of small oxidized organic compounds, and net production at lower ages followed by net consumption of terpenoid oxidation products as photochemical age increased. New particle formation was observed in the reactor after oxidation, especially during times when precursor gas concentrations and SOA formation were largest. Approximately 4.4 times more SOA was formed in the reactor from OH oxidation than could be explained by the VOCs measured in ambient air. To our knowledge this is the first time that this has been shown when comparing VOC concentrations with SOA formation measured at the same time, rather than comparing measurements made at different times. Several recently developed instruments have quantified ambient semivolatile and intermediate-volatility organic compounds (S/IVOCs) that were not detected by a proton transfer reaction time-of-flight mass spectrometer (PTR-TOF-MS). An SOA yield of 18–58 % from those compounds can explain the observed SOA formation. S/IVOCs were the only pool of gas-phase carbon that was large enough to explain the observed SOA formation. This work suggests that these typically unmeasured gases play a substantial role in ambient SOA formation. Our results allow ruling out condensation sticking coefficients much lower than 1. Lastly, these measurements help clarify the magnitude of potential SOA formation from OH oxidation in forested environments and demonstrate methods for interpretation of ambient OFR measurements.« less
NASA Astrophysics Data System (ADS)
Palm, Brett B.; Campuzano-Jost, Pedro; Ortega, Amber M.; Day, Douglas A.; Kaser, Lisa; Jud, Werner; Karl, Thomas; Hansel, Armin; Hunter, James F.; Cross, Eben S.; Kroll, Jesse H.; Peng, Zhe; Brune, William H.; Jimenez, Jose L.
2016-03-01
An oxidation flow reactor (OFR) is a vessel inside which the concentration of a chosen oxidant can be increased for the purpose of studying SOA formation and aging by that oxidant. During the BEACHON-RoMBAS (Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H2O, Organics & Nitrogen-Rocky Mountain Biogenic Aerosol Study) field campaign, ambient pine forest air was oxidized by OH radicals in an OFR to measure the amount of SOA that could be formed from the real mix of ambient SOA precursor gases, and how that amount changed with time as precursors changed. High OH concentrations and short residence times allowed for semicontinuous cycling through a large range of OH exposures ranging from hours to weeks of equivalent (eq.) atmospheric aging. A simple model is derived and used to account for the relative timescales of condensation of low-volatility organic compounds (LVOCs) onto particles; condensational loss to the walls; and further reaction to produce volatile, non-condensing fragmentation products. More SOA production was observed in the OFR at nighttime (average 3 µg m-3 when LVOC fate corrected) compared to daytime (average 0.9 µg m-3 when LVOC fate corrected), with maximum formation observed at 0.4-1.5 eq. days of photochemical aging. SOA formation followed a similar diurnal pattern to monoterpenes, sesquiterpenes, and toluene+p-cymene concentrations, including a substantial increase just after sunrise at 07:00 local time. Higher photochemical aging (> 10 eq. days) led to a decrease in new SOA formation and a loss of preexisting OA due to heterogeneous oxidation followed by fragmentation and volatilization. When comparing two different commonly used methods of OH production in OFRs (OFR185 and OFR254-70), similar amounts of SOA formation were observed. We recommend the OFR185 mode for future forest studies. Concurrent gas-phase measurements of air after OH oxidation illustrate the decay of primary VOCs, production of small oxidized organic compounds, and net production at lower ages followed by net consumption of terpenoid oxidation products as photochemical age increased. New particle formation was observed in the reactor after oxidation, especially during times when precursor gas concentrations and SOA formation were largest. Approximately 4.4 times more SOA was formed in the reactor from OH oxidation than could be explained by the VOCs measured in ambient air. To our knowledge this is the first time that this has been shown when comparing VOC concentrations with SOA formation measured at the same time, rather than comparing measurements made at different times. Several recently developed instruments have quantified ambient semivolatile and intermediate-volatility organic compounds (S/IVOCs) that were not detected by a proton transfer reaction time-of-flight mass spectrometer (PTR-TOF-MS). An SOA yield of 18-58 % from those compounds can explain the observed SOA formation. S/IVOCs were the only pool of gas-phase carbon that was large enough to explain the observed SOA formation. This work suggests that these typically unmeasured gases play a substantial role in ambient SOA formation. Our results allow ruling out condensation sticking coefficients much lower than 1. These measurements help clarify the magnitude of potential SOA formation from OH oxidation in forested environments and demonstrate methods for interpretation of ambient OFR measurements.
Heating-Induced Evaporation of Nine Different Secondary Organic Aerosol Types
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kolesar, Katheryn R.; Li, Ziyue; Wilson, Kevin R.
The volatility of the compounds comprising organic aerosol (OA) determines their distribution between the gas and particle phases. However, there is a disconnect between volatility distributions as typically derived from secondary OA (SOA) growth experiments and the effective particle volatility as probed in evaporation experiments. Specifically, the evaporation experiments indicate an overall much less volatile SOA. This raises questions regarding the use of traditional volatility distributions in the simulation and prediction of atmospheric SOA concentrations. Here, we present results from measurements of thermally induced evaporation of SOA for nine different SOA types (i.e., distinct volatile organic compound and oxidant pairs)more » encompassing both anthropogenic and biogenic compounds and O 3 and OH to examine the extent to which the low effective volatility of SOA is a general phenomenon or specific to a subset of SOA types. The observed extents of evaporation with temperature were similar for all the SOA types and indicative of a low effective volatility. Furthermore, minimal variations in the composition of all the SOA types upon heating-induced evaporation were observed. These results suggest that oligomer decomposition likely plays a major role in controlling SOA evaporation, and since the SOA formation time scale in these measurements was less than a minute, the oligomer-forming reactions must be similarly rapid. Overall, these results emphasize the importance of accounting for the role of condensed phase reactions in altering the composition of SOA when assessing particle volatility.« less
Heating-Induced Evaporation of Nine Different Secondary Organic Aerosol Types
Kolesar, Katheryn R.; Li, Ziyue; Wilson, Kevin R.; ...
2015-09-22
The volatility of the compounds comprising organic aerosol (OA) determines their distribution between the gas and particle phases. However, there is a disconnect between volatility distributions as typically derived from secondary OA (SOA) growth experiments and the effective particle volatility as probed in evaporation experiments. Specifically, the evaporation experiments indicate an overall much less volatile SOA. This raises questions regarding the use of traditional volatility distributions in the simulation and prediction of atmospheric SOA concentrations. Here, we present results from measurements of thermally induced evaporation of SOA for nine different SOA types (i.e., distinct volatile organic compound and oxidant pairs)more » encompassing both anthropogenic and biogenic compounds and O 3 and OH to examine the extent to which the low effective volatility of SOA is a general phenomenon or specific to a subset of SOA types. The observed extents of evaporation with temperature were similar for all the SOA types and indicative of a low effective volatility. Furthermore, minimal variations in the composition of all the SOA types upon heating-induced evaporation were observed. These results suggest that oligomer decomposition likely plays a major role in controlling SOA evaporation, and since the SOA formation time scale in these measurements was less than a minute, the oligomer-forming reactions must be similarly rapid. Overall, these results emphasize the importance of accounting for the role of condensed phase reactions in altering the composition of SOA when assessing particle volatility.« less
Huang, Ke; Chen, Chuan; Zhang, Jun; Tang, Zhu; Shen, Qirong; Rosen, Barry P; Zhao, Fang-Jie
2016-06-21
Microbial arsenic (As) methylation and volatilization are important processes controlling the As biogeochemical cycle in paddy soils. To further understand these processes, we isolated a novel bacterial strain, SM-1, from an As-contaminated paddy soil. SM-1 showed strong As methylation and volatilization abilities, converting almost all arsenite (10 μM) to dimethylarsenate and trimethylarsenic oxide in the medium and trimethylarsine gas into the headspace within 24 h, with trimethylarsine accounting for nearly half of the total As. On the basis of the 16S rRNA sequence, strain SM-1 represents a new species in a new genus within the family Cytophagaceae. Strain SM-1 is abundant in the paddy soil and inoculation of SM-1 greatly enhanced As methylation and volatilization in the soil. An arsenite methyltransferase gene (ArarsM) was cloned from SM-1. When expressed in Escherichia coli, ArArsM conferred the As methylation and volatilization abilities to E. coli and increased its resistance to arsenite. The high As methylation and volatilization abilities of SM-1 are likely attributed to an efficient ArArsM enzyme coupled with low arsenite efflux. These results suggest that strain SM-1 plays an important role in As methylation and volatilization in the paddy soil and has a great potential for As bioremediation.
Vapor-Phase Catalytic Oxidation of Mixed Volatile Organic Compounds
1989-09-01
18 3. Hopcalite . . . . . . . . . 18 4. Potassium Chloride/Copper Oxide . . . 19 5. Vanadium Pentoxide . . . . . . . 19 6. Potassium...decomposition of 19 halogenated hydrocarbons, associated with submarine burners, using a hopcalite catalyst. Bond, et al. (Reference 9) have studied the...The catalyst can be easily regenerated, but deactivation occurs within a matter of minutes. 3. Hopcalite This mineral, containing primarily CuD and
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vladimir Gorokhovsky
2008-03-31
This report describes significant results from an on-going, collaborative effort to enable the use of inexpensive metallic alloys as interconnects in planar solid oxide fuel cells (SOFCs) through the use of advanced coating technologies. Arcomac Surface Engineering, LLC, under the leadership of Dr. Vladimir Gorokhovsky, is investigating filtered-arc and filtered-arc plasma-assisted hybrid coating deposition technologies to promote oxidation resistance, eliminate Cr volatility, and stabilize the electrical conductivity of both standard and specialty steel alloys of interest for SOFC metallic interconnect (IC) applications. Arcomac has successfully developed technologies and processes to deposit coatings with excellent adhesion, which have demonstrated a substantialmore » increase in high temperature oxidation resistance, stabilization of low Area Specific Resistance values and significantly decrease Cr volatility. An extensive matrix of deposition processes, coating compositions and architectures was evaluated. Technical performance of coated and uncoated sample coupons during exposures to SOFC interconnect-relevant conditions is discussed, and promising future directions are considered. Cost analyses have been prepared based on assessment of plasma processing parameters, which demonstrate the feasibility of the proposed surface engineering process for SOFC metallic IC applications.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vanheusden, K.; Warren, W.L.; Devine, R.A.B.
It is shown how mobile H{sup +} ions can be generated thermally inside the oxide layer of Si/SiO{sub 2}/Si structures. The technique involves only standard silicon processing steps: the nonvolatile field effect transistor (NVFET) is based on a standard MOSFET with thermally grown SiO{sub 2} capped with a poly-silicon layer. The capped thermal oxide receives an anneal at {approximately}1100 C that enables the incorporation of the mobile protons into the gate oxide. The introduction of the protons is achieved by a subsequent 500-800 C anneal in a hydrogen-containing ambient, such as forming gas (N{sub 2}:H{sub 2} 95:5). The mobile protonsmore » are stable and entrapped inside the oxide layer, and unlike alkali ions, their space-charge distribution can be controlled and rapidly rearranged at room temperature by an applied electric field. Using this principle, a standard MOS transistor can be converted into a nonvolatile memory transistor that can be switched between normally on and normally off. Switching speed, retention, endurance, and radiation tolerance data are presented showing that this non-volatile memory technology can be competitive with existing Si-based non-volatile memory technologies such as the floating gate technologies (e.g. Flash memory).« less
Saoudi, Salma; Chammem, Nadia; Sifaoui, Ines; Bouassida-Beji, Maha; Jiménez, Ignacio A; Bazzocchi, Isabel L; Silva, Sandra Diniz; Hamdi, Moktar; Bronze, Maria Rosário
2016-12-01
The aim of this study was to improve the oxidative stability of soybean oil by using aromatic plants. Soybean oil flavored with rosemary (ROS) and soybean oil flavored with thyme (THY) were subjected to heating for 24h at 180°C. The samples were analyzed every 6h for their total polar compounds, anisidine values, oxidative stability and polyphenols content. The tocopherols content was determined and volatile compounds were also analyzed. After 24h of heating, the incorporation of these plants using a maceration process reduced the polar compounds by 69% and 71% respectively, in ROS and THY compared to the control. Until 6h of heating, the ROS kept the greatest oxidative stability. The use of the two extracts preserves approximately 50% of the total tocopherols content until 18h for the rosemary and 24h for the thyme flavored oils. Volatile compounds known for their antioxidant activity were also detected in the formulated oils. Aromatic plants added to the soybean oil improved the overall acceptability of potato crisps (p<0.05) until the fifteenth frying. Copyright © 2016 Elsevier Ltd. All rights reserved.
da Rocha, Renier Felinto Julião; da Silva Araújo, Ídila Maria; de Freitas, Sílvia Maria; Dos Santos Garruti, Deborah
2017-11-01
Optimization of the extraction conditions to investigate the volatile composition of papaya fruit involving headspace solid phase micro-extraction was carried out using multivariate strategies such as factorial design and response surface methodology. The performance of different combinations of time for reaching the equilibrium in the headspace and time for maximum extraction of volatiles was evaluated by GC-olfactometry of the extract (intensity of papaya characteristic aroma), number of peaks and total area in the chromatogram. Thirty-two compounds were identified by GC-MS under the optimized extraction conditions, the majority of which were aldehydes, both in number of compounds and area. Major compounds were δ-octalactone, β-citral, benzaldehyde, heptanal, benzyl isothiocyanate, isoamyl acetate, γ-octalactone, (E)-linalool oxide and benzyl alcohol. Seven aldehydes and two other compounds are reported for the first time in papaya's volatile profile.
Ben Hammouda, Ibtissem; Freitas, Flavia; Ammar, Sonda; Da Silva, M D R Gomes; Bouaziz, Mohamed
2017-11-15
The formation and emission of volatile compounds, including the aldehydes and some toxic compounds of oil samples, ROPO pure (100%) and the blended ROPO/RCO (80-20%), were carried out during deep frying at 180°C. The volatile profile of both oil samples was evaluated by an optimized HS-SPME-GC/MS method, before and after 20, 40 and 60 successive sessions of deep-frying. Actually, from 100 detected compounds, aldehydes were found to be the main group formed. In addition, the oil degradation under thermal treatment regarding the volatile compounds were evaluated and compared. Consequently, the blended ROPO/RCO revealed fewer formations of unsaturated aldehydes, including toxic ones, such as acrolein, and showed a greater stability against oxidative thermal degradation compared to ROPO pure. Copyright © 2017 Elsevier B.V. All rights reserved.
Real-time divergent evolution in plants driven by pollinators
Gervasi, Daniel D. L.; Schiestl, Florian P
2017-01-01
Pollinator-driven diversification is thought to be a major source of floral variation in plants. Our knowledge of this process is, however, limited to indirect assessments of evolutionary changes. Here, we employ experimental evolution with fast cycling Brassica rapa plants to demonstrate adaptive evolution driven by different pollinators. Our study shows pollinator-driven divergent selection as well as divergent evolution in plant traits. Plants pollinated by bumblebees evolved taller size and more fragrant flowers with increased ultraviolet reflection. Bumblebees preferred bumblebee-pollinated plants over hoverfly-pollinated plants at the end of the experiment, showing that plants had adapted to the bumblebees' preferences. Plants with hoverfly pollination became shorter, had reduced emission of some floral volatiles, but increased fitness through augmented autonomous self-pollination. Our study demonstrates that changes in pollinator communities can have rapid consequences on the evolution of plant traits and mating system. PMID:28291771
NASA Astrophysics Data System (ADS)
Hansel, Armin; Breitenlechner, Martin; Fischer, Lukas; Hainer, Markus
2017-04-01
Existing proton transfer reaction time of flight (PTR-TOF) instruments are known to detect volatile organic compounds (VOCs) and could in principle also detect highly oxidized organic compounds such as low volatility organic compounds (LVOC) but PTR-TOF inlets were not optimized to avoid wall losses of such low volatility compounds. In addition PTR-TOF is not sensitive enough to quantify second order and even higher order oxidation products at atmospherically relevant concentrations. To solve this problem, as well as to enable bridging the gap in understanding how atmospherically relevant BVOC form SVOC, LVOC and even ELVOC, we developed the PTR3, a compact and field deployable ultrasensitive instrument based on chemical ionization mass spectrometry. Here we report first results from PTR-3-TOF measurements at Hyytiälä where we measured concentrations and fluxes of precursor gases (BVOC) and their oxidation products: semi and low volatile organic compounds. The recently developed PTR-3-TOF instrument uses a discharge ion source coupled to a contact free inlet system running at high sample flow rates through the novel reaction chamber at 80 mbar. The PTR-3 front part is coupled to TOFWERK's newest Long-TOF mass analyzer. The first prototype has sensitivities of up to 20.000 cps per ppb and a mass resolution of 8.000 m/Δm. The instrument has been successfully tested at CERN for the CLOUD campaign in 2015. During pure α-pinene ozonolysis experiments at low NOx conditions we observed in total several hundred peaks in the mass spectrum, including α-Pinene present in the ppb range, first and higher order oxidation products present in the ppt range and highly oxydized α-pinene monomers and dimers (e.g., C20H30O18H+; m/z = 559.1506 Th) in the low ppq range and even sub-ppq range. The advantage of this new technology based on positive ion chemistry is the capability to measure precursor gases as well as condensing- and even nucleating vapors.
Aerosol detection efficiency in inductively coupled plasma mass spectrometry
NASA Astrophysics Data System (ADS)
Hubbard, Joshua A.; Zigmond, Joseph A.
2016-05-01
An electrostatic size classification technique was used to segregate particles of known composition prior to being injected into an inductively coupled plasma mass spectrometer (ICP-MS). Size-segregated particles were counted with a condensation nuclei counter as well as sampled with an ICP-MS. By injecting particles of known size, composition, and aerosol concentration into the ICP-MS, efficiencies of the order of magnitude aerosol detection were calculated, and the particle size dependencies for volatile and refractory species were quantified. Similar to laser ablation ICP-MS, aerosol detection efficiency was defined as the rate at which atoms were detected in the ICP-MS normalized by the rate at which atoms were injected in the form of particles. This method adds valuable insight into the development of technologies like laser ablation ICP-MS where aerosol particles (of relatively unknown size and gas concentration) are generated during ablation and then transported into the plasma of an ICP-MS. In this study, we characterized aerosol detection efficiencies of volatile species gold and silver along with refractory species aluminum oxide, cerium oxide, and yttrium oxide. Aerosols were generated with electrical mobility diameters ranging from 100 to 1000 nm. In general, it was observed that refractory species had lower aerosol detection efficiencies than volatile species, and there were strong dependencies on particle size and plasma torch residence time. Volatile species showed a distinct transition point at which aerosol detection efficiency began decreasing with increasing particle size. This critical diameter indicated the largest particle size for which complete particle detection should be expected and agreed with theories published in other works. Aerosol detection efficiencies also displayed power law dependencies on particle size. Aerosol detection efficiencies ranged from 10- 5 to 10- 11. Free molecular heat and mass transfer theory was applied, but evaporative phenomena were not sufficient to explain the dependence of aerosol detection on particle diameter. Additional work is needed to correlate experimental data with theory for metal-oxides where thermodynamic property data are sparse relative to pure elements. Lastly, when matrix effects and the diffusion of ions inside the plasma were considered, mass loading was concluded to have had an effect on the dependence of detection efficiency on particle diameter.
Limited effect of anthropogenic nitrogen oxides on secondary organic aerosol formation
NASA Astrophysics Data System (ADS)
Zheng, Y.; Unger, N.; Hodzic, A.; Emmons, L.; Knote, C.; Tilmes, S.; Lamarque, J.-F.; Yu, P.
2015-12-01
Globally, secondary organic aerosol (SOA) is mostly formed from emissions of biogenic volatile organic compounds (VOCs) by vegetation, but it can be modified by human activities as demonstrated in recent research. Specifically, nitrogen oxides (NOx = NO + NO2) have been shown to play a critical role in the chemical formation of low volatility compounds. We have updated the SOA scheme in the global NCAR (National Center for Atmospheric Research) Community Atmospheric Model version 4 with chemistry (CAM4-chem) by implementing a 4-product volatility basis set (VBS) scheme, including NOx-dependent SOA yields and aging parameterizations. Small differences are found for the no-aging VBS and 2-product schemes; large increases in SOA production and the SOA-to-OA ratio are found for the aging scheme. The predicted organic aerosol amounts capture both the magnitude and distribution of US surface annual mean measurements from the Interagency Monitoring of Protected Visual Environments (IMPROVE) network by 50 %, and the simulated vertical profiles are within a factor of 2 compared to aerosol mass spectrometer (AMS) measurements from 13 aircraft-based field campaigns across different regions and seasons. We then perform sensitivity experiments to examine how the SOA loading responds to a 50 % reduction in anthropogenic nitric oxide (NO) emissions in different regions. We find limited SOA reductions of 0.9-5.6, 6.4-12.0 and 0.9-2.8 % for global, southeast US and Amazon NOx perturbations, respectively. The fact that SOA formation is almost unaffected by changes in NOx can be largely attributed to a limited shift in chemical regime, to buffering in chemical pathways (low- and high-NOx pathways, O3 versus NO3-initiated oxidation) and to offsetting tendencies in the biogenic versus anthropogenic SOA responses.
NASA Astrophysics Data System (ADS)
Yee, L.; Isaacman, G. A.; Spielman, S. R.; Worton, D. R.; Zhang, H.; Kreisberg, N. M.; Wilson, K. R.; Hering, S. V.; Goldstein, A. H.
2013-12-01
Thousands of volatile organic compounds are uniquely created in the atmosphere, many of which undergo chemical transformations that result in more highly-oxidized and often lower vapor pressure species. These species can contribute to secondary organic aerosol, a complex mixture of organic compounds that is still not chemically well-resolved. Organic aerosol collected on filters taken during the Southeastern Oxidant and Aerosol Study (SOAS) constitute hundreds of unique chemical compounds. Some of these include known anthropogenic and biogenic tracers characterized using standardized analytical techniques (e.g. GC-MS, UPLC, LC-MS), but the majority of the chemical diversity has yet to be explored. By employing analytical techniques involving sample derivatization and comprehensive two-dimensional gas chromatography (GC x GC) with high-resolution-time-of-flight mass spectrometry (HR-ToF-MS), we elucidate the chemical complexity of the organic aerosol matrix along the volatility and polarity grids. Further, by utilizing both electron impact (EI) and novel soft vacuum ultraviolet (VUV) ionization mass spectrometry, a greater fraction of the organic mass is fully speciated. The GC x GC-HR-ToF-MS with EI/VUV technique efficiently provides an unprecedented level of speciation for complex ambient samples. We present an extensive chemical characterization and quantification of organic species that goes beyond typical atmospheric tracers in the SOAS samples. We further demonstrate that complex organic mixtures can be chemically deconvoluted by elucidation of chemical formulae, volatility, functionality, and polarity. These parameters provide insight into the sources (anthropogenic vs. biogenic), chemical processes (oxidation pathways), and environmental factors (temperature, humidity), controlling organic aerosol growth in the Southeastern United States.
Huff, J.B.
1962-03-13
A furnace apparatus is designed for treating a nuclear reactor waste solution. The solution is sprayed onto a bed of burning petroleum coke which expels water, the more volatile fission products, and nitrogen oxides. Next, chlorine gas is introduced from below which causes aluminum to volatilize as aluminum chloride and along with it certain fission products including Nb/sup 95/ and Zr/sup 95/. These lose their radioactivity within four years and the long- lived radioactivity remains with the ash, which is stored. (AEC) V) nitrate. (P.C.H.)
Green, Norman W.; Duraiswamy, Kandaswamy; Lumpkin, Robert E.
1978-07-25
In a continuous process for recovery of values contained in a solid carbonaceous material, the carbonaceous material is comminuted and then subjected to flash pyrolysis in the presence of a particulate heat source over an overflow weir to form a pyrolysis product stream containing a carbon containing solid residue and volatilized hydrocarbons. After the carbon containing solid residue is separated from the pyrolysis product stream, values are obtained by condensing volatilized hydrocarbons. The particulate source of heat is formed by oxidizing carbon in the solid residue and separating out the fines.
Pyrolysis with staged recovery
Green, Norman W.; Duraiswamy, Kandaswamy; Lumpkin, Robert E.; Winter, Bruce L.
1979-03-20
In a continuous process for recovery of values contained in a solid carbonaceous material, the carbonaceous material is comminuted and then subjected to flash pyrolysis in the presence of a particulate heat source fed over an overflow weir to form a pyrolysis product stream containing a carbon containing solid residue and volatilized hydrocarbons. After the carbon containing solid residue is separated from the pyrolysis product stream, values are obtained by condensing volatilized hydrocarbons. The particulate source of heat is formed by oxidizing carbon in the solid residue.
New Model for Ionospheric Irregularities at Mars
NASA Astrophysics Data System (ADS)
Keskinen, M. J.
2018-03-01
A new model for ionospheric irregularities at Mars is presented. It is shown that wind-driven currents in the dynamo region of the Martian ionosphere can be unstable to the electromagnetic gradient drift instability. This plasma instability can generate ionospheric density and magnetic field irregularities with scale sizes of approximately 15-20 km down to a few kilometers. We show that the instability-driven magnetic field fluctuation amplitudes relative to background are correlated with the ionospheric density fluctuation amplitudes relative to background. Our results can explain recent observations made by the Mars Atmosphere and Volatile EvolutioN spacecraft in the Martian ionosphere dynamo region.
NASA Astrophysics Data System (ADS)
Cui, Y.; Liu, Y.; Peng, L.; Qin, Y.
2017-12-01
Arsenic was a typical toxic metalloid element and its contamination in groundwater was widely recognized as a global health problem, especially in north China, where people depended on groundwater as water resource. Arsenic was existed as As(III) in underground water, and has low affinity to the surface of various minerals and more toxic and more difficultly to be removed compared with As(V), so a pre-oxidation technology by transforming As (III) to As (V) is highly desirable. Electrochemical and oxidizing agents were traditional technology, which usually causes secondary pollution. A novel methodology is presented here, using prepared magnetic visible-light-driven nanomaterials as recyclable media to investigate As(III) pre-oxidation processing. Ag@AgCl core-shell nanowires were first synthesized by oxidation of Ag nanowires with moderate FeCl3, and exhibited excellent photocatalytic activity to As(III) with visible-light. The ratio of chloridization was proved to act as key effect on photocatalytic oxidation efficiency. Testing with simulated groundwater condition proved that pH, ionic strength and concentration of humic acid have obvious effects on Ag@AgCl photocatalytic ability. h+ and ·O2- were confirmed to be the main active species during the visible-light driven photocatalytic oxidation process for As(III) by trapping experiments with radical scavengers. Then Fe0 was introduced to prepare Fe-Ag nanowire and chloridized into Fe-Ag@AgCl to provide magnetic characteristic. The magnetic recycling and re-chloride experiments validated this visible-light-driven material has excellent stable and high reused ability as photocatalyst under visible light irradiation.
Volatile isoprenoids as defense compounds during abiotic stress in tropical plants
NASA Astrophysics Data System (ADS)
Jardine, K.
2015-12-01
Emissions of volatile isoprenoids from tropical forests play central roles in atmospheric processes by fueling atmospheric chemistry resulting in modified aerosol and cloud lifecycles and their associated feedbacks with the terrestrial biosphere. However, the identities of tropical isoprenoids, their biological and environmental controls, and functions within plants and ecosystems remain highly uncertain. As part of the DOE ARM program's GoAmazon 2014/15 campaign, extensive field and laboratory observations of volatile isoprenoids are being conducted in the central Amazon. Here we report the results of our completed and ongoing activities at the ZF2 forest reserve in the central Amazon. Among the results of the research are the suprisingly high abundance of light-dependent volatile isoprenoid emissions across abundant tree genera in the Amazon in both primary and secondary forests, the discovery of highly reactive monoterpene emissions from Amazon trees, and evidence for the importance of volatile isoprenoids in protecting photosynthesis during oxidative stress under elevated temperatures including energy consumption and direct antioxidant functions and a tight connection betwen volatile isoprenoid emissions, photorespiration, and CO2 recycling within leaves. The results highlight the need to model allocation of carbon to isoprenoids during elevated temperature stress in the tropics.
Characterization of the Kinetics of NF3-Fluorination of NpO2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Casella, Andrew M.; Scheele, Randall D.; McNamara, Bruce K.
2015-12-23
The exploitation of selected actinide and fission product fluoride volatilities has long been considered as a potentially attractive compact method for recycling used nuclear fuels to avoid generating the large volumes of radioactive waste arising from aqueous reprocessing [1-7]. The most developed process uses the aggressive and hazardous fluorinating agents hydrogen fluoride (HF) and/or molecular fluorine (F2) at high temperatures to volatilize the greatest fraction of the used nuclear fuel into a single gas stream. The volatilized fluorides are subsequently separated using a series of fractionation and condensation columns to recover the valuable fuel constituents and fission products. In pursuitmore » of a safer and less complicated approach, we investigated an alternative fluoride volatility-based process using the less hazardous fluorinating agent nitrogen trifluoride (NF3) and leveraging its less aggressive nature to selectively evolve fission product and actinide fluorides from the solid phase based on their reaction temperatures into a single recycle stream [8-15]. In this approach, successive isothermal treatments using NF3 will first evolve the more thermally susceptible used nuclear fuel constituents leaving the other constituents in the residual solids until subsequent isothermal temperature treatments cause these others to volatilize. During investigation of this process, individual neat used fuel components were treated with isothermal NF3 in an attempt to characterize the kinetics of each fluorination reaction to provide input into the design of a new volatile fluoride separations approach. In these directed investigations, complex behavior was observed between NF3 and certain solid reactants such as the actinide oxides of uranium, plutonium, and neptunium. Given the similar thermal reaction susceptibilities of neptunium oxide (NpO2) and uranium dioxide (UO2) and the importance of Np and U, we initially focused our efforts on determining the reaction kinetic parameters for NpO2. Characterizing the NF3 fluorination of NpO2 using established models for gas-solid reactions [16] proved unsuccessful so we developed a series of successive fundamental reaction mechanisms to characterize the observed successive fluorination reactions leading to production of the volatile neptunium hexafluoride (NpF6).« less
NASA Technical Reports Server (NTRS)
Gao, Chloe Y.; Tsigaridis, Kostas; Bauer, Susanne E.
2017-01-01
The gas-particle partitioning and chemical aging of semi-volatile organic aerosol are presented in a newly developed box model scheme, where its effect on the growth, composition, and mixing state of particles is examined. The volatility-basis set (VBS) framework is implemented into the aerosol microphysical scheme MATRIX (Multiconfiguration Aerosol TRacker of mIXing state), which resolves mass and number aerosol concentrations and in multiple mixing-state classes. The new scheme, MATRIX-VBS, has the potential to significantly advance the representation of organic aerosols in Earth system models by improving upon the conventional representation as non-volatile particulate organic matter, often also with an assumed fixed size distribution. We present results from idealized cases representing Beijing, Mexico City, a Finnish forest, and a southeastern US forest, and investigate the evolution of mass concentrations and volatility distributions for organic species across the gas and particle phases, as well as assessing their mixing state among aerosol populations. Emitted semi-volatile primary organic aerosols evaporate almost completely in the intermediate-volatility range, while they remain in the particle phase in the low-volatility range. Their volatility distribution at any point in time depends on the applied emission factors, oxidation by OH radicals, and temperature. We also compare against parallel simulations with the original scheme, which represented only the particulate and non-volatile component of the organic aerosol, examining how differently the condensed-phase organic matter is distributed across the mixing states in the model. The results demonstrate the importance of representing organic aerosol as a semi-volatile aerosol, and explicitly calculating the partitioning of organic species between the gas and particulate phases.
Reduced graphene oxide-ZnO composites based gas sensors: A review
NASA Astrophysics Data System (ADS)
Thakare, N. B.; Raghuwanshi, F. C.; Kalyamwar, V. S.; Tamgadge, Y. S.
2018-05-01
The need to monitor and control life threatening gases has led to research and development of a wide variety of sensors using different materials and technologies. Recently rGO (reduced graphene oxide)-MOS (Metal Oxide Semiconductor) architectures have been studied for efficient and cost effective gas sensors that will operate at low temperature. In this review paper, we review latest findings and progress in rGO-ZnO composites as sensors to detect volatile and toxic gases.
A large source of low-volatility secondary organic aerosol
NASA Astrophysics Data System (ADS)
Ehn, Mikael; Thornton, Joel A.; Kleist, Einhard; Sipilä, Mikko; Junninen, Heikki; Pullinen, Iida; Springer, Monika; Rubach, Florian; Tillmann, Ralf; Lee, Ben; Lopez-Hilfiker, Felipe; Andres, Stefanie; Acir, Ismail-Hakki; Rissanen, Matti; Jokinen, Tuija; Schobesberger, Siegfried; Kangasluoma, Juha; Kontkanen, Jenni; Nieminen, Tuomo; Kurtén, Theo; Nielsen, Lasse B.; Jørgensen, Solvejg; Kjaergaard, Henrik G.; Canagaratna, Manjula; Maso, Miikka Dal; Berndt, Torsten; Petäjä, Tuukka; Wahner, Andreas; Kerminen, Veli-Matti; Kulmala, Markku; Worsnop, Douglas R.; Wildt, Jürgen; Mentel, Thomas F.
2014-02-01
Forests emit large quantities of volatile organic compounds (VOCs) to the atmosphere. Their condensable oxidation products can form secondary organic aerosol, a significant and ubiquitous component of atmospheric aerosol, which is known to affect the Earth's radiation balance by scattering solar radiation and by acting as cloud condensation nuclei. The quantitative assessment of such climate effects remains hampered by a number of factors, including an incomplete understanding of how biogenic VOCs contribute to the formation of atmospheric secondary organic aerosol. The growth of newly formed particles from sizes of less than three nanometres up to the sizes of cloud condensation nuclei (about one hundred nanometres) in many continental ecosystems requires abundant, essentially non-volatile organic vapours, but the sources and compositions of such vapours remain unknown. Here we investigate the oxidation of VOCs, in particular the terpene α-pinene, under atmospherically relevant conditions in chamber experiments. We find that a direct pathway leads from several biogenic VOCs, such as monoterpenes, to the formation of large amounts of extremely low-volatility vapours. These vapours form at significant mass yield in the gas phase and condense irreversibly onto aerosol surfaces to produce secondary organic aerosol, helping to explain the discrepancy between the observed atmospheric burden of secondary organic aerosol and that reported by many model studies. We further demonstrate how these low-volatility vapours can enhance, or even dominate, the formation and growth of aerosol particles over forested regions, providing a missing link between biogenic VOCs and their conversion to aerosol particles. Our findings could help to improve assessments of biosphere-aerosol-climate feedback mechanisms, and the air quality and climate effects of biogenic emissions generally.
Mitra, Saubhik; Karmakar, Amarnath; Mukherjee, Abhishek; Barik, Anandamay
2017-07-01
Larvae and adults of Altica cyanea (Weber) (Coleoptera: Chrysomelidae) feed on the rice-field weed Ludwigia octovalvis (Jacq.) Raven (Onagraceae), commonly known as willow primrose, which is considered a biocontrol agent of the weed. Volatile organic compounds from undamaged plants, plants after 4, 12, and 36 h of continuous feeding by A. cyanea larvae or adult females and after mechanical damaging were identified by GC-MS and GC-FID analyses. Twenty nine compounds were identified from undamaged plants. 2Z-Penten-1-ol, geraniol, and 1-tridecanol were present in all plants damaged by larvae. In contrast, feeding by adults caused the release of 2Z-penten-1-ol only after 12 and 36 h; whereas geraniol and 1-tridecanol appeared only after 36 h. Farnesyl acetone was detected after 12 and 36 h of feeding by larvae and after 36 h of feeding by adults. Farnesene was detected after 36 h of feeding by larvae and adults. Linalool was unique after 36 h of feeding by larvae. In Y-shaped glass tube olfactometer bioassays, A. cyanea females were attracted to volatiles after 36 h of feeding by larvae or adults compared to volatiles released by undamaged plants. The insects were attracted to five synthetic compounds: 3-hexanol, α-pinene, linalool oxide, geraniol, and phytol. Synthetic blends were more attractive than individual compounds. Compared to undamaged plants, volatiles released by plants, damaged by conspecific individuals, were more attractive to A. cyanea females, due to elevated emissions of 3-hexanol, α-pinene, linalool oxide, geraniol, and phytol.
Abrahamsson, Katarina; Choo, Kyung Sil; Pedersén, Marianne; Johansson, Gustav; Snoeijs, Pauli
2003-10-01
Marine algae produce volatile halocarbons, which have an ozone-depleting potential. The formation of these compounds is thought to be related to oxidative stress, involving H2O2 and algal peroxidases. In our study we found strong correlations between the releases of H2O2 and brominated and some iodinated compounds to the seawater medium, but no such correlation was found for CHCl3, suggesting the involvement of other formation mechanisms as well. Little is known about the effects of environmental factors on the production of volatile halocarbons by algae and in the present study we focused on the influence of temperature. Algae were sampled in an area of the brackish Baltic Sea that receives thermal discharge, allowing us to collect specimens of the same species that were adapted to different field temperature regimes. We exposed six algal species (the diatom Pleurosira laevis, the brown alga Fucus vesiculosus and four filamentous green algae, Cladophora glomerata, Enteromorpha ahlneriana, E. flexuosa and E. intestinalis) to temperature changes of 0-11 degrees C under high irradiation to invoke oxidative stress. The production rates, as well as the quantitative composition of 16 volatile halocarbons, were strongly species-dependent and different types of responses to temperature were recorded. However, no response patterns to temperature change were found that were consistent for all species or for all halocarbons. We conclude that the production of certain halocarbons may increase with temperature in certain algal species, but that the amount and composition of the volatile halocarbons released by algal communities are probably more affected by temperature-associated species shifts. These results may have implications for climatic change scenarios.
A large source of low-volatility secondary organic aerosol.
Ehn, Mikael; Thornton, Joel A; Kleist, Einhard; Sipilä, Mikko; Junninen, Heikki; Pullinen, Iida; Springer, Monika; Rubach, Florian; Tillmann, Ralf; Lee, Ben; Lopez-Hilfiker, Felipe; Andres, Stefanie; Acir, Ismail-Hakki; Rissanen, Matti; Jokinen, Tuija; Schobesberger, Siegfried; Kangasluoma, Juha; Kontkanen, Jenni; Nieminen, Tuomo; Kurtén, Theo; Nielsen, Lasse B; Jørgensen, Solvejg; Kjaergaard, Henrik G; Canagaratna, Manjula; Maso, Miikka Dal; Berndt, Torsten; Petäjä, Tuukka; Wahner, Andreas; Kerminen, Veli-Matti; Kulmala, Markku; Worsnop, Douglas R; Wildt, Jürgen; Mentel, Thomas F
2014-02-27
Forests emit large quantities of volatile organic compounds (VOCs) to the atmosphere. Their condensable oxidation products can form secondary organic aerosol, a significant and ubiquitous component of atmospheric aerosol, which is known to affect the Earth's radiation balance by scattering solar radiation and by acting as cloud condensation nuclei. The quantitative assessment of such climate effects remains hampered by a number of factors, including an incomplete understanding of how biogenic VOCs contribute to the formation of atmospheric secondary organic aerosol. The growth of newly formed particles from sizes of less than three nanometres up to the sizes of cloud condensation nuclei (about one hundred nanometres) in many continental ecosystems requires abundant, essentially non-volatile organic vapours, but the sources and compositions of such vapours remain unknown. Here we investigate the oxidation of VOCs, in particular the terpene α-pinene, under atmospherically relevant conditions in chamber experiments. We find that a direct pathway leads from several biogenic VOCs, such as monoterpenes, to the formation of large amounts of extremely low-volatility vapours. These vapours form at significant mass yield in the gas phase and condense irreversibly onto aerosol surfaces to produce secondary organic aerosol, helping to explain the discrepancy between the observed atmospheric burden of secondary organic aerosol and that reported by many model studies. We further demonstrate how these low-volatility vapours can enhance, or even dominate, the formation and growth of aerosol particles over forested regions, providing a missing link between biogenic VOCs and their conversion to aerosol particles. Our findings could help to improve assessments of biosphere-aerosol-climate feedback mechanisms, and the air quality and climate effects of biogenic emissions generally.
NASA Astrophysics Data System (ADS)
Palm, Brett Brian
Secondary organic aerosols (SOA) in the atmosphere play an important role in air quality, human health, and climate. However, the sources, formation pathways, and fate of SOA are poorly constrained. In this dissertation, I present development and application of the oxidation flow reactor (OFR) technique for studying SOA formation from OH, O3, and NO3 oxidation of ambient air. With a several-minute residence time and a portable design with no inlet, OFRs are particularly well-suited for this purpose. I first introduce the OFR concept, and discuss several advances I have made in performing and interpreting OFR experiments. This includes estimating oxidant exposures, modeling the fate of low-volatility gases in the OFR (wall loss, condensation, and oxidation), and comparing SOA yields of single precursors in the OFR with yields measured in environmental chambers. When these experimental details are carefully considered, SOA formation in an OFR can be more reliably compared with ambient SOA formation processes. I then present an overview of what OFR measurements have taught us about SOA formation in the atmosphere. I provide a comparison of SOA formation from OH, O3, and NO3 oxidation of ambient air in a wide variety of environments, from rural forests to urban air. In a rural forest, the SOA formation correlated with biogenic precursors (e.g., monoterpenes). In urban air, it correlated instead with reactive anthropogenic tracers (e.g., trimethylbenzene). In mixed-source regions, the SOA formation did not correlate well with any single precursor, but could be predicted by multilinear regression from several precursors. Despite these correlations, the concentrations of speciated ambient VOCs could only explain approximately 10-50% of the total SOA formed from OH oxidation. In contrast, ambient VOCs could explain all of the SOA formation observed from O3 and NO3 oxidation. Evidence suggests that lower-volatility gases (semivolatile and intermediate-volatility organic compounds; S/IVOCs) were present in ambient air and were the likely source of SOA formation that could not be explained by VOCs. These measurements show that S/IVOCs likely play an important intermediary role in ambient SOA formation in all of the sampled locations, from rural forests to urban air.
NASA Astrophysics Data System (ADS)
Michael Link, M. L.; Friedman, B.; Ortega, J. V.; Son, J.; Kim, J.; Park, G.; Park, T.; Kim, K.; Lee, T.; Farmer, D.
2016-12-01
Recent commercialization of the Oxidative Flow Reactor (OFR, occasionally described in the literature as a "Potential Aerosol Mass") has created the opportunity for many researchers to explore the mechanisms behind OH-driven aerosol formation on a wide range of oxidative timescales (hours to weeks) in both laboratory and field measurements. These experiments have been conducted in both laboratory and field settings, including simple (i.e. single component) and complex (multi-component) precursors. Standard practices for performing OFR experiments, and interpreting data from the measurements, are still being developed. Measurement of gas and particle phase chemistry, from oxidation products generated in the OFR, through laboratory studies on single precursors and the measurement of SOA from vehicle emissions on short atmospheric timescales represent two very different experiments in which careful experimental design is essential for exploring reaction mechanisms and SOA yields. Two parameters essential in experimental design are (1) the role of seed aerosol in controlling gas-particle partitioning and SOA yields, and (2) the accurate determination of OH exposure during any one experiment. We investigated the role of seed aerosol surface area in controlling the observed SOA yields and gas/particle composition from the OH-initiated oxidation of four monoterpenes using an aerosol chemical ionization time-of-flight mass spectrometer and scanning mobility particle sizer. While the OH exposure during laboratory experiments is simple to constrain, complex mixtures such as diesel exhaust have high estimated OH reactivity values, and thus require careful consideration. We developed methods for constraining OH radical exposure in the OFR during vehicle exhaust oxidation experiments. We observe changes in O/C ratios and highly functionalized species over the temperature gradient employed in the aerosol-CIMS measurement. We relate this observed, speciated chemistry to the volatility of the aerosol, and compare observed SOA yields to other OFR and smog chamber SOA generation methods. Additionally, estimates of OH radical exposure in the OFR during different vehicle experiments of varying fuel type and speed were observed to vary as determined from a high-NOx and variable humidity calibration set.
Johnson, Nicholas R; George, Steven M
2017-10-04
The thermal atomic layer etching (ALE) of WO 3 and W was demonstrated with new "conversion-fluorination" and "oxidation-conversion-fluorination" etching mechanisms. Both of these mechanisms are based on sequential, self-limiting reactions. WO 3 ALE was achieved by a "conversion-fluorination" mechanism using an AB exposure sequence with boron trichloride (BCl 3 ) and hydrogen fluoride (HF). BCl 3 converts the WO 3 surface to a B 2 O 3 layer while forming volatile WO x Cl y products. Subsequently, HF spontaneously etches the B 2 O 3 layer producing volatile BF 3 and H 2 O products. In situ spectroscopic ellipsometry (SE) studies determined that the BCl 3 and HF reactions were self-limiting versus exposure. The WO 3 ALE etch rates increased with temperature from 0.55 Å/cycle at 128 °C to 4.19 Å/cycle at 207 °C. W served as an etch stop because BCl 3 and HF could not etch the underlying W film. W ALE was performed using a three-step "oxidation-conversion-fluorination" mechanism. In this ABC exposure sequence, the W surface is first oxidized to a WO 3 layer using O 2 /O 3 . Subsequently, the WO 3 layer is etched with BCl 3 and HF. SE could simultaneously monitor the W and WO 3 thicknesses and conversion of W to WO 3 . SE measurements showed that the W film thickness decreased linearly with number of ABC reaction cycles. W ALE was shown to be self-limiting with respect to each reaction in the ABC process. The etch rate for W ALE was ∼2.5 Å/cycle at 207 °C. An oxide thickness of ∼20 Å remained after W ALE, but could be removed by sequential BCl 3 and HF exposures without affecting the W layer. These new etching mechanisms will enable the thermal ALE of a variety of additional metal materials including those that have volatile metal fluorides.
Carbonyl group containing products from nopinone oxidation
NASA Astrophysics Data System (ADS)
Kahnt, A.; Iinuma, Y.; Heinold, A.; Böge, O.; Herrmann, H.
2010-12-01
Biogenic volatile organic compounds (BVOC) such as isoprene, monoterpenes and sesquiterpenes account for a large fraction of the fluxes of atmospheric non-methane hydrocarbons. Their atmospheric degradation leads to multifunctional oxidation products that can contribute to aerosol growth. In particular, semi-volatile carbonyl compounds that are formed during the early stage of the BVOC oxidation play an important role in the formation of subsequent secondary organic aerosol (SOA) compounds. In this study, a series of aerosol chamber experiments were performed to better understand the OH initiated oxidation of nopinone and subsequent oxidation products in both the gas- and particle-phase. Nopinone is a first generation oxidation product of β-pinene and has been rarely studied for its oxidation products (Calogirou et al., 1999). The gas- and particle-phase products were sampled using a denuder/filter setup. The combination of XAD-4 and 2,4-dinitrophenylhydrazine was applied on the denuder surface to enable in-situ derivatisation of carbonyl compounds. After extraction and sample purification, the derivatised carbonyl compounds were analysed with HPLC/(-)ESI-TOFMS. The data obtained from the denuder sample analysis were compared to the data obtained from the concurrent PTR-MS measurement. The PTR-MS was used in the scan mode during the OH reactions to detect unknown gaseous oxidation products. The selected ion mode was used for some of the experiments to determine the time evolution of certain compounds. The off-line denuder sample analysis enabled us to elucidate the structures of unknown compounds whereas the PTR-MS delivers the time series of oxidation products . The influences of NOx and seed particle acidity on gas- and particle-phase product distributions will be presented. References: A. Calogirou, N.R. Jensen, C.J. Nielsen, D. Kotzias, J. Hjorth, Environmental Science & Technology 33 (1999) 453.
Known as tropospheric or ground-level ozone, this gas is harmful to human heath and the environment. Since it forms from emissions of volatile organic compounds (VOCs) and nitrogen oxides (NOx), these pollutants are regulated under air quality standards.
Wright, Cynthia R; Setzer, William N
2014-01-01
The essential oils from the cladodes of Opuntia littoralis, Opuntia ficus-indica and Opuntia prolifera growing wild on Santa Catalina Island, California, were obtained by hydrodistillation and analysed by gas chromatography-mass spectrometry (GC-MS). Terpenoids were the dominant class of volatiles in O. littoralis, with the two main components being the furanoid forms of cis-linalool oxide (10.8%) and trans-linalool oxide (8.8%). Fatty acid-derived compounds dominated the essential oil of O. ficus-indica with linoleic acid (22.3%), palmitic acid (12.7%), lauric acid (10.5%) and myristic acid (4.2%) as major fatty acids. O. prolifera oil was composed of 46.6% alkanes and the primary hydrocarbon component was heptadecane (19.2%). Sixteen compounds were common to all the three Opuntia species.
Transformation of zinc hydroxide chloride monohydrate to crystalline zinc oxide.
Moezzi, Amir; Cortie, Michael; McDonagh, Andrew
2016-04-25
Thermal decomposition of layered zinc hydroxide double salts provides an interesting alternative synthesis for particles of zinc oxide. Here, we examine the sequence of changes occurring as zinc hydroxide chloride monohydrate (Zn5(OH)8Cl2·H2O) is converted to crystalline ZnO by thermal decomposition. The specific surface area of the resultant ZnO measured by BET was 1.3 m(2) g(-1). A complicating and important factor in this process is that the thermal decomposition of zinc hydroxide chloride is also accompanied by the formation of volatile zinc-containing species under certain conditions. We show that this volatile compound is anhydrous ZnCl2 and its formation is moisture dependent. Therefore, control of atmospheric moisture is an important consideration that affects the overall efficiency of ZnO production by this process.
Spring and summer contrast in new particle formation over nine forest areas in North America
Yu, F.; Luo, G.; Pryor, S. C.; ...
2015-12-18
Recent laboratory chamber studies indicate a significant role for highly oxidized low-volatility organics in new particle formation (NPF), but the actual role of these highly oxidized low-volatility organics in atmospheric NPF remains uncertain. Here, particle size distributions (PSDs) measured in nine forest areas in North America are used to characterize the occurrence and intensity of NPF and to evaluate model simulations using an empirical formulation in which formation rate is a function of the concentrations of sulfuric acid and low-volatility organics from alpha-pinene oxidation (Nucl-Org), and using an ion-mediated nucleation mechanism (excluding organics) (Nucl-IMN). On average, NPF occurred on ~more » 70 % of days during March for the four forest sites with springtime PSD measurements, while NPF occurred on only ~ 10 % of days in July for all nine forest sites. Both Nucl-Org and Nucl-IMN schemes capture the observed high frequency of NPF in spring, but the Nucl-Org scheme significantly overpredicts while the Nucl-IMN scheme slightly underpredicts NPF and particle number concentrations in summer. Statistical analyses of observed and simulated ultrafine particle number concentrations and frequency of NPF events indicate that the scheme without organics agrees better overall with observations. The two schemes predict quite different nucleation rates (including their spatial patterns), concentrations of cloud condensation nuclei, and aerosol first indirect radiative forcing in North America, highlighting the need to reduce NPF uncertainties in regional and global earth system models.« less
In Situ Formation Of Reactive Barriers For Pollution Control
Gilmore, Tyler J.; Riley, Robert G.
2004-04-27
A method of treating soil contamination by forming one or more zones of oxidized material in the path of percolating groundwater is disclosed. The zone or barrier region is formed by delivering an oxidizing agent into the ground for reaction with an existing soil component. The oxidizing agent modifies the existing soil component creating the oxidized zone. Subsequently when soil contaminates migrate into the zone, the oxidized material is available to react with the contaminates and degrade them into benign products. The existing soil component can be an oxidizable mineral such as manganese, and the oxidizing agent can be ozone gas or hydrogen peroxide. Soil contaminates can be volatile organic compounds. Oxidized barriers can be used single or in combination with other barriers.
Method of making controlled morphology metal-oxides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ozcan, Soydan; Lu, Yuan
2016-05-17
A method of making metal oxides having a preselected morphology includes preparing a suspension that includes a solvent, polymeric nanostructures having multiplicities of hydroxyl surface groups and/or carboxyl surface groups, and a metal oxide precursor. The suspension has a preselected ratio of the polymeric nanostructures to the metal oxide precursor of at least 1:3, the preselected ratio corresponding to a preselected morphology. Subsequent steps include depositing the suspension onto a substrate, removing the solvent to form a film, removing the film from the substrate, and annealing the film to volatilize the polymeric nanostructures and convert the metal oxide precursor tomore » metal oxide nanoparticles having the preselected morphology or to a metal oxide nanosheet including conjoined nanoparticles having the preselected morphology.« less
Nascimento, A M D; Maia, T D S; Soares, T E S; Menezes, L R A; Scher, R; Costa, E V; Cavalcanti, S C H; La Corte, R
2017-04-01
In order to find new alternatives for vector control and personal protection, we evaluated the larvicidal and repellent activity of essentials oils from plants found in the Northeast of Brazil against Aedes aegypti Linnaeus mosquitoes. The plants tested include Xylopia laevigata, Xylopia frutescens, and Lippia pedunculosa and their major compounds, piperitenone oxide, and (R)-limonene. The essential oil of L. pedunculosa and its major volatile compounds were shown to be toxic for Ae. aegypti larvae with a LC 50 lower than 60 ppm. The essential oil of plants from the Xylopia genus, on the other hand, showed no activity against Ae. aegypti, proving to be toxic to mosquito larvae only when concentrations were higher than 1000 ppm. All plants tested provided some degree of protection against mosquitoes landing, but only the essential oil of L. pedunculosa and the volatile compound piperitenone oxide suppressed 100% of mosquitoes landing on human skin, in concentrations lower than 1%. Among the plants studied, the essential oil of L. pedunculosa and its volatiles compounds have shown the potential for the development of safe alternative for mosquito larvae control and protection against Ae. aegypti mosquito bites.
HS-SPME analysis of volatile organic compounds of coniferous needle litter
NASA Astrophysics Data System (ADS)
Isidorov, V. A.; Vinogorova, V. T.; Rafałowski, K.
The composition of volatile emission of Scots pine ( Pinus sylvestris) and spruce ( Picea exelsa) litter was studied by gas chromatography-mass spectrometry (GC-MS) and samples were collected by solid-phase microextraction (SPME) method. The list of identified compounds includes over 60 organic substances of different classes. It was established that volatile emission contain not only components of essential oils of pine and spruce needles but also a large number of organic compounds which are probably secondary metabolites of litter-decomposing fungi. They include lower carbonyl compounds and alcohols as well as products of terpene dehydration and oxidation. These data show that the processes of litter decomposition are an important source of reactive organic compounds under canopy of coniferous forests.
Characteristics of fundamental combustion and NOx emission using various rank coals.
Kim, Sung Su; Kang, Youn Suk; Lee, Hyun Dong; Kim, Jae-Kwan; Hong, Sung Chang
2011-03-01
Eight types of coals of different rank were selected and their fundamental combustion characteristics were examined along with the conversion of volatile nitrogen (N) to nitrogen oxides (NOx)/fuel N to NOx. The activation energy, onset temperature, and burnout temperature were obtained from the differential thermogravimetry curve and Arrhenius plot, which were derived through thermo-gravimetric analysis. In addition, to derive the combustion of volatile N to NOx/fuel N to NOx, the coal sample, which was pretreated at various temperatures, was burned, and the results were compared with previously derived fundamental combustion characteristics. The authors' experimental results confirmed that coal rank was highly correlated with the combustion of volatile N to NOx/fuel N to NOx.
NASA Technical Reports Server (NTRS)
Perry, Jay L.; Frederick, Kenneth R.; Scott, Joseph P.; Reinermann, Dana N.
2011-01-01
Photocatalytic oxidation (PCO) is a maturing process technology that shows potential for spacecraft life support system application. Incorporating PCO into a spacecraft cabin atmosphere revitalization system requires an understanding of basic performance, particularly with regard to partial oxidation product production. Four PCO reactor design concepts have been evaluated for their effectiveness for mineralizing key trace volatile organic com-pounds (VOC) typically observed in crewed spacecraft cabin atmospheres. Mineralization efficiency and selectivity for partial oxidation products are compared for the reactor design concepts. The role of PCO in a spacecraft s life support system architecture is discussed.
Sun, Ke; Saadi, Fadl H.; Lichterman, Michael F.; ...
2015-03-11
Reactively sputtered nickel oxide (NiO x) films provide transparent, antireflective, electrically conductive, chemically stable coatings that also are highly active electrocatalysts for the oxidation of water to O 2(g). These NiO x coatings provide protective layers on a variety of technologically important semiconducting photoanodes, including textured crystalline Si passivated by amorphous silicon, crystalline n-type cadmium telluride, and hydrogenated amorphous silicon. Finally, under anodic operation in 1.0 M aqueous potassium hydroxide (pH 14) in the presence of simulated sunlight, the NiO x films stabilized all of these self-passivating, high-efficiency semiconducting photoelectrodes for >100 h of sustained, quantitative solar-driven oxidation of watermore » to O 2(g).« less
[Advances in novel carrier systems of chemical constituents from spice volatile oils].
Zhang, Jia-jia; Zhu, Yuan; Yu, Jiang-nan; Xu, Xi-ming
2015-10-01
Recent years, chemical constituents from spice volatile oils have gained worldwide concern owing to its multiple pharmacological effects and safety for using as the natural antibacterial agents. However, their poor dissolution, strong volatility, serious irritation, weak stability, easy oxidation and low bioavailability characteristics are the major obstacle in the preparation of effective oral formulation and practical application. Therefore, there is an urgent need to select a novel carrier system that can delivery the chemical constituents from spice volatile oils more efficiently with improving their stability as well as alleviating the irritation, and develop the functional food, health products and even medicine for exerting their pharmacological effects, which also is the focus and nodus of the research on their application. This review presents recent systematic studies on their novel carrier systems, including cyclodextrin inclusion complex, liposomes, nanoemulsions, nanoparticles, solid dispersion and so on, and summarizes the characteristics, application range and problems of each novel carrier systems, in order to provide some beneficial thoughts in further developing new products of chemical constituents from spice volatile oils.
Volatile sulphur compounds in UHT milk.
Al-Attabi, Z; D'Arcy, B R; Deeth, H C
2009-01-01
Several volatile sulphur compounds have been detected in raw and processed milk. These are hydrogen sulphide, methanethiol, carbonyl sulphide, dimethyl sulphide, carbon disulphide, dimethyl disulphide, dimethyl trisulphide, dimethyl sulphoxide, and dimethyl sulphone. Many of these increase in milk during heat processing and are associated with the cooked flavor of heat-treated milks, particularly UHT and sterilized milk. Several researchers have attempted to explain the origin of these volatiles in both raw and processed milk, and how to reduce the associated cooked flavor that has a negative impact on consumer acceptability of processed milk. These compounds are difficult to detect and analyze due to their high volatility, sensitivity to oxidation and heat, and in some cases, their very low concentrations. However, methods of detection and quantification have improved in recent years. Pre-concentration methods such as solid phase microextraction (SPME) together with gas chromatography equipped with sulphur-selective detectors now enable low concentrations of these compounds to be analyzed. In this review, methods of extraction and analyzes of these volatile sulphur compounds are compared, and their occurrence in milk is reviewed.
How "Animal Spirits" Wrecked the Housing Market
ERIC Educational Resources Information Center
Akerlof, George A.; Shiller, Robert J.
2009-01-01
Real-estate markets are almost as volatile as stock markets. Prices of agricultural land, of commercial real estate, and of homes and condominiums have gone through a series of huge bubbles, as if people never learned from the previous ones. Such events--in particular the recent housing bubble--are driven by what John Maynard Keynes called animal…
Data Science in Supply Chain Management: Data-Related Influences on Demand Planning
ERIC Educational Resources Information Center
Jin, Yao
2013-01-01
Data-driven decisions have become an important aspect of supply chain management. Demand planners are tasked with analyzing volumes of data that are being collected at a torrential pace from myriad sources in order to translate them into actionable business intelligence. In particular, demand volatilities and planning are vital for effective and…
1990-10-01
adsorption/incineration * Membrane vapor separation/condensation * Supercritical fluid oxidation • UV/ozone destruction * Molten salt combustion process...separation/ separate air stream contaminants 9 Oxygenated solvents condensation * Chlorinated hydrocarbons Supercritical fluid * Technology utilizing high...testing or full-scale unit capacity; they are: * Supercritical fluid oxidation • UV/ozone destruction * Molten salt incineration * Infrared incineration
Oxygen ion-conducting dense ceramic
Balachandran, Uthamalingam; Kleefisch, Mark S.; Kobylinski, Thaddeus P.; Morissette, Sherry L.; Pei, Shiyou
1998-01-01
Preparation, structure, and properties of mixed metal oxide compositions and their uses are described. Mixed metal oxide compositions of the invention have stratified crystalline structure identifiable by means of powder X-ray diffraction patterns. In the form of dense ceramic membranes, the present compositions demonstrate an ability to separate oxygen selectively from a gaseous mixture containing oxygen and one or more other volatile components by means of ionic conductivities.
A pilot-scale in situ chemical oxidation (ISCO) demonstration, involving subsurface injections of sodium permanganate (NaMnO4), was performed at the US Marine Corp Recruit Depot (MCRD), site 45 (Parris Island (PI), SC). The ground water was originally contaminated with perchloroe...
Fenton-Driven Regeneration of MTBE-spent Granular Activated Carbon
Fenton-driven regeneration of Methyl tert-butyl ether (MTBE)-spent granular activated carbon (GAC) involves the combined, synergistic use of two treatment technologies: adsorption of organic chemicals onto activated carbon and Fenton-driven oxidation regeneration of the spent-GAC...
Konduru, Tharun; Rains, Glen C; Li, Changying
2015-01-12
A gas sensor array, consisting of seven Metal Oxide Semiconductor (MOS) sensors that are sensitive to a wide range of organic volatile compounds was developed to detect rotten onions during storage. These MOS sensors were enclosed in a specially designed Teflon chamber equipped with a gas delivery system to pump volatiles from the onion samples into the chamber. The electronic circuit mainly comprised a microcontroller, non-volatile memory chip, and trickle-charge real time clock chip, serial communication chip, and parallel LCD panel. User preferences are communicated with the on-board microcontroller through a graphical user interface developed using LabVIEW. The developed gas sensor array was characterized and the discrimination potential was tested by exposing it to three different concentrations of acetone (ketone), acetonitrile (nitrile), ethyl acetate (ester), and ethanol (alcohol). The gas sensor array could differentiate the four chemicals of same concentrations and different concentrations within the chemical with significant difference. Experiment results also showed that the system was able to discriminate two concentrations (196 and 1964 ppm) of methlypropyl sulfide and two concentrations (145 and 1452 ppm) of 2-nonanone, two key volatile compounds emitted by rotten onions. As a proof of concept, the gas sensor array was able to achieve 89% correct classification of sour skin infected onions. The customized low-cost gas sensor array could be a useful tool to detect onion postharvest diseases in storage.
Konduru, Tharun; Rains, Glen C.; Li, Changying
2015-01-01
A gas sensor array, consisting of seven Metal Oxide Semiconductor (MOS) sensors that are sensitive to a wide range of organic volatile compounds was developed to detect rotten onions during storage. These MOS sensors were enclosed in a specially designed Teflon chamber equipped with a gas delivery system to pump volatiles from the onion samples into the chamber. The electronic circuit mainly comprised a microcontroller, non-volatile memory chip, and trickle-charge real time clock chip, serial communication chip, and parallel LCD panel. User preferences are communicated with the on-board microcontroller through a graphical user interface developed using LabVIEW. The developed gas sensor array was characterized and the discrimination potential was tested by exposing it to three different concentrations of acetone (ketone), acetonitrile (nitrile), ethyl acetate (ester), and ethanol (alcohol). The gas sensor array could differentiate the four chemicals of same concentrations and different concentrations within the chemical with significant difference. Experiment results also showed that the system was able to discriminate two concentrations (196 and 1964 ppm) of methlypropyl sulfide and two concentrations (145 and 1452 ppm) of 2-nonanone, two key volatile compounds emitted by rotten onions. As a proof of concept, the gas sensor array was able to achieve 89% correct classification of sour skin infected onions. The customized low-cost gas sensor array could be a useful tool to detect onion postharvest diseases in storage. PMID:25587975
Oxidation of monoterpenes in Protium heptaphyllum oleoresins.
Albino, Rayane C; Oliveira, Prissila C; Prosdocimi, Francisco; da Silva, Osman F; Bizzo, Humberto R; Gama, Paola E; Sakuragui, Cássia M; Furtado, Carolina; de Oliveira, Danilo R
2017-04-01
Protium heptaphyllum (Burseraceae) oleoresins are rich in volatile monoterpenes, exhibiting a chemical composition that can be strongly altered with time. The present work aimed to discuss the temporal change of the volatile composition of these oleoresins, and search for related supporting evidence. Samples of P. heptaphyllum oleoresin were collected separately for fresh (n = 10) and aged (n = 8) oleoresins, with the essential oils obtained by hydrodistillation analyzed by GC-FID and GC-MS. Fresh oleoresins were characterized by a high content of terpinolene (28.2-69.7%), whereas aged ones contained large amounts of p-cymene (18.7-43.0%) and p-cymen-8-ol (8.2-31.8%). Multivariate analyses were performed based on the yield and major essential oil components to clearly demonstrate the existence of two subsets (fresh and aged oleoresins). In addition, an analysis of the partial genome sequencing of the species was carried out, producing the largest amount of data for the genus Protium. Subsequently, were searched for nucleotide sequences responsible for the enzymes involved in the biosynthesis of monoterpenes. Two hypotheses were formulated to understand the oxidation process during aging of the oleoresins: (i) a natural chemical oxidation of terpenes and (ii) an oxidation catalyzed by enzymes produced by microorganisms associated with the plant. The results suggested that terpinolene was most likely oxidized to p-cymene, which, in turn, was oxidized into p-cymen-8-ol during natural aging of the exudate due to abiotic factors. Copyright © 2017 Elsevier Ltd. All rights reserved.
Jokinen, Tuija; Berndt, Torsten; Makkonen, Risto; Kerminen, Veli-Matti; Junninen, Heikki; Stratmann, Frank; Herrmann, Hartmut; Guenther, Alex B.; Worsnop, Douglas R.; Kulmala, Markku; Ehn, Mikael; Sipilä, Mikko
2015-01-01
Oxidation products of monoterpenes and isoprene have a major influence on the global secondary organic aerosol (SOA) burden and the production of atmospheric nanoparticles and cloud condensation nuclei (CCN). Here, we investigate the formation of extremely low volatility organic compounds (ELVOC) from O3 and OH radical oxidation of several monoterpenes and isoprene in a series of laboratory experiments. We show that ELVOC from all precursors are formed within the first minute after the initial attack of an oxidant. We demonstrate that under atmospherically relevant concentrations, species with an endocyclic double bond efficiently produce ELVOC from ozonolysis, whereas the yields from OH radical-initiated reactions are smaller. If the double bond is exocyclic or the compound itself is acyclic, ozonolysis produces less ELVOC and the role of the OH radical-initiated ELVOC formation is increased. Isoprene oxidation produces marginal quantities of ELVOC regardless of the oxidant. Implementing our laboratory findings into a global modeling framework shows that biogenic SOA formation in general, and ELVOC in particular, play crucial roles in atmospheric CCN production. Monoterpene oxidation products enhance atmospheric new particle formation and growth in most continental regions, thereby increasing CCN concentrations, especially at high values of cloud supersaturation. Isoprene-derived SOA tends to suppress atmospheric new particle formation, yet it assists the growth of sub-CCN-size primary particles to CCN. Taking into account compound specific monoterpene emissions has a moderate effect on the modeled global CCN budget. PMID:26015574
Lu, F S H; Nielsen, N S; Baron, C P; Jacobsen, C
2012-12-15
Due to the beneficial health effects of marine phospholipids (PL) there is an increasing industrial interest in using them for nutritional applications including emulsified foods. This study was undertaken to investigate both oxidative and hydrolytic stability of marine PL emulsions in relation to the chemical composition of the marine PL used. Moreover, non-enzymatic browning reactions were also investigated. Emulsions were prepared by high pressure homogenizer using different concentrations and sources of marine PL. In some formulations, fish oil was added in order to study the effect of increasing levels of triglycerides in the emulsions. The oxidative and hydrolytic stability of emulsions was investigated through measurement of peroxide value, free fatty acids, and (31)P NMR during storage at 2°C for up to 32 days. The oxidative stability of marine PL emulsions during storage was further investigated through the measurement of secondary volatile compounds by solid-phase microextraction (SPME) and dynamic headspace (DHS) connected to gas chromatography (GC-MS). Non-enzymatic browning reactions were investigated through the measurement of Strecker derived volatiles, colour changes and pyrrole content. The results suggested that the oxidative stability of marine PL emulsions was significantly influenced by the chemical composition and the concentration of marine PL used to prepare them. Emulsions with good oxidative stability could be prepared from marine PL of high purity and high content of PL and antioxidant and low TAG content. Copyright © 2012 Elsevier Ltd. All rights reserved.
Jokinen, Tuija; Berndt, Torsten; Makkonen, Risto; Kerminen, Veli-Matti; Junninen, Heikki; Paasonen, Pauli; Stratmann, Frank; Herrmann, Hartmut; Guenther, Alex B; Worsnop, Douglas R; Kulmala, Markku; Ehn, Mikael; Sipilä, Mikko
2015-06-09
Oxidation products of monoterpenes and isoprene have a major influence on the global secondary organic aerosol (SOA) burden and the production of atmospheric nanoparticles and cloud condensation nuclei (CCN). Here, we investigate the formation of extremely low volatility organic compounds (ELVOC) from O3 and OH radical oxidation of several monoterpenes and isoprene in a series of laboratory experiments. We show that ELVOC from all precursors are formed within the first minute after the initial attack of an oxidant. We demonstrate that under atmospherically relevant concentrations, species with an endocyclic double bond efficiently produce ELVOC from ozonolysis, whereas the yields from OH radical-initiated reactions are smaller. If the double bond is exocyclic or the compound itself is acyclic, ozonolysis produces less ELVOC and the role of the OH radical-initiated ELVOC formation is increased. Isoprene oxidation produces marginal quantities of ELVOC regardless of the oxidant. Implementing our laboratory findings into a global modeling framework shows that biogenic SOA formation in general, and ELVOC in particular, play crucial roles in atmospheric CCN production. Monoterpene oxidation products enhance atmospheric new particle formation and growth in most continental regions, thereby increasing CCN concentrations, especially at high values of cloud supersaturation. Isoprene-derived SOA tends to suppress atmospheric new particle formation, yet it assists the growth of sub-CCN-size primary particles to CCN. Taking into account compound specific monoterpene emissions has a moderate effect on the modeled global CCN budget.
Modification of molybdenum surface by low-energy oxygen implantation at room temperature
NASA Astrophysics Data System (ADS)
Kavre Piltaver, Ivna; Jelovica Badovinac, Ivana; Peter, Robert; Saric, Iva; Petravic, Mladen
2017-12-01
We have studied the initial stages of oxide formation on molybdenum surfaces under 1 keV O2+ ion bombardment at room temperature (RT), using x-ray photoelectron spectroscopy around Mo 3d or O 1s core-levels and the valence band photoemission. The results are compared with the oxidation mechanism of thermally oxidized Mo at RT. The thermal oxidation reveals the formation of a very thin MoO2 layer that prevents any further adsorption of oxygen at higher oxygen doses. Oxygen implantation is more efficient in creating thicker oxide films with the simultaneous formation of several oxide compounds. The oxidation rates of MoO2 and Mo2O5 follow the parabolic growth rate consistent with the mass transport driven by diffusion of either neutral or singly and doubly charged oxygen interstitials. The oxidation of MoO3, which occurs at a later oxidation stage, follows the logarithmic rate driven by the diffusion of cations in an electric field.
NASA Technical Reports Server (NTRS)
Kuck, David L.
1991-01-01
Ideas introduced by Vaniman, Pettit and Heiken in their 1988 Uses of Lunar Sulfur are expanded. Particular attention is given to uses of SO2 as a mineral-dressing fluid. Also introduced is the concept of using sulfide-based concrete as an alternative to the sulfur-based concretes proposed by Leonard and Johnson. Sulfur is abundant in high-Ti mare basalts, which range from 0.16 to 0.27 pct. by weight. Terrestrial basalts with 0.15 pct. S are rare. For oxygen recovery, sulfur must be driven off with other volatiles from ilmenite concentrates, before reduction. Troilite (FeS) may be oxidized to magnetite (Fe3O4) and SO2 gas, by burning concentrates in oxygen within a magnetic field, to further oxidize ilmenite before regrinding the magnetic reconcentration. SO2 is liquid at -20 C, the mean temperature underground on the Moon, at a minimum of 0.6 atm pressure. By using liquid SO2 as a mineral dressing fluid, all the techniques of terrestrial mineral separation become available for lunar ores and concentrates. Combination of sulfur and iron in an exothermic reaction, to form iron sulfides, may be used to cement grains of other minerals into an anhydrous iron-sulfide concrete. A sulfur-iron-aggregate mixture may be heated to the ignition temperature of iron with sulfur to make a concrete shape. The best iron, sulfur, and aggregate ratios need to be experimentally established. The iron and sulfur will be by-products of oxygen production from lunar minerals.
NASA Astrophysics Data System (ADS)
Kuck, David L.
Ideas introduced by Vaniman, Pettit and Heiken in their 1988 Uses of Lunar Sulfur are expanded. Particular attention is given to uses of SO2 as a mineral-dressing fluid. Also introduced is the concept of using sulfide-based concrete as an alternative to the sulfur-based concretes proposed by Leonard and Johnson. Sulfur is abundant in high-Ti mare basalts, which range from 0.16 to 0.27 pct. by weight. Terrestrial basalts with 0.15 pct. S are rare. For oxygen recovery, sulfur must be driven off with other volatiles from ilmenite concentrates, before reduction. Troilite (FeS) may be oxidized to magnetite (Fe3O4) and SO2 gas, by burning concentrates in oxygen within a magnetic field, to further oxidize ilmenite before regrinding the magnetic reconcentration. SO2 is liquid at -20 C, the mean temperature underground on the Moon, at a minimum of 0.6 atm pressure. By using liquid SO2 as a mineral dressing fluid, all the techniques of terrestrial mineral separation become available for lunar ores and concentrates. Combination of sulfur and iron in an exothermic reaction, to form iron sulfides, may be used to cement grains of other minerals into an anhydrous iron-sulfide concrete. A sulfur-iron-aggregate mixture may be heated to the ignition temperature of iron with sulfur to make a concrete shape. The best iron, sulfur, and aggregate ratios need to be experimentally established. The iron and sulfur will be by-products of oxygen production from lunar minerals.
Region 6: Texas Adequate Letter (4/16/2010)
This letter from EPA to Texas Commission on Environmental Quality determined 2021 motor vehicle emission budgets for nitrogen oxides (NOx) and volatile organic compounds (VOCs) for Beaumont/Port Arthur area adequate for transportation conformity purposes
COMBUSTION AREA SOURCES: DATA SOURCES
The report identifies, documents, and evaluates data sources for stationary area source emissions, including solid waste and agricultural burning. Area source emissions of particulate matter, sulfur dioxide, oxides of nitrogen, reactive volatile organic compounds, and carbon mon...
76 FR 39899 - Notice of Lodging of Consent Decree Under the Clean Air Act
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-07
... emissions of nitrogen oxides, sulfur dioxide, volatile organic compounds, and benzene. Among other things... refinery's benzene monitoring program is enhanced, and the refinery's leak-detection-and-repair (LDAR...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-02
... chemical precursors are sulfur dioxide (SO 2 ), nitrogen oxides (NO X ), ammonia (NH 3 ), and volatile... emulsified asphalt paving; cement kilns; glass furnaces; industrial, commercial, and institutional (ICI...
Oueslati, Imen; Manaï, Hédia; Madrigal-Martínez, Mónica; Martínez-Cañas, Manuel A; Sánchez-Casas, Jacinto; Zarrouk, Mokhtar; Flamini, Guido
2018-04-01
Heating operation has been applied to Chétoui extra-virgin olive oils (EVOOs) extracted from fruits with several ripening stages (RS). The studied samples, were subjected to microwave and conventional heating. Results showed that heated VOOs after 2.5 h and 7 min of conventional and microwave heating, respectively, gave rise to a drastically decrease of LOX products and allowed the detection of toxic new formed aldehydic volatiles (alkanal: nonanal, alkenals: (Z)-2-heptenal and (E)-2-decenal, and alkadienals: (E.E)-2.4-decadienal), which can be used as markers of VOO degradation. Their abundance in the VOO headspaces depends on their boiling points, the rate of their possible degradation to yield other compounds, on the heating processes and on the rate of macronutrients. The emission rate of the new synthesized volatiles during heating processes was mainly attributed to enzymatic oxidation of some fatty acids. Hexanal, (Z)-2-heptenal, (E)-2-octenal, (E)-2-nonenal, (E,E) and (E,Z)-2,4-decadienal, and (E,E)-2,4-nonadienal, derived from linoleic acid, and heptanol, octanal, nonanal, decanal, (E) and (Z)-2-decenal, (E)-2-undecenal, and (E,E)-2,4-nonadienal, are emitted after degradation of oleic acid. During thermo-oxidation, the ECN 44 (LLO, and OLnO), and the ECN 46 (OLO, and PLO + SLL) compounds decreased, whereas, the ECN 48 (OOO, and PPO), and the ECN 50 (SOO) compounds increased when temperature and heating time increased. The several variations of the studied biochemical compounds depend to the heating processes. Ripening stage of olive fruits can be used as a tool to monitor the emission rate of the aldehydic volatiles, but cannot be used for a chemometric discrimination. Copyright © 2018 Elsevier Ltd. All rights reserved.
Li, Weifeng; Fan, Ting; Zhang, Yanmin; Fan, Te; Zhou, Ping; Niu, Xiaofeng; He, Langchong
2013-11-01
Houttuynia cordata Thunb. (HC) is a medicinal herb that generally used in traditional Chinese medicine for treating allergic inflammation. The present study investigated the inhibitory effect of the volatile oil from HC Thunb. on animal models of inflammation and the production of inflammatory mediators in vivo and in vitro. In vivo, xylene-induced mouse ear edema, formaldehyde-induced paw edema and carrageenan-induced mice paw edema were significantly decreased by HC volatile oil. HC volatile oil showed pronounced inhibition of prostaglandin (PG) E2 and malondialdehyde production in the edematous exudates. In vitro exposure of mouse resident peritoneal macrophages to 1, 10, 100 and 1000 µg/mL of HC volatile oil significantly suppressed lipopolysaccharide (LPS)-stimulated production of NO and tumor necrosis factor-α (TNF-α) in a dose-dependent manner. Exposure to HC volatile oil had no effect on cell viability and systemic toxicity. Furthermore, HC volatile oil inhibited the production of NO and TNF-α by down-regulating LPS-stimulated iNOS and TNF-α mRNA expression. Western blot analysis showed that HC volatile oil attenuated LPS-stimulated synthesis of iNOS and TNF-α protein in the macrophages, in parallel. These findings add a novel aspect to the biological profile of HC and clarify its anti-inflammatory mechanism. Copyright © 2012 John Wiley & Sons, Ltd.
Comprehensive characterization of atmospheric organic carbon at a forested site
NASA Astrophysics Data System (ADS)
Hunter, James F.; Day, Douglas A.; Palm, Brett B.; Yatavelli, Reddy L. N.; Chan, Arthur W. H.; Kaser, Lisa; Cappellin, Luca; Hayes, Patrick L.; Cross, Eben S.; Carrasquillo, Anthony J.; Campuzano-Jost, Pedro; Stark, Harald; Zhao, Yunliang; Hohaus, Thorsten; Smith, James N.; Hansel, Armin; Karl, Thomas; Goldstein, Allen H.; Guenther, Alex; Worsnop, Douglas R.; Thornton, Joel A.; Heald, Colette L.; Jimenez, Jose L.; Kroll, Jesse H.
2017-10-01
Atmospheric organic compounds are central to key chemical processes that influence air quality, ecological health, and climate. However, longstanding difficulties in predicting important quantities such as organic aerosol formation and oxidant lifetimes indicate that our understanding of atmospheric organic chemistry is fundamentally incomplete, probably due in part to the presence of organic species that are unmeasured using standard analytical techniques. Here we present measurements of a wide range of atmospheric organic compounds--including previously unmeasured species--taken concurrently at a single site (a ponderosa pine forest during summertime) by five state-of-the-art mass spectrometric instruments. The combined data set provides a comprehensive characterization of atmospheric organic carbon, covering a wide range in chemical properties (volatility, oxidation state, and molecular size), and exhibiting no obvious measurement gaps. This enables the first construction of a measurement-based local organic budget, highlighting the high emission, deposition, and oxidation fluxes in this environment. Moreover, previously unmeasured species, including semivolatile and intermediate-volatility organic species (S/IVOCs), account for one-third of the total organic carbon, and (within error) provide closure on both OH reactivity and potential secondary organic aerosol formation.
Al-Mn CVD-FBR coating on P92 steel as protection against steam oxidation at 650 °C: TGA-MS study
NASA Astrophysics Data System (ADS)
Castañeda, S. I.; Pérez, F. J.
2018-02-01
The initial stages oxidation of the P92 ferritic/martensitic steel with and without Al-Mn coating at 650 °C in Ar+40%H2O for 240 h were investigated by mass spectrometry (MS) and thermogravimetric analysis (TGA). TGA-MS measurements were conducted in a closed steam loop. An Al-Mn coating was deposited on P92 steel at 580 °C for 2 h by chemical vapour deposition in a fluidized bed reactor (CVD-FBR). The coating as-deposited was treated in the same reactor at 700 °C in Ar for 2h, in order to produce aluminide phases that form the protective alumina layer (Al2O3) during oxidation. MS measurements at 650 °C of the Al-Mn/P92 sample for 200 h indicated the presence of (Al-Mn-Cr-Fe-O) volatile species of small intensity. Uncoated P92 steel oxidized under the same steam oxidation conditions emitted greater intensities of volatile species of Cr, Fe and Mo in comparison with intensities from coated steel. TGA measurements verified that the mass gained by the coated sample was up to 300 times lower than for uncoated P92 steel. The morphology, composition and structure of samples by Scanning Electron Microscopy SEM, Backscattered Electron (BSE) detection, X-ray Energy Dispersive Spectrometry (EDAX) and X-ray Diffraction (XRD) are described.
Cho, Kye Man; Lim, Ho-Jeong; Kim, Mi-So; Kim, Da Som; Hwang, Chung Eun; Nam, Sang Hae; Joo, Ok Soo; Lee, Byong Won; Kim, Jae Kyeom; Shin, Eui-Cheol
2017-07-01
In this study, we investigated the effects of the potential probiotic Bacillus subtilis CSY191 on the fatty acid profiles of Cheonggukjang, a fermented soybean paste, prepared using new Korean brown soybean cultivars, protein-rich cultivar (Saedanbaek), and oil-rich cultivar (Neulchan). Twelve fatty acids were identified in the sample set-myristic, palmitic, palmitoleic, stearic, oleic, vaccenic, linoleic, α-linolenic, arachidic, gondoic, behenic, and lignoceric acids-yet, no specific changes driven by fermentation were noted in the fatty acid profiles. To further explore the effects of fermentation of B. subtilis CSY191, complete profiles of volatiles were monitored. In total, 121, 136, and 127 volatile compounds were detected in the Saedanbaek, Daewon (control cultivar), and Neulchan samples, respectively. Interestingly, the content of pyrazines-compounds responsible for pungent and unpleasant Cheonggukjang flavors-was significantly higher in Neulchan compared to that in Saedanbaek. Although the fermentation period was not a strong factor affecting the observed changes in fatty acid profiles, we noted that profiles of volatiles in Cheonggukjang changed significantly over time, and different cultivars represented specific volatile profiles. Thus, further sensory evaluation might be needed to determine if such differences influence consumers' preferences. Furthermore, additional studies to elucidate the associations between B. subtilis CSY191 fermentation and other nutritional components (e.g., amino acids) and their health-promoting potential are warranted. Copyright © 2016. Published by Elsevier B.V.
Hornbuckle, Keri C; Green, Mark L
2003-09-01
A predictive model for gas-phase PCBs and trans-nonachlor over Lake Michigan has been constructed and the resulting data examined for trends. In this paper, we describe the model results to show how the magnitude and variability of a plume of contaminants from the Chicago area contributes to a highly variable region of net contaminant deposition over the entire lake. For the whole lake, gross annual deposition of PCBs is approximately 3200 kg, although the net annual gas exchange is not significantly different from zero. The data-driven model illustrates that on a daily basis, the net exchange of persistent organic pollutants (POPs) can change from net deposition to net volatilization depending on the area of plume impact. These findings suggest that i) control of urban areas can accelerate the rate of volatilization from lakes; and ii) release of POPs from urban areas is largely a result of volatilization processes.
NASA Astrophysics Data System (ADS)
Guo, D. Y.; Qian, Y. P.; Su, Y. L.; Shi, H. Z.; Li, P. G.; Wu, J. T.; Wang, S. L.; Cui, C.; Tang, W. H.
2017-06-01
The conductivity of gallium oxide thin films is strongly dependent on the growth temperature when they deposited by pulsed laser deposition under vacuum environment, exhibiting an insulative-to-metallic transition with the decrease of the temperature. The high conductive gallium oxide films deposited at low temperature are amorphous, non-stoichiometric, and rich in oxygen vacancy. Large changes in electrical resistance are observed in these non-stoichiometric thin films. The wide variety of hysteretic shapes in the I-V curves depend on the voltage-sweep rate, evidencing that the time-dependent redistribution of oxygen vacancy driven by bias is the controlling parameter for the resistance of gallium oxide.
Oxidation-chlorination of binary Ni-Cr alloys in flowing Ar-O2-Cl2 gas mixtures at 1200 K
NASA Technical Reports Server (NTRS)
Mcnallan, M. J.; Lee, Y. Y.; Chang, Y. W.; Jacobson, N. S.; Doychak, J.
1991-01-01
Nickel-chromium alloys are resistant to oxidation because of the selective oxidation of chromium to form a protective Cr2O3 scale. In chlorine-containing environments, volatile corrosion products can also be formed. The mixed oxidation-chlorination of Ni-4.5Cr, Ni-13.8Cr, and Ni-26.5Cr (by weight) alloys in Ar-O2-Cl2 gas mixtures is investigated using thermogravimetric analysis and atmospheric-pressure-sampling mass spectrometry, followed by examination of the corrosion products using scanning electron microscopy and X-ray diffraction analysis. The overall kinetics of the corrosion are affected by the relative amounts of oxides and chlorides formed and the composition of the oxide corrosion products.
NASA Technical Reports Server (NTRS)
Staehle, Robert L.; Dowling, Richard
1991-01-01
As with any planetary body, the lunar surface is quite heterogeneous. There are widely dispersed sites of particular interest for known and potential resource availability, selenology, and lunar observatories. Discriminating characteristics include solar illumination, view of earth, local topography, engineering properties of the regolith and certain geological features, and local mineralogy and petrology. Space vehicle arrival and departure trajectories constitute a minor consideration. Over time, a variety of base sites will be developed serving different purposes. Resource-driven sites may see the fastest growth during the first decades of lunar development, but selection of the most favorable sites is likely to be driven by suitability for a combination of activities. As on earth, later development may be driven by geographical advantages of surface transportation routes. With the availability of near-constant sunlight for power generation, as well as permanently shadowed areas at cryogenic temperatures, polar sites are attractive because they require substantially less earth-launched mass and lower equipment complexity for an initial permanent base. Discovery of accessible volatiles reservoirs, either in the form of polar permafrost or gas reservoirs at other locations, would dramatically increase the attractiveness of any site from a logistical support and selenological point of view. Amid such speculation, no reliable evidence of such volatiles exist. More reliable evidence exists for areas of certain mineral concentrations, such as ilmenite, which could form a feedstock for some proposed resource extraction schemes. While tentative selections of advantageous base sites are made, new data from lunar polar orbiters and the Galileo polar flybys would be very helpful.
Analysis of Oxygen, Anaesthesia Agent and Flows in Anaesthesia Machine
Garg, Rakesh; Gupta, Ramesh Chand
2013-01-01
The technical advancement in the anaesthesia workstations has made the peri-operative anaesthesia more safer. Apart from other monitoring options, respiratory gas analysis has become an integral part of the modern anaesthesia workstations. Monitoring devices, such as an oxygen analyser with an audible alarm, carbon dioxide analyser, a vapour analyser, whenever a volatile anaesthetic is delivered have also been recommended by various anaesthesia societies. This review article discusses various techniques for analysis of flow, volumes and concentration of various anaesthetic agents including oxygen, nitrous oxide and volatile anaesthetic agents. PMID:24249881
Crawford, L; Wheeler, E L
1983-12-01
Distillable secondary products from roasted fowl were found to be cytotoxic but not mutagenic when assayed with Salmonella typhimurium strains TA98, TA100 and TA1537. A crudely separated fraction of the volatiles produced focal hyperplasia and damage to the epidermis of the backs of mice. The volatiles also caused an apparent synthesis of non-constitutive forms of rat hepatic cytochromes P-450 which metabolize benzo[a]pyrene B [a]P differently from the constitutive P-450.
Photochemical Assessment Monitoring Stations (PAMS)
Photochemical Assessment Monitoring Stations (PAMS). This file provides information on the numbers and distribution (latitude/longitude) of air monitoring sites which measure ozone precursors (approximately 60 volatile hydrocarbons and carbonyl), as required by the 1990 Clean Air Act Amendments, in areas with persistently high ozone levels (mostly large metropolitan areas). In these areas, the States have established ambient air monitoring sites which collect and report detailed data for volatile organic compounds, nitrogen oxides, ozone and meteorological parameters. This file displays 199 monitoring sites reporting measurements for 2010. A wide range of related monitoring site attributes is also provided.
Pyrolysis of carbonaceous materials with solvent quench recovery
Green, Norman W.; Duraiswamy, Kandaswamy; Lumpkin, Robert E.; Knell, Everett W.; Mirza, Zia I.; Winter, Bruce L.
1978-04-18
In a continuous process for recovery of values contained in a solid carbonaceous material, the carbonaceous material is comminuted and then subjected to flash pyrolysis in the presence of a particulate heat source to form a pyrolysis product stream containing a carbon containing solid residue and volatilized hydrocarbons. After the carbon containing solid residue is separated from the pyrolysis product stream, values are obtained by condensing volatilized hydrocarbons. The particulate source of heat is formed by oxidizing carbon in the solid residue. Apparatus useful for practicing this process are disclosed.
CHEMICAL ENGINEERING DIVISION SUMMARY REPORT, OCTOBER, NOVEMBER, DECEMBER 1960
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1961-03-01
Chemical-metallurgical processing studies were made of pyrometallurgical development snd research, and fuel processing facilities for EBR-II. Fuel-cycle applications of fluidization and volatility techniques included laboratory investigations of fluoride volatility processes, engineeringscale development, and conversion of UF/sub 6/ to UO/sub 2/. Reactor safety studies consisted of metal oxidation and ignition kinetics, and metal-water reactions. Reactor chemistry investigations were conducted to determine nuclear constants and suitable reactor decontamination methods. Routine operations are summarized for the high-level gammairradiation facillty and waste processing. (B.O.G.)
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-12
... implementation plan revisions, submitted by the North Carolina Department of Environment and Natural Resources... for the motor vehicle emissions budgets (MVEB) for volatile organic compounds and nitrogen oxides that...
Region 5: Indiana Adequate Letter (7/15/2005)
This letter from EPA to the Indiana Department of Environmental Management determined the 2015 motor vehicle emission budgets (MVEBs) for volatile organic compounds (VOCs) and oxides of nitrogen (NOx) for Evansville, Indiana's 8-hour ozone nonattainment
FAD oxidizes the ERO1-PDI electron transfer chain: The role of membrane integrity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Papp, Eszter; Nardai, Gabor; Mandl, Jozsef
2005-12-16
The molecular steps of the electron transfer in the endoplasmic reticulum from the secreted proteins during their oxidation are relatively unknown. We present here that flavine adenine dinucleotide (FAD) is a powerful oxidizer of the oxidoreductase system, Ero1 and PDI, besides the proteins of rat liver microsomes and HepG2 hepatoma cells. Inhibition of FAD transport hindered the action of FAD. Microsomal membrane integrity was mandatory for all FAD-related oxidation steps downstream of Ero1. The PDI inhibitor bacitracin could inhibit FAD-mediated oxidation of microsomal proteins and PDI, but did not hinder the FAD-driven oxidation of Ero1. Our data demonstrated that Ero1more » can utilize FAD as an electron acceptor and that FAD-driven protein oxidation goes through the Ero1-PDI pathway and requires the integrity of the endoplasmic reticulum membrane. Our findings prompt further studies to elucidate the membrane-dependent steps of PDI oxidation and the role of FAD in redox folding.« less
NASA Astrophysics Data System (ADS)
Barbosa, Thais S.; Riva, Matthieu; Chen, Yuzhi; da Silva, Cleyton M.; Ameida, Jose Claudino S.; Zhang, Zhenfa; Gold, Avram; Arbilla, Graciela; Bauerfeldt, Glauco F.; Surratt, Jason D.
2017-08-01
Cis-3-hexen-1-ol (cis-HXO) is a green leaf volatile emitted from plants under stress and belongs to an important class of biogenic volatile organic compounds. In this study, we have investigated the potential formation of organosulfates (OSs) from the hydroxyl radical (OH)-initiated oxidation and ozonolysis of cis-HXO using either non-acidified or acidified sulfate seed aerosols under different relative humidity (RH) conditions. For selected ozonolysis experiments, an OH scavenger was utilized. Ultra performance liquid chromatography interfaced to high-resolution quadrupole time-of-flight mass spectrometry with electrospray ionization (UPLC/ESI-HR-Q-TOFMS) was used to characterize cis-HXO-derived secondary organic aerosol (SOA) formation. Chemical characterization of cis-HXO-derived SOA products reveals that OSs were generated in significant quantity from multiphase chemistry of gas-phase oxidation products of cis-HXO. Ambient fine aerosol (PM2.5) samples collected from Rio de Janeiro, Brazil, were also analyzed. Seven cis-HXO-derived OSs identified in the lab study with molecular weights 154, 186, 170, 210, 212, 226 and 270 were also found in the PM2.5 samples collected in Brazil. This study provides direct evidence that the oxidation of cis-HXO by OH and O3 yields biogenic SOA through the formation of polar OSs.
Fenaille, François; Visani, Piero; Fumeaux, René; Milo, Christian; Guy, Philippe A
2003-04-23
Two headspace techniques based on mass spectrometry detection (MS), electronic nose, and solid phase microextraction coupled to gas chromatography-mass spectrometry (SPME-GC/MS) were evaluated for their ability to differentiate various infant formula powders based on changes of their volatiles upon storage. The electronic nose gave unresolved MS fingerprints of the samples gas phases that were further submitted to principal component analysis (PCA). Such direct MS recording combined to multivariate treatment enabled a rapid differentiation of the infant formulas over a 4 week storage test. Although MS-based electronic nose advantages are its easy-to-use aspect and its meaningful data interpretation obtained with a high throughput (100 samples per 24 h), its greatest disadvantage is that the present compounds could not be identified and quantified. For these reasons, a SPME-GC/MS measurement was also investigated. This technique allowed the identification of saturated aldehydes as the main volatiles present in the headspace of infant milk powders. An isotope dilution assay was further developed to quantitate hexanal as a potential indicator of infant milk powder oxidation. Thus, hexanal content was found to vary from roughly 500 and 3500 microg/kg for relatively non-oxidized and oxidized infant formulas, respectively.
NASA Astrophysics Data System (ADS)
Linbo, GU; Yixi, CAI; Yunxi, SHI; Jing, WANG; Xiaoyu, PU; Jing, TIAN; Runlin, FAN
2017-11-01
To explore the effect of the gas source flow rate on the actual diesel exhaust particulate matter (PM), a test bench for diesel engine exhaust purification was constructed, using indirect non-thermal plasma technology. The effects of different gas source flow rates on the quantity concentration, composition, and apparent activation energy of PM were investigated, using an engine exhaust particle sizer and a thermo-gravimetric analyzer. The results show that when the gas source flow rate was large, not only the maximum peak quantity concentrations of particles had a large drop, but also the peak quantity concentrations shifted to smaller particle sizes from 100 nm to 80 nm. When the gas source flow rate was 10 L min-1, the total quantity concentration greatly decreased where the removal rate of particles was 79.2%, and the variation of the different mode particle proportion was obvious. Non-thermal plasma (NTP) improved the oxidation ability of volatile matter as well as that of solid carbon. However, the NTP gas source rate had little effects on oxidation activity of volatile matter, while it strongly influenced the oxidation activity of solid carbon. Considering the quantity concentration and oxidation activity of particles, a gas source flow rate of 10 L min-1 was more appropriate for the purification of particles.
Hydrogen Sulfide and Ionic Liquids: Absorption, Separation, and Oxidation.
Chiappe, Cinzia; Pomelli, Christian Silvio
2017-06-01
Economical and environmental concerns are the main motivations for development of energy-efficient processes and new eco-friendly materials for the capture of greenhouse gases. Currently, H 2 S capture is dominated by physical and/or chemical absorption technologies, which are, however, energy intensive and often problematic from an environmental point of view due to emission of volatile solvent components. Ionic liquids have been proposed as a promising alternative to conventional solvents because of their low volatility and other interesting properties. The aim of the present review paper is to provide a detailed overview of the achievements and difficulties that have been encountered in finding suitable ionic liquids for H 2 S capture. The effect of ionic liquid anions, cations, and functional groups on the H 2 S absorption, separation, and oxidation are highlighted. Recent developments on yet scarcely available molecular simulations and on the development of robust predictive methods are also discussed.
Effect of nitrite on the odourant volatile fraction of cooked ham.
Thomas, Caroline; Mercier, Frédéric; Tournayre, Pascal; Martin, Jean-Luc; Berdagué, Jean-Louis
2013-08-15
The aim of this work was to reliably identify the key odour compounds in cooked ham and acquire new knowledge on the role of sodium nitrite on the formation of its aroma. Gas chromatography coupled with mass spectrometry and (or) olfactometry was used. In all, 24 odourants were identified in the volatile fraction of cooked ham. Their main origins are discussed. Orthonasal sniffing of the hams was used to study how these substances contributed to the overall aroma of the product. The aroma of cooked ham is a balance between that of certain sulfur compounds produced during cooking and that of oxidation compounds commonly found in cooked meats. In the absence of nitrite, this balance is disturbed by extensive formation of oxidation compounds that mask the meaty notes induced by the sulfur compounds. Copyright © 2013 Elsevier Ltd. All rights reserved.
Thermal Behavior of Cd During Sludge Incineration: Experiments and Thermodynamic Equilibrium Model.
Liu, Jingyong; Zhuo, Zhongxu; Sun, Shuiyu; Xie, Wuming; Lu, Shaoyou; Sun, Jian; Kuo, Jiahong; Yujie, Wang
2016-12-01
Experiments and thermodynamic equilibrium calculations were performed to investigate the behavior of Cd during sewage sludge incineration. The chemical equilibrium calculations indicated that chlorine significantly increased the volatilization of Cd in the form of CdCl2. In addition, SiO2-containing materials can function as sorbents for stabilizing Cd. The effect of PVC added to the sludge on the migration of Cd in the sludge was greater than that of NaCl. As the temperature increased, both organic and inorganic chlorides reduced the Cd distribution in the bottom ash. The chloride concentration, and the incineration time exhibited insignificant changes in Cd emission. With the addition of either NaCl or PVC into the sludge, the phases of Cd present in the bottom slag were primarily present in the form of silica-alumina oxides or multi-metal oxide, which could inhabit the Cd volatilization.
Investigating co-combustion characteristics of bamboo and wood.
Liang, Fang; Wang, Ruijuan; Jiang, Changle; Yang, Xiaomeng; Zhang, Tao; Hu, Wanhe; Mi, Bingbing; Liu, Zhijia
2017-11-01
To investigate co-combustion characteristics of bamboo and wood, moso bamboo and masson pine were torrefied and mixed with different blend ratios. The combustion process was examined by thermogravimetric analyzer (TGA). The results showed the combustion process of samples included volatile emission and oxidation combustion as well as char combustion. The main mass loss of biomass blends occurred at volatile emission and oxidation combustion stage, while that of torrefied biomass occurred at char combustion stage. With the increase of bamboo content, characteristic temperatures decreased. Compared with untreated biomass, torrefied biomass had a higher initial and burnout temperature. With the increase of heating rates, combustion process of samples shifted to higher temperatures. Compared with non-isothermal models, activation energy obtained from isothermal model was lower. The result is helpful to promote development of co-combustion of bamboo and masson pine wastes. Copyright © 2017 Elsevier Ltd. All rights reserved.
Paralinear Oxidation of Silicon Nitride in a Water Vapor/Oxygen Environment
NASA Technical Reports Server (NTRS)
Fox, Dennis S.; Opila, Elizabeth J.; Nguyen, QuynhGiao; Humphrey, Donald L.; Lewton, Susan M.; Gray, Hugh R. (Technical Monitor)
2002-01-01
Three silicon nitride materials were exposed to dry oxygen flowing at 0.44 cm/s at temperatures between 1200 and 1400 C. Reaction kinetics were measured with a continuously recording microbalance. Parabolic kinetics were observed. When the same materials were exposed to a 50% H2O - 50% O2 gas mixture flowing at 4.4 cm/s, all three types exhibited paralinear kinetics. The material is oxidized by water vapor to form solid silica. The protective silica is in turn volatilized by water vapor to form primarily gaseous Si(OH)4. Nonlinear least squares analysis and a paralinear kinetic model were used to determine both parabolic and linear rate constants from the kinetic data. Volatilization of the protective silica scale can result in accelerated consumption of Si3N4. Recession rates under conditions more representative of actual combustors are compared to the furnace data.
Air ionization as a control technology for off-gas emissions of volatile organic compounds.
Kim, Ki-Hyun; Szulejko, Jan E; Kumar, Pawan; Kwon, Eilhann E; Adelodun, Adedeji A; Reddy, Police Anil Kumar
2017-06-01
High energy electron-impact ionizers have found applications mainly in industry to reduce off-gas emissions from waste gas streams at low cost and high efficiency because of their ability to oxidize many airborne organic pollutants (e.g., volatile organic compounds (VOCs)) to CO 2 and H 2 O. Applications of air ionizers in indoor air quality management are limited due to poor removal efficiency and production of noxious side products, e.g., ozone (O 3 ). In this paper, we provide a critical evaluation of the pollutant removal performance of air ionizing system through comprehensive review of the literature. In particular, we focus on removal of VOCs and odorants. We also discuss the generation of unwanted air ionization byproducts such as O 3 , NOx, and VOC oxidation intermediates that limit the use of air-ionizers in indoor air quality management. Copyright © 2017. Published by Elsevier Ltd.
NASA Technical Reports Server (NTRS)
Bell, L. D.; Boer, E.; Ostraat, M.; Brongersma, M. L.; Flagan, R. C.; Atwater, H. A.
2000-01-01
NASA requirements for computing and memory for microspacecraft emphasize high density, low power, small size, and radiation hardness. The distributed nature of storage elements in nanocrystal floating-gate memories leads to intrinsic fault tolerance and radiation hardness. Conventional floating-gate non-volatile memories are more susceptible to radiation damage. Nanocrystal-based memories also offer the possibility of faster, lower power operation. In the pursuit of filling these requirements, the following tasks have been accomplished: (1) Si nanocrystal charging has been accomplished with conducting-tip AFM; (2) Both individual nanocrystals on an oxide surface and nanocrystals formed by implantation have been charged; (3) Discharging is consistent with tunneling through a field-lowered oxide barrier; (4) Modeling of the response of the AFM to trapped charge has allowed estimation of the quantity of trapped charge; and (5) Initial attempts to fabricate competitive nanocrystal non-volatile memories have been extremely successful.
The Influence of Spices on the Volatile Compounds of Cooked Beef Patty
Jung, Samooel; Jo, Cheorun; Kim, Il Suk; Nam, Ki Chang; Ahn, Dong Uk
2014-01-01
The aim of this study is to examine the influences of spices on the amounts and compositions of volatile compounds released from cooked beef patty. Beef patty with 0.5% of spice (nutmeg, onion, garlic, or ginger powder, w/w) was cooked by electronic pan until they reached an internal temperature of 75℃. A total of 46 volatile compounds (6 alcohols, 6 aldehydes, 5 hydrocarbons, 6 ketones, 9 sulfur compounds, and 14 terpenes) from cooked beef patties were detected by using purgeand- trap GC/MS. The addition of nutmeg, onion, or ginger powder significantly reduced the production of the volatile compounds via lipid oxidation in cooked beef patty when compared to those from the control. Also, the addition of nutmeg and garlic powder to beef patty generated a lot of trepans or sulfur volatile compounds, respectively. From these results, the major proportion by chemical classes such as alcohols, aldehydes, hydrocarbons, ketones, sulfur compounds, and terpenes was different depending on the spice variations. The results indicate that addition of spices to the beef patty meaningfully changes the volatile compounds released from within. Therefore, it can be concluded that spices can interact with meat aroma significantly, and thus, the character of each spice should be considered before adding to the beef patty. PMID:26760934
The Influence of Spices on the Volatile Compounds of Cooked Beef Patty.
Jung, Samooel; Jo, Cheorun; Kim, Il Suk; Nam, Ki Chang; Ahn, Dong Uk; Lee, Kyung Heang
2014-01-01
The aim of this study is to examine the influences of spices on the amounts and compositions of volatile compounds released from cooked beef patty. Beef patty with 0.5% of spice (nutmeg, onion, garlic, or ginger powder, w/w) was cooked by electronic pan until they reached an internal temperature of 75℃. A total of 46 volatile compounds (6 alcohols, 6 aldehydes, 5 hydrocarbons, 6 ketones, 9 sulfur compounds, and 14 terpenes) from cooked beef patties were detected by using purgeand- trap GC/MS. The addition of nutmeg, onion, or ginger powder significantly reduced the production of the volatile compounds via lipid oxidation in cooked beef patty when compared to those from the control. Also, the addition of nutmeg and garlic powder to beef patty generated a lot of trepans or sulfur volatile compounds, respectively. From these results, the major proportion by chemical classes such as alcohols, aldehydes, hydrocarbons, ketones, sulfur compounds, and terpenes was different depending on the spice variations. The results indicate that addition of spices to the beef patty meaningfully changes the volatile compounds released from within. Therefore, it can be concluded that spices can interact with meat aroma significantly, and thus, the character of each spice should be considered before adding to the beef patty.
The electronic nose as a rapid sensor for volatile compounds in treated domestic wastewater.
Dewettinck, T; Van Hege, K; Verstraete, W
2001-07-01
An electronic nose consisting of 12 metal oxide sensors was used to monitor volatile compounds in effluent of a domestic wastewater treatment plant. Effluent and reference (deionized water) samples were heated to 60 and 90 degrees C to promote the volatilization and to increase the sensitivity. An effluent measuring campaign of 12 weeks was conducted and the repeatability and reproducibility of the procedure and the apparatus were determined. Processing the obtained fingerprints with principal component analysis (PCA) allowed interpretation and differentiation of the samples in terms of origin and quality, relative to the reference. To minimize the variance due to sensitivity fluctuations of the apparatus and to detect effluents with deviating qualities, two new concepts were defined, i.e. the relative sensorial odour perception (in short: rSOP) and the relative fingerprint. Correlations between the relative overall electronic nose output, expressed as rSOP, and selected routine parameters were weak except for the parameter "volatile suspended solids" (VSS), indicating adsorption of volatile organic compounds (VOCs) onto the organic particles. The results clearly demonstrate the possibility to use the electronic nose as a rapid alarm generator towards volatile compounds, e.g. in specific advanced treatment processes to produce reclaimed water from effluent of the domestic wastewater treatment plant under scrutiny.
High temperature polymer degradation: Rapid IR flow-through method for volatile quantification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giron, Nicholas H.; Celina, Mathew C.
Accelerated aging of polymers at elevated temperatures often involves the generation of volatiles. These can be formed as the products of oxidative degradation reactions or intrinsic pyrolytic decomposition as part of polymer scission reactions. A simple analytical method for the quantification of water, CO 2, and CO as fundamental signatures of degradation kinetics is required. Here, we describe an analytical framework and develops a rapid mid-IR based gas analysis methodology to quantify volatiles that are contained in small ampoules after aging exposures. The approach requires identification of unique spectral signatures, systematic calibration with known concentrations of volatiles, and a rapidmore » acquisition FTIR spectrometer for time resolved successive spectra. Furthermore, the volatiles are flushed out from the ampoule with dry N2 carrier gas and are then quantified through spectral and time integration. This method is sufficiently sensitive to determine absolute yields of ~50 μg water or CO 2, which relates to probing mass losses of less than 0.01% for a 1 g sample, i.e. the early stages in the degradation process. Such quantitative gas analysis is not easily achieved with other approaches. Our approach opens up the possibility of quantitative monitoring of volatile evolution as an avenue to explore polymer degradation kinetics and its dependence on time and temperature.« less
High temperature polymer degradation: Rapid IR flow-through method for volatile quantification
Giron, Nicholas H.; Celina, Mathew C.
2017-05-19
Accelerated aging of polymers at elevated temperatures often involves the generation of volatiles. These can be formed as the products of oxidative degradation reactions or intrinsic pyrolytic decomposition as part of polymer scission reactions. A simple analytical method for the quantification of water, CO 2, and CO as fundamental signatures of degradation kinetics is required. Here, we describe an analytical framework and develops a rapid mid-IR based gas analysis methodology to quantify volatiles that are contained in small ampoules after aging exposures. The approach requires identification of unique spectral signatures, systematic calibration with known concentrations of volatiles, and a rapidmore » acquisition FTIR spectrometer for time resolved successive spectra. Furthermore, the volatiles are flushed out from the ampoule with dry N2 carrier gas and are then quantified through spectral and time integration. This method is sufficiently sensitive to determine absolute yields of ~50 μg water or CO 2, which relates to probing mass losses of less than 0.01% for a 1 g sample, i.e. the early stages in the degradation process. Such quantitative gas analysis is not easily achieved with other approaches. Our approach opens up the possibility of quantitative monitoring of volatile evolution as an avenue to explore polymer degradation kinetics and its dependence on time and temperature.« less
Hysteresis in Lanthanide Aluminum Oxides Observed by Fast Pulse CV Measurement
Zhao, Chun; Zhao, Ce Zhou; Lu, Qifeng; Yan, Xiaoyi; Taylor, Stephen; Chalker, Paul R.
2014-01-01
Oxide materials with large dielectric constants (so-called high-k dielectrics) have attracted much attention due to their potential use as gate dielectrics in Metal Oxide Semiconductor Field Effect Transistors (MOSFETs). A novel characterization (pulse capacitance-voltage) method was proposed in detail. The pulse capacitance-voltage technique was employed to characterize oxide traps of high-k dielectrics based on the Metal Oxide Semiconductor (MOS) capacitor structure. The variation of flat-band voltages of the MOS structure was observed and discussed accordingly. Some interesting trapping/detrapping results related to the lanthanide aluminum oxide traps were identified for possible application in Flash memory technology. After understanding the trapping/detrapping mechanism of the high-k oxides, a solid foundation was prepared for further exploration into charge-trapping non-volatile memory in the future. PMID:28788225
Non-Contact Tabletop Mechanical Testing of Ultra-High Temperature Ceramics
2012-05-01
class of refractory materials including transition metal borides , carbides and nitrides e.g. ZrB2l HfB2) ZrC, HfC, TaC, HfN and ZrN. They recently...ike oxidizing atmospheres, at very high temperatures Refractory borides like ZrB2 and HfB2 have extremely high melting temperatures (over 3000°C...But borides are very poor in oxidation resistance, due to the nature of thär oxides Non-protective ZrCfe or Hf02 and volatile liquid B203. Addition
Oxidation and cyclization of organics in Mars-like soils during evolved gas analysis
NASA Astrophysics Data System (ADS)
Navarro-Gonzalez, Rafael; Iñiguez, Enrique; de La Rosa, Jose; McKay, Chris
Thermal volatilization (TV) of soils has been used as the method of choice in space because of its simplicity and reproducibility. TV was first used by the Viking Landers, which failed to detect organics at ppb levels and subsequently by the Phoenix Lander that did not find organics but instead detected the release of carbon dioxide from 400 to 680° C which was attributed to magnesium or iron carbonate, adsorbed carbon dioxide, or organics present in the soil. Future missions such as the Mars Science Laboratory from NASA and ExoMars from ESA will also use this method to release soil organics to the analytical instruments. The presence of inorganic salts or minerals can strongly modify the release of soil organics leading to their degradation and/or oxidation resulting in loss of sensitivity by several orders of magnitude. The purpose of this work is to study the matrix effects of some minerals and Martian soil analogues in the analysis of organics by TV. Samples were analyzed by TV-MS and/or TV-GC-MS in neutral (He) and reducing (H2 ) atmospheres following the methods reported by Navarro-González eta al., 2006, 2009 and Iñiguez et al., 2009. Our results show that oxidation of organic matter is n promoted by several soil minerals (iron oxides) and inorganic salts (perchlorates, persulphates, sulfates, nitrates) in a neutral atmosphere; however, in a reducing atmosphere the oxidation of organics by the mineral matrix is reduced. Furthermore it was found that the stable organics that were thermally evolved were aromatic in nature (benzene and methyl benzene). Therefore, depending on the mineral matrix there is completion between formation of aromatic compounds versus oxidation. Iñiguez, E., Navarro-González, R., de la Rosa, J., Ureña-Núnez, F., Coll, P., Raulin, F., and McKay, C.P.: 2009, On the oxidation ability of the NASA Mars-1 soil simulant during the thermal volatilization step. Implications for the search of organics on Mars. Geophys Res Lett 36, L21205, doi:10.1029/2009GL040454. Navarro-González, R., Navarro, K.F., de la Rosa, J., Molina, P., Iñiguez, E., Miranda, L.D., a n Morales, P., Cienfuegos, E., Coll, P., Raulin, F., Amils, R. and McKay, C.P.: 2006. The limitations on organic detection in Mars-like soils by thermal volatilization-gas chromatography-MS and their implications for the Viking results. Proc Natl Acad Sci USA 103, 16089-16094. Navarro-González, R., Iñiguez, E., de la Rosa, J. and McKay, C.P.: 2009, Characterization of a n organics, microorganisms, desert soils and Mars-like soils by thermal volatilization coupled to mass spectrometry and their implications for the search of organics on Mars by Phoenix and future space missions. Astrobiology 9, 703-715, doi: 10.1089/ast.2008.0284.
Reaction: Chemistry Driven by the Harsh Space Environment
NASA Technical Reports Server (NTRS)
Farrell, William M.
2018-01-01
The studies by Solar System Exploration Research Virtual Institute (SSERVI) teams such as REVEALS and DREAM2 not only connect back to the highest planetary science decadal goals regarding volatiles but also feed forward to understanding the chemical origins of potential resources at the surface useful for human exploration. See https://sservi.nasa.gov for more about SSERVI and its dynamic teams.
Venus: Halide cloud condensation and volatile element inventories
NASA Technical Reports Server (NTRS)
Lewis, J. S.; Fegley, B., Jr.
1982-01-01
Several Venus cloud condensates, including A12C16 as well as halides, oxides and sulfides of arsenic and antimony, are assessed for their thermodynamic and geochemical plausibility. Aluminum chloride can confidently be ruled out, and condensation of arsenic sulfides on the surface will cause arsenic compounds to be too rare to produce the observed clouds. Antimony may conceivably be sufficiently volatile, but the expected molecular form is gaseous SbS, not the chloride. Arsenic and antimony compounds in the atmosphere will be regulated at very low levels by sulfide precipitation, irrespective of the planetary inventory of As and Sb. Thus the arguments for a volatile-deficient origin for Venus based on the depletion of water and mercury (relative to Earth) cannot be tested by a search for atmospheric arsenic or antimony.
A bi-stable nanoelectromechanical non-volatile memory based on van der Waals force
NASA Astrophysics Data System (ADS)
Soon, Bo Woon; Jiaqiang Ng, Eldwin; Qian, You; Singh, Navab; Julius Tsai, Minglin; Lee, Chengkuo
2013-07-01
By using complementary-metal-oxide-semiconductor processes, a silicon based bi-stable nanoelectromechanical non-volatile memory is fabricated and characterized. The main feature of this device is an 80 nm wide and 3 μm high silicon nanofin (SiNF) of a high aspect ratio (1:35). The switching mechanism is realized by electrostatic actuation between two lateral electrodes, i.e., terminals. Bi-stable hysteresis behavior is demonstrated when the SiNF maintains its contact to one of the two terminals by leveraging on van der Waals force even after voltage bias is turned off. The compelling results indicate that this design is promising for realization of high density non-volatile memory application due to its nano-scale footprint and zero on-hold power consumption.
NASA Technical Reports Server (NTRS)
Mcsween, H. Y., Jr.; Harvey, R. P.
1993-01-01
Constraints on the volatile inventory and outgassing history of Mars are critical to understanding the origin of ancient valley systems and paleoclimates. Planetary accretion models for Mars allow either a volatile-rich or volatile-poor mantle, depending on whether the accreted materials were fully oxidized or whether accretion was homogeneous so that water was lost through reaction with metallic iron. The amount of water that has been outgassed from the interior is likewise a contentious subject, and estimates of globally distributed water based on various geochemical and geological measurements vary from a few meters to more than a thousand meters. New data on SNC meteorites, which are thought to be Martian igneous rocks, provide constraints on both mantle and outgassed water.
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Duan, Lele; Araujo, Carlos Moyses; Ahlquist, Mårten S.G.; Sun, Licheng
2012-01-01
Water oxidation catalysts are essential components of light-driven water splitting systems, which could convert water to H2 driven by solar radiation (H2O + hν → 1/2O2 + H2). The oxidation of water (H2O → 1/2O2 + 2H+ + 2e-) provides protons and electrons for the production of dihydrogen (2H+ + 2e- → H2), a clean-burning and high-capacity energy carrier. One of the obstacles now is the lack of effective and robust water oxidation catalysts. Aiming at developing robust molecular Ru-bda (H2bda = 2,2′-bipyridine-6,6′-dicarboxylic acid) water oxidation catalysts, we carried out density functional theory studies, correlated the robustness of catalysts against hydration with the highest occupied molecular orbital levels of a set of ligands, and successfully directed the synthesis of robust Ru-bda water oxidation catalysts. A series of mononuclear ruthenium complexes [Ru(bda)L2] (L = pyridazine, pyrimidine, and phthalazine) were subsequently synthesized and shown to effectively catalyze CeIV-driven [CeIV = Ce(NH4)2(NO3)6] water oxidation with high oxygen production rates up to 286 s-1 and high turnover numbers up to 55,400. PMID:22753518
NASA Astrophysics Data System (ADS)
Sudarmaji, A.; Margiwiyatno, A.; Ediati, R.; Mustofa, A.
2018-05-01
The aroma/vapor of essential oils is complex compound which depends on the content of the gases and volatiles generated from essential oil. This paper describes a design of quick, simple, and low-cost static measurement system to acquire vapor profile of essential oil. The gases and volatiles are captured in a chamber by means of 9 MOS gas sensors which driven with advance temperature modulation technique. A PSoC CY8C28445-24PVXI based-interface unit is built to generate the modulation signal and acquire all sensor output into computer wirelessly via radio frequency serial communication using Digi International Inc., XBee (IEEE 802.15.4) through developed software under Visual.Net. The system was tested to measure 2 kinds of essential oil (Patchouli and Clove Oils) in 4 temperature modulations (without, 0.25 Hz, 1 Hz, and 4 Hz). A cycle measurement consists of reference and sample measurement sequentially which is set during 2 minutes in every 1 second respectively. It is found that the suitable modulation is 0,25Hz; 75%, and the results of Principle Component Analysis show that the system is able to distinguish clearly between Patchouli Oil and Clove Oil.
NASA Astrophysics Data System (ADS)
LeFevre, Scott W.; Bao, Zhenan; Ryu, Chang Y.; Siegel, Richard W.; Yang, Hoichang
2007-09-01
It has been shown that high charge mobility in solution-processible organic semiconductor-based field effect transistors is due in part to a highly parallel π-π stacking plane orientation of the semiconductors with respect to gate-dielectric. Fast solvent evaporation methods, generally, exacerbate kinetically random crystal orientations in the films deposited, specifically, from good solvents. We have investigated solubility-driven thin film structures of thiophene derivative polymers via spin- and drop-casting with volatile solvents of a low boiling point. Among volatile solvents examined, marginal solvents, which have temperature-dependent solubility for the semiconductors (e.g. methylene chloride for regioregular poly(3-alkylthiophene)s), can be used to direct the favorable crystal orientation regardless of solvent drying time, when the temperature of gate-dielectrics is held to relatively cooler than the warm solution. Grazing-incidence X-ray diffraction and atomic force microscopy strongly support that significant control of crystal orientation and mesoscale morphology using a "cold" substrate holds true for both drop and spin casting. The effects of physiochemical post-modificaiton on film crystal structures and morphologies of poly(9,9-dioctylfluorene-co-bithiophene) have also been investigated.
Efficiency of autothermal thermophilic aerobic digestion under two different oxygen flow rates.
Aynur, Sebnem Koyunluoglu; Riffat, Rumana; Murthy, Sudhir
2014-01-01
The objective of this research was to understand the influence of oxygenation at two different oxygen flow rates (0.105 and 0.210 L/L/h) on autothermal thermophilic aerobic digestion (ATAD), and on the overall performance of Dual Digestion (DD). Profile experiments on an ATAD reactor showed that a significant portion of volatile fatty acids and ammonia were produced in the first 12 h period, and both followed first order kinetics. Ammonia concentrations of ATAD effluent were 1015 mg/L and 1450 mg/L, respectively, at the two oxygenation rates. Ammonia production was not complete in the ATAD reactor at the lower oxygenation rate. However, it was sufficient to maximize volatile solids reduction in the DD process. The biological heat of oxidations were 14,300 J/g Volatile Solids (VS) removed and 15,900 J/g VS removed for the two oxygen flow rates, respectively. The ATAD step provided enhanced digestion for the DD process with higher volatile solids removal and methane yield when compared to conventional digestion.
Olivares, Alicia; Navarro, José Luis; Flores, Mónica
2015-03-01
The objective of this study was to characterize naturally fermented dry sausages produced without the use of microbial starters and to determine which odour-active compounds are responsible for their aroma. The traditional manufacture was responsible for different chemical characteristics and consumer's acceptance. The volatile compounds detected in the headspace comprised a complex mixture of volatile compounds derived from bacterial metabolism (mainly esterase activity of Staphyloccoci), spices and lipid auto-oxidation. The odour-active volatile compounds were identified using gas chromatography coupled to olfactometry (GC-O) using the detection frequency method. The aroma profile was characterized by the presence of several compounds such as acetic acid, ethyl butanoate, hexanal, methional, 1-octen-3-ol, benzeneacetaldehyde and 4-methyl-phenol. However, naturally fermented sausages were also characterized by numerous esters, both ethyl and methyl esters, which impart a wide variety of fruity notes. © The Author(s) 2013 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
Wang, Xing-Chen; Li, Ai-Hua; Dizy, Marta; Ullah, Niamat; Sun, Wei-Xuan; Tao, Yong-Sheng
2017-08-01
To improve the aroma profile of Ecolly dry white wine, the simultaneous and sequential inoculations of selected Rhodotorula mucilaginosa and Saccharomyces cerevisiae were performed in wine making of this work. The two yeasts were mixed in various ratios for making the mixed inoculum. The amount of volatiles and aroma characteristics were determined the following year. Mixed fermentation improved both the varietal and fermentative aroma compound composition, especially that of (Z)-3-hexene-1-ol, nerol oxide, certain acetates and ethyls group compounds. Citrus, sweet fruit, acid fruit, berry, and floral aroma traits were enhanced by mixed fermentation; however, an animal note was introduced upon using higher amounts of R. mucilaginosa. Aroma traits were regressed with volatiles as observed by the partial least-square regression method. Analysis of correlation coefficients revealed that the aroma traits were the multiple interactions of volatile compounds, with the fermentative volatiles having more impact on aroma than varietal compounds. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Hodzic, A.; Aumont, B.; Knote, C.; Lee-Taylor, J.; Madronich, S.; Tyndall, G.
2014-07-01
The water solubility of oxidation intermediates of volatile organic compounds that can condense to form secondary organic aerosol (SOA) is largely unconstrained in current chemistry-climate models. We apply the Generator of Explicit Chemistry and Kinetics of Organics in the Atmosphere to calculate Henry's law constants for these intermediate species. Results show a strong negative correlation between Henry's law constants and saturation vapor pressures. Details depend on precursor species, extent of photochemical processing, and NOx levels. Henry's law constants as a function of volatility are made available over a wide range of vapor pressures for use in 3-D models. In an application using the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) over the U.S. in summer, we find that dry (and wet) deposition of condensable organic vapors leads to major reductions in SOA, decreasing surface concentrations by ~50% (10%) for biogenic and ~40% (6%) for short chain anthropogenic precursors under the considered volatility conditions.
NASA Astrophysics Data System (ADS)
Hozman, J.; Tichý, T.
2016-12-01
The paper is based on the results from our recent research on multidimensional option pricing problems. We focus on European option valuation when the price movement of the underlying asset is driven by a stochastic volatility following a square root process proposed by Heston. The stochastic approach incorporates a new additional spatial variable into this model and makes it very robust, i.e. it provides a framework to price a variety of options that is closer to reality. The main topic is to present the numerical scheme arising from the concept of discontinuous Galerkin methods and applicable to the Heston option pricing model. The numerical results are presented on artificial benchmarks as well as on reference market data.
Co-oxidation of the sulfur-containing amino acids in an autoxidizing lipid system
Wedemeyer, G.A.; Dollar, A.M.
1963-01-01
Oxidation of the sulfur amino acids by autoxidizing lipids was studied in a model system consisting of an amino acid dispersed in cold-pressed, molecularly distilled menhaden oil (20–80% w/w). Under all conditions investigated, cysteine was oxidized completely to cystine. Preliminary results suggest that at 110°C the oxidation follows first-order kinetics for at least the first 8 hr. A specific reaction rate constant of 0.25 per hour was calculated. When fatty acids were added to the system, cystine was oxidized to its thiosulfinate ester. When the fatty acid-cystine ratio was 1:2, oxidation of cystine was a maximum. No oxidation of cystine occurred unless either a fatty acid, volatile organic acid, or ethanol was added. Under the conditions investigated, methionine was not oxidized to either its sulfoxide or its sulfone.
NASA Technical Reports Server (NTRS)
Meinhold, Anne
2013-01-01
The Space Shuttle Program was terminated in 2011 with the last flight of the Shuttle Endeavour. During the 30 years of its operating history, the number of domestic and international environmental regulations increased rapidly and resulted in materials obsolescence risks to the program. Initial replacement efforts focused on ozone depleting substances. As pressure from environmental regulations increased, Shuttle worked on the replacement of heavy metals. volatile organic compounds and hazardous air pollutants. Near the end of the program. Shuttle identified potential material obsolescence driven by international regulations and the potential for suppliers to reformulate materials. During the Shuttle Program a team focused on environmentally-driven materials obsolescence worked to identify and mitigate these risks. Lessons learned from the Shuttle experience can be applied to new NASA Programs as well as other high reliability applications.
NASA Astrophysics Data System (ADS)
Kampf, Christopher; Hoffmann, Thorsten
2010-05-01
In recent years much effort has been put into the analysis of so called secondary organic aerosols (SOA). SOA is produced through gas phase oxidation of volatile organic compounds (VOC's) by atmospheric oxidants like OH- or NO3-radicals or ozone with subsequent gas-particle partitioning of the low volatility products. VOC's are emitted by both biogenic and anthropogenic sources in large amounts into the atmosphere. However, it is found that gas to particle partitioning alone cannot explain the complete amount of SOA produced in the atmosphere. It is therefore proposed that heterogeneous reactions on the particle surface or in the particles themselves could lead to the formation of additional SOA mass from semi-volatile compounds such as the reactive dialdehydes glyoxal and methylglyoxal[1]. Global glyoxal and methylglyoxal emissions are estimated to be 45 Tg a-1 and 140 Tg a-1, respectively. The oxidation of biogenic isoprene contributes to about 47% of the total glyoxal mass formed and even to about 79% for methylglyoxal[2]. Due to their high solubility in water (hydration of aldehyde functions), glyoxal and methylglyoxal have a high potential to form SOA via heterogeneous reactions in the particle phase although their volatility is relatively high. Several studies propose oligomerisation or formation of imidazole derivatives as potential reaction pathways to reduce their volatility[1,3,4,5]. Here we present a method for the qualification and quantification of both glyoxal and methylglyoxal in atmospheric PM2.5 filter samples via derivatisation with phenylhydrazine. Reproducibility, recovery and limits of detection and quantification are given. The method is found to be easily suitable for measurements at atmospheric concentration levels for both substances. First results of a measurement campaign in Mainz, Germany in August 2009 are shown for a proof of principle. Initial problems of the method development due to the chemical nature of the analytes und future enhancements of the sampling procedure are discussed. References 1. Kalberer, M., et al. (2004). Science, 303(5664), 1659-1662 2. Fu, T.-M., et al. (2008). Journal of Geophysical Research, 113, D15303 3. Iinuma, Y., et al. (2004). Atmospheric Environment, 38(5), 761-773 4. Galloway, M. M., et al. (2009), Atmos. Chem. Phys., 9, 3331-3345 5. Nozière, B., et al. (2009), J. Phys. Chem. A, 113, 231-237
NASA Astrophysics Data System (ADS)
Norling, B.; Rowe, M. C.; Chambefort, I.; Tepley, F. J.; Morrow, S.
2016-05-01
The present-day hydrothermal system beneath the Kawerau Geothermal Field, in the Taupo Volcanic Zone, New Zealand, is likely heated from the Pūtauaki (Mt. Edgecumbe) magma system. The aim of this work, as an analog for present day processes, is to identify whether or not earlier erupted Pūtauaki magmas show evidence for volatile exsolution. This may have led to the transfer of volatile components from the magmatic to hydrothermal systems. To accomplish this, minerals and melt inclusions from volcanic products were analyzed for abundances of volatile and ore-forming elements (S, Cl, Li, Cu, Sn, Mo, W, Sb, As, and Tl). The variations in abundance of these elements were used to assess magma evolution and volatile exsolution or fluxing in the magma system. Melt inclusions suggest the evolution of Pūtauaki andesite-dacite magmas is predominantly driven by crystallization processes resulting in rhyodacite-rhyolite glass compositions (although textural and geochemical evidence still indicate a role for magma mixing). Measured mineral-melt partition coefficients for trace metals of interest indicates that, with the exception of Tl in biotite, analyzed metals are all incompatible in Pūtauaki crystallization products. Excluding Li and Cu, other volatile and ore metals recorded in melt inclusions behave incompatibly, with concentrations increasing during evolution from rhyodacitic to rhyolitic melt compositions. Li and Cu appear to have increased mobility likely resulting from diffusive exchange post-crystallization, and may be related to late volatile fluxing. Although S and Cl concentrations decrease with melt evolution, no mineralogical evidence exists to indicate the exsolution and mobility of ore-forming metals from the magma at the time of crystallization. This observation cannot rule out the potential for post-crystallization volatile exsolution and ore-forming metal mobilization, which may only be recorded as diffusive re-equilibration of more rapidly diffusing elements (e.g., Li and Cu).
NASA Astrophysics Data System (ADS)
D'Ambro, Emma L.; Lee, Ben H.; Liu, Jiumeng; Shilling, John E.; Gaston, Cassandra J.; Lopez-Hilfiker, Felipe D.; Schobesberger, Siegfried; Zaveri, Rahul A.; Mohr, Claudia; Lutz, Anna; Zhang, Zhenfa; Gold, Avram; Surratt, Jason D.; Rivera-Rios, Jean C.; Keutsch, Frank N.; Thornton, Joel A.
2017-01-01
We present measurements of secondary organic aerosol (SOA) formation from isoprene photochemical oxidation in an environmental simulation chamber at a variety of oxidant conditions and using dry neutral seed particles to suppress acid-catalyzed multiphase chemistry. A high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS) utilizing iodide-adduct ionization coupled to the Filter Inlet for Gases and Aerosols (FIGAERO) allowed for simultaneous online sampling of the gas and particle composition. Under high-HO2 and low-NO conditions, highly oxygenated (O : C ≥ 1) C5 compounds were major components (˜ 50 %) of SOA. The SOA composition and effective volatility evolved both as a function of time and as a function of input NO concentrations. Organic nitrates increased in both the gas and particle phases as input NO increased, but the dominant non-nitrate particle-phase components monotonically decreased. We use comparisons of measured and predicted gas-particle partitioning of individual components to assess the validity of literature-based group-contribution methods for estimating saturation vapor concentrations. While there is evidence for equilibrium partitioning being achieved on the chamber residence timescale (5.2 h) for some individual components, significant errors in group-contribution methods are revealed. In addition, > 30 % of the SOA mass, detected as low-molecular-weight semivolatile compounds, cannot be reconciled with equilibrium partitioning. These compounds desorb from the FIGAERO at unexpectedly high temperatures given their molecular composition, which is indicative of thermal decomposition of effectively lower-volatility components such as larger molecular weight oligomers.
Huang, Weidong; Li, Kun; Wang, Gan; Wang, Yingzhe
2013-11-01
In this article, we present a newly designed inverse umbrella surface aerator, and tested its performance in driving flow of an oxidation ditch. Results show that it has a better performance in driving the oxidation ditch than the original one with higher average velocity and more uniform flow field. We also present a computational fluid dynamics model for predicting the flow field in an oxidation ditch driven by a surface aerator. The improved momentum source term approach to simulate the flow field of the oxidation ditch driven by an inverse umbrella surface aerator was developed and validated through experiments. Four kinds of turbulent models were investigated with the approach, including the standard k - ɛ model, RNG k - ɛ model, realizable k - ɛ model, and Reynolds stress model, and the predicted data were compared with those calculated with the multiple rotating reference frame approach (MRF) and sliding mesh approach (SM). Results of the momentum source term approach are in good agreement with the experimental data, and its prediction accuracy is better than MRF, close to SM. It is also found that the momentum source term approach has lower computational expenses, is simpler to preprocess, and is easier to use.
Influence of lipid content and lipoxygenase on flavor volatiles in the tomato peel and flesh.
Ties, Paige; Barringer, Sheryl
2012-07-01
Ten different varieties of tomatoes were separated into peel and flesh and each portion was measured separately. Headspace volatiles were measured in real time using selected ion flow tube mass spectrometry. Lipoxygenase activity was measured using the adsorption of conjugated dienes formed by lipoxygenase. Lipid was extracted and fatty acids were quantified using a gas chromatograph. Volatiles were significantly greater in the peel than flesh when there was a significant difference. The lipoxygenase activity of flesh and peel correlated with the volatiles produced by the lipoxygenase pathway. There was no correlation with other volatiles, which are not dependent on lipid oxidation by lipoxygenase. The lipoxygenase activity, total fatty acid content, and linolenic acid of the peel were greater than the flesh, which is directly related to an increase in fresh, green volatiles. Addition of exogenous lipoxygenase had no effect on lipoxygenase-derived volatiles formed. The addition of linoleic acid caused an increase in hexanal, 1-hexanol, and (E)-2-heptenal in the flesh and (E)-2-heptenal in the peel. Stored unrefrigerated peel had higher volatile concentrations, whereas refrigerated peel had significantly lower concentration than day 0. Storage decreased lipoxygenase activity in the unrefrigerated and refrigerated peel, but had no effect on the fatty acid content. Overall, linolenic acid was the most important to the formation of headspace volatiles, but lipoxygenase activity and unknown factors are also important. The peel of a tomato is most beneficial to the production of volatiles associated with the fresh aroma of tomatoes; therefore, it should be used in the processing of tomato products to produce a fresh, green aroma rather than being removed. Knowledge of the effects of lipoxygenase activity, total fatty acid content, and fatty acid profile on flavor volatiles will allow for better selection of a variety for raw consumption. © 2012 Institute of Food Technologists®
ECONOMIC GROWTH ANALYSIS SYSTEM: USER'S GUIDE
The two-volume report describes the development of, and provides information needed to operate, a prototype Economic Growth Analysis System (E-GAS) modeling system. The model will be used to project emissions inventories of volatile organic compounds (VOCs), oxides of nitrogen (...
ECONOMIC GROWTH ANALYSIS SYSTEM: REFERENCE MANUAL
The two-volume report describes the development of, and provides information needed to operate, a prototype Economic Growth Analysis System (E-GAS) modeling system. The model will be used to project emissions inventories of volatile organic compounds (VOCs), oxides of nitrogen (...
The Preparation and Characterization of a Sodium Tungsten Bronze
ERIC Educational Resources Information Center
Conroy, Lawrence E.
1977-01-01
Describes an experiment that utilizes the techniques of temperature synthesis, crystallization from a molten salt, oxidation-reduction in a molten salt, powder X-ray diffraction and analysis by high temperature volatilization or a specific ion electrode. (MLH)
Region 5: Wisconsin Adequate Letter (5/21/2010)
This letter from EPA to the Wisconsin Department of Natural Resources, determined the 2012 and 2020 motor vehicle emission budgets (MVEBs) for volatile organic compounds (VOCs) and oxides of nitrogen (NOx) for the Milwaukee-Racine, Door County, Manitowoe
Aerosol detection efficiency in inductively coupled plasma mass spectrometry
Hubbard, Joshua A.; Zigmond, Joseph A.
2016-03-02
We used an electrostatic size classification technique to segregate particles of known composition prior to being injected into an inductively coupled plasma mass spectrometer (ICP-MS). Moreover, we counted size-segregated particles with a condensation nuclei counter as well as sampled with an ICP-MS. By injecting particles of known size, composition, and aerosol concentration into the ICP-MS, efficiencies of the order of magnitude aerosol detection were calculated, and the particle size dependencies for volatile and refractory species were quantified. Similar to laser ablation ICP-MS, aerosol detection efficiency was defined as the rate at which atoms were detected in the ICP-MS normalized bymore » the rate at which atoms were injected in the form of particles. This method adds valuable insight into the development of technologies like laser ablation ICP-MS where aerosol particles (of relatively unknown size and gas concentration) are generated during ablation and then transported into the plasma of an ICP-MS. In this study, we characterized aerosol detection efficiencies of volatile species gold and silver along with refractory species aluminum oxide, cerium oxide, and yttrium oxide. Aerosols were generated with electrical mobility diameters ranging from 100 to 1000 nm. In general, it was observed that refractory species had lower aerosol detection efficiencies than volatile species, and there were strong dependencies on particle size and plasma torch residence time. Volatile species showed a distinct transition point at which aerosol detection efficiency began decreasing with increasing particle size. This critical diameter indicated the largest particle size for which complete particle detection should be expected and agreed with theories published in other works. Aerosol detection efficiencies also displayed power law dependencies on particle size. Aerosol detection efficiencies ranged from 10 -5 to 10 -11. Free molecular heat and mass transfer theory was applied, but evaporative phenomena were not sufficient to explain the dependence of aerosol detection on particle diameter. Additional work is needed to correlate experimental data with theory for metal-oxides where thermodynamic property data are sparse relative to pure elements. Finally, when matrix effects and the diffusion of ions inside the plasma were considered, mass loading was concluded to have had an effect on the dependence of detection efficiency on particle diameter.« less
Non-methane volatile organic compounds in Africa: A view from space
NASA Astrophysics Data System (ADS)
Marais, Eloise Ann
Isoprene emissions affect human health, air quality, and the oxidative capacity of the atmosphere. Globally anthropogenic non-methane volatile organic compounds (NMVOC) emissions are lower than that of isoprene, but local hotspots are hazardous to human health and air quality. In Africa the tropics are a large source of isoprene, while Nigeria appears as a large contributor to regional anthropogenic NMVOC emissions. I make extensive use of space-based formaldehyde (HCHO) observations from the Ozone Monitoring Instrument (OMI) and the chemical transport model (CTM) GEOS-Chem to estimate and examine seasonality of isoprene emissions across Africa, and identify sources and air quality consequences of anthropogenic NMVOC emissions in Nigeria. To estimate isoprene emissions I first developed a filtering scheme to remove (1) contamination from biomass burning and anthropogenic influences; and (2) displacement of HCHO from the isoprene emission source diagnosed with the GEOS-Chem CTM. Conversion to isoprene emissions is with NOx-dependent GEOS-Chem HCHO yields, obtained as the local sensitivity S of the HCHO column ΩHCHO to a perturbation Delta in isoprene emissions EISOP (S = DeltaΩHCHO/DeltaE ISOP). The error in OMI-derived isoprene emissions is 40% at low levels of NOx and 40-90% under high-NOx conditions and is reduced by spatial and temporal averaging to the extent that errors are random. Weak isoprene emission seasonality in equatorial forests is driven predominantly by temperature, while large seasonality in northern and southern savannas is driven by temperature and leaf area index. The largest contribution of African isoprene emissions to surface ozone and particulate matter, determined with GEOS-Chem, of 8 ppbv and 1.5 μg m-3, respectively, is over West Africa. The OMI HCHO data feature a large enhancement over Nigeria that is due to anthropogenic NMVOC emissions. With the OMI HCHO data, coincident satellite observations of atmospheric composition, aircraft measurements, and GEOS-Chem I estimate Nigerian NMVOC emissions that are higher per capita than China (5.7 Tg C a-1). Should Nigeria develop its electricity sector to sustain economic growth with local natural gas and coal reserves NO x emissions will exacerbate wintertime (December-February) surface ozone pollution that exceeds 90 ppbv due to poor ventilation and the Harmattan inversion layer.
Hierarchical nanostructured WO3-SnO2 for selective sensing of volatile organic compounds
NASA Astrophysics Data System (ADS)
Nayak, Arpan Kumar; Ghosh, Ruma; Santra, Sumita; Guha, Prasanta Kumar; Pradhan, Debabrata
2015-07-01
It remains a challenge to find a suitable gas sensing material that shows a high response and shows selectivity towards various gases simultaneously. Here, we report a mixed metal oxide WO3-SnO2 nanostructured material synthesized in situ by a simple, single-step, one-pot hydrothermal method at 200 °C in 12 h, and demonstrate its superior sensing behavior towards volatile organic compounds (VOCs) such as ammonia, ethanol and acetone. SnO2 nanoparticles with controlled size and density were uniformly grown on WO3 nanoplates by varying the tin precursor. The density of the SnO2 nanoparticles on the WO3 nanoplates plays a crucial role in the VOC selectivity. The responses of the present mixed metal oxides are found to be much higher than the previously reported results based on single/mixed oxides and noble metal-doped oxides. In addition, the VOC selectivity is found to be highly temperature-dependent, with optimum performance obtained at 200 °C, 300 °C and 350 °C for ammonia, ethanol and acetone, respectively. The present results on the cost-effective noble metal-free WO3-SnO2 sensor could find potential application in human breath analysis by non-invasive detection.It remains a challenge to find a suitable gas sensing material that shows a high response and shows selectivity towards various gases simultaneously. Here, we report a mixed metal oxide WO3-SnO2 nanostructured material synthesized in situ by a simple, single-step, one-pot hydrothermal method at 200 °C in 12 h, and demonstrate its superior sensing behavior towards volatile organic compounds (VOCs) such as ammonia, ethanol and acetone. SnO2 nanoparticles with controlled size and density were uniformly grown on WO3 nanoplates by varying the tin precursor. The density of the SnO2 nanoparticles on the WO3 nanoplates plays a crucial role in the VOC selectivity. The responses of the present mixed metal oxides are found to be much higher than the previously reported results based on single/mixed oxides and noble metal-doped oxides. In addition, the VOC selectivity is found to be highly temperature-dependent, with optimum performance obtained at 200 °C, 300 °C and 350 °C for ammonia, ethanol and acetone, respectively. The present results on the cost-effective noble metal-free WO3-SnO2 sensor could find potential application in human breath analysis by non-invasive detection. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr02571k
NASA Astrophysics Data System (ADS)
Brégonzio-Rozier, Lola; Siekmann, Frank; Giorio, Chiara; Temime-Roussel, Brice; Pangui, Edouard; Morales, Sébastien; Gratien, Aline; Ravier, Sylvain; Monod, Anne; Doussin, Jean-Francois
2014-05-01
It is acknowledged that atmospheric photo-oxidation of Volatile Organic Compounds (VOC) leads to the formation of less volatile oxidized species. These compounds can undergo gas-to-particle conversion, leading to the formation of Secondary Organic Aerosols (SOA) in the atmosphere. Nevertheless, some of these oxidized species are water soluble and could also partition into cloud droplets. Higher molecular weight and less volatile compounds could be produced in the aqueous phase and remain in the particle phase after water evaporation (Ervens et al., 2011). The aim of the present work is to study SOA formation in the presence of cloud droplets during isoprene photo-oxidation. To this end, an original multiphase approach in a simulation chamber was set up in order to investigate the chemistry occurring in the gaseous, particulate and aqueous phases, and the exchange between these phases. Experiments were performed, within the CUMULUS project (CloUd MULtiphase chemistry of organic compoUndS in the troposphere), in the CESAM chamber (Wang et al., 2011). This chamber was designed to investigate multiphase processes under realistic actinic flux, and accurate control of both temperature and relative humidity. A specific protocol was set up to produce cloud events in the simulation chamber exhibiting a significant lifetime in the presence of light (10-12 minutes). By using this protocol, many clouds could be generated in a single experiment. In each experiment, around 800 ppb of isoprene was injected in the chamber together with HONO under dry conditions before irradiation. A Fourier Transform Infrared Spectrometer (FTIR), a Proton Transfer Reaction Mass Spectrometer (PTR-TOF-MS) and NOx and O3 analyzers were used to analyze gas-phase composition. Dried SOA size distributions and total concentrations were measured by a Scanning Mobility Particle Sizer (SMPS). An Aerodyne High Resolution Time-Of-Flight Aerosol Mass Spectrometer (HR-TOF-AMS) was also used to investigate aerosol composition. Cloud droplets size distributions were measured by a white light Optical Particle Counter (OPC). In all experiments, the dissolution of gaseous oxidation products into aqueous phase and SOA production have been observed during isoprene photo-oxidation in the presence of a cloud event. The overall results in additional SOA mass production and the dynamic of gaseous oxidation products and SOA mass concentrations will be presented. Ervens, B. et al. (2011). Atmospheric Chemistry and Physics 11(21): 11069-11102. Wang, J. et al. (2011). Atmospheric Measurement Techniques 4(11): 2465-2494.
Characterization of kerosene-heater emissions inside two mobile homes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burton, R.M.; Seila, R.A.; Wilson, W.E.
1990-03-01
In an effort to determine the impact of kerosene heater emissions on indoor air quality, measurements were made in and around two mobile homes at a rural mobile home park near Apex, NC. The sampling was performed at two single-wide mobile homes equipped with kerosene heaters. The concentrations of acidic aerosols and gases, fine and coarse particulate aerosol mass, carbon monoxide, nitrogen oxides, volatile organic compounds and semivolatiles, were determined for periods of heater operation and for periods in which heaters were not operated. Simultaneous outdoor measurements of acid aerosols and gases, fine and coarse aerosol mass, and volatile organicmore » compounds were conducted to determine the contribution of outdoor pollutants to the indoor concentrations. Comparisons between the concentrations obtained from the analysis of outdoor, heater-on, and heater-off samples allowed the authors to examine the impacts of the kerosene emissions on indoor concentrations. Concentrations of sulfates, aerosol strong acidity, fine and coarse aerosol mass, carbon monoxide, and sulfur dioxide were found to be higher when the heater was operated; however, these heater-on concentrations were comparable to those observed in moderately polluted atmospheres. Indoor concentrations of nitrous acid and nitrogen oxides during heater operation were found to be considerably higher than those observed in polluted atmospheres. Finally, use of kerosene heaters was found to be responsible for increased concentrations of non-methane volatile and semi-volatile organic compounds indoors. Acid aerosol indoor concentrations were quite variable during the study and were found to exist in the presence of excess ammonia.« less
NASA Astrophysics Data System (ADS)
Kato, Tetsuya; Usami, Tsuyoshi; Tsukada, Takeshi; Shibata, Yuki; Kodama, Takashi
2016-10-01
In a cooling malfunction accident of a high-level liquid waste (HLLW) tank, behavior of ruthenium (Ru) attracts much attention, since Ru could be oxidized to a volatile chemical form in the boiling and drying of HLLW, and part of radioactive Ru can potentially be released to the environment. In this study, nitrosyl Ru nitrate (Ru(NO)(NO3)3) dissolved in nitric acid (HNO3), which is commonly contained in a simulated HLLW, was dried and heated up to 723 K, and the evolved gas was introduced into a mass spectrometer. The well-known volatile species, ruthenium tetroxide (RuO4) was detected in a temperature range between 390 K and 500 K with the peak top around 440 K. Various gases such as HNO3, nitrogen dioxide (NO2), nitrogen monoxide (NO) also evolved due to evaporation of the nitric acid and decomposition of the nitrate ions. The ion current of RuO4 seems to increase with the increasing decomposition of nitrate, while the evaporation of HNO3 decreases. More volatilization of RuO4 was observed from the HNO3 solution containing not only Ru(NO)(NO3)3 but also cerium nitrate (Ce(NO3)3·6H2O) which was added for extra supply of nitrate ion, compared with that from the HNO3 solution containing only Ru(NO)(NO3)3. These experimental results suggest that Ru could be oxidized to form RuO4 by the nitrate ion as well as HNO3.
Al-Okbi, Sahar Y; Mohamed, Doha A; Hamed, Thanaa E; Edris, Amr E; Fouda, Karem
2018-03-01
The aim of the present research was to investigate the effect of fish oil, crude Nigella sative oil and combined fish oil/Nigella sative volatile oil as hepato-regenerative and renal protective supplements. The oils were administered as emulsions to rat model with liver injury induced by CCl 4 . Plasma activities of transaminases (AST and ALT) were evaluated as liver function indicators, while plasma creatinine and urea and creatinine clearance were determined as markers of kidney function. Plasma malondialdehyde (MDA), nitrite (NO) and tumor necrosis factor-α (TNF-α) were estimated to assess the exposure to oxidative stress and subsequent inflammation. Liver fat was extracted and their fatty acids´ methyl esters were determined using gas chromatography. Results showed that plasma activities of AST and ALT were significantly higher in CCl 4 control group compared to control healthy group. Plasma levels of creatinine and urea increased significantly in CCl 4 control, while creatinine clearance was reduced significantly in the same group. All rat treated groups given the three oil emulsions showed improvement in liver function pointing to the initiation of liver regeneration. The combination of fish oil/Nigella sative volatiles showed the most promising regenerative activity. Oxidative stress and inflammation which were increased significantly in CCl 4 control group showed improvement on administration of the three different oil emulsions. Fatty acids methyl ester of liver fat revealed that rats treated with fish oil/Nigella sative volatile oil presented the highest content of unsaturated fatty acids (45.52% ± 0.81) while fish oil showed the highest saturated fatty acids (53.28% ± 1.68). Conclusion; Oral administration of oil emulsions of native fish oil, Nigella sative crude oil and combined fish oil/Nigella sative volatile oil reduced liver and kidney injury in rat model of CCl 4 through exerting anti-inflammatory and antioxidant activity. Fish oil/Nigella sative volatile oil emulsion was the most promising hepato-regenerative and reno-protective formula among the different groups.
Sun, Xiang Xin; Li, Dong Po; Wu, Zhi Jie; Cui, Ya Lan; Han, Mei; Li, Yong Hua; Yang, De Fu; Cui, Yong Kun
2016-06-01
The characteristics of ammonia volatilization and nitrous oxide emission from a paddy soil were examined under 9-year application of different slow/controlled release urea with the common large granule urea (U) as the control. The results showed that compared with the control, all slow/controlled release urea treatments, except 25.8% increase of ammonia volatilization under 1% 3,4-dimethylpyrazole phosphate (DMPP)+U, could decrease the ammonia volatilization. Polymer coated urea (PCU) dominated the highest reduction of 73.4% compared to U, followed by sulfur coated urea (SCU) (72.2%), 0.5% N-(N-butyl) thiophosphoric triamide (NBPT)+1% DMPP+U (71.9%), 1% hydroquinone (HQ)+3% dicyandiamide (DCD)+U (46.9%), 0.5% NBPT+U (43.2%), 1% HQ +U (40.2%), 3% DCD+U (25.5%), and the ammonia volatilization under different slow/controlled release urea treatments were statistically lower than that of U (P<0.05). 1% DMPP+U caused the lowest emission of N 2 O under different slow/controlled release urea treatments. The slow/controlled release urea also had a significant potential of N 2 O emission reduction: 1% DMPP+U showed the highest reduction of 74.9% compared to U, followed by PCU (62.1%), 1% HQ+3% DCD+U (54.7%), 0.5% NBPT+1% DMPP+U (42.2%), 3% DCD+U (35.9%), 1% HQ +U (28.9%), 0.5% NBPT+U (17.7%), SCU (14.5%), and N 2 O emissions under different slow/controlled release urea treatments were statistically lower than that of U (P<0.05). The comprehensive analysis showed that 0.5% NBPT+1% DMPP+U, SCU and PCU had similar effects on decreasing the ammonia volatilization and N 2 O emission and were remarkably better than the other treatments. The slow release urea with the combination of urease and nitrification inhibitors should be the first choice for reducing N loss and environmental pollution in paddy field, in view of the higher costs of coated urea fertilizers.
Fang, Jong-Yi; Wetten, Andrew; Johnston, Jason
2008-03-01
The mechanisms that reduce the viability of plant somatic embryos following cryopreservation are not known. The objective of the present study was to evaluate the sensitivity of cocoa (Theobroma cacao L.) somatic embryos at different stages of an encapsulation-dehydration protocol using stress-related volatile hydrocarbons as markers of injury and recovery. The plant stress hormone ethylene and volatile hydrocarbons derived from hydroxyl radicals (methane) and lipid peroxidation (ethane) were determined using gas chromatography headspace analysis. Ethylene and methane were the only volatiles detected, with both being produced after each step of the cryogenic protocol. Ethylene production was significantly reduced following exposure to liquid nitrogen, but then increased in parallel with embryo recovery. In contrast, the production of methane was cyclic during recovery, with the first cycle occurring earlier for embryos recovered from liquid nitrogen and desiccation than those recovered from earlier steps in the protocol. These results suggest that loss of somatic embryo viability during cryopreservation may be related to the oxidative status of the tissue, and its capacity to produce ethylene. This study has demonstrated that headspace volatile analysis provides a robust non-destructive analytical approach for assessing the survival and recovery of plant somatic embryos following cryopreservation.
The effects of diet and breed on the volatile compounds of cooked lamb.
Elmore, J S; Mottram, D S; Enser, M; Wood, J D
2000-06-01
The effect of varying the n-3 polyunsaturated fatty acid (PUFA) composition of lamb muscle on the formation of aroma volatiles during cooking has been examined. The meat was obtained from four groups of Suffolk and Soay lambs fed different supplementary fats: a palm-oil based control; bruised whole linseed, which increased muscle levels of α-linolenic acid (C18:3 n-3); fish oil, which increased eicosapentaenoic acid (EPA, C20:5 n-3) and docosahexaenoic acid (DHA, C22:6 n-3); and equal quantities of linseed and fish oil (fat basis). Higher quantities of lipid oxidation products were found in the aroma volatiles of lamb muscle from animals fed fish oil, compared to the control. In particular, unsaturated aldehydes, unsaturated hydrocarbons and alkylfurans increased up to fourfold. These compounds derived from the autoxidation of PUFAs during cooking. Although some of these volatiles were increased in meat from animals fed the linseed supplement, the effect was not as great as with the fish oil fed lambs. Levels of volatiles derived from the Maillard reaction, such as pyrazines and sulfur compounds, were up to four times higher in Soays than Suffolks.
Simulation of radioelement volatility during the vitrification of radioactive wastes by arc plasma.
Ghiloufi, Imed
2009-04-15
A computer model is used to simulate the volatility of some radioelements cesium ((137)Cs), cobalt ((60)Co), and ruthenium ((106)Ru) during the radioactive wastes vitrification by thermal plasma. This model is based on the calculation of system composition using the free enthalpy minimization method, coupled with the equation of mass transfer at the reactional interface. The model enables the determination of the effects of various parameters (e.g., temperature, plasma current, and matrix composition) on the radioelement volatility. The obtained results indicate that any increase in molten bath temperature causes an increase in the cobalt volatility; while ruthenium has a less obvious behavior. It is also found that the oxygen flux in the carrier gas supports the radioelement incorporations in the containment matrix, except in the case of the ruthenium which is more volatile under an oxidizing atmosphere. For electrolyses effects, an increase in the plasma current considerably increases both the vaporization speed and the vaporized quantities of (137)Cs and (60)Co. The increase of silicon percentage in the containment matrix supports the incorporation of (60)Co and (137)Cs in the matrix. The simulation results are compared favorably to the experimental measurements obtained by emission spectroscopy.
Hong, Yong Seok; Kinney, Kerry A; Reible, Danny D
2011-03-01
Sediment from the Anacostia River (Washington, DC, USA) was suspended in aerobic artificial river water for 14 d to investigate the dynamics of dissolved metals release and related parameters including pH, acid volatile sulfides (AVS), and dissolved/solid phase Fe(2+). To better understand and predict the underlying processes, a mathematical model is developed considering oxidation of reduced species, dissolution of minerals, pH changes, and pH-dependent metals' sorption to sediment. Oxidation rate constants of elemental sulfur and zinc sulfide, and a dissolution rate constant of carbonate minerals, were adjusted to fit observations. The proposed model and parameters were then applied, without further calibration, to literature-reported experimental observations of resuspension in an acid sulfate soil collected in a coastal flood plain. The model provided a good description of the dynamics of AVS, Fe(2+), S(0)((s)), pH, dissolved carbonates concentrations, and the release of Ca((aq)), Mg((aq)), and Zn((aq)) in both sediments. Accurate predictions of Mn((aq)) release required adjustment of sorption partitioning coefficient, presumably due to the presence of Mn scavenging by phases not accounted for in the model. The oxidation of AVS (and the resulting release of sulfide-bound metals) was consistent with a two-step process, a relatively rapid AVS oxidation to elemental sulfur (S(0)((s))) and a slow oxidation of S(0)((s)) to SO(4)(2-)((aq)), with an associated decrease in pH from neutral to acidic conditions. This acidification was the dominant factor for the release of metals into the aqueous phase. Copyright © 2010 SETAC.
OH-initiated Aging of Biomass Burning Aerosol during FIREX
NASA Astrophysics Data System (ADS)
Lim, C. Y.; Hagan, D. H.; Cappa, C. D.; Kroll, J. H.; Coggon, M.; Koss, A.; Sekimoto, K.; De Gouw, J. A.; Warneke, C.
2017-12-01
Biomass burning emissions represent a major source of fine particulate matter to the atmosphere, and this source will likely become increasingly important in the future due to changes in the Earth's climate. Understanding the effects that increased fire emissions have on both air quality and climate requires understanding the composition of the particles emitted, since chemical and physical composition directly impact important particle properties such as absorptivity, toxicity, and cloud condensation nuclei activity. However, the composition of biomass burning particles in the atmosphere is dynamic, as the particles are subject to the condensation of low-volatility vapors and reaction with oxidants such as the hydroxyl radical (OH) during transport. Here we present a series of laboratory chamber experiments on the OH-initiated aging of biomass burning aerosol performed at the Fire Sciences Laboratory in Missoula, MT as part of the Fire Influences on Regional and Global Environments Experiment (FIREX) campaign. We describe the evolution of biomass burning aerosol produced from a variety of fuels operating the chamber in both particle-only and gas + particle mode, focusing on changes to the organic composition. In particle-only mode, gas-phase biomass burning emissions are removed before oxidation to focus on heterogeneous oxidation, while gas + particle mode includes both heterogeneous oxidation and condensation of oxidized volatile organic compounds onto the particles (secondary organic aerosol formation). Variability in fuels and burning conditions lead to differences in aerosol loading and secondary aerosol production, but in all cases aging results in a significant and rapid increases in the carbon oxidation state of the particles.
Coupled interactions between volatile activity and Fe oxidation state during arc crustal processes
Humphreys, Madeleine C.S.; Brooker, R; Fraser, D.C.; Burgisser, A; Mangan, Margaret T.; McCammon, C
2015-01-01
Arc magmas erupted at the Earth’s surface are commonly more oxidized than those produced at mid-ocean ridges. Possible explanations for this high oxidation state are that the transfer of fluids during the subduction process results in direct oxidation of the sub-arc mantle wedge, or that oxidation is caused by the effect of later crustal processes, including protracted fractionation and degassing of volatile-rich magmas. This study sets out to investigate the effect of disequilibrium crustal processes that may involve coupled changes in H2O content and Fe oxidation state, by examining the degassing and hydration of sulphur-free rhyolites. We show that experimentally hydrated melts record strong increases in Fe3+/∑Fe with increasing H2O concentration as a result of changes in water activity. This is relevant for the passage of H2O-undersaturated melts from the deep crust towards shallow crustal storage regions, and raises the possibility that vertical variations in fO2 might develop within arc crust. Conversely, degassing experiments produce an increase in Fe3+/∑Fe with decreasing H2O concentration. In this case the oxidation is explained by loss of H2 as well as H2O into bubbles during decompression, consistent with thermodynamic modelling, and is relevant for magmas undergoing shallow degassing en route to the surface. We discuss these results in the context of the possible controls on fO2 during the generation, storage and ascent of magmas in arc settings, in particular considering the timescales of equilibration relative to observation as this affects the quality of the petrological record of magmatic fO2.
Unusual Oxidative Limitations for Al-MAX Phases
NASA Technical Reports Server (NTRS)
Smialek, James L.
2017-01-01
Alumina-forming MAX phases are well-known for their excellent oxidation resistance, rivaling many metallic NiAl, NiCrAl, and FeCrAl counterparts and with upper temperature capability possible to approximately1400C. However a number of limitations have been emerging that need to be acknowledged to permit robust performance in demanding applications. Ti2AlC and Ti3AlC2 possess excellent scale adhesion, cyclic oxidation/moisture/volatility resistance, and TBC compatibility. However they are very sensitive to Al content and flux in order to maintain an exclusive Al2O3 scale without runaway oxidation of ubiquitous TiO2 transient scales. Accelerated oxidation has been shown to occur for Al-depleted, damaged, or roughened surfaces at temperatures less than 1200C. Conversely, Cr2AlC is less sensitive to transients, but exhibits volatile losses at 1200C or above if common Cr7C3 impurity phases are present. Poor scale adhesion is exhibited after oxidation at 1150C or above, where spallation occurs at the Cr7C3 (depletion zone) interface. Delayed spallation is significant and suggests a moisture-induced phenomenon similar to non-adherent metallic systems. Re-oxidation of this surface does not reproduce the initial pure Al2O3 behavior, but initiates a less-protective scale. Cr2AlC has also been shown to have good long term bonding with superalloys at 800C, but exhibits significant Beta-NiAl + Cr7C3 diffusion zones at 1100C and above. This may set limits on Cr2AlC as a high temperature TBC bond coat on Ni-based superalloys, while improving corrosion resistance in lower temperature applications.